Science.gov

Sample records for a549 human airway

  1. Effects of Human Parvovirus B19 and Bocavirus VP1 Unique Region on Tight Junction of Human Airway Epithelial A549 Cells

    PubMed Central

    Chiu, Chun-Ching; Shi, Ya-Fang; Yang, Jiann-Jou; Hsiao, Yuan-Chao; Tzang, Bor-Show; Hsu, Tsai-Ching

    2014-01-01

    As is widely recognized, human parvovirus B19 (B19) and human bocavirus (HBoV) are important human pathogens. Obviously, both VP1 unique region (VP1u) of B19 and HBoV exhibit the secreted phospholipase A2 (sPLA2)-like enzymatic activity and are recognized to participate in the pathogenesis of lower respiratory tract illnesses. However, exactly how, both VP1u from B19 and HBoV affect tight junction has seldom been addressed. Therefore, this study investigates how B19-VP1u and HBoV-VP1u may affect the tight junction of the airway epithelial A549 cells by examining phospholipase A2 activity and transepithelial electrical resistance (TEER) as well as performing immunoblotting analyses. Experimental results indicate that TEER is more significantly decreased in A549 cells by treatment with TNF-α (10 ng), two dosages of B19-VP1u and BoV-VP1u (400 ng and 4000 ng) or bee venom PLA2 (10 ng) than that of the control. Accordingly, more significantly increased claudin-1 and decreased occludin are detected in A549 cells by treatment with TNF-α or both dosages of HBoV-VP1u than that of the control. Additionally, more significantly decreased Na+/K+ ATPase is observed in A549 cells by treatment with TNF-α, high dosage of B19-VP1u or both dosages of BoV-VP1u than that of the control. Above findings suggest that HBoV-VP1u rather than B19 VP1u likely plays more important roles in the disruption of tight junction in the airway tract. Meanwhile, this discrepancy appears not to be associated with the secreted phospholipase A2 (sPLA2)-like enzymatic activity. PMID:25268969

  2. Effects of human Parvovirus B19 and Bocavirus VP1 unique region on tight junction of human airway epithelial A549 cells.

    PubMed

    Chiu, Chun-Ching; Shi, Ya-Fang; Yang, Jiann-Jou; Hsiao, Yuan-Chao; Tzang, Bor-Show; Hsu, Tsai-Ching

    2014-01-01

    As is widely recognized, human parvovirus B19 (B19) and human bocavirus (HBoV) are important human pathogens. Obviously, both VP1 unique region (VP1u) of B19 and HBoV exhibit the secreted phospholipase A2 (sPLA2)-like enzymatic activity and are recognized to participate in the pathogenesis of lower respiratory tract illnesses. However, exactly how, both VP1u from B19 and HBoV affect tight junction has seldom been addressed. Therefore, this study investigates how B19-VP1u and HBoV-VP1u may affect the tight junction of the airway epithelial A549 cells by examining phospholipase A2 activity and transepithelial electrical resistance (TEER) as well as performing immunoblotting analyses. Experimental results indicate that TEER is more significantly decreased in A549 cells by treatment with TNF-α (10 ng), two dosages of B19-VP1u and BoV-VP1u (400 ng and 4000 ng) or bee venom PLA2 (10 ng) than that of the control. Accordingly, more significantly increased claudin-1 and decreased occludin are detected in A549 cells by treatment with TNF-α or both dosages of HBoV-VP1u than that of the control. Additionally, more significantly decreased Na+/K+ ATPase is observed in A549 cells by treatment with TNF-α, high dosage of B19-VP1u or both dosages of BoV-VP1u than that of the control. Above findings suggest that HBoV-VP1u rather than B19 VP1u likely plays more important roles in the disruption of tight junction in the airway tract. Meanwhile, this discrepancy appears not to be associated with the secreted phospholipase A2 (sPLA2)-like enzymatic activity.

  3. Trichomonas vaginalis induces cytopathic effect on human lung alveolar basal carcinoma epithelial cell line A549.

    PubMed

    Salvador-Membreve, Daile Meek C; Jacinto, Sonia D; Rivera, Windell L

    2014-12-01

    Trichomonas vaginalis, the causative agent of trichomoniasis is generally known to inhabit the genitourinary tract. However, several case reports with supporting molecular and immunological identifications have documented its occurrence in the respiratory tract of neonates and adults. In addition, the reports have documented that its occurrence is associated with respiratory failures. The medical significance or consequence of this association is unclear. Thus, to establish the possible outcome from the interaction of T. vaginalis with lung cells, the cytopathic effects of the parasites were evaluated using monolayer cultures of the human lung alveolar basal carcinoma epithelial cell line A549. The possible effect of association of T. vaginalis with A549 epithelial cells was analyzed using phase-contrast, scanning electron microscopy and fluorescence microscopy. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), crystal-violet and TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling) assays were conducted for cytotoxicity testing. The results demonstrate that T. vaginalis: (1) adheres to A549 epithelial cells, suggesting a density-dependent parasite-cell association; (2) adherence on A549 is through flagella, membrane and axostyle; (3) causes cell detachment and cytotoxicity (50-72.4%) to A549 and this effect is a function of parasite density; and (4) induces apoptosis in A549 about 20% after 6 h of incubation. These observations indicate that T. vaginalis causes cytopathic effects on A549 cell. To date, this is the first report showing a possible interaction of T. vaginalis with the lung cells using A549 monolayer cultures. Further studies are recommended to completely elucidate this association.

  4. Radix Tetrastigma hemsleyani flavone inhibits proliferation, migration, and invasion of human lung carcinoma A549 cells

    PubMed Central

    Zhong, Liangrui; Zheng, Junxian; Sun, Qianqian; Wei, Kemin; Hu, Yijuan

    2016-01-01

    Radix Tetrastigma hemsleyani flavone (RTHF) is widely used as a traditional herb and has detoxification and anti-inflammatory effects. In this study, we investigated the potential effects of RTHF on the growth and metastasis of human lung adenocarcinoma A549 cells and evaluated its mechanisms. A549 cells were treated with RTHF at various concentrations for different periods. In vitro Cell Counting Kit-8 assay and colony formation methods showed that RTHF had dose- and time-dependent antiproliferation effects on A549 cells. A cell adhesion assay showed that RTHF decreased A549 cell adhesion in a dose-dependent manner. Cell invasion and migration were investigated using the Transwell assay and observed using an inverted microscope; the results showed that cell metastasis was significantly lower in the treatment group than that in the control group (P<0.01). Expression of metastasis-related matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) was detected by real-time polymerase chain reaction and Western blotting. The results showed that the expression of MMP-2, MMP-9, and TIMP-1 decreased, while that of TIMP-2 increased significantly in the RTHF group when compared with the results of the control group. These results show that RTHF exhibits antigrowth and antimetastasis activity in lung cancer A549 cells by decreasing the expression of MMP-2/-9 and TIMP-1 and increasing that of TIMP-2. PMID:26893573

  5. Human lung epithelial cell A549 proteome data after treatment with titanium dioxide and carbon black.

    PubMed

    Vuong, Ngoc Q; Goegan, Patrick; Mohottalage, Susantha; Breznan, Dalibor; Ariganello, Marianne; Williams, Andrew; Elisma, Fred; Karthikeyan, Subramanian; Vincent, Renaud; Kumarathasan, Premkumari

    2016-09-01

    Here, we have described the dataset relevant to the A549 cellular proteome changes after exposure to either titanium dioxide or carbon black particles as compared to the non-exposed controls, "Proteomic changes in human lung epithelial cells (A549) in response to carbon black and titanium dioxide exposures" (Vuong et al., 2016) [1]. Detailed methodologies on the separation of cellular proteins by 2D-GE and the subsequent mass spectrometry analyses using MALDI-TOF-TOF-MS are documented. Particle exposure-specific protein expression changes were measured via 2D-GE spot volume analysis. Protein identification was done by querying mass spectrometry data against SwissProt and RefSeq protein databases using Mascot search engine. Two-way ANOVA analysis data provided information on statistically significant A549 protein expression changes associated with particle exposures. PMID:27508218

  6. Human lung epithelial cell A549 proteome data after treatment with titanium dioxide and carbon black.

    PubMed

    Vuong, Ngoc Q; Goegan, Patrick; Mohottalage, Susantha; Breznan, Dalibor; Ariganello, Marianne; Williams, Andrew; Elisma, Fred; Karthikeyan, Subramanian; Vincent, Renaud; Kumarathasan, Premkumari

    2016-09-01

    Here, we have described the dataset relevant to the A549 cellular proteome changes after exposure to either titanium dioxide or carbon black particles as compared to the non-exposed controls, "Proteomic changes in human lung epithelial cells (A549) in response to carbon black and titanium dioxide exposures" (Vuong et al., 2016) [1]. Detailed methodologies on the separation of cellular proteins by 2D-GE and the subsequent mass spectrometry analyses using MALDI-TOF-TOF-MS are documented. Particle exposure-specific protein expression changes were measured via 2D-GE spot volume analysis. Protein identification was done by querying mass spectrometry data against SwissProt and RefSeq protein databases using Mascot search engine. Two-way ANOVA analysis data provided information on statistically significant A549 protein expression changes associated with particle exposures.

  7. Aptamer based electrochemical sensor for detection of human lung adenocarcinoma A549 cells

    NASA Astrophysics Data System (ADS)

    Sharma, Rachna; Varun Agrawal, Ved; Sharma, Pradeep; Varshney, R.; Sinha, R. K.; Malhotra, B. D.

    2012-04-01

    We report results of the studies relating to development of an aptamer-based electrochemical biosensor for detection of human lung adenocarcinoma A549 cells. The aminated 85-mer DNA aptamer probe specific for the A549 cells has been covalently immobilized onto silane self assembled monolayer (SAM) onto ITO surface using glutaraldehyde as the crosslinker. The results of cyclic voltammetry and differential pulse voltammetry studies reveal that the aptamer functionalized bioelectrode can specifically detect lung cancer cells in the concentration range of 103 to 107 cells/ml with detection limit of 103 cells/ml within 60 s. The specificity studies of the bioelectrode have been carried out with control KB cells. No significant change in response is observed for control KB cells as compared to that of the A549 target cells.

  8. Functional expression of nicotine influx transporter in A549 human alveolar epithelial cells.

    PubMed

    Tega, Yuma; Yuzurihara, Chihiro; Kubo, Yoshiyuki; Akanuma, Shin-ichi; Ehrhardt, Carsten; Hosoya, Ken-ichi

    2016-02-01

    Nicotine is a potent addictive alkaloid, and is rapidly absorbed through the alveoli of the lung. However, the transport mechanism of nicotine at the human alveolar epithelial barrier has not been investigated in great detail. In the present study, the transport mechanism of nicotine across alveolar epithelium was investigated in vitro using A549 cells, a human adenocarcinoma-derived cell line with an alveolar epithelial cell like phenotype. Nicotine uptake by A549 cells exhibited time-, temperature-, and concentration-dependence with a Km of 50.4 μM. These results suggest that a carrier-mediated transport process is involved in nicotine transport in human alveolar epithelial cells. Nicotine uptake by A549 cells was insensitive to change in extracellular pH. Moreover, nicotine uptake by A549 cells could be inhibited by organic cations such as verapamil and pyrilamine, but not typical substrates of organic cation transporters and β2-agonist. These results suggest that a novel, not yet molecularly identified, organic cation transporter plays a role in nicotine transport which is unlikely to interact with β2-agonist transport. This nicotine influx transporter in human alveolar epithelium might have implications for the rapid absorption of nicotine into the systemic circulation. PMID:26830082

  9. Effect of fucoidan from Turbinaria conoides on human lung adenocarcinoma epithelial (A549) cells.

    PubMed

    Alwarsamy, Madhavarani; Gooneratne, Ravi; Ravichandran, Ramanibai

    2016-11-01

    Fucoidan was purified from seaweed, Turbinaria conoides. Isolated fragments were characterized with NMR ((13)C, (1)H), Gas Chromatography-Mass Spectronomy (GC-MS) and HPLC analysis. The autohydrolysate of fucoidans consisted of sulfated fuco-oligosaccharides having the backbone of α-(1, 3)-linked fuco-pyranose derivatives and minor components of galactose, glucose, mannose and xylose sugars. Fucoidan induced a dose-dependent reduction in cell survival of lung cancer A549 cells by MTT assay (GI50, 75μg/mL). However, it was not cytotoxic to a non-tumorigenic human keratinocyte cell line of skin tissue (HaCaT) (GI50>1.0mg/mL). The apoptotic cells in fucoidan-treated A549 cells were visualized by laser confocal microscopy and cell cycle analysis showed induction of G0/G1 phase arrest of the cell progression cycle. Further, CFSE labeling and flow cytometry highlighted that fucoidan significantly (P<0.05) inhibited the proliferation rate of A549 cells by up to 2-fold compared with the control cells. It is concluded that fucoidan has the potential to act as an anti-proliferative agent on lung carcinoma (A549) cells.

  10. Effect of fucoidan from Turbinaria conoides on human lung adenocarcinoma epithelial (A549) cells.

    PubMed

    Alwarsamy, Madhavarani; Gooneratne, Ravi; Ravichandran, Ramanibai

    2016-11-01

    Fucoidan was purified from seaweed, Turbinaria conoides. Isolated fragments were characterized with NMR ((13)C, (1)H), Gas Chromatography-Mass Spectronomy (GC-MS) and HPLC analysis. The autohydrolysate of fucoidans consisted of sulfated fuco-oligosaccharides having the backbone of α-(1, 3)-linked fuco-pyranose derivatives and minor components of galactose, glucose, mannose and xylose sugars. Fucoidan induced a dose-dependent reduction in cell survival of lung cancer A549 cells by MTT assay (GI50, 75μg/mL). However, it was not cytotoxic to a non-tumorigenic human keratinocyte cell line of skin tissue (HaCaT) (GI50>1.0mg/mL). The apoptotic cells in fucoidan-treated A549 cells were visualized by laser confocal microscopy and cell cycle analysis showed induction of G0/G1 phase arrest of the cell progression cycle. Further, CFSE labeling and flow cytometry highlighted that fucoidan significantly (P<0.05) inhibited the proliferation rate of A549 cells by up to 2-fold compared with the control cells. It is concluded that fucoidan has the potential to act as an anti-proliferative agent on lung carcinoma (A549) cells. PMID:27516266

  11. Sinomenine inhibits A549 human lung cancer cell invasion by mediating the STAT3 signaling pathway

    PubMed Central

    Jiang, Shulong; Gao, Yebo; Hou, Wei; Liu, Rui; Qi, Xin; Xu, Xia; Li, Jie; Bao, Yanju; Zheng, Honggang; Hua, Baojin

    2016-01-01

    Increasing evidence suggests that the failure of lung cancer treatment may occur as a result of tumor invasion and metastasis. Signal transducer and activator of transcription 3 (STAT3), an epithelial-mesenchymal transition-inducing transcription factor, is a key signaling molecule involved in the proliferation, apoptosis, invasion and metastasis of tumor cells. Sinomenine is an alkaloid compound with an antineoplastic potential against a variety of cancer cells. The aim of the present study was to assess the antitumor mechanisms of sinomenine in the A549 human lung cancer cell line. The results demonstrated that sinomenine manifested dose-dependent cytotoxicity and induced apoptosis in A549 cells. The protein expression of Janus kinase 2, STAT3, phosphorylated-STAT3, Snail, N-cadherin and vimentin decreased in sinomenine-treated cells, while E-cadherin protein expression increased. The regulation of STAT3, N-cadherin and E-cadherin by sinomenine was further confirmed by reverse transcription-quantitative polymerase chain reaction and immunofluorescent staining. It was demonstrated that sinomenine exerts inhibitory effects on A549 human lung cancer cell invasion, possibly through the inhibition of STAT3 signaling. These results provide a novel insight into the role of sinomenine in the treatment of non-small cell lung cancer. PMID:27446441

  12. Safrole oxide induces apoptosis in A549 human lung cancer cells.

    PubMed

    Du, Aiying; Zhang, Shangli; Miao, Junying; Zhao, Baoxiang

    2004-09-01

    3,4-(Methylenedioxy)-1-(2',3'-epoxypropyl)-benzene (safrole oxide) was synthesized in the authors' laboratory. To investigate the effects of safrole oxide on the growth and apoptosis of A549 human lung cancer cells, the authors treated the cells with safrole oxide, 112.36 to 449.44 micromol/L, for 24 to 48 hours. The results showed that the drug led A549 cells to apoptosis and blocked cell cycle completely at G1 phase and partly at G(2)-M phase. To further study the correlated mechanism, the authors examined P53 and H-Ras protein expressions by using immunofluorescence assay. They found that the expression of P53 was dramatically up-regulated but the expression of H-Ras was hardly affected by safrole oxide, 224.72 micromol/L, within 24 hours. Taken together, these results revealed that safrole oxide could induce apoptosis of A549 cells and suggested that safrole oxide might perform its function by blocking cells completely at G1 phase and partly at G(2)-M phase, and also by up-regulating the expression of P53 protein. These findings would raise exciting possibilities for cancer therapy in future.

  13. Burkholderia pseudomallei Biofilm Promotes Adhesion, Internalization and Stimulates Proinflammatory Cytokines in Human Epithelial A549 Cells.

    PubMed

    Kunyanee, Chanikarn; Kamjumphol, Watcharaporn; Taweechaisupapong, Suwimol; Kanthawong, Sakawrat; Wongwajana, Suwin; Wongratanacheewin, Surasak; Hahnvajanawong, Chariya; Chareonsudjai, Sorujsiri

    2016-01-01

    Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis. Inhalational exposure leading to pulmonary melioidosis is the most common clinical manifestation with significant mortality. However, the role of B. pseudomallei biofilm phenotype during bacterial-host interaction remains unclear. We hypothesize that biofilm phenotype may play a role in such interactions. In this study, B. pseudomallei H777 (biofilm wild type), B. pseudomallei M10 (biofilm mutant) and B. pseudomallei C17 (biofilm-complemented) strains were used to assess the contribution of biofilm to adhesion to human lung epithelial cells (A549), intracellular interactions, apoptosis/necrosis and impact on proinflammatory responses. Confocal laser scanning microscopy demonstrated that B. pseudomallei H777 and C17 produced biofilm, whereas M10 did not. To determine the role of biofilm in host interaction, we assessed the ability of each of the three strains to interact with the A549 cells at MOI 10. Strain H777 exhibited higher levels of attachment and invasion compared to strain M10 (p < 0.05). In addition, the biofilm-complemented strain, C17 exhibited restored bacterial invasion ability. Flow cytometry combined with a double-staining assay using annexin V and propidium iodide revealed significantly higher numbers of early apoptotic and late apoptotic A549 cells when these were infected with strain H777 (1.52%) and C17 (1.43%) compared to strain M10 (0.85%) (p < 0.05). Strains H777 and C17 were able to stimulate significant secretion of IL-6 and IL-8 compared with the biofilm mutant (p < 0.05). Together, these findings demonstrated the role of biofilm-associated phenotypes of B. pseudomallei in cellular pathogenesis of human lung epithelial cells with respect to initial attachment and invasion, apoptosis and proinflammatory responses. PMID:27529172

  14. Burkholderia pseudomallei Biofilm Promotes Adhesion, Internalization and Stimulates Proinflammatory Cytokines in Human Epithelial A549 Cells

    PubMed Central

    Kunyanee, Chanikarn; Kamjumphol, Watcharaporn; Taweechaisupapong, Suwimol; Kanthawong, Sakawrat; Wongwajana, Suwin; Wongratanacheewin, Surasak; Hahnvajanawong, Chariya

    2016-01-01

    Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis. Inhalational exposure leading to pulmonary melioidosis is the most common clinical manifestation with significant mortality. However, the role of B. pseudomallei biofilm phenotype during bacterial-host interaction remains unclear. We hypothesize that biofilm phenotype may play a role in such interactions. In this study, B. pseudomallei H777 (biofilm wild type), B. pseudomallei M10 (biofilm mutant) and B. pseudomallei C17 (biofilm-complemented) strains were used to assess the contribution of biofilm to adhesion to human lung epithelial cells (A549), intracellular interactions, apoptosis/necrosis and impact on proinflammatory responses. Confocal laser scanning microscopy demonstrated that B. pseudomallei H777 and C17 produced biofilm, whereas M10 did not. To determine the role of biofilm in host interaction, we assessed the ability of each of the three strains to interact with the A549 cells at MOI 10. Strain H777 exhibited higher levels of attachment and invasion compared to strain M10 (p < 0.05). In addition, the biofilm-complemented strain, C17 exhibited restored bacterial invasion ability. Flow cytometry combined with a double-staining assay using annexin V and propidium iodide revealed significantly higher numbers of early apoptotic and late apoptotic A549 cells when these were infected with strain H777 (1.52%) and C17 (1.43%) compared to strain M10 (0.85%) (p < 0.05). Strains H777 and C17 were able to stimulate significant secretion of IL-6 and IL-8 compared with the biofilm mutant (p < 0.05). Together, these findings demonstrated the role of biofilm-associated phenotypes of B. pseudomallei in cellular pathogenesis of human lung epithelial cells with respect to initial attachment and invasion, apoptosis and proinflammatory responses. PMID:27529172

  15. Telomere shortening and cell senescence induced by perylene derivatives in A549 human lung cancer cells.

    PubMed

    Taka, Thanachai; Huang, Liming; Wongnoppavich, Ariyaphong; Tam-Chang, Suk-Wah; Lee, T Randall; Tuntiwechapikul, Wirote

    2013-02-15

    Cancer cells evade replicative senescence by re-expressing telomerase, which maintains telomere length and hence chromosomal integrity. Telomerase inhibition would lead cancer cells to senesce and therefore prevent cancer cells from growing indefinitely. G-quadruplex ligands can attenuate telomerase activity by inducing G-quadruplex formation at the 3'-overhang of telomere and at the human telomerase reverse transcriptase (hTERT) promoter; the former prevents telomerase from accessing the telomere, and the latter acts as a transcriptional silencer. The present investigation found that perylene derivatives PM2 and PIPER induced G-quadruplex formation from both telomeric DNA and the hTERT promoter region in vitro. Further, TRAP assay showed that these compounds inhibited telomerase in a dose-dependent manner. When A549 human lung cancer cells were treated with these compounds, hTERT expression was down-regulated. Moreover, the crude protein extract from these treated cells exhibited less telomerase activity. In the long-term treatment of A549 lung cancer cells with sub-cytotoxic dose of these perylenes, telomere shortening, reduction of cell proliferation and tumorigenicity, and cell senescence were observed. The results of this study indicate that perylene derivatives warrant further consideration as effective agents for cancer therapy.

  16. Role of {alpha}{sub v}{beta}{sub 5} integrin receptor in endocytosis of crocidolite and its effect on intracellular glutathione levels in human lung epithelial (A549) cells

    SciTech Connect

    Pande, Priyadarshini; Mosleh, Tariq A.; Aust, Ann E. . E-mail: aaust@cc.usu.edu

    2006-01-15

    Crocidolite, containing 27% iron by weight, is the most carcinogenic form of asbestos. Crocidolite fibers are endocytized by {alpha}{sub v}{beta}{sub 5} integrin receptors in rabbit pleural mesothelial cells. We show here that crocidolite fibers are endocytized in human lung epithelial (A549) cells and in primary small airway epithelial (SAEC) cells. Presence of the integrin {alpha}{sub v}{beta}{sub 5} blocking antibody, P1F6, significantly reduced the uptake of crocidolite fibers in A549 cells. Thus, the integrin {alpha}{sub v}{beta}{sub 5} receptor is involved in endocytosis of crocidolite fibers in A549 cells as well. Previously, it has been observed that asbestos fibers lead to changes in the intracellular redox environment, i.e. a marked decrease in intracellular glutathione concentrations and an increase in the extracellular glutathione in A549 cells. In addition, the decrease in intracellular glutathione was found to be largely independent of iron present on the surface of the fiber. A549 cells were treated with crocidolite in the presence of endocytosis inhibitor cytochalasin D. Our data indicate that, upon preventing endocytosis, we were able to reverse the decrease in total intracellular glutathione. The decrease in total intracellular glutathione could also be prevented in the presence of the monoclonal antibody P1F6. Thus, we observed that endocytosis of crocidolite fibers via integrin {alpha}{sub v}{beta}{sub 5} receptor is linked to the marked decrease in total intracellular glutathione in A549 cells.

  17. Genistein inhibits A549 human lung cancer cell proliferation via miR-27a and MET signaling

    PubMed Central

    Yang, Yang; Zang, Aimin; Jia, Youchao; Shang, Yanhong; Zhang, Zhuoqi; Ge, Kun; Zhang, Jinchao; Fan, Wufang; Wang, Bei

    2016-01-01

    Genistein is a soybean isoflavone; in its aglycone it has various biological activities. Animal experiments, clinical studies and epidemiological investigations suggest that genistein has preventative and curative functions for a number of diseases, particularly in cancer. The present study explored the potential anti-cancer effect of genistein by observing its role in inhibiting A549 human lung cancer cell proliferation and investigating the possible mechanism. A549 cells were exposed to various concentrations of genistein (0, 10, 25, 50, 100 and 200 µM; dissolved in physiological saline) for 1, 2 and 3 days. Subsequently, the viability of A549 cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell apoptosis was examined using a flow cytometer, caspase 3/9 activity was measured using commercial kits, reverse transcription quantitative polymerase chain reaction was used to analyze the miR-27a expression and western blotting was used to investigate MET protein expression. The results suggested a significant inhibition of A549 cell growth following treatment with genistein in a time- and dose-dependent manner. The current study also indicated that treatment with genistein significantly induces cell apoptosis and promotes caspase-3/9 activation of A549 cells in a dose-dependent manner. Further functional assays revealed that the anti-cancer effect of genistein activated microRNA-27a (miR-27a) expression levels and reduced MET protein expression in A549 cells. In conclusion, the present study demonstrates that genistein inhibits A549 human lung cancer cell proliferation. Furthermore, this study reports, for the first time, a correlation between the anti-cancer effect of genistein and miR-27a-mediated MET signaling.

  18. Genistein inhibits A549 human lung cancer cell proliferation via miR-27a and MET signaling

    PubMed Central

    Yang, Yang; Zang, Aimin; Jia, Youchao; Shang, Yanhong; Zhang, Zhuoqi; Ge, Kun; Zhang, Jinchao; Fan, Wufang; Wang, Bei

    2016-01-01

    Genistein is a soybean isoflavone; in its aglycone it has various biological activities. Animal experiments, clinical studies and epidemiological investigations suggest that genistein has preventative and curative functions for a number of diseases, particularly in cancer. The present study explored the potential anti-cancer effect of genistein by observing its role in inhibiting A549 human lung cancer cell proliferation and investigating the possible mechanism. A549 cells were exposed to various concentrations of genistein (0, 10, 25, 50, 100 and 200 µM; dissolved in physiological saline) for 1, 2 and 3 days. Subsequently, the viability of A549 cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell apoptosis was examined using a flow cytometer, caspase 3/9 activity was measured using commercial kits, reverse transcription quantitative polymerase chain reaction was used to analyze the miR-27a expression and western blotting was used to investigate MET protein expression. The results suggested a significant inhibition of A549 cell growth following treatment with genistein in a time- and dose-dependent manner. The current study also indicated that treatment with genistein significantly induces cell apoptosis and promotes caspase-3/9 activation of A549 cells in a dose-dependent manner. Further functional assays revealed that the anti-cancer effect of genistein activated microRNA-27a (miR-27a) expression levels and reduced MET protein expression in A549 cells. In conclusion, the present study demonstrates that genistein inhibits A549 human lung cancer cell proliferation. Furthermore, this study reports, for the first time, a correlation between the anti-cancer effect of genistein and miR-27a-mediated MET signaling. PMID:27602162

  19. 4-Nitroquinoline-1-oxide effects human lung adenocarcinoma A549 cells by regulating the expression of POLD4

    PubMed Central

    HUANG, QIN-MIAO; ZENG, YI-MING; ZHANG, HUA-PING; LV, LIANG-CHAO; YANG, DONG-YONG; LIN, HUI-HUANG

    2016-01-01

    The aim of the present study was to explore the expression of POLD4 in human lung adenocarcinoma A549 cells under 4-nitroquinoline-1-oxide (4NQO) stimulation to investigate the role of POLD4 in smoking-induced lung cancer. The lung cancer A549 cell line was treated with 4NQO, with or without MG132 (an inhibitor of proteasome activity), and subsequently the POLD4 level was determined by western blot analysis. Secondly, the cell sensitivity to 4NQO and Taxol was determined when the POLD4 expression level was downregulated by siRNA. The POLD4 protein levels in the A549 cells decreased following treatment with 4NQO; however, MG132 could reverse this phenotype. Downregulation of the POLD4 expression by siRNA enhanced A549 cell sensitivity to 4NQO, but not to Taxol. In conclusion, 4NQO affects human lung adenocarcinoma A549 cells by regulating the expression of POLD4. PMID:26998273

  20. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling

    NASA Astrophysics Data System (ADS)

    Cheng, C.-Y.; Perevedentseva, E.; Tu, J.-S.; Chung, P.-H.; Cheng, C.-L.; Liu, K.-K.; Chao, J.-I.; Chen, P.-H.; Chang, C.-C.

    2007-04-01

    This letter presents direct observation of growth hormone receptor in one single cancer cell using nanodiamond-growth hormone complex as a specific probe. The interaction of surface growth hormone receptor of A549 human lung epithelial cells with growth hormone was observed using nanodiamond's unique spectroscopic signal via confocal Raman mapping. The growth hormone molecules were covalent conjugated to 100nm diameter carboxylated nanodiamonds, which can be recognized specifically by the growth hormone receptors of A549 cell. The Raman spectroscopic signal of diamond provides direct and in vitro observation of growth hormone receptors in physiology condition in a single cell level.

  1. Feroniellin A-induced autophagy causes apoptosis in multidrug-resistant human A549 lung cancer cells.

    PubMed

    Kaewpiboon, Chutima; Surapinit, Serm; Malilas, Waraporn; Moon, Jeong; Phuwapraisirisan, Preecha; Tip-Pyang, Santi; Johnston, Randal N; Koh, Sang Seok; Assavalapsakul, Wanchai; Chung, Young-Hwa

    2014-04-01

    During the screening of natural chemicals that can reverse multidrug resistance in human A549 lung cancer cells resistant to etoposide (A549RT-eto), we discovered that Feroniellin A (FERO), a novel furanocoumarin, shows toxicity toward A549RT-eto cells in a dose- and time-dependent manner. FERO reduced the expression of NF-κB, leading to downregulation of P-glycoprotein (P-gp), encoded by MDR1, which eventually sensitized A549RT-eto cells to apoptosis. FERO specifically diminished transcription and promoter activity of MDR1 but did not inhibit the expression of other multidrug resistance genes MRP2 and BCRP. Moreover, co-administration of FERO with Bay11-7802, an inhibitor of NF-κB, accelerated apoptosis of A549RT-eto cells through decreased expression of P-gp, indicating that NF-κB is involved in multidrug resistance. Conversely, addition of Z-VAD, a pan-caspase inhibitor, blocked FERO-induced apoptosis in A549RT-eto cells but did not block downregulation of P-gp, indicating that a decrease in P-gp expression is necessary but not sufficient for FERO-induced apoptosis. Interestingly, we found that FERO also induces autophagy, which is characterized by the conversion of LC3 I to LC3 II, induction of GFP-LC3 puncta, enhanced expression of Beclin-1 and ATG5, and inactivation of mTOR. Furthermore, suppression of Beclin-1 by siRNA reduced FERO-induced apoptosis in A549RT-eto cells and activation of autophagy by rapamycin accelerated FERO-induced apoptosis, suggesting that autophagy plays an active role in FERO-induced apoptosis. Herein, we report that FERO reverses multidrug resistance in A549RT-eto cells and exerts its cytotoxic effect by induction of both autophagy and apoptosis, which suggests that FERO can be a useful anticancer drug for multidrug-resistant lung cancer. PMID:24535083

  2. Feroniellin A-induced autophagy causes apoptosis in multidrug-resistant human A549 lung cancer cells.

    PubMed

    Kaewpiboon, Chutima; Surapinit, Serm; Malilas, Waraporn; Moon, Jeong; Phuwapraisirisan, Preecha; Tip-Pyang, Santi; Johnston, Randal N; Koh, Sang Seok; Assavalapsakul, Wanchai; Chung, Young-Hwa

    2014-04-01

    During the screening of natural chemicals that can reverse multidrug resistance in human A549 lung cancer cells resistant to etoposide (A549RT-eto), we discovered that Feroniellin A (FERO), a novel furanocoumarin, shows toxicity toward A549RT-eto cells in a dose- and time-dependent manner. FERO reduced the expression of NF-κB, leading to downregulation of P-glycoprotein (P-gp), encoded by MDR1, which eventually sensitized A549RT-eto cells to apoptosis. FERO specifically diminished transcription and promoter activity of MDR1 but did not inhibit the expression of other multidrug resistance genes MRP2 and BCRP. Moreover, co-administration of FERO with Bay11-7802, an inhibitor of NF-κB, accelerated apoptosis of A549RT-eto cells through decreased expression of P-gp, indicating that NF-κB is involved in multidrug resistance. Conversely, addition of Z-VAD, a pan-caspase inhibitor, blocked FERO-induced apoptosis in A549RT-eto cells but did not block downregulation of P-gp, indicating that a decrease in P-gp expression is necessary but not sufficient for FERO-induced apoptosis. Interestingly, we found that FERO also induces autophagy, which is characterized by the conversion of LC3 I to LC3 II, induction of GFP-LC3 puncta, enhanced expression of Beclin-1 and ATG5, and inactivation of mTOR. Furthermore, suppression of Beclin-1 by siRNA reduced FERO-induced apoptosis in A549RT-eto cells and activation of autophagy by rapamycin accelerated FERO-induced apoptosis, suggesting that autophagy plays an active role in FERO-induced apoptosis. Herein, we report that FERO reverses multidrug resistance in A549RT-eto cells and exerts its cytotoxic effect by induction of both autophagy and apoptosis, which suggests that FERO can be a useful anticancer drug for multidrug-resistant lung cancer.

  3. Airway epithelial cell response to human metapneumovirus infection

    SciTech Connect

    Bao, X.; Liu, T.; Spetch, L.; Kolli, D.; Garofalo, R.P.; Casola, A.

    2007-11-10

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and type I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-{kappa}B, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immunomodulatory mediators.

  4. Apoptosis of human lung adenocarcinoma A549 cells induced by prodigiosin analogue obtained from an entomopathogenic bacterium Serratia marcescens.

    PubMed

    Zhou, Wei; Jin, Zhi-Xiong; Wan, Yong-Ji

    2010-12-01

    An entomopathogenic bacterial strain SCQ1 was isolated from silkworm (Bombyx mori) and identified as Serratia marcescens via 16S rRNA gene analysis. This strain produces a red pigment that causes acute septicemia of silkworm. The red pigment of strain SCQ1 was identified as prodigiosin analogue (PGA) with various reported biological activities. In this study, we found that low concentration of PGA showed significant anticancer activity in human lung adenocarcinoma A549 cells, but has little effect in human bone marrow stem cells, in vitro. By exposure to different concentrations of PGA for 24 h, morphological changes and the MTT assay showed that A549 cell line was very sensitive to PGA, with IC(50) value about 2.2 mg/L. Early stage of apoptosis was detected by flow cytometry while A549 cells were treated with PGA for 4 and 12 h, respectively. The proportion of dead cells was increased with treatment time or the concentrations of PGA, but it was inversely proportional to that of apoptotic cells. These results indicate that PGA obtained from strain SCQ1 induces apoptosis in A549 cells, but the molecular mechanisms of cell death are complicated, and the S. marcescens strain SCQ1 may serve as a source of the anticancer compound, PGA.

  5. Capsaicin-induced genotoxic stress does not promote apoptosis in A549 human lung and DU145 prostate cancer cells.

    PubMed

    Lewinska, Anna; Jarosz, Paulina; Czech, Joanna; Rzeszutek, Iwona; Bielak-Zmijewska, Anna; Grabowska, Wioleta; Wnuk, Maciej

    2015-02-01

    Capsaicin is the major pungent component of the hot chili peppers of the genus Capsicum, which are consumed worldwide as a food additive. More recently, the selective action of capsaicin against cancer cells has been reported. Capsaicin was found to induce apoptosis and inhibit proliferation of a wide range of cancer cells in vitro, whereas being inactive against normal cells. As data on capsaicin-induced genotoxicity are limited and the effects of capsaicin against human lung A549 and DU145 prostate cancer cells were not explored in detail, we were interested in determining whether capsaicin-associated genotoxicity may also provoke A549 and DU145 cell death. Capsaicin-induced decrease in metabolic activity and cell proliferation, and changes in the cell cycle were limited to high concentrations used (≥ 100 μM), whereas, at lower concentrations, capsaicin stimulated both DNA double strand breaks and micronuclei production. Capsaicin was unable to provoke apoptotic cell death when used up to 250 μM concentrations. Capsaicin induced oxidative stress, but was ineffective in provoking the dissipation of the mitochondrial inner transmembrane potential. A different magnitude of p53 binding protein 1 (53BP1) recruitment contributed to diverse capsaicin-induced genotoxic effects in DU145 and A549 cells. Capsaicin was also found to be a DNA hypermethylating agent in A549 cells. In summary, we have shown that genotoxic effects of capsaicin may contribute to limited susceptibility of DU145 and A549 cancer cells to apoptosis in vitro, which may question the usefulness of capsaicin-based anticancer therapy, at least in a case of lung and prostate cancer. PMID:25813723

  6. Capsaicin-induced genotoxic stress does not promote apoptosis in A549 human lung and DU145 prostate cancer cells.

    PubMed

    Lewinska, Anna; Jarosz, Paulina; Czech, Joanna; Rzeszutek, Iwona; Bielak-Zmijewska, Anna; Grabowska, Wioleta; Wnuk, Maciej

    2015-02-01

    Capsaicin is the major pungent component of the hot chili peppers of the genus Capsicum, which are consumed worldwide as a food additive. More recently, the selective action of capsaicin against cancer cells has been reported. Capsaicin was found to induce apoptosis and inhibit proliferation of a wide range of cancer cells in vitro, whereas being inactive against normal cells. As data on capsaicin-induced genotoxicity are limited and the effects of capsaicin against human lung A549 and DU145 prostate cancer cells were not explored in detail, we were interested in determining whether capsaicin-associated genotoxicity may also provoke A549 and DU145 cell death. Capsaicin-induced decrease in metabolic activity and cell proliferation, and changes in the cell cycle were limited to high concentrations used (≥ 100 μM), whereas, at lower concentrations, capsaicin stimulated both DNA double strand breaks and micronuclei production. Capsaicin was unable to provoke apoptotic cell death when used up to 250 μM concentrations. Capsaicin induced oxidative stress, but was ineffective in provoking the dissipation of the mitochondrial inner transmembrane potential. A different magnitude of p53 binding protein 1 (53BP1) recruitment contributed to diverse capsaicin-induced genotoxic effects in DU145 and A549 cells. Capsaicin was also found to be a DNA hypermethylating agent in A549 cells. In summary, we have shown that genotoxic effects of capsaicin may contribute to limited susceptibility of DU145 and A549 cancer cells to apoptosis in vitro, which may question the usefulness of capsaicin-based anticancer therapy, at least in a case of lung and prostate cancer.

  7. Oxidative stress and inflammatory response to printer toner particles in human epithelial A549 lung cells.

    PubMed

    Könczöl, Mathias; Weiß, Adilka; Gminski, Richard; Merfort, Irmgard; Mersch-Sundermann, Volker

    2013-02-01

    Reports on adverse health effects related to occupational exposure to toner powder are still inconclusive. Therefore, we have previously conducted an in vitro-study to characterize the genotoxic potential of three commercially available black printer toner powders in A549 lung cells. In these cell-based assays it was clearly demonstrated that the tested toner powders damage DNA and induce micronucleus (MN) formation. Here, we have studied the cytotoxic and proinflammatory potential of these three types of printer toner particles and the influence of ROS and NF-κB induction in order to unravel the underlying mechanisms. A549 cells were exposed to various concentrations of printer toner particle suspensions for 24 h. The toner particles were observed to exert significant cytotoxic effects in the WST-1 and neutral red (NR)-assays, although to a varying extent. Caspase 3/7 activity increased, while the mitochondrial membrane potential (MMP) was not affected. Particles of all three printer toner powders induced concentration-dependent formation of reactive oxygen species (ROS), as measured in the DCFH-DA assay. Furthermore, toner particle exposure enhanced interleukin-6 and interleukin-8 production, which is in agreement with activation of the transcription factor NF-κB in A549 cells shown by the electrophoretic mobility shift assay (EMSA). Therefore, it can be concluded that exposure of A549 lung cells to three selected printer toner powders caused oxidative stress through induction of ROS. Increased ROS formation may trigger genotoxic effects and activate proinflammatory pathways.

  8. Safrole oxide induces apoptosis by activating caspase-3, -8, and -9 in A549 human lung cancer cells.

    PubMed

    Du, Aiying; Zhao, Baoxiang; Yin, Deling; Zhang, Shangli; Miao, Junying

    2006-01-01

    Previously we found that 3,4-(methylenedioxy)-1-(2',3'-epoxypropyl)-benzene (safrole oxide) induced a typical apoptosis in A549 human lung cancer cells. In this study, we further investigated which caspases were activated by safrole oxide during the apoptosis. The data showed that the activity of caspase-3, -8, and -9 was significantly enhanced by the compound, which suggested that safrole oxide might be used as a caspase promoter to initiate lung cancer cell apoptosis.

  9. In vitro evaluation of the cellular effect of indium tin oxide nanoparticles using the human lung adenocarcinoma A549 cells.

    PubMed

    Tabei, Yosuke; Sonoda, Akinari; Nakajima, Yoshihiro; Biju, Vasudevanpillai; Makita, Yoji; Yoshida, Yasukazu; Horie, Masanori

    2015-05-01

    Indium tin oxide (ITO) is widely used in liquid crystal displays (LCDs) or plasma and mobile phone displays. Elevated production and usage of ITO in such displays have led to increased concerns over the safety of industrial workers exposed to particulate aerosols produced during cutting, grinding and polishing of these materials. However, the cellular effects of ITO nanoparticles (NPs) are still unclear, although it has been reported that micro-scale ITO particles induce cytotoxicity. The aim of this study was to examine the potential of ITO NPs to induce cytotoxicity, oxidative stress, and DNA damage using human lung adenocarcinoma A549 cells. Here, stable dispersions of a medium containing ITO NPs were obtained using pre-adsorption and centrifugal fractionation methods, and the A549 cells were incubated in this medium. The ITO NPs showed low cytotoxic effects as shown by the WST-1 and LDH assays. Transmission electron microscopy observations showed the cellular uptake of ITO NPs. The ITO NPs increased the intracellular level of reactive oxygen species and the expression of the heme oxygenase 1 gene. Further, the results of alkaline comet assays showed that ITO NPs induced DNA damage. Thus, these results suggest that ITO NPs possess a genotoxic potential on human lung adenocarcinoma A549 cells.

  10. Vitamin D Analogs Potentiate the Antitumor Effect of Imatinib Mesylate in a Human A549 Lung Tumor Model

    PubMed Central

    Maj, Ewa; Filip-Psurska, Beata; Świtalska, Marta; Kutner, Andrzej; Wietrzyk, Joanna

    2015-01-01

    In previous papers, we presented data on studies on the anticancer activity of the vitamin D3 analogs, named PRI-2191 and PRI-2205, in different cancer models. In this study, we showed the improved antiproliferative activity of a combination of imatinib mesylate (Gleevec, GV) and cytostatic agents in in vitro studies, when used with a third compound, namely PRI-2191, in an A549 human lung cancer model. Furthermore, we analyzed the influence of both PRI-2191, as well as PRI-2205 on the anticancer activity of GV in mice bearing A549 tumors. The route of PRI-2191 analog administration showed a significant impact on the outcome of GV treatment: subcutaneous injection was more efficient and less toxic than oral gavage. Moreover, both vitamin D compounds increased the anticancer activity of GV; however, they might also potentiate some adverse effects. We also evaluated in tumor tissue the expression of VEGF, PDGF-BB, vitamin D receptor, CYP27B1, CYP24, p53 and Bcl-2, as well as PDGF receptors: α and β. We observed the upregulation of p53 expression and the downregulation of Bcl-2, as well as VEGF in A549 tumors as a result of the tested treatment. However, vitamin D analogs did not significantly influence the expression of these proteins. PMID:26580599

  11. Vitamin D Analogs Potentiate the Antitumor Effect of Imatinib Mesylate in a Human A549 Lung Tumor Model.

    PubMed

    Maj, Ewa; Filip-Psurska, Beata; Świtalska, Marta; Kutner, Andrzej; Wietrzyk, Joanna

    2015-11-13

    In previous papers, we presented data on studies on the anticancer activity of the vitamin D₃ analogs, named PRI-2191 and PRI-2205, in different cancer models. In this study, we showed the improved antiproliferative activity of a combination of imatinib mesylate (Gleevec, GV) and cytostatic agents in in vitro studies, when used with a third compound, namely PRI-2191, in an A549 human lung cancer model. Furthermore, we analyzed the influence of both PRI-2191, as well as PRI-2205 on the anticancer activity of GV in mice bearing A549 tumors. The route of PRI-2191 analog administration showed a significant impact on the outcome of GV treatment: subcutaneous injection was more efficient and less toxic than oral gavage. Moreover, both vitamin D compounds increased the anticancer activity of GV; however, they might also potentiate some adverse effects. We also evaluated in tumor tissue the expression of VEGF, PDGF-BB, vitamin D receptor, CYP27B1, CYP24, p53 and Bcl-2, as well as PDGF receptors: α and β. We observed the upregulation of p53 expression and the downregulation of Bcl-2, as well as VEGF in A549 tumors as a result of the tested treatment. However, vitamin D analogs did not significantly influence the expression of these proteins.

  12. Vitamin D Analogs Potentiate the Antitumor Effect of Imatinib Mesylate in a Human A549 Lung Tumor Model.

    PubMed

    Maj, Ewa; Filip-Psurska, Beata; Świtalska, Marta; Kutner, Andrzej; Wietrzyk, Joanna

    2015-01-01

    In previous papers, we presented data on studies on the anticancer activity of the vitamin D₃ analogs, named PRI-2191 and PRI-2205, in different cancer models. In this study, we showed the improved antiproliferative activity of a combination of imatinib mesylate (Gleevec, GV) and cytostatic agents in in vitro studies, when used with a third compound, namely PRI-2191, in an A549 human lung cancer model. Furthermore, we analyzed the influence of both PRI-2191, as well as PRI-2205 on the anticancer activity of GV in mice bearing A549 tumors. The route of PRI-2191 analog administration showed a significant impact on the outcome of GV treatment: subcutaneous injection was more efficient and less toxic than oral gavage. Moreover, both vitamin D compounds increased the anticancer activity of GV; however, they might also potentiate some adverse effects. We also evaluated in tumor tissue the expression of VEGF, PDGF-BB, vitamin D receptor, CYP27B1, CYP24, p53 and Bcl-2, as well as PDGF receptors: α and β. We observed the upregulation of p53 expression and the downregulation of Bcl-2, as well as VEGF in A549 tumors as a result of the tested treatment. However, vitamin D analogs did not significantly influence the expression of these proteins. PMID:26580599

  13. Sensitivity of A-549 human lung cancer cells to nanoporous zinc oxide conjugated with Photofrin.

    PubMed

    Fakhar-e-Alam, Muhammad; Ali, Syed Muhammad Usman; Ibupoto, Zafar Hussain; Kimleang, Khun; Atif, M; Kashif, Muhammad; Loong, Foo Kai; Hashim, Uda; Willander, Magnus

    2012-05-01

    In the present study, we demonstrated the use of nanoporous zinc oxide (ZnO NPs) in photodynamic therapy. The ZnO NPs structure possesses a high surface to volume ratio due to its porosity and ZnO NPs can be used as an efficient photosensitizer carrier system. We were able to grow ZnO NPs on the tip of borosilicate glass capillaries (0.5 μm diameter) and conjugated this with Photofrin for efficient intracellular drug delivery. The ZnO NPs on the capillary tip could be excited intracellularly with 240 nm UV light, and the resultant 625 nm red light emitted in the presence of Photofrin activated a chemical reaction that produced reactive oxygen species (ROS). The procedure was tested in A-549 cells and led to cell death within a few minutes. The morphological changes in necrosed cells were examined by microscopy. The viability of control and treated A-549 cells with the optimum dose of UV/visible light was assessed using the MTT assay, and ROS were detected using a fluorescence microscopy procedure.

  14. Cytotoxicity, oxidative stress and genotoxicity induced by glass fibers on human alveolar epithelial cell line A549.

    PubMed

    Rapisarda, Venerando; Loreto, Carla; Ledda, Caterina; Musumeci, Giuseppe; Bracci, Massimo; Santarelli, Lory; Renis, Marcella; Ferrante, Margherita; Cardile, Venera

    2015-04-01

    Man-made vitreous fibers have been widely used as insulation material as asbestos substitutes; however their morphology and composition raises concerns. In 1988 the International Agency for Research on Cancer classified fiberglass, rock wool, slag wool, and ceramic fibers as Group 2B, i.e. possibly carcinogenic to humans. In 2002 it reassigned fiberglass, rock and slag wool, and continuous glass filaments to Group 3, not classifiable as carcinogenic to humans. The aim of this study was to verify the cytotoxic and genotoxic effects and oxidative stress production induced by in vitro exposure of human alveolar epithelial cells A549 to glass fibers with a predominant diameter <3 μm (97%) and length >5 μm (93%). A549 cells were incubated with 5, 50, or 100 μg/ml (2.1, 21, and 42 μg/cm(2), respectively) of glass fibers for 72 h. Cytotoxicity and DNA damage were tested by the MTT and the Comet assay, respectively. Oxidative stress was determined by measuring inducible nitric oxide synthase (iNOS) expression by Western blotting, production of nitric oxide (NO) with Griess reagent, and concentration of reactive oxygen species by fluorescent quantitative analysis with 2',7'-dichlorofluorescein-diacetate (DCFH-DA). The results showed that glass fiber exposure significantly reduced cell viability and increased DNA damage and oxidative stress production in a concentration-dependent manner, demonstrating that glass fibers exert cytotoxic and genotoxic effects related to increased oxidative stress on the human alveolar cell line A549.

  15. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    SciTech Connect

    Zhang, Jian; Zhang, Tao; Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling; Yin, Hong

    2010-08-13

    Research highlights: {yields} Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells {yields} Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway {yields} Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* {yields} miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  16. A comprehensive proteomic view of responses of A549 type II alveolar epithelial cells to human respiratory syncytial virus infection.

    PubMed

    Dave, Keyur A; Norris, Emma L; Bukreyev, Alexander A; Headlam, Madeleine J; Buchholz, Ursula J; Singh, Toshna; Collins, Peter L; Gorman, Jeffrey J

    2014-12-01

    Human respiratory syncytial virus is a major respiratory pathogen for which there are no suitable antivirals or vaccines. A better understanding of the host cell response to this virus may redress this problem. The present report concerns analysis of multiple independent biological replicates of control and 24 h infected lysates of A549 cells by two different proteomic workflows. One workflow involved fractionation of lysates by in-solution protein IEF and individual fractions were digested using trypsin prior to capillary HPLC-LTQ-OrbitrapXL-MS/MS. A second workflow involved digestion of whole cell lysates and analysis by nanoUltraHPLC-LTQ-OrbitrapElite-MS/MS. Both workflows resulted in the quantification of viral proteins exclusively in lysates of infected cells in the relative abundances anticipated from previous studies. Unprecedented numbers (3247 - 5010) of host cell protein groups were also quantified and the infection-specific regulation of a large number (191) of these protein groups was evident based on a stringent false discovery rate cut-off (<1%). Bioinformatic analyses revealed that most of the regulated proteins were potentially regulated by type I, II, and III interferon, TNF-α and noncanonical NF-κB2 mediated antiviral response pathways. Regulation of specific protein groups by infection was validated by quantitative Western blotting and the cytokine-/key regulator-specific nature of their regulation was confirmed by comparable analyses of cytokine treated A549 cells. Overall, it is evident that the workflows described herein have produced the most comprehensive proteomic characterization of host cell responses to human respiratory syncytial virus published to date. These workflows will form the basis for analysis of the impacts of specific genes of human respiratory syncytial virus responses of A549 and other cell lines using a gene-deleted version of the virus. They should also prove valuable for the analysis of the impact of other infectious

  17. A Comprehensive Proteomic View of Responses of A549 Type II Alveolar Epithelial Cells to Human Respiratory Syncytial Virus Infection*

    PubMed Central

    Dave, Keyur A.; Norris, Emma L.; Bukreyev, Alexander A.; Headlam, Madeleine J.; Buchholz, Ursula J.; Singh, Toshna; Collins, Peter L.; Gorman, Jeffrey J.

    2014-01-01

    Human respiratory syncytial virus is a major respiratory pathogen for which there are no suitable antivirals or vaccines. A better understanding of the host cell response to this virus may redress this problem. The present report concerns analysis of multiple independent biological replicates of control and 24 h infected lysates of A549 cells by two different proteomic workflows. One workflow involved fractionation of lysates by in-solution protein IEF and individual fractions were digested using trypsin prior to capillary HPLC-LTQ-OrbitrapXL-MS/MS. A second workflow involved digestion of whole cell lysates and analysis by nanoUltraHPLC-LTQ-OrbitrapElite-MS/MS. Both workflows resulted in the quantification of viral proteins exclusively in lysates of infected cells in the relative abundances anticipated from previous studies. Unprecedented numbers (3247 - 5010) of host cell protein groups were also quantified and the infection-specific regulation of a large number (191) of these protein groups was evident based on a stringent false discovery rate cut-off (<1%). Bioinformatic analyses revealed that most of the regulated proteins were potentially regulated by type I, II, and III interferon, TNF-α and noncanonical NF-κB2 mediated antiviral response pathways. Regulation of specific protein groups by infection was validated by quantitative Western blotting and the cytokine-/key regulator-specific nature of their regulation was confirmed by comparable analyses of cytokine treated A549 cells. Overall, it is evident that the workflows described herein have produced the most comprehensive proteomic characterization of host cell responses to human respiratory syncytial virus published to date. These workflows will form the basis for analysis of the impacts of specific genes of human respiratory syncytial virus responses of A549 and other cell lines using a gene-deleted version of the virus. They should also prove valuable for the analysis of the impact of other infectious

  18. CDK-associated Cullin 1 promotes cell proliferation with activation of ERK1/2 in human lung cancer A549 cells

    SciTech Connect

    Chen, Tian Jun; Gao, Fei; Yang, Tian; Thakur, Asmitanand; Ren, Hui; Li, Yang; Zhang, Shuo; Wang, Ting; Chen, Ming Wei

    2013-07-19

    Highlights: •CDK-associated Cullin 1 (CAC1) expression increases in human lung carcinoma. •CAC1 promotes the proliferation of lung cancer A549 cells. •CAC1 promotes human lung cancer A549 cell proliferation with activation of ERK1/2. -- Abstract: Lung cancer is one of the most common causes of cancer-related death in the world, but the mechanisms remain unknown. In this study, we investigated the expression of CDK-associated Cullin 1 (CAC1) in lung cancer, the effect of CAC1 on the proliferation of human lung cancer A549 cells, and the activation of signaling pathways of mitogen-activated protein kinases (MAPKs). Results showed that CAC1 expression was higher levels in human lung carcinoma than normal lung tissue, and CAC1 siRNA reduced the proliferation of lung cancer A549 cells by decreasing cell activity and cell division in vitro. The proportion of cells treated with CAC1 siRNA increased in the G1 phase and decreased in the S and G2/M phase, indicative of G1 cell cycle arrest. Furthermore, the proportions of early/late apoptosis in lung cancer A549 cells were enhanced with CAC1 siRNA treatment. It was also found that activation of extracellular signal-regulated protein kinase (ERK) and p38 signaling pathways were involved in the proliferation of A549 cells. After CAC1 siRNA treatment, p-ERK1/2 levels decreased, and meanwhile p-p38 level increased, A549 cell proliferation increased when ERK1/2 signaling is activated by PMA. Our findings demonstrated that CAC1 promoted the proliferation of human lung cancer A549 cells with activation of ERK1/2 signaling pathways, suggesting a potential cure target for treatment of human lung cancer.

  19. Human airway ciliary dynamics

    PubMed Central

    Thompson, Kristin; Knowles, Michael R.; Davis, C. William

    2013-01-01

    Airway cilia depend on precise changes in shape to transport the mucus gel overlying mucosal surfaces. The ciliary motion can be recorded in several planes using video microscopy. However, cilia are densely packed, and automated computerized systems are not available to convert these ciliary shape changes into forms that are useful for testing theoretical models of ciliary function. We developed a system for converting planar ciliary motions recorded by video microscopy into an empirical quantitative model, which is easy to use in validating mathematical models, or in examining ciliary function, e.g., in primary ciliary dyskinesia (PCD). The system we developed allows the manipulation of a model cilium superimposed over a video of beating cilia. Data were analyzed to determine shear angles and velocity vectors of points along the cilium. Extracted waveforms were used to construct a composite waveform, which could be used as a standard. Variability was measured as the mean difference in position of points on individual waveforms and the standard. The shapes analyzed were the end-recovery, end-effective, and fastest moving effective and recovery with mean (± SE) differences of 0.31(0.04), 0.25(0.06), 0.50(0.12), 0.50(0.10), μm, respectively. In contrast, the same measures for three different PCD waveforms had values far outside this range. PMID:23144323

  20. Methyl methanesulfonate induces necroptosis in human lung adenoma A549 cells through the PIG-3-reactive oxygen species pathway.

    PubMed

    Jiang, Ying; Shan, Shigang; Chi, Linfeng; Zhang, Guanglin; Gao, Xiangjing; Li, Hongjuan; Zhu, Xinqiang; Yang, Jun

    2016-03-01

    Methyl methanesulfonate (MMS) is an alkylating agent that can induce cell death through apoptosis and necroptosis. The molecular mechanisms underlying MMS-induced apoptosis have been studied extensively; however, little is known about the mechanism for MMS-induced necroptosis. Therefore, we first established MMS-induced necroptosis model using human lung carcinoma A549 cells. It was found that, within a 24-h period, although MMS at concentrations of 50, 100, 200, 400, and 800 μM can induce DNA damage, only at higher concentrations (400 and 800 μM) MMS treatment lead to necroptosis in A549 cells, as it could be inhibited by the specific necroptotic inhibitor necrostatin-1, but not the specific apoptotic inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-fmk). MMS-induced necroptosis was further confirmed by the induction of the necroptosis biomarkers including the depletion of cellular NADH and ATP and leakage of LDH. This necroptotic cell death was also concurrent with the increased expression of p53, p53-induced gene 3 (PIG-3), high mobility group box-1 protein (HMGB1), and receptor interaction protein kinase (RIP) but not the apoptosis-associated caspase-3 and caspase-9 proteins. Elevated reactive oxygen species (ROS) level was also involved in this process as the specific ROS inhibitor (4-amino-2,4-pyrrolidine-dicarboxylic acid (APDC)) can inhibit the necroptotic cell death. Interestingly, knockdown of PIG-3 expression by small interfering RNA (siRNA) treatment can inhibit the generation of ROS. Taken together, these results suggest that MMS can induce necroptosis in A549 cells, probably through the PIG-3-ROS pathway.

  1. Antimetastatic Effects of Phyllanthus on Human Lung (A549) and Breast (MCF-7) Cancer Cell Lines

    PubMed Central

    Lee, Sau Har; Jaganath, Indu Bala; Wang, Seok Mui; Sekaran, Shamala Devi

    2011-01-01

    Background Current chemotherapeutic drugs kill cancer cells mainly by inducing apoptosis. However, they become ineffective once cancer cell has the ability to metastasize, hence the poor prognosis and high mortality rate. Therefore, the purpose of this study was to evaluate the antimetastatic potential of Phyllanthus (P. niruri, P. urinaria, P. watsonii, and P. amarus) on lung and breast carcinoma cells. Methodology/Principal Findings Cytotoxicity of Phyllanthus plant extracts were first screened using the MTS reduction assay. They were shown to inhibit MCF-7 (breast carcinoma) and A549 (lung carcinoma) cells growth with IC50 values ranging from 50–180 µg/ml and 65–470 µg/ml for methanolic and aqueous extracts respectively. In comparison, they have lower toxicity on normal cells with the cell viability percentage remaining above 50% when treated up to 1000 µg/ml for both extracts. After determining the non-toxic effective dose, several antimetastasis assays were carried out and Phyllanthus extracts were shown to effectively reduce invasion, migration, and adhesion of both MCF-7 and A549 cells in a dose-dependent manner, at concentrations ranging from 20–200 µg/ml for methanolic extracts and 50–500 µg/ml for aqueous extracts. This was followed by an evaluation of the possible modes of cell death that occurred along with the antimetastatic activity. Phyllanthus was shown to be capable of inducing apoptosis in conjunction with its antimetastastic action, with more than three fold increase of caspases-3 and -7, the presence of DNA-fragmentation and TUNEL-positive cells. The ability of Phyllanthus to exert antimetastatic activities is mostly associated to the presence of polyphenol compounds in its extracts. Conclusions/Significance The presence of polyphenol compounds in the Phyllanthus plant is critically important in the inhibition of the invasion, migration, and adhesion of cancer cells, along with the involvement of apoptosis induction. Hence

  2. Curcumin inhibits interferon-{alpha} induced NF-{kappa}B and COX-2 in human A549 non-small cell lung cancer cells

    SciTech Connect

    Lee, Jeeyun |; Im, Young-Hyuck | E-mail: imyh@smc.samsung.co.kr; Jung, Hae Hyun; Kim, Joo Hyun; Park, Joon Oh |; Kim, Kihyun |; Kim, Won Seog |; Ahn, Jin Seok

    2005-08-26

    The A549 cells, non-small cell lung cancer cell line from human, were resistant to interferon (IFN)-{alpha} treatment. The IFN-{alpha}-treated A549 cells showed increase in protein expression levels of NF-{kappa}B and COX-2. IFN-{alpha} induced NF-{kappa}B binding activity within 30 min and this increased binding activity was markedly suppressed with inclusion of curcumin. Curcumin also inhibited IFN-{alpha}-induced COX-2 expression in A549 cells. Within 10 min, IFN-{alpha} rapidly induced the binding activity of a {gamma}-{sup 32}P-labeled consensus GAS oligonucleotide probe, which was profoundly reversed by curcumin. Taken together, IFN-{alpha}-induced activations of NF-{kappa}B and COX-2 were inhibited by the addition of curcumin in A549 cells.

  3. Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549

    NASA Astrophysics Data System (ADS)

    Syaefudin; Juniarti, A.; Rosiyana, L.; Setyani, A.; Khodijah, S.

    2016-01-01

    The aim of the present study is to evaluate cytotoxicity effect of nanoparticles of Selaginella doederleinii (S. doederleinii) leaves extract. S. doederleinii was extracted by maceration method using 70%(v/v) ethanol as solvent. Phytochemical content was analyzed qualitatively by using Harborne and Thin Layer Chromatography (TLC) methods. Nanoparticle extract was prepared by ionic gelation using chitosan as encapsulant agent. Anticancer activity was performed by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results showed that S. doederleinii contains of flavonoids. Nanoparticle of S. doederleinii leaves extract greatly inhibited A549 cells growth (cancer cells), with IC50 of 3% or 1020 μg/ml. These nanoparticles extract also inhibited the growth of Chang cells (normal cells), with IC50 of 4% or 1442 μg/ml. The effective concentration of nanoparticles extract which inhibits cancer cells without harming the normal cells is 0.5% or 167 μg/ml. Further studies are needed to obtain the concentration of nanoparticles extract which can selectively suppress cancer cells.

  4. Mitochondria-mediated apoptosis in human lung cancer A549 cells by 4-methylsulfinyl-3-butenyl isothiocyanate from radish seeds.

    PubMed

    Wang, Nan; Wang, Wei; Huo, Po; Liu, Cai-Qin; Jin, Jian-Chang; Shen, Lian-Qing

    2014-01-01

    4-Methylsulfinyl-3-butenyl isothiocyanate (MTBITC) found in the radish (Raphanus sativus L.), is a well- known anticancer agent. In this study, the mechanisms of the MTBITC induction of cell apoptosis in human A549 lung cancer cells were investigated. Our PI staining results showed that MTBITC treatment significantly increased the apoptotic sub-G1 fraction in a dose-dependent manner. The mechanism of apoptosis induced by MTBITC was investigated by testing the change of mitochondrial membrane potential (Δψm), the expression of mRNAs of apoptosis-related genes by RT-PCR, and the activities of caspase-3 and -9 by caspase colorimetric assay. MTBITC treatment decreased mitochondrial membrane potential by down-regulating the rate of Bcl-2/ Bax and Bcl-xL/Bax, and activation of caspase-3 and -9. Therefore, mitochondrial pathway and Bcl-2 gene family could be involved in the mechanisms of A549 cell apoptosis induced by MTBITC. PMID:24716946

  5. Anticancer property of gallic acid in A549, a human lung adenocarcinoma cell line, and possible mechanisms

    PubMed Central

    Maurya, Dharmendra K.; Nandakumar, Nivedita; Devasagayam, Thomas Paul Asir

    2011-01-01

    Gallic acid is widely distributed in plants, fruits and foods with a range of biological activities. In the present study the possible mechanisms of gallic acid anticancer properties were explored in A549, a human lung adenocarcinoma cell line. Our study shows that it inhibited the A549 cell growth and decreased cell viability monitored at 24 h. It also inhibited cell proliferation in dose- and time-dependent manner as measured by 3-[4,5-methylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide assay at 24 and 48 h. Morphological examination of the cells after gallic acid treatment showed the typical feature of cell death such as cell shrinkage and rounding up of the cells. Clonogenic assay indicated that gallic acid treatments inhibited the colony formation. DNA fragmentation assay indicated the disappearance of the genomic DNA in dose-dependent manner. To find out possible mechanisms, mitochondrial potential and intracellular reactive oxygen species were measured. It was observed that gallic acid treatment decreased mitochondrial membrane potential and increased intracellular reactive oxygen species. Further caspases activity was measured and it was found that gallic acid activated the caspase-3 but not caspase-8 indicating the involvement of intrinsic pathway of cell apoptosis. PMID:21297918

  6. Portulaca oleracea Seed Oil Exerts Cytotoxic Effects on Human Liver Cancer (HepG2) and Human Lung Cancer (A-549) Cell Lines.

    PubMed

    Al-Sheddi, Ebtesam Saad; Farshori, Nida Nayyar; Al-Oqail, Mai Mohammad; Musarrat, Javed; Al-Khedhairy, Abdulaziz Ali; Siddiqui, Maqsood Ahmed

    2015-01-01

    Portulaca oleracea (Family: Portulacaceae), is well known for its anti-inflammatory, antioxidative, anti- bacterial, and anti-tumor activities. However, cytotoxic effects of seed oil of Portulaca oleracea against human liver cancer (HepG2) and human lung cancer (A-549) cell lines have not been studied previously. Therefore, the present study was designed to investigate the cytotoxic effects of Portulaca oleracea seed oil on HepG2 and A-549 cell lines. Both cell lines were exposed to various concentrations of Portulaca oleracea seed oil for 24h. After the exposure, percentage cell viability was studied by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT), neutral red uptake (NRU) assays, and cellular morphology by phase contrast inverted microscopy. The results showed a concentration-dependent significant reduction in the percentage cell viability and an alteration in the cellular morphology of HepG2 and A-549 cells. The percentage cell viability was recorded as 73%, 63%, and 54% by MTT assay and 76%, 61%, and 50% by NRU assay at 250, 500, and 1000 μg/ml, respectively in HepG2 cells. Percentage cell viability was recorded as 82%, 72%, and 64% by MTT assay and 83%, 68%, and 56% by NRU assay at 250, 500, and 1000 μg/ml, respectively in A-549 cells. The 100 μg/ml and lower concentrations were found to be non cytotoxic to A-549 cells, whereas decrease of 14% and 12% were recorded by MTT and NRU assay, respectively in HepG2 cells. Both HepG2 and A-549 cell lines exposed to 250, 500, and 1000 μg/ ml of Portulaca oleracea seed oil lost their normal morphology, cell adhesion capacity, become rounded, and appeared smaller in size. The data from this study showed that exposure to seed oil of Portulaca oleracea resulted in significant cytotoxicity and inhibition of growth of the human liver cancer (HepG2) and human lung cancer (A-549) cell lines. PMID:25921149

  7. Novel CHOP activator LGH00168 induces necroptosis in A549 human lung cancer cells via ROS-mediated ER stress and NF-κB inhibition

    PubMed Central

    Ma, Yi-ming; Peng, Yan-min; Zhu, Qiong-hua; Gao, An-hui; Chao, Bo; He, Qiao-jun; Li, Jia; Hu, You-hong; Zhou, Yu-bo

    2016-01-01

    Aim: C/EBP homologous protein (CHOP) is a transcription factor that is activated at multiple levels during ER stress and plays an important role in ER stress-induced apoptosis. In this study we identified a novel CHOP activator, and further investigated its potential to be a therapeutic agent for human lung cancer. Methods: HEK293-CHOP-luc reporter cells were used in high-throughput screening (HTS) to identify CHOP activators. The cytotoxicity against cancer cells in vitro was measured with MTT assay. The anticancer effects were further examined in A549 human non-small cell lung cancer xenograft mice. The mechanisms underlying CHOP activation were analyzed using luciferase assays, and the anticancer mechanisms were elucidated in A549 cells. Results: From chemical libraries of 50 000 compounds, LGH00168 was identified as a CHOP activator, which showed cytotoxic activities against a panel of 9 cancer cell lines with an average IC50 value of 3.26 μmol/L. Moreover, administration of LGH00168 significantly suppressed tumor growth in A549 xenograft bearing mice. LGH00168 activated CHOP promoter via AARE1 and AP1 elements, increased DR5 expression, decreased Bcl-2 expression, and inhibited the NF-κB pathway. Treatment of A549 cells with LGH00168 (10 μmol/L) did not induce apoptosis, but lead to RIP1-dependent necroptosis, accompanied by cell swelling, plasma membrane rupture, lysosomal membrane permeabilization, MMP collapse and caspase 8 inhibition. Furthermore, LGH00168 (10 and 20 μmol/L) dose-dependently induced mito-ROS production in A549 cells, which was reversed by the ROS scavenger N-acetyl-L-cysteine (NAC, 10 mmol/L). Moreover, NAC significantly diminished LGH00168-induced CHOP activation, NF-κB inhibition and necroptosis in A549 cells. Conclusion: LGH00168 is a CHOP activator that inhibits A549 cell growth in vitro and lung tumor growth in vivo. PMID:27264312

  8. Effects of fatty acids on benzo[a]pyrene uptake and metabolism in human lung adenocarcinoma A549 cells.

    PubMed

    Barhoumi, Rola; Mouneimne, Youssef; Chapkin, Robert S; Burghardt, Robert C

    2014-01-01

    Dietary supplementation with natural chemoprotective agents is receiving considerable attention because of health benefits and lack of toxicity. In recent in vivo and in vitro experimental studies, diets rich in n-3 polyunsaturated fatty acids have been shown to provide significant anti-tumor action. In this investigation, the effects of control fatty acids (oleic acid (OA), linoleic acid (LA)) and n-3 PUFA, e.g., docosahexaenoic acid (DHA) on the uptake and metabolism of the carcinogenic polycyclic aromatic hydrocarbon, benzo[a]pyrene (BaP) was investigated in A549 cells, a human adenocarcinoma alveolar basal epithelial cell line. A549 cells activate BaP through the cytochrome P450 enzyme system to form reactive metabolites, a few of which covalently bind to DNA and proteins. Therefore, multiphoton microscopy spectral analysis combined with linear unmixing was used to identify the parent compound and BaP metabolites formed in cells, in the presence and absence of fatty acids. The relative abundance of select metabolites was associated with altered P450 activity as determined using ethoxyresorufin-O-deethylase activity in cells cultured in the presence of BSA-conjugated fatty acids. In addition, the parent compound within cellular membranes increases significantly in the presence of each of the fatty acids, with the greatest accumulation observed following DHA treatment. DHA treated cells exhibit significantly lower pyrene-like metabolites indicative of lower adducts including DNA adducts compared to control BSA, OA or LA treated cells. Further, DHA reduced the abundance of the proximate carcinogen BaP 7,8-dihydrodiol and the 3-hydroxybenzo[a]pyrene metabolites compared to other treatments. The significant changes in BaP metabolites in DHA treated cells may be mediated by the effects on the physicochemical properties of the membrane known to affect enzyme activity related to phase I and phase II metabolism. In summary, DHA is a highly bioactive chemo

  9. Upregulation of AQP3 and AQP5 induced by dexamethasone and ambroxol in A549 cells.

    PubMed

    Ben, Yong; Chen, Jie; Zhu, Rong; Gao, Lei; Bai, Chunxue

    2008-04-30

    Aquaporins (AQPs) are membrane channel proteins that play roles in the regulation of water permeability in many tissues. AQP1 and AQP5 expressed in lung provide the principal route for osmotically driven water transport. In the airways, AQP3 and AQP4 facilitate water transport. Dexamethasone and ambroxol are often used to treat patients with pulmonary diseases accompanied by airway hypersecretion. The role of AQPs in these effective treatments has not been addressed. In this study, we analyzed the expression of AQPs in a human airway epithelial cell line (A549 cells) and showed that AQP3 and 5, but not AQP1 and 4, were expressed in A549 cells. Both dexamethasone and ambroxol stimulated the expression of AQP3 and 5 at the mRNA and protein levels. The data suggest potential roles of AQP3 and 5 in the regulation of airway hypersecretion, perhaps ultimately providing a target for treating such diseases.

  10. β-Elemonic acid inhibits the cell proliferation of human lung adenocarcinoma A549 cells: The role of MAPK, ROS activation and glutathione depletion.

    PubMed

    Wu, Tsu-Tuan; Lu, Chien-Lin; Lin, Hen-I; Chen, Bing-Fang; Jow, Guey-Mei

    2016-01-01

    β-elemonic acid, a known triterpene, exhibits anti-inflammatory effects, yet research on the pharmacological effects of β-elemonic acid is rare. We investigated the anticancer effects and the related molecular mechanisms of β-elemonic acid on human non-small cell lung cancer (NSCLC) A549 cells. The effects of β-elemonic acid on the growth of A549 cells were studied using a 3-(4,5)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected using Annexin V staining. The effect of β-elemonic acid on the cell cycle of A549 cells was assessed using the propidium iodide method. The change in reactive oxygen species (ROS) was detected using a dichlorodihydrofluorescein diacetate (DCFH-DA) assay with microscopic examination. The expression levels of Bcl-2 family proteins, mitogen-activated protein kinase (MAPK) family proteins and cyclooxygenase 2 (COX-2) were detected using western blot analysis. Our data revealed that β-elemonic acid strongly induced human A549 lung cancer cell death in a dose- and time-dependent manner as determined by the MTT assay. β-elemonic acid-induced cell death was considered to be apoptotic when the phosphatidylserine exposure was observed using Annexin V staining. The death of human A549 lung cancer cells was caused by apoptosis induced by activation of ROS activity, increase in the sub-G1 proportion, downregulation of Bcl-2 expression, upregulation of Bax expression and inhibition of the MAPK signaling pathways. These results clearly demonstrated that β-elemonic acid inhibits proliferation by inducing hypoploid cells and cell apoptosis. Moreover, the anticancer effects of β-elemonic acid were related to the MAPK signaling pathway, ROS activation and glutathione depletion in human A549 lung cancer cells.

  11. Extract of Bryophyllum laetivirens reverses etoposide resistance in human lung A549 cancer cells by downregulation of NF-κB.

    PubMed

    Kaewpiboon, Chutima; Srisuttee, Ratakorn; Malilas, Waraporn; Moon, Jeong; Kaowinn, Sirichat; Cho, Il-Rae; Johnston, Randal N; Assavalapsakul, Wanchai; Chung, Young-Hwa

    2014-01-01

    Since multidrug resistance (MDR) is one of the main reasons for failure in cancer treatment, its suppression may increase the efficacy of cancer therapy. In the present study we attempted to identify a new and effective anticancer drug against MDR cancer cells. We first found that lung cancer A549 cells resistant to etoposide (A549RT-eto) exhibit upregulation of NF-κB and SIRT1 in comparison to A549 parental cells. During a search for anticancer drug candidates from medicinal plant sources, we found that an extract fraction (F14) of Bryophyllum laetivirens leaves downregulated expression of NF-κB and SIRT1, sensitizing the levels of A549RT-eto cells to apoptosis through downregulation of P-glycoprotein (P-gp), which is encoded by the MDR1 gene. To address whether NF-κB is involved in resistance to etoposide through P-gp, we treated A549RT-eto cells with Bay11-7802, an inhibitor of NF-κB. We then observed that Bay11-7802 treatment reduced P-gp expression levels, and furthermore combined treatment with the F14 extract and Bay11-7802 accelerated apoptosis through a decrease in P-gp levels, suggesting that NF-κB is involved in MDR. To address whether upregulation of SIRT1 is involved in resistance to etoposide through P-gp, we treated A549RT-eto cells with SIRT1 siRNA or nicotinamide (NAM), an inhibitor of SIRT1. we found that suppression of SIRT1 did not reduce P-gp levels. furthermore, the combined treatment with the F14 extract, and SIRT1 siRNA or NAM did not accelerate apoptosis, indicating that SIRT1 is not involved in the regulation of P-gp levels in A549RT-eto cells. Taken together, we suggest that upregulation of NF-κB determines etoposide resistance through P-gp expression in human A549 lung cancer cells. We herein demonstrated that B. laetivirens extract reverses etoposide resistance in human A549 lung cancer cells through downregulation of NF-κB. PMID:24220725

  12. Extract of Bryophyllum laetivirens reverses etoposide resistance in human lung A549 cancer cells by downregulation of NF-κB.

    PubMed

    Kaewpiboon, Chutima; Srisuttee, Ratakorn; Malilas, Waraporn; Moon, Jeong; Kaowinn, Sirichat; Cho, Il-Rae; Johnston, Randal N; Assavalapsakul, Wanchai; Chung, Young-Hwa

    2014-01-01

    Since multidrug resistance (MDR) is one of the main reasons for failure in cancer treatment, its suppression may increase the efficacy of cancer therapy. In the present study we attempted to identify a new and effective anticancer drug against MDR cancer cells. We first found that lung cancer A549 cells resistant to etoposide (A549RT-eto) exhibit upregulation of NF-κB and SIRT1 in comparison to A549 parental cells. During a search for anticancer drug candidates from medicinal plant sources, we found that an extract fraction (F14) of Bryophyllum laetivirens leaves downregulated expression of NF-κB and SIRT1, sensitizing the levels of A549RT-eto cells to apoptosis through downregulation of P-glycoprotein (P-gp), which is encoded by the MDR1 gene. To address whether NF-κB is involved in resistance to etoposide through P-gp, we treated A549RT-eto cells with Bay11-7802, an inhibitor of NF-κB. We then observed that Bay11-7802 treatment reduced P-gp expression levels, and furthermore combined treatment with the F14 extract and Bay11-7802 accelerated apoptosis through a decrease in P-gp levels, suggesting that NF-κB is involved in MDR. To address whether upregulation of SIRT1 is involved in resistance to etoposide through P-gp, we treated A549RT-eto cells with SIRT1 siRNA or nicotinamide (NAM), an inhibitor of SIRT1. we found that suppression of SIRT1 did not reduce P-gp levels. furthermore, the combined treatment with the F14 extract, and SIRT1 siRNA or NAM did not accelerate apoptosis, indicating that SIRT1 is not involved in the regulation of P-gp levels in A549RT-eto cells. Taken together, we suggest that upregulation of NF-κB determines etoposide resistance through P-gp expression in human A549 lung cancer cells. We herein demonstrated that B. laetivirens extract reverses etoposide resistance in human A549 lung cancer cells through downregulation of NF-κB.

  13. In vitro and in vivo studies on the inhibitory effects of myocardial cell culture medium on growth of a human lung adenocarcinoma cell line, A549

    PubMed Central

    Zheng, Y.; Zhou, J.; Fu, S.Z.; Fan, J.; Wu, J.B.

    2016-01-01

    Background Although the heart is one of the body’s vital organs, with an abundant blood supply, metastasis to the heart is considered rare. In a previous study, we found that the myocardial microenvironment might contain a low molecular weight natural tumour suppressor. The present study was designed to investigate the inhibitory effect of cardiac myocyte–conditioned medium (cmcm) on the growth of A549 human lung adenocarcinoma cells in vitro and in vivo. Methods An mtt assay was used to detect the inhibition ratio with respect to A549 proliferation. Human lung adenocarcinoma cells (A549 cell strain) were transplanted subcutaneously into nude mice to produce tumours. The xenograft tumour growth in mice was observed after selected drug administration. Results After treatment with cmcm and cisplatin (Cis), A549 cell viability significantly declined (p < 0.001). The cell viability in the cmcm and Cis groups were 53.42% ± 3.45% and 58.45% ± 6.39% respectively. Growth of implanted tumour cells in vivo was significantly inhibited in the cmcm group, the group treated with recombinant human adenovirus–p53, and the Cis-treated group compared with a control group. The inhibition rates were 41.44% in the cmcm group, 41.34% in the p53 group, and 64.50% in the Cis group. Lung metastasis capacity was significantly reduced in the presence of cmcm (p < 0.05). Lung metastasis inhibition rates in mice were 56.52% in the cmcm group, 47.83% in the p53 group, and 82.61% in the Cis group. With cmcm, the lives of A549-tumour-bearing mice could be significantly prolonged without any effect on weight loss. Conclusions Use of cmcm has the effect of reducing A549 cell viability, tumour volume, and lung metastasis rate, while prolonging survival duration without severe toxicity. PMID:26966411

  14. Induction of CXC chemokines in A549 airway epithelial cells by trypsin and staphylococcal proteases − a possible route for neutrophilic inflammation in chronic rhinosinusitis

    PubMed Central

    Sachse, F; von Eiff, C; Stoll, W; Becker, K; Rudack, C

    2006-01-01

    While various microorganisms have been recovered from patients with chronic rhinosinusitis, the inflammatory impact of virulence factors, in particular proteases from Staphylococcus aureus and coagulase negative staphylococci on the nasal epithelium, has not yet been investigated. Expression of CXC chemokines was determined in the epithelium of patients with chronic rhinosinusitis by immunohistochemistry. In a cell culture system of A549 respiratory epithelial cells, chemokine levels were quantified by enzyme-linked immunosorbent assay (ELISA) after stimulation with supernatants originating from three different staphylococcal strains or with trypsin, representing a serine protease. Inhibition experiments were performed with prednisolone, with the serine protease inhibitor 4-(2-aminoethyl)-benzenesulphonylfluoride (AEBSF) and with the nuclear transcription factor (NF)-κΒ inhibitor (2E)-3-[[4-(1,1-dimethylethyl)phenyl]sulphonyl]-2-propenenitrite (BAY) 11–7085. Electromobility shift assays (EMSA) were used to demonstrate NF-κB-dependent protein synthesis. CXC chemokines interleukin (IL)-8, growth-related oncogene alpha (GRO-α) and granulocyte chemotactic protein-2 (GCP-2) were expressed in the patients’ epithelium whereas epithelial cell-derived neutrophil attractant 78 (ENA-78) was rarely detected. In A549 cells, chemokines IL-8, ENA-78 and GRO-α but not GCP-2 were induced by trypsin and almost equal levels were induced by staphylococcal supernatants. IL-8, GRO-α and ENA-78 synthesis was suppressed almost completely by AEBSF and BAY 11–7085, whereas prednisolone reduced chemokine levels differentially dependent on the supernatant added. CXC chemokines were detectable in the epithelium of patients with chronic rhinosinusitis. Staphylococcal serine proteases induced CXC chemokines in A549 cells, probably by the activation of proteases activated receptors, and thus might potentially be involved in neutrophilic inflammation in chronic sinusitis. PMID:16734624

  15. Flavonoids isolated from Citrus platymamma induced G2/M cell cycle arrest and apoptosis in A549 human lung cancer cells

    PubMed Central

    Nagappan, Arulkumar; Lee, Ho Jeong; Saralamma, Venu Venkatarame Gowda; Park, Hyeon Soo; Hong, Gyeong Eun; Yumnam, Silvia; Raha, Suchismita; Charles, Shobana Nancy; Shin, Sung Chul; Kim, Eun Hee; Lee, Won Sup; Kim, Gon Sup

    2016-01-01

    Citrus platymamma hort. ex Tanaka belongs to the Rutaceae family and is widely used in folk medicines in Korea due to its anti-proliferative, anti-cancer, anti-oxidant, anti-inflammatory and anti-diabetic activities. However, the molecular mechanism of its anti-cancer effect is not well understood. The present study was conducted to elucidate the anti-cancer effect and molecular mechanism of flavonoids from Citrus platymamma (FCP) on A549 cells. FCP displayed concentration-dependent inhibition on A549 cells proliferation. Further, flow cytometry revealed that FCP significantly increased the sub-G1 (apoptotic cell population) and G2/M phase population, and the total number of apoptotic cells, in a dose-dependent manner. Nuclear condensation and fragmentation were also observed upon staining with Hoechst 33342 in FCP-treated A549 cells. Immunoblotting demonstrated a dose-dependent downregulation of cyclin B1, cyclin-dependent kinase 1, cell division cycle 25c, pro-caspases −3, −6, −8 and −9, and poly (adenosine diphosphate-ribose) polymerase (PARP) in FCP-treated A549 cells. In addition, FCP induced caspase-3 activation and subsequent PARP cleavage, and increased the B-cell lymphoma (Bcl)-2-associated X protein/Bcl-extra large ratio in A549 cells. These findings suggest that FCP induced G2/M arrest and apoptosis of A549 cells. The present study provides evidence that FCP may be useful in the treatment of human lung cancer. PMID:27446443

  16. Quantitative proteomic analysis of A549 cells infected with human respiratory syncytial virus.

    PubMed

    Munday, Diane C; Emmott, Edward; Surtees, Rebecca; Lardeau, Charles-Hugues; Wu, Weining; Duprex, W Paul; Dove, Brian K; Barr, John N; Hiscox, Julian A

    2010-11-01

    Human respiratory syncytial virus (HRSV) is a major cause of pediatric lower respiratory tract disease to which there is no vaccine or efficacious chemotherapeutic strategy. Although RNA synthesis and virus assembly occur in the cytoplasm, HRSV is known to induce nuclear responses in the host cell as replication alters global gene expression. Quantitative proteomics was used to take an unbiased overview of the protein changes in transformed human alveolar basal epithelial cells infected with HRSV. Underpinning this was the use of stable isotope labeling with amino acids in cell culture coupled to LC-MS/MS, which allowed the direct and simultaneous identification and quantification of both cellular and viral proteins. To reduce sample complexity and increase data return on potential protein localization, cells were fractionated into nuclear and cytoplasmic extracts. This resulted in the identification of 1,140 cellular proteins and six viral proteins. The proteomics data were analyzed using Ingenuity Pathways Analysis to identify defined canonical pathways and functional groupings. Selected data were validated using Western blot, direct and indirect immunofluorescence confocal microscopy, and functional assays. The study served to validate and expand upon known HRSV-host cell interactions, including those associated with the antiviral response and alterations in subnuclear structures such as the nucleolus and ND10 (promyelocytic leukemia bodies). In addition, novel changes were observed in mitochondrial proteins and functions, cell cycle regulatory molecules, nuclear pore complex proteins and nucleocytoplasmic trafficking proteins. These data shed light into how the cell is potentially altered to create conditions more favorable for infection. Additionally, the study highlights the application and advantage of stable isotope labeling with amino acids in cell culture coupled to LC-MS/MS for the analysis of virus-host interactions.

  17. Cytotoxic and apoptotic effects of Ebenus boissieri Barbey on human lung cancer cell line A549

    PubMed Central

    Aydemir, Esra Arslan; Simsek, Ece; Imir, Nilüfer; Göktürk, Ramazan Süleyman; Yesilada, Erdem; Fiskin, Kayahan

    2015-01-01

    Background: Fabaceae family members are known to possess preventive and therapeutic potentials against various types of cancers. Objective: The aim of this study was to investigate the cytotoxic and apoptotic effects of hydroalcoholic extracts from the aerial parts and roots of an endemic Ebenus species; Ebenus boissieri Barbey in human lung cancer cell line. Materials and Methods: After treatment with hydroalcoholic extracts cytotoxic activities of both extracts were measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay, whereas caspase-3 activity, tumor necrosis factor-a lpha (TNF-α) and interferon gamma (IFN-γ) releasewere measured by enzyme linked immunosorbent assay. Results: According to in vitro assay results, the increase in all caspases activity suggested that extracts induce cells to undergo apoptosis. Especially, induction in caspase-3 activity was the most remarkable result of this study. Both aerial part and root extracts induced apoptosis by increasing caspase-3 activity, TNF-α and IFN-γ release. When compared to their relative controls, the concentrations of both TNF-α and IFN-γ in extract-treated groups were significantly and dose dependently exalted. Conclusion: Taken together, our results indicate that the hydroalcoholic extracts of E. boissieri can be considered as a source of new anti-apoptotic and therefore anti-carcinogenic agent. PMID:26109772

  18. Ginger extract inhibits human telomerase reverse transcriptase and c-Myc expression in A549 lung cancer cells.

    PubMed

    Tuntiwechapikul, Wirote; Taka, Thanachai; Songsomboon, Chonnipa; Kaewtunjai, Navakoon; Imsumran, Arisa; Makonkawkeyoon, Luksana; Pompimon, Wilart; Lee, T Randall

    2010-12-01

    The rhizome of ginger (Zingiber officinale Roscoe) has been reputed to have many curative properties in traditional medicine, and recent publications have also shown that many agents in ginger possess anticancer properties. Here we show that the ethyl acetate fraction of ginger extract can inhibit the expression of the two prominent molecular targets of cancer, the human telomerase reverse transcriptase (hTERT) and c-Myc, in A549 lung cancer cells in a time- and concentration-dependent manner. The treated cells exhibited diminished telomerase activity because of reduced protein production rather than direct inhibition of telomerase. The reduction of hTERT expression coincided with the reduction of c-Myc expression, which is one of the hTERT transcription factors; thus, the reduction in hTERT expression might be due in part to the decrease of c-Myc. As both telomerase inhibition and Myc inhibition are cancer-specific targets for cancer therapy, ginger extract might prove to be beneficial as a complementary agent in cancer prevention and maintenance therapy. PMID:21091248

  19. In Vitro Modeling of RSV Infection and Cytopathogenesis in Well-Differentiated Human Primary Airway Epithelial Cells (WD-PAECs).

    PubMed

    Broadbent, Lindsay; Villenave, Remi; Guo-Parke, Hong; Douglas, Isobel; Shields, Michael D; Power, Ultan F

    2016-01-01

    The choice of model used to study human respiratory syncytial virus (RSV) infection is extremely important. RSV is a human pathogen that is exquisitely adapted to infection of human hosts. Rodent models, such as mice and cotton rats, are semi-permissive to RSV infection and do not faithfully reproduce hallmarks of RSV disease in humans. Furthermore, immortalized airway-derived cell lines, such as HEp-2, BEAS-2B, and A549 cells, are poorly representative of the complexity of the respiratory epithelium. The development of a well-differentiated primary pediatric airway epithelial cell models (WD-PAECs) allows us to simulate several hallmarks of RSV infection of infant airways. They therefore represent important additions to RSV pathogenesis modeling in human-relevant tissues. The following protocols describe how to culture and differentiate both bronchial and nasal primary pediatric airway epithelial cells and how to use these cultures to study RSV cytopathogenesis. PMID:27464691

  20. Okadaic acid inhibits cell multiplication and induces apoptosis in a549 cells, a human lung adenocarcinoma cell line

    PubMed Central

    Wang, Renjun; Lv, Lili; Zhao, Yunfeng; Yang, Nana

    2014-01-01

    This essay aims to research the effect of okadaic acid (OA) on A549 cell multiplication, and cell apoptosis induced by OA was observed by cell morphology. MTT assay, trypan blue exclusion test (TBET), Giemsa staining method and acridine orange (AO) fluorescence staining assay were applied. The results of cell survival evaluated by TBET and colorimetric assay with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) showed: The number of A549 cells was decreased in a dose-dependent manner. Cytomorphology observation of okadaic acid-treated cells showed that cells became shrinkage and turned round, some cells floated in the nutrient medium with nucleus agglutination broken, resulting in apoptotic bodies. Above-mentioned results indicated that OA exerted significantly inhibitory effect on A549 cell multiplication due to the apoptosis induced by OA. PMID:25232383

  1. Safrole oxide induces apoptosis by up-regulating Fas and FasL instead of integrin beta4 in A549 human lung cancer cells.

    PubMed

    Du, AiYing; Zhao, BaoXiang; Miao, JunYing; Yin, DeLing; Zhang, ShangLi

    2006-04-01

    Previously, we found that 3,4-(methylenedioxy)-1-(2',3'-epoxypropyl)-benzene (safrole oxide) induced a typical apoptosis in A549 human lung cancer cells by activating caspase-3, -8, and -9. In this study, we further investigated which upstream pathways were activated by safrole oxide during the apoptosis. Immunofluorescence assay combined with laser scanning confocal microscopy revealed that both Fas and Fas ligand (FasL) were up-regulated by the small molecule. In addition, Fas protein distribution was altered, showing a clustering distribution instead of a homogeneous one. Subsequently, Western blot analysis confirmed the up-regulations of Fas and its membrane-binding form of FasL (m-FasL), as well as P53 protein. Conversely, safrole oxide hardly affected integrin beta4 subunit expression or distribution, which was reflected from the data obtained by immunofluorescence assay combined with laser scanning confocal microscopy. The results suggested that Fas/FasL pathway might be involved in safrole oxide-induced apoptosis of A549 cells, while integrin beta4 might be irrelevant to the apoptosis. Nevertheless, we first found the strong expression of integrin beta4 in A549 cells. The study first suggested that safrole oxide might be used as a small molecular promoter of Fas/FasL pathway to elicit apoptosis in A549 cells, which would lay the foundation for us to insight into the new strategies for lung cancer therapy.

  2. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT

    PubMed Central

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-01-01

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway. PMID:26177797

  3. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT

    NASA Astrophysics Data System (ADS)

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-07-01

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway.

  4. Proteomic analysis of selective cytotoxic anticancer properties of flavonoids isolated from Citrus platymamma on A549 human lung cancer cells.

    PubMed

    Nagappan, Arulkumar; Venkatarame Gowda Saralamma, Venu; Hong, Gyeong Eun; Lee, Ho Jeong; Shin, Sung Chul; Kim, Eun Hee; Lee, Won Sup; Kim, Gon Sup

    2016-10-01

    Citrus platymamma Hort. ex Tanaka (Byungkyul in Korean) has been used in Korean folk medicine for the treatment of inflammatory disorders and cancer. However, the molecular mechanism underlying the anticancer properties of flavonoids isolated from C. platymamma (FCP) remains to be elucidated. Therefore, the present study attempted to identify the key proteins, which may be important in the anticancer effects of FCP on A549 cells using a proteomic approach. FCP showed a potent cytotoxic effect on the A549 human lung cancer cells, however, it had no effect on WI‑38 human fetal lung fibroblasts at the same concentrations. Furthermore, 15 differentially expressed protein spots (spot intensities ≥2‑fold change; P<0.05) were obtained from comparative proteome analysis of two‑dimensional gel electrophoresis maps of the control (untreated) and FCP‑treated A549 cells. Finally, eight differentially expressed proteins, one of which was upregulated and seven of which were downregulated, were successfully identified using matrix‑assisted laser desorption/ionization time‑of‑flight/time‑of‑flight tandem mass spectrometry and peptide mass fingerprinting analysis. Specifically, proteins involved in signal transduction were significantly downregulated, including annexin A1 (ANXA1) and ANXA4, whereas 14‑3‑3ε was upregulated. Cytoskeletal proteins, including cofilin‑1 (CFL1), cytokeratin 8 (KRT8) and KRT79, and molecular chaperones/heat shock proteins, including endoplasmin, were downregulated. Proteins involved in protein metabolism, namely elongation factor Ts were also downregulated. Consistent with results of the proteome analysis, the immunoblotting results showed that 14‑3‑3ε was upregulated, whereas CFL1, ANXA4 and KRT8 were downregulated in the FCP‑treated A549 cells. The majority of the proteins were involved in tumor growth, cell cycle, apoptosis, migration and signal transduction. These findings provide novel insights into the molecular

  5. Curcumin reverses cis-platin resistance and promotes human lung adenocarcinoma A549/DDP cell apoptosis through HIF-1α and caspase-3 mechanisms.

    PubMed

    Ye, Ming-Xiang; Zhao, Yi-Lin; Li, Yan; Miao, Qing; Li, Zhi-Kui; Ren, Xin-Ling; Song, Li-Qiang; Yin, Hong; Zhang, Jian

    2012-06-15

    Curcumin, a yellow pigment derived from Curcuma longa Linn, has been favored by the Eastern as dietary ingredients for centuries. During the past decade, extensive investigations have revealed curcumin sensitized various chemotherapeutic agents in human breast, colon, pancreas, gastric, liver, brain and hematological malignant disorders in vivo and in vitro. Several pathways and specific targets including NF-κB, STAT3, COX-2, Akt and multidrug resistant protein have been identified to facilitate curcumin as a chemosensitizer. Recent studies suggest HIF-1α participated in the development of drug resistance in cancer cells and targeting HIF-1α either by RNAi or siRNA successfully overcame chemotherapeutic resistance. To investigate the mechanism basis of curcumin as a chemosensitizer in lung cancer, we examined curcumin's effects on HIF-1α in cis-platin (DDP) sensitive A549 and resistant A549/DDP cell lines by RT-PCR and Western blot. HIF-1α in A549/DDP cells was found to be overexpressed at both mRNA and protein levels together with a poor response to DDP. Results from transient transfection and flow cytometry showed the HIF-1α abnormality contributed to DDP resistance in A549/DDP lung cancer cells. Combined curcumin and DDP treatment markedly inhibited A549/DDP cells proliferation, reversed DDP resistance and triggered apoptotic death by promoting HIF-1α degradation and activating caspase-3, respectively. Expression of HIF-1α-dependent P-gp also seemed to decrease as response to curcumin in a dose-dependent manner. Our findings shed light on drug resistant reversing effect of curcumin in lung cancer cells by inhibiting HIF-1α expression and activating caspase-3. PMID:22483553

  6. Inhibition of Raf-MEK-ERK and Hypoxia pathways by Phyllanthus prevents metastasis in human lung (A549) cancer cell line

    PubMed Central

    2013-01-01

    Background Lung cancer constitutes one of the malignancies with the greatest incidence and mortality rates with 1.6 million new cases and 1.4 million deaths each year. Prognosis remains poor due to deleterious development of multidrug resistance resulting in less than 15% lung cancer patients reaching five years survival. We have previously shown that Phyllanthus induced apoptosis in conjunction with its antimetastastic action. In the current study, we aimed to determine the signaling pathways utilized by Phyllanthus to exert its antimetastatic activities. Methods Cancer 10-pathway reporter array was performed to screen the pathways affected by Phyllanthus in lung carcinoma cell line (A549) to exert its antimetastatic effects. Results from this array were then confirmed with western blotting, cell cycle analysis, zymography technique, and cell based ELISA assay for human total iNOS. Two-dimensional gel electrophoresis was subsequently carried out to study the differential protein expressions in A549 after treatment with Phyllanthus. Results Phyllanthus was observed to cause antimetastatic activities by inhibiting ERK1/2 pathway via suppression of Raf protein. Inhibition of this pathway resulted in the suppression of MMP2, MMP7, and MMP9 expression to stop A549 metastasis. Phyllanthus also inhibits hypoxia pathway via inhibition of HIF-1α that led to reduced VEGF and iNOS expressions. Proteomic analysis revealed a number of proteins downregulated by Phyllanthus that were involved in metastatic processes, including invasion and mobility proteins (cytoskeletal proteins), transcriptional proteins (proliferating cell nuclear antigen; zinc finger protein), antiapoptotic protein (Bcl2) and various glycolytic enzymes. Among the four Phyllanthus species tested, P. urinaria showed the greatest antimetastatic activity. Conclusions Phyllanthus inhibits A549 metastasis by suppressing ERK1/2 and hypoxia pathways that led to suppression of various critical proteins for A549

  7. Winter fine particulate matter from Milan induces morphological and functional alterations in human pulmonary epithelial cells (A549).

    PubMed

    Gualtieri, Maurizio; Mantecca, Paride; Corvaja, Viviana; Longhin, Eleonora; Perrone, Maria Grazia; Bolzacchini, Ezio; Camatini, Marina

    2009-07-10

    Samples of PM(2.5) were gravimetrically collected during the winter 2005/2006 in the urban area of Milan (North Italy). Samples were chemically characterized and the particles were detached from filters to determine their cytotoxic effects on the A549 cell line. Based on the potential toxicological relevance of its components, Milan winter PM(2.5) contained high concentrations of pro-oxidant transition metals and PAHs, while re-suspended particles showed a relatively high frequency of dimensional classes ranging from 40 nm to 300 nm. A549 cells exposed to particle suspensions showed a concentration-dependent decrease in viability, starting from 10 microg/cm(2). Phagocytosis of particles by A549 cells and particle aggregates were morphologically characterized and seemed to depend on both particle concentration and exposure time, with the majority of particles being engulfed in membrane-bound vacuoles after 24h of exposure. The ability of ultrafine particles to penetrate and spread throughout the cells was also verified. Cell membrane lysis and mitochondrial ultrastructural disruption appeared to be the main modifications induced by PM(2.5) on A549 cells. Concomitantly to the adverse effects observed in terms of cell mortality and ultrastructural lesions, a significant intracellular production of reactive oxygen species (ROS) was observed, suggesting that the cytotoxicity, exerted by the winter PM(2.5) in Milan, derived also from its oxidative potential, probably associated with particle-adsorbed metals and PAHs. PMID:19433270

  8. Discovery of a novel small molecule, 1-ethoxy-3-(3,4-methylenedioxyphenyl)-2-propanol, that induces apoptosis in A549 human lung cancer cells.

    PubMed

    Du, Ai-Ying; Zhao, Bao-Xiang; Yin, De-Ling; Zhang, Shang-Li; Miao, Jun-Ying

    2005-07-01

    A novel small molecule, 1-ethoxy-3-(3,4-methylenedioxyphenyl)-2-propanol (EOD), was synthesized in our laboratory. Previously, we reported pharmacological properties of EOD, triggering apoptosis in Human umbilical vein endothelial cells (HUVECs). Here, we further investigated the effects of EOD on the growth of A549 human lung cancer cells. EOD treatment induced apoptosis in A549 cells via up-regulating the expression of P53 protein, blocking cell cycle partly at G1 phase, and ultimately activating caspase-3. In contrast, caspase-8 might be irrelevant to EOD-triggered apoptosis. This study indicated that EOD might be a potential chemopreventive agent for lung cancer. The work would encourage us to add more novel compounds to our 'library' of small molecules derived through modern synthetic organic chemistry, and would drive us to determine the proteins that the compounds target.

  9. The South Pacific epidemic strain of Zika virus replicates efficiently in human epithelial A549 cells leading to IFN-β production and apoptosis induction.

    PubMed

    Frumence, Etienne; Roche, Marjolaine; Krejbich-Trotot, Pascale; El-Kalamouni, Chaker; Nativel, Brice; Rondeau, Philippe; Missé, Dorothée; Gadea, Gilles; Viranaicken, Wildriss; Desprès, Philippe

    2016-06-01

    Zika virus (ZIKV) is an emerging flavivirus since the first epidemics in South Pacific in 2007. The recent finding that ZIKV is now circulating in Western Hemisphere and can be associated to severe human diseases, warrants the need for its study. Here we evaluate the susceptibility of human lung epithelial A549 cells to South Pacific epidemic strain of ZIKV isolated in 2013. We showed that ZIKV growth in A549 cells is greatly efficient. ZIKV infection resulted in the secretion of IFN-β followed by the expression of pro-inflammatory cytokines such as IL-1β, and transcriptional activity of IFIT genes. At the maximum of virus progeny production, ZIKV triggers mitochondrial apoptosis through activation of caspases-3 and -9. Whereas at early infection times, the rapid release of IFN-β which exerts an antiviral effect against ZIKV might delay apoptosis in infected cells.

  10. Human microRNA-24 modulates highly pathogenic avian-origin H5N1 influenza A virus infection in A549 cells by targeting secretory pathway furin.

    PubMed

    Loveday, Emma-Kate; Diederich, Sandra; Pasick, John; Jean, François

    2015-01-01

    A common critical cellular event that many human enveloped viruses share is the requirement for proteolytic cleavage of the viral glycoprotein by furin in the host secretory pathway. For example, the furin-dependent proteolytic activation of highly pathogenic (HP) influenza A (infA) H5 and H7 haemagglutinin precursor (HA0) subtypes is critical for yielding fusion-competent infectious virions. In this study, we hypothesized that viral hijacking of the furin pathway by HP infA viruses to permit cleavage of HA0 could represent a novel molecular mechanism controlling the dynamic production of fusion-competent infectious virus particles during the viral life cycle. We explored the biological role of a newly identified furin-directed human microRNA, miR-24, in this process as a potential post-transcriptional regulator of the furin-mediated activation of HA0 and production of fusion-competent virions in the host secretory pathway. We report that miR-24 and furin are differentially expressed in human A549 cells infected with HP avian-origin infA H5N1. Using miR-24 mimics, we demonstrated a robust decrease in both furin mRNA levels and intracellular furin activity in A549 cells. Importantly, pretreatment of A549 cells with miR-24 mimicked these results: a robust decrease of H5N1 infectious virions and a complete block of H5N1 virus spread that was not observed in A549 cells infected with low-pathogenicity swine-origin infA H1N1 virus. Our results suggest that viral-specific downregulation of furin-directed microRNAs such as miR-24 during the life cycle of HP infA viruses may represent a novel regulatory mechanism that governs furin-mediated proteolytic activation of HA0 glycoproteins and production of infectious virions.

  11. Monitoring of TGF-β 1-Induced Human Lung Adenocarcinoma A549 Cells Epithelial-Mesenchymal Transformation Process by Measuring Cell Adhesion Force with a Microfluidic Device.

    PubMed

    Li, Yuan; Gao, AnXiu; Yu, Ling

    2016-01-01

    The epithelial-mesenchymal transition (EMT) is a process in which epithelial cells lose their cell polarity and cell-cell adhesion, and gain migratory and invasive properties. It is believed that EMT is associated with initiation and completion of the invasion-metastasis cascade. In this study, an economic approach was developed to fabricate a microfluidic device with less instrumentation requirement for the investigation of EMT by quantifying cell adhesion force. Fluid shear force was precisely controlled by a homemade microfluidic perfusion apparatus and interface. The adhesion capability of the human lung adenocarcinoma cell line A549 on different types of extracellular matrix protein was studied. In addition, effects of transforming growth factor-β (TGF-β) on EMT in A549 cells were investigated by characterizing the adhesion force changes and on-chip fluorescent staining. The results demonstrate that the microfluidic device is a potential tool to characterize the epithelial-mesenchymal transition process by measuring cell adhesion force.

  12. Influence of serum on in situ proliferation and genotoxicity in A549 human lung cells exposed to nanomaterials.

    PubMed

    Corradi, Sara; Gonzalez, Laetitia; Thomassen, Leen C J; Bilaničová, Dagmar; Birkedal, Renie K; Pojana, Giulio; Marcomini, Antonio; Jensen, Keld A; Leyns, Luc; Kirsch-Volders, Micheline

    2012-06-14

    In this work in situ proliferation of A549 human lung epithelial carcinoma cells exposed to nanomaterials (NMs) was investigated in the presence or absence of 10% serum. NMs were selected based on chemical composition, size, charge and shape (Lys-SiO(2), TiO(2), ZnO, and multi walled carbon nanotubes, MWCNTs). Cells were treated with NMs and 4h later, cytochalasin-B was added. 36 h later, cell morphology was analyzed under a light microscope. Nuclearity was scored to determine the cytokinesis-block proliferation index (CBPI). CBPI, based on percentage of mono-, bi- and multi-nucleated cells, reflects cell toxicity and cell cycle delay. For some conditions depending on NM type (TiO(2) and MWCNT) and serum concentration (0%) scoring of CBPI was impossible due to overload of agglomerated NMs. Moreover, where heavy agglomeration occurs, micronuclei (MN) detection and scoring under microscope was prevented. A statistically significant decrease of CBPI was found for ZnO NM suspended in medium in the absence or presence of 10% serum at 25 μg/ml and 50 μg/ml, respectively and for Lys-SiO(2) NM at 3.5 μg/ml in 0% serum. Increase in MN frequency was observed in cells treated in 10% serum with 50 μg/ml ZnO. In 0% serum, the concentrations tested led to high toxicity. No genotoxic effects were induced by Lys-SiO(2) both in the absence or presence of serum up to 5 μg/ml. No toxicity was detected for TiO(2) and MWCNTs in both 10% and 0% serum, up to the dose of 250 μg/ml. Restoration of CBPI comparable to untreated control was shown for cells cultured without serum and treated with 5 μg/ml of Lys-SiO(2) NM pre-incubated in 100% serum. This observation confirms the protective effect of serum on Lys-SiO(2) NM cell toxicity. In conclusion in situ CBPI is proposed as a simple preliminary assay to assess both NMs induced cell toxicity and feasibility of MN scoring under microscope.

  13. Copper(II) complexes with naringenin and hesperetin: cytotoxic activity against A 549 human lung adenocarcinoma cells and investigation on the mode of action.

    PubMed

    Tamayo, Lenka V; Gouvea, Ligiane R; Sousa, Anna C; Albuquerque, Ronniel M; Teixeira, Sarah Fernandes; de Azevedo, Ricardo Alexandre; Louro, Sonia R W; Ferreira, Adilson Kleber; Beraldo, Heloisa

    2016-02-01

    Copper(II) complexes [Cu(H2O)2 (L1)(phen)](ClO4) (1) and [Cu(H2O)(L2)(phen)](ClO4) (2) (HL1 = naringenin; HL2 = hesperetin) were obtained, in which an anionic flavonoid ligand is attached to the metal center along with 1,10-phenanthroline (phen) as co-ligand. Complexes (1) and (2) were assayed for their cytotoxic activity against A549 lung carcinoma and against normal lung fibroblasts (LL-24) and human umbilical vein endothelial cells (HUVEC). We found IC50 = 16.42 µM (1) and IC50 = 5.82 µM (2) against A549 tumor cells. Complexes (1) and (2) exhibited slight specificity, being more cytotoxic against malignant than against non-malignant cells. 1 and 2 induced apoptosis on A549 cells in a mitochondria-independent pathway, and showed antioxidant activity. The antioxidant effect of the complexes could possibly improve their apoptotic action, most likely by a PI3K-independent reduction of autophagy. Complexes (1) and (2) interact in vitro with calf thymus DNA by an intercalative binding mode. EPR data indicated that 1 and 2 interact with human serum albumin (HSA) forming mixed ligand species.

  14. Integrin αv promotes proliferation by activating ERK 1/2 in the human lung cancer cell line A549.

    PubMed

    Fu, Shijie; Fan, Limin; Pan, Xufeng; Sun, Yifeng; Zhao, Heng

    2015-02-01

    Lung cancer is a leading cause of cancer-related death worldwide, and non-small cell lung cancer (NSCLC) constitutes ~85% of lung cancers. However, the mechanisms underlying the progression of NSCLC remain unclear. In this study, we found the mRNA and protein expression levels of integrin αv are both increased in NSCLC tissues compared to healthy ones, which indicates that integrin αv may play an important role in NSCLC progression. To further investigate the roles of integrin αv in NSCLC, we overexpressed the integrin αv gene in the NSCLC cell line A549, and found that the cell proliferative ability increased. The apoptosis of A549 cells was inhibited with overexpression of integrin αv. To elucidate the molecular mechanism underlying the role of integrin αv in promoting NSCLC progression, we studied the expression of proteins from a number of important pathways associated with tumorigenesis, and found that the extracellular signal regulated protein kinase (ERK)1/2 signaling pathway may be involved in the mediation of the observed integrin αv effects. component of an important pathway for tumorigenesis, the ERK 1/2. Following inhibition of ERK 1/2 signaling, the proliferation of A549 cells induced by integrin αv was reduced, while the inhibition of apoptosis was attenuated. Our findings demonstrate that integrin αv promotes the proliferation of the human lung cancer cell line A549 by activating the ERK 1/2 signaling pathway, which suggests that this pathway may be a promising target for the treatment of human lung cancer.

  15. [XAF1 inhibits cell proliferation and induces apoptosis in human lung adenocarcinoma cell line A549 in vitro].

    PubMed

    Chen, Donglai; Zhang, Fuquan; Sang, Yonghua; Zhu, Rongying; Zhang, Hongtao; Chen, Yongbing

    2014-12-01

    背景与目的 XAF1是重要的肿瘤细胞生长抑制因子,其低表达与多种肿瘤细胞有关。研究肿瘤抑制基因XAF1对人肺腺癌细胞株A549的作用及机制。方法 利用重组腺病毒Ad5/F35-XAF1和对照腺病毒Ad5/F35-NULL瞬时转染A549细胞,用逆转录聚合酶链式反应(reverse transcriptase polymerase chain reaction, RT-PCR)和Western blot方法检测A549细胞株中XAF1 mRNA和蛋白质的表达;MTT检测细胞增殖率、流式细胞仪检测细胞凋亡率,并用Western blot法检测凋亡相关蛋白的表达。结果 腺病毒介导的XAF1瞬时转染肺腺癌A549细胞后,XAF1 mRNA及蛋白表达水平明显提高,并能明显抑制该细胞增殖和促进细胞凋亡,蛋白质印记法显示凋亡相关蛋白PARP、Caspase-3、Caspase-8的裂解条带。结论 恢复XAF1基因在人肺腺癌A549细胞中表达后,能明显抑制该肿瘤细胞增殖并促进其凋亡,其机制可能与XAF1激活肺癌细胞相关凋亡途径有关。

  16. Treatment with a Small Synthetic Compound, KMU-193, induces Apoptosis in A549 Human Lung Carcinoma Cells through p53 Up-Regulation.

    PubMed

    Choi, Eun Young; Shin, Kyeong-Cheol; Lee, Jinho; Kwon, Taeg Kyu; Kim, Shin; Park, Jong-Wook

    2015-01-01

    Despite recent advances in therapeutic strategies for lung cancer, mortality still is increasing. In the present study, we investigated the anti-cancer effects of KMU-193, 2-(4-Ethoxy-phenyl)-N-{5-[2-fluoro-4-(4-methyl- piperazine-1-carbonyl)-phenylamino]-1H-indazol-3-yl}-acetamide in a human non-small cell lung cancer cell line A549. KMU-193 strongly inhibited the proliferation of A549 cells, but it did not have anti-proliferative effect in other types of cancer cell lines. KMU-193 further induced apoptosis in association with activation of caspase-3 and cleavage of PLC-γ1. However, KMU-193 had no apoptotic effect in untransformed cells such as TMCK-1 and BEAS-2B. Interestingly, pretreatment with z-VAD-fmk, a pan-caspase inhibitor, strongly abrogated KMU- 193-induced apoptosis. KMU-193 treatment enhanced the expression levels of p53 and PUMA. Importantly, p53 siRNA transfection attenuated KMU-193-induced apoptosis. Collectively, these results for the first time demonstrate that KMU-193 has strong apoptotic effects on A549 cells and these are largely mediated through caspase-3- and p53-dependent pathways. PMID:26320467

  17. Comparison of oxycodone and morphine on the proliferation, apoptosis and expression of related molecules in the A549 human lung adenocarcinoma cell line

    PubMed Central

    Tian, Mi; Jin, Li; Li, Renqi; Zhu, Sihai; Ji, Muhuo; Li, Weiyan

    2016-01-01

    The present study aimed to compare the effects of oxycodone and morphine hydrochloride on the proliferation, apoptosis and migration of A549 lung cancer cells. A549 human lung cancer cells were cultured in vitro and treated with oxycodone or morphine at various concentrations (10, 20 and 40 µg/ml). Cell migration was determined using a wound healing assay, whereas apoptosis was detected using flow cytometry. Reverse transcription quantitative-polymerase chain reaction was performed in order to assess the apoptosis-related gene expression levels, including p53, B-cell lymphoma (Bcl)-2 and Bcl-2-associated X protein (Bax). The levels of vascular endothelial growth factor (VEGF) and urokinase-type plasminogen activator (uPA) were detected using enzyme-linked immunosorbent assays. The expression levels of intercellular cell adhesion molecule (ICAM)-1 were determined by immunofluorescence. In the present study, oxycodone and morphine induced apoptosis in A549 lung cancer cells with similar potency; however, >20 µg/ml oxycodone was more effective at inhibiting cell proliferation (P<0.05) and migration (P<0.05), as compared with morphine at the same concentration. Oxycodone induced a dose-dependent increase in the expression levels of p53 and Bax apoptosis-related genes, whereas it decreased the gene expression levels of Bcl-2. Furthermore, oxycodone decreased, whereas morphine increased, the expression levels of ICAM-1 in a concentration-dependent manner. In addition, at 40 µg/ml, the expression levels of VEGF and uPA in the morphine group were significantly higher than those demonstrated in the oxycodone group (P<0.05). In conclusion, oxycodone was more effective in inhibiting the proliferation and migration of A549 lung cancer cells, as compared with morphine. PMID:27446244

  18. Streptococcus pneumoniae ClpL Modulates Adherence to A549 Human Lung Cells through Rap1/Rac1 Activation

    PubMed Central

    Nguyen, Cuong Thach; Le, Nhat-Tu; Tran, Thao Dang-Hien; Kim, Eun-Hye; Park, Sang-Sang; Luong, Truc Thanh; Chung, Kyung-Tae; Pyo, Suhkneung

    2014-01-01

    Caseinolytic protease L (ClpL) is a member of the HSP100/Clp chaperone family, which is found mainly in Gram-positive bacteria. ClpL is highly expressed during infection for refolding of stress-induced denatured proteins, some of which are important for adherence. However, the role of ClpL in modulating pneumococcal virulence is poorly understood. Here, we show that ClpL impairs pneumococcal adherence to A549 lung cells by inducing and activating Rap1 and Rac1, thus increasing phosphorylation of cofilin (inactive form). Moreover, infection with a clpL mutant (ΔclpL) causes a greater degree of filopodium formation than D39 wild-type (WT) infection. Inhibition of Rap1 and Rac1 impairs filopodium formation and pneumococcal adherence. Therefore, ClpL can reduce pneumococcal adherence to A549 cells, likely via modulation of Rap1- and Rac1-mediated filopodium formation. These results demonstrate a potential role for ClpL in pneumococcal resistance to host cell adherence during infection. This study provides insight into further understanding the interactions between hosts and pathogens. PMID:24980975

  19. Induction of the endoplasmic reticulum stress and autophagy in human lung carcinoma A549 cells by anacardic acid.

    PubMed

    Seong, Yeong-Ae; Shin, Pyung-Gyun; Yoon, Jin-Soo; Yadunandam, Anandam Kasin; Kim, Gun-Do

    2014-03-01

    Anacardic acid (AA, 2-hydroxy-6-pentadecylbenzoic acid), a constituent of the cashew-nut shell, has a variety of beneficial effects on the treatment of cancer and tumors. However, the fact that AA induces ER stress and autophagy in cancer cell is not known. We investigated the effect of AA on ER-stress and autophagy-induced cell death in cancer cells. Because of our interest in lung cancer, we used the non-small cell lung adenocarcinoma A549 cells treated with 3.0 μg/ml of AA for this research. In this research we found that AA induces intracellular Ca(2+) mobilization and ER stress. AA induced the ER stress-inducing factors, especially IRE1α, and the hallmarks of UPR, Grp78/Bip and GADD153/CHOP. AA inhibited the expression of p-PERK and its downstream substrate, p-elF2α. We also demonstrated that AA induces autophagy. Up-regulation of autophagy-related genes and the appearance of autophagosome in transfected cells with green fluorescent protein (GFP)-LC3 and GFP-Beclin1 plasmids showed the induction of autophagy in AA-treated A549 cells. The morphological analysis of intracellular organelles by TEM also showed the evidence that AA induces ER stress and autophagy. For the first time, our research showed that AA induces ER stress and autophagy in cancer cells. PMID:23955513

  20. Determination of in vitro free radical scavenging and antiproliferative effect of Pennisetum alopecuroides on cultured A549 human lung cancer cells

    PubMed Central

    Mathew, Githa Elizabeth; Mathew, Bijo; Gokul, S.; Krishna, Rahul; Farisa, M. P.

    2015-01-01

    Context: Pennisetum alopecuroides (Poaceae) is a grass predominantly distributed in tropics and sub tropics. It is used as a cattle feed in many regions. Aim: The objective of the present study was to investigate the in vitro free radical scavenging and antiproliferative activity of ethanol extract of P. alopecuroides (EEPA) on cultured A549 human lung cancer cell lines. Settings and Design: The anti-oxidant activity of ethanol extract was evaluated at dose level 12.5, 25, 50, 100, and 200 μg/ml. The in vitro antiproliferative activity was measured at doses of 10, 50, and 100 μg/ml. Materials and Methods: The free radical scavenging activity of the EEPA was determined by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) method and in vitro antiproliferative activity on A549 human lung cancer cells was conducted by using MTT assay method. Results: The phytochemical screening revealed that the P. alopecuroides contained alkaloids, tannins, saponins, and flavonoids as the major secondary metabolites. The IC50 value of DPPH scavenging activity was found to be 44.41 μg/ml and 31.02 μg/ml  for a mixture of EEPA and standard ascorbic acid, respectively. In vitro MTT assay showed that EEPA had anti-proliferation effects on A549 cells in a dose dependent manner. Conclusions: This is the 1st time a pharmacological exploration of P. alopecuroides grasses has been conducted. We have shown that P. alopecuroides exhibits good free radical scavenging and strong in vitro cytotoxic activities against human lung cancer cell lines. PMID:26120234

  1. Carcinogenic chromium(VI) induces cross-linking of vitamin C to DNA in vitro and in human lung A549 cells.

    PubMed

    Quievryn, George; Messer, Joseph; Zhitkovich, Anatoly

    2002-03-01

    Reductive activation of carcinogenic Cr(VI) is required for the induction of DNA damage and mutations. Here, we examined the formation of Cr-DNA adducts in the reactions of Cr(VI) with its dominant biological reducer, vitamin C (ascorbate). Reductive conversion of Cr(VI) to Cr(III) by ascorbate produced stable Cr-DNA adducts, of which approximately 25% constituted ascorbate-Cr(III)-DNA cross-links. No evidence was found for the involvement of Cr(V) or Cr(IV) intermediates in the formation of either binary or ternary adducts. The cross-linking reaction was consistent with the attack of DNA by transient Cr(III)-ascorbate complexes. The yield of Cr(III)-DNA adducts was similar on dsDNA and AGT, ACT, or CT oligonucleotides and was strongly inhibited by Mg(2+), suggesting predominant coordination of Cr(III) to DNA phosphate oxygens. We also detected cross-linking of ascorbate to DNA in Cr(VI)-exposed human lung A549 cells that were preincubated with dehydroascorbic acid to create normal levels of intracellular ascorbate. Ascorbate-Cr-DNA cross-links accounted for approximately 6% of the total Cr-DNA adducts in A549 cells. Shuttle-vector experiments showed that ascorbate-Cr-DNA cross-links were mutagenic in human cells. Our results demonstrate that in addition to reduction of Cr(VI) to DNA-reactive Cr(III), vitamin C contributes to the genotoxicity of Cr(VI) via a direct chemical modification of DNA. The absence of Asc in A549 and other human cultured cells indicates that cells maintained under the usual in vitro conditions lack the most important reducing agent for Cr(VI) and would primarily display slow thiol-dependent activation of Cr(VI).

  2. Cytotoxicity and genotoxicity of size-fractionated iron oxide (magnetite) in A549 human lung epithelial cells: role of ROS, JNK, and NF-κB.

    PubMed

    Könczöl, Mathias; Ebeling, Sandra; Goldenberg, Ella; Treude, Fabian; Gminski, Richard; Gieré, Reto; Grobéty, Bernard; Rothen-Rutishauser, Barbara; Merfort, Irmgard; Mersch-Sundermann, Volker

    2011-09-19

    Airborne particulate matter (PM) of varying size and composition is known to cause health problems in humans. The iron oxide Fe(3)O(4) (magnetite) may be a major anthropogenic component in ambient PM and is derived mainly from industrial sources. In the present study, we have investigated the effects of four different size fractions of magnetite on signaling pathways, free radical generation, cytotoxicity, and genotoxicity in human alveolar epithelial-like type-II cells (A549). The magnetite particles used in the exposure experiments were characterized by mineralogical and chemical techniques. Four size fractions were investigated: bulk magnetite (0.2-10 μm), respirable fraction (2-3 μm), alveolar fraction (0.5-1.0 μm), and nanoparticles (20-60 nm). After 24 h of exposure, the A549 cells were investigated by transmission electron microscopy (TEM) to study particle uptake. TEM images showed an incorporation of magnetite particles in A549 cells by endocytosis. Particles were found as agglomerates in cytoplasm-bound vesicles, and few particles were detected in the cytoplasm but none in the nucleus. Increased production of reactive oxygen species (ROS), as determined by the 2',7'-dichlorfluorescein-diacetate assay (DCFH-DA), as well as genotoxic effects, as measured by the cytokinesis block-micronucleus test and the Comet assay, were observed for all of the studied fractions after 24 h of exposure. Moreover, activation of c-Jun N-terminal kinases (JNK) without increased nuclear factor kappa-B (NF-κB)-binding activity but delayed IκB-degradation was observed. Interestingly, pretreatment of cells with magnetite and subsequent stimulation with the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) led to a reduction of NF-κB DNA binding compared to that in stimulation with TNFα alone. Altogether, these experiments suggest that ROS formation may play an important role in the genotoxicity of magnetite in A549 cells but that activation of JNK seems to be

  3. ROS/Autophagy/Nrf2 Pathway Mediated Low-Dose Radiation Induced Radio-Resistance in Human Lung Adenocarcinoma A549 Cell.

    PubMed

    Chen, Ni; Wu, Lijun; Yuan, Hang; Wang, Jun

    2015-01-01

    Low-dose ionizing radiation (LDIR) can induce radio-resistance to following high dose radiation in various mammalian cells. The protective role of LDIR has been thought to be associated with the overall outcomes of cancer radiotherapy. NF-E2 related factor 2 (Nrf2) is a transcription factor that plays pivotal roles in maintaining cellular oxidative equilibrium. Since oxidative stress has been indicated to be a mediator of LDIR induced radio-resistance, the role of Nrf2 in this process was investigated in this research. Our results showed that in human lung adenocarcinoma A549 cell, 5cGy alpha particle induced radio-resistance to following 75cGy alpha particle radiation. The expression level of Nrf2 and its target Heme Oxygenase-1(HO-1) increased after 5cGy radiation. Both the shRNA of Nrf2 and the chemical inhibitor of HO-1 suppressed the induced radio-resistance, indicating the involvement of Nrf2 antioxidant pathway in this process. Further, we found 5cGy radiation stimulated autophagy process in A549. Inhibition of the autophagy process resulted in suppression of the radio-resistance and the induced expression of Nrf2 and HO-1. ROS scavenger N-acetyl-L-cysteine (NAC) blocked the autophagy process induced by 5cGy alpha particle, the upregulation of Nrf2 and HO-1, as well as the induced radio-resistance. In conclusion, ROS elevation caused by LDIR promoted Autophagy/Nrf2-HO-1 and conferred radio-resistance in A549.

  4. In vitro effects induced by diesel exhaust at an air-liquid interface in a human lung alveolar carcinoma cell line A549.

    PubMed

    Okubo, Tomoko; Hosaka, Mitsugu; Nakae, Dai

    2015-01-01

    The present study examined the effects induced in vitro in human adenocarcinoma-derived alveolar basal epithelial A549 cells by diesel particulate matter (DPM) administered into the culture medium or by diesel exhaust administered at an air-liquid interface. When A549 cells were exposed to DPM in the culture medium, cell proliferation was inhibited at doses of 10-100 μg/mL; generation of interleukin (IL)-8 and the antioxidant enzyme, heme oxygenase-1 (HO-1), were inhibited at a dose of 100 μg/mL, and hydroxyl radicals were produced, but could be inhibited by catalase or superoxide dismutase. In contrast, when A549 cells were exposed to diesel exhaust, cell proliferation was inhibited in the absence, but not in the presence, of a diesel particulate filter (DPF); in the absence of a DPF IL-8 was produced in the same amount as in the control cells but was suppressed in the presence of a DPF; HO-1 mRNA was transiently over-expressed in the presence of a DPF, and it was also increased slightly produced in the absence of a DPF but statistically not significant in the presence of a DPF, and it was also increased slightly produced in the absence of a DPF but statistically not significant; HO-1 was transiently produced independent of the absence or the presence of a DPF; and hydroxyl radicals were weakly produced, even in the presence of a DPF but could be inhibited by catalase or superoxide dismutase. It is thus suggested that oxidative stress may be induced by exposure to DPM or diesel exhaust and thereby exerts cytotoxic effect. The introduction of a DPF is effective to protect cells from the toxicity of diesel exhaust presumably by suppression of an oxidative stress.

  5. In vitro effects induced by diesel exhaust at an air-liquid interface in a human lung alveolar carcinoma cell line A549.

    PubMed

    Okubo, Tomoko; Hosaka, Mitsugu; Nakae, Dai

    2015-01-01

    The present study examined the effects induced in vitro in human adenocarcinoma-derived alveolar basal epithelial A549 cells by diesel particulate matter (DPM) administered into the culture medium or by diesel exhaust administered at an air-liquid interface. When A549 cells were exposed to DPM in the culture medium, cell proliferation was inhibited at doses of 10-100 μg/mL; generation of interleukin (IL)-8 and the antioxidant enzyme, heme oxygenase-1 (HO-1), were inhibited at a dose of 100 μg/mL, and hydroxyl radicals were produced, but could be inhibited by catalase or superoxide dismutase. In contrast, when A549 cells were exposed to diesel exhaust, cell proliferation was inhibited in the absence, but not in the presence, of a diesel particulate filter (DPF); in the absence of a DPF IL-8 was produced in the same amount as in the control cells but was suppressed in the presence of a DPF; HO-1 mRNA was transiently over-expressed in the presence of a DPF, and it was also increased slightly produced in the absence of a DPF but statistically not significant in the presence of a DPF, and it was also increased slightly produced in the absence of a DPF but statistically not significant; HO-1 was transiently produced independent of the absence or the presence of a DPF; and hydroxyl radicals were weakly produced, even in the presence of a DPF but could be inhibited by catalase or superoxide dismutase. It is thus suggested that oxidative stress may be induced by exposure to DPM or diesel exhaust and thereby exerts cytotoxic effect. The introduction of a DPF is effective to protect cells from the toxicity of diesel exhaust presumably by suppression of an oxidative stress. PMID:25983017

  6. Induction of COX-2 protein expression by vanadate in A549 human lung carcinoma cell line through EGF receptor and p38 MAPK-mediated pathway

    SciTech Connect

    Chien, P.-S.; Mak, O.-T.; Huang, H.-J. . E-mail: haojen@mail.ncku.edu.tw

    2006-01-13

    Vanadate is a transition metal widely distributed in the environment. It has been reported that vanadate associated with air pollution particles can modify DNA synthesis, causing cell growth arrest, and apoptosis. Moreover, vanadium exposure was also found to cause the synthesis of inflammatory cytokines, such as interleukin-1, tumor necrosis factor-{alpha}, and prostaglandin E{sub 2}. Here, we found that exposure of A549 human lung carcinoma cells to vanadate led to extracellular signal-regulated kinase, c-Jun NH{sub 2}-terminal protein kinases (JNKs), p38 mitogen-activated protein kinase (p38) activation, and COX-2 protein expression in a dose-dependent manner. SB203580, a p38 MAPK inhibitor, but not PD098059 and SP600125, specific inhibitor of MKK1 and selective inhibitor of JNK, respectively, suppressed COX-2 expression. Furthermore, the epithelial growth factor (EGF) receptor specific inhibitor (PD153035) reduced vanadate-induced COX-2 expression. However, scavenging of vanadate-induced reactive oxygen species by catalase, a specific H{sub 2}O{sub 2} inhibitor, or DPI, an NADPH oxidase inhibitor, resulted in no inhibition on COX-2 expression. Together, we suggested that EGF receptor and p38 MAPK signaling pathway may be involved in vanadate-induced COX-2 protein expression in A549 human lung carcinoma cell line.

  7. Molecular Switch Role of Akt in Polygonatum odoratum Lectin-Induced Apoptosis and Autophagy in Human Non-Small Cell Lung Cancer A549 Cells

    PubMed Central

    Shi, Zheng; Wang, Hailian; Zhang, Bin; Zhao, Kailiang; Qi, Wei; Bao, Jinku; Wang, Yi

    2014-01-01

    Polygonatum odoratum lectin (POL), isolated from traditional Chinese medicine herb (Mill.) Druce, has drawn rising attention due to its wide biological activities. In the present study, anti-tumor effects, including apoptosis- and autophagy-inducing properties of POL, were determined by a series of cell biology methods such as MTT, cellular morphology observation, flow cytometry, immunoblotting. Herein, we found that POL could simultaneously induce apoptosis and autophagy in human non-small cell lung cancer A549 cells. POL initiated apoptosis through inhibiting Akt-NF-κB pathway, while POL triggered autophagy via suppressing Akt-mTOR pathway, suggesting the molecular switch role of Akt in regulating between POL-induced apoptosis and autophagy. Moreover, ROS was involved in POL-induced inhibition of Akt expression, and might therefore mediate both apoptosis and autophagy in A549 cells. In addition, POL displayed no significant cytotoxicity toward normal human embryonic lung fibroblast HELF cells. Due to the anti-tumor activities, POL might become a potent anti-cancer drug in future therapy, which might pave the way for exploring GNA-related lectins into effective drugs in cancer treatment. PMID:24992302

  8. Three-dimensional quantitative structure-activity relationship study on anti-cancer activity of 3,4-dihydroquinazoline derivatives against human lung cancer A549 cells

    NASA Astrophysics Data System (ADS)

    Cho, Sehyeon; Choi, Min Ji; Kim, Minju; Lee, Sunhoe; Lee, Jinsung; Lee, Seok Joon; Cho, Haelim; Lee, Kyung-Tae; Lee, Jae Yeol

    2015-03-01

    A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human lung cancer A549 cells were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, 1 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields (q2 = 0.720, r2 = 0.897). This model was validated by an external test set of 6 compounds giving satisfactory predictive r2 value of 0.923 as well as the scrambling stability test. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human lung cancer.

  9. Toxic Effects of the Major Components of Diesel Exhaust in Human Alveolar Basal Epithelial Cells (A549).

    PubMed

    Rossner, Pavel; Strapacova, Simona; Stolcpartova, Jitka; Schmuczerova, Jana; Milcova, Alena; Neca, Jiri; Vlkova, Veronika; Brzicova, Tana; Machala, Miroslav; Topinka, Jan

    2016-01-01

    We investigated the toxicity of benzo[a]pyrene (B[a]P), 1-nitropyrene (1-NP) and 3-nitrobenzanthrone (3-NBA) in A549 cells. Cells were treated for 4 h and 24 h with: B[a]P (0.1 and 1 μM), 1-NP (1 and 10 μM) and 3-NBA (0.5 and 5 μM). Bulky DNA adducts, lipid peroxidation, DNA and protein oxidation and mRNA expression of CYP1A1, CYP1B1, NQO1, POR, AKR1C2 and COX2 were analyzed. Bulky DNA adducts were induced after both treatment periods; the effect of 1-NP was weak. 3-NBA induced high levels of bulky DNA adducts even after 4-h treatment, suggesting rapid metabolic activation. Oxidative DNA damage was not affected. 1-NP caused protein oxidation and weak induction of lipid peroxidation after 4-h incubation. 3-NBA induced lipid peroxidation after 24-h treatment. Unlike B[a]P, induction of the aryl hydrocarbon receptor, measured as mRNA expression levels of CYP1A1 and CYP1B1, was low after treatment with polycyclic aromatic hydrocarbon (PAH) nitro-derivatives. All test compounds induced mRNA expression of NQO1, POR, and AKR1C2 after 24-h treatment. AKR1C2 expression indicates involvement of processes associated with reactive oxygen species generation. This was supported further by COX2 expression induced by 24-h treatment with 1-NP. In summary, 3-NBA was the most potent genotoxicant, whereas 1-NP exhibited the strongest oxidative properties. PMID:27571070

  10. Toxic Effects of the Major Components of Diesel Exhaust in Human Alveolar Basal Epithelial Cells (A549)

    PubMed Central

    Rossner, Pavel; Strapacova, Simona; Stolcpartova, Jitka; Schmuczerova, Jana; Milcova, Alena; Neca, Jiri; Vlkova, Veronika; Brzicova, Tana; Machala, Miroslav; Topinka, Jan

    2016-01-01

    We investigated the toxicity of benzo[a]pyrene (B[a]P), 1-nitropyrene (1-NP) and 3-nitrobenzanthrone (3-NBA) in A549 cells. Cells were treated for 4 h and 24 h with: B[a]P (0.1 and 1 μM), 1-NP (1 and 10 μM) and 3-NBA (0.5 and 5 μM). Bulky DNA adducts, lipid peroxidation, DNA and protein oxidation and mRNA expression of CYP1A1, CYP1B1, NQO1, POR, AKR1C2 and COX2 were analyzed. Bulky DNA adducts were induced after both treatment periods; the effect of 1-NP was weak. 3-NBA induced high levels of bulky DNA adducts even after 4-h treatment, suggesting rapid metabolic activation. Oxidative DNA damage was not affected. 1-NP caused protein oxidation and weak induction of lipid peroxidation after 4-h incubation. 3-NBA induced lipid peroxidation after 24-h treatment. Unlike B[a]P, induction of the aryl hydrocarbon receptor, measured as mRNA expression levels of CYP1A1 and CYP1B1, was low after treatment with polycyclic aromatic hydrocarbon (PAH) nitro-derivatives. All test compounds induced mRNA expression of NQO1, POR, and AKR1C2 after 24-h treatment. AKR1C2 expression indicates involvement of processes associated with reactive oxygen species generation. This was supported further by COX2 expression induced by 24-h treatment with 1-NP. In summary, 3-NBA was the most potent genotoxicant, whereas 1-NP exhibited the strongest oxidative properties. PMID:27571070

  11. Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles.

    PubMed

    Bhattacharya, Kunal; Naha, Pratap C; Naydenova, Izabela; Mintova, Svetlana; Byrne, Hugh J

    2012-12-17

    Increasing utilization of engineered nanoparticles in the field of electronics and biomedical applications demands an assessment of risk associated with deliberate or accidental exposure. Metal based nanoparticles are potentially most important of all the nanoparticles in terms of health risks. Microporous alumino-silicates and pure silicates named as zeolites and zeo-type materials with variety of structures, chemical compositions, particle sizes and morphologies have a significant number of industrial uses such as in catalysis, sorption and ion-exchange processes. In particular, the nanosized particles due to their unique properties are used in hybrid organic-inorganic materials for photography, photonics, electronics, labeling, imaging, and sensing. The aim of the current study is to investigate pure silica MFI-type zeolites nanoparticles with sizes of 50nm and 100nm (samples MFI-50 and MFI-100) under suspended conditions and their toxicological effects on human lung alveolar (A549) cells under in vitro conditions. Live cell imaging showed that the nanoparticles precipitated from the colloidal suspension of cell culture media as large agglomerates, coming in contact with the cell surface through sedimentation. A cellular proliferative capacity test showed the zeolite nanoparticles to exhibit no significant cytotoxicity below a concentration of 100μg/ml. However, both the MFI-50 and MFI-100 nanoparticles induced high intracellular reactive oxygen species (ROS) generation and elevated mitochondrial membrane potential in the A549 cells over the measured time period of 12h and at concentrations up to ≤50μg/ml. DNA fragmentation analysis using the comet assay showed that the MFI-50 and MFI-100 nanoparticles cause genotoxicity in a concentration dependent manner. Furthermore, the rate at which maximum genomic damage was caused by MFI-100 nanoparticles in the A549 cells was found to be high as compared to the MFI-50 nanoparticles. However, the damage caused by the

  12. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Han, Jae Woong; Zhang, Xi-Feng; Park, Jung Hyun; Kim, Jin-Hoi

    2015-02-01

    Silver nanoparticles (AgNPs) are prominent group of nanomaterials and are recognized for their diverse applications in various health sectors. This study aimed to synthesize the AgNPs using the leaf extract of Artemisia princeps as a bio-reductant. Furthermore, we evaluated the multidimensional effect of the biologically synthesized AgNPs in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma (A549) cells. UV-visible (UV-vis) spectroscopy confirmed the synthesis of AgNPs. X-ray diffraction (XRD) indicated that the AgNPs are specifically indexed to a crystal structure. The results from Fourier transform infrared spectroscopy (FTIR) indicate that biomolecules are involved in the synthesis and stabilization of AgNPs. Dynamic light scattering (DLS) studies showed the average size distribution of the particle between 10 and 40 nm, and transmission electron microscopy (TEM) confirmed that the AgNPs were significantly well separated and spherical with an average size of 20 nm. AgNPs caused dose-dependent decrease in cell viability and biofilm formation and increase in reactive oxygen species (ROS) generation and DNA fragmentation in H. pylori and H. felis. Furthermore, AgNPs induced mitochondrial-mediated apoptosis in A549 cells; conversely, AgNPs had no significant effects on L132 cells. The results from this study suggest that AgNPs could cause cell-specific apoptosis in mammalian cells. Our findings demonstrate that this environmentally friendly method for the synthesis of AgNPs and that the prepared AgNPs have multidimensional effects such as anti-bacterial and anti-biofilm activity against H. pylori and H. felis and also cytotoxic effects against human cancer cells. This report describes comprehensively the effects of AgNPs on bacteria and mammalian cells. We believe that biologically synthesized AgNPs will open a new avenue towards various biotechnological and biomedical applications in the near future.

  13. Development of a realistic human airway model.

    PubMed

    Lizal, Frantisek; Elcner, Jakub; Hopke, Philip K; Jedelsky, Jan; Jicha, Miroslav

    2012-03-01

    Numerous models of human lungs with various levels of idealization have been reported in the literature; consequently, results acquired using these models are difficult to compare to in vivo measurements. We have developed a set of model components based on realistic geometries, which permits the analysis of the effects of subsequent model simplification. A realistic digital upper airway geometry except for the lack of an oral cavity has been created which proved suitable both for computational fluid dynamics (CFD) simulations and for the fabrication of physical models. Subsequently, an oral cavity was added to the tracheobronchial geometry. The airway geometry including the oral cavity was adjusted to enable fabrication of a semi-realistic model. Five physical models were created based on these three digital geometries. Two optically transparent models, one with and one without the oral cavity, were constructed for flow velocity measurements, two realistic segmented models, one with and one without the oral cavity, were constructed for particle deposition measurements, and a semi-realistic model with glass cylindrical airways was developed for optical measurements of flow velocity and in situ particle size measurements. One-dimensional phase doppler anemometry measurements were made and compared to the CFD calculations for this model and good agreement was obtained. PMID:22558834

  14. Human Noxin is an anti-apoptotic protein in response to DNA damage of A549 non-small cell lung carcinoma.

    PubMed

    Won, Kyoung-Jae; Im, Joo-Young; Yun, Chae-Ok; Chung, Kyung-Sook; Kim, Young Joo; Lee, Jung-Sun; Jung, Young-Jin; Kim, Bo-Kyung; Song, Kyung Bin; Kim, Young-Ho; Chun, Ho-Kyung; Jung, Kyeong Eun; Kim, Moon-Hee; Won, Misun

    2014-06-01

    Human Noxin (hNoxin, C11Orf82), a homolog of mouse noxin, is highly expressed in colorectal and lung cancer tissues. hNoxin contains a DNA-binding C-domain in RPA1, which mediates DNA metabolic processes, such as DNA replication and DNA repair. Expression of hNoxin is associated with S phase in cancer cells and in normal cells. Expression of hNoxin was induced by ultraviolet (UV) irradiation. Knockdown of hNoxin caused growth inhibition of colorectal and lung cancer cells. The comet assay and western blot analysis revealed that hNoxin knockdown induced apoptosis through activation of p38 mitogen-activated protein kinase (MAPK)/p53 in non-small cell lung carcinoma A549 cells. Furthermore, simultaneous hNoxin knockdown and treatment with DNA-damaging agents, such as camptothecin (CPT) and UV irradiation, enhanced apoptosis, whereas Trichostatin A (TSA) did not. However, transient overexpression of hNoxin rescued cells from DNA damage-induced apoptosis but did not block apoptosis in the absence of DNA damage. These results suggest that hNoxin may be associated with inhibition of apoptosis in response to DNA damage. An adenovirus expressing a short hairpin RNA against hNoxin transcripts significantly suppressed the growth of A549 tumor xenografts, indicating that hNoxin knockdown has in vivo anti-tumor efficacy. Thus, hNoxin is a DNA damage-induced anti-apoptotic protein and potential therapeutic target in cancer.

  15. Novel complementation cell lines derived from human lung carcinoma A549 cells support the growth of E1-deleted adenovirus vectors.

    PubMed

    Imler, J L; Chartier, C; Dreyer, D; Dieterle, A; Sainte-Marie, M; Faure, T; Pavirani, A; Mehtali, M

    1996-01-01

    Replication-defective E1-deleted adenoviruses are attractive vectors for gene therapy or live vaccines. However, manufacturing methods required for their pharmaceutical development are not optimized. For example, the generation of E1-deleted adenovirus vectors relies on the complementation functions present in 293 cells. However, 293 cells are prone to the generation of replication competent particles as a result of recombination events between the viral DNA and the integrated adenovirus sequences present in the cell line. We report here that human lung A549 cells transformed with constitutive or inducible E1-expression vectors support the replication of E1-deficient adenoviruses. E1A transcription was elevated in most of the cell lines, and E1A proteins were expressed at levels similar to those of 293 cells. However, the levels of expression of E1A did not correlate with the efficiencies of complementation of E1-deleted viruses in A549 clones, since some clones complemented replication in the absence of induction of E1A expression. In addition, complementation of E1-deficient adenoviruses did not require expression of the E1B 55-kDa protein. Although these cell lines contain the coding and cis-acting regulatory sequences of the structural protein IX gene, they are not able to complement viruses in which this gene has been deleted. In contrast to 293 cells, such new complementation cell lines do not contain the left end of the adenoviral genome and thus represent a significant improvement over the currently used 293 cells, in which a single recombination event is sufficient to yield replication competent adenovirus. PMID:8929914

  16. Monitoring microRNAs using a molecular beacon in CD133+/ CD338+ human lung adenocarcinoma-initiating A549 cells.

    PubMed

    Yao, Quan; Sun, Jian-Guo; Ma, Hu; Zhang, An-Mei; Lin, Sheng; Zhu, Cong-Hui; Zhang, Tao; Chen, Zheng-Tang

    2014-01-01

    Lung cancer is the most common causes of cancer-related deaths worldwide, and a lack of effective methods for early diagnosis has greatly impacted the prognosis and survival rates of the affected patients. Tumor-initiating cells (TICs) are considered to be largely responsible for tumor genesis, resistance to tumor therapy, metastasis, and recurrence. In addition to representing a good potential treatment target, TICs can provide clues for the early diagnosis of cancer. MicroRNA (miRNA) alterations are known to be involved in the initiation and progression of human cancer, and the detection of related miRNAs in TICs is an important strategy for lung cancer early diagnosis. As Hsa-miR-155 (miR-155) can be used as a diagnostic marker for non-small cell lung cancer (NSCLC), a smart molecular beacon of miR-155 was designed to image the expression of miR-155 in NSCLC cases. TICs expressing CD133 and CD338 were obtained from A549 cells by applying an immune magnetic bead isolation system, and miR-155 was detected using laser-scanning confocal microscopy. We found that intracellular miR- 155 could be successfully detected using smart miR-155 molecular beacons. Expression was higher in TICs than in A549 cells, indicating that miR-155 may play an important role in regulating bio-behavior of TICs. As a non-invasive approach, molecular beacons could be implemented with molecular imaging to diagnose lung cancer at early stages.

  17. Isolinderalactone inhibits proliferation of A549 human non‑small cell lung cancer cells by arresting the cell cycle at the G0/G1 phase and inducing a Fas receptor and soluble Fas ligand-mediated apoptotic pathway.

    PubMed

    Chang, Wei-An; Lin, En-Shyh; Tsai, Ming-Ju; Huang, Ming-Shyan; Kuo, Po-Lin

    2014-05-01

    Lung cancer is currently the leading cause of cancer-related mortality worldwide. In Taiwan, lung cancer is also the type of malignancy that is the major cause of cancer-mortality. Investigating the mechanism of apoptosis of lung cancer cells is important in the treatment of lung cancer. In the present study, isolinderalactone was demonstrated to exhibit anticancer effects in A549 human non-small cell lung cancer cells. The effect of isolinderalactone on apoptosis, cell cycle distribution p21 levels and the Fas receptor and soluble Fas ligand (sFasL) were assayed in order to determine the mechanism underlying the anticancer effect of isolinderalactone. It was demonstrated that isolinderalactone may induce p21 expression and then cause the cell cycle arrest of A549 cells. The data of the present study also revealed that the Fas/sFasL apoptotic system is significant in the mechanism of isolinderalactone‑induced apoptosis of A549 cells. These novel findings demonstrated that isolinderalactone may cause the cell cycle arrest of A549 cells by induction of p21, and induce apoptosis of A549 human non-small-cell lung carcinoma cells through the Fas/sFasL apoptotic system. PMID:24604009

  18. The fruit juice of Morinda citrifolia (noni) downregulates HIF-1α protein expression through inhibition of PKB, ERK-1/2, JNK-1 and S6 in manganese-stimulated A549 human lung cancer cells.

    PubMed

    Jang, Byeong-Churl

    2012-03-01

    High exposure of manganese is suggested to be a risk factor for many lung diseases. Evidence suggests anticancerous and antiangiogenic effects by products derived from Morinda citrifolia (noni) fruit. In this study, we investigated the effect of noni fruit juice (NFJ) on the expression of HIF-1α, a tumor angiogenic transcription factor in manganese-chloride (manganese)-stimulated A549 human lung carcinoma cells. Treatment with manganese largely induced expression of HIF-1α protein but did not affect HIF-1α mRNA expression in A549 cells, suggesting the metal-mediated co- and/or post-translational HIF-1α upregulation. Manganese treatment also led to increased phosphorylation of extracellular-regulated protein kinase-1/2 (ERK-1/2), c-Jun N-terminal kinase-1 (JNK-1), protein kinase B (PKB), S6 and eukaryotic translation initiation factor-2α (eIF-2α) in A549 cells. Of note, the exposure of NFJ inhibited the manganese-induced HIF-1α protein upregulation in a concentration-dependent manner. Importantly, as assessed by results of pharmacological inhibition and siRNA transfection studies, the effect of NFJ on HIF-1α protein downregulation seemed to be largely associated with the ability of NFJ to interfere with the metal's signaling to activate PKB, ERK-1/2, JNK-1 and S6 in A549 cells. It was further shown that NFJ could repress the induction of HIF-1α protein by desferoxamine or interleukin-1β (IL-1β), another HIF-1α inducer in A549 cells. Thus, the present study provides the first evidence that NFJ has the ability to strongly downregulate manganese-induced HIF-1α protein expression in A549 human lung cancer cells, which may suggest the NFJ-mediated beneficial effects on lung pathologies in which manganese and HIF-1α overexpression play pathogenic roles.

  19. Response of Primary Human Airway Epithelial Cells to Influenza Infection: A Quantitative Proteomic Study

    PubMed Central

    2012-01-01

    Influenza A virus exerts a large health burden during both yearly epidemics and global pandemics. However, designing effective vaccine and treatment options has proven difficult since the virus evolves rapidly. Therefore, it may be beneficial to identify host proteins associated with viral infection and replication to establish potential new antiviral targets. We have previously measured host protein responses in continuously cultured A549 cells infected with mouse-adapted virus strain A/PR/8/34(H1N1; PR8). We here identify and measure host proteins differentially regulated in more relevant primary human bronchial airway epithelial (HBAE) cells. A total of 3740 cytosolic HBAE proteins were identified by 2D LC–MS/MS, of which 52 were up-regulated ≥2-fold and 41 were down-regulated ≥2-fold after PR8 infection. Up-regulated HBAE proteins clustered primarily into interferon signaling, other host defense processes, and molecular transport, whereas down-regulated proteins were associated with cell death signaling pathways, cell adhesion and motility, and lipid metabolism. Comparison to influenza-infected A549 cells indicated some common influenza-induced host cell alterations, including defense response, molecular transport proteins, and cell adhesion. However, HBAE-specific alterations consisted of interferon and cell death signaling. These data point to important differences between influenza replication in continuous and primary cell lines and/or alveolar and bronchial epithelial cells. PMID:22694362

  20. Protein C inhibits endocytosis of thrombin-thrombomodulin complexes in A549 lung cancer cells and human umbilical vein endothelial cells

    SciTech Connect

    Maruyama, I.; Majerus, P.W.

    1987-05-01

    We investigated the effect of protein C on the endocytosis of thrombin-thrombomodulin complexes. We previously showed that exposure of umbilical vein endothelial cells to thrombin stimulated the internalization and degradation of thrombin. A similar internalization was stimulated by a monoclonal antithrombomodulin antibody. We have repeated these studies in the presence of protein C and found that endocytosis of /sup 125/I-thrombin-thrombomodulin complexes, but not /sup 125/I-antithrombomodulin-thrombomodulin complexes, is inhibited. Activated protein C did not inhibit endocytosis of thrombin-thrombomodulin complexes. Protein C inhibited both internalization and degradation of /sup 125/I-thrombin and diisopropylphosphoryl (DIP) /sup 125/I-thrombin in human lung cancer cells (A549). These effects were observed at protein C concentrations found in human plasma. Protein S had no effect on the inhibition of endocytosis of thrombin-thrombomodulin complexes by protein C. We propose that protein C may regulate the rate of endocytosis of thrombin-thrombomodulin complexes in vivo and thereby control the capacity for endothelium to activate protein C.

  1. Claudin-18 inhibits cell proliferation and motility mediated by inhibition of phosphorylation of PDK1 and Akt in human lung adenocarcinoma A549 cells.

    PubMed

    Shimobaba, Shun; Taga, Saeko; Akizuki, Risa; Hichino, Asami; Endo, Satoshi; Matsunaga, Toshiyuki; Watanabe, Ryo; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Sugatani, Junko; Ikari, Akira

    2016-06-01

    Abnormal expression of claudin subtypes has been reported in various cancers. However, the pathological role of each claudin has not been clarified in detail. Claudin-18 was absent in human non-small cell and small cell lung cancers, although it is expressed in normal lung tissues. Here, we examined the effect of claudin-18 expression on the expression of junctional proteins, cell proliferation, and cell motility using human lung adenocarcinoma A549 cells. Real-time PCR and western blotting showed that exogenous expression of claudin-18 had no effect on the expression of junctional proteins including claudin-1, zonula occludens-1 (ZO-1), occludin, and E-cadherin. Claudin-18 was mainly distributed in cell-cell contact areas concomitant with ZO-1. Cell proliferation was significantly decreased at 48 and 72h after seeding of claudin 18-expressing cells. Claudin-18 suppressed cell motility, whereas it increased cell death in anoikis. Claudin-18 decreased phosphorylated (p)-3-phosphoinositide-dependent protein kinase-1 (PDK1) and p-Akt levels without affecting p-epidermal growth factor receptor and p-phosphatidylinositol-3 kinase (PI3K) levels. Furthermore, claudin-18 was bound with PDK1 and suppressed the nuclear localization of PDK1. We suggest that claudin-18 suppresses the abnormal proliferation and motility of lung epithelial cells mediated by inhibition of the PI3K/PDK1/Akt signaling pathway.

  2. MiR-630 inhibits proliferation by targeting CDC7 kinase, but maintains the apoptotic balance by targeting multiple modulators in human lung cancer A549 cells

    PubMed Central

    Cao, J-X; Lu, Y; Qi, J-J; An, G-S; Mao, Z-B; Jia, H-T; Li, S-Y; Ni, J-H

    2014-01-01

    MicroRNAome analyses have shown microRNA-630 (miR-630) to be involved in the regulation of apoptosis. However, its apoptotic role is still debated and its participation in DNA replication is unknown. Here, we demonstrate that miR-630 inhibits cell proliferation by targeting cell-cycle kinase 7 (CDC7) kinase, but maintains the apoptotic balance by targeting multiple activators of apoptosis under genotoxic stress. We identified a novel regulatory mechanism of CDC7 gene expression, in which miR-630 downregulated CDC7 expression by recognizing and binding to four binding sites in CDC7 3'-UTR. We found that miR-630 was highly expressed in A549 and NIH3T3 cells where CDC7 was downregulated, but lower in H1299, MCF7, MDA-MB-231, HeLa and 2BS cells where CDC7 was upregulated. Furthermore, the induction of miR-630 occurred commonly in a variety of human cancer and immortalized cells in response to genotoxic agents. Importantly, downregulation of CDC7 by miR-630 was associated with cisplatin (CIS)-induced inhibitory proliferation in A549 cells. Mechanistically, miR-630 exerted its inhibitory proliferation by blocking CDC7-mediated initiation of DNA synthesis and by inducing G1 arrest, but maintains apoptotic balance under CIS exposure. On the one hand, miR-630 promoted apoptosis by downregulation of CDC7; on the other hand, it reduced apoptosis by downregulating several apoptotic modulators such as PARP3, DDIT4, EP300 and EP300 downstream effector p53, thereby maintaining the apoptotic balance. Our data indicate that miR-630 has a bimodal role in the regulation of apoptosis in response to DNA damage. Our data also support the notion that a certain mRNA can be targeted by several miRNAs, and in particular an miRNA may target a set of mRNAs. These data afford a comprehensive view of microRNA-dependent control of gene expression in the regulation of apoptosis under genotoxic stress. PMID:25255219

  3. Human Lung Cancer Cell Line A-549 ATCC Is Differentially Affected by Supranutritional Organic and Inorganic Selenium

    PubMed Central

    Flores Villavicencio, Lérida Liss; Cruz-Jiménez, Gustavo; Barbosa-Sabanero, Gloria; Kornhauser-Araujo, Carlos; Mendoza-Garrido, M. Eugenia; de la Rosa, Guadalupe; Sabanero-López, Myrna

    2014-01-01

    The effects of organic and inorganic forms of selenium (Se) on human cells have been extensively studied for nutritional concentrations; however, to date, little is known about the potential toxicity at supranutritional levels. In the present study we determined the effects of sodium selenite (SSe) and selenomethionine (SeMet) on cell growth and intracellular structures in lung cancer cells exposed at Se concentrations between 0 and 3 mM. Our results showed that SSe affected cell growth more rapidly than SeMet (24 h and 48 h, resp.). After 24 h of cells exposure to 0.5, 1.5, and 3 mM SSe, cell growth was reduced by 10, 50, and 60%, as compared to controls. After 48 h, nuclear fragmentation was evident in cells exposed to SSe, suggesting an induction to cell death. In contrast, SeMet did not affect cell proliferation, and the cells were phenotypically similar to controls. Microtubules and microfilaments structures were also affected by both Se compounds, again SSe being more toxic than SeMet. To our knowledge, this is the first report on the differential effects of organic and inorganic Se in supranutritional levels in lung cancer cells. PMID:25477771

  4. Baicalein Induces Caspase-dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 Cells.

    PubMed

    Kim, Hong Jae; Park, Cheol; Han, Min-Ho; Hong, Su-Hyun; Kim, Gi-Young; Hong, Sang Hoon; Kim, Nam Deuk; Choi, Yung Hyun

    2016-03-01

    Baicalein is one of the main bioactive flavonoids found in the roots of Scutellaria baicalensis Georgi. Here, we report that baicalein-induced growth inhibition was associated with the induction of apoptosis in human lung carcinoma A549 cells. Baicalein stimulated the expression of DR5, FasL, and FADD, and activated caspase-8 by reducing the levels of FLIPs (FLICE-inhibitory proteins). The apoptotic cell death was also connected with an activation of caspase-9 and -3, and cleavage of poly(ADP-ribose) polymerase; however, a blockage of caspase activation abolished baicalein-induced apoptotic potentials. Additionally, baicalein caused a mitochondrial membrane potential (MMP), the truncation of Bid, and the translocation of pro-apoptotic Bax to the mitochondria, thereby inducing the release of cytochrome c into the cytosol. In turn, baicalein increased the generation of reactive oxygen species (ROS); however, an ROS scavenger, N-acetylcysteine, notably attenuated baicalein-mediated loss of MMP and activation of caspases. Furthermore, baicalein activated the AMP-activated protein kinase (AMPK) signaling pathway. Consequently, baicalein-triggered cell death was attenuated by an AMPK inhibitor, but increased by an AMPK activator, compound C. Overall, the results suggest that the apoptotic activity of baicalein may be associated with caspase-dependent cascade through the activation of both intrinsic and extrinsic signaling pathways connected with ROS generation and AMPK activation.

  5. Identification of a Short Cell-Penetrating Peptide from Bovine Lactoferricin for Intracellular Delivery of DNA in Human A549 Cells.

    PubMed

    Liu, Betty R; Huang, Yue-Wern; Aronstam, Robert S; Lee, Han-Jung

    2016-01-01

    Cell-penetrating peptides (CPPs) have been shown to deliver cargos, including protein, DNA, RNA, and nanomaterials, in fully active forms into live cells. Most of the CPP sequences in use today are based on non-native proteins that may be immunogenic. Here we demonstrate that the L5a CPP (RRWQW) from bovine lactoferricin (LFcin), stably and noncovalently complexed with plasmid DNA and prepared at an optimal nitrogen/phosphate ratio of 12, is able to efficiently enter into human lung cancer A549 cells. The L5a CPP delivered a plasmid containing the enhanced green fluorescent protein (EGFP) coding sequence that was subsequently expressed in cells, as revealed by real-time PCR and fluorescent microscopy at the mRNA and protein levels, respectively. Treatment with calcium chloride increased the level of gene expression, without affecting CPP-mediated transfection efficiency. Zeta-potential analysis revealed that positively electrostatic interactions of CPP/DNA complexes correlated with CPP-mediated transport. The L5a and L5a/DNA complexes were not cytotoxic. This biomimetic LFcin L5a represents one of the shortest effective CPPs and could be a promising lead peptide with less immunogenic for DNA delivery in gene therapy. PMID:26942714

  6. Baicalein Induces Caspase-dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 Cells.

    PubMed

    Kim, Hong Jae; Park, Cheol; Han, Min-Ho; Hong, Su-Hyun; Kim, Gi-Young; Hong, Sang Hoon; Kim, Nam Deuk; Choi, Yung Hyun

    2016-03-01

    Baicalein is one of the main bioactive flavonoids found in the roots of Scutellaria baicalensis Georgi. Here, we report that baicalein-induced growth inhibition was associated with the induction of apoptosis in human lung carcinoma A549 cells. Baicalein stimulated the expression of DR5, FasL, and FADD, and activated caspase-8 by reducing the levels of FLIPs (FLICE-inhibitory proteins). The apoptotic cell death was also connected with an activation of caspase-9 and -3, and cleavage of poly(ADP-ribose) polymerase; however, a blockage of caspase activation abolished baicalein-induced apoptotic potentials. Additionally, baicalein caused a mitochondrial membrane potential (MMP), the truncation of Bid, and the translocation of pro-apoptotic Bax to the mitochondria, thereby inducing the release of cytochrome c into the cytosol. In turn, baicalein increased the generation of reactive oxygen species (ROS); however, an ROS scavenger, N-acetylcysteine, notably attenuated baicalein-mediated loss of MMP and activation of caspases. Furthermore, baicalein activated the AMP-activated protein kinase (AMPK) signaling pathway. Consequently, baicalein-triggered cell death was attenuated by an AMPK inhibitor, but increased by an AMPK activator, compound C. Overall, the results suggest that the apoptotic activity of baicalein may be associated with caspase-dependent cascade through the activation of both intrinsic and extrinsic signaling pathways connected with ROS generation and AMPK activation. PMID:26971531

  7. Identification of a Short Cell-Penetrating Peptide from Bovine Lactoferricin for Intracellular Delivery of DNA in Human A549 Cells

    PubMed Central

    Liu, Betty R.; Huang, Yue-Wern; Aronstam, Robert S.; Lee, Han-Jung

    2016-01-01

    Cell-penetrating peptides (CPPs) have been shown to deliver cargos, including protein, DNA, RNA, and nanomaterials, in fully active forms into live cells. Most of the CPP sequences in use today are based on non-native proteins that may be immunogenic. Here we demonstrate that the L5a CPP (RRWQW) from bovine lactoferricin (LFcin), stably and noncovalently complexed with plasmid DNA and prepared at an optimal nitrogen/phosphate ratio of 12, is able to efficiently enter into human lung cancer A549 cells. The L5a CPP delivered a plasmid containing the enhanced green fluorescent protein (EGFP) coding sequence that was subsequently expressed in cells, as revealed by real-time PCR and fluorescent microscopy at the mRNA and protein levels, respectively. Treatment with calcium chloride increased the level of gene expression, without affecting CPP-mediated transfection efficiency. Zeta-potential analysis revealed that positively electrostatic interactions of CPP/DNA complexes correlated with CPP-mediated transport. The L5a and L5a/DNA complexes were not cytotoxic. This biomimetic LFcin L5a represents one of the shortest effective CPPs and could be a promising lead peptide with less immunogenic for DNA delivery in gene therapy. PMID:26942714

  8. Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cells line.

    PubMed

    Palaniappan, P; Sathishkumar, G; Sankar, R

    2015-03-01

    The present study reports, green synthesis of bioactive silver nanoparticles (AgNPs) under different temperature (60°C, room temperature and 4° refrigerator) using the aqueous extract of sea grass Cymodocea serrulata as a potential bioreductant. Increased temperature fabricates more AgNPs compare to room temperature and refrigerator condition. At first the reduction of Ag(+) ions were confirmed through color change which produces an absorbance spectra at 420nm in UV-Visible spectrophotometer. Additionally various exclusive instrumentations such as X-ray diffraction (XRD), Dynamic light scattering (DLS), scanning electron microscope (SEM) analysis and Transmission electron microscope (TEM) were authorizes the biosynthesis and physio-chemical characterization of AgNPs. From Fourier transform infrared spectroscopy (FTIR) analysis, it was identified that the water soluble fractions of the sea grass mainly responsible for reduction of ionic silver (Ag(+)) into (Ag(0)) nano-ranged particles and also they act as stabilizing agent to sustain the durability of NPs for long period of time. Further, synthesized AgNPs shows potential cytotoxicity against human lung cancer A549 cells (LD50-100μg/ml). The overall results suggest that C. serrulata is a valuable bioresource to generate rapid and eco-friendly bioactive AgNPs towards cancer therapy.

  9. Exosome cargo reflects TGF-β1-mediated epithelial-to-mesenchymal transition (EMT) status in A549 human lung adenocarcinoma cells.

    PubMed

    Kim, Jiyeon; Kim, Tae Yeon; Lee, Myung Shin; Mun, Ji Young; Ihm, Chunhwa; Kim, Soon Ae

    2016-09-16

    It has been suggested that tumor cells secrete exosomes to modify the local microenvironment, which then promotes intercellular communication and metastasis. Although exosomes derived from cancer cells may contribute to the epithelial-mesenchymal transition (EMT) in untransformed cells, few studies have defined exosome cargo upon induction of EMT. In this study, we investigated the changes in exosomal cargo from the epithelial to mesenchymal cell phenotype by inducing EMT with transforming growth factor (TGF)-β1 in A549 human lung adenocarcinoma cells. The protein content of the exosomes reflects the change in the cell phenotype. In addition, miR-23a was significantly enriched in the exosomes after mesenchymal transition. Following treatment of exosomes from mesenchymal cells via EMT induction with TGF-β1 to the epithelial cell type, phenotypic changes in protein expression level and cell morphology were observed. Autologous treatment of exosomes enhanced the transcriptional activity and abundance of β-catenin. Our results suggest that the exosomal protein and miRNA content reflects the physiological condition of its source and that exosomes induce phenotypic changes via autocrine signaling. PMID:27492069

  10. A Series of α-Amino Acid Ester Prodrugs of Camptothecin: In vitro Hydrolysis and A549 Human Lung Carcinoma Cell Cytotoxicity

    PubMed Central

    Deshmukh, Manjeet; Chao, Piyun; Kutscher, Hilliard L.; Gao, Dayuan; Sinko, Patrick J.

    2013-01-01

    The objective of the present study was to identify a camptothecin (CPT) prodrug with optimal release and cytotoxicity properties for immobilization on a passively targeted microparticle delivery system. A series of α-amino acid ester prodrugs of CPT were synthesized, characterized and evaluated. Four CPT prodrugs were synthesized with increasing aliphatic chain length (glycine (Gly) (2a), alanine (Ala) (2b), aminobutyric acid (Abu) (2c) and norvaline (Nva) (2d)). Prodrug reconversion was studied at pH 6.6, 7.0 and 7.4 corresponding to tumor, lung and extracellular/physiological pH, respectively. Cytotoxicity was evaluated in A549 human lung carcinoma cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The hydrolytic reconversion rate to parent CPT increased with decreasing side chain length as well as increasing pH. The Hill slope of 2d was significantly less than CPT and the other prodrugs tested, indicating a higher cell death rate at lower concentrations. These results suggest that 2d is the best candidate for a passively targeted sustained release lung delivery system. PMID:20063889

  11. Identification of a Short Cell-Penetrating Peptide from Bovine Lactoferricin for Intracellular Delivery of DNA in Human A549 Cells.

    PubMed

    Liu, Betty R; Huang, Yue-Wern; Aronstam, Robert S; Lee, Han-Jung

    2016-01-01

    Cell-penetrating peptides (CPPs) have been shown to deliver cargos, including protein, DNA, RNA, and nanomaterials, in fully active forms into live cells. Most of the CPP sequences in use today are based on non-native proteins that may be immunogenic. Here we demonstrate that the L5a CPP (RRWQW) from bovine lactoferricin (LFcin), stably and noncovalently complexed with plasmid DNA and prepared at an optimal nitrogen/phosphate ratio of 12, is able to efficiently enter into human lung cancer A549 cells. The L5a CPP delivered a plasmid containing the enhanced green fluorescent protein (EGFP) coding sequence that was subsequently expressed in cells, as revealed by real-time PCR and fluorescent microscopy at the mRNA and protein levels, respectively. Treatment with calcium chloride increased the level of gene expression, without affecting CPP-mediated transfection efficiency. Zeta-potential analysis revealed that positively electrostatic interactions of CPP/DNA complexes correlated with CPP-mediated transport. The L5a and L5a/DNA complexes were not cytotoxic. This biomimetic LFcin L5a represents one of the shortest effective CPPs and could be a promising lead peptide with less immunogenic for DNA delivery in gene therapy.

  12. Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cells line.

    PubMed

    Palaniappan, P; Sathishkumar, G; Sankar, R

    2015-03-01

    The present study reports, green synthesis of bioactive silver nanoparticles (AgNPs) under different temperature (60°C, room temperature and 4° refrigerator) using the aqueous extract of sea grass Cymodocea serrulata as a potential bioreductant. Increased temperature fabricates more AgNPs compare to room temperature and refrigerator condition. At first the reduction of Ag(+) ions were confirmed through color change which produces an absorbance spectra at 420nm in UV-Visible spectrophotometer. Additionally various exclusive instrumentations such as X-ray diffraction (XRD), Dynamic light scattering (DLS), scanning electron microscope (SEM) analysis and Transmission electron microscope (TEM) were authorizes the biosynthesis and physio-chemical characterization of AgNPs. From Fourier transform infrared spectroscopy (FTIR) analysis, it was identified that the water soluble fractions of the sea grass mainly responsible for reduction of ionic silver (Ag(+)) into (Ag(0)) nano-ranged particles and also they act as stabilizing agent to sustain the durability of NPs for long period of time. Further, synthesized AgNPs shows potential cytotoxicity against human lung cancer A549 cells (LD50-100μg/ml). The overall results suggest that C. serrulata is a valuable bioresource to generate rapid and eco-friendly bioactive AgNPs towards cancer therapy. PMID:25467657

  13. Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cells line

    NASA Astrophysics Data System (ADS)

    Palaniappan, P.; Sathishkumar, G.; Sankar, R.

    2015-03-01

    The present study reports, green synthesis of bioactive silver nanoparticles (AgNPs) under different temperature (60 °C, room temperature and 4° refrigerator) using the aqueous extract of sea grass Cymodocea serrulata as a potential bioreductant. Increased temperature fabricates more AgNPs compare to room temperature and refrigerator condition. At first the reduction of Ag+ ions were confirmed through color change which produces an absorbance spectra at 420 nm in UV-Visible spectrophotometer. Additionally various exclusive instrumentations such as X-ray diffraction (XRD), Dynamic light scattering (DLS), scanning electron microscope (SEM) analysis and Transmission electron microscope (TEM) were authorizes the biosynthesis and physio-chemical characterization of AgNPs. From Fourier transform infrared spectroscopy (FTIR) analysis, it was identified that the water soluble fractions of the sea grass mainly responsible for reduction of ionic silver (Ag+) into (Ag0) nano-ranged particles and also they act as stabilizing agent to sustain the durability of NPs for long period of time. Further, synthesized AgNPs shows potential cytotoxicity against human lung cancer A549 cells (LD50-100 μg/ml). The overall results suggest that C. serrulata is a valuable bioresource to generate rapid and eco-friendly bioactive AgNPs towards cancer therapy.

  14. Deposition of graphene nanomaterial aerosols in human upper airways.

    PubMed

    Su, Wei-Chung; Ku, Bon Ki; Kulkarni, Pramod; Cheng, Yung Sung

    2016-01-01

    Graphene nanomaterials have attracted wide attention in recent years on their application to state-of-the-art technology due to their outstanding physical properties. On the other hand, the nanotoxicity of graphene materials also has rapidly become a serious concern especially in occupational health. Graphene naomaterials inevitably could become airborne in the workplace during manufacturing processes. The inhalation and subsequent deposition of graphene nanomaterial aerosols in the human respiratory tract could potentially result in adverse health effects to exposed workers. Therefore, investigating the deposition of graphene nanomaterial aerosols in the human airways is an indispensable component of an integral approach to graphene occupational health. For this reason, this study carried out a series of airway replica deposition experiments to obtain original experimental data for graphene aerosol airway deposition. In this study, graphene aerosols were generated, size classified, and delivered into human airway replicas (nasal and oral-to-lung airways). The deposition fraction and deposition efficiency of graphene aerosol in the airway replicas were obtained by a novel experimental approach. The experimental results acquired showed that the fractional deposition of graphene aerosols in airway sections studied were all less than 4%, and the deposition efficiency in each airway section was generally lower than 0.03. These results indicate that the majority of the graphene nanomaterial aerosols inhaled into the human respiratory tract could easily penetrate through the head airways as well as the upper part of the tracheobronchial airways and then transit down to the lower lung airways, where undesired biological responses might be induced.

  15. A novel small molecule, Rosline, inhibits growth and induces caspase-dependent apoptosis in human lung cancer cells A549 through a reactive oxygen species-dependent mechanism.

    PubMed

    Zhao, Ting; Feng, Yang; Jin, Wenling; Pan, Hui; Li, Haizhou; Zhao, Yang

    2016-06-01

    Chemical screening using synthetic small molecule libraries has provided a huge amount of novel active molecules. It generates lead compound for drug development and brings focus on molecules for mechanistic investigations on many otherwise intangible biological processes. In this study, using non-small cell lung cancer cell A549 to screen against a structurally novel and diverse synthetic small molecule library of 2,400 compounds, we identified a molecule named rosline that has strong anti-proliferation activity on A549 cells with a 50% cell growth inhibitory concentration (IC50 ) of 2.87 ± 0.39 µM. We showed that rosline treatment increased the number of Annexin V-positive staining cell, as well as G2/M arrest in their cell cycle progression. Further, we have demonstrated that rosline induces a decrease of mitochondrial membrane potential (Δφm ) and an increase of caspases 3/7 and 9 activities in A549 cells, although having no effect on the activity of caspase 8. Moreover, we found that rosline could induce the production of reactive oxygen species (ROS) and inhibit the phosphorylation of signaling molecule Akt in A549 cells. Alternatively, an antioxidant N-acetyl-L-cysteine (NAC) significantly attenuated rosline's effects on the mitochondrial membrane potential, caspases 3/7 and 9 activities, cell viabilities and the phosphorylation of Akt. Our results demonstrated that ROS played an important role in the apoptosis of A549 cells induced by rosline. PMID:27006094

  16. Mimulone-induced autophagy through p53-mediated AMPK/mTOR pathway increases caspase-mediated apoptotic cell death in A549 human lung cancer cells.

    PubMed

    An, Hyun-Kyu; Kim, Kyoung-Sook; Lee, Ji-Won; Park, Mi-Hyun; Moon, Hyung-In; Park, Shin-Ji; Baik, Ji-Sue; Kim, Cheorl-Ho; Lee, Young-Choon

    2014-01-01

    Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3) puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC) staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA), pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ) suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α) and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy. PMID:25490748

  17. Mimulone-Induced Autophagy through p53-Mediated AMPK/mTOR Pathway Increases Caspase-Mediated Apoptotic Cell Death in A549 Human Lung Cancer Cells

    PubMed Central

    Lee, Ji-Won; Park, Mi-Hyun; Moon, Hyung-In; Park, Shin-Ji; Baik, Ji-Sue; Kim, Cheorl-Ho; Lee, Young-Choon

    2014-01-01

    Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3) puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC) staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA), pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ) suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α) and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy. PMID:25490748

  18. The environmental carcinogen 3-nitrobenzanthrone and its main metabolite 3-aminobenzanthrone enhance formation of reactive oxygen intermediates in human A549 lung epithelial cells

    SciTech Connect

    Hansen, Tanja . E-mail: tanja.hansen@item.fraunhofer.de; Seidel, Albrecht; Borlak, Juergen

    2007-06-01

    The environmental contaminant 3-nitrobenzanthrone (3-NBA) is highly mutagenic and a suspected human carcinogen. We aimed to evaluate whether 3-NBA is able to deregulate critical steps in cell cycle control and apoptosis in human lung epithelial A549 cells. Increased intracellular Ca{sup 2+} and caspase activities were detected upon 3-NBA exposure. As shown by cell cycle analysis, an increased number of S-phase cells was observed after 24 h of treatment with 3-NBA. Furthermore, 3-NBA was shown to inhibit cell proliferation when added to subconfluent cell cultures. The main metabolite of 3-NBA, 3-ABA, induced statistically significant increases in tail moment as judged by alkaline comet assay. The potential of 3-NBA and 3-ABA to enhance the production of reactive oxygen species (ROS) was demonstrated by flow cytometry using 2',7'-dichlorofluorescein-diacetate (DCFH-DA). The enzyme inhibitors allopurinol, dicumarol, resveratrol and SKF525A were used to assess the impact of metabolic conversion on 3-NBA-mediated ROS production. Resveratrol decreased dichlorofluorescein (DCF) fluorescence by 50%, suggesting a role for CYP1A1 in 3-NBA-mediated ROS production. Mitochondrial ROS production was significantly attenuated (20% reduction) by addition of rotenone (complex I inhibition) and thenoyltrifluoroacetone (TTFA, complex II inhibition). Taken together, the results of the present study provide evidence for a genotoxic potential of 3-ABA in human epithelial lung cells. Moreover, both compounds lead to increased intracellular ROS and create an environment favorable to DNA damage and the promotion of cancer.

  19. Oxidative damage to DNA and repair induced by Norwegian wood smoke particles in human A549 and THP-1 cell lines.

    PubMed

    Danielsen, Pernille Høgh; Loft, Steffen; Kocbach, Anette; Schwarze, Per E; Møller, Peter

    2009-03-31

    Genotoxic effects of traffic-generated particulate matter (PM) are well described, whereas little data are available on PM from combustion of biomass and wood, which contributes substantially to air pollution world wide. The aim of this study was to compare the genotoxicity of wood smoke particulate matter (WSPM), authentic traffic-generated particles, mineral PM and standard reference material (SRM2975) of diesel exhaust particles in human A549 lung epithelial and THP-1 monocytic cell lines. DNA damage was measured as strand breaks (SB) and formamidopyrimidine DNA glycosylase (FPG) sites by the comet assay, whereas cell cytotoxicity was determined as lactate dehydrogenase release. The exposure to WSPM generated SB and FPG sites in both cell lines at concentrations from 2.5 or 25 microg/ml, which were not cytotoxic. Compared to all other studied particles, WSPM generated greater responses in terms of both SB and FPG sites. Organic extracts of WSPM and SRM2975 elicited higher levels of SB than native and washed PM at 25 and 100 microg/ml, whereas assay saturation precluded reliable assessment of FPG sites. During a 6h post-exposure period, in which the medium with PM had been replaced by fresh medium, 60% of the DNA lesions generated by WSPM were removed. In conclusion, WSPM generated more DNA damage than traffic-generated PM per unit mass in human cell lines, possibly due to the high level of polycyclic aromatic hydrocarbons in WSPM. This suggests that exposure to WSPM might be more hazardous than PM collected from vehicle exhaust with respect to development of lung cancer. PMID:19041418

  20. Ambient particulate matter (PM2.5): physicochemical characterization and metabolic activation of the organic fraction in human lung epithelial cells (A549).

    PubMed

    Billet, Sylvain; Garçon, Guillaume; Dagher, Zeina; Verdin, Anthony; Ledoux, Frédéric; Cazier, Fabrice; Courcot, Dominique; Aboukais, Antoine; Shirali, Pirouz

    2007-10-01

    To contribute to complete the knowledge of the underlying mechanisms of action involved in air pollution particulate matter (PM)-induced cytotoxicity, an aerosol was collected in Dunkerque, a French seaside City heavily industrialized. In this work, we focused our attention on its physical and chemical characteristics, its cytotoxicity, and its role in the induction of the volatile organic compound (VOC) and/or polycyclic aromatic hydrocarbon (PAH)-metabolizing enzymes in human lung epithelial cells (A549). Size distribution showed that 92.15% of the collected PM were PM2.5 and the specific surface area was 1 m2/g. Inorganic (i.e. Fe, Al, Ca, Na, K, Mg, Pb, etc.) and organic (i.e. VOC, PAH, etc.) chemicals were found in collected PM, revealing that much of them derived from wind-borne dust from the industrial complex and the heavy motor vehicle traffic. The thermal desorption study indicated that organic chemicals were not only adsorbed onto the surface but also highly incrusted in the structure of PM. The lethal concentrations at 10% and 50% of collected PM were 23.72 microg/mL (or 6.33microg/cm2) and 118.60 microg/mL (or 31.63 microg/cm2), respectively. The VOC and/or PAH-coated onto PM induced significant increases in mRNA expressions of cytochrome P450 (cyp) 1a1, cyp2e1, cyp2f1, nadph quinone oxydo-reductase-1, and glutathione s-transferase-pi 1, versus controls. Hence, we concluded that the metabolic activation of the very low doses of VOC and/or PAH-coated onto the inorganic condensation nuclei from Dunkerque City's PM is one of the underlying mechanisms of action closely involved in its cytotoxicity in human lung epithelial cells.

  1. Association of advanced glycation end products with A549 cells, a human pulmonary epithelial cell line, is mediated by a receptor distinct from the scavenger receptor family and RAGE.

    PubMed

    Nakano, Nahoko; Fukuhara-Takaki, Kaori; Jono, Tadashi; Nakajou, Keisuke; Eto, Nobuaki; Horiuchi, Seikoh; Takeya, Motohiro; Nagai, Ryoji

    2006-05-01

    Cellular interactions with advanced glycation end products (AGE)-modified proteins are known to induce several biological responses, not only endocytic uptake and degradation, but also the induction of cytokines and growth factors, combined responses that may be linked to the development of diabetic vascular complications. In this study we demonstrate that A549 cells, a human pulmonary epithelial cell line, possess a specific binding site for AGE-modified bovine serum albumin (AGE-BSA) (K(d) = 27.8 nM), and additionally for EN-RAGE (extracellular newly identified RAGE binding protein) (K(d) = 118 nM). Western blot and RT-PCR analysis showed that RAGE (receptor for AGE) is highly expressed on A549 cells, while the expression of other known AGE-receptors such as galectin-3 and SR-A (class A scavenger receptor), are below the level of detection. The binding of (125)I-AGE-BSA to these cells is inhibited by unlabeled AGE-BSA, but not by EN-RAGE. In contrast, the binding of (125)I-EN-RAGE is significantly inhibited by unlabeled EN-RAGE and soluble RAGE, but not by AGE-BSA. Our results indicate that A549 cells possess at least two binding sites, one specific for EN-RAGE and the other specific for AGE-BSA. The latter receptor on A549 cells is distinct from the scavenger receptor family and RAGE.

  2. Smad2/3-Regulated Expression of DLX2 Is Associated with Radiation-Induced Epithelial-Mesenchymal Transition and Radioresistance of A549 and MDA-MB-231 Human Cancer Cell Lines

    PubMed Central

    Choi, Yeo-Jin; Baek, Ga-Young; Park, Hae-Ran; Jo, Sung-Kee; Jung, Uhee

    2016-01-01

    The control of radioresistance and metastatic potential of surviving cancer cells is important for improving cancer eradication by radiotheraphy. The distal-less homeobox2 (DLX2) gene encodes for a homeobox transcription factor involved in morphogenesis and its deregulation was found in human solid tumors and hematologic malignancies. Here we investigated the role of DLX2 in association with radiation-induced epithelial to mesenchymal transition (EMT) and stem cell-like properties and its regulation by Smad2/3 signaling in irradiated A549 and MDA-MB-231 human cancer cell lines. In irradiated A549 and MDA-MB-231 cells, EMT was induced as demonstrated by EMT marker expression, phosphorylation of Smad2/3, and migratory and invasive ability. Also, irradiated A549 and MDA-MB-231 cells showed increased cancer stem cells (CSCs) marker. Interestingly, DLX2 was overexpressed upon irradiation. Therefore, we examined the role of DLX2 in radiation-induced EMT and radioresistance. The overexpression of DLX2 alone induced EMT, migration and invasion, and CSC marker expression. The reduced colony-forming ability in irradiated cells was partially restored by DLX2 overexpression. On the other hand, the depletion of DLX2 using si-RNA abolished radiation-induced EMT, CSC marker expression, and phosphorylation of Smad2/3 in irradiated A549 and MDA-MB-231 cells. Also, depletion of DLX2 increased the radiation sensitivity in both cell lines. Moreover, knockdown of Smad2/3, a key activator of TGF-β1 pathway, abrogated the radiation-induced DLX2 expression, indicating that radiation-induced DLX2 expression is dependent on Smad2/3 signaling. These results demonstrated that DLX2 plays a crucial role in radioresistance, radiation-induced EMT and CSC marker expression, and the expression of DLX2 is regulated by Smad2/3 signaling in A549 and MDA-MB-231 cell lines. PMID:26799321

  3. Smad2/3-Regulated Expression of DLX2 Is Associated with Radiation-Induced Epithelial-Mesenchymal Transition and Radioresistance of A549 and MDA-MB-231 Human Cancer Cell Lines.

    PubMed

    Choi, Yeo-Jin; Baek, Ga-Young; Park, Hae-Ran; Jo, Sung-Kee; Jung, Uhee

    2016-01-01

    The control of radioresistance and metastatic potential of surviving cancer cells is important for improving cancer eradication by radiotheraphy. The distal-less homeobox2 (DLX2) gene encodes for a homeobox transcription factor involved in morphogenesis and its deregulation was found in human solid tumors and hematologic malignancies. Here we investigated the role of DLX2 in association with radiation-induced epithelial to mesenchymal transition (EMT) and stem cell-like properties and its regulation by Smad2/3 signaling in irradiated A549 and MDA-MB-231 human cancer cell lines. In irradiated A549 and MDA-MB-231 cells, EMT was induced as demonstrated by EMT marker expression, phosphorylation of Smad2/3, and migratory and invasive ability. Also, irradiated A549 and MDA-MB-231 cells showed increased cancer stem cells (CSCs) marker. Interestingly, DLX2 was overexpressed upon irradiation. Therefore, we examined the role of DLX2 in radiation-induced EMT and radioresistance. The overexpression of DLX2 alone induced EMT, migration and invasion, and CSC marker expression. The reduced colony-forming ability in irradiated cells was partially restored by DLX2 overexpression. On the other hand, the depletion of DLX2 using si-RNA abolished radiation-induced EMT, CSC marker expression, and phosphorylation of Smad2/3 in irradiated A549 and MDA-MB-231 cells. Also, depletion of DLX2 increased the radiation sensitivity in both cell lines. Moreover, knockdown of Smad2/3, a key activator of TGF-β1 pathway, abrogated the radiation-induced DLX2 expression, indicating that radiation-induced DLX2 expression is dependent on Smad2/3 signaling. These results demonstrated that DLX2 plays a crucial role in radioresistance, radiation-induced EMT and CSC marker expression, and the expression of DLX2 is regulated by Smad2/3 signaling in A549 and MDA-MB-231 cell lines. PMID:26799321

  4. Investigations on cytotoxic and genotoxic effects of laser printer emissions in human epithelial A549 lung cells using an air/liquid exposure system.

    PubMed

    Tang, Tao; Gminski, Richard; Könczöl, Mathias; Modest, Christoph; Armbruster, Benedikt; Mersch-Sundermann, Volker

    2012-03-01

    Exposure to emissions from laser printers during the printing process is commonplace worldwide, both in the home and workplace environment. In the present study, cytotoxic and genotoxic effects of the emission from five low to medium-throughput laser printers were investigated with respect to the release of ozone (O(3) ), volatile organic compounds (VOC), particulate matter (PM), and submicrometer particles (SMP) during standby and operation. Experiments were conducted in a 1 m(3) emission chamber connected to a Vitrocell® exposure system. Cytotoxicity was determined by the WST-1 assay and genotoxicity by the micronucleus test in human A549 lung cells. The five laser printers emitted varying but generally small amounts of O(3) , VOC, and PM. VOC emissions included 13 compounds with total VOC concentrations ranging from 95 to 280 μg/m(3) (e.g., 2-butanone, hexanal, m,p-xylene, and o-xylene). Mean PM concentrations were below 2.4 μg/m(3). SMP number concentration levels during standby ranged from 9 to 26 particles/cm(3). However, three of the printers generated a 90 to 16 × 10(3) -fold increase of SMP during the printing process (maximum 294,460 particles/cm(3)). Whereas none of the printer emissions were found to cause cytotoxicity, emissions from two printers induced formation of micronuclei (P < 0.001), thus providing evidence for genotoxicity. As yet, differences in biological activity cannot be explained on the basis of the specific emission characteristics of the different printers. Because laser printing technology is widely used, studies with additional cytogenetic endpoints are necessary to confirm the DNA-damaging potency and to identify emission components responsible for genotoxicity.

  5. In vitro and in vivo antitumour activities of puerarin 6″-O-xyloside on human lung carcinoma A549 cell line via the induction of the mitochondria-mediated apoptosis pathway.

    PubMed

    Chen, Ti; Chen, Hui; Wang, Ying; Zhang, Jian

    2016-09-01

    Context Pueraria lobata (Leguminoseae) shows cytotoxic effects against cancer cells; however, its active components remain unclear. Objective This study investigated the antitumour activity of puerarin 6″-O-xyloside (POS) on the human lung carcinoma A549 cell line. Materials and methods The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the cytotoxicity of POS (at 10, 20 and 40 μM) in vitro, and xenograft nude mice were established to evaluate the antitumour effect of POS (at 40 mg/kg/d) in vivo by 15 days intraperitoneal injection (ip). To explore its mechanism of action, flow cytometry was performed to determine the pro-apoptotic effect of POS (at 10, 20 and 40 μM). Subsequently, the expression of caspase-3, caspase-7, caspase-9, Bcl-2 and Bax in A549 cells were determined. Results POS showed significant cytotoxicity toward A549 cells (p < 0.05) by inducing apoptosis. Treatment with POS significantly upregulated the levels of caspase-3 (p < 0.01), caspase-7 (p < 0.01), caspase-9 (p < 0.01) and Bax (p < 0.01) in A549 cells, and Bcl-2 was downregulated (p < 0.01). Additionally, the in vivo animal study showed that POS significantly inhibited tumour growth in A549 cells (p < 0.01). Conclusion Our study demonstrated the POS has significant antitumour activities. The mechanisms are related to increased levels of caspase-3, caspase-7, caspase-9 and Bax, and reduced levels Bcl-2. PMID:26730946

  6. Alpha-chaconine-reduced metastasis involves a PI3K/Akt signaling pathway with downregulation of NF-kappaB in human lung adenocarcinoma A549 cells.

    PubMed

    Shih, Yuan-Wei; Chen, Pin-Shern; Wu, Cheng-Hsun; Jeng, Ya-Fang; Wang, Chau-Jong

    2007-12-26

    Alpha-chaconine, isolated from Solanum tuberosum Linn., is a naturally occurring steroidal glycoalkaloid in potato sprouts. Some reports demonstrated that alpha-chaconine had various anticarcinogenic properties. The aim of this study is to investigate the inhibitory effect of alpha-chaconine on lung adenocarcinoma cell metastasis in vitro. We chose the highly metastatic A549 cells, which were treated with various concentrations of alpha-chaconine to clarify the potential of inhibiting A549 cells invasion and migration. Data showed that alpha-chaconine inhibited A549 cell invasion/migration according to wound healing assay and Boyden chamber assay. Our results also showed that alpha-chaconine could inhibit phosphorylation of c-Jun N-terminal kinase (JNK) and Akt, whereas it did not affected phosphorylation of extracellular signal regulating kinase (ERK) and p38. In addition, alpha-chaconine significantly decreased the nuclear level of nuclear factor kappa B (NF-kappaB) and the binding ability of NF-kappaB. These results suggested that alpha-chaconine inhibited A549 cell metastasis by a reduction of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) activities involving suppression of phosphoinositide 3-kinase/Akt/NF-kappaB (PI3K/Akt/NF-kappaB) signaling pathway. Inhibiting metastasis by alpha-chaconine might offer a pivotal mechanism for its effective chemotherapeutic action.

  7. Identification of Glycosaminoglycans in Human Airway Secretions

    PubMed Central

    Monzon, Maria E.; Casalino-Matsuda, Susana M.; Forteza, Rosanna M.

    2006-01-01

    Glycosaminoglycans (GAGs), known to be present in airway mucus, are macromolecules with a variety of structural and biological functions. In the present work, we used fluorophore-assisted carbohydrate electrophoresis (FACE) to identify and relatively quantify GAGs in human tracheal aspirates (HTA) obtained from healthy volunteers. Primary cultures of normal human bronchial epithelial (NHBE) and submucosal gland (SMG) cells were used to assess their differential contribution to GAGs in mucus. Distribution was further assessed by immunofluorescence in human trachea tissue sections and in cell cultures. HTA samples contained keratan sulfate (KS), chondroitin/dermatan sulfate (CS/DS), and hyaluronan (HA), whereas heparan sulfate (HS) was not detected. SMG cultures secreted CS/DS and HA, CS/DS being the most abundant GAGs in these cultures. NHBE cells synthesized KS, HA, and CS/DS. Confocal microscopy showed that KS was exclusively found at the apical border of NHBE cells and on the apical surface of ciliated epithelial cells in tracheal tissues. CS/DS and HA were present in both NHBE and SMG cells. HS was only found in the extracellular matrix in trachea tissue sections. In summary, HTA samples contain KS, CS/DS, and HA, mirroring a mixture of secretions originated in surface epithelial cells and SMGs. We conclude that surface epithelium is responsible for most HA and all KS present in secretions, whereas glands secrete most of CS/DS. These data suggest that, in diseases where the contribution to secretions of glands versus epithelial cells is altered, the relative concentration of individual GAGs, and therefore their biological activities, will also be affected. PMID:16195536

  8. Numerical analysis of respiratory flow patterns within human upper airway

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Yingxi; Sun, Xiuzhen; Yu, Shen; Gao, Fei

    2009-12-01

    A computational fluid dynamics (CFD) approach is used to study the respiratory airflow dynamics within a human upper airway. The airway model which consists of the airway from nasal cavity, pharynx, larynx and trachea to triple bifurcation is built based on the CT images of a healthy volunteer and the Weibel model. The flow characteristics of the whole upper airway are quantitatively described at any time level of respiratory cycle. Simulation results of respiratory flow show good agreement with the clinical measures, experimental and computational results in the literature. The air mainly passes through the floor of the nasal cavity in the common, middle and inferior nasal meatus. The higher airway resistance and wall shear stresses are distributed on the posterior nasal valve. Although the airways of pharynx, larynx and bronchi experience low shear stresses, it is notable that relatively high shear stresses are distributed on the wall of epiglottis and bronchial bifurcations. Besides, two-dimensional fluid-structure interaction models of normal and abnormal airways are built to discuss the flow-induced deformation in various anatomy models. The result shows that the wall deformation in normal airway is relatively small.

  9. NEU1 Sialidase Expressed in Human Airway Epithelia Regulates Epidermal Growth Factor Receptor (EGFR) and MUC1 Protein Signaling*

    PubMed Central

    Lillehoj, Erik P.; Hyun, Sang Won; Feng, Chiguang; Zhang, Lei; Liu, Anguo; Guang, Wei; Nguyen, Chinh; Luzina, Irina G.; Atamas, Sergei P.; Passaniti, Antonino; Twaddell, William S.; Puché, Adam C.; Wang, Lai-Xi; Cross, Alan S.; Goldblum, Simeon E.

    2012-01-01

    Epithelial cells (ECs) lining the airways provide a protective barrier between the external environment and the internal host milieu. These same airway epithelia express receptors that respond to danger signals and initiate repair programs. Because the sialylation state of a receptor can influence its function and is dictated in part by sialidase activity, we asked whether airway epithelia express catalytically active sialidase(s). Human primary small airway and A549 ECs expressed NEU1 sialidase at the mRNA and protein levels, and NEU1 accounted for >70% of EC sialidase activity. Blotting with Maackia amurensis and peanut agglutinin lectins established epidermal growth factor receptor (EGFR) and MUC1 as in vivo substrates for NEU1. NEU1 associated with EGFR and MUC1, and NEU1-EGFR association was regulated by EGF stimulation. NEU1 overexpression diminished EGF-stimulated EGFR Tyr-1068 autophosphorylation by up to 44% but enhanced MUC1-dependent Pseudomonas aeruginosa adhesion by 1.6–1.7-fold and flagellin-stimulated ERK1/2 activation by 1.7–1.9-fold. In contrast, NEU1 depletion increased EGFR activation (1.5-fold) and diminished MUC1-mediated bacterial adhesion (38–56%) and signaling (73%). These data indicate for the first time that human airway epithelia express catalytically active NEU1 sialidase that regulates EGFR- and MUC1-dependent signaling and bacterial adhesion. NEU1 catalytic activity may offer an additional level of regulation over the airway epithelial response to ligands, pathogens, and injurious stimuli. PMID:22247545

  10. Functional characterization of the organic cation transporters (OCTs) in human airway pulmonary epithelial cells.

    PubMed

    Ingoglia, Filippo; Visigalli, Rossana; Rotoli, Bianca Maria; Barilli, Amelia; Riccardi, Benedetta; Puccini, Paola; Dall'Asta, Valeria

    2015-07-01

    Organic cation transporters (OCT1-3) mediate the transport of organic cations including inhaled drugs across the cell membrane, although their role in lung epithelium hasn't been well understood yet. We address here the expression and functional activity of OCT1-3 in human airway epithelial cells A549, Calu-3 and NCl-H441. Kinetic and inhibition analyses, employing [(3)H]1-methyl-4-phenylpyridinium (MPP+) as substrate, and the compounds quinidine, prostaglandine E2 (PGE2) and corticosterone as preferential inhibitors of OCT1, OCT2, and OCT3, respectively, have been performed. A549 cells present a robust MPP+ uptake mediated by one high-affinity component (Km~50μM) which is identifiable with OCT3. Corticosterone, indeed, completely inhibits MPP+ transport, while quinidine and PGE2 are inactive and SLC22A3/OCT3 silencing with siRNA markedly lowers MPP+ uptake. Conversely, Calu-3 exhibits both a high (Km<20μM) and a low affinity (Km>0.6mM) transport components, referable to OCT3 and OCT1, respectively, as demonstrated by the inhibition analysis performed at proper substrate concentrations and confirmed by the use of specific siRNA. These transporters are active also when cells are grown under air-liquid interface (ALI) conditions. Only a very modest saturable MPP+ uptake is measurable in NCl-H441 cells and the inhibitory effect of quinidine points to OCT1 as the subtype functionally involved in this model. Finally, the characterization of MPP+ transport in human bronchial BEAS-2B cells suggests that OCT1 and OCT3 are operative. These findings could help to identify in vitro models to be employed for studies concerning the specific involvement of each transporter in drug transportation.

  11. Functional characterization of the organic cation transporters (OCTs) in human airway pulmonary epithelial cells.

    PubMed

    Ingoglia, Filippo; Visigalli, Rossana; Rotoli, Bianca Maria; Barilli, Amelia; Riccardi, Benedetta; Puccini, Paola; Dall'Asta, Valeria

    2015-07-01

    Organic cation transporters (OCT1-3) mediate the transport of organic cations including inhaled drugs across the cell membrane, although their role in lung epithelium hasn't been well understood yet. We address here the expression and functional activity of OCT1-3 in human airway epithelial cells A549, Calu-3 and NCl-H441. Kinetic and inhibition analyses, employing [(3)H]1-methyl-4-phenylpyridinium (MPP+) as substrate, and the compounds quinidine, prostaglandine E2 (PGE2) and corticosterone as preferential inhibitors of OCT1, OCT2, and OCT3, respectively, have been performed. A549 cells present a robust MPP+ uptake mediated by one high-affinity component (Km~50μM) which is identifiable with OCT3. Corticosterone, indeed, completely inhibits MPP+ transport, while quinidine and PGE2 are inactive and SLC22A3/OCT3 silencing with siRNA markedly lowers MPP+ uptake. Conversely, Calu-3 exhibits both a high (Km<20μM) and a low affinity (Km>0.6mM) transport components, referable to OCT3 and OCT1, respectively, as demonstrated by the inhibition analysis performed at proper substrate concentrations and confirmed by the use of specific siRNA. These transporters are active also when cells are grown under air-liquid interface (ALI) conditions. Only a very modest saturable MPP+ uptake is measurable in NCl-H441 cells and the inhibitory effect of quinidine points to OCT1 as the subtype functionally involved in this model. Finally, the characterization of MPP+ transport in human bronchial BEAS-2B cells suggests that OCT1 and OCT3 are operative. These findings could help to identify in vitro models to be employed for studies concerning the specific involvement of each transporter in drug transportation. PMID:25883089

  12. Robust system for human airway-tree segmentation

    NASA Astrophysics Data System (ADS)

    Graham, Michael W.; Gibbs, Jason D.; Higgins, William E.

    2008-03-01

    Robust and accurate segmentation of the human airway tree from multi-detector computed-tomography (MDCT) chest scans is vital for many pulmonary-imaging applications. As modern MDCT scanners can detect hundreds of airway tree branches, manual segmentation and semi-automatic segmentation requiring significant user intervention are impractical for producing a full global segmentation. Fully-automated methods, however, may fail to extract small peripheral airways. We propose an automatic algorithm that searches the entire lung volume for airway branches and poses segmentation as a global graph-theoretic optimization problem. The algorithm has shown strong performance on 23 human MDCT chest scans acquired by a variety of scanners and reconstruction kernels. Visual comparisons with adaptive region-growing results and quantitative comparisons with manually-defined trees indicate a high sensitivity to peripheral airways and a low false-positive rate. In addition, we propose a suite of interactive segmentation tools for cleaning and extending critical areas of the automatically segmented result. These interactive tools have potential application for image-based guidance of bronchoscopy to the periphery, where small, terminal branches can be important visual landmarks. Together, the automatic segmentation algorithm and interactive tool suite comprise a robust system for human airway-tree segmentation.

  13. Mechanics of airflow in the human nasal airways.

    PubMed

    Doorly, D J; Taylor, D J; Schroter, R C

    2008-11-30

    The mechanics of airflow in the human nasal airways is reviewed, drawing on the findings of experimental and computational model studies. Modelling inevitably requires simplifications and assumptions, particularly given the complexity of the nasal airways. The processes entailed in modelling the nasal airways (from defining the model, to its production and, finally, validating the results) is critically examined, both for physical models and for computational simulations. Uncertainty still surrounds the appropriateness of the various assumptions made in modelling, particularly with regard to the nature of flow. New results are presented in which high-speed particle image velocimetry (PIV) and direct numerical simulation are applied to investigate the development of flow instability in the nasal cavity. These illustrate some of the improved capabilities afforded by technological developments for future model studies. The need for further improvements in characterising airway geometry and flow together with promising new methods are briefly discussed.

  14. The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line.

    PubMed

    Xie, Jun; Liu, Jiahui; Liu, Heng; Liang, Shihui; Lin, Meigui; Gu, Yueyu; Liu, Taoli; Wang, Dongmei; Ge, Hui; Mo, Sui-Lin

    2015-11-01

    The effects of tanshinone IIA on the proliferation of the human non-small cell lung cancer cell line A549 and its possible mechanism on the VEGF/VEGFR signal pathway were investigated. The exploration of the interaction between tanshinone IIA and its target proteins provides a feasible platform for studying the anticancer mechanism of active components of herbs. The CCK-8 assay was used to evaluate the proliferative activity of A549 cells treated with tanshinone IIA (2.5-80 μmol/L) for 24, 48 and 72 h, respectively. Flow cytometry was used for the detection of cell apoptosis and cell cycle perturbation. VEGF and VEGFR2 expression were studied by Western blotting. The binding mode of tanshinone IIA within the crystal structure of the VEGFR2 protein was evaluated with molecular docking analysis by use of the CDOCKER algorithm in Discovery Studio 2.1. The CCK-8 results showed that tanshinone IIA can significantly inhibit A549 cell proliferation in a dose- and time-dependent manner. Flow cytometry results showed that the apoptosis rate of tested group was higher than the vehicle control, and tanshinone IIA-treated cells accumulated at the S phase, which was higher than the vehicle control. Furthermore, the expression of VEGF and VEGFR2 was decreased in Western blot. Finally, molecular docking analysis revealed that tanshinone IIA could be stably docked into the kinase domain of VEGFR2 protein with its unique modes to form H-bonds with Cys917 and π-π stacking interactions with Val848. In conclusion, tanshinone IIA may suppress A549 proliferation, induce apoptosis and cell cycle arrest at the S phase. This drug may suppress angiogenesis by targeting the protein kinase domains of VEGF/VEGFR2. PMID:26713270

  15. Andrographolide down-regulates hypoxia-inducible factor-1{alpha} in human non-small cell lung cancer A549 cells

    SciTech Connect

    Lin, Hui-Hsuan; Tsai, Chia-Wen; Chou, Fen-Pi; Wang, Chau-Jong; Hsuan, Shu-Wen; Wang, Cheng-Kun; Chen, Jing-Hsien

    2011-02-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) in A549 cells. HIF-1{alpha} plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1{alpha} was correlated with a rapid ubiquitin-dependent degradation of HIF-1{alpha}, and was accompanied by increased expressions of hydroxyl-HIF-1{alpha} and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1{alpha} inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGF{beta}1/PHD2/HIF-1{alpha} pathway, as demonstrated by the transfection of TGF{beta}1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1{alpha} transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  16. A polysaccharide fraction of adlay seed (Coixlachryma-jobi L.) induces apoptosis in human non-small cell lung cancer A549 cells

    SciTech Connect

    Lu, Xiangyi; Liu, Wei; Wu, Junhua; Li, Mengxian; Wang, Juncheng; Wu, Jihui; Luo, Cheng

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer A polysaccharide from adlay seed, its molecular mass, optical rotation and sugars was determined. Black-Right-Pointing-Pointer We demonstrated that a polysaccharide from adlay can induce apoptosis in cancer cells. Black-Right-Pointing-Pointer The polysaccharide inhibited the metabolism and proliferation of NSCLC A549 cells. Black-Right-Pointing-Pointer The polysaccharide may trigger apoptosis via the mitochondria-dependent pathway. -- Abstract: Different seed extracts from Coix lachryma-jobi (adlay seed) have been used for the treatment of various cancers in China, and clinical data support the use of these extracts for cancer therapy; however, their underlying molecular mechanisms have not been well defined. A polysaccharide fraction, designated as CP-1, was extracted from the C.lachryma-jobi L. var. using the ethanol subsiding method. CP-1 induced apoptosis in A549 cells in a dose-dependent manner, as determined by MTT assay. Apoptotic bodies were observed in the cells by scanning electronic microscopy. Apoptosis and DNA accumulation during S-phase of the cell cycle were determined by annexin V-FITC and PI staining, respectively, and measured by flow cytometry. CP-1 also extended the comet tail length on single cell gel electrophoresis, and disrupted the mitochondrial membrane potential. Further analysis by western blotting showed that the expression of caspase-3 and caspase-9 proteins was increased. Taken together, our results demonstrate that CP-1 is capable of inhibiting A549 cell proliferation and inducing apoptosis via a mechanism primarily involving the activation of the intrinsic mitochondrial pathway. The assay data suggest that in addition to its nutritional properties, CP-1 is a very promising candidate polysaccharide for the development of anti-cancer medicines.

  17. Regional aerosol deposition in human upper airways. Final report

    SciTech Connect

    Swift, D.L.

    1997-11-01

    During the award period, a number of studies have been carried out related to the overall objective of the project which is to elucidate important factors which influence the upper airway deposition and dose of particles in the size range 0.5 nm - 10 {mu}m, such as particle size, breathing conditions, age, airway geometry, and mode of breathing. These studies are listed below. (1) A high voltage electrospray system was constructed to generate polydispersed 1-10 {mu}m diameter di-ethylhexyl sebacate aerosol for particle deposition studies in nasal casts and in human subjects. (2) The effect of nostril dimensions, nasal passage geometry, and nasal resistance on particle deposition efficiency in forty healthy, nonsmoking adults at a constant flowrate were studied. (3) The effect of nostril dimensions, nasal passage dimensions and nasal resistance on the percentage of particle deposition in the anterior 3 cm of the nasal passage of spontaneously breathing humans were studied. (4) The region of deposition of monodispersed aerosols were studied using replicate casts. (5) Ultrafine aerosol deposition using simulated breath holding path and natural path was compared. (6) An experimental technique was proposed and tested to measure the oral deposition of inhaled ultrafine particles. (7) We have calculated the total deposition fraction of ultrafine aerosols from 5 to 200 n in the extrathoracic airways and in the lung. (8) The deposition fraction of radon progeny in the head airways was studied using several head airway models.

  18. Computational Flow Modeling of Human Upper Airway Breathing

    NASA Astrophysics Data System (ADS)

    Mylavarapu, Goutham

    Computational modeling of biological systems have gained a lot of interest in biomedical research, in the recent past. This thesis focuses on the application of computational simulations to study airflow dynamics in human upper respiratory tract. With advancements in medical imaging, patient specific geometries of anatomically accurate respiratory tracts can now be reconstructed from Magnetic Resonance Images (MRI) or Computed Tomography (CT) scans, with better and accurate details than traditional cadaver cast models. Computational studies using these individualized geometrical models have advantages of non-invasiveness, ease, minimum patient interaction, improved accuracy over experimental and clinical studies. Numerical simulations can provide detailed flow fields including velocities, flow rates, airway wall pressure, shear stresses, turbulence in an airway. Interpretation of these physical quantities will enable to develop efficient treatment procedures, medical devices, targeted drug delivery etc. The hypothesis for this research is that computational modeling can predict the outcomes of a surgical intervention or a treatment plan prior to its application and will guide the physician in providing better treatment to the patients. In the current work, three different computational approaches Computational Fluid Dynamics (CFD), Flow-Structure Interaction (FSI) and Particle Flow simulations were used to investigate flow in airway geometries. CFD approach assumes airway wall as rigid, and relatively easy to simulate, compared to the more challenging FSI approach, where interactions of airway wall deformations with flow are also accounted. The CFD methodology using different turbulence models is validated against experimental measurements in an airway phantom. Two case-studies using CFD, to quantify a pre and post-operative airway and another, to perform virtual surgery to determine the best possible surgery in a constricted airway is demonstrated. The unsteady

  19. Regional aerosol deposition in human upper airways

    SciTech Connect

    Swift, D.L.

    1990-11-01

    During the current reporting period experimental studies of aerosol deposition in replicate NOPL airways have carried out. A replicate model of a 4 week old infant nasal passage was constructed from MR scans. The model completes the age range from newborn'' to 4 years, there now being one child model for 4 different ages. Deposition studies have been performed with unattached radon progeny aerosols in collaboration with ITRI, Albuquerque, NM and NRPB, Chilton, UK. Overall measurements have been performed in adult and child nasal airways indicating that the child nasal passage was slightly more efficient than the adult in removing 1 nm particles at corresponding flow rates. A similar weak dependence on flow rate was observed. Local deposition studies in an adult nasal model indicated predominant deposition in the anterior region during inspiratory flow, but measurable deposition was found throughout the model. The deposition pattern during expiration was reverse, greater deposition being observed in the posterior region. Local deposition studies of attached progeny aerosol size (100--200 nm) were performed in adult and child nasal models using technigas'' and a gamma scintillation camera. Similar to the unattached size, deposition occurred throughout the models, but was greater in the anterior region.

  20. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells.

    PubMed

    Yu, Zhenhai; Huang, Liangqian; Qiao, Pengyun; Jiang, Aifang; Wang, Li; Yang, Tingting; Tang, Shengjian; Zhang, Wei; Ren, Chune

    2016-05-13

    Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. These findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer. PMID:27045080

  1. Transcriptional PROFILING OF MUCOCILIARY DIFFERENTIATION IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    When cultured at an air-liquid interface (ALI) in the appropriate medium, primary human airway epithelial cells form a polarized, pseudostratified epithelium composed of ciliated and mucus-secreting cells. This culture system provides a useful tool for the in vitro study of...

  2. On locating the obstruction in the human upper airway

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Elghobashi, S.

    2013-11-01

    The fluid dynamical properties of the air flow in the human upper airway (UA) are not fully understood at present due to the three-dimensional, patient-specific complex geometry of the airway, flow transition from laminar to turbulent and flow-structure interaction during the breathing cycle. One of the major challenges to surgeons is determining the location of the UA obstruction before performing corrective surgeries. It is quite difficult at present to experimentally measure the instantaneous velocity and pressure at specific points in the human airway. On the other hand, direct numerical simulation (DNS) can predict all the flow properties and resolve all its relevant length- and time-scales. We developed a DNS solver with lattice Boltzmann method (LBM), and used it to investigate the flow in two patient-specific UAs reconstructed from CT scan data. Inspiration and expiration flows through these two airways are studied and compared. Pressure gradient-time signals at different locations in the UAs are used to determine the location of the obstruction. This work was supported by the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health (NIH).

  3. Clarithromycin prevents human respiratory syncytial virus-induced airway epithelial responses by modulating activation of interferon regulatory factor-3.

    PubMed

    Yamamoto, Keisuke; Yamamoto, Soh; Ogasawara, Noriko; Takano, Kenichi; Shiraishi, Tsukasa; Sato, Toyotaka; Miyata, Ryo; Kakuki, Takuya; Kamekura, Ryuta; Kojima, Takashi; Tsutsumi, Hiroyuki; Himi, Tetsuo; Yokota, Shin-Ichi

    2016-09-01

    Macrolide antibiotics exert immunomodulatory activity by reducing pro-inflammatory cytokine production by airway epithelial cells, fibroblasts, vascular endothelial cells, and immune cells. However, the underlying mechanism of action remains unclear. Here, we examined the effect of clarithromycin (CAM) on pro-inflammatory cytokine production, including interferons (IFNs), by primary human nasal epithelial cells and lung epithelial cell lines (A549 and BEAS-2B cells) after stimulation by Toll-like receptor (TLR) and RIG-I-like receptor (RLR) agonists and after infection by human respiratory syncytial virus (RSV). CAM treatment led to a significant reduction in poly I:C- and RSV-mediated IL-8, CCL5, IFN-β and -λ production. Furthermore, IFN-β promoter activity (activated by poly I:C and RSV infection) was significantly reduced after treatment with CAM. CAM also inhibited IRF-3 dimerization and subsequent translocation to the nucleus. We conclude that CAM acts a crucial modulator of the innate immune response, particularly IFN production, by modulating IRF-3 dimerization and subsequent translocation to the nucleus of airway epithelial cells. This newly identified immunomodulatory action of CAM will facilitate the discovery of new macrolides with an anti-inflammatory role. PMID:27468646

  4. Gracilaria edulis exhibit antiproliferative activity against human lung adenocarcinoma cell line A549 without causing adverse toxic effect in vitro and in vivo.

    PubMed

    Sakthivel, Ravi; Muniasamy, Samuthirapandi; Archunan, Govindaraju; Devi, Kasi Pandima

    2016-02-01

    In the present study, the antiproliferative potential of various solvent extracts of Gracilaria edulis (GE) was tested against various cancer cell lines. In the A549 lung cancer cell line model, GE ethyl acetate extract (GEEA) (100 μg mL(-1)) treated group showed the maximum and significant (P < 0.05) growth inhibition at 48 h. The IC50 value was found to be 24.5 ± 19.1 μg mL(-1) at 48 h. Moreover, a low level of LDH release was observed at 48 h at various concentrations of (40, 60, 80 and 100 μg mL(-1)) GEEA extract-treated group compared to a control group. Changes in the cell morphology and echinoid spikes formation were observed at 48 h. Safety evaluation of GEEA in a non-cancerous liver cell line, PBMC and in Wistar rats positively revealed that the extract did not show any adverse toxic effects. The GEEA extract was partially purified by column chromatography and the active fraction was characterized through LC-MS analysis. Furthermore, HPLC and FT-IR analysis of the active fractions confirmed the presence of phytol, a diterpene compound with potent antiproliferative activity, which positively suggests that the red alga G. edulis contains a potent anticancer active principle.

  5. Cinnamomum verum Component 2-Methoxycinnamaldehyde: A Novel Anticancer Agent with Both Anti-Topoisomerase I and II Activities in Human Lung Adenocarcinoma A549 Cells In Vitro and In Vivo.

    PubMed

    Wong, Ho-Yiu; Tsai, Kuen-daw; Liu, Yi-Heng; Yang, Shu-mei; Chen, Ta-Wei; Cherng, Jonathan; Chou, Kuo-Shen; Chang, Chen-Mei; Yao, Belen T; Cherng, Jaw-Ming

    2016-02-01

    Cinnamomum verum is used to make the spice cinnamon and has been used as a traditional Chinese herbal medicine. We evaluated the anticancer effect of 2-methoxycinnamaldehyde (2-MCA), a constituent of the bark of the plant, and its underlying molecular biomarkers associated with carcinogenesis in human lung adenocarcinoma A549 cells. The results show that 2-MCA suppressed proliferation and induced apoptosis as indicated by an upregulation of pro-apoptotic Bax and Bak genes and downregulation of anti-apoptotic Bcl-2 and Bcl-XL genes, mitochondrial membrane potential loss, cytochrome c release, activation of caspase-3 and -9, and morphological characteristics of apoptosis, including plasma membrane blebbing and long comet tail. In addition, 2-MCA also induced lysosomal vacuolation with increased volume of acidic compartment (VAC) and suppressions of nuclear transcription factors nuclear factor-κB (NF-κB) and both topoisomerase I and II activities. Further study reveals that the growth-inhibitory effect of 2-MCA was also evident in a nude mice model. Taken together, the data suggest that the growth-inhibitory effect of 2-MCA against A549 cells is accompanied by downregulations of NF-κB binding activity and proliferative control involving apoptosis and both topoisomerase I and II activities, together with an upregulation of lysosomal vacuolation and VAC. Our data suggest that 2-MCA could be a potential agent for anticancer therapy.

  6. Stellettin B Induces G1 Arrest, Apoptosis and Autophagy in Human Non-small Cell Lung Cancer A549 Cells via Blocking PI3K/Akt/mTOR Pathway

    PubMed Central

    Wang, Ran; Zhang, Qian; Peng, Xin; Zhou, Chang; Zhong, Yuxu; Chen, Xi; Qiu, Yuling; Jin, Meihua; Gong, Min; Kong, Dexin

    2016-01-01

    Until now, there is not yet antitumor drug with dramatically improved efficacy on non-small cell lung cancer (NSCLC). Marine organisms are rich source of novel compounds with various activities. We isolated stellettin B (Stel B) from marine sponge Jaspis stellifera, and demonstrated that it induced G1 arrest, apoptosis and autophagy at low concentrations in human NSCLC A549 cells. G1 arrest by Stel B might be attributed to the reduction of cyclin D1 and enhancement of p27 expression. The apoptosis induction might be related to the cleavage of PARP and increase of ROS generation. Moreover, we demonstrated that Stel B induced autophagy in A549 cells by use of various assays including monodansylcadaverine (MDC) staining, transmission electron microscopy (TEM), tandem mRFP-GFP-LC3 fluorescence microscopy, and western blot detection of the autophagy markers of LC3B, p62 and Atg5. Meanwhile, Stel B inhibited the expression of PI3K-p110, and the phosphorylation of PDK1, Akt, mTOR, p70S6K as well as GSK-3β, suggesting the correlation of blocking PI3K/Akt/mTOR pathway with the above antitumor activities. Together, our findings indicate the antitumor potential of Stel B for NSCLC by targeting PI3K/Akt/mTOR pathway. PMID:27243769

  7. Induction of human microsomal prostaglandin E synthase 1 by activated oncogene RhoA GTPase in A549 human epithelial cancer cells

    SciTech Connect

    Choi, Hye Jin; Lee, Dong-Hyung; Park, Seong-Hwan; Kim, Juil; Do, Kee Hun; An, Tae Jin; Ahn, Young Sup; Park, Chung Berm; Moon, Yuseok

    2011-09-30

    Highlights: {yields} As a target of oncogene RhoA-linked signal, a prostaglandin metabolism is assessed. {yields} RhoA activation increases PGE{sub 2} levels and its metabolic enzyme mPGES-1. {yields} RhoA-activated NF-{kappa}B and EGR-1 are positively involved in mPGES-1 induction. -- Abstract: Oncogenic RhoA GTPase has been investigated as a mediator of pro-inflammatory responses and aggressive carcinogenesis. Among the various targets of RhoA-linked signals, pro-inflammatory prostaglandin E{sub 2} (PGE{sub 2}), a major prostaglandin metabolite, was assessed in epithelial cancer cells. RhoA activation increased PGE{sub 2} levels and gene expression of the rate-limiting PGE{sub 2} producing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase 1 (mPGES-1). In particular, human mPGES-1 was induced by RhoA via transcriptional activation in control and interleukin (IL)-1{beta}-activated cancer cells. To address the involvement of potent signaling pathways in RhoA-activated mPGES-1 induction, various signaling inhibitors were screened for their effects on mPGES-1 promoter activity. RhoA activation enhanced basal and IL-1{beta}-mediated phosphorylated nuclear factor-{kappa}B and extracellular signal-regulated kinase1/2 proteins, all of which were positively involved in RhoA-induced gene expression of mPGES-1. As one potent down-stream transcription factor of ERK1/2 signals, early growth response gene 1 product also mediated RhoA-induced gene expression of mPGES-1 by enhancing transcriptional activity. Since oncogene-triggered PGE{sub 2} production is a critical modulator of epithelial tumor cells, RhoA-associated mPGES-1 represents a promising chemo-preventive or therapeutic target for epithelial inflammation and its associated cancers.

  8. Modulation of intrinsic in vitro resistance to carboplatin by edatrexate in the A549 human nonsmall cell lung cancer cell line.

    PubMed

    Perez, E A; Hack, F M; Fletcher, T S; Chou, T C

    1994-01-01

    Edatrexate (10-ethyl-deazaaminopterin) is a methotrexate analog that has been shown to have greater antitumor activity and improved therapeutic index compared to its parent compound in preclinical systems. We have evaluated the ability of edatrexate to modulate the intrinsic resistance of the lung adenocarcinoma A549 cell line to carboplatin. Concentration effects, exposure time and schedule dependence were assessed. Modulation of resistance was observed with edatrexate treatment (0.2 microM for 1 h) prior to carboplatin. The concentrations of carboplatin to achieve IC50 at the 1-, 3-, and 24-h IC50 were decreased by a mean of 16.8 times (12.2-22.2) with edatrexate preexposure. In contrast, there was little modulation observed of carboplatin resistance when carboplatin was administered prior to edatrexate. In addition, schedule dependency experiments were performed using the method described by Chou and Talalay, in which the ratio of carboplatin to edatrexate was constant or nonconstant, and both the potency of effects and the shapes of the concentration-effect curves were taken into account in a computerized analysis. These experiments also demonstrated schedule dependency. Although both treatments resulted in a reduced IC50 vs. carboplatin alone, the reduction was much greater when edatrexate was added first (12.59 vs. 2.59 times). We conclude that the combination of edatrexate and carboplatin demonstrates schedule-dependent modulation of intrinsic carboplatin resistance in this in vitro model at clinically achievable edatrexate plasma levels (0.01 to 10 microM). The greatest modulatory synergism was observed in the setting of edatrexate treatment before carboplatin. Our findings suggest a potentially useful schedule when combining edatrexate and carboplatin for the treatment of malignant disease.

  9. Physical principle of airway design in human lungs

    NASA Astrophysics Data System (ADS)

    Park, Keunhwan; Son, Taeho; Kim, Wonjung; Kim, Ho-Young

    2014-11-01

    From an engineering perspective, lungs are natural microfluidic devices that extract oxygen from air. In the bronchial tree, airways branch by dichotomy with a systematic reduction of their diameters. It is generally accepted that in conducting airways, which air passes on the way to the acinar airways from the atmosphere, the reduction ratio of diameter is closely related to the minimization of viscous dissipation. Such a principle is formulated as the Hess-Murray law. However, in acinar airways, where oxygen transfer to alveolae occurs, the diameter reduction with progressive generations is more moderate than in conducting airways. Noting that the dominant transfer mechanism in acinar airways is diffusion rather than advection, unlike conducting airways, we construct a mathematical model for oxygen transfer through a series of acinar airways. Our model allows us to predict the optimal airway reduction ratio that maximizes the oxygen transfer in a finite airway volume, thereby rationalizing the observed airway reduction ratio in acinar airways.

  10. Selective regulation of MAP kinases and Chemokine expression after ligation of ICAM-1 on human airway epithelial cells

    PubMed Central

    Krunkosky, Thomas M; Jarrett, Carla L

    2006-01-01

    Background Intercellular adhesion molecule 1 (ICAM-1) is an immunoglobulin-like cell adhesion molecule expressed on the surface of multiple cell types, including airway epithelial cells. It has been documented that cross-linking ICAM-1 on the surface of leukocytes results in changes in cellular function through outside-inside signaling; however, the effect of cross-linking ICAM-1 on the surface of airway epithelial cells is currently unknown. The objective of this study was to investigate whether or not cross-linking ICAM-1 on the surface of airway epithelial cells phosphorylated MAP kinases or stimulated chemokine expression and secretion. Methods The human lung adenocarcinoma (A549) cells and primary cultures of normal human bronchial epithelial (NHBE) cells were used in these studies. To increase ICAM-1 surface expression, cultures were stimulated with TNFα to enhance ICAM-1 surface expression. Following ICAM-1 upregulation, ICAM-1 was ligated with a murine anti-human ICAM-1 antibody and subsequently cross-linked with a secondary antibody (anti-mouse IgG(ab')2) in the presence or absence of the MAP kinase inhibitors. Following treatments, cultures were assessed for MAPK activation and chemokine gene expression and secretion. Control cultures were treated with murine IgG1 antibody or murine IgG1 antibody and anti-mouse IgG(ab')2 to illustrate specificity. Data were analyzed for significance using a one-way analysis of variance (ANOVA) with Bonferroni post-test correction for multiple comparisons, and relative gene expression was analyzed using the 2-ΔΔCT method. Results ICAM-1 cross-linking selectively phosphorylated both ERK and JNK MAP kinases as detected by western blot analysis. In addition, cross-linking resulted in differential regulation of chemokine expression. Specifically, IL-8 mRNA and protein secretion was not altered by ICAM-1 cross-linking, in contrast, RANTES mRNA and protein secretion was induced in both epithelial cultures. These events were

  11. Fiber deposition in human upper airway model. Final report

    SciTech Connect

    Swift, D.L.

    1986-01-01

    The possibility that airborne fibers may behave differently than spherical particles in their deposition in the upper airways was examined. Deposition measurements were taken in a replicate model of the upper human airways above the larynx with well-characterized glass-fiber aerosols typical of glass fibers in normal use. The overall deposition of the aerosols in the nasal airways ranged from 10 to 90 percent. The deposition increased with flow rate and was somewhat higher with nasal-hair stimulant in the anterior vestibule. There was no dependency between the effect of fiber diameter and inertial theory, suggesting that interception is an important factor. Deposition occurred mainly anterior to the nasopharynx, equally divided between the vestibule and the turbinate region. The establishment of the anterior nasal region as the prime site for interception deposition was verified by the lack of significant deposition in the nasopharynx and larynx during nasal breathing. The authors conclude that the human nasal passage is able to remove a significant fraction of inhaled fibers, most of which will be physically cleared and others of which will be cleared to the gastro-intestinal tract. No long-term effect is expected from fibers deposited in the nasal region and cleared physically.

  12. Regional aerosol deposition in human upper airways

    SciTech Connect

    Swift, D.L.

    1991-11-01

    During the current report experimental studies of upper respiratory deposition of radon progeny aerosols and stimulant aerosols were carried out in replicate casts of nasal and oral passages of adults and children. Additionally, preliminary studies of nasal passage deposition of unattached Po{sup 218} particles was carried out in four human subjects. Data on nasal inspiratory deposition in replicate models of adults and infants from three collaborating laboratories were compared and a best-fit curve of deposition efficiency for both attached and unattached particles was obtained, showing excellent inter-laboratory agreement. This curve demonstrates that nasal inspiratory deposition of radon progeny is weakly dependent upon flow rate over physiologically realistic ranges of flow, does not show a significant age effect, and is relatively independent of nasal passage dimensions for a given age range. Improved replicate models of the human adult oral passage extending to the mid-trachea were constructed for medium and higher flow mouth breathing states; these models were used to assess the deposition of unattached Po{sup 218} particles during oronasal breathing in the oral passage and demonstrated lower deposition efficiency than the nasal passage. Measurements of both Po{sup 218} particle and attached fraction particle size deposition were performed in replicate nasal passage of a four week old infant. 5 refs., 1 fig.

  13. Acid secretion and proton conductance in human airway epithelium.

    PubMed

    Fischer, Horst; Widdicombe, Jonathan H; Illek, Beate

    2002-04-01

    Acid secretion and proton conductive pathways across primary human airway surface epithelial cultures were investigated with the pH stat method in Ussing chambers and by single cell patch clamping. Cultures showed a basal proton secretion of 0.17 +/- 0.04 micromol.h(-1).cm(-2), and mucosal pH equilibrated at 6.85 +/- 0.26. Addition of histamine or ATP to the mucosal medium increased proton secretion by 0.27 +/- 0.09 and 0.24 +/- 0.09 micromol.h(-1).cm(-2), respectively. Addition of mast cells to the mucosal medium of airway cultures similarly activated proton secretion. Stimulated proton secretion was similar in cultures bathed mucosally with either NaCl Ringer or ion-free mannitol solutions. Proton secretion was potently blocked by mucosal ZnCl(2) and was unaffected by mucosal bafilomycin A(1), Sch-28080, or ouabain. Mucosal amiloride blocked proton secretion in tissues that showed large amiloride-sensitive potentials. Proton secretion was sensitive to the application of transepithelial current and showed outward rectification. In whole cell patch-clamp recordings a strongly outward-rectifying, zinc-sensitive, depolarization-activated proton conductance was identified with an average chord conductance of 9.2 +/- 3.8 pS/pF (at 0 mV and a pH 5.3-to-pH 7.3 gradient). We suggest that inflammatory processes activate proton secretion by the airway epithelium and acidify the airway surface liquid.

  14. Human metapneumovirus infection induces significant changes in small noncoding RNA expression in airway epithelial cells.

    PubMed

    Deng, Junfang; Ptashkin, Ryan N; Wang, Qingrong; Liu, Guangliang; Zhang, Guanping; Lee, Inhan; Lee, Yong Sun; Bao, Xiaoyong

    2014-05-20

    Small noncoding RNAs (sncRNAs), such as microRNAs (miRNA), virus-derived sncRNAs, and more recently identified tRNA-derived RNA fragments, are critical to posttranscriptional control of genes. Upon viral infection, host cells alter their sncRNA expression as a defense mechanism, while viruses can circumvent host defenses and promote their own propagation by affecting host cellular sncRNA expression or by expressing viral sncRNAs. Therefore, characterizing sncRNA profiles in response to viral infection is an important tool for understanding host-virus interaction, and for antiviral strategy development. Human metapneumovirus (hMPV), a recently identified pathogen, is a major cause of lower respiratory tract infections in infants and children. To investigate whether sncRNAs play a role in hMPV infection, we analyzed the changes in sncRNA profiles of airway epithelial cells in response to hMPV infection using ultrahigh-throughput sequencing. Of the cloned sncRNAs, miRNA was dominant in A549 cells, with the percentage of miRNA increasing in a time-dependent manner after the infection. In addition, several hMPV-derived sncRNAs and corresponding ribonucleases for their biogenesis were identified. hMPV M2-2 protein was revealed to be a key viral protein regulating miRNA expression. In summary, this study revealed several novel aspects of hMPV-mediated sncRNA expression, providing a new perspective on hMPV-host interactions.

  15. Artesunate induces AIF-dependent apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Zhou, Chen-juan; Chen, Tong-Sheng

    2012-03-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  16. CT based computerized identification and analysis of human airways: A review

    SciTech Connect

    Pu Jiantao; Gu Suicheng; Liu Shusen; Zhu Shaocheng; Wilson, David; Siegfried, Jill M.; Gur, David

    2012-05-15

    As one of the most prevalent chronic disorders, airway disease is a major cause of morbidity and mortality worldwide. In order to understand its underlying mechanisms and to enable assessment of therapeutic efficacy of a variety of possible interventions, noninvasive investigation of the airways in a large number of subjects is of great research interest. Due to its high resolution in temporal and spatial domains, computed tomography (CT) has been widely used in clinical practices for studying the normal and abnormal manifestations of lung diseases, albeit there is a need to clearly demonstrate the benefits in light of the cost and radiation dose associated with CT examinations performed for the purpose of airway analysis. Whereas a single CT examination consists of a large number of images, manually identifying airway morphological characteristics and computing features to enable thorough investigations of airway and other lung diseases is very time-consuming and susceptible to errors. Hence, automated and semiautomated computerized analysis of human airways is becoming an important research area in medical imaging. A number of computerized techniques have been developed to date for the analysis of lung airways. In this review, we present a summary of the primary methods developed for computerized analysis of human airways, including airway segmentation, airway labeling, and airway morphometry, as well as a number of computer-aided clinical applications, such as virtual bronchoscopy. Both successes and underlying limitations of these approaches are discussed, while highlighting areas that may require additional work.

  17. Stomatin immunoreactivity in ciliated cells of the human airway epithelium.

    PubMed

    Fricke, Britta; Stewart, Gordon W; Treharne, Kathryn J; Mehta, Anil; Knöpfle, Gisela; Friedrichs, Nicolaus; Müller, Klaus-Michael; von Düring, Monika

    2003-07-01

    Stomatin is a widely distributed 32kD membrane protein of unknown function. In biochemical studies it is associated with cholesterol+sphingomyelin-rich 'rafts' in the cytomembrane. Genetic studies in C. elegans, supported by microscopic studies in mammalian tissue and co-expression studies in oocytes, suggest a functional link with the DEG/ENaC (degenerin/epithelial Na+ channel) superfamily of monovalent ion channels. Since ENaC channels play a prominent role in the physiology of the respiratory epithelium, we have studied the immunolocalization of stomatin in mature and developing human airway epithelium by means of Western blot analysis, immunocytochemistry, and immunoelectron microscopy. Stomatin immunoreactivity (stomatin-IR) was found in the ciliated cells of the conductive airway epithelium in a distinct distribution pattern with the strongest signal along the cilia. Immunogold labelling revealed immunogold particles at the basal bodies, along the cilia, and at the membrane of the microvilli. The presence of stomatin-IR paralleled the stages of ciliogenesis in airway development, and its appearance preceded the elongation of the axoneme and the cilial outgrowth. Due to its presence in the different cellular locations in the ciliated cell, we suggest that stomatin is involved in various cellular functions. From its ultrastructural position, stomatin could be a candidate for a membrane-associated mechanotransducer with a role in the control of ciliary motility. Stomatin as a raft protein might be a microtubule associated protein moving along the outer surface of the microtubules to its terminal site of action in the cilia. Stomatin-IR in microvilli supports the hypothesis of a co-localization with beta- and gamma- ENaC and, in conclusion, their potential functional interaction to control the composition of periciliary mucus electrolytes. PMID:12759749

  18. Targeting Hsp90 with small molecule inhibitors induces the over-expression of the anti-apoptotic molecule, survivin, in human A549, HONE-1 and HT-29 cancer cells

    PubMed Central

    2010-01-01

    Background Survivin is a dual functioning protein. It inhibits the apoptosis of cancer cells by inhibiting caspases, and also promotes cancer cell growth by stabilizing microtubules during mitosis. Since the molecular chaperone Hsp90 binds and stabilizes survivin, it is widely believed that down-regulation of survivin is one of the important therapeutic functions of Hsp90 inhibitors such as the phase III clinically trialed compound 17-AAG. However, Hsp90 interferes with a number of molecules that up-regulate the intracellular level of survivin, raising the question that clinical use of Hsp90 inhibitors may indirectly induce survivin expression and subsequently enhance cancer anti-drug responses. The purpose of this study is to determine whether targeting Hsp90 can alter survivin expression differently in different cancer cell lines and to explore possible mechanisms that cause the alteration in survivin expression. Results Here, we demonstrated that Hsp90 inhibitors, geldanamycin and 17-AAG, induced the over-expression of survivin in three different human cancer cell lines as shown by Western blotting. Increased survivin mRNA transcripts were observed in 17-AAG and geldanamycin-treated HT-29 and HONE-1 cancer cells. Interestingly, real-time PCR and translation inhibition studies revealed that survivin was over-expressed partially through the up-regulation of protein translation instead of gene transcription in A549 cancer cells. In addition, 17-AAG-treated A549, HONE-1 and HT-29 cells showed reduced proteasomal activity while inhibition of 26S proteasome activity further increased the amount of survivin protein in cells. At the functional level, down-regulation of survivin by siRNA further increased the drug sensitivity to 17-AAG in the tested cancer cell lines. Conclusions We showed for the first time that down-regulation of survivin is not a definite therapeutic function of Hsp90 inhibitors. Instead, targeting Hsp90 with small molecule inhibitors will induce the

  19. Distal airways in humans: dynamic hyperpolarized 3He MR imaging--feasibility

    NASA Technical Reports Server (NTRS)

    Tooker, Angela C.; Hong, Kwan Soo; McKinstry, Erin L.; Costello, Philip; Jolesz, Ferenc A.; Albert, Mitchell S.

    2003-01-01

    Dynamic hyperpolarized helium 3 (3He) magnetic resonance (MR) imaging of the human airways is achieved by using a fast gradient-echo pulse sequence during inhalation. The resulting dynamic images show differential contrast enhancement of both distal airways and the lung periphery, unlike static hyperpolarized 3He MR images on which only the lung periphery is seen. With this technique, up to seventh-generation airway branching can be visualized. Copyright RSNA, 2003.

  20. Vapor Dosimetry in the Nose and Upper Airways of Humans

    SciTech Connect

    Thrall, Karla D.

    2010-04-01

    A number of methodologies have been reported for measuring vapor uptake efficiencies in the upper respiratory tract of experimental animals (1). Hybrid computational fluid dynamic (CFD) and physiologically based pharmacokinetic (PBPK) models, as described by Frederick et al. (2) that incorporate information on the anatomy of both rats and humans have been used to improve interspecies dosimetric corrections for human health risk assessments. However, validation of these models requires sufficient experimental data, and robust data defining the role of the upper respiratory tract in modulating the absorption of gases and vapors in human volunteers, are lacking. A survey of the available literature shows a limited number of experimental studies to evaluate the dosimetry of vapors in the nose and upper airways of humans. The scarcity of literature data undoubtedly reflects the complication of conducting controlled studies in human volunteers, and with the exception of a few limited studies, little experimental data is available. This chapter will highlight studies specific for nasal dosimetry data from humans and briefly review modeling approaches for predictive extrapolations from animal data.

  1. Comparative Cytotoxicity of Glycyrrhiza glabra Roots from Different Geographical Origins Against Immortal Human Keratinocyte (HaCaT), Lung Adenocarcinoma (A549) and Liver Carcinoma (HepG2) Cells.

    PubMed

    Basar, Norazah; Oridupa, Olayinka Ayotunde; Ritchie, Kenneth J; Nahar, Lutfun; Osman, Nashwa Mostafa M; Stafford, Angela; Kushiev, Habibjon; Kan, Asuman; Sarker, Satyajit D

    2015-06-01

    Glycyrrhiza glabra L. (Fabaceae), commonly known as 'liquorice', is a well-known medicinal plant. Roots of this plant have long been used as a sweetening and flavouring agent in food and pharmaceutical products, and also as a traditional remedy for cough, upper and lower respiratory ailments, kidney stones, hepatitis C, skin disorder, cardiovascular diseases, diabetes, gastrointestinal ulcers and stomach ache. Previous pharmacological and clinical studies have revealed its antitussive, antiinflammatory, antiviral, antimicrobial, antioxidant, immunomodulatory, hepatoprotective and cardioprotective properties. While glycyrrhizin, a sweet-tasting triterpene saponin, is the principal bioactive compound, several bioactive flavonoids and isoflavonoids are also present in the roots of this plant. In the present study, the cytotoxicity of the methanol extracts of nine samples of the roots of G. glabra, collected from various geographical origins, was assessed against immortal human keratinocyte (HaCaT), lung adenocarcinoma (A549) and liver carcinoma (HepG2) cell lines using the in vitro 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide cell toxicity/viability assay. Considerable variations in levels of cytotoxicity were observed among various samples of G. glabra.

  2. Synergistic effects of particulate matter (PM10) and SO2 on human non-small cell lung cancer A549 via ROS-mediated NF-κB activation.

    PubMed

    Yun, Yang; Gao, Rui; Yue, Huifeng; Li, Guangke; Zhu, Na; Sang, Nan

    2015-05-01

    Since a real atmospheric scenario usually represents a system involving multiple pollutants, air pollution studies typically focused on describing adverse effects associated with exposure to individual pollutants cannot reflect actual health risk. Particulate matter (PM10) and sulfur dioxide (SO2) are two major pollutants derived from coal combustion processes and co-existing in coal-smoke air pollution, but their potentially synergistic toxicity remains elusive thus far. In this study, we investigated the cytotoxic responses of PM10 and SO2, singly and in binary mixtures, using human non-small cell lung cancer A549 cells, followed by clarifying the possible mechanisms for their interaction. The results indicated that the concomitant treatment of PM10 and SO2 at low concentrations led to synergistic injury in terms of cell survival and apoptosis occurrence, while PM10 and SO2 alone at the same concentrations did not cause damage to the cells. Also, radical oxygen species (ROS) production followed by nuclear factor kappa B (NF-κB) activation was involved in the above synergistic cytotoxicity, which was confirmed by the repression of the actions by an ROS inhibitor (NAC). This implies that assessment of health risk should consider the interactions between ambient PM and gaseous copollutants.

  3. Comparative Cytotoxicity of Glycyrrhiza glabra Roots from Different Geographical Origins Against Immortal Human Keratinocyte (HaCaT), Lung Adenocarcinoma (A549) and Liver Carcinoma (HepG2) Cells.

    PubMed

    Basar, Norazah; Oridupa, Olayinka Ayotunde; Ritchie, Kenneth J; Nahar, Lutfun; Osman, Nashwa Mostafa M; Stafford, Angela; Kushiev, Habibjon; Kan, Asuman; Sarker, Satyajit D

    2015-06-01

    Glycyrrhiza glabra L. (Fabaceae), commonly known as 'liquorice', is a well-known medicinal plant. Roots of this plant have long been used as a sweetening and flavouring agent in food and pharmaceutical products, and also as a traditional remedy for cough, upper and lower respiratory ailments, kidney stones, hepatitis C, skin disorder, cardiovascular diseases, diabetes, gastrointestinal ulcers and stomach ache. Previous pharmacological and clinical studies have revealed its antitussive, antiinflammatory, antiviral, antimicrobial, antioxidant, immunomodulatory, hepatoprotective and cardioprotective properties. While glycyrrhizin, a sweet-tasting triterpene saponin, is the principal bioactive compound, several bioactive flavonoids and isoflavonoids are also present in the roots of this plant. In the present study, the cytotoxicity of the methanol extracts of nine samples of the roots of G. glabra, collected from various geographical origins, was assessed against immortal human keratinocyte (HaCaT), lung adenocarcinoma (A549) and liver carcinoma (HepG2) cell lines using the in vitro 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide cell toxicity/viability assay. Considerable variations in levels of cytotoxicity were observed among various samples of G. glabra. PMID:25779384

  4. Lycium europaeum fruit extract: antiproliferative activity on A549 human lung carcinoma cells and PC12 rat adrenal medulla cancer cells and assessment of its cytotoxicity on cerebellum granule cells.

    PubMed

    Ghali, Wafa; Vaudry, David; Jouenne, Thierry; Marzouki, Mohamed Nejib

    2015-01-01

    Cancer is a major worldwide health problem and one of the leading causes of death either in developed or developing countries. Plant extracts and derivatives have always been used for various disease treatments and many anticancer agents issued from plants and vegetables are clinically recognized and used all over the world. Lycium europaeum (Solanaceae) also called "wolfberry" was known since ancient times in the Mediterranean area as a medicinal plant and used in several traditional remedies. The Lycium species capacity of reducing the incidence of cancer and also of halting or reserving the growth of cancer was reported by traditional healers. In this study, the antiproliferative capacity, protective properties, and antioxidant activity of the hydro-alcoholic fruit extract of Lycium europaeum were investigated. Results showed that Lycium extract exhibits the ability to reduce cancer cell viability, inhibits proliferation, and induces apoptosis in A549 human lung cancer cells and PC12 rat adrenal medulla cancer cells, in a concentration- and time-dependent manner. Cytotoxic effect on normal rat cerebellum granule cells was assessed to be nonsignificant. Results also showed that Lycium fruit extract protected lipids, proteins, and DNA against oxidative stress damages induced by H2O2 via scavenging reactive oxygen species.

  5. CORRELATES BETWEEN HUMAN LUNG INJURY AFTER PARTICLE EXPOSURE AND RECURRENT AIRWAY OBSTRUCTION IN THE HORSE

    EPA Science Inventory

    Characteristics of the clinical presentation, physiologic changes, and pathology of the human response to particulate matter (PM) are comparable to inflammatory airway disease (lAD) and recurrent airway obstruction (RAO)lheaves in the horse. Both present with symptoms of cough,...

  6. Coronaviruses and the human airway: a universal system for virus-host interaction studies.

    PubMed

    Jonsdottir, Hulda R; Dijkman, Ronald

    2016-02-06

    Human coronaviruses (HCoVs) are large RNA viruses that infect the human respiratory tract. The emergence of both Severe Acute Respiratory Syndrome and Middle East Respiratory syndrome CoVs as well as the yearly circulation of four common CoVs highlights the importance of elucidating the different mechanisms employed by these viruses to evade the host immune response, determine their tropism and identify antiviral compounds. Various animal models have been established to investigate HCoV infection, including mice and non-human primates. To establish a link between the research conducted in animal models and humans, an organotypic human airway culture system, that recapitulates the human airway epithelium, has been developed. Currently, different cell culture systems are available to recapitulate the human airways, including the Air-Liquid Interface (ALI) human airway epithelium (HAE) model. Tracheobronchial HAE cultures recapitulate the primary entry point of human respiratory viruses while the alveolar model allows for elucidation of mechanisms involved in viral infection and pathogenesis in the alveoli. These organotypic human airway cultures represent a universal platform to study respiratory virus-host interaction by offering more detailed insights compared to cell lines. Additionally, the epidemic potential of this virus family highlights the need for both vaccines and antivirals. No commercial vaccine is available but various effective antivirals have been identified, some with potential for human treatment. These morphological airway cultures are also well suited for the identification of antivirals, evaluation of compound toxicity and viral inhibition.

  7. Protective effect of curcumin against formaldehyde-induced genotoxicity in A549 Cell Lines.

    PubMed

    Zhang, Ben-Yan; Shi, Yu-Qin; Chen, Xin; Dai, Juan; Jiang, Zhong-Fa; Li, Ning; Zhang, Zhi-Bing

    2013-12-01

    Formaldehyde is ubiquitous in the environment. It is known to be a genotoxic substance. We hypothesized that reactive oxygen species (ROS) and lipid peroxidation are involved in formaldehyde-induced genotoxicity in human lung cancer cell lines A549. To test this hypothesis, we investigated the effects of antioxidant on formaldehyde-induced genotoxicity in A549 Cell Lines. Formaldehyde exposure caused induction of DNA-protein cross-links (DPCs). Curcumin is an important antioxidant. Formaldehyde significantly increased malondialdehyde (MDA) levels, and decreased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity. In addition, the activation of NF-κB and AP-1 were induced by formaldehyde treatment. Pretreatment with curcumin counteracted formaldehyde-induced oxidative stress, ameliorated DPCs and attenuated activation of NF-κB and AP-1 in A549 Cell Lines. These results, taken together, suggest that formaldehyde induced genotoxicity through its ROS and lipid peroxidase activity and caused DPCs effects in A549 cells.

  8. Enhanced Replication of Hepatitis E Virus Strain 47832c in an A549-Derived Subclonal Cell Line

    PubMed Central

    Schemmerer, Mathias; Apelt, Silke; Trojnar, Eva; Ulrich, Rainer G.; Wenzel, Jürgen J.; Johne, Reimar

    2016-01-01

    Hepatitis E virus (HEV) is a human pathogen with increasing importance. The lack of efficient cell culture systems hampers systematic studies on its replication cycle, virus neutralization and inactivation. Here, several cell lines were inoculated with the HEV genotype 3c strain 47832c, previously isolated from a chronically infected transplant patient. At 14 days after inoculation the highest HEV genome copy numbers were found in A549 cells, followed by PLC/PRF/5 cells, whereas HepG2/C3A, Huh-7 Lunet BLR and MRC-5 cells only weakly supported virus replication. Inoculation of A549-derived subclone cell lines resulted in most cases in reduced HEV replication. However, the subclone A549/D3 was susceptible to lower virus concentrations and resulted in higher virus yields as compared to parental A549 cells. Transcriptome analysis indicated a downregulation of genes for carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 5 and 6, and an upregulation of the syndecan 2 (SDC2) gene in A549/D3 cells compared to A549 cells. However, treatment of A549/D3 cells or A549 cells with CEACAM- or syndecan 2-specific antisera did not influence HEV replication. The results show that cells supporting more efficient HEV replication can be selected from the A549 cell line. The specific mechanisms responsible for the enhanced replication remain unknown. PMID:27690085

  9. Detonation Nanodiamond Toxicity in Human Airway Epithelial Cells Is Modulated by Air Oxidation

    EPA Science Inventory

    Detonational nanodiamonds (DND), a nanomaterial with an increasing range of industrial and biomedical applications, have previously been shown to induce a pro-inflammatory response in cultured human airway epithelial cells (HAEC). We now show that surface modifications induced by...

  10. DEPOSITION DISTRICUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE.

    EPA Science Inventory

    DEPOSITION DISTRIBUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE. Chong S. Kim*, USEPA National Health and Environmental Effects Research Lab. RTP, NC 27711; Z. Zhang and C. Kleinstreuer, Department of Mechanical and Aerospace Engineering, North C...

  11. Proteomic response to 5,6-dimethylxanthenone 4-acetic acid (DMXAA, vadimezan) in human non-small cell lung cancer A549 cells determined by the stable-isotope labeling by amino acids in cell culture (SILAC) approach.

    PubMed

    Pan, Shu-Ting; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Yang, Yin-Xue; Wang, Dong; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    5,6-Dimethylxanthenone 4-acetic acid (DMXAA), also known as ASA404 and vadimezan, is a potent tumor blood vessel-disrupting agent and cytokine inducer used alone or in combination with other cytotoxic agents for the treatment of non-small cell lung cancer (NSCLC) and other cancers. However, the latest Phase III clinical trial has shown frustrating outcomes in the treatment of NSCLC, since the therapeutic targets and underlying mechanism for the anticancer effect of DMXAA are not yet fully understood. This study aimed to examine the proteomic response to DMXAA and unveil the global molecular targets and possible mechanisms for the anticancer effect of DMXAA in NSCLC A549 cells using a stable-isotope labeling by amino acids in cell culture (SILAC) approach. The proteomic data showed that treatment with DMXAA modulated the expression of 588 protein molecules in A549 cells, with 281 protein molecules being up regulated and 306 protein molecules being downregulated. Ingenuity pathway analysis (IPA) identified 256 signaling pathways and 184 cellular functional proteins that were regulated by DMXAA in A549 cells. These targeted molecules and signaling pathways were mostly involved in cell proliferation and survival, redox homeostasis, sugar, amino acid and nucleic acid metabolism, cell migration, and invasion and programed cell death. Subsequently, the effects of DMXAA on cell cycle distribution, apoptosis, autophagy, and reactive oxygen species (ROS) generation were experimentally verified. Flow cytometric analysis showed that DMXAA significantly induced G1 phase arrest in A549 cells. Western blotting assays demonstrated that DMXAA induced apoptosis via a mitochondria-dependent pathway and promoted autophagy, as indicated by the increased level of cytosolic cytochrome c, activation of caspase 3, and enhanced expression of beclin 1 and microtubule-associated protein 1A/1B-light chain 3 (LC3-II) in A549 cells. Moreover, DMXAA significantly promoted intracellular ROS

  12. Alternaria extract activates autophagy that induces IL-18 release from airway epithelial cells.

    PubMed

    Murai, Hiroki; Okazaki, Shintaro; Hayashi, Hisako; Kawakita, Akiko; Hosoki, Koa; Yasutomi, Motoko; Sur, Sanjiv; Ohshima, Yusei

    2015-09-01

    Alternaria alternata is a major outdoor allergen that causes allergic airway diseases. Alternaria extract (ALT-E) has been shown to induce airway epithelial cells to release IL-18 and thereby initiate Th2-type responses. We investigated the underlying mechanisms involved in IL-18 release from ALT-E-stimulated airway epithelial cells. Normal human bronchial epithelial cells and A549 human lung adenocarcinoma cells were stimulated with ALT-E in the presence of different inhibitors of autophagy or caspases. IL-18 levels in culture supernatants were measured by ELISA. The numbers of autophagosomes, an LC3-I to LC3-II conversion, and p62 degradation were determined by immunofluorescence staining and immunoblotting. 3-methyladenine and bafilomycin, which inhibit the formation of preautophagosomal structures and autolysosomes, respectively, suppressed ALT-E-induced IL-18 release by cells, whereas caspase 1 and 8 inhibitors did not. ALT-E-stimulation increased autophagosome formation, LC-3 conversion, and p62 degradation in airway epithelial cells. LPS-stimulation induced the LC3 conversion in A549 cells, but did not induce IL-18 release or p62 degradation. Unlike LPS, ALT-E induced airway epithelial cells to release IL-18 via an autophagy dependent, caspase 1 and 8 independent pathway. Although autophagy has been shown to negatively regulate canonical inflammasome activity in TLR-stimulated macrophages, our data indicates that this process is an unconventional mechanism of IL-18 secretion by airway epithelial cells.

  13. Establishment of a Reverse Genetics System for Studying Human Bocavirus in Human Airway Epithelia

    PubMed Central

    Cheng, Fang; Luo, Yong; Shen, Weiran; Lei-Butters, Diana C. M.; Chen, Aaron Yun; Li, Yi; Tang, Liang; Söderlund-Venermo, Maria; Engelhardt, John F.; Qiu, Jianming

    2012-01-01

    Human bocavirus 1 (HBoV1) has been identified as one of the etiological agents of wheezing in young children with acute respiratory-tract infections. In this study, we have obtained the sequence of a full-length HBoV1 genome (including both termini) using viral DNA extracted from a nasopharyngeal aspirate of an infected patient, cloned the full-length HBoV1 genome, and demonstrated DNA replication, encapsidation of the ssDNA genome, and release of the HBoV1 virions from human embryonic kidney 293 cells. The HBoV1 virions generated from this cell line-based production system exhibits a typical icosahedral structure of approximately 26 nm in diameter, and is capable of productively infecting polarized primary human airway epithelia (HAE) from the apical surface. Infected HAE showed hallmarks of lung airway-tract injury, including disruption of the tight junction barrier, loss of cilia and epithelial cell hypertrophy. Notably, polarized HAE cultured from an immortalized airway epithelial cell line, CuFi-8 (originally derived from a cystic fibrosis patient), also supported productive infection of HBoV1. Thus, we have established a reverse genetics system and generated the first cell line-based culture system for the study of HBoV1 infection, which will significantly advance the study of HBoV1 replication and pathogenesis. PMID:22956907

  14. SchA-p85-FAK complex dictates isoform-specific activation of Akt2 and subsequent PCBP1-mediated post-transcriptional regulation of TGFβ-mediated epithelial to mesenchymal transition in human lung cancer cell line A549.

    PubMed

    Xue, Xinying; Wang, Xin; Liu, Yuxia; Teng, Guigen; Wang, Yong; Zang, Xuefeng; Wang, Kaifei; Zhang, Jinghui; Xu, Yali; Wang, Jianxin; Pan, Lei

    2014-08-01

    A post-transcriptional pathway by which TGF-β modulates expression of specific proteins, Disabled-2 (Dab2) and Interleukin-like EMT Inducer (ILEI), inherent to epithelial to mesenchymal transition (EMT) in murine epithelial cells through Akt2-mediated phosphorylation of poly r(C) binding protein (PCBP1), has been previously elucidated. The aims of the current study were to determine if the same mechanism is operative in the non-small cell lung cancer (NSCLC) cell line, A549, and to delineate the underlying mechanism. Steady-state transcript and protein expression levels of Dab2 and ILEI were examined in A549 cells treated with TGF-β for up to 48 h. Induction of translational de-repression in this model was quantified by polysomal fractionation followed by qRT-PCR. The underlying mechanism of isoform-specific activation of Akt2 was elucidated through a combination of co-immunoprecipitation studies. TGF-β induced EMT in A549 cells concomitant with translational upregulation of Dab2 and ILEI proteins through isoform-specific activation of Akt2 followed by phosphorylation of PCBP1 at serine-43. Our experiments further elucidated that the adaptor protein SchA is phosphorylated at tyrosine residues following TGF-β treatment, which initiated a signaling cascade resulting in the sequential recruitment of p85 subunit of PI3K and focal adhesion kinase (FAK). The SchA-FAK-p85 complex subsequently selectively recruited and activated Akt2, not Akt1. Inhibition of the p85 subunit through phosphorylated 1257 peptide completely attenuated EMT in these cells. We have defined the underlying mechanism responsible for isoform-specific recruitment and activation of Akt2, not Akt1, during TGF-β-mediated EMT in A549 cells. Inhibition of the formation of this complex thus represents an important and novel therapeutic target in metastatic lung carcinoma. PMID:24819169

  15. The 2009 pandemic A/Wenshan/01/2009 H1N1 induces apoptotic cell death in human airway epithelial cells.

    PubMed

    Yang, Ning; Hong, Xiaoxu; Yang, Penghui; Ju, Xiangwu; Wang, Yuguo; Tang, Jun; Li, Chenggang; Fan, Quanshui; Zhang, Fuqiang; Chen, Zhongwei; Xing, Li; Zhao, Zhongpeng; Gao, Xiao; Liao, Guoyang; Li, Qihan; Wang, Xiliang; Li, Dangsheng; Jiang, Chengyu

    2011-08-01

    In 2009, a novel swine-origin H1N1 influenza virus emerged in Mexico and quickly spread to other countries, including China. This 2009 pandemic H1N1 can cause human respiratory disease, but its pathogenesis remains poorly understood. Here, we studied the infection and pathogenesis of a new 2009 pandemic strain, A/Wenshan/01/2009 H1N1, in China in human airway epithelial cell lines compared with contemporary seasonal H1N1 influenza virus. Our results showed that viral infection by the A/Wenshan H1N1 induced significant apoptotic cell death in both the human nasopharyngeal carcinoma cell line CNE-2Z and the human lung adenocarcinoma cell line A549. The A/Wenshan H1N1 virus enters both of these cell types more efficiently than the seasonal influenza virus. Viral entry in both cell lines was shown to be mediated by clathrin- and dynamin-dependent endocytosis. Therefore, we discovered that the 2009 pandemic H1N1 strain, A/Wenshan/01/2009, can induce apoptotic cell death in epithelial cells of the human respiratory tract, suggesting a molecular pathogenesis for the 2009 pandemic H1N1. PMID:21816972

  16. Estrogen effects on human airway smooth muscle involve cAMP and protein kinase A.

    PubMed

    Townsend, Elizabeth A; Sathish, Venkatachalem; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S

    2012-11-15

    Clinically observed differences in airway reactivity and asthma exacerbations in women at different life stages suggest a role for sex steroids in modulating airway function although their targets and mechanisms of action are still being explored. We have previously shown that clinically relevant concentrations of exogenous estrogen acutely decrease intracellular calcium ([Ca(2+)](i)) in human airway smooth muscle (ASM), thereby facilitating bronchodilation. In this study, we hypothesized that estrogens modulate cyclic nucleotide regulation, resulting in decreased [Ca(2+)](i) in human ASM. In Fura-2-loaded human ASM cells, 1 nM 17β-estradiol (E(2)) potentiated the inhibitory effect of the β-adrenoceptor (β-AR) agonist isoproterenol (ISO; 100 nM) on histamine-mediated Ca(2+) entry. Inhibition of protein kinase A (PKA) activity (KT5720; 100 nM) attenuated E(2) effects on [Ca(2+)](i). Acute treatment with E(2) increased cAMP levels in ASM cells comparable to that of ISO (100 pM). In acetylcholine-contracted airways from female guinea pigs or female humans, E(2) potentiated ISO-induced relaxation. These novel data suggest that, in human ASM, physiologically relevant concentrations of estrogens act via estrogen receptors (ERs) and the cAMP pathway to nongenomically reduce [Ca(2+)](i), thus promoting bronchodilation. Activation of ERs may be a novel adjunct therapeutic avenue in reactive airway diseases in combination with established cAMP-activating therapies such as β(2)-agonists.

  17. Bcl-xL Silencing Induces Alterations in hsa-miR-608 Expression and Subsequent Cell Death in A549 and SK-LU1 Human Lung Adenocarcinoma Cells

    PubMed Central

    Othman, Norahayu; In, Lionel L. A.; Harikrishna, Jennifer A.; Hasima, Noor

    2013-01-01

    Bcl-xL is an anti-apoptotic protein that is frequently found to be overexpressed in non-small cell lung cancer leading to an inhibition of apoptosis and poor prognosis. Recently, the role of miRNAs in regulating apoptosis and cell survival during tumorigenesis has become evident, with cancer cells showing perturbed expression of various miRNAs. In this study, we utilized miRNA microarrays to determine if miRNA dysregulation in bcl-xL silenced lung adenocarcinoma cells could be involved in regulating cell death. Short interfering RNA-based transfection of A549 and SK-LU1 lung adenocarcinoma cells was successful in inducing a reduction in bcl-xL expression levels, resulting in a decrease in cell viability. A total of 10 miRNAs were found to be significantly differentially expressed when compared between siRNA-transfected and non-transfected cells including hsa-miR-181a, hsa-miR-769-5p, hsa-miR-361-5p, hsa-miR-1304 and hsa-miR-608. When overexpression studies on hsa-miR-608 was performed via transfection of miRNA mimics, cell death was found to be induced in A549 and SK-LU1 cells in comparison to untreated cells. This effect was reversed when knockdown studies involving anti-sense inhibitors were introduced. Combination of siRNA based silencing of bcl-xL (siBcl-xL) followed by anti-sense inhibitor transfection led to a decrease in the apoptotic population of A549 and SK-LU1 cells in comparison to cells only treated with siBcl-xL, illustrating the connection between bcl-xL, hsa-miR-608 and cell death. Gene target prediction analysis implicated the PI3K/AKT, WNT, TGF-β, and ERK signaling pathways as targets of bcl-xL induced miRNA alterations. We have demonstrated that bcl-xL silencing in A549 and SK-LU1 cells leads to the occurrence of cell death through the dysregulation of specific miRNAs. This study also provides a platform for anti-sense gene therapy whereby miRNA expression can be exploited to increase the apoptotic properties in lung adenocarcinoma cells. PMID

  18. SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    Exposure of humans to PM results in increased mortality and morbidity. Recent toxicology studies have shown a number of pathophysiological pulmonary and car...

  19. [Obstruction of the upper airways in humans and animal models].

    PubMed

    Schulz, R

    2010-07-01

    Obstructive sleep apnea (OSA) is caused by repetitive collapse of a narrow upper airway during sleep with the main risk factor being obesity. Apneas are followed by hypoxia, sympathetic activation, intrathoracic pressure swings and arousals. In most animal studies, only the cyclical pattern of hypoxia characteristic of OSA is simulated, however, more complex models have also been developed which additionally reflect the other pathophysiological changes associated with sleep-disordered breathing. These models have contributed to a deeper understanding of the cardiovascular and metabolic consequences of OSA. From other experiments the concept of the pharynx behaving like a collapsible tube, i. e. a Starling resistor, has emerged. Finally, the neurotransmitter modulation of upper airway muscle tone has been elucidated by using IN VIVO microdialysis of the caudal medulla of rats. It is hoped that findings from animal studies will in the future impact on the management of patients with OSA, in particular if they are non-compliant with CPAP therapy. PMID:20632239

  20. Induction of release and up-regulated gene expression of interleukin (IL)-8 in A549 cells by serine proteinases

    PubMed Central

    Wang, Haiyan; Zheng, Yanshan; He, Shaoheng

    2006-01-01

    Background Hypersecretion of cytokines and serine proteinases has been observed in asthma. Since protease-activated receptors (PARs) are receptors of several serine proteinases and airway epithelial cells are a major source of cytokines, the influence of serine proteinases and PARs on interleukin (IL)-8 secretion and gene expression in cultured A549 cells was examined. Results A549 cells express all four PARs at both protein and mRNA levels as assessed by flow cytometry, immunofluorescence microscopy and reverse transcription polymerase chain reaction (PCR). Thrombin, tryptase, elastase and trypsin induce a up to 8, 4.3, 4.4 and 5.1 fold increase in IL-8 release from A549 cells, respectively following 16 h incubation period. The thrombin, elastase and trypsin induced secretion of IL-8 can be abolished by their specific inhibitors. Agonist peptides of PAR-1, PAR-2 and PAR-4 stimulate up to 15.6, 6.6 and 3.5 fold increase in IL-8 secretion, respectively. Real time PCR shows that IL-8 mRNA is up-regulated by the serine proteinases tested and by agonist peptides of PAR-1 and PAR-2. Conclusion The proteinases, possibly through activation of PARs can stimulate IL-8 release from A549 cells, suggesting that they are likely to contribute to IL-8 related airway inflammatory disorders in man. PMID:16696869

  1. Acute regulation of tight junction ion selectivity in human airway epithelia

    PubMed Central

    Flynn, Andrea N.; Itani, Omar A.; Moninger, Thomas O.; Welsh, Michael J.

    2009-01-01

    Electrolyte transport through and between airway epithelial cells controls the quantity and composition of the overlying liquid. Many studies have shown acute regulation of transcellular ion transport in airway epithelia. However, whether ion transport through tight junctions can also be acutely regulated is poorly understood both in airway and other epithelia. To investigate the paracellular pathway, we used primary cultures of differentiated human airway epithelia and assessed expression of claudins, the primary determinants of paracellular permeability, and measured transepithelial electrical properties, ion fluxes, and La3+ movement. Like many other tissues, airway epithelia expressed multiple claudins. Moreover, different cell types in the epithelium expressed the same pattern of claudins. To evaluate tight junction regulation, we examined the response to histamine, an acute regulator of airway function. Histamine stimulated a rapid and transient increase in the paracellular Na+ conductance, with a smaller increase in Cl− conductance. The increase was mediated by histamine H1 receptors and depended on an increase in intracellular Ca2+ concentration. These results suggest that ion flow through the paracellular pathway can be acutely regulated. Such regulation could facilitate coupling of the passive flow of counter ions to active transcellular transport, thereby controlling net transepithelial salt and water transport. PMID:19208806

  2. Vitamin D attenuates cytokine-induced remodeling in human fetal airway smooth muscle cells.

    PubMed

    Britt, Rodney D; Faksh, Arij; Vogel, Elizabeth R; Thompson, Michael A; Chu, Vivian; Pandya, Hitesh C; Amrani, Yassine; Martin, Richard J; Pabelick, Christina M; Prakash, Y S

    2015-06-01

    Asthma in the pediatric population remains a significant contributor to morbidity and increasing healthcare costs. Vitamin D3 insufficiency and deficiency have been associated with development of asthma. Recent studies in models of adult airway diseases suggest that the bioactive Vitamin D3 metabolite, calcitriol (1,25-dihydroxyvitamin D3 ; 1,25(OH)2 D3 ), modulates responses to inflammation; however, this concept has not been explored in developing airways in the context of pediatric asthma. We used human fetal airway smooth muscle (ASM) cells as a model of the early postnatal airway to explore how calcitriol modulates remodeling induced by pro-inflammatory cytokines. Cells were pre-treated with calcitriol and then exposed to TNFα or TGFβ for up to 72 h. Matrix metalloproteinase (MMP) activity, production of extracellular matrix (ECM), and cell proliferation were assessed. Calcitriol attenuated TNFα enhancement of MMP-9 expression and activity. Additionally, calcitriol attenuated TNFα and TGFβ-induced collagen III expression and deposition, and separately, inhibited proliferation of fetal ASM cells induced by either inflammatory mediator. Analysis of signaling pathways suggested that calcitriol effects in fetal ASM involve ERK signaling, but not other major inflammatory pathways. Overall, our data demonstrate that calcitriol can blunt multiple effects of TNFα and TGFβ in developing airway, and point to a potentially novel approach to alleviating structural changes in inflammatory airway diseases of childhood. PMID:25204635

  3. Autofluorescence multiphoton microscopy for visualization of tissue morphology and cellular dynamics in murine and human airways

    PubMed Central

    Kretschmer, Sarah; Pieper, Mario; Hüttmann, Gereon; Bölke, Torsten; Wollenberg, Barbara; Marsh, Leigh M; Garn, Holger; König, Peter

    2016-01-01

    The basic understanding of inflammatory airway diseases greatly benefits from imaging the cellular dynamics of immune cells. Current imaging approaches focus on labeling specific cells to follow their dynamics but fail to visualize the surrounding tissue. To overcome this problem, we evaluated autofluorescence multiphoton microscopy for following the motion and interaction of cells in the airways in the context of tissue morphology. Freshly isolated murine tracheae from healthy mice and mice with experimental allergic airway inflammation were examined by autofluorescence multiphoton microscopy. In addition, fluorescently labeled ovalbumin and fluorophore-labeled antibodies were applied to visualize antigen uptake and to identify specific cell populations, respectively. The trachea in living mice was imaged to verify that the ex vivo preparation reflects the in vivo situation. Autofluorescence multiphoton microscopy was also tested to examine human tissue from patients in short-term tissue culture. Using autofluorescence, the epithelium, underlying cells, and fibers of the connective tissue, as well as blood vessels, were identified in isolated tracheae. Similar structures were visualized in living mice and in the human airway tissue. In explanted murine airways, mobile cells were localized within the tissue and we could follow their migration, interactions between individual cells, and their phagocytic activity. During allergic airway inflammation, increased number of eosinophil and neutrophil granulocytes were detected that moved within the connective tissue and immediately below the epithelium without damaging the epithelial cells or connective tissues. Contacts between granulocytes were transient lasting 3 min on average. Unexpectedly, prolonged interactions between granulocytes and antigen-uptaking cells were observed lasting for an average of 13 min. Our results indicate that autofluorescence-based imaging can detect previously unknown immune cell

  4. Autofluorescence multiphoton microscopy for visualization of tissue morphology and cellular dynamics in murine and human airways.

    PubMed

    Kretschmer, Sarah; Pieper, Mario; Hüttmann, Gereon; Bölke, Torsten; Wollenberg, Barbara; Marsh, Leigh M; Garn, Holger; König, Peter

    2016-08-01

    The basic understanding of inflammatory airway diseases greatly benefits from imaging the cellular dynamics of immune cells. Current imaging approaches focus on labeling specific cells to follow their dynamics but fail to visualize the surrounding tissue. To overcome this problem, we evaluated autofluorescence multiphoton microscopy for following the motion and interaction of cells in the airways in the context of tissue morphology. Freshly isolated murine tracheae from healthy mice and mice with experimental allergic airway inflammation were examined by autofluorescence multiphoton microscopy. In addition, fluorescently labeled ovalbumin and fluorophore-labeled antibodies were applied to visualize antigen uptake and to identify specific cell populations, respectively. The trachea in living mice was imaged to verify that the ex vivo preparation reflects the in vivo situation. Autofluorescence multiphoton microscopy was also tested to examine human tissue from patients in short-term tissue culture. Using autofluorescence, the epithelium, underlying cells, and fibers of the connective tissue, as well as blood vessels, were identified in isolated tracheae. Similar structures were visualized in living mice and in the human airway tissue. In explanted murine airways, mobile cells were localized within the tissue and we could follow their migration, interactions between individual cells, and their phagocytic activity. During allergic airway inflammation, increased number of eosinophil and neutrophil granulocytes were detected that moved within the connective tissue and immediately below the epithelium without damaging the epithelial cells or connective tissues. Contacts between granulocytes were transient lasting 3 min on average. Unexpectedly, prolonged interactions between granulocytes and antigen-uptaking cells were observed lasting for an average of 13 min. Our results indicate that autofluorescence-based imaging can detect previously unknown immune cell

  5. Effects of nitrogen dioxide exposure on pulmonary function and airway reactivity in normal humans.

    PubMed

    Frampton, M W; Morrow, P E; Cox, C; Gibb, F R; Speers, D M; Utell, M J

    1991-03-01

    Nitrogen dioxide (NO2) is a product of combustion that has become recognized as a significant component of indoor air in some homes. Despite extensive study, it remains unresolved whether exposures to low levels of NO2 affect airway function or reactivity. These studies were designed to assess effects of various levels and patterns of NO2 exposure on pulmonary function and airway reactivity in normal humans. Normal volunteers screened for the absence of airway hyperreactivity were exposed for 3 h in an environmental chamber to purified air or NO2, separated by at least 2 wk, according to three protocols: (1) continuous 0.60 ppm NO2, (2) baseline 0.05 ppm NO2 with intermittent peaks of 2.0 ppm, and (3) continuous 1.5 ppm NO2. Subjects exercised for 10 min of each 30 min at a level sufficient to result in a minute ventilation near 40 L/min. Pulmonary function was measured before, during, and after exposure. Airway reactivity to increasing doses of carbachol was assessed 30 min after exposure. NO2 did not directly alter pulmonary function in any of the exposure protocols. In addition, airway reactivity was not altered by continuous exposure to 0.60 ppm or intermittent peaks of 2.0 ppm NO2. In contrast, continuous exposure to 1.5 ppm NO2 resulted in a greater fall in FVC and FEV1 in response to carbachol than after exposure to air (percent decrease in FVC: 1.5% after air, 3.9% after NO2, p less than 0.01). We conclude that for subjects without airway hyperreactivity, exposure to 1.5 ppm NO2 for 3 h increases airway reactivity, whereas repeated 15-min exposures to 2.0 ppm NO2 do not alter airway reactivity. PMID:2001061

  6. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    PubMed

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells.

  7. Effect of dexamethasone and ACC on bacteria-induced mucin expression in human airway mucosa.

    PubMed

    Hauber, Hans-Peter; Goldmann, Torsten; Vollmer, Ekkehard; Wollenberg, Barbara; Zabel, Peter

    2007-11-01

    Gram-negative bacteria can stimulate mucin production, but excessive mucus supports bacterial infection and consequently leads to airway obstruction. Therefore, the effect of dexamethasone (DEX) and the antioxidant acetyl-cysteine (ACC) on bacteria-induced mucus expression was investigated. Explanted human airway mucosa and mucoepidermoid cells (Calu-3) were stimulated with lipopolysaccharide (LPS) or PAM3 (a synthetic lipoprotein). DEX or ACC were added to either LPS- or PAM3-stimulated airway mucosa or Calu-3 cells. Mucin mRNA expression (MUC5AC) and total mucus glycoconjugates (mucin protein) were quantified using real-time PCR and periodic acid Schiff staining. LPS and PAM3 significantly increased mucin expression in airway mucosa and Calu-3 cells (P < 0.05). DEX alone had no significant effect on mucin expression in airway mucosa or Calu-3 cells (P > 0.05). In contrast, DEX significantly reduced LPS- and PAM3-induced mucin expression in explanted mucosal tissue and mucin expression in Calu-3 cells (P < 0.05). In explanted human airway mucosa ACC alone significantly increased mucin expression (P < 0.05). In contrast, ACC significantly decreased LPS- and PAM3-induced mucin expression (P < 0.05). In Calu-3 cells ACC alone had no significant effect on mucin expression (P > 0.05). ACC decreased LPS- and PAM3-induced mucin expression, but this effect was not significant (P > 0.05). These data suggest that DEX can effectively reduce bacteria-induced mucin expression in the airways. ACC alone may increase mucin expression in noninfected mucosa, but it decreased bacteria-induced mucin expression. Further studies are warranted to evaluate whether the effect of DEX or ACC is clinically relevant. PMID:17600317

  8. Effect of dexamethasone and ACC on bacteria-induced mucin expression in human airway mucosa.

    PubMed

    Hauber, Hans-Peter; Goldmann, Torsten; Vollmer, Ekkehard; Wollenberg, Barbara; Zabel, Peter

    2007-11-01

    Gram-negative bacteria can stimulate mucin production, but excessive mucus supports bacterial infection and consequently leads to airway obstruction. Therefore, the effect of dexamethasone (DEX) and the antioxidant acetyl-cysteine (ACC) on bacteria-induced mucus expression was investigated. Explanted human airway mucosa and mucoepidermoid cells (Calu-3) were stimulated with lipopolysaccharide (LPS) or PAM3 (a synthetic lipoprotein). DEX or ACC were added to either LPS- or PAM3-stimulated airway mucosa or Calu-3 cells. Mucin mRNA expression (MUC5AC) and total mucus glycoconjugates (mucin protein) were quantified using real-time PCR and periodic acid Schiff staining. LPS and PAM3 significantly increased mucin expression in airway mucosa and Calu-3 cells (P < 0.05). DEX alone had no significant effect on mucin expression in airway mucosa or Calu-3 cells (P > 0.05). In contrast, DEX significantly reduced LPS- and PAM3-induced mucin expression in explanted mucosal tissue and mucin expression in Calu-3 cells (P < 0.05). In explanted human airway mucosa ACC alone significantly increased mucin expression (P < 0.05). In contrast, ACC significantly decreased LPS- and PAM3-induced mucin expression (P < 0.05). In Calu-3 cells ACC alone had no significant effect on mucin expression (P > 0.05). ACC decreased LPS- and PAM3-induced mucin expression, but this effect was not significant (P > 0.05). These data suggest that DEX can effectively reduce bacteria-induced mucin expression in the airways. ACC alone may increase mucin expression in noninfected mucosa, but it decreased bacteria-induced mucin expression. Further studies are warranted to evaluate whether the effect of DEX or ACC is clinically relevant.

  9. Three-dimensional inspiratory flow in the upper and central human airways

    NASA Astrophysics Data System (ADS)

    Banko, A. J.; Coletti, F.; Schiavazzi, D.; Elkins, C. J.; Eaton, J. K.

    2015-06-01

    The steady inspiratory flow through an anatomically accurate model of the human airways was studied experimentally at a regime relevant to deep inspiration for aerosol drug delivery. Magnetic resonance velocimetry was used to obtain the three-component, mean velocity field. A strong, single-sided streamwise swirl was found in the trachea and persists up to the first bifurcation. There, the swirl and the asymmetric anatomy impact both the streamwise momentum distribution and the secondary flows in the main bronchi, with large differences compared to what is found in idealized branching tubes. In further generations, the streamwise velocity never recovers a symmetric profile and the relative intensity of the secondary flows remains strong. Overall, the results suggest that, in real human airways, both streamwise dispersion (due to streamwise gradients) and lateral dispersion (due to secondary flows) are very effective transport mechanisms. Neglecting the extrathoracic airways and idealizing the bronchial tree may lead to qualitatively different conclusions.

  10. Region-based geometric modelling of human airways and arterial vessels.

    PubMed

    Ding, Songlin; Ye, Yong; Tu, Jiyuan; Subic, Aleksandar

    2010-03-01

    Anatomically precise geometric models of human airways and arterial vessels play a critical role in the analysis of air and blood flows in human bodies. The established geometric modelling methods become invalid when the model consists of bronchioles or small vessels. This paper presents a new method for reconstructing the entire airway tree and carotid vessels from point clouds obtained from CT or MR images. A novel layer-by-layer searching algorithm has been developed to recognize branches of the airway tree and arterial vessels from the point clouds. Instead of applying uniform accuracy to all branches regardless of the number of available points, the surface patches on each branch are constructed adaptively based on the number of available elemental points, which leads to the elimination of distortions occurring at small bronchi and vessels.

  11. In vitro cytotoxicity of gold nanorods in A549 cells.

    PubMed

    Tang, Ying; Shen, Yafeng; Huang, Libin; Lv, Gaojian; Lei, Changhai; Fan, Xiaoyan; Lin, Fangxing; Zhang, Yuxia; Wu, Lihui; Yang, Yongji

    2015-03-01

    Gold nanoparticles, which have unique physicochemical characteristics, are being used for an increasingly wide range of applications in biomedical research. In this study, gold nanorods (width of 25 nm, length of 52 nm) were found to be internalized by A549 cells and were primarily localized in the lysosomes and membranous vesicles. The integrity of the membranes of A549 cells exposed to gold nanorods for 4h was damaged, as indicated by laser scanning confocal microscopy (LSCM). Increased lactate dehydrogenase (LDH) leakage and decreased cell viability further indicated the concentration-dependent cytotoxicity of the gold nanorods to the A549 cells. Reactive oxygen species (ROS) production was induced in the A549 cells by the gold nanorods, and this effect was positively correlated with the concentration of the gold nanorods. The results of this study indicated that exposure to gold nanorods caused dose-dependent cytotoxicity in A549 cells and that oxidative stress may be the main factor causing cytotoxicity.

  12. Timosaponin AIII inhibits migration and invasion of A549 human non-small-cell lung cancer cells via attenuations of MMP-2 and MMP-9 by inhibitions of ERK1/2, Src/FAK and β-catenin signaling pathways.

    PubMed

    Jung, Okkeun; Lee, Jongsung; Lee, Yu Jin; Yun, Jung-Mi; Son, Young-Jin; Cho, Jae Youl; Ryou, Chongsuk; Lee, Sang Yeol

    2016-08-15

    Timosaponin AIII (TAIII) is a type of steroidal saponins isolated from Anemarrhena asphodeloides. It was known to improve learning and memory deficits through anti-inflammatory effects. TAIII was also reported to induce autophagy preceding mitochondria-mediated apoptosis in HeLa cancer cells and inhibit the growth of human colorectal cancer cells, thus regarded as a potential candidate for anti-cancer agent. In this study, we verified apoptosis-inducing and cell-cycle-arresting effects of TAIII in A549 human non-small-cell lung cancer (NSCLC) cells. Then, we report that TAIII suppresses migration and invasion of A549 human NSCLC cells. We propose that two matrix metalloproteinases (MMPs), MMP-2 and MMP-9, which are well known to be involved in cancer-metastasis, are attenuated by the treatment of TAIII. TAIII exerts its suppressive effects on MMP-2 and MMP-9 via inhibitions of ERK1/2, Src/FAK and β-catenin signalings which are closely related with the regulations of MMP-2 and MMP-9. PMID:27422337

  13. TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS

    EPA Science Inventory

    TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS. Zhe Zhang*, Huawei Shi, Clement Kleinstreuer, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910; Chong S. Kim, National Health and En...

  14. CULTURE CONDITIONS AFFECT HUMAN AIRWAY EPITHELIAL CELL RESPONSE TO DIESEL PARTICLE EXPOSURE IN VITRO

    EPA Science Inventory

    Diesel exhaust particles (DEP) are a ubiquitous ambient air contaminant that may contribute to the health effects of particulate matter inhalation. In vitro studies have shown that DEP exposure induces pro-inflammatory proteins in human airway epithelial cells (HAEC) with varying...

  15. Trehalose-Mediated Autophagy Impairs the Anti-Viral Function of Human Primary Airway Epithelial Cells

    PubMed Central

    Wu, Qun; Jiang, Di; Huang, Chunjian; van Dyk, Linda F.; Li, Liwu; Chu, Hong Wei

    2015-01-01

    Human rhinovirus (HRV) is the most common cause of acute exacerbations of chronic lung diseases including asthma. Impaired anti-viral IFN-λ1 production and increased HRV replication in human asthmatic airway epithelial cells may be one of the underlying mechanisms leading to asthma exacerbations. Increased autophagy has been shown in asthmatic airway epithelium, but the role of autophagy in anti-HRV response remains uncertain. Trehalose, a natural glucose disaccharide, has been recognized as an effective autophagy inducer in mammalian cells. In the current study, we used trehalose to induce autophagy in normal human primary airway epithelial cells in order to determine if autophagy directly regulates the anti-viral response against HRV. We found that trehalose-induced autophagy significantly impaired IFN-λ1 expression and increased HRV-16 load. Inhibition of autophagy via knockdown of autophagy-related gene 5 (ATG5) effectively rescued the impaired IFN-λ1 expression by trehalose and subsequently reduced HRV-16 load. Mechanistically, ATG5 protein interacted with retinoic acid-inducible gene I (RIG-I) and IFN-β promoter stimulator 1 (IPS-1), two critical molecules involved in the expression of anti-viral interferons. Our results suggest that induction of autophagy in human primary airway epithelial cells inhibits the anti-viral IFN-λ1 expression and facilitates HRV infection. Intervention of excessive autophagy in chronic lung diseases may provide a novel approach to attenuate viral infections and associated disease exacerbations. PMID:25879848

  16. DIESEL EXHAUST ACTIVATES REDOX-SENSITIVE TRANSCRIPTION FACTORS AND KINASES IN HUMAN AIRWAYS

    EPA Science Inventory

    Diesel exhaust (DE) is a major component of airborne particulate matter. In previous studies we have described the acute inflammatory response of the human airway to inhaled DE. This was characterized by neutrophil, mast cell, and lymphocyte infiltration into the bronchial mucosa...

  17. SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES
    Y.M. Kim, A.G. Lenz, R. Silbajoris, I. Jaspers and J.M. Samet. Department of Environmental Sciences and Engineering and Center for Environmental Medicine, University of North Carolina, ...

  18. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    SciTech Connect

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping Wang, Hong

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  19. In vivo deposition of ultrafine aerosols in human nasal and oral airways

    SciTech Connect

    Yeh, Hsu-Chi; Swift, D.L.; Simpson, S.Q.

    1995-12-01

    The extrathoracic airways, including the nasal passage, oral passage, pharynx, and larynx, are the first targets for inhaled particles and provide an important defense for the lung. Understanding the deposition efficiency of the nasal and oral passages is therefore crucial for assessing doses of inhaled particles to the extrathoracic airways and the lung. Significant inter-subject variability in nasal deposition has been shown in recent studies by Rasmussen, T.R. et al, using 2.6 {mu}m particles in 10 human subjects and in our preliminary studies using 0.004-0.15 {mu}m particles in four adult volunteers. No oral deposition was reported in either of these studies. Reasons for the intersubject variations have been frequently attributed to the geometry of the nasal passages. The aims of the present study were to measure in vivo the nasal airway dimensions and the deposition of ultrafine aerosols in both the nasal and oral passages, and to determine the relationship between nasal airway dimensions and aerosol deposition. A statistical procedure incorporated with the diffusion theory was used to model the dimensional features of the nasal airways which may be responsible for the biological variability in particle deposition. In summary, we have correlated deposition of particles in the size range of 0.004 to 0.15 {mu}m with the nasal dimensions of each subject.

  20. Continuous mucociliary transport by primary human airway epithelial cells in vitro

    PubMed Central

    Sears, Patrick R.; Yin, Wei-Ning

    2015-01-01

    Mucociliary clearance (MCC) is an important innate defense mechanism that continuously removes inhaled pathogens and particulates from the airways. Normal MCC is essential for maintaining a healthy respiratory system, and impaired MCC is a feature of many airway diseases, including both genetic (cystic fibrosis, primary ciliary dyskinesia) and acquired (chronic obstructive pulmonary disease, bronchiectasis) disorders. Research into the fundamental processes controlling MCC, therefore, has direct clinical application, but has been limited in part due to the difficulty of studying this complex multicomponent system in vitro. In this study, we have characterized a novel method that allows human airway epithelial cells to differentiate into a mucociliary epithelium that transports mucus in a continuous circular track. The mucociliary transport device allows the measurement and manipulation of all features of mucociliary transport in a controlled in vitro system. In this initial study, the effect of ciliary beat frequency and mucus concentration on the speed of mucociliary transport was investigated. PMID:25979076

  1. Modeled deposition of fine particles in human airway in Beijing, China

    NASA Astrophysics Data System (ADS)

    Li, Xiaoying; Yan, Caiqing; Patterson, Regan F.; Zhu, Yujiao; Yao, Xiaohong; Zhu, Yifang; Ma, Shexia; Qiu, Xinghua; Zhu, Tong; Zheng, Mei

    2016-01-01

    This study aims to simulate depositions of size-segregated particles in human airway in Beijing, China during seasons when fine particulate matter concentrations are high (December 2011 and April 2012). Particle size distributions (5.6-560 nm, electrical mobility diameter) near a major road in Beijing were measured by the TSI Fast Mobility Particle Sizer (FMPS). The information of size distributions provided by FMPS was applied in the Multiple-Path Particle Dosimetry model (MPPD) to quantify number and mass depositions of particles in human airway including extrathoracic (ET), tracheobronchial (TB), and pulmonary (PUL) regions of exposed Chinese in Beijing. Our results show that under ambient conditions, particle number concentration (NC) deposition in PUL is the highest in the three major regions of human airway. The total particle NC deposition in human airway in winter is higher than that in spring, especially for ultrafine particles (1.8 times higher) while particle mass concentration (MC) deposition is higher in spring. Although particle MC in clean days are much lower than that in heavily polluted days, total particle NC deposition in human airway in clean days is comparable to that in heavily polluted days. NC deposition for nucleation mode particles (10-20 nm, aerodynamic diameter) in clean days is higher than that in heavily polluted days. MC deposition for accumulation mode particles (100-641 nm, aerodynamic diameter) in heavily polluted days is much higher than that in clean days, while that of nucleation mode is negligible. The temporal variation shows that the arithmetic mean and the median values of particle NC and MC depositions in the evening are both the highest, followed by morning and noon, and it is most likely due to increased contribution from traffic emissions.

  2. GM-CSF production from human airway smooth muscle cells is potentiated by human serum.

    PubMed Central

    Sukkar, M B; Hughes, J M; Johnson, P R; Armour, C L

    2000-01-01

    Recent evidence suggests that airway smooth muscle cells (ASMC) actively participate in the airway inflammatory process in asthma. Interleukin-1beta (IL-1beta) and tumour necrosis factor-alpha (TNF-alpha) induce ASMC to release inflammatory mediators in vitro. ASMC mediator release in vivo, however, may be influenced by features of the allergic asthmatic phenotype. We determined whether; (1) allergic asthmatic serum (AAS) modulates ASMC mediator release in response to IL-1beta and TNF-alpha, and (2) IL-1beta/TNF-alpha prime ASMC to release mediators in response to AAS. IL-5 and GM-CSF were quantified by ELISA in culture supernatants of; (1) ASMC pre-incubated with either AAS, nonallergic non-asthmatic serum (NAS) or Monomed (a serum substitute) and subsequently stimulated with IL-1beta and TNF-alpha and (2) ASMC stimulated with IL-1beta/TNF-alpha and subsequently exposed to either AAS, NAS or Monomed. IL-1beta and TNF-alpha induced GM-CSF release in ASMC pre-incubated with AAS was not greater than that in ASMC pre-incubated with NAS or Monomed. IL-1beta and TNF-alpha, however, primed ASMC to release GM-CSF in response to human serum. GM-CSF production following IL-1beta/TNF-alpha and serum exposure (AAS or NAS) was significantly greater than that following IL-1beta/TNF-alpha and Monomed exposure or IL-1beta/TNF-alpha exposure only. Whilst the potentiating effects of human serum were not specific to allergic asthma, these findings suggest that the secretory capacity of ASMC may be up-regulated during exacerbations of asthma, where there is evidence of vascular leakage. PMID:11132773

  3. Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways.

    PubMed Central

    Gaston, B; Reilly, J; Drazen, J M; Fackler, J; Ramdev, P; Arnelle, D; Mullins, M E; Sugarbaker, D J; Chee, C; Singel, D J

    1993-01-01

    Recent discoveries suggesting essential bioactivities of nitric oxide (NO.) in the lung are difficult to reconcile with the established pulmonary cytotoxicity of this common air pollutant. These conflicting observations suggest that metabolic intermediaries may exist in the lung to modulate the bioactivity and toxicity of NO.. We report that S-nitrosothiols (RS-NO), predominantly the adduct with glutathione, are present at nano- to micromolar concentrations in the airways of normal subjects and that their levels vary in different human pathophysiologic states. These endogenous RS-NO are long-lived, potent relaxants of human airways under physiological O2 concentrations. Moreover, RS-NO form in high concentrations upon administration of NO. gas. Nitrite (10-20 microM) is found in airway lining fluid in concentrations linearly proportional to leukocyte counts, suggestive of local NO. metabolism. NO. itself was not detected either free in solution or in complexes with transition metals. These observations may provide insight into the means by which NO. is packaged in biological systems to preserve its bioactivity and limit its potential O2-dependent toxicity and suggest an important role for NO. in regulation of airway luminal homeostasis. PMID:8248198

  4. 17beta-Estradiol inhibits Ca2+-dependent homeostasis of airway surface liquid volume in human cystic fibrosis airway epithelia.

    PubMed

    Coakley, Ray D; Sun, Hengrui; Clunes, Lucy A; Rasmussen, Julia E; Stackhouse, James R; Okada, Seiko F; Fricks, Ingrid; Young, Steven L; Tarran, Robert

    2008-12-01

    Normal airways homeostatically regulate the volume of airway surface liquid (ASL) through both cAMP- and Ca2+-dependent regulation of ion and water transport. In cystic fibrosis (CF), a genetic defect causes a lack of cAMP-regulated CFTR activity, leading to diminished Cl- and water secretion from airway epithelial cells and subsequent mucus plugging, which serves as the focus for infections. Females with CF exhibit reduced survival compared with males with CF, although the mechanisms underlying this sex-related disadvantage are unknown. Despite the lack of CFTR, CF airways retain a limited capability to regulate ASL volume, as breathing-induced ATP release activates salvage purinergic pathways that raise intracellular Ca2+ concentration to stimulate an alternate pathway to Cl- secretion. We hypothesized that estrogen might affect this pathway by reducing the ability of airway epithelia to respond appropriately to nucleotides. We found that uridine triphosphate-mediated (UTP-mediated) Cl- secretion was reduced during the periovulatory estrogen maxima in both women with CF and normal, healthy women. Estrogen also inhibited Ca2+ signaling and ASL volume homeostasis in non-CF and CF airway epithelia by attenuating Ca2+ influx. This inhibition of Ca2+ signaling was prevented and even potentiated by estrogen antagonists such as tamoxifen, suggesting that antiestrogens may be beneficial in the treatment of CF lung disease because they increase Cl- secretion in the airways. PMID:19033671

  5. Sex Steroids Influence Brain-Derived Neurotropic Factor Secretion From Human Airway Smooth Muscle Cells.

    PubMed

    Wang, Sheng-Yu; Freeman, Michelle R; Sathish, Venkatachalem; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S

    2016-07-01

    Brain derived neurotropic factor (BDNF) is emerging as an important player in airway inflammation, remodeling, and hyperreactivity. Separately, there is increasing evidence that sex hormones contribute to pathophysiology in the lung. BDNF and sex steroid signaling are thought to be intricately linked in the brain. There is currently little information on BDNF and sex steroid interactions in the airway but is relevant to understanding growth factor signaling in the context of asthma in men versus women. In this study, we assessed the effect of sex steroids on BDNF expression and secretion in human airway smooth muscle (ASM). Human ASM was treated with estrogen (E2 ) or testosterone (T, 10 nM each) and intracellular BDNF and secreted BDNF measured. E2 and T significantly reduced secretion of BDNF; effects prevented by estrogen and androgen receptor inhibitor, ICI 182,780 (1 μM), and flutamide (10 μM), respectively. Interestingly, no significant changes were observed in intracellular BDNF mRNA or protein expression. High affinity BDNF receptor, TrkB, was not altered by E2 or T. E2 (but not T) significantly increased intracellular cyclic AMP levels. Notably, Epac1 and Epac2 expression were significantly reduced by E2 and T. Furthermore, SNARE complex protein SNAP25 was decreased. Overall, these novel data suggest that physiologically relevant concentrations of E2 or T inhibit BDNF secretion in human ASM, suggesting a potential interaction of sex steroids with BDNF in the airway that is different from brain. The relevance of sex steroid-BDNF interactions may lie in their overall contribution to airway diseases such as asthma. PMID:26566264

  6. Selenium pretreatment attenuates formaldehyde-induced genotoxicity in A549 cell lines.

    PubMed

    Shi, Yu-Qin; Chen, Xin; Dai, Juan; Jiang, Zhong-Fa; Li, Ning; Zhang, Ben-Yan; Zhang, Zhi-Bing

    2014-11-01

    Formaldehyde is a major industrial chemical and has been extensively used in the manufacture of synthetic resins and chemicals. Numerous studies indicate that formaldehyde can induce various genotoxic effects in vitro and in vivo. A recent study indicated that formaldehyde impaired antioxidant cellular defences and enhanced lipid peroxidation. Selenium is an important antioxidant. We hypothesized that reactive oxygen species (ROS) and lipid peroxidation are involved in formaldehyde-induced genotoxicity in human lung cancer cell line, A549 cell line. To test the hypothesis, we investigated the effects of selenium on formaldehyde-induced genotoxicity in A549 cell lines. The results indicated that exposure to formaldehyde showed the induction of DNA-protein cross-links (DPCs). Formaldehyde significantly increased the malondialdehyde levels and decreased the activities of superoxide dismutase and glutathione peroxidase. In addition, the activations of necrosis factor-κB (NF-κB) and activator protein 1 (AP-1) were induced by the formaldehyde treatment. The pretreatment with selenium counteracted the formaldehyde-induced oxidative stress, ameliorated DPCs and attenuated the activation of NF-κB and AP-1 in A549 cell lines. All the results suggested that the pretreatment with selenium attenuated the formaldehyde-induced genotoxicity through its ROS scavenging and anti-DPCs effects in A549 cell lines.

  7. Cystic fibrosis airway epithelial Ca2+ i signaling: the mechanism for the larger agonist-mediated Ca2+ i signals in human cystic fibrosis airway epithelia.

    PubMed

    Ribeiro, Carla M Pedrosa; Paradiso, Anthony M; Carew, Mark A; Shears, Stephen B; Boucher, Richard C

    2005-03-18

    In cystic fibrosis (CF) airways, abnormal epithelial ion transport likely initiates mucus stasis, resulting in persistent airway infections and chronic inflammation. Mucus clearance is regulated, in part, by activation of apical membrane receptors coupled to intracellular calcium (Ca(2+)(i)) mobilization. We have shown that Ca(2+)(i) signals resulting from apical purinoceptor (P2Y(2)-R) activation are increased in CF compared with normal human airway epithelia. The present study addressed the mechanism for the larger apical P2Y(2)-R-dependent Ca(2+)(i) signals in CF human airway epithelia. We show that the increased Ca(2+)(i) mobilization in CF was not specific to P2Y(2)-Rs because it was mimicked by apical bradykinin receptor activation, and it did not result from a greater number of P2Y(2)-R or a more efficient coupling between P2Y(2)-Rs and phospholipase C-generated inositol 1,4,5-trisphosphate. Rather, the larger apical P2Y(2)-R activation-promoted Ca(2+)(i) signals in CF epithelia resulted from an increased density and Ca(2+) storage capacity of apically confined endoplasmic reticulum (ER) Ca(2+) stores. To address whether the ER up-regulation resulted from ER retention of misfolded DeltaF508 CFTR or was an acquired response to chronic luminal airway infection/inflammation, three approaches were used. First, ER density was studied in normal and CF sweat duct human epithelia expressing high levels of DeltaF508 CFTR, and it was found to be the same in normal and CF epithelia. Second, apical ER density was morphometrically analyzed in airway epithelia from normal subjects, DeltaF508 homozygous CF patients, and a disease control, primary ciliary dyskinesia; it was found to be greater in both CF and primary ciliary dyskinesia. Third, apical ER density and P2Y(2)-R activation-mobilized Ca(2+)(i), which were investigated in airway epithelia in a long term culture in the absence of luminal infection, were similar in normal and CF epithelia. To directly test whether

  8. A novel aminothiazole KY-05009 with potential to inhibit Traf2- and Nck-interacting kinase (TNIK) attenuates TGF-β1-mediated epithelial-to-mesenchymal transition in human lung adenocarcinoma A549 cells.

    PubMed

    Kim, Jiyeon; Moon, Seong-Hee; Kim, Bum Tae; Chae, Chong Hak; Lee, Joo Yun; Kim, Seong Hwan

    2014-01-01

    Transforming growth factor (TGF)-β triggers the epithelial-to-mesenchymal transition (EMT) of cancer cells via well-orchestrated crosstalk between Smad and non-Smad signaling pathways, including Wnt/β-catenin. Since EMT-induced motility and invasion play a critical role in cancer metastasis, EMT-related molecules are emerging as novel targets of anti-cancer therapies. Traf2- and Nck-interacting kinase (TNIK) has recently been considered as a first-in-class anti-cancer target molecule to regulate Wnt signaling pathway, but pharmacologic inhibition of its EMT activity has not yet been studied. Here, using 5-(4-methylbenzamido)-2-(phenylamino)thiazole-4-carboxamide (KY-05009) with TNIK-inhibitory activity, its efficacy to inhibit EMT in cancer cells was validated. The molecular docking/binding study revealed the binding of KY-05009 in the hinge region of TNIK, and the inhibitory activity of KY-05009 against TNIK was confirmed by an ATP competition assay (Ki, 100 nM). In A549 cells, KY-05009 significantly and strongly inhibited the TGF-β-activated EMT through the attenuation of Smad and non-Smad signaling pathways, including the Wnt, NF-κB, FAK-Src-paxillin-related focal adhesion, and MAP kinases (ERK and JNK) signaling pathways. Continuing efforts to identify and validate potential therapeutic targets associated with EMT, such as TNIK, provide new and improved therapies for treating and/or preventing EMT-based disorders, such as cancer metastasis and fibrosis. PMID:25337707

  9. FOXJ1 Prevents Cilia Growth Inhibition by Cigarette Smoke in Human Airway Epithelium In Vitro

    PubMed Central

    Brekman, Angelika; Walters, Matthew S.; Tilley, Ann E.

    2014-01-01

    Airway epithelium ciliated cells play a central role in clearing the lung of inhaled pathogens and xenobiotics, and cilia length and coordinated beating are important for airway clearance. Based on in vivo studies showing that the airway epithelium of healthy smokers has shorter cilia than that of healthy nonsmokers, we investigated the mechanisms involved in cigarette smoke–mediated inhibition of ciliogenesis by assessing normal human airway basal cell differentiation in air–liquid interface (ALI) cultures in the presence of nontoxic concentrations of cigarette smoke extract (CSE). Measurements of cilia length from Day 28 ALI cultures demonstrated that CSE exposure was associated with shorter cilia (P < 0.05), reproducing the effect of cigarette smoking on cilia length observed in vivo. This phenotype correlated with a broad CSE-mediated suppression of genes involved in cilia-related transcriptional regulation, intraflagellar transport, cilia motility, structural integrity, and basal body development but not of control genes or epithelial barrier integrity. The CSE-mediated inhibition of cilia growth could be prevented by lentivirus-mediated overexpression of FOXJ1, the major cilia-related transcription factor, which led to partial reversal of expression of cilia-related genes suppressed by CSE. Together, the data suggest that components of cigarette smoke are responsible for a broad suppression of genes involved in cilia growth, but, by stimulating ciliogenesis with the transcription factor FOXJ1, it may be possible to maintain close to normal cilia length despite the stress of cigarette smoking. PMID:24828273

  10. In Vitro Spatial and Temporal Analysis of Mycoplasma pneumoniae Colonization of Human Airway Epithelium

    PubMed Central

    Prince, Oliver A.; Krunkosky, Thomas M.

    2014-01-01

    Mycoplasma pneumoniae is an important cause of respiratory disease, especially in school-age children and young adults. We employed normal human bronchial epithelial (NHBE) cells in air-liquid interface culture to study the interaction of M. pneumoniae with differentiated airway epithelium. These airway cells, when grown in air-liquid interface culture, polarize, form tight junctions, produce mucus, and develop ciliary function. We examined both qualitatively and quantitatively the role of mycoplasma gliding motility in the colonization pattern of developing airway cells, comparing wild-type M. pneumoniae and mutants thereof with moderate to severe defects in gliding motility. Adherence assays with radiolabeled mycoplasmas demonstrated a dramatic reduction in binding for all strains with airway cell polarization, independent of acquisition of mucociliary function. Adherence levels dropped further once NHBE cells achieved terminal differentiation, with mucociliary activity strongly selecting for full gliding competence. Analysis over time by confocal microscopy demonstrated a distinct colonization pattern that appeared to originate primarily with ciliated cells, but lateral spread from the base of the cilia was slower than expected. The data support a model in which the mucociliary apparatus impairs colonization yet cilia provide a conduit for mycoplasma access to the host cell surface and suggest acquisition of a barrier function, perhaps associated with tethered mucin levels, with NHBE cell polarization. PMID:24478073

  11. Numerical simulation of transitional flow in a human upper airway segment in the presence of uncertainty

    NASA Astrophysics Data System (ADS)

    Marxen, Olaf

    2011-11-01

    The flow in human airways may be laminar, transitional, or turbulent in different airway segments. Specifically, laminar-turbulent transition is believed to occur in the larynx or in the trachea. Present approaches to simulate such flows typically employ numerical methods solving the steady Reynolds-averaged Navier-Stokes equations. However, natural airway deformations or pathological obstructions such as tumors may generate recirculation zones and lead to highly unsteady flow features that are not well captured by these numerical methods. We perform direct numerical simulations of transitional flow through a pipe-like canonical geometry representative of an airway segment. The incompressible Navier-Stokes equations in conjunction with an immersed boundary method are solved to simulate the unsteady flow. In order to model perturbations present in the incoming flow, small-amplitude disturbances are forced to explicitly trigger flow instabilities. Time-dependent inflow profiles are applied to model the change in flow velocity during the breathing process. In order to account for natural variability during breathing, the inflow profile is treated as an uncertain function. Resulting uncertainty in the flow field is quantified using stochastic collocation.

  12. POU2AF1 Functions in the Human Airway Epithelium To Regulate Expression of Host Defense Genes.

    PubMed

    Zhou, Haixia; Brekman, Angelika; Zuo, Wu-Lin; Ou, Xuemei; Shaykhiev, Renat; Agosto-Perez, Francisco J; Wang, Rui; Walters, Matthew S; Salit, Jacqueline; Strulovici-Barel, Yael; Staudt, Michelle R; Kaner, Robert J; Mezey, Jason G; Crystal, Ronald G; Wang, Guoqing

    2016-04-01

    In the process of seeking novel lung host defense regulators by analyzing genome-wide RNA sequence data from normal human airway epithelium, we detected expression of POU domain class 2-associating factor 1 (POU2AF1), a known transcription cofactor previously thought to be expressed only in lymphocytes. Lymphocyte contamination of human airway epithelial samples obtained by bronchoscopy and brushing was excluded by immunohistochemistry staining, the observation of upregulation of POU2AF1 in purified airway basal stem/progenitor cells undergoing differentiation, and analysis of differentiating single basal cell clones. Lentivirus-mediated upregulation of POU2AF1 in airway basal cells induced upregulation of host defense genes, including MX1, IFIT3, IFITM, and known POU2AF1 downstream genes HLA-DRA, ID2, ID3, IL6, and BCL6. Interestingly, expression of these genes paralleled changes of POU2AF1 expression during airway epithelium differentiation in vitro, suggesting POU2AF1 helps to maintain a host defense tone even in pathogen-free condition. Cigarette smoke, a known risk factor for airway infection, suppressed POU2AF1 expression both in vivo in humans and in vitro in human airway epithelial cultures, accompanied by deregulation of POU2AF1 downstream genes. Finally, enhancing POU2AF1 expression in human airway epithelium attenuated the suppression of host defense genes by smoking. Together, these findings suggest a novel function of POU2AF1 as a potential regulator of host defense genes in the human airway epithelium. PMID:26927796

  13. POU2AF1 Functions in the Human Airway Epithelium To Regulate Expression of Host Defense Genes.

    PubMed

    Zhou, Haixia; Brekman, Angelika; Zuo, Wu-Lin; Ou, Xuemei; Shaykhiev, Renat; Agosto-Perez, Francisco J; Wang, Rui; Walters, Matthew S; Salit, Jacqueline; Strulovici-Barel, Yael; Staudt, Michelle R; Kaner, Robert J; Mezey, Jason G; Crystal, Ronald G; Wang, Guoqing

    2016-04-01

    In the process of seeking novel lung host defense regulators by analyzing genome-wide RNA sequence data from normal human airway epithelium, we detected expression of POU domain class 2-associating factor 1 (POU2AF1), a known transcription cofactor previously thought to be expressed only in lymphocytes. Lymphocyte contamination of human airway epithelial samples obtained by bronchoscopy and brushing was excluded by immunohistochemistry staining, the observation of upregulation of POU2AF1 in purified airway basal stem/progenitor cells undergoing differentiation, and analysis of differentiating single basal cell clones. Lentivirus-mediated upregulation of POU2AF1 in airway basal cells induced upregulation of host defense genes, including MX1, IFIT3, IFITM, and known POU2AF1 downstream genes HLA-DRA, ID2, ID3, IL6, and BCL6. Interestingly, expression of these genes paralleled changes of POU2AF1 expression during airway epithelium differentiation in vitro, suggesting POU2AF1 helps to maintain a host defense tone even in pathogen-free condition. Cigarette smoke, a known risk factor for airway infection, suppressed POU2AF1 expression both in vivo in humans and in vitro in human airway epithelial cultures, accompanied by deregulation of POU2AF1 downstream genes. Finally, enhancing POU2AF1 expression in human airway epithelium attenuated the suppression of host defense genes by smoking. Together, these findings suggest a novel function of POU2AF1 as a potential regulator of host defense genes in the human airway epithelium.

  14. Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased influenza A infection.

    PubMed

    Kesic, Matthew J; Meyer, Megan; Bauer, Rebecca; Jaspers, Ilona

    2012-01-01

    Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA) is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI). Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs) to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility. PMID

  15. Exposure to Ozone Modulates Human Airway Protease/Antiprotease Balance Contributing to Increased Influenza A Infection

    PubMed Central

    Kesic, Matthew J.; Meyer, Megan; Bauer, Rebecca; Jaspers, Ilona

    2012-01-01

    Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA) is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI). Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs) to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility. PMID

  16. Ozone enhances diesel exhaust particles (DEP)-induced interleukin-8 (IL-8) gene expression in human airway epithelial cells through activation of nuclear factors- kappaB (NF-kappaB) and IL-6 (NF-IL6).

    PubMed

    Kafoury, Ramzi M; Kelley, James

    2005-12-01

    Ozone, a highly reactive oxidant gas is a major component of photochemical smog. As an inhaled toxicant, ozone induces its adverse effects mainly on the lung. Inhalation of particulate matter has been reported to cause airway inflammation in humans and animals. Furthermore, epidemiological evidence has indicated that exposure to particulate matter (PM[2.5-10]), including diesel exhaust particles (DEP) has been correlated with increased acute and chronic respiratory morbidity and exacerbation of asthma. Previously, exposure to ozone or particulate matter and their effect on the lung have been addressed as separate environmental problems. Ozone and particulate matter may be chemically coupled in the ambient air. In the present study we determined whether ozone exposure enhances DEP effect on interleukin-8 (IL-8) gene expression in human airway epithelial cells. We report that ozone exposure (0.5 ppm x 1 hr) significantly increased DEP-induced IL-8 gene expression in A549 cells (117 +/- 19 pg/ml, n = 6, p < 0.05) as compared to cultures treated with DEP (100 microg/ml x 4 hr) alone (31 +/- 3 pg/ml, n = 6), or cultures exposed to purified air (24 +/- 6 pg/ml, n = 6). The increased DEP-induced IL-8 gene expression following ozone exposure was attributed to ozone-induced increase in the activity of the transcription factors NF-kappaB and NF-IL6. The results of the present study indicate that ozone exposure enhances the toxicity of DEP in human airway epithelial cells by augmenting IL-8 gene expression, a potent chemoattractant of neutrophils in the lung. PMID:16819095

  17. Secondary Flow Augmentation during Intermittent Oscillatory Flow in Model Human Central Airways

    NASA Astrophysics Data System (ADS)

    Tanaka, Gaku; Oka, Kotaro; Tanishita, Kazuo

    The efficiency of axial gas dispersion during ventilation with high-frequency oscillations (HFO) can be improved by manipulating the oscillatory flow waveform such that intermittent oscillatory flow occurs. To clarify the augmentation of axial gas transfer during intermittent oscillatory flow, we measured the axial and secondary velocity profiles during intermittent oscillatory flow through a model human central airway. We used a rigid model of human airways consisting of asymmetrical bifurcations up to third generation. Velocities in the axial and radial directions were measured with two-color laser-Doppler velocimetry. Secondary flow was accelerated at the beginning of the stationary period, particularly in the trachea, which resulted in enhanced gas transport during intermittent oscillatory flow.

  18. ACTIVATION OF THE EGF RECEPTOR SIGNALING PATHWAY IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO UTAH VALLEY PARTICULATE MATTER

    EPA Science Inventory

    Exposure to ambient particulate matter (PM) in the Utah Valley (UV) has previously been associated with a variety of adverse health effects. To investigate intracellular signaling mechanisms for pulmonary responses to UV PM inhalation, human primary airway epithelial cells (NHBE)...

  19. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells

    PubMed Central

    Huang, Sarah X L; Green, Michael D; de Carvalho, Ana Toste; Mumau, Melanie; Chen, Ya-Wen; D’Souza, Sunita L.; Snoeck, Hans-Willem

    2015-01-01

    Lung and airway epithelial cells generated in vitro from human pluripotent stem cells have applications in regenerative medicine, modeling of lung disease, drug screening and studies of human lung development. Here we describe a strategy for directed differentiation of human pluripotent stem cells into developmental lung progenitors, and their subsequent differentiation into predominantly distal lung epithelial cells. The protocol entails four stages that recapitulate lung development and takes approximately 50 days. First, definitive endoderm is induced in the presence of high concentrations of Activin A. Subsequently, lung-biased anterior foregut endoderm is specified by sequential inhibition of BMP, TGF-β and Wnt signaling. Anterior foregut endoderm is then ventralized by applying Wnt, BMP, FGF and RA signaling to obtain lung and airway progenitors. Finally, these are further differentiated into more mature epithelial cells types using Wnt, FGF, c-AMP and glucocorticoid agonism. This protocol is conducted in defined conditions, does not involve genetic manipulation of the cells, and results in cultures where the majority of the cells express markers of various lung and airway epithelial cells, with a predominance of cells identifiable as functional type II alveolar epithelial cells. PMID:25654758

  20. Numerical simulation of soft palate movement and airflow in human upper airway by fluid-structure interaction method

    NASA Astrophysics Data System (ADS)

    Sun, Xiuzhen; Yu, Chi; Wang, Yuefang; Liu, Yingxi

    2007-08-01

    In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images of a healthy person and a patient with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), three-dimensional models of upper airway cavity and soft palate are reconstructed by the method of surface rendering. Numerical simulation is performed for airflow in the upper airway and displacement of soft palate by fluid-structure interaction analysis. The reconstructed three-dimensional models precisely preserve the original configuration of upper airways and soft palate. The results of the pressure and velocity distributions in the airflow field are quantitatively determined, and the displacement of soft palate is presented. Pressure gradients of airway are lower for the healthy person and the airflow distribution is quite uniform in the case of free breathing. However, the OSAHS patient remarkably escalates both the pressure and velocity in the upper airway, and causes higher displacement of the soft palate. The present study is useful in revealing pathogenesis and quantitative mutual relationship between configuration and function of the upper airway as well as in diagnosing diseases related to anatomical structure and function of the upper airway.

  1. Quantitative imaging of the human upper airway: instrument design and clinical studies

    NASA Astrophysics Data System (ADS)

    Leigh, M. S.; Armstrong, J. J.; Paduch, A.; Sampson, D. D.; Walsh, J. H.; Hillman, D. R.; Eastwood, P. R.

    2006-08-01

    Imaging of the human upper airway is widely used in medicine, in both clinical practice and research. Common imaging modalities include video endoscopy, X-ray CT, and MRI. However, no current modality is both quantitative and safe to use for extended periods of time. Such a capability would be particularly valuable for sleep research, which is inherently reliant on long observation sessions. We have developed an instrument capable of quantitative imaging of the human upper airway, based on endoscopic optical coherence tomography. There are no dose limits for optical techniques, and the minimally invasive imaging probe is safe for use in overnight studies. We report on the design of the instrument and its use in preliminary clinical studies, and we present results from a range of initial experiments. The experiments show that the instrument is capable of imaging during sleep, and that it can record dynamic changes in airway size and shape. This information is useful for research into sleep disorders, and potentially for clinical diagnosis and therapies.

  2. Action of N-acylated ambroxol derivatives on secretion of chloride ions in human airway epithelia.

    PubMed

    Yamada, Takahiro; Takemura, Yoshizumi; Niisato, Naomi; Mitsuyama, Etsuko; Iwasaki, Yoshinobu; Marunaka, Yoshinori

    2009-03-13

    We report the effects of new N-acylated ambroxol derivatives (TEI-588a, TEI-588b, TEI-589a, TEI-589b, TEI-602a and TEI-602b: a, aromatic amine-acylated derivative; b, aliphatic amine-acylated derivative) induced from ambroxol (a mucolytic agent to treat human lung diseases) on Cl(-) secretion in human submucosal serous Calu-3 cells under a Na(+)/K(+)/2Cl(-) cotransporter-1 (NKCC1)-mediated hyper-secreting condition. TEI-589a, TEI-589b and TEI-602a diminished hyper-secretion of Cl(-) by diminishing the activity of NKCC1 without blockade of apical Cl(-) channel (TEI-589a>TEI-602a>TEI-589b), while any other tested compounds including ambroxol had no effects on Cl(-) secretion. These indicate that the inhibitory action of an aromatic amine-acylated derivative on Cl(-) secretion is stronger that that of an aliphatic amine-acylated derivative, and that 3-(2,5-dimethyl)furoyl group has a strong action in inhibition of Cl(-) secretion than cyclopropanoyl group. We here indicate that TEI-589a, TEI-589b and TEI-602a reduce hyper-secretion to an appropriate level in the airway, providing a possibility that the compound can be an effective drug in airway obstructive diseases including COPD by reducing the airway resistance under a hyper-secreting condition.

  3. Staphylococcus aureus triggers nitric oxide production in human upper airway epithelium

    PubMed Central

    Carey, Ryan M.; Workman, Alan D.; Chen, Bei; Adappa, Nithin D.; Palmer, James N.; Kennedy, David W.; Lee, Robert J.; Cohen, Noam A.

    2016-01-01

    Background Nitric oxide (NO) is an important antibacterial defense molecule produced by upper airway (sinonasal) epithelial cells. We previously showed that a bitter taste receptor expressed in airway epithelium detects quorum-sensing molecules secreted by Gram-negative bacteria and subsequently triggers bactericidal NO production. We hypothesized that the upper airway epithelium may also be able to detect the Gram-positive aerobe Staphylococcus aureus and mount an NO response. Methods Human sinonasal air-liquid interface (ALI) cultures were treated with methicillin-resistant S. aureus (MRSA)-conditioned medium (CM), and NO production was measured using fluorescence imaging. Inhibitors of bitter taste receptor signaling were used to pharmacologically determine if this pathway was involved in the production of NO. Results A low-molecular-weight, heat, and protease-stabile product found in MRSA CM induced differential, NO synthase (NOS)-mediated NO production. This response varied markedly between individual patients. The MRSA-stimulated NO production was not dependent on 2 important components of bitter taste signaling: phospholipase C isoform β-2 or the transient receptor potential melastatin isoform 5 (TRPM5) ion channel. Conclusion This study shows that a S. aureus product elicits an NO-mediated innate defense response in human upper airway epithelium. The active bacterial product is likely a small, nonpeptide molecule that triggers a pathway independent of bitter taste receptors. Patient variation in the NO response to MRSA product(s), potentially due to genetic differences, might play a role in pathophysiology of Gram-positive upper respiratory infections and/or pathogenesis of chronic rhinosinusitis. PMID:26097237

  4. Exposure to welding fumes and lower airway infection with Streptococcus pneumoniae

    PubMed Central

    Suri, Reetika; Periselneris, Jimstan; Lanone, Sophie; Zeidler-Erdely, Patti C.; Melton, Geoffrey; Palmer, Keith T.; Andujar, Pascal; Antonini, James M.; Cohignac, Vanessa; Erdely, Aaron; Jose, Ricardo J.; Mudway, Ian; Brown, Jeremy; Grigg, Jonathan

    2015-01-01

    Background Welders are at increased risk of pneumococcal pneumonia. The mechanism for this association is not known. The capacity of pneumococci to adhere to and infect lower airway cells is mediated by host-expressed platelet-activating factor receptor (PAFR). Objective We sought to assess the effect of mild steel welding fumes (MS-WF) on PAFR-dependent pneumococcal adhesion and infection to human airway cells in vitro and on pneumococcal airway infection in a mouse model. Methods The oxidative potential of MS-WF was assessed by their capacity to reduce antioxidants in vitro. Pneumococcal adhesion and infection of A549, BEAS-2B, and primary human bronchial airway cells were assessed by means of quantitative bacterial culture and expressed as colony-forming units (CFU). After intranasal instillation of MS-WF, mice were infected with Streptococcus pneumoniae, and bronchoalveolar lavage fluid (BALF) and lung CFU values were determined. PAFR protein levels were assessed by using immunofluorescence and immunohistochemistry, and PAFR mRNA expression was assessed by using quantitative PCR. PAFR was blocked by CV-3988, and oxidative stress was attenuated by N-acetylcysteine. Results: MS-WF exhibited high oxidative potential. In A549 and BEAS-2B cells MS-WF increased pneumococcal adhesion and infection and PAFR protein expression. Both CV-3988 and N-acetylcysteine reduced MS-WF–stimulated pneumococcal adhesion and infection of airway cells. MS-WF increased mouse lung PAFR mRNA expression and increased BALF and lung pneumococcal CFU values. In MS-WF–exposed mice CV-3988 reduced BALF CFU values. Conclusions Hypersusceptibility of welders to pneumococcal pneumonia is in part mediated by the capacity of welding fumes to increase PAFR-dependent pneumococcal adhesion and infection of lower airway cells. PMID:26277596

  5. Growth and characterization of different human rhinovirus C types in three-dimensional human airway epithelia reconstituted in vitro

    SciTech Connect

    Tapparel, Caroline; Sobo, Komla; Constant, Samuel; Huang, Song; Van Belle, Sandra; Kaiser, Laurent

    2013-11-15

    New molecular diagnostic tools have recently allowed the discovery of human rhinovirus species C (HRV-C) that may be overrepresented in children with lower respiratory tract complications. Unlike HRV-A and HRV-B, HRV-C cannot be propagated in conventional immortalized cell lines and their biological properties have been difficult to study. Recent studies have described the successful amplification of HRV-C15, HRV-C11, and HRV-C41 in sinus mucosal organ cultures and in fully differentiated human airway epithelial cells. Consistent with these studies, we report that a panel of clinical HRV-C specimens including HRV-C2, HRV-C7, HRV-C12, HRV-C15, and HRV-C29 types were all capable of mediating productive infection in reconstituted 3D human primary upper airway epithelial tissues and that the virions enter and exit preferentially through the apical surface. Similar to HRV-A and HRV-B, our data support the acid sensitivity of HRV-C. We observed also that the optimum temperature requirement during HRV-C growth may be type-dependent. - Highlights: • A 3D human upper airway epithelia reconstituted in vitro supports HRV-C growth. • HRV-Cs enter and exit preferentially at the apical side of this ALI culture system. • HRV-Cs are acid sensitive. • Temperature sensitivity may be type-dependent for HRV-Cs.

  6. Directed Induction of Functional Multi-ciliated Cells in Proximal Airway Epithelial Spheroids from Human Pluripotent Stem Cells

    PubMed Central

    Konishi, Satoshi; Gotoh, Shimpei; Tateishi, Kazuhiro; Yamamoto, Yuki; Korogi, Yohei; Nagasaki, Tadao; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Ito, Isao; Tsukita, Sachiko; Mishima, Michiaki

    2015-01-01

    Summary Multi-ciliated airway cells (MCACs) play a role in mucociliary clearance of the lung. However, the efficient induction of functional MCACs from human pluripotent stem cells has not yet been reported. Using carboxypeptidase M (CPM) as a surface marker of NKX2-1+-ventralized anterior foregut endoderm cells (VAFECs), we report a three-dimensional differentiation protocol for generating proximal airway epithelial progenitor cell spheroids from CPM+ VAFECs. These spheroids could be induced to generate MCACs and other airway lineage cells without alveolar epithelial cells. Furthermore, the directed induction of MCACs and of pulmonary neuroendocrine lineage cells was promoted by adding DAPT, a Notch pathway inhibitor. The induced MCACs demonstrated motile cilia with a “9 + 2” microtubule arrangement and dynein arms capable of beating and generating flow for mucociliary transport. This method is expected to be useful for future studies on human airway disease modeling and regenerative medicine. PMID:26724905

  7. Directed Induction of Functional Multi-ciliated Cells in Proximal Airway Epithelial Spheroids from Human Pluripotent Stem Cells.

    PubMed

    Konishi, Satoshi; Gotoh, Shimpei; Tateishi, Kazuhiro; Yamamoto, Yuki; Korogi, Yohei; Nagasaki, Tadao; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Ito, Isao; Tsukita, Sachiko; Mishima, Michiaki

    2016-01-12

    Multi-ciliated airway cells (MCACs) play a role in mucociliary clearance of the lung. However, the efficient induction of functional MCACs from human pluripotent stem cells has not yet been reported. Using carboxypeptidase M (CPM) as a surface marker of NKX2-1(+)-ventralized anterior foregut endoderm cells (VAFECs), we report a three-dimensional differentiation protocol for generating proximal airway epithelial progenitor cell spheroids from CPM(+) VAFECs. These spheroids could be induced to generate MCACs and other airway lineage cells without alveolar epithelial cells. Furthermore, the directed induction of MCACs and of pulmonary neuroendocrine lineage cells was promoted by adding DAPT, a Notch pathway inhibitor. The induced MCACs demonstrated motile cilia with a "9 + 2" microtubule arrangement and dynein arms capable of beating and generating flow for mucociliary transport. This method is expected to be useful for future studies on human airway disease modeling and regenerative medicine. PMID:26724905

  8. Directed Induction of Functional Multi-ciliated Cells in Proximal Airway Epithelial Spheroids from Human Pluripotent Stem Cells.

    PubMed

    Konishi, Satoshi; Gotoh, Shimpei; Tateishi, Kazuhiro; Yamamoto, Yuki; Korogi, Yohei; Nagasaki, Tadao; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Ito, Isao; Tsukita, Sachiko; Mishima, Michiaki

    2016-01-12

    Multi-ciliated airway cells (MCACs) play a role in mucociliary clearance of the lung. However, the efficient induction of functional MCACs from human pluripotent stem cells has not yet been reported. Using carboxypeptidase M (CPM) as a surface marker of NKX2-1(+)-ventralized anterior foregut endoderm cells (VAFECs), we report a three-dimensional differentiation protocol for generating proximal airway epithelial progenitor cell spheroids from CPM(+) VAFECs. These spheroids could be induced to generate MCACs and other airway lineage cells without alveolar epithelial cells. Furthermore, the directed induction of MCACs and of pulmonary neuroendocrine lineage cells was promoted by adding DAPT, a Notch pathway inhibitor. The induced MCACs demonstrated motile cilia with a "9 + 2" microtubule arrangement and dynein arms capable of beating and generating flow for mucociliary transport. This method is expected to be useful for future studies on human airway disease modeling and regenerative medicine.

  9. G4-Tetra DNA Duplex Induce Lung Cancer Cell Apoptosis in A549 Cells

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobo; Zhao, YiZhuo; Lu, Hu; Fu, Cuiping; Li, Xiao; Jiang, Liyan; Li, Shanqun

    2016-10-01

    The specific DNA is typically impermeable to the plasma membrane due to its natural characters, but DNA tetra structures (DTNs) can be readily uptake by cells in the absence of transfection agents, providing a new strategy to deliver DNA drugs. In this research, the delivery efficiency of tetrahedral DNA nanostructures was measured on adenocarcinomic human alveolar basal epithelial (A549) cells via delivering AS1411 (G4). The DNA tetra-AS1411 complex was rapidly and abundantly uptake by A549 cells, and the induced apoptosis was enhanced. Furthermore, biodistribution in mouse proved the rapid clearance from non-targeted organs in vivo. This study improved the understanding of potential function in DNA-based drug delivery and proved that DTNs-AS1411 could be potentially useful for the treatment of lung cancer.

  10. Measurement of Flow Patterns and Dispersion in the Human Airways

    NASA Astrophysics Data System (ADS)

    Fresconi, Frank E.; Prasad, Ajay K.

    2006-03-01

    A detailed knowledge of the flow and dispersion within the human respiratory tract is desirable for numerous reasons. Both risk assessments of exposure to toxic particles in the environment and the design of medical delivery systems targeting both lung-specific conditions (asthma, cystic fibrosis, and chronic obstructive pulmonary disease (COPD)) and system-wide ailments (diabetes, cancer, hormone replacement) would profit from such an understanding. The present work features experimental efforts aimed at elucidating the fluid mechanics of the lung. Particle image velocimetry (PIV) and laser induced fluorescence (LIF) measurements of oscillatory flows were undertaken in anatomically accurate models (single and multi-generational) of the conductive region of the lung. PIV results captured primary and secondary velocity fields. LIF was used to determine the amount of convective dispersion across an individual generation of the lung.

  11. Computational model of soft tissues in the human upper airway.

    PubMed

    Pelteret, J-P V; Reddy, B D

    2012-01-01

    This paper presents a three-dimensional finite element model of the tongue and surrounding soft tissues with potential application to the study of sleep apnoea and of linguistics and speech therapy. The anatomical data was obtained from the Visible Human Project, and the underlying histological data was also extracted and incorporated into the model. Hyperelastic constitutive models were used to describe the material behaviour, and material incompressibility was accounted for. An active Hill three-element muscle model was used to represent the muscular tissue of the tongue. The neural stimulus for each muscle group was determined through the use of a genetic algorithm-based neural control model. The fundamental behaviour of the tongue under gravitational and breathing-induced loading is investigated. It is demonstrated that, when a time-dependent loading is applied to the tongue, the neural model is able to control the position of the tongue and produce a physiologically realistic response for the genioglossus. PMID:25830209

  12. Computational model of soft tissues in the human upper airway.

    PubMed

    Pelteret, J-P V; Reddy, B D

    2012-01-01

    This paper presents a three-dimensional finite element model of the tongue and surrounding soft tissues with potential application to the study of sleep apnoea and of linguistics and speech therapy. The anatomical data was obtained from the Visible Human Project, and the underlying histological data was also extracted and incorporated into the model. Hyperelastic constitutive models were used to describe the material behaviour, and material incompressibility was accounted for. An active Hill three-element muscle model was used to represent the muscular tissue of the tongue. The neural stimulus for each muscle group was determined through the use of a genetic algorithm-based neural control model. The fundamental behaviour of the tongue under gravitational and breathing-induced loading is investigated. It is demonstrated that, when a time-dependent loading is applied to the tongue, the neural model is able to control the position of the tongue and produce a physiologically realistic response for the genioglossus.

  13. Convective dispersion during steady flow in the conducting airways of the human lung.

    PubMed

    Fresconi, Frank E; Prasad, Ajay K

    2008-02-01

    The adverse health effects of inhaled particulate matter from the environment depend on its dispersion, transport, and deposition in the human airways. Similarly, precise targeting of deposition sites by pulmonary drug delivery systems also relies on characterizing the dispersion and transport of therapeutic aerosols in the respiratory tract. A variety of mechanisms may contribute to convective dispersion in the lung; simple axial streaming, augmented dispersion, and steady streaming are investigated in this effort. Flow visualization of a bolus during inhalation and exhalation, and dispersion measurements were conducted during steady flow in a three-generational, anatomically accurate in vitro model of the conducting airways to support this goal. Control variables included Reynolds number, flow direction, generation, and branch. Experiments illustrate transport patterns in the lumen cross section and map their relation to dispersion metrics. These results indicate that simple axial streaming, rather than augmented dispersion, is the dominant steady convective dispersion mechanism in symmetric Weibel generations 7-13 during normal respiration. Experimental evidence supports the branching nature of the airways as a possible contributor to steady streaming in the lung.

  14. Cigarette smoke-induced mitochondrial fragmentation and dysfunction in human airway smooth muscle.

    PubMed

    Aravamudan, Bharathi; Kiel, Alexander; Freeman, Michelle; Delmotte, Philippe; Thompson, Michael; Vassallo, Robert; Sieck, Gary C; Pabelick, Christina M; Prakash, Y S

    2014-05-01

    The balance between mitochondrial fission and fusion is crucial for mitochondria to perform its normal cellular functions. We hypothesized that cigarette smoke (CS) disrupts this balance and enhances mitochondrial dysfunction in the airway. In nonasthmatic human airway smooth muscle (ASM) cells, CS extract (CSE) induced mitochondrial fragmentation and damages their networked morphology in a concentration-dependent fashion, via increased expression of mitochondrial fission protein dynamin-related protein 1 (Drp1) and decreased fusion protein mitofusin (Mfn) 2. CSE effects on Drp1 vs. Mfn2 and mitochondrial network morphology involved reactive oxygen species (ROS), activation of extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), protein kinase C (PKC) and proteasome pathways, as well as transcriptional regulation via factors such as NF-κB and nuclear erythroid 2-related factor 2. Inhibiting Drp1 prevented CSE effects on mitochondrial networks and ROS generation, whereas blocking Mfn2 had the opposite, detrimental effect. In ASM from asmatic patients, mitochondria exhibited substantial morphological defects at baseline and showed increased Drp1 but decreased Mfn2 expression, with exacerbating effects of CSE. Overall, these results highlight the importance of mitochondrial networks and their regulation in the context of cellular changes induced by insults such as inflammation (as in asthma) or CS. Altered mitochondrial fission/fusion proteins have a further potential to influence parameters such as ROS and cell proliferation and apoptosis relevant to airway diseases. PMID:24610934

  15. A numerical study of heat and water vapor transfer in MDCT-based human airway models.

    PubMed

    Wu, Dan; Tawhai, Merryn H; Hoffman, Eric A; Lin, Ching-Long

    2014-10-01

    A three-dimensional (3D) thermo-fluid model is developed to study regional distributions of temperature and water vapor in three multi-detector row computed-tomography-based human airways with minute ventilations of 6, 15 and 30 L/min. A one-dimensional (1D) model is also solved to provide necessary initial and boundary conditions for the 3D model. Both 3D and 1D predicted temperature distributions agree well with available in vivo measurement data. On inspiration, the 3D cold high-speed air stream is split at the bifurcation to form secondary flows, with its cold regions biased toward the inner wall. The cold air flowing along the wall is warmed up more rapidly than the air in the lumen center. The repeated splitting pattern of air streams caused by bifurcations acts as an effective mechanism for rapid heat and mass transfer in 3D. This provides a key difference from the 1D model, where heating relies largely on diffusion in the radial direction, thus significantly affecting gradient-dependent variables, such as energy flux and water loss rate. We then propose the correlations for respective heat and mass transfer in the airways of up to 6 generations: [Formula: see text] and [Formula: see text], where Nu is the Nusselt number, Sh is the Sherwood number, Re is the branch Reynolds number, D a is the airway equivalent diameter, and [Formula: see text] is the tracheal equivalent diameter.

  16. Regulation of actin dynamics by WNT-5A: implications for human airway smooth muscle contraction

    PubMed Central

    Koopmans, Tim; Kumawat, Kuldeep; Halayko, Andrew J; Gosens, Reinoud

    2016-01-01

    A defining feature of asthma is airway hyperresponsiveness (AHR), which underlies the exaggerated bronchoconstriction response of asthmatics. The role of the airway smooth muscle (ASM) in AHR has garnered increasing interest over the years, but how asthmatic ASM differs from healthy ASM is still an active topic of debate. WNT-5A is increasingly expressed in asthmatic ASM and has been linked with Th2-high asthma. Due to its link with calcium and cytoskeletal remodelling, we propose that WNT-5A may modulate ASM contractility. We demonstrated that WNT-5A can increase maximum isometric tension in bovine tracheal smooth muscle strips. In addition, we show that WNT-5A is preferentially expressed in contractile human airway myocytes compared to proliferative cells, suggesting an active role in maintaining contractility. Furthermore, WNT-5A treatment drives actin polymerisation, but has no effect on intracellular calcium flux. Next, we demonstrated that WNT-5A directly regulates TGF-β1-induced expression of α-SMA via ROCK-mediated actin polymerization. These findings suggest that WNT-5A modulates fundamental mechanisms that affect ASM contraction and thus may be of relevance for AHR in asthma. PMID:27468699

  17. Arsenic Compromises Conducting Airway Epithelial Barrier Properties in Primary Mouse and Immortalized Human Cell Cultures

    PubMed Central

    Sherwood, Cara L.; Liguori, Andrew E.; Olsen, Colin E.; Lantz, R. Clark; Burgess, Jefferey L.; Boitano, Scott

    2013-01-01

    Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb)] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE) cell model we found that both micromolar (3.9 μM) and submicromolar (0.8 μM) arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl) Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-). We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway. PMID:24349408

  18. Quality control in microarray assessment of gene expression in human airway epithelium

    PubMed Central

    Raman, Tina; O'Connor, Timothy P; Hackett, Neil R; Wang, Wei; Harvey, Ben-Gary; Attiyeh, Marc A; Dang, David T; Teater, Matthew; Crystal, Ronald G

    2009-01-01

    Background Microarray technology provides a powerful tool for defining gene expression profiles of airway epithelium that lend insight into the pathogenesis of human airway disorders. The focus of this study was to establish rigorous quality control parameters to ensure that microarray assessment of the airway epithelium is not confounded by experimental artifact. Samples (total n = 223) of trachea, large and small airway epithelium were collected by fiberoptic bronchoscopy of 144 individuals and hybridized to Affymetrix microarrays. The pre- and post-chip quality control (QC) criteria established, included: (1) RNA quality, assessed by RNA Integrity Number (RIN) ≥ 7.0; (2) cRNA transcript integrity, assessed by signal intensity ratio of GAPDH 3' to 5' probe sets ≤ 3.0; and (3) the multi-chip normalization scaling factor ≤ 10.0. Results Of the 223 samples, all three criteria were assessed in 191; of these 184 (96.3%) passed all three criteria. For the remaining 32 samples, the RIN was not available, and only the other two criteria were used; of these 29 (90.6%) passed these two criteria. Correlation coefficients for pairwise comparisons of expression levels for 100 maintenance genes in which at least one array failed the QC criteria (average Pearson r = 0.90 ± 0.04) were significantly lower (p < 0.0001) than correlation coefficients for pairwise comparisons between arrays that passed the QC criteria (average Pearson r = 0.97 ± 0.01). Inter-array variability was significantly decreased (p < 0.0001) among samples passing the QC criteria compared with samples failing the QC criteria. Conclusion Based on the aberrant maintenance gene data generated from samples failing the established QC criteria, we propose that the QC criteria outlined in this study can accurately distinguish high quality from low quality data, and can be used to delete poor quality microarray samples before proceeding to higher-order biological analyses and interpretation. PMID:19852842

  19. Effect of surface tension of mucosal lining liquid on upper airway mechanics in anesthetized humans.

    PubMed

    Kirkness, Jason P; Eastwood, Peter R; Szollosi, Irene; Platt, Peter R; Wheatley, John R; Amis, Terence C; Hillman, David R

    2003-07-01

    Upper airway (UA) patency may be influenced by surface tension (gamma) operating within the (UAL). We examined the role of gamma of UAL in the maintenance of UA patency in eight isoflurane-anesthetized supine human subjects breathing via a nasal mask connected to a pneumotachograph attached to a pressure delivery system. We evaluated 1). mask pressure at which the UA closed (Pcrit), 2). UA resistance upstream from the site of UA collapse (RUS), and 3). mask pressure at which the UA reopened (Po). A multiple pressure-transducer catheter was used to identify the site of airway closure (velopharyngeal in all subjects). UAL samples (0.2 microl) were collected, and the gamma of UAL was determined by using the "pull-off force" technique. Studies were performed before and after the intrapharyngeal instillation of 5 ml of exogenous surfactant (Exosurf, Glaxo Smith Kline). The gamma of UAL decreased from 61.9 +/- 4.1 (control) to 50.3 +/- 5.0 mN/m (surfactant; P < 0.02). Changes in Po, RUS, and Po - Pcrit (change = control - surfactant) were positively correlated with changes in gamma (r2 > 0.6; P < 0.02) but not with changes in Pcrit (r2 = 0.4; P > 0.9). In addition, mean peak inspiratory airflow (no flow limitation) significantly increased (P < 0.04) from 0.31 +/- 0.06 (control) to 0.36 +/- 0.06 l/s (surfactant). These findings suggest that gamma of UAL exerts a force on the UA wall that hinders airway opening. Instillation of exogenous surfactant into the UA lowers the gamma of UAL, thus increasing UA patency and augmenting reopening of the collapsed airway. PMID:12626492

  20. Lipocortin 1 mediates dexamethasone-induced growth arrest of the A549 lung adenocarcinoma cell line.

    PubMed Central

    Croxtall, J D; Flower, R J

    1992-01-01

    The synthetic glucocorticoid dexamethasone (1 microM to 1 pM) strongly (maximum greater than 80%) inhibits proliferation of the A549 human lung adenocarcinoma line (EC50 greater than 1 nM) and leads to the appearance, or a further increase (approximately 3-fold) in the expression on the cell surface, of the calcium and phospholipid binding protein lipocortin (annexin) 1. Both these effects, which are shared by hydrocortisone (1 microM) but not by progesterone or aldosterone (1 microM), are inhibited by the antiglucocorticoids RU38486 and RU43044 (1 microM). The nonsteroidal antiinflammatory drugs indomethacin (1 microM) and naproxen (10 microM) and human recombinant lipocortin 1 (0.05-5.0 micrograms/ml) also produce growth arrest in this cell line. During proliferation A549 cells spontaneously release prostaglandin E2 [10-20 ng (28-57 pmol) per ml per 5-day period] into the growth medium. In concentrations that cause growth-arrest, dexamethasone, indomethacin, and lipocortin 1 abolish the generation of this eicosanoid by A549 cells. Prostaglandin E2 itself (0.01-1 pM) stimulates cell growth and partially reverses (approximately 50%) the inhibition of growth caused by dexamethasone and indomethacin. Addition of the neutralizing anti-lipocortin 1 monoclonal antibody 1A (5 micrograms/ml), but not the nonneutralizing anti-lipocortin monoclonal antibody 1B, substantially reversed (greater than 80%) the inhibitory activity of dexamethasone on both growth and prostaglandin E2 synthesis. The generation of prostaglandin E2 by A549 cells seems to be an important regulator of cell proliferation in vitro and the dexamethasone-induced suppression of proliferation in this model is attributable to eicosanoid inhibition caused by lipocortin 1. Images PMID:1533045

  1. Glucocorticoid Clearance and Metabolite Profiling in an In Vitro Human Airway Epithelium Lung Model.

    PubMed

    Rivera-Burgos, Dinelia; Sarkar, Ujjal; Lever, Amanda R; Avram, Michael J; Coppeta, Jonathan R; Wishnok, John S; Borenstein, Jeffrey T; Tannenbaum, Steven R

    2016-02-01

    The emergence of microphysiologic epithelial lung models using human cells in a physiologically relevant microenvironment has the potential to be a powerful tool for preclinical drug development and to improve predictive power regarding in vivo drug clearance. In this study, an in vitro model of the airway comprising human primary lung epithelial cells cultured in a microfluidic platform was used to establish a physiologic state and to observe metabolic changes as a function of glucocorticoid exposure. Evaluation of mucus production rate and barrier function, along with lung-specific markers, demonstrated that the lungs maintained a differentiated phenotype. Initial concentrations of 100 nM hydrocortisone (HC) and 30 nM cortisone (C) were used to evaluate drug clearance and metabolite production. Measurements made using ultra-high-performance liquid chromatography and high-mass-accuracy mass spectrometry indicated that HC metabolism resulted in the production of C and dihydrocortisone (diHC). When the airway model was exposed to C, diHC was identified; however, no conversion to HC was observed. Multicompartmental modeling was used to characterize the lung bioreactor data, and pharmacokinetic parameters, including elimination clearance and elimination half-life, were estimated. Polymerse chain reaction data confirmed overexpression of 11-β hydroxysteroid dehydrogenase 2 (11βHSD2) over 11βHSD1, which is biologically relevant to human lung. Faster metabolism was observed relative to a static model on elevated rates of C and diHC formation. Overall, our results demonstrate that this lung airway model has been successfully developed and could interact with other human tissues in vitro to better predict in vivo drug behavior.

  2. Junctional abnormalities in human airway epithelial cells expressing F508del CFTR

    PubMed Central

    Stauffer, Brandon; Moriarty, Hannah K.; Kim, Agnes H.; McCarty, Nael A.; Koval, Michael

    2015-01-01

    Cystic fibrosis (CF) has a profound impact on airway physiology. Accumulating evidence suggests that intercellular junctions are impaired in CF. We examined changes to CF transmembrane conductance regulator (CFTR) function, tight junctions, and gap junctions in NuLi-1 (CFTRwt/wt) and CuFi-5 (CFTRΔF508/ΔF508) cells. Cells were studied at air-liquid interface (ALI) and compared with primary human bronchial epithelial cells. On the basis of fluorescent lectin binding, the phenotype of the NuLi-1 and CuFi-5 cells at week 8 resembled that of serous, glycoprotein-rich airway cells. After week 7, CuFi-5 cells possessed 130% of the epithelial Na+ channel activity and 17% of the CFTR activity of NuLi-1 cells. In both cell types, expression levels of CFTR were comparable to those in primary airway epithelia. Transepithelial resistance of NuLi-1 and CuFi-5 cells stabilized during maturation in ALI culture, with significantly lower transepithelial resistance for CuFi-5 than NuLi-1 cells. We also found that F508del CFTR negatively affects gap junction function in the airway. NuLi-1 and CuFi-5 cells express the connexins Cx43 and Cx26. While both connexins were properly trafficked by NuLi-1 cells, Cx43 was mistrafficked by CuFi-5 cells. Cx43 trafficking was rescued in CuFi-5 cells treated with 4-phenylbutyric acid (4-PBA), as assessed by intracellular dye transfer. 4-PBA-treated CuFi-5 cells also exhibited an increase in forskolin-induced CFTR-mediated currents. The Cx43 trafficking defect was confirmed using IB3-1 cells and found to be corrected by 4-PBA treatment. These data support the use of NuLi-1 and CuFi-5 cells to examine the effects of F508del CFTR expression on tight junction and gap junction function in the context of serous human airway cells. PMID:26115671

  3. RNA-Seq quantification of the human small airway epithelium transcriptome

    PubMed Central

    2012-01-01

    Background The small airway epithelium (SAE), the cell population that covers the human airway surface from the 6th generation of airway branching to the alveoli, is the major site of lung disease caused by smoking. The focus of this study is to provide quantitative assessment of the SAE transcriptome in the resting state and in response to chronic cigarette smoking using massive parallel mRNA sequencing (RNA-Seq). Results The data demonstrate that 48% of SAE expressed genes are ubiquitous, shared with many tissues, with 52% enriched in this cell population. The most highly expressed gene, SCGB1A1, is characteristic of Clara cells, the cell type unique to the human SAE. Among other genes expressed by the SAE are those related to Clara cell differentiation, secretory mucosal defense, and mucociliary differentiation. The high sensitivity of RNA-Seq permitted quantification of gene expression related to infrequent cell populations such as neuroendocrine cells and epithelial stem/progenitor cells. Quantification of the absolute smoking-induced changes in SAE gene expression revealed that, compared to ubiquitous genes, more SAE-enriched genes responded to smoking with up-regulation, and those with the highest basal expression levels showed most dramatic changes. Smoking had no effect on SAE gene splicing, but was associated with a shift in molecular pattern from Clara cell-associated towards the mucus-secreting cell differentiation pathway with multiple features of cancer-associated molecular phenotype. Conclusions These observations provide insights into the unique biology of human SAE by providing quantit-ative assessment of the global transcriptome under physiological conditions and in response to the stress of chronic cigarette smoking. PMID:22375630

  4. Bubble continuous positive airway pressure in a human immunodeficiency virus-infected infant

    PubMed Central

    McCollum, E. D.; Smith, A.; Golitko, C. L.

    2014-01-01

    SUMMARY World Health Organization-classified very severe pneumonia due to Pneumocystis jirovecii infection is recognized as a life-threatening condition in human immunodeficiency virus (HIV) infected infants. We recount the use of nasal bubble continuous positive airway pressure (BCPAP) in an HIV-infected African infant with very severe pneumonia and treatment failure due to suspected infection with P. jirovecii. We also examine the potential implications of BCPAP use in resource-poor settings with a high case index of acute respiratory failure due to HIV-related pneumonia, but limited access to mechanical ventilation. PMID:21396221

  5. Numerical analysis of micro- and nano-particle deposition in a realistic human upper airway.

    PubMed

    Farhadi Ghalati, Pejman; Keshavarzian, Erfan; Abouali, Omid; Faramarzi, Abolhassan; Tu, Jiyuan; Shakibafard, Alireza

    2012-01-01

    A computational model was developed for studying the flow field and particle deposition in a human upper airway system, including: nasal cavity, nasopharynx, oropharynx, larynx and trachea. A series of coronal CT scan images of a 24 year old woman was used to construct the 3D model. The Lagrangian and Eulerian approaches were used, respectively, to find the trajectories of micro-particles and concentration of nano-particles. The total and regional deposition fractions of micro/nanoparticles were evaluated and the major hot spots for the deposition of inhaled particles were found. PMID:22061046

  6. MicroRNA-1228(*) inhibit apoptosis in A549 cells exposed to fine particulate matter.

    PubMed

    Li, Xiaobo; Ding, Zhen; Zhang, Chengcheng; Zhang, Xin; Meng, Qingtao; Wu, Shenshen; Wang, Shizhi; Yin, Lihong; Pu, Yuepu; Chen, Rui

    2016-05-01

    Studies have reported associations between fine particulate matter (PM2.5) and respiratory disorders; however, the underlying mechanism is not completely clear owing to the complex components of PM2.5. microRNAs (miRNAs) demonstrate tremendous regulation to target genes, which are sensitive to exogenous stimulation, and facilitate the integrative understood of biological responses. Here, significantly modulated miRNA were profiled by miRNA microarray, coupled with bioinformatic analysis; the potential biological function of modulated miRNA were predicted and subsequently validated by cell-based assays. Downregulation of miR-1228-5p (miR-1228(*)) expression in human A549 cells were associated with PM2.5-induced cellular apoptosis through a mitochondria-dependent pathway. Further, overexpression of miR-1228(*) rescued the cellular damages induced by PM2.5. Thus, our results demonstrate that PM2.5-induced A549 apoptosis is initiated by mitochondrial dysfunction and miR-1228(*) could protect A549 cells against apoptosis. The involved pathways and target genes might be used for future mechanistic studies.

  7. TLE1 promotes EMT in A549 lung cancer cells through suppression of E-cadherin

    PubMed Central

    Yao, Xin; Ireland, Shubha Kale; Pham, Tri; Temple, Brandi; Chen, Renwei; Raj, Madhwa HG; Biliran, Hector

    2014-01-01

    The Groucho transcriptional corepressor TLE1 protein has recently been shown to be a putative lung specific oncogene, but its underlying oncogenic activity in lung cancer has not been fully elucidated. In this report, we investigated whether TLE1 regulates lung cancer aggressiveness using the human lung adenocarcinoma cell line A549 as a model system. Through a combination of genetic approaches, we found that TLE1 potentiates Epithelial-to-Mesenchymal Transition (EMT) in A549 cells in part through suppression of the tumor suppressor gene E-cadherin. Exogenous expression of TLE1 in A549 cells resulted in heightened EMT phenotypes (enhanced fibroblastoid morphology and increased cell migratory potential) and in molecular alterations characteristic of EMT (downregulation of the epithelial marker E-cadherin and upregulation of the mesenchymal marker Vimentin). Conversely, downregulation of endogenous TLE1 expression in these cells resulted in reversal of basal EMT characterized by a cuboidal-like epithelial cell phenotype, reduced cell motility, and upregulated E-cadherin expression. Mechanistic studies showed that TLE1 suppresses E-cadherin expression at the transcriptional level in part by recruiting Histone Deacetylase (HDAC) activity to the E-cadherin promoter. Consistently, the HDAC inhibitor TSA partially reversed the TLE1-induced E-cadherin downregulation and cell migration, suggesting a role for HDACs in TLE1-mediated transcriptional repression of E-cadherin and EMT function. These findings uncover a novel role of TLE1 in regulating EMT in A549 cells through its repressive effect on E-cadherin and provide a mechanism for TLE1 oncogenic activity in lung cancer. PMID:25446087

  8. Leptin enhances ICAM-1 expression, induces migration and cytokine synthesis, and prolongs survival of human airway epithelial cells.

    PubMed

    Suzukawa, Maho; Koketsu, Rikiya; Baba, Shintaro; Igarashi, Sayaka; Nagase, Hiroyuki; Yamaguchi, Masao; Matsutani, Noriyuki; Kawamura, Masafumi; Shoji, Shunsuke; Hebisawa, Akira; Ohta, Ken

    2015-10-15

    There is rising interest in how obesity affects respiratory diseases, since epidemiological findings indicate a strong relationship between the two conditions. Leptin is a potent adipokine produced mainly by adipocytes. It regulates energy storage and expenditure and also induces inflammation. Previous studies have shown that leptin is able to activate inflammatory cells such as lymphocytes and granulocytes, but little is known about its effect on lung structural cells. The present study investigated the effects of leptin on human airway epithelial cells by using human primary airway epithelial cells and a human airway epithelial cell line, BEAS-2B. Flow cytometry showed enhanced ICAM-1 expression by both of those cells in response to leptin, and that effect was abrogated by dexamethasone or NF-κB inhibitor. Flow cytometry and quantitative PCR showed that airway epithelial cells expressed leptin receptor (Ob-R), whose expression level was downregulated by leptin itself. Multiplex cytokine analysis demonstrated enhanced production of CCL11, G-CSF, VEGF, and IL-6 by BEAS-2B cells stimulated with leptin. Furthermore, transfection of Ob-R small interference RNA decreased the effect of leptin on CCL11 production as assessed by quantitative PCR. Finally, leptin induced migration of primary airway epithelial cells toward leptin, suppressed BEAS-2B apoptosis induced with TNF-α and IFN-γ, and enhanced proliferation of primary airway epithelial cells. In summary, leptin was able to directly activate human airway epithelial cells by binding to Ob-R and by NF-κB activation, resulting in upregulation of ICAM-1 expression, induction of CCL11, VEGF, G-CSF, and IL-6 synthesis, induction of migration, inhibition of apoptosis, and enhancement of proliferation.

  9. Leptin enhances ICAM-1 expression, induces migration and cytokine synthesis, and prolongs survival of human airway epithelial cells.

    PubMed

    Suzukawa, Maho; Koketsu, Rikiya; Baba, Shintaro; Igarashi, Sayaka; Nagase, Hiroyuki; Yamaguchi, Masao; Matsutani, Noriyuki; Kawamura, Masafumi; Shoji, Shunsuke; Hebisawa, Akira; Ohta, Ken

    2015-10-15

    There is rising interest in how obesity affects respiratory diseases, since epidemiological findings indicate a strong relationship between the two conditions. Leptin is a potent adipokine produced mainly by adipocytes. It regulates energy storage and expenditure and also induces inflammation. Previous studies have shown that leptin is able to activate inflammatory cells such as lymphocytes and granulocytes, but little is known about its effect on lung structural cells. The present study investigated the effects of leptin on human airway epithelial cells by using human primary airway epithelial cells and a human airway epithelial cell line, BEAS-2B. Flow cytometry showed enhanced ICAM-1 expression by both of those cells in response to leptin, and that effect was abrogated by dexamethasone or NF-κB inhibitor. Flow cytometry and quantitative PCR showed that airway epithelial cells expressed leptin receptor (Ob-R), whose expression level was downregulated by leptin itself. Multiplex cytokine analysis demonstrated enhanced production of CCL11, G-CSF, VEGF, and IL-6 by BEAS-2B cells stimulated with leptin. Furthermore, transfection of Ob-R small interference RNA decreased the effect of leptin on CCL11 production as assessed by quantitative PCR. Finally, leptin induced migration of primary airway epithelial cells toward leptin, suppressed BEAS-2B apoptosis induced with TNF-α and IFN-γ, and enhanced proliferation of primary airway epithelial cells. In summary, leptin was able to directly activate human airway epithelial cells by binding to Ob-R and by NF-κB activation, resulting in upregulation of ICAM-1 expression, induction of CCL11, VEGF, G-CSF, and IL-6 synthesis, induction of migration, inhibition of apoptosis, and enhancement of proliferation. PMID:26276826

  10. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    PubMed Central

    Chang, Ming-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-01-01

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5–10 μm) having higher endotoxin levels than did fine particles (0.5–2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers. PMID:24368426

  11. ZN2+-INDUCED IL-8 EXPRESSION INVOLVES AP-1, JNK, AND ERK ACTIVITIES IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Exposure to zinc-laden particulate matter (PM) in ambient and occupational settings has been associated with proinflammatory responses in the lung. IL-8 is an important proinflammatory cytokine in the human lung and is induced in human airway epithelial cells exposed to zin...

  12. LMTK2-mediated phosphorylation regulates CFTR endocytosis in human airway epithelial cells.

    PubMed

    Luz, Simão; Cihil, Kristine M; Brautigan, David L; Amaral, Margarida D; Farinha, Carlos M; Swiatecka-Urban, Agnieszka

    2014-05-23

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl(-)-selective ion channel expressed in fluid-transporting epithelia. Lemur tyrosine kinase 2 (LMTK2) is a transmembrane protein with serine and threonine but not tyrosine kinase activity. Previous work identified CFTR as an in vitro substrate of LMTK2, suggesting a functional link. Here we demonstrate that LMTK2 co-immunoprecipitates with CFTR and phosphorylates CFTR-Ser(737) in human airway epithelial cells. LMTK2 knockdown or expression of inactive LMTK2 kinase domain increases cell surface density of CFTR by attenuating its endocytosis in human airway epithelial cells. Moreover, LMTK2 knockdown increases Cl(-) secretion mediated by the wild-type and rescued ΔF508-CFTR. Compared with the wild-type CFTR, the phosphorylation-deficient mutant CFTR-S737A shows increased cell surface density and decreased endocytosis. These results demonstrate a novel mechanism of the phospho-dependent inhibitory effect of CFTR-Ser(737) mediated by LMTK2 via endocytosis and inhibition of the cell surface density of CFTR Cl(-) channels. These data indicate that targeting LMTK2 may increase the cell surface density of CFTR Cl(-) channels and improve stability of pharmacologically rescued ΔF508-CFTR in patients with cystic fibrosis.

  13. Olfactory Receptors Modulate Physiological Processes in Human Airway Smooth Muscle Cells

    PubMed Central

    Kalbe, Benjamin; Knobloch, Jürgen; Schulz, Viola M.; Wecker, Christine; Schlimm, Marian; Scholz, Paul; Jansen, Fabian; Stoelben, Erich; Philippou, Stathis; Hecker, Erich; Lübbert, Hermann; Koch, Andrea; Hatt, Hanns; Osterloh, Sabrina

    2016-01-01

    Pathophysiological mechanisms in human airway smooth muscle cells (HASMCs) significantly contribute to the progression of chronic inflammatory airway diseases with limited therapeutic options, such as severe asthma and COPD. These abnormalities include the contractility and hyperproduction of inflammatory proteins. To develop therapeutic strategies, key pathological mechanisms, and putative clinical targets need to be identified. In the present study, we demonstrated that the human olfactory receptors (ORs) OR1D2 and OR2AG1 are expressed at the RNA and protein levels in HASMCs. Using fluorometric calcium imaging, specific agonists for OR2AG1 and OR1D2 were identified to trigger transient Ca2+ increases in HASMCs via a cAMP-dependent signal transduction cascade. Furthermore, the activation of OR2AG1 via amyl butyrate inhibited the histamine-induced contraction of HASMCs, whereas the stimulation of OR1D2 with bourgeonal led to an increase in cell contractility. In addition, OR1D2 activation induced the secretion of IL-8 and GM-CSF. Both effects were inhibited by the specific OR1D2 antagonist undecanal. We herein provide the first evidence to show that ORs are functionally expressed in HASMCs and regulate pathophysiological processes. Therefore, ORs might be new therapeutic targets for these diseases, and blocking ORs could be an auspicious strategy for the treatment of early-stage chronic inflammatory lung diseases. PMID:27540365

  14. Time resolved analysis of steady and oscillating flow in the upper human airways

    NASA Astrophysics Data System (ADS)

    Große, S.; Schröder, W.; Klaas, M.; Klöckner, A.; Roggenkamp, J.

    2007-06-01

    In this experimental study a thorough analysis of the steady and unsteady flow field in a realistic transparent silicone lung model of the first bifurcation of the upper human airways will be presented. To determine the temporal evolution of the flow time-resolved particle-image velocimetry recordings were performed for a Womersley number range 3.3 ≤ α ≤ 5.8 and Reynolds numbers of Re D = 1,050, 1,400, and 2,100. The results evidence a highly three-dimensional and asymmetric character of the velocity field in the upper human airways, in which the influence of the asymmetric geometry of the realistic lung model plays a significant role for the development of the flow field in the respiratory system. At steady inspiration, the flow shows independent of the Reynolds number a large zone with embedded counter-rotating vortices in the left bronchia ensuring a continuous streamwise transport into the lung. At unsteady flow the critical Reynolds number, which describes the onset of vortices in the first bifurcation, is increased at higher Womersley number and decreased at higher Reynolds number. At expiration the unsteady and steady flows are almost alike.

  15. Absence of an essential regulatory influence of the adenovirus E1B 19-kilodalton protein on viral growth and early gene expression in human diploid WI38, HeLa, and A549 cells.

    PubMed Central

    Telling, G C; Perera, S; Szatkowski-Ozers, M; Williams, J

    1994-01-01

    Mutations in the gene encoding the adenovirus (Ad) early region 1B 19-kDa protein (the 19K gene) result in multiple phenotypic effects upon infection of permissive human cells. It has been reported, for example, that Ad type 2 (Ad2) and Ad5 with mutations in the 19K gene (19K-defective mutants) have a marked growth advantage compared with wild-type virus in human diploid WI38 cells (E. White, B. Faha, and B. Stillman, Mol. Cell. Biol. 6:3763-3773, 1986), and it was proposed that this host range phenotype stems from the large increase in viral early gene expression reported to occur in the mutant-infected cells. These observations gave rise to the hypothesis that the 19-kDa protein (the 19K protein) normally functions as a negative regulator of Ad early gene expression and growth. We have tested this hypothesis and find that Ad5 and Ad12 wild-type viruses grow as efficiently as their respective 19K-defective mutants, in1 and dl337 and pm700 and in700, in WI38 and other human cell types. Neither the accumulation of E1A cytoplasmic mRNAs nor the synthesis of E1A and other viral early proteins in these cells is altered as a result of these mutations in the 19K gene, and we conclude that the 19K protein does not play an essential role in regulating viral early gene expression or viral growth in human cells. Images PMID:8254769

  16. Chromium(VI) stimulates Fyn to initiate innate immune gene induction in human airway epithelial cells

    PubMed Central

    Nemec, Antonia A.; Zubritsky, Lindsey M.; Barchowsky, Aaron

    2009-01-01

    Mechanisms for pathogenic metal signaling in airway injury or disease promotion are poorly understood. It is widely believed that one mechanism for pathogenic and possible carcinogenic effects of inhaled chromium (Cr(VI)) is inhibition of inducible gene transactivation. However, we recently reported that Cr(VI) inhibition of Sp1-dependent transactivation required signal transducer and activator of transcription 1 (STAT1)-dependent expression of an inhibitory protein in airway epithelium. Thus, Cr(VI) exposures can induce genes and we hypothesized this induction resulted from Cr(VI) signaling through an innate immune-like STAT1-dependent pathway initiated by Fyn. Exposure of human airway epithelial (BEAS-2B) cells to Cr(VI) selectively transactivated STAT-responsive interferon-stimulated response element (ISRE) and induced ISRE-driven transactivation of interferon regulatory factor 7 (IRF7), without affecting the gamma interferon-activated site (GAS)-driven IRF1 expression. Cr(VI)-induced IRF7 was absent or greatly reduced in cells that lacked STAT1, were treated with the Src family kinase inhibitor, PP2, or lacked Fyn. Expressing Fyn, but not Src, in mouse embryonic fibroblasts cells null for Src, Yes, and Fyn restored Cr(VI)-stimulated STAT1 tyrosine phosphorylation and IRF7 expression. Finally, shRNA knockdown of Fyn in BEAS-2B cells prevented Cr(VI)-activated STAT1 transactivation of IRF7. These data support a novel mechanism through which Cr(VI) stimulates Fyn to initiate interferon-like signaling for STAT1-dependent gene transactivation. PMID:19994902

  17. Aldose reductase regulates acrolein-induced cytotoxicity in human small airway epithelial cells.

    PubMed

    Yadav, Umesh C S; Ramana, K V; Srivastava, Satish K

    2013-12-01

    Aldose reductase (AR), a glucose-metabolizing enzyme, reduces lipid aldehydes and their glutathione conjugates with more than 1000-fold efficiency (Km aldehydes 5-30 µM) relative to glucose. Acrolein, a major endogenous lipid peroxidation product as well as a component of environmental pollutants and cigarette smoke, is known to be involved in various pathologies including atherosclerosis, airway inflammation, COPD, and age-related disorders, but the mechanism of acrolein-induced cytotoxicity is not clearly understood. We have investigated the role of AR in acrolein-induced cytotoxicity in primary human small airway epithelial cells (SAECs). Exposure of SAECs to varying concentrations of acrolein caused cell death in a concentration- and time-dependent manner. AR inhibition by fidarestat prevented the low-dose (5-10 µM) but not the high-dose (>10 µM) acrolein-induced SAEC death. AR inhibition protected SAECs from low-dose (5 µM) acrolein-induced cellular reactive oxygen species (ROS). Inhibition of acrolein-induced apoptosis by fidarestat was confirmed by decreased condensation of nuclear chromatin, DNA fragmentation, comet tail moment, and annexin V fluorescence. Further, fidarestat inhibited acrolein-induced translocation of the proapoptotic proteins Bax and Bad from the cytosol to the mitochondria and that of Bcl2 and BclXL from the mitochondria to the cytosol. Acrolein-induced cytochrome c release from mitochondria was also prevented by AR inhibition. The mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinases 1 and 2, stress-activated protein kinase/c-Jun NH2-terminal kinase, and p38MAPK, and c-Jun were transiently activated in airway epithelial cells by acrolein in a concentration- and time-dependent fashion, which was significantly prevented by AR inhibition. These results suggest that AR inhibitors could prevent acrolein-induced cytotoxicity in the lung epithelial cells.

  18. Test of the Starling resistor model in the human upper airway during sleep

    PubMed Central

    Genta, Pedro R.; Owens, Robert L.; Edwards, Bradley A.; Sands, Scott A.; Loring, Stephen H.; White, David P.; Jackson, Andrew C.; Pedersen, Ole F.; Butler, James P.

    2014-01-01

    The human pharyngeal airway during sleep is conventionally modeled as a Starling resistor. However, inspiratory flow often decreases with increasing effort (negative effort dependence, NED) rather than remaining fixed as predicted by the Starling resistor model. In this study, we tested a major prediction of the Starling resistor model—that the resistance of the airway upstream from the site of collapse remains fixed during flow limitation. During flow limitation in 24 patients with sleep apnea, resistance at several points along the pharyngeal airway was measured using a pressure catheter with multiple sensors. Resistance between the nose and the site of collapse (the upstream segment) was measured before and after the onset of flow limitation to determine whether the upstream dimensions remained fixed (as predicted by the Starling resistor model) or narrowed (a violation of the Starling resistor model). The upstream resistance from early to mid inspiration increased considerably during flow limitation (by 35 ± 41 cmH2O·liter−1·s−1, P < 0.001). However, there was a wide range of variability between patients, and the increase in upstream resistance was strongly correlated with the amount of NED (r = 0.75, P < 0.001). Therefore, patients with little NED exhibited little upstream narrowing (consistent with the Starling model), and patients with large NED exhibited large upstream narrowing (inconsistent with the Starling model). These findings support the idea that there is not a single model of pharyngeal collapse, but rather that different mechanisms may dominate in different patients. These differences could potentially be exploited for treatment selection. PMID:25324514

  19. Feasibility of a 3D human airway epithelial model to study respiratory absorption.

    PubMed

    Reus, Astrid A; Maas, Wilfred J M; Jansen, Harm T; Constant, Samuel; Staal, Yvonne C M; van Triel, Jos J; Kuper, C Frieke

    2014-03-01

    The respiratory route is an important portal for human exposure to a large variety of substances. Consequently, there is an urgent need for realistic in vitro strategies for evaluation of the absorption of airborne substances with regard to safety and efficacy assessment. The present study investigated feasibility of a 3D human airway epithelial model to study respiratory absorption, in particular to differentiate between low and high absorption of substances. Bronchial epithelial models (MucilAir™), cultured at the air-liquid interface, were exposed to eight radiolabeled model substances via the apical epithelial surface. Absorption was evaluated by measuring radioactivity in the apical compartment, the epithelial cells and the basolateral culture medium. Antipyrine, caffeine, naproxen and propranolol were highly transported across the epithelial cell layer (>5%), whereas atenolol, mannitol, PEG-400 and insulin were limitedly transported (<5%). Results indicate that the 3D human airway epithelial model used in this study is able to differentiate between substances with low and high absorption. The intra-experimental reproducibility of the results was considered adequate based on an average coefficient of variation (CV) of 15%. The inter-experimental reproducibility of highly absorbed compounds was in a similar range (CV of 15%), but this value was considerably higher for those compounds that were limitedly absorbed. No statistical significant differences between different donors and experiments were observed. The present study provides a simple method transposable in any lab, which can be used to rank the absorption of chemicals and pharmaceuticals, and is ready for further validation with respect to reproducibility and capacity of the method to predict respiratory transport in humans.

  20. Human influenza is more effective than avian influenza at antiviral suppression in airway cells.

    PubMed

    Hsu, Alan Chen-Yu; Barr, Ian; Hansbro, Philip M; Wark, Peter A

    2011-06-01

    Airway epithelial cells are the initial site of infection with influenza viruses. The innate immune responses of airway epithelial cells to infection are important in limiting virus replication and spread. However, relatively little is known about the importance of this innate antiviral response to infection. Avian influenza viruses are a potential source of future pandemics; therefore, it is critical to examine the effectiveness of the host antiviral system to different influenza viruses. We used a human influenza (H3N2) and a low-pathogenic avian influenza (H11N9) to assess and compare the antiviral responses of Calu-3 cells. After infection, H3N2 replicated more effectively than the H11N9 in Calu-3 cells. This was not due to differential expression of sialic acid residues on Calu-3 cells, but was attributed to the interference of host antiviral responses by H3N2. H3N2 induced a delayed antiviral signaling and impaired type I and type III IFN induction compared with the H11N9. The gene encoding for nonstructural (NS) 1 protein was transfected into the bronchial epithelial cells (BECs), and the H3N2 NS1 induced a greater inhibition of antiviral responses compared with the H11N9 NS1. Although the low-pathogenic avian influenza virus was capable of infecting BECs, the human influenza virus replicated more effectively than avian influenza virus in BECs, and this was due to a differential ability of the two NS1 proteins to inhibit antiviral responses. This suggests that the subversion of human antiviral responses may be an important requirement for influenza viruses to adapt to the human host and cause disease.

  1. Secondary velocity fields in the conducting airways of the human lung.

    PubMed

    Fresconi, Frank E; Prasad, Ajay K

    2007-10-01

    An understanding of flow and dispersion in the human respiratory airways is necessary to assess the toxicological impact of inhaled particulate matter as well as to optimize the design of inhalable pharmaceutical aerosols and their delivery systems. Secondary flows affect dispersion in the lung by mixing solute in the lumen cross section. The goal of this study is to measure and interpret these secondary velocity fields using in vitro lung models. Particle image velocimetry experiments were conducted in a three-generational, anatomically accurate model of the conducting region of the lung. Inspiration and expiration flows were examined under steady and oscillatory flow conditions. Results illustrate secondary flow fields as a function of flow direction, Reynolds number, axial location with respect to the bifurcation junction, generation, branch, phase in the oscillatory cycle, and Womersley number. Critical Dean number for the formation of secondary vortices in the airways, as well as the strength and development length of secondary flow, is characterized. The normalized secondary velocity magnitude was similar on inspiration and expiration and did not vary appreciably with generation or branch. Oscillatory flow fields were not significantly different from corresponding steady flow fields up to a Womersley number of 1 and no instabilities related to shear were detected on flow reversal. These observations were qualitatively interpreted with respect to the simple streaming, augmented dispersion, and steady streaming convective dispersion mechanisms.

  2. Proteomic Analysis of Pure Human Airway Gland Mucus Reveals a Large Component of Protective Proteins

    PubMed Central

    Joo, Nam Soo; Evans, Idil Apak T.; Cho, Hyung-Ju; Park, Il-Ho; Engelhardt, John F.; Wine, Jeffrey J.

    2015-01-01

    Airway submucosal glands contribute to innate immunity and protect the lungs by secreting mucus, which is required for mucociliary clearance and which also contains antimicrobial, anti-inflammatory, anti-proteolytic and anti-oxidant proteins. We stimulated glands in tracheal trimmings from three lung donors and collected droplets of uncontaminated mucus as they formed at the gland orifices under an oil layer. We analyzed the mucus using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analysis identified 5486 peptides and 441 proteins from across the 3 samples (269–319 proteins per subject). We focused on 269 proteins common to at least 2 0f 3 subjects, of which 102 (38%) had protective or innate immunity functions. While many of these have long been known to play such roles, for many others their cellular protective functions have only recently been appreciated in addition to their well-studied biologic functions (e.g. annexins, apolipoproteins, gelsolin, hemoglobin, histones, keratins, and lumican). A minority of the identified proteins are known to be secreted via conventional exocytosis, suggesting that glandular secretion occurs via multiple mechanisms. Two of the observed protective proteins, major vault protein and prohibitin, have not been observed in fluid from human epithelial cultures or in fluid from nasal or bronchoalveolar lavage. Further proteomic analysis of pure gland mucus may help clarify how healthy airways maintain a sterile environment. PMID:25706550

  3. Nicotinic acetylcholine receptor expression in human airway correlates with lung function.

    PubMed

    Lam, David Chi-Leung; Luo, Susan Yang; Fu, Kin-Hang; Lui, Macy Mei-Sze; Chan, Koon-Ho; Wistuba, Ignacio Ivans; Gao, Boning; Tsao, Sai-Wah; Ip, Mary Sau-Man; Minna, John Dorrance

    2016-02-01

    Nicotine and its derivatives, by binding to nicotinic acetylcholine receptors (nAChRs) on bronchial epithelial cells, can regulate cellular signaling and inflammatory processes. Delineation of nAChR subtypes and their responses to nicotine stimulation in bronchial epithelium may provide information for therapeutic targeting in smoking-related inflammation in the airway. Expression of nAChR subunit genes in 60 bronchial epithelial biopsies and immunohistochemical staining for the subcellular locations of nAChR subunit expression were evaluated. Seven human bronchial epithelial cell lines (HBECs) were exposed to nicotine in vitro for their response in nAChR subunit gene expression to nicotine exposure and removal. The relative normalized amount of expression of nAChR α4, α5, and α7 and immunohistochemical staining intensity of nAChR α4, α5, and β3 expression showed significant correlation with lung function parameters. Nicotine stimulation in HBECs resulted in transient increase in the levels of nAChR α5 and α6 but more sustained increase in nAChR α7 expression. nAChR expression in bronchial epithelium was found to correlate with lung function. Nicotine exposure in HBECs resulted in both short and longer term responses in nAChR subunit gene expression. These results gave insight into the potential of targeting nAChRs for therapy in smoking-related inflammation in the airway. PMID:26608528

  4. Oscillatory Flow in the Human Airways from the Mouth through Several Bronchial Generations

    NASA Astrophysics Data System (ADS)

    Banko, Andrew; Coletti, Filippo; Elkins, Chris; Eaton, John

    2014-11-01

    The time-varying flow is studied experimentally in an anatomically accurate model of the human airways from the mouth through the fourth to eighth generation of the bronchi. The airway geometry is obtained from the CT scan of a healthy adult male of normal height and build. The three-component, three-dimensional mean velocity field is obtained throughout the entire model using phase-locked magnetic resonance velocimetry. A pulsatile pump drives a sinusoidal waveform (inhalation and exhalation) with frequency and stroke-length such that the mean trachea Reynolds number at peak inspiration is Re = 4200 and the Womersley number is α = 7. This represents a regime of moderate exertion. Integral parameters are defined to quantify the degree of velocity profile non-uniformity (which correlates with axial dispersion) and secondary flow strength (which correlates with lateral dispersion). It is found that the streamwise momentum flux and secondary flow strength increase and decrease in proportion throughout most of the breathing cycle. On the other hand, the strength of secondary flows during the 10% of the breathing cycle surrounding flow reversal remains approximately half of that at peak inspiration while the streamwise momentum flux goes to zero. The strong and persistent secondary flows have important implications for dispersion of scalar or particulate contaminants in the lungs.

  5. Growth and characterization of different human rhinovirus C types in three-dimensional human airway epithelia reconstituted in vitro.

    PubMed

    Tapparel, Caroline; Sobo, Komla; Constant, Samuel; Huang, Song; Van Belle, Sandra; Kaiser, Laurent

    2013-11-01

    New molecular diagnostic tools have recently allowed the discovery of human rhinovirus species C (HRV-C) that may be overrepresented in children with lower respiratory tract complications. Unlike HRV-A and HRV-B, HRV-C cannot be propagated in conventional immortalized cell lines and their biological properties have been difficult to study. Recent studies have described the successful amplification of HRV-C15, HRV-C11, and HRV-C41 in sinus mucosal organ cultures and in fully differentiated human airway epithelial cells. Consistent with these studies, we report that a panel of clinical HRV-C specimens including HRV-C2, HRV-C7, HRV-C12, HRV-C15, and HRV-C29 types were all capable of mediating productive infection in reconstituted 3D human primary upper airway epithelial tissues and that the virions enter and exit preferentially through the apical surface. Similar to HRV-A and HRV-B, our data support the acid sensitivity of HRV-C. We observed also that the optimum temperature requirement during HRV-C growth may be type-dependent.

  6. Time-Resolved PIV Measurements of Vortical Structures in the Upper Human Airways

    NASA Astrophysics Data System (ADS)

    e, Sebastian Groß; Schröder, Wolfgang; Klaas, Michael

    A detailed knowledge of the three-dimensional flow structures in the human lung is an inevitable prerequisite to optimize respiratory-assist devices. To achieve this goal the indepth analysis of the flow field that evolves during normal breathing conditions is indispensable. This study focuses on the experimental investigation of the steady and oscillatory flow in the first lung bifurcation of a three-dimensional realistic transparent silicone lung model. The particle image velocimetry technique was used for the measurements. To match the refractive index of the model, the fluid was a mixture of water and glycerine. The flow structures occurring in the first bifurcation during steady inflow have been studied in detail at different flow rates and Reynolds numbers ranging from ReD = 1250 to ReD = 1700 based on the hydraulic diameter D of the trachea. The results evidence a highly three-dimensional and asymmetric character of the velocity field in the upper human airways, in which the influence of the asymmetric geometry of the realistic lung model plays a significant role for the development of the flow field in the respiratory system. The inspiration flow shows large zones with secondary vortical flow structures with reduced streamwise velocity near the outer walls of the bifurcation and regions of high-speed fluid in the vicinity of the inner side walls of the bifurcation. Depending on the local geometry of the lung these zones extend to the next generation of the airway system, resulting in a strong impact on the flow-rate distribution in the different branches of the lung. During expiration small zones of reduced streamwise velocity can be observed mainly in the trachea and the flow profile is characterized by typical jet-like structures and an M-shaped velocity profile. To investigate the temporal evolution of the flow phenomena in the first lung bifurcation time-resolved recordings were performed for Womersley numbers α ranging from 3.3 to 5.8 and Reynolds

  7. INCREASED IL-8 AND IL-6 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    INCREASED IL-6 AND IL-8 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES.
    R Silbajoris1, A G Lenz2, I Jaspers3, J M Samet1. 1NHEERL, USEPA, RTP, NC, USA; 2GSF-Institute for Inhalation Biology, Neuherberg, Germany; 3 CEMLB, UNC-CH, Chapel Hill, ...

  8. ULTRAFINE CARBON PARTICLES INDUCE IL-8 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS THROUGH A POST-TRANSCRIPTIONAL MECHANISM

    EPA Science Inventory

    Ultrafine carbon particles induce IL-8 expression in human airway
    epithelial cells through a post-transcritpional mechanism
    Epidemiological studies suggest that ultrafine particles contribute to
    particulate matter (PM) - induced adverse health effects. IL-8 is an
    i...

  9. MUC5AC mucin release from human airways in vitro: effects of indomethacin and Bay X1005.

    PubMed Central

    Roger, P; Gascard, J P; Bara, J; de Montpreville, V T; Brink, C

    2001-01-01

    BACKGROUND: Increased secretion of mucus is a hallmark of many respiratory diseases and contributes significantly to the airflow limitation experienced by many patients. While the current pharmacological approach to reducing mucus and sputum production in patients is limited, clinical studies have suggested that drugs which inhibit the cyclooxygenase and/or 5-lipoxygenase enzymatic pathways may reduce secretory activity in patients with airway disease. AIM: This study was performed to investigate the effects of indomethacin (cyclooxygenase inhibitor) and Bay x 1005 (5-lipoxygenase inhibitor) on MUC5AC release from human airways in vitro. METHODS: An immunoradiometric assay was used to determine the quantities of MUC5AC present in the biological fluids derived from human airways in vitro. The measurements were made with a mixture of eight monoclonal antibodies (MAbs; PM8) of which the 21 M1 MAb recognized a recombinant M1 mucin partially encoded by the MUC5AC gene. RESULTS: The quantities of MUC5AC detected in the biological fluids derived from human bronchial preparations were not modified after treatment with indomethacin (cyclooxygenase inhibitor) and/or an inhibitor of the 5-lipoxygenase metabolic pathway (BAY x 1005). CONCLUSION: These results suggest that the cyclooxygenase and 5-lipoxygenase metabolic pathways play little or no role in the release of MUC5AC from human airways. PMID:11324902

  10. Research of transport and deposition of aerosol in human airway replica

    NASA Astrophysics Data System (ADS)

    Lizal, Frantisek; Jedelsky, Jan; Elcner, Jakub; Durdina, Lukas; Halasova, Tereza; Mravec, Filip; Jicha, Miroslav

    2012-04-01

    Growing concern about knowledge of aerosol transport in human lungs is caused by great potential of use of inhaled pharmaceuticals. Second substantial motive for the research is an effort to minimize adverse effects of particular matter emitted by traffic and industry on human health. We created model geometry of human lungs to 7th generation of branching. This model geometry was used for fabrication of two physical models. The first one is made from thin walled transparent silicone and it allows a measurement of velocity and size of aerosol particles by Phase Doppler Anemometry (PDA). The second one is fabricated by stereolithographic method and it is designed for aerosol deposition measurements. We provided a series of measurements of aerosol transport in the transparent model and we ascertained remarkable phenomena linked with lung flow. The results are presented in brief. To gather how this phenomena affects aerosol deposition in human lungs we used the second model and we developed a technique for deposition fraction and deposition efficiency assessment. The results confirmed that non-symmetric and complicated shape of human airways essentially affects transport and deposition of aerosol. The research will now focus on deeper insight in aerosol deposition.

  11. Collective motion of motile cilia: from human airways to model systems

    NASA Astrophysics Data System (ADS)

    Cicuta, Pietro; Feriani, Luigi; Chioccioli, Maurizio; Kotar, Jurij

    Mammalian airways are a fantastic playground of nonlinear phenomena, from the function of individual active filaments, to the emerging collective behaviour, to the rheology of the mucus solution surrounding cilia. We have been investigating the fundamental physics of this system through a variety of model system approaches, both experimental and computational. In the last year we have started measurements on living human cells, observing cilia shape during beating, and measuring speed and coherence of the collective dynamics. We report on significant differences in the collective motion in ciliated cell carpets from a variety of diseases, and we attempt to reconcile the collective dynamical phenotypes to the properties of individual filaments and the mechanics of the environment.

  12. Numerical investigation of airflow in an idealised human extra-thoracic airway: a comparison study

    PubMed Central

    Chen, Jie; Gutmark, Ephraim

    2013-01-01

    Large eddy simulation (LES) technique is employed to numerically investigate the airflow through an idealised human extra-thoracic airway under different breathing conditions, 10 l/min, 30 l/min, and 120 l/min. The computational results are compared with single and cross hot-wire measurements, and with time-averaged flow field computed by standard k-ω and k-ω-SST Reynolds averaged Navier-Stokes (RANS) models and the Lattice-Boltzmann method (LBM). The LES results are also compared to root-mean-square (RMS) flow field computed by the Reynolds stress model (RSM) and LBM. LES generally gives better prediction of the time-averaged flow field than RANS models and LBM. LES also provides better estimation of the RMS flow field than both the RSM and the LBM. PMID:23619907

  13. Monitoring the state of the human airways by analysis of respiratory sound

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Patterson, J. L., Jr.

    1978-01-01

    A mechanism whereby sound is generated by the motion of vortices in the human lung is described. This mechanism is believed to be responsible for most of the sound which is generated both on inspiration and expiration in normal lungs. Mathematical expressions for the frequencies of sound generated, which depend only upon the axial flow velocity and diameters of the bronchi, are derived. This theory allows the location within the bronchial tree from which particular sounds emanate to be determined. Redistribution of pulmonary blood volume following transition from earth gravity to the weightless state probably alters the caliber of certain airways and doubtless alters sound transmission properties of the lung. We believe that these changes can be monitored effectively and non-invasively by spectral analysis of pulmonary sound.

  14. Monitoring the state of the human airways by analysis of respiratory sound

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Patterson, J. L. Jr

    1979-01-01

    A mechanism whereby sound is generated by the motion of vortices in the human lung is described. This mechanism is believed to be responsible for most of the sound which is generated both on inspiration and expiration in normal lungs. Mathematical expressions for the frequencies of sound generated, which depend only upon the axial flow velocity and diameters of the bronchi, are derived. This theory allows the location within the bronchial tree from which particular sounds emanate to be determined. Redistribution of pulmonary blood volume following transition from Earth gravity to the weightless state probably alters the caliber of certain airways and doubtless alters sound transmission properties of the lung. We believe that these changes can be monitored effectively and non-invasively by spectral analysis of pulmonary sound.

  15. α1-Antitrypsin reduces rhinovirus infection in primary human airway epithelial cells exposed to cigarette smoke

    PubMed Central

    Berman, Reena; Jiang, Di; Wu, Qun; Chu, Hong Wei

    2016-01-01

    Human rhinovirus (HRV) infections target airway epithelium and are the leading cause of acute exacerbations of COPD. Cigarette smoke (CS) increases the severity of viral infections, but there is no effective therapy for HRV infection. We determined whether α1-antitrypsin (A1AT) reduces HRV-16 infection in CS-exposed primary human airway epithelial cells. Brushed bronchial epithelial cells from normal subjects and patients diagnosed with COPD were cultured at air–liquid interface to induce mucociliary differentiation. These cells were treated with A1AT or bovine serum albumin for 2 hours and then exposed to air or whole cigarette smoke (WCS) with or without HRV-16 (5×104 50% Tissue Culture Infective Dose [TCID50]/transwell) infection for 24 hours. WCS exposure significantly increased viral load by an average of fivefold and decreased the expression of antiviral genes interferon-λ1, OAS1, and MX1. When A1AT was added to WCS-exposed cells, viral load significantly decreased by an average of 29-fold. HRV-16 infection significantly increased HRV-16 receptor intercellular adhesion molecule-1 messenger RNA expression in air-exposed cells, which was decreased by A1AT. A1AT-mediated reduction of viral load was not accompanied by increased epithelial antiviral gene expression or by inhibiting the activity of 3C protease involved in viral replication or maturation. Our findings demonstrate that A1AT treatment prevents a WCS-induced increase in viral load and for the first time suggest a therapeutic effect of A1AT on HRV infection. PMID:27354786

  16. Identification of human metapneumovirus-induced gene networks in airway epithelial cells by microarray analysis

    SciTech Connect

    Bao, X.; Sinha, M. |; Liu, T.; Hong, C.; Luxon, B.A. |; Garofalo, R.P. ||; Casola, A. ||

    2008-04-25

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections in infants, elderly and immunocompromised patients. Little is known about the response to hMPV infection of airway epithelial cells, which play a pivotal role in initiating and shaping innate and adaptive immune responses. In this study, we analyzed the transcriptional profiles of airway epithelial cells infected with hMPV using high-density oligonucleotide microarrays. Of the 47,400 transcripts and variants represented on the Affimetrix GeneChip Human Genome HG-U133 plus 2 array, 1601 genes were significantly altered following hMPV infection. Altered genes were then assigned to functional categories and mapped to signaling pathways. Many up-regulated genes are involved in the initiation of pro-inflammatory and antiviral immune responses, including chemokines, cytokines, type I interferon and interferon-inducible proteins. Other important functional classes up-regulated by hMPV infection include cellular signaling, gene transcription and apoptosis. Notably, genes associated with antioxidant and membrane transport activity, several metabolic pathways and cell proliferation were down-regulated in response to hMPV infection. Real-time PCR and Western blot assays were used to confirm the expression of genes related to several of these functional groups. The overall result of this study provides novel information on host gene expression upon infection with hMPV and also serves as a foundation for future investigations of genes and pathways involved in the pathogenesis of this important viral infection. Furthermore, it can facilitate a comparative analysis of other paramyxoviral infections to determine the transcriptional changes that are conserved versus the one that are specific to individual pathogens.

  17. Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells

    PubMed Central

    Berntsen, P.; Park, C. Y.; Rothen-Rutishauser, B.; Tsuda, A.; Sager, T. M.; Molina, R. M.; Donaghey, T. C.; Alencar, A. M.; Kasahara, D. I.; Ericsson, T.; Millet, E. J.; Swenson, J.; Tschumperlin, D. J.; Butler, J. P.; Brain, J. D.; Fredberg, J. J.; Gehr, P.; Zhou, E. H.

    2010-01-01

    The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40–100 nm and less than 44 μm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 μm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 μM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases. PMID:20356875

  18. Alpha(v)beta5 integrins mediates Pseudomonas fluorescens interaction with A549 cells.

    PubMed

    Buommino, Elisabetta; Di Domenico, Marina; Paoletti, Iole; Fusco, Alessandra; De Gregorio, Vincenza; Cozza, Valentina; Rizzo, Antonietta; Tufano, Maria Antonietta; Donnarumma, Giovanna

    2014-01-01

    Interaction of pathogenic bacteria with human cells is usually an essential step in the infection process. The bacterial invasion is stimulated by microbial binding to mammalian extracellular matrix proteins such as vitronectin, fibronectin or integrins. We have recently shown that some strains isolated from a clinical environment are able to grow at/or above 37°C. In particular, we demonstrated that P. fluorescens AF181 binds specifically to the surface of A549 human respiratory epithelial cells and that adhesiveness modulates the inflammatory response. In this study, the involvement of Alpha(v)Beta5 integrins and its respective natural ligand vitronectin (VN) in P. fluorescens AF181 adherence and invasion was examined. The host cell cytoskeleton and cellular tyrosine kinases seem to be solicited during the P. fluorescens-respiratory cell interaction; consequently, cytochalasin D and genistein decreased the bacterial adherence and internalization. Gene silencing of α(v), β5 integrins and vitronectin reduced P. fluorescens adherence and internalization to A549 cells. Taken together, these findings suggest that Alpha(v)Beta5 integrins and their natural ligand VN are involved in P. fluorescens adherence and invasion in human epithelial cells.

  19. Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer.

    PubMed

    Khan, Merajuddin; Khan, Mujeeb; Al-Marri, Abdulhadi H; Al-Warthan, Abdulrahman; Alkhathlan, Hamad Z; Siddiqui, Mohammed Rafiq H; Nayak, Vadithe Lakshma; Kamal, Ahmed; Adil, Syed F

    2016-01-01

    Recently, graphene and graphene-based materials have been increasingly used for various biological applications due to their extraordinary physicochemical properties. Here, we demonstrate the anticancer properties and apoptosis-inducing ability of silver doped highly reduced graphene oxide nanocomposites synthesized by employing green approach. These nano composites (PGE-HRG-Ag) were synthesized by using Pulicaria glutinosa extract (PGE) as a reducing agent and were evaluated for their anticancer properties against various human cancer cell lines with tamoxifen as the reference drug. A correlation between the amount of Ag nanoparticles on the surface of highly reduced graphene oxide (HRG) and the anticancer activity of nanocomposite was observed, wherein an increase in the concentration of Ag nanoparticles on the surface of HRG led to the enhanced anticancer activity of the nanocomposite. The nanocomposite PGE-HRG-Ag-2 exhibited more potent cytotoxicity than standard drug in A549 cells, a human lung cancer cell line. A detailed investigation was undertaken and Fluorescence activated cell sorting (FACS) analysis demonstrated that the nanocomposite PGE-HRG-Ag-2 showed G0/G1 phase cell cycle arrest and induced apoptosis in A549 cells. Studies such as, measurement of mitochondrial membrane potential, generation of reactive oxygen species (ROS) and Annexin V-FITC staining assay suggested that this compound induced apoptosis in human lung cancer cells. PMID:27022256

  20. Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer

    PubMed Central

    Khan, Merajuddin; Khan, Mujeeb; Al-Marri, Abdulhadi H; Al-Warthan, Abdulrahman; Alkhathlan, Hamad Z; Siddiqui, Mohammed Rafiq H; Nayak, Vadithe Lakshma; Kamal, Ahmed; Adil, Syed F

    2016-01-01

    Recently, graphene and graphene-based materials have been increasingly used for various biological applications due to their extraordinary physicochemical properties. Here, we demonstrate the anticancer properties and apoptosis-inducing ability of silver doped highly reduced graphene oxide nanocomposites synthesized by employing green approach. These nano composites (PGE-HRG-Ag) were synthesized by using Pulicaria glutinosa extract (PGE) as a reducing agent and were evaluated for their anticancer properties against various human cancer cell lines with tamoxifen as the reference drug. A correlation between the amount of Ag nanoparticles on the surface of highly reduced graphene oxide (HRG) and the anticancer activity of nanocomposite was observed, wherein an increase in the concentration of Ag nanoparticles on the surface of HRG led to the enhanced anticancer activity of the nanocomposite. The nanocomposite PGE-HRG-Ag-2 exhibited more potent cytotoxicity than standard drug in A549 cells, a human lung cancer cell line. A detailed investigation was undertaken and Fluorescence activated cell sorting (FACS) analysis demonstrated that the nanocomposite PGE-HRG-Ag-2 showed G0/G1 phase cell cycle arrest and induced apoptosis in A549 cells. Studies such as, measurement of mitochondrial membrane potential, generation of reactive oxygen species (ROS) and Annexin V-FITC staining assay suggested that this compound induced apoptosis in human lung cancer cells. PMID:27022256

  1. Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer.

    PubMed

    Khan, Merajuddin; Khan, Mujeeb; Al-Marri, Abdulhadi H; Al-Warthan, Abdulrahman; Alkhathlan, Hamad Z; Siddiqui, Mohammed Rafiq H; Nayak, Vadithe Lakshma; Kamal, Ahmed; Adil, Syed F

    2016-01-01

    Recently, graphene and graphene-based materials have been increasingly used for various biological applications due to their extraordinary physicochemical properties. Here, we demonstrate the anticancer properties and apoptosis-inducing ability of silver doped highly reduced graphene oxide nanocomposites synthesized by employing green approach. These nano composites (PGE-HRG-Ag) were synthesized by using Pulicaria glutinosa extract (PGE) as a reducing agent and were evaluated for their anticancer properties against various human cancer cell lines with tamoxifen as the reference drug. A correlation between the amount of Ag nanoparticles on the surface of highly reduced graphene oxide (HRG) and the anticancer activity of nanocomposite was observed, wherein an increase in the concentration of Ag nanoparticles on the surface of HRG led to the enhanced anticancer activity of the nanocomposite. The nanocomposite PGE-HRG-Ag-2 exhibited more potent cytotoxicity than standard drug in A549 cells, a human lung cancer cell line. A detailed investigation was undertaken and Fluorescence activated cell sorting (FACS) analysis demonstrated that the nanocomposite PGE-HRG-Ag-2 showed G0/G1 phase cell cycle arrest and induced apoptosis in A549 cells. Studies such as, measurement of mitochondrial membrane potential, generation of reactive oxygen species (ROS) and Annexin V-FITC staining assay suggested that this compound induced apoptosis in human lung cancer cells.

  2. Functional expression of γ-amino butyric acid transporter 2 in human and guinea pig airway epithelium and smooth muscle.

    PubMed

    Zaidi, Sarah; Gallos, George; Yim, Peter D; Xu, Dingbang; Sonett, Joshua R; Panettieri, Reynold A; Gerthoffer, William; Emala, Charles W

    2011-08-01

    γ-Amino butyric acid (GABA) is a primary inhibitory neurotransmitter in the central nervous system, and is classically released by fusion of synaptic vesicles with the plasma membrane or by egress via GABA transporters (GATs). Recently, a GABAergic system comprised of GABA(A) and GABA(B) receptors has been identified on airway epithelial and smooth muscle cells that regulate mucus secretion and contractile tone of airway smooth muscle (ASM). In addition, the enzyme that synthesizes GABA, glutamic acid decarboxylase, has been identified in airway epithelial cells; however, the mechanism(s) by which this synthesized GABA is released from epithelial intracellular stores is unknown. We questioned whether any of the four known isoforms of GATs are functionally expressed in ASM or epithelial cells. We detected mRNA and protein expression of GAT2 and -4, and isoforms of glutamic acid decarboxylase in native and cultured human ASM and epithelial cells. In contrast, mRNA encoding vesicular GAT (VGAT), the neuronal GABA transporter, was not detected. Functional inhibition of (3)H-GABA uptake was demonstrated using GAT2 and GAT4/betaine-GABA transporter 1 (BGT1) inhibitors in both human ASM and epithelial cells. These results demonstrate that two isoforms of GATs, but not VGAT, are expressed in both airway epithelial and smooth muscle cells. They also provide a mechanism by which locally synthesized GABA can be released from these cells into the airway to activate GABA(A) channels and GABA(B) receptors, with subsequent autocrine and/or paracrine signaling effects on airway epithelium and ASM. PMID:21057105

  3. Regulation of MUC5AC mucin secretion and airway surface liquid metabolism by IL-1beta in human bronchial epithelia.

    PubMed

    Gray, Thomas; Coakley, Ray; Hirsh, Andrew; Thornton, David; Kirkham, S; Koo, Ja-Seok; Burch, Lauranell; Boucher, Richard; Nettesheim, Paul

    2004-02-01

    Mucociliary transport in the airways significantly depends on the liquid and mucin components of the airway surface liquid (ASL). The regulation of ASL water and mucin content during pathological conditions is not well understood. We hypothesized that airway epithelial mucin production and liquid transport are regulated in response to inflammatory stimuli and tested this hypothesis by investigating the effects of the pleiotropic, early-response cytokine, IL-1beta, on cultured primary human bronchial epithelial and second-passage, normal human tracheo-bronchial epithelial (NHTBE) cell cultures. Fully differentiated NHTBE cultures secreted two major airway mucins, MUC5AC and MUC5B. IL-1beta, in a dose- and time-dependent manner, increased the secretion of MUC5AC, but not MUC5B. MUC5AC mRNA levels were only transiently increased at 1 and 4 h after the start of IL-1beta treatment and returned to control levels thereafter, even though MUC5AC mucin production remained elevated for at least 72 h. Synchronous with elevated MUC5AC secretion, ASL volume increased, its percentage of solid was reduced, and the pH/[HCO(3)(-)] of the ASL was elevated. ASL volume changes reflected altered ion transport, including an upregulation of Cl(-) secretory currents (via CFTR and Ca(2+)-activated Cl(-) conductance) and an inhibition of epithelial sodium channel (ENaC)-mediated absorptive Na(+) currents. IL-1beta increased CFTR mRNA levels without affecting those for ENaC subunits. The synchronous regulation of ASL mucin and liquid metabolism triggered by IL-1beta may be an important defense mechanism of the airway epithelium to enhance mucociliary clearance during airway inflammation. PMID:14527933

  4. Oxidative stress in Nipah virus-infected human small airway epithelial cells

    PubMed Central

    Escaffre, Olivier; Halliday, Hailey; Borisevich, Viktoriya; Casola, Antonella

    2015-01-01

    Nipah virus (NiV) is a zoonotic emerging pathogen that can cause severe and often fatal respiratory disease in humans. The pathogenesis of NiV infection of the human respiratory tract remains unknown. Reactive oxygen species (ROS) produced by airway epithelial cells in response to viral infections contribute to lung injury by inducing inflammation and oxidative stress; however, the role of ROS in NiV-induced respiratory disease is unknown. To investigate whether NiV induces oxidative stress in human respiratory epithelial cells, we used oxidative stress markers and monitored antioxidant gene expression. We also used ROS scavengers to assess their role in immune response modulation. Oxidative stress was confirmed in infected cells and correlated with the reduction in antioxidant enzyme gene expression. Infected cells treated by ROS scavengers resulted in a significant decrease of the (F2)-8-isoprostane marker, inflammatory responses and virus replication. In conclusion, ROS are induced during NiV infection in human respiratory epithelium and contribute to the inflammatory response. Understanding how oxidative stress contributes to NiV pathogenesis is crucial for therapeutic development. PMID:26297489

  5. Regenerative potential of human airway stem cells in lung epithelial engineering.

    PubMed

    Gilpin, Sarah E; Charest, Jonathan M; Ren, Xi; Tapias, Luis F; Wu, Tong; Evangelista-Leite, Daniele; Mathisen, Douglas J; Ott, Harald C

    2016-11-01

    Bio-engineered organs for transplantation may ultimately provide a personalized solution for end-stage organ failure, without the risk of rejection. Building upon the process of whole organ perfusion decellularization, we aimed to develop novel, translational methods for the recellularization and regeneration of transplantable lung constructs. We first isolated a proliferative KRT5(+)TP63(+) basal epithelial stem cell population from human lung tissue and demonstrated expansion capacity in conventional 2D culture. We then repopulated acellular rat scaffolds in ex vivo whole organ culture and observed continued cell proliferation, in combination with primary pulmonary endothelial cells. To show clinical scalability, and to test the regenerative capacity of the basal cell population in a human context, we then recellularized and cultured isolated human lung scaffolds under biomimetic conditions. Analysis of the regenerated tissue constructs confirmed cell viability and sustained metabolic activity over 7 days of culture. Tissue analysis revealed extensive recellularization with organized tissue architecture and morphology, and preserved basal epithelial cell phenotype. The recellularized lung constructs displayed dynamic compliance and rudimentary gas exchange capacity. Our results underline the regenerative potential of patient-derived human airway stem cells in lung tissue engineering. We anticipate these advances to have clinically relevant implications for whole lung bioengineering and ex vivo organ repair. PMID:27622532

  6. SARS-CoV Replication and Pathogenesis in an In Vitro Model of the Human Conducting Airway Epithelium

    PubMed Central

    Sims, Amy C.; Burkett, Susan E.; Yount, Boyd; Pickles, Raymond J.

    2008-01-01

    SARS coronavirus (SARS-CoV) emerged in 2002 as an important cause of severe lower respiratory tract infection in humans and in vitro models of the lung are needed to elucidate cellular targets and the consequences of viral infection. The severe and sudden onset of symptoms, resulting in an atypical pneumonia with dry cough and persistent high fever in cases of severe acute respiratory virus brought to light the importance of coronaviruses as potentially lethal human pathogens and the identification of several zoonotic reservoirs has made the reemergence of new strains and future epidemics all the more possible. In this chapter, we describe the pathology of SARS-CoV infection in humans and explore the use of two models of the human conducting airway to develop a better understanding of the replication and pathogenesis of SARS-CoV in relevant in vitro systems. The first culture model is a human bronchial epithelial cell line Calu3 that can be inoculated by viruses either as a non-polarized monolayer of cells or polarized cells with tight junctions and microvilli. The second model system, derived from primary cells isolated from human airway epithelium and grown on Transwells, form a pseudostratified mucociliary epithelium that recapitulates the morphological and physiological features of the human conducting airway in vivo. Experimental results using these lung epithelial cell models demonstrate that in contrast to the pathology reported in late stage cases SARS-CoV replicates to high titers in epithelial cells of the conducting airway. The SARS-CoV receptor, human angiotensin 1 converting enzyme 2 (hACE2), was detected exclusively on the apical surface of cells in polarized Calu3 cells and human airway epithelial cultures (HAE), indicating that hACE2 was accessible by SARS-CoV after airway lumenal delivery. Furthermore, in HAE, hACE2 was exclusively localized to ciliated airway epithelial cells. In support of the hACE2 localization data, the most productive route of

  7. Human Parainfluenza Virus Serotypes Differ in Their Kinetics of Replication and Cytokine Secretion in Human Tracheobronchial Airway Epithelium

    PubMed Central

    Schaap-Nutt, Anne; Liesman, Rachael; Bartlett, Emmalene J.; Scull, Margaret A.; Collins, Peter L.; Pickles, Raymond J.; Schmidt, Alexander C.

    2012-01-01

    Human parainfluenza viruses (PIVs) cause acute respiratory illness in children, the elderly, and immunocompromised patients. PIV3 is a common cause of bronchiolitis and pneumonia, whereas PIV1 and 2 are frequent causes of upper respiratory tract illness and croup. To assess how PIV1, 2, and 3 differ with regard to replication and induction of type I interferons, interleukin-6, and relevant chemokines, we infected primary human airway epithelium (HAE) cultures from the same tissue donors and examined replication kinetics and cytokine secretion. PIV1 replicated to high titer yet did not induce cytokine secretion until late in infection, while PIV2 replicated less efficiently but induced an early cytokine peak. PIV3 replicated to high titer but induced a slower rise in cytokine secretion. The T cell chemoattractants CXCL10 and CXCL11 were the most abundant chemokines induced. Differences in replication and cytokine secretion might explain some of the differences in PIV serotype-specific pathogenesis and epidemiology. PMID:22959894

  8. Intratumoral injection of taxol in vivo suppresses A549 tumor showing cytoplasmic vacuolization.

    PubMed

    Wang, Chaoyang; Chen, Tongsheng

    2012-04-01

    Based on our recent in vitro studies, this report was designed to explore the mechanism by which high concentration of taxol (70 µM) induced paraptosis-like cell death in human lung carcinoma (A549) cells, and to evaluate the therapeutic efficacy of taxol using A549 tumor-bearing mice in vivo. Exposure of cells to taxol induced time-dependent cytotoxicity and cytoplasmic vacuolization without the involvement of Bax, Bak, Mcl-1, Bcl-XL, and caspase-3. Although taxol treatment induced activating transcription factor 6 (ATF6) cleavage indicative of endoplasmic reticulum (ER) stress, silencing ATF6 by shATF6 did not prevent taxol-induced both cytotoxcity and cytoplasmic vacuolization, suggesting that taxol-induced cytoplasmic vacuolization and cell death were not due to ER stress. Moreover, taxol-treated cells did not show DNA fragmentation and loss of mitochondrial membrane potential, the typical characteristics of apoptosis. In addition, taxol-induced cytoplasmic vacuolization did not show the cellular lysis, the characteristics of oncosis, and positive of β-galactosidase, the characteristic of senescence, indicating that taxol induced paraptosis-like cell death is neither oncosis nor senescence. Moreover, our in vivo data showed that intratumoral injection of taxol (50 mg/kg) in A549 tumor xenograft mice on day 1 and day 19 potently suppressed tumor growth showing significant ER vacuolization without toxicity. In conclusion, high concentration of taxol exhibits a significant anticancer activity by inducing paraptosis-like cell death in vitro and in vivo, without significant toxicity, suggesting a promising therapeutic strategy for apoptosis-resistance cancer by inducing ER vacuolization.

  9. 1918 Influenza receptor binding domain variants bind and replicate in primary human airway cells regardless of receptor specificity.

    PubMed

    Davis, A Sally; Chertow, Daniel S; Kindrachuk, Jason; Qi, Li; Schwartzman, Louis M; Suzich, Jon; Alsaaty, Sara; Logun, Carolea; Shelhamer, James H; Taubenberger, Jeffery K

    2016-06-01

    The 1918 influenza pandemic caused ~50 million deaths. Many questions remain regarding the origin, pathogenicity, and mechanisms of human adaptation of this virus. Avian-adapted influenza A viruses preferentially bind α2,3-linked sialic acids (Sia) while human-adapted viruses preferentially bind α2,6-linked Sia. A change in Sia preference from α2,3 to α2,6 is thought to be a requirement for human adaptation of avian influenza viruses. Autopsy data from 1918 cases, however, suggest that factors other than Sia preference played a role in viral binding and entry to human airway cells. Here, we evaluated binding and entry of five 1918 influenza receptor binding domain variants in a primary human airway cell model along with control avian and human influenza viruses. We observed that all five variants bound and entered cells efficiently and that Sia preference did not predict entry of influenza A virus to primary human airway cells evaluated in this model. PMID:27062579

  10. 1918 Influenza receptor binding domain variants bind and replicate in primary human airway cells regardless of receptor specificity.

    PubMed

    Davis, A Sally; Chertow, Daniel S; Kindrachuk, Jason; Qi, Li; Schwartzman, Louis M; Suzich, Jon; Alsaaty, Sara; Logun, Carolea; Shelhamer, James H; Taubenberger, Jeffery K

    2016-06-01

    The 1918 influenza pandemic caused ~50 million deaths. Many questions remain regarding the origin, pathogenicity, and mechanisms of human adaptation of this virus. Avian-adapted influenza A viruses preferentially bind α2,3-linked sialic acids (Sia) while human-adapted viruses preferentially bind α2,6-linked Sia. A change in Sia preference from α2,3 to α2,6 is thought to be a requirement for human adaptation of avian influenza viruses. Autopsy data from 1918 cases, however, suggest that factors other than Sia preference played a role in viral binding and entry to human airway cells. Here, we evaluated binding and entry of five 1918 influenza receptor binding domain variants in a primary human airway cell model along with control avian and human influenza viruses. We observed that all five variants bound and entered cells efficiently and that Sia preference did not predict entry of influenza A virus to primary human airway cells evaluated in this model.

  11. Role of K(V)LQT1 in cyclic adenosine monophosphate-mediated Cl(-) secretion in human airway epithelia.

    PubMed

    Mall, M; Wissner, A; Schreiber, R; Kuehr, J; Seydewitz, H H; Brandis, M; Greger, R; Kunzelmann, K

    2000-09-01

    Ion transport defects underlying cystic fibrosis (CF) lung disease are characterized by impaired cyclic adenosine monophosphate (cAMP)-dependent Cl(-) conductance. Activation of Cl(-) secretion in airways depends on simultaneous activation of luminal Cl(-) channels and basolateral K(+) channels. We determined the role of basolateral K(+) conductance in cAMP- dependent Cl(-) secretion in native human airway epithelium obtained from non-CF and CF patients. CF tissues showed typical alterations of short-circuit currents with enhanced amiloride-sensitive Na(+) conductance and defective cAMP-mediated Cl(-) conductance. In non-CF tissues, Cl(-) secretion was significantly inhibited by the chromanol 293B (10 micromol/liter), a specific inhibitor of K(V)LQT1 K(+) channels. Inhibition was increased after cAMP-dependent stimulation. Similar effects were obtained with Ba(2+) (5 mmol/liter). In patch-clamp experiments with a human bronchial epithelial cell line, stimulation with forskolin (10 micromol/liter) simultaneously activated Cl(-) and K(+) conductance. The K(+) conductance was reversibly inhibited by Ba(2+) and 293B. Analysis of reverse-transcribed messenger RNA from non-CF and CF airways showed expression of human K(V)LQT1. We conclude that the K(+) channel K(V)LQT1 is important in maintaining cAMP-dependent Cl(-) secretion in human airways. Activation of K(V)LQT1 in CF airways in parallel with stimulation of residual CF transmembrane conductance regulator Cl(-) channel activity or alternative Cl(-) channels could help to circumvent the secretory defect.

  12. αTAT1 downregulation induces mitotic catastrophe in HeLa and A549 cells.

    PubMed

    Chien, J-Y; Tsen, S-D; Chien, C-C; Liu, H-W; Tung, C-Y; Lin, C-H

    2016-01-01

    α-Tubulin acetyltransferase 1 (αTAT1) controls reversible acetylation on Lys40 of α-tubulin and modulates multiple cellular functions. αTAT1 depletion induced morphological defects of touch receptor neurons in Caenorhabditis elegans and impaired cell adhesion and contact inhibition in mouse embryonic fibroblasts, however, no morphological or proliferation defects in human RPE-hTERT cells were found after αTAT1-specific siRNA treatment. Here, we compared the effect of three αTAT1-specific shRNAs on proliferation and morphology in two human cell lines, HeLa and A549. The more efficient two shRNAs induced mitotic catastrophe in both cell lines and the most efficient one also decreased F-actin and focal adhesions. Further analysis revealed that αTAT1 downregulation increased γ-H2AX, but not other DNA damage markers p-CHK1 and p-CHK2, along with marginal change in microtubule outgrowth speed and inter-kinetochore distance. Overexpression of αTAT1 could not precisely mimic the distribution and concentration of endogenous acetylated α-tubulin (Ac-Tu), although no overt phenotype change was observed, meanwhile, this could not completely prevent αTAT1 downregulation-induced deficiencies. We therefore conclude that efficient αTAT1 downregulation could impair actin architecture and induce mitotic catastrophe in HeLa and A549 cells through mechanisms partly independent of Ac-Tu. PMID:27551500

  13. Roflumilast combined with adenosine increases mucosal hydration in human airway epithelial cultures after cigarette smoke exposure

    PubMed Central

    Tyrrell, Jean; Qian, Xiaozhong; Freire, Jose

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a growing cause of morbidity and mortality worldwide. Recent studies have shown that cigarette smoke (CS) induces cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction, which leads to airway-surface liquid (ASL) dehydration. This in turn contributes to the mucus dehydration and impaired mucociliary clearance that are seen in the chronic bronchitis form of COPD. Roflumilast is a phosphodiesterase 4 inhibitor that may improve lung function and reduce the frequency of exacerbations in patients with COPD. Although roflumilast can affect cAMP metabolism, little is known about the downstream pharmacological effects in the airways. We hypothesized that roflumilast would increase ASL rehydration in human bronchial epithelial cultures (HBECs) after chronic CS exposure. cAMP production was measured by Förster resonance energy transfer in HEK293T cells and by ELISA in HBECs. ASL height was measured by xz-confocal microscopy after air exposure or following HBEC exposure to freshly produced CS. Roflumilast had little effect on cAMP or ASL height when applied on its own; however, roflumilast significantly potentiated adenosine-induced increases in cAMP and ASL height in CS-exposed HBECs. Roflumilast increased the rate of ASL height recovery in cultures after CS exposure compared with controls. In contrast, the β2-adrenergic receptor agonists isoproterenol and salmeterol failed to increase ASL height after CS exposure. Our data suggest that roflumilast can increase ASL hydration in CS-exposed HBECs, which is predicted to be beneficial for the treatment of mucus dehydration/mucus stasis in patients with COPD chronic bronchitis. PMID:25795727

  14. IL-17A mediates a selective gene expression profile in asthmatic human airway smooth muscle cells.

    PubMed

    Dragon, Stéphane; Hirst, Stuart J; Lee, Tak H; Gounni, Abdelilah S

    2014-06-01

    Airway smooth muscle (ASM) cells are thought to contribute to the pathogenesis of allergic asthma by orchestrating and perpetuating airway inflammation and remodeling responses. In this study, we evaluated the IL-17RA signal transduction and gene expression profile in ASM cells from subjects with mild asthma and healthy individuals. Human primary ASM cells were treated with IL-17A and probed by the Affymetrix GeneChip array, and gene targets were validated by real-time quantitative RT-PCR. Genomic analysis underlined the proinflammatory nature of IL-17A, as multiple NF-κB regulatory factors and chemokines were induced in ASM cells. Transcriptional regulators consisting of primary response genes were overrepresented and displayed dynamic expression profiles. IL-17A poorly enhanced IL-1β or IL-22 gene responses in ASM cells from both subjects with mild asthma and healthy donors. Interestingly, protein modifications to the NF-κB regulatory network were not observed after IL-17A stimulation, although oscillations in IκBε expression were detected. ASM cells from subjects with mild asthma up-regulated more genes with greater overall variability in response to IL-17A than from healthy donors. Finally, in response to IL-17A, ASM cells displayed rapid activation of the extracellular signal-regulated kinase/ribosomal S6 kinase signaling pathway and increased nuclear levels of phosphorylated extracellular signal-regulated kinase. Taken together, our results suggest that IL-17A mediated modest gene expression response, which, in cooperation with the NF-κB signaling network, may regulate the gene expression profile in ASM cells.

  15. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus.

    PubMed

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.

  16. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus

    PubMed Central

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells. PMID:26345201

  17. Effect of guaifenesin on mucin production, rheology, and mucociliary transport in differentiated human airway epithelial cells.

    PubMed

    Seagrave, JeanClare; Albrecht, Helmut; Park, Yong Sung; Rubin, Bruce; Solomon, Gail; Kim, K Chul

    2011-12-01

    Guaifenesin is widely used to alleviate symptoms of excessive mucus accumulation in the respiratory tract. However, its mechanism of action is poorly understood. The authors hypothesized that guaifenesin improves mucociliary clearance in humans by reducing mucin release, by decreasing mucus viscoelasticity, and by increasing mucociliary transport. To test these hypotheses, human differentiated airway epithelial cells, cultured at an air-liquid interface, were treated with clinically relevant concentrations of guaifenesin by addition to the basolateral medium. To evaluate the effect on mucin secretion, the authors used an anzyme-linked immunosorbent assay (ELISA) to measure the amounts of MUC5AC protein in apical surface fluid and cell lysates. To measure mucociliary transportability, additional cultures were treated for 1 or 6 hours with guaifenesin, and the movement of cell debris was measured from video data. Further, the authors measured mucus dynamic viscoelasticity using a micro cone and plate rheometer with nondestructive creep transformation. Guaifenesin suppressed mucin production in a dose-dependent manner at clinically relevant concentrations. The reduced mucin production was associated with increased mucociliary transport and decreased viscoelasticity of the mucus. Viability of the cultures was not significantly affected. These results suggest that guaifenesin could improve mucociliary clearance in humans by reducing the release and/or production of mucins, thereby altering mucus rheology. PMID:22044398

  18. The preparation of <100 particles per trial having the same mole fraction of 12 inorganic compounds at diameters of 6.8, 3.8, or 2.6 [mu]m followed by their deposition onto human lung cells (A549) with measurement of the relative downstream differential expression of ICAM-1

    NASA Astrophysics Data System (ADS)

    Eleghasim, Ndukauba M.; Haddrell, Allen E.; van Eeden, Stephen; Agnes, George R.

    2006-12-01

    The characterization of particulate matter suspended in the troposphere (PM10) based on size is an important basis for assessing the extent of their adverse effects on human health. The relevance of such assessments is anticipated to be significantly improved through the continued development of tools that can identify the chemical components within individual ambient particles, and the injury that they cause. We use recently reported methodology to create mimics of ambient particle types of known size and chemical composition that are levitated within an ac trap. The ac trap uses electric fields to levitate the particles that have a given mass and net elementary charge, and as such the ac trap is a mass-to-charge filter. The ac trap was used to levitate populations of particles where the size of particles in any given population could be altered. The levitated particles are delivered direct from the ac trap to human lung cells (A549), in vitro, with downstream measurement of differential expression of intercellular adhesion molecule (ICAM)-1 and counting of the number of particles actually delivered to the culture using an optical microscope. In this study, the chemical composition of the ambient particle mimics was restricted to inorganic compounds whose relative abundance was purposely designed to mimic the average abundance in Environmental Health Center-93 (EHC-93) particles. The sizes of the multilelement particle types prepared were 6.8 +/- 0.5, 3.8 +/- 0.3, 2.6 +/- 0.2 (mean +/- S.D.). Particles of either elemental carbon, or elemental carbon containing glycerol were used as control particle types. In any given experiment, a known number of particles, but always <100, of a given size, were deposited onto a small region of an A549 cell culture. Following an 18-h incubation period and anti-body labeling of ICAM-1, the fluorescence emission from a 1.07 mm2 area of the cell culture centered at the site of particle deposition was acquired. The relative

  19. Human Airway Epithelial Cell Responses to Single Walled Carbon Nanotube Exposure: Nanorope-Residual Body Formation

    SciTech Connect

    Panessa-Warren, Barbara J.; Warren, John B.; Kisslinger, Kim; Crosson, Kenya; Maye, Mathew M.

    2012-11-01

    This investigation examines the 'first contact responses' of in vitro human epithelial airway cells exposed to unrefined single walled carbon nanotubes (SWCNTs) [containing metal catalyst, carbon black, amorphous carbon, graphitic shells, and SWCNTs], and refined acid/peroxide cleaned and cut SWCNTs at low and high dose exposures (0.16 ug/L and 1.60 ug/L) for 2, 3 and 3.5 hours. FTIR, X-ray compositional analysis, morphological TEM analysis and UV-Vis were used to physicochemically characterize the SWCNTs in this study. Following SWCNT exposure to human lung NCI-H292 epithelial monolayers, the airway cells were prepared for light microscopy vital staining, or fixed in glutaraldehyde for SEM/TEM imaging to determine SWCNT binding, uptake, intracellular processing and organellar/SWCNT fate within the exposure period. At 2 hr exposures to both unrefined Carbolex, and refined SWCNTs (at both high and low doses), there were no increases in lung cell necrosis compared to controls. However high dose, 3 hr exposures to unrefined Carbolex material produced severe cell damage (apical and basal plasma membrane holes, decreased mitochondria, numerous intracellular vesicles containing nanomaterial and membrane fragments) and increased cell necrosis. The refined SWCNTs exposed for 3 hr at low dose produced no increase in cell death, although high dose exposure produced significant cell death. By TEM, Acid/peroxide cleaned SWCNT 3 hr exposures at high and low doses, revealed SWCNTs attachment to cell surface mucin, and SWCNT uptake into the cells during membrane recycling. Membranes and SWCNTs were seen within cytoplasmic lamellar body-type vesicles, where vesicular contents were bio-degraded, eventually forming long SWCNT-nanoropes, which were subsequently released into the cytoplasm as clusters of attached nanoropes, as the vesicle membranes fragmented. These Nanorope-Residual Bodies did not cause damage to the surrounding organelles or cytoplasm, and seemed very stabile in the

  20. Inhibition of acrolein-stimulated MUC5AC expression by Platycodon grandiflorum root-derived saponin in A549 cells.

    PubMed

    Choi, Jae Ho; Hwang, Yong Pil; Han, Eun Hee; Kim, Hyung Gyun; Park, Bong Hwan; Lee, Hyun Sun; Park, Byung Keun; Lee, Young Chun; Chung, Young Chul; Jeong, Hye Gwang

    2011-09-01

    Mucin overproduction is a hallmark of chronic airway diseases such as chronic obstructive pulmonary disease. In this study, we investigated the inhibition of acrolein-induced expression of mucin 5, subtypes A and C (MUC5AC) by Changkil saponin (CKS) in A549 cells. Acrolein, a known toxin in tobacco smoke and an endogenous mediator of oxidative stress, increases the expression of airway MUC5AC, a major component of airway mucus. CKS, a Platycodon grandiflorum root-derived saponin, inhibited acrolein-induced MUC5AC expression and activity, through the suppression of NF-κB activation. CKS also repressed acrolein-induced phosphorylation of ERK1/2, JNK1/2, and p38MAPK, which are upstream signaling molecules that control MUC5AC expression. In addition, the MAPK inhibitors PD98059 (ERK1/2), SP600125 (JNK1/2), and SB203580 (p38 MAPK), and a PKC delta inhibitor (rottlerin; PKCδ) inhibited acrolein-induced MUC5AC expression and activity. CKS repressed acrolein-induced phosphorylation of PKCδ. Moreover, a reactive oxygen species (ROS) inhibitor, N-acetylcysteine, inhibited acrolein-induced MUC5AC expression and activity through the suppression of PKCδ and MAPK activation, and CKS repressed acrolein-induced ROS production. These results suggest that CKS suppresses acrolein-induced MUC5AC expression by inhibiting the activation of NF-κB via ROS-PKCδ-MAPK signaling. PMID:21664222

  1. Interaction with epithelial cells modifies airway macrophage response to ozone.

    PubMed

    Bauer, Rebecca N; Müller, Loretta; Brighton, Luisa E; Duncan, Kelly E; Jaspers, Ilona

    2015-03-01

    The initial innate immune response to ozone (O3) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived signals affect Mac response to O3. Macs from the bronchoalveolar lavage (BAL) of healthy volunteers were cocultured with the human bronchial epithelial (16HBE) or alveolar (A549) epithelial cell lines. Cocultures, Mac monocultures, and epithelial cell monocultures were exposed to O3 or air, and Mac immunophenotype, phagocytosis, and cytotoxicity were assessed. Quantities of hyaluronic acid (HA) and IL-8 were compared across cultures and in BAL fluid from healthy volunteers exposed to O3 or air for in vivo confirmation. We show that Macs in coculture had increased markers of alternative activation, enhanced cytotoxicity, and reduced phagocytosis compared with Macs in monoculture that differed based on coculture with A549 or 16HBE. Production of HA by epithelial cell monocultures was not affected by O3, but quantities of HA in the in vitro coculture and BAL fluid from volunteers exposed in vivo were increased with O3 exposure, indicating that O3 exposure impairs Mac regulation of HA. Together, we show epithelial cell-Mac coculture models that have many similarities to the in vivo responses to O3, and demonstrate that epithelial cell-derived signals are important determinants of Mac immunophenotype and response to O3.

  2. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    PubMed Central

    Bauer, Rebecca N.; Müller, Loretta; Brighton, Luisa E.; Duncan, Kelly E.

    2015-01-01

    The initial innate immune response to ozone (O3) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell–Mac coculture model to investigate how epithelial cell–derived signals affect Mac response to O3. Macs from the bronchoalveolar lavage (BAL) of healthy volunteers were cocultured with the human bronchial epithelial (16HBE) or alveolar (A549) epithelial cell lines. Cocultures, Mac monocultures, and epithelial cell monocultures were exposed to O3 or air, and Mac immunophenotype, phagocytosis, and cytotoxicity were assessed. Quantities of hyaluronic acid (HA) and IL-8 were compared across cultures and in BAL fluid from healthy volunteers exposed to O3 or air for in vivo confirmation. We show that Macs in coculture had increased markers of alternative activation, enhanced cytotoxicity, and reduced phagocytosis compared with Macs in monoculture that differed based on coculture with A549 or 16HBE. Production of HA by epithelial cell monocultures was not affected by O3, but quantities of HA in the in vitro coculture and BAL fluid from volunteers exposed in vivo were increased with O3 exposure, indicating that O3 exposure impairs Mac regulation of HA. Together, we show epithelial cell–Mac coculture models that have many similarities to the in vivo responses to O3, and demonstrate that epithelial cell–derived signals are important determinants of Mac immunophenotype and response to O3. PMID:25054807

  3. Cell Surface Human Airway Trypsin-Like Protease Is Lost During Squamous Cell Carcinogenesis.

    PubMed

    Duhaime, Michael J; Page, Khaliph O; Varela, Fausto A; Murray, Andrew S; Silverman, Michael E; Zoratti, Gina L; List, Karin

    2016-07-01

    Cancer progression is accompanied by increased levels of extracellular proteases that are capable of remodeling the extracellular matrix, as well as cleaving and activating growth factors and receptors that are involved in pro-cancerous signaling pathways. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression, however, the expression or function of the TTSP Human Airway Trypsin-like protease (HAT) in carcinogenesis has not been examined. In the present study we aimed to determine the expression of HAT during squamous cell carcinogenesis. HAT transcript is present in several tissues containing stratified squamous epithelium and decreased expression is observed in carcinomas. We determined that HAT protein is consistently expressed on the cell surface in suprabasal/apical layers of squamous cells in healthy cervical and esophageal epithelia. To assess whether HAT protein is differentially expressed in normal tissue versus tissue in different stages of carcinogenesis, we performed a comprehensive immunohistochemical analysis of HAT protein expression levels and localization in arrays of paraffin embedded human cervical and esophageal carcinomas compared to the corresponding normal tissue. We found that HAT protein is expressed in the non-proliferating, differentiated cellular strata and is lost during the dedifferentiation of epithelial cells, a hallmark of squamous cell carcinogenesis. Thus, HAT expression may potentially be useful as a marker for clinical grading and assessment of patient prognosis in squamous cell carcinomas.

  4. Exendin-4 promotes extracellular-superoxide dismutase expression in A549 cells through DNA demethylation

    PubMed Central

    Yasuda, Hiroyuki; Mizukami, Koji; Hayashi, Mutsuna; Kamiya, Tetsuro; Hara, Hirokazu; Adachi, Tetsuo

    2016-01-01

    Exendin-4 is an agonist of the glucagon-like peptide 1 receptor (GLP-1R) and is used in the treatment of type 2 diabetes. Since human GLP-1R has been identified in various cells besides pancreatic cells, exendin-4 is expected to exert extrapancreatic actions. It has also been suggested to affect gene expression through epigenetic regulation, such as DNA methylation and/or histone modifications. Furthermore, the expression of extracellular-superoxide dismutase (EC-SOD), a major SOD isozyme that is crucially involved in redox homeostasis, is regulated by epigenetic factors. In the present study, we demonstrated that exendin-4 induced the demethylation of DNA in A549 cells, which, in turn, affected the expression of EC-SOD. Our results showed that the treatment with exendin-4 up-regulated the expression of EC-SOD through GLP-1R and demethylated some methyl-CpG sites (methylated cytosine at 5'-CG-3') in the EC-SOD gene. Moreover, the treatment with exendin-4 inactivated DNA methyltransferases (DNMTs), but did not change their expression levels. In conclusion, the results of the present study demonstrated for the first time that exendin-4 regulated the expression of EC-SOD by reducing the activity of DNMTs and demethylation of DNA within the EC-SOD promoter region in A549 cells. PMID:26798195

  5. Measuring Attachment and Internalization of Influenza A Virus in A549 Cells by Flow Cytometry.

    PubMed

    Pohl, Marie O; Stertz, Silke

    2015-01-01

    Attachment to target cells followed by internalization are the very first steps of the life cycle of influenza A virus (IAV). We provide here a detailed protocol for measuring relative changes in the amount of viral particles that attach to A549 cells, a human lung epithelial cell line, as well as in the amount of particles that are internalized into the cell. We use biotinylated virus which can be easily detected following staining with Cy3-labeled streptavidin (STV-Cy3). We describe the growth, purification and biotinylation of A/WSN/33, a widely used IAV laboratory strain. Cold-bound biotinylated IAV particles on A549 cells are stained with STV-Cy3 and measured using flow cytometry. To investigate uptake of viral particles, cold-bound virus is allowed to internalize at 37 °C. In order to differentiate between external and internalized viral particles, a blocking step is applied: Free binding spots on the biotin of attached virus on the cell surface are bound by unlabeled streptavidin (STV). Subsequent cell permeabilization and staining with STV-Cy3 then enables detection of internalized viral particles. We present a calculation to determine the relative amount of internalized virus. This assay is suitable to measure effects of drug-treatments or other manipulations on attachment or internalization of IAV. PMID:26575457

  6. High-Throughput Quantitative Proteomic Analysis of Dengue Virus Type 2 Infected A549 Cells

    PubMed Central

    Chiu, Han-Chen; Hannemann, Holger; Heesom, Kate J.; Matthews, David A.; Davidson, Andrew D.

    2014-01-01

    Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC) in combination with high-throughput mass spectrometry (MS). Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection. PMID:24671231

  7. PARTICULATE MATTER (PM) INHIBITS NEUROTROPHIN RELEASE FROM A549 CELLS

    EPA Science Inventory

    Several investigations have linked PM exposure to the exacerbation of allergic lung diseases. Many PM effects are mediated by cells within the lung including the airway epithelium, eosinophils, and lymphocytes. These cells also produce neurotophins such as NGF and/or express neur...

  8. Differential transcriptional regulation of IL-8 expression by human airway epithelial cells exposed to diesel exhaust particles

    SciTech Connect

    Tal, Tamara L.; Simmons, Steven O.; Silbajoris, Robert; Dailey, Lisa; Cho, Seung-Hyun; Ramabhadran, Ram; Linak, William; Reed, William; Bromberg, Philip A.; Samet, James M.

    2010-02-15

    Exposure to diesel exhaust particles (DEP) induces inflammatory signaling characterized by MAP kinase-mediated activation of NFkB and AP-1 in vitro and in bronchial biopsies obtained from human subjects exposed to DEP. NFkB and AP-1 activation results in the upregulation of genes involved in promoting inflammation in airway epithelial cells, a principal target of inhaled DEP. IL-8 is a proinflammatory chemokine expressed by the airway epithelium in response to environmental pollutants. The mechanism by which DEP exposure induces IL-8 expression is not well understood. In the current study, we sought to determine whether DEP with varying organic content induces IL-8 expression in lung epithelial cells, as well as, to develop a method to rapidly evaluate the upstream mechanism(s) by which DEP induces IL-8 expression. Exposure to DEP with varying organic content differentially induced IL-8 expression and IL-8 promoter activity human airway epithelial cells. Mutational analysis of the IL-8 promoter was also performed using recombinant human cell lines expressing reporters linked to the mutated promoters. Treatment with a low organic-containing DEP stimulated IL-8 expression by a mechanism that is predominantly NFkB-dependent. In contrast, exposure to high organic-containing DEP induced IL-8 expression independently of NFkB through a mechanism that requires AP-1 activity. Our study reveals that exposure to DEP of varying organic content induces proinflammatory gene expression through multiple specific mechanisms in human airway epithelial cells. The approaches used in the present study demonstrate the utility of a promoter-reporter assay ensemble for identifying transcriptional pathways activated by pollutant exposure.

  9. α5-nAChR modulates nicotine-induced cell migration and invasion in A549 lung cancer cells.

    PubMed

    Sun, Haiji; Ma, Xiaoli

    2015-09-01

    Cigarette smoking is the most important risk factor in the development of human lung cancer. Nicotine, the major component in tobacco, not only contributes to carcinogenesis but also promotes tumor metastasis. By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and migration of non-small cell lung cancer. Recently studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. Nevertheless, it is unclear whether nicotine promotes the migration and invasion through activation of α5-nAChR in lung cancer. In the present study, A549 cell was exposed to 1μN nicotine for 8, 24 or 48h. Wound-healing assay and transwell assay were used to evaluate the capability of A549 cell migration and cell invasion, respectively. Silencing of α5-nAChR was done by siRNA. Western blotting and PCR were used to detect α5-nAChR expression. Nicotine can induce activation of α5-nAChR in association with increased migration and invasion of human lung cancer A549 cell. Treatment of cells with α5-nAChR specific siRNA blocks nicotine-stimulated activation of α5-nAChR and suppresses A549 cell migration and invasion. Reduction of α5-nAChR resulted in upregulation of E-cadherin, consistent with E-cadherin being inhibitive of cancer cell invasion. These findings suggest that nicotine-induced migration and invasion may occur in a mechanism through activation of α5-nAChR, which can contribute to metastasis or development of human lung cancer.

  10. Transport and Deposition of Welding Fume Agglomerates in a Realistic Human Nasal Airway.

    PubMed

    Tian, Lin; Inthavong, Kiao; Lidén, Göran; Shang, Yidan; Tu, Jiyuan

    2016-07-01

    Welding fume is a complex mixture containing ultra-fine particles in the nanometer range. Rather than being in the form of a singular sphere, due to the high particle concentration, welding fume particles agglomerate into long straight chains, branches, or other forms of compact shapes. Understanding the transport and deposition of these nano-agglomerates in human respiratory systems is of great interest as welding fumes are a known health hazard. The neurotoxin manganese (Mn) is a common element in welding fumes. Particulate Mn, either as soluble salts or oxides, that has deposited on the olfactory mucosa in human nasal airway is transported along the olfactory nerve to the olfactory bulb within the brain. If this Mn is further transported to the basal ganglia of the brain, it could accumulate at the part of the brain that is the focal point of its neurotoxicity. Accounting for various dynamic shape factors due to particle agglomeration, the current computational study is focused on the exposure route, the deposition pattern, and the deposition efficiency of the inhaled welding fume particles in a realistic human nasal cavity. Particular attention is given to the deposition pattern and deposition efficiency of inhaled welding fume agglomerates in the nasal olfactory region. For particles in the nanoscale, molecular diffusion is the dominant transport mechanism. Therefore, Brownian diffusion, hydrodynamic drag, Saffman lift force, and gravitational force are included in the model study. The deposition efficiencies for single spherical particles, two kinds of agglomerates of primary particles, two-dimensional planar and straight chains, are investigated for a range of primary particle sizes and a range of number of primary particles per agglomerate. A small fraction of the inhaled welding fume agglomerates is deposited on the olfactory mucosa, approximately in the range 0.1-1%, and depends on particle size and morphology. The strong size dependence of the deposition

  11. The classical Starling resistor model often does not predict inspiratory airflow patterns in the human upper airway.

    PubMed

    Owens, Robert L; Edwards, Bradley A; Sands, Scott A; Butler, James P; Eckert, Danny J; White, David P; Malhotra, Atul; Wellman, Andrew

    2014-04-15

    The upper airway is often modeled as a classical Starling resistor, featuring a constant inspiratory airflow, or plateau, over a range of downstream pressures. However, airflow tracings from clinical sleep studies often show an initial peak before the plateau. To conform to the Starling model, the initial peak must be of small magnitude or dismissed as a transient. We developed a method to simulate fast or slow inspirations through the human upper airway, to test the hypothesis that this initial peak is a transient. Eight subjects [4 obstructive sleep apnea (OSA), 4 controls] slept in an "iron lung" and wore a nasal mask connected to a continuous/bilevel positive airway pressure machine. Downstream pressure was measured using an epiglottic catheter. During non-rapid eye movement (NREM) sleep, subjects were hyperventilated to produce a central apnea, then extrathoracic pressure was decreased slowly (∼2-4 s) or abruptly (<0.5 s) to lower downstream pressure and create inspiratory airflow. Pressure-flow curves were constructed for flow-limited breaths, and slow vs. fast reductions in downstream pressure were compared. All subjects exhibited an initial peak and then a decrease in flow with more negative pressures, demonstrating negative effort dependence (NED). The rate of change in downstream pressure did not affect the peak to plateau airflow ratio: %NED 22 ± 13% (slow) vs. 20 ± 5% (fast), P = not significant. We conclude that the initial peak in inspiratory airflow is not a transient but rather a distinct mechanical property of the upper airway. In contrast to the classical Starling resistor model, the upper airway exhibits marked NED in some subjects. PMID:24458746

  12. The classical Starling resistor model often does not predict inspiratory airflow patterns in the human upper airway

    PubMed Central

    Edwards, Bradley A.; Sands, Scott A.; Butler, James P.; Eckert, Danny J.; White, David P.; Malhotra, Atul; Wellman, Andrew

    2014-01-01

    The upper airway is often modeled as a classical Starling resistor, featuring a constant inspiratory airflow, or plateau, over a range of downstream pressures. However, airflow tracings from clinical sleep studies often show an initial peak before the plateau. To conform to the Starling model, the initial peak must be of small magnitude or dismissed as a transient. We developed a method to simulate fast or slow inspirations through the human upper airway, to test the hypothesis that this initial peak is a transient. Eight subjects [4 obstructive sleep apnea (OSA), 4 controls] slept in an “iron lung” and wore a nasal mask connected to a continuous/bilevel positive airway pressure machine. Downstream pressure was measured using an epiglottic catheter. During non-rapid eye movement (NREM) sleep, subjects were hyperventilated to produce a central apnea, then extrathoracic pressure was decreased slowly (∼2–4 s) or abruptly (<0.5 s) to lower downstream pressure and create inspiratory airflow. Pressure-flow curves were constructed for flow-limited breaths, and slow vs. fast reductions in downstream pressure were compared. All subjects exhibited an initial peak and then a decrease in flow with more negative pressures, demonstrating negative effort dependence (NED). The rate of change in downstream pressure did not affect the peak to plateau airflow ratio: %NED 22 ± 13% (slow) vs. 20 ± 5% (fast), P = not significant. We conclude that the initial peak in inspiratory airflow is not a transient but rather a distinct mechanical property of the upper airway. In contrast to the classical Starling resistor model, the upper airway exhibits marked NED in some subjects. PMID:24458746

  13. Phase-contrast helium-3 MRI of aerosol deposition in human airways.

    PubMed

    Sarracanie, Mathieu; Grebenkov, Denis; Sandeau, Julien; Coulibaly, Soulé; Martin, Andrew R; Hill, Kyle; Pérez Sánchez, José Manuel; Fodil, Redouane; Martin, Lionel; Durand, Emmanuel; Caillibotte, Georges; Isabey, Daniel; Darrasse, Luc; Bittoun, Jacques; Maître, Xavier

    2015-02-01

    One of the key challenges in the study of health-related aerosols is predicting and monitoring sites of particle deposition in the respiratory tract. The potential health risks of ambient exposure to environmental or workplace aerosols and the beneficial effects of medical aerosols are strongly influenced by the site of aerosol deposition along the respiratory tract. Nuclear medicine is the only current modality that combines quantification and regional localization of aerosol deposition, and this technique remains limited by its spatial and temporal resolutions and by patient exposure to radiation. Recent work in MRI has shed light on techniques to quantify micro-sized magnetic particles in living bodies by the measurement of associated static magnetic field variations. With regard to lung MRI, hyperpolarized helium-3 may be used as a tracer gas to compensate for the lack of MR signal in the airways, so as to allow assessment of pulmonary function and morphology. The extrathoracic region of the human respiratory system plays a critical role in determining aerosol deposition patterns, as it acts as a filter upstream from the lungs. In the present work, aerosol deposition in a mouth-throat phantom was measured using helium-3 MRI and compared with single-photon emission computed tomography. By providing high sensitivity with high spatial and temporal resolutions, phase-contrast helium-3 MRI offers new insights for the study of particle transport and deposition.

  14. Intracellular calcium mobilization and phospholipid degradation in sphingosylphosphorylcholine-stimulated human airway epithelial cells.

    PubMed Central

    Orlati, S; Porcelli, A M; Hrelia, S; Lorenzini, A; Rugolo, M

    1998-01-01

    Extracellular sphingosylphosphorylcholine (SPC) caused a remarkable elevation in the intracellular Ca2+ concentration ([Ca2+]i) in immortalized human airway epithelial cells (CFNP9o-). An increase in total inositol phosphates formation was determined; however, the dose responses for [Ca2+]i elevation and inositol phosphates production were slightly different and, furthermore, PMA and pertussis toxin almost completely inhibited [Ca2+]i mobilization by SPC, whereas inositol phosphates production was only partially reduced. The possible direct interaction of SPC with Ca2+ channels of intracellular stores was determined by experiments with permeabilized cells, where SPC failed to evoke Ca2+ release, whereas lysophosphatidic acid was shown to be effective. The level of phosphatidic acid was increased by SPC only in the presence of AACOCF3, a specific inhibitor of phospholipase A2 (PLA2) and blocked by both pertussis toxin and R59022, an inhibitor of diacylglycerol kinase. R59022 enhanced diacylglycerol production by SPC and also significantly reduced [Ca2+]i mobilization. Only polyunsaturated diacylglycerol and phosphatidic acid were generated by SPC. Lastly, SPC caused stimulation of arachidonic acid release, indicating the involvement of PLA2. Taken together, these data suggest that, after SPC stimulation, phospholipase C-derived diacylglycerol is phosphorylated by a diacylglycerol kinase to phosphatidic acid, which is further hydrolysed by PLA2 activity to arachidonic and lysophosphatidic acids. We propose that lysophosphatidic acid might be the intracellular messenger able to release Ca2+ from internal stores. PMID:9729473

  15. Establishment and transformation of telomerase-immortalized human small airway epithelial cells by heavy ions

    NASA Astrophysics Data System (ADS)

    Zhao, Y. L.; Piao, C. Q.; Hei, T. K.

    Previous studies from this laboratory have identified a number of causally linked genes including the novel tumor suppressor Betaig-h3 that were differentially expressed in radiation induced tumorigenic BEP2D cells. To extend these studies using a genomically more stable bronchial cell line, we show here that ectopic expression of the catalytic subunit of telomerase (hTERT) in primary human small airway epithelial (SAE) cells resulted in the generation of several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal. Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings. The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice. These cells show no alteration in the p53 gene but a decrease in p16 expression. Exponentially growing SAEh cells were exposed to graded doses of 1 GeV/nucleon of 56Fe ions accelerated at the Brookhaven National Laboratory. Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation. Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium. These findings indicate that hTERT-immortalized cells, being diploid and chromosomal stable, should be a useful model in assessing mechanism of radiation carcinogenesis.

  16. Spatial and temporal traction response in human airway smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Tolic-Norrelykke, Iva Marija; Butler, James P.; Chen, Jianxin; Wang, Ning

    2002-01-01

    Tractions that cells exert on their substrates are essential in cell spreading, migration, and contraction. These tractions can be determined by plating the cells on a flexible gel and measuring the deformation of the gel by using fluorescent beads embedded just below the surface of the gel. In this article we describe the image correlation method (ICM) optimized for determining the displacement field of the gel under a contracting cell. For the calculation of the traction field from the displacement field we use the recently developed method of Fourier transform traction cytometry (FTTC). The ICM and FTTC methods are applied to human airway smooth muscle cells during stimulation with the contractile agonist histamine or the relaxing agonist isoproterenol. The overall intensity of the cell contraction (the median traction magnitude, the energy transferred from the cell to the gel, and the net contractile moment) increased after activation with histamine, and decreased after treatment with isoproterenol. Cells exhibited regional differences in the time course of traction during the treatment. Both temporal evolution and magnitude of traction increase induced by histamine varied markedly among different cell protrusions, whereas the nuclear region showed the smallest response. These results suggest that intracellular mediators of cell adhesion and contraction respond to contractile stimuli with different rates and intensities in different regions of the cell.

  17. Numerical Investigation of Flow Characteristics in the Obstructed Realistic Human Upper Airway

    PubMed Central

    Liu, Xingli; Liu, Yang; Choy, Yat Sze; Wei, Yikun

    2016-01-01

    The flow characteristics in the realistic human upper airway (HUA) with obstruction that resulted from pharyngeal collapse were numerically investigated. The 3D anatomically accurate HUA model was reconstructed from CT-scan images of a Chinese male patient (38 years, BMI 25.7). The computational fluid dynamics (CFD) with the large eddy simulation (LES) method was applied to simulate the airflow dynamics within the HUA model in both inspiration and expiration processes. The laser Doppler anemometry (LDA) technique was simultaneously adopted to measure the airflow fields in the HUA model for the purpose of testifying the reliability of LES approach. In the simulations, the representative respiration intensities of 16.8 L/min (slight breathing), 30 L/min (moderate breathing), and 60 L/min (severe breathing) were conducted under continuous inspiration and expiration conditions. The airflow velocity field and static pressure field were obtained and discussed in detail. The results indicated the airflow experiences unsteady transitional/turbulent flow in the HUA model under low Reynolds number. The airflow fields cause occurrence of forceful injection phenomenon due to the narrowing of pharynx caused by the respiratory illness in inspiration and expiration. There also exist strong flow separation and back flow inside obstructed HUA owing to the vigorous jet flow effect in the pharynx. The present results would provide theoretical guidance for the treatment of obstructive respiratory disease. PMID:27725841

  18. Antigen-induced generation of lyso-phospholipids in human airways

    PubMed Central

    1996-01-01

    mass, (14 kD) human synovial PLA2 and dithiothreitol. Acetyl hydrolase activity also markedly increased in BALF obtained after antigen challenge. This study indicates that high levels of lyso-PLs are present in airways of allergic subjects challenged with antigen and provides evidence for two distinct mechanisms that could induce lyso-PL formation. Future studies will be necessary to determine the ramifications of these high levels of lyso- phospholipids on airway function. PMID:8642333

  19. A novel polysaccharide from Sargassum integerrimum induces apoptosis in A549 cells and prevents angiogensis in vitro and in vivo

    PubMed Central

    Liu, Ge; Kuang, Shan; Wu, Shimei; Jin, Weihua; Sun, Chaomin

    2016-01-01

    Many polysaccharides isolated from plants have exhibited promising antitumor activities. The aim of this study is to investigate the antitumor activity of the novel polysaccharide named SPS from Sargassum integerrimum, elucidate the underlying anticancer mechanism in a human lung cancer cell line A549, and evaluate its anti-angiogenic activity both in vitro and in vivo. The results show that SPS significantly reduces A549 cells viability in a dose- and time-dependent manner via MTT method. Flow cytometry analysis indicates that SPS could induce cell apoptosis, the loss of mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS) and G2/M phase cell cycle arrest of A549 cells. Up-regulation of the expressions of P53 and Bax, down-regulation of the expression of Bcl-2, and activation of cleaved caspase-3, caspase-9 and PARP are also detected by western blotting after the treatment of SPS. In addition, SPS inhibits the proliferation, migration and cord formation of human umbilical vein endothelial cells (HUVECs) in vitro, and prevents the vascular development of zebrafish embryos in vivo. Altogether, our data prove the anticancer and anti-angiogenesis properties of SPS, and provide further insights into the potential pharmacological application of SPS as antitumor and anti-angiogenic agent against lung cancer. PMID:27216943

  20. A novel polysaccharide from Sargassum integerrimum induces apoptosis in A549 cells and prevents angiogensis in vitro and in vivo.

    PubMed

    Liu, Ge; Kuang, Shan; Wu, Shimei; Jin, Weihua; Sun, Chaomin

    2016-01-01

    Many polysaccharides isolated from plants have exhibited promising antitumor activities. The aim of this study is to investigate the antitumor activity of the novel polysaccharide named SPS from Sargassum integerrimum, elucidate the underlying anticancer mechanism in a human lung cancer cell line A549, and evaluate its anti-angiogenic activity both in vitro and in vivo. The results show that SPS significantly reduces A549 cells viability in a dose- and time-dependent manner via MTT method. Flow cytometry analysis indicates that SPS could induce cell apoptosis, the loss of mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS) and G2/M phase cell cycle arrest of A549 cells. Up-regulation of the expressions of P53 and Bax, down-regulation of the expression of Bcl-2, and activation of cleaved caspase-3, caspase-9 and PARP are also detected by western blotting after the treatment of SPS. In addition, SPS inhibits the proliferation, migration and cord formation of human umbilical vein endothelial cells (HUVECs) in vitro, and prevents the vascular development of zebrafish embryos in vivo. Altogether, our data prove the anticancer and anti-angiogenesis properties of SPS, and provide further insights into the potential pharmacological application of SPS as antitumor and anti-angiogenic agent against lung cancer. PMID:27216943

  1. Effects of air pollution-related heavy metals on the viability and inflammatory responses of human airway epithelial cells.

    PubMed

    Honda, Akiko; Tsuji, Kenshi; Matsuda, Yugo; Hayashi, Tomohiro; Fukushima, Wataru; Sawahara, Takahiro; Kudo, Hitomi; Murayama, Rumiko; Takano, Hirohisa

    2015-01-01

    Various metals produced from human activity are ubiquitously detected in ambient air. The metals may lead to induction and/or exacerbation of respiratory diseases, but the significant metals and factors contributing to such diseases have not been identified. To compare the effects of each metal and different oxidation states of metals on human airway, we examined the viability and production of interleukin (IL)-6 and IL-8 using BEAS-2B cell line, derived from human airway epithelial cells. Airway epithelial cells were exposed to Mn(2+), V(4+), V(5+), Cr(3+), Cr(6+), Zn(2+), Ni(2+), and Pb(2+) at a concentration of 0.5, 5, 50, or 500 μmol/L for 24 hours. Mn and V decreased the cell viability in a concentration-dependent manner, and V(5+) tended to have a greater effect than V(4+). The Cr decreased the cell viability, and (Cr(+6)) at concentrations of 50 and 500 μmol/L was more toxic than (Cr(+3)). Zn at a concentration of 500 μmol/L greatly decreased the cell viability, whereas Ni at the same concentration increased it. Pb produced fewer changes. Mn and Ni at a concentration of 500 μmol/L induced the significant production of IL-6 and IL-8. However, most of the metals including (V(+4), V(+5)), (Cr(+3), Cr(+6)), Zn, and Pb inhibited the production of both IL-6 and IL-8. The present results indicate that various heavy metals have different effects on toxicity and the proinflammatory responses of airway epithelial cells, and those influences also depend on the oxidation states of the metals.

  2. Generation of Distal Airway Epithelium from Multipotent Human Foregut Stem Cells

    PubMed Central

    Sampaziotis, Fotios; Segeritz, Charis-Patricia; Hanley, Neil A.

    2015-01-01

    Collectively, lung diseases are one of the largest causes of premature death worldwide and represent a major focus in the field of regenerative medicine. Despite significant progress, only few stem cell platforms are currently available for cell-based therapy, disease modeling, and drug screening in the context of pulmonary disorders. Human foregut stem cells (hFSCs) represent an advantageous progenitor cell type that can be used to amplify large quantities of cells for regenerative medicine applications and can be derived from any human pluripotent stem cell line. Here, we further demonstrate the application of hFSCs by generating a near homogeneous population of early pulmonary endoderm cells coexpressing NKX2.1 and FOXP2. These progenitors are then able to form cells that are representative of distal airway epithelium that express NKX2.1, GATA6, and cystic fibrosis transmembrane conductance regulator (CFTR) and secrete SFTPC. This culture system can be applied to hFSCs carrying the CFTR mutation Δf508, enabling the development of an in vitro model for cystic fibrosis. This platform is compatible with drug screening and functional validations of small molecules, which can reverse the phenotype associated with CFTR mutation. This is the first demonstration that multipotent endoderm stem cells can differentiate not only into both liver and pancreatic cells but also into lung endoderm. Furthermore, our study establishes a new approach for the generation of functional lung cells that can be used for disease modeling as well as for drug screening and the study of lung development. PMID:25758640

  3. Bidirectional counter-regulation of human lung mast cell and airway smooth muscle β2-adrenoceptors

    PubMed Central

    Newby, Chris; Amrani, Yassine; Bradding, Peter

    2015-01-01

    Human lung mast cells (HLMCs) play a central role in asthma pathogenesis through their relocation to the airway smooth muscle (ASM) bundles. β2 adrenoceptor (β2-AR)-agonists are used to relieve bronchoconstriction in asthma, but may reduce asthma control, particularly when used as monotherapy. We hypothesised that HLMC and human ASM cell (HASMC) responsiveness to β2-AR agonists would be attenuated when HLMCs are in contact with HASMCs. Cells were cultured in the presence of the short-acting β2-agonist albuterol, and the long-acting β2-agonists formoterol and olodaterol. Constitutive and FcεRI-dependent HLMC histamine release, HASMC contraction, and β2-AR phosphorylation at tyrosine 350 (Tyr350) were assessed. Constitutive HLMC histamine release was increased in HLMC-HASMC co-culture and this was enhanced by β2-AR agonists. Inhibition of FcεRI-dependent HLMC mediator release by β2-agonists was greatly reduced in HLMC-HASMC co-culture. These effects were reversed by neutralisation of stem cell factor (SCF) or cell adhesion molecule 1 (CADM1). β2-AR agonists did not prevent HASMC contraction when HLMCs were present, but this was reversed by fluticasone. β2-AR phosphorylation at Tyr350 occurred within 5 minutes in both HLMCs and HASMCs when the cells were co-cultured, and was inhibited by neutralising SCF or CADM1. HLMC interactions with HASMCs via CADM1 and Kit inhibit the potentially beneficial effects of β2-AR agonists on these cells via phosphorylation of the β2-AR. These results may explain the potentially adverse effects of β2-ARs agonists when used for asthma therapy. Targeting SCF and CADM1 may enhance β2-AR efficacy, particularly in corticosteroid-resistant patients. PMID:26608913

  4. Generation of Distal Airway Epithelium from Multipotent Human Foregut Stem Cells.

    PubMed

    Hannan, Nicholas R F; Sampaziotis, Fotios; Segeritz, Charis-Patricia; Hanley, Neil A; Vallier, Ludovic

    2015-07-15

    Collectively, lung diseases are one of the largest causes of premature death worldwide and represent a major focus in the field of regenerative medicine. Despite significant progress, only few stem cell platforms are currently available for cell-based therapy, disease modeling, and drug screening in the context of pulmonary disorders. Human foregut stem cells (hFSCs) represent an advantageous progenitor cell type that can be used to amplify large quantities of cells for regenerative medicine applications and can be derived from any human pluripotent stem cell line. Here, we further demonstrate the application of hFSCs by generating a near homogeneous population of early pulmonary endoderm cells coexpressing NKX2.1 and FOXP2. These progenitors are then able to form cells that are representative of distal airway epithelium that express NKX2.1, GATA6, and cystic fibrosis transmembrane conductance regulator (CFTR) and secrete SFTPC. This culture system can be applied to hFSCs carrying the CFTR mutation Δf508, enabling the development of an in vitro model for cystic fibrosis. This platform is compatible with drug screening and functional validations of small molecules, which can reverse the phenotype associated with CFTR mutation. This is the first demonstration that multipotent endoderm stem cells can differentiate not only into both liver and pancreatic cells but also into lung endoderm. Furthermore, our study establishes a new approach for the generation of functional lung cells that can be used for disease modeling as well as for drug screening and the study of lung development. PMID:25758640

  5. A computational study of the respiratory airflow characteristics in normal and obstructed human airways.

    PubMed

    Sul, Bora; Wallqvist, Anders; Morris, Michael J; Reifman, Jaques; Rakesh, Vineet

    2014-09-01

    Obstructive lung diseases in the lower airways are a leading health concern worldwide. To improve our understanding of the pathophysiology of lower airways, we studied airflow characteristics in the lung between the 8th and the 14th generations using a three-dimensional computational fluid dynamics model, where we compared normal and obstructed airways for a range of breathing conditions. We employed a novel technique based on computing the Pearson׳s correlation coefficient to quantitatively characterize the differences in airflow patterns between the normal and obstructed airways. We found that the airflow patterns demonstrated clear differences between normal and diseased conditions for high expiratory flow rates (>2300ml/s), but not for inspiratory flow rates. Moreover, airflow patterns subjected to filtering demonstrated higher sensitivity than airway resistance for differentiating normal and diseased conditions. Further, we showed that wall shear stresses were not only dependent on breathing rates, but also on the distribution of the obstructed sites in the lung: for the same degree of obstruction and breathing rate, we observed as much as two-fold differences in shear stresses. In contrast to previous studies that suggest increased wall shear stress due to obstructions as a possible damage mechanism for small airways, our model demonstrated that for flow rates corresponding to heavy activities, the wall shear stress in both normal and obstructed airways was <0.3Pa, which is within the physiological limit needed to promote respiratory defense mechanisms. In summary, our model enables the study of airflow characteristics that may be impractical to assess experimentally.

  6. The role of intracellular calcium signals in inflammatory responses of polarised cystic fibrosis human airway epithelia.

    PubMed

    Ribeiro, Carla Maria Pedrosa

    2006-01-01

    Hyperinflammatory host responses to bacterial infection have been postulated to be a key step in the pathogenesis of cystic fibrosis (CF) lung disease. Previous studies have indicated that the CF airway epithelium itself contributes to the hyperinflammation of CF airways via an excessive inflammatory response to bacterial infection. However, it has been controversial whether the hyperinflammation of CF epithelia results from mutations in the CF transmembrane conductance regulator (CFTR) and/or is a consequence of persistent airways infection. Recent studies have demonstrated that intracellular calcium (Ca2+i) signals consequent to activation of apical G protein-coupled receptors (GPCRs) by pro-inflammatory mediators are increased in CF airway epithelia. Because of the relationship between Ca2+i mobilisation and inflammatory responses, the mechanism for the increased Ca2+i signals in CF was investigated and found to result from endoplasmic reticulum (ER) Ca2+ store expansion. The ER Ca2+ store expansion imparts a hyperinflammatory phenotype to chronically infected airway epithelia as a result of the larger Ca2+i mobilisation coupled to an excessive inflammatory response following GPCR activation. The ER expansion is not dependent on ER retention of misfolded DeltaF508 CFTR, but reflects an epithelial response acquired following persistent luminal airway infection. With respect to the mechanism of ER expansion in CF, the current view is that chronic airway epithelial infection triggers an unfolded protein response as a result of the increased flux of newly synthesised inflammatory mediators and defensive factors into the ER compartment. This unfolded protein response is coupled to X-box binding protein 1 (XBP-1) mRNA splicing and transcription of genes associated with the expansion of the protein-folding capacity of the ER (e.g. increases in ER chaperones and ER membranes). These studies have revealed a novel adaptive response in chronically infected airway epithelia

  7. Influence of Rapid Fluid Loading on Airway Structure and Function in Healthy Humans

    PubMed Central

    CERIDON, MAILE L.; SNYDER, ERIC M.; STROM, NICHOLAS A.; TSCHIRREN, JUERG; JOHNSON, BRUCE D.

    2010-01-01

    Background The present study examined the influence of rapid intravenous fluid loading (RFL) on airway structure and pulmonary vascular volumes using computed tomography imaging and the subsequent impact on pulmonary function in healthy adults (n = 16). Methods and Results Total lung capacity (ΔTLC = −6%), forced vital capacity (ΔFVC = −14%), and peak expiratory flow (ΔPEF = −19%) decreased, and residual volume (ΔRV = +38%) increased post-RFL (P < .05). Airway luminal cross-sectional area (CSA) decreased at the trachea, and at airway generation 3 (P < .05), wall thickness changed minimally with a tendency for increasing in generation five (P = .13). Baseline pulmonary function was positively associated with airway luminal CSA; however, this relationship deteriorated after RFL. Lung tissue volume and pulmonary vascular volumes increased 28% (P < .001) post-RFL, but did not fully account for the decline in TLC. Conclusions These data suggest that RFL results in obstructive/restrictive PF changes that are most likely related to structural changes in smaller airways or changes in extrapulmonary vascular beds. PMID:20142030

  8. Caveolin-1 regulates cell apoptosis and invasion ability in paclitaxel-induced multidrug-resistant A549 lung cancer cells

    PubMed Central

    Han, Fei; Zhang, Long; Zhou, Yongxin; Yi, Xianghua

    2015-01-01

    The aim of the study was to investigate the effect and potential mechanism of caveolin-1 (Cav1) knockdown in paclitaxel-resistant lung cancer A549/Taxol cells. The human paclitaxel-resistant lung cancer cell line A549/Taxol was transfected with a Cav1 shRNA lentiviral vector. Interference efficiency for Cav1 was detected by real-time PCR and Western blotting. A MTT assay was used to determine cell proliferation, and flow cytometry was used to detect the cell cycle stage and apoptosis. Cell migration and invasion capability were detected by a transwell assay. Protein levels of related signaling molecules were detected by Western blotting. We successfully constructed a stable A549/Taxol cell line expressing low levels of Cav1. Cav1 knockdown significantly inhibited cell proliferation and induced G0/G1 arrest and cell apoptosis in vitro and in vivo. In addition, these effects correlated significantly with a reduction in cyclin D1 expression and activation of the Bcl-2/Bax-mediated mitochondrial apoptosis pathway. Furthermore, knockdown of Cav1 inhibited cell migration and invasion, and this may be related to the inhibition of AKT and the subsequent decreased protein expression of MMP2, MMP7 and MMP9. PMID:26464635

  9. 13-Methyl-palmatrubine induces apoptosis and cell cycle arrest in A549 cells in vitro and in vivo

    PubMed Central

    Chen, Jingxian; Lu, Xingang; Lu, Chenghua; Wang, Chunying; Xu, Haizhu; Xu, Xiaoli; Gou, Haixin; Zhu, Bing; Du, Wangchun

    2016-01-01

    Corydalis yanhusuo, a well-known herbaceous plant, is commonly used in the treatment of inflammation, injury and pain. One natural agent isolated from Corydalis yanhusuo, 13-methyl-palmatrubine, was found to have a cytotoxic effect on cancer cells as reported in published studies. In the present study, we synthesized a potential anti-lung tumor agent, 13-methyl-palmatrubine and analyzed its activity. 13-Methyl-palmatrubine exhibited a cytotoxic effect on a panel of cancer cell lines in a time- and concentration-dependent manner. Among all the tested cancer cell lines, lung cancer A549 cells were most sensitive to 13-methyl-palmatrubine treatment. Meanwhile 13-methyl-palmatrubine showed less cytotoxicity in human normal cells. Our investigation revealed that 13-methyl-palmatrubine induced apoptosis and cell cycle arrest in A549 cells in a dose-dependent manner. Furthermore, 13-methyl-palmatrubine treatment caused activation of P38 and JNK pathways and blocked the EGFR pathway. In conclusion, our findings demonstrated that 13-methyl-palmatrubine inhibited the growth of A549 cells mediated by blocking of the EGFR signaling pathway and activation of the MAPK signaling pathway and provides a better understanding of the molecular mechanisms of 13-methyl-palmatrubine. PMID:27633656

  10. Suppression of SCARA5 by Snail1 is essential for EMT-associated cell migration of A549 cells

    PubMed Central

    Liu, J; Hu, G; Chen, D; Gong, A-Y; Soori, G S; Dobleman, T J; Chen, X-M

    2013-01-01

    Accumulating evidence indicates that epithelial-to-mesenchymal transition (EMT) might be a key event for cancer progression. The upregulation of Snail1, one of the most extensively studied EMT regulators, has been implicated in cancer metastasis, but the underlying mechanisms remain unclear. This study aims to identify that Snail1 targets regulating EMT-associated cancer cell migration. Human lung carcinoma A549 cells were treated with transforming growth factor beta 1 (TGF-β1), and EMT-associated phenotypic and functional alterations were monitored. TGF-β1 induced typical EMT-like morphological changes, ‘cadherin switching' and cell migration in A549 cells. TGF-β1 stimulation induced rapid and persistent upregulation of Snail1. Moreover, Snail1 upregulation was required for EMT-associated cell migration. Several metastasis suppressors with putative Snail1-binding sites in their promoters were dramatically repressed in A549 cells during TGF-β1-induced EMT. Gain- and loss-of Snail1 function experiments demonstrated that scavenger receptor class A member 5 (SCARA5) was negatively regulated by Snail1. Importantly, SCARA5 downregulation was essential for EMT-induced migration in A549 cells. The chromatin immunoprecipitation assay revealed that Snail1 could bind to the E-box elements in SCARA5 promoter, implying that SCARA5 is a direct Snail1 target modulating cancer cell mobility during EMT. In addition, we showed that DNA methyltransferase 1 was physically associated with Snail1 to silence SCARA5 expression with an unidentified DNA methylation-independent mechanism, suggesting the complexity of Snail1-mediated epigenetic regulation. Collectively, our data demonstrated that EMT-regulator Snail1 suppresses the expression of SCARA5 to promote cancer progression, highlighting the possibility to target Snail1 and SCARA5 for cancer treatment. PMID:24061576

  11. Capsaicin exposure elicits complex airway defensive motor patterns in normal humans in a concentration-dependent manner.

    PubMed

    Vovk, A; Bolser, D C; Hey, J A; Danzig, M; Vickroy, T; Berry, R; Martin, A D; Davenport, P W

    2007-01-01

    The airway defensive response to tussive agents, such as capsaicin, is frequently assessed by counting the number of cough sounds, or expulsive events. This method does not identify or differentiate important respiratory events that occur in the respiratory muscles and lungs, which are critical in assessing airway defensive responses. The purpose of this study was to characterize the airway defensive behaviours (cough and expiration reflex) to capsaicin exposure in humans. We observed complex motor behaviours in response to capsaicin exposure. These behaviours were defined as cough reacceleration (CRn) and expiration reflex (ERn), where n is the number of expulsive events with and without a preceding inspiratory phase, respectively. Airway defensive responses were defined in terms of frequency (number of expulsive events), strength (activation of abdominal muscles) and behaviour type (CRn vs. ERn). Thirty-six subjects (15 females, 24+/-4 yr) were instrumented with EMG electrodes placed over the rectus abdominis (RA), external abdominal oblique (EO) and the 8th intercostal space (IC8). A custom-designed mouth pneumotachograph was used to assess the airflow acceleration, plateau velocity and phase duration of the expulsive phase. Subjects inhaled seven concentrations of capsaicin (5-200 microM) in a randomized block order. The total number of expulsive events (frequency) and the sum of integrated EMG for the IC8, RA and EO (strength) increased in a curvilinear fashion. Differentiating the airway defense responses into type demonstrated predominately CR1 and CR2 (i.e. inspiration followed by one and two expulsive events, respectively) with very few ER's at <50 microM capsaicin. At higher concentrations (>50 microM) ER's with one or more expulsive events (ER1) appeared, and the number of CR's with three or more expulsive events (CR3) increased. The decrease in EMG activation and airflow measurements with each successive expulsive event suggests a decline in power and

  12. Exosomes: decreased sensitivity of lung cancer A549 cells to cisplatin.

    PubMed

    Xiao, Xia; Yu, Shaorong; Li, Shuchun; Wu, Jianzhong; Ma, Rong; Cao, Haixia; Zhu, Yanliang; Feng, Jifeng

    2014-01-01

    Exosomes are small extracellular membrane vesicles of endocytic origin released by many cells that could be found in most body fluids. The main functions of exosomes are cellular communication and cellular waste clean-up. This study was conducted to determine the involvement of exosomes in the regulation of sensitivity of the lung cancer cell line A549 to cisplatin (DDP). When DDP was added to A549 cells, exosomes secretion was strengthened. Addition of the secreted exosomes to other A549 cells increased the resistance of these A549 cells to DDP. Upon exposure of A549 to DDP, the expression levels of several miRNAs and mRNAs reportedly associated with DDP sensitivity changed significantly in exosomes; these changes may mediate the resistance of A549 cells to DDP. Exosomes released by A549 cells during DDP exposure decreased the sensitivity of other A549 cells to DDP, which may be mediated by miRNAs and mRNAs exchange by exosomes via cell-to-cell communication. Although the detailed mechanism of resistance remains unclear, we believed that inhibition of exosomes formation and release might present a novel strategy for lung cancer treatment in the future. PMID:24586853

  13. Nickel Mobilizes Intracellular Zinc to Induce Metallothionein in Human Airway Epithelial Cells

    PubMed Central

    Nemec, Antonia A.; Leikauf, George D.; Pitt, Bruce R.; Wasserloos, Karla J.; Barchowsky, Aaron

    2009-01-01

    We recently reported that induction of metallothionein (MT) was critical in limiting nickel (Ni)-induced lung injury in intact mice. Nonetheless, the mechanism by which Ni induces MT expression is unclear. We hypothesized that the ability of Ni to mobilize zinc (Zn) may contribute to such regulation and therefore, we examined the mechanism for Ni-induced MT2A expression in human airway epithelial (BEAS-2B) cells. Ni induced MT2A transcript levels and protein expression by 4 hours. Ni also increased the activity of a metal response element (MRE) promoter luciferase reporter construct, suggesting that Ni induces MRE binding of the metal transcription factor (MTF-1). Exposure to Ni resulted in the nuclear translocation of MTF-1, and Ni failed to induce MT in mouse embryonic fibroblasts lacking MTF-1. As Zn is the only metal known to directly bind MTF-1, we then showed that Ni increased a labile pool of intracellular Zn in cells as revealed by fluorescence-activated cell sorter using the Zn-sensitive fluorophore, FluoZin-3. Ni-induced increases in MT2A mRNA and MRE-luciferase activity were sensitive to the Zn chelator, TPEN, supporting an important role for Zn in mediating the effect of Ni. Although neither the source of labile Zn nor the mechanism by which Ni liberates labile Zn was apparent, it was noteworthy that Ni increased intracellular reactive oxygen species (ROS). Although both N-acetyl cysteine (NAC) and ascorbic acid (AA) decreased Ni-induced increases in ROS, only NAC prevented Ni-induced increases in MT2A mRNA, suggesting a special role for interactions of Ni, thiols, and Zn release. PMID:19097988

  14. Transport and Deposition of Welding Fume Agglomerates in a Realistic Human Nasal Airway.

    PubMed

    Tian, Lin; Inthavong, Kiao; Lidén, Göran; Shang, Yidan; Tu, Jiyuan

    2016-07-01

    Welding fume is a complex mixture containing ultra-fine particles in the nanometer range. Rather than being in the form of a singular sphere, due to the high particle concentration, welding fume particles agglomerate into long straight chains, branches, or other forms of compact shapes. Understanding the transport and deposition of these nano-agglomerates in human respiratory systems is of great interest as welding fumes are a known health hazard. The neurotoxin manganese (Mn) is a common element in welding fumes. Particulate Mn, either as soluble salts or oxides, that has deposited on the olfactory mucosa in human nasal airway is transported along the olfactory nerve to the olfactory bulb within the brain. If this Mn is further transported to the basal ganglia of the brain, it could accumulate at the part of the brain that is the focal point of its neurotoxicity. Accounting for various dynamic shape factors due to particle agglomeration, the current computational study is focused on the exposure route, the deposition pattern, and the deposition efficiency of the inhaled welding fume particles in a realistic human nasal cavity. Particular attention is given to the deposition pattern and deposition efficiency of inhaled welding fume agglomerates in the nasal olfactory region. For particles in the nanoscale, molecular diffusion is the dominant transport mechanism. Therefore, Brownian diffusion, hydrodynamic drag, Saffman lift force, and gravitational force are included in the model study. The deposition efficiencies for single spherical particles, two kinds of agglomerates of primary particles, two-dimensional planar and straight chains, are investigated for a range of primary particle sizes and a range of number of primary particles per agglomerate. A small fraction of the inhaled welding fume agglomerates is deposited on the olfactory mucosa, approximately in the range 0.1-1%, and depends on particle size and morphology. The strong size dependence of the deposition

  15. Reconstituted Human Upper Airway Epithelium as 3-D In Vitro Model for Nasal Polyposis

    PubMed Central

    de Borja Callejas, Francisco; Martínez-Antón, Asunción; Alobid, Isam; Fuentes, Mireya; Cortijo, Julio; Picado, César

    2014-01-01

    Background Primary human airway epithelial cells cultured in an air-liquid interface (ALI) develop a well-differentiated epithelium. However, neither characterization of mucociliar differentiation overtime nor the inflammatory function of reconstituted nasal polyp (NP) epithelia have been described. Objectives 1st) To develop and characterize the mucociliar differentiation overtime of human epithelial cells of chronic rhinosinusitis with nasal polyps (CRSwNP) in ALI culture system; 2nd) To corroborate that 3D in vitro model of NP reconstituted epithelium maintains, compared to control nasal mucosa (NM), an inflammatory function. Methods Epithelial cells were obtained from 9 NP and 7 control NM, and differentiated in ALI culture for 28 days. Mucociliary differentiation was characterized at different times (0, 7, 14, 21, and 28 days) using ultrastructure analysis by electron microscopy; ΔNp63 (basal stem/progenitor cell), β-tubulin IV (cilia), and MUC5AC (goblet cell) expression by immunocytochemistry; and mucous (MUC5AC, MUC5B) and serous (Lactoferrin) secretion by ELISA. Inflammatory function of ALI cultures (at days 0, 14, and 28) through cytokine (IL-8, IL-1β, IL-6, IL-10, TNF-α, and IL-12p70) and chemokine (RANTES, MIG, MCP-1, IP-10, eotaxin-1, and GM-CSF) production was analysed by CBA (Cytometric Bead Array). Results In both NP and control NM ALI cultures, pseudostratified epithelium with ciliated, mucus-secreting, and basal cells were observed by electron microscopy at days 14 and 28. Displaying epithelial cell re-differentation, β-tubulin IV and MUC5AC positive cells increased, while ΔNp63 positive cells decreased overtime. No significant differences were found overtime in MUC5AC, MUC5B, and lactoferrin secretions between both ALI cultures. IL-8 and GM-CSF were significantly increased in NP compared to control NM regenerated epithelia. Conclusion Reconstituted epithelia from human NP epithelial cells cultured in ALI system provides a 3D in vitro model

  16. Human airway smooth muscle maintain in situ cell orientation and phenotype when cultured on aligned electrospun scaffolds

    PubMed Central

    Morris, G. E.; Bridge, J. C.; Eltboli, O. M. I.; Lewis, M. P.; Knox, A. J.; Aylott, J. W.; Brightling, C. E.; Ghaemmaghami, A. M.

    2014-01-01

    Human airway smooth muscle (HASM) contraction plays a central role in regulating airway resistance in both healthy and asthmatic bronchioles. In vitro studies that investigate the intricate mechanisms that regulate this contractile process are predominantly conducted on tissue culture plastic, a rigid, 2D geometry, unlike the 3D microenvironment smooth muscle cells are exposed to in situ. It is increasingly apparent that cellular characteristics and responses are altered between cells cultured on 2D substrates compared with 3D topographies. Electrospinning is an attractive method to produce 3D topographies for cell culturing as the fibers produced have dimensions within the nanometer range, similar to cells' natural environment. We have developed an electrospun scaffold using the nondegradable, nontoxic, polymer polyethylene terephthalate (PET) composed of uniaxially orientated nanofibers and have evaluated this topography's effect on HASM cell adhesion, alignment, and morphology. The fibers orientation provided contact guidance enabling the formation of fully aligned sheets of smooth muscle. Moreover, smooth muscle cells cultured on the scaffold present an elongated cell phenotype with altered contractile protein levels and distribution. HASM cells cultured on this scaffold responded to the bronchoconstrictor bradykinin. The platform presented provides a novel in vitro model that promotes airway smooth muscle cell development toward a more in vivo-like phenotype while providing topological cues to ensure full cell alignment. PMID:24793171

  17. An automatic generation of non-uniform mesh for CFD analyses of image-based multiscale human airway models

    NASA Astrophysics Data System (ADS)

    Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2014-11-01

    The authors have developed a method to automatically generate non-uniform CFD mesh for image-based human airway models. The sizes of generated tetrahedral elements vary in both radial and longitudinal directions to account for boundary layer and multiscale nature of pulmonary airflow. The proposed method takes advantage of our previously developed centerline-based geometry reconstruction method. In order to generate the mesh branch by branch in parallel, we used the open-source programs Gmsh and TetGen for surface and volume meshes, respectively. Both programs can specify element sizes by means of background mesh. The size of an arbitrary element in the domain is a function of wall distance, element size on the wall, and element size at the center of airway lumen. The element sizes on the wall are computed based on local flow rate and airway diameter. The total number of elements in the non-uniform mesh (10 M) was about half of that in the uniform mesh, although the computational time for the non-uniform mesh was about twice longer (170 min). The proposed method generates CFD meshes with fine elements near the wall and smooth variation of element size in longitudinal direction, which are required, e.g., for simulations with high flow rate. NIH Grants R01-HL094315, U01-HL114494, and S10-RR022421. Computer time provided by XSEDE.

  18. Large-eddy Simulation of Heat and Water Vapor Transfer in CT-Based Human Airway Models

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Tawhai, Merryn; Hoffman, Eric; Lin, Ching-Long

    2014-11-01

    We propose a novel imaging-based thermodynamic model to study local heat and mass transfers in the human airways. Both 3D and 1D CFD models are developed and validated. Large-eddy simulation (LES) is adopted to solve 3D incompressible Navier-Stokes equations with Boussinesq approximation along with temperature and water vapor transport equations and energy-flux based wall boundary condition. The 1D model provides initial and boundary conditions to the 3D model. The computed tomography (CT) lung images of three healthy subjects with sinusoidal waveforms and minute ventilations of 6, 15 and 30 L/min are considered. Between 1D and 3D models and between subjects, the average temperature and water vapor distributions are similar, but their regional distributions are significantly different. In particular, unlike the 1D model, the heat and water vapor transfers in the 3D model are elevated at the bifurcations during inspiration. Moreover, the correlations of Nusselt number (Nu) and Sherwood number (Sh) with local Reynolds number and airway diameter are proposed. In conclusion, use of the subject-specific lung model is essential for accurate prediction of local thermal impacts on airway epithelium. Supported in part by NIH grants R01-HL094315, U01-HL114494 and S10-RR022421.

  19. Human mesenchymal stem cells resolve airway inflammation, hyperreactivity, and histopathology in a mouse model of occupational asthma.

    PubMed

    Martínez-González, Itziar; Cruz, Maria-Jesús; Moreno, Rafael; Morell, Ferran; Muñoz, Xavier; Aran, Josep M

    2014-10-01

    Occupational asthma (OA) is characterized by allergic airway inflammation and hyperresponsiveness, leading to progressive airway remodeling and a concomitant decline in lung function. The management of OA remains suboptimal in clinical practice. Thus, establishing effective therapies might overcome the natural history of the disease. We evaluated the ability of human adipose-tissue-derived mesenchymal stem cells (hASCs), either unmodified or engineered to secrete the IL-33 decoy receptor sST2, to attenuate the inflammatory and respiratory symptoms in a previously validated mouse model of OA to ammonium persulfate (AP). Twenty-four hours after a dermal AP sensitization and intranasal challenge regimen, the animals received intravenously 1 × 10(6) cells (either hASCs or hASCs overexpressing sST2) or saline and were analyzed at 1, 3, and 6 days after treatment. The infused hASCs induced an anti-inflammatory and restorative program upon reaching the AP-injured, asthmatic lungs, leading to early reduction of neutrophilic inflammation and total IgE production, preserved alveolar architecture with nearly absent lymphoplasmacytic infiltrates, negligible smooth muscle hyperplasia/hypertrophy in the peribronchiolar areas, and baseline airway hyperreactivity (AHR) to methacholine. Local sST2 overexpression barely increased the substantial efficacy displayed by unmodified hASCs. Thus, hASCs may represent a viable multiaction therapeutic capable to adequately respond to the AP-injured lung environment by resolving inflammation, tissue remodeling, and bronchial hyperresponsiveness typical of OA. PMID:24798370

  20. Human Mesenchymal Stem Cells Resolve Airway Inflammation, Hyperreactivity, and Histopathology in a Mouse Model of Occupational Asthma

    PubMed Central

    Martínez-González, Itziar; Moreno, Rafael; Morell, Ferran; Muñoz, Xavier

    2014-01-01

    Occupational asthma (OA) is characterized by allergic airway inflammation and hyperresponsiveness, leading to progressive airway remodeling and a concomitant decline in lung function. The management of OA remains suboptimal in clinical practice. Thus, establishing effective therapies might overcome the natural history of the disease. We evaluated the ability of human adipose-tissue-derived mesenchymal stem cells (hASCs), either unmodified or engineered to secrete the IL-33 decoy receptor sST2, to attenuate the inflammatory and respiratory symptoms in a previously validated mouse model of OA to ammonium persulfate (AP). Twenty-four hours after a dermal AP sensitization and intranasal challenge regimen, the animals received intravenously 1×106 cells (either hASCs or hASCs overexpressing sST2) or saline and were analyzed at 1, 3, and 6 days after treatment. The infused hASCs induced an anti-inflammatory and restorative program upon reaching the AP-injured, asthmatic lungs, leading to early reduction of neutrophilic inflammation and total IgE production, preserved alveolar architecture with nearly absent lymphoplasmacytic infiltrates, negligible smooth muscle hyperplasia/hypertrophy in the peribronchiolar areas, and baseline airway hyperreactivity (AHR) to methacholine. Local sST2 overexpression barely increased the substantial efficacy displayed by unmodified hASCs. Thus, hASCs may represent a viable multiaction therapeutic capable to adequately respond to the AP-injured lung environment by resolving inflammation, tissue remodeling, and bronchial hyperresponsiveness typical of OA. PMID:24798370

  1. Surgical Airway

    PubMed Central

    Patel, Sapna A; Meyer, Tanya K

    2014-01-01

    Close to 3% of all intubation attempts are considered difficult airways, for which a plan for a surgical airway should be considered. Our article provides an overview of the different types of surgical airways. This article provides a comprehensive review of the main types of surgical airways, relevant anatomy, necessary equipment, indications and contraindications, preparation and positioning, technique, complications, and tips for management. It is important to remember that the placement of a surgical airway is a lifesaving procedure and should be considered in any setting when one “cannot intubate, cannot ventilate”. PMID:24741501

  2. Effect of carrier gas properties on aerosol distribution in a CT-based human airway numerical model

    PubMed Central

    Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2012-01-01

    The effect of carrier gas properties on particle transport in the human lung is investigated numerically in an imaging based airway model. The airway model consists of multi-detector row computed tomography (MDCT)-based upper and intra-thoracic central airways. The large-eddy simulation (LES) technique is adopted for simulation of transitional and turbulent flows. The image-registration-derived boundary condition is employed to match regional ventilation of the whole lung. Four different carrier gases of helium (He), a helium-oxygen mixture (He-O2), air, and a xenon-oxygen mixture (Xe-O2) are considered. A steady inspiratory flow rate of 342 ml/s is imposed at the mouthpiece inlet to mimic aerosol delivery on inspiration, resulting in the Reynolds number at the trachea of Ret ≈ 190, 460, 1300, and 2800 for the respective gases of He, He-O2, air and Xe-O2. Thus, the flow for the He case is laminar, transitional for He-O2, and turbulent for air and Xe-O2. The instantaneous and time-averaged flow fields and the laminar/transitional/turbulent characteristics resulting from the four gases are discussed. With increasing Ret, the high-speed jet formed at the glottal constriction is more dispersed around the peripheral region of the jet and its length becomes shorter. In the laminar flow the distribution of 2.5-µm particles in the central airways depends on the particle release location at the mouthpiece inlet, whereas in the turbulent flow the particles are well mixed before reaching the first bifurcation and their distribution is strongly correlated with regional ventilation. PMID:22246469

  3. In Vitro Evaluation of 3-Arylcoumarin Derivatives in A549 Cell Line

    PubMed Central

    MUSA, MUSILIYU A.; JOSEPH, MOISE Y.; LATINWO, LEKAN M.; BADISA, VEERA; COOPERWOOD, JOHN S.

    2016-01-01

    Coumarins are naturally-occurring compounds with diverse and interesting biological activities. In the present study, we evaluated the in vitro cytotoxic effect of 8-(acetyloxy)-3-[4-(acetyloxy)phenyl]-2-oxo-2H-chromen-7-yl acetate (6); 8-(acetyloxy)-3-(4-methanesulfonyl phenyl)-2-oxo-2H-chromen-7-yl acetate (7); 4-(2-oxo-2H-chromen-3-yl)phenyl acetate (8); 3-(4-methanesulfonylphenyl)-2H-chromen-2-one (9); 4-(4-methyl-2-oxo-2H-chromen-3-yl)phenyl acetate (10); 3-(4-methanesulfonylphenyl)-4-methyl-2H-chromen-2-one (11); 8-(acetyloxy)-3-[4-(acetyloxy)phenyl]-4-methyl-2-oxo-2H-chromen-7-yl acetate (12); and 5-(acetyloxy)-3-[4-(acetyloxy) phenyl]-2-oxo-2H-chromen-7-yl acetate (13) in human lung (A549) cancer and normal lung (MRC-9) cell lines at different concentrations for 48 h using crystal violet dye binding assay. The cytotoxic effect of these coumarin derivatives were compared to the standard drug, docetaxel. Furthermore, the effect of the most active compound on the cell-cycle using propidium iodide, mitochondrial membrane potential (MMP) using tetramethyl rhodamine methyl ester (rhodamine-123) and reactive oxygen species (ROS) production using 2′,7′-dichlorofluorescin diacetate (PCFDA) were also evaluated. Results Compound 7 had the greatest cytotoxic effect (cytotoxic concentration, CC50=24 μM) and selectivity (MRC-9; CC50 >100 μM; inactive) in the A549 cell line, and caused cells to arrest in the S phase of the cell cycle, loss of MMP and increased ROS production in a concentration-dependent manner. Conclusion These findings suggest that compound 7 could serve as a new lead for the development of novel synthetic compounds with enhanced anticancer activity. PMID:25667442

  4. Effects of Fe3O4 Magnetic Nanoparticles on A549 Cells

    PubMed Central

    Watanabe, Masatoshi; Yoneda, Misao; Morohashi, Ayaka; Hori, Yasuki; Okamoto, Daiki; Sato, Akiko; Kurioka, Daisuke; Nittami, Tadashi; Hirokawa, Yoshifumi; Shiraishi, Taizo; Kawai, Kazuaki; Kasai, Hiroshi; Totsuka, Yukari

    2013-01-01

    Fe3O4 magnetic nanoparticles (MgNPs-Fe3O4) are widely used in medical applications, including magnetic resonance imaging, drug delivery, and in hyperthermia. However, the same properties that aid their utility in the clinic may potentially induce toxicity. Therefore, the purpose of this study was to investigate the cytotoxicity and genotoxicity of MgNPs-Fe3O4 in A549 human lung epithelial cells. MgNPs-Fe3O4 caused cell membrane damage, as assessed by the release of lactate dehydrogenase (LDH), only at a high concentration (100 μg/mL); a lower concentration (10 μg/mL) increased the production of reactive oxygen species, increased oxidative damage to DNA, and decreased the level of reduced glutathione. MgNPs-Fe3O4 caused a dose-dependent increase in the CD44+ fraction of A549 cells. MgNPs-Fe3O4 induced the expression of heme oxygenase-1 at a concentration of 1 μg/mL, and in a dose-dependent manner. Despite these effects, MgNPs-Fe3O4 had minimal effect on cell viability and elicited only a small increase in the number of cells undergoing apoptosis. Together, these data suggest that MgNPs-Fe3O4 exert little or no cytotoxicity until a high exposure level (100 μg/mL) is reached. This dissociation between elevated indices of cell damage and a small effect on cell viability warrants further study. PMID:23892599

  5. Low level ozone exposure induces airways inflammation and modifies cell surface phenotypes in healthy humans

    EPA Science Inventory

    Background: The effects of low level ozone exposure (0.08 ppm) on pulmonary function in healthy young adults are well known, however much less is known about the inflammatory and immuno-modulatory effects oflow level ozone in the airways. Techniques such as induced sputum and flo...

  6. DEVELOPMENT OF THE HUMAN LUNG MEASURED BY AEROSOL-DERIVED AIRWAY MORPHEMETRY (ADAM).

    EPA Science Inventory

    We measured, in vivo, the airspace calibers of the small airways and alveoli by ADAM in the lungs of children of ages 6 to 18 years and adults aged 18 to 80 years. ADAM utilizes the gravitational settling time of inhaled monodisperse particles to infer the vertical distance to th...

  7. Agonist binding to β-adrenergic receptors on human airway epithelial cells inhibits migration and wound repair.

    PubMed

    Peitzman, Elizabeth R; Zaidman, Nathan A; Maniak, Peter J; O'Grady, Scott M

    2015-12-15

    Human airway epithelial cells express β-adrenergic receptors (β-ARs), which regulate mucociliary clearance by stimulating transepithelial anion transport and ciliary beat frequency. Previous studies using airway epithelial cells showed that stimulation with isoproterenol increased cell migration and wound repair by a cAMP-dependent mechanism. In the present study, impedance-sensing arrays were used to measure cell migration and epithelial restitution following wounding of confluent normal human bronchial epithelial (NHBE) and Calu-3 cells by electroporation. Stimulation with epinephrine or the β2-AR-selective agonist salbutamol significantly delayed wound closure and reduced the mean surface area of lamellipodia protruding into the wound. Treatment with the β-AR bias agonist carvedilol or isoetharine also produced a delay in epithelial restitution similar in magnitude to epinephrine and salbutamol. Measurements of extracellular signal-regulated kinase phosphorylation following salbutamol or carvedilol stimulation showed no significant change in the level of phosphorylation compared with untreated control cells. However, inhibition of protein phosphatase 2A activity completely blocked the delay in wound closure produced by β-AR agonists. In Calu-3 cells, where CFTR expression was inhibited by RNAi, salbutamol did not inhibit wound repair, suggesting that β-AR agonist stimulation and loss of CFTR function share a common pathway leading to inhibition of epithelial repair. Confocal images of the basal membrane of Calu-3 cells labeled with anti-β1-integrin (clone HUTS-4) antibody showed that treatment with epinephrine or carvedilol reduced the level of activated integrin in the membrane. These findings suggest that treatment with β-AR agonists delays airway epithelial repair by a G protein- and cAMP-independent mechanism involving protein phosphatase 2A and a reduction in β1-integrin activation in the basal membrane. PMID:26491049

  8. Investigating the geometry of pig airways using computed tomography

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Azad, Md Khurshidul; McMurray, Brandon; Henry, Brian; Royston, Thomas J.; Sandler, Richard H.

    2015-03-01

    Numerical modeling of sound propagation in the airways requires accurate knowledge of the airway geometry. These models are often validated using human and animal experiments. While many studies documented the geometric details of the human airways, information about the geometry of pig airways is scarcer. In addition, the morphology of animal airways can be significantly different from that of humans. The objective of this study is to measure the airway diameter, length and bifurcation angles in domestic pigs using computed tomography. After imaging the lungs of 3 pigs, segmentation software tools were used to extract the geometry of the airway lumen. The airway dimensions were then measured from the resulting 3 D models for the first 10 airway generations. Results showed that the size and morphology of the airways of different animals were similar. The measured airway dimensions were compared with those of the human airways. While the trachea diameter was found to be comparable to the adult human, the diameter, length and branching angles of other airways were noticeably different from that of humans. For example, pigs consistently had an early airway branching from the trachea that feeds the superior (top) right lung lobe proximal to the carina. This branch is absent in the human airways. These results suggested that the human geometry may not be a good approximation of the pig airways and may contribute to increasing the errors when the human airway geometric values are used in computational models of the pig chest.

  9. MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium

    PubMed Central

    Schembri, Frank; Sridhar, Sriram; Perdomo, Catalina; Gustafson, Adam M.; Zhang, Xiaoling; Ergun, Ayla; Lu, Jining; Liu, Gang; Zhang, Xiaohui; Bowers, Jessica; Vaziri, Cyrus; Ott, Kristen; Sensinger, Kelly; Collins, James J.; Brody, Jerome S.; Getts, Robert; Lenburg, Marc E.; Spira, Avrum

    2009-01-01

    We have shown that smoking impacts bronchial airway gene expression and that heterogeneity in this response associates with smoking-related disease risk. In this study, we sought to determine whether microRNAs (miRNAs) play a role in regulating the airway gene expression response to smoking. We examined whole-genome miRNA and mRNA expression in bronchial airway epithelium from current and never smokers (n = 20) and found 28 miRNAs to be differentially expressed (P < 0.05) with the majority being down-regulated in smokers. We further identified a number of mRNAs whose expression level is highly inversely correlated with miRNA expression in vivo. Many of these mRNAs contain potential binding sites for the differentially expressed miRNAs in their 3′-untranslated region (UTR) and are themselves affected by smoking. We found that either increasing or decreasing the levels of mir-218 (a miRNA that is strongly affected by smoking) in both primary bronchial epithelial cells and H1299 cells was sufficient to cause a corresponding decrease or increase in the expression of predicted mir-218 mRNA targets, respectively. Further, mir-218 expression is reduced in primary bronchial epithelium exposed to cigarette smoke condensate (CSC), and alteration of mir-218 levels in these cells diminishes the induction of the predicted mir-218 target MAFG in response to CSC. These data indicate that mir-218 levels modulate the airway epithelial gene expression response to cigarette smoke and support a role for miRNAs in regulating host response to environmental toxins. PMID:19168627

  10. Coordinated release of nucleotides and mucin from human airway epithelial Calu-3 cells

    PubMed Central

    Kreda, Silvia M; Okada, Seiko F; van Heusden, Catharina A; O'Neal, Wanda; Gabriel, Sherif; Abdullah, Lubna; Davis, C William; Boucher, Richard C; Lazarowski, Eduardo R

    2007-01-01

    The efficiency of the mucociliary clearance (MCC) process that removes noxious materials from airway surfaces depends on the balance between mucin secretion, airway surface liquid (ASL) volume, and ciliary beating. Effective mucin dispersion into ASL requires salt and water secretion onto the mucosal surface, but how mucin secretion rate is coordinated with ion and, ultimately, water transport rates is poorly understood. Several components of MCC, including electrolyte and water transport, are regulated by nucleotides in the ASL interacting with purinergic receptors. Using polarized monolayers of airway epithelial Calu-3 cells, we investigated whether mucin secretion was accompanied by nucleotide release. Electron microscopic analyses of Calu-3 cells identified subapical granules that resembled goblet cell mucin granules. Real-time confocal microscopic analyses revealed that subapical granules, labelled with FM 1-43 or quinacrine, were competent for Ca2+-regulated exocytosis. Granules containing MUC5AC were apically secreted via Ca2+-regulated exocytosis as demonstrated by combined immunolocalization and slot blot analyses. In addition, Calu-3 cells exhibited Ca2+-regulated apical release of ATP and UDP-glucose, a substrate of glycosylation reactions within the secretory pathway. Neither mucin secretion nor ATP release from Calu-3 cells were affected by activation or inhibition of the cystic fibrosis transmembrane conductance regulator. In SPOC1 cells, an airway goblet cell model, purinergic P2Y2 receptor-stimulated increase of cytosolic Ca2+ concentration resulted in secretion of both mucins and nucleotides. Our data suggest that nucleotide release is a mechanism by which mucin-secreting goblet cells produce paracrine signals for mucin hydration within the ASL. PMID:17656429

  11. Interleukin-13 interferes with CFTR and AQP5 expression and localization during human airway epithelial cell differentiation

    SciTech Connect

    Skowron-zwarg, Marie; Boland, Sonja; Caruso, Nathalie; Coraux, Christelle; Marano, Francelyne; Tournier, Frederic . E-mail: f-tournier@paris7.jussieu.fr

    2007-07-15

    Interleukin-13 (IL-13) is a central regulator of Th2-dominated respiratory disorders such as asthma. Lesions of the airway epithelial barrier frequently observed in chronic respiratory inflammatory diseases are repaired through proliferation, migration and differentiation of epithelial cells. Our work is focused on the effects of IL-13 in human cellular models of airway epithelial cell regeneration. We have previously shown that IL-13 altered epithelial cell polarity during mucociliary differentiation of human nasal epithelial cells. In particular, the cytokine inhibited ezrin expression and interfered with its apical localization during epithelial cell differentiation in vitro. Here we show that CFTR expression is enhanced in the presence of the cytokine, that two additional CFTR protein isoforms are expressed in IL-13-treated cells and that part of the protein is retained within the endoplasmic reticulum. We further show that aquaporin 5 expression, a water channel localized within the apical membrane of epithelial cells, is completely abolished in the presence of the cytokine. These results show that IL-13 interferes with ion and water channel expression and localization during epithelial regeneration and may thereby influence mucus composition and hydration.

  12. Arsenic promotes ubiquitinylation and lysosomal degradation of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in human airway epithelial cells.

    PubMed

    Bomberger, Jennifer M; Coutermarsh, Bonita A; Barnaby, Roxanna L; Stanton, Bruce A

    2012-05-18

    Arsenic exposure significantly increases respiratory bacterial infections and reduces the ability of the innate immune system to eliminate bacterial infections. Recently, we observed in the gill of killifish, an environmental model organism, that arsenic exposure induced the ubiquitinylation and degradation of cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel that is essential for the mucociliary clearance of respiratory pathogens in humans. Accordingly, in this study, we tested the hypothesis that low dose arsenic exposure reduces the abundance and function of CFTR in human airway epithelial cells. Arsenic induced a time- and dose-dependent increase in multiubiquitinylated CFTR, which led to its lysosomal degradation, and a decrease in CFTR-mediated chloride secretion. Although arsenic had no effect on the abundance or activity of USP10, a deubiquitinylating enzyme, siRNA-mediated knockdown of c-Cbl, an E3 ubiquitin ligase, abolished the arsenic-stimulated degradation of CFTR. Arsenic enhanced the degradation of CFTR by increasing phosphorylated c-Cbl, which increased its interaction with CFTR, and subsequent ubiquitinylation of CFTR. Because epidemiological studies have shown that arsenic increases the incidence of respiratory infections, this study suggests that one potential mechanism of this effect involves arsenic-induced ubiquitinylation and degradation of CFTR, which decreases chloride secretion and airway surface liquid volume, effects that would be proposed to reduce mucociliary clearance of respiratory pathogens.

  13. Numerical simulation of airflow and micro-particle deposition in human nasal airway pre- and post-virtual sphenoidotomy surgery.

    PubMed

    Bahmanzadeh, Hojat; Abouali, Omid; Faramarzi, Mohammad; Ahmadi, Goodarz

    2015-06-01

    In the present study, the effects of endoscopic sphenoidotomy surgery on the flow patterns and deposition of micro-particles in the human nasal airway and sphenoid sinus were investigated. A realistic model of a human nasal passage including nasal cavity and paranasal sinuses was constructed using a series of CT scan images of a healthy subject. Then, a virtual sphenoidotomy by endoscopic sinus surgery was performed in the left nasal passage and sphenoid sinus. Transient airflow patterns pre- and post-surgery during a full breathing cycle (inhalation and exhalation) were simulated numerically under cyclic flow condition. The Lagrangian approach was used for evaluating the transport and deposition of inhaled micro-particles. An unsteady particle tracking was performed for the inhalation phase of the breathing cycle for the case that particles were continuously entering into the nasal airway. The total deposition pattern and sphenoid deposition fraction of micro-particles were evaluated and compared for pre- and post-surgery cases. The presented results show that sphenoidotomy increased the airflow into the sphenoid sinus, which led to increased deposition of micro-particles in this region. Particles up to 25 μm were able to penetrate into the sphenoid in the post-operation case, and the highest deposition in the sphenoid for the resting breathing rate occurred for 10 μm particles at about 1.5%.

  14. Effects of beta 2-adrenoceptor agonists on anti-IgE-induced contraction and smooth muscle reactivity in human airways.

    PubMed Central

    Gorenne, I; Labat, C; Norel, X; De Montpreville, V; Guillet, M C; Cavero, I; Brink, C

    1995-01-01

    1. The beta 2-adrenoceptor agonists, salbutamol, salmeterol and RP 58802 relaxed basal tone of human isolated bronchial smooth muscle. Salmeterol- and RP 58802-induced relaxations persisted for more than 4 h when the medium was constantly renewed after treatment. 2. Salbutamol, salmeterol and RP 58802 reversed histamine-induced contractions in human airways (pD2 values: 6.15 +/- 0.21, 6.00 +/- 0.19 and 6.56 +/- 0.12, respectively). 3. Anti-IgE-induced contractions were significantly inhibited immediately after pretreatment of preparations with beta 2-adrenoceptor agonists (10 microM). However, when tissues were treated with beta 2-agonists and then washed for a period of 4 h, salmeterol was the only agonist which significantly inhibited the anti-IgE response. 4. Histamine response curves were shifted to the right immediately after pretreatment of tissues with the beta 2-adrenoceptor agonists (10 microM; 20 min), but maximal contractions were not affected. After a 4 h washing period, the histamine curves were not significantly different from controls. Concentration-effect curves to acetylcholine (ACh) or leukotriene C4 (LTC4) were not significantly modified after beta 2-agonist pretreatment. 5. These results suggest that beta 2-adrenoceptor agonists may prevent anti-IgE-induced contraction by inhibition of mediator release rather than alterations of those mechanisms involved in airway smooth muscle contraction. PMID:7780648

  15. C-027 inhibits IgE-mediated passive sensitization bronchoconstriction and acts as a histamine and serotonin antagonist in human airways.

    PubMed

    Cooper, Philip R; Zhang, Jie; Damera, Gautam; Hoshi, Toshinori; Zopf, David A; Panettieri, Reynold A

    2011-01-01

    Atopic asthma is poorly controlled by current therapies. Newer therapies and novel antihistamines are, therefore, required to treat patients whose atopic asthma is not controlled. For the first time, C-027 is shown to antagonize histamine, IgE-mediated and serotonin-induced contraction in human airways and vessels. Human precision-cut lung slices (PCLS, 250 μm thick), containing an airway or blood vessel, were pretreated with either C-027 (2 hours) or with vehicle alone and were contracted with histamine or serotonin. Known antihistamine was used as a comparator in antihistamine studies. Also, human airways were contracted via IgE passive sensitization in the presence or absence of C-027 or fexofenadine. Affinity of C-027 toward human G-protein coupled receptors was also determined, as well as the drug's biodistribution in murine model. C-027 was shown to have the highest affinity toward human histamine and serotonin receptors. Subsequently, C-027 was shown to antagonize histamine- and serotonin-induced airway and vascular smooth muscle contraction, respectively, and histamine-released bronchocontraction mediated by IgE passive sensitization in human small airways. C-027 also inhibited histamine-mediated single-cell calcium ion release. Low levels of C-027 were found in murine brain tissue. Collectively, these data suggest that C-027 markedly inhibits IgE-induced bronchoconstriction and antagonizes histamine and serotonin-contraction with little biodistribution in the brain. The compound may offer a future therapy for allergen-induced airway hyperresponsiveness in patients with asthma.

  16. Sp1 inhibition-mediated upregulation of VEGF 165 b induced by rh-endostatin enhances antiangiogenic and anticancer effect of rh-endostatin in A549.

    PubMed

    Li, Zhen-yu; Zhu, Fang; Hu, Jian-li; Peng, Gang; Chen, Jing; Zhang, Sheng; Chen, Xu; Zhang, Rui-guang; Chen, Ling-juan; Liu, Pian; Luo, Ming; Sun, Zhi-hua; Ren, Jing-hua; Huang, Li-li; Wu, Gang

    2011-08-01

    Recombinant human endostatin (rh-endostatin), a potential antiangiogenic agent, is used in non-small cell lung carcinoma treatment and represses vascular endothelial cell growth factor (VEGF) levels in tumor cell. However, precise affection of rh-endostatin on the proangiogenic VEGF isoforms (VEGF(165)) or antiangiogenic VEGF isoforms (VEGF(165)b) is not clear. We therefore tested the hypothesis that rh-endostatin could alter expression of these isoforms to regulate tumor growth. A549 cells were exposed to rh-endostatin, and the expression of VEGF(165) and VEGF(165)b was detected. The role of SP1 as a regulator of isoform expression was investigated. We then examined the anticancer and antiangiogenic efficacy of rh-endostatin in combination with exogenous VEGF(165)b against A549 cells, EA.HY 926 cells and xenograft model of human lung cancer. rh-Endostatin reduced VEGF(165) and induced VEGF(165)b as well as inhibited SP1 in A549 cells. SP1 inhibitor (betulinic acid) also developed those changes. VEGF(165)b-rh-endostatin combination was highly synergistic and inhibited growth, survival, and migration of A549 cells, VEGF-mediated VEGFR2 phosphorylation in EA.HY 926 cells, and tumor growth in xenograft model of human lung cancer. rh-Endostatin downregulates proangiogenic vascular endothelial growth factor A (VEGFA) isoform and upregulates antiangiogenic VEGFA isoform, possibly through inhibition of SP1. Furthermore, VEGF(165)b sensitizes A549 to rh-endostatin treatment and enhances the anticancer effect of rh-endostatin.

  17. Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation.

    PubMed

    Calmet, Hadrien; Gambaruto, Alberto M; Bates, Alister J; Vázquez, Mariano; Houzeaux, Guillaume; Doorly, Denis J

    2016-02-01

    The dynamics of unsteady flow in the human large airways during a rapid inhalation were investigated using highly detailed large-scale computational fluid dynamics on a subject-specific geometry. The simulations were performed to resolve all the spatial and temporal scales of the flow, thanks to the use of massive computational resources. A highly parallel finite element code was used, running on two supercomputers, solving the transient incompressible Navier-Stokes equations on unstructured meshes. Given that the finest mesh contained 350 million elements, the study sets a precedent for large-scale simulations of the respiratory system, proposing an analysis strategy for mean flow, fluctuations and wall shear stresses on a rapid and short inhalation (a so-called sniff). The geometry used encompasses the exterior face and the airways from the nasal cavity, through the trachea and up to the third lung bifurcation; it was derived from a contrast-enhanced computed tomography (CT) scan of a 48-year-old male. The transient inflow produces complex flows over a wide range of Reynolds numbers (Re). Thanks to the high fidelity simulations, many features involving the flow transition were observed, with the level of turbulence clearly higher in the throat than in the nose. Spectral analysis revealed turbulent characteristics persisting downstream of the glottis, and were captured even with a medium mesh resolution. However a fine mesh resolution was found necessary in the nasal cavity to observe transitional features. This work indicates the potential of large-scale simulations to further understanding of airway physiological mechanics, which is essential to guide clinical diagnosis; better understanding of the flow also has implications for the design of interventions such as aerosol drug delivery.

  18. Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation.

    PubMed

    Calmet, Hadrien; Gambaruto, Alberto M; Bates, Alister J; Vázquez, Mariano; Houzeaux, Guillaume; Doorly, Denis J

    2016-02-01

    The dynamics of unsteady flow in the human large airways during a rapid inhalation were investigated using highly detailed large-scale computational fluid dynamics on a subject-specific geometry. The simulations were performed to resolve all the spatial and temporal scales of the flow, thanks to the use of massive computational resources. A highly parallel finite element code was used, running on two supercomputers, solving the transient incompressible Navier-Stokes equations on unstructured meshes. Given that the finest mesh contained 350 million elements, the study sets a precedent for large-scale simulations of the respiratory system, proposing an analysis strategy for mean flow, fluctuations and wall shear stresses on a rapid and short inhalation (a so-called sniff). The geometry used encompasses the exterior face and the airways from the nasal cavity, through the trachea and up to the third lung bifurcation; it was derived from a contrast-enhanced computed tomography (CT) scan of a 48-year-old male. The transient inflow produces complex flows over a wide range of Reynolds numbers (Re). Thanks to the high fidelity simulations, many features involving the flow transition were observed, with the level of turbulence clearly higher in the throat than in the nose. Spectral analysis revealed turbulent characteristics persisting downstream of the glottis, and were captured even with a medium mesh resolution. However a fine mesh resolution was found necessary in the nasal cavity to observe transitional features. This work indicates the potential of large-scale simulations to further understanding of airway physiological mechanics, which is essential to guide clinical diagnosis; better understanding of the flow also has implications for the design of interventions such as aerosol drug delivery. PMID:26773939

  19. Role of anion exchangers in Cl- and HCO3- secretion by the human airway epithelial cell line Calu-3.

    PubMed

    Kim, Dusik; Kim, Juyeon; Burghardt, Beáta; Best, Len; Steward, Martin C

    2014-07-15

    Despite the importance of airway surface liquid pH in the lung's defenses against infection, the mechanism of airway HCO3- secretion remains unclear. Our aim was to assess the contribution of apical and basolateral Cl-/HCO3- exchangers to Cl- and HCO3- transport in the Calu-3 cell line, derived from human airway submucosal glands. Changes in intracellular pH (pHi) were measured following substitution of Cl- with gluconate. Apical Cl- substitution led to an alkalinization in forskolin-stimulated cells, indicative of Cl-/HCO3- exchange. This was unaffected by the anion exchange inhibitor DIDS but inhibited by the CFTR blocker CFTRinh-172, suggesting that the HCO3- influx might occur via CFTR, rather than a solute carrier family 26 (SLC26) exchanger, as recently proposed. The anion selectivity of the recovery process more closely resembled that of CFTR than an SLC26 exchanger, and quantitative RT-PCR showed only low levels of SLC26 exchanger transcripts relative to CFTR and anion exchanger 2 (AE2). For pHi to rise to observed values (∼7.8) through HCO3- entry via CFTR, the apical membrane potential must reverse to at least +20 mV following Cl- substitution; this was confirmed by perforated-patch recordings. Substitution of basolateral Cl- evoked a DIDS-sensitive alkalinization, attributed to Cl-/HCO3- exchange via AE2. This appeared to be abolished in forskolin-stimulated cells but was unmasked by blocking apical efflux of HCO3- via CFTR. We conclude that Calu-3 cells secrete HCO3- predominantly via CFTR, and, contrary to previous reports, the basolateral anion exchanger AE2 remains active during stimulation, providing an important pathway for basolateral Cl- uptake.

  20. Radiation-Induced Bystander Effects in A549 Cells Exposed to 6 MV X-rays.

    PubMed

    Yang, Shuning; Xu, Jing; Shao, Weixian; Geng, Chong; Li, Jia; Guo, Feng; Miao, Hui; Shen, Wenbin; Ye, Tao; Liu, Yazhou; Xu, Haiting; Zhang, Xuguang

    2015-07-01

    The aim of the study is to explore the bystander effects in A549 cells that have been exposed to 6MV X-ray. Control group, irradiated group, irradiated conditioned medium (ICM)-received group, and fresh medium group were designed in this study. A549 cells in the logarithmic growth phase were irradiated with 6MV X-ray at 0, 0.5, 1, 1.5, and 2. In ICM-received group, post-irradiation A549 cells were cultured for 3 h and were transferred into non-irradiated A549 cells for further cultivation. Clone forming test was applied to detect the survival fraction of cells. Annexin V-FITC/PI double-staining assay was used to detect the apoptosis of A549 cells 24, 48, 72, and 96 h after 2-Gy 6MV X-ray irradiation, and the curves of apoptosis were drawn. The changes in the cell cycles 4, 48, 72, and 96 h after 2-Gy 6MV X-ray irradiation were detected using PI staining flow cytometry. With the increase of irradiation dose, the survival fraction of A549 cells after the application of 0.5 Gy irradiation was decreasing continuously. In comparison to the control group, the apoptosis rate of the ICM-received group was increased in a time-dependent pattern, with the highest apoptosis rate observed at 72 h (p < 0.05). Cell count in G2/M stages was obviously increased compared with that of the control group (p < 0.05), with the highest count observed at 72 h, after which G2/M stage arrest was diminished. ICM can cause apparent A549 cell damage, indicating that 6MV X-ray irradiation can induce bystander effect on A549 cells, which reaches a peak at 72 h.

  1. Biomechanical properties of the human upper airway and their effect on its behavior during breathing and in obstructive sleep apnea.

    PubMed

    Bilston, Lynne E; Gandevia, Simon C

    2014-02-01

    The upper airway is a complex, multifunctional, dynamic neuromechanical system. Its patency during breathing requires moment-to-moment coordination of neural and mechanical behavior and varies with posture. Failure to continuously recruit and coordinate dilator muscles to counterbalance the forces that act to close the airway results in hypopneas or apneas. Repeated failures lead to obstructive sleep apnea (OSA). Obesity and anatomical variations, such as retrognathia, increase the likelihood of upper airway collapse by altering the passive mechanical behavior of the upper airway. This behavior depends on the mechanical properties of each upper airway tissue in isolation, their geometrical arrangements, and their physiological interactions. Recent measurements of respiratory-related deformation of the airway wall have shown that there are different patterns of airway soft tissue movement during the respiratory cycle. In OSA patients, airway dilation appears less coordinated compared with that in healthy subjects (matched for body mass index). Intrinsic mechanical properties of airway tissues are altered in OSA patients, but the factors underlying these changes have yet to be elucidated. How neural drive to the airway dilators relates to the biomechanical behavior of the upper airway (movement and stiffness) is still poorly understood. Recent studies have highlighted that the biomechanical behavior of the upper airway cannot be simply predicted from electromyographic activity (electromyogram) of its muscles. PMID:23823151

  2. Mucous solids and liquid secretion by airways: studies with normal pig, cystic fibrosis human, and non-cystic fibrosis human bronchi.

    PubMed

    Martens, Chelsea J; Inglis, Sarah K; Valentine, Vincent G; Garrison, Jennifer; Conner, Gregory E; Ballard, Stephen T

    2011-08-01

    To better understand how airways produce thick airway mucus, nonvolatile solids were measured in liquid secreted by bronchi from normal pig, cystic fibrosis (CF) human, and non-CF human lungs. Bronchi were exposed to various secretagogues and anion secretion inhibitors to induce a range of liquid volume secretion rates. In all three groups, the relationship of solids concentration (percent nonvolatile solids) to liquid volume secretion rate was curvilinear, with higher solids concentration associated with lower rates of liquid volume secretion. In contrast, the secretion rates of solids mass and water mass as functions of liquid volume secretion rates exhibited positive linear correlations. The y-intercepts of the solids mass-liquid volume secretion relationships for all three groups were positive, thus accounting for the higher solids concentrations in airway liquid at low rates of secretion. Predictive models derived from the solids mass and water mass linear equations fit the experimental percent solids data for the three groups. The ratio of solids mass secretion to liquid volume secretion was 5.2 and 2.4 times higher for CF bronchi than for pig and non-CF bronchi, respectively. These results indicate that normal pig, non-CF human, and CF human bronchi produce a high-percent-solids mucus (>8%) at low rates of liquid volume secretion (≤1.0 μl·cm(-2)·h(-1)). However, CF bronchi produce mucus with twice the percent solids (~8%) of pig or non-CF human bronchi at liquid volume secretion rates ≥4.0 μl·cm(-2)·h(-1).

  3. Mucous solids and liquid secretion by airways: studies with normal pig, cystic fibrosis human, and non-cystic fibrosis human bronchi

    PubMed Central

    Martens, Chelsea J.; Inglis, Sarah K.; Valentine, Vincent G.; Garrison, Jennifer; Conner, Gregory E.

    2011-01-01

    To better understand how airways produce thick airway mucus, nonvolatile solids were measured in liquid secreted by bronchi from normal pig, cystic fibrosis (CF) human, and non-CF human lungs. Bronchi were exposed to various secretagogues and anion secretion inhibitors to induce a range of liquid volume secretion rates. In all three groups, the relationship of solids concentration (percent nonvolatile solids) to liquid volume secretion rate was curvilinear, with higher solids concentration associated with lower rates of liquid volume secretion. In contrast, the secretion rates of solids mass and water mass as functions of liquid volume secretion rates exhibited positive linear correlations. The y-intercepts of the solids mass-liquid volume secretion relationships for all three groups were positive, thus accounting for the higher solids concentrations in airway liquid at low rates of secretion. Predictive models derived from the solids mass and water mass linear equations fit the experimental percent solids data for the three groups. The ratio of solids mass secretion to liquid volume secretion was 5.2 and 2.4 times higher for CF bronchi than for pig and non-CF bronchi, respectively. These results indicate that normal pig, non-CF human, and CF human bronchi produce a high-percent-solids mucus (>8%) at low rates of liquid volume secretion (≤1.0 μl·cm−2·h−1). However, CF bronchi produce mucus with twice the percent solids (∼8%) of pig or non-CF human bronchi at liquid volume secretion rates ≥4.0 μl·cm−2·h−1. PMID:21622844

  4. Inactivation of Src-to-ezrin pathway: a possible mechanism in the ouabain-mediated inhibition of A549 cell migration.

    PubMed

    Shin, Hye Kyoung; Ryu, Byung Jun; Choi, Sik-Won; Kim, Seong Hwan; Lee, Kyunglim

    2015-01-01

    Ouabain, a cardiac glycoside found in plants, is primarily used in the treatment of congestive heart failure and arrhythmia because of its ability to inhibit Na(+)/K(+)-ATPase pump. Recently ouabain has been shown to exert anticancer effects but the underlying mechanism is not clear. Here, we explored the molecular mechanism by which ouabain exerts anticancer effects in human lung adenocarcinoma. Employing proteomic techniques, we found 7 proteins downregulated by ouabain in A549 including p-ezrin, a protein associated with pulmonary cancer metastasis in a dose-dependent manner. In addition, when the relative phosphorylation levels of 39 intracellular proteins were compared between control and ouabain-treated A549 cells, p-Src (Y416) was also found to be downregulated by ouabain. Furthermore, western blot revealed the ouabain-mediated downregulation of p-FAK (Y925), p-paxillin (Y118), p130CAS, and Na(+)/K(+)-ATPase subunits that have been shown to be involved in the migration of cancer cells. The inhibitory effect of ouabain and Src inhibitor PP2 on the migration of A549 cells was confirmed by Boyden chamber assay. Anticancer effects of ouabain in A549 cells appear to be related to its ability to regulate and inactivate Src-to-ezrin signaling, and proteins involved in focal adhesion such as Src, FAK, and p130CAS axis are proposed here. PMID:25866790

  5. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways.

    PubMed

    Min, Jie; Huang, Kenan; Tang, Hua; Ding, Xinyu; Qi, Chen; Qin, Xiong; Xu, Zhifei

    2015-12-01

    Phloretin (Ph) existing in apples, pears and various vegetables is known to have antitumor activities in several cancer cell lines. However, little is known about its effect on human lung cancer cells. The aim of the present study was to see whether Ph could induce apoptosis of non-small cell lung cancer (NSCLC) cells, and explore the possible underlying mechanism of action. We found that Ph markedly induced cell apoptosis of NSCLC cell line A549, and inhibited the migration of A549 cells in a dose-dependent manner. The expression level of BAX, cleaved caspase-3 and -9, and degraded form of PARP was increased and Bcl-2 was decreased after Ph treatment. In addition, the phosphorylation of P38 MAPK, ERK1/2 and JNK1/2 was increased in a dose‑dependent manner in parallel with Ph treatment. Inhibition of P38 MAPK and JNK1/2 by specific inhibitors significantly abolished the Ph-induced activation of the caspase-3 and -9. In vivo tumor-suppression assay further indicated that Ph (20 mg/kg) displayed a more significant inhibitory effect on A549 xenografts in tumor growth. All these findings indicate that Ph is able to inhibit NSCLC A549 cell growth by inducing apoptosis through P38 MAPK and JNK1/2 pathways, and therefore may prove to be an adjuvant to the treatment of NSCLC.

  6. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways.

    PubMed

    Min, Jie; Huang, Kenan; Tang, Hua; Ding, Xinyu; Qi, Chen; Qin, Xiong; Xu, Zhifei

    2015-12-01

    Phloretin (Ph) existing in apples, pears and various vegetables is known to have antitumor activities in several cancer cell lines. However, little is known about its effect on human lung cancer cells. The aim of the present study was to see whether Ph could induce apoptosis of non-small cell lung cancer (NSCLC) cells, and explore the possible underlying mechanism of action. We found that Ph markedly induced cell apoptosis of NSCLC cell line A549, and inhibited the migration of A549 cells in a dose-dependent manner. The expression level of BAX, cleaved caspase-3 and -9, and degraded form of PARP was increased and Bcl-2 was decreased after Ph treatment. In addition, the phosphorylation of P38 MAPK, ERK1/2 and JNK1/2 was increased in a dose‑dependent manner in parallel with Ph treatment. Inhibition of P38 MAPK and JNK1/2 by specific inhibitors significantly abolished the Ph-induced activation of the caspase-3 and -9. In vivo tumor-suppression assay further indicated that Ph (20 mg/kg) displayed a more significant inhibitory effect on A549 xenografts in tumor growth. All these findings indicate that Ph is able to inhibit NSCLC A549 cell growth by inducing apoptosis through P38 MAPK and JNK1/2 pathways, and therefore may prove to be an adjuvant to the treatment of NSCLC. PMID:26503828

  7. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways

    PubMed Central

    MIN, JIE; LI, XU; HUANG, KENAN; TANG, HUA; DING, XINYU; QI, CHEN; QIN, XIONG; XU, ZHIFEI

    2015-01-01

    Phloretin (Ph) existing in apples, pears and various vegetables is known to have antitumor activities in several cancer cell lines. However, little is known about its effect on human lung cancer cells. The aim of the present study was to see whether Ph could induce apoptosis of non-small cell lung cancer (NSCLC) cells, and explore the possible underlying mechanism of action. We found that Ph markedly induced cell apoptosis of NSCLC cell line A549, and inhibited the migration of A549 cells in a dose-dependent manner. The expression level of BAX, cleaved caspase-3 and -9, and degraded form of PARP was increased and Bcl-2 was decreased after Ph treatment. In addition, the phosphorylation of P38 MAPK, ERK1/2 and JNK1/2 was increased in a dose-dependent manner in parallel with Ph treatment. Inhibition of P38 MAPK and JNK1/2 by specific inhibitors significantly abolished the Ph-induced activation of the caspase-3 and -9. In vivo tumor-suppression assay further indicated that Ph (20 mg/kg) displayed a more significant inhibitory effect on A549 xenografts in tumor growth. All these findings indicate that Ph is able to inhibit NSCLC A549 cell growth by inducing apoptosis through P38 MAPK and JNK1/2 pathways, and therefore may prove to be an adjuvant to the treatment of NSCLC. PMID:26503828

  8. Runx3 Expression Inhibits Proliferation and Distinctly Alters mRNA Expression of Bax in AGS and A549 Cancer Cells

    PubMed Central

    Torshabi, Maryam; Faramarzi, Mohammad Ali; Tabatabaei Yazdi, Mojtaba; Ostad, Seyyed Naser; Gharemani, Mohammad Hosein

    2011-01-01

    Runx3, a member of Runt-related transcription factor (Runx) proteins with tumor suppressor effect, is a tissue–restricted and cancer related transcription factor that regulate cell proliferation and growth, as well as differentiation. In the present study, exogenous Run3 was transiently expressed in AGS (human gastric adenocarcinoma), with undetectable Runx3 protein and in A549 (human lung carcinoma) with low levels of endogenous Runx3 protein. The GFP tagged Runx3 was transfected into AGS and A549 cells using fugene6 and PolyFect and Runx3 expression was confirmed by fluorescent microscopy and RT-PCR. The effect of Runx3 transfection on cell proliferation was determined by MTT assay and the results were confirmed by the trypan blue dye exclusion method. The effect of Runx3 expression on mRNA expression of BCL2-associated X protein (Bax) was evaluated using RT-PCR. In AGS and A549 cells, Runx3 expression inhibited cell proliferation (p < 0.01). The growth inhibition was less in A549 cells. We show that Runx3 expression increases Bax mRNA expression in AGS cells when compared with control (p < 0.05), but no significant differences in mRNA expression was observed in both examined cells. Runx3 expression has antiproliferative effect in AGS cell perhaps via increase in expression of Bax. The effect of Runx3 on A549 cells’ viability which has endogenous level of Runx3 is not related to Bax. These findings implicate a complex regulation by Runx3 in inhibition of cell proliferation utilizing Bax. PMID:24250365

  9. Isolation, Purification and Characterization of a Novel Steroidal Saponin Cholestanol Glucoside from Lasiodiplodia theobromae that Induces Apoptosis in A549 Cells.

    PubMed

    Valayil, Jinu Mathew; Kuriakose, Gini C; Jayabaskaran, C

    2016-01-01

    Search for novel anticancer lead molecules continues to be a major focus of cancer research due to the limitations of existing drugs such as lack of tumor selectivity, narrow therapeutic index and multidrug resistance of cancer types. Natural molecules often possess better pharmacokinetic traits compared to synthetic molecules as they continually evolve by natural selection process to interact with biological macromolecules. Microbial metabolites constitute nearly half of the pharmaceuticals in market today. Endophytic fungi, owing to its rich chemical diversity, are viewed as attractive sources of novel bioactive compounds. In the present study, we report the purification and characterization of a novel steroidal saponin, cholestanol glucoside (CG) from Saraca asoca endophytic fungus Lasiodiplodia theobromae. The compound was assessed for its cytotoxic potentialities in six human cancer cell lines, A549, PC3, HepG2, U251, MCF7 and OVCAR3. CG exhibited significant cytotoxicities towards A549, PC3 and HepG2 among which A549 cells were most vulnerable to CG treatment. However, CG treatment exhibited negligible cytotoxicity in non malignant human lung fibroblast cell line (WI-38). Induction of cell death by CG treatment in A549 cells was further investigated. CG induced the generation of reactive oxygen species (ROS) and mitochondrial membrane permeability loss followed by apoptotic cell death. Mitochondrial membrane depolarization and apoptotic cell death in CG treated A549 cells were completely blocked in presence of an antioxidant, N-acetyl cysteine (NAC). Hence it could be concluded that CG initiates apoptosis in cancer cells by augmenting the basal oxidative stress and that the generation of intracellular ROS is crucial for the induction of apoptosis. PMID:26338072

  10. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    SciTech Connect

    Matsuzaki, Shinichi; Ishizuka, Tamotsu; Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo; Komachi, Mayumi; Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko; Dobashi, Kunio; Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki; Mori, Masatomo; Okajima, Fumikazu

    2011-10-07

    Highlights: {yields} The involvement of extracellular acidification in airway remodeling was investigated. {yields} Extracellular acidification alone induced CTGF production in human ASMCs. {yields} Extracellular acidification enhanced TGF-{beta}-induced CTGF production in human ASMCs. {yields} Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. {yields} OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-{beta}-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G{sub q/11} protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP{sub 3}) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G{sub q/11} protein and inositol-1,4,5-trisphosphate-induced Ca{sup 2+} mobilization in human ASMCs.

  11. Study of airflow in the trachea of idealized model of human tracheobronchial airways during breathing cycle

    NASA Astrophysics Data System (ADS)

    Elcner, Jakub; Lizal, Frantisek; Jedelsky, Jan; Jicha, Miroslav

    2015-05-01

    The article deals with a numerical simulation and its verification by experiments in the trachea of idealized geometry of tracheobronchial airways by using unsteady RANS method. The breathing cycle was simulated by sinusoidal function with period of 4 seconds and tidal volume of 0.5 litres of air, which corresponds to breathing during resting condition. Results were compared with experiments measured by laser-Doppler velocimeter in eight points of four cross sections in the trachea. Model consists of the mouth cavity, larynx and tracheobronchial tree down to fourth generation of branching.

  12. Nickel decreases cellular iron level and converts cytosolic aconitase to iron-regulatory protein 1 in A549 cells

    SciTech Connect

    Chen Haobin; Davidson, Todd; Singleton, Steven; Garrick, Michael D.; Costa, Max . E-mail: costam@env.med.nyu.edu

    2005-08-15

    Nickel (Ni) compounds are well-established carcinogens and are known to initiate a hypoxic response in cells via the stabilization and transactivation of hypoxia-inducible factor-1 alpha (HIF-1{alpha}). This change may be the consequence of nickel's interference with the function of several Fe(II)-dependent enzymes. In this study, the effects of soluble nickel exposure on cellular iron homeostasis were investigated. Nickel treatment decreased both mitochondrial and cytosolic aconitase (c-aconitase) activity in A549 cells. Cytosolic aconitase was converted to iron-regulatory protein 1, a form critical for the regulation of cellular iron homeostasis. The increased activity of iron-regulatory protein 1 after nickel exposure stabilized and increased transferrin receptor (Tfr) mRNA and antagonized the iron-induced ferritin light chain protein synthesis. The decrease of aconitase activity after nickel treatment reflected neither direct interference with aconitase function nor obstruction of [4Fe-4S] cluster reconstitution by nickel. Exposure of A549 cells to soluble nickel decreased total cellular iron by about 40%, a decrease that likely caused the observed decrease in aconitase activity and the increase of iron-regulatory protein 1 activity. Iron treatment reversed the effect of nickel on cytosolic aconitase and iron-regulatory protein 1. To assess the mechanism for the observed effects, human embryonic kidney (HEK) cells over expressing divalent metal transporter-1 (DMT1) were compared to A549 cells expressing only endogenous transporters for inhibition of iron uptake by nickel. The inhibition data suggest that nickel can enter via DMT1 and compete with iron for entry into the cell. This disturbance of cellular iron homeostasis by nickel may have a great impact on the ability of the cell to regulate a variety of cell functions, as well as create a state of hypoxia in cells under normal oxygen tension. These effects may be very important in how nickel exerts phenotypic

  13. Pleiotropic Effects of Bitter Taste Receptors on [Ca2+]i Mobilization, Hyperpolarization, and Relaxation of Human Airway Smooth Muscle Cells.

    PubMed

    Camoretti-Mercado, Blanca; Pauer, Susan H; Yong, Hwan Mee; Smith, Dan'elle C; Deshpande, Deepak A; An, Steven S; Liggett, Stephen B

    2015-01-01

    Asthma is characterized by airway inflammation and airflow obstruction from human airway smooth muscle (HASM) constriction due to increased local bronchoconstrictive substances. We have recently found bitter taste receptors (TAS2Rs) on HASM, which increase [Ca2+]i and relax the muscle. We report here that some, but not all, TAS2R agonists decrease [Ca2+]i and relax HASM contracted by G-protein coupled receptors (GPCRs) that stimulate [Ca2+]i. This suggests both a second pathway by which TAS2Rs relax, and, a heterogeneity of the response phenotype. We utilized eight TAS2R agonists and five procontractile GPCR agonists in cultured HASM cells. We find that heterogeneity in the inhibitory response hinges on which procontractile GPCR is activated. For example, chloroquine inhibits [Ca2+]i increases from histamine, but failed to inhibit [Ca2+]i increases from endothelin-1. Conversely, aristolochic acid inhibited [Ca2+]i increases from endothelin-1 but not histamine. Other dichotomous responses were found when [Ca2+]i was stimulated by bradykinin, angiotensin, and acetylcholine. There was no association between [Ca2+]i inhibition and TAS2R subtype, nor whether [Ca2+]i was increased by Gq- or Gi-coupled GPCRs. Selected studies revealed a correlation between [Ca2+]i inhibition and HASM cell-membrane hyperpolarization. To demonstrate physiologic correlates, ferromagnetic beads were attached to HASM cells and cell stiffness measured by magnetic twisting cytometry. Consistent with the [Ca2+]i inhibition results, chloroquine abolished the cell stiffening response (contraction) evoked by histamine but not by endothelin-1, while aristolochic acid inhibited cell stiffening from endothelin-1, but not from histamine. In studies using intact human bronchi, these same differential responses were found. Those TAS2R agonists that decreased [Ca2+]i, promoted hyperpolarization, and decreased HASM stiffness, caused relaxation of human airways. Thus TAS2Rs relax HASM in two ways: a low

  14. The relevance to humans of animal models for inhalation studies of cancer in the nose and upper airways.

    PubMed

    DeSesso, J M

    1993-09-01

    While nasal cancer is relatively rare among the general population, workers in the nickel refining, leather manufacturing, and furniture building industries exhibit increased incidences of nasal cancer. To investigate the causes of nasal cancer and to design ameliorative strategies, an appropriate animal model for the human upper respiratory regions is required. The present report describes, compares, and assesses the anatomy and physiology of the nasal passages and upper airways of humans, rats, and monkeys for the purpose of determining a relevant animal model in which to investigate potential causes of nasal cancer. Based on the mode of breathing, overall geometry of the nasal passages, relative nasal surface areas, proportions of nasal surfaces lined by various epithelia, mucociliary clearance patterns, and inspiratory airflow routes, the rat, which is very different from humans, is a poor model. In contrast, the monkey exhibits many similarities to humans. Although the monkey does differ from humans in that it exhibits a more rapid respiratory rate, smaller minute and tidal volumes, larger medial turbinate, and a vestibular wing that creates an anterior vortex during inspiration, it offers a more appropriate model for studying the toxic effects of inhaled substances on the nasal passages and extrapolating the findings to humans. PMID:8137082

  15. Evidence for multiple roles for grainyhead-like 2 in the establishment and maintenance of human mucociliary airway epithelium

    PubMed Central

    Gao, Xia; Vockley, Christopher M.; Pauli, Florencia; Newberry, Kimberly M.; Xue, Yan; Randell, Scott H.; Reddy, Timothy E.; Hogan, Brigid L. M.

    2013-01-01

    Most of the airways of the human lung are lined by an epithelium made up of ciliated and secretory luminal cells and undifferentiated basal progenitor cells. The integrity of this epithelium and its ability to act as a selective barrier are critical for normal lung function. In other epithelia, there is evidence that transcription factors of the evolutionarily conserved grainyheadlike (GRHL) family play key roles in coordinating multiple cellular processes required for epithelial morphogenesis, differentiation, remodeling, and repair. However, only a few target genes have been identified, and little is known about GRHL function in the adult lung. Here we focus on the role of GRHL2 in primary human bronchial epithelial cells, both as undifferentiated progenitors and as they differentiate in air–liquid interface culture into an organized mucociliary epithelium with transepithelial resistance. Using a dominant-negative protein or shRNA to inhibit GRHL2, we follow changes in epithelial phenotype and gene transcription using RNA sequencing or microarray analysis. We identify several hundreds of genes that are directly or indirectly regulated by GRHL2 in both undifferentiated cells and air–liquid interface cultures. Using ChIP sequencing to map sites of GRHL2 binding in the basal cells, we identify 7,687 potential primary targets and confirm that GRHL2 binding is strongly enriched near GRHL2-regulated genes. Taken together, the results support the hypothesis that GRHL2 plays a key role in regulating many physiological functions of human airway epithelium, including those involving cell morphogenesis, adhesion, and motility. PMID:23690579

  16. Structure and function of airway surface layer of the human lungs & mobility of probe particles in complex fluids

    NASA Astrophysics Data System (ADS)

    Cai, Liheng

    Numerous infectious particles such as bacteria and pathogens are deposited on the airway surface of the human lungs during our daily breathing. To avoid infection the lung has evolved to develop a smart and powerful defense system called mucociliary clearance. The airway surface layer is a critical component of this mucus clearance system, which consists of two parts: (1) a mucus layer, that traps inhaled particles and transports them out of the lung by cilia-generated flow; and (2) a periciliary layer, that provides a favorable environment for ciliary beating and cell surface lubrication. For 75 years, it has been dogma that a single gel-like mucus layer, which is composed of secreted mucin glycoproteins, is transported over a "watery" periciliary layer. This one-gel model, however, does not explain fundamental features of the normal system, e.g. formation of a distinct mucus layer, nor accurately predict how the mucus clearance system fails in disease. In the first part of this thesis we propose a novel "Gel-on-Brush" model with a mucus layer (the "gel") and a "brush-like" periciliary layer, composed of mucins tethered to the luminal of airway surface, and supporting data accurately describes both the biophysical and cell biological bases for normal mucus clearance and its failure in disease. Our "Gel-on-Brush" model describes for the first time how and why mucus is efficiently cleared in health and unifies the pathogenesis of major human diseases, including cystic fibrosis and chronic obstructive pulmonary disease. It is expected that this "Gel-on-Brush" model of airway surface layer opens new directions for treatments of airway diseases. A dilemma regarding the function of mucus is that, although mucus traps any inhaled harmful particulates, it also poses a long-time problem for drug delivery: mobility of cargos carrying pharmaceutical agents is slowed down in mucus. The second part of this thesis aims to answer the question: can we theoretically understand the

  17. Direct electric current treatment modifies mitochondrial function and lipid body content in the A549 cancer cell line.

    PubMed

    Holandino, Carla; Teixeira, Cesar Augusto Antunes; de Oliveira, Felipe Alves Gomes; Barbosa, Gleyce Moreno; Siqueira, Camila Monteiro; Messeder, Douglas Jardim; de Aguiar, Fernanda Silva; da Veiga, Venicio Feo; Girard-Dias, Wendell; Miranda, Kildare; Galina, Antonio; Capella, Marcia Alves Marques; Morales, Marcelo Marcos

    2016-10-01

    Electrochemical therapy (EChT) entails treatment of solid tumors with direct electric current (DC). This work evaluated the specific effects of anodic flow generated by DC on biochemical and metabolic features of the A549 human lung cancer cell line. Apoptosis was evaluated on the basis of caspase-3 activity and mitochondrial transmembrane potential dissipation. Cell morphology was analyzed using transmission electron microscopy, and lipid droplets were studied through morphometric analysis and X-ray qualitative elemental microanalysis. High-resolution respirometry was used to assess mitochondrial respiratory parameters. Results indicated A549 viability decreased in a dose-dependent manner with a prominent drop between 18 and 24h after treatment (p<0.001), together with a two-fold increase in caspase-3 activity. AF-treatment induced a significantly increase (p<0.01) in the cell number with disrupted mitochondrial transmembrane potential. Furthermore, treated cells demonstrated important ultrastructural mitochondria damage and a three-fold increase in the cytoplasmic lipid bodies' number, quantified by morphometrical analyses. Conversely, 24h after treatment, the cells presented a two-fold increase of residual oxygen consumption, accounting for 45.3% of basal oxygen consumption. These results show remarkable alterations promoted by anodic flow on human lung cancer cells which are possibly involved with the antitumoral effects of EChT. PMID:27243447

  18. Proteomic analysis of cellular response induced by multi-walled carbon nanotubes exposure in A549 cells.

    PubMed

    Ju, Li; Zhang, Guanglin; Zhang, Xing; Jia, Zhenyu; Gao, Xiangjing; Jiang, Ying; Yan, Chunlan; Duerksen-Hughes, Penelope J; Chen, Fanqing Frank; Li, Hongjuan; Zhu, Xinqiang; Yang, Jun

    2014-01-01

    The wide application of multi-walled carbon nanotubes (MWCNT) has raised serious concerns about their safety on human health and the environment. However, the potential harmful effects of MWCNT remain unclear and contradictory. To clarify the potentially toxic effects of MWCNT and to elucidate the associated underlying mechanisms, the effects of MWCNT on human lung adenocarcinoma A549 cells were examined at both the cellular and the protein level. Cytotoxicity and genotoxicity were examined, followed by a proteomic analysis (2-DE coupled with LC-MS/MS) of the cellular response to MWCNT. Our results demonstrate that MWCNT induces cytotoxicity in A549 cells only at relatively high concentrations and longer exposure time. Within a relatively low dosage range (30 µg/ml) and short time period (24 h), MWCNT treatment does not induce significant cytotoxicity, cell cycle changes, apoptosis, or DNA damage. However, at these low doses and times, MWCNT treatment causes significant changes in protein expression. A total of 106 proteins show altered expression at various time points and dosages, and of these, 52 proteins were further identified by MS. Identified proteins are involved in several cellular processes including proliferation, stress, and cellular skeleton organization. In particular, MWCNT treatment causes increases in actin expression. This increase has the potential to contribute to increased migration capacity and may be mediated by reactive oxygen species (ROS).

  19. Direct electric current treatment modifies mitochondrial function and lipid body content in the A549 cancer cell line.

    PubMed

    Holandino, Carla; Teixeira, Cesar Augusto Antunes; de Oliveira, Felipe Alves Gomes; Barbosa, Gleyce Moreno; Siqueira, Camila Monteiro; Messeder, Douglas Jardim; de Aguiar, Fernanda Silva; da Veiga, Venicio Feo; Girard-Dias, Wendell; Miranda, Kildare; Galina, Antonio; Capella, Marcia Alves Marques; Morales, Marcelo Marcos

    2016-10-01

    Electrochemical therapy (EChT) entails treatment of solid tumors with direct electric current (DC). This work evaluated the specific effects of anodic flow generated by DC on biochemical and metabolic features of the A549 human lung cancer cell line. Apoptosis was evaluated on the basis of caspase-3 activity and mitochondrial transmembrane potential dissipation. Cell morphology was analyzed using transmission electron microscopy, and lipid droplets were studied through morphometric analysis and X-ray qualitative elemental microanalysis. High-resolution respirometry was used to assess mitochondrial respiratory parameters. Results indicated A549 viability decreased in a dose-dependent manner with a prominent drop between 18 and 24h after treatment (p<0.001), together with a two-fold increase in caspase-3 activity. AF-treatment induced a significantly increase (p<0.01) in the cell number with disrupted mitochondrial transmembrane potential. Furthermore, treated cells demonstrated important ultrastructural mitochondria damage and a three-fold increase in the cytoplasmic lipid bodies' number, quantified by morphometrical analyses. Conversely, 24h after treatment, the cells presented a two-fold increase of residual oxygen consumption, accounting for 45.3% of basal oxygen consumption. These results show remarkable alterations promoted by anodic flow on human lung cancer cells which are possibly involved with the antitumoral effects of EChT.

  20. Coordinate Control of Expression of Nrf2-Modulated Genes in the Human Small Airway Epithelium Is Highly Responsive to Cigarette Smoking

    PubMed Central

    Hübner, Ralf-Harto; Schwartz, Jamie D; De Bishnu, P; Ferris, Barbara; Omberg, Larsson; Mezey, Jason G; Hackett, Neil R; Crystal, Ronald G

    2009-01-01

    Nuclear factor erythroid 2–related factor 2 (Nrf2) is an oxidant-responsive transcription factor known to induce detoxifying and antioxidant genes. Cigarette smoke, with its large oxidant content, is a major stress on the cells of small airway epithelium, which are vulnerable to oxidant damage. We assessed the role of cigarette smoke in activation of Nrf2 in the human small airway epithelium in vivo. Fiberoptic bronchoscopy was used to sample the small airway epithelium in healthy-nonsmoker and healthy-smoker, and gene expression was assessed using microarrays. Relative to nonsmokers, Nrf2 protein in the small airway epithelium of smokers was activated and localized in the nucleus. The human homologs of 201 known murine Nrf2-modulated genes were identified, and 13 highly smoking-responsive Nrf2-modulated genes were identified. Construction of an Nrf2 index to assess the expression levels of these 13 genes in the airway epithelium of smokers showed coordinate control, an observation confirmed by quantitative PCR. This coordinate level of expression of the 13 Nrf2-modulated genes was independent of smoking history or demographic parameters. The Nrf2 index was used to identify two novel Nrf2-modulated, smoking-responsive genes, pirin (PIR) and UDP glucuronosyltransferase 1-family polypeptide A4 (UGT1A4). Both genes were demonstrated to contain functional antioxidant response elements in the promoter region. These observations suggest that Nrf2 plays an important role in regulating cellular defenses against smoking in the highly vulnerable small airway epithelium cells, and that there is variability within the human population in the Nrf2 responsiveness to oxidant burden. PMID:19593404

  1. S-nitrosothiols regulate cell-surface pH buffering by airway epithelial cells during the human immune response to rhinovirus.

    PubMed

    Carraro, Silvia; Doherty, Joseph; Zaman, Khalequz; Gainov, Iain; Turner, Ronald; Vaughan, John; Hunt, John F; Márquez, Javier; Gaston, Benjamin

    2006-05-01

    Human rhinovirus infection is a common trigger for asthma exacerbations. Asthma exacerbations and rhinovirus infections are both associated with markedly decreased pH and ammonium levels in exhaled breath condensates. This observation is thought to be related, in part, to decreased activity of airway epithelial glutaminase. We studied whether direct rhinovirus infection and/or the host immune response to the infection decreased airway epithelial cell surface pH in vitro. Interferon-gamma and tumor necrosis factor-alpha, but not direct rhinovirus infection, decreased pH, an effect partly associated with decreased ammonium concentrations. This effect was 1) prevented by nitric oxide synthase inhibition; 2) independent of cyclic GMP; 3) associated with an increase in endogenous airway epithelial cell S-nitrosothiol concentration; 4) mimicked by the exogenous S-nitrosothiol, S-nitroso-N-acetyl cysteine; and 5) independent of glutaminase expression and activity. We then confirmed that decreased epithelial pH inhibits human rhinovirus replication in airway epithelial cells. These data suggest that a nitric oxide synthase-dependent host response to viral infection mediated by S-nitrosothiols, rather than direct infection itself, plays a role in decreased airway surface pH during human rhinovirus infection. This host immune response may serve to protect the lower airways from direct infection in the normal host. In patients with asthma, however, this fall in pH could be associated with the increased mucus production, augmented inflammatory cell degranulation, bronchoconstriction, and cough characteristic of an asthma exacerbation. PMID:16603595

  2. Taxol-induced paraptosis-like A549 cell death is not senescence

    NASA Astrophysics Data System (ADS)

    Wang, Chao-yang; Chen, Tong-Sheng

    2011-03-01

    Our previous studies have shown that taxol, a potent anticancer agent, induces caspase-independent cell death and cytoplasmic vacuolization in human lung cancer cells. However, the mechanisms of taxol-induced cytoplasmic vacuolization are poorly understood. Cytoplasmic vacuolization have been reported to be a characteristic of cell senescence. Here, we employed confocal fluorescence microscopy imaging to study the reversibility of taxol-induced cytoplasmic vacuolization and whether taxol triggers senescence in A549 cells. We found that taxol-induced cytoplasmic vacuolization at 6 or 9 h after treatment with taxol did not decrease but increase at 24 h or 72 h after refreshing the culture medium without taxol, indicating taxol-induced cytoplasmic vacuolization is irreversible. We used SA-β-Gal (senescence-associated β-galactosidase) to assess whether taxol-induced cell death in cytoplasmic vacuolization fashion is senescence, and found that hydrogen peroxide (H2O2)-treated, but not taxol-treated cells is significantly stained by the SA-β-Gal, a senescence testing kit, indicating that the form of taxol-induced cell death is not senescence.

  3. Biosynthesis of gold nanoparticles and related cytotoxicity evaluation using A549 cells.

    PubMed

    Sathishkumar, M; Pavagadhi, S; Mahadevan, A; Balasubramanian, R

    2015-04-01

    Biosynthesis of gold nanoparticles (AuNPs) has become an attractive area of research as it is environmentally benign. The toxicity of AuNPs synthesized by chemical routes has been widely studied. However, little is known about the toxicity associated with the biological synthesis of AuNPs. The present study was carried out to synthesize AuNPs using star anise (Illicium verum; a commercially available spice in abundance)and evaluate its toxicity using human epithelial lung cells (A549) in comparison with AuNPs synthesized by the traditional chemical methods (using sodium citrate and sodium borohydride). Apart from cell viability, markers of oxidative stress (reduced glutathione) and cell death (caspases) were also evaluated to understand the mechanisms of toxicity. Cell viability was observed to be 65.7 percent and 72.3 percent in cells exposed to chemically synthesized AuNPs at the highest dose (200nM) as compared to 80.2 percent for biologically synthesized AuNPs. Protective coating/capping of AuNPs by various polyphenolic compounds present in star anise extract appears to be a major contributor to lower toxicity observed in biologically synthesized AuNPs.

  4. Long Term Culture of the A549 Cancer Cell Line Promotes Multilamellar Body Formation and Differentiation towards an Alveolar Type II Pneumocyte Phenotype

    PubMed Central

    Cooper, James Ross; Abdullatif, Muhammad Bilal; Burnett, Edward C.; Kempsell, Karen E.; Conforti, Franco; Tolley, Howard; Collins, Jane E.; Davies, Donna E.

    2016-01-01

    Pulmonary research requires models that represent the physiology of alveolar epithelium but concerns with reproducibility, consistency and the technical and ethical challenges of using primary or stem cells has resulted in widespread use of continuous cancer or other immortalized cell lines. The A549 ‘alveolar’ cell line has been available for over four decades but there is an inconsistent view as to its suitability as an appropriate model for primary alveolar type II (ATII) cells. Since most work with A549 cells involves short term culture of proliferating cells, we postulated that culture conditions that reduced proliferation of the cancer cells would promote a more differentiated ATII cell phenotype. We examined A549 cell growth in different media over long term culture and then used microarray analysis to investigate temporal regulation of pathways involved in cell cycle and ATII differentiation; we also made comparisons with gene expression in freshly isolated human ATII cells. Analyses indicated that long term culture in Ham’s F12 resulted in substantial modulation of cell cycle genes to result in a quiescent population of cells with significant up-regulation of autophagic, differentiation and lipidogenic pathways. There were also increased numbers of up- and down-regulated genes shared with primary cells suggesting adoption of ATII characteristics and multilamellar body (MLB) development. Subsequent Oil Red-O staining and Transmission Electron Microscopy confirmed MLB expression in the differentiated A549 cells. This work defines a set of conditions for promoting ATII differentiation characteristics in A549 cells that may be advantageous for studies with this cell line. PMID:27792742

  5. Analysis of the interplay between neurochemical control of respiration and upper airway mechanics producing upper airway obstruction during sleep in humans.

    PubMed

    Longobardo, G S; Evangelisti, C J; Cherniack, N S

    2008-02-01

    Increased loop gain (a function of both controller gain and plant gain), which results in instability in feedback control, is of major importance in producing recurrent central apnoeas during sleep but its role in causing obstructive apnoeas is not clear. The purpose of this study was to investigate the role of loop gain in producing obstructive sleep apnoeas. Owing to the complexity of factors that may operate to produce obstruction during sleep, we used a mathematical model to sort them out. The model used was based on our previous model of neurochemical control of breathing, which included the effects of chemical stimuli and changes in alertness on respiratory pattern generator activity. To this we added a model of the upper airways that contained a narrowed section which behaved as a compressible elastic tube and was tethered during inspiration by the contraction of the upper airway dilator muscles. These muscles in the model, as in life, responded to changes in hypoxia, hypercapnia and alertness in a manner similar to the action of the chest wall muscles, opposing the compressive action caused by the negative intraluminal pressure generated during inspiration which was magnified by the Bernoulli Effect. As the velocity of inspiratory airflow increased, with sufficiently large increase in airflow velocity, obstruction occurred. Changes in breathing after sleep onset were simulated. The simulations showed that increases in controller gain caused the more rapid onset of obstructive apnoeas. Apnoea episodes were terminated by arousal. With a constant controller gain, as stiffness decreased, obstructed breaths appeared and periods of obstruction recurred longer after sleep onset before disappearing. Decreased controller gain produced, for example, by breathing oxygen eliminated the obstructive apnoeas resulting from moderate reductions in constricted segment stiffness. This became less effective as stiffness was reduced more. Contraction of the upper airway muscles

  6. MATRIX METALLOPROTEINS (MMP)-MEDIATED PHOSPHORYLATION OF THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) IN HUMAN AIRWAY EPITHELIAL CELLS (HAEC) EXPOSED TO ZINC (ZN)

    EPA Science Inventory

    Matrix Metalloproteinase (MMP)-Mediated Phosphorylation of The Epidermal Growth Factor Receptor (EGFR) in Human Airway Epithelial Cells (HAEC) Exposed to Zinc (Zn)
    Weidong Wu, James M. Samet, Robert Silbajoris, Lisa A. Dailey, Lee M. Graves, and Philip A. Bromberg
    Center fo...

  7. Phosphorylation of p53 at serine 15 in A549 pulmonary epithelial cells exposed to vanadate: Involvement of ATM pathway

    SciTech Connect

    Suzuki, Katsura; Inageda, Kiyoshi; Nishitai, Gen; Matsuoka, Masato . E-mail: matsuoka@research.twmu.ac.jp

    2007-04-01

    When A549 cells were exposed to sodium metavanadate (NaVO{sub 3}), the pentavalent species of vanadium (vanadate), phosphorylation of p53 protein at Ser15 was found in a time (8-48 h)- and dose (10-200 {mu}M)-dependent manner. After the incubation with 50 or 100 {mu}M NaVO{sub 3} for 48 h, accumulation of p53 protein was accompanied with Ser15 phosphorylation. Among serines in p53 protein immunoprecipitated from A549 cells treated with 100 {mu}M NaVO{sub 3} for 48 h, only Ser15 was markedly phosphorylated. Treatment with other vanadate compounds, sodium orthovanadate (Na{sub 3}VO{sub 4}) and ammonium metavanadate (NH{sub 4}VO{sub 3}), also induced Ser15 phosphorylation and accumulation of p53 protein. While phosphorylation of extracellular signal-regulated protein kinase (ERK) was found in cells treated with NaVO{sub 3}, treatment with U0126 did not suppress Ser15 phosphorylation. On the other hand, treatment with wortmannin or caffeine, the inhibitors to phosphatidylinositol 3-kinase related kinases (PIKKs), suppressed both NaVO{sub 3}-induced Ser15 phosphorylation and accumulation of p53 protein. The silencing of ataxia telangiectasia mutated (ATM) expression using short-interference RNA resulted in the marked suppression of Ser15 phosphorylation in A549 cells exposed to NaVO{sub 3}. However, treatment with antioxidants such as catalase and N-acetylcysteine did not suppress NaVO{sub 3}-induced Ser15 phosphorylation. Transcriptional activation of p53 and DNA fragmentation in A549 cells treated with NaVO{sub 3} were suppressed only slightly by S15A mutation, suggesting that Ser15 phosphorylation is not essential for these responses. The present results showed that vanadate induces the phosphorylation of p53 at Ser15 depending on ATM, one of the members of PIKK family, in this human pulmonary epithelial cell line.

  8. Cr(VI)-stimulated STAT3 tyrosine phosphorylation and nuclear translocation in human airway epithelial cells requires Lck

    PubMed Central

    O'hara, Kimberley A.; Vaghjiani, Rasilaben J.; Nemec, Antonia A.; Klei, Linda R.; Barchowsky, Aaron

    2006-01-01

    Chronic inhalation of low amounts of Cr(VI) promotes pulmonary diseases and cancers through poorly defined mechanisms. SFKs (Src family kinases) in pulmonary airway cells may mediate Cr(VI) signalling for lung injury, although the downstream effectors of Cr(VI)-stimulated SFKs and how they relate to pathogenic gene induction are unknown. Therefore SFK-dependent activation of transcription factors by non-cytotoxic exposure of human bronchial epithelial cells to Cr(VI) was determined. Protein–DNA binding arrays demonstrated that exposing BEAS 2B cells to 5 μM Cr(VI) for 4 and 24 h resulted in increased protein binding to 25 and 43 cis-elements respectively, while binding to 12 and 16 cis-elements decreased. Of note, Cr(VI) increased protein binding to several STAT (signal transducer and activator of transcription) cis-elements. Cr(VI) stimulated acute tyrosine phosphorylation and nuclear translocation of STAT1 over a 4 h period and a prolonged activation of STAT3 that reached a peak between 48 and 72 h. This prolonged activation was observed for both STAT3α and STAT3β. Immunofluorescent confocal microscopy confirmed that Cr(VI) increased nuclear localization of phosphorylated STAT3 for more than 72 h in both primary and BEAS 2B human airway cells. Cr(VI) induced transactivation of both a STAT3-driven luciferase reporter construct and the endogenous inflammatory gene IL-6 (interleukin-6). Inhibition with siRNA (small interfering RNA) targeting the SFK Lck, but not dominant-negative JAK (Janus kinase), prevented Cr(VI)-stimulated phosphorylation of both STAT3 isoforms and induction of IL-6. The results suggest that Cr(VI) activates epithelial cell Lck to signal for prolonged STAT3 activation and transactivation of IL-6, an important immunomodulator of lung disease progression. PMID:17078813

  9. Cr(VI)-stimulated STAT3 tyrosine phosphorylation and nuclear translocation in human airway epithelial cells requires Lck.

    PubMed

    O'Hara, Kimberley A; Vaghjiani, Rasilaben J; Nemec, Antonia A; Klei, Linda R; Barchowsky, Aaron

    2007-03-01

    Chronic inhalation of low amounts of Cr(VI) promotes pulmonary diseases and cancers through poorly defined mechanisms. SFKs (Src family kinases) in pulmonary airway cells may mediate Cr(VI) signalling for lung injury, although the downstream effectors of Cr(VI)-stimulated SFKs and how they relate to pathogenic gene induction are unknown. Therefore SFK-dependent activation of transcription factors by non-cytotoxic exposure of human bronchial epithelial cells to Cr(VI) was determined. Protein-DNA binding arrays demonstrated that exposing BEAS 2B cells to 5 microM Cr(VI) for 4 and 24 h resulted in increased protein binding to 25 and 43 cis-elements respectively, while binding to 12 and 16 cis-elements decreased. Of note, Cr(VI) increased protein binding to several STAT (signal transducer and activator of transcription) cis-elements. Cr(VI) stimulated acute tyrosine phosphorylation and nuclear translocation of STAT1 over a 4 h period and a prolonged activation of STAT3 that reached a peak between 48 and 72 h. This prolonged activation was observed for both STAT3alpha and STAT3beta. Immunofluorescent confocal microscopy confirmed that Cr(VI) increased nuclear localization of phosphorylated STAT3 for more than 72 h in both primary and BEAS 2B human airway cells. Cr(VI) induced transactivation of both a STAT3-driven luciferase reporter construct and the endogenous inflammatory gene IL-6 (interleukin-6). Inhibition with siRNA (small interfering RNA) targeting the SFK Lck, but not dominant-negative JAK (Janus kinase), prevented Cr(VI)-stimulated phosphorylation of both STAT3 isoforms and induction of IL-6. The results suggest that Cr(VI) activates epithelial cell Lck to signal for prolonged STAT3 activation and transactivation of IL-6, an important immunomodulator of lung disease progression.

  10. Effects of COREXIT dispersants on cytotoxicity parameters in a cultured human bronchial airway cells, BEAS-2B.

    PubMed

    Shi, Yongli; Roy-Engel, Astrid M; Wang, He

    2013-01-01

    The objective of this study was to assess the cytotoxicity of COREXIT dispersants EC9500A, EC9527A, and EC9580A on human airway BEAS-2B epithelial cells. Cells were exposed to dispersants for 2 or 24 h at concentrations ranging from 0 to 300 ppm. COREXIT EC9527 at 100 ppm produced 50% viability loss as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) at 24 h. COREXIT 9527 at 200 ppm produced 50% cell death at 2 h and 100% at 24 h. At 300 ppm COREXIT 9527 induced 100% cell death at 2 or 24 h. In the case of COREXIT 9500A 50% cell viability was noted with 200 ppm at 2 or 24 h, with a significant decrease in cell survival to 2% at 300 ppm. In contrast, no marked change in cell viability was observed in cells treated at any COREXIT 9580A concentration examined. Western blot analysis showed an increase in expression of LC3B, a marker of autophagy, in cells treated for 2 h with 300 ppm COREXIT EC9527A as well as 100 or 300 ppm Corexit EC9500A. No marked effect on LC3B expression was observed for any COREXIT 9580A concentration. Apoptosis markers as measured by cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase (PARP) were detectable only in cells incubated with 300 ppm COREXIT EC9527A. Although all three dispersants induced enhanced generation of reactive oxygen species (ROS) after 2-h treatment at 300 ppm, Western blot analysis revealed that 2-h incubation was not sufficient to induce a significant change in the protein expression of superoxide dismutases SOD1, SOD2, and SOD3. Data thus indicate exposure to certain dispersants may be harmful to human airway epithelial cells in a concentration-dependent manner.

  11. EFFECTS OF COREXIT DISPERSANTS ON CYTOTOXICITY PARAMETERS IN A CULTURED HUMAN BRONCHIAL AIRWAY CELLS, BEAS-2B

    PubMed Central

    Shi, Yongli; Roy-Engel, Astrid M.; Wang, He

    2013-01-01

    The objective of this study was to assess the cytotoxicity of COREXIT dispersants EC9500A, EC9527A, and EC9580A on human airway BEAS-2B epithelial cells. Cells were exposed to dispersants for 2 or 24 h at concentrations ranging from 0 to 300 ppm. COREXIT EC9527 at 100 ppm produced 50% viability loss as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) at 24 h. COREXIT 9527 at 200 ppm produced 50% cell death at 2 h and 100% at 24 h. At 300 ppm COREXIT 9527 induced 100% cell death at 2 or 24 h. In the case of COREXIT 9500A 50% cell viability was noted with 200 ppm at 2 or 24 h, with a significant decrease in cell survival to 2% at 300 ppm. In contrast, no marked change in cell viability was observed in cells treated at any COREXIT 9580A concentration examined. Western blot analysis showed an increase in expression of LC3B, a marker of autophagy, in cells treated for 2 h with 300 ppm COREXIT EC9527A as well as 100 or 300 ppm Corexit EC9500A. No marked effect on LC3B expression was observed for any COREXIT 9580A concentration. Apoptosis markers as measured by cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase (PARP) were detectable only in cells incubated with 300 ppm COREXIT EC9527A. Although all three dispersants induced enhanced generation of reactive oxygen species (ROS) after 2-h treatment at 300 ppm, Western blot analysis revealed that 2-h incubation was not sufficient to induce a significant change in the protein expression of superoxide dismutases SOD1, SOD2, and SOD3. Data thus indicate exposure to certain dispersants may be harmful to human airway epithelial cells in a concentration-dependent manner. PMID:24028667

  12. Replication of an Autonomous Human Parvovirus in Non-dividing Human Airway Epithelium Is Facilitated through the DNA Damage and Repair Pathways

    PubMed Central

    Deng, Xuefeng; Yan, Ziying; Cheng, Fang; Engelhardt, John F.; Qiu, Jianming

    2016-01-01

    Human bocavirus 1 (HBoV1) belongs to the genus Bocaparvovirus of the Parvoviridae family, and is an emerging human pathogenic respiratory virus. In vitro, HBoV1 infects well-differentiated/polarized primary human airway epithelium (HAE) cultured at an air-liquid interface (HAE-ALI). Although it is well known that autonomous parvovirus replication depends on the S phase of the host cells, we demonstrate here that the HBoV1 genome amplifies efficiently in mitotically quiescent airway epithelial cells of HAE-ALI cultures. Analysis of HBoV1 DNA in infected HAE-ALI revealed that HBoV1 amplifies its ssDNA genome following a typical parvovirus rolling-hairpin DNA replication mechanism. Notably, HBoV1 infection of HAE-ALI initiates a DNA damage response (DDR) with activation of all three phosphatidylinositol 3-kinase–related kinases (PI3KKs). We found that the activation of the three PI3KKs is required for HBoV1 genome amplification; and, more importantly, we identified that two Y-family DNA polymerases, Pol η and Pol κ, are involved in HBoV1 genome amplification. Overall, we have provided an example of de novo DNA synthesis (genome amplification) of an autonomous parvovirus in non-dividing cells, which is dependent on the cellular DNA damage and repair pathways. PMID:26765330

  13. A Numerical Study of Heat and Water Vapor Transfer in MDCT-Based Human Airway Models

    PubMed Central

    Wu, Dan; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2014-01-01

    A three-dimensional (3D) thermo-fluid model is developed to study regional distributions of temperature and water vapor in three multi-detector row computed-tomography (MDCT)-basedhuman airwayswith minute ventilations of 6, 15 and 30 L/min. A one-dimensional (1D) model is also solved to provide necessary initial and boundary conditionsforthe 3D model. Both 3D and 1D predicted temperature distributions agree well with available in vivo measurement data. On inspiration, the 3D cold high-speed air stream is split at the bifurcation to form secondary flows, with its cold regions biased toward the inner wall. The cold air flowing along the wall is warmed up more rapidly than the air in the lumen center. The repeated splitting pattern of air streams caused by bifurcations acts as an effective mechanism for rapid heat and mass transfer in 3D. This provides a key difference from the 1D model, where heating relies largely on diffusion in the radial direction, thus significantly affecting gradient-dependent variables, such as energy flux and water loss rate. We then propose the correlations for respective heat and mass transfer in the airways of up to 6 generations: Nu=3.504(ReDaDt)0.277, R = 0.841 and Sh=3.652(ReDaDt)0.268, R = 0.825, where Nu is the Nusselt number, Sh is the Sherwood number, Re is the branch Reynolds number, Da is the airway equivalent diameter, and Dt is the tracheal equivalentdiameter. PMID:25081386

  14. Protective efficacy of IFN-ω AND IFN-λs against influenza viruses in induced A549 cells.

    PubMed

    Škorvanová, L; Švančarová, P; Svetlíková, D; Betáková, T

    2015-12-01

    The interferon system represents one of the components of the first line defence against influenza virus infection. Interferon omega (IFN-ω) is antigenetically different from IFN-α and IFN-β and can affect patients who are resistant to these IFNs. To improve the biological characterization of IFN-ω, we compared its activity with those of type I and type III IFNs in induced A549 cells. The antiviral effect on IFN-stimulated A549 cells was most apparent after infection with avian influenza virus. IFN-ω had statistically significant antiviral activity although less than IFN-β1a, IFN-λ1, or IFN-λ2. On the other hand, IFN-ω appeared more efficient than IFN-α2. Our results also indicate that IFN-λs were more suitable against human highly pathogenic virus. In this case, IFN-λ1 and IFN-λ2 were more potent than type I IFNs. PMID:26666190

  15. Polyurethane dispersion containing quaternized ammonium groups: An efficient nanosize gene delivery carrier for A549 cancer cell line transfection.

    PubMed

    Yousefpour Marzbali, Mahsa; Yari Khosroushahi, Ahmad; Movassaghpour, AliAkbar; Yeganeh, Hamid

    2016-01-25

    A novel polyurethane containing cationic ammonium groups (QPU) was synthesized and used as vector for gene therapy and cancer gene targeting. The synthesized QPU was characterized by Fourier transform infrared and nuclear magnetic resonance spectroscopy methods. An agarose gel retardation electrophoresis assay was conducted to verify the complete complex formation between QPU and pDNA. The particles size and zeta potential of neat polymers, plasmid DNA, polymers/DNA polyplexes were determined by the dynamic light scattering technique. The polyplexes cytotoxicity was determined using [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and its transfection efficiency was examined qualitatively by fluorescent microscopy and quantitatively by flow cytometery methods. The gel retardation assay, particle size and zeta potential measurements were confirmed that the synthesized cationic polymer could condense DNA efficiently in the physiologic condition. QPU polyplexes showed a significantly lower cytotoxicity compared to Polyfect polyplexes in the examined human cancerous (A549) or normal cells (KDR). Based on our findings, the transfection efficiency by QPU was 2.2 fold higher than Polyfect in the A549 cells whereas in the KDR cells, the cell transfection by Polyfect was 18.1 fold higher than QPU. Due to low cytotoxicity for normal cells and high transfection efficiency in cancer cells, the potential applicability of designed QPU as a non-viral gene carrier for targeting of cancer gene therapy was confirmed.

  16. The effect of sleep on reflex genioglossus muscle activation by stimuli of negative airway pressure in humans.

    PubMed Central

    Horner, R L; Innes, J A; Morrell, M J; Shea, S A; Guz, A

    1994-01-01

    The present study was designed to determine the effect of sleep on reflex pharyngeal dilator muscle activation by stimuli of negative airway pressure in human subjects. Intra-oral bipolar surface electrodes were used to record genioglossus electromyogram (EMG) responses to 500 ms duration pressure stimuli of 0 and -25 cmH2O applied, via a face-mask, in four normal subjects. Stimuli were applied during early inspiration in wakefulness and in periods of non-rapid-eye-movement (non-REM) sleep, defined by electroencephalographic (EEG) criteria. The rectified and integrated EMG responses to repeated interventions were bin averaged for the 0 and -25 cmH2O stimuli applied in wakefulness and sleep. Response latency was defined as the time when the EMG activity significantly increased above prestimulus levels. Response magnitude was quantified as the in ratio of the EMG activity for an 80 ms post-stimulus period to an 80 ms prestimulus period; data from after the subject's voluntary reaction time for tongue protrusion (range, 150-230 ms) were not analysed. Application of the -25 cmH2O stimuli caused genioglossus muscle activation in wakefulness and sleep, but in all subjects response magnitude was reduced in sleep (mean decrease, 61%; range, 52-82%; P = 0.011, Student's paired t test). In addition, response latency was increased in sleep in each subject (mean latency awake, 38 ms; range, 30-50 ms; mean latency asleep, 75 ms; range, 40-110 ms; P = 0.072, Student's paired t test). Application of the -25 cmH2O stimuli caused arousal from sleep on 90% occasions, but in all cases the reflex genioglossus muscle responses (maximum latency, 110 ms) always proceeded any sign of EEG arousal (mean time to arousal, 643 ms; range, 424-760 ms). These results show that non-REM sleep attenuates reflex genioglossus muscle activation by stimuli of negative airway pressure. Attenuation of this reflex by sleep may impair the ability of the upper airway to defend itself from suction collapse by

  17. Ursolic acid and oleanolic acid from Eriobotrya fragrans inhibited the viability of A549 cells.

    PubMed

    Yuan, Yuan; Gao, Yongshun; Song, Gang; Lin, Shunquan

    2015-02-01

    Loquat {Eriobotrya japonica (Lindl.)}, a kind of Chinese herb, has many efficacies such as anti-inflammatory, antimicrobial and curing chronic bronchitis. However, reports on the pharmacological action of wild loquat extract are limited. In this work, the A549 cell line was selected to study the inhibitory effect of ursolic acid and oleanolic acid (UA, OA) from the leaves of E. fragrans. Results showed that UA/OA inhibited A549 cell viability and induced apoptosis in a dose and time dependent manner. The cell fraction in the G0/G1 phase dramatically increased under treatment with UA/OA. Data showed that UA activated the expression of PARP. UA and OA down-regulated MMP-2 and Bcl-2; on the contrary, they up-regulated Bid. This work demonstrated that UA/OA extracted from wild loquat leaves can significantly inhibit the viability of A549 cells.

  18. Reverse-phase phosphoproteome analysis of signaling pathways induced by Rift valley fever virus in human small airway epithelial cells.

    PubMed

    Popova, Taissia G; Turell, Michael J; Espina, Virginia; Kehn-Hall, Kylene; Kidd, Jessica; Narayanan, Aarthi; Liotta, Lance; Petricoin, Emanuel F; Kashanchi, Fatah; Bailey, Charles; Popov, Serguei G

    2010-01-01

    Rift valley fever virus (RVFV) infection is an emerging zoonotic disease endemic in many countries of sub-Saharan Africa and in Egypt. In this study we show that human small airway epithelial cells are highly susceptible to RVFV virulent strain ZH-501 and the attenuated strain MP-12. We used the reverse-phase protein arrays technology to identify phosphoprotein signaling pathways modulated during infection of cultured airway epithelium. ZH-501 infection induced activation of MAP kinases (p38, JNK and ERK) and downstream transcriptional factors [STAT1 (Y701), ATF2 (T69/71), MSK1 (S360) and CREB (S133)]. NF-κB phosphorylation was also increased. Activation of p53 (S15, S46) correlated with the increased levels of cleaved effector caspase-3, -6 and -7, indicating activation of the extrinsic apoptotic pathway. RVFV infection downregulated phosphorylation of a major anti-apoptotic regulator of survival pathways, AKT (S473), along with phosphorylation of FOX 01/03 (T24/31) which controls cell cycle arrest downstream from AKT. Consistent with this, the level of apoptosis inhibitor XIAP was decreased. However, the intrinsic apoptotic pathway marker, caspase-9, demonstrated only a marginal activation accompanied by an increased level of the inhibitor of apoptosome formation, HSP27. Concentration of the autophagy marker, LC3B, which often accompanies the pro-survival signaling, was decreased. Cumulatively, our analysis of RVFV infection in lung epithelium indicated a viral strategy directed toward the control of cell apoptosis through a number of transcriptional factors. Analyses of MP-12 titers in challenged cells in the presence of MAPK inhibitors indicated that activation of p38 represents a protective cell response while ERK activation controls viral replication. PMID:21072193

  19. Topical vasoconstrictor (oxymetazoline) does not affect histamine-induced mucosal exudation of plasma in human nasal airways.

    PubMed

    Svensson, C; Pipkorn, U; Alkner, U; Baumgarten, C R; Persson, C G

    1992-03-01

    Mucosal exudation of almost unfiltered plasma proteins, plasma-derived mediators and fluid has recently been advanced as a major respiratory defence mechanism. Oxymetazoline chloride is a commonly used decongestant agent. By reducing blood flow it may reduce mucosal exudation and thus compromise the mucosal defence capacity. This study examines the effect of topically applied oxymetazoline on histamine-induced plasma exudation into human nasal airways. Twelve normal volunteers participated in a double-blind, randomized, cross-over and placebo-controlled study with pretreatment with a single dose oxymetazoline chloride (5 micrograms or 50 micrograms; a dose previously known to reduce nasal mucosal blood flow by almost 50%) prior to the histamine challenge sequence. Nasal lavages were performed every 10 min for 140 min, and three histamine challenges were performed at 30-min intervals during this period. The concentrations of two exudative indices, N-alpha-tosyl-L-arginine methyl ester (TAME)-esterase activity and albumin, were measured in the nasal lavage fluids. Nasal symptoms (sneezing, nasal secretion and blockage) were assessed by a scoring technique. Histamine induced all three symptoms with correlatively raised levels of the biochemical markers for plasma exudation. Oxymetazoline chloride caused a significant decrease in nasal stuffiness, but did not influence the other nasal symptoms or the histamine-induced plasma exudation. It is concluded that histamine-induced plasma exudation is not influenced by topical oxymetazoline. Thus, an important airway defence reaction such as plasma exudation may be little affected by topical alpha-adrenoreceptor-mediated vasoconstriction.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Numerical study of high frequency oscillatory air flow and convective mixing in a CT-based human airway model

    PubMed Central

    Choi, Jiwoong; Xia, Guohua; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2011-01-01

    High frequency oscillatory ventilation (HFOV) is considered an efficient and safe respiratory technique to ventilate neonates and patients with acute respiratory distress syndrome. HFOV has very different characteristics from normal breathing physiology, with a much smaller tidal volume and a higher breathing frequency. In this work, the high frequency oscillatory flow is studied using a computational fluid dynamics (CFD) analysis in three different geometrical models with increasing complexity: a straight tube, a single-bifurcation tube model, and a computed-tomography (CT)-based human airway model of up to seven generations. We aim to understand the counter-flow phenomenon at flow reversal and its role in convective mixing in these models using sinusoidal waveforms of different frequencies and Reynolds numbers. Mixing is quantified by the stretch rate analysis. In the straight-tube model, coaxial counter flow with opposing fluid streams is formed around flow reversal, agreeing with an analytical Womersley solution. However, counter flow yields no net convective mixing at end cycle. In the single-bifurcation model, counter flow at high Re is intervened with secondary vortices in the parent (child) branch at end expiration (inspiration), resulting in an irreversible mixing process. For the CT-based airway model three cases are considered, consisting of the normal breathing case, the high-frequency-normal-Re case, and the HFOV case. The counter-flow structure is more evident in the high-frequency-normal-Re case than the HFOV case. The instantaneous and time-averaged stretch rates at the end of two breathing cycles and in the vicinity of flow reversal are computed. It is found that counter flow contributes about 20% to mixing in HFOV. PMID:20614248

  1. Numerical study of high-frequency oscillatory air flow and convective mixing in a CT-based human airway model.

    PubMed

    Choi, Jiwoong; Xia, Guohua; Tawhai, Merryn H; Hoffman, Eric A; Lin, Ching-Long

    2010-12-01

    High-frequency oscillatory ventilation (HFOV) is considered an efficient and safe respiratory technique to ventilate neonates and patients with acute respiratory distress syndrome. HFOV has very different characteristics from normal breathing physiology, with a much smaller tidal volume and a higher breathing frequency. In this study, the high-frequency oscillatory flow is studied using a computational fluid dynamics analysis in three different geometrical models with increasing complexity: a straight tube, a single-bifurcation tube model, and a computed tomography (CT)-based human airway model of up to seven generations. We aim to understand the counter-flow phenomenon at flow reversal and its role in convective mixing in these models using sinusoidal waveforms of different frequencies and Reynolds (Re) numbers. Mixing is quantified by the stretch rate analysis. In the straight-tube model, coaxial counter flow with opposing fluid streams is formed around flow reversal, agreeing with an analytical Womersley solution. However, counter flow yields no net convective mixing at end cycle. In the single-bifurcation model, counter flow at high Re is intervened with secondary vortices in the parent (child) branch at end expiration (inspiration), resulting in an irreversible mixing process. For the CT-based airway model three cases are considered, consisting of the normal breathing case, the high-frequency-normal-Re (HFNR) case, and the HFOV case. The counter-flow structure is more evident in the HFNR case than the HFOV case. The instantaneous and time-averaged stretch rates at the end of two breathing cycles and in the vicinity of flow reversal are computed. It is found that counter flow contributes about 20% to mixing in HFOV. PMID:20614248

  2. Induction of p53-independent growth inhibition in lung carcinoma cell A549 by gypenosides.

    PubMed

    Liu, Jung-Sen; Chiang, Tzu-Hsuan; Wang, Jinn-Shyan; Lin, Li-Ju; Chao, Wei-Chih; Inbaraj, Baskaran Stephen; Lu, Jyh-Feng; Chen, Bing-Huei

    2015-07-01

    The objectives of this study are to investigate antiproliferative effect and mechanisms of bioactive compounds from Gynostemma pentaphyllum (G. pentaphyllum) on lung carcinoma cell A549. Saponins, carotenoids and chlorophylls were extracted and fractionated by column chromatography, and were subjected to high-performance liquid chromatography-mass spectrometry analyses. The saponin fraction, which consisted mainly of gypenoside (Gyp) XXII and XXIII, rather than the carotenoid and chlorophyll ones, was effective in inhibiting A549 cell growth in a concentration- and a time-dependent manner as evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The estimated half maximal inhibitory concentration (IC50 ) of Gyp on A549 cells was 30.6 μg/ml. Gyp was further demonstrated to induce an apparent arrest of the A549 cell cycle at both the S phase and the G2/M phase, accompanied by a concentration- and a time-dependent increase in the proportions of both the early and late apoptotic cells. Furthermore, Gyp down-regulated cellular expression of cyclin A and B as well as BCL-2, while up-regulated the expression of BAX, DNA degradation factor 35 KD, poly [ADP-ribose] polymerase 1, p53, p21 and caspase-3. Nevertheless, both the treatment of a p53 inhibitor, pifithrin-α, and the small hairpin RNA-mediated p53 knockdown in the A549 cells did not alter the growth inhibition effect induced by Gyp. As a result, the cell cycle arrest and apoptosis of A549 cells induced by Gyp would most likely proceed through p53-independent pathway(s). PMID:25781909

  3. Chemotaxis and Binding of Pseudomonas aeruginosa to Scratch-Wounded Human Cystic Fibrosis Airway Epithelial Cells.

    PubMed

    Schwarzer, Christian; Fischer, Horst; Machen, Terry E

    2016-01-01

    Confocal imaging was used to characterize interactions of Pseudomonas aeruginosa (PA, expressing GFP or labeled with Syto 11) with CF airway epithelial cells (CFBE41o-, grown as confluent monolayers with unknown polarity on coverglasses) in control conditions and following scratch wounding. Epithelia and PAO1-GFP or PAK-GFP (2 MOI) were incubated with Ringer containing typical extracellular salts, pH and glucose and propidium iodide (PI, to identify dead cells). PAO1 and PAK swam randomly over and did not bind to nonwounded CFBE41o- cells. PA migrated rapidly (began within 20 sec, maximum by 5 mins) and massively (10-80 fold increase, termed "swarming"), but transiently (random swimming after 15 mins), to wounds, particularly near cells that took up PI. Some PA remained immobilized on cells near the wound. PA swam randomly over intact CFBE41o- monolayers and wounded monolayers that had been incubated with medium for 1 hr. Expression of CFTR and altered pH of the media did not affect PA interactions with CFBE41o- wounds. In contrast, PAO1 swarming and immobilization along wounds was abolished in PAO1 (PAO1ΔcheYZABW, no expression of chemotaxis regulatory components cheY, cheZ, cheA, cheB and cheW) and greatly reduced in PAO1 that did not express amino acid receptors pctA, B and C (PAO1ΔpctABC) and in PAO1 incubated in Ringer containing a high concentration of mixed amino acids. Non-piliated PAKΔpilA swarmed normally towards wounded areas but bound infrequently to CFBE41o- cells. In contrast, both swarming and binding of PA to CFBE41o- cells near wounds were prevented in non-flagellated PAKΔfliC. Data are consistent with the idea that (i) PA use amino acid sensor-driven chemotaxis and flagella-driven swimming to swarm to CF airway epithelial cells near wounds and (ii) PA use pili to bind to epithelial cells near wounds. PMID:27031335

  4. Computer simulations of pressure and velocity fields in a human upper airway during sneezing.

    PubMed

    Rahiminejad, Mohammad; Haghighi, Abdalrahman; Dastan, Alireza; Abouali, Omid; Farid, Mehrdad; Ahmadi, Goodarz

    2016-04-01

    In this paper, the airflow field including the velocity, pressure and turbulence intensity distributions during sneezing of a female subject was simulated using a computational fluid dynamics model of realistic upper airways including both oral and nasal cavities. The effects of variation of reaction of the subject during sneezing were also investigated. That is, the impacts of holding the nose or closing the mouth during sneezing on the pressure and velocity distributions were studied. Few works have studied the sneeze and therefore different aspects of this phenomenon have remained unknown. To cover more possibilities about the inlet condition of trachea in different sneeze scenarios, it was assumed that the suppressed sneeze happens with either the same inlet pressure or the same flow rate as the normal sneeze. The simulation results showed that during a normal sneeze, the pressure in the trachea reaches about 7000Pa, which is much higher than the pressure level of about 200Pa during the high activity exhalation. In addition, the results showed that, suppressing the sneeze by holding the nose or mouth leads to a noticeable increase in pressure difference in the tract. This increase was about 5 to 24 times of that during a normal sneeze. This significant rise in the pressure can justify some reported damage due to suppressing a sneeze. PMID:26914240

  5. CX3CR1 is an important surface molecule for respiratory syncytial virus infection in human airway epithelial cells

    PubMed Central

    Chirkova, Tatiana; Lin, Songbai; Oomens, Antonius G. P.; Gaston, Kelsey A.; Boyoglu-Barnum, Seyhan; Meng, Jia; Stobart, Christopher C.; Cotton, Calvin U.; Hartert, Tina V.; Moore, Martin L.; Ziady, Assem G.

    2015-01-01

    Respiratory syncytial virus (RSV) is a major cause of severe pneumonia and bronchiolitis in infants and young children, and causes disease throughout life. Understanding the biology of infection, including virus binding to the cell surface, should help develop antiviral drugs or vaccines. The RSV F and G glycoproteins bind cell surface heparin sulfate proteoglycans (HSPGs) through heparin-binding domains. The G protein also has a CX3C chemokine motif which binds to the fractalkine receptor CX3CR1. G protein binding to CX3CR1 is not important for infection of immortalized cell lines, but reportedly is so for primary human airway epithelial cells (HAECs), the primary site for human infection. We studied the role of CX3CR1 in RSV infection with CX3CR1-transfected cell lines and HAECs with variable percentages of CX3CR1-expressing cells, and the effect of anti-CX3CR1 antibodies or a mutation in the RSV CX3C motif. Immortalized cells lacking HSPGs had low RSV binding and infection, which was increased markedly by CX3CR1 transfection. CX3CR1 was expressed primarily on ciliated cells, and ∼50 % of RSV-infected cells in HAECs were CX3CR1+. HAECs with more CX3CR1-expressing cells had a proportional increase in RSV infection. Blocking G binding to CX3CR1 with anti-CX3CR1 antibody or a mutation in the CX3C motif significantly decreased RSV infection in HAECs. The kinetics of cytokine production suggested that the RSV/CX3CR1 interaction induced RANTES (regulated on activation normal T-cell expressed and secreted protein), IL-8 and fractalkine production, whilst it downregulated IL-15, IL1-RA and monocyte chemotactic protein-1. Thus, the RSV G protein/CX3CR1 interaction is likely important in infection and infection-induced responses of the airway epithelium, the primary site of human infection. PMID:26297201

  6. The mechanics of airway closure.

    PubMed

    Heil, Matthias; Hazel, Andrew L; Smith, Jaclyn A

    2008-11-30

    We describe how surface-tension-driven instabilities of the lung's liquid lining may lead to pulmonary airway closure via the formation of liquid bridges that occlude the airway lumen. Using simple theoretical models, we demonstrate that this process may occur via a purely fluid-mechanical "film collapse" or through a coupled, fluid-elastic "compliant collapse" mechanism. Both mechanisms can lead to airway closure in times comparable with the breathing cycle, suggesting that surface tension is the primary mechanical effect responsible for the closure observed in peripheral regions of the human lungs. We conclude by discussing the influence of additional effects not included in the simple models, such as gravity, the presence of pulmonary surfactant, respiratory flow and wall motion, the airways' geometry, and the mechanical structure of the airway walls. PMID:18595784

  7. Growth restriction of an experimental live attenuated human parainfluenza virus type 2 vaccine in human ciliated airway epithelium in vitro parallels attenuation in African green monkeys

    PubMed Central

    Schaap-Nutt, Anne; Scull, Margaret A.; Schmidt, Alexander C.; Murphy, Brian R.; Pickles, Raymond J.

    2010-01-01

    Human parainfluenza viruses (HPIVs) are common causes of severe pediatric respiratory viral disease. We characterized wild-type HPIV2 infection in an in vitro model of human airway epithelium (HAE) and found that the virus replicates to high titer, sheds apically, targets ciliated cells, and induces minimal cytopathology. Replication of an experimental, live attenuated HPIV2 vaccine strain, containing both temperature sensitive (ts) and non-ts attenuating mutations, was restricted >30-fold compared to rHPIV2-WT in HAE at 32°C and exhibited little productive replication at 37°C. This restriction paralleled attenuation in the upper and lower respiratory tract of African green monkeys, supporting the HAE model as an appropriate and convenient system for characterizing HPIV2 vaccine candidates. PMID:20139039

  8. Extracellular signal-regulated kinase pathway play distinct role in acetochlor-mediated toxicity and intrinsic apoptosis in A549 cells.

    PubMed

    Zerin, Tamanna; Song, Ho-Yeon; Kim, Yong-Sik

    2015-02-01

    Acetochlor (ACETO), a member of the chloroacetanilide family of herbicides, is widely used globally and is very frequently detected in watersheds of agricultural lands and fresh water streams. The human health consequences of environmental exposure to ACETO are unknown. This study was designed to elucidate the effect and molecular mechanisms of ACETO on human alveolar A549 cells. Established assays of cell viability and cytotoxicity were performed to detect the potential effects of ACETO on A549 cells. ACETO generated reactive oxygen species, which may have been crucial to apoptosis-mediated cytotoxicity. ACETO-treatment showed a concentration dependent up-regulation of pro-apoptotic proteins including Bax, Bak, BID and Bad, but a differential level of expression of anti-apoptotic proteins were observed, leading to the release of cytochrome c from mitochondria to the cytoplasm as well as activation of caspase-3, and cleavage of caspase-9 and PARP. ACETO also induced activation of extracellular signal-regulated kinase (ERK). Inhibition of the expression of ERK by PD98059 partially reversed ACETO-induced cytotoxicity, apoptosis and the expression of caspase-3, -9 and PARP in A549 cells. Comparative evaluation of the results indicates that the principal mechanism underlying ACETO-mediated cytotoxicity is likely to be through ERK-mediated intrinsic pathway of apoptosis. PMID:25291404

  9. Suitable parameter choice on quantitative morphology of A549 cell in epithelial–mesenchymal transition

    PubMed Central

    Ren, Zhou-Xin; Yu, Hai-Bin; Li, Jian-Sheng; Shen, Jun-Ling; Du, Wen-Sen

    2015-01-01

    Evaluation of morphological changes in cells is an integral part of study on epithelial to mesenchymal transition (EMT), however, only a few papers reported the changes in quantitative parameters and no article compared different parameters for demanding better parameters. In the study, the purpose was to investigate suitable parameters for quantitative evaluation of EMT morphological changes. A549 human lung adenocarcinoma cell line was selected for the study. Some cells were stimulated by transforming growth factor-β1 (TGF-β1) for EMT, and other cells were as control without TGF-β1 stimulation. Subsequently, cells were placed in phase contrast microscope and three arbitrary fields were captured and saved with a personal computer. Using the tools of Photoshop software, some cells in an image were selected, segmented out and exchanged into unique hue, and other part in the image was shifted into another unique hue. The cells were calculated with 29 morphological parameters by Image Pro Plus software. A parameter between cells with or without TGF-β1 stimulation was compared statistically and nine parameters were significantly different between them. Receiver operating characteristic curve (ROC curve) of a parameter was described with SPSS software and F-test was used to compare two areas under the curves (AUCs) in Excel. Among them, roundness and radius ratio were the most AUCs and were significant higher than the other parameters. The results provided a new method with quantitative assessment of cell morphology during EMT, and found out two parameters, roundness and radius ratio, as suitable for quantification. PMID:26182364

  10. Imaging and characterization of stretch-induced ATP release from alveolar A549 cells

    PubMed Central

    Grygorczyk, Ryszard; Furuya, Kishio; Sokabe, Masahiro

    2013-01-01

    Mechano-transduction at cellular and tissue levels often involves ATP release and activation of the purinergic signalling cascade. In the lungs, stretch is an important physical stimulus but its impact on ATP release, the underlying release mechanisms and transduction pathways are poorly understood. Here, we investigated the effect of unidirectional stretch on ATP release from human alveolar A549 cells by real-time luciferin–luciferase bioluminescence imaging coupled with simultaneous infrared imaging, to monitor the extent of cell stretch and to identify ATP releasing cells. In subconfluent (<90%) cell cultures, single 1 s stretch (10–40%)-induced transient ATP release from a small fraction (≤1.5%) of cells that grew in number dose-dependently with increasing extent of stretch. ATP concentration in the proximity (≤150 μm) of releasing cells often exceeded 10 μm, sufficient for autocrine/paracrine purinoreceptor stimulation of neighbouring cells. ATP release responses were insensitive to the putative ATP channel blockers carbenoxolone and 5-nitro-2-(3-phenylpropyl-amino) benzoic acid, but were inhibited by N-ethylmaleimide and bafilomycin. In confluent cell cultures, the maximal fraction of responding cells dropped to <0.2%, but was enhanced several-fold in the wound/scratch area after it was repopulated by new cells during the healing process. Fluo8 fluorescence experiments revealed two types of stretch-induced intracellular Ca2+ responses, rapid sustained Ca2+ elevations in a limited number of cells and delayed secondary responses in neighbouring cells, seen as Ca2+ waves whose propagation was consistent with extracellular diffusion of released ATP. Our experiments revealed that a single >10% stretch was sufficient to initiate intercellular purinergic signalling in alveolar cells, which may contribute to the regulation of surfactant secretion and wound healing. PMID:23247110

  11. Imaging and characterization of stretch-induced ATP release from alveolar A549 cells.

    PubMed

    Grygorczyk, Ryszard; Furuya, Kishio; Sokabe, Masahiro

    2013-03-01

    Abstract  Mechano-transduction at cellular and tissue levels often involves ATP release and activation of the purinergic signalling cascade. In the lungs, stretch is an important physical stimulus but its impact on ATP release, the underlying release mechanisms and transduction pathways are poorly understood. Here, we investigated the effect of unidirectional stretch on ATP release from human alveolar A549 cells by real-time luciferin-luciferase bioluminescence imaging coupled with simultaneous infrared imaging, to monitor the extent of cell stretch and to identify ATP releasing cells. In subconfluent (<90%) cell cultures, single 1 s stretch (10-40%)-induced transient ATP release from a small fraction (1.5%) of cells that grew in number dose-dependently with increasing extent of stretch. ATP concentration in the proximity (150 μm) of releasing cells often exceeded 10 μm, sufficient for autocrine/paracrine purinoreceptor stimulation of neighbouring cells. ATP release responses were insensitive to the putative ATP channel blockers carbenoxolone and 5-nitro-2-(3-phenylpropyl-amino) benzoic acid, but were inhibited by N-ethylmaleimide and bafilomycin. In confluent cell cultures, the maximal fraction of responding cells dropped to <0.2%, but was enhanced several-fold in the wound/scratch area after it was repopulated by new cells during the healing process. Fluo8 fluorescence experiments revealed two types of stretch-induced intracellular Ca(2+) responses, rapid sustained Ca(2+) elevations in a limited number of cells and delayed secondary responses in neighbouring cells, seen as Ca(2+) waves whose propagation was consistent with extracellular diffusion of released ATP. Our experiments revealed that a single >10% stretch was sufficient to initiate intercellular purinergic signalling in alveolar cells, which may contribute to the regulation of surfactant secretion and wound healing.

  12. Dual Pili Post-translational Modifications Synergize to Mediate Meningococcal Adherence to Platelet Activating Factor Receptor on Human Airway Cells

    PubMed Central

    Schulz, Benjamin L.; Power, Peter M.; Swords, W. Edward; Weiser, Jeffery N.; Apicella, Michael A.; Edwards, Jennifer L.; Jennings, Michael P.

    2013-01-01

    Pili of pathogenic Neisseria are major virulence factors associated with adhesion, twitching motility, auto-aggregation, and DNA transformation. Pili of N. meningitidis are subject to several different post-translational modifications. Among these pilin modifications, the presence of phosphorylcholine (ChoP) and a glycan on the pilin protein are phase-variable (subject to high frequency, reversible on/off switching of expression). In this study we report the location of two ChoP modifications on the C-terminus of N. meningitidis pilin. We show that the surface accessibility of ChoP on pili is affected by phase variable changes to the structure of the pilin-linked glycan. We identify for the first time that the platelet activating factor receptor (PAFr) is a key, early event receptor for meningococcal adherence to human bronchial epithelial cells and tissue, and that synergy between the pilin-linked glycan and ChoP post-translational modifications is required for pili to optimally engage PAFr to mediate adherence to human airway cells. PMID:23696740

  13. RSV-specific airway resident memory CD8+ T cells and differential disease severity after experimental human infection

    PubMed Central

    Jozwik, Agnieszka; Habibi, Maximillian S.; Paras, Allan; Zhu, Jie; Guvenel, Aleks; Dhariwal, Jaideep; Almond, Mark; Wong, Ernie H. C.; Sykes, Annemarie; Maybeno, Matthew; Del Rosario, Jerico; Trujillo-Torralbo, Maria-Belen; Mallia, Patrick; Sidney, John; Peters, Bjoern; Kon, Onn Min; Sette, Alessandro; Johnston, Sebastian L.; Openshaw, Peter J.; Chiu, Christopher

    2015-01-01

    In animal models, resident memory CD8+ T (Trm) cells assist in respiratory virus elimination but their importance in man has not been determined. Here, using experimental human respiratory syncytial virus (RSV) infection, we investigate systemic and local virus-specific CD8+ T-cell responses in adult volunteers. Having defined the immunodominance hierarchy, we analyse phenotype and function longitudinally in blood and by serial bronchoscopy. Despite rapid clinical recovery, we note surprisingly extensive lower airway inflammation with persistent viral antigen and cellular infiltrates. Pulmonary virus-specific CD8+ T cells display a CD69+CD103+ Trm phenotype and accumulate to strikingly high frequencies into convalescence without continued proliferation. While these have a more highly differentiated phenotype, they express fewer cytotoxicity markers than in blood. Nevertheless, their abundance before infection correlates with reduced symptoms and viral load, implying that CD8+ Trm cells in the human lung can confer protection against severe respiratory viral disease when humoral immunity is overcome. PMID:26687547

  14. TSPYL5 is involved in cell growth and the resistance to radiation in A549 cells via the regulation of p21{sup WAF1/Cip1} and PTEN/AKT pathway

    SciTech Connect

    Kim, Eun Jin; Lee, So Yong; Kim, Tae Rim; Choi, Soo Im; Cho, Eun Wie; Kim, Kug Chan; Kim, In Gyu

    2010-02-12

    TSPYL5, encoding testis-specific Y-like protein, has been postulated to be a tumor suppressor gene, and its hypermethylation is often associated with human disease, especially cancer. In this study, we report that the TSPYL5 gene was less methylated (30%) in A549 lung adenocarcinoma cells, which are relatively resistant to {gamma}-radiation, than in H460 lung cancer cells, in which the TSPYL5 gene was hypermethylated (95%); thus, the expression level of TSPYL5 is much higher in A549 cells than in H460 cells. We showed that TSPYL5 suppression with silencing RNA in A549 cells up-regulated cellular PTEN, followed by down-regulation of AKT activation. Therefore, blockage of TSPYL5 sensitized A549 cells to cytotoxic agents such as {gamma}-radiation. In addition, TSPYL5 suppression also showed an increased level of p21{sup WAF1/Cip1} and subsequently induced inhibition of cell growth in A549 cells. The overexpression of TSPYL5 in H460 cells showed the opposite effects. This study provides the first demonstration that TSPYL5 modulates cell growth and sensitization of cells to the detrimental effects of damaging agents via regulation of p21{sup WAF1/Cip1} and PTEN/AKT pathway.

  15. Smoking-induced CXCL14 expression in the human airway epithelium links chronic obstructive pulmonary disease to lung cancer.

    PubMed

    Shaykhiev, Renat; Sackrowitz, Rachel; Fukui, Tomoya; Zuo, Wu-Lin; Chao, Ion Wa; Strulovici-Barel, Yael; Downey, Robert J; Crystal, Ronald G

    2013-09-01

    CXCL14, a recently described epithelial cytokine, plays putative multiple roles in inflammation and carcinogenesis. In the context that chronic obstructive pulmonary disease (COPD) and lung cancer are both smoking-related disorders associated with airway epithelial disorder and inflammation, we hypothesized that the airway epithelium responds to cigarette smoking with altered CXCL14 gene expression, contributing to the disease-relevant phenotype. Using genome-wide microarrays with subsequent immunohistochemical analysis, the data demonstrate that the expression of CXCL14 is up-regulated in the airway epithelium of healthy smokers and further increased in COPD smokers, especially within hyperplastic/metaplastic lesions, in association with multiple genes relevant to epithelial structural integrity and cancer. In vitro experiments revealed that the expression of CXCL14 is induced in the differentiated airway epithelium by cigarette smoke extract, and that epidermal growth factor mediates CXCL14 up-regulation in the airway epithelium through its effects on the basal stem/progenitor cell population. Analyses of two independent lung cancer cohorts revealed a dramatic up-regulation of CXCL14 expression in adenocarcinoma and squamous-cell carcinoma. High expression of the COPD-associated CXCL14-correlating cluster of genes was linked in lung adenocarcinoma with poor survival. These data suggest that the smoking-induced expression of CXCL14 in the airway epithelium represents a novel potential molecular link between smoking-associated airway epithelial injury, COPD, and lung cancer.

  16. Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells.

    PubMed

    Fan, Chuandong; Wang, Weiwei; Zhao, Baoxiang; Zhang, Shangli; Miao, Junying

    2006-05-01

    To investigate the effects of chloroquine diphosphate (CQ) on lung cancer cell growth, we treated A549 cells, a lung cancer cell line, with the drug at various concentrations (0.25-128 microM) for 24-72 h. The results showed that, at lower concentrations (from 0.25 to 32 microM), CQ inhibited the growth of A549 cells and, at the same time, it induced vacuolation with increased volume of acidic compartments (VAC). On the other hand, at higher concentrations (64-128 microM), CQ induced apoptosis at 24 h, while its effect of inducing vacuolation declined. The lactate dehydrogenase (LDH) assay showed that with the treatment of CQ 32-64 microM for 72 h or 128 microM for 48 h, CQ induced necrosis of A549 cells. To understand the possible mechanism by which CQ acts in A549 cells, we further incubated the cells with this drug at the concentrations of 32 or 128 microM in the presence of D609, a specific inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC). The results showed that D609 (50 microM) could inhibit the effects of CQ 32 microM on the viability and VAC, but it could not change the effects of CQ 128 microM on the same. Our data suggested that CQ inhibited A549 lung cancer cell growth at lower concentrations by increasing the volume of lysosomes and that PC-PLC might be involved in this process. The data also indicated that, at higher concentrations, CQ induced apoptosis and necrosis, but at this time its ability to increase the volume of lysosome gradually declined, and PC-PLC might not be implicated in the process. PMID:16413786

  17. Selective modulation of MHC class II chaperons by a novel IFN-γ-inducible class II transactivator variant in lung adenocarcinoma A549 cells.

    PubMed

    Chiu, Bau-Lin; Li, Chia-Hsuan; Chang, Chien-Chung

    2013-10-11

    Class II transactivator (CIITA) plays a critical role in controlling major histocompatibility complex (MHC) class II gene expression. In this study, two novel alternatively spliced variants of human interferon (IFN)-γ-inducible CIITA, one missing exon 7 (CIITAΔE7), the other with TAG inserted at exon 4/5 junction (CIITA-TAG), were identified and characterized. Both variants are naturally occurring since they are present in primary cells. Unlike CIITA-TAG, CIITAΔE7 is expressed more abundantly in lung adenocarcinoma A549 cells than in the non-transformed counterpart BEAS-2B cells following IFN-γ stimulation. Transfection experiments showed that CIITAΔE7 induced a markedly lower level of surface HLA-DR, -DP, -DQ expression than CIITA-TAG in A549 cells but not in BEAS-2B cells, although both variants elicited similar amounts of total DR, DP, and DQ proteins. This differential effect was correlated with, in A549 cells, decreased expression of Ii and HLA-DM genes, along with increased expression of HLA-DO genes. Ii and HLA-DM are chaperons assisting in HLA class II assembly, while HLA-DO functions to inhibit endosomal peptide loading and HLA class II membrane transport. These findings raise the possibility that CIITAΔE7 interacts with unknown cancer-associated factors to selectively modulate genes involved in the assembly and transport of HLA class II molecules.

  18. IL-4 and IL-13 induce SOCS-1 gene expression in A549 cells by three functional STAT6-binding motifs located upstream of the transcription initiation site.

    PubMed

    Hebenstreit, Daniel; Luft, Petra; Schmiedlechner, Angela; Regl, Gerhard; Frischauf, Anna-Maria; Aberger, Fritz; Duschl, Albert; Horejs-Hoeck, Jutta

    2003-12-01

    Proteins of the suppressors of cytokine signaling (SOCS) family have important functions as negative regulators of cytokine signaling. We show here that SOCS-1 expression can be induced in the human epithelial lung cell line A549 by IL-4 and IL-13. Analysis of reporter gene constructs under control of the SOCS-1 promoter provides evidence that IL-4- and IL-13-induced up-regulation is dependent on three IFN-gamma-activated sequence motifs of the sequence TTC(N)(4)GAA, which is known for binding STAT6. The three motifs are situated close to each other approximately 600 bp upstream of the transcriptional initiation site. When mutations were inserted into all three IFN-gamma-activated sequence motifs at the same time, IL-4-IL-13-induced luciferase activity was abrogated. With single and double mutants, promoter activity was diminished in comparison with the wild-type promoter. STAT6 is therefore required for IL-4-IL-13-dependent SOCS-1 expression in A549 cells, and the three identified binding motifs cooperate to induce maximal transcription. EMSAs conducted with nuclear extracts of IL-4- and IL-13-stimulated A549 cells showed that STAT6 was able to bind to each of the three binding motifs. Finally, cotransfection of a SOCS-1 expression vector inhibited activation of SOCS-1 promoter luciferase constructs. Thus, SOCS-1 is able to autoregulate its expression via a negative feedback loop.

  19. Enhanced expression levels of aquaporin-1 and aquaporin-4 in A549 cells exposed to silicon dioxide.

    PubMed

    Hao, Xiaohui; Wang, Hongli; Liu, Wei; Liu, Shupeng; Peng, Zihe; Sun, Yue; Zhao, Jinyuan; Jiang, Qiujie; Liu, Heliang

    2016-09-01

    Aquaporins (AQPs), water channel proteins in the cell membranes of mammals, have been reported to be important in maintaining the water balance of the respiratory system. However, little is known regarding the role of AQP in occupational pulmonary diseases such as silicosis. The present study investigated the expression of AQP1 and AQP4 in the human A549 alveolar epithelial cell line stimulated by silica (SiO2). A549 cells were cultured and divided into four groups: Control, SiO2‑stimulated, AQP1 inhibitor and AQP4 inhibitor. The cells of the SiO2‑stimulated group were stimulated with SiO2 dispersed suspension (50 mg/ml). The cells of the inhibitor group were pretreated with mercury (II) chloride (HgCl2; a specific channel inhibitor of AQP1) and 2‑(nicotinamide)‑1,3,4‑thiadiazole (TGN‑020; a specific channel inhibitor of AQP4) and stimulated with SiO2. The mRNA expression levels of AQP1 and AQP4 were detected by reverse transcription‑quantitative polymerase chain reaction, and the protein expression levels of AQP1 and AQP4 were detected by western blotting and immunocytochemistry. Compared with the control group, the expression levels of AQP1 and AQP4 mRNA and protein in SiO2‑stimulated groups increased and subsequently decreased (AQP1 peaked at 2 h and AQP4 at 1h; both P<0.001 compared with control group). In the inhibitor group, expression levels were increased compared with controls; however, they were significantly decreased compared with the SiO2‑stimulated group at 2 h (AQP1; P<0.001) and 1 h (AQP4; P<0.001). The expression of AQP1 and AQP4 increased when exposed to SiO2, and this was inhibited by HgCl2 and TGN‑020, suggesting that AQP1 and AQP4 may contribute to A549 cell damage induced by SiO2. AQP1 and AQP4 may thus be involved in the initiation and development of silicosis.

  20. Enhanced expression levels of aquaporin-1 and aquaporin-4 in A549 cells exposed to silicon dioxide.

    PubMed

    Hao, Xiaohui; Wang, Hongli; Liu, Wei; Liu, Shupeng; Peng, Zihe; Sun, Yue; Zhao, Jinyuan; Jiang, Qiujie; Liu, Heliang

    2016-09-01

    Aquaporins (AQPs), water channel proteins in the cell membranes of mammals, have been reported to be important in maintaining the water balance of the respiratory system. However, little is known regarding the role of AQP in occupational pulmonary diseases such as silicosis. The present study investigated the expression of AQP1 and AQP4 in the human A549 alveolar epithelial cell line stimulated by silica (SiO2). A549 cells were cultured and divided into four groups: Control, SiO2‑stimulated, AQP1 inhibitor and AQP4 inhibitor. The cells of the SiO2‑stimulated group were stimulated with SiO2 dispersed suspension (50 mg/ml). The cells of the inhibitor group were pretreated with mercury (II) chloride (HgCl2; a specific channel inhibitor of AQP1) and 2‑(nicotinamide)‑1,3,4‑thiadiazole (TGN‑020; a specific channel inhibitor of AQP4) and stimulated with SiO2. The mRNA expression levels of AQP1 and AQP4 were detected by reverse transcription‑quantitative polymerase chain reaction, and the protein expression levels of AQP1 and AQP4 were detected by western blotting and immunocytochemistry. Compared with the control group, the expression levels of AQP1 and AQP4 mRNA and protein in SiO2‑stimulated groups increased and subsequently decreased (AQP1 peaked at 2 h and AQP4 at 1h; both P<0.001 compared with control group). In the inhibitor group, expression levels were increased compared with controls; however, they were significantly decreased compared with the SiO2‑stimulated group at 2 h (AQP1; P<0.001) and 1 h (AQP4; P<0.001). The expression of AQP1 and AQP4 increased when exposed to SiO2, and this was inhibited by HgCl2 and TGN‑020, suggesting that AQP1 and AQP4 may contribute to A549 cell damage induced by SiO2. AQP1 and AQP4 may thus be involved in the initiation and development of silicosis. PMID:27431275

  1. Nickel decreases cellular iron level and converts cytosolic aconitase to iron-regulatory protein 1 in A549 cells.

    PubMed

    Chen, Haobin; Davidson, Todd; Singleton, Steven; Garrick, Michael D; Costa, Max

    2005-08-15

    Nickel (Ni) compounds are well-established carcinogens and are known to initiate a hypoxic response in cells via the stabilization and transactivation of hypoxia-inducible factor-1 alpha (HIF-1alpha). This change may be the consequence of nickel's interference with the function of several Fe(II)-dependent enzymes. In this study, the effects of soluble nickel exposure on cellular iron homeostasis were investigated. Nickel treatment decreased both mitochondrial and cytosolic aconitase (c-aconitase) activity in A549 cells. Cytosolic aconitase was converted to iron-regulatory protein 1, a form critical for the regulation of cellular iron homeostasis. The increased activity of iron-regulatory protein 1 after nickel exposure stabilized and increased transferrin receptor (Tfr) mRNA and antagonized the iron-induced ferritin light chain protein synthesis. The decrease of aconitase activity after nickel treatment reflected neither direct interference with aconitase function nor obstruction of [4Fe-4S] cluster reconstitution by nickel. Exposure of A549 cells to soluble nickel decreased total cellular iron by about 40%, a decrease that likely caused the observed decrease in aconitase activity and the increase of iron-regulatory protein 1 activity. Iron treatment reversed the effect of nickel on cytosolic aconitase and iron-regulatory protein 1. To assess the mechanism for the observed effects, human embryonic kidney (HEK) cells over expressing divalent metal transporter-1 (DMT1) were compared to A549 cells expressing only endogenous transporters for inhibition of iron uptake by nickel. The inhibition data suggest that nickel can enter via DMT1 and compete with iron for entry into the cell. This disturbance of cellular iron homeostasis by nickel may have a great impact on the ability of the cell to regulate a variety of cell functions, as well as create a state of hypoxia in cells under normal oxygen tension. These effects may be very important in how nickel exerts phenotypic

  2. A comparison of natural and passive methods to measure nasal deposition of utrafline aerosols using replicate human upper airway casts

    SciTech Connect

    Cheng, Kuo-Hsi; Swift, D.L.; Cheng, Yung-Sung; Yeh, Hsu-Chi

    1994-11-01

    The risk of lung cancer associated with exposure to radon progeny in underground miners has been investigated extensively by epidemiological studies. Results indicate that exposure to relatively high concentrations of radon progeny in mines is closely linked to an increased occurrence of lung cancer. Current risk estimates for the general population exposed to indoor radon are primarily based on extrapolations from studies of underground miners. To extend these data to radon exposures of the general population in homes, dosimetric modeling is being used to assess the differences in exposure-dose relationships between the mining and home environments. The human upper airways are the first filter against inhaled particles that would otherwise penetrate into the more distal respiratory tract. Understanding of nasal and oral filtration efficiency is the first step in evaluating dose to the lung from exposure to radon progeny. Of the many factors considered in assessing health effects from exposure to radon progeny, particle size and breathing rate are two important parameters that influence deposition patterns in the respiratory tract.

  3. Upregulation of a disintegrin and metalloproteinase-33 by VEGF in human airway smooth muscle cells: Implications for asthma

    PubMed Central

    Pei, Qing-Mei; Jiang, Ping; Yang, Min; Qian, Xue-Jiao; Liu, Jiang-Bo; Zheng, Hong; Zhao, Li-Hong; Kim, Sung-Ho

    2016-01-01

    ABSTRACT Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodeling. Features of airway remodeling include increased airway smooth muscle (ASM) mass. A disintegrin and metalloproteinase (ADAM)–33 has been identified as playing a role in the pathophysiology of asthma. ADAM-33 is expressed in ASM cells and is suggested to play a role in the function of these cells. However, the regulation of ADAM-33 is not fully understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodeling in asthmatics. Although VEGF was initially thought of as an endothelial-specific growth factor, recent reports have found that VEGF can promote proliferation of other cell types, including ASM cells. To investigate the precise mechanism of VEGF's effect on ASM cell proliferation, we tested the expression of ADAM-33, phospho-extracellularsignal-regulated kinase 1/2 (ERK1/2), and phospho-Akt in VEGF-stimulated ASM cells. We found that VEGF up-regulates ADAM-33 mRNA and protein levels in a dose- and time-dependent manner as well as phosphorylation of ERK1/2 and Akt. We also found that VEGF-induced ASM cell proliferation is inhibited by both ADAM-33 knockdown and a selective VEGF receptor 2 (VEGFR2) inhibitor (SU1498). Furthermore, VEGF-induced ADAM-33 expression and ASM cell proliferation were suppressed by inhibiting ERK1/2 activity, but not by inhibiting Akt activity. Collectively, our findings suggest that VEGF enhances ADAM-33 expression and ASM cell proliferation by activating the VEGFR2/ERK1/2 signaling pathway, which might be involved in the pathogenesis of airway remodeling. Further elucidation of the mechanisms underlying these observations might help develop therapeutic strategies for airway diseases associated with smooth muscle hyperplasia such as asthma. PMID:27579513

  4. Upregulation of a disintegrin and metalloproteinase-33 by VEGF in human airway smooth muscle cells: Implications for asthma.

    PubMed

    Pei, Qing-Mei; Jiang, Ping; Yang, Min; Qian, Xue-Jiao; Liu, Jiang-Bo; Zheng, Hong; Zhao, Li-Hong; Kim, Sung-Ho

    2016-10-17

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodeling. Features of airway remodeling include increased airway smooth muscle (ASM) mass. A disintegrin and metalloproteinase (ADAM)-33 has been identified as playing a role in the pathophysiology of asthma. ADAM-33 is expressed in ASM cells and is suggested to play a role in the function of these cells. However, the regulation of ADAM-33 is not fully understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodeling in asthmatics. Although VEGF was initially thought of as an endothelial-specific growth factor, recent reports have found that VEGF can promote proliferation of other cell types, including ASM cells. To investigate the precise mechanism of VEGF's effect on ASM cell proliferation, we tested the expression of ADAM-33, phospho-extracellularsignal-regulated kinase 1/2 (ERK1/2), and phospho-Akt in VEGF-stimulated ASM cells. We found that VEGF up-regulates ADAM-33 mRNA and protein levels in a dose- and time-dependent manner as well as phosphorylation of ERK1/2 and Akt. We also found that VEGF-induced ASM cell proliferation is inhibited by both ADAM-33 knockdown and a selective VEGF receptor 2 (VEGFR2) inhibitor (SU1498). Furthermore, VEGF-induced ADAM-33 expression and ASM cell proliferation were suppressed by inhibiting ERK1/2 activity, but not by inhibiting Akt activity. Collectively, our findings suggest that VEGF enhances ADAM-33 expression and ASM cell proliferation by activating the VEGFR2/ERK1/2 signaling pathway, which might be involved in the pathogenesis of airway remodeling. Further elucidation of the mechanisms underlying these observations might help develop therapeutic strategies for airway diseases associated with smooth muscle hyperplasia such as asthma. PMID:27579513

  5. Human tryptase epsilon (PRSS22), a new member of the chromosome 16p13.3 family of human serine proteases expressed in airway epithelial cells.

    PubMed

    Wong, G W; Yasuda, S; Madhusudhan, M S; Li, L; Yang, Y; Krilis, S A; Sali, A; Stevens, R L

    2001-12-28

    Probing of the GenBank expressed sequence tag (EST) data base with varied human tryptase cDNAs identified two truncated ESTs that subsequently were found to encode overlapping portions of a novel human serine protease (designated tryptase epsilon or protease, serine S1 family member 22 (PRSS22)). The tryptase epsilon gene resides on chromosome 16p13.3 within a 2.5-Mb complex of serine protease genes. Although at least 7 of the 14 genes in this complex encode enzymatically active proteases, only one tryptase epsilon-like gene was identified. The trachea and esophagus were found to contain the highest steady-state levels of the tryptase epsilon transcript in adult humans. Although the tryptase epsilon transcript was scarce in adult human lung, it was present in abundance in fetal lung. Thus, the tryptase epsilon gene is expressed in the airways in a developmentally regulated manner that is different from that of other human tryptase genes. At the cellular level, tryptase epsilon is a major product of normal pulmonary epithelial cells, as well as varied transformed epithelial cell lines. Enzymatically active tryptase epsilon is also constitutively secreted from these cells. The amino acid sequence of human tryptase epsilon is 38-44% identical to those of human tryptase alpha, tryptase beta I, tryptase beta II, tryptase beta III, transmembrane tryptase/tryptase gamma, marapsin, and Esp-1/testisin. Nevertheless, comparative protein structure modeling and functional studies using recombinant material revealed that tryptase epsilon has a substrate preference distinct from that of its other family members. These data indicate that the products of the chromosome 16p13.3 complex of tryptase genes evolved to carry out varied functions in humans.

  6. Role of H2O2 in the oxidative effects of zinc exposure in human airway epithelial cells.

    PubMed

    Wages, Phillip A; Silbajoris, Robert; Speen, Adam; Brighton, Luisa; Henriquez, Andres; Tong, Haiyan; Bromberg, Philip A; Simmons, Steven O; Samet, James M

    2014-01-01

    Human exposure to particulate matter (PM) is a global environmental health concern. Zinc (Zn(2+)) is a ubiquitous respiratory toxicant that has been associated with PM health effects. However, the molecular mechanism of Zn(2+) toxicity is not fully understood. H2O2 and Zn(2+) have been shown to mediate signaling leading to adverse cellular responses in the lung and we have previously demonstrated Zn(2+) to cause cellular H2O2 production. To determine the role of Zn(2+)-induced H2O2 production in the human airway epithelial cell response to Zn(2+) exposure. BEAS-2B cells expressing the redox-sensitive fluorogenic sensors HyPer (H2O2) or roGFP2 (EGSH) in the cytosol or mitochondria were exposed to 50µM Zn(2+) for 5min in the presence of 1µM of the zinc ionophore pyrithione. Intracellular H2O2 levels were modulated using catalase expression either targeted to the cytosol or ectopically to the mitochondria. HO-1 mRNA expression was measured as a downstream marker of response to oxidative stress induced by Zn(2+) exposure. Both cytosolic catalase overexpression and ectopic catalase expression in mitochondria were effective in ablating Zn(2+)-induced elevations in H2O2. Compartment-directed catalase expression blunted Zn(2+)-induced elevations in cytosolic EGSH and the increased expression of HO-1 mRNA levels. Zn(2+) leads to multiple oxidative effects that are exerted through H2O2-dependent and independent mechanisms. PMID:25462065

  7. Zn-Responsive Proteome Profiling and Time-Dependent Expression of Proteins Regulated by MTF-1 in A549 Cells

    PubMed Central

    Zhao, Wen-jie; Song, Qun; Wang, Yan-hong; Li, Ke-jin; Mao, Li; Hu, Xin; Lian, Hong-zhen; Zheng, Wei-juan; Hua, Zi-chun

    2014-01-01

    Zinc plays a critical role in many biological processes. However, it is toxic at high concentrations and its homeostasis is strictly regulated by metal-responsive transcription factor 1 (MTF-1) together with many other proteins to protect cells against metal toxicity and oxidative stresses. In this paper, we used high-resolution two-dimensional gel electrophoresis (2DE) to profile global changes of the whole soluble proteome in human lung adenocarcinoma (A549) cells in response to exogenous zinc treatment for 24 h. Eighteen differentially expressed proteins were identified by MALDI TOF/TOF and MASCOT search. In addition, we used Western blotting and RT-PCR to examine the time-dependent changes in expression of proteins regulated by MTF-1 in response to Zn treatment, including the metal binding protein MT-1, the zinc efflux protein ZnT-1, and the zinc influx regulator ZIP-1. The results indicated that variations in their mRNA and protein levels were consistent with their functions in maintaining the homeostasis of zinc. However, the accumulation of ZIP-1 transcripts was down-regulated while the protein level was up-regulated during the same time period. This may be due to the complex regulatory mechanism of ZIP-1, which is involved in multiple signaling pathways. Maximal changes in protein abundance were observed at 10 h following Zn treatment, but only slight changes in protein or mRNA levels were observed at 24 h, which was the time-point frequently used for 2DE analyses. Therefore, further study of the time-dependent Zn-response of A549 cells would help to understand the dynamic nature of the cellular response to Zn stress. Our findings provide the basis for further study into zinc-regulated cellular signaling pathways. PMID:25162517

  8. Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased influenza A infection

    EPA Science Inventory

    Exposure to oxidant air pollution is associated with Increased respiratory morbiditses and susceptibility to Infections Ozone is a commonly encountered oxidant air pollutant, yet Its effects on influenza infections in humans are not known ‘the greater Mexico City area was the pri...

  9. ACTIVATION OF THE EGF RECEPTOR SIGNALING PATHWAY IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO METALS

    EPA Science Inventory

    We have previously shown that exposure to combustion-derived metals rapidly (within 20 min) activated mitogen-activated protein kinases (MAPK), including extracellular signal-regulated kinase (ERK), in the human bronchial epithelial cell line BEAS. To study the mechanisms respons...

  10. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma.

    PubMed

    Pei, Qing-Mei; Jiang, Ping; Yang, Min; Qian, Xue-Jiao; Liu, Jiang-Bo; Kim, Sung-Ho

    2016-10-01

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferation and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. PMID:27587274

  11. Deactivation of A549 cancer cells in vitro by a dielectric barrier discharge plasma needle

    SciTech Connect

    Huang Jun; Chen Wei; Li Hui; Wang Xingquan; Lv Guohua; Wang Pengye; Khohsa, M. Latif; Guo Ming; Feng Kecheng; Yang Size

    2011-03-01

    An inactivation mechanism study on A549 cancer cells by means of a dielectric barrier discharge plasma needle is presented. The neutral red uptake assay provides a quantitative estimation of cell viability after plasma treatment. Experimental results show that the efficiency of argon plasma for the inactivation process is very dependent on power and treatment time. A 27 W power and 120 s treatment time along with 900 standard cubic centimeter per minute Ar flow and a nozzle-to-sample separation of 3 mm are the best parameters of the process. According to the argon emission spectra of the plasma jet and the optical microscope images of the A549 cells after plasma treatment, it is concluded that the reactive species (for example, OH and O) in the argon plasma play a major role in the cell deactivation.

  12. Reduced expression of Tis7/IFRD1 protein in murine and human cystic fibrosis airway epithelial cell models homozygous for the F508del-CFTR mutation.

    PubMed

    Blanchard, Elise; Marie, Solenne; Riffault, Laure; Bonora, Monique; Tabary, Olivier; Clement, Annick; Jacquot, Jacky

    2011-08-01

    12-O-tetradecanoyl phorbol-13-acetate-induced sequence 7/interferon related development regulator 1 (Tis7/IFRD1) has been recently identified as a modifier gene in lung inflammatory disease severity in patients with cystic fibrosis (CF), based upon its capacity to regulate inflammatory activities in neutrophils. In CF patients, the F508del mutation in the Cftr gene encoding a chloride channel, the CF transmembrane conductance regulator (CFTR) in airway epithelial cells results in an exaggerated inflammatory response of these cells. At present, it is unknown whether the Tis7/IFRD1 gene product is expressed in airway epithelial cells. We therefore investigated the possibility there is an intrinsic alteration in Tis7/IFRD1 protein level in cells lacking CFTR function in tracheal homogenates of F508del-CFTR mice and in a F508del-CFTR human bronchial epithelial cell line (CFBE41o(-) cells). When Tis7/IFRD1 protein was detectable, trachea from F508del-CFTR mice showed a reduction in the level of Tis7/IFRD1 protein compared to wild-type control littermates. A significant reduction of IFRD1 protein level was found in CFBE41o(-) cells compared to normal bronchial epithelial cells 16HBE14o(-). Surprisingly, messenger RNA level of IFRD1 in CFBE41o(-) cells was found elevated. Treating CFBE41o(-) cells with the antioxidant glutathione rescued the IFRD1 protein level closer to control level and also reduced the pro-inflammatory cytokine IL-8 release. This work provides evidence for the first time of reduced level of IFRD1 protein in murine and human F508del-CFTR airway epithelial cell models, possibly mediated in response to oxidative stress which might contribute to the exaggerated inflammatory airway response observed in CF patients homozygous for the F508del mutation.