Science.gov

Sample records for a549 human alveolar

  1. Functional expression of nicotine influx transporter in A549 human alveolar epithelial cells.

    PubMed

    Tega, Yuma; Yuzurihara, Chihiro; Kubo, Yoshiyuki; Akanuma, Shin-ichi; Ehrhardt, Carsten; Hosoya, Ken-ichi

    2016-02-01

    Nicotine is a potent addictive alkaloid, and is rapidly absorbed through the alveoli of the lung. However, the transport mechanism of nicotine at the human alveolar epithelial barrier has not been investigated in great detail. In the present study, the transport mechanism of nicotine across alveolar epithelium was investigated in vitro using A549 cells, a human adenocarcinoma-derived cell line with an alveolar epithelial cell like phenotype. Nicotine uptake by A549 cells exhibited time-, temperature-, and concentration-dependence with a Km of 50.4 μM. These results suggest that a carrier-mediated transport process is involved in nicotine transport in human alveolar epithelial cells. Nicotine uptake by A549 cells was insensitive to change in extracellular pH. Moreover, nicotine uptake by A549 cells could be inhibited by organic cations such as verapamil and pyrilamine, but not typical substrates of organic cation transporters and β2-agonist. These results suggest that a novel, not yet molecularly identified, organic cation transporter plays a role in nicotine transport which is unlikely to interact with β2-agonist transport. This nicotine influx transporter in human alveolar epithelium might have implications for the rapid absorption of nicotine into the systemic circulation.

  2. Paracrine control of differentiation in the alveolar carcinoma, A549, by human foetal lung fibroblasts.

    PubMed

    Speirs, V; Ray, K P; Freshney, R I

    1991-10-01

    Synthesis of pulmonary surfactant (PS) is necessary for normal functioning of the lungs and its production is indicative of normal differentiated lung. The human alveolar carcinoma, A549, has been found to synthesis and secrete PS in vitro. The purpose of this study was to optimise the culture conditions for PS synthesis by A549 as well as to determine the potential role of foetal lung fibroblasts in the induction of PS by glucocorticoids. A549 cells growing in filter wells produced higher levels of PS in response to steroid, a 5-fold increase on the filter well compared to only a 1.5-fold increase when the cells were cultured on a conventional plastic substrate. A549 cells grown in filter wells responded to coculture with fibroblasts whether in direct contact or separated co-culture. A 20-fold increase in PS over control values was observed in separated steroid-treated co-cultures, suggesting the presence of a diffusible factor. A partially purified factor was isolated from fibroblast conditioned medium which was capable of inducing differentiation and other phenotypic changes in A549, namely induction of PS, reduction of plasminogen activator activity and reduction in the in vivo growth of A549 xenografts in nude mice. These results suggest that, under the correct conditions, A549 cells, although transformed, still retain the capacity to respond to differentiation-inducing signals from normal fibroblasts.

  3. Paracrine control of differentiation in the alveolar carcinoma, A549, by human foetal lung fibroblasts.

    PubMed Central

    Speirs, V.; Ray, K. P.; Freshney, R. I.

    1991-01-01

    Synthesis of pulmonary surfactant (PS) is necessary for normal functioning of the lungs and its production is indicative of normal differentiated lung. The human alveolar carcinoma, A549, has been found to synthesis and secrete PS in vitro. The purpose of this study was to optimise the culture conditions for PS synthesis by A549 as well as to determine the potential role of foetal lung fibroblasts in the induction of PS by glucocorticoids. A549 cells growing in filter wells produced higher levels of PS in response to steroid, a 5-fold increase on the filter well compared to only a 1.5-fold increase when the cells were cultured on a conventional plastic substrate. A549 cells grown in filter wells responded to coculture with fibroblasts whether in direct contact or separated co-culture. A 20-fold increase in PS over control values was observed in separated steroid-treated co-cultures, suggesting the presence of a diffusible factor. A partially purified factor was isolated from fibroblast conditioned medium which was capable of inducing differentiation and other phenotypic changes in A549, namely induction of PS, reduction of plasminogen activator activity and reduction in the in vivo growth of A549 xenografts in nude mice. These results suggest that, under the correct conditions, A549 cells, although transformed, still retain the capacity to respond to differentiation-inducing signals from normal fibroblasts. Images Figure 5 PMID:1654985

  4. Ghrelin ameliorates the human alveolar epithelial A549 cell apoptosis induced by lipopolysaccharide

    SciTech Connect

    Huang, Chunrong; Zheng, Haichong; He, Wanmei; Lu, Guifang; Li, Xia; Deng, Yubin; Zeng, Mian

    2016-05-20

    Ghrelin is a gastric acyl-peptide that plays an inhibitory role in cell apoptosis. Herein we investigate the protective effects of ghrelin in LPS-induced apoptosis of human alveolar epithelial A549 cells, along with the possible molecular mechanisms. LPS exposure impaired cell viability and increased apoptosis of A549 cells significantly in concentration- and time-dependent manners embodied in increased Bax and cleaved caspase-3 production, coupled with decreased Bcl-2 levels. Simultaneously, LPS remarkably decreased the expression of phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinas (ERK) in A549 cells. However, ghrelin'pretreatment ameliorated LPS-caused alterations in the ratio of Bax/Bcl-2 and cleaved caspase-3 expression, whereas activated the PI3K/Akt and ERK signaling. These results demonstrate that ghrelin lightens LPS-induced apoptosis of human alveolar epithelial cells partly through activating the PI3K/Akt and ERK pathway and thereby might benefit alleviating septic ALI. -- Graphical abstract: Ghrelin ameliorates the human alveolar epithelial A549 cells apoptosis induced by lipopolysaccharide partly through activating the PI3K/Akt and ERK pathway. Display Omitted -- Highlights: •It has been observed that LPS insult significantly increased apoptosis in A549 cells. •Both Akt and ERK signaling are critical adapter molecules to mediate the ghrelin-mediated proliferative effect. •Ghrelin may have a therapeutic effect in the prevention of LPS-induced apoptosis.

  5. Trichomonas vaginalis induces cytopathic effect on human lung alveolar basal carcinoma epithelial cell line A549.

    PubMed

    Salvador-Membreve, Daile Meek C; Jacinto, Sonia D; Rivera, Windell L

    2014-12-01

    Trichomonas vaginalis, the causative agent of trichomoniasis is generally known to inhabit the genitourinary tract. However, several case reports with supporting molecular and immunological identifications have documented its occurrence in the respiratory tract of neonates and adults. In addition, the reports have documented that its occurrence is associated with respiratory failures. The medical significance or consequence of this association is unclear. Thus, to establish the possible outcome from the interaction of T. vaginalis with lung cells, the cytopathic effects of the parasites were evaluated using monolayer cultures of the human lung alveolar basal carcinoma epithelial cell line A549. The possible effect of association of T. vaginalis with A549 epithelial cells was analyzed using phase-contrast, scanning electron microscopy and fluorescence microscopy. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), crystal-violet and TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling) assays were conducted for cytotoxicity testing. The results demonstrate that T. vaginalis: (1) adheres to A549 epithelial cells, suggesting a density-dependent parasite-cell association; (2) adherence on A549 is through flagella, membrane and axostyle; (3) causes cell detachment and cytotoxicity (50-72.4%) to A549 and this effect is a function of parasite density; and (4) induces apoptosis in A549 about 20% after 6 h of incubation. These observations indicate that T. vaginalis causes cytopathic effects on A549 cell. To date, this is the first report showing a possible interaction of T. vaginalis with the lung cells using A549 monolayer cultures. Further studies are recommended to completely elucidate this association.

  6. Ursolic Acid Reduces Mycobacterium tuberculosis-Induced Nitric Oxide Release in Human Alveolar A549 cells.

    PubMed

    Zerin, Tamanna; Lee, Minjung; Jang, Woong Sik; Nam, Kung-Woo; Song, Ho-Yeon

    2015-07-01

    Alveolar epithelial cells have been functionally implicated in Mycobacterium tuberculosis infection. This study investigated the role of ursolic acid (UA)-a triterpenoid carboxylic acid with potent antioxidant, anti-tumor, anti-inflammatory, and anti-tuberculosis properties in mycobacterial infection of alveolar epithelial A549 cells. We observed that M. tuberculosis successfully entered A549 cells. Cytotoxi-city was mediated by nitric oxide (NO). A549 toxicity peaked along with NO generation 72 h after infection. The NO generated by mycobacterial infection in A549 cells was insufficient to kill mycobacteria, as made evident by the mycobacteria growth indicator tube time to detect (MGIT TTD) and viable cell count assays. Treatment of mycobacteria-infected cells with UA reduced the expression of inducible nitric oxide synthase, NO generation, and eventually improved cell viability. Moreover, UA was found to quench the translocation of the transcription factor, nuclear factor kappa B (NF-κB), from the cytosol to the nucleus in mycobacteria-infected cells. This study is the first to demonstrate the cytotoxic role of NO in the eradication of mycobacteria and the role of UA in reducing this cytotoxicity in A549 cells.

  7. Involvement of lysosomal dysfunction in silver nanoparticle-induced cellular damage in A549 human lung alveolar epithelial cells.

    PubMed

    Miyayama, Takamitsu; Matsuoka, Masato

    2016-01-01

    While silver nanoparticles (AgNPs) are widely used in consumer and medical products, the mechanism by which AgNPs cause pulmonary cytotoxicity is not clear. AgNP agglomerates are found in endo-lysosomal structures within the cytoplasm of treated cells. In this study, the functional role of lysosomes in AgNP-induced cellular damage was examined in A549 human lung alveolar epithelial cells. We evaluated the intracellular distribution of AgNPs, lysosomal pH, cellular viability, Ag dissolution, and metallothionein (MT) mRNA levels in AgNP-exposed A549 cells that were treated with bafilomycin A1, the lysosomal acidification inhibitor. Exposure of A549 cells to citrate-coated AgNPs (20 nm diameter) for 24 h induced cellular damage and cell death at 100 and 200 μg Ag/ml, respectively. Confocal laser microscopic examination of LysoTracker-stained cells showed that AgNPs colocalized with lysosomes and their agglomeration increased in a dose-dependent manner (50-200 μg Ag/ml). In addition, the fluorescence signals of LysoTracker were reduced following exposure to AgNPs, suggesting the elevation of lysosomal pH. Treatment of A549 cells with 200 nM bafilomycin A1 and AgNPs (50 μg Ag/ml) further reduced the fluorescence signals of LysoTracker. AgNP-induced cell death was also increased by bafilomycin A1 treatment. Finally, treatment with bafilomycin A1 suppressed the dissolution of Ag and decreased the mRNA expression levels of MT-I and MT-II following exposure to AgNPs. The perturbation of lysosomal pH by AgNP exposure may play a role in AgNP agglomeration and subsequent cellular damage in A549 cells.

  8. Cytotoxicity, oxidative stress and genotoxicity induced by glass fibers on human alveolar epithelial cell line A549.

    PubMed

    Rapisarda, Venerando; Loreto, Carla; Ledda, Caterina; Musumeci, Giuseppe; Bracci, Massimo; Santarelli, Lory; Renis, Marcella; Ferrante, Margherita; Cardile, Venera

    2015-04-01

    Man-made vitreous fibers have been widely used as insulation material as asbestos substitutes; however their morphology and composition raises concerns. In 1988 the International Agency for Research on Cancer classified fiberglass, rock wool, slag wool, and ceramic fibers as Group 2B, i.e. possibly carcinogenic to humans. In 2002 it reassigned fiberglass, rock and slag wool, and continuous glass filaments to Group 3, not classifiable as carcinogenic to humans. The aim of this study was to verify the cytotoxic and genotoxic effects and oxidative stress production induced by in vitro exposure of human alveolar epithelial cells A549 to glass fibers with a predominant diameter <3 μm (97%) and length >5 μm (93%). A549 cells were incubated with 5, 50, or 100 μg/ml (2.1, 21, and 42 μg/cm(2), respectively) of glass fibers for 72 h. Cytotoxicity and DNA damage were tested by the MTT and the Comet assay, respectively. Oxidative stress was determined by measuring inducible nitric oxide synthase (iNOS) expression by Western blotting, production of nitric oxide (NO) with Griess reagent, and concentration of reactive oxygen species by fluorescent quantitative analysis with 2',7'-dichlorofluorescein-diacetate (DCFH-DA). The results showed that glass fiber exposure significantly reduced cell viability and increased DNA damage and oxidative stress production in a concentration-dependent manner, demonstrating that glass fibers exert cytotoxic and genotoxic effects related to increased oxidative stress on the human alveolar cell line A549. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The verapamil transporter expressed in human alveolar epithelial cells (A549) does not interact with β2-receptor agonists.

    PubMed

    Salomon, Johanna J; Ehrhardt, Carsten; Hosoya, Ken-Ichi

    2014-01-01

      Affinity of different organs for verapamil is highly variable and organ-specific. For example, the drug exhibits high levels of accumulation in lung tissues. A transporter recognising verapamil as a substrate has previously been identified in human retinal pigment epithelial (RPE) and in rat retinal capillary endothelial (TR-iBRB2) cells. This transporter is distinct from any of the cloned organic cation transporters. Therefore, we hypothesised that the verapamil transporter is also functionally expressed in the human respiratory mucosa. Moreover, we tested the hypothesis that this transporter interacts with pulmonary administered cationic drugs such as β2-agonists. The uptake of [(3)H]verapamil was studied in A549 human alveolar epithelial cell monolayers at different times and concentrations. The influence of extracellular proton concentration and various organic cations on verapamil uptake was determined. Verapamil uptake into A549 cells was time- and concentration-dependent, sensitive to pH and had a Km value of 39.8 ± 8.2 µM. Verapamil uptake was also sensitive to inhibition by amantadine, quinidine and pyrilamine, but insensitive to other typical modulators of organic cation and choline transporters. Whilst we demonstrated functional activity of the elusive verapamil transporter at the lung epithelium, our data suggest that this transporter does not interact with β2-agonists at therapeutic concentrations.

  10. A Comprehensive Proteomic View of Responses of A549 Type II Alveolar Epithelial Cells to Human Respiratory Syncytial Virus Infection*

    PubMed Central

    Dave, Keyur A.; Norris, Emma L.; Bukreyev, Alexander A.; Headlam, Madeleine J.; Buchholz, Ursula J.; Singh, Toshna; Collins, Peter L.; Gorman, Jeffrey J.

    2014-01-01

    Human respiratory syncytial virus is a major respiratory pathogen for which there are no suitable antivirals or vaccines. A better understanding of the host cell response to this virus may redress this problem. The present report concerns analysis of multiple independent biological replicates of control and 24 h infected lysates of A549 cells by two different proteomic workflows. One workflow involved fractionation of lysates by in-solution protein IEF and individual fractions were digested using trypsin prior to capillary HPLC-LTQ-OrbitrapXL-MS/MS. A second workflow involved digestion of whole cell lysates and analysis by nanoUltraHPLC-LTQ-OrbitrapElite-MS/MS. Both workflows resulted in the quantification of viral proteins exclusively in lysates of infected cells in the relative abundances anticipated from previous studies. Unprecedented numbers (3247 - 5010) of host cell protein groups were also quantified and the infection-specific regulation of a large number (191) of these protein groups was evident based on a stringent false discovery rate cut-off (<1%). Bioinformatic analyses revealed that most of the regulated proteins were potentially regulated by type I, II, and III interferon, TNF-α and noncanonical NF-κB2 mediated antiviral response pathways. Regulation of specific protein groups by infection was validated by quantitative Western blotting and the cytokine-/key regulator-specific nature of their regulation was confirmed by comparable analyses of cytokine treated A549 cells. Overall, it is evident that the workflows described herein have produced the most comprehensive proteomic characterization of host cell responses to human respiratory syncytial virus published to date. These workflows will form the basis for analysis of the impacts of specific genes of human respiratory syncytial virus responses of A549 and other cell lines using a gene-deleted version of the virus. They should also prove valuable for the analysis of the impact of other infectious

  11. A comprehensive proteomic view of responses of A549 type II alveolar epithelial cells to human respiratory syncytial virus infection.

    PubMed

    Dave, Keyur A; Norris, Emma L; Bukreyev, Alexander A; Headlam, Madeleine J; Buchholz, Ursula J; Singh, Toshna; Collins, Peter L; Gorman, Jeffrey J

    2014-12-01

    Human respiratory syncytial virus is a major respiratory pathogen for which there are no suitable antivirals or vaccines. A better understanding of the host cell response to this virus may redress this problem. The present report concerns analysis of multiple independent biological replicates of control and 24 h infected lysates of A549 cells by two different proteomic workflows. One workflow involved fractionation of lysates by in-solution protein IEF and individual fractions were digested using trypsin prior to capillary HPLC-LTQ-OrbitrapXL-MS/MS. A second workflow involved digestion of whole cell lysates and analysis by nanoUltraHPLC-LTQ-OrbitrapElite-MS/MS. Both workflows resulted in the quantification of viral proteins exclusively in lysates of infected cells in the relative abundances anticipated from previous studies. Unprecedented numbers (3247 - 5010) of host cell protein groups were also quantified and the infection-specific regulation of a large number (191) of these protein groups was evident based on a stringent false discovery rate cut-off (<1%). Bioinformatic analyses revealed that most of the regulated proteins were potentially regulated by type I, II, and III interferon, TNF-α and noncanonical NF-κB2 mediated antiviral response pathways. Regulation of specific protein groups by infection was validated by quantitative Western blotting and the cytokine-/key regulator-specific nature of their regulation was confirmed by comparable analyses of cytokine treated A549 cells. Overall, it is evident that the workflows described herein have produced the most comprehensive proteomic characterization of host cell responses to human respiratory syncytial virus published to date. These workflows will form the basis for analysis of the impacts of specific genes of human respiratory syncytial virus responses of A549 and other cell lines using a gene-deleted version of the virus. They should also prove valuable for the analysis of the impact of other infectious

  12. N-acetylcysteine amide, a thiol antioxidant, prevents bleomycin-induced toxicity in human alveolar basal epithelial cells (A549).

    PubMed

    Tobwala, S; Fan, W; Stoeger, T; Ercal, N

    2013-09-01

    Bleomycin (BLM), a glycopeptide antibiotic from Streptomyces verticillus, is an effective antineoplastic drug. However, its clinical use is restricted due to the wide range of associated toxicities, especially pulmonary toxicity. Oxidative stress has been implicated as an important factor in the development of BLM-induced pulmonary toxicity. Previous studies have indicated disruption of thiol-redox status in lungs (lung epithelial cells) upon BLM treatment. Therefore, this study focused on (1) investigating the oxidative effects of BLM on lung epithelial cells (A549) and (2) elucidating whether a well-known thiol antioxidant, N-acetylcysteine amide (NACA), provides any protection against BLM-induced toxicity. Oxidative stress parameters, such as glutathione (GSH), malondialdehyde (MDA), and antioxidant enzyme activities were altered upon BLM treatment. Loss of mitochondrial membrane potential (ΔΨm), as assessed by fluorescence microscopy, indicated that cytotoxicity is possibly mediated through mitochondrial dysfunction. Pretreatment with NACA reversed the oxidative effects of BLM. NACA decreased the reactive oxygen species (ROS) and MDA levels and restored the intracellular GSH levels. Our data showed that BLM induced A549 cell death by a mechanism involving oxidative stress and mitochondrial dysfunction. NACA had a protective role against BLM-induced toxicity by inhibiting lipid peroxidation, scavenging ROS, and preserving intracellular GSH and ΔΨm. NACA can potentially be developed into a promising adjunctive therapeutic option for patients undergoing chemotherapy with BLM.

  13. Octanal-induced inflammatory responses in cells relevant for lung toxicity: expression and release of cytokines in A549 human alveolar cells.

    PubMed

    Song, M-K; Lee, H-S; Choi, H-S; Shin, C-Y; Kim, Y-J; Park, Y-K; Ryu, J-C

    2014-07-01

    Inhalation is an important route of aldehyde exposure, and lung is one of the main targets of aldehyde toxicity. Octanal is distributed ubiquitously in the environment and is a component of indoor air pollutants. We investigated whether octanal exposure enhances the inflammatory response in the human respiratory system by increasing the expression and release of cytokines and chemokines. The effect of octanal in transcriptomic modulation was assessed in the human alveolar epithelial cell line A549 using oligonucleotide arrays. We identified a set of genes differentially expressed upon octanal exposure that may be useful for monitoring octanal pulmonary toxicity. These genes were classified according to the Gene Ontology functional category and Kyoto Encyclopedia of Genes and Genomes analysis to explore the biological processes related to octanal-induced pulmonary toxicity. The results show that octanal affects the expression of several chemokines and inflammatory cytokines and increases the levels of interleukin 6 (IL-6) and IL-8 released. In conclusion, octanal exposure modulates the expression of cytokines and chemokines important in the development of lung injury and disease. This suggests that inflammation contributes to octanal-induced lung damage and that the inflammatory genes expressed should be studied in detail, thereby laying the groundwork for future biomonitoring studies. © The Author(s) 2014.

  14. Toxic Effects of the Major Components of Diesel Exhaust in Human Alveolar Basal Epithelial Cells (A549)

    PubMed Central

    Rossner, Pavel; Strapacova, Simona; Stolcpartova, Jitka; Schmuczerova, Jana; Milcova, Alena; Neca, Jiri; Vlkova, Veronika; Brzicova, Tana; Machala, Miroslav; Topinka, Jan

    2016-01-01

    We investigated the toxicity of benzo[a]pyrene (B[a]P), 1-nitropyrene (1-NP) and 3-nitrobenzanthrone (3-NBA) in A549 cells. Cells were treated for 4 h and 24 h with: B[a]P (0.1 and 1 μM), 1-NP (1 and 10 μM) and 3-NBA (0.5 and 5 μM). Bulky DNA adducts, lipid peroxidation, DNA and protein oxidation and mRNA expression of CYP1A1, CYP1B1, NQO1, POR, AKR1C2 and COX2 were analyzed. Bulky DNA adducts were induced after both treatment periods; the effect of 1-NP was weak. 3-NBA induced high levels of bulky DNA adducts even after 4-h treatment, suggesting rapid metabolic activation. Oxidative DNA damage was not affected. 1-NP caused protein oxidation and weak induction of lipid peroxidation after 4-h incubation. 3-NBA induced lipid peroxidation after 24-h treatment. Unlike B[a]P, induction of the aryl hydrocarbon receptor, measured as mRNA expression levels of CYP1A1 and CYP1B1, was low after treatment with polycyclic aromatic hydrocarbon (PAH) nitro-derivatives. All test compounds induced mRNA expression of NQO1, POR, and AKR1C2 after 24-h treatment. AKR1C2 expression indicates involvement of processes associated with reactive oxygen species generation. This was supported further by COX2 expression induced by 24-h treatment with 1-NP. In summary, 3-NBA was the most potent genotoxicant, whereas 1-NP exhibited the strongest oxidative properties. PMID:27571070

  15. Toxic Effects of the Major Components of Diesel Exhaust in Human Alveolar Basal Epithelial Cells (A549).

    PubMed

    Rossner, Pavel; Strapacova, Simona; Stolcpartova, Jitka; Schmuczerova, Jana; Milcova, Alena; Neca, Jiri; Vlkova, Veronika; Brzicova, Tana; Machala, Miroslav; Topinka, Jan

    2016-08-26

    We investigated the toxicity of benzo[a]pyrene (B[a]P), 1-nitropyrene (1-NP) and 3-nitrobenzanthrone (3-NBA) in A549 cells. Cells were treated for 4 h and 24 h with: B[a]P (0.1 and 1 μM), 1-NP (1 and 10 μM) and 3-NBA (0.5 and 5 μM). Bulky DNA adducts, lipid peroxidation, DNA and protein oxidation and mRNA expression of CYP1A1, CYP1B1, NQO1, POR, AKR1C2 and COX2 were analyzed. Bulky DNA adducts were induced after both treatment periods; the effect of 1-NP was weak. 3-NBA induced high levels of bulky DNA adducts even after 4-h treatment, suggesting rapid metabolic activation. Oxidative DNA damage was not affected. 1-NP caused protein oxidation and weak induction of lipid peroxidation after 4-h incubation. 3-NBA induced lipid peroxidation after 24-h treatment. Unlike B[a]P, induction of the aryl hydrocarbon receptor, measured as mRNA expression levels of CYP1A1 and CYP1B1, was low after treatment with polycyclic aromatic hydrocarbon (PAH) nitro-derivatives. All test compounds induced mRNA expression of NQO1, POR, and AKR1C2 after 24-h treatment. AKR1C2 expression indicates involvement of processes associated with reactive oxygen species generation. This was supported further by COX2 expression induced by 24-h treatment with 1-NP. In summary, 3-NBA was the most potent genotoxicant, whereas 1-NP exhibited the strongest oxidative properties.

  16. Organic compounds in tire particle induce reactive oxygen species and heat-shock proteins in the human alveolar cell line A549.

    PubMed

    Gualtieri, Maurizio; Mantecca, Paride; Cetta, Francesco; Camatini, Marina

    2008-05-01

    Debris produced from the attrition of tires of motor vehicles constitutes 5-7% of the atmospheric particulate matter (PM10). Debris particles are indeed small enough to enter human lung and thus morphological and chemical characterization has been performed. We demonstrated that the organic fraction of tire debris induces a dose-dependent increase in cell mortality, DNA damage, as well as a significant modification of cell morphology at the dose of 60 microg/ml, which may correspond to the quantity present in the air humans inhale daily. The present research aims at investigating if reactive oxygen species (ROS) production and Hsp70 expression are involved in the cascade of toxic effects produced on the A549 cell line, as it has been suggested for the ultrafine atmospheric particles and diesel exhaust. To this end, cells were exposed at the doses of 10, 50, 60, 75 microg/ml of TD organic extract (TDOE) and analyzed at different exposure time. ROS were detected by the oxidation of 2'7'-dichlorodihydrofluorescein diacetate to dichlorofluorescein, and fluorescence was measured by flow cytometry. Hsp70 protein expression was determined by immunochemical analysis, and protein expression quantification performed by optical densitometry. ROS production was analysed after 2 h of treatment. A statistically significant increase in fluorescence was observed and the intensity of the stress response was parallel to the increasing concentrations used. An evident increase of Hsp70 expression at lower doses (10, 50 microg/ml) and at longer exposure times (72 h) was observed, during the time that our previous studies showed that cell viability, plasma membrane integrity, and DNA molecules were not affected. Thus it can be deduced that the increase in Hsp70 expression protected the cells from those damages, which became evident at the higher doses, and that this parameter might be used as a sensitive indicator of exposure. These data suggest that ROS production may be the first

  17. Imaging and characterization of stretch-induced ATP release from alveolar A549 cells.

    PubMed

    Grygorczyk, Ryszard; Furuya, Kishio; Sokabe, Masahiro

    2013-03-01

    Abstract  Mechano-transduction at cellular and tissue levels often involves ATP release and activation of the purinergic signalling cascade. In the lungs, stretch is an important physical stimulus but its impact on ATP release, the underlying release mechanisms and transduction pathways are poorly understood. Here, we investigated the effect of unidirectional stretch on ATP release from human alveolar A549 cells by real-time luciferin-luciferase bioluminescence imaging coupled with simultaneous infrared imaging, to monitor the extent of cell stretch and to identify ATP releasing cells. In subconfluent (<90%) cell cultures, single 1 s stretch (10-40%)-induced transient ATP release from a small fraction (1.5%) of cells that grew in number dose-dependently with increasing extent of stretch. ATP concentration in the proximity (150 μm) of releasing cells often exceeded 10 μm, sufficient for autocrine/paracrine purinoreceptor stimulation of neighbouring cells. ATP release responses were insensitive to the putative ATP channel blockers carbenoxolone and 5-nitro-2-(3-phenylpropyl-amino) benzoic acid, but were inhibited by N-ethylmaleimide and bafilomycin. In confluent cell cultures, the maximal fraction of responding cells dropped to <0.2%, but was enhanced several-fold in the wound/scratch area after it was repopulated by new cells during the healing process. Fluo8 fluorescence experiments revealed two types of stretch-induced intracellular Ca(2+) responses, rapid sustained Ca(2+) elevations in a limited number of cells and delayed secondary responses in neighbouring cells, seen as Ca(2+) waves whose propagation was consistent with extracellular diffusion of released ATP. Our experiments revealed that a single >10% stretch was sufficient to initiate intercellular purinergic signalling in alveolar cells, which may contribute to the regulation of surfactant secretion and wound healing.

  18. Drug Transporter Protein Quantification of Immortalized Human Lung Cell Lines Derived from Tracheobronchial Epithelial Cells (Calu-3 and BEAS2-B), Bronchiolar-Alveolar Cells (NCI-H292 and NCI-H441), and Alveolar Type II-like Cells (A549) by Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Sakamoto, Atsushi; Matsumaru, Takehisa; Yamamura, Norio; Suzuki, Shinobu; Uchida, Yasuo; Tachikawa, Masanori; Terasaki, Tetsuya

    2015-09-01

    Understanding the mechanisms of drug transport in the human lung is an important issue in pulmonary drug discovery and development. For this purpose, there is an increasing interest in immortalized lung cell lines as alternatives to primary cultured lung cells. We recently reported the protein expression in human lung tissues and pulmonary epithelial cells in primary culture, (Sakamoto A, Matsumaru T, Yamamura N, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. 2013. J Pharm Sci 102(9):3395-3406) whereas comprehensive quantification of protein expressions in immortalized lung cell lines is sparse. Therefore, the aim of the present study was to clarify the drug transporter protein expression of five commercially available immortalized lung cell lines derived from tracheobronchial cells (Calu-3 and BEAS2-B), bronchiolar-alveolar cells (NCI-H292 and NCI-H441), and alveolar type II cells (A549), by liquid chromatography-tandem mass spectrometry-based approaches. Among transporters detected, breast cancer-resistance protein in Calu-3, NCI-H292, NCI-H441, and A549 and OCTN2 in BEAS2-B showed the highest protein expression. Compared with data from our previous study,(Sakamoto A, Matsumaru T, Yamamura N, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. 2013. J Pharm Sci 102(9):3395-3406) NCI-H441 was the most similar with primary lung cells from all regions in terms of protein expression of organic cation/carnitine transporter 1 (OCTN1). In conclusion, the protein expression profiles of transporters in five immortalized lung cell lines were determined, and these findings may contribute to a better understanding of drug transport in immortalized lung cell lines.

  19. The common anesthetic, sevoflurane, induces apoptosis in A549 lung alveolar epithelial cells.

    PubMed

    Wei, Gui-Hua; Zhang, Juan; Liao, Da-Qing; Li, Zhuo; Yang, Jing; Luo, Nan-Fu; Gu, Yan

    2014-01-01

    Lung alveolar epithelial cells are the first barrier exposed to volatile anesthetics, such as sevoflurane, prior to reaching the targeted neuronal cells. Previously, the effects of volatile anesthetics on lung surfactant were studied primarily with physicochemical models and there has been little experimental data from cell cultures. Therefore it was investigated whether sevoflurane induces apoptosis of A549 lung epithelial cells. A549 cells were exposed to sevoflurane via a calibrated vaporizer with a 2 l/min flow in a gas‑tight chamber at 37˚C. The concentration of sevoflurane in Dulbecco's modified Eagle's medium was detected with gas chromatography. Untreated cells and cells treated with 2 µM daunorubicin hydrochloride (DRB) were used as negative and positive controls, respectively. Apoptosis factors, including the level of ATP, apoptotic‑bodies by terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling (TUNEL) assay, DNA damage and the level of caspase 3/7 were analyzed. Cells treated with sevoflurane showed a significant reduction in ATP compared with untreated cells. Effects in the DRB group were greater than in the sevoflurane group. The difference of TUNEL staining between the sevoflurane and untreated groups was statistically significant. DNA degradation was observed in the sevoflurane and DRB groups, however this was not observed in the untreated group. The sevoflurane and DRB groups induced increased caspase 3/7 activation compared with untreated cells. These results suggest that sevoflurane induces apoptosis in A549 cells. In conclusion, 5% sevoflurane induced apoptosis of A549 lung alveolar epithelial cells, which resulted in decreased cell viability, increased apoptotic bodies, impaired DNA integrality and increased levels of caspase 3/7.

  20. Gold nanoparticles induce cytotoxicity in the alveolar type-II cell lines A549 and NCIH441

    PubMed Central

    Uboldi, Chiara; Bonacchi, Daniele; Lorenzi, Giada; Hermanns, M Iris; Pohl, Christine; Baldi, Giovanni; Unger, Ronald E; Kirkpatrick, C James

    2009-01-01

    Background During the last years engineered nanoparticles (NPs) have been extensively used in different technologies and consequently many questions have arisen about the risk and the impact on human health following exposure to nanoparticles. Nevertheless, at present knowledge about the cytotoxicity induced by NPs is still largely incomplete. In this context, we have investigated the cytotoxicity induced by gold nanoparticles (AuNPs), which differed in size and purification grade (presence or absence of sodium citrate residues on the particle surface) in vitro, in the human alveolar type-II (ATII)-like cell lines A549 and NCIH441. Results We found that the presence of sodium citrate residues on AuNPs impaired the viability of the ATII-like cell lines A549 and NCIH441. Interestingly, the presence of an excess of sodium citrate on the surface of NPs not only reduced the in vitro viability of the cell lines A549 and NCIH441, as shown by MTT assay, but also affected cellular proliferation and increased the release of lactate dehydrogenase (LDH), as demonstrated by Ki-67 and LDH-release assays respectively. Furthermore, we investigated the internalization of AuNPs by transmission electron microscopy (TEM) and we observed that particles were internalized by active endocytosis in the cell lines A549 and NCIH441 within 3 hr. In addition, gold particles accumulated in membrane-bound vesicles and were not found freely dispersed in the cytoplasm. Conclusion Our data suggest that the presence of contaminants, such as sodium citrate, on the surface of gold nanoparticles might play a pivotal role in inducing cytotoxicity in vitro, but does not influence the uptake of the particles in human ATII-like cell lines. PMID:19545423

  1. Long Term Culture of the A549 Cancer Cell Line Promotes Multilamellar Body Formation and Differentiation towards an Alveolar Type II Pneumocyte Phenotype.

    PubMed

    Cooper, James Ross; Abdullatif, Muhammad Bilal; Burnett, Edward C; Kempsell, Karen E; Conforti, Franco; Tolley, Howard; Collins, Jane E; Davies, Donna E

    2016-01-01

    Pulmonary research requires models that represent the physiology of alveolar epithelium but concerns with reproducibility, consistency and the technical and ethical challenges of using primary or stem cells has resulted in widespread use of continuous cancer or other immortalized cell lines. The A549 'alveolar' cell line has been available for over four decades but there is an inconsistent view as to its suitability as an appropriate model for primary alveolar type II (ATII) cells. Since most work with A549 cells involves short term culture of proliferating cells, we postulated that culture conditions that reduced proliferation of the cancer cells would promote a more differentiated ATII cell phenotype. We examined A549 cell growth in different media over long term culture and then used microarray analysis to investigate temporal regulation of pathways involved in cell cycle and ATII differentiation; we also made comparisons with gene expression in freshly isolated human ATII cells. Analyses indicated that long term culture in Ham's F12 resulted in substantial modulation of cell cycle genes to result in a quiescent population of cells with significant up-regulation of autophagic, differentiation and lipidogenic pathways. There were also increased numbers of up- and down-regulated genes shared with primary cells suggesting adoption of ATII characteristics and multilamellar body (MLB) development. Subsequent Oil Red-O staining and Transmission Electron Microscopy confirmed MLB expression in the differentiated A549 cells. This work defines a set of conditions for promoting ATII differentiation characteristics in A549 cells that may be advantageous for studies with this cell line.

  2. Long Term Culture of the A549 Cancer Cell Line Promotes Multilamellar Body Formation and Differentiation towards an Alveolar Type II Pneumocyte Phenotype

    PubMed Central

    Cooper, James Ross; Abdullatif, Muhammad Bilal; Burnett, Edward C.; Kempsell, Karen E.; Conforti, Franco; Tolley, Howard; Collins, Jane E.; Davies, Donna E.

    2016-01-01

    Pulmonary research requires models that represent the physiology of alveolar epithelium but concerns with reproducibility, consistency and the technical and ethical challenges of using primary or stem cells has resulted in widespread use of continuous cancer or other immortalized cell lines. The A549 ‘alveolar’ cell line has been available for over four decades but there is an inconsistent view as to its suitability as an appropriate model for primary alveolar type II (ATII) cells. Since most work with A549 cells involves short term culture of proliferating cells, we postulated that culture conditions that reduced proliferation of the cancer cells would promote a more differentiated ATII cell phenotype. We examined A549 cell growth in different media over long term culture and then used microarray analysis to investigate temporal regulation of pathways involved in cell cycle and ATII differentiation; we also made comparisons with gene expression in freshly isolated human ATII cells. Analyses indicated that long term culture in Ham’s F12 resulted in substantial modulation of cell cycle genes to result in a quiescent population of cells with significant up-regulation of autophagic, differentiation and lipidogenic pathways. There were also increased numbers of up- and down-regulated genes shared with primary cells suggesting adoption of ATII characteristics and multilamellar body (MLB) development. Subsequent Oil Red-O staining and Transmission Electron Microscopy confirmed MLB expression in the differentiated A549 cells. This work defines a set of conditions for promoting ATII differentiation characteristics in A549 cells that may be advantageous for studies with this cell line. PMID:27792742

  3. Effect of exogenous surfactants on viability and DNA synthesis in A549, immortalized mouse type II and isolated rat alveolar type II cells

    PubMed Central

    2011-01-01

    Background In mechanically ventilated preterm infants with respiratory distress syndrome (RDS), exogenous surfactant application has been demonstrated both to decrease DNA-synthesis but also and paradoxically to increase epithelial cell proliferation. However, the effect of exogenous surfactant has not been studied directly on alveolar type II cells (ATII cells), a key cell type responsible for alveolar function and repair. Objective The aim of this study was to investigate the effects of two commercially available surfactant preparations on ATII cell viability and DNA synthesis. Methods Curosurf® and Alveofact® were applied to two ATII cell lines (human A549 and mouse iMATII cells) and to primary rat ATII cells for periods of up to 24 h. Cell viability was measured using the redox indicator resazurin and DNA synthesis was measured using BrdU incorporation. Results Curosurf® resulted in slightly decreased cell viability in all cell culture models. However, DNA synthesis was increased in A549 and rat ATII cells but decreased in iMATII cells. Alveofact® exhibited the opposite effects on A549 cells and had very mild effects on the other two cell models. Conclusion This study showed that commercially available exogenous surfactants used to treat preterm infants with RDS can have profound effects on cell viability and DNA synthesis. PMID:21324208

  4. Incorporation of quercetin in respirable lipid microparticles: effect on stability and cellular uptake on A549 pulmonary alveolar epithelial cells.

    PubMed

    Scalia, Santo; Trotta, Valentina; Traini, Daniela; Young, Paul M; Sticozzi, Claudia; Cervellati, Franco; Valacchi, Giuseppe

    2013-12-01

    The aim of the present study was to develop controlled release inhalable lipid microparticles (LMs) loaded with the antioxidant flavonoid, quercetin and to investigate the interaction of these microparticles with A549 pulmonary alveolar epithelial cells. The LMs were produced using different lipidic materials and surfactants, by melt emulsification followed by a sonication step. The most efficient modulation of the in vitro release of quercetin was achieved by the LMs prepared with tristearin and hydrogenated phosphatidylcholine, which were used for subsequent studies. These LMs exhibited a quercetin loading of 11.8±0.3%, and a volume median diameter, determined by laser diffraction, of 4.1±0.2μm. Moreover, their mass median aerodynamic diameter (4.82±0.15μm) and fine particle fraction (27.2±3.9%), as measured by multi-stage liquid impinger, were suitable for pulmonary delivery. Quercetin was found to be highly unstable (complete decomposition within 6-h incubation) in Ham's F-12 medium used for A549 cell culture. Degradation was markedly reduced (16.4% of the initial quercetin content still present after 24-h incubation) after encapsulation in the lipid particle system. Viability studies performed by lactate dehydrogenase assay, demonstrated that quercetin LMs showed no significant cytotoxicity on the A549 cells, over the concentration 0.1-5μM. The uptake of quercetin by the A549 lung alveolar cells was also investigated. After 4-h incubation, the accumulation of quercetin in the A549 cells was significantly higher (2.3-fold increase) for the microparticle entrapped flavonoid when compare to non-encapsulated quercetin. The enhanced intracellular delivery of quercetin achieved by the LMs is likely due to the flavonoid stabilization after encapsulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Transcriptome Profiles of Human Lung Epithelial Cells A549 Interacting with Aspergillus fumigatus by RNA-Seq

    PubMed Central

    Jia, Xiaodong; Wang, Shuo; Wang, Jing; Chen, Yong; Zhao, Jingya; Tian, Shuguang; Han, Xuelin; Han, Li

    2015-01-01

    Lung epithelial cells constitute the first defense line of host against the inhaled Aspergillus fumigatus; however, the transcriptional response of human alveolar type II epithelial cells was still unclear. Here we used RNA-Seq technology to assess the transcriptome profiles of A549 cells following direct interaction with conidia of A. fumigatus. The total number of identified genes was 19118. Compared with uninfected A549 cells, 459 genes were differentially expressed in cells co-incubated with conidia for 8 h, including 302 up-regulated genes and 157 down-regulated genes. GO and KEGG pathway enrichment analysis showed that most of the up-regulated genes were related to immune response, chemotaxis and inflammatory response and enriched in cytokine-cytokine receptor interaction, JAK-STAT and MAPK signaling pathways. The down-regulated genes were mainly enriched for terms associated with development, hemopoiesis and ion transport. Among them, EGR4 and HIST1H4J gene had the maximum of fold change in up-regulated and down-regulated genes, respectively. Fourteen up-regulated genes and three down-regulated genes were further validated and significant increase on expression of IL-6, IL-8 and TNF-α in A549 cells were confirmed by qRT-PCR during the interaction of A549 cells with A. fumigatus. Besides, western blot showed that expression of two proteins (ARC, EGR1) significantly increased in A549 cells during interaction with A. fumigatus conidia for 8h. Interference of endogenous expression of ARC or EGR1 protein in A549 cells reduced the internalization of A. fumigatus. These results provided important insights into dynamic changes of gene expression in lung epithelial cells, especially its strong immunological response against A. fumigatus infection. PMID:26273834

  6. Anticancer effect and apoptosis induction by quercetin in the human lung cancer cell line A-549.

    PubMed

    Zheng, Shi-Ying; Li, Yin; Jiang, Dong; Zhao, Jun; Ge, Jin-Feng

    2012-03-01

    The aim of the present study was to investigate the anticancer effect of quercetin (QC) in the human lung cancer cell line A-549 and further study the mechanism of apoptosis induction by QC. Low differentiation potential A-549 human lung cancer cells were treated with QC at different doses and for different times, and the growth inhibitory rates were detected by MTT assay. Apoptosis induced by QC in A-549 cells was observed by Annexin V/PI double staining and flow cytometric assay. The relative tumor growth ratio of the treated/control tumors (T/C) (%) was chosen to represent the tumor growth inhibition of A-549 cell nude mouse xenografts by QC. Apoptosis of the nude mouse xenografts was observed by Annexin V/PI double staining and flow cytometric assay and DNA fragmentation assay. To further determine the molecular mechanism of apoptosis induced by QC, changes in the expression of bcl-2 and bax genes were detected by RT-PCR. Following incubation with QC, the cell growth of the low differentiation potential A-549 human lung cancer cells was dramatically inhibited in a dose-dependent manner. After the cells were exposed to QC for 24, 48 and 72 h, the IC50 value was 1.02 ± 0.05, 1.41 ± 0.20 and 1.14 ± 0.19 µmol/l, respectively. Apoptosis in the A-549 cells induced by QC was noted. The apoptotic subpopulation of A-549 cells was approximately 12.96 and 24.58%, respectively, when cells were incubated with 1.2 µmol/l QC for 48 and 72 h. T/C (%) of A-549 nude mouse xenografts was 44.3, when the nude mice were treated with QC (8 mg/kg). Meanwhile, apoptosis induced by QC was observed in the A-549 nude mouse xenografts. Increased expression of the bax gene and decreased expression of the bc1-2 gene were noted using RT-PCR. Our results provide further evidence of the growth inhibition of the A-549 human lung adenocarcinoma cancer cell line by QC. This effect is associated with the induction of apoptosis in A-549 cells and the molecular mechanism may be related to the

  7. Water-pipe smoke condensate increases the internalization of Mycobacterium Bovis of type II alveolar epithelial cells (A549).

    PubMed

    Mortaz, Esmaeil; Alipoor, Shamila D; Movassaghi, Masoud; Varahram, Mohammad; Ghorbani, Jahangir; Folkerts, Gert; Garssen, Johan; Adcock, Ian M

    2017-04-21

    Tuberculosis (TB) is a major global health problem, and there is an association between tobacco smoke and TB. Water pipe smoking has become an increasing problem not only in Middle Eastern countries but also globally because users consider it as safer than cigarettes. The presence of high levels of toxic substances in water-pipe smoke may be a predisposing factor that enhances the incidence of pulmonary disorders. For example, uncontrolled macropinocytosis in alveolar epithelial cells following exposure to water-pipe smoke may predispose subjects to pulmonary infection. Here, we studied the effects of water-pipe condense (WPC) on the internalization of Mycobacterium Bovis BCG by macropinocytosis in the alveolar epithelial cell line A549. A549 cells were exposed to WPC (4 mg/ml) for 24, 48, 72 and 96 h. Cell viability was studied using the methyl thiazolyldipenyl-tetrazolium bromide (MTT) reduction assay and proliferation by bromodeoxyUridine (BrdU) incorporation. Cells were exposed to FITC-Dextran (1 mg/ml) (as a control) and FITC-BCG (MOI = 10) for 20 min at 37 °C before cells were collected and the uptake of BCG-FITC determined by flow cytometry. Similar experiments were performed at 4 °C as a control. The Rho-associated protein kinase (ROCK) inhibitor Y-27632 (1 μM) was used to assess the mechanism by which WPC enhanced BCG uptake. WPC (4 mg/ml) increased the uptake of BCG-FITC after 72 (1.3 ± 0.1 fold, p < 0.05) and 96 (1.4 ± 0.05 fold, p < 0.05) hours. No effect on BCG-FITC uptake was observed at 24 or 48 h. WPC also significantly increased the uptake of FITC-Dextran (2.9 ± 0.3 fold, p < 0.05) after 24 h. WPC significantly decreased cell viability after 24 (84 ± 2%, p < 0.05), 48 (78±, 3%, p < 0.05), 72 (64 ± 2%, p < 0.05) and 96 h (45 ± 2%, p < 0.05). Y-27632 completely attenuated the increased uptake of BCG by WPC. Cell proliferation showed a decreasing trend in a time

  8. Radix Tetrastigma hemsleyani flavone inhibits proliferation, migration, and invasion of human lung carcinoma A549 cells

    PubMed Central

    Zhong, Liangrui; Zheng, Junxian; Sun, Qianqian; Wei, Kemin; Hu, Yijuan

    2016-01-01

    Radix Tetrastigma hemsleyani flavone (RTHF) is widely used as a traditional herb and has detoxification and anti-inflammatory effects. In this study, we investigated the potential effects of RTHF on the growth and metastasis of human lung adenocarcinoma A549 cells and evaluated its mechanisms. A549 cells were treated with RTHF at various concentrations for different periods. In vitro Cell Counting Kit-8 assay and colony formation methods showed that RTHF had dose- and time-dependent antiproliferation effects on A549 cells. A cell adhesion assay showed that RTHF decreased A549 cell adhesion in a dose-dependent manner. Cell invasion and migration were investigated using the Transwell assay and observed using an inverted microscope; the results showed that cell metastasis was significantly lower in the treatment group than that in the control group (P<0.01). Expression of metastasis-related matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) was detected by real-time polymerase chain reaction and Western blotting. The results showed that the expression of MMP-2, MMP-9, and TIMP-1 decreased, while that of TIMP-2 increased significantly in the RTHF group when compared with the results of the control group. These results show that RTHF exhibits antigrowth and antimetastasis activity in lung cancer A549 cells by decreasing the expression of MMP-2/-9 and TIMP-1 and increasing that of TIMP-2. PMID:26893573

  9. Activity of interferon alpha, interleukin 6 and insulin in the regulation of differentiation in A549 alveolar carcinoma cells.

    PubMed

    McCormick, C; Freshney, R I; Speirs, V

    1995-02-01

    The differentiation of A549, a human tumour cell line from type II pneumocytes, can be induced by a crude fibroblast-derived factor (FDF) isolated from the conditioned medium of glucocorticoid-treated lung fibroblasts. In the present report, we have used alkaline phosphatase as a differentiation marker to investigate the activity of a number of growth factors as potential candidates for this paracrine activity. This showed that insulin, interleukin 6 (IL-6), and interferon alpha (IFN-alpha) could simulate the activity of conditioned medium. Their effects were dexamethasone (DX) dependent, additive and reversible with a half-life of 1 week. Transforming growth factor alpha and beta, IL-1 alpha and epidermal growth factor, were all inhibitory, and inhibition was opposed, partially or completely, by DX. The most potent inducer was IL-6, but as DX was shown to decrease the concentration of IL-6 in lung fibroblast-conditioned medium it seems an unlikely candidate for FDF. Unlike FDF, all of the positive-acting factors were shown to induce plasminogen activator. FDF has also been shown to be active in the absence of DX. This suggests that differentiation-inducing activity may be present in several paracrine factors, but that so far a candidate for FDF has not been identified.

  10. Activity of interferon alpha, interleukin 6 and insulin in the regulation of differentiation in A549 alveolar carcinoma cells.

    PubMed Central

    McCormick, C.; Freshney, R. I.; Speirs, V.

    1995-01-01

    The differentiation of A549, a human tumour cell line from type II pneumocytes, can be induced by a crude fibroblast-derived factor (FDF) isolated from the conditioned medium of glucocorticoid-treated lung fibroblasts. In the present report, we have used alkaline phosphatase as a differentiation marker to investigate the activity of a number of growth factors as potential candidates for this paracrine activity. This showed that insulin, interleukin 6 (IL-6), and interferon alpha (IFN-alpha) could simulate the activity of conditioned medium. Their effects were dexamethasone (DX) dependent, additive and reversible with a half-life of 1 week. Transforming growth factor alpha and beta, IL-1 alpha and epidermal growth factor, were all inhibitory, and inhibition was opposed, partially or completely, by DX. The most potent inducer was IL-6, but as DX was shown to decrease the concentration of IL-6 in lung fibroblast-conditioned medium it seems an unlikely candidate for FDF. Unlike FDF, all of the positive-acting factors were shown to induce plasminogen activator. FDF has also been shown to be active in the absence of DX. This suggests that differentiation-inducing activity may be present in several paracrine factors, but that so far a candidate for FDF has not been identified. PMID:7841035

  11. Aptamer based electrochemical sensor for detection of human lung adenocarcinoma A549 cells

    NASA Astrophysics Data System (ADS)

    Sharma, Rachna; Varun Agrawal, Ved; Sharma, Pradeep; Varshney, R.; Sinha, R. K.; Malhotra, B. D.

    2012-04-01

    We report results of the studies relating to development of an aptamer-based electrochemical biosensor for detection of human lung adenocarcinoma A549 cells. The aminated 85-mer DNA aptamer probe specific for the A549 cells has been covalently immobilized onto silane self assembled monolayer (SAM) onto ITO surface using glutaraldehyde as the crosslinker. The results of cyclic voltammetry and differential pulse voltammetry studies reveal that the aptamer functionalized bioelectrode can specifically detect lung cancer cells in the concentration range of 103 to 107 cells/ml with detection limit of 103 cells/ml within 60 s. The specificity studies of the bioelectrode have been carried out with control KB cells. No significant change in response is observed for control KB cells as compared to that of the A549 target cells.

  12. Cellular uptake and toxic effects of fine and ultrafine metal-sulfate particles in human A549 lung epithelial cells.

    PubMed

    Könczöl, Mathias; Goldenberg, Ella; Ebeling, Sandra; Schäfer, Bianca; Garcia-Käufer, Manuel; Gminski, Richard; Grobéty, Bernard; Rothen-Rutishauser, Barbara; Merfort, Irmgard; Gieré, Reto; Mersch-Sundermann, Volker

    2012-12-17

    Ambient airborne particulate matter is known to cause various adverse health effects in humans. In a recent study on the environmental impacts of coal and tire combustion in a thermal power station, fine crystals of PbSO(4) (anglesite), ZnSO(4)·H(2)O (gunningite), and CaSO(4) (anhydrite) were identified in the stack emissions. Here, we have studied the toxic potential of these sulfate phases as particulates and their uptake in human alveolar epithelial cells (A549). Both PbSO(4) and CaSO(4) yielded no loss of cell viability, as determined by the WST-1 and NR assays. In contrast, a concentration-dependent increase in cytotoxicity was observed for Zn sulfate. For all analyzed sulfates, an increase in the production of reactive oxygen species (ROS), assessed by the DCFH-DA assay and EPR, was observed, although to a varying extent. Again, Zn sulfate was the most active compound. Genotoxicity assays revealed concentration-dependent DNA damage and induction of micronuclei for Zn sulfate and, to a lower extent, for CaSO(4), whereas only slight effects could be found for PbSO(4). Moreover, changes of the cell cycle were observed for Zn sulfate and PbSO(4). It could be shown further that Zn sulfate increased the nuclear factor kappa-B (NF-κB) DNA binding activity and activated JNK. During our TEM investigations, no effect on the appearance of the A549 cells exposed to CaSO(4) compared to the nonexposed cells was observed, and in our experiments, only one CaSO(4) particle was detected in the cytoplasm. In the case of exposure to Zn sulfate, no particles were found in the cytoplasm of A549 cells, but we observed a concentration-dependent increase in the number and size of dark vesicles (presumably zincosomes). After exposure to PbSO(4), the A549 cells contained isolated particles as well as agglomerates both in vesicles and in the cytoplasm. Since these metal-sulfate particles are emitted into the atmosphere via the flue gas of coal-fired power stations, they may be

  13. Microwave induces apoptosis in A549 human lung carcinoma cell line.

    PubMed

    Song, Xiao-lian; Wang, Chang-hui; Hu, Hai-yang; Yu, Chao; Bai, Chong

    2011-04-01

    Microwaves have other biological effects on cancer as well besides killing tumor cells by coagulation. Some studies showed that microwaves may induce apoptosis in some tumor cells. The apoptotic effect of microwaves may help in clinic to remove residual malignant cells nearby the primary lesion and avoid relapse subsequently. However, there is little evidence on this subject from lung cancer. We studied the effect of microwaves on inducing apoptosis in the human lung carcinoma cell line A549 cells, aiming to identify its effect on apoptosis. A549 cells were radiated by various intensities and durations of microwaves. Apoptosis induction in A549 cells was analyzed by morphological observations, tetrazolium blue color method (MTT) assays, flow cytometry, immunohistochemistry, and image analyses. Morphological changes in A549 cells, including cell shrinking and nuclear pyknosis, were observed after microwave radiation. Microwaves significantly inhibited metabolic activities and induced apoptosis in A549 cells. The results of the MTT assay showed a significant decrease of cell activities in all the radiation groups compared with the normal control (P < 0.01). The low point of cell activities often appeared at 6 - 12 hours after radiation. Apoptosis was also confirmed by flow cytometry. The early stage apoptotic rate reached 6.10% - 17.98% and the advanced stage apoptotic rate + necrosis rate reached 8.04% - 44.06% at 6 hours after microwave irradiation, in contrast to 2.32% and 4.10% in the respective control groups. Down-regulation of Bcl-2 expression and up-regulation of p53 expression were observed by immunohistochemistry after radiation. In most treated groups, the down-regulation of Bcl-2 expression reached its lowest level at 3 - 6 hours after radiation (integrated optical density (IOD)-6 hours: 2.13 ± 0.08 - 5.14 ± 0.13 vs. control: 5.79 ± 0.10, P < 0.01) and the up-regulation of P53 expression peaked at about 3 hours (IOD-3 hours: 2.61 ± 0.13 - 8.07 ± 0

  14. Sinomenine inhibits A549 human lung cancer cell invasion by mediating the STAT3 signaling pathway

    PubMed Central

    Jiang, Shulong; Gao, Yebo; Hou, Wei; Liu, Rui; Qi, Xin; Xu, Xia; Li, Jie; Bao, Yanju; Zheng, Honggang; Hua, Baojin

    2016-01-01

    Increasing evidence suggests that the failure of lung cancer treatment may occur as a result of tumor invasion and metastasis. Signal transducer and activator of transcription 3 (STAT3), an epithelial-mesenchymal transition-inducing transcription factor, is a key signaling molecule involved in the proliferation, apoptosis, invasion and metastasis of tumor cells. Sinomenine is an alkaloid compound with an antineoplastic potential against a variety of cancer cells. The aim of the present study was to assess the antitumor mechanisms of sinomenine in the A549 human lung cancer cell line. The results demonstrated that sinomenine manifested dose-dependent cytotoxicity and induced apoptosis in A549 cells. The protein expression of Janus kinase 2, STAT3, phosphorylated-STAT3, Snail, N-cadherin and vimentin decreased in sinomenine-treated cells, while E-cadherin protein expression increased. The regulation of STAT3, N-cadherin and E-cadherin by sinomenine was further confirmed by reverse transcription-quantitative polymerase chain reaction and immunofluorescent staining. It was demonstrated that sinomenine exerts inhibitory effects on A549 human lung cancer cell invasion, possibly through the inhibition of STAT3 signaling. These results provide a novel insight into the role of sinomenine in the treatment of non-small cell lung cancer. PMID:27446441

  15. Fucoidan from Undaria pinnatifida induces apoptosis in A549 human lung carcinoma cells.

    PubMed

    Boo, Hye-Jin; Hyun, Jae-Hee; Kim, Sang-Cheol; Kang, Jung-Il; Kim, Min-Kyoung; Kim, Sun-Yeou; Cho, Heeyeong; Yoo, Eun-Sook; Kang, Hee-Kyoung

    2011-07-01

    Fucoidan, a sulfated polysaccharide, has various biological activities, such as anticancer, antiangiogenic and antiinflammatory effects; however, the mechanisms of action of fucoidan on anticancer activity have not been fully elucidated. The anticancer effects of fucoidan from Undaria pinnatifida on A549 human lung carcinoma cells were examined. Treatment of A549 cells with fucoidan resulted in potent antiproliferative activity. Also, some typical apoptotic characteristics, such as chromatin condensation and an increase in the population of sub-G1 hypodiploid cells, were observed. With respect to the mechanism underlying the induction of apoptosis, fucoidan reduced Bcl-2 expression, but the expression of Bax was increased in a dose-dependent manner compared with the controls. Furthermore, fucoidan induced caspase-9 activation, but decreased the level of procaspase-3. Cleavage of poly-ADP-ribose polymerase (PARP), a vital substrate of effector caspase, was found. The study further investigated the role of the MAPK and PI3K/Akt pathways with respect to the apoptotic effect of fucoidan, and showed that fucoidan activates ERK1/2 in A549 cells. Unlike ERK1/2, however, treatment with fucoidan resulted in the down-regulation of phospho-p38 expression. In addition, fucoidan resulted in the down-regulation of phospho-PI3K/Akt. Together, these results indicate that fucoidan induces apoptosis of A549 human lung cancer cells through down-regulation of p38, PI3K/Akt, and the activation of the ERK1/2 MAPK pathway.

  16. Tomatidine inhibits invasion of human lung adenocarcinoma cell A549 by reducing matrix metalloproteinases expression.

    PubMed

    Yan, Kun-Huang; Lee, Liang-Ming; Yan, Shao-Han; Huang, Hsiang-Ching; Li, Chia-Chen; Lin, Hui-Ting; Chen, Pin-Shern

    2013-05-25

    Tomatidine is an aglycone of glycoalkaloid tomatine in tomato. Tomatidine is found to possess anti-inflammatory properties and may serve as a chemosensitizer in multidrug-resistant tumor cells. However, the effect of tomatidine on cancer cell metastasis remains unclear. This study examines the effect of tomatidine on the migration and invasion of human lung adenocarcinoma A549 cell in vitro. The data demonstrates that tomatidine does not effectively inhibit the viability of A549 cells. When treated with non-toxic doses of tomatidine, cell invasion is markedly suppressed by Boyden chamber invasion assay, while cell migration is not affected. Tomatidine reduces the mRNA level of matrix metalloproteinase-2 (MMP-2), MMP-9 and increases the expression of reversion-inducing cysteine-rich protein with kazal motifs (RECK), as well as tissue inhibitor of metalloproteinase-1 (TIMP-1). The immunoblotting assays indicate that tomatidine is very effective in suppressing the phosphorylation of Akt and extracellular signal regulating kinase (ERK). In addition, tomatidine significantly decreases the nuclear level of nuclear factor kappa B (NF-κB), which suggests that tomatidine inhibits NF-κB activity. Furthermore, the treatment of inhibitors specific for PI3K/Akt (LY294002), ERK (U0126), or NF-κB (pyrrolidine dithiocarbamate) to A549 cells reduced cell invasion and MMP-2/9 expression. The results suggest that tomatidine inhibits the invasion of A549 cells by reducing the expression of MMPs. It also inhibits ERK and Akt signaling pathways and NF-κB activity. These findings demonstrate a new therapeutic potential for tomatidine in anti-metastatic therapy.

  17. Sodium orthovanadate affects growth of some human epithelial cancer cells (A549, HTB44, DU145).

    PubMed

    Klein, Andrzej; Holko, Przemyslaw; Ligeza, Janusz; Kordowiak, Anna M

    2008-01-01

    Within the concentration range of 1-20 microM, orthovanadate (Na3VO4) demonstrated a time and dose-dependent inhibition of autocrine growth of the human carcinoma cell lines A549 (lung), HTB44 (kidney) and DU145 (prostate), as compared to appropriate controls (without Na3VO4). The investigation was conducted by two methods: staining with N-hexa-methylpararosaniline (crystal violet=CV) or bromide3-(4,5-dimethyltio-azo-2)-2,5-diphenyl-tetrazole (MTT). In 5, 10 and 20 microM of Na3VO4 in serum-free medium, the mean values of these two tests for A549 were approximately 40%, 45% or 65% as compared to the appropriate controls. HTB44 had the greatest opportunity (statistically insignificant) at lower vanadium concentrations (up to 10 microM), whereas at 20 microM growth inhibition of these cells was approximately 50% of the controls. DU145 showed approximately 33%, 65% and 98% growth inhibition for 5, 10 and 20 microM of Na3VO4, respectively Additionally, hypothetical curves obtained by a MANOVA test based on the CV results after 72 h incubation with Na3VO4 in serum-free medium, and an example of a time-dependent effect of Na3VO4 on A549 cells, were also presented. Sodium orthovanadate was also examined for its cytotoxic capabilities, especially its ability to induce tumor cell apoptosis; the results were compared with the effect of paclitaxel. The target cells were dyed by differential staining (HOECHST33258 and propidium iodide) after 3 h and 24 h (DU145) or 3 h and 72 h (A549) of incubation with the vanadium compound. Contrary to the two cancer cell lines (viable, apoptotic or necrotic in experimental conditions), the renal HTB44 cells were insensitive up to 15 microM Na3VO4 concentrations. After 3 h incubation with Na3VO4, both lung (A549) and prostate (DU145) cancer cells showed a slight but significant reduction in the percentage of viable cells, and an increased amount of apoptotic cells. In contrast to the lung cells, DU145 prostate cells after 24 h were more

  18. Cimicifuga foetida L. inhibited human respiratory syncytial virus in HEp-2 and A549 cell lines.

    PubMed

    Wang, Kuo Chih; Chang, Jung San; Chiang, Lien Chai; Lin, Chun Ching

    2012-01-01

    Human respiratory syncytial virus (HRSV) causes serious pediatric infection of the lower respiratory tract without effective therapeutic modality. Sheng-Ma-Ge-Gen-Tang (SMGGT; Shoma-kakkon-to) has been proven to be effective at inhibiting HRSV-induced plaque formation, and Cimicifuga foetida is the major constituent of SMGGT. We tested the hypothesis that C. foetida effectively inhibited the cytopathic effects of HRSV by a plaque reduction assay in both human upper (HEp2) and lower (A549) respiratory tract cell lines. Its ability to stimulate anti-viral cytokines was evaluated by an enzyme-linked immunosorbent assay (ELISA). C. foetida dose-dependently inhibited HRSV-induced plaque formation (p < 0.0001) before and after viral inoculation, especially in A549 cells (p < 0.0001). C. foetida dose-dependently inhibited viral attachment (p < 0.0001) and could increase heparins effect on viral attachment. In addition, C. foetida time-dependently and dose-dependently (p < 0.0001) inhibited HRSV internalization. C. foetida could stimulate epithelial cells to secrete IFN-β to counteract viral infection. However, C. foetida did not stimulate TNF-α secretion. Therefore, C. foetida could be useful in managing HRSV infection. This is the first evidence to support that C. foetida possesses antiviral activity.

  19. In vitro effects of water-pipe smoke condensate on the endocytic activity of Type II alveolar epithelial cells (A549) with bacillus Calmette-Guérin.

    PubMed

    Adcock, Ian M; Mortaz, Esmaeil; Alipoor, Shamila D; Garssen, Johan; Akbar Velayati, Ali

    2016-12-01

    Tuberculosis (TB) is a major global health problem and poses immense threats to many populations. The association between tobacco smoke and TB has already been studied. Water-pipe smoking has become an increasing problem not only in Middle Eastern countries but also globally as it is considered by users as being safer than cigarettes. The presence of high levels of toxic substances in water-pipe smoke may be predisposing factors that enhance the incidence of pulmonary disorders in water-pipe smokers. For example, uncontrolled macropinocytosis occurs in alveolar epithelial cells following exposure to water-pipe smoke, which may predispose individuals to pulmonary infection. In this work, we studied the effects of water-pipe condense (WPC) on the internalization of Mycobacterium bovis (bacillus Calmette-Guérin [BCG]) by macropinocytosis in Type II alveolar epithelial cells (A549). A549 cells were treated by WPC (4mg/mL) for 24 h, 48 h, 72 h, and 96 h, respectively. The effect on cell proliferation was studied using a methylthiazolyldiphenyl-tetrazolium bromide (MTT) reduction assay. Cells were exposed to fluorescein isothiocyanate (FITC)-dextran (1mg/mL; control) and FITC-BCG (multiplicity of infection, 10) for 20min at 37°C before their collection and the uptake of BCG-FITC was determined by flow cytometry. Similar experiments were performed at 4°C as a control. WPC (4mg/mL) after 72h (1.4±0.2-fold, p<0.05) and 96h (1.6±0.2-fold, p<0.05) hours increased the uptake of BCG-FITC. No effect on BCG-FITC uptake was observed at 24h or 48h. WPC also significantly increased the uptake of FITC-dextran (2.9±0.3-fold, p<0.05) after 96h. WPC also significantly decreased cell proliferation after 24h (84±2%), 48h (78±3%), 72h (64±2%, p<0.05), and 96h (45±2%, p<0.05). WPC exposure increased epithelial cells' permeability and death and enhanced their capacity for macropinocytosis. Our in vitro data suggest possible harmful effects of WPC on the ability of lung epithelial

  20. Previous heat shock treatment inhibits Mayaro virus replication in human lung adenocarcinoma (A549) cells.

    PubMed

    Virgilio, P L; Godinho-Netto, M C; Carvalho Mda, G

    1997-01-01

    Human lung adenocarcinoma cells (A549) were submitted to mild or severe heat shock (42 degrees C or 44 degrees C) for 1 h, while another group of cells was double-heat-shocked (submitted to 42 degrees C for 1 h, returned to 37 degrees C for 3 h, then exposed to 44 degrees C for 1 h). After each heat treatment, the cells were infected with Mayaro virus for 24 h and incubated at 37 degrees C. The results showed that the double-heat-shocked thermotolerant cells exhibited a 10(4)-fold virus titre inhibition, despite the recovery of protein synthesis and original morphology 24 h post-infection. In contrast, cells submitted to mild or severe heat shock exhibited weaker inhibition of Mayaro virus titre (10(2)-fold). The mildly heat-shocked cells also presented a full recovery in protein synthesis, which was not observed in severely heat-shocked cells. These results indicate that exposure of A549 cells to a mild or to a double heat shock treatment before Mayaro virus infection induces an antiviral state.

  1. Ultrafine particles (UFPs) from domestic wood stoves: genotoxicity in human lung carcinoma A549 cells.

    PubMed

    Marabini, Laura; Ozgen, Senem; Turacchi, Silvia; Aminti, Stefania; Arnaboldi, Francesca; Lonati, Giovanni; Fermo, Paola; Corbella, Lorenza; Valli, Gianluigi; Bernardoni, Vera; Dell'Acqua, Manuela; Vecchi, Roberta; Becagli, Silvia; Caruso, Donatella; Corrado, Galli L; Marinovich, Marina

    2017-08-01

    In this paper, results on the potential toxicity of ultrafine particles (UFPs d<100nm) emitted by the combustion of logwood and pellet (hardwood and softwood) are reported. The data were collected during the TOBICUP (TOxicity of BIomass COmbustion generated Ultrafine Particles) project, carried out by a team composed of interdisciplinary research groups. The genotoxic evaluation was performed on A549 cells (human lung carcinomacells) using UFPs whose chemical composition was assessed by a suite of analytical techniques. Comet assay and γ-H2AX evaluation show a significant DNA damage after 24h treatment. The interpretation of the results is based on the correlation among toxicological results, chemical-physical properties of UFPs, and the type and efficiency conditions in residential pellet or logwood stoves. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Genistein inhibits A549 human lung cancer cell proliferation via miR-27a and MET signaling

    PubMed Central

    Yang, Yang; Zang, Aimin; Jia, Youchao; Shang, Yanhong; Zhang, Zhuoqi; Ge, Kun; Zhang, Jinchao; Fan, Wufang; Wang, Bei

    2016-01-01

    Genistein is a soybean isoflavone; in its aglycone it has various biological activities. Animal experiments, clinical studies and epidemiological investigations suggest that genistein has preventative and curative functions for a number of diseases, particularly in cancer. The present study explored the potential anti-cancer effect of genistein by observing its role in inhibiting A549 human lung cancer cell proliferation and investigating the possible mechanism. A549 cells were exposed to various concentrations of genistein (0, 10, 25, 50, 100 and 200 µM; dissolved in physiological saline) for 1, 2 and 3 days. Subsequently, the viability of A549 cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell apoptosis was examined using a flow cytometer, caspase 3/9 activity was measured using commercial kits, reverse transcription quantitative polymerase chain reaction was used to analyze the miR-27a expression and western blotting was used to investigate MET protein expression. The results suggested a significant inhibition of A549 cell growth following treatment with genistein in a time- and dose-dependent manner. The current study also indicated that treatment with genistein significantly induces cell apoptosis and promotes caspase-3/9 activation of A549 cells in a dose-dependent manner. Further functional assays revealed that the anti-cancer effect of genistein activated microRNA-27a (miR-27a) expression levels and reduced MET protein expression in A549 cells. In conclusion, the present study demonstrates that genistein inhibits A549 human lung cancer cell proliferation. Furthermore, this study reports, for the first time, a correlation between the anti-cancer effect of genistein and miR-27a-mediated MET signaling. PMID:27602162

  3. Cytotoxicity and genotoxicity of size-fractionated iron oxide (magnetite) in A549 human lung epithelial cells: role of ROS, JNK, and NF-κB.

    PubMed

    Könczöl, Mathias; Ebeling, Sandra; Goldenberg, Ella; Treude, Fabian; Gminski, Richard; Gieré, Reto; Grobéty, Bernard; Rothen-Rutishauser, Barbara; Merfort, Irmgard; Mersch-Sundermann, Volker

    2011-09-19

    Airborne particulate matter (PM) of varying size and composition is known to cause health problems in humans. The iron oxide Fe(3)O(4) (magnetite) may be a major anthropogenic component in ambient PM and is derived mainly from industrial sources. In the present study, we have investigated the effects of four different size fractions of magnetite on signaling pathways, free radical generation, cytotoxicity, and genotoxicity in human alveolar epithelial-like type-II cells (A549). The magnetite particles used in the exposure experiments were characterized by mineralogical and chemical techniques. Four size fractions were investigated: bulk magnetite (0.2-10 μm), respirable fraction (2-3 μm), alveolar fraction (0.5-1.0 μm), and nanoparticles (20-60 nm). After 24 h of exposure, the A549 cells were investigated by transmission electron microscopy (TEM) to study particle uptake. TEM images showed an incorporation of magnetite particles in A549 cells by endocytosis. Particles were found as agglomerates in cytoplasm-bound vesicles, and few particles were detected in the cytoplasm but none in the nucleus. Increased production of reactive oxygen species (ROS), as determined by the 2',7'-dichlorfluorescein-diacetate assay (DCFH-DA), as well as genotoxic effects, as measured by the cytokinesis block-micronucleus test and the Comet assay, were observed for all of the studied fractions after 24 h of exposure. Moreover, activation of c-Jun N-terminal kinases (JNK) without increased nuclear factor kappa-B (NF-κB)-binding activity but delayed IκB-degradation was observed. Interestingly, pretreatment of cells with magnetite and subsequent stimulation with the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) led to a reduction of NF-κB DNA binding compared to that in stimulation with TNFα alone. Altogether, these experiments suggest that ROS formation may play an important role in the genotoxicity of magnetite in A549 cells but that activation of JNK seems to be

  4. 4-Nitroquinoline-1-oxide effects human lung adenocarcinoma A549 cells by regulating the expression of POLD4

    PubMed Central

    HUANG, QIN-MIAO; ZENG, YI-MING; ZHANG, HUA-PING; LV, LIANG-CHAO; YANG, DONG-YONG; LIN, HUI-HUANG

    2016-01-01

    The aim of the present study was to explore the expression of POLD4 in human lung adenocarcinoma A549 cells under 4-nitroquinoline-1-oxide (4NQO) stimulation to investigate the role of POLD4 in smoking-induced lung cancer. The lung cancer A549 cell line was treated with 4NQO, with or without MG132 (an inhibitor of proteasome activity), and subsequently the POLD4 level was determined by western blot analysis. Secondly, the cell sensitivity to 4NQO and Taxol was determined when the POLD4 expression level was downregulated by siRNA. The POLD4 protein levels in the A549 cells decreased following treatment with 4NQO; however, MG132 could reverse this phenotype. Downregulation of the POLD4 expression by siRNA enhanced A549 cell sensitivity to 4NQO, but not to Taxol. In conclusion, 4NQO affects human lung adenocarcinoma A549 cells by regulating the expression of POLD4. PMID:26998273

  5. Jolkinolide A and Jolkinolide B Inhibit Proliferation of A549 Cells and Activity of Human Umbilical Vein Endothelial Cells.

    PubMed

    Shen, Lei; Zhang, Shan-Qiang; Liu, Lei; Sun, Yu; Wu, Yu-Xuan; Xie, Li-Ping; Liu, Ji-Cheng

    2017-01-14

    BACKGROUND Jolkinolide A (JA) and Jolkinolide B (JB) are diterpenoids extracted from the roots of Euphorbia fischeriana Steud and have been shown to have anti-tumor activity. However, their effects on the ability of tumor cells to invade blood vessels and metastasize remain largely unknown. Investigations into the effects of JA and JB on the angiogenesis of tumor tissues may facilitate the identification of new natural drugs with anti-tumor growth and metastasis activities. MATERIAL AND METHODS We used different concentrations of JA and JB (20 μg/ml, 40 μg/ml, 60 μg/ml, 80 μg/ml, and 100 μg/ml) to stimulate A549 cells and then studied the effects on the growth and metastasis of lung cancers. In addition, we used conditional media from A549 cells (A549-CM) stimulated by either JA or JB in different concentrations to culture human umbilical vein endothelial cells (HUVECs). RESULTS We found that both JA and JB significantly inhibited the Akt-STAT3-mTOR signaling pathway and reduced the expression of VEGF in A549 cells, but JB exhibited more significant inhibitory effects than JA. The JB-stimulated A549 cell conditional media had a greater inhibitory effect on the proliferation and migration of HUVECs than did the conditional media of JA-stimulated A549 cells. This effect gradually increased with increasing concentrations of either type of Jolkinolide. CONCLUSIONS Our results suggest that JA and JB inhibited VEGF expression in A549 cells through the inhibition of the Akt-STAT3-mTOR signaling pathway, and directly inhibited the proliferation and migration of HUVECs. These findings are of great significance for the development of new plant-derived chemotherapy agents for the treatment of cancer.

  6. Jolkinolide A and Jolkinolide B Inhibit Proliferation of A549 Cells and Activity of Human Umbilical Vein Endothelial Cells

    PubMed Central

    Shen, Lei; Zhang, Shan-Qiang; Liu, Lei; Sun, Yu; Wu, Yu-Xuan; Xie, Li-Ping; Liu, Ji-Cheng

    2017-01-01

    Background Jolkinolide A (JA) and Jolkinolide B (JB) are diterpenoids extracted from the roots of Euphorbia fischeriana Steud and have been shown to have anti-tumor activity. However, their effects on the ability of tumor cells to invade blood vessels and metastasize remain largely unknown. Investigations into the effects of JA and JB on the angiogenesis of tumor tissues may facilitate the identification of new natural drugs with anti-tumor growth and metastasis activities. Material/Methods We used different concentrations of JA and JB (20 μg/ml, 40 μg/ml, 60 μg/ml, 80 μg/ml, and 100 μg/ml) to stimulate A549 cells and then studied the effects on the growth and metastasis of lung cancers. In addition, we used conditional media from A549 cells (A549-CM) stimulated by either JA or JB in different concentrations to culture human umbilical vein endothelial cells (HUVECs). Results We found that both JA and JB significantly inhibited the Akt-STAT3-mTOR signaling pathway and reduced the expression of VEGF in A549 cells, but JB exhibited more significant inhibitory effects than JA. The JB-stimulated A549 cell conditional media had a greater inhibitory effect on the proliferation and migration of HUVECs than did the conditional media of JA-stimulated A549 cells. This effect gradually increased with increasing concentrations of either type of Jolkinolide. Conclusions Our results suggest that JA and JB inhibited VEGF expression in A549 cells through the inhibition of the Akt-STAT3-mTOR signaling pathway, and directly inhibited the proliferation and migration of HUVECs. These findings are of great significance for the development of new plant-derived chemotherapy agents for the treatment of cancer. PMID:28087861

  7. Schisandrin B inhibits the proliferation of human lung adenocarcinoma A549 cells by inducing cycle arrest and apoptosis

    PubMed Central

    Lv, Xue-Jiao; Zhao, Li-Jing; Hao, Yu-Qiu; Su, Zhen-Zhong; Li, Jun-Yao; Du, Yan-Wei; Zhang, Jie

    2015-01-01

    Lung cancer is the leading cause of cancer death in the world. Schizandrin B (Sch B) is one of the main dibenzocyclooctadiene lignans present in the fruit of Schisandra chinensis (Schisandraceae). Sch B has multiple functions against cancer. The aim of this study was to determine the effect of Sch B on the proliferation, cell cycling, apoptosis and invasion of lung adenocarcinoma A549 cells by MTT, flow cytometry, wound healing and transwell invasion assays. Treatment with Sch B inhibited the proliferation of A549 cells in a dose-dependent manner. Sch B induced cell cycle arrest at G0/G1 phase by down-regulating the expression of cyclin D1, cyclin-dependent kinase (CDK)4, and CDK6, but up-regulating p53 and p21 expression in A549 cells. Furthermore, Sch B triggered A549 cell apoptosis by increasing Bax, cleaved caspase-3, 9, Cyto C, but decreasing Bcl-2 and PCNA expression. In addition, Sch B inhibited the invasion and migration of A549 cells by down-regulating the expressions of HIF-1, VEGF, MMP-9 and MMP-2. Therefore, Sch B has potent anti-tumor activity and may be a promising traditional Chinese medicine for human lung carcinoma. PMID:26221229

  8. Combined toxic effect of airborne heavy metals on human lung cell line A549.

    PubMed

    Choi, Yeowool; Park, Kihong; Kim, Injeong; Kim, Sang D

    2016-11-25

    Many studies have demonstrated that heavy metals existing as a mixture in the atmospheric environment cause adverse effects on human health and are important key factors of cytotoxicity; however, little investigation has been conducted on a toxicological study of a metal mixture from atmospheric fine particulate matter. The objective of this study was to predict the combined effects of heavy metals in aerosol by using in vitro human cells and obtain a suitable mixture toxicity model. Arsenic, nickel, and lead were selected for mixtures exposed to A549 human lung cancer cells. Cell proliferation (WST-1), glutathione (GSH), and interleukin (IL)-8 inhibition were observed and applied to the prediction models of mixture toxicity, concentration addition (CA) and independent action (IA). The total mixture concentrations were set by an IC10-fixed ratio of individual toxicity to be more realistic for mortality and enzyme inhibition tests. The results showed that the IA model was statistically closer to the observed results than the CA model in mortality, indicating dissimilar modes of action. For the GSH inhibition, the results predicted by the IA and CA models were highly overestimated relative to mortality. Meanwhile, the IL-8 results were stable with no significant change in immune reaction related to inflammation. In conclusion, the IA model is a rapid prediction model in heavy metals mixtures; mortality, as a total outcome of cell response, is a good tool for demonstrating the combined toxicity rather than other biochemical responses.

  9. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling

    NASA Astrophysics Data System (ADS)

    Cheng, C.-Y.; Perevedentseva, E.; Tu, J.-S.; Chung, P.-H.; Cheng, C.-L.; Liu, K.-K.; Chao, J.-I.; Chen, P.-H.; Chang, C.-C.

    2007-04-01

    This letter presents direct observation of growth hormone receptor in one single cancer cell using nanodiamond-growth hormone complex as a specific probe. The interaction of surface growth hormone receptor of A549 human lung epithelial cells with growth hormone was observed using nanodiamond's unique spectroscopic signal via confocal Raman mapping. The growth hormone molecules were covalent conjugated to 100nm diameter carboxylated nanodiamonds, which can be recognized specifically by the growth hormone receptors of A549 cell. The Raman spectroscopic signal of diamond provides direct and in vitro observation of growth hormone receptors in physiology condition in a single cell level.

  10. 5-allyl-7-gen-difluoromethoxychrysin enhances TRAIL-induced apoptosis in human lung carcinoma A549 cells

    PubMed Central

    2011-01-01

    Background 5-allyl-7-gen-difluoromethoxychrysin (AFMC) is a novel synthetic analogue of chrysin that has been reported to inhibit proliferation in various cancer cell lines. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-cancer agent. Methods The cytotoxicity of A549 and WI-38 cells were determined using colorimetry. Apoptosis was detected by flow cytometry (FCM) after propidium iodide (PI) fluorescence staining and agarose gel electrophoresis. Caspase activities were evaluated using enzyme-linked immunosorbent assay (ELISA).The expressions of DR4 and DR5 were analyzed using FCM and western blot. Results Subtoxic concentrations of AFMC sensitize human non-small cell lung cancer (NSCLC) A549 cells to TRAIL-mediated apoptosis. Combined treatment of A549 cells with AFMC and TRAIL significantly activated caspase-3, -8 and -9. The caspase-3 inhibitor zDEVD-fmk and the caspase-8 inhibitor zIETD-fmk blocked the apoptosis of A549 cells induced by co-treatment with AFMC and TRAIL. In addition, we found that treatment of A549 cells with AFMC significantly induced the expression of death receptor 5 (DR5). AFMC-mediated sensitization of A549 cells to TRAIL was efficiently reduced by administration of a blocking antibody or small interfering RNAs against DR5. AFMC also caused increase of the Sub-G1 cells by TRAIL treatment and increased the expression levels of DR5 in other NSCLC H460 and H157 cell lines. In contrast, AFMC-mediated induction of DR5 expression was not observed in human embryo lung WI-38 cells, and AFMC did not sensitize WI-38 cells to TRAIL-induced apoptosis. Conclusions AFMC synergistically enhances TRAIL-mediated apoptosis in NSCLC cells through up-regulating DR5 expression. PMID:21801359

  11. Antitumor efficacy of the cytotoxic RNase, ranpirnase, on A549 human lung cancer xenografts of nude mice.

    PubMed

    Lee, Intae; Kalota, Anna; Gewirtz, Alan M; Shogen, Kuslima

    2007-01-01

    The cytotoxic RNase, ranpirnase (ONCONASE, ONC), may have promising therapeutic implication as an alternative for cisplatin for the treatment of lung cancer, due to inhibition of protein synthesis by t-RNA cleavage. A549 and NCI-H1975 human NSCLC cell lines were cultured in the presence and absence of ONC. Cytotoxicity was monitored using a clonogenic assay. Using an inverted phase and fluorescence microscope, we studied whether apoptosis was induced by ONC in gefitinib-induced apoptosis-resistant A549 tumor cells. The therapeutic effectiveness of ONC was studied via single and multiple administrations on A549 human non-small cell lung cancer (NSCLC), including tumors previously untreatable by cisplatin. ONC-induced changes in ATP levels were also monitored by non-localized phosphorus MR spectroscopy. ONC significantly inhibited the cell growth of A549 tumors. Apoptosis was significantly induced by ONC in a dose-dependent manner. In animal studies, multiple small doses of ONC were more effective than one large single dose for the inhibition of tumor growth with reduced side-effects, probably due to the normalization of leaky tumor vessels. ONC in combination with cisplatin significantly reduced tumor growth of A549 tumors. In large tumors, including those unsuccessfully treated with cisplatin, ONC showed inhibition of tumor growth, while a second treatment of cisplatin did not. During monitoring by non-localized phosphorus MR spectroscopy, ATP levels decreased, likely due to ONC-induced inhibition of oxygen consumption (QO2). ONC significantly inhibited tumor growth of A549 NSCLC cells in both in vitro and in vivo studies. This investigation suggests important potential clinical uses of ONC for the treatment of NSCLC cancer patients.

  12. Enhancement of radiosensitivity by roscovitine pretreatment in human non-small cell lung cancer A549 cells.

    PubMed

    Zhang, Feng; Zhang, Tao; Gu, Zhong-Ping; Zhou, Yong-An; Han, Yong; Li, Xiao-Fei; Wang, Xiao-Ping; Cheng, Qing-Shu; Mei, Qi-Bing

    2008-09-01

    Roscovitine has been reported to have anti-proliferative properties and is in process of undergoing clinical trials. In addition to its intrinsic anticancer properties, it has recently been suggested that roscovitine may also enhance the activity of traditional chemo- and radio- therapies in certain cancer cell lines. The purpose of this study was to define the activity of roscovitine in increasing radiosensitivity of human non-small cell lung cancer (NSCLC) cell line A549 cells in vitro. A549 cells were exposed to ionizing radiation (IR) of gamma-ray with or without roscovitine pretreatment. Clonogenic assay was performed and cell cycle and apoptosis were analyzed by flow cytometry. Expression of PARP, Ku70 and Ku80 proteins was detected by Western blot. The active form of caspase-3 positive cells were measured by flow cytometry. Our results showed that roscovitine caused dose-dependent apoptosis in A549 cells. Pretreatment with minimally toxic concentration of roscovitine significantly radiosensitized A549 cells by inhibiting colony formation. We then examined potential mechanisms that may contribute to the enhanced radiation response induced by roscovitine. Our results showed that the combination treatment significantly induced apoptosis in A549 cells compared to roscovitine or IR treatment alone. Meanwhile, in the co-treatment group, the percentage of cells with the active form of caspase-3 was markedly increased, while roscovitine or IR alone had little effect. Roscovitine decreased S phase cells when used alone or in sequential combination with IR. Furthermore, this combination treatment blocked DNA repair process after IR, indicated by down regulation of Ku70 and Ku80 proteins, while the singly used treatment did not. Taken together, these results suggest that roscovitine has the potential to act as a radio-sensitizer in A549 cells by promoting caspase-3 activity and increasing apoptosis, affecting cell cycle distribution and impairing DNA repair process.

  13. Different mechanisms for metal-induced adaptation to cadmium in the human lung cell lines A549 and H441.

    PubMed

    Sauvageau, Josée-Anne; Jumarie, Catherine

    2013-06-01

    Sensitivity to Cd and Zn as well as the capacity to develop tolerance were characterized in human lung cells A549 and H441. In the A549 cells, a 2-fold lower LC(50) was obtained for Cd compared to Zn, whereas H441 cells were similarly sensitive to both metals. H441 cells were twice as resistant to Cd as the A549 cells. Higher HSP70, but not metallothionein (MT) or glutathione (GSH) levels, could contribute to this better resistance. A 1.5- and 2-fold increase in the LC(50) for Cd was obtained in the A549 cells pre-exposed to non-cytotoxic concentrations of Cd (20 μM) or Zn (40 μM) for 24 h. On the other hand, only Zn increased H441 cells' resistance to Cd. Maximum Zn- and Cd-induced tolerances were reached as early as 3 and 12 h, respectively. Increases in MT-IIa and HSP70 messenger RNA levels were higher in A549 cells, but cycloheximide eliminated the induction of tolerance only in the H441 cells. Protein synthesis is a prerequisite for metal-induced tolerance to Cd in the H441 cells but not the A549 cells. Results obtained with L-buthionine sulfoximine revealed that GSH synthesis is not responsible for the acquired tolerance in both cell lines. However, GSH plays a critical role against Cd toxicity, and pro-oxidant conditions sensitized cells to Cd with different impacts on the metal-induced mechanisms of acquired tolerance. GSH and catalase both provide antioxidative protection, but only the stress related to low GSH content, not that resulting from catalase inhibition, may be alleviated with Zn.

  14. Pomegranate fruit extract inhibits prosurvival pathways in human A549 lung carcinoma cells and tumor growth in athymic nude mice.

    PubMed

    Khan, Naghma; Hadi, Naghma; Afaq, Farrukh; Syed, Deeba N; Kweon, Mee-Hyang; Mukhtar, Hasan

    2007-01-01

    Developing novel mechanism-based chemopreventive approaches for lung cancer through the use of dietary substances which humans can accept has become an important goal. In the present study, employing normal human bronchial epithelial cells (NHBE) and human lung carcinoma A549 cells, we first compared the growth inhibitory effects of pomegranate fruit extract (PFE). Treatment of PFE (50-150 microg/ml) for 72 h was found to result in a decrease in the viability of A549 cells but had only minimal effects on NHBE cells as assessed by the MTT and Trypan blue assays. PFE treatment of A549 cells also resulted in dose-dependent arrest of cells in G0-G1 phase of the cell cycle (as assessed by DNA cell cycle analysis). We further found that PFE treatment also resulted in (i) induction of WAF1/p21 and KIP1/p27, (ii) decrease in the protein expressions of cyclins D1, D2 and E, and (iii) decrease in cyclin-dependent kinase (cdk) 2, cdk4 and cdk6 expression. The treatment of cells with PFE inhibited (i) phosphorylation of MAPK proteins, (ii) inhibition of PI3K, (iii) phosphorylation of Akt at Thr308, (iv) NF-kappaB and IKKalpha, (v) degradation and phosphorylation of IkappaBalpha, and (vi) Ki-67 and PCNA. We also found that PFE treatment to A549 cells resulted in inhibition of NF-kappaB DNA-binding activity. Oral administration of PFE (0.1 and 0.2%, wt/vol) to athymic nude mice implanted with A549 cells resulted in a significant inhibition in tumor growth. Our results provide a suggestion that PFE can be a useful chemopreventive/chemotherapeutic agent against human lung cancer.

  15. Enhancement of radiosensitivity by CpG-oligodeoxyribonucleotide-7909 in human non-small cell lung cancer A549 cells.

    PubMed

    Zha, Lin; Qiao, Tiankui; Yuan, Sujuan; Lei, Linjie

    2010-04-01

    CpG-oligodeoxyribonucleotides (CpG-ODNs), which induce signaling through the toll-like receptor 9, are currently under investigation as immunity stimulators against cancer. It has recently been suggested that CpG-ODNs may also enhance sensitivity to traditional therapies including chemotherapy in certain cancer-cell lines. The purpose of this study was to define the activity of CpG-ODN7909 in increasing radiosensitivity of the human non-small cell lung cancer cell line A549 in vitro. First, a dose- and time-dependent inhibitory effect on cell viability was observed after A549 cells were treated with different concentrations of CpG-ODN7909 (5, 10, 30, and 60 microg/mL). Second, decreased cell clonogenic survival, enhanced cell apoptotic index, accumulated percentage of cells in the G2/M phase, and increased tumor necrosis factor (TNF)-alpha secretion were found after combined treatments with 10 microg/mL of CpG-ODN7909 and radiation compared to either treatment alone (p < 0.05). Furthermore, the toll-like receptor 9 mRNA was found to express in A549. The results suggest that CpG-ODN7909 can increase the radiosensitivity of human non-small cell lung cancer A549 cells, which may be associated with reduced cell clonogenic survival, enhanced apoptosis, prolonged cell-cycle arrest in G2/M, and stimulation of TNF-alpha secretion.

  16. Effect of copper overload on the survival of HepG2 and A-549 human-derived cells.

    PubMed

    Arnal, N; de Alaniz, M J T; Marra, C A

    2013-03-01

    We investigated the effect of copper (Cu) overload (20-160 µM/24 h) in two cell lines of human hepatic (HepG2) and pulmonary (A-549) origin by determining lipid and protein damage and the response of the antioxidant defence system. A-549 cells were more sensitive to Cu overload than HepG2 cells. A marked increase was observed in both the cell lines in the nitrate plus nitrite concentration, protein carbonyls and thiobarbituric acid reactive substances (TBARS). The TBARS increase was consistent with an increment in saturated fatty acids at the expense of polyunsaturated acids in a Cu concentration-dependent fashion. Antioxidant enzymes were stimulated by Cu overload. Superoxide dismutase activity increased significantly in both the cell lines, with greater increases in HepG2 than in A-549 cells. A marked increase in ceruloplasmin and metallothionein content in both the cell types was also observed. Dose-dependent decreases in α-tocopherol and ferric reducing ability were observed. Total glutathione content was lower in A-549 cells and higher in HepG2. Calpain and caspase-3 were differentially activated in a dose-dependent manner under copper-induced reactive oxygen species production. We conclude that Cu exposure of human lung- and liver-derived cells should be considered a reliable experimental system for detailed study of mechanism/mechanisms by which Cu overload exerts its deleterious effects.

  17. An Optimised Human Cell Culture Model for Alveolar Epithelial Transport.

    PubMed

    Ren, Hui; Birch, Nigel P; Suresh, Vinod

    2016-01-01

    Robust and reproducible in vitro models are required for investigating the pathways involved in fluid homeostasis in the human alveolar epithelium. We performed functional and phenotypic characterisation of ion transport in the human pulmonary epithelial cell lines NCI-H441 and A549 to determine their similarity to primary human alveolar type II cells. NCI-H441 cells exhibited high expression of junctional proteins ZO-1, and E-cadherin, seal-forming claudin-3, -4, -5 and Na+-K+-ATPase while A549 cells exhibited high expression of pore-forming claudin-2. Consistent with this phenotype NCI-H441, but not A549, cells formed a functional barrier with active ion transport characterised by higher electrical resistance (529 ± 178 Ω cm2 vs 28 ± 4 Ω cm2), lower paracellular permeability ((176 ± 42) ×10-8 cm/s vs (738 ± 190) ×10-8 cm/s) and higher transepithelial potential difference (11.9 ± 4 mV vs 0 mV). Phenotypic and functional properties of NCI-H441 cells were tuned by varying cell seeding density and supplement concentrations. The cells formed a polarised monolayer typical of in vivo epithelium at seeding densities of 100,000 cells per 12-well insert while higher densities resulted in multiple cell layers. Dexamethasone and insulin-transferrin-selenium supplements were required for the development of high levels of electrical resistance, potential difference and expression of claudin-3 and Na+-K+-ATPase. Treatment of NCI-H441 cells with inhibitors and agonists of sodium and chloride channels indicated sodium absorption through ENaC under baseline and forskolin-stimulated conditions. Chloride transport was not sensitive to inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) under either condition. Channels inhibited by 5-nitro-1-(3-phenylpropylamino) benzoic acid (NPPB) contributed to chloride secretion following forskolin stimulation, but not at baseline. These data precisely define experimental conditions for the application of NCI

  18. An Optimised Human Cell Culture Model for Alveolar Epithelial Transport

    PubMed Central

    Birch, Nigel P.; Suresh, Vinod

    2016-01-01

    Robust and reproducible in vitro models are required for investigating the pathways involved in fluid homeostasis in the human alveolar epithelium. We performed functional and phenotypic characterisation of ion transport in the human pulmonary epithelial cell lines NCI-H441 and A549 to determine their similarity to primary human alveolar type II cells. NCI-H441 cells exhibited high expression of junctional proteins ZO-1, and E-cadherin, seal-forming claudin-3, -4, -5 and Na+-K+-ATPase while A549 cells exhibited high expression of pore-forming claudin-2. Consistent with this phenotype NCI-H441, but not A549, cells formed a functional barrier with active ion transport characterised by higher electrical resistance (529 ± 178 Ω cm2 vs 28 ± 4 Ω cm2), lower paracellular permeability ((176 ± 42) ×10−8 cm/s vs (738 ± 190) ×10−8 cm/s) and higher transepithelial potential difference (11.9 ± 4 mV vs 0 mV). Phenotypic and functional properties of NCI-H441 cells were tuned by varying cell seeding density and supplement concentrations. The cells formed a polarised monolayer typical of in vivo epithelium at seeding densities of 100,000 cells per 12-well insert while higher densities resulted in multiple cell layers. Dexamethasone and insulin-transferrin-selenium supplements were required for the development of high levels of electrical resistance, potential difference and expression of claudin-3 and Na+-K+-ATPase. Treatment of NCI-H441 cells with inhibitors and agonists of sodium and chloride channels indicated sodium absorption through ENaC under baseline and forskolin-stimulated conditions. Chloride transport was not sensitive to inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) under either condition. Channels inhibited by 5-nitro-1-(3-phenylpropylamino) benzoic acid (NPPB) contributed to chloride secretion following forskolin stimulation, but not at baseline. These data precisely define experimental conditions for the application of NCI

  19. Molecular mechanisms underlying mangiferin-induced apoptosis and cell cycle arrest in A549 human lung carcinoma cells

    PubMed Central

    SHI, WEI; DENG, JIAGANG; TONG, RONGSHENG; YANG, YONG; HE, XIA; LV, JIANZHEN; WANG, HAILIAN; DENG, SHAOPING; QI, PING; ZHANG, DINGDING; WANG, YI

    2016-01-01

    Mangiferin, which is a C-glucosylxanthone (1,3,6,7-tetrahydroxyxanthone-C2-β-D-glucoside) purified from plant sources, has recently gained attention due to its various biological activities. The present study aimed to determine the apoptotic effects of mangiferin on A549 human lung adenocarcinoma cells. In vitro studies demonstrated that mangiferin exerted growth-inhibitory and apoptosis-inducing effects against A549 cells. In addition, mangiferin exhibited anti-tumor properties in A549 xenograft mice in vivo. Mangiferin triggered G2/M phase cell cycle arrest via down-regulating the cyclin-dependent kinase 1-cyclin B1 signaling pathway, and induced apoptotic cell death by inhibiting the protein kinase C-nuclear factor-κB pathway. In addition, mangiferin was able to enhance the antiproliferative effects of cisplatin on A549 cells, thus indicating the potential for a combined therapy. Notably, mangiferin exerted anticancer effects in vivo, where it was able to markedly decrease the volume and weight of subcutaneous tumor mass, and expand the lifespan of xenograft mice. The present study clarified the molecular mechanisms underlying mangiferin-induced antitumor activities, and suggested that mangiferin may be considered a potential antineoplastic drug for the future treatment of cancer. PMID:26935347

  20. Rhodococcus equi human clinical isolates enter and survive within human alveolar epithelial cells.

    PubMed

    Ramos-Vivas, J; Pilares-Ortega, L; Remuzgo-Martínez, S; Padilla, D; Gutiérrez-Díaz, J L; Navas-Méndez, J

    2011-05-01

    Rhodococcus equi is an emerging opportunistic human pathogen associated with immunosuppressed people, especially those infected with the human immunodeficiency virus (HIV). This pathogen resides primarily within lung macrophages of infected patients, which may explain in part its ability to escape normal pulmonary defense mechanisms. Despite numerous studies as a pulmonary pathogen in foals, where a plasmid seems to play an important role in virulence, information on the pathogenesis of this pathogen in humans is still scarce. In this study, fluorescence microscopy and vancomycin protection assays were used to investigate the ability of R. equi human isolates to adhere to and to invade the human alveolar epithelial cell line A549. Our findings indicate that some R. equi clinical strains are capable of adhering, entering and surviving within the alveolar cell line, which may contribute to the pathogen persistence in lung tissues. Copyright © 2011 Institut Pasteur. Published by Elsevier SAS. All rights reserved.

  1. Oxidative stress and inflammatory response to printer toner particles in human epithelial A549 lung cells.

    PubMed

    Könczöl, Mathias; Weiß, Adilka; Gminski, Richard; Merfort, Irmgard; Mersch-Sundermann, Volker

    2013-02-04

    Reports on adverse health effects related to occupational exposure to toner powder are still inconclusive. Therefore, we have previously conducted an in vitro-study to characterize the genotoxic potential of three commercially available black printer toner powders in A549 lung cells. In these cell-based assays it was clearly demonstrated that the tested toner powders damage DNA and induce micronucleus (MN) formation. Here, we have studied the cytotoxic and proinflammatory potential of these three types of printer toner particles and the influence of ROS and NF-κB induction in order to unravel the underlying mechanisms. A549 cells were exposed to various concentrations of printer toner particle suspensions for 24 h. The toner particles were observed to exert significant cytotoxic effects in the WST-1 and neutral red (NR)-assays, although to a varying extent. Caspase 3/7 activity increased, while the mitochondrial membrane potential (MMP) was not affected. Particles of all three printer toner powders induced concentration-dependent formation of reactive oxygen species (ROS), as measured in the DCFH-DA assay. Furthermore, toner particle exposure enhanced interleukin-6 and interleukin-8 production, which is in agreement with activation of the transcription factor NF-κB in A549 cells shown by the electrophoretic mobility shift assay (EMSA). Therefore, it can be concluded that exposure of A549 lung cells to three selected printer toner powders caused oxidative stress through induction of ROS. Increased ROS formation may trigger genotoxic effects and activate proinflammatory pathways.

  2. Capsaicin-induced genotoxic stress does not promote apoptosis in A549 human lung and DU145 prostate cancer cells.

    PubMed

    Lewinska, Anna; Jarosz, Paulina; Czech, Joanna; Rzeszutek, Iwona; Bielak-Zmijewska, Anna; Grabowska, Wioleta; Wnuk, Maciej

    2015-02-01

    Capsaicin is the major pungent component of the hot chili peppers of the genus Capsicum, which are consumed worldwide as a food additive. More recently, the selective action of capsaicin against cancer cells has been reported. Capsaicin was found to induce apoptosis and inhibit proliferation of a wide range of cancer cells in vitro, whereas being inactive against normal cells. As data on capsaicin-induced genotoxicity are limited and the effects of capsaicin against human lung A549 and DU145 prostate cancer cells were not explored in detail, we were interested in determining whether capsaicin-associated genotoxicity may also provoke A549 and DU145 cell death. Capsaicin-induced decrease in metabolic activity and cell proliferation, and changes in the cell cycle were limited to high concentrations used (≥ 100 μM), whereas, at lower concentrations, capsaicin stimulated both DNA double strand breaks and micronuclei production. Capsaicin was unable to provoke apoptotic cell death when used up to 250 μM concentrations. Capsaicin induced oxidative stress, but was ineffective in provoking the dissipation of the mitochondrial inner transmembrane potential. A different magnitude of p53 binding protein 1 (53BP1) recruitment contributed to diverse capsaicin-induced genotoxic effects in DU145 and A549 cells. Capsaicin was also found to be a DNA hypermethylating agent in A549 cells. In summary, we have shown that genotoxic effects of capsaicin may contribute to limited susceptibility of DU145 and A549 cancer cells to apoptosis in vitro, which may question the usefulness of capsaicin-based anticancer therapy, at least in a case of lung and prostate cancer.

  3. Bostrycin inhibits proliferation of human lung carcinoma A549 cells via downregulation of the PI3K/Akt pathway

    PubMed Central

    2011-01-01

    Background Bostrycin is a novel compound isolated from marine fungi that inhibits proliferation of many cancer cells. However, the inhibitory effect of bostrycin on lung cancers has not been reported. This study is to investigate the inhibitory effects and mechanism of bostrycin on human lung cancer cells in vitro. Methods We used MTT assay, flow cytometry, microarray, real time PCR, and Western blotting to detect the effect of bostrycin on A549 human pulmonary adenocarcinoma cells. Results We showed a significant inhibition of cell proliferation and induction of apoptosis in bostrycin-treated lung adenocarcinoma cells. Bostrycin treatment caused cell cycle arrest in the G0/G1 phase. We also found the upregulation of microRNA-638 and microRNA-923 in bostrycin-treated cells. further, we found the downregulation of p110α and p-Akt/PKB proteins and increased activity of p27 protein after bostrycin treatment in A549 cells. Conclusions Our study indicated that bostrycin had a significant inhibitory effect on proliferation of A549 cells. It is possible that upregulation of microRNA-638 and microRNA-923 and downregulaton of the PI3K/AKT pathway proteins played a role in induction of cell cycle arrest and apoptosis in bostrycin-treated cells. PMID:21303527

  4. In vitro evaluation of the cellular effect of indium tin oxide nanoparticles using the human lung adenocarcinoma A549 cells.

    PubMed

    Tabei, Yosuke; Sonoda, Akinari; Nakajima, Yoshihiro; Biju, Vasudevanpillai; Makita, Yoji; Yoshida, Yasukazu; Horie, Masanori

    2015-05-01

    Indium tin oxide (ITO) is widely used in liquid crystal displays (LCDs) or plasma and mobile phone displays. Elevated production and usage of ITO in such displays have led to increased concerns over the safety of industrial workers exposed to particulate aerosols produced during cutting, grinding and polishing of these materials. However, the cellular effects of ITO nanoparticles (NPs) are still unclear, although it has been reported that micro-scale ITO particles induce cytotoxicity. The aim of this study was to examine the potential of ITO NPs to induce cytotoxicity, oxidative stress, and DNA damage using human lung adenocarcinoma A549 cells. Here, stable dispersions of a medium containing ITO NPs were obtained using pre-adsorption and centrifugal fractionation methods, and the A549 cells were incubated in this medium. The ITO NPs showed low cytotoxic effects as shown by the WST-1 and LDH assays. Transmission electron microscopy observations showed the cellular uptake of ITO NPs. The ITO NPs increased the intracellular level of reactive oxygen species and the expression of the heme oxygenase 1 gene. Further, the results of alkaline comet assays showed that ITO NPs induced DNA damage. Thus, these results suggest that ITO NPs possess a genotoxic potential on human lung adenocarcinoma A549 cells.

  5. The change of intracellular pH is involved in the cisplatin-resistance of human lung adenocarcinoma A549/DDP cells.

    PubMed

    Huang, Zhenhua; Huang, Youguo

    2005-01-01

    We had reported that the intracellular pH (pHi) of human lung adenocarcinoma A549 cells, which is sensitive to cisplatin, was more acidic than that of cisplatin-resistant A549/DDP cells. The correlation between the change of the pHi and cisplatin-resistance of A549/DDP cells was further studied by altering pHi in consequence of the change of CO2 concentration of the incubator. The pHi alterations of the cells were monitored by using the fluorescence probe of BCECF-AM. The results indicated that the pHi was more alkaline at lower CO2 concentration (2% CO2 in the incubator) and more acidic at higher CO2 concentration (8% CO2 in the incubator) for both A549 and A549/DDP cells compared with those of both A549 and A549/DDP cells cultured at 5% CO2 as the normal condition. Accumulation of bodipy-cisplatin, a fluorescence probe used for drug resistance assays, in A549 cells incubated at 2%, 5%, and 8% CO2 was increased 8.4%, 17.4%, and 23.5% compared to A549/DDP cells, respectively. Intracellular sequestration and distribution of bodipy-cisplatin imaged by laser scanning confocal microscopy indicated that bodipy-cisplatin was more encapsulated in acidic compartments of A549/DDP cells as shown with acridine orange, a dye that specifically labels acidic organelles in the cells. These results can be further confirmed in liposome systems with different pH gradients. It is proposed from the above results that the change of pHi in especially more acidic compartments in A549/DDP cells involves their cisplatin resistance.

  6. Toward therapeutic pulmonary alveolar regeneration in humans.

    PubMed

    Massaro, Donald; Massaro, Gloria Decarlo

    2006-11-01

    In humans, age results in loss of pulmonary alveoli; menopause accelerates loss of diffusing capacity, an index of alveolar surface area; and disease (e.g., chronic obstructive pulmonary disease) results in loss of alveoli. Thus, an important goal for investigators is to generate knowledge that allows induction of pulmonary alveolar regeneration in humans. Our enthusiasm for this goal and our assessment of its feasibility are based on work in several laboratories over the last decade that has disproved the notion that pulmonary alveoli are incapable of regeneration, and on the growing evidence that signals that regulate programs of alveolar turnover (loss and regeneration) are conserved from rodents to humans. We review animal models of alveolar loss and regeneration and their conservation during evolution, and hence their relevance to humans.

  7. Factors involved in depletion of glutathione from A549 human lung carcinoma cells: implications for radiotherapy. [Buthionine sulfoximine

    SciTech Connect

    Biaglow, J.E.; Varnes, M.E.; Epp, E.R.; Clark, E.P.

    1984-08-01

    The rate of GSH resynthesis has been measured in plateau phase cultures of A549 human lung carcinoma cells subjected to a fresh medium change. Buthionine sulfoximine (BSO) blocks this resynthesis. Diethyl maleate (DEM) causes a decrease in accumulation of GSH. If DEM is added concurrently with BSO there is a rapid decline in GSH that is maximal in the presence of 0.5 mM DEM. GSH depletion rapidly occurs when BSO is added to log phase cultures which initially are higher in GSH content. Twenty-four hr treatment of A549 cells with BSO results in cells that are more radiosensitive in air and show a slight hypoxic radiation response. A 2 hr treatment with DEM results in some hypoxic sensitization and little increase in the aerobic radiation response. Cells treated simultaneously with BSO + DEM show little increase in the hypoxic radiation response, compared to DEM alone, but are more sensitive under aerobic conditions. Decreased cell survival for aerobically irradiated log phase A549 cells occurs within minutes after addition of a mixture of BSO + DEM. The authors suggest that the enhanced aerobic radiation response is related to an inability of GSH depleted cells to inactivate either peroxy radicals or hydroperoxides that may be produced during irradiation of BSO treated cells. Furthermore, enhancement of the aerobic radiation response may be useful in vivo if normal tissue responses are not also increased.

  8. Induction of apoptosis in human lung carcinoma A549 epithelial cells with an ethanol extract of Tremella mesenterica.

    PubMed

    Chen, Nan-Yin; Lai, Hsi-Huai; Hsu, Tai-Hao; Lin, Fang-Yi; Chen, Jian-Zhi; Lo, Hui-Chen

    2008-05-01

    Tremella mesenterica (TM) is a common food and folk medicine widely used in several Asian countries as a tonic for the lungs. In the present study, we compared the effects of extracellular polysaccharides (EPS), intracellular polysaccharides (IPS), and ethanol extract (EE) of Tremella mesenterica on the induction of apoptosis into human lung carcinoma A549 epithelial cells. The EE, but not the EPS or the IPS, almost completely inhibited the growth of A549 cells. The results of Annexin V-FITC/PI staining and flow cytometric analysis indicated that the percentage of Annexin V(+)/PI(-) cells in EE-treated cells increased to 32.8%. The results of further investigation showed a disruption of mitochondrial transmembrane potential (DeltaPsi(m)), the production of reactive oxygen species (ROS), and the activation of caspase-3 protein in EE-treated cells. These findings suggest that EE can decrease cell viability and induce apoptosis in A549 cell lines by activating a mitochondrial pathway.

  9. Vitamin D Analogs Potentiate the Antitumor Effect of Imatinib Mesylate in a Human A549 Lung Tumor Model

    PubMed Central

    Maj, Ewa; Filip-Psurska, Beata; Świtalska, Marta; Kutner, Andrzej; Wietrzyk, Joanna

    2015-01-01

    In previous papers, we presented data on studies on the anticancer activity of the vitamin D3 analogs, named PRI-2191 and PRI-2205, in different cancer models. In this study, we showed the improved antiproliferative activity of a combination of imatinib mesylate (Gleevec, GV) and cytostatic agents in in vitro studies, when used with a third compound, namely PRI-2191, in an A549 human lung cancer model. Furthermore, we analyzed the influence of both PRI-2191, as well as PRI-2205 on the anticancer activity of GV in mice bearing A549 tumors. The route of PRI-2191 analog administration showed a significant impact on the outcome of GV treatment: subcutaneous injection was more efficient and less toxic than oral gavage. Moreover, both vitamin D compounds increased the anticancer activity of GV; however, they might also potentiate some adverse effects. We also evaluated in tumor tissue the expression of VEGF, PDGF-BB, vitamin D receptor, CYP27B1, CYP24, p53 and Bcl-2, as well as PDGF receptors: α and β. We observed the upregulation of p53 expression and the downregulation of Bcl-2, as well as VEGF in A549 tumors as a result of the tested treatment. However, vitamin D analogs did not significantly influence the expression of these proteins. PMID:26580599

  10. Therapeutic effects of sorafenib on the A549/DDP human lung adenocarcinoma cell line in vitro.

    PubMed

    Chen, Xiang-Qi; Wang, Yu-Lan; Li, Zhi-Ying; Lin, Ting-Yan

    2014-07-01

    The aim of the present study was to observe the effects of sorafenib on the proliferation, apoptosis and invasion of A549/DDP cisplatin-resistant lung adenocarcinoma cells cultured in vitro. The A549/DDP cisplatin-resistant lung adenocarcinoma cell strain was cultured in vitro, the cell culture group incubated in culture medium only was set as the control group (Group S0) and the four concentration gradients of sorafenib were added to the culture groups as the experimental groups: S1, 2 µmol/l; S2, 4 µmol/l; S3, 8 µmol/l; and S4, 16 µmol/l. The MTT assay was used to determine the growth inhibition rate of the cells, which were respectively subjected to sorafenib treatment for 24, 48 and 72 h. Flow cytometry was used to determine the rate of apoptosis of cells in each group following sorafenib treatment for 72 h. Furthermore, the Transwell invasion experiment was used to determine the effect on A549/DDP cell invasion following sorafenib treatment for 24 h. Based on the MTT assay, it was found that the inhibition rates of A549/DDP cisplatin-resistant lung adenocarcinoma cells in groups S1-4 following sorafenib treatment for 24 h were 4.58±2.82, 14.93±2.62, 37.58±7.13 and 58.39±8.15%, respectively. For 48 h, inhibition rates in S1-4 were 14.98±2.93, 26.28±7.31, 63.00±3.05 and 78.84±3.96%, respectively, and for 72 h, inhibition rates were 18.80±2.82, 32.71±2.55, 75.51±4.73 and 87.50±3.36%, respectively. The difference in the inhibition rates of cells among the experimental groups for the same incubation time showed statistical significance (P<0.05). Flow cytometric analysis indicated that the rate of apoptosis in the control group was 8.88±0.81% following sorafenib treatment for 72 h, and the rates of apoptosis in groups S1-4 were, 12.84±0.24, 17.27±0.78, 21.98±0.75 and 49.67±1.38%, respectively. The rate of apoptosis in each experimental group was higher compared with that in the control group (P<0.05). The difference in the rate of apoptosis

  11. Comparative physicochemical and biological characterization of NIST Interim Reference Material PM2.5 and SRM 1648 in human A549 and mouse RAW264.7 cells.

    PubMed

    Mitkus, Robert J; Powell, Jan L; Zeisler, Rolf; Squibb, Katherine S

    2013-12-01

    The epidemiological association between exposure to fine particulate matter (PM2.5) and adverse health effects is well-known. Here we report the size distribution, metals content, endotoxin content, and biological activity of National Institute of Standards and Technology (NIST) Interim Reference Material (RM) PM2.5. Biological activity was measured in vitro by effects on cell viability and the release of four inflammatory immune mediators, from human A549 alveolar epithelial cells or murine RAW264.7 monocytes. A dose range covering three orders of magnitude (1-1000μg/mL) was tested, and biological activity was compared to an existing Standard Reference Material (SRM) for urban PM (NIST SRM 1648). Robust release of IL-8 and MCP-1 from A549 cells was observed in response to IRM PM2.5 exposures. Significant TNF-α, but not IL-6, secretion from RAW264.7 cells was observed in response to both IRM PM2.5 and SRM 1648 particle types. Cytokine or chemokine release at high doses often occurred in the presence of cytotoxicity, likely as a result of externalization of preformed mediator. Our results are consistent with a local cytotoxic and pro-inflammatory mechanism of response to exposure to inhaled ambient PM2.5 and reinforce the continued relevance of in vitro assays for mechanistic research in PM toxicology. Our study furthers the goal of developing reference samples of environmentally relevant particulate matter of various sizes that can be used for hypothesis testing by multiple investigators. Published by Elsevier Ltd.

  12. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    SciTech Connect

    Zhang, Jian; Zhang, Tao; Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling; Yin, Hong

    2010-08-13

    Research highlights: {yields} Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells {yields} Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway {yields} Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* {yields} miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  13. Mitochondrial DNA-depleted A549 cells are resistant to bleomycin.

    PubMed

    Brar, Sukhdev S; Meyer, Joel N; Bortner, Carl D; Van Houten, Bennett; Martin, William J

    2012-09-01

    Alveolar epithelial cells are considered to be the primary target of bleomycin-induced lung injury, leading to interstitial fibrosis. The molecular mechanisms by which bleomycin causes this damage are poorly understood but are suspected to involve generation of reactive oxygen species and DNA damage. We studied the effect of bleomycin on mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) in human alveolar epithelial A549 cells. Bleomycin caused an increase in reactive oxygen species production, DNA damage, and apoptosis in A549 cells; however, bleomycin induced more mtDNA than nDNA damage. DNA damage was associated with activation of caspase-3, cleavage of poly(ADP-ribose) polymerase, and cleavage and activation of protein kinase D1 (PKD1), a newly identified mitochondrial oxidative stress sensor. These effects appear to be mtDNA-dependent, because no caspase-3 or PKD1 activation was observed in mtDNA-depleted (ρ(0)) A549 cells. Survival rate after bleomycin treatment was higher for A549 ρ(0) than A549 cells. These results suggest that A549 ρ(0) cells are more resistant to bleomycin toxicity than are parent A549 cells, likely in part due to the depletion of mtDNA and impairment of mitochondria-dependent apoptotic pathways.

  14. Mitochondrial DNA-depleted A549 cells are resistant to bleomycin

    PubMed Central

    Brar, Sukhdev S.; Meyer, Joel N.; Bortner, Carl D.; Van Houten, Bennett

    2012-01-01

    Alveolar epithelial cells are considered to be the primary target of bleomycin-induced lung injury, leading to interstitial fibrosis. The molecular mechanisms by which bleomycin causes this damage are poorly understood but are suspected to involve generation of reactive oxygen species and DNA damage. We studied the effect of bleomycin on mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) in human alveolar epithelial A549 cells. Bleomycin caused an increase in reactive oxygen species production, DNA damage, and apoptosis in A549 cells; however, bleomycin induced more mtDNA than nDNA damage. DNA damage was associated with activation of caspase-3, cleavage of poly(ADP-ribose) polymerase, and cleavage and activation of protein kinase D1 (PKD1), a newly identified mitochondrial oxidative stress sensor. These effects appear to be mtDNA-dependent, because no caspase-3 or PKD1 activation was observed in mtDNA-depleted (ρ0) A549 cells. Survival rate after bleomycin treatment was higher for A549 ρ0 than A549 cells. These results suggest that A549 ρ0 cells are more resistant to bleomycin toxicity than are parent A549 cells, likely in part due to the depletion of mtDNA and impairment of mitochondria-dependent apoptotic pathways. PMID:22773697

  15. CDK-associated Cullin 1 promotes cell proliferation with activation of ERK1/2 in human lung cancer A549 cells

    SciTech Connect

    Chen, Tian Jun; Gao, Fei; Yang, Tian; Thakur, Asmitanand; Ren, Hui; Li, Yang; Zhang, Shuo; Wang, Ting; Chen, Ming Wei

    2013-07-19

    Highlights: •CDK-associated Cullin 1 (CAC1) expression increases in human lung carcinoma. •CAC1 promotes the proliferation of lung cancer A549 cells. •CAC1 promotes human lung cancer A549 cell proliferation with activation of ERK1/2. -- Abstract: Lung cancer is one of the most common causes of cancer-related death in the world, but the mechanisms remain unknown. In this study, we investigated the expression of CDK-associated Cullin 1 (CAC1) in lung cancer, the effect of CAC1 on the proliferation of human lung cancer A549 cells, and the activation of signaling pathways of mitogen-activated protein kinases (MAPKs). Results showed that CAC1 expression was higher levels in human lung carcinoma than normal lung tissue, and CAC1 siRNA reduced the proliferation of lung cancer A549 cells by decreasing cell activity and cell division in vitro. The proportion of cells treated with CAC1 siRNA increased in the G1 phase and decreased in the S and G2/M phase, indicative of G1 cell cycle arrest. Furthermore, the proportions of early/late apoptosis in lung cancer A549 cells were enhanced with CAC1 siRNA treatment. It was also found that activation of extracellular signal-regulated protein kinase (ERK) and p38 signaling pathways were involved in the proliferation of A549 cells. After CAC1 siRNA treatment, p-ERK1/2 levels decreased, and meanwhile p-p38 level increased, A549 cell proliferation increased when ERK1/2 signaling is activated by PMA. Our findings demonstrated that CAC1 promoted the proliferation of human lung cancer A549 cells with activation of ERK1/2 signaling pathways, suggesting a potential cure target for treatment of human lung cancer.

  16. Coenzyme Q0 from Antrodia cinnamomea in Submerged Cultures Induces Reactive Oxygen Species-Mediated Apoptosis in A549 Human Lung Cancer Cells

    PubMed Central

    Chung, Cheng-Han; Lee, Kung-Ta

    2014-01-01

    We investigated the anticancer effects of Antrodia cinnamomea, a medicinal mushroom from Taiwan, on A549 human lung cancer cells using the ethyl acetate extract from submerged culture filtrates. Our results showed that 2,3-dimethoxy-5-methyl-1,4-benzoquinone (coenzyme Q0; CoQ0) derived from A. cinnamomea submerged culture filtrates has anticancer activity. CoQ0 treatment reduced the viability of A549, HepG2, and SW480 cancer cell lines. Furthermore, CoQ0 induced reactive oxygen species (ROS) generation and apoptosis in A549 cells, which was inhibited by the antioxidant ascorbic acid. To our knowledge, these data demonstrate for the first time that CoQ0 derived from A. cinnamomea submerged culture filtrates exerts its anticancer effect through the induction of ROS-mediated apoptosis in A549 human lung cancer cells. PMID:25431605

  17. Extract from Nandina domestica inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in human pulmonary epithelial A549 cells.

    PubMed

    Ueki, Takuro; Akaishi, Tatsuhiro; Okumura, Hidenobu; Abe, Kazuho

    2012-01-01

    Extract from fruits of Nandina domestica THUNBERG (NDE) has been used to improve cough and breathing difficulty in Japan for many years. To explore whether NDE may alleviate respiratory inflammation, we investigated its effect on expression of cyclooxygenase-2 (COX-2) and production of prostaglandin E₂ (PGE₂) in human pulmonary epithelial A549 cells in culture. Treatment with lipopolysaccharide (LPS; 6 µg/mL) resulted in an increase of COX-2 expression and PGE₂ production in A549 cells. Both the LPS-induced COX-2 expression and PGE₂ production were significantly inhibited by NDE (1-10 µg/mL) in a concentration-dependent manner. NDE did not affect COX-1 expression nor COX activity. These results suggest that NDE downregulates LPS-induced COX-2 expression and inhibits PGE₂ production in pulmonary epithelial cells. Furthermore, higenamine and nantenine, two major constituents responsible for tracheal relaxing effect of NDE, did not mimic the inhibitory effect of NDE on LPS-induced COX-2 expression in A549 cells. To identify active constituent(s) of NDE responsible for the anti-inflammatory effect, NDE was introduced in a polyaromatic absorbent resin column and stepwise eluted to yield water fraction, 20% methanol fraction, 40% methanol fraction, 99.8% methanol fraction, and 99.5% acetone fraction. However, none of these five fractions alone inhibited LPS-induced COX-2 expression. On the other hand, exclusion of water fraction from NDE abolished the inhibitory effect of NDE on LPS-induced COX-2 expression. These results suggest that constituent(s) present in water fraction is required but not sufficient for the anti-inflammatory activity of NDE, which may result from interactions among multiple constituents.

  18. Brazilian green propolis induced apoptosis in human lung cancer A549 cells through mitochondrial-mediated pathway.

    PubMed

    Frión-Herrera, Yahima; Díaz-García, Alexis; Ruiz-Fuentes, Jenny; Rodríguez-Sánchez, Hermis; Sforcin, José Maurício

    2015-10-01

    Propolis effect on the growth and apoptosis of human lung adenocarcinoma (A549 cells) was investigated as well as its mechanisms. Cells were incubated with propolis for 72 h, and 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays were employed to assess cell viability and the inhibitory concentration (IC). Apoptosis was detected by Acridine Orange/Ethidium Bromide and 4',6-diamidino-2-phenylindole staining after 24 and 48 h of incubation with ¼ IC50 of propolis by testing the mitochondrial membrane potential (ΔΨm) and the expression of apoptosis-related genes (p53, Caspase-3, Bax, Bcl-2, Bcl-XL , Noxa, Puma and p21) by reverse transcription polymerase chain reaction. Propolis displayed antiproliferative and cytotoxic effects on A549 cells in a dose- and time-dependent manner, but it did not suppress the growth of normal Vero cells. An enhanced apoptosis was seen in A549 propolis-treated cells after 48 h compared with the control cells. Propolis decreased mitochondrial membrane potential by overexpression of pro-apoptotic genes (Bax and Noxa) and reduction of the antiapoptotic gene Bcl-XL . The expression level of other genes remained unchanged (p53, Caspse-3 and Bax), whereas p21 expression was increased. Propolis induced caspase-independent apoptosis through a p53-independent mitochondrial pathway, and cell cycle arrest by upregulation of p21. Although propolis induces apoptosis mainly by p53-independent manner, it may be induced by another pathway, and new insights may arise for preventing or treating lung cancer. © 2015 Royal Pharmaceutical Society.

  19. Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549

    NASA Astrophysics Data System (ADS)

    Syaefudin; Juniarti, A.; Rosiyana, L.; Setyani, A.; Khodijah, S.

    2016-01-01

    The aim of the present study is to evaluate cytotoxicity effect of nanoparticles of Selaginella doederleinii (S. doederleinii) leaves extract. S. doederleinii was extracted by maceration method using 70%(v/v) ethanol as solvent. Phytochemical content was analyzed qualitatively by using Harborne and Thin Layer Chromatography (TLC) methods. Nanoparticle extract was prepared by ionic gelation using chitosan as encapsulant agent. Anticancer activity was performed by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results showed that S. doederleinii contains of flavonoids. Nanoparticle of S. doederleinii leaves extract greatly inhibited A549 cells growth (cancer cells), with IC50 of 3% or 1020 μg/ml. These nanoparticles extract also inhibited the growth of Chang cells (normal cells), with IC50 of 4% or 1442 μg/ml. The effective concentration of nanoparticles extract which inhibits cancer cells without harming the normal cells is 0.5% or 167 μg/ml. Further studies are needed to obtain the concentration of nanoparticles extract which can selectively suppress cancer cells.

  20. Curcumin inhibits interferon-{alpha} induced NF-{kappa}B and COX-2 in human A549 non-small cell lung cancer cells

    SciTech Connect

    Lee, Jeeyun |; Im, Young-Hyuck | E-mail: imyh@smc.samsung.co.kr; Jung, Hae Hyun; Kim, Joo Hyun; Park, Joon Oh |; Kim, Kihyun |; Kim, Won Seog |; Ahn, Jin Seok

    2005-08-26

    The A549 cells, non-small cell lung cancer cell line from human, were resistant to interferon (IFN)-{alpha} treatment. The IFN-{alpha}-treated A549 cells showed increase in protein expression levels of NF-{kappa}B and COX-2. IFN-{alpha} induced NF-{kappa}B binding activity within 30 min and this increased binding activity was markedly suppressed with inclusion of curcumin. Curcumin also inhibited IFN-{alpha}-induced COX-2 expression in A549 cells. Within 10 min, IFN-{alpha} rapidly induced the binding activity of a {gamma}-{sup 32}P-labeled consensus GAS oligonucleotide probe, which was profoundly reversed by curcumin. Taken together, IFN-{alpha}-induced activations of NF-{kappa}B and COX-2 were inhibited by the addition of curcumin in A549 cells.

  1. Oleifolioside B-mediated autophagy promotes apoptosis in A549 human non-small cell lung cancer cells.

    PubMed

    Jin, Cheng-Yun; Yu, Hai Yang; Park, Cheol; Han, Min Ho; Hong, Su Hyun; Kim, Kyoung-Sook; Lee, Young-Choon; Chang, Young-Chae; Cheong, Jaehun; Moon, Sung-Kwon; Kim, Gi-Young; Moon, Hyung-In; Kim, Wun-Jae; Lee, Jai-Heon; Choi, Yung Hyun

    2013-12-01

    The biochemical mechanisms of cell death by oleifolioside B (OB), a cycloartane-type triterpene glycoside isolated from Dendropanax morbifera Leveille, were investigated in A549 human lung carcinoma cells. Our data indicated that exposure to OB led to caspase activation and typical features of apoptosis; however, apoptotic cell death was not prevented by z-VAD-fmk, a pan-caspase inhibitor, demonstrating that OB-induced apoptosis was independent of caspase activation. Subsequently, we found that OB increased autophagy, as indicated by an increase in monodansylcadaverine fluorescent dye-labeled autophagosome formation and in the levels of the autophagic form of microtubule-associated protein 1 light chain 3 and Atg3, an autophagy-specific gene, which is associated with inhibiting phospho-nuclear factor erythroid 2-related factor 2 (Nrf2) expression. However, pretreatment with bafilomycin A1, an autophagy inhibitor, attenuated OB-induced apoptosis and dephosphorylation of Nrf2. The data suggest that OB-induced autophagy functions as a death mechanism in A549 cells and OB has potential as a novel anticancer agent capable of targeting apoptotic and autophagic cell death and the Nrf2 signaling pathway.

  2. In vitro cytotoxicity and morphological assessment of smoke from polymer combustion in human lung derived cells (A549).

    PubMed

    Lestari, F; Hayes, A J; Green, A R; Chattopadhyay, G

    2012-04-01

    The application of polymer and composites in building and modern transport interiors raises concerns of potential health hazards during combustion. Cytotoxicity and morphological assessment of smoke from polymer combustion in human lung derived cells (A549) has been investigated. A laboratory scale vertical tube furnace was used for the generation of combustion products. A range of materials used in the building and transport industry including high density-polyethylene (HDPE), polypropylene (PP), polycarbonate (PC), and polyvinyl chloride (PVC), fiberglass reinforced polymers (FRPs), and melamine faced plywood (MFP) were studied. The exposure of combustion toxicants to human lung cells (A549) at the air/liquid interface was acquired using a Harvard Navicyte Chamber. Cytotoxic effects on human cells were assessed based on cell viability using a selected in vitro cytotoxicity assays, including NRU (neutral red uptake) and ATP (adenosine triphosphate). Morphological assessment on the effects of combustion products in human lung cells from selected materials including PVC, FRP and MFP was assessed using scanning electron microscopy (SEM). The volatile organic compounds from thermal decomposition products were identified using ATD-GCMS (Automatic Thermal Desorption Gas Chromatography Mass Spectrometry). NOAEC (No Observable Adverse Effect Concentration), IC(10) (10% inhibitory concentration), IC(50) (50% inhibitory concentration), and TLC (Total Lethal Concentration) values (mg/l) were generated. The following toxicity ranking was observed from the most toxic material to the least toxic using the NRU assay: PVC>PP>HDPE>PC >FRP-10>MFP>FRP-16; and the ATP assay: PVC>HDPE>PP>FRP-10>FRP-16>MFP>PC. The method described here could potentially be an alternative to current fire toxicity standards.

  3. Water extract of Rheum officinale Baill. induces apoptosis in human lung adenocarcinoma A549 and human breast cancer MCF-7 cell lines.

    PubMed

    Li, Wing-Yan; Chan, Shun-Wan; Guo, De-Jian; Chung, Mei-Kuen; Leung, Tin-Yan; Yu, Peter Hoi-Fu

    2009-07-15

    Rheum officinale Baill. (Da Huang) is one of the herbs commonly used in traditional Chinese medicine formulae against cancer. The traditional decoction is similar to the water extract used in the present study. The water extract of Da Huang was investigated to see if it possesses anticancer effects through apoptotic pathways. Human lung adenocarcinoma A549 and human breast cancer MCF-7 cell lines were treated with different concentrations of Da Huang water extract at different time intervals. Growth inhibition was detected by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] and colony formation assays; apoptosis was detected by cell morphologic analysis, DNA fragmentation analysis and COMET assay. Da Huang water extract was found to have significant growth inhibitory effects on both A549 and MCF-7 cell lines with IC(50) values 620+/-12.7 and 515+/-10.1 microg/ml, respectively. Growth inhibitory effects were dose- and time-dependent. A significant decrease in cell number, DNA fragmentation and single DNA strand breakages were observed in the Da Huang water extract treated A549 and MCF-7 cells. This suggests that the water extract of Da Huang exerts potential anticancer activity through growth inhibition and apoptosis on MCF-7 and A549 cells lines.

  4. Portulaca oleracea Seed Oil Exerts Cytotoxic Effects on Human Liver Cancer (HepG2) and Human Lung Cancer (A-549) Cell Lines.

    PubMed

    Al-Sheddi, Ebtesam Saad; Farshori, Nida Nayyar; Al-Oqail, Mai Mohammad; Musarrat, Javed; Al-Khedhairy, Abdulaziz Ali; Siddiqui, Maqsood Ahmed

    2015-01-01

    Portulaca oleracea (Family: Portulacaceae), is well known for its anti-inflammatory, antioxidative, anti- bacterial, and anti-tumor activities. However, cytotoxic effects of seed oil of Portulaca oleracea against human liver cancer (HepG2) and human lung cancer (A-549) cell lines have not been studied previously. Therefore, the present study was designed to investigate the cytotoxic effects of Portulaca oleracea seed oil on HepG2 and A-549 cell lines. Both cell lines were exposed to various concentrations of Portulaca oleracea seed oil for 24h. After the exposure, percentage cell viability was studied by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT), neutral red uptake (NRU) assays, and cellular morphology by phase contrast inverted microscopy. The results showed a concentration-dependent significant reduction in the percentage cell viability and an alteration in the cellular morphology of HepG2 and A-549 cells. The percentage cell viability was recorded as 73%, 63%, and 54% by MTT assay and 76%, 61%, and 50% by NRU assay at 250, 500, and 1000 μg/ml, respectively in HepG2 cells. Percentage cell viability was recorded as 82%, 72%, and 64% by MTT assay and 83%, 68%, and 56% by NRU assay at 250, 500, and 1000 μg/ml, respectively in A-549 cells. The 100 μg/ml and lower concentrations were found to be non cytotoxic to A-549 cells, whereas decrease of 14% and 12% were recorded by MTT and NRU assay, respectively in HepG2 cells. Both HepG2 and A-549 cell lines exposed to 250, 500, and 1000 μg/ ml of Portulaca oleracea seed oil lost their normal morphology, cell adhesion capacity, become rounded, and appeared smaller in size. The data from this study showed that exposure to seed oil of Portulaca oleracea resulted in significant cytotoxicity and inhibition of growth of the human liver cancer (HepG2) and human lung cancer (A-549) cell lines.

  5. [Inhibitory effect of human mitochondria-targeted MPG recombinant on proliferation of human non-small cell lung cancer multidrug-resistant cell line A549/DDP].

    PubMed

    Yu, Shi-Cang; Qian, Gui-Sheng; Li, Yu-Ying; Lu, Wei-Zhong; Li, Jin; Huang, Gui-Jun

    2006-04-01

    Multidrug resistance is the key obstacle to the improvement of chemotherapy effect of lung cancer. This study was to construct eukaryotic expression vector of human mitochondria-targeted N-methylpurine DNA glycosylase (MPG), and explore its inhibitory effect on proliferation of human non-small cell lung cancer multidrug-resistant cell line A549/DDP. Manganese-superoxide dismutase mitochondria-targeted sequence-MPG fusion gene (mito-MPG) was constructed through splicing by overlap extension (SOE). Recombinant eukaryotic expression vector pCMV-Script/mito-MPG was constructed by molecule-cloning technique, and then transfected into A549/DDP cells. In the stably transfected cells which were screened out by G418, the expression of mito-MPG mRNA was detected by reverse transcription-polymerase chain reaction (RT-PCR); its expression in separated and purified mitochondria was detected by Western blot. The proliferation of A549/DDP cells was detected by trypan blue exclusion trial. Cell cycle distribution was analyzed by flow cytometry. The mito-MPG fusion gene was confirmed by DNA sequencing,the recombinant pCMV-Script/mito-MPG was confirmed by restrictive endonuclease digestion and DNA sequencing. mito-MPG mRNA and protein were detected in the cells transfected with pCMV-Script/mito-MPG (MPG group), but not in the cells transfected with pCMV-Script (P group) and untransfected cells (C group). The cell double time were 72.6 h in C group, 73.5 h in P group, and 98.9 h in MPG group. Cell cycle blockage and subdiploid peak were found in MPG group. The proliferation indexes were 51.3% in C group, 54.3% in P group, and 26.1% in MPG group. pCMV-Script/mito-MPG could be constructed and transfected into mitochondria of A549/DDP cells successfully, and inhibit proliferation and induce apoptosis of A549/DDP cells.

  6. Barrier-protective effects of activated protein C in human alveolar epithelial cells.

    PubMed

    Puig, Ferranda; Fuster, Gemma; Adda, Mélanie; Blanch, Lluís; Farre, Ramon; Navajas, Daniel; Artigas, Antonio

    2013-01-01

    Acute lung injury (ALI) is a clinical manifestation of respiratory failure, caused by lung inflammation and the disruption of the alveolar-capillary barrier. Preservation of the physical integrity of the alveolar epithelial monolayer is of critical importance to prevent alveolar edema. Barrier integrity depends largely on the balance between physical forces on cell-cell and cell-matrix contacts, and this balance might be affected by alterations in the coagulation cascade in patients with ALI. We aimed to study the effects of activated protein C (APC) on mechanical tension and barrier integrity in human alveolar epithelial cells (A549) exposed to thrombin. Cells were pretreated for 3 h with APC (50 µg/ml) or vehicle (control). Subsequently, thrombin (50 nM) or medium was added to the cell culture. APC significantly reduced thrombin-induced cell monolayer permeability, cell stiffening, and cell contraction, measured by electrical impedance, optical magnetic twisting cytometry, and traction microscopy, respectively, suggesting a barrier-protective response. The dynamics of the barrier integrity was also assessed by western blotting and immunofluorescence analysis of the tight junction ZO-1. Thrombin resulted in more elongated ZO-1 aggregates at cell-cell interface areas and induced an increase in ZO-1 membrane protein content. APC attenuated the length of these ZO-1 aggregates and reduced the ZO-1 membrane protein levels induced by thrombin. In conclusion, pretreatment with APC reduced the disruption of barrier integrity induced by thrombin, thus contributing to alveolar epithelial barrier protection.

  7. CDK-associated Cullin 1 promotes cell proliferation with activation of ERK1/2 in human lung cancer A549 cells.

    PubMed

    Chen, Tian Jun; Gao, Fei; Yang, Tian; Thakur, Asmitanand; Ren, Hui; Li, Yang; Zhang, Shuo; Wang, Ting; Chen, Ming Wei

    2013-07-19

    Lung cancer is one of the most common causes of cancer-related death in the world, but the mechanisms remain unknown. In this study, we investigated the expression of CDK-associated Cullin 1 (CAC1) in lung cancer, the effect of CAC1 on the proliferation of human lung cancer A549 cells, and the activation of signaling pathways of mitogen-activated protein kinases (MAPKs). Results showed that CAC1 expression was higher levels in human lung carcinoma than normal lung tissue, and CAC1 siRNA reduced the proliferation of lung cancer A549 cells by decreasing cell activity and cell division in vitro. The proportion of cells treated with CAC1 siRNA increased in the G1 phase and decreased in the S and G2/M phase, indicative of G1 cell cycle arrest. Furthermore, the proportions of early/late apoptosis in lung cancer A549 cells were enhanced with CAC1 siRNA treatment. It was also found that activation of extracellular signal-regulated protein kinase (ERK) and p38 signaling pathways were involved in the proliferation of A549 cells. After CAC1 siRNA treatment, p-ERK1/2 levels decreased, and meanwhile p-p38 level increased, A549 cell proliferation increased when ERK1/2 signaling is activated by PMA. Our findings demonstrated that CAC1 promoted the proliferation of human lung cancer A549 cells with activation of ERK1/2 signaling pathways, suggesting a potential cure target for treatment of human lung cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Gene expression modulation in A549 human lung cells in response to combustion-generated nano-sized particles.

    PubMed

    Arenz, Andrea; Hellweg, Christine E; Stojicic, Nevena; Baumstark-Khan, Christa; Grotheer, Horst-Henning

    2006-12-01

    High levels of ambient air pollution are associated in humans with aggravation of asthma and of respiratory and cardiopulmonary morbidity; long-term exposures to particulate matter (PM) have been linked to possible increases in lung cancer risk, chronic respiratory disease, and increased death rates. The Biodiagnostics Group of the DLR Institute of Aerospace Medicine develops cellular test systems capable of monitoring the biological consequences of environmental conditions on humans already on cellular and molecular level. Such bioassays rely on the receptor-reporter principle, where cell lines are transfected with plasmids carrying a reporter gene under control of environment-dependent promoters (receptor), which play a key role in regulating gene expressions in response to extracellular signals. We developed the recombinant human lung epithelial cell line A549-NF-kappaB-EGFP/Neo carrying a genetically encoded fluorescent indicator for monitoring activation of the NF-kappaB signaling pathway in living cells in response to genotoxic and cytotoxic environmental influences. With this cell line we screened several candidate human radiation-responsive genes (GADD45beta, CDKN1A) and NF-kappaB-dependent genes (IL-6, NFkappaBIA, and pNF-kappaB-EGFP) for gene expression changes by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assay, using cDNA obtained from total RNA isolated at various time points after exposure to combustion generated nano-sized particle samples.

  9. Effects of Human Parvovirus B19 and Bocavirus VP1 Unique Region on Tight Junction of Human Airway Epithelial A549 Cells

    PubMed Central

    Chiu, Chun-Ching; Shi, Ya-Fang; Yang, Jiann-Jou; Hsiao, Yuan-Chao; Tzang, Bor-Show; Hsu, Tsai-Ching

    2014-01-01

    As is widely recognized, human parvovirus B19 (B19) and human bocavirus (HBoV) are important human pathogens. Obviously, both VP1 unique region (VP1u) of B19 and HBoV exhibit the secreted phospholipase A2 (sPLA2)-like enzymatic activity and are recognized to participate in the pathogenesis of lower respiratory tract illnesses. However, exactly how, both VP1u from B19 and HBoV affect tight junction has seldom been addressed. Therefore, this study investigates how B19-VP1u and HBoV-VP1u may affect the tight junction of the airway epithelial A549 cells by examining phospholipase A2 activity and transepithelial electrical resistance (TEER) as well as performing immunoblotting analyses. Experimental results indicate that TEER is more significantly decreased in A549 cells by treatment with TNF-α (10 ng), two dosages of B19-VP1u and BoV-VP1u (400 ng and 4000 ng) or bee venom PLA2 (10 ng) than that of the control. Accordingly, more significantly increased claudin-1 and decreased occludin are detected in A549 cells by treatment with TNF-α or both dosages of HBoV-VP1u than that of the control. Additionally, more significantly decreased Na+/K+ ATPase is observed in A549 cells by treatment with TNF-α, high dosage of B19-VP1u or both dosages of BoV-VP1u than that of the control. Above findings suggest that HBoV-VP1u rather than B19 VP1u likely plays more important roles in the disruption of tight junction in the airway tract. Meanwhile, this discrepancy appears not to be associated with the secreted phospholipase A2 (sPLA2)-like enzymatic activity. PMID:25268969

  10. In vitro and in vivo antitumor activity of scutebarbatine A on human lung carcinoma A549 cell lines.

    PubMed

    Yang, Xiao-Kun; Xu, Ming-Yuan; Xu, Gui-Sen; Zhang, Yu-Lan; Xu, Zhao-Xia

    2014-06-25

    During our systematic study on the anticancer activities of Scutellaria barbata, scutebarbatine A (SBT-A), one of the major alkaloids in S. barbata, was found to have antitumor effects on A549 cells. Thus, we designed the present study to investigate in detail the antitumor effects of SBT-A. The cytotoxic effect of SBT-A on A549 in vitro were determined by an MTT assay and evaluated by IC50 values. Furthermore, results of Hoechst 33258 and Annexin V/PI staining assays demonstrated that SBT-A had significant antitumor effects on A549 cells via apoptosis, in a concentration-dependent manner. What's more, the mechanism was explored by western blotting, and our study revealed that SBT-A can up-regulate the expressions of cytochrome c, caspase-3 and 9, and down-regulate the levels of Bcl-2 in A549 cells. Finally, the antitumor effects of SBT-A were evaluated in vivo by using transplanted tumor nude mice, and the results confirmed that SBT-A has a notable antitumor effect on A549 cancer via mitochondria-mediated apoptosis. Collectively, our results demonstrated that SBT-A showed significant antitumor effects on A549 cells in vivo and in vitro via mitochondria-mediated apoptosis by up-regulating expressions of caspase-3 and 9, and down-regulating Bcl-2.

  11. Flavonoids isolated from Citrus platymamma induced G2/M cell cycle arrest and apoptosis in A549 human lung cancer cells

    PubMed Central

    Nagappan, Arulkumar; Lee, Ho Jeong; Saralamma, Venu Venkatarame Gowda; Park, Hyeon Soo; Hong, Gyeong Eun; Yumnam, Silvia; Raha, Suchismita; Charles, Shobana Nancy; Shin, Sung Chul; Kim, Eun Hee; Lee, Won Sup; Kim, Gon Sup

    2016-01-01

    Citrus platymamma hort. ex Tanaka belongs to the Rutaceae family and is widely used in folk medicines in Korea due to its anti-proliferative, anti-cancer, anti-oxidant, anti-inflammatory and anti-diabetic activities. However, the molecular mechanism of its anti-cancer effect is not well understood. The present study was conducted to elucidate the anti-cancer effect and molecular mechanism of flavonoids from Citrus platymamma (FCP) on A549 cells. FCP displayed concentration-dependent inhibition on A549 cells proliferation. Further, flow cytometry revealed that FCP significantly increased the sub-G1 (apoptotic cell population) and G2/M phase population, and the total number of apoptotic cells, in a dose-dependent manner. Nuclear condensation and fragmentation were also observed upon staining with Hoechst 33342 in FCP-treated A549 cells. Immunoblotting demonstrated a dose-dependent downregulation of cyclin B1, cyclin-dependent kinase 1, cell division cycle 25c, pro-caspases −3, −6, −8 and −9, and poly (adenosine diphosphate-ribose) polymerase (PARP) in FCP-treated A549 cells. In addition, FCP induced caspase-3 activation and subsequent PARP cleavage, and increased the B-cell lymphoma (Bcl)-2-associated X protein/Bcl-extra large ratio in A549 cells. These findings suggest that FCP induced G2/M arrest and apoptosis of A549 cells. The present study provides evidence that FCP may be useful in the treatment of human lung cancer. PMID:27446443

  12. Effects of sodium lactate Ringer's injection on transfection of human protein kinase C-α antisense oligonucleotide in A549 lung cancer cells.

    PubMed

    Wang, Z H; Sun, W W; Han, Y L; Ma, Z

    2016-08-26

    In the present study, we evaluated the effects of four solutions [Dulbecco's modified Eagle's medium (DMEM), sodium lactate Ringer's injection (SLRI), phosphate-buffered saline (PBS), and NaCl] on the transfection of the human protein kinase C-a antisense oligonucleotide (PKC-a ASO) aprinocarsen in human lung carcinoma A549 cells. Specifically, SLRI, DMEM, PBS, or NaCl were used as the growth solutions for A549 cells, and OPTI-MEM was used as the PKC-a ASO diluent for transfection. Additionally, SLRI, DMEM, PBS, or NaCl were used as both the growth solutions and diluents for transfection. The cell viability and transfection efficiency were determined. The results demonstrated that when SLRI was used as either the growth solution or both the growth solution and diluent for aprinocarsen transfection in A549 cells, the effects were close to the best effects observed with DMEM as the growth solution and OPTI-MEM as the diluent, which supported the transfection of aprinocarsen into the cells. Moreover, SLRI resulted in higher transfection efficiency than those of PBS and NaCl. In in vitro experiments, aprinocarsen effectively induced apoptosis in A549 cells. In conclusion, SLRI may replace PBS or NaCl in clinical trials as a transfection solution readily accepted by the human body. To our knowledge, this is the first report demonstrating the use of SLRI as a transfection solution in lung-cancer cell lines.

  13. Selenium-Containing Polysaccharide-Protein Complex in Se-Enriched Ulva fasciata Induces Mitochondria-Mediated Apoptosis in A549 Human Lung Cancer Cells.

    PubMed

    Sun, Xian; Zhong, Yu; Luo, Hongtian; Yang, Yufeng

    2017-07-16

    The role of selenium (Se) and Ulva fasciata as potent cancer chemopreventive and chemotherapeutic agents has been supported by epidemiological, preclinical, and clinical studies. In this study, Se-containing polysaccharide-protein complex (Se-PPC), a novel organoselenium compound, a Se-containing polysaccharide-protein complex in Se-enriched Ulva fasciata, is a potent anti-proliferative agent against human lung cancer A549 cells. Se-PPC markedly inhibited the growth of cancer cells via induction of apoptosis which was accompanied by the formation of apoptotic bodies, an increase in the population of apoptotic sub-G1 phase cells, upregulation of p53, and activation of caspase-3 in A549 cells. Further investigation on intracellular mechanisms indicated that cytochrome C was released from mitochondria into cytosol in A549 cells after Se-PPC treatment. Se-PPC induced depletion of mitochondrial membrane potential (ΔΨm) in A549 cells through regulating the expression of anti-apoptotic (Bcl-2, Bcl-XL) and pro-apoptotic (Bax, Bid) proteins, resulting in disruption of the activation of caspase-9. This is the first report to demonstrate the cytotoxic effect of Se-PPC on human cancer cells and to provide a possible mechanism for this activity. Thus, Se-PPC is a promising novel organoselenium compound with potential to treat human cancers.

  14. Effect of metal ions on HIF-1alpha and Fe homeostasis in human A549 cells.

    PubMed

    Kang, Gi Soo; Li, Qin; Chen, Haobin; Costa, Max

    2006-11-07

    Several metals are carcinogenic but little is known about the mechanisms by which they cause cancer. A pathway that may contribute to metal ion induced carcinogenesis is by hypoxia signaling, which involves a disruption of cellular iron homeostasis by competition with iron transporters or iron-regulated enzymes. To examine the involvement of iron in the hypoxia signaling activity of these metal ions we investigated HIF-1alpha protein stabilization, IRP-1 activity, and ferritin protein levels in human lung carcinoma A459 cells exposed to various agents in serum- and iron-free salt-glucose medium (SGM) or in normal complete medium. We also studied the effects of excess exogenous iron on these responses induced by nickel ion exposure. Our results show the following: (1) SGM enhanced metals-induced HIF-1alpha stabilization and IRP-1 activation (e.g., nickel and cobalt ions). (2) If SGM was reconstituted with a slight excess level (25 microM of FeSO(4)) of iron, this enhancing ability was significantly decreased. (3) The effect of a high level of exogenous iron (500 microM of FeSO(4)) on metal-induced hypoxia and iron metabolism was highly dependent on the order of addition. If treatment with the Fe and metal ions was simultaneous (co-treatment), the effects of nickel ion exposure were overwhelmed, since the added Fe reversed HIF-1alpha stabilization, decreased IRP-1 activity, and increased ferritin level. Pre-treatment with iron was not able to reverse the responses caused by nickel ion exposure. These results imply that it is important to consider the available iron concentration and suitable exposure design when studying metal-induced hypoxia or metal-induced disruption of Fe homeostasis.

  15. Up-Regulation of Pro-Inflammatory Cytokines and Chemokine Production in Avian Influenza H9N2 Virus-Infected Human Lung Epithelial Cell Line (A549).

    PubMed

    Farzin, Hamidreza; Toroghi, Reza; Haghparast, Alireza

    2016-01-01

    Influenza H9N2 virus mostly infects avian species but poses a potential health risk to humans. Little is known about the mammalian host immune responses to H9N2 virus. To obtain insight into the innate immune responses of human lung epithelial cells to the avian H9N2 virus, the expressions of pro-inflammatory cytokines and chemokine in the human airway epithelial cells infected with avian H9N2 virus were examined by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). H9N2 virus was able to cultivate in the human lung epithelial cell line (A549) and stimulate production of pro-inflammatory cytokines (IL-1β, IL-6) and chemokine (IL-8). Expressions of cytokine genes were up-regulated to a significantly higher level for IL-1β (p < 0.01), IL-6 (p < 0.01 after 12 hours and p < 0.05 after 24 hours) and IL-8 (p < 0.01 after 12 hours and p < 0.001 after 24 hours) in virus-cultured A549 cells as compared with non-virus-cultured cells. The amount of IL-6 and IL-1β proteins secreted into the culture medium was also increased after virus culture infection of A549 cell line compared to non-virus-cultured A549 cells and were significant in both IL-1β (p < 0.05 in 18 hours and p < 0.001 in 24-48 hours harvested supernatant) and IL-6 (p < 0.001). Silencing the p65 component of NF-κB in A549 cells suppressed the stimulatory effects of influenza virus on secretion of pro-inflammatory cytokines and chemokine. The findings in this study will broaden our understanding of host innate immune mechanisms and the pathogenesis of H9N2 influenza viruses in human respiratory epithelium.

  16. Sensitisation of human lung adenocarcinoma A549 cells to radiotherapy by Nimotuzumab is associated with enhanced apoptosis and cell cycle arrest in the G2/M phase.

    PubMed

    Lin, Shan; Yan, Ying; Liu, Yuan; Gao, Chun-Zi; Shan, Dan; Li, Ying; Han, Bo

    2015-02-01

    The epidermal growth factor receptor (EGFR) plays an important role in tumorigenesis and maintenance of cancers, making it a possible therapeutic target for cancer treatment. Nimotuzumab (h-R3), a humanised monoclonal antibody against EGFR, sensitises human lung adenocarcinoma A549 cells to radiotherapy. We have investigated the underlying molecular mechanism by treating A549 cells with Nimotuzumab (100 μg/mL) alone or in combination with a single dose of 2 Gy irradiation, and analysing apoptosis and cell cycle distribution by flow cytometry. Nimotuzumab significantly enhanced radiation-induced apoptosis of A549 cells as evidenced by increased cell apoptosis (7.15 ± 0.30%) compared with the control group (1.08 ± 0.25%), Nimotuzumab alone group (4.89 ± 0.30%) and irradiation alone group (5.90 ± 0.15%). Combining Nimotuzumab with irradiation significantly arrested cells in the G2/M phase (43. ± 0.36%) compared radiotherapy alone (18.7 ± 0.35%) and single Nimotuzumab treatment (27.2 ± 0.17%). A combination of Nimotuzumab with radiation increased apoptosis and G2/M phase arrest in human lung adenocarcinoma A549 cells, suggesting potential development of combinatorial therapy of Nimotuzumab with radiotherapy for lung cancer. © 2014 International Federation for Cell Biology.

  17. Secretion of alpha 1-antitrypsin by alveolar epithelial cells.

    PubMed

    Venembre, P; Boutten, A; Seta, N; Dehoux, M S; Crestani, B; Aubier, M; Durand, G

    1994-06-13

    We have investigated the ability of alveolar epithelial cells (human A549 cell line and rat type-II pneumocytes) to produce alpha 1-antitrypsin (AAT). Northern blot analysis demonstrated the presence of an AAT-specific mRNA transcript in A549 cells. Unstimulated A549 cells secreted immunoreactive AAT at a rate of 0.51 +/- 0.04 ng/10(6) cells/h, with a modified glycosylation compared to serum AAT. AAT formed a complex with neutrophil elastase. Rat type-II pneumocytes secreted immunoreactive AAT. Our results suggest that alveolar epithelial cells could participate in antiprotease defense within the lung through local AAT production.

  18. Gliotoxin promotes Aspergillus fumigatus internalization into type II human pneumocyte A549 cells by inducing host phospholipase D activation.

    PubMed

    Jia, Xiaodong; Chen, Fangyan; Pan, Weihua; Yu, Rentao; Tian, Shuguang; Han, Gaige; Fang, Haiqin; Wang, Shuo; Zhao, Jingya; Li, Xianping; Zheng, Dongyu; Tao, Sha; Liao, Wanqing; Han, Xuelin; Han, Li

    2014-06-01

    The internalization of Aspergillus fumigatus into lung epithelial cells is critical for the infection process in the host. Gliotoxin is the most potent toxin produced by A. fumigatus. However, its role in A. fumigatus internalization into the lung epithelial cells is still largely unknown. In the present study, the deletion of the gliP gene regulating the production of gliotoxin in A. fumigatus suppressed the internalization of conidia into the A549 lung epithelial cells, and this suppression could be rescued by the exogenous addition of gliotoxin. At lower concentrations, gliotoxin enhanced the internalization of the conidia of A. fumigatus into A549 cells; in contrast, it inhibited the phagocytosis of J774 macrophages in a dose-dependent manner. Under a concentration of 100 ng/ml, gliotoxin had no effect on A549 cell viability but attenuated ROS production in a dose-dependent manner. Gliotoxin significantly stimulated the phospholipase D activity in the A549 cells at a concentration of 50 ng/ml. This stimulation was blocked by the pretreatment of host cells with PLD1- but not PLD2-specific inhibitor. Morphological cell changes induced by gliotoxin were observed in the A549 cells accompanying with obvious actin cytoskeleton rearrangement and a moderate alteration of phospholipase D distribution. Our data indicated that gliotoxin might be responsible for modulating the A. fumigatus internalization into epithelial cells through phospholipase D1 activation and actin cytoskeleton rearrangement.

  19. Psoralen reverses docetaxel-induced multidrug resistance in A549/D16 human lung cancer cells lines.

    PubMed

    Hsieh, Ming-Ju; Chen, Mu-Kuan; Yu, Ya-Yen; Sheu, Gwo-Tarng; Chiou, Hui-Ling

    2014-06-15

    Chemotherapy is the recommended treatment for advanced-stage cancers. However, the emergence of multidrug resistance (MDR), the ability of cancer cells to become simultaneously resistant to different drugs, limits the efficacy of chemotherapy. Previous studies have shown that herbal medicine or natural food may be feasible for various cancers as potent chemopreventive drug. This study aims to explore the capablility of reversing the multidrug resistance of docetaxel (DOC)-resistant A549 cells (A549/D16) of psoralen and the underlying mechanisms. In this study, results showed that the cell viability of A549/D16 subline is decreased when treated with psoralen plus DOC, while psoralen has no effect on the cell proliferation on A549 and A549/D16 cells. Furthermore, mRNA and proteins levels of ABCB1 were decreased in the presence of psoralen, while decreased ABCB1 activity was also revealed by flow cytometry. Based on these results, we believe that psoralen may be feasible for reversing the multidrug resistance by inhibiting ABCB1 gene and protein expression. Such inhibition will lead to a decrease in ABCB1 activity and anti-cancer drug efflux, which eventually result in drug resistance reversal and therefore, sensitizing drug-resistant cells to death in combination with chemotherapeutic drugs.

  20. Picfeltarraenin IA inhibits lipopolysaccharide-induced inflammatory cytokine production by the nuclear factor-κB pathway in human pulmonary epithelial A549 cells.

    PubMed

    Shi, Rong; Wang, Qing; Ouyang, Yang; Wang, Qian; Xiong, Xudong

    2016-02-01

    The present study aimed to investigate the effect of picfeltarraenin IA (IA) on respiratory inflammation by analyzing its effect on interleukin (IL)-8 and prostaglandin E2 (PGE2) production. The expression of cyclooxygenase 2 (COX2) in human pulmonary adenocarcinoma epithelial A549 cells in culture was also examined. Human pulmonary epithelial A549 cells and the human monocytic leukemia THP-1 cell line were used in the current study. Cell viability was measured using a methylthiazol tetrazolium assay. The production of IL-8 and PGE2 was investigated using an enzyme-linked immunosorbent assay. The expression of COX2 and nuclear factor-κB (NF-κB)-p65 was examined using western blot analysis. Treatment with lipopolysaccharide (LPS; 10 µg/ml) resulted in the increased production of IL-8 and PGE2, and the increased expression of COX2 in the A549 cells. Furthermore, IA (0.1-10 µmol/l) significantly inhibited PGE2 production and COX2 expression in cells with LPS-induced IL-8, in a concentration-dependent manner. The results suggested that IA downregulates LPS-induced COX2 expression, and inhibits IL-8 and PGE2 production in pulmonary epithelial cells. Additionally, IA was observed to suppress the expression of COX2 in THP-1 cells, and also to regulate the expression of COX2 via the NF-κB pathway in the A549 cells, but not in the THP-1 cells. These results indicate that IA regulates LPS-induced cytokine release in A549 cells via the NF-κB pathway.

  1. Bufalin inhibits TGF-β-induced epithelial-to-mesenchymal transition and migration in human lung cancer A549 cells by downregulating TGF-β receptors

    PubMed Central

    ZHAO, LEI; LIU, SHIZHOU; CHE, XIAOFANG; HOU, KEZUO; MA, YANJU; LI, CE; WEN, TI; FAN, YIBO; HU, XUEJUN; LIU, YUNPENG; QU, XIUJUAN

    2015-01-01

    The epithelial-to-mesenchymal transition (EMT) is a well-known prerequisite for cancer cells to acquire the migratory and invasive capacity, and to subsequently metastasize. Bufalin is one of the major active components of the traditional Chinese medicine Chan Su, and accumulating evidence has shown its anticancer effect in multipe types of cancer. However, the role of bufalin in transforming growth factor-β (TGF-β)-induced EMT and migration remains unclear. In the present study, the effect of bufalin on TGF-β-induced EMT and migration was investigated in human lung cancer A549 cells. TGF-β induced EMT in A549 cells and increased their migratory ability, which were markedly suppressed by bufalin. Additionally, TGF-β-induced upregulation of Twist2 and zinc finger E-box binding homeobox 2 (ZEB2), as well as the phosphorylation of Smad2 and Smad3 were also inhibited by bufalin. However, the Smad-independent signaling pathways were not affected. Further analysis showed that the TGF-β receptor I (TβRI) and TGF-β receptor II (TβRII) were downregulated in the presence of bufalin. Pretreatment with SB431542, a potent inhibitor of the phosphorylation of TβRI, significantly attenuated TGF-β-induced EMT, mimicking the effect of bufalin on A549 cells. Taken together, these results suggest that bufalin suppresses TGF-β-induced EMT and migration by downregulating TβRI and TβRII in A549 cells. PMID:26133118

  2. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT

    NASA Astrophysics Data System (ADS)

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-07-01

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway.

  3. Dichloroacetate alters Warburg metabolism, inhibits cell growth, and increases the X-ray sensitivity of human A549 and H1299 NSC lung cancer cells.

    PubMed

    Allen, Kah Tan; Chin-Sinex, Helen; DeLuca, Thomas; Pomerening, Joseph R; Sherer, Jeremy; Watkins, John B; Foley, John; Jesseph, Jerry M; Mendonca, Marc S

    2015-12-01

    We investigated whether altering Warburg metabolism (aerobic glycolysis) by treatment with the metabolic agent dichloroacetate (DCA) could increase the X-ray-induced cell killing of the radiation-resistant human non-small-cell lung cancer (NSCLC) cell lines A549 and H1299. Treatment with 50mM DCA decreased lactate production and glucose consumption in both A549 and H1299, clear indications of attenuated aerobic glycolysis. In addition, we found that DCA treatment also slowed cell growth, increased population-doubling time, and altered cell cycle distribution. Furthermore, we report that treatment with 50mM DCA significantly increased single and fractionated X-ray-induced cell killing of A549 and H1299 cells. Assay of DNA double-strand break repair by neutral comet assays demonstrated that DCA inhibited both the fast and the slow kinetics of X-ray-induced DSB repair in both A549 and H1299 NSCL cancer cells. Taken together the data suggest a correlation between an attenuated aerobic glycolysis and enhanced cytotoxicity and radiation-induced cell killing in radiation-resistant NSCLC cells.

  4. Alpha-tomatine inactivates PI3K/Akt and ERK signaling pathways in human lung adenocarcinoma A549 cells: effect on metastasis.

    PubMed

    Shih, Yuan-Wei; Shieh, Jiunn-Min; Wu, Pei-Fen; Lee, Yi-Chieh; Chen, Yi-Zhi; Chiang, Tai-An

    2009-08-01

    This study first investigates the anti-metastatic effect of alpha-tomatine in the human lung adenocarcinoma cell line: A549. In this study, we first noted alpha-tomatine inhibited A549 cells invasion and migration by wound-healing assay and Boyden chamber assay. The data also showed alpha-tomatine could inhibit phosphorylation of Akt and extracellular signal-regulated kinase 1 and 2 (ERK1/2), which is involved in the up-regulating matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) or urokinase-type plasminogen activator (u-PA), whereas it did not affect phosphorylation of c-Jun N-terminal kinase (JNK) and p38. Next, alpha-tomatine significantly decreased the nuclear levels of nuclear factor kappa B (NF-kappaB), c-Fos, and c-Jun. Also, treating A549 cells with alpha-tomatine also leads to a dose-dependent inhibition on the binding abilities of NF-kappaB and activator protein-1 (AP-1). Further, the treatment of inhibitors specific for PI3K (Wortmannin) or ERK (U0126) to A549 cells could cause reduced activities of MMP-2, MMP-9, and u-PA. These results showed alpha-tomatine could inhibit the metastatic ability of A549 cells by reducing MMP-2, MMP-9, and u-PA activities through suppressing phosphoinositide 3-kinase/Akt (PI3K/Akt) or ERK1/2 signaling pathway and inhibition NF-kappaB or AP-1 binding activities. These findings proved alpha-tomatine might be an anti-metastatic agent against human lung adenocarcinoma.

  5. [Dexmedetomidine preconditioning protects against lipopolysaccharides-induced injury in the human alveolar epithelial cells].

    PubMed

    Zhang, Lei; Zhou, Xian-Jin; Zhan, Li-Ying; Wu, Xiao-Jing; Li, Wen-Lan; Zhao, Bo; Meng, Qing-Tao; Xia, Zhong-Yuan

    2017-08-14

    Dexmedetomidine (DEX) has demonstrated the preconditioning effect and shown protective effects against organize injury. In this study, using A549 (human alveolar epithelial cell) cell lines, we investigated whether DEX preconditioning protected against acute lung injury (ALI) in vitro. A549 were randomly divided into four groups (n=5): control group, DEX group, lipopolysaccharides (LPS) group, and D-LPS (DEX+LPS) group. Phosphate buffer saline (PBS) or DEX were administered. After 2h preconditioning, the medium was refreshed and the cells were challenged with LPS for 24h on the LPS and D-LPS group. Then the malondialdehyde (MDA), superoxide dismutase (SOD), Bcl-2, Bax, caspase-3 and the cytochrome c in the A549 were tested. The apoptosis was also evaluated in the cells. Compare with LPS group, DEX preconditioning reduced the apoptosis (26.43%±1.05% vs. 33.58%±1.16%, p<0.05) in the A549, which is correlated with decreased MDA (12.84±1.05 vs. 19.16±1.89 protein, p<0.05) and increased SOD activity (30.28±2.38 vs. 20.86±2.19 protein, p<0.05). DEX preconditioning also increased the Bcl-2 level (0.53±0.03 vs. 0.32±0.04, p<0.05) and decreased the level of Bax (0.49±0.04 vs. 0.65±0.04, p<0.05), caspase-3 (0.54±0.04 vs. 0.76±0.04, p<0.05) and cytochrome c. DEX preconditioning has a protective effect against ALI in vitro. The potential mechanisms involved are the inhibition of cell death and improvement of antioxidation. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  6. Immunogenicity of surfactant. I. Human alveolar surfactant.

    PubMed Central

    Strayer, D S; Hallman, M; Merritt, T A

    1991-01-01

    The immunogenicity of lung surfactant derived from amniotic fluid has been well established. We have set out to examine the antigenic similarity of human surfactant to non-human alveolar surfactants currently being used therapeutically in clinical trials with neonatal respiratory distress syndrome. To this end, we raised a series of eight monoclonal antibodies in rats directed to human surfactant (H1 to H8). All antibodies bound human surfactant as measured by ELISA. Four of these monoclonal antibodies bound surfactant components by Western blot analysis: all bound a 9-10-kD species. In addition, one antibody (H2) bound a protein of 16 kD, one (H8) a 6-kD protein, and one (H6) a 30-kD protein. When mixed with surfactant, three antibodies, H4, H7 and H8, profoundly altered surfactant activity in vitro in the pulsating bubble surfactometer. Three other antibodies, H1, H2, and H5 moderately inhibited surfactant's surface activity. We also examined the cross-reactivity of these monoclonal antibodies with bovine (CLSE) and porcine (Curosurf) surfactants. By Western blot analysis, only H6 bound these heterologous surfactants. Other antibodies did so by ELISA. However, functional assays indicated that antibodies H7, H8 and H4 all greatly inhibited CLSE surface activity in vitro. Five antibodies (H1-H4 and H8) inhibited Curosurf function. Thus, human surfactant species, especially low molecular weight species, are highly antigenic. Antibodies to alveolar surfactants may inhibit surfactant function in vitro. As indicated by Western blot and cross-inhibition data, human lower molecular weight surfactants share epitopes with proteins from therapeutically important porcine and bovine surfactants. The potential importance of these findings to treatment of neonatal respiratory distress syndrome with heterologous surfactants is discussed. PMID:1988229

  7. Winter fine particulate matter from Milan induces morphological and functional alterations in human pulmonary epithelial cells (A549).

    PubMed

    Gualtieri, Maurizio; Mantecca, Paride; Corvaja, Viviana; Longhin, Eleonora; Perrone, Maria Grazia; Bolzacchini, Ezio; Camatini, Marina

    2009-07-10

    Samples of PM(2.5) were gravimetrically collected during the winter 2005/2006 in the urban area of Milan (North Italy). Samples were chemically characterized and the particles were detached from filters to determine their cytotoxic effects on the A549 cell line. Based on the potential toxicological relevance of its components, Milan winter PM(2.5) contained high concentrations of pro-oxidant transition metals and PAHs, while re-suspended particles showed a relatively high frequency of dimensional classes ranging from 40 nm to 300 nm. A549 cells exposed to particle suspensions showed a concentration-dependent decrease in viability, starting from 10 microg/cm(2). Phagocytosis of particles by A549 cells and particle aggregates were morphologically characterized and seemed to depend on both particle concentration and exposure time, with the majority of particles being engulfed in membrane-bound vacuoles after 24h of exposure. The ability of ultrafine particles to penetrate and spread throughout the cells was also verified. Cell membrane lysis and mitochondrial ultrastructural disruption appeared to be the main modifications induced by PM(2.5) on A549 cells. Concomitantly to the adverse effects observed in terms of cell mortality and ultrastructural lesions, a significant intracellular production of reactive oxygen species (ROS) was observed, suggesting that the cytotoxicity, exerted by the winter PM(2.5) in Milan, derived also from its oxidative potential, probably associated with particle-adsorbed metals and PAHs.

  8. Glutathione-dependent cell cycle G1 arrest and apoptosis induction in human lung cancer A549 cells caused by methylseleninic acid: comparison with sodium selenite.

    PubMed

    Okuno, Tomofumi; Honda, Eri; Arakawa, Tomohiro; Ogino, Hirofumi; Ueno, Hitoshi

    2014-01-01

    The aim of the present study was to clarify the mechanism underlying the inhibition of cell proliferation in human lung cancer A549 cells by selenium (Se) compounds. Methylseleninic acid (CH3SeO2H, abbreviated as MSA), a synthetic Se compound, is a direct precursor of active methylselenol (CH3SeH) and is considered to be one of beneficial agents for cancer prevention and therapy. Sodium selenite (Na2SeO3), an inorganic Se form, is utilized in clinical Se supplementation. MSA markedly inhibited the growth of A549 cells at a concentration of 2.5×10(-6) mol/L for 1 d. On Day 1, Na2SeO3 also inhibited A549 cell growth at the concentration of 7.5×10(-6) mol/L. These compounds induced cell cycle arrest at the G1 phase and apoptosis under the inhibitory condition. Reduced glutathione (GSH) is critical to MSA or Na2SeO3 metabolism. The depletion of intracellular GSH suppressed Na2SeO3-induced G1 arrest, but promoted Na2SeO3-induced apoptosis. Therefore, Na2SeO3 appears to have directly induced apoptosis. In contrast, the MSA-induced G1 arrest was ameliorated by a marked decrease in GSH content. Additionally, the depletion of GSH slightly suppressed MSA-induced apoptosis. The difference in inhibitory effects between MSA and Na2SeO3 may be due to this variation in GSH-related metabolism. After exposure of A549 cells to MSA, the GSH content was significantly decreased. These results indicate that because MSA-induced G1 arrest and apoptosis induction are enhanced by GSH, the maintenance of GSH is essential for the effective anticancer action of MSA in A549 cells.

  9. Green tea polyphenol blocks h(2)o(2)-induced interleukin-8 production from human alveolar epithelial cells.

    PubMed

    Matsuoka, Katsunari; Isowa, Noritaka; Yoshimura, Takashi; Liu, Mingyao; Wada, Hiromi

    2002-06-07

    Reactive oxygen species (ROS) play crucial roles in ischemia-reperfusion (IR) injury of lung transplants. Reactive oxygen species may stimulate the production of neutrophil chemotactic factors such as interleukin-8 (IL-8), from alveolar epithelial cells, causing recruitment and activation of neutrophils in the reperfused tissue. Green tea polyphenol has potent anti-oxidative activities and anti-inflammatory effects by decreasing cytokine production. In the present study, we found that green tea polyphenol significantly inhibited IL-8 production induced by hydrogen peroxide (H(2)O(2)) in human lung alveolar epithelial cells (A549 line). It has been shown that mitogen activated protein kinases, such as Jun N-terminal kinase (JNK), p38 and p44/42, could mediate IL-8 production from a variety of cell types. We further investigated the effect of green tea polyphenol on these protein kinases, and demonstrated that H(2)O(2)-induced phosphorylation of JNK and p38 but not p44/42 was inhibited by green tea polyphenol in A549 cells. We speculate that green tea polyphenol may inhibit H(2)O(2)-induced IL-8 production from A549 cells through inactivation of JNK and p38.

  10. In vivo-in vitro comparison of acute respiratory tract toxicity using human 3D airway epithelial models and human A549 and murine 3T3 monolayer cell systems.

    PubMed

    Sauer, Ursula G; Vogel, Sandra; Hess, Annemarie; Kolle, Susanne N; Ma-Hock, Lan; van Ravenzwaay, Bennard; Landsiedel, Robert

    2013-02-01

    The usefulness of in vitro systems to predict acute inhalation toxicity was investigated. Nineteen substances were tested in three-dimensional human airway epithelial models, EpiAirway™ and MucilAir™, and in A549 and 3T3 monolayer cell cultures. IC(50) values were compared to rat four-hour LC(50) values classified according to EPA and GHS hazard categories. Best results were achieved with a prediction model distinguishing toxic from non-toxic substances, with satisfactory specificities and sensitivities. Using a self-made four-level prediction model to classify substances into four in vitro hazard categories, in vivo-in vitro concordance was mediocre, but could be improved by excluding substances causing pulmonary edema and emphysema in vivo. None of the test systems was outstanding, and there was no evidence that tissue or monolayer systems using respiratory tract cells provide an added value. However, the test systems only reflected bronchiole epithelia and alveolar cells and investigated cytotoxicity. Effects occurring in other cells by other mechanisms could not be recognised. Further work should optimise test protocols and expand the set of substances tested to define applicability domains. In vivo respiratory toxicity data for in vitro comparisons should distinguish different modes of action, and their relevance for human health effects should be ensured.

  11. Anti-Inflammatory Effects of Ginsenoside Rg3 via NF-κB Pathway in A549 Cells and Human Asthmatic Lung Tissue

    PubMed Central

    Lee, In-Seung; Uh, InJoon; Kim, Ki-Suk; Kim, Kang-Hoon; Park, Jiyoung; Kim, Yumi; Jung, Ji-Hoon; Jung, Hee-Jae

    2016-01-01

    Objective. There is limited information of the anti-inflammatory effects of Rg3 on inflamed lung cells and tissues. Therefore, we confirmed the anti-inflammatory mechanism of ginsenoside Rg3 in inflamed human airway epithelial cells (A549) and tissues whether Rg3 regulates nuclear factor kappa B (NF-κB) activity. Methods. To induce the inflammation, IL-1β (10 ng/ml) was treated to A549 cells for 4 h. The effects of Rg3 on NF-κB activity and COX-2 expression were evaluated by western blotting analysis in both IL-1β-induced inflamed A549 cell and human asthmatic airway epithelial tissues. Using multiplex cytokines assay, the secretion levels of NF-κB-mediated cytokines/chemokines were measured. Result. Rg3 showed the significant inhibition of NF-κB activity thereby reduced COX-2 expression was determined in both IL-1β-induced inflamed A549 cell and human asthmatic airway epithelial tissues. In addition, among NF-κB-mediated cytokines, the secretion levels of IL-4, TNF-α, and eotaxin were significantly decreased by Rg3 in asthma tissues. Even though there was no significant difference, IL-6, IL-9, and IL-13 secretion showed a lower tendency compared to saline-treated human asthmatic airway epithelial tissues. Conclusion. The results from this study demonstrate the potential of Rg3 as an anti-inflammatory agent through regulating NF-κB activity and reducing the secretion of NF-κB-mediated cytokines/chemokines. PMID:28116321

  12. Human microRNA-24 modulates highly pathogenic avian-origin H5N1 influenza A virus infection in A549 cells by targeting secretory pathway furin.

    PubMed

    Loveday, Emma-Kate; Diederich, Sandra; Pasick, John; Jean, François

    2015-01-01

    A common critical cellular event that many human enveloped viruses share is the requirement for proteolytic cleavage of the viral glycoprotein by furin in the host secretory pathway. For example, the furin-dependent proteolytic activation of highly pathogenic (HP) influenza A (infA) H5 and H7 haemagglutinin precursor (HA0) subtypes is critical for yielding fusion-competent infectious virions. In this study, we hypothesized that viral hijacking of the furin pathway by HP infA viruses to permit cleavage of HA0 could represent a novel molecular mechanism controlling the dynamic production of fusion-competent infectious virus particles during the viral life cycle. We explored the biological role of a newly identified furin-directed human microRNA, miR-24, in this process as a potential post-transcriptional regulator of the furin-mediated activation of HA0 and production of fusion-competent virions in the host secretory pathway. We report that miR-24 and furin are differentially expressed in human A549 cells infected with HP avian-origin infA H5N1. Using miR-24 mimics, we demonstrated a robust decrease in both furin mRNA levels and intracellular furin activity in A549 cells. Importantly, pretreatment of A549 cells with miR-24 mimicked these results: a robust decrease of H5N1 infectious virions and a complete block of H5N1 virus spread that was not observed in A549 cells infected with low-pathogenicity swine-origin infA H1N1 virus. Our results suggest that viral-specific downregulation of furin-directed microRNAs such as miR-24 during the life cycle of HP infA viruses may represent a novel regulatory mechanism that governs furin-mediated proteolytic activation of HA0 glycoproteins and production of infectious virions.

  13. Effect of silencing SATB1 on proliferation, invasion and apoptosis of A549 human lung adenocarcinoma cells

    PubMed Central

    Huang, Bo; Zhou, Hongli; Wang, Siwang; Lang, Xian Ping; Wang, Xiaodong

    2016-01-01

    The present study aimed to explore the clinical characteristics of special adenine-thymine-rich sequence-binding protein 1 (SATB1) in lung adenocarcinoma and its role in the proliferation, invasion, migration and apoptosis of the lung adenocarcinoma cell line A549. The expression of SATB1 was first studied in tumor tissues of lung adenocarcinoma and adjacent non-tumor tissues. The siRNA green fluorescent protein expression vector of SATB1 was constructed and transfected into the lung adenocarcinoma cell line A549, then a fluorescence microscope was used to study the transfection efficiency. Western blot analysis was adopted to measure the silencing efficiency. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Transwell and scratch assays were used to study cell proliferation, invasion and migration activity, and the apoptosis rate was tested by flow cytometry. SATB1 expression was low in the adjacent non-tumor tissues but high in lung adenocarcinoma tissues, and it was reversely proportional to the differentiation degree. Following transfection with SATB1-siRNA, the expression of SATB1 in A549 cells was blocked (P<0.01). In addition, the proliferation, invasion and migration abilities of cells decreased significantly while the apoptosis rate increased significantly (P<0.01). In conclusion SATB1 is closely associated with the pathogenesis and development of lung adenocarcinoma. PMID:27895736

  14. Monitoring of TGF-β 1-Induced Human Lung Adenocarcinoma A549 Cells Epithelial-Mesenchymal Transformation Process by Measuring Cell Adhesion Force with a Microfluidic Device.

    PubMed

    Li, Yuan; Gao, AnXiu; Yu, Ling

    2016-01-01

    The epithelial-mesenchymal transition (EMT) is a process in which epithelial cells lose their cell polarity and cell-cell adhesion, and gain migratory and invasive properties. It is believed that EMT is associated with initiation and completion of the invasion-metastasis cascade. In this study, an economic approach was developed to fabricate a microfluidic device with less instrumentation requirement for the investigation of EMT by quantifying cell adhesion force. Fluid shear force was precisely controlled by a homemade microfluidic perfusion apparatus and interface. The adhesion capability of the human lung adenocarcinoma cell line A549 on different types of extracellular matrix protein was studied. In addition, effects of transforming growth factor-β (TGF-β) on EMT in A549 cells were investigated by characterizing the adhesion force changes and on-chip fluorescent staining. The results demonstrate that the microfluidic device is a potential tool to characterize the epithelial-mesenchymal transition process by measuring cell adhesion force.

  15. Erucin, a new promising cancer chemopreventive agent from rocket salads, shows anti-proliferative activity on human lung carcinoma A549 cells.

    PubMed

    Melchini, A; Costa, C; Traka, M; Miceli, N; Mithen, R; De Pasquale, R; Trovato, A

    2009-07-01

    Erucin (ER) is a dietary isothiocyanate present in cruciferous vegetables, such as rocket salads (Erucasativa Mill., Diplotaxis sp.), that has been recently considered a promising cancer chemopreventive phytochemical. Biological activity of ER was investigated on human lung adenocarcinoma A549 cells, analyzing its effects on molecular pathways involved in apoptosis and cell cycle arrest, such as PARP-1 cleavage, p53 and p21 protein expression. Our results show that ER affects the A549 cell proliferation, enhancing significantly p53 and p21 protein expression in a dose-dependent manner (p<0.001). PARP-1 cleavage occurs only after exposure to high concentrations of ER (50 microM), in accordance to previous studies showing similar bioactivity of other isothiocyanates (ITCs). Our study reports for the first time that the induction of p53, p21 and PARP-1 cleavage may participate in the anti-proliferative activity of ER in human lung adenocarcinoma A549 cells. Comparison of data with those obtained with the isothiocyanate sulforaphane (SF), structurally related to ER, underlines the strong relationship between structural analogy of ITCs and their biological activity. The ability of dietary compounds to modulate molecular mechanisms that affect cancer cell proliferation is certainly a key point of the cancer prevention potential by functional foods.

  16. Mechanisms underlying regulation of cell cycle and apoptosis by hnRNP B1 in human lung adenocarcinoma A549 cells.

    PubMed

    Han, Juan; Tang, Feng-ming; Pu, Dan; Xu, Dan; Wang, Tao; Li, Weimin

    2014-01-01

    Overexpression of heterogeneous nuclear ribonucleoprotein B1 (hnRNP B1), a nuclear RNA binding protein, has been reported to occur in early-stage lung cancer and in premalignant lesions. DNA-dependent protein kinase (DNA-PK) is known to be involved in the repair of double-strand DNA breaks. Reduced capacity to repair DNA has been associated with the risk of lung cancer. We investigated a link between hnRNP B1 and DNA-PK and their effects on proliferation, cell cycle, and apoptosis in the human lung adenocarcinoma cell line A549. We found that hnRNP B1 and DNA-PK interact with each other in a complex fashion. Reducing hnRNP B1 expression in A549 cells with the use of RNAi led to upregulation of p53 activity through upregulation of DNA-PK activity but without inducing p53 expression. Further, suppression of hnRNP B1 in A549 cells slowed cell proliferation, promoted apoptosis, and induced cell cycle arrest at the G1 stage. The presence of NU7026 reduced the arrest of cells at the G1 stage and reduced the apoptosis rate while promoting cell growth. Taken together, our results demonstrate that by regulating DNA-PK activity, hnRNP B1 can affect p53-mediated cell cycle progression and apoptosis, resulting in greater cell survival and subsequent proliferation.

  17. Identification of epigallocatechin-3-gallate in green tea polyphenols as a potent inducer of p53-dependent apoptosis in the human lung cancer cell line A549.

    PubMed

    Yamauchi, Rieko; Sasaki, Kaori; Yoshida, Kenichi

    2009-08-01

    The effects of green tea polyphenols on cultured cancer cells have been well characterized, especially the effects of epigallocatechin-3-gallate (EGCg), since EGCg suppresses oncogenic signaling pathways and induces cell cycle arrest or apoptosis by regulating cell cycle-associated proteins. In the present study, we attempted to identify signaling pathways or target molecules regulated by each of or a mixture of green tea polyphenols, including epicatechin (EC), epicatechin-3-gallate (ECg), epigallocatechin (EGC), and EGCg, in the human lung cancer cell line A549. ECg, EGC, and a catechin mixture, in addition to EGCg, significantly decreased cell viability. In contrast, caspase 3/7 activity, an apoptosis indicator, was specifically induced by EGCg. By conducting a series of luciferase-based reporter assays, we revealed that the catechin mixture only up-regulates the p53 reporter. EGCg was a more potent inducer of p53-dependent transcription, and this induction was further supported by the induced level of p53 protein. RNA interference (RNAi)-mediated p53 knockdown completely abolished EGCg-induced apoptosis. Finally, a proteome and western blot analysis using approximately 70 different antibodies failed to detect up-regulated proteins in catechin mixture-treated A549 cells. Taken together, these results indicate that EGCg, among several green tea polyphenols, is a potent apoptosis inducer that functions exclusively through a p53-dependent pathway in A549 cells.

  18. Green tea catechin, epigallocatechin-3-gallate, attenuates the cell viability of human non-small-cell lung cancer A549 cells via reducing Bcl-xL expression.

    PubMed

    Sonoda, Jun-Ichiro; Ikeda, Ryuji; Baba, Yasutaka; Narumi, Keiko; Kawachi, Akio; Tomishige, Erisa; Nishihara, Kazuya; Takeda, Yasuo; Yamada, Katsushi; Sato, Keizo; Motoya, Toshiro

    2014-07-01

    Clinical and epidemiological studies have indicated that the consumption of green tea has a number of beneficial effects on health. Epigallocatechin-3-gallate (EGCg), the major polyphenolic compound present in green tea, has received much attention as an active ingredient. Among the numerous promising profiles of EGCg, the present study focused on the anticancer effects. Apoptosis induced by EGCg and subsequent cell growth suppression have been demonstrated in a number of cell culture studies. However, the underlying mechanism of apoptotic cell death remains unclear. Thus, the aim of the present study was to identify the major molecule that mediates proapoptotic cell death by EGCg. The effect of EGCg on cell proliferation and the induction of mRNA that modulates apoptotic cell death was evaluated in the A549 human non-small-cell lung cancer cell line. In addition, morphological changes were assessed by microscopy in A549 cells that had been treated with 100 μM EGCg for 24 h. The MTT assay revealed that cell proliferation was significantly reduced by EGCg in a dose-dependent manner (3-100 μM). The mRNA expression level of B-cell lymphoma-extra large (Bcl-xL) was decreased in A549 cells following 24 h incubation with 100 μM EGCg. Therefore, the results indicated that the inhibition of cell proliferation by EGCg may be achieved via suppressing the expression of the cell death-inhibiting gene, Bcl-xL.

  19. Green tea catechin, epigallocatechin-3-gallate, attenuates the cell viability of human non-small-cell lung cancer A549 cells via reducing Bcl-xL expression

    PubMed Central

    SONODA, JUN-ICHIRO; IKEDA, RYUJI; BABA, YASUTAKA; NARUMI, KEIKO; KAWACHI, AKIO; TOMISHIGE, ERISA; NISHIHARA, KAZUYA; TAKEDA, YASUO; YAMADA, KATSUSHI; SATO, KEIZO; MOTOYA, TOSHIRO

    2014-01-01

    Clinical and epidemiological studies have indicated that the consumption of green tea has a number of beneficial effects on health. Epigallocatechin-3-gallate (EGCg), the major polyphenolic compound present in green tea, has received much attention as an active ingredient. Among the numerous promising profiles of EGCg, the present study focused on the anticancer effects. Apoptosis induced by EGCg and subsequent cell growth suppression have been demonstrated in a number of cell culture studies. However, the underlying mechanism of apoptotic cell death remains unclear. Thus, the aim of the present study was to identify the major molecule that mediates proapoptotic cell death by EGCg. The effect of EGCg on cell proliferation and the induction of mRNA that modulates apoptotic cell death was evaluated in the A549 human non-small-cell lung cancer cell line. In addition, morphological changes were assessed by microscopy in A549 cells that had been treated with 100 μM EGCg for 24 h. The MTT assay revealed that cell proliferation was significantly reduced by EGCg in a dose-dependent manner (3–100 μM). The mRNA expression level of B-cell lymphoma-extra large (Bcl-xL) was decreased in A549 cells following 24 h incubation with 100 μM EGCg. Therefore, the results indicated that the inhibition of cell proliferation by EGCg may be achieved via suppressing the expression of the cell death-inhibiting gene, Bcl-xL. PMID:24944597

  20. Comparison of oxycodone and morphine on the proliferation, apoptosis and expression of related molecules in the A549 human lung adenocarcinoma cell line

    PubMed Central

    Tian, Mi; Jin, Li; Li, Renqi; Zhu, Sihai; Ji, Muhuo; Li, Weiyan

    2016-01-01

    The present study aimed to compare the effects of oxycodone and morphine hydrochloride on the proliferation, apoptosis and migration of A549 lung cancer cells. A549 human lung cancer cells were cultured in vitro and treated with oxycodone or morphine at various concentrations (10, 20 and 40 µg/ml). Cell migration was determined using a wound healing assay, whereas apoptosis was detected using flow cytometry. Reverse transcription quantitative-polymerase chain reaction was performed in order to assess the apoptosis-related gene expression levels, including p53, B-cell lymphoma (Bcl)-2 and Bcl-2-associated X protein (Bax). The levels of vascular endothelial growth factor (VEGF) and urokinase-type plasminogen activator (uPA) were detected using enzyme-linked immunosorbent assays. The expression levels of intercellular cell adhesion molecule (ICAM)-1 were determined by immunofluorescence. In the present study, oxycodone and morphine induced apoptosis in A549 lung cancer cells with similar potency; however, >20 µg/ml oxycodone was more effective at inhibiting cell proliferation (P<0.05) and migration (P<0.05), as compared with morphine at the same concentration. Oxycodone induced a dose-dependent increase in the expression levels of p53 and Bax apoptosis-related genes, whereas it decreased the gene expression levels of Bcl-2. Furthermore, oxycodone decreased, whereas morphine increased, the expression levels of ICAM-1 in a concentration-dependent manner. In addition, at 40 µg/ml, the expression levels of VEGF and uPA in the morphine group were significantly higher than those demonstrated in the oxycodone group (P<0.05). In conclusion, oxycodone was more effective in inhibiting the proliferation and migration of A549 lung cancer cells, as compared with morphine. PMID:27446244

  1. Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 non-small cell lung cancer cells

    PubMed Central

    Yong, Wai Kuan; Ho, Yen Fong; Malek, Sri Nurestri Abd

    2015-01-01

    Background: Xanthohumol, a major prenylated chalcone found in female hop plant, Humulus lupulus, was reported to have various chemopreventive and anti-cancer properties. However, its apoptotic effect on human alveolar adenocarcinoma cell line (A549) of non-small cell lung cancer (NSCLC) was unknown. Objective: This study aimed to investigate the effects of xanthohumol on apoptosis in A549 human NSCLC cells. Materials and Methods: A549 cell proliferation was determined by sulforhodamine B assay. Morphological changes of the cells were studied via phase contrast and fluorescent microscopy. Induction of apoptosis was assessed by Annexin-V fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining, DNA fragmentation (TUNEL) assay mitochondrial membrane potential assay, cell cycle analysis, and caspase activity studies. Results: Xanthohumol was found to decrease cell proliferation in A549 cells but had relatively low cytotoxicity on normal human lung fibroblast cell line (MRC-5). Typical cellular and nuclear apoptotic features were also observed in A549 cells treated with xanthohumol. Onset of apoptosis in A549 cells was further confirmed by externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells after treatment. Xanthohumol induced accumulation of cells in sub G1 and S phase based on cell cycle analysis and also increased the activities of caspase-3, -8, and -9. Conclusion: This work suggests that xanthohumol as an apoptosis inducer, may be a potent therapeutic compound for NSCLC. PMID:26664015

  2. Streptococcus pneumoniae ClpL Modulates Adherence to A549 Human Lung Cells through Rap1/Rac1 Activation

    PubMed Central

    Nguyen, Cuong Thach; Le, Nhat-Tu; Tran, Thao Dang-Hien; Kim, Eun-Hye; Park, Sang-Sang; Luong, Truc Thanh; Chung, Kyung-Tae; Pyo, Suhkneung

    2014-01-01

    Caseinolytic protease L (ClpL) is a member of the HSP100/Clp chaperone family, which is found mainly in Gram-positive bacteria. ClpL is highly expressed during infection for refolding of stress-induced denatured proteins, some of which are important for adherence. However, the role of ClpL in modulating pneumococcal virulence is poorly understood. Here, we show that ClpL impairs pneumococcal adherence to A549 lung cells by inducing and activating Rap1 and Rac1, thus increasing phosphorylation of cofilin (inactive form). Moreover, infection with a clpL mutant (ΔclpL) causes a greater degree of filopodium formation than D39 wild-type (WT) infection. Inhibition of Rap1 and Rac1 impairs filopodium formation and pneumococcal adherence. Therefore, ClpL can reduce pneumococcal adherence to A549 cells, likely via modulation of Rap1- and Rac1-mediated filopodium formation. These results demonstrate a potential role for ClpL in pneumococcal resistance to host cell adherence during infection. This study provides insight into further understanding the interactions between hosts and pathogens. PMID:24980975

  3. Development of drug-loaded chitosan hollow nanoparticles for delivery of paclitaxel to human lung cancer A549 cells.

    PubMed

    Jiang, Jie; Liu, Ying; Wu, Chao; Qiu, Yang; Xu, Xiaoyan; Lv, Huiling; Bai, Andi; Liu, Xuan

    2017-08-01

    In this study, biodegradable chitosan hollow nanospheres (CHN) were fabricated using polystyrene nanospheres (PS) as templates. CHN were applied to increase the solubility of poorly water-soluble drugs. The lung cancer drug paclitaxel (PTX), which is used as a model drug, was loaded into CHN by the adsorption equilibrium method. The drug-loaded sample (PTX-CHN) offered sustained PTX release and good bioavailability. The state characterization of PTX by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) showed that the PTX absorbed into CHN existed in an amorphous state. An in vitro toxicity experiment indicated that CHN were nontoxic as carriers of poorly water-soluble drugs. The PTX-CHN produced a marked inhibition of lung cancer A549 cells proliferation and encouraged apoptosis. A cell uptake experiment indicated that PTX-CHN was successfully taken up by lung cancer A549 cells. Furthermore, a degradation experiment revealed that CHN were readily biodegradable. These findings state clearly that CHN can be regarded as promising biomaterials for lung cancer treatment.

  4. Human mast cells decrease SLPI levels in type II – like alveolar cell model, in vitro

    PubMed Central

    Hollander, Camilla; Nyström, Max; Janciauskiene, Sabina; Westin, Ulla

    2003-01-01

    Background Mast cells are known to accumulate at sites of inflammation and upon activation to release their granule content, e.g. histamine, cytokines and proteases. The secretory leukocyte protease inhibitor (SLPI) is produced in the respiratory mucous and plays a role in regulating the activity of the proteases. Result We have used the HMC-1 cell line as a model for human mast cells to investigate their effect on SLPI expression and its levels in cell co-culture experiments, in vitro. In comparison with controls, we found a significant reduction in SLPI levels (by 2.35-fold, p < 0.01) in a SLPI-producing, type II-like alveolar cell line, (A549) when co-cultured with HMC-1 cells, but not in an HMC-1-conditioned medium, for 96 hours. By contrast, increased SLPI mRNA expression (by 1.58-fold, p < 0.05) was found under the same experimental conditions. Immunohistochemical analysis revealed mast cell transmigration in co-culture with SLPI-producing A549 cells for 72 and 96 hours. Conclusion These results indicate that SLPI-producing cells may assist mast cell migration and that the regulation of SLPI release and/or consumption by mast cells requires interaction between these cell types. Therefore, a "local relationship" between mast cells and airway epithelial cells might be an important step in the inflammatory response. PMID:12952550

  5. Inhibitory effect of radiotherapy combined with weekly recombinant human endostatin on the human pulmonary adenocarcinoma A549 xenografts in nude mice.

    PubMed

    Jiang, Xiao-dong; Dai, Peng; Wu, Jin; Song, Da-an; Yu, Jin-ming

    2011-05-01

    The aim of this study was to investigate the inhibitory effect of radiotherapy combined with weekly recombinant human endostatin (RHES) on the human pulmonary adenocarcinoma A549 xenografts in nude mice. The 40 A549 xenograft nude mice models were randomly divided into 4 groups (each group with 10 nude mice). Single radiotherapy group (group 1) was given a single external irradiation (6MV-X ray, 10 Gy) and peritumoral subcutaneous injection of 0.2 ml normal saline every day for 7 days. Single RHES group (group 2) was given peritumoral subcutaneous injection of 0.2 ml RHES (0.75 mg/ml) for 7 days. Combination therapy group (group 3) was given radiotherapy as the same as group 1 and RHES as the same as group 2. Control group was given normal saline as the same as group 1. The tumor volume was smaller in group 3 than in control group from the 8th day after treatment (P<0.05) and tumor regression occurred from the second week after treatment in group 3. On the 15th day after treatment, the inhibitory rates of tumor volume were 69.65%, 92.64% and 116.4% in groups 2, 1 and 3, respectively; MVD number was lower in group 3 than in group 1 (P<0.05); there was no statistical significance in VEGF expression between group 2 and control group as well as between group 3 and group 1 (P>0.05). Apoptosis was marked in group 3. Radiotherapy combined with weekly RHES can significantly inhibit tumor growth and earlier induce tumor regression, which may be related to the improvement of tumor hypoxia and the inhibition of radiation-induced tumor angiogenesis. Short-term application (1 week) of RHES is beneficial to clinical practice.

  6. Bacillus anthracis lethal toxin reduces human alveolar epithelial barrier function.

    PubMed

    Langer, Marybeth; Duggan, Elizabeth Stewart; Booth, John Leland; Patel, Vineet Indrajit; Zander, Ryan A; Silasi-Mansat, Robert; Ramani, Vijay; Veres, Tibor Zoltan; Prenzler, Frauke; Sewald, Katherina; Williams, Daniel M; Coggeshall, Kenneth Mark; Awasthi, Shanjana; Lupu, Florea; Burian, Dennis; Ballard, Jimmy Dale; Braun, Armin; Metcalf, Jordan Patrick

    2012-12-01

    The lung is the site of entry for Bacillus anthracis in inhalation anthrax, the deadliest form of the disease. Bacillus anthracis produces virulence toxins required for disease. Alveolar macrophages were considered the primary target of the Bacillus anthracis virulence factor lethal toxin because lethal toxin inhibits mouse macrophages through cleavage of MEK signaling pathway components, but we have reported that human alveolar macrophages are not a target of lethal toxin. Our current results suggest that, unlike human alveolar macrophages, the cells lining the respiratory units of the lung, alveolar epithelial cells, are a target of lethal toxin in humans. Alveolar epithelial cells expressed lethal toxin receptor protein, bound the protective antigen component of lethal toxin, and were subject to lethal-toxin-induced cleavage of multiple MEKs. These findings suggest that human alveolar epithelial cells are a target of Bacillus anthracis lethal toxin. Further, no reduction in alveolar epithelial cell viability was observed, but lethal toxin caused actin rearrangement and impaired desmosome formation, consistent with impaired barrier function as well as reduced surfactant production. Therefore, by compromising epithelial barrier function, lethal toxin may play a role in the pathogenesis of inhalation anthrax by facilitating the dissemination of Bacillus anthracis from the lung in early disease and promoting edema in late stages of the illness.

  7. Bacillus anthracis Lethal Toxin Reduces Human Alveolar Epithelial Barrier Function

    PubMed Central

    Langer, Marybeth; Duggan, Elizabeth Stewart; Booth, John Leland; Patel, Vineet Indrajit; Zander, Ryan A.; Silasi-Mansat, Robert; Ramani, Vijay; Veres, Tibor Zoltan; Prenzler, Frauke; Sewald, Katherina; Williams, Daniel M.; Coggeshall, Kenneth Mark; Awasthi, Shanjana; Lupu, Florea; Burian, Dennis; Ballard, Jimmy Dale; Braun, Armin

    2012-01-01

    The lung is the site of entry for Bacillus anthracis in inhalation anthrax, the deadliest form of the disease. Bacillus anthracis produces virulence toxins required for disease. Alveolar macrophages were considered the primary target of the Bacillus anthracis virulence factor lethal toxin because lethal toxin inhibits mouse macrophages through cleavage of MEK signaling pathway components, but we have reported that human alveolar macrophages are not a target of lethal toxin. Our current results suggest that, unlike human alveolar macrophages, the cells lining the respiratory units of the lung, alveolar epithelial cells, are a target of lethal toxin in humans. Alveolar epithelial cells expressed lethal toxin receptor protein, bound the protective antigen component of lethal toxin, and were subject to lethal-toxin-induced cleavage of multiple MEKs. These findings suggest that human alveolar epithelial cells are a target of Bacillus anthracis lethal toxin. Further, no reduction in alveolar epithelial cell viability was observed, but lethal toxin caused actin rearrangement and impaired desmosome formation, consistent with impaired barrier function as well as reduced surfactant production. Therefore, by compromising epithelial barrier function, lethal toxin may play a role in the pathogenesis of inhalation anthrax by facilitating the dissemination of Bacillus anthracis from the lung in early disease and promoting edema in late stages of the illness. PMID:23027535

  8. MiR-509-3-5p causes aberrant mitosis and anti-proliferative effect by suppression of PLK1 in human lung cancer A549 cells.

    PubMed

    Wang, Xian-Hui; Lu, Yao; Liang, Jing-Jing; Cao, Ji-Xiang; Jin, Ya-Qiong; An, Guo-Shun; Ni, Ju-Hua; Jia, Hong-Ti; Li, Shu-Yan

    2016-09-16

    MicroRNAs (miRNAs) are potent post-transcriptional regulators of gene expression and play roles in DNA damage response (DDR). PLK1 is identified as a modulator of DNA damage checkpoint. Although down-regulation of PLK1 by certain microRNAs has been reported, little is known about the interplay between PLK1 and miR-509-3-5p in DDR. Here we have demonstrated that miR-509-3-5p repressed PLK1 expression by targeting PLK1 3'-UTR, thereby causing mitotic aberration and growth arrest of human lung cancer A549 cells. Repression of PLK1 by miR-509-3-5p was further evidenced by over-expression of miR-509-3-5p in A549, HepG2 and HCT116p53(-/-) cancer cells, in which PLK1 protein was suppressed. Consistently, miR-509-3-5p was stimulated, while PLK1 protein was down-regulated in A549 cells exposed to CIS and ADR, suggesting that suppression of PLK1 by miR-509-3-5p is a component of CIS/ADR-induced DDR pathway. Flow cytometry and immunofluorescence labeling showed that over-expression of miR-509-3-5p in A549 induced G2/M arrest and aberrant mitosis characterized by abnormal bipolar mitotic spindles, condensed chromosomes, lagging DNA and chromosome bridges. In addition, over-expression of miR-509-3-5p markedly blocked A549 cell proliferation and sensitized the cells to CIS and ADR treatment. Taken together, miR-509-3-5p is a feasible suppressor for cancer by targeting PLK1. Our data may provide aid in potential design of combined chemotherapy and in our better understanding of the roles of microRNAs in response to DNA damage. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. AMBIENT PARTICULATE MATTER DECREASED IN HUMAN ALVEOLAR MACHROPHAGE CYTOKINE RELEASE

    EPA Science Inventory

    Human exposure to ambient airborne particulate matter (PM) is associated with cardiopulmonary mortality and morbidity, including increased hospitalizations for lung infection. Normal lung immune responses to bacterial infection include alveolar macrophage cytokine production and...

  10. Determination of in vitro free radical scavenging and antiproliferative effect of Pennisetum alopecuroides on cultured A549 human lung cancer cells

    PubMed Central

    Mathew, Githa Elizabeth; Mathew, Bijo; Gokul, S.; Krishna, Rahul; Farisa, M. P.

    2015-01-01

    Context: Pennisetum alopecuroides (Poaceae) is a grass predominantly distributed in tropics and sub tropics. It is used as a cattle feed in many regions. Aim: The objective of the present study was to investigate the in vitro free radical scavenging and antiproliferative activity of ethanol extract of P. alopecuroides (EEPA) on cultured A549 human lung cancer cell lines. Settings and Design: The anti-oxidant activity of ethanol extract was evaluated at dose level 12.5, 25, 50, 100, and 200 μg/ml. The in vitro antiproliferative activity was measured at doses of 10, 50, and 100 μg/ml. Materials and Methods: The free radical scavenging activity of the EEPA was determined by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) method and in vitro antiproliferative activity on A549 human lung cancer cells was conducted by using MTT assay method. Results: The phytochemical screening revealed that the P. alopecuroides contained alkaloids, tannins, saponins, and flavonoids as the major secondary metabolites. The IC50 value of DPPH scavenging activity was found to be 44.41 μg/ml and 31.02 μg/ml  for a mixture of EEPA and standard ascorbic acid, respectively. In vitro MTT assay showed that EEPA had anti-proliferation effects on A549 cells in a dose dependent manner. Conclusions: This is the 1st time a pharmacological exploration of P. alopecuroides grasses has been conducted. We have shown that P. alopecuroides exhibits good free radical scavenging and strong in vitro cytotoxic activities against human lung cancer cell lines. PMID:26120234

  11. Comparative adherence to human A549 cells, plant fibronectin-like protein, and polystyrene surfaces of four Pseudomonas fluorescens strains from different ecological origin.

    PubMed

    Cossard, Elisabeth; Gallet, Olivier; Di Martino, Patrick

    2005-09-01

    The main objective of this study was to compare the adherence properties of four Pseudomonas fluorescens isolates from different ecological niches (human tissue, rhizosphere, drinking water, and cow milk). The substrates used to test P. fluorescens adherence were as follows: cultured human respiratory epithelial cells A549, immobilized plant fibronectin-like protein, and polystyrene. For all the experiments, bacteria were grown at 27 degrees C. The adherence assay to human cells was performed at 37 degrees C, whereas adherence to fibronectin and polystyrene was done at 27 degrees C. The four strains tested adhered to A549 cells but showed different adherence patterns. At 3 h, the milk isolate showed an aggregative adherence phenotype, whereas the three other isolates showed a diffuse adherence pattern. With a longer incubation time of 24 h, the aggregative pattern of the milk isolate disappeared, the adherence of the clinical strain increased, the adherence of the water isolate decreased, and morphological changes in A549 cells were observed with the clinical, water, and soil isolates. The four strains tested formed biofilms on polystyrene dishes. The clinical and milk isolates were the more efficient colonizers of polystyrene surfaces and also the more adherent to immobilized plant fibronectin-like protein. There was no relation between bacterial surface hydrophobicity and P. fluorescens adherence to the substrates tested. The main conclusions of these results are that P. fluorescens is an adherent bacterium, that no clear correlation exists between adherence and ecological habitat, and that P. fluorescens can adhere well to substrates not present in its natural environment.

  12. Interrelationships between the Human Alveolar Macrophage and Alpha-1-Antitrypsin

    PubMed Central

    Cohen, Allen B.

    1973-01-01

    Alveolar macrophages lavaged from human lungs contain protease activity at an optimum pH of 3.0 and possibly a lesser peak of activity at pH 5.5. Protease activity measured at pH 4.1 is inhibited by purified alpha-1-antitrypsin. Fluorescent antibody studies of human alveolar macrophages showed that alpha-1-antitrypsin is present in normal alveolar macrophages. In addition, macrophages from a patient with a homozygous deficiency of alpha-1-antitrypsin exhibited less fluorescence when incubated in autologous serum than the same macrophages incubated in normal serum. Macrophages from normal subjects showed maximal fluorescence when removed from the lung and additional incubation with serum did not increase fluorescence. These results implicate the human alveolar macrophage as a possible source of an enzyme that may cause emphysema in patients deficient in alpha-1-antitrypsin. They also show that alpha-1-antitrypsin has access to the alveolus in normal subjects. Images PMID:4201266

  13. CK2 inhibitor CX-4945 blocks TGF-β1-induced epithelial-to-mesenchymal transition in A549 human lung adenocarcinoma cells.

    PubMed

    Kim, Jiyeon; Hwan Kim, Seong

    2013-01-01

    The epithelial-to-mesenchymal transition (EMT) is a major phenotype of cancer metastasis and invasion. As a druggable cancer target, the inhibition of protein kinase CK2 (formally named to casein kinase 2) has been suggested as a promising therapeutic strategy to treat EMT-controlled cancer metastasis. This study aimed to evaluate the effect of the CK2 inhibitor CX-4945 on the processes of cancer migration and invasion during the EMT in A549 human lung adenocarcinoma cells. The effect of CX-4945 on TGF-β1-induced EMT was evaluated in A549 cells treated with TGF-β1 (5 ng/ml) and CX-4945. The effect of CX-4945 on TGF-β1-induced cadherin switch and activation of key signaling molecules involved in Smad, non-Smad, Wnt and focal adhesion signaling pathways were investigated by Western blot analysis, immunocytochemistry and reporter assay. Additionally, the effect of CX-4945 on TGF-β1-induced migration and invasion was investigated by wound healing assay, Boyden chamber assay, gelatin zymography, and the quantitative real-time PCR. CX-4945 inhibits the TGF-β1-induced cadherin switch and the activation of key signaling molecules involved in Smad (Smad2/3, Twist and Snail), non-Smad (Akt and Erk), Wnt (β-catenin) and focal adhesion signaling pathways (FAK, Src and paxillin) that cooperatively regulate the overall process of EMT. As a result, CX-4945 inhibits the migration and invasion of A549 cells accompanied with the downregulation of MMP-2 and 9. Clinical evaluation of CX-4945 in humans as a single agent in solid tumors and multiple myeloma has established its promising pharmacokinetic, pharmacodynamic, and safety profiles. Beyond regression of tumor mass, CX-4945 may be advanced as a new therapy for cancer metastasis and EMT-related disorders.

  14. CK2 Inhibitor CX-4945 Blocks TGF-β1-Induced Epithelial-to-Mesenchymal Transition in A549 Human Lung Adenocarcinoma Cells

    PubMed Central

    Kim, Jiyeon; Hwan Kim, Seong

    2013-01-01

    Background The epithelial-to-mesenchymal transition (EMT) is a major phenotype of cancer metastasis and invasion. As a druggable cancer target, the inhibition of protein kinase CK2 (formally named to casein kinase 2) has been suggested as a promising therapeutic strategy to treat EMT-controlled cancer metastasis. This study aimed to evaluate the effect of the CK2 inhibitor CX-4945 on the processes of cancer migration and invasion during the EMT in A549 human lung adenocarcinoma cells. Materials and Methods The effect of CX-4945 on TGF-β1-induced EMT was evaluated in A549 cells treated with TGF-β1 (5 ng/ml) and CX-4945. The effect of CX-4945 on TGF-β1-induced cadherin switch and activation of key signaling molecules involved in Smad, non-Smad, Wnt and focal adhesion signaling pathways were investigated by Western blot analysis, immunocytochemistry and reporter assay. Additionally, the effect of CX-4945 on TGF-β1-induced migration and invasion was investigated by wound healing assay, Boyden chamber assay, gelatin zymography, and the quantitative real-time PCR. Results CX-4945 inhibits the TGF-β1-induced cadherin switch and the activation of key signaling molecules involved in Smad (Smad2/3, Twist and Snail), non-Smad (Akt and Erk), Wnt (β-catenin) and focal adhesion signaling pathways (FAK, Src and paxillin) that cooperatively regulate the overall process of EMT. As a result, CX-4945 inhibits the migration and invasion of A549 cells accompanied with the downregulation of MMP-2 and 9. Conclusions Clinical evaluation of CX-4945 in humans as a single agent in solid tumors and multiple myeloma has established its promising pharmacokinetic, pharmacodynamic, and safety profiles. Beyond regression of tumor mass, CX-4945 may be advanced as a new therapy for cancer metastasis and EMT-related disorders. PMID:24023938

  15. Α-MMC and MAP30, two ribosome-inactivating proteins extracted from Momordica charantia, induce cell cycle arrest and apoptosis in A549 human lung carcinoma cells.

    PubMed

    Fan, Xiang; He, Lingli; Meng, Yao; Li, Gangrui; Li, Linli; Meng, Yanfa

    2015-05-01

    α‑Momorcharin (α‑MMC) and momordica anti‑human immunodeficiency virus protein (MAP30), produced by Momordica charantia, are ribosome‑inactivating proteins, which have been reported to exert inhibitory effects on cultured tumor cells. In order to further elucidate the functions of these agents, the present study aimed to investigate the effects of α‑MMC and MAP30 on cell viability, the induction of apoptosis, cell cycle arrest, DNA integrity and superoxide dismutase (SOD) activity. α‑MMC and MAP30 were purified from bitter melon seeds using ammonium sulfate precipitation in combination with sulfopropyl (SP)‑sepharose fast flow, sephacryl S‑100 and macro‑Cap‑SP chromatography. MTT, flow cytometric and DNA fragmentation analyses were then used to determine the effects of α‑MMC and MAP30 on human lung adenocarcinoma epithelial A549 cells. The results revealed that A549 cells were sensitive to α‑MMC and MAP30 cytotoxicity assays in vitro. Cell proliferation was significantly suppressed following α‑MMC and MAP30 treatment in a dose‑ and time‑dependent manner; in addition, the results indicated that MAP30 had a more potent anti‑tumor activity compared with that of α‑MMC. Cell cycle arrest in S phase and a significantly increased apoptotic rate were observed following treatment with α‑MMC and MAP30. Furthermore, DNA integrity analysis revealed that the DNA of A549 cells was degraded following treatment with α‑MMC and MAP30 for 48 h. The pyrogallol autoxidation method and nitrotetrazolium blue chloride staining were used to determine SOD activity, the results of which indicated that α‑MMC and MAP30 did not possess SOD activity. In conclusion, the results of the present study indicated that α‑MMC and MAP30 may have potential as novel therapeutic agents for the prophylaxis and treatment of cancer.

  16. Rosemary extract reduces Akt/mTOR/p70S6K activation and inhibits proliferation and survival of A549 human lung cancer cells.

    PubMed

    Moore, Jessy; Megaly, Mark; MacNeil, Adam J; Klentrou, Panagiota; Tsiani, Evangelia

    2016-10-01

    Compounds of plant origin and food components have attracted scientific attention for use as agents for cancer prevention and treatment. Rosemary extract contains polyphenols that were shown to have anti-cancer and other health benefits. The survival pathways of Akt, mammalian target of rapamycin (mTOR) and p70S6K, and the apoptotic protein poly ADP ribose polymerase (PARP) are key modulators of cancer cell growth and survival. In this study, we examined the effects of rosemary extract on proliferation, survival and apoptosis of human non-small cell lung cancer (NSCLC) cells and its influence on signaling events. Human NSCLC adenocarcinoma A549 cells were used. Cell proliferation and clonogenic survival were assessed using specific assays. Immunoblotting was used to examine total and phosphorylated levels of Akt, mTOR and p70S6K, and cleavage of PARP. Rosemary extract dose-dependently inhibited cell proliferation and reduced clonogenic survival of A549 cells, while PARP cleavage, an indicator of apoptosis, was enhanced. Rosemary extract significantly reduced total and phosphorylated/activated Akt, mTOR and p70S6K levels. In conclusion, rosemary extract inhibited proliferation, blocked clonogenic survival, and enhanced apoptosis of A549 lung cancer cells. These effects were associated with inhibition of Akt and downstream mTOR and p70S6K activity. Our data suggest that rosemary extract may have considerable anti-tumor and chemoprevention properties in lung cancer and deserves further systematic investigation in animal models of lung cancer.

  17. Strains of Mycobacterium tuberculosis differ in affinity for human osteoblasts and alveolar cells in vitro.

    PubMed

    Sarkar, Shrabanti; Dlamini, Muyalo G; Bhattacharya, Debapriya; Ashiru, Olubisi T; Sturm, A Willem; Moodley, Prashini

    2016-01-01

    Although the lung is the primary site of infection of tuberculosis, Mycobacterium tuberculosis is capable of causing infection at other sites. In 5-10 % such extra-pulmonary tuberculosis is located in bone tissue of the spine. It is unknown whether host or microbial factors are responsible for the site where extra-pulmonary tuberculosis manifests itself. One MDR isolate belonging to strain F28, one susceptible F11 and one isolate each of susceptible, MDR and XDR F15/LAM4/KZN were cultured in Middlebrook 7H9 media. Human osteoblasts (SaOS-2) and human alveolar epithelial cells (A549) were exposed to these different isolates of M. tuberculosis and invasion capacity and intra-cellular multiplication rates were established. Mouse macrophage (MHS) cells exposed to M. tuberculosis H37Rv served as control. The invasion capacity of F15/LAM4/KZN representatives increased with the level of resistance. The F28 MDR strain showed similar invasion capacity as the XDR F15/LAM4/KZN for pulmonary epthelial cells, whilst the fully susceptible F11 strain displayed a propensity for osteoblasts. The differences observed may in part explain why certain strains are able to cause infection at specific extra-pulmonary sites. We postulated that the development of extra-pulmonary tuberculosis depends on the ability of the microbe to pass effectively through the alveolar epithelial lining and its affinity for cells other than those in pulmonary tissue.

  18. ROS/Autophagy/Nrf2 Pathway Mediated Low-Dose Radiation Induced Radio-Resistance in Human Lung Adenocarcinoma A549 Cell.

    PubMed

    Chen, Ni; Wu, Lijun; Yuan, Hang; Wang, Jun

    2015-01-01

    Low-dose ionizing radiation (LDIR) can induce radio-resistance to following high dose radiation in various mammalian cells. The protective role of LDIR has been thought to be associated with the overall outcomes of cancer radiotherapy. NF-E2 related factor 2 (Nrf2) is a transcription factor that plays pivotal roles in maintaining cellular oxidative equilibrium. Since oxidative stress has been indicated to be a mediator of LDIR induced radio-resistance, the role of Nrf2 in this process was investigated in this research. Our results showed that in human lung adenocarcinoma A549 cell, 5cGy alpha particle induced radio-resistance to following 75cGy alpha particle radiation. The expression level of Nrf2 and its target Heme Oxygenase-1(HO-1) increased after 5cGy radiation. Both the shRNA of Nrf2 and the chemical inhibitor of HO-1 suppressed the induced radio-resistance, indicating the involvement of Nrf2 antioxidant pathway in this process. Further, we found 5cGy radiation stimulated autophagy process in A549. Inhibition of the autophagy process resulted in suppression of the radio-resistance and the induced expression of Nrf2 and HO-1. ROS scavenger N-acetyl-L-cysteine (NAC) blocked the autophagy process induced by 5cGy alpha particle, the upregulation of Nrf2 and HO-1, as well as the induced radio-resistance. In conclusion, ROS elevation caused by LDIR promoted Autophagy/Nrf2-HO-1 and conferred radio-resistance in A549.

  19. ROS/Autophagy/Nrf2 Pathway Mediated Low-Dose Radiation Induced Radio-Resistance in Human Lung Adenocarcinoma A549 Cell

    PubMed Central

    Chen, Ni; Wu, Lijun; Yuan, Hang; Wang, Jun

    2015-01-01

    Low-dose ionizing radiation (LDIR) can induce radio-resistance to following high dose radiation in various mammalian cells. The protective role of LDIR has been thought to be associated with the overall outcomes of cancer radiotherapy. NF-E2 related factor 2 (Nrf2) is a transcription factor that plays pivotal roles in maintaining cellular oxidative equilibrium. Since oxidative stress has been indicated to be a mediator of LDIR induced radio-resistance, the role of Nrf2 in this process was investigated in this research. Our results showed that in human lung adenocarcinoma A549 cell, 5cGy alpha particle induced radio-resistance to following 75cGy alpha particle radiation. The expression level of Nrf2 and its target Heme Oxygenase-1(HO-1) increased after 5cGy radiation. Both the shRNA of Nrf2 and the chemical inhibitor of HO-1 suppressed the induced radio-resistance, indicating the involvement of Nrf2 antioxidant pathway in this process. Further, we found 5cGy radiation stimulated autophagy process in A549. Inhibition of the autophagy process resulted in suppression of the radio-resistance and the induced expression of Nrf2 and HO-1. ROS scavenger N-acetyl-L-cysteine (NAC) blocked the autophagy process induced by 5cGy alpha particle, the upregulation of Nrf2 and HO-1, as well as the induced radio-resistance. In conclusion, ROS elevation caused by LDIR promoted Autophagy/Nrf2-HO-1 and conferred radio-resistance in A549. PMID:26078725

  20. Cytotoxicity, DNA damage, and apoptosis induced by titanium dioxide nanoparticles in human non-small cell lung cancer A549 cells.

    PubMed

    Wang, Yurong; Cui, Haiyan; Zhou, Jiaping; Li, Fengjuan; Wang, Jinju; Chen, Mianhua; Liu, Qingdai

    2015-04-01

    Concerns about the risk of titanium dioxide nanoparticles (TiO2 NPs) to human health and environment are gradually increasing due to their wide range of applications. In this study, cytotoxicity, DNA damage, and apoptosis induced by TiO2 NPs (5 nm) in A549 cells were investigated. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays revealed the time- and concentration-dependent cytotoxic effects of TiO2 NPs in a concentration range of 50 to 200 μg/mL. A statistically significant (p < 0.05) induction in DNA damage was observed by the comet assay in cells exposed to 50 to 200 μg/mL TiO2 NPs for 48 h. A significant (p < 0.05) induction in micronucleus formation determined by 4,6-diamino-2-phenylindole (DAPI) staining was also observed at the above concentrations. Typical apoptotic morphological feature and apoptotic bodies in A549 cells induced by TiO2 NPs at the above concentrations were observed by scanning electron micrographs. Flow cytometric analysis demonstrated that the cells treated with TiO2 NPs at concentrations of 100 and 200 μg/mL showed a significant G2/M phase arrest and a significant increased proportion of apoptotic cells. TiO2 NPs also disrupted the mitochondrial membrane potential evaluated by rhodamine 123 staining. Further analysis by quantitative real-time PCR (qRT-PCR) indicated that the expression of caspase-3 and caspase-9 messenger RNA (mRNA) was increased significantly at the concentrations of 100 and 200 μg/mL TiO2 NPs for 48 h. Taken together, these findings suggest that TiO2 NPs can inhibit A549 cell proliferation, cause DNA damage, and induce apoptosis via a mechanism primarily involving the activation of the intrinsic mitochondrial pathway. The assay data provide strong evidence that TiO2 NPs can induce cytotoxicity, significant DNA damage, and apoptosis of A549 cells, suggesting that exposure to TiO2 NPs could cause cell injury and be hazardous to health.

  1. miR-129b suppresses cell proliferation in the human lung cancer cell lines A549 and H1299.

    PubMed

    Zheng, L; Qi, Y X; Liu, S; Shi, M L; Yang, W P

    2016-10-17

    Lung cancer is one of the most prevalent malignant tumors, and is one of the primary causes of cancer-associated deaths. In 2002, an estimated 1.18 million lung cancer-associated deaths were recorded, accounting for 18% of cancer-related deaths and 2% of total mortality. Despite the great progress that has been made in lung cancer therapies, the mechanisms underlying lung cancer formation and development remain largely unknown. Meanwhile, the microRNA miR-129 has been shown to be involved in the formation of many types of cancer. Therefore, this study aims to investigate whether miR129b could suppress proliferation of lung cancer cell lines. NSCLC tissue samples were collected from the Department of Respiratory Medicine between April 2013 and December 2015. Ten normal health individuals were recruited as controls. Lung cancer cell lines A549 and H1299 were used to examine the suppressive effects of miR129b. Quantitative real-time PCR was used to detect miR129b expression. The MTT assay was used to analyze cell proliferation. Results indicated that miR-129b is down-regulated in lung cancer cell lines and NSCLC tissues. Furthermore, overexpression of miR-129b inhibited proliferation of lung cancer cells. In conclusion, miR-129b suppresses lung cancer cell proliferation, and can be a potential therapeutic target for treatment of lung cancers.

  2. Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells.

    PubMed

    Yamagata, Kazuo; Izawa, Yuri; Onodera, Daiki; Tagami, Motoki

    2017-09-05

    Previous studies indicated that chlorogenic acid, a compound present in many fruits and vegetables, has anti-cancer activities. We report that chlorogenic acid regulates the expression of apoptosis-related genes and self-renewal-related stem cell markers in cancer cells. The lung cancer cell line A549 was cultured with or without chlorogenic acid. The presence of chlorogenic acid decreased cell proliferation as measured by MTT activity. Polymerase chain reaction (PCR) showed that treatment of cells with chlorogenic acid reduced the expression of BCL2 but increased that of both BAX and CASP3. Chlorogenic acid enhanced annexin V expression as measured using fluorescently labeled annexin V. Chlorogenic acid also induced p38 MAPK and JNK gene expression. Meanwhile, several agents, including SB203580 (p38 MAP kinase inhibitor), N-acetylcysteine (antioxidant inhibitor), dipyridamole (phosphodiesterase inhibitor), and apocynin (NADPH-oxidase inhibitor) blocked chlorogenic acid-induced BAX gene expression. Chlorogenic acid reduced gene expression levels of stem cell-associated markers NANOG, POU5F1, and SOX2. Together these results indicate that chlorogenic acid affects the expression of apoptosis-related genes that are part of oxidative stress and p38 MAP-dependent pathways, as well as genes encoding stem cell markers. In conclusion, chlorogenic acid may contribute to the polyphenolic anti-cancer effect associated with consumption of vegetables and fruits.

  3. Human primary bronchial epithelial cells respond differently to titanium dioxide nanoparticles than the lung epithelial cell lines A549 and BEAS-2B.

    PubMed

    Ekstrand-Hammarström, Barbro; Akfur, Christine M; Andersson, Per Ola; Lejon, Christian; Osterlund, Lars; Bucht, Anders

    2012-09-01

    We have compared the cellular uptake and responses of five preparations of nanocrystalline titanium dioxide (TiO(2)) between normal human bronchial epithelial (NHBE) cells and epithelial cell lines (A549 and BEAS-2B). The P25 nanoparticles, containing both anatase and rutile modifications, induced reactive oxygen species (ROS) and secretion of the neutrophil chemoattractant IL-8 in all three cell types used. Pure anatase and rutile particles provoked differential IL-8 response in A549 and no response in BEAS-2B cells despite similar formation of ROS. The pure TiO(2) modifications also provoked release of the inflammatory mediators: IL-6, G-CSF and VEGF, in NHBE cells but not in the two cell lines. We conclude that the responsiveness of lung epithelial cells is strongly dependent on both the physicochemical properties of TiO(2) nanoparticles and the type of responder cells. The differential pro-inflammatory responsiveness of primary lung epithelial cells compared with immortalized cell lines should be considered in the assessment of adverse reactions to inhaled nanoparticles.

  4. Apigenin induces caspase-dependent apoptosis in human lung cancer A549 cells through Bax- and Bcl-2-triggered mitochondrial pathway.

    PubMed

    Lu, Hsu-Feng; Chie, Yu-Jie; Yang, Ming-Sung; Lee, Ching-Sung; Fu, Jene-John; Yang, Jai-Sing; Tan, Tzu-Wei; Wu, Shin-Hwar; Ma, Yi-Shih; Ip, Siu-Wan; Chung, Jing-Gung

    2010-06-01

    The molecular mechanism and possible signaling pathway of apigenin-induced cytotoxicity and apoptosis in human lung cancer cells has not been reported. We investigated the role of ROS, Ca2+, caspases and Bax proteins and mitochondria membrane potential in apigenin-induced apoptosis in A549 cells. Cells were incubated with different concentrations of apigenin then cell morphological changes, DNA damage, cell viability and apoptosis were determined by Comet assay, and flow cytometric analysis. Sub-G1 phase was also examined. Western blot analysis was used to determined the levels of Bax and Bcl-2 and apoptosis associated proteins, and confocal laser microscope for examining the translocation of associated protein after exposed to apigenin. The results indicated that apigenin induced morphological changes, decreased percentage of viable cells and induced apoptosis dose- and time-dependently. DAPI staining and Comet assay also confirmed that apigenin-induced DNA condensation and damage. The levels of caspase-3, -8 and -9 involved in apigenin-induced apoptosis indicating caspase-dependent pathway was induced by apigenin. Western blotting showed that apigenin promoted cytochrome c levels and also induced dysfunction of mitochondria leading to the release of cytochrome c, AIF and Endo G, causing the activation of caspase-9 and -3, then apoptosis in A549 cells.

  5. Biological impacts of TiO2 on human lung cell lines A549 and H1299: particle size distribution effects

    NASA Astrophysics Data System (ADS)

    Tedja, Roslyn; Marquis, Christopher; Lim, May; Amal, Rose

    2011-09-01

    Increasing use of titanium dioxide (TiO2) nanoparticles in many commercial applications has led to emerging concerns regarding the safety and environmental impact of these materials. In this study, we have investigated the biological impact of nano-TiO2 (with particle primary size of 20 nm Aeroxide P25) on human lung cell lines in vitro and also the effect of particle size distribution on the particle uptake and apparent toxicity. The biological impact of nano-TiO2 is shown to be influenced by the concentration and particle size distribution of the TiO2 and the impact was shown to differ between the two cell lines (A549 and H1299) investigated herein. A549 cell line was shown to be relatively resistant to the total amount of TiO2 particles uptaken, as measured by cell viability and metabolic assays, while H1299 had a much higher capacity to ingest TiO2 particles and aggregates, with consequent evidence of impact at concentrations as low as 30-150 μg/mL TiO2. Evidence gathered from this study suggests that both viability and metabolic assays (measuring metabolic and mitochondrial activities and also cellular ATP level) should be carried out collectively to gain a true assessment of the impact of exposure to TiO2 particles.

  6. Toxicity of wood smoke particles in human A549 lung epithelial cells: the role of PAHs, soot and zinc.

    PubMed

    Dilger, Marco; Orasche, Jürgen; Zimmermann, Ralf; Paur, Hanns-Rudolf; Diabaté, Silvia; Weiss, Carsten

    2016-12-01

    Indoor air pollution is associated with increased morbidity and mortality. Specifically, the health impact of emissions from domestic burning of biomass and coal is most relevant and is estimated to contribute to over 4 million premature deaths per year worldwide. Wood is the main fuel source for biomass combustion and the shift towards renewable energy sources will further increase emissions from wood combustion even in developed countries. However, little is known about the constituents of wood smoke and biological mechanisms that are responsible for adverse health effects. We exposed A549 lung epithelial cells to collected wood smoke particles and found an increase in cellular reactive oxygen species as well as a response to bioavailable polycyclic aromatic hydrocarbons. In contrast, cell vitality and regulation of the pro-inflammatory cytokine interleukin-8 were not affected. Using a candidate approach, we could recapitulate WSP toxicity by the combined actions of its constituents soot, metals and PAHs. The soot fraction and metals were found to be the most important factors for ROS formation, whereas the PAH response can be mimicked by the model PAH benzo[a]pyrene. Strikingly, PAHs adsorbed to WSPs were even more potent in activating target gene expression than B[a]P individually applied in suspension. As PAHs initiate multiple adverse outcome pathways and are prominent carcinogens, their role as key pollutants in wood smoke and its health effects warrants further investigation. The presented results suggest that each of the investigated constituents soot, metals and PAHs are major contributors to WSP toxicity. Mitigation strategies to prevent adverse health effects of wood combustion should therefore not only aim at reducing the emitted soot and PAHs but also the metal content, through the use of more efficient combustion appliances, and particle precipitation techniques, respectively.

  7. Investigation of the mechanism and apoptotic pathway induced by 4β cinnamido linked podophyllotoxins against human lung cancer cells A549.

    PubMed

    Kamal, Ahmed; Nayak, V Lakshma; Bagul, Chandrakant; Vishnuvardhan, M V P S; Mallareddy, Adla

    2015-11-01

    Apoptosis is essential for normal development and the maintenance of homeostasis. It plays a necessary role to protect against carcinogenesis by eliminating damaged cells. Many studies have demonstrated that the dysregulation of apoptosis results in cancer and this provides an approach to develop therapeutic agents via inducing apoptosis. In our previous studies 4β-cinnamido linked podophyllotoxin conjugates were synthesized and evaluated for their cytotoxic activity in a panel of five human cancer cell lines and the new molecules like 17a and 17f were considered as potential leads. The cytotoxic activity was comparable to etoposide. These observations prompted us to investigate the mechanism underplaying the cytotoxic activity and apoptotic pathway induced by these compounds in human lung cancer cells A459. The results of the present study revealed that these compounds exhibited DNA topoisomerase IIα inhibition and induced mitochondrial mediated apoptosis. It was further confirmed by Mitochondrial membrane potential, Cytochrome c release, cleavage of poly (ADP-ribose) polymerase (PARP), Reactive oxygen species (ROS) generation, regulation of antiapoptotic protein Bcl-2 and pro apoptotic protein Bax studied by Western blot analysis. Annexin V-FITC assay also suggested that these compounds induced cell death by apoptosis. Pretreatment with N-acetyl-L-cysteine (NAC) prevented the generation of ROS. Further, pretreatment with NAC significantly inhibited 17a and 17f induced apoptosis, suggesting that ROS are the key mediators for 17a and 17f induced apoptosis. These data indicate that these compounds might induce apoptosis in A549 cells through a ROS mediated mitochondrial dysfunction pathway. Moreover, these compounds did not significantly inhibit the noncancerous human embryonic kidney cells, HEK-293. Docking studies also elucidate the potential of these molecules to bind to the DNA topoisomerase II. Podophyllotoxin analogs were investigated for their mechanism and

  8. Three-dimensional quantitative structure-activity relationship study on anti-cancer activity of 3,4-dihydroquinazoline derivatives against human lung cancer A549 cells

    NASA Astrophysics Data System (ADS)

    Cho, Sehyeon; Choi, Min Ji; Kim, Minju; Lee, Sunhoe; Lee, Jinsung; Lee, Seok Joon; Cho, Haelim; Lee, Kyung-Tae; Lee, Jae Yeol

    2015-03-01

    A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human lung cancer A549 cells were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, 1 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields (q2 = 0.720, r2 = 0.897). This model was validated by an external test set of 6 compounds giving satisfactory predictive r2 value of 0.923 as well as the scrambling stability test. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human lung cancer.

  9. Propolis inhibits TGF-β1-induced epithelial-mesenchymal transition in human alveolar epithelial cells via PPARγ activation.

    PubMed

    Kao, Hui-Fang; Chang-Chien, Pei-Wen; Chang, Wen-Tsan; Yeh, Trai-Ming; Wang, Jiu-Yao

    2013-03-01

    Emerging evidence suggests that the transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AEC) may contribute to airway remodeling in severe asthma and fibrotic lung diseases. Studies have shown that extracts from propolis protect chemical-induced cardiac and liver fibrosis in animals. This study assesses the inhibitory effect of propolis on TGF-β1-induced EMT in serum-deprived A549 cells (human AECs). Experimental results show progressive cell morphological changes, decreased E-cadherin, increased N-cadherin production, intracellular F-actin rearrangement, increased reactive oxygen species (ROS) production, and increased cell motility with increasing TGF-β1 concentration. A549 cells pretreated with propolis and then treated with TGF-β1 for 24 h regained epithelial cell morphology, decreased the production of N-cadherin and ROS, and had reduced motility. Propolis prevents the effects of TGF-β1-induced Smad2 and AKT activation pathways and Snail expression. Moreover, propolis pretreatment may prevent the TGF-β1-induced down-regulation of nuclear hormone receptors and peroxisome proliferator-activated receptor gamma (PPARγ) protein in A549 cells, whose effect was blocked by adding PPARγ antagonist, GW9662. Two active components of propolis, caffeic acid phenethyl ester (CAPE) and pinocembrin (PIN), only had partial effects on TGF-β1-induced EMT in A549 cells. The results of this study suggest that natural propolis extracts may prevent TGF-β1-induced EMT in immortalized type II AECs via multiple inhibitory pathways, which may be clinically applied in the prevention and/or treatment of EMT-related fibrotic diseases as well as airway remodeling in chronic asthma. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Role of {alpha}{sub v}{beta}{sub 5} integrin receptor in endocytosis of crocidolite and its effect on intracellular glutathione levels in human lung epithelial (A549) cells

    SciTech Connect

    Pande, Priyadarshini; Mosleh, Tariq A.; Aust, Ann E. . E-mail: aaust@cc.usu.edu

    2006-01-15

    Crocidolite, containing 27% iron by weight, is the most carcinogenic form of asbestos. Crocidolite fibers are endocytized by {alpha}{sub v}{beta}{sub 5} integrin receptors in rabbit pleural mesothelial cells. We show here that crocidolite fibers are endocytized in human lung epithelial (A549) cells and in primary small airway epithelial (SAEC) cells. Presence of the integrin {alpha}{sub v}{beta}{sub 5} blocking antibody, P1F6, significantly reduced the uptake of crocidolite fibers in A549 cells. Thus, the integrin {alpha}{sub v}{beta}{sub 5} receptor is involved in endocytosis of crocidolite fibers in A549 cells as well. Previously, it has been observed that asbestos fibers lead to changes in the intracellular redox environment, i.e. a marked decrease in intracellular glutathione concentrations and an increase in the extracellular glutathione in A549 cells. In addition, the decrease in intracellular glutathione was found to be largely independent of iron present on the surface of the fiber. A549 cells were treated with crocidolite in the presence of endocytosis inhibitor cytochalasin D. Our data indicate that, upon preventing endocytosis, we were able to reverse the decrease in total intracellular glutathione. The decrease in total intracellular glutathione could also be prevented in the presence of the monoclonal antibody P1F6. Thus, we observed that endocytosis of crocidolite fibers via integrin {alpha}{sub v}{beta}{sub 5} receptor is linked to the marked decrease in total intracellular glutathione in A549 cells.

  11. Fyn mediates transforming growth factor-beta1-induced down-regulation of E-cadherin in human A549 lung cancer cells.

    PubMed

    Kim, An Na; Jeon, Woo-Kwang; Lim, Kyu-Hyoung; Lee, Hui-Young; Kim, Woo Jin; Kim, Byung-Chul

    2011-04-01

    Transforming growth factor-beta (TGF-β) signaling positively contributes to the regulation of tumor metastasis. However, the underlying molecular mechanisms are less well defined. We here show that Fyn, a member of Src family tyrosine kinases, plays a critical role in mediating TGF-β1-induced down-regulation of E-cadherin in human A549 lung cancer cells. Blockade of Fyn with siRNA knockdown or ligand-binding defective mutant significantly lowered the ability of TGF-β1 to repress E-cadherin expression. Furthermore, our results demonstrated that Fyn facilitates TGF-β1-mediated suppression of E-cadherin through p38 kinase-dependent induction of Snail. Collectively, our findings identify a Fyn-p38-Snail cascade as a new signaling pathway mediating oncogenic TGF-β function.

  12. Separation of an aqueous extract Inonotus obliquus (Chaga). A novel look at the efficiency of its influence on proliferation of A549 human lung carcinoma cells.

    PubMed

    Mazurkiewicz, Witold; Rydel, Katarzyna; Pogocki, Dariusz; Lemieszek, Marta Kinga; Langner, Ewa; Rzeski, Wojciech

    2010-01-01

    Aqueous extract of Inonotus obliquus was hydrolyzed in dilute hydrochloric acid. The products were extracted applying organic solvents, and separated chromatographically on a silica gel-packed column. Eluted fractions were analyzed by means of GC-MS. The presence of hydrocarbons, alcohols, phenols and various carbonyl compounds in analyzed fractions has been detected and quantified. Preliminarily experiments on the influence of certain separated samples on the proliferation of A549 human lung carcinoma cells were performed. Therefore, we hypothesize that the major antiproliferative effects are related to the presence of benzaldehyde, which is a benzyl alcohol metabolite formed in situ in the cells culture with the yield moderated by the presence of trace amounts of "high molecular mass compounds".

  13. G4-Tetra DNA Duplex Induce Lung Cancer Cell Apoptosis in A549 Cells

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobo; Zhao, YiZhuo; Lu, Hu; Fu, Cuiping; Li, Xiao; Jiang, Liyan; Li, Shanqun

    2016-10-01

    The specific DNA is typically impermeable to the plasma membrane due to its natural characters, but DNA tetra structures (DTNs) can be readily uptake by cells in the absence of transfection agents, providing a new strategy to deliver DNA drugs. In this research, the delivery efficiency of tetrahedral DNA nanostructures was measured on adenocarcinomic human alveolar basal epithelial (A549) cells via delivering AS1411 (G4). The DNA tetra-AS1411 complex was rapidly and abundantly uptake by A549 cells, and the induced apoptosis was enhanced. Furthermore, biodistribution in mouse proved the rapid clearance from non-targeted organs in vivo. This study improved the understanding of potential function in DNA-based drug delivery and proved that DTNs-AS1411 could be potentially useful for the treatment of lung cancer.

  14. Cytotoxicity and genotoxicity in human lung epithelial A549 cells caused by airborne volatile organic compounds emitted from pine wood and oriented strand boards.

    PubMed

    Gminski, Richard; Tang, Tao; Mersch-Sundermann, Volker

    2010-06-16

    Due to the massive reduction of air-change rates in modern, energy-saving houses and dwellings, the contribution of volatile organic compound (VOCs) emissions from wood-based materials to indoor air quality has become increasingly important. To evaluate toxicity of VOC mixtures typically emitted from pine wood and oriented strand boards (OSB) and their main constituents (selected terpenes and aldehydes), cytotoxicity and genotoxicity were investigated in human A549 lung cells. To facilitate exposure directly via gas phase, a 250 L emission chamber was combined with a Vitrocell exposure system. VOC exposure concentrations were measured by GC/MSD. Biological effects were determined after an exposure time of 1h by measuring cytotoxicity (erythrosine B staining) and genotoxicity (comet assay). Neither cytotoxic nor genotoxic effects were observed for VOC mixtures emitted from pine wood or OSB at loading factors of approximately 13 m(2)/m(3) (worst case conditions) of the panels (with maximum VOC levels of about 80 mg/m(3)) in comparison to clean air. While alpha-pinene and Delta(3)-carene did not induce toxic effects even at exposure concentrations of up to 1800 mg/m(3) and 600 mg/m(3), respectively, hexanal showed a cytotoxic effect at 2000 mg/m(3). The alpha,beta-unsaturated aldehydes 2-heptenal and 2-octenal caused genotoxic effects in concentrations exceeding 100mg/m(3) and 40 mg/m(3), respectively. In conclusion, high concentrations of VOCs and VOC mixtures emitted from pine wood and OSB did not lead to adverse effects in A549 human lung cells even at concentrations 10(2) to 10(5)-fold higher than those found in normal indoor air. Attention must be paid to mutagenic and possibly carcinogenic alpha,beta-unsaturated aldehydes.

  15. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Han, Jae Woong; Zhang, Xi-Feng; Park, Jung Hyun; Kim, Jin-Hoi

    2015-02-01

    Silver nanoparticles (AgNPs) are prominent group of nanomaterials and are recognized for their diverse applications in various health sectors. This study aimed to synthesize the AgNPs using the leaf extract of Artemisia princeps as a bio-reductant. Furthermore, we evaluated the multidimensional effect of the biologically synthesized AgNPs in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma (A549) cells. UV-visible (UV-vis) spectroscopy confirmed the synthesis of AgNPs. X-ray diffraction (XRD) indicated that the AgNPs are specifically indexed to a crystal structure. The results from Fourier transform infrared spectroscopy (FTIR) indicate that biomolecules are involved in the synthesis and stabilization of AgNPs. Dynamic light scattering (DLS) studies showed the average size distribution of the particle between 10 and 40 nm, and transmission electron microscopy (TEM) confirmed that the AgNPs were significantly well separated and spherical with an average size of 20 nm. AgNPs caused dose-dependent decrease in cell viability and biofilm formation and increase in reactive oxygen species (ROS) generation and DNA fragmentation in H. pylori and H. felis. Furthermore, AgNPs induced mitochondrial-mediated apoptosis in A549 cells; conversely, AgNPs had no significant effects on L132 cells. The results from this study suggest that AgNPs could cause cell-specific apoptosis in mammalian cells. Our findings demonstrate that this environmentally friendly method for the synthesis of AgNPs and that the prepared AgNPs have multidimensional effects such as anti-bacterial and anti-biofilm activity against H. pylori and H. felis and also cytotoxic effects against human cancer cells. This report describes comprehensively the effects of AgNPs on bacteria and mammalian cells. We believe that biologically synthesized AgNPs will open a new avenue towards various biotechnological and biomedical applications in the near future.

  16. In vitro toxicoproteomic analysis of A549 human lung epithelial cells exposed to urban air particulate matter and its water-soluble and insoluble fractions.

    PubMed

    Vuong, Ngoc Q; Breznan, Dalibor; Goegan, Patrick; O'Brien, Julie S; Williams, Andrew; Karthikeyan, Subramanian; Kumarathasan, Premkumari; Vincent, Renaud

    2017-10-02

    Toxicity of airborne particulate matter (PM) is difficult to assess because PM composition is complex and variable due to source contribution and atmospheric transformation. In this study, we used an in vitro toxicoproteomic approach to identify the toxicity mechanisms associated with different subfractions of Ottawa urban dust (EHC-93). A549 human lung epithelial cells were exposed to 0, 60, 140 and 200 μg/cm(2) doses of EHC-93 (total), its insoluble and soluble fractions for 24 h. Multiple cytotoxicity assays and proteomic analyses were used to assess particle toxicity in the exposed cells. The cytotoxicity data based on cellular ATP, BrdU incorporation and LDH leakage indicated that the insoluble, but not the soluble, fraction is responsible for the toxicity of EHC-93 in A549 cells. Two-dimensional gel electrophoresis results revealed that the expressions of 206 protein spots were significantly altered after particle exposures, where 154 were identified by MALDI-TOF-TOF-MS/MS. The results from cytotoxicity assays and proteomic analyses converged to a similar finding that the effects of the total and insoluble fraction may be alike, but their effects were distinguishable, and their effects were significantly different from the soluble fraction. Furthermore, the toxic potency of EHC-93 total is not equal to the sum of its insoluble and soluble fractions, implying inter-component interactions between insoluble and soluble materials resulting in synergistic or antagonistic cytotoxic effects. Pathway analysis based on the low toxicity dose (60 μg/cm(2)) indicated that the two subfractions can alter the expression of those proteins involved in pathways including cell death, cell proliferation and inflammatory response in a distinguishable manner. For example, the insoluble and soluble fractions differentially affected the secretion of pro-inflammatory cytokines such as MCP-1 and IL-8 and distinctly altered the expression of those proteins (e.g., TREM1, PDIA3 and

  17. Therapeutic effects of gold nanoparticles synthesized using Musa paradisiaca peel extract against multiple antibiotic resistant Enterococcus faecalis biofilms and human lung cancer cells (A549).

    PubMed

    Vijayakumar, S; Vaseeharan, B; Malaikozhundan, B; Gopi, N; Ekambaram, P; Pachaiappan, R; Velusamy, P; Murugan, K; Benelli, G; Suresh Kumar, R; Suriyanarayanamoorthy, M

    2017-01-01

    Botanical-mediated synthesis of nanomaterials is currently emerging as a cheap and eco-friendly nanotechnology, since it does not involve the use of toxic chemicals. In the present study, we focused on the synthesis of gold nanoparticles using the aqueous peel extract of Musa paradisiaca (MPPE-AuNPs) following a facile and cheap fabrication process. The green synthesized MPPE-AuNPs were bio-physically characterized by UV-Vis spectroscopy, FTIR, XRD, TEM, Zeta potential analysis and EDX. MPPE-AuNPs were crystalline in nature, spherical to triangular in shape, with particle size ranging within 50 nm. The biofilm inhibition activity of MPPE-AuNPs was higher against multiple antibiotic resistant (MARS) Gram-positive Enterococcus faecalis. Light and confocal laser scanning microscopic observations evidenced that the MPPE-AuNPs effectively inhibited the biofilm of E. faecalis when tested at 100 μg mL(-1). Cytotoxicity studies demonstrated that MPPE-AuNPs were effective in inhibiting the viability of human A549 lung cancer cells at higher concentrations of 100 μg mL(-1). The morphological changes in the MPPE-AuNPs treated A549 lung cancer cells were visualized under phase-contrast microscopy. Furthermore, the ecotoxicity of MPPE-AuNPs on the freshwater micro crustacean Ceriodaphnia cornuta were evaluated. Notably, no mortality was recorded in MPPE-AuNPs treated C. cornuta at 250 μg mL(-1). This study concludes that MPPE-AuNPs are non-toxic, eco-friendly and act as a multipurpose potential biomaterial for biomedical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Human Noxin is an anti-apoptotic protein in response to DNA damage of A549 non-small cell lung carcinoma.

    PubMed

    Won, Kyoung-Jae; Im, Joo-Young; Yun, Chae-Ok; Chung, Kyung-Sook; Kim, Young Joo; Lee, Jung-Sun; Jung, Young-Jin; Kim, Bo-Kyung; Song, Kyung Bin; Kim, Young-Ho; Chun, Ho-Kyung; Jung, Kyeong Eun; Kim, Moon-Hee; Won, Misun

    2014-06-01

    Human Noxin (hNoxin, C11Orf82), a homolog of mouse noxin, is highly expressed in colorectal and lung cancer tissues. hNoxin contains a DNA-binding C-domain in RPA1, which mediates DNA metabolic processes, such as DNA replication and DNA repair. Expression of hNoxin is associated with S phase in cancer cells and in normal cells. Expression of hNoxin was induced by ultraviolet (UV) irradiation. Knockdown of hNoxin caused growth inhibition of colorectal and lung cancer cells. The comet assay and western blot analysis revealed that hNoxin knockdown induced apoptosis through activation of p38 mitogen-activated protein kinase (MAPK)/p53 in non-small cell lung carcinoma A549 cells. Furthermore, simultaneous hNoxin knockdown and treatment with DNA-damaging agents, such as camptothecin (CPT) and UV irradiation, enhanced apoptosis, whereas Trichostatin A (TSA) did not. However, transient overexpression of hNoxin rescued cells from DNA damage-induced apoptosis but did not block apoptosis in the absence of DNA damage. These results suggest that hNoxin may be associated with inhibition of apoptosis in response to DNA damage. An adenovirus expressing a short hairpin RNA against hNoxin transcripts significantly suppressed the growth of A549 tumor xenografts, indicating that hNoxin knockdown has in vivo anti-tumor efficacy. Thus, hNoxin is a DNA damage-induced anti-apoptotic protein and potential therapeutic target in cancer. © 2013 UICC.

  19. Avastin® in combination with gemcitabine and cisplatin significantly inhibits tumor angiogenesis and increases the survival rate of human A549 tumor-bearing mice

    PubMed Central

    LIU, YING; XIA, XIZHENG; ZHOU, MINGKAI; LIU, XIAOJUN

    2015-01-01

    The aim of this study was to investigate the effect of Avastin® in combination with gemcitabine and cisplatin (GP) on the tumor growth of A549 tumor-bearing mice and the potential anti-tumor mechanism. A total of 30 human A549 tumor-bearing nude mice were randomly divided into the Avastin, chemotherapy and combined treatment groups for treatment with an intraperitoneal injection of Avastin (5 mg/kg) (Avastin group); an intraperitoneal injection of gemcitabine (4 mg/kg) and cisplatin (4 mg/kg) (chemotherapy group); or intraperitoneal injections of Avastin and GP (combined treatment group). The mice were observed for 30 days and the tumor growth, survival and body weight of the mice in the three groups were analyzed. The protein level of vascular endothelial growth factor (VEGF) in the tumor tissues was analyzed by ELISA. The vascular density and structural changes of the tumor were analyzed using immunohistochemistry. Compared with the Avastin and chemotherapy groups, the tumor growth of mice in the combined treatment group was significantly inhibited, and the survival rate of the mice was increased significantly. No difference in body weight was observed among the three groups of mice (P>0.05). The levels of VEGF in the combined treatment group tumor tissues were significantly reduced compared with those in the chemotherapy group tumor tissues (P<0.05). Furthermore, the vessel density of the tumor tissue in the combined treatment group was significantly reduced compared with that in the chemotherapy group (P<0.05), and the number of normal vessels in the combined treatment group tumors was significantly higher than that in the chemotherapy group tumors after 7 days of treatment (P<0.05). In conclusion, Avastin can significantly decrease the level of VEGF in tumor tissue, inhibit tumor angiogenesis and promote the normalization of tumor vascular structure, which may explain the enhanced efficacy of Avastin in combination with chemotherapy. PMID:26136956

  20. Comparison of tobacco-containing and tobacco-free waterpipe products: effects on human alveolar cells.

    PubMed

    Shihadeh, Alan; Eissenberg, Thomas; Rammah, Mayassa; Salman, Rola; Jaroudi, Ezzat; El-Sabban, Marwan

    2014-04-01

    In recent years, a class of products marketed as "tobacco-free" alternatives for the "health conscious user" has become widely available for waterpipe (hookah, narghile, or shisha) smoking. Their adoption may be in part driven by regulations banning tobacco smoking in public places and by an increasing awareness of the hazards of waterpipe tobacco smoking. Although these products are presented in advertising as a "healthier" choice, very little is known about their health effects. In this study, we compared the effects of smoke generated with tobacco-free and conventional tobacco-derived products on human alveolar cells. Smoke was generated with a smoking machine that precisely mimicked the puffing behavior of 15 experienced waterpipe smokers when they used conventional waterpipe tobacco products of their choice and flavor-matched tobacco-free products. Human alveolar epithelial cells (A549) were treated with particulate matter sampled from the smoke, and the effects on cell cycle, proliferation, and doubling time were measured during the subsequent 72hr. We found that smoke from both types of waterpipe products markedly reduced cell proliferation, caused cell cycle arrest at G0/G1, and increased cell doubling time. There were no significant differences across product in any measure. Tobacco-free and tobacco-based waterpipe products exert substantial and similar deleterious effects on human lung cells. This study adds to the nascent evidence base indicating that except for exposure to nicotine and its derivatives, use of tobacco-free waterpipe products does not present a reduced health risk relative to the use of conventional tobacco-based products.

  1. Single immunoglobulin IL-1 receptor-related protein attenuates the lipopolysaccharide-induced inflammatory response in A549 cells.

    PubMed

    Feng, Tian; Yunfeng, Ni; Jinbo, Zhao; Zhipei, Zhang; Huizhong, Zhang; Li, Liu; Tao, Jiang; Yunjie, Wang

    2010-02-12

    The lipopolysaccharide (LPS)-Toll-like receptor 4 (TLR4) signaling pathway in alveolar epithelial cells plays an important role in many pathologic processes such as acute lung injury (ALI). The single immunoglobulin IL-1 receptor-related protein (SIGIRR) is an inhibitor of LPS-TLR4 signaling, but its expression and function in alveolar epithelial cells are still unknown. In this study, we examined the expression of SIGIRR in normal human lung tissue using immunohistochemistry, reverse transcription-PCR (RT-PCR) and Western blot and found that SIGIRR was expressed in alveolar epithelial cells. Treatment of an alveolar epithelial cell line, A549, with LPS and we observed a downregulation of SIGIRR mRNA, which returned to normal levels 24h after LPS exposure. A549 cells were then transfected with a SIGIRR eukaryotic expression vector to over-express SIGIRR or, as a control, with an empty vector. Following LPS exposure, the transcriptional activity of NF-kappaB was measured using a dual-luciferase reporter assay system, and the concentration of IL-1beta, TNF-alpha and IL-6 was determined by ELISA, and cell proliferation was measured by MTT. In A549 cells that over-expressed SIGIRR, LPS treatment resulted in a significant decrease in the transcriptional activity of NF-kappaB and cell growth inhibition ratio, as well as lower levels of secreted IL-1beta, TNF-alpha and IL-6. In conclusion, SIGIRR in A549 cells inhibits the transcriptional activity of NF-kappaB and reduces the amount cytokines produced, protecting these cells from acute LPS-induced damage. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  2. Nintedanib modulates surfactant protein-D expression in A549 human lung epithelial cells via the c-Jun N-terminal kinase-activator protein-1 pathway.

    PubMed

    Kamio, Koichiro; Usuki, Jiro; Azuma, Arata; Matsuda, Kuniko; Ishii, Takeo; Inomata, Minoru; Hayashi, Hiroki; Kokuho, Nariaki; Fujita, Kazue; Saito, Yoshinobu; Miya, Toshimichi; Gemma, Akihiko

    2015-06-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease with a high mortality rate. Signalling pathways activated by several tyrosine kinase receptors are known to be involved in lung fibrosis, and this knowledge has led to the development of the triple tyrosine kinase inhibitor nintedanib, an inhibitor of vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and fibroblast growth factor receptor (FGFR), for the treatment of IPF. Pulmonary surfactant protein D (SP-D), an important biomarker of IPF, reportedly attenuates bleomycin-induced pulmonary fibrosis in mice. In this study, we investigated whether nintedanib modulates SP-D expression in human lung epithelial (A549) cells using quantitative real-time reverse transcriptase polymerase chain reaction and western blotting. To investigate the mechanisms underlying the effects of nintedanib, we evaluated the phosphorylation of c-Jun N-terminal kinase (JNK) and its downstream target c-Jun. The effect of the JNK inhibitor SP600125 on c-Jun phosphorylation was also tested. Activation of activator protein-1 (AP-1) was examined using an enzyme-linked immunosorbent assay-based test, and cell proliferation assays were performed to estimate the effect of nintedanib on cell proliferation. Furthermore, we treated mice with nintedanib to examine its in vivo effect on SP-D levels in lungs. These experiments showed that nintedanib up-regulated SP-D messenger RNA expression in a dose-dependent manner at concentrations up to 5 μM, with significant SP-D induction observed at concentrations of 3 μM and 5 μM, in comparison with that observed in vehicle controls. Nintedanib stimulated a rapid increase in phosphorylated JNK in A549 cells within 30 min of treatment and stimulated c-Jun phosphorylation, which was inhibited by the JNK inhibitor SP600125. Additionally, nintedanib was found to activate AP-1. A549 cell proliferation was not affected by nintedanib at any of the tested

  3. D-4F, an apolipoprotein A-I mimetic, inhibits TGF-β1 induced epithelial-mesenchymal transition in human alveolar epithelial cell.

    PubMed

    You, Jia; Wang, Jintao; Xie, Linshen; Zhu, Chengwen; Xiong, Jingyuan

    2016-10-01

    Emerging evidences support that transforming growth factor β1 (TGF-β1) induced epithelial-mesenchymal transition (EMT) participates in the pathogenesis of pulmonary fibrosis and asthmatic airway remodeling. Recent studies demonstrated that apolipoprotein A-I (Apo A-I) is the only known substance that can resolve established pulmonary fibrotic nodules, and Apo A-I mimetic D-4F (a synthetic polypeptide consisting of 18 amino acids) plays an inhibitory role in murine asthmatic model. However, cellular mechanisms for such therapeutic effects of Apo A-I and D-4F remain to be elucidated. This study evaluated the effects of D-4F on TGF-β1 induced EMT in human type II alveolar epithelial cell line A549. A549 cells treated with 10ng/ml of TGF-β1 manifested distinct EMT, including fibroblastic morphological changes, down-regulation of epithelial marker E-cadherin and up-regulation of mesenchymal marker vimentin. These EMT related changes were all inhibited by D-4F in a concentration dependent manner. Transcriptional investigation demonstrated clearly that D-4F dose-dependently compensated for the reduced E-cadherin mRNA level and the increased vimentin mRNA level in TGF-β1 treated A549 cells. Translational analysis revealed that D-4F significantly reversed the TGF-β1 induced changes of E-cadherin and vimentin levels. These results suggested that D-4F inhibits TGF-β1 induced EMT in human alveolar epithelial cell. Given the functional similarities between D-4F and Apo A-I, it is speculated that D-4F and Apo A-I are able to exert possible anti-fibrotic and anti-asthmatic effects via inhibiting alveolar EMT, and D-4F may possess beneficial clinical potential for patients suffering from pulmonary fibrosis and asthma. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Expression of human eukaryotic initiation factor 3f oscillates with cell cycle in A549 cells and is essential for cell viability

    PubMed Central

    2010-01-01

    Background Transcriptional and postranslational regulation of the cell cycle has been widely studied. However, there is scarce knowledge concerning translational control of this process. Several mammalian eukaryotic initiation factors (eIFs) seem to be implicated in controlling cell proliferation. In this work, we investigated if the human eIF3f expression and function is cell cycle related. Results The human eIF3f expression has been found to be upregulated in growth-stimulated A549 cells and downregulated in G0. Western blot analysis and eIF3f promotor-luciferase fusions revealed that eIF3f expression peaks twice in the cell cycle: in the S and the M phases. Deregulation of eIF3f expression negatively affects cell viability and induces apoptosis. Conclusions The expression pattern of human eIF3f during the cell cycle confirms that this gene is cell division related. The fact that eIF3f expression peaks in two cell cycle phases raises the possibility that this gene may exert a differential function in the S and M phases. Our results strongly suggest that eIF3f is essential for cell proliferation. PMID:20462454

  5. Genotoxic potential of Polycyclic Aromatic Hydrocarbons-coated onto airborne Particulate Matter (PM 2.5) in human lung epithelial A549 cells.

    PubMed

    Billet, Sylvain; Abbas, Imane; Le Goff, Jérémie; Verdin, Anthony; André, Véronique; Lafargue, Paul-Eric; Hachimi, Adam; Cazier, Fabrice; Sichel, François; Shirali, Pirouz; Garçon, Guillaume

    2008-10-18

    To improve the knowledge of the underlying mechanisms of action involved in air pollution Particulate Matter (PM)-induced toxicity in human lungs, with a particular interest of the crucial role played by coated-organic chemicals, we were interested in the metabolic activation of Polycyclic Aromatic Hydrocarbons (PAH)-coated onto air pollution PM, and, thereafter, the formation of PAH-DNA adducts in a human lung epithelial cell model (A549 cell line). Cells were exposed to Dunkerque city's PM(2.5) at its Lethal Concentrations at 10% and 50% (i.e. LC(10)=23.72 microg/mL or 6.33 microg/cm2, and LC(50)=118.60 microg/mL or 31.63 microg/cm2), and the study of Cytochrome P450 (CYP) 1A1 gene expression (i.e. RT-PCR) and protein activity (i.e. EROD activity), and the formation of PAH-DNA adducts (i.e. 32P-postlabeling), were investigated after 24, 48, and/or 72 h. PAH, PolyChlorinated Dibenzo-p-Dioxins and -Furans (PCDD/F), Dioxin-Like PolyChlorinated Biphenyls (DLPCB), and PolyChlorinated Biphenyls (PCB)-coated onto collected PM were determined (i.e. GC/MS and HRGC/HRMS, respectively), Negative (i.e. TiO2 or desorbed PM, dPM; EqLC10=19.42 microg/mL or 5.18 microg/cm2, and EqLC50=97.13 microg/mL or 25.90 microg/cm2), and positive (i.e. benzo(a)pyrene; 1 microM) controls were included in the experimental design. Statistically significant increases of CYP1A1 gene expression and protein activity were observed in A549 cells, 24, 48 and 72 h after their exposure to dPM, suggesting thereby that the employed outgassing method was not efficient enough to remove total PAH. Both the CYP1A1 gene expression and EROD activity were highly induced 24, 48 and 72 h after cell exposure to PM. However, only very low levels of PAH-DNA adducts, also not reliably quantifiable, were reported 72 h after cell exposure to dPM, and, particularly, PM. The relatively low levels of PAH together with the presence of PCDD/F, DLPCB, and PCB-coated onto Dunkerque City's PM 2.5 could notably contribute to

  6. The fruit juice of Morinda citrifolia (noni) downregulates HIF-1α protein expression through inhibition of PKB, ERK-1/2, JNK-1 and S6 in manganese-stimulated A549 human lung cancer cells.

    PubMed

    Jang, Byeong-Churl

    2012-03-01

    High exposure of manganese is suggested to be a risk factor for many lung diseases. Evidence suggests anticancerous and antiangiogenic effects by products derived from Morinda citrifolia (noni) fruit. In this study, we investigated the effect of noni fruit juice (NFJ) on the expression of HIF-1α, a tumor angiogenic transcription factor in manganese-chloride (manganese)-stimulated A549 human lung carcinoma cells. Treatment with manganese largely induced expression of HIF-1α protein but did not affect HIF-1α mRNA expression in A549 cells, suggesting the metal-mediated co- and/or post-translational HIF-1α upregulation. Manganese treatment also led to increased phosphorylation of extracellular-regulated protein kinase-1/2 (ERK-1/2), c-Jun N-terminal kinase-1 (JNK-1), protein kinase B (PKB), S6 and eukaryotic translation initiation factor-2α (eIF-2α) in A549 cells. Of note, the exposure of NFJ inhibited the manganese-induced HIF-1α protein upregulation in a concentration-dependent manner. Importantly, as assessed by results of pharmacological inhibition and siRNA transfection studies, the effect of NFJ on HIF-1α protein downregulation seemed to be largely associated with the ability of NFJ to interfere with the metal's signaling to activate PKB, ERK-1/2, JNK-1 and S6 in A549 cells. It was further shown that NFJ could repress the induction of HIF-1α protein by desferoxamine or interleukin-1β (IL-1β), another HIF-1α inducer in A549 cells. Thus, the present study provides the first evidence that NFJ has the ability to strongly downregulate manganese-induced HIF-1α protein expression in A549 human lung cancer cells, which may suggest the NFJ-mediated beneficial effects on lung pathologies in which manganese and HIF-1α overexpression play pathogenic roles.

  7. Claudin-18 inhibits cell proliferation and motility mediated by inhibition of phosphorylation of PDK1 and Akt in human lung adenocarcinoma A549 cells.

    PubMed

    Shimobaba, Shun; Taga, Saeko; Akizuki, Risa; Hichino, Asami; Endo, Satoshi; Matsunaga, Toshiyuki; Watanabe, Ryo; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Sugatani, Junko; Ikari, Akira

    2016-06-01

    Abnormal expression of claudin subtypes has been reported in various cancers. However, the pathological role of each claudin has not been clarified in detail. Claudin-18 was absent in human non-small cell and small cell lung cancers, although it is expressed in normal lung tissues. Here, we examined the effect of claudin-18 expression on the expression of junctional proteins, cell proliferation, and cell motility using human lung adenocarcinoma A549 cells. Real-time PCR and western blotting showed that exogenous expression of claudin-18 had no effect on the expression of junctional proteins including claudin-1, zonula occludens-1 (ZO-1), occludin, and E-cadherin. Claudin-18 was mainly distributed in cell-cell contact areas concomitant with ZO-1. Cell proliferation was significantly decreased at 48 and 72h after seeding of claudin 18-expressing cells. Claudin-18 suppressed cell motility, whereas it increased cell death in anoikis. Claudin-18 decreased phosphorylated (p)-3-phosphoinositide-dependent protein kinase-1 (PDK1) and p-Akt levels without affecting p-epidermal growth factor receptor and p-phosphatidylinositol-3 kinase (PI3K) levels. Furthermore, claudin-18 was bound with PDK1 and suppressed the nuclear localization of PDK1. We suggest that claudin-18 suppresses the abnormal proliferation and motility of lung epithelial cells mediated by inhibition of the PI3K/PDK1/Akt signaling pathway.

  8. Combined treatment of curcumin and small molecule inhibitors suppresses proliferation of A549 and H1299 human non-small-cell lung cancer cells.

    PubMed

    Lin, Hui-Ping; Kuo, Li-Kuo; Chuu, Chih-Pin

    2012-01-01

    Curcumin (diferuloylmethane) is a phenolic compound present in turmeric and is ingested daily in many parts of the world. Curcumin has been reported to cause inhibition on proliferation and induction of apoptosis in many human cancer cell lines, including non-small cell lung cancer cells (NSCLC). However, the clinical application of curcumin is restricted by its low bioavailability. In this report, it was observed that combined treatment of a low dosage of curcumin (5-10 µM) with a low concentration (0.1-2.5 µM) of small molecule inhibitors, including AG1478, AG1024, PD173074, LY294002 and caffeic acid phenethyl ester (CAPE) increased the growth inhibition in two human NSCLC cell lines: A549 and H1299 cells. The observation suggested that combined treatment of a low dosage of curcumin with inhibitors against epidermal growth factor receptor (EGFR), insulin-like growth factor 1 (IGF-1R), fibroblast growth factors receptor (FGFR), phosphatidylinositol 3-kinases (PI3K) or NF-κB signaling pathway may be a potential adjuvant therapy beneficial to NSCLC patients.

  9. Cephalochromin induces G0/G1 cell cycle arrest and apoptosis in A549 human non-small-cell lung cancer cells by inflicting mitochondrial disruption.

    PubMed

    Hsiao, Che-Jen; Hsiao, George; Chen, Wei-Lin; Wang, Shih-Wei; Chiang, Chun-Ping; Liu, Li-Ya; Guh, Jih-Hwa; Lee, Tzong-Huei; Chung, Chi-Li

    2014-04-25

    The fungus-derived compound cephalochromin, isolated from the fermented broth of Cosmospora vilior YMJ89051501, shows growth-inhibitory and apoptotic activity against human lung cancer A549 cells in a concentration-dependent manner with an IC50 value of 2.8 μM at 48 h. Cephalochromin induced cell cycle arrest at the G0/G1 phase through down-regulation of cyclin D1, cyclin E, Cdk 2, and Cdk 4 expressions. Cephalochromin markedly increased the hypodiploid sub-G1 phase (apoptosis) of the cell cycle at 48 h as measured by flow cytometric analysis. Reactive oxygen species generation and loss of the mitochondrial membrane potential (MMP) were also markedly induced by cephalochromin. Moreover, the immunoblotting assays showed that cephalochromin reduced survivin and Bcl-xL expression and induced the activation of caspase-8, -9, and -3 and the cleavage of poly(ADP-ribose) polymerase, indicating the involvement of a caspase signaling cascade. The caspase inhibitor Z-VAD-fmk significantly suppressed cephalochromin-induced apoptosis. Cephalochromin also triggered LC3 II, autophagic marker, expression. Taken together, this is the first report that cephalochromin induced an antiproliferative effect on human lung cancer cells through mitochondrial disruption and down-regulation of survivin, leading to cell cycle arrest at the G0/G1 phase, loss of MMP, and subsequently apoptotic cell death.

  10. Protein C inhibits endocytosis of thrombin-thrombomodulin complexes in A549 lung cancer cells and human umbilical vein endothelial cells

    SciTech Connect

    Maruyama, I.; Majerus, P.W.

    1987-05-01

    We investigated the effect of protein C on the endocytosis of thrombin-thrombomodulin complexes. We previously showed that exposure of umbilical vein endothelial cells to thrombin stimulated the internalization and degradation of thrombin. A similar internalization was stimulated by a monoclonal antithrombomodulin antibody. We have repeated these studies in the presence of protein C and found that endocytosis of /sup 125/I-thrombin-thrombomodulin complexes, but not /sup 125/I-antithrombomodulin-thrombomodulin complexes, is inhibited. Activated protein C did not inhibit endocytosis of thrombin-thrombomodulin complexes. Protein C inhibited both internalization and degradation of /sup 125/I-thrombin and diisopropylphosphoryl (DIP) /sup 125/I-thrombin in human lung cancer cells (A549). These effects were observed at protein C concentrations found in human plasma. Protein S had no effect on the inhibition of endocytosis of thrombin-thrombomodulin complexes by protein C. We propose that protein C may regulate the rate of endocytosis of thrombin-thrombomodulin complexes in vivo and thereby control the capacity for endothelium to activate protein C.

  11. Human Lung Cancer Cell Line A-549 ATCC Is Differentially Affected by Supranutritional Organic and Inorganic Selenium

    PubMed Central

    Flores Villavicencio, Lérida Liss; Cruz-Jiménez, Gustavo; Barbosa-Sabanero, Gloria; Kornhauser-Araujo, Carlos; Mendoza-Garrido, M. Eugenia; de la Rosa, Guadalupe; Sabanero-López, Myrna

    2014-01-01

    The effects of organic and inorganic forms of selenium (Se) on human cells have been extensively studied for nutritional concentrations; however, to date, little is known about the potential toxicity at supranutritional levels. In the present study we determined the effects of sodium selenite (SSe) and selenomethionine (SeMet) on cell growth and intracellular structures in lung cancer cells exposed at Se concentrations between 0 and 3 mM. Our results showed that SSe affected cell growth more rapidly than SeMet (24 h and 48 h, resp.). After 24 h of cells exposure to 0.5, 1.5, and 3 mM SSe, cell growth was reduced by 10, 50, and 60%, as compared to controls. After 48 h, nuclear fragmentation was evident in cells exposed to SSe, suggesting an induction to cell death. In contrast, SeMet did not affect cell proliferation, and the cells were phenotypically similar to controls. Microtubules and microfilaments structures were also affected by both Se compounds, again SSe being more toxic than SeMet. To our knowledge, this is the first report on the differential effects of organic and inorganic Se in supranutritional levels in lung cancer cells. PMID:25477771

  12. Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cells line

    NASA Astrophysics Data System (ADS)

    Palaniappan, P.; Sathishkumar, G.; Sankar, R.

    2015-03-01

    The present study reports, green synthesis of bioactive silver nanoparticles (AgNPs) under different temperature (60 °C, room temperature and 4° refrigerator) using the aqueous extract of sea grass Cymodocea serrulata as a potential bioreductant. Increased temperature fabricates more AgNPs compare to room temperature and refrigerator condition. At first the reduction of Ag+ ions were confirmed through color change which produces an absorbance spectra at 420 nm in UV-Visible spectrophotometer. Additionally various exclusive instrumentations such as X-ray diffraction (XRD), Dynamic light scattering (DLS), scanning electron microscope (SEM) analysis and Transmission electron microscope (TEM) were authorizes the biosynthesis and physio-chemical characterization of AgNPs. From Fourier transform infrared spectroscopy (FTIR) analysis, it was identified that the water soluble fractions of the sea grass mainly responsible for reduction of ionic silver (Ag+) into (Ag0) nano-ranged particles and also they act as stabilizing agent to sustain the durability of NPs for long period of time. Further, synthesized AgNPs shows potential cytotoxicity against human lung cancer A549 cells (LD50-100 μg/ml). The overall results suggest that C. serrulata is a valuable bioresource to generate rapid and eco-friendly bioactive AgNPs towards cancer therapy.

  13. Identification of a Short Cell-Penetrating Peptide from Bovine Lactoferricin for Intracellular Delivery of DNA in Human A549 Cells.

    PubMed

    Liu, Betty R; Huang, Yue-Wern; Aronstam, Robert S; Lee, Han-Jung

    2016-01-01

    Cell-penetrating peptides (CPPs) have been shown to deliver cargos, including protein, DNA, RNA, and nanomaterials, in fully active forms into live cells. Most of the CPP sequences in use today are based on non-native proteins that may be immunogenic. Here we demonstrate that the L5a CPP (RRWQW) from bovine lactoferricin (LFcin), stably and noncovalently complexed with plasmid DNA and prepared at an optimal nitrogen/phosphate ratio of 12, is able to efficiently enter into human lung cancer A549 cells. The L5a CPP delivered a plasmid containing the enhanced green fluorescent protein (EGFP) coding sequence that was subsequently expressed in cells, as revealed by real-time PCR and fluorescent microscopy at the mRNA and protein levels, respectively. Treatment with calcium chloride increased the level of gene expression, without affecting CPP-mediated transfection efficiency. Zeta-potential analysis revealed that positively electrostatic interactions of CPP/DNA complexes correlated with CPP-mediated transport. The L5a and L5a/DNA complexes were not cytotoxic. This biomimetic LFcin L5a represents one of the shortest effective CPPs and could be a promising lead peptide with less immunogenic for DNA delivery in gene therapy.

  14. Genotoxic effects of three selected black toner powders and their dimethyl sulfoxide extracts in cultured human epithelial A549 lung cells in vitro.

    PubMed

    Gminski, Richard; Decker, Katharina; Heinz, Christina; Seidel, Albrecht; Könczöl, Mathias; Goldenberg, Ella; Grobéty, Bernard; Ebner, Winfried; Gieré, Reto; Mersch-Sundermann, Volker

    2011-05-01

    Until now, the adverse effects of toner powders on humans have been considered to be minimal. However, several recent reports have suggested possible significant adverse health effects from toner dust inhalation. The aim of this study was to evaluate the genotoxic potential of black toner powders in vitro. For the study of DNA damage, A549 cells were exposed to toner-powder suspensions and to their DMSO extracts, and then subjected to the comet assay and to the in-vitro cytokinesis block micronucleus test (CB-MNvit). Cytotoxic effects of the toner samples were assessed by the erythrosin B assay. Furthermore, size, shape, and composition of the toner powders were investigated. None of the three toner powders or their DMSO extracts reduced cell viability; however, they did induce DNA damage and formed micronuclei at concentrations from 80 to 400 μg cm(-2) , although to a varying extent. All toner powders contain considerable amounts of the pigments carbon black and magnetite (Fe(3) O(4) ) as well as small amounts of polycyclic aromatic hydrocarbons (PAHs). The overall results of our in-vitro study suggest that the investigated toner-powder samples are not cytotoxic but genotoxic. From the results of the physical and chemical characterization, we conclude that metals and metalloids as components of magnetite, or PAHs as components of the carbon-bearing material, are responsible for the genotoxic effects. Further research is necessary to determine the relevance of these in-vitro observations for private and occupational toner powder exposure.

  15. Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cells line.

    PubMed

    Palaniappan, P; Sathishkumar, G; Sankar, R

    2015-03-05

    The present study reports, green synthesis of bioactive silver nanoparticles (AgNPs) under different temperature (60°C, room temperature and 4° refrigerator) using the aqueous extract of sea grass Cymodocea serrulata as a potential bioreductant. Increased temperature fabricates more AgNPs compare to room temperature and refrigerator condition. At first the reduction of Ag(+) ions were confirmed through color change which produces an absorbance spectra at 420nm in UV-Visible spectrophotometer. Additionally various exclusive instrumentations such as X-ray diffraction (XRD), Dynamic light scattering (DLS), scanning electron microscope (SEM) analysis and Transmission electron microscope (TEM) were authorizes the biosynthesis and physio-chemical characterization of AgNPs. From Fourier transform infrared spectroscopy (FTIR) analysis, it was identified that the water soluble fractions of the sea grass mainly responsible for reduction of ionic silver (Ag(+)) into (Ag(0)) nano-ranged particles and also they act as stabilizing agent to sustain the durability of NPs for long period of time. Further, synthesized AgNPs shows potential cytotoxicity against human lung cancer A549 cells (LD50-100μg/ml). The overall results suggest that C. serrulata is a valuable bioresource to generate rapid and eco-friendly bioactive AgNPs towards cancer therapy.

  16. Evaluation of cytotoxic, oxidative stress, proinflammatory and genotoxic responses of micro- and nano-particles of dolomite on human lung epithelial cells A(549).

    PubMed

    Patil, Govil; Khan, Mohd Imran; Patel, Devendra Kumar; Sultana, Sarwat; Prasad, Rajendra; Ahmad, Iqbal

    2012-09-01

    Dolomite is a natural mineral of great industrial importance and used worldwide, thus millions of workers are at risk of occupational exposure. Its toxicity is however, meagerly documented. In the present investigation, a dolomite powder obtained from its milling unit was analyzed by some standard methods namely, optical microscopy, transmission electron microscopy and dynamic light scattering. Results showed that dolomite powder contained particles of different shapes and size both microparticles (MPs) and nanoparticles (NPs), suggesting potential occupational exposure of these particles. An attempt was therefore, made to investigate dolomite toxicity in a particle size-dependent manner in human lung epithelial cells A(549). The comparative toxicity evaluation of MPs and NPs was carried out by assessing their effects on cell viability, membrane damage, glutathione, reactive oxygen species (ROS), lipid peroxidation (LPO), micronucleus (MN) and proinflammatory cytokines, namely tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). These markers of cytotoxicity, genotoxicity and inflammation were assayed in cells exposed to MPs and NPs in a dose-and time-dependent manner. Invariably, their toxic effects were dose-and time-dependent while NPs in general were significantly more toxic. Notably, NPs caused oxidative stress, genotoxicity and inflammatory responses, as seen by significant induction of ROS, LPO, MN, TNF-α, IL-1β and IL-6. Thus, the study tends to suggest that separate health safety standards would be required for micrometer and nanometer scale particles of dolomite.

  17. Proteomic analysis of human dental cementum and alveolar bone.

    PubMed

    Salmon, Cristiane R; Tomazela, Daniela M; Ruiz, Karina Gonzales Silvério; Foster, Brian L; Paes Leme, Adriana Franco; Sallum, Enilson Antonio; Somerman, Martha J; Nociti, Francisco H

    2013-10-08

    Dental cementum (DC) is a bone-like tissue covering the tooth root and responsible for attaching the tooth to the alveolar bone (AB) via the periodontal ligament (PDL). Studies have unsuccessfully tried to identify factors specific to DC versus AB, in an effort to better understand DC development and regeneration. The present study aimed to use matched human DC and AB samples (n=7) to generate their proteomes for comparative analysis. Bone samples were harvested from tooth extraction sites, whereas DC samples were obtained from the apical root portion of extracted third molars. Samples were denatured, followed by protein extraction reduction, alkylation and digestion for analysis by nanoAcquity HPLC system and LTQ-FT Ultra. Data analysis demonstrated that a total of 318 proteins were identified in AB and DC. In addition to shared proteins between these tissues, 105 and 83 proteins exclusive to AB or DC were identified, respectively. This is the first report analyzing the proteomic composition of human DC matrix and identifying putative unique and enriched proteins in comparison to alveolar bone. These findings may provide novel insights into developmental differences between DC and AB, and identify candidate biomarkers that may lead to more efficient and predictable therapies for periodontal regeneration. Periodontal disease is a highly prevalent disease affecting the world population, which involves breakdown of the tooth supporting tissues, the periodontal ligament, alveolar bone, and dental cementum. The lack of knowledge on specific factors that differentiate alveolar bone and dental cementum limits the development of more efficient and predictable reconstructive therapies. In order to better understand cementum development and potentially identify factors to improve therapeutic outcomes, we took the unique approach of using matched patient samples of dental cementum and alveolar bone to generate and compare a proteome list for each tissue. A potential

  18. A novel fluorinated thiosemicarbazone derivative- 2-(3,4-difluorobenzylidene) hydrazinecarbothioamide induces apoptosis in human A549 lung cancer cells via ROS-mediated mitochondria-dependent pathway.

    PubMed

    Zhao, Yue; Guo, Chuanlong; Wang, Lijun; Wang, Shuaiyu; Li, Xiangqian; Jiang, Bo; Wu, Ning; Guo, Shuju; Zhang, Renshuai; Liu, Kun; Shi, Dayong

    2017-09-09

    Thiosemicarbazone, a class of compounds with excellent biological activity, especially antitumor activity, have attracted wide attention. In this study, a novel fluorinated thiosemicarbazone derivative, 2-(3,4-difluorobenzylidene) hydrazinecarbothioamide (compound 1) was synthesized and its antitumor activities were further investigated on a non-small cell lung cancer cell line (A549) along with its underlying mechanisms. Compound 1 showed significant anti-proliferative activity on A549 cells, which was further proved by colony formation experiment. Compound 1 also inhibits the invasion of A549 cells in a trans-well culture system. Moreover, compound 1 markedly induced apoptosis on A549 cells, and the ratio of Bcl-2/Bax was decreased while the amount of p53, Cleaved-Caspase 3 and Cleaved-PARP expression were increased significantly. Compound 1 decreased the mitochondrial membrane potential, while the content of reactive oxygen was increased obviously. It is revealed that compound 1 mediated cell cycle arrest in G0/G1 phase by reducing G1 phase dependent proteins, CDK4 and Cyclin D1. As a result, it is indicated that compound 1 induced apoptosis on A549 cells was realized by regulating ROS-mediated mitochondria-dependent signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The environmental carcinogen 3-nitrobenzanthrone and its main metabolite 3-aminobenzanthrone enhance formation of reactive oxygen intermediates in human A549 lung epithelial cells

    SciTech Connect

    Hansen, Tanja . E-mail: tanja.hansen@item.fraunhofer.de; Seidel, Albrecht; Borlak, Juergen

    2007-06-01

    The environmental contaminant 3-nitrobenzanthrone (3-NBA) is highly mutagenic and a suspected human carcinogen. We aimed to evaluate whether 3-NBA is able to deregulate critical steps in cell cycle control and apoptosis in human lung epithelial A549 cells. Increased intracellular Ca{sup 2+} and caspase activities were detected upon 3-NBA exposure. As shown by cell cycle analysis, an increased number of S-phase cells was observed after 24 h of treatment with 3-NBA. Furthermore, 3-NBA was shown to inhibit cell proliferation when added to subconfluent cell cultures. The main metabolite of 3-NBA, 3-ABA, induced statistically significant increases in tail moment as judged by alkaline comet assay. The potential of 3-NBA and 3-ABA to enhance the production of reactive oxygen species (ROS) was demonstrated by flow cytometry using 2',7'-dichlorofluorescein-diacetate (DCFH-DA). The enzyme inhibitors allopurinol, dicumarol, resveratrol and SKF525A were used to assess the impact of metabolic conversion on 3-NBA-mediated ROS production. Resveratrol decreased dichlorofluorescein (DCF) fluorescence by 50%, suggesting a role for CYP1A1 in 3-NBA-mediated ROS production. Mitochondrial ROS production was significantly attenuated (20% reduction) by addition of rotenone (complex I inhibition) and thenoyltrifluoroacetone (TTFA, complex II inhibition). Taken together, the results of the present study provide evidence for a genotoxic potential of 3-ABA in human epithelial lung cells. Moreover, both compounds lead to increased intracellular ROS and create an environment favorable to DNA damage and the promotion of cancer.

  20. Mimulone-induced autophagy through p53-mediated AMPK/mTOR pathway increases caspase-mediated apoptotic cell death in A549 human lung cancer cells.

    PubMed

    An, Hyun-Kyu; Kim, Kyoung-Sook; Lee, Ji-Won; Park, Mi-Hyun; Moon, Hyung-In; Park, Shin-Ji; Baik, Ji-Sue; Kim, Cheorl-Ho; Lee, Young-Choon

    2014-01-01

    Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3) puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC) staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA), pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ) suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α) and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy.

  1. Mimulone-Induced Autophagy through p53-Mediated AMPK/mTOR Pathway Increases Caspase-Mediated Apoptotic Cell Death in A549 Human Lung Cancer Cells

    PubMed Central

    Lee, Ji-Won; Park, Mi-Hyun; Moon, Hyung-In; Park, Shin-Ji; Baik, Ji-Sue; Kim, Cheorl-Ho; Lee, Young-Choon

    2014-01-01

    Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3) puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC) staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA), pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ) suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α) and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy. PMID:25490748

  2. The environmental carcinogen 3-nitrobenzanthrone and its main metabolite 3-aminobenzanthrone enhance formation of reactive oxygen intermediates in human A549 lung epithelial cells.

    PubMed

    Hansen, Tanja; Seidel, Albrecht; Borlak, Jürgen

    2007-06-01

    The environmental contaminant 3-nitrobenzanthrone (3-NBA) is highly mutagenic and a suspected human carcinogen. We aimed to evaluate whether 3-NBA is able to deregulate critical steps in cell cycle control and apoptosis in human lung epithelial A549 cells. Increased intracellular Ca(2+) and caspase activities were detected upon 3-NBA exposure. As shown by cell cycle analysis, an increased number of S-phase cells was observed after 24 h of treatment with 3-NBA. Furthermore, 3-NBA was shown to inhibit cell proliferation when added to subconfluent cell cultures. The main metabolite of 3-NBA, 3-ABA, induced statistically significant increases in tail moment as judged by alkaline comet assay. The potential of 3-NBA and 3-ABA to enhance the production of reactive oxygen species (ROS) was demonstrated by flow cytometry using 2',7'-dichlorofluorescein-diacetate (DCFH-DA). The enzyme inhibitors allopurinol, dicumarol, resveratrol and SKF525A were used to assess the impact of metabolic conversion on 3-NBA-mediated ROS production. Resveratrol decreased dichlorofluorescein (DCF) fluorescence by 50%, suggesting a role for CYP1A1 in 3-NBA-mediated ROS production. Mitochondrial ROS production was significantly attenuated (20% reduction) by addition of rotenone (complex I inhibition) and thenoyltrifluoroacetone (TTFA, complex II inhibition). Taken together, the results of the present study provide evidence for a genotoxic potential of 3-ABA in human epithelial lung cells. Moreover, both compounds lead to increased intracellular ROS and create an environment favorable to DNA damage and the promotion of cancer.

  3. Oxidative damage to DNA and repair induced by Norwegian wood smoke particles in human A549 and THP-1 cell lines.

    PubMed

    Danielsen, Pernille Høgh; Loft, Steffen; Kocbach, Anette; Schwarze, Per E; Møller, Peter

    2009-03-31

    Genotoxic effects of traffic-generated particulate matter (PM) are well described, whereas little data are available on PM from combustion of biomass and wood, which contributes substantially to air pollution world wide. The aim of this study was to compare the genotoxicity of wood smoke particulate matter (WSPM), authentic traffic-generated particles, mineral PM and standard reference material (SRM2975) of diesel exhaust particles in human A549 lung epithelial and THP-1 monocytic cell lines. DNA damage was measured as strand breaks (SB) and formamidopyrimidine DNA glycosylase (FPG) sites by the comet assay, whereas cell cytotoxicity was determined as lactate dehydrogenase release. The exposure to WSPM generated SB and FPG sites in both cell lines at concentrations from 2.5 or 25 microg/ml, which were not cytotoxic. Compared to all other studied particles, WSPM generated greater responses in terms of both SB and FPG sites. Organic extracts of WSPM and SRM2975 elicited higher levels of SB than native and washed PM at 25 and 100 microg/ml, whereas assay saturation precluded reliable assessment of FPG sites. During a 6h post-exposure period, in which the medium with PM had been replaced by fresh medium, 60% of the DNA lesions generated by WSPM were removed. In conclusion, WSPM generated more DNA damage than traffic-generated PM per unit mass in human cell lines, possibly due to the high level of polycyclic aromatic hydrocarbons in WSPM. This suggests that exposure to WSPM might be more hazardous than PM collected from vehicle exhaust with respect to development of lung cancer.

  4. Shp-2 contributes to anti-RSV activity in human pulmonary alveolar epithelial cells by interfering with the IFN-α-induced Jak/Stat1 pathway.

    PubMed

    Wang, Saisai; Zheng, Gang; Zhao, Lifang; Xu, Feng; Qian, Jing

    2015-10-01

    Src homology phosphotyrosyl phosphatase 2 (Shp-2) is a ubiquitously expressed protein that is involved in a variety of cellular processes, including antiviral interferon signalling pathways. In this study, we investigated the role of Shp-2 in the host cell interactions of human respiratory syncytial virus (RSV). We report significant changes in the expression of Shp-2 in human pulmonary alveolar epithelial cells (A549) upon RSV infection. We also report that blocking Shp-2 does not affect viral replication or virus-induced interferon-alpha (IFN-α) production. Interestingly, whereas A549 cells were activated by IFN-α, the blocking of Shp-2 resulted in increased viral replication that was associated with the reduced expression of the IFN-stimulated genes of 2',5'-oligoadenylate synthetases and Mx1, and the concomitant inhibition of Stat1 tyrosine phosphorylation. Our findings suggest that Shp-2 contributes to the control of RSV replication and progeny production in pulmonary alveolar epithelial cells by interfering with IFN-α-induced Jak/Stat1 pathway activation rather than by affecting the production of IFN-α itself. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. Smad2/3-Regulated Expression of DLX2 Is Associated with Radiation-Induced Epithelial-Mesenchymal Transition and Radioresistance of A549 and MDA-MB-231 Human Cancer Cell Lines

    PubMed Central

    Choi, Yeo-Jin; Baek, Ga-Young; Park, Hae-Ran; Jo, Sung-Kee; Jung, Uhee

    2016-01-01

    The control of radioresistance and metastatic potential of surviving cancer cells is important for improving cancer eradication by radiotheraphy. The distal-less homeobox2 (DLX2) gene encodes for a homeobox transcription factor involved in morphogenesis and its deregulation was found in human solid tumors and hematologic malignancies. Here we investigated the role of DLX2 in association with radiation-induced epithelial to mesenchymal transition (EMT) and stem cell-like properties and its regulation by Smad2/3 signaling in irradiated A549 and MDA-MB-231 human cancer cell lines. In irradiated A549 and MDA-MB-231 cells, EMT was induced as demonstrated by EMT marker expression, phosphorylation of Smad2/3, and migratory and invasive ability. Also, irradiated A549 and MDA-MB-231 cells showed increased cancer stem cells (CSCs) marker. Interestingly, DLX2 was overexpressed upon irradiation. Therefore, we examined the role of DLX2 in radiation-induced EMT and radioresistance. The overexpression of DLX2 alone induced EMT, migration and invasion, and CSC marker expression. The reduced colony-forming ability in irradiated cells was partially restored by DLX2 overexpression. On the other hand, the depletion of DLX2 using si-RNA abolished radiation-induced EMT, CSC marker expression, and phosphorylation of Smad2/3 in irradiated A549 and MDA-MB-231 cells. Also, depletion of DLX2 increased the radiation sensitivity in both cell lines. Moreover, knockdown of Smad2/3, a key activator of TGF-β1 pathway, abrogated the radiation-induced DLX2 expression, indicating that radiation-induced DLX2 expression is dependent on Smad2/3 signaling. These results demonstrated that DLX2 plays a crucial role in radioresistance, radiation-induced EMT and CSC marker expression, and the expression of DLX2 is regulated by Smad2/3 signaling in A549 and MDA-MB-231 cell lines. PMID:26799321

  6. Nimesulide, a selective COX-2 inhibitor, acts synergistically with ionizing radiation against A549 human lung cancer cells through the activation of caspase-8 and caspase-3.

    PubMed

    Kim, Byeong Mo; Won, Juyoon; Maeng, Kyung Ah; Han, Young Soo; Yun, Yeon-Sook; Hong, Sung Hee

    2009-05-01

    Several lines of evidence suggest that non-steroidal anti-inflammatory drugs (NSAIDs) have a radiosensitizing effect on cancer cells in vitro and in vivo, but little is known about the underlying cellular mechanism. In this study, we found that the treatment with the NSAID nimesulide significantly increased the sensitivity of A549 human non-small cell lung cancer cells to radiotherapy. The combined nimesulide-radiation treatment increased apoptosis, induced the cleavage of caspase-3, caspase-9, and poly(ADP-ribose) polymerase (PARP), activated caspase-8, and induced cleavage of Bid. A pan-caspase inhibitor, z-VAD-fmk, suppressed this increase in apoptosis and also suppressed the cleavage of caspase-8, caspase-3, and PARP, suggesting a caspase-dependent mechanism. In addition, z-IETD-fmk, a selective caspase-8 inhibitor, suppressed the nimesulide- and radiation-induced cleavage activation of caspase-9, caspase-3, caspase-8, and Bid, and suppressed the concomitant apoptosis, indicating that the nimesulide-induced increase in radiosensitivity was initiated by caspase-8. However, the caspase-3 inhibitor z-DEVD-fmk failed to suppress activation of the caspase-8/Bid pathway, indicating that caspase-3 activation occurred downstream of caspase-8 activation in our experiments. Marked antitumor effects, which were evaluated by measuring protracted tumor regression, were observed when nude mice were treated with a combination of nimesulide at a clinically achievable dose (0.5 mg/kg) and radiation therapy. Our results, demonstrating the radiosensitivity-increasing and tumor growth-inhibiting effects of nimesulide, suggest that nimesulide may be suitable as an adjuvant to enhance the efficacy and selectivity of radiotherapy.

  7. IRE1α-TRAF2-ASK1 pathway is involved in CSTMP-induced apoptosis and ER stress in human non-small cell lung cancer A549 cells.

    PubMed

    Zhang, Jiexia; Liang, Ying; Lin, Yongbin; Liu, Yuanbin; YouYou; Yin, Weiqiang

    2016-08-01

    CSTMP, a Tetramethylpyrazine (TMP) analogue, is designed and synthesized based on the pharmacophores of TMP and resveratrol. Recent studies showed that CSTMP had strong protective effects in endothelial cells apoptosis by its anti-oxidant activity. However, the pharmacological function of CSTMP in cancer have not been elucidated to date. The objective of this study was to investigate the anti-cancer effect of CSTMP against human non-small cell lung cancer (NSCLC) A549 cells and the underlying mechanisms. The cell proliferation and apoptosis were detected by MTT assay and flow cytometry. Caspases activity was determined spectrophotometricaly at 405nm using a microtiter plate reader. Western blot and real-time PCR was used to assess the protein and mRNA expression. Immunoprecipitation was used to examine the protein-protein interactions. CSTMP inhibited the proliferation and induced cell cycle arrest and apoptosis of A549 cells. Caspase3, 8, 9 and PARP-1 activation, and Bax/Bcl-2 ratio analyses demonstrated that the anti-cancer effect of CSTMP in A549 cells was mediated by promoting caspase- and mitochondria-dependent apoptosis. Furthermore, CSTMP induced ER stress in A549 cells as evidenced by elevated levels of GRP78, GRP94, CHOP, IRE1α, TRAF2, p-ASK1 and p-JNK, activation of caspase12 and 4, and enhanced formation of an IRE1α-TRAF2-ASK1 complex. Knockdown of IRE1α by siRNA suppressed activation of IRE1α, TRAF2, p-ASK1 and p-JNK in CSTMP treated A549 cells. In addition, the effects of CSTMP on the formation of an IRE1α-TRAF2-ASK1 complex, caspase- and mitochondria-dependent apoptosis were also reversed by IRE1α siRNA in A549 cells. Collectively, we showed that CSTMP induced apoptosis of A549 cells were through IRE1α-TRAF2-ASK1 complex-mediated ER stress, JNK activation, and mitochondrial dysfunction. These insights on this novel compound CSTMP may provide a novel anti-cancer candidate for the treatment of NSCLC. Copyright © 2016 Elsevier Masson SAS. All

  8. Alpha-chaconine-reduced metastasis involves a PI3K/Akt signaling pathway with downregulation of NF-kappaB in human lung adenocarcinoma A549 cells.

    PubMed

    Shih, Yuan-Wei; Chen, Pin-Shern; Wu, Cheng-Hsun; Jeng, Ya-Fang; Wang, Chau-Jong

    2007-12-26

    Alpha-chaconine, isolated from Solanum tuberosum Linn., is a naturally occurring steroidal glycoalkaloid in potato sprouts. Some reports demonstrated that alpha-chaconine had various anticarcinogenic properties. The aim of this study is to investigate the inhibitory effect of alpha-chaconine on lung adenocarcinoma cell metastasis in vitro. We chose the highly metastatic A549 cells, which were treated with various concentrations of alpha-chaconine to clarify the potential of inhibiting A549 cells invasion and migration. Data showed that alpha-chaconine inhibited A549 cell invasion/migration according to wound healing assay and Boyden chamber assay. Our results also showed that alpha-chaconine could inhibit phosphorylation of c-Jun N-terminal kinase (JNK) and Akt, whereas it did not affected phosphorylation of extracellular signal regulating kinase (ERK) and p38. In addition, alpha-chaconine significantly decreased the nuclear level of nuclear factor kappa B (NF-kappaB) and the binding ability of NF-kappaB. These results suggested that alpha-chaconine inhibited A549 cell metastasis by a reduction of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) activities involving suppression of phosphoinositide 3-kinase/Akt/NF-kappaB (PI3K/Akt/NF-kappaB) signaling pathway. Inhibiting metastasis by alpha-chaconine might offer a pivotal mechanism for its effective chemotherapeutic action.

  9. Mannose-capped Lipoarabinomannan from Mycobacterium tuberculosis induces IL-37 production via upregulating ERK1/2 and p38 in human type II alveolar epithelial cells

    PubMed Central

    Huang, Zhen; Zhao, Gao Wei; Gao, Chun Hai; Chi, Xiu Wen; Zeng, Tao; Hu, Yan Wei; Zheng, Lei; Wang, Qian

    2015-01-01

    The major surface lipoglycan of Mycobacterium tuberculosis (M. tb), mannose-capped lipoarabinomannan (ManLAM), is an immunosuppressive epitope of M. tb. Interleukin (IL)-37, is a newly identified anti-inflammatory cytokine, which reduces systemic and local inflammation. However, the correlation between ManLAM and IL-37 remains unknown. Therefore, in this study, we investigate the possible role and relative molecular mechanism of ManLAM in IL-37 production of human type II alveolar epithelial cells by using A549 cell line. Here, we report that M. tb induced IL-37 mRNA and protein expression in a time-dependent manner. We next fractionated components of M. tb using chloroform: methanol (C:M) and water. In sharp contrast to the C:M phase, water phase was mainly responsible for the production of IL-37. Since ManLAM is the major component of water phase, we found that ManLAM induced IL-37 mRNA and protein expression in a time and dose-dependent manner, while this activity was almost totally abolished by the ERK1/2 (U0126) and p38 (SB203580) inhibitor. ManLAM stimulation significantly induced ERK1/2 and p38 phosphorylation in A549 cells, as well as cell surface TLR2 expression. After interfering TLR2 expression, ERK1/2 and p38 phosphorylation levels were markedly decreased, and also IL-37 production. Though ManLAM also promoted TLR4 expression on A549 cells, TLR4 interference showed no influence on ManLAM-induced IL-37 production. Our results indicate that ManLAM induces IL-37 production in human type II alveolar epithelial cells via up-regulating TLR2/p38 or ERK1/2 pathway, and this provide an important evidence to explain the pathological role of ManLAM that contribute to the persistence of M. tb. PMID:26221267

  10. Mannose-capped Lipoarabinomannan from Mycobacterium tuberculosis induces IL-37 production via upregulating ERK1/2 and p38 in human type II alveolar epithelial cells.

    PubMed

    Huang, Zhen; Zhao, Gao Wei; Gao, Chun Hai; Chi, Xiu Wen; Zeng, Tao; Hu, Yan Wei; Zheng, Lei; Wang, Qian

    2015-01-01

    The major surface lipoglycan of Mycobacterium tuberculosis (M. tb), mannose-capped lipoarabinomannan (ManLAM), is an immunosuppressive epitope of M. tb. Interleukin (IL)-37, is a newly identified anti-inflammatory cytokine, which reduces systemic and local inflammation. However, the correlation between ManLAM and IL-37 remains unknown. Therefore, in this study, we investigate the possible role and relative molecular mechanism of ManLAM in IL-37 production of human type II alveolar epithelial cells by using A549 cell line. Here, we report that M. tb induced IL-37 mRNA and protein expression in a time-dependent manner. We next fractionated components of M. tb using chloroform: methanol (C:M) and water. In sharp contrast to the C:M phase, water phase was mainly responsible for the production of IL-37. Since ManLAM is the major component of water phase, we found that ManLAM induced IL-37 mRNA and protein expression in a time and dose-dependent manner, while this activity was almost totally abolished by the ERK1/2 (U0126) and p38 (SB203580) inhibitor. ManLAM stimulation significantly induced ERK1/2 and p38 phosphorylation in A549 cells, as well as cell surface TLR2 expression. After interfering TLR2 expression, ERK1/2 and p38 phosphorylation levels were markedly decreased, and also IL-37 production. Though ManLAM also promoted TLR4 expression on A549 cells, TLR4 interference showed no influence on ManLAM-induced IL-37 production. Our results indicate that ManLAM induces IL-37 production in human type II alveolar epithelial cells via up-regulating TLR2/p38 or ERK1/2 pathway, and this provide an important evidence to explain the pathological role of ManLAM that contribute to the persistence of M. tb.

  11. Carbocisteine attenuates TNF-α-induced inflammation in human alveolar epithelial cells in vitro through suppressing NF-κB and ERK1/2 MAPK signaling pathways

    PubMed Central

    Wang, Wei; Guan, Wei-jie; Huang, Rong-quan; Xie, Yan-qing; Zheng, Jin-ping; Zhu, Shao-xuan; Chen, Mao; Zhong, Nan-shan

    2016-01-01

    Aim: We previously proven that carbocisteine, a conventional mucolytic drug, remarkably reduced the rate of acute exacerbations and improved the quality of life in the patients with chronic obstructive pulmonary disease. In this study we investigated the mechanisms underlying the anti-inflammatory effects of carbocisteine in human alveolar epithelial cells in vitro. Methods: Human lung adenocarcinoma cell line A549 was treated with TNF-α (10 ng/mL). Carbocisteine was administered either 24 h prior to or after TNF-α exposure. The cytokine release and expression were measured using ELISA and qRT-PCR. Activation of NF-κB was analyzed with Western blotting, immunofluorescence assay and luciferase reporter gene assay. The expression of ERK1/2 MAPK signaling proteins was assessed with Western blotting. Results: Carbocisteine (10, 100, 1000 μmol/L), administered either before or after TNF-α exposure, dose-dependently suppressed TNF-α-induced inflammation in A549 cells, as evidenced by diminished release of IL-6 and IL-8, and diminished mRNA expression of IL-6, IL-8, TNF-α, MCP-1 and MIP-1β. Furthermore, pretreatment with carbocisteine significantly decreased TNF-α-induced phosphorylation of NF-κB p65 and ERK1/2 MAPK, and inhibited the nuclear translocation of p65 subunit in A549 cells. In an NF-κB luciferase reporter system, pretreatment with carbocisteine dose-dependently inhibited TNF-α-induced transcriptional activity of NF-κB. Conclusion: Carbocisteine effectively suppresses TNF-α-induced inflammation in A549 cells via suppressing NF-κB and ERK1/2 MAPK signaling pathways. PMID:26997568

  12. Carbocisteine attenuates TNF-α-induced inflammation in human alveolar epithelial cells in vitro through suppressing NF-κB and ERK1/2 MAPK signaling pathways.

    PubMed

    Wang, Wei; Guan, Wei-Jie; Huang, Rong-Quan; Xie, Yan-Qing; Zheng, Jin-Ping; Zhu, Shao-Xuan; Chen, Mao; Zhong, Nan-Shan

    2016-05-01

    We previously proven that carbocisteine, a conventional mucolytic drug, remarkably reduced the rate of acute exacerbations and improved the quality of life in the patients with chronic obstructive pulmonary disease. In this study we investigated the mechanisms underlying the anti-inflammatory effects of carbocisteine in human alveolar epithelial cells in vitro. Human lung adenocarcinoma cell line A549 was treated with TNF-α (10 ng/mL). Carbocisteine was administered either 24 h prior to or after TNF-α exposure. The cytokine release and expression were measured using ELISA and qRT-PCR. Activation of NF-κB was analyzed with Western blotting, immunofluorescence assay and luciferase reporter gene assay. The expression of ERK1/2 MAPK signaling proteins was assessed with Western blotting. Carbocisteine (10, 100, 1000 μmol/L), administered either before or after TNF-α exposure, dose-dependently suppressed TNF-α-induced inflammation in A549 cells, as evidenced by diminished release of IL-6 and IL-8, and diminished mRNA expression of IL-6, IL-8, TNF-α, MCP-1 and MIP-1β. Furthermore, pretreatment with carbocisteine significantly decreased TNF-α-induced phosphorylation of NF-κB p65 and ERK1/2 MAPK, and inhibited the nuclear translocation of p65 subunit in A549 cells. In an NF-κB luciferase reporter system, pretreatment with carbocisteine dose-dependently inhibited TNF-α-induced transcriptional activity of NF-κB. Carbocisteine effectively suppresses TNF-α-induced inflammation in A549 cells via suppressing NF-κB and ERK1/2 MAPK signaling pathways.

  13. Cytotoxicity and inflammation in human alveolar epithelial cells following exposure to occupational levels of gold and silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Bachand, George D.; Allen, Amy; Bachand, Marlene; Achyuthan, Komandoor E.; Seagrave, Jean Clare; Brozik, Susan M.

    2012-10-01

    While inhalation represents one of the most likely routes of exposure, the toxicity and response of nanoparticles at concentrations expected from such an exposure are not well understood. Here we characterized the in vitro response of human A549 adenocarcinomic alveolar epithelial cells following exposure to gold (AuNP) and silver (AgNP) nanoparticles at levels approximating an occupational exposure. Changes in neither oxidative stress nor cytotoxicity were significantly affected by exposure to AgNPs and AuNPs, regardless of NP type (Ag vs. Au), concentration, surface ligand (citrate or tannic acid), or size. An inflammatory response was, however, observed in response to 20 nm AgNPs and 20 nm AuNPs, where significant differences in the release of interleukin (IL)-8 but not IL-6 were observed. Additional data demonstrated that increased IL-8 secretion was strongly dependent on both nanoparticle size and concentration. Overall these data suggest that, while not acutely toxic, occupational exposure to AuNPs and AgNPs may trigger a significant inflammatory response in alveolar epithelium. Moreover, the differential responses in IL-8 and IL-6 secretion suggest that NPs may induce a response pathway that is distinct from those commonly elicited by allergens and pathogens.

  14. Amiodarone increases the accumulation of DEA in a human alveolar epithelium-derived cell line.

    PubMed

    Seki, Satoru; Itagaki, Shirou; Kobayashi, Masaki; Hirano, Takeshi; Iseki, Ken

    2008-07-01

    Amiodarone (AMD)-induced pulmonary toxicity (AIPT) is the most life-threatening side-effect of AMD treatment. N-Monodesethylamiodarone (DEA), an active metabolite of AMD, also exhibits cytotoxicity and tends to accumulate in the lung more intensively than AMD. In this study, we characterized the mechanism of DEA accumulation using A549 cells as a model of the alveolar epithelium. Typical ATP-depletion compounds caused an approximately 30% increase in the accumulation of DEA in A549 cells, although these effects were less than those in Caco-2 cells. Triiodothyronine (T(3)), which exhibited an inhibitory effect on DEA efflux in Caco-2 cells, did not affect the accumulation of DEA in A549 cells. On the other hand, 100 microM AMD caused an approximately 200% increase in DEA content in A549 cells, although AMD accumulation was not affected by 100 microM DEA. Since the reducing effect of AMD on cellular ATP levels and that of FCCP were similar, the mechanism by which DEA accumulation is increased by AMD might be different from the ATP-dependent DEA efflux mechanism. The decrease in cell viability by DEA in the presence of AMD (IC(50) value of DEA for A549 cell viability: 25.4+/-2.4 microM) was more pronounced than that by DEA alone (IC(50) value: 11.5+/-3.0 microM). This further DEA accumulation by AMD might be a factor responsible for the greater accumulation of DEA than that of AMD in the lung in long-term AMD-treated patients.

  15. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone, a component of tobacco smoke, modulates mediator release from human bronchial and alveolar epithelial cells.

    PubMed

    Proulx, L I; Gaudreault, M; Turmel, V; Augusto, L A; Castonguay, A; Bissonnette, E Y

    2005-04-01

    Respiratory epithelial cells are known to contribute to immune responses through the release of mediators. The aim of this study was to characterize the immunomodulatory effects of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco carcinogen, on respiratory epithelial cells and to compare two metabolic pathways, alpha-methylhydroxylation and alpha-methylenehydroxylation, involved in these effects using selective precursors, 4-(acetoxy-methylnitrosamino)-1-(3-pyridil)-1-butanone (NNKOAc) and N-nitroso (acetoxymethyl) methylamine (NDMAOAc), respectively. Human bronchial and alveolar epithelial cell lines, BEAS-2B and A549, respectively, were treated with NNK, NNKOAc and NDMAOAc for 24 h with and without tumour necrosis factor (TNF) and mediators released in cell-free supernatants were measured by enzyme-linked immunosorbent assay (ELISA). NNK significantly inhibited interleukin (IL)-8, IL-6 and monocyte chemoattractant protein-1 (MCP-1) production in both cell types. Similar results were observed with primary bronchial and alveolar epithelial cells. Although NNK increased prostaglandin E(2) (PGE(2)) production by A549 cells, its immunomodulatory effects were not mediated by PGE(2) according to the results with cyclo-oxygenase inhibitors. NNKOAc mimicked NNK effects, whereas NDMAOAc significantly inhibited IL-8 production in BEAS-2B cells and MCP-1 in both cell types. These results demonstrate that NNK and its reactive metabolites have immunosuppressive effects on respiratory epithelial cells, which could contribute to the increased respiratory infections observed in smokers and the development and/or the progression of lung cancer.

  16. Peptidoglycan-mediated IL-8 expression in human alveolar type II epithelial cells requires lipid raft formation and MAPK activation.

    PubMed

    Cheon, In Su; Woo, Sang Su; Kang, Seok-Seong; Im, Jintaek; Yun, Cheol-Heui; Chung, Dae Kyun; Park, Dong Ki; Han, Seung Hyun

    2008-03-01

    Staphylococcus aureus, a major sepsis-causing Gram-positive bacterium, invades pulmonary epithelial cells and causes lung diseases. In the lung, alveolar type II epithelial cells play an important role in innate immunity by secreting chemokines and antimicrobial peptides upon bacterial infection whereas type I cells mainly function in gas-exchange. In this study, we investigated the ability of S. aureus peptidoglycan (PGN) to induce expression of a chemokine, IL-8, in a human alveolar type II epithelial cell line, A549. PGN induces IL-8 mRNA and protein expression in a dose- and time-dependent manner. Supplementation of soluble CD14 further enhanced the PGN-induced IL-8 expression. Interestingly, PGN-induced IL-8 expression was inhibited by nystatin, a specific inhibitor for lipid rafts, but not by chlorpromazine, a specific inhibitor for clathrin-coated pits. Furthermore, PGN-induced IL-8 expression was attenuated by inhibitors for MAP kinases such as ERK, p38 kinase, and JNK/SAPK, whereas no inhibitory effect was observed by inhibitors for reactive oxygen species or protein kinase C. Electrophoretic mobility shift assay demonstrates that PGN increased the DNA binding of the transcription factors, AP-1 and NF-kappaB while minimally, NF-IL6, all of which are involved in the transcription of IL-8. Taken together, these results suggest that PGN induces IL-8 expression in a CD14-enhanced manner in human alveolar type II epithelial cells, through the formation of lipid rafts and the activation of MAP kinases, which ultimately leads to activation of AP-1, NF-kappaB, and NF-IL6.

  17. Antioxidant activity of pomegranate juice reduces emphysematous changes and injury secondary to cigarette smoke in an animal model and human alveolar cells.

    PubMed

    Husari, Ahmad; Hashem, Yasmine; Bitar, Hala; Dbaibo, Ghassan; Zaatari, Ghazi; El Sabban, Marwan

    2016-01-01

    Cigarette smoke (CS) increases oxidative stress (OS) in the lungs. Pomegranate juice (PJ) possesses potent antioxidant activities, attributed to its polyphenols. This study investigates the effects of PJ on the damaging effects of CS in an animal model and on cultured human alveolar cells (A549). Male C57BL/6J mice were divided into the following groups: Control, CS, CS + PJ, and PJ. Acute CS exposure was for 3 days, while chronic exposure was for 1 and 3 months (5 days of exposure/week). PJ groups received daily 80 μmol/kg via bottle, while other groups received distilled water. At the end of the experiments, different parameters were studied: 1) expression levels of inflammatory markers, 2) apoptosis, 3) OS, and 4) histopathological changes. In vitro, A549 cells were pretreated for 48 hours with either PJ (0.5 μM) or vehicle. Cells were then exposed to increasing concentrations of CS extracted from collected filters. Cell viability was assessed by counting of live and dead cells with trypan blue staining. Acutely, a significant increase in interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α expression, apoptosis, and OS was noted in CS when compared to Control. PJ significantly attenuated the expression of inflammatory mediators, apoptosis, and OS. Chronically (at 1 and 3 months), increased expression of TNF-α was observed, and lung sections demonstrated emphysematous changes when compared to Control. PJ supplementation to CS animals attenuated the increased expression of TNF-α and normalized lung cytoarchitecture. At the cellular level, CS extract reduced cellular proliferation and triggered cellular death. Pretreatment with PJ attenuated the damaging effects of CS extract on cultured human alveolar cells. The expression of inflammatory mediators associated with CS exposure and the emphysematous changes noted with chronic CS exposure were reduced with PJ supplementation. In vitro, PJ attenuated the damaging effects of CS extract on cultured human

  18. Peptide secreted by human alveolar macrophages releases neutrophil granule contents

    SciTech Connect

    MacArthur, C.K.; Miller, E.J.; Cohen, A.B.

    1987-11-15

    A monoclonal antibody was developed against an 8000-kDa enzyme-releasing peptide (ERP) released from human alveolar macrophages. ERP was isolated on an immunoaffinity column containing the antibody bound to staphylococcal protein A-Sepharose, and by autoradiography. Release of ERP from the macrophages is not changed by plastic adherence, phagocytosis, calcium ionophore, or phorbol esters. The peptide was not antigenically similar to interferon-..gamma.., tumor necrosis factor, or interleukin l..cap alpha.. or 1..beta... The release of constituents from azurophilic and specific granules was the main identified biologic function of ERP. ERP was a more effective secretagogue in the untreated neutrophils and f-met-leu-phe was more effective in the cytochalasin B-treated neutrophils. Absorption of ERP from macrophage-conditioned medium removed a small amount of the chemotactic activity; however, the immunopurified peptide was not chemotactic or chemokinetic for neutrophils, and at high concentrations, it suppressed base line chemokinesis. Treatment of washed macrophages with trypsin released active ERP of approximately the same m.w. of spontaneously secreted ERP. These studies showed that human alveolar macrophages release a peptide which is a secretagogue for human neutrophils under conditions which may be encountered in the lungs during certain disease states. Proteolytic enzymes which are free in the lungs may release the peptide and lead to the secretion of neutrophil enzymes.

  19. Albuterol Improves Alveolar-Capillary Membrane Conductance in Healthy Humans

    PubMed Central

    Taylor, Natalie E.; Baker, Sarah E.; Olson, Thomas P.; Lalande, Sophie; Johnson, Bruce D.; Snyder, Eric M.

    2016-01-01

    BACKGROUND Beta-2 adrenergic receptors (β2ARs) are located throughout the body including airway and alveolar cells. The β2ARs regulate lung fluid clearance through a variety of mechanisms including ion transport on alveolar cells and relaxation of the pulmonary lymphatics. We examined the effect of an inhaled β2-agonist (albuterol) on alveolar-capillary membrane conductance (DM) and pulmonary capillary blood volume (VC) in healthy humans. METHODS We assessed the diffusing capacity of the lungs for carbon monoxide (DLCO) and nitric oxide (DLNO) at baseline, 30 minutes, and 60 minutes following nebulized albuterol (2.5 mg, diluted in 3 mL normal saline) in 45 healthy subjects. Seventeen subjects repeated these measures following nebulized normal saline (age = 27 ± 9 years, height = 165 ± 21 cm, weight = 68 ± 12 kg, BMI = 26 ± 9 kg/m2). Cardiac output (Q), heart rate, systemic vascular resistance (SVR), blood pressure, oxygen saturation, forced expiratory volume at one-second (FEV1), and forced expiratory flow at 50% of forced vital capacity (FEF50) were assessed at baseline, 30 minutes, and 60 minutes following the administration of albuterol or saline. RESULTS Albuterol resulted in a decrease in SVR, and an increase in Q, FEV1, and FEF50 compared to saline controls. Albuterol also resulted in a decrease in VC at 60 minutes post albuterol. Both albuterol and normal saline resulted in no change in DLCO or DM when assessed alone, but a significant increase was observed in DM when accounting for changes in VC. CONCLUSION These data suggest that nebulized albuterol improves pulmonary function in healthy humans, while nebulization of both albuterol and saline results in an increase in DM/VC. PMID:27773996

  20. ALVEOLAR BREATH SAMPLING AND ANALYSIS IN HUMAN EXPOSURE ASSESSMENT STUDIES

    EPA Science Inventory

    Alveolar breath sampling and analysis can be extremely useful in exposure assessment studies involving volatile organic compounds (VOCs). Over recent years scientists from the EPA's National Exposure Research Laboratory have developed and refined an alveolar breath collection ...

  1. ALVEOLAR BREATH SAMPLING AND ANALYSIS IN HUMAN EXPOSURE ASSESSMENT STUDIES

    EPA Science Inventory

    Alveolar breath sampling and analysis can be extremely useful in exposure assessment studies involving volatile organic compounds (VOCs). Over recent years scientists from the EPA's National Exposure Research Laboratory have developed and refined an alveolar breath collection ...

  2. A novel quinazoline-based analog induces G2/M cell cycle arrest and apoptosis in human A549 lung cancer cells via a ROS-dependent mechanism.

    PubMed

    Shi, Hailong; Li, Yan; Ren, Xiaorong; Zhang, Yaohong; Yang, Zhen; Qi, Chenze

    2017-04-29

    6-amino-4-(4-phenoxyphenylethylamino)quinazoline (QNZ) is an excellent quinazoline-containing NF-κB inhibitor also acting as a novel anticancer agent. Considering both the medicinal significance of quinazoline scaffold and the tunable functionality of Michael acceptor-centric pharmacophores in the electrophilicity-based prooxidant strategy, we designed a novel QNZ-inspired electrophilic molecule QNZ-A by introducing a Michael acceptor unit at position-6 of quinazoline ring in QNZ. Our results identified QNZ-A as a promising selective cytotoxic agent against A549 cells. QNZ-A, by virtue of its Michael acceptor unit, induced reactive oxygen species (ROS) accumulation associated with collapse of the redox buffering system in A549 cells. This caused up-regulation of p53-inducible p21 and down-regulation of redox sensitive Cdc25C along with Cyclin B1/Cdk1, leading to a G2/M cell cycle arrest and final cell apoptosis. By contrast, QNZ-B, a reduction product of QNZ-A lacking the Michael acceptor unit failed to induce ROS generation and all these cell cycle-related events. In conclusion, this work provided a successful example of designing QNZ-directed anticancer agent by a ROS-promoting strategy and identified QNZ-A as a selective anticancer agent against A549 cells through G2/M cell cycle arrest and apoptosis via a ROS-dependent mechanism. Copyright © 2017. Published by Elsevier Inc.

  3. Cytotoxic activity, DNA damage, cellular uptake, apoptosis and western blot analysis of ruthenium(II) polypyridyl complex against human lung decarcinoma A549 cell.

    PubMed

    Lai, Shang-Hai; Jiang, Guang-Bin; Yao, Jun-Hua; Li, Wei; Han, Bing-Jie; Zhang, Cheng; Zeng, Chuan-Chuan; Liu, Yun-Jun

    2015-11-01

    A new ruthenium(II) polypyridyl complex [Ru(dmp)2(pddppn)](ClO4)2Ru1 was synthesized and characterized. The cytotoxic activity in vitro of the complex was evaluated by MTT method. Ru1 shows high effect on the inhibition of the cell growth against BEL-7402, HeLa, MG-63 and A549 cells with low IC50 values of 1.6±0.4, 9.0±0.8, 1.5±0.2 and 1.5±0.3 μM, respectively. The cellular uptake indicates that Ru1 can enter into the cytoplasm and accumulate in the cell nuclei. Ru1 can induce apoptosis in A549 cells and enhance the levels of reactive oxygen species (ROS) and induce the decrease of mitochondrial membrane potential. In addition, Ru1 can down-regulate the levels of Bcl-2, Bcl-x, Bak, and Bim expression and up-regulate the expression of Bag-1 and Bad. The complex induces apoptosis of A549 cells through an intrinsic ROS-mediated mitochondrial dysfunction pathway, which was accompanied by regulating the expression of caspases and Bcl-2 family proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Digoxin downregulates NDRG1 and VEGF through the inhibition of HIF-1α under hypoxic conditions in human lung adenocarcinoma A549 cells.

    PubMed

    Wei, Dong; Peng, Jing-Jing; Gao, Hui; Li, Hua; Li, Dong; Tan, Yong; Zhang, Tao

    2013-04-02

    Digoxin, an inhibitor of Na+/K+ ATPase, has been used in the treatment of heart-related diseases (such as congestive heart failure and atrial arrhythmia) for decades. Recently, it was reported that digoxin is also an effective HIF-1α inhibitor. We investigated whether digoxin could suppress tumor cell growth through HIF-1α in non-small cell lung cancer cells (A549 cells) under hypoxic conditions. An MTT assay was used to measure cell viability. RT-PCR and western blotting were performed to analyze the mRNA and protein expression of VEGF, NDRG1, and HIF-1α. HIF-1α nuclear translocation was then determined by EMSA. Digoxin was found to inhibit the proliferation of A549 cells under hypoxic conditions. Our results showed that hypoxia led to the upregulation of VEGF, NDRG1, and HIF-1α both at the mRNA and protein levels. We also found that the hypoxia-induced overexpression of VEGF, NDRG1, and HIF-1α was suppressed by digoxin in a concentration-dependent manner. As expected, our EMSA results demonstrated that under hypoxic conditions HIF-1α nuclear translocation was also markedly reduced by digoxin in a concentration-dependent manner. Our results suggest that digoxin downregulated hypoxia-induced overexpression of VEGF and NDRG1 at the transcriptional level probably through the inhibition of HIF-1α synthesis in A549 cells.

  5. Proteomic analysis of human dental cementum and alveolar bone

    PubMed Central

    Salmon, Cristiane R.; Tomazela, Daniela M.; Ruiz, Karina Gonzales Silvério; Foster, Brian L.; Leme, Adriana Franco Paes; Sallum, Enilson Antonio; Somerman, Martha J.; Nociti, Francisco H.

    2013-01-01

    Dental cementum (DC) is a bone-like tissue covering the tooth root and responsible for attaching the tooth to the alveolar bone (AB) via the periodontal ligament (PDL). Studies have unsuccessfully tried to identify factors specific to DC versus AB, in an effort to better understand DC development and regeneration. The present study aimed to use matched human DC and AB samples (n=7) to generate their proteomes for comparative analysis. Bone samples were harvested from tooth extraction sites, whereas DC samples were obtained from the apical root portion of extracted third molars. Samples were denatured, followed by protein extraction reduction, alkylation and digestion for analysis by nanoAcquity HPLC system and LTQ-FT Ultra. Data analysis demonstrated that a total of 318 proteins were identified in AB and DC. In addition to shared proteins between these tissues, 105 and 83 proteins exclusive to AB or DC were identified, respectively. This is the first report analyzing the proteomic composition of human DC matrix and identifying putative unique and enriched proteins in comparison to alveolar bone. These findings may provide novel insights into developmental differences between DC and AB, and identify candidate biomarkers that may lead to more efficient and predictable therapies for periodontal regeneration. PMID:24007660

  6. Comparison of wood smoke PM2.5 obtained from the combustion of FIR and beech pellets on inflammation and DNA damage in A549 and THP-1 human cell lines.

    PubMed

    Corsini, Emanuela; Budello, Silvia; Marabini, Laura; Galbiati, Valentina; Piazzalunga, Andrea; Barbieri, Pierluigi; Cozzutto, Sergio; Marinovich, Marina; Pitea, Demetrio; Galli, Corrado L

    2013-12-01

    The aim of this study was to investigate the effect on the induction of interleukin-8 of particulate matter (PM) from fir and beech pellets burnt in domestic appliances on two human cells lines, namely the lung epithelial cell line A549 and the promyelocytic cell line THP-1. The effects of PM2.5 obtained from combustion of beech and fir pellets were compared to reference diesel exhaust particulates (DEP). In parallel, wood smoke PM-induced genotoxicity and oxidative stress were also investigated in A549 cells. Cells were treated for different times (3-72 h) with increasing concentrations of PM2.5 obtained from sequential combustions of fir and beech pellets or reference DEP. Cell viability was assessed by lactate dehydrogenase leakage, and the release of interleukin-8 or CXCL8 (IL-8) was measured to evaluate the pro-inflammatory effect. Oxidative stress was evaluated by the 5(6)-carboxy-2',7'dichlorofluorescein diacetate (DCFH-DA) assay and DNA damage by the alkaline comet assay and micronucleus frequency by flow cytometry. Both A549 and THP-1 cells responded in a dose- and time-related manner to wood smoke PM2.5 with IL-8 release, particles obtained from late combustions being the most active. THP-1 cells were more sensitive than A549 cells. On a mass base, similar effects were observed for both fir and beech PM2.5. However, the combustion of beech pellets generated approximately three times more PM2.5 than fir pellets. Regarding the mechanism of PM2.5 uptake, in both THP-1 and A549 cells, cytochalasin D prevented PM2.5-induced IL-8 mRNA expression and cytokine release, indicating a key role for actin polymerization in particles uptake and that the production of IL-8 correlated with particle phagocytosis. As signal transduction pathway involvement, in both THP-1 and A549 cells, PM2.5-induced IL-8 release could be completely blocked by the selective inhibitor SB203580, indicating a role of p38 MAPK activation. PM2.5 from both fir and beech pellets also induced

  7. Regulation of different components from Ophiopogon japonicus on autophagy in human lung adenocarcinoma A549Cells through PI3K/Akt/mTOR signaling pathway.

    PubMed

    Chen, Juan; Yuan, Jiarui; Zhou, Liqiang; Zhu, Maomao; Shi, Ziqi; Song, Jie; Xu, Qingyu; Yin, Guowen; Lv, You; Luo, Yi; Jia, Xiaobin; Feng, Liang

    2017-03-01

    Autophagy plays a dual role in the development of cancer, acting as both a tumor suppressor and a cell survival inducer. Ophiopogon japonicus (L.f) Ker-Gawl (OJ), as a traditional Chinese medicine, specially possesses remarkable anti-cancer activity in the clinical. Previously, studies have indicated that flavonoids (FOJ) and steroidal saponins (SSOJ) are the main active substances of OJ. However, the effects of FOJ and SSOJ on autophagy of A549 cells have not been fully elucidated. In this study, we found that the expressions of autophagy-related mediators (LC3-II/LC3-I ratio, Atg-3, Atg-7 and Beclin-1) were increased in A549 cells by the treatment with FOJ (7.9mg crude drug/mL) and SSOJ (12.2mg crude drug/mL). Meanwhile, FOJ or SSOJ could induce the up-regulation of LC3-II at both protein and mRNA levels. Moreover, we observed the cytoplasmic vaculoes which formed double-layered membranes and only some cytoplasmic organelles or myelin figures remained in FOJ or SSOJ-treated A549 cells for 24h by Transmission Electron Microscopy (TEM). Further detection about the PI3K/Akt/mTOR signaling pathway showed that the levels of PI3K, Akt and mTOR were significantly suppressed with the FOJ or SSOJ treatment. The 3-MA (an autophagy inhibitor) and LY294002 (a PI3K inhibitor) further confirmed the underlying mechanism in the FOJ or SSOJ-induced autophagy of A549 cells. Additionally, the pretreatment with FOJ and SSOJ increased the level of p53, whereas decreased the expression of Ki67. These findings suggested that FOJ or SSOJ could activate the autophagy of A549 cells, wherein the mechanism might be associated with their inhibition of PI3K/Akt/mTOR signaling pathway. Thus, FOJ or SSOJ could be a potential autophagy inducer to prevent the process of lung cancer.

  8. Myogenic potential of human alveolar mucosa derived cells.

    PubMed

    Zorin, Vadim L; Pulin, Andrey A; Eremin, Ilya I; Korsakov, Ivan N; Zorina, Alla I; Khromova, Natalia V; Sokova, Olga I; Kotenko, Konstantin V; Kopnin, Pavel B

    2017-03-19

    Difficulties related to the obtainment of stem/progenitor cells from skeletal muscle tissue make the search for new sources of myogenic cells highly relevant. Alveolar mucosa might be considered as a perspective candidate due to availability and high proliferative capacity of its cells. Human alveolar mucosa cells (AMC) were obtained from gingival biopsy samples collected from 10 healthy donors and cultured up to 10 passages. AMC matched the generally accepted multipotent mesenchymal stromal cells criteria and possess population doubling time, caryotype and immunophenotype stability during long-term cultivation. The single myogenic induction of primary cell cultures resulted in differentiation of AMC into multinucleated myotubes. The myogenic differentiation was associated with expression of skeletal muscle markers: skeletal myosin, skeletal actin, myogenin and MyoD1. Efficiency of myogenic differentiation in AMC cultures was similar to that in skeletal muscle cells. Furthermore, some of differentiated myotubes exhibited contractions in vitro. Our data confirms the sufficiently high myogenic potential and proliferative capacity of AMC and their ability to maintain in vitro proliferation-competent myogenic precursor cells regardless of the passage number.

  9. Microtomography of the human tooth-alveolar bone complex

    NASA Astrophysics Data System (ADS)

    Dalstra, Michel; Cattaneo, Paolo M.; Beckmann, Felix; Sakima, Maurício T.; Lemor, Carsten; Laursen, Morten G.; Melsen, Birte

    2006-08-01

    In this study the structure of the adult human dentoalveolar process is examined using conventional and synchrotron radiation-based microtomography (SRμCT). Mandibular and maxillary segments containing two to five adjacent teeth were harvested at autopsy from 49 adult donors. These segments were embedded in blocks of methylmetacrylate and scanned using a conventional table-top μCT-scanner at a pixel size and slice thickness of 35 μm. A few segments were also scanned at a synchrotron facility at an initial pixel size of 16.4 μm, which was binned by a factor 2 to result in an effective voxel size of almost 32.8 μm. The three-dimensional reconstructions revealed how intricately the teeth are supported by the alveolar bone. Furthermore, this support is highly inhomogeneous with respect to the buccal, mesial, lingual and distal quadrants. Reflecting their various degrees of mineralization, tissues like bone, dentine, enamel and cementum, could well be identified, especially in the scans made with SRμCT. Despite comparable voxel sizes, the reconstructed data-sets obtained with conventional μCT were less detailed and somewhat fuzzy in appearance compared to the data-sets of SRμCT. However, for quantification of macroscopical features like the thickness of the alveolar wall or the presence of dehiscences/fenestrations this seemed sufficient.

  10. Inhibitory Effects of Salinomycin on Cell Survival, Colony Growth, Migration, and Invasion of Human Non-Small Cell Lung Cancer A549 and LNM35: Involvement of NAG-1.

    PubMed

    Arafat, Kholoud; Iratni, Rabah; Takahashi, Takashi; Parekh, Khatija; Al Dhaheri, Yusra; Adrian, Thomas E; Attoub, Samir

    2013-01-01

    A major challenge for oncologists and pharmacologists is to develop more potent and less toxic drugs that will decrease the tumor growth and improve the survival of lung cancer patients. Salinomycin is a polyether antibiotic used to kill gram-positive bacteria including mycobacteria, protozoans such as plasmodium falciparum, and the parasites responsible for the poultry disease coccidiosis. This old agent is now a serious anti-cancer drug candidate that selectively inhibits the growth of cancer stem cells. We investigated the impact of salinomycin on survival, colony growth, migration and invasion of the differentiated human non-small cell lung cancer lines LNM35 and A549. Salinomycin caused concentration- and time-dependent reduction in viability of LNM35 and A549 cells through a caspase 3/7-associated cell death pathway. Similarly, salinomycin (2.5-5 µM for 7 days) significantly decreased the growth of LNM35 and A549 colonies in soft agar. Metastasis is the main cause of death related to lung cancer. In this context, salinomycin induced a time- and concentration-dependent inhibition of cell migration and invasion. We also demonstrated for the first time that salinomycin induced a marked increase in the expression of the pro-apoptotic protein NAG-1 leading to the inhibition of lung cancer cell invasion but not cell survival. These findings identify salinomycin as a promising novel therapeutic agent for lung cancer.

  11. CEP1612, a dipeptidyl proteasome inhibitor, induces p21WAF1 and p27KIP1 expression and apoptosis and inhibits the growth of the human lung adenocarcinoma A-549 in nude mice.

    PubMed

    Sun, J; Nam, S; Lee, C S; Li, B; Coppola, D; Hamilton, A D; Dou, Q P; Sebti, S M

    2001-02-15

    The ubiquitin proteasome system is responsible for the proteolysis of important cell cycle and apoptosis-regulatory proteins. In this paper we report that the dipeptidyl proteasome inhibitor, phthalimide-(CH2)8CH-(cyclopentyl) CO-Arg(NO2)-Leu-H (CEP1612), induces apoptosis and inhibits tumor growth of the human lung cancer cell line A-549 in an in vivo model. In cultured A-549 cells, CEP1612 treatment results in accumulation of two proteasome natural substrates, the cyclin-dependent kinase inhibitors p21WAF1 and p27KIP1, indicating its ability to inhibit proteasome activity in intact cells. Furthermore, CEP1612 induces apoptosis as evident by caspase-3 activation and poly(ADP-ribose) polymerase cleavage. Treatment of A-549 tumor-bearing nude mice with CEP1612 (10 mg/kg/day, i.p. for 31 days) resulted in massive induction of apoptosis and significant (68%; P < 0.05) tumor growth inhibition, as shown by terminal deoxynucleotidyltransferase-mediated UTP end labeling. Furthermore, immunostaining of tumor specimens demonstrated in vivo accumulation of p21WAF1 and p27KIP1 after CEP1612 treatment. The results suggest that CEP1612 is a promising candidate for further development as an anticancer drug and demonstrate the feasibility of using proteasome inhibitors as novel antitumor agents.

  12. Andrographolide down-regulates hypoxia-inducible factor-1α in human non-small cell lung cancer A549 cells.

    PubMed

    Lin, Hui-Hsuan; Tsai, Chia-Wen; Chou, Fen-Pi; Wang, Chau-Jong; Hsuan, Shu-Wen; Wang, Cheng-Kun; Chen, Jing-Hsien

    2011-02-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1α (HIF-1α) in A549 cells. HIF-1α plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1α was correlated with a rapid ubiquitin-dependent degradation of HIF-1α, and was accompanied by increased expressions of hydroxyl-HIF-1α and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1α inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGFβ1/PHD2/HIF-1α pathway, as demonstrated by the transfection of TGFβ1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1α transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  13. Andrographolide down-regulates hypoxia-inducible factor-1{alpha} in human non-small cell lung cancer A549 cells

    SciTech Connect

    Lin, Hui-Hsuan; Tsai, Chia-Wen; Chou, Fen-Pi; Wang, Chau-Jong; Hsuan, Shu-Wen; Wang, Cheng-Kun; Chen, Jing-Hsien

    2011-02-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) in A549 cells. HIF-1{alpha} plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1{alpha} was correlated with a rapid ubiquitin-dependent degradation of HIF-1{alpha}, and was accompanied by increased expressions of hydroxyl-HIF-1{alpha} and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1{alpha} inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGF{beta}1/PHD2/HIF-1{alpha} pathway, as demonstrated by the transfection of TGF{beta}1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1{alpha} transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  14. A polysaccharide fraction of adlay seed (Coixlachryma-jobi L.) induces apoptosis in human non-small cell lung cancer A549 cells

    SciTech Connect

    Lu, Xiangyi; Liu, Wei; Wu, Junhua; Li, Mengxian; Wang, Juncheng; Wu, Jihui; Luo, Cheng

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer A polysaccharide from adlay seed, its molecular mass, optical rotation and sugars was determined. Black-Right-Pointing-Pointer We demonstrated that a polysaccharide from adlay can induce apoptosis in cancer cells. Black-Right-Pointing-Pointer The polysaccharide inhibited the metabolism and proliferation of NSCLC A549 cells. Black-Right-Pointing-Pointer The polysaccharide may trigger apoptosis via the mitochondria-dependent pathway. -- Abstract: Different seed extracts from Coix lachryma-jobi (adlay seed) have been used for the treatment of various cancers in China, and clinical data support the use of these extracts for cancer therapy; however, their underlying molecular mechanisms have not been well defined. A polysaccharide fraction, designated as CP-1, was extracted from the C.lachryma-jobi L. var. using the ethanol subsiding method. CP-1 induced apoptosis in A549 cells in a dose-dependent manner, as determined by MTT assay. Apoptotic bodies were observed in the cells by scanning electronic microscopy. Apoptosis and DNA accumulation during S-phase of the cell cycle were determined by annexin V-FITC and PI staining, respectively, and measured by flow cytometry. CP-1 also extended the comet tail length on single cell gel electrophoresis, and disrupted the mitochondrial membrane potential. Further analysis by western blotting showed that the expression of caspase-3 and caspase-9 proteins was increased. Taken together, our results demonstrate that CP-1 is capable of inhibiting A549 cell proliferation and inducing apoptosis via a mechanism primarily involving the activation of the intrinsic mitochondrial pathway. The assay data suggest that in addition to its nutritional properties, CP-1 is a very promising candidate polysaccharide for the development of anti-cancer medicines.

  15. Secondary repair of alveolar clefts using human mesenchymal stem cells.

    PubMed

    Behnia, Hossein; Khojasteh, Arash; Soleimani, Masoud; Tehranchi, Azita; Khoshzaban, Ahad; Keshel, Saeed Hidari; Atashi, Reza

    2009-08-01

    Recently tissue engineering has become available as a regenerative treatment for bone defects; however, little has been reported on the application of tissue engineering for regeneration of cleft defect tissues. Mesenchymal-derived stem cells were applied to different kinds of bone substitute and compared in different animal models, but their usage in human critical defects remained unclear. In this study we report 2 patients with unilateral alveolar cleft, treated with the composite scaffold of demineralized bone mineral and calcium sulphate (Osteoset) loaded with mesenchymal stem cells (MSCs). Computed tomograms showed 34.5% regenerated bone, extending from the cleft walls and bridging the cleft after 4 months in one case and in the other there was 25.6% presentation of bone integrity. The available data revealed the conventional bone substitute was not a suitable scaffold for the MSC-induced bone regeneration.

  16. Mast cells in the human alveolar wall: an electronmicroscopic study.

    PubMed Central

    Fox, B; Bull, T B; Guz, A

    1981-01-01

    Mast cells were identified by electronmicroscopy in the alveolar wall of the lung in 20 subjects (10 normal, 10 abnormal). A quantitative and qualitative study was made of the mast cells. In the normal lung there was an average concentration of 350 mast cells/mm2 of alveolar wall and in the abnormal 523/mm2. Mast cells occupied approximately 1.6-2.1% of the area of the alveolar wall. There was marked variation in the structure of the mast cell granules but no differences between those in the normal and abnormal lungs. There was evidence that constant degranulation of mast cells may be occurring in the lung. The role that alveolar mast cells may play in the vasoconstrictor response to alveolar hypoxia is discussed. It is suggested that the tachypnoea present in asthma may partly be due to release of mediators from sensitised mast cells within the alveolar wall. Images PMID:7328180

  17. Aspergillus fumigatus germ tube growth and not conidia ingestion induces expression of inflammatory mediator genes in the human lung epithelial cell line A549.

    PubMed

    Bellanger, Anne-Pauline; Millon, Laurence; Khoufache, Khaled; Rivollet, Danièle; Bièche, Ivan; Laurendeau, Ingrid; Vidaud, Michel; Botterel, Françoise; Bretagne, Stéphane

    2009-02-01

    Inhalation of conidia is the main cause of invasive pulmonary aspergillosis (IPA) and the respiratory epithelium is the first line of defence. To explore the triggering factor for the inflammatory response to Aspergillus fumigatus, the species mainly responsible for IPA, this study analysed the differential expression of three inflammatory genes in A549 cells after challenge with live and killed conidia. The influence of steroids, one of the main risk factors for developing IPA, was also investigated. Quantification of mRNAs of the inflammatory mediator genes encoding interleukin (IL)-8, tumour necrosis factor (TNF)-alpha and granulocyte-monocyte colony-stimulating factor (GM-CSF) was carried out using real-time PCR. Ingestion rates were studied for the conidia of A. fumigatus and Penicillium chrysogenum using a fluorescence brightener. Similar results were obtained for both species, with ingestion rates ranging from 35 to 40 %. Exposure of A549 cells to live A. fumigatus conidia only induced a four- to fivefold increase in the mRNA levels of the three genes, starting 8 h after the initial contact. Both inactivation of live A. fumigatus conidia and treatment by dexamethasone (10(-7) M) prevented the overexpression of TNF-alpha, IL-8 and GM-CSF. Fungal growth, rather than conidia ingestion, appears to be the main stimulus for the production of inflammatory mediators by epithelial cells, and this production is inhibited by steroid therapy. These results underline the role that the epithelium plays in the innate response against IPA.

  18. A polysaccharide fraction of adlay seed (Coixlachryma-jobi L.) induces apoptosis in human non-small cell lung cancer A549 cells.

    PubMed

    Lu, Xiangyi; Liu, Wei; Wu, Junhua; Li, Mengxian; Wang, Juncheng; Wu, Jihui; Luo, Cheng

    2013-01-11

    Different seed extracts from Coix lachryma-jobi (adlay seed) have been used for the treatment of various cancers in China, and clinical data support the use of these extracts for cancer therapy; however, their underlying molecular mechanisms have not been well defined. A polysaccharide fraction, designated as CP-1, was extracted from the C.lachryma-jobi L. var. using the ethanol subsiding method. CP-1 induced apoptosis in A549 cells in a dose-dependent manner, as determined by MTT assay. Apoptotic bodies were observed in the cells by scanning electronic microscopy. Apoptosis and DNA accumulation during S-phase of the cell cycle were determined by annexin V-FITC and PI staining, respectively, and measured by flow cytometry. CP-1 also extended the comet tail length on single cell gel electrophoresis, and disrupted the mitochondrial membrane potential. Further analysis by western blotting showed that the expression of caspase-3 and caspase-9 proteins was increased. Taken together, our results demonstrate that CP-1 is capable of inhibiting A549 cell proliferation and inducing apoptosis via a mechanism primarily involving the activation of the intrinsic mitochondrial pathway. The assay data suggest that in addition to its nutritional properties, CP-1 is a very promising candidate polysaccharide for the development of anti-cancer medicines.

  19. Synergistic induction of apoptosis by sulindac and simvastatin in A549 human lung cancer cells via reactive oxygen species-dependent mitochondrial dysfunction.

    PubMed

    Hwang, Ki-Eun; Park, Chul; Kwon, Su-Jin; Kim, Young-Suk; Park, Do-Sim; Lee, Mi-Kyung; Kim, Byoung-Ryun; Park, Seong-Hoon; Yoon, Kwon-Ha; Jeong, Eun-Taik; Kim, Hak-Ryul

    2013-07-01

    Prevention of lung cancer is more feasible and holds greater promise when different agents are used in combination to target multiple processes during carcinogenesis. The mechanisms by which non-steroidal anti-inflammatory drugs and statins inhibit cancer cell growth and induce apoptosis are not fully understood. This study was designed to investigate lung cancer chemoprevention through a mechanism-based approach using sulindac at low doses in combination with simvastatin. We found that sulindac-induced cytotoxicity was significantly enhanced in the presence of simvastatin. The combination of sulindac and simvastatin induced more extensive caspase-dependent apoptosis in A549 cells compared to that induced with either drug alone. The combination of sulindac and simvastatin also increased the loss of mitochondrial transmembrane potential (∆Ψm) and the cytosolic release of cytochrome c. In addition, ROS generation in cells treated with both sulindac and simvastatin was markedly increased compared to cells treated with either sulindac or simvastatin alone. The enhancement of ROS generation by sulindac and simvastatin was abrogated by pretreatment with NAC, which also prevented apoptosis and mitochondrial dysfunction induced by sulindac and simvastatin. These results suggest that sulindac and simvastatin-induced ROS generation in A549 lung cancer cells causes their accumulation in mitochondria, triggering the release of apoptogenic molecules from the mitochondria to the cytosol, and thus leading to caspase activation and cell death.

  20. Rubus idaeus L Inhibits Invasion Potential of Human A549 Lung Cancer Cells by Suppression Epithelial-to-Mesenchymal Transition and Akt Pathway In Vitro and Reduces Tumor Growth In Vivo.

    PubMed

    Chu, Shu-Chen; Hsieh, Yih-Shou; Hsu, Li-Sung; Chen, Kuo-Shuen; Chiang, Chien-Cheng; Chen, Pei-Ni

    2014-05-01

    The metastasis of lung cancer is the most prevalent cause of patient death. Various treatment strategies have targeted the prevention of the occurrence of metastasis. The epithelial-mesenchymal transition (EMT) in lung cancer cells is considered a prerequisite to acquire the invasive/migratory phenotype and to subsequently achieve metastasis. However, the effects ofRubus idaeuson cancer invasion and the EMT of the human lung carcinoma remain unclear. In this article, we test the hypothesis thatR idaeusethyl acetate (RIAE) possesses an antimetastatic effect and reverses the EMT potential of human lung A549 cells. We extract the raspberryR idaeuswith methanol (RIME), chloroform (RICE), ethyl acetate (RIAE),n-butanol (RIBE), and water (RIWE). The RIAE treatment obviously inhibits the invasive (P< .001), motility (P< .001), spreading, and migratory potential (P< .001) of highly metastatic human lung cancer A549 cells. The zymography and promoter luciferase analysis reveals that RIAE decreases the proteinase and transcription activities of MMP-2 and u-PA. Molecular analyses show that RIAE increases the E-cadherin level that is mainly localized at the cellular membrane. This result was also verified through confocal analyses. RIAE also induces the upregulation of an epithelial marker, such as α-catenin, and decreases mesenchymal markers, such as snail-1 and N-cadherin, that promote cell invasion and metastasis. RIAE inhibits MMP-2 and u-PA by attenuating the NF-κB and p-Akt expression. The inhibition of RIAE on the growth of A549 cells in vivo was also verified using a cancer cell xenograft nude mice model. Our results show the anti-invasive/antitumor effects of RIAE and associated mechanisms, which suggest that RIAE should be further tested in clinically relevant models to exploit its potential benefits against metastatic lung cancer cells.

  1. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells

    SciTech Connect

    Yu, Zhenhai; Huang, Liangqian; Qiao, Pengyun; Jiang, Aifang; Wang, Li; Yang, Tingting; Tang, Shengjian; Zhang, Wei; Ren, Chune

    2016-05-13

    Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. These findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer.

  2. Selective cytotoxicity and combined effects of camptothecin or paclitaxel with sodium-R-alpha lipoate on A549 human non-small cell lung cancer cells.

    PubMed

    Ibrahim, Sherif; Gao, Dayuan; Sinko, Patrick J

    2014-01-01

    Nonsmall cell lung cancer (NSCLC) is the most common type of lung cancer and remains the deadliest form of cancer in the United States and worldwide. New therapies are highly sought after to improve outcome. The effect of sodium-R-alpha lipoate on camptothecin- and paclitaxel-induced cytotoxicity was evaluated on A549 NSCLC and BEAS-2B "normal" lung epithelial cells. Combination indices (CI) and dose reduction indices (DRI) were investigated by studying the cytotoxicity of sodium-R-alpha lipoate (0-16 mM), camptothecin (0-25 nM) and paclitaxel (0-0.06 nM) alone and in combination. 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium-bromide (MTT) was used to assess cytotoxicity. The combinational cytotoxic effects of sodium-R-alpha lipoate with camptothecin or paclitaxel were analyzed using a simulation of dose effects (CompuSyn® 3.01). The effects of sodium-R-alpha lipoate on camptothecin- and paclitaxel-induced cytotoxicity varied based on concentrations and treatment times. It was found that sodium-R-alpha lipoate wasn't cytotoxic toward BEAS-2B cells at any of the concentrations tested. For A549 cells, CIs [(additive (CI = 1); synergistic (CI < 1); antagonistic (CI < 1)] were lower and DRIs were higher for the camptothecin/sodium-R-alpha-lipoate combination (CI = ∼0.17-1.5; DRI = ∼2.2-22.6) than the paclitaxel/sodium-R-alpha-lipoate combination (CI = ∼0.8-9.9; DRI = ∼0.10-5.8) suggesting that the camptothecin regimen was synergistic and that the addition of sodium-R-alpha lipoate was important for reducing the camptothecin dose and potential for adverse effects.

  3. Cytotoxicity of semiconductor nanoparticles in A549 cells is attributable to their intrinsic oxidant activity

    NASA Astrophysics Data System (ADS)

    Escamilla-Rivera, Vicente; Uribe-Ramirez, Marisela; Gonzalez-Pozos, Sirenia; Velumani, Subramaniam; Arreola-Mendoza, Laura; De Vizcaya-Ruiz, Andrea

    2016-04-01

    Copper indium gallium diselenide (CIGS) and cadmium sulfide (CdS) nanoparticles (NP) are next generation semiconductors used in photovoltaic cells (PV). They possess high quantum efficiency, absorption coefficient, and cheaper manufacturing costs compared to silicon. Due to their potential for an industrial development and the lack of information about the risk associated in their use, we investigated the influence of the physicochemical characteristics of CIGS (9 nm) and CdS (20 nm) in relation to the induction of cytotoxicity in human alveolar A549 cells through ROS generation and mitochondrial dysfunction. CIGS induced cytotoxicity in a dose dependent manner in lower concentrations than CdS; both NP were able to induce ROS in A549. Moreover, CIGS interact directly with mitochondria inducing depolarization that leads to the induction of apoptosis compared to CdS. Antioxidant pretreatment significantly prevented the loss of mitochondrial membrane potential and cytotoxicity, suggesting ROS generation as the main cytotoxic mechanism. These results demonstrate that semiconductor characteristics of NP are crucial for the type and intensity of the cytotoxic effects. Our work provides relevant information that may help guide the production of a safer NP-based PV technologies, and would be a valuable resource on future risk assessment for a safer use of nanotechnology in the development of clean sources of renewable energy.

  4. Infection of A549 human type II epithelial cells with Mycobacterium tuberculosis induces changes in mitochondrial morphology, distribution and mass that are dependent on the early secreted antigen, ESAT-6.

    PubMed

    Fine-Coulson, Kari; Giguère, Steeve; Quinn, Frederick D; Reaves, Barbara J

    2015-10-01

    Pulmonary infection by Mycobacterium tuberculosis (Mtb) involves the invasion of alveolar epithelial cells (AECs). We used Mitotracker Red(®) to assess changes in mitochondrial morphology/distribution and mass from 6 to 48 h post infection (hpi) by confocal microscopy and flow cytometry in Mtb-infected A549 type II AECs. During early infection there was no effect on mitochondrial morphology, however, by 48 hpi mitochondria appeared fragmented and concentrated around the nucleus. In flow cytometry experiments, the median fluorescence intensity (MFI) decreased by 44% at 48 hpi; double-labelling using antibodies to the integral membrane protein COXIV revealed that these changes were due to a decrease in mitochondrial mass. These changes did not occur with the apathogenic strain, Mycobacterium bovis BCG. ESAT-6 is a virulence factor present in Mtb Erdman but lacking in M. bovis BCG. We performed similar experiments using Mtb Erdman, an ESAT-6 deletion mutant and its complement. MFI decreased at 48 hpi in the parent and complemented strains versus uninfected controls by 52% and 36% respectively; no decrease was detected in the deletion mutant. These results indicate an involvement of ESAT-6 in the perturbation of mitochondria induced by virulent Mtb in AECs and suggest mitophagy may play a role in the infection process.

  5. Optimal risk management of human alveolar echinococcosis with vermifuge.

    PubMed

    Kato, Naoto; Kotani, Koji; Ueno, Seiya; Matsuda, Hiroyuki

    2010-12-07

    In this study, we develop a bioeconomic model of human alveolar echinococcosis (HAE) and formulate the optimal strategies for managing the infection risks in humans by applying optimal control theory. The model has the following novel features: (i) the complex transmission cycle of HAE has been tractably incorporated into the framework of optimal control problems and (ii) the volume of vermifuge spreading to manage the risk is considered a control variable. With this model, we first obtain the stability conditions for the transmission dynamics under the condition of constant control. Second, we explicitly introduce a control variable of vermifuge spreading into the analysis by considering the associated control costs. In this optimal control problem, we have successfully derived a set of conditions for a bang-bang control and singular control, which are mainly characterized by the prevalence of infection in voles and foxes and the remaining time of control. The analytical results are demonstrated by numerical analysis and we discuss the effects of the parameter values on the optimal strategy and the transmission cycle. We find that when the prevalence of infection in foxes is low and the prevalence of infection in voles is sufficiently high, the optimal strategy is to expend no effort in vermifuge spreading. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Tumor necrosis factor production by human sarcoid alveolar macrophages.

    PubMed Central

    Bachwich, P. R.; Lynch, J. P.; Larrick, J.; Spengler, M.; Kunkel, S. L.

    1986-01-01

    Tumor necrosis factor (TNF) is an oncolytic peptide that may also exert many other biologic effects. Experimentally, immunologically activated mononuclear phagocytes stimulated with endotoxin (LPS) produce TNF, while resting mononuclear phagocytes stimulated with LPS produce little TNF. To date, the ability of human alveolar macrophages (AMs) to produce TNF has not been clearly delineated. As pulmonary sarcoidosis is a granulomatous inflammatory disorder characterized by immunologically activated AMs, we investigated the production of TNF by AMs obtained by bronchoalveolar lavage from 7 normal volunteers and 13 patients with pulmonary sarcoidosis. The AMs were cultured with and without LPS, and TNF production was assessed by an in vitro cytotoxicity assay. Unstimulated sarcoid and normal AMs produced little TNF, but LPS stimulation enhanced TNF production by both normal and sarcoid AMs. Furthermore, LPS-stimulated sarcoid AMs produced more TNF than normal AMs (84.9 +/- 16.7 versus 32.5 +/- 10.2 units/million cells, P less than 0.05). It is concluded that human AMs can produce TNF and that sarcoid AMs are primed and can produce significantly more TNF, compared with normal AMs. PMID:3799813

  7. Functional and morphological differences between human alveolar and interstitial macrophages.

    PubMed

    Fathi, M; Johansson, A; Lundborg, M; Orre, L; Sköld, C M; Camner, P

    2001-04-01

    Macrophages play an essential role in pulmonary host defense. They are, however, a heterogeneous cell population located in different lung compartments. This study was designed to elucidate differences between two macrophage populations obtained from the human lung, i.e., alveolar macrophages (AM) and interstitial macrophages (IM). Macroscopically tumor-free lung segments from nine patients undergoing lobectomy or pulmectomy were studied. All patients had a diagnosis of primary lung cancer. AM were recovered by bronchoalveolar lavage and IM were isolated by mechanical fragmentation of the lavaged lung segments followed by enzymatic treatment. The cell fractions were analyzed with respect to morphology (transmission electron microscopy) and function (phagocytosis). The cells in the IM fraction were smaller (7.6 +/- 1.8 microm (mean +/- SD) compared with 16.0 +/- 4.1 microm) and morphologically more heterogeneous than those in the AM fraction. Interestingly, a considerable portion of the cells in the IM fraction had a typical AM-like appearance. Despite this, the AM fraction had a higher phagocytic activity compared to IM, with faster attachment and ingestion processes (P <0.001 for both). We conclude that the heterogeneity of human lung macrophages must be taken into consideration when their role in the inflammatory response is studied.

  8. Identification of Goodpasture antigens in human alveolar basement membrane.

    PubMed Central

    Yoshioka, K; Iseki, T; Okada, M; Morimoto, Y; Eryu, N; Maki, S

    1988-01-01

    Goodpasture (GP) antigens, protein components reactive with human autoantibodies against glomerular basement membrane (GBM), were identified in human alveolar basement membrane (ABM) using an enzyme-linked immunoassay (ELISA), Western blotting and immunoprecipitation. All six anti-GBM antisera studied, three obtained from patients with glomerulonephritis and pulmonary haemorrhages (i.e. GP syndrome), and three from patients with glomerulonephritis alone, distinctively reacted with collagenase-digested (CD) ABM. Very cationic 22-28 kD and 40-48 kD components were detected by blot analysis combined with two-dimensional gel electrophoresis. These proteins showed some similarities to GP antigens in human GBM with respect to the monomer-dimer composition and charge distribution. Inhibition ELISA revealed that the binding of anti-GBM antisera to CDGBM decreased when they were pre-incubated with CDABM, suggesting that the anti-GBM antisera recognized the same epitope(s) on the GBM and ABM. Heterogeneity of the GP antigens in human ABM was demonstrated by blotting; monomeric antigens were absent or at low levels in the CDABM of three out of 10 normal individuals. In immunoprecipitation, anti-GBM antisera from patients with and without pulmonary haemorrhage showed different reactivities with CDABM. The former antisera precipitated both monomeric and dimeric components, but the latter did not. The observations of variation in monomer-dimer composition of ABM, and the different binding of anti-GBM antisera to it may explain why only some patients with anti-GBM nephritis have lung involvement. Images Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:2466590

  9. PrtT-regulated proteins secreted by Aspergillus fumigatus activate MAPK signaling in exposed A549 lung cells leading to necrotic cell death.

    PubMed

    Sharon, Haim; Amar, David; Levdansky, Emma; Mircus, Gabriel; Shadkchan, Yana; Shamir, Ron; Osherov, Nir

    2011-03-11

    Aspergillus fumigatus is the most commonly encountered mold pathogen of humans, predominantly infecting the respiratory system. Colonization and penetration of the lung alveolar epithelium is a key but poorly understood step in the infection process. This study focused on identifying the transcriptional and cell-signaling responses activated in A549 alveolar carcinoma cells incubated in the presence of A. fumigatus wild-type and ΔPrtT protease-deficient germinating conidia and culture filtrates (CF). Microarray analysis of exposed A549 cells identified distinct classes of genes whose expression is altered in the presence of germinating conidia and CF and suggested the involvement of both NFkB and MAPK signaling pathways in mediating the cellular response. Phosphoprotein analysis of A549 cells confirmed that JNK and ERK1/2 are phosphorylated in response to CF from wild-type A. fumigatus and not phosphorylated in response to CF from the ΔPrtT protease-deficient strain. Inhibition of JNK or ERK1/2 kinase activity substantially decreased CF-induced cell damage, including cell peeling, actin-cytoskeleton damage, and reduction in metabolic activity and necrotic death. These results suggest that inhibition of MAPK-mediated host responses to treatment with A. fumigatus CF decreases cellular damage, a finding with possible clinical implications.

  10. Vitamin A (retinol) downregulates the receptor for advanced glycation endproducts (RAGE) by oxidant-dependent activation of p38 MAPK and NF-kB in human lung cancer A549 cells.

    PubMed

    de Bittencourt Pasquali, Matheus Augusto; Gelain, Daniel Pens; Zeidán-Chuliá, Fares; Pires, André Simões; Gasparotto, Juciano; Terra, Silvia Resende; Moreira, José Cláudio Fonseca

    2013-04-01

    As an essential component of the diet, retinol supplementation is often considered harmless and its application is poorly controlled. However, recent works demonstrated that retinol may induce a wide array of deleterious effects, especially when doses used are elevated. Controlled clinical trials have demonstrated that retinol supplementation increased the incidence of lung cancer and mortality in smokers. Experimental works in cell cultures and animal models showed that retinol may induce free radical production, oxidative stress and extensive biomolecular damage. Here, we evaluated the effect of retinol on the regulation of the receptor for advanced glycation end-products (RAGE) in the human lung cancer cell line A549. RAGE is constitutively expressed in lungs and was observed to be down-regulated in lung cancer patients. A549 cells were treated with retinol doses reported as physiologic (2 μM) or therapeutic (5, 10 or 20 μM). Retinol at 10 and 20 μM increased free radical production, oxidative damage and antioxidant enzyme activity in A549 cells. These doses also downregulated RAGE expression. Antioxidant co-treatment with Trolox®, a hydrophilic analog of α-tocopherol, reversed the effects of retinol on oxidative parameters and RAGE downregulation. The effect of retinol on RAGE was mediated by p38 MAPK activation, as blockade of p38 with PD169316 (10 μM), SB203580 (10 μM) or siRNA to either p38α (MAPK14) or p38β (MAPK11) reversed the effect of retinol on RAGE. Trolox also inhibited p38 phosphorylation, indicating that retinol induced a redox-dependent activation of this MAPK. Besides, we observed that NF-kB acted as a downstream effector of p38 in RAGE downregulation by retinol, as NF-kB inhibition by SN50 (100 μg/mL) and siRNA to p65 blocked the effect of retinol on RAGE, and p38 inhibitors reversed NF-kB activation. Taken together, our results indicate a pro-oxidant effect of retinol on A549 cells, and suggest that modulation of RAGE expression by

  11. Quantitative Real-Time Gene Profiling of Human Alveolar Osteoblasts.

    PubMed

    Coates, Dawn E; Zafar, Sobia; Milne, Trudy J

    2017-01-01

    The use of quantitative real-time reverse transcriptase PCR (qRT(2)-PCR) for the identification of differentially regulated genes is a powerful technology. The protocol presented here uses qRT(2)-PCR gene arrays to investigate the regulation of 84 angiogenic related genes in human primary alveolar osteoblasts following treatment with the bisphosphonate, zoledronic acid (ZA), and geranylgeraniol (GGOH). GGOH has potential as a therapeutic agent for Bisphosphate-Related Osteonecrosis of the Jaw (BRONJ), a serious side-effect resulting from the treatment for metastatic cancer (Zafar et al., J Oral Pathol Med 43:711-721, 2014; Ruggiero, Ann NY Acad Sci 1218:38-46, 2011). The isolation of the primary osteoblast cells follows the methods previously described (Dillon et al., Methods Mol Biol 816:3-18, 2012) with a new RNA extraction technique described fully. The method highlights the importance of obtaining high-quality RNA which is DNA-free. Relative levels of gene expression are normalized against selected housekeeping genes (HKG) and a number of examples of how fold regulation (2(-∆∆Cq)) and gene expression level (2(-∆Cq)) data can be presented are given.

  12. Heme oxygenase-1 gene expression in human alveolar epithelial cells (A549) following exposure to whole cigarette smoke on a direct in vitro exposure system.

    PubMed

    Fukano, Yasuo; Yoshimura, Hiroyuki; Yoshida, Takemi

    2006-07-01

    Many in vitro studies have employed cigarette smoke condensates or soluble smoke components to investigate the biological effects of cigarette smoke. However, neither of these methods evaluates the biological effects of fresh whole cigarette smoke. It is most desirable to conduct in vitro biological studies under conditions which accommodate the dynamic physicochemical character of fresh cigarette smoke. Previously we reported the development of a whole smoke exposure system to assess the biological effects of mainstream cigarette smoke. The exposure system design was based on a combination of the sedimentation procedure and the CULTEX cultivation technique, which includes a systemized air/liquid interface methodology and exposes the cells to fresh smoke at every puff. The aim of this study was to adopt the other biological endpoint to our whole smoke exposure system. We focused on heme oxygenase (HO)-1 mRNA gene expression, an enzyme which has recently been shown to be highly responsible for oxidative stress. In the present study, a dose-response relationship between the HO-1 mRNA expression based on the reverse transcription real-time PCR method and total exposure to cigarette smoke was observed. When a Cambridge filter pad was placed between the cigarette and exposure module, to ensure the cells were only exposed to the gas/vapor phase, the latter, as well as the whole smoke, induced HO-1 mRNA dose dependently. For the next step, acetate plain and charcoal filters with the same pressure drop were prepared to assess the potential ability of charcoal filters with regard to the vapor phase performance. The results revealed reduced HO-1 mRNA gene expression when a charcoal filter was used. Direct whole smoke exposure is a significant approach and may reflect the conditions of exposure essentially resulting from direct contact between cells and a dynamic mixture of gaseous and particulate constituents. We were able to adopt a gene expression assay for oxidative stress to the whole smoke exposure system, following the adaptation of cytotoxicity assays. This system, which includes several advantages involving the post-exposure washing of cells, by adding the exchanging medium and assuring the exposure of the particulate phase through the sedimentation method, may have potential for further investigations into the molecular basis of smoking-related lung disease.

  13. Killing of Klebsiella pneumoniae by human alveolar macrophages.

    PubMed

    Hickman-Davis, Judy M; O'Reilly, Philip; Davis, Ian C; Peti-Peterdi, Janos; Davis, Glenda; Young, K Randall; Devlin, Robert B; Matalon, Sadis

    2002-05-01

    We investigated putative mechanisms by which human surfactant protein A (SP-A) effects killing of Klebsiella pneumoniae by human alveolar macrophages (AMs) isolated from bronchoalveolar lavagates of patients with transplanted lungs. Coincubation of AMs with human SP-A (25 microg/ml) and Klebsiella resulted in a 68% decrease in total colony forming units by 120 min compared with AMs infected with Klebsiella in the absence of SP-A, and this SP-A-mediated effect was abolished by preincubation with N(G)-monomethyl-L-arginine. Incubation of transplant AMs with SP-A increased intracellular Ca(2+) concentration ([Ca(2+)](i)) by 70% and nitrite and nitrate (NO(x)) production by 45% (from 0.24 +/- 0.02 to 1.3 +/- 0.21 nmol small middle dot 10(6) AMs(-1).h(-1)). Preincubation with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester inhibited the increase in [Ca(2+)](i) and abrogated the SP-A-mediated Klebsiella phagocytosis and killing. In contrast, incubation of AMs from normal volunteers with SP-A decreased both [Ca(2+)](i) and NO(x) production and did not result in killing of Klebsiella. Significant killing of Klebsiella was also seen in a cell-free system by sustained production of peroxynitrite (>1 microM/min) at pH 5 but not at pH 7.4. These findings indicate that SP-A mediates pathogen killing by AMs from transplant lungs by stimulating phagocytosis and production of reactive oxygen-nitrogen intermediates.

  14. Regional differences in alveolar density in the human lung are related to lung height.

    PubMed

    McDonough, John E; Knudsen, Lars; Wright, Alexander C; Elliott, W Mark; Ochs, Matthias; Hogg, James C

    2015-06-01

    The gravity-dependent pleural pressure gradient within the thorax produces regional differences in lung inflation that have a profound effect on the distribution of ventilation within the lung. This study examines the hypothesis that gravitationally induced differences in stress within the thorax also influence alveolar density in terms of the number of alveoli contained per unit volume of lung. To test this hypothesis, we measured the number of alveoli within known volumes of lung located at regular intervals between the apex and base of four normal adult human lungs that were rapidly frozen at a constant transpulmonary pressure, and used microcomputed tomographic imaging to measure alveolar density (number alveoli/mm3) at regular intervals between the lung apex and base. These results show that at total lung capacity, alveolar density in the lung apex is 31.6 ± 3.4 alveoli/mm3, with 15 ± 6% of parenchymal tissue consisting of alveolar duct. The base of the lung had an alveolar density of 21.2 ± 1.6 alveoli/mm3 and alveolar duct volume fraction of 29 ± 6%. The difference in alveolar density can be negated by factoring in the effects of alveolar compression due to the pleural pressure gradient at the base of the lung in vivo and at functional residual capacity.

  15. Gracilaria edulis exhibit antiproliferative activity against human lung adenocarcinoma cell line A549 without causing adverse toxic effect in vitro and in vivo.

    PubMed

    Sakthivel, Ravi; Muniasamy, Samuthirapandi; Archunan, Govindaraju; Devi, Kasi Pandima

    2016-02-01

    In the present study, the antiproliferative potential of various solvent extracts of Gracilaria edulis (GE) was tested against various cancer cell lines. In the A549 lung cancer cell line model, GE ethyl acetate extract (GEEA) (100 μg mL(-1)) treated group showed the maximum and significant (P < 0.05) growth inhibition at 48 h. The IC50 value was found to be 24.5 ± 19.1 μg mL(-1) at 48 h. Moreover, a low level of LDH release was observed at 48 h at various concentrations of (40, 60, 80 and 100 μg mL(-1)) GEEA extract-treated group compared to a control group. Changes in the cell morphology and echinoid spikes formation were observed at 48 h. Safety evaluation of GEEA in a non-cancerous liver cell line, PBMC and in Wistar rats positively revealed that the extract did not show any adverse toxic effects. The GEEA extract was partially purified by column chromatography and the active fraction was characterized through LC-MS analysis. Furthermore, HPLC and FT-IR analysis of the active fractions confirmed the presence of phytol, a diterpene compound with potent antiproliferative activity, which positively suggests that the red alga G. edulis contains a potent anticancer active principle.

  16. Effect of Paclitaxel-Mesoporous Silica Nanoparticles with a Core-Shell Structure on the Human Lung Cancer Cell Line A549

    NASA Astrophysics Data System (ADS)

    Wang, Tieliang; Liu, Ying; Wu, Chao

    2017-01-01

    A nanodrug delivery system of paclitaxel-mesoporous silica nanoparticles with a core-shell structure (PAC-csMSN) was used to increase the dissolution of paclitaxel (PAC) and improve its treatment of lung cancer. PAC was loaded into the core-shell mesoporous silica nanoparticles (csMSN) by the adsorption equilibrium method and was in an amorphous state in terms of its mesoporous structure. In vitro and in vivo studies showed that csMSN increased the dissolution rate of PAC and improved its lung absorption. The area under concentration-time curve (AUC) value of PAC-csMSN used for pulmonary delivery in rabbits was 2.678-fold higher than that obtained with the PAC. After continuous administration for 3 days, a lung biopsy showed no signs of inflammation. Cell apoptosis results obtained by flow cytometry indicated that PAC-csMSN was more potent than pure PAC in promoting cell apoptosis. An absorption investigation of PAC-csMSN in A549 cells was carried out by transmission electron microscopy (TEM) and laser scanning confocal microscopy (LSCM). The obtained results indicated that the cellular uptake was time-dependent and csMSN was uptaken into the cytoplasm. All these results demonstrate that csMSN have the potential to achieve pulmonary inhalation administration of poorly water-soluble drugs for the treatment of lung cancer.

  17. Licochalcone A Inhibits the Proliferation of Human Lung Cancer Cell Lines A549 and H460 by Inducing G2/M Cell Cycle Arrest and ER Stress.

    PubMed

    Qiu, Chenyu; Zhang, Tingting; Zhang, Wenxin; Zhou, Lina; Yu, Bin; Wang, Wei; Yang, Zhihong; Liu, Zhiguo; Zou, Peng; Liang, Guang

    2017-08-12

    Licochalcone A (LicA), a flavonoid isolated from the famous Chinese medicinal herb Glycyrrhiza uralensis Fisch, has wide spectrum of pharmacological activities. In this study, the anti-cancer effects and potential mechanisms of LicA in non-small cell lung cancer (NSCLC) cells were studied. LicA decreased cell viability and induced apoptosis in a dose-dependent manner in NSCLC cells. LicA inhibited lung cancer cells growth by blocking cell cycle progression at the G2/M transition and inducing apoptosis. LicA treatment decreased the expression of MDM2, Cyclin B1, Cdc2 and Cdc25C in H460 and A549 cancer cell lines. In addition, LicA induced caspase-3 activation and poly-ADP-ribose polymerase (PARP) cleavage, which displayed features of apoptotic signals. Furthermore, LicA increased the expression of endoplasmic reticulum (ER) stress related proteins, such as p-EIF2α and ATF4. These data provide evidence that LicA has the potential to be used in the treatment of lung cancer.

  18. Green tea induces annexin-I expression in human lung adenocarcinoma A549 cells: involvement of annexin-I in actin remodeling.

    PubMed

    Lu, Qing-Yi; Jin, Yu Sheng; Zhang, Zuo-Feng; Le, Anh D; Heber, David; Li, Frederick P; Dubinett, Steven M; Rao, Jian Yu

    2007-05-01

    Green tea polyphenols exhibit multiple antitumor activities in various in vitro and in vivo tumor models, and the mechanisms of action are not clear. Previously, we found that green tea extract (GTE) regulates actin remodeling in different cell culture systems. Actin remodeling plays an important role in cancer cell morphology, cell adhesion, motility, and invasion. Using proteomic approaches, we found GTE-induced expression of annexin-I, a multifunctional actin binding protein, in these cell lines. In this study, we aimed to further define the functional role of GTE-induced annexin-I expression in actin remodeling, cell adhesion, and motility in lung adenocarcinoma A549 cells. We found that GTE stimulates the expression of annexin-I in a dose-dependent fashion. The GTE-induced annexin-I expression appears to be at the transcription level, and the increased annexin-I expression mediates actin polymerization, resulting in enhanced cell adhesion and decreased motility. Annexin-I specific interference resulted in loss of GTE-induced actin polymerization and cell adhesion, but not motility. In fact, annexin-I specific interference itself inhibited motility even without GTE. Together, annexin-I plays an important role in GTE-induced actin remodeling, and it may serve as a potential molecular target associated with the anticancer activities of green tea.

  19. Effect of Paclitaxel-Mesoporous Silica Nanoparticles with a Core-Shell Structure on the Human Lung Cancer Cell Line A549.

    PubMed

    Wang, Tieliang; Liu, Ying; Wu, Chao

    2017-12-01

    A nanodrug delivery system of paclitaxel-mesoporous silica nanoparticles with a core-shell structure (PAC-csMSN) was used to increase the dissolution of paclitaxel (PAC) and improve its treatment of lung cancer. PAC was loaded into the core-shell mesoporous silica nanoparticles (csMSN) by the adsorption equilibrium method and was in an amorphous state in terms of its mesoporous structure. In vitro and in vivo studies showed that csMSN increased the dissolution rate of PAC and improved its lung absorption. The area under concentration-time curve (AUC) value of PAC-csMSN used for pulmonary delivery in rabbits was 2.678-fold higher than that obtained with the PAC. After continuous administration for 3 days, a lung biopsy showed no signs of inflammation. Cell apoptosis results obtained by flow cytometry indicated that PAC-csMSN was more potent than pure PAC in promoting cell apoptosis. An absorption investigation of PAC-csMSN in A549 cells was carried out by transmission electron microscopy (TEM) and laser scanning confocal microscopy (LSCM). The obtained results indicated that the cellular uptake was time-dependent and csMSN was uptaken into the cytoplasm. All these results demonstrate that csMSN have the potential to achieve pulmonary inhalation administration of poorly water-soluble drugs for the treatment of lung cancer.

  20. Exploring the aneugenic and clastogenic potential in the nanosize range: A549 human lung carcinoma cells and amorphous monodisperse silica nanoparticles as models.

    PubMed

    Gonzalez, Laetitia; Thomassen, Leen C J; Plas, Gina; Rabolli, Virginie; Napierska, Dorota; Decordier, Ilse; Roelants, Mathieu; Hoet, Peter H; Kirschhock, Christine E A; Martens, Johan A; Lison, Dominique; Kirsch-Volders, Micheline

    2010-12-01

    We explored how to assess the genotoxic potential of nanosize particles with a well validated assay, the in vitro cytochalasin-B micronucleus assay, detecting both clastogens and aneugens. Monodisperse Stöber amorphous silica nanoparticles (SNPs) of three different sizes (16, 60 and 104 nm) and A549 lung carcinoma cells were selected as models. Cellular uptake of silica was monitored by ICP-MS. At non-cytotoxic doses the smallest particles showed a slightly higher fold induction of micronuclei (MNBN). When considering the three SNPs together, particle number and total surface area appeared to account for MNBN induction as they both correlated significantly with the amplitude of the effect. Using nominal or cellular dose did not show statistically significant differences. Likewise, alkaline comet assay and FISH-centromeric probing of MNBN indicated a weak and not statistically significant induction of oxidative DNA damage, chromosome breakage and chromosome loss. This line of investigation will contribute to adequately design and interpret nanogenotoxicity assays.

  1. Oxygen Enhancement Ratio in Radiation-Induced Initial DSBs by an Optimized Flow Cytometry-based Gamma-H2AX Analysis in A549 Human Cancer Cells.

    PubMed

    Sunada, Shigeaki; Hirakawa, Hirokazu; Fujimori, Akira; Uesaka, Mitsuru; Okayasu, Ryuichi

    2017-08-22

    High-linear energy transfer (LET) heavy ions cause higher therapeutic effects than low-LET radiation due to lower dependency on oxygen concentration in tumor cell killing. The lethality after irradiation largely depends on DNA double-strand breaks (DSBs), however the detailed LET dependency for DSB induction under oxic and hypoxic conditions has not been reported. Therefore, we evaluated the oxygen enhancement ratio (OER) of heavy ion-induced DSB induction using a highly-optimized flow cytometry-based method of γ-H2AX detection. Non-small cell lung cancer (NSCLC) A549 cells were exposed to X-ray, carbon-ion and iron-ion radiations under oxic or hypoxic condition. As a DSB marker, the γ-H2AX signal was measured 1 h postirradiation and analyzed by flow cytometry. DSB slope values were calculated as DSB induction per Gy. Our method was able to detect high-LET radiation-induced DSBs even from clustered DNA damage sites. We also showed a decrease in OER value in an LET-dependent manner regardless of radiation type. In summary, we demonstrated a simple, quick and highly-optimized flow cytometry-based method of DSB analysis that detects DSBs induced by heavy-ion radiation for hypoxic and nonhypoxic cancer cells. Our study may provide a useful biological basis for heavy-ion radiotherapy.

  2. TREK-1 Regulates Cytokine Secretion from Cultured Human Alveolar Epithelial Cells Independently of Cytoskeletal Rearrangements

    PubMed Central

    Schwingshackl, Andreas; Roan, Esra; Teng, Bin; Waters, Christopher M.

    2015-01-01

    Background TREK-1 deficient alveolar epithelial cells (AECs) secrete less IL-6, more MCP-1, and contain less F-actin. Whether these alterations in cytokine secretion and F-actin content are related remains unknown. We now hypothesized that cytokine secretion from TREK-1-deficient AECs was regulated by cytoskeletal rearrangements. Methods We determined F-actin and α-tubulin contents of control, TREK-1-deficient and TREK-1-overexpressing human A549 cells by confocal microscopy and western blotting, and measured IL-6 and MCP-1 levels using real-time PCR and ELISA. Results Cytochalasin D decreased the F-actin content of control cells. Jasplakinolide increased the F-actin content of TREK-1 deficient cells, similar to the effect of TREK-1 overexpression in control cells. Treatment of control and TREK-1 deficient cells with TNF-α, a strong stimulus for IL-6 and MCP-1 secretion, had no effect on F-actin structures. The combination of TNF-α+cytochalasin D or TNF-α+jasplakinolide had no additional effect on the F-actin content or architecture when compared to cytochalasin D or jasplakinolide alone. Although TREK-1 deficient AECs contained less F-actin at baseline, quantified biochemically, they contained more α-tubulin. Exposure to nocodazole disrupted α-tubulin filaments in control and TREK-1 deficient cells, but left the overall amount of α-tubulin unchanged. Although TNF-α had no effect on the F-actin or α-tubulin contents, it increased IL-6 and MCP-1 production and secretion from control and TREK-1 deficient cells. IL-6 and MCP-1 secretions from control and TREK-1 deficient cells after TNF-α+jasplakinolide or TNF-α+nocodazole treatment was similar to the effect of TNF-α alone. Interestingly, cytochalasin D decreased TNF-α-induced IL-6 but not MCP-1 secretion from control but not TREK-1 deficient cells. Conclusion Although cytochalasin D, jasplakinolide and nocodazole altered the F-actin and α-tubulin structures of control and TREK-1 deficient AEC, the

  3. TGF-β1 Downregulates COX-2 Expression Leading to Decrease of PGE2 Production in Human Lung Cancer A549 Cells, Which Is Involved in Fibrotic Response to TGF-β1

    PubMed Central

    Takai, Erina; Tsukimoto, Mitsutoshi; Kojima, Shuji

    2013-01-01

    Transforming growth factor-ß1 (TGF-β1) is a multifunctional cytokine that is involved in various pathophysiological processes, including cancer progression and fibrotic disorders. Here, we show that treatment with TGF-β1 (5 ng/mL) induced downregulation of cyclooxygenase-2 (COX-2), leading to reduced synthesis of prostaglandin E2 (PGE2), in human lung cancer A549 cells. Treatment of cells with specific inhibitors of COX-2 or PGE2 receptor resulted in growth inhibition, indicating that the COX-2/PGE2 pathway contributes to proliferation in an autocrine manner. TGF-β1 treatment induced growth inhibition, which was attenuated by exogenous PGE2. TGF-β1 is also a potent inducer of epithelial mesenchymal transition (EMT), a phenotype change in which epithelial cells differentiate into fibroblastoid cells. Supplementation with PGE2 or PGE2 receptor EP4 agonist PGE1-alcohol, as compared with EP1/3 agonist sulprostone, inhibited TGF-β1-induced expression of fibronectin and collagen I (extracellular matrix components). Exogenous PGE2 or PGE2 receptor agonists also suppressed actin remodeling induced by TGF-β1. These results suggest that PGE2 has an anti-fibrotic effect. We conclude that TGF-β1-induced downregulation of COX-2/PGE2 signaling is involved in facilitation of fibrotic EMT response in A549 cells. PMID:24098479

  4. Irciniastatin A induces potent and sustained activation of extracellular signal-regulated kinase and thereby promotes ectodomain shedding of tumor necrosis factor receptor 1 in human lung carcinoma A549 cells.

    PubMed

    Quach, Hue Tu; Hirano, Seiya; Fukuhara, Sayuri; Watanabe, Tsubasa; Kanoh, Naoki; Iwabuchi, Yoshiharu; Usui, Takeo; Kataoka, Takao

    2015-01-01

    Irciniastatin A is a pederin-type marine product that potently inhibits translation. We have recently shown that irciniastatin A induces ectodomain shedding of tumor necrosis factor (TNF) receptor 1 with slower kinetics than other translation inhibitors. In human lung carcinoma A549 cells, irciniastatin A induced a marked and sustained activation of extracellular signal-regulated kinase (ERK) and induced little activation of p38 mitogen-activated protein (MAP) kinase and c-Jun N-terminal kinase (JNK). Moreover, the TNF receptor 1 shedding induced by irciniastatin A was blocked by the MAP kinase/ERK kinase inhibitor U0126, but not by the p38 MAP kinase inhibitor SB203580 or the JNK inhibitor SP600125. Thus unlike other translation inhibitors that trigger ribotoxic stress response, our results show that irciniastatin A is a unique translation inhibitor that induces a potent and sustained activation of the ERK pathway, and thereby promotes the ectodomain shedding of TNF receptor 1 in A549 cells.

  5. Human Alveolar Echinococcosis in Poland: 1990–2011

    PubMed Central

    Nahorski, Wacław L.; Knap, Józef P.; Pawłowski, Zbigniew S.; Krawczyk, Marek; Polański, Jerzy; Stefaniak, Jerzy; Patkowski, Waldemar; Szostakowska, Beata; Pietkiewicz, Halina; Grzeszczuk, Anna; Felczak-Korzybska, Iwona; Gołąb, Elżbieta; Wnukowska, Natalia; Paul, Małgorzata; Kacprzak, Elżbieta; Sokolewicz-Bobrowska, Elżbieta; Niścigorska-Olsen, Jolanta; Czyrznikowska, Aleksandra; Chomicz, Lidia; Cielecka, Danuta; Myjak, Przemysław

    2013-01-01

    Background Alveolar echinococcosis (AE) caused by Echinococcus multilocularis infections is a dangerous old disease in the Northern Hemisphere. The aim of the paper was to collect and analyze data on human AE in Poland in the last two decades. Methodology/Principal Findings The sources of data were both the cases officially registered and detected by an active field and laboratory surveillance. The cases were verified by clinical, epidemiological, and laboratory criteria. Altogether 121 human cases of AE were detected. Among these 83 (68,6%) cases were classified as confirmed, 16 as probable and 22 as possible. During the two decades a continuous increase in detection rate was noticed. The cases were 6–82 years old at the time of diagnosis (mean - 47.7 years). Sex ratio M/F was 0.86/1.0. The AE was fatal in 23 (19%) patients (mean age at death - 54.1 years). Family agglomeration of AE was found in 4 foci, involving 9 patients. Seventy six of the cases were diagnosed in an advanced stage of disease. In all cases the liver was the primary location of AE. In 30 (24.8%) patients a spread to other organs was observed. Ninety four of the patients were treated with albendazole. In 73 (60%) patients a surgical operation was performed, including 15 liver transplantations. Conclusions/Significance The studies confirmed that AE is an emerging disease in Poland, which is the fourth country in Europe with over 120 cases detected. The results also indicate the need of a wider national programme for implementation of screening in the highest AE risk areas (north-eastern Poland) with an effort to increase the public awareness of the possibility of contracting E. multilocularis, and above all, training of the primary care physicians in the recognition of the risk of AE to allow for an early detection of this dangerous disease. PMID:23301116

  6. Erratum: Mannose-capped lipoarabinomannan from Mycobacterium tuberculosis induces IL-37 production via upregulating ERK1/2 and p38 in human type II alveolar epithelial cells.

    PubMed

    Huang, Zhen; Zhao, Gao Wei; Gao, Chun Hai; Chi, Xiu Wen; Zeng, Tao; Hu, Yan Wei; Zheng, Lei; Wang, Qian

    2015-01-01

    The major surface lipoglycan of Mycobacterium tuberculosis (M. tb), mannose-capped lipoarabinomannan (ManLAM), is an immunosuppressive epitope of M. tb. Interleukin (IL)-37, is a newly identified anti-inflammatory cytokine, which reduces systemic and local inflammation. However, the correlation between ManLAM and IL-37 remains unknown. Therefore, in this study, we investigate the possible role and relative molecular mechanism of ManLAM in IL-37 production of human type II alveolar epithelial cells by using A549 cell line. Here, we report that M. tb induced IL-37 mRNA and protein expression in a time-dependent manner. We next fractionated components of M. tb using chloroform: methanol (C:M) and water. In sharp contrast to the C:M phase, water phase was mainly responsible for the production of IL-37. Since ManLAM is the major component of water phase, we found that ManLAM induced IL-37 mRNA and protein expression in a time and dose-dependent manner, while this activity was almost totally abolished by the ERK1/2 (U0126) and p38 (SB203580) inhibitor. ManLAM stimulation significantly induced ERK1/2 and p38 phosphorylation in A549 cells, as well as cell surface TLR2 expression. After interfering TLR2 expression, ERK1/2 and p38 phosphorylation levels were markedly decreased, and also IL-37 production. Though ManLAM also promoted TLR4 expression on A549 cells, TLR4 interference showed no influence on ManLAM-induced IL-37 production. Our results indicate that ManLAM induces IL-37 production in human type II alveolar epithelial cells via up-regulating TLR2/p38 or ERK1/2 pathway, and this provide an important evidence to explain the pathological role of ManLAM that contribute to the persistence of M. tb.[This corrects the article on p. 7279 in vol. 8, PMID: 26221267.].

  7. Novel hydrophilic docetaxel (CQMU-0519) analogue inhibits proliferation and induces apoptosis in human A549 lung, SKVO3 ovarian and MCF7 breast carcinoma cell lines.

    PubMed

    Fauzee, N J S; Wang, Y-L; Dong, Z; Li, Q-G; Wang, T; Mandarry, M T; Xu, L; Pan, J

    2012-08-01

    Objectives of this investigation were not merely to perform a comparative study with original docetaxel, but to define anti-proliferative and apoptotic effects of novel hydrophilic docetaxel (CQMU-0519) analogue on A549 lung, SKVO3 ovary and MCF7 breast carcinoma cell lines. The materials for the study consist of a completely new docetaxel analogue (CQMU-0519), synthesized by the Department of Pharmacology, Chongqing Medical University, China, which is completely soluble in water. 50 nm of drug concentration was utilized on all three cell lines where cell population growth was assessed using cell culture kit-8 and flow cytometry analysis, whereas apoptotic pathways were unveiled by use of annexin-V FITC, apoptosis DNA ladder, caspases-3, 6, 8 and 9; in the meanwhile, regulation of Bcl-2 family members was analysed by western blotting. The novel docetaxel analogue (CQMU-0519) suppressed cell proliferation in all three cell lines, inhibition of cell proliferation and cell cycle arrest being more evident in G(2) /M phase. Also, in both lung and ovarian cell lines, apoptotic levels were higher as measured by the various tests performed, and downregulation of Bcl-2 and Bcl-xL with increased expressions of Bad and Bax indicated the intrinsic pathway for apoptosis. Nevertheless, it was found that MCF7 cells, although also manifesting high levels of apoptosis, used the extrinsic pathway instead. Hence, it was shown that novel docetaxel analogue (CQMU-0519) may have some prospective use in future clinical trials. Novel hydrophilic docetaxel analogue (CQMU-0519) inhibited cell proliferation and enhanced the intrinsic apoptotic pathway in lung and ovarian carcinoma cells, whereas it used the extrinsic one in breast adenocarcinoma cells. © 2012 Blackwell Publishing Ltd.

  8. Modulation of intrinsic in vitro resistance to carboplatin by edatrexate in the A549 human nonsmall cell lung cancer cell line.

    PubMed

    Perez, E A; Hack, F M; Fletcher, T S; Chou, T C

    1994-01-01

    Edatrexate (10-ethyl-deazaaminopterin) is a methotrexate analog that has been shown to have greater antitumor activity and improved therapeutic index compared to its parent compound in preclinical systems. We have evaluated the ability of edatrexate to modulate the intrinsic resistance of the lung adenocarcinoma A549 cell line to carboplatin. Concentration effects, exposure time and schedule dependence were assessed. Modulation of resistance was observed with edatrexate treatment (0.2 microM for 1 h) prior to carboplatin. The concentrations of carboplatin to achieve IC50 at the 1-, 3-, and 24-h IC50 were decreased by a mean of 16.8 times (12.2-22.2) with edatrexate preexposure. In contrast, there was little modulation observed of carboplatin resistance when carboplatin was administered prior to edatrexate. In addition, schedule dependency experiments were performed using the method described by Chou and Talalay, in which the ratio of carboplatin to edatrexate was constant or nonconstant, and both the potency of effects and the shapes of the concentration-effect curves were taken into account in a computerized analysis. These experiments also demonstrated schedule dependency. Although both treatments resulted in a reduced IC50 vs. carboplatin alone, the reduction was much greater when edatrexate was added first (12.59 vs. 2.59 times). We conclude that the combination of edatrexate and carboplatin demonstrates schedule-dependent modulation of intrinsic carboplatin resistance in this in vitro model at clinically achievable edatrexate plasma levels (0.01 to 10 microM). The greatest modulatory synergism was observed in the setting of edatrexate treatment before carboplatin. Our findings suggest a potentially useful schedule when combining edatrexate and carboplatin for the treatment of malignant disease.

  9. Induction of human microsomal prostaglandin E synthase 1 by activated oncogene RhoA GTPase in A549 human epithelial cancer cells

    SciTech Connect

    Choi, Hye Jin; Lee, Dong-Hyung; Park, Seong-Hwan; Kim, Juil; Do, Kee Hun; An, Tae Jin; Ahn, Young Sup; Park, Chung Berm; Moon, Yuseok

    2011-09-30

    Highlights: {yields} As a target of oncogene RhoA-linked signal, a prostaglandin metabolism is assessed. {yields} RhoA activation increases PGE{sub 2} levels and its metabolic enzyme mPGES-1. {yields} RhoA-activated NF-{kappa}B and EGR-1 are positively involved in mPGES-1 induction. -- Abstract: Oncogenic RhoA GTPase has been investigated as a mediator of pro-inflammatory responses and aggressive carcinogenesis. Among the various targets of RhoA-linked signals, pro-inflammatory prostaglandin E{sub 2} (PGE{sub 2}), a major prostaglandin metabolite, was assessed in epithelial cancer cells. RhoA activation increased PGE{sub 2} levels and gene expression of the rate-limiting PGE{sub 2} producing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase 1 (mPGES-1). In particular, human mPGES-1 was induced by RhoA via transcriptional activation in control and interleukin (IL)-1{beta}-activated cancer cells. To address the involvement of potent signaling pathways in RhoA-activated mPGES-1 induction, various signaling inhibitors were screened for their effects on mPGES-1 promoter activity. RhoA activation enhanced basal and IL-1{beta}-mediated phosphorylated nuclear factor-{kappa}B and extracellular signal-regulated kinase1/2 proteins, all of which were positively involved in RhoA-induced gene expression of mPGES-1. As one potent down-stream transcription factor of ERK1/2 signals, early growth response gene 1 product also mediated RhoA-induced gene expression of mPGES-1 by enhancing transcriptional activity. Since oncogene-triggered PGE{sub 2} production is a critical modulator of epithelial tumor cells, RhoA-associated mPGES-1 represents a promising chemo-preventive or therapeutic target for epithelial inflammation and its associated cancers.

  10. European Echinococcosis Registry: Human Alveolar Echinococcosis, Europe, 1982–2000

    PubMed Central

    Bardonnet, Karine; Renner, Elisabeth; Auer, Herbert; Pawlowski, Zbigniew; Ammann, Rudolf W.; Vuitton, Dominique A.; Kern, Peter

    2003-01-01

    Surveillance for alveolar echinococcosis in central Europe was initiated in 1998. On a voluntary basis, 559 patients were reported to the registry. Most cases originated from rural communities in regions from eastern France to western Austria; single cases were reported far away from the disease-“endemic” zone throughout central Europe. Of 210 patients, 61.4% were involved in vocational or part-time farming, gardening, forestry, or hunting. Patients were diagnosed at a mean age of 52.5 years; 78% had symptoms. Alveolar echinococcosis primarily manifested as a liver disease. Of the 559 patients, 190 (34%) were already affected by spread of the parasitic larval tissue. Of 408 (73%) patients alive in 2000, 4.9% were cured. The increasing prevalence of Echinococcus multilocularis in foxes in rural and urban areas of central Europe and the occurrence of cases outside the alveolar echinococcosis–endemic regions suggest that this disease deserves increased attention. PMID:12643830

  11. Effects of ATP-sensitive potassium channel opener on potassium transport and alveolar fluid clearance in the resected human lung.

    PubMed

    Sakuma, T; Takahashi, K; Ohya, N; Nakada, T; Matthay, M A

    1998-07-01

    Since the effect of an ATP-sensitive potassium channel (KATP channel) opener on the function of alveolar epithelial cells is unknown, the effect of YM934, a newly synthesized KATP channel opener, on potassium influx into the alveolar spaces and alveolar fluid clearance was determined in the resected human lung. An isosmolar albumin solution with a low potassium concentration was instilled into the distal airspaces of resected human lungs. Alveolar fluid clearance was measured by the progressive increase in alveolar protein concentration. Net potassium transport was measured by the change in potassium concentration and alveolar fluid volume. YM934 (10(-4) M) increased net influx of potassium by 140% into the alveolar spaces and also increased alveolar fluid clearance by 60% in the experiments with a potassium concentration of 0.3 mEq/1. Glibenclamide (10(-4) M), a KATP channel blocker, inhibited the YM934-increased influx of potassium transport and the increase in alveolar fluid clearance. Also amiloride (10(-5) M), an inhibitors of apical sodium uptake, blocked the YM934 stimulated increase in net alveolar fluid clearance. These results indicate that a KATP channel opener can effect potassium transport and net vectorial fluid movement across the human alveolar epithelium.

  12. High Throughput Determination of TGFβ1/SMAD3 Targets in A549 Lung Epithelial Cells

    PubMed Central

    Kaplan, Tommy; Yu, Haiying; Bais, Abha S.; Richards, Thomas; Pandit, Kusum V.; Zeng, Qilu; Benos, Panayiotis V.; Friedman, Nir; Eickelberg, Oliver; Kaminski, Naftali

    2011-01-01

    Background Transforming growth factor beta 1 (TGFβ1) plays a major role in many lung diseases including lung cancer, pulmonary hypertension, and pulmonary fibrosis. TGFβ1 activates a signal transduction cascade that results in the transcriptional regulation of genes in the nucleus, primarily through the DNA-binding transcription factor SMAD3. The objective of this study is to identify genome-wide scale map of SMAD3 binding targets and the molecular pathways and networks affected by the TGFβ1/SMAD3 signaling in lung epithelial cells. Methodology We combined chromatin immunoprecipitation with human promoter region microarrays (ChIP-on-chip) along with gene expression microarrays to study global transcriptional regulation of the TGFβ1/SMAD3 pathway in human A549 alveolar epithelial cells. The molecular pathways and networks associated with TGFβ1/SMAD3 signaling were identified using computational approaches. Validation of selected target gene expression and direct binding of SMAD3 to promoters were performed by quantitative real time RT-PCR and electrophoretic mobility shift assay on A549 and human primary lung epithelial cells. Results and Conclusions Known TGFβ1 target genes such as SERPINE1, SMAD6, SMAD7, TGFB1 and LTBP3, were found in both ChIP-on-chip and gene expression analyses as well as some previously unrecognized targets such as FOXA2. SMAD3 binding of FOXA2 promoter and changed expression were confirmed. Computational approaches combining ChIP-on-chip and gene expression microarray revealed multiple target molecular pathways affected by the TGFβ1/SMAD3 signaling. Identification of global targets and molecular pathways and networks associated with TGFβ1/SMAD3 signaling allow for a better understanding of the mechanisms that determine epithelial cell phenotypes in fibrogenesis and carcinogenesis as does the discovery of the direct effect of TGFβ1 on FOXA2. PMID:21625455

  13. Extracellular HSP70 Activates ERK1/2, NF-kB and Pro-Inflammatory Gene Transcription Through Binding with RAGE in A549 Human Lung Cancer Cells.

    PubMed

    Somensi, Nauana; Brum, Pedro Ozorio; de Miranda Ramos, Vitor; Gasparotto, Juciano; Zanotto-Filho, Alfeu; Rostirolla, Diana Carolina; da Silva Morrone, Maurilio; Moreira, José Claudio Fonseca; Pens Gelain, Daniel

    2017-08-22

    Heat shock protein 70 (HSP70) has been recently described with extracellular actions, where it is actively released in inflammatory conditions. Acting as DAMPs (damage associated molecular pattern), extracellular HSP70 (eHSP70) interacts with membrane receptors and activates inflammatory pathways. At this context, the receptor for advanced glycation endproducts (RAGE) emerges as a possible candidate for interaction with eHSP70. RAGE is a pattern-recognition receptor and its expression is increased in several diseases related to a chronic pro-inflammatory state. One of the main consequences of RAGE ligand-binding is the ERK1/2 (extracellular signal-regulated kinases)-dependent activation of NF-kB (nuclear factor kappa B), which leads to expression of TNF-α (tumor necrosis factor alpha) and other cytokines. The purpose of this work is to elucidate if eHSP70 is able to evoke RAGE-dependent signaling using A549 human lung cancer cells, which constitutively express RAGE. Immunoprecipitation and protein proximity assay were utilized to demonstrate the linkage between RAGE and eHSP70. To investigate RAGE relevance on cell response to eHSP70, siRNA was used to knockdown the receptor expression. Signaling pathways activation were evaluated by western blotting, gene reporter luciferase and real time quantitative PCR. Protein eHSP70 shown to be interacting physically with the receptor RAGE in our cell model. Treatment with eHSP70 caused ERK1/2 activation and NF-κB transactivation impaired by RAGE knockdown. Moreover, the stimulation of pro-inflammatory cytokines expression by eHSP70 was inhibited in RAGE-silenced cells. Finally, conditioned medium of eHSP70-treated A549 cells caused differential effects in monocytes cytokine expression when A549 RAGE expression is inhibited. Our results evidence eHSP70 as a novel RAGE agonist capable of influence the cross-talk between cancer and immune system cells. © 2017 The Author(s). Published by S. Karger AG, Basel.

  14. Paracrine influence of human perivascular cells on the proliferation of adenocarcinoma alveolar epithelial cells

    PubMed Central

    Kim, Eunbi; Na, Sunghun; An, Borim; Yang, Se-Ran; Kim, Woo Jin; Ha, Kwon-Soo; Han, Eun-Taek; Park, Won Sun; Lee, Chang-Min; Lee, Ji Yoon

    2017-01-01

    Understanding the crosstalk mechanisms between perivascular cells (PVCs) and cancer cells might be beneficial in preventing cancer development and metastasis. In this study, we investigated the paracrine influence of PVCs derived from human umbilical cords on the proliferation of lung adenocarcinoma epithelial cells (A549) and erythroleukemia cells (TF-1α and K562) in vitro using Transwell® co-culture systems. PVCs promoted the proliferation of A549 cells without inducing morphological changes, but had no effect on the proliferation of TF-1α and K562 cells. To identify the factors secreted from PVCs, conditioned media harvested from PVC cultures were analyzed by antibody arrays. We identified a set of cytokines, including persephin (PSPN), a neurotrophic factor, and a key regulator of oral squamous cell carcinoma progression. Supplementation with PSPN significantly increased the proliferation of A549 cells. These results suggested that PVCs produced a differential effect on the proliferation of cancer cells in a cell-type dependent manner. Further, secretome analyses of PVCs and the elucidation of the molecular mechanisms could facilitate the discovery of therapeutic target(s) for lung cancer. PMID:28280409

  15. Hyperthermia in the febrile range induces HSP72 expression proportional to exposure temperature but not to HSF-1 DNA-binding activity in human lung epithelial A549 cells.

    PubMed

    Tulapurkar, Mohan E; Asiegbu, Benedict E; Singh, Ishwar S; Hasday, Jeffrey D

    2009-09-01

    Expression of heat shock proteins (HSPs) is classically activated at temperatures above the physiologic range (>or=42 degrees C) via activation of the stress-activated transcription factor, heat shock factor-1 (HSF-1). Several studies suggest that less extreme hyperthermia, especially within the febrile range, as occurs during fever and exertional/environmental hyperthemia, can also activate HSF-1 and enhance HSP expression. We compared HSP72 protein and mRNA expression in human A549 lung epithelial cells continuously exposed to 38.5 degrees C, 39.5 degrees C, or 41 degrees C or exposed to a classic heat shock (42 degrees C for 2 h). We found that expression of HSP72 protein and mRNA increased linearly as incubation temperature was increased from 37 degrees C to 41 degrees C, but increased abruptly when the incubation temperature was raised to 42 degrees C. A similar response in luciferase activity was observed using A549 cells stably transfected with an HSF-1-responsive luciferase reporter plasmid. However, activation of intranuclear HSF-1 DNA-binding activity was comparable at 38.5 degrees C, 39.5 degrees C, and 41 degrees C and only modestly greater at 42 degrees C but the mobility of HSF1 protein on a denaturing gel was altered with increasing exposure temperature and was distinctly different at 42 degrees C. These findings indicate that the proportional changes in HSF-1-dependent HSP72 expression at febrile-range temperatures are dependent upon exposure time and temperature but not on the degree of HSF-1 DNA-binding activity. Instead, HSF-1-mediated HSP expression following hyperthermia and heat shock appears to be mediated, in addition to HSF-1 activation, by posttranslational modifications of HSF-1 protein.

  16. Modulation of Mitogen-Induced Proliferation of Autologous Peripheral Blood Lymphocytes by Human Alveolar Macrophages

    PubMed Central

    Yeager, Henry; Sweeney, Jan A.; Herscowitz, Herbert B.; Barsoum, Ibrahim S.; Kagan, Elliott

    1982-01-01

    Experiments were carried out to determine the effect of cocultivation of T-cell-enriched human peripheral blood lymphocytes with autologous alveolar macrophages on mitogen-induced proliferation as determined by [3H]thymidine uptake. Cells obtained by fiberoptic bronchoscopy and saline bronchial lavage from 14 normal volunteers were enriched for macrophages by adherence in plastic dishes for 1 h in RPMI 1640 medium supplemented with 10% fetal calf serum. Nonadherent mononuclear cells were prepared from heparinized venous blood after Ficoll-Hypaque sedimentation by passage over nylon wool columns. T-cell-enriched populations were incubated with and without alveolar macrophages, either in the presence or absence of phytohemagglutinin. In these experiments, the number of lymphocytes was held constant (105 per well), while the number of alveolar macrophages was varied (0.1 × 105 to 4.0 × 105 per well). Alveolar macrophages generally tended to stimulate phytohemagglutinin-induced lymphoproliferation at lymphocyte/macrophage ratios of 10:1 but consistently and significantly suppressed proliferation at ratios which approach those usually observed in recovered human bronchial lavage fluid, namely, 1:4. The suppressive effect of alveolar macrophages was observed as early as 48 h after culture initiation, while the magnitude of suppression increased with time. Suppression did not appear to be due to alteration in lymphocyte viability, nor was it sensitive to indomethacin. These results indicate that human alveolar macrophages can modulate the in vitro proliferative response of autologous peripheral blood lymphocytes. This observation may have relevance to interactions between alveolar macrophages and bronchial lymphocytes in the human lung in vivo. PMID:6982862

  17. Comparative proteomic analysis of paclitaxel sensitive A549 lung adenocarcinoma cell line and its resistant counterpart A549-Taxol.

    PubMed

    Sun, Qiang-Ling; Sha, Hui-Fang; Yang, Xiao-Hua; Bao, Guo-Liang; Lu, Jing; Xie, Yin-Yin

    2011-03-01

    Paclitaxel is used as the first-line chemotherapy for Non-Small Cell Lung Cancer (NSCLC), but acquired resistance becomes a critical problem. Several mechanisms have been proposed in paclitaxel resistance, but they are not sufficient to exhaustively explain this resistance emergence. To better investigate molecular resistance mechanisms, a comparative proteomic approach was carried out to identify differentially expressed proteins between human lung adenocarcinoma A549 cell line (paclitaxel sensitive) and A549-Taxol cell line (acquired resistant). A paclitaxel-resistant subline (A549-Taxol) derived from the parental-sensitive cell line A549 was established by stepwise selection by paclitaxel. Total proteins in the two cell lines were separated by fluorescent differential gel electrophoresis (DIGE). Image analysis was carried out with the DeCyder 2D 6.5 software. Proteins associated with chemoresistance process were identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS). Some key molecules were valuated by Western blot. Thirty proteins were identified and grouped into eight main functional classes according to the biological processes in which they are likely to participate, i.e. signal transduction, cytoskeleton, redox reaction, energy and metabolism, and so on. Alterations of these processes might be involved in paclitaxel resistance. Most of the proteins showed mitochondrial and cytoplasm location. The up-regulation of CK8, CK18, ALDH1, CAST and ANX I in A549-Taxol cell line was verified by Western blot, in coincidence with the data obtained from proteomic analysis. For the first time, differentially expressed proteins between paclitaxel-sensitive cell line and paclitaxel-resistant one were explored by comparative proteomic approach in human lung adenocarcinoma. It may be useful for further studying of resistance mechanisms and screening of resistance biomarkers, so as to develop tailored therapeutic

  18. The effect of ataxia-telangiectasia mutated kinase-dependent hyperphosphorylation of checkpoint kinase-2 on oligodeoxynucleotide 7909 containing CpG motifs-enhanced sensitivity to X-rays in human lung adenocarcinoma A549 cells

    PubMed Central

    Liu, Xiaoqun; Liu, Xiangdong; Qiao, Tiankui; Chen, Wei; Yuan, Sujuan

    2015-01-01

    Objective The aim of the study reported here was to further investigate the potential effect of ataxia-telangiectasia mutated (ATM) kinase-dependent hyperphosphorylation of checkpoint kinase-2 (Chk2) on radiosensitivity enhanced by oligodeoxynucleotide 7909 containing CpG motifs (CpG ODN7909) in human lung adenocarcinoma A549 cells. Methods In vitro A549 cells were randomly separated into control, CpG, X-ray, CpG+ X-ray, ATM kinase-small interfering RNA (siRNA)+CpG+X-ray (ATM-siRNA), and Chk2-siRNA+CpG+X-ray (Chk2-siRNA) groups. siRNAs were adopted to silence the ATM and Chk2 genes. Expression and phosphorylation of ATM kinase and Chk2 were detected by Western blot assay. Cell colonies were observed under inverted phase-contrast microscopy. Cellular survival curves were fitted using a multi-target single-hitting model. Cell cycle and apoptosis were analyzed by flow cytometry. Results Expression of ATM kinase and Chk2 was similar among the control, CpG, X-ray, and CpG+X-ray groups. Phosphorylated ATM kinase and Chk2 were significantly increased in the CpG+X-ray group compared with in the X-ray group (t=6.00, P<0.01 and t=3.13, P<0.05, respectively), though these were hardly detected in the control and CpG groups. However, expression of ATM kinase and Chk2 was clearly downregulated in the ATM-siRNA and Chk2-siRNA groups, respectively. Similarly, their phosphorylation levels were also significantly decreased in the ATM-siRNA group (t=14.35, P<0.01 and t=8.46, P<0.01, respectively) and a significant decrease in phosphorylated Chk2 was observed in the Chk2-siRNA group (t=7.28, P<0.01) when compared with the CpG+X-ray group. Further, the number of A549 cells at Gap 2/mitotic phase and the apoptosis rate were clearly increased in the CpG+X-ray group compared with in the other groups (all P<0.05). The multi-target single-hitting model showed that the sensitization enhancement ratio calculated by mean death dose was 1.39 in CpG+X-ray group (vs 1.04 and 1.03 in the ATM

  19. Contour changes in human alveolar bone following tooth extraction of the maxillary central incisor

    PubMed Central

    Li, Bei; Wang, Yao

    2014-01-01

    The purpose of this study was to apply cone-beam computed tomography (CBCT) to observe contour changes in human alveolar bone after tooth extraction of the maxillary central incisor and to provide original morphological evidence for aesthetic implant treatment in the maxillary anterior area. Forty patients were recruited into the study. Each patient had two CBCT scans (CBCT I and CBCT II), one taken before and one taken three months after tooth extraction of maxillary central incisor (test tooth T). A fixed anatomic reference point was used to orient the starting axial slice of the two scans. On three CBCT I axial slices, which represented the deep, middle, and shallow layers of the socket, labial and palatal alveolar bone widths of T were measured. The number of sagittal slices from the start point to the pulp centre of T was recorded. On three CBCT II axial slices, the pulp centres of extracted T were oriented according to the number of moved sagittal slices recorded in CBCT I. Labial and palatal alveolar bone widths at the oriented sites were measured. On the CBCT I axial slice which represented the middle layer of the socket, sagittal slices were reconstructed. Relevant distances of T on the sagittal slice were measured, as were the alveolar bone width and tooth length of the opposite central incisor. On the CBCT II axial slice, which represented the middle layer of the socket, relevant distances recorded in CBCT I were transferred on the sagittal slice. The height reduction of alveolar bone on labial and palatal sides was measured, as were the alveolar bone width and tooth length of the opposite central incisor at the oriented site. Intraobserver reliability assessed by intraclass correlation coefficients (ICCs) was high. Paired sample t-tests were performed. The alveolar bone width and tooth length of the opposite central incisor showed no statistical differences (P<0.05). The labial alveolar bone widths of T at the deep, middle, and shallow layers all showed

  20. Contour changes in human alveolar bone following tooth extraction of the maxillary central incisor.

    PubMed

    Li, Bei; Wang, Yao

    2014-12-01

    The purpose of this study was to apply cone-beam computed tomography (CBCT) to observe contour changes in human alveolar bone after tooth extraction of the maxillary central incisor and to provide original morphological evidence for aesthetic implant treatment in the maxillary anterior area. Forty patients were recruited into the study. Each patient had two CBCT scans (CBCT I and CBCT II), one taken before and one taken three months after tooth extraction of maxillary central incisor (test tooth T). A fixed anatomic reference point was used to orient the starting axial slice of the two scans. On three CBCT I axial slices, which represented the deep, middle, and shallow layers of the socket, labial and palatal alveolar bone widths of T were measured. The number of sagittal slices from the start point to the pulp centre of T was recorded. On three CBCT II axial slices, the pulp centres of extracted T were oriented according to the number of moved sagittal slices recorded in CBCT I. Labial and palatal alveolar bone widths at the oriented sites were measured. On the CBCT I axial slice which represented the middle layer of the socket, sagittal slices were reconstructed. Relevant distances of T on the sagittal slice were measured, as were the alveolar bone width and tooth length of the opposite central incisor. On the CBCT II axial slice, which represented the middle layer of the socket, relevant distances recorded in CBCT I were transferred on the sagittal slice. The height reduction of alveolar bone on labial and palatal sides was measured, as were the alveolar bone width and tooth length of the opposite central incisor at the oriented site. Intraobserver reliability assessed by intraclass correlation coefficients (ICCs) was high. Paired sample t-tests were performed. The alveolar bone width and tooth length of the opposite central incisor showed no statistical differences (P<0.05). The labial alveolar bone widths of T at the deep, middle, and shallow layers all showed

  1. Artesunate induces AIF-dependent apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Zhou, Chen-juan; Chen, Tong-Sheng

    2012-03-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  2. Down-regulation of the DNA-repair endonuclease 8-oxo-guanine DNA glycosylase 1 (hOGG1) by sodium dichromate in cultured human A549 lung carcinoma cells.

    PubMed

    Hodges, N J; Chipman, J K

    2002-01-01

    Hexavalent chromium is a genotoxic human pulmonary carcinogen that elevates DNA oxidation, apparently through the generation of reactive DNA-damaging intermediates including Cr(V), Cr(IV) and reactive oxygen species. We tested the hypothesis that elevation of DNA oxidation may also be through inhibition of the expression of the repair glycosylase for 8-oxo deoxyguanine (hOGG1) in cultured A549 human lung epithelial cells. Treatment with sodium dichromate (0-100 microM, 16 h) resulted in a concentration-dependent decrease in the levels of OGG1 mRNA as measured by both RT-PCR and RNase protection assay. Sodium dichromate at 25 microM and above gave a marked reduction of OGG1 mRNA expression which was not seen at 1 microM and below. No effect on the expression of the apurinic endonuclease hAPE or the house-keeping gene GAPDH was observed at any of the concentrations of sodium dichromate investigated. Treatment of cells with the pro-oxidant H(2)O(2) (0-200 microM) for 16 h had no detectable effect on the levels of OGG1 mRNA or protein expression suggesting that the effect of sodium dichromate is not mediated by H(2)O(2). Western blotting demonstrated that sodium dichromate (100 microM; 16 h and >25 microM; 28 h) markedly reduced levels of OGG1 protein in nuclear cell extracts. Additionally, treatment of cells with sodium dichromate (>25 microM, 28 h) resulted in a concentration-dependent decrease in the ability of nuclear extracts to nick a synthetic oligonucleotide containing 8-oxo deoxyguanine (8-oxo dG). We conclude that the elevation of 8-oxo dG levels observed in A549 cells treated with sodium dichromate may be, at least in part, due to a reduced capacity to repair endogenous and hexavalent chromium-induced 8-oxo dG.

  3. TNF-α-stimulated macrophages protect A549 lung cells against iron and oxidation.

    PubMed

    Persson, H Lennart; Vainikka, Linda K; Eriksson, Ida; Wennerström, Urban

    2013-01-01

    Previously, we have shown that TNF-α protects iron-exposed J774 macrophages against iron-catalyzed oxidative lysosomal disruption and cell death by increasing reduced glutathione and H-ferritin in cells. Because J774 cells are able to harbor large amounts of iron, which is potentially harmful in a redox-active state, we hypothesized that TNF-α-stimulated J774 macrophages will prevent iron-driven oxidative killing of alveolar epithelial A549 cells in co-culture. In the present study, iron trichloride (which is endocytosed by cells as hydrated iron-phosphate complexes) was mainly deposited inside the lysosomes of J774 macrophages, while A549 cells, equally iron exposed, accumulated much less iron. When challenged by oxidants, however, reactive lysosomal iron in A549 cells promoted lysosomal disruption and cell death, particularly in the presence of TNF-α. This effect resulted from an elevation in ROS generation by TNF-α, while a compensatory upregulation of protective molecules (H-ferritin and/or reduced glutathione) by TNF-α was absent. A549 cell death was particularly pronounced when iron and TNF-α were present in the conditioned medium during oxidant challenge; thus, iron-driven oxidative reactions in the culture medium were a much greater hazard to A549 cells than those taking place inside their lysosomes. Consequently, the iron chelator, deferoxamine, efficiently prevented A549 cell death when added to the culture medium during an oxidant challenge. In co-cultures of TNF-α-stimulated lung cells, J774 macrophages sequestered iron inside their lysosomes and protected A549 cells from oxidative reactions and cell death. Thus, the collective effect of TNF-α on co-cultured lung cells was mainly cytoprotective. Copyright © 2011 Elsevier GmbH. All rights reserved.

  4. Structural relationships of the major glycoproteins from human alveolar proteinosis surfactant.

    PubMed

    Ross, G F; Ohning, B L; Tannenbaum, D; Whitsett, J A

    1987-02-25

    Alveolar proteinosis is a disease characterized by accumulation of proteinaceous material in the alveolar space of the lung. Two major collagenase-sensitive polypeptides, alveolar proteinosis peptides of 34 kDa kilodaltons (APP-34) and of 62 kDa (APP-62), were isolated from bronchioalveolar lavage of patients with alveolar proteinosis. These proteins co-purified during fast-performance liquid chromatography (FPLC) chromatofocusing and were separated from each other by electroelution following SDS-polyacrylamide gel electrophoresis. Immunoblot analysis of these proteins demonstrated that both shared antigenic sites with the normal human surfactant-associated protein of Mr 34,000 (SAP-34) using both polyclonal and monoclonal antibodies generated against SAP-34. Removal of asparagine-linked oligosaccharides from the 34 kDa and 62 kDa alveolar proteinosis proteins with endoglycosidase F resulted in polypeptides of 28 kDa from APP-34 and 56 kDa from APP-62. Amino acid analysis and tryptic peptide maps of the electroeluted APP-34 and APP-62 proteins were essentially identical and similar to that previously reported for human SAP-34, supporting the likely relationship of APP-34 and APP-62 as monomer and dimer of the normal SAP-34. APP-34 and APP-62 were both sensitive to bacterial collagenase, yielding collagenase-resistant fragments of 21 kDa, similar in migration and amino acid composition to the fragment generated by collagenase digestion of normal human SAP-34. High molecular weight aggregates of APP-34 and APP-62 were the result of sulfhydryl-dependent and non-sulfhydryl-dependent cross-linking. A domain in the C-terminal non-collagenous portion of the molecules which forms sulfhydryl-dependent oligomers was identified. The two major polypeptides accumulating in the airway of patients with alveolar proteinosis are monomeric (34 kDa) and dimeric (62 kDa) forms of the major surfactant-associated glycoprotein, SAP-34.

  5. Alveolocapillary model system to study alveolar re-epithelialization

    SciTech Connect

    Willems, Coen H.M.P.; Zimmermann, Luc J.I.; Sanders, Patricia J.L.T.; Wagendorp, Margot; Kloosterboer, Nico; Cohen Tervaert, Jan Willem; Duimel, Hans J.Q.; Verheyen, Fons K.C.P.; Iwaarden, J. Freek van

    2013-01-01

    In the present study an in vitro bilayer model system of the pulmonary alveolocapillary barrier was established to investigate the role of the microvascular endothelium on re-epithelialization. The model system, confluent monolayer cultures on opposing sides of a porous membrane, consisted of a human microvascular endothelial cell line (HPMEC-ST1.6R) and an alveolar type II like cell line (A549), stably expressing EGFP and mCherry, respectively. These fluorescent proteins allowed the real time assessment of the integrity of the monolayers and the automated analysis of the wound healing process after a scratch injury. The HPMECs significantly attenuated the speed of re-epithelialization, which was associated with the proximity to the A549 layer. Examination of cross-sectional transmission electron micrographs of the model system revealed protrusions through the membrane pores and close contact between the A549 cells and the HPMECs. Immunohistochemical analysis showed that these close contacts consisted of heterocellular gap-, tight- and adherens-junctions. Additional analysis, using a fluorescent probe to assess gap-junctional communication, revealed that the HPMECs and A549 cells were able to exchange the fluorophore, which could be abrogated by disrupting the gap junctions using connexin mimetic peptides. These data suggest that the pulmonary microvascular endothelium may impact the re-epithelialization process. -- Highlights: ► Model system for vital imaging and high throughput screening. ► Microvascular endothelium influences re-epithelialization. ► A549 cells form protrusions through membrane to contact HPMEC. ► A549 cells and HPMECs form heterocellular tight-, gap- and adherens-junctions.

  6. Activation of paracrine growth factors by heparan sulphate induced by glucocorticoid in A549 lung carcinoma cells.

    PubMed

    Yevdokimova, N; Freshney, R I

    1997-01-01

    Alkaline phosphatase, a marker of differentiation in the human alveolar adenocarcinoma cell line A549, is inducible by conditioned medium from lung fibroblasts and by cytokines including oncostatin M and interleukin 6, but only in the presence of a glucocorticoid, dexamethasone. Dexamethasone was shown to induce incorporation of [3H]glucosamine into three fractions of medium and cell trypsinate from subconfluent A549 cells, eluting from DEAE ion-exchange chromatography. The first peak did not correspond to any of the unlabelled glycosaminoglycans and was not characterized further. Induction was seen in two other peaks, corresponding to hyaluronic acid and heparan sulphate. Of these, heparan sulphate, eluting as one well-defined peak (referred to as HS1) and another of lower activity and less well defined (HS2), was selected as the most likely to interact with growth factors and cytokines and was isolated from the eluate, concentrated and desalted, and used in alkaline phosphatase induction experiments in place of dexamethasone. HS1 isolated from the medium (HS1m) of subconfluent A549 cells was shown to replace dexamethasone in induction experiments with fibroblast-conditioned medium, oncostatin M and interleukin 6. HS1 from the cell trypsinate and HS2 from the medium and trypsinate were inactive. As the activity of HS1m could be abolished by heparinase and heparitinase but not by chondroitinase ABC, it was concluded that HS1m was a fraction of heparan sulphate involved in the regulation of paracrine growth factor activity in lung fibroblast-conditioned medium, and in the regulation of other growth factors with potential roles in the paracrine control of cell differentiation.

  7. Activation of paracrine growth factors by heparan sulphate induced by glucocorticoid in A549 lung carcinoma cells.

    PubMed Central

    Yevdokimova, N.; Freshney, R. I.

    1997-01-01

    Alkaline phosphatase, a marker of differentiation in the human alveolar adenocarcinoma cell line A549, is inducible by conditioned medium from lung fibroblasts and by cytokines including oncostatin M and interleukin 6, but only in the presence of a glucocorticoid, dexamethasone. Dexamethasone was shown to induce incorporation of [3H]glucosamine into three fractions of medium and cell trypsinate from subconfluent A549 cells, eluting from DEAE ion-exchange chromatography. The first peak did not correspond to any of the unlabelled glycosaminoglycans and was not characterized further. Induction was seen in two other peaks, corresponding to hyaluronic acid and heparan sulphate. Of these, heparan sulphate, eluting as one well-defined peak (referred to as HS1) and another of lower activity and less well defined (HS2), was selected as the most likely to interact with growth factors and cytokines and was isolated from the eluate, concentrated and desalted, and used in alkaline phosphatase induction experiments in place of dexamethasone. HS1 isolated from the medium (HS1m) of subconfluent A549 cells was shown to replace dexamethasone in induction experiments with fibroblast-conditioned medium, oncostatin M and interleukin 6. HS1 from the cell trypsinate and HS2 from the medium and trypsinate were inactive. As the activity of HS1m could be abolished by heparinase and heparitinase but not by chondroitinase ABC, it was concluded that HS1m was a fraction of heparan sulphate involved in the regulation of paracrine growth factor activity in lung fibroblast-conditioned medium, and in the regulation of other growth factors with potential roles in the paracrine control of cell differentiation. PMID:9252193

  8. Innervation of alveolar walls in the human lung: an electron microscopic study.

    PubMed Central

    Fox, B; Bull, T B; Guz, A

    1980-01-01

    Unmyelinated nerve fibres, probably sensory in type, are present in the human alveolar wall. It is possible that these fibres may be associated with juxta-capillary receptors which have been identified on physiological grounds in animals. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:7216905

  9. EFFECTS OF DIESEL EXHAUST PARTICLES ON HUMAN ALVEOLAR MACROPHAGE RESPONSIVENESS TO LIPOPOLYSACCHARIDE

    EPA Science Inventory

    Effects of diesel exhaust particles on human alveolar macrophage responsiveness to lipopolysaccharide
    S. Mundandhara1 , S. Becker2 and M. Madden2, 1UNC Center for Environmental Medicine, Asthma, and Lung Biology, 2US EPA, NHEERL, HSD, Chapel Hill, NC, US

    Epidemiological...

  10. MITOCHONDRIAL OXIDANT PRODUCTION BY POLLUTANT DUST AND NO-MEDIATED APOPTOSIS IN HUMAN ALVEOLAR MACHROPHAGE

    EPA Science Inventory

    Residual oil fly ash (ROFA) is a pollutant dust that stimulates production of reactive oxygen species (ROS) from mitochondria and apoptosis in alveolar macrophages (AM), but the relationship between these two processes is unclear. In this study, human AM were incubated with RO...

  11. EFFECTS OF DIESEL EXHAUST PARTICLES ON HUMAN ALVEOLAR MACROPHAGE RESPONSIVENESS TO LIPOPOLYSACCHARIDE

    EPA Science Inventory

    Effects of diesel exhaust particles on human alveolar macrophage responsiveness to lipopolysaccharide
    S. Mundandhara1 , S. Becker2 and M. Madden2, 1UNC Center for Environmental Medicine, Asthma, and Lung Biology, 2US EPA, NHEERL, HSD, Chapel Hill, NC, US

    Epidemiological...

  12. Aggregates of ultrafine particles impair phagocytosis of microorganisms by human alveolar macrophages.

    PubMed

    Lundborg, Margot; Dahlén, Sven-Erik; Johard, Urban; Gerde, Per; Jarstrand, Connie; Camner, Per; Låstbom, Lena

    2006-02-01

    We investigated whether exposure of alveolar macrophages to aggregates of ultrafine carbon particles affected subsequent phagocytosis of microorganisms. Human alveolar macrophages were obtained by bronchoalveolar lavage and exposed to aggregates of ultrafine carbon particles or diesel exhaust particles (DEP) for 20 h before measurements of phagocytosis. The particle loads were estimated to be comparable to those of air pollution exposure with established health effects in humans. Phagocytotic activity was measured as attachment and ingestion of four different test particles (amorphous silica particles, yeast cells from Candida albicans, and Cryptococcus neoformans opsonized with specific IgG or fresh serum) that bind to scavenger, mannose, Fc, and complement receptors, respectively. Carbon preloading significantly impaired the attachment and ingestion process (P<0.01) for all particles, except for yeast cells from C. neoformans opsonized with specific IgG. On the average, the accumulated attachment decreased by 30% and the ingested fraction decreased by 10%. Loading of alveolar macrophages with either aggregates of ultrafine DEP or carbon particles impaired the phagocytosis of silica test particles in a similar way. Exposure of human alveolar macrophages to aggregates of carbon or DEP, in concentrations relevant to human environmental exposures, caused significant impairment of phagocytosis of silica particles and microorganisms. The inhibitory effect on particle phagocytosis mediated by four different receptors suggests that air pollution particles cause a general inhibition of macrophage phagocytosis. Such an effect may contribute to increased susceptibility to infections and, for example, result in more exacerbations of asthma and chronic obstructive pulmonary disease.

  13. RIG-I and TLR3 are both required for maximum interferon induction by influenza virus in human lung alveolar epithelial cells.

    PubMed

    Wu, Wenxin; Zhang, Wei; Duggan, Elizabeth S; Booth, J Leland; Zou, Ming-Hui; Metcalf, Jordan P

    2015-08-01

    Pattern recognition receptors, such as retinoic acid-inducible protein I (RIG-I), Toll-like receptors 3 and 7 (TLR3 and 7), and nucleotide-binding oligomerization domain containing protein 2 (NOD2), play important roles in the recognition of influenza A virus (IAV), but their role in interferon (IFN) induction is still unclear, particularly in human lung. We investigated IFN induction by IAV in the A549 cell line as well as in primary human alveolar epithelial cells (AEC). TLR3/7, NOD2, RIG-I, and IFN expression levels were measured by qRT-PCR and ELISA in cells infected with IAV PR8. We found that TLR7 and NOD2 were not involved in IFN induction by IAV in these cells. Neither RIG-I nor TLR3 siRNA alone completely blocked IFN induction. However, double knockdown of RIG-I and TLR3 completely inhibited IFN induction by influenza. Thus, signaling through both RIG-I and TLR3 is important for IFN induction by IAV in human lung AEC.

  14. Pulmonary surfactant mitigates silver nanoparticle toxicity in human alveolar type-I-like epithelial cells.

    PubMed

    Sweeney, Sinbad; Leo, Bey Fen; Chen, Shu; Abraham-Thomas, Nisha; Thorley, Andrew J; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng Jim; Shaffer, Milo S P; Chung, Kian Fan; Ryan, Mary P; Porter, Alexandra E; Tetley, Teresa D

    2016-09-01

    Accompanying increased commercial applications and production of silver nanomaterials is an increased probability of human exposure, with inhalation a key route. Nanomaterials that deposit in the pulmonary alveolar region following inhalation will interact firstly with pulmonary surfactant before they interact with the alveolar epithelium. It is therefore critical to understand the effects of human pulmonary surfactant when evaluating the inhalation toxicity of silver nanoparticles. In this study, we evaluated the toxicity of AgNPs on human alveolar type-I-like epithelial (TT1) cells in the absence and presence of Curosurf(®) (a natural pulmonary surfactant substitute), hypothesising that the pulmonary surfactant would act to modify toxicity. We demonstrated that 20nm citrate-capped AgNPs induce toxicity in human alveolar type I-like epithelial cells and, in agreement with our hypothesis, that pulmonary surfactant acts to mitigate this toxicity, possibly through reducing AgNP dissolution into cytotoxic Ag(+) ions. For example, IL-6 and IL-8 release by TT1 cells significantly increased 10.7- and 35-fold, respectively (P<0.01), 24h after treatment with 25μg/ml AgNPs. In contrast, following pre-incubation of AgNPs with Curosurf(®), this effect was almost completely abolished. We further determined that the mechanism of this toxicity is likely associated with Ag(+) ion release and lysosomal disruption, but not with increased reactive oxygen species generation. This study provides a critical understanding of the toxicity of AgNPs in target human alveolar type-I-like epithelial cells and the role of pulmonary surfactant in mitigating this toxicity. The observations reported have important implications for the manufacture and application of AgNPs, in particular for applications involving use of aerosolised AgNPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Alveolocapillary model system to study alveolar re-epithelialization.

    PubMed

    Willems, Coen H M P; Zimmermann, Luc J I; Sanders, Patricia J L T; Wagendorp, Margot; Kloosterboer, Nico; Cohen Tervaert, Jan Willem; Duimel, Hans J Q; Verheyen, Fons K C P; van Iwaarden, J Freek

    2013-01-01

    In the present study an in vitro bilayer model system of the pulmonary alveolocapillary barrier was established to investigate the role of the microvascular endothelium on re-epithelialization. The model system, confluent monolayer cultures on opposing sides of a porous membrane, consisted of a human microvascular endothelial cell line (HPMEC-ST1.6R) and an alveolar type II like cell line (A549), stably expressing EGFP and mCherry, respectively. These fluorescent proteins allowed the real time assessment of the integrity of the monolayers and the automated analysis of the wound healing process after a scratch injury. The HPMECs significantly attenuated the speed of re-epithelialization, which was associated with the proximity to the A549 layer. Examination of cross-sectional transmission electron micrographs of the model system revealed protrusions through the membrane pores and close contact between the A549 cells and the HPMECs. Immunohistochemical analysis showed that these close contacts consisted of heterocellular gap-, tight- and adherens-junctions. Additional analysis, using a fluorescent probe to assess gap-junctional communication, revealed that the HPMECs and A549 cells were able to exchange the fluorophore, which could be abrogated by disrupting the gap junctions using connexin mimetic peptides. These data suggest that the pulmonary microvascular endothelium may impact the re-epithelialization process.

  16. Lycium europaeum fruit extract: antiproliferative activity on A549 human lung carcinoma cells and PC12 rat adrenal medulla cancer cells and assessment of its cytotoxicity on cerebellum granule cells.

    PubMed

    Ghali, Wafa; Vaudry, David; Jouenne, Thierry; Marzouki, Mohamed Nejib

    2015-01-01

    Cancer is a major worldwide health problem and one of the leading causes of death either in developed or developing countries. Plant extracts and derivatives have always been used for various disease treatments and many anticancer agents issued from plants and vegetables are clinically recognized and used all over the world. Lycium europaeum (Solanaceae) also called "wolfberry" was known since ancient times in the Mediterranean area as a medicinal plant and used in several traditional remedies. The Lycium species capacity of reducing the incidence of cancer and also of halting or reserving the growth of cancer was reported by traditional healers. In this study, the antiproliferative capacity, protective properties, and antioxidant activity of the hydro-alcoholic fruit extract of Lycium europaeum were investigated. Results showed that Lycium extract exhibits the ability to reduce cancer cell viability, inhibits proliferation, and induces apoptosis in A549 human lung cancer cells and PC12 rat adrenal medulla cancer cells, in a concentration- and time-dependent manner. Cytotoxic effect on normal rat cerebellum granule cells was assessed to be nonsignificant. Results also showed that Lycium fruit extract protected lipids, proteins, and DNA against oxidative stress damages induced by H2O2 via scavenging reactive oxygen species.

  17. Comparative Cytotoxicity of Glycyrrhiza glabra Roots from Different Geographical Origins Against Immortal Human Keratinocyte (HaCaT), Lung Adenocarcinoma (A549) and Liver Carcinoma (HepG2) Cells.

    PubMed

    Basar, Norazah; Oridupa, Olayinka Ayotunde; Ritchie, Kenneth J; Nahar, Lutfun; Osman, Nashwa Mostafa M; Stafford, Angela; Kushiev, Habibjon; Kan, Asuman; Sarker, Satyajit D

    2015-06-01

    Glycyrrhiza glabra L. (Fabaceae), commonly known as 'liquorice', is a well-known medicinal plant. Roots of this plant have long been used as a sweetening and flavouring agent in food and pharmaceutical products, and also as a traditional remedy for cough, upper and lower respiratory ailments, kidney stones, hepatitis C, skin disorder, cardiovascular diseases, diabetes, gastrointestinal ulcers and stomach ache. Previous pharmacological and clinical studies have revealed its antitussive, antiinflammatory, antiviral, antimicrobial, antioxidant, immunomodulatory, hepatoprotective and cardioprotective properties. While glycyrrhizin, a sweet-tasting triterpene saponin, is the principal bioactive compound, several bioactive flavonoids and isoflavonoids are also present in the roots of this plant. In the present study, the cytotoxicity of the methanol extracts of nine samples of the roots of G. glabra, collected from various geographical origins, was assessed against immortal human keratinocyte (HaCaT), lung adenocarcinoma (A549) and liver carcinoma (HepG2) cell lines using the in vitro 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide cell toxicity/viability assay. Considerable variations in levels of cytotoxicity were observed among various samples of G. glabra. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Human alveolar epithelial cells expressing tight junctions to model the air-blood barrier.

    PubMed

    Kuehn, Anna; Kletting, Stephanie; de Souza Carvalho-Wodarz, Cristiane; Repnik, Urska; Griffiths, Gareth; Fischer, Ulrike; Meese, Eckart; Huwer, Hanno; Wirth, Dagmar; May, Tobias; Schneider-Daum, Nicole; Lehr, Claus-Michael

    2016-01-01

    This paper describes a new human alveolar epithelial cell line (hAELVi - human Alveolar Epithelial Lentivirus immortalized) with type I-like characteristics and functional tight junctions, suitable to model the air-blood barrier of the peripheral lung. Primary human alveolar epithelial cells were immortalized by a novel regimen, grown as monolayers on permeable filter supports and characterized morphologically, biochemically and biophysically. hAELVi cells maintain the capacity to form tight intercellular junctions, with high trans-epithelial electrical resistance (> 1000 Ω*cm²). The cells could be kept in culture over several days, up to passage 75, under liquid-liquid as well as air-liquid conditions. Ultrastructural analysis and real time PCR revealed type I-like cell properties, such as the presence of caveolae, expression of caveolin-1, and absence of surfactant protein C. Accounting for the barrier properties, inter-digitations sealed with tight junctions and desmosomes were also observed. Low permeability of the hydrophilic marker sodium fluorescein confirmed the suitability of hAELVi cells for in vitro transport studies across the alveolar epithelium. These results suggest that hAELVi cells reflect the essential features of the air-blood barrier, as needed for an alternative to animal testing to study absorption and toxicity of inhaled drugs, chemicals and nanomaterials.

  19. Cell (A549)-particle (Jasada Bhasma) interactions using Raman spectroscopy.

    PubMed

    Pyrgiotakis, G; Bhowmick, T K; Finton, K; Suresh, A K; Kane, S G; Bellare, J R; Moudgil, B M

    2008-06-01

    Current methods for the evaluation of cell interactions with particles are nonspecific, slow, and invasive to the cells. Raman spectroscopy is a noninvasive technique, and is used in the present study to investigate particle-cell interactions. The main focus of the present study is to employ Raman spectroscopy for investigating the interaction of human lung adenocarcinoma cell line (A549) with the particulate system Jasada Bhasma, a traditional Indian medicine. Jasada Bhasma is a unique preparation of zinc and is traditionally used for the treatment of various diseases like diabetes, age-related eye diseases, and as a health promotional tonic. The Raman spectral analysis is executed by identifying the difference in intracellular DNA/RNA, and proteins and lipids concentration between particles--treated and untreated cells. Comparison between Bhasma-treated and -untreated cells indicates that vibrational peaks corresponding to the DNA/RNA molecule show a significant increase in cells treated with the Jasada Bhasma. Apart from the DNA molecule, several other vibrational peaks related to the protein molecules also show a significant increase in A549 cells after treatment with Bhasma. These results indicate that Bhasma treatment of A549 possibly delays DNA degradation and enables retention of higher amount of protein molecules in the cells.

  20. The human alveolar macrophage: isolation, cultivation in vitro, and studies of morphologic and functional characteristics

    PubMed Central

    Cohen, Allen B.; Cline, Martin J.

    1971-01-01

    Human alveolar macrophages were lavaged from surgically resected lungs and from lungs of normal subjects. Macrophages that had been purified by glass adherence were maintained in tissue culture for as long as 54 days. After 3-4 wk in vitro they underwent transformation into multinucleated giant cells. These aged cells had more than 30 times the phagocytic capacity that the same group of cells had had after 1 day in vitro. Phagocytosis of heat-killed Candida albicans was inhibited by iodoacetate, sodium fluoride, potassium cyanide, and low partial pressures of oxygen, suggesting that these cells require both oxidative and glycolytic energy sources for maximal particle ingestion. Alveolar macrophages and monocyte-derived macrophages killed Listeria monocytogenes with similar efficiency, but neutrophils were more efficient than either of the other cell types. Bacterial killing is probably not dependent upon myeloperoxidase in the monocyte-derived macrophage or in the alveolar macrophage since histochemical stains for peroxidase do not stain either cell type. C. albicans blastospores, which are killed by neutrophils and monocytes that contain myeloperoxidase, were not killed by human alveolar macrophages during the 4 hr of observation. Large cells with supernormal phagocytic capacity were recovered from patients with postobstructive pheumonia and from one patient with recurrent bacterial pneumonia, indicating that macrophage function can be altered in certain disease states. Human alveolar macrophages are unique human phagocytes in their dependence on an oxygen tension greater than 25 mm HG for maximal phagocytosis. Carbon dioxide tensions as high as 70 mm Hg did not alter phagocytosis when the pH of the medium was held constant. These data suggest that the increased susceptibility to pneumonia of patients with chronic bronchitis or atelectasis may be in part related to suboptimal phagocytosis by macrophages in areas of the lung with depressed oxygen tension. Images

  1. Trace elements in human alveolar macrophages studied by PIXE

    NASA Astrophysics Data System (ADS)

    Weber, G.; Roelandts, I.; Corhay, J. L.; Radermecker, M.; Delavignette, J. P.

    1990-04-01

    The purpose of this study is to determine the metal content of alveolar macrophages by PIXE from 94 subjects divided into two groups as follows: group (1) — subjects with non-occupational exposure to industrial dust: 30 healthy volunteers (controls), 16 patients suffering from lung cancer; group (2) — 48 healthy steel workers from the Liège area (blast-furnace [ n=29] and coke oven [ n=19]). We hope to define more precisely the influence of carcinoma, smoking habit, pathology and occupational exposure in the steel industry on the macrophage metal content. This study has shown: (a) an Fe and Sr increase and a Br decrease in the macrophages of smokers (especially in heavy smokers): (b) a significant Fe, Ti, Br and Cu increase and a trend to Pb, Cr, As and Sr increase in macrophages of healthy steel workers (especially blast-furnace workers) in comparison with non-exposed controls; (c) a significant Fe, Br, Cu and Zn increase and a trend to Pb, As and Ni increase in macrophages of non-exposed patients with lung cancer by comparison with non-exposed controls. The mechanism of metal change could be explained by professional exposure and endogenous changes (protein synthesis, inflammation, bronchial bleeding, …)

  2. [Grape seed proanthocyanidins inhibits the invasion and migration of A549 lung cancer cells].

    PubMed

    Zhou, Yehan; Ye, Xiufeng; Shi, Yao; Wang, Ke; Wan, Dan

    2016-02-01

    To explore the effect of grape seed proanthocyanidins (GSPs) on the invasion and migration of A549 lung cancer cells and the underlying mechanism. Trypan blue dye exclusion assay was used to determine the cytotoxic effect of varying doses of GSPs on the BEAS-2B normal human pulmonary epithelial cells. After treated with 0, 10, 20, 40, 80 μg/mL GSP, the proliferation of A549 cells was detected by MTT assay; the invasion and migration of A549 cells were determined by Transwell(TM) assay and scratch wound assay, respectively. The levels of epithelial growth factor receptor (EGFR), E-cadherin, N-cadherin in A549 cells treated with GSPs were detected by Western blotting. (0-40) μg/mL GSPs had no significant toxic effect on BEAS-2B cells, while 80 μg/mL GSPs had significant cytotoxicity to BEAS-2B cells. The proliferation of A549 cells was significantly inhibited within limited dosage in a dose-dependent manner, and the abilities of invasion and migration of A549 cells were also inhibited. Western blotting showed that the expression of EGFR and N-cadherin decreased, while E-cadherin increased after GSPs treatment. GSPs could inhibit the abilities of proliferation, invasion and migration of A549 cells, which might be related to the dow-regulation of EGFR and N-cadherin and the up-regulation of E-cadherin.

  3. Procyanidin A2 Modulates IL-4-Induced CCL26 Production in Human Alveolar Epithelial Cells

    PubMed Central

    Coleman, Sara L.; Kruger, Marlena C.; Sawyer, Gregory M.; Hurst, Roger D.

    2016-01-01

    Allergic asthma is an inflammatory lung disease that is partly sustained by the chemokine eotaxin-3 (CCL26), which extends eosinophil migration into tissues long after allergen exposure. Modulation of CCL26 could represent a means to mitigate airway inflammation. Here we evaluated procyanidin A2 as a means of modulating CCL26 production and investigated interactions with the known inflammation modulator, Interferon γ (IFNγ). We used the human lung epithelial cell line A549 and optimized the conditions for inducing CCL26. Cells were exposed to a range of procyanidin A2 or IFNγ concentrations for varied lengths of time prior to an inflammatory insult of interleukin-4 (IL-4) for 24 h. An enzyme-linked immunosorbent assay was used to measure CCL26 production. Exposing cells to 5 μM procyanidin A2 (prior to IL-4) reduced CCL26 production by 35% compared with control. Greatest inhibition by procyanidin A2 was seen with a 2 h exposure prior to IL-4, whereas IFNγ inhibition was greatest at 24 h. Concomitant incubation of procyanidin A2 and IFNγ did not extend the inhibitory efficacy of procyanidin A2. These data provide evidence that procyanidin A2 can modulate IL-4-induced CCL26 production by A549 lung epithelial cells and that it does so in a manner that is different from IFNγ. PMID:27845745

  4. Atrial natriuretic peptide: A novel mediator for TGF-β1-induced epithelial-mesenchymal transition in 16HBE-14o and A549 cells.

    PubMed

    Chu, Shuyuan; Zhang, Xiufeng; Sun, Yabing; Yu, Yuanyuan; Liang, Yaxi; Jiang, Ming; Huang, Jianwei; Ma, Libing

    2017-02-13

    Atrial natriuretic peptide (ANP) is increasingly expressed on airway and inhibits pulmonary arterial remodeling. However, the role of ANP in remodeling of respiratory system is still unclear. The role of ANP on airway remodeling and the possible mechanism was explored in this study. Both human bronchial epithelial 16HBE-14o cells and alveolar epithelial A549 cells were stimulated by TGF-β1, ANP, cGMP inhibitor, PKG inhibitor, and cGMP analogue. The expressions of epithelial markers, mesenchymal markers, and Smad3 were assessed by quantitative real-time PCR and western blotting. Immunohistochemical staining was employed to assess Smad3 expression once it was silenced by siRNA in 16HBE-14o or A549 cells. Our results showed that the mRNA and protein expressions of E-Cadherin were decreased, whereas α-SMA expressions were increased after induction by TGF-β1 in 16HBE-14o and A549 cells. The E-Cadherin expressions were increased and α-SMA expressions were decreased after ANP stimulation. Inhibition of cGMP or PKG decreased E-Cadherin expression but increased α-SMA expression, which could be reversed by cGMP analogue. Moreover, the phosphorylated Smad3 expression was consistent with α-SMA expression. After smad3 was silenced, Smad3 was mostly expressed in cytoplasm instead of nucleus as non-silenced cells during epithelial-mesenchymal transition (EMT). In conclusion, ANP inhibits TGF-β1-induced EMT in 16HBE-14o and A549 cells through cGMP/PKG signaling, by which it targets TGF-β1/Smad3 via attenuating phosphorylation of Smad3. These findings suggest the potential of ANP in the treatment on pulmonary diseases with airway remodeling.

  5. Isolation of alveolar epithelial type II progenitor cells from adult human lungs

    PubMed Central

    Fujino, Naoya; Kubo, Hiroshi; Suzuki, Takaya; Ota, Chiharu; Hegab, Ahmed E; He, Mei; Suzuki, Satoshi; Suzuki, Takashi; Yamada, Mitsuhiro; Kondo, Takashi; Kato, Hidemasa; Yamaya, Mutsuo

    2011-01-01

    Resident stem/progenitor cells in the lung are important for tissue homeostasis and repair. However, a progenitor population for alveolar type II (ATII) cells in adult human lungs has not been identified. The aim of this study is to isolate progenitor cells from adult human lungs with the ability to differentiate into ATII cells. We isolated colony-forming cells that had the capability for self-renewal and the potential to generate ATII cells in vitro. These undifferentiated progenitor cells expressed surface markers of mesenchymal stem cells (MSCs) and surfactant proteins associated with ATII cells, such as CD90 and pro-surfactant protein-C (pro-SP-C), respectively. Microarray analyses indicated that transcripts associated with lung development were enriched in the pro-SP-C+/CD90+ cells compared with bone marrow-MSCs. Furthermore, pathological evaluation indicated that pro-SP-C and CD90 double-positive cells were present within alveolar walls in normal lungs, and significantly increased in ATII cell hyperplasias contributing to alveolar epithelial repair in damaged lungs. Our findings demonstrated that adult human lungs contain a progenitor population for ATII cells. This study is a first step toward better understanding of stem cell biology in adult human lung alveoli. PMID:21079581

  6. Enhanced Replication of Hepatitis E Virus Strain 47832c in an A549-Derived Subclonal Cell Line.

    PubMed

    Schemmerer, Mathias; Apelt, Silke; Trojnar, Eva; Ulrich, Rainer G; Wenzel, Jürgen J; Johne, Reimar

    2016-09-29

    Hepatitis E virus (HEV) is a human pathogen with increasing importance. The lack of efficient cell culture systems hampers systematic studies on its replication cycle, virus neutralization and inactivation. Here, several cell lines were inoculated with the HEV genotype 3c strain 47832c, previously isolated from a chronically infected transplant patient. At 14 days after inoculation the highest HEV genome copy numbers were found in A549 cells, followed by PLC/PRF/5 cells, whereas HepG2/C3A, Huh-7 Lunet BLR and MRC-5 cells only weakly supported virus replication. Inoculation of A549-derived subclone cell lines resulted in most cases in reduced HEV replication. However, the subclone A549/D3 was susceptible to lower virus concentrations and resulted in higher virus yields as compared to parental A549 cells. Transcriptome analysis indicated a downregulation of genes for carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 5 and 6, and an upregulation of the syndecan 2 (SDC2) gene in A549/D3 cells compared to A549 cells. However, treatment of A549/D3 cells or A549 cells with CEACAM- or syndecan 2-specific antisera did not influence HEV replication. The results show that cells supporting more efficient HEV replication can be selected from the A549 cell line. The specific mechanisms responsible for the enhanced replication remain unknown.

  7. Enhanced Replication of Hepatitis E Virus Strain 47832c in an A549-Derived Subclonal Cell Line

    PubMed Central

    Schemmerer, Mathias; Apelt, Silke; Trojnar, Eva; Ulrich, Rainer G.; Wenzel, Jürgen J.; Johne, Reimar

    2016-01-01

    Hepatitis E virus (HEV) is a human pathogen with increasing importance. The lack of efficient cell culture systems hampers systematic studies on its replication cycle, virus neutralization and inactivation. Here, several cell lines were inoculated with the HEV genotype 3c strain 47832c, previously isolated from a chronically infected transplant patient. At 14 days after inoculation the highest HEV genome copy numbers were found in A549 cells, followed by PLC/PRF/5 cells, whereas HepG2/C3A, Huh-7 Lunet BLR and MRC-5 cells only weakly supported virus replication. Inoculation of A549-derived subclone cell lines resulted in most cases in reduced HEV replication. However, the subclone A549/D3 was susceptible to lower virus concentrations and resulted in higher virus yields as compared to parental A549 cells. Transcriptome analysis indicated a downregulation of genes for carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 5 and 6, and an upregulation of the syndecan 2 (SDC2) gene in A549/D3 cells compared to A549 cells. However, treatment of A549/D3 cells or A549 cells with CEACAM- or syndecan 2-specific antisera did not influence HEV replication. The results show that cells supporting more efficient HEV replication can be selected from the A549 cell line. The specific mechanisms responsible for the enhanced replication remain unknown. PMID:27690085

  8. Ulinastatin post-treatment attenuates lipopolysaccharide-induced acute lung injury in rats and human alveolar epithelial cells

    PubMed Central

    Luo, Yunpeng; Che, Wen; Zhao, Mingyan

    2017-01-01

    Ulinastatin (UTI), a serine protease inhibitor, possesses anti-inflammatory properties and has been suggested to modulate lipopolysaccharide (LPS)-induced acute lung injury (ALI). High-mobility group box 1 (HMGB1), a nuclear DNA-binding protein, plays a key role in the development of ALI. The aim of this study was to investigate whether UTI attenuates ALI through the inhibition of HMGB1 expression and to elucidate the underlying molecular mechanisms. ALI was induced in male rats by the intratracheal instillation of LPS (5 mg/kg). UTI was administered intraperitoneally 30 min following exposure to LPS. A549 alveolar epithelial cells were incubated with LPS in the presence or absence of UTI. An enzyme-linked immunosorbent assay was used to detect the levels of inflammatory cytokines. Western blot analysis was performed to detect the changes in the expression levels of Toll-like receptor 2/4 (TLR2/4) and the activation of nuclear factor-κB (NF-κB). The results revealed that UTI significantly protected the animals from LPS-induced ALI, as evidenced by the decrease in the lung wet to dry weight ratio, total cells, neutrophils, macrophages and myeloperoxidase activity, associated with reduced lung histological damage. We also found that UTI post-treatment markedly inhibited the release of HMGB1 and other pro-inflammatory cytokines. Furthermore, UTI significantly inhibited the LPS-induced increase in TLR2/4 protein expression and NF-κB activation in lung tissues. In vitro, UTI markedly inhibited the expression of TLR2/4 and the activation of NF-κB in LPS-stimulated A549 alveolar epithelial cells. The findings of our study indicate that UTI attenuates LPS-induced ALI through the inhibition of HMGB1 expression in rats. These benefits are associated with the inhibition of the activation of the TLR2/4-NF-κB pathway by UTI. PMID:27959396

  9. Leptin promotes metastasis by inducing an epithelial-mesenchymal transition in A549 lung cancer cells.

    PubMed

    Feng, Helin; Liu, Qingyi; Zhang, Ning; Zheng, Lihua; Sang, Meixiang; Feng, Jiangang; Zhang, Jinming; Wu, Xiangyun; Shan, Baoen

    2013-01-01

    Leptin, an adipocyte-derived cytokine associated with obesity, has been reported to participate in carcinogenesis. Epithelial-mesenchymal transition (EMT) is also considered as a key event in tumor metastasis. The aim of this study is to investigate the mechanism of leptin in the promotion of EMT leading to metastasis in A549 lung cancer cells. We investigated the effect of leptin on migration of A549 cells using wound healing and transwell assays. The incidence of EMT in A549 cells was examined by real-time PCR and immunofluorescence staining. The expression of TGF-β in A549 cells was detected by real-time PCR, and blocking of TGF-β in A549 cells was achieved by siRNA techniques. Additional work was performed using 100 patient samples, which included samples from 50 patients diagnosed with lung cancer and an additional 50 patients diagnosed with lung cancer with metastatic bone lesions. Leptin expression was measured using immunohistochemistry techniques. We demonstrated that leptin can effectively enhance the metastasis of human lung cancer A549 cell line using both wound healing and transwell assays. We also found the incidence of EMT in A549 cells after leptin exposure. Furthermore, we detected the expression of TGF-β in A549 cells, which had been reported to play an important role in inducing EMT. We showed that leptin can significantly upregulate TGF-β at both the mRNA and protein levels in A549 cells. Using siRNA to block the expression of TGF-β in A549 cells, we confirmed the role of TGF-β in the promotion of metastasis and induction of EMT. Furthermore, we found that in patient samples leptin was present at higher levels in samples associated with diagnosis of lung cancer bone metastases tissue than lung cancer tissue. Our results indicated that leptin promoted the metastasis of A549 human lung cancer cell lines by inducing EMT in a TGF-β-dependent manner.

  10. Human Alveolar Macrophages May Not Be Susceptible to Direct Infection by a Human Influenza Virus.

    PubMed

    Ettensohn, David B; Frampton, Mark W; Nichols, Joan E; Roberts, Norbert J

    2016-12-01

    The current studies were undertaken to determine the susceptibility of human alveolar macrophages (AMs) to influenza A virus (IAV) infection in comparison with autologous peripheral blood-derived monocytes-macrophages (PBMs). AMs and PBMs were exposed to IAV in vitro and examined for their ability to bind and internalize IAV, and synthesize viral proteins and RNA. PBMs but not AMs demonstrated binding and internalization of the virus, synthesizing viral proteins and RNA. Exposure of AMs in the presence of a sialidase inhibitor or anti-IAV antibody resulted in viral protein synthesis by the cells. Exposure of AMs to fluorescein isothiocyanate-labeled IAV in the presence of anti-fluorescein isothiocyanate antibody also resulted in viral protein synthesis. Thus, human AMs are apparently not susceptible to direct infection by a human IAV but are likely to be infected indirectly in the setting of exposure in the presence of antibody that binds the challenging strain of IAV. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  11. Silver nanowire interactions with primary human alveolar type-II epithelial cell secretions: contrasting bioreactivity with human alveolar type-I and type-II epithelial cells

    PubMed Central

    Sweeney, Sinbad; Theodorou, Ioannis G.; Zambianchi, Martina; Chen, Shu; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng (Jim); Chung, Kian Fan; Shaffer, Milo S.; Ryan, Mary P.; Porter, Alexandra E.; Tetley, Teresa D.

    2015-01-01

    Inhaled nanoparticles have a high deposition rate in the alveolar units of the deep lung. The alveolar epithelium is composed of type-I and type-II epithelial cells (ATI and ATII respectively) and is bathed in pulmonary surfactant. The effect of native human ATII cell secretions on nanoparticle toxicity is not known. We investigated the cellular uptake and toxicity of silver nanowires (AgNWs; 70 nm diameter, 1.5 μm length) with human ATI-like cells (TT1), in the absence or presence of Curosurf® (a natural porcine pulmonary surfactant with a low amount of protein) or harvested primary human ATII cell secretions (HAS; containing both the complete lipid as well as the full protein complement of human pulmonary surfactant i.e. SP-A, SP-B, SP-C and SP-D). We hypothesised that Curosurf® or HAS would confer improved protection for TT1 cells, limiting the toxicity of AgNWs. In agreement with our hypothesis, HAS reduced the inflammatory and reactive oxygen species (ROS)-generating potential of AgNWs with exposed TT1 cells. For example, IL-8 release and ROS generation was reduced by 38% and 29%, respectively, resulting in similar levels to that of the non-treated controls. However in contrast to our hypothesis, Curosurf® had no effect. We found a significant reduction in AgNW uptake by TT1 cells in the presence of HAS but not Curosurf. Furthermore, we show that the SP-A and SP-D are likely to be involved in this process as they were found to be specifically bound to the AgNWs. While ATI cells appear to be protected by HAS, evidence suggested that ATII cells, despite no uptake, were vulnerable to AgNW exposure (indicated by increased IL-8 release and ROS generation and decreased intracellular SP-A levels one day post-exposure). This study provides unique findings that may be important for the study of lung epithelial-endothelial translocation of nanoparticles in general and associated toxicity within the alveolar unit. PMID:25996248

  12. Patterns of Mixing in the Alveolar Region of the Human Lungs

    NASA Astrophysics Data System (ADS)

    Kumar, Haribalan; Lin, Ching-Long; Tawhai, Merryn H.; McLennan, Geoffrey; Hoffman, Eric A.

    2007-11-01

    The air-flow characteristics in the alveolar region of the human lungs is investigated to understand the mixing patterns at low Reynolds number and their relationship to transport and deposition of pharmaceutical and pollutant particles. 2D and 3D realistic honeycomb-like polygonal geometries are constructed to represent alveolar sacs. An in-house characteristic-Galerkin finite element code in an ALE framework is utilized to simulate flow in the acinar airways ranging from the 17^th to 23^rd generation (with Re=1-0.01). The flow is unsteady and is driven by physiologically rhythmic wall motion. Lagrangian-based numerical visualization is used to provide a complete description of the dynamics. Results in the form of material advection (dye or blob) and stretch rate are presented. Time averaged mixing estimates are used to analyze different breathing frequencies and patterns.

  13. Proteomic response to 5,6-dimethylxanthenone 4-acetic acid (DMXAA, vadimezan) in human non-small cell lung cancer A549 cells determined by the stable-isotope labeling by amino acids in cell culture (SILAC) approach.

    PubMed

    Pan, Shu-Ting; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Yang, Yin-Xue; Wang, Dong; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    5,6-Dimethylxanthenone 4-acetic acid (DMXAA), also known as ASA404 and vadimezan, is a potent tumor blood vessel-disrupting agent and cytokine inducer used alone or in combination with other cytotoxic agents for the treatment of non-small cell lung cancer (NSCLC) and other cancers. However, the latest Phase III clinical trial has shown frustrating outcomes in the treatment of NSCLC, since the therapeutic targets and underlying mechanism for the anticancer effect of DMXAA are not yet fully understood. This study aimed to examine the proteomic response to DMXAA and unveil the global molecular targets and possible mechanisms for the anticancer effect of DMXAA in NSCLC A549 cells using a stable-isotope labeling by amino acids in cell culture (SILAC) approach. The proteomic data showed that treatment with DMXAA modulated the expression of 588 protein molecules in A549 cells, with 281 protein molecules being up regulated and 306 protein molecules being downregulated. Ingenuity pathway analysis (IPA) identified 256 signaling pathways and 184 cellular functional proteins that were regulated by DMXAA in A549 cells. These targeted molecules and signaling pathways were mostly involved in cell proliferation and survival, redox homeostasis, sugar, amino acid and nucleic acid metabolism, cell migration, and invasion and programed cell death. Subsequently, the effects of DMXAA on cell cycle distribution, apoptosis, autophagy, and reactive oxygen species (ROS) generation were experimentally verified. Flow cytometric analysis showed that DMXAA significantly induced G1 phase arrest in A549 cells. Western blotting assays demonstrated that DMXAA induced apoptosis via a mitochondria-dependent pathway and promoted autophagy, as indicated by the increased level of cytosolic cytochrome c, activation of caspase 3, and enhanced expression of beclin 1 and microtubule-associated protein 1A/1B-light chain 3 (LC3-II) in A549 cells. Moreover, DMXAA significantly promoted intracellular ROS

  14. Rab27A regulates exosome secretion from lung adenocarcinoma cells A549: involvement of EPI64.

    PubMed

    Li, Wenhai; Hu, Yunsheng; Jiang, Tao; Han, Yong; Han, Guoliang; Chen, Jiakuan; Li, Xiaofei

    2014-11-01

    Exosomes are small membrane vesicles secreted into the extracellular compartment by exocytosis. The unique composition of exosomes can be transported to other cells which allow cells to exert biological functions at distant sites. However, in lung cancer, the regulation of exosome secretion was poorly understood. In this study, we employed human lung adenocarcinoma A549 cells to determine the exosome secretion and involved regulation mechanism. We found that Rab27A was expressed in A549 cells and the reduction of Rab27A by Rab27A-specific shRNA could significantly decrease the secretion of exosome by A549 cells. EPI64, a candidate GAP that is specific for Rab27, was also detected in A549 cells. By pull-down assay, we found that EPI64 participated in the exosome secretion of A549 cells by acting as a specific GAP for Rab27A, not Rab27B. Overexpression of EPI64 enhanced exosome secretion. Taken together, in A549 cells, EPI64 could regulate the exosome secretion by functioning as a GAP specific for Rab27A.

  15. Silver nanowire interactions with primary human alveolar type-II epithelial cell secretions: contrasting bioreactivity with human alveolar type-I and type-II epithelial cells

    NASA Astrophysics Data System (ADS)

    Sweeney, Sinbad; Theodorou, Ioannis G.; Zambianchi, Marta; Chen, Shu; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng (Jim); Chung, Kian Fan; Shaffer, Milo S. P.; Ryan, Mary P.; Porter, Alexandra E.; Tetley, Teresa D.

    2015-06-01

    Inhaled nanoparticles have a high deposition rate in the alveolar units of the deep lung. The alveolar epithelium is composed of type-I and type-II epithelial cells (ATI and ATII respectively) and is bathed in pulmonary surfactant. The effect of native human ATII cell secretions on nanoparticle toxicity is not known. We investigated the cellular uptake and toxicity of silver nanowires (AgNWs; 70 nm diameter, 1.5 μm length) with human ATI-like cells (TT1), in the absence or presence of Curosurf® (a natural porcine pulmonary surfactant with a low amount of protein) or harvested primary human ATII cell secretions (HAS; containing both the complete lipid as well as the full protein complement of human pulmonary surfactant i.e. SP-A, SP-B, SP-C and SP-D). We hypothesised that Curosurf® or HAS would confer improved protection for TT1 cells, limiting the toxicity of AgNWs. In agreement with our hypothesis, HAS reduced the inflammatory and reactive oxygen species (ROS)-generating potential of AgNWs with exposed TT1 cells. For example, IL-8 release and ROS generation was reduced by 38% and 29%, respectively, resulting in similar levels to that of the non-treated controls. However in contrast to our hypothesis, Curosurf® had no effect. We found a significant reduction in AgNW uptake by TT1 cells in the presence of HAS but not Curosurf. Furthermore, we show that the SP-A and SP-D are likely to be involved in this process as they were found to be specifically bound to the AgNWs. While ATI cells appear to be protected by HAS, evidence suggested that ATII cells, despite no uptake, were vulnerable to AgNW exposure (indicated by increased IL-8 release and ROS generation and decreased intracellular SP-A levels one day post-exposure). This study provides unique findings that may be important for the study of lung epithelial-endothelial translocation of nanoparticles in general and associated toxicity within the alveolar unit.Inhaled nanoparticles have a high deposition rate in

  16. Effect of cigarette smoke extract on P-glycoprotein function in primary cultured and newly developed alveolar epithelial cells.

    PubMed

    Takano, Mikihisa; Naka, Ryosuke; Sasaki, Yoshihiro; Nishimoto, Saori; Yumoto, Ryoko

    2016-12-01

    The effect of cigarette smoke extract (CSE) on P-glycoprotein (P-gp) function in the distal lung is unclear. In this study, we first examined the expression and function of P-gp and the effect of CSE in rat primary cultured alveolar epithelial cells. The expression of P-gp protein was observed in type I-like cells, but not in type II cells. In type I-like cells, rhodamine 123 (Rho123) accumulation was enhanced by various P-gp inhibitors such as verapamil and cyclosporine A. In addition, the expression of P-gp mRNAs, mdr1a and mdr1b, as well as P-gp activity increased along with the transdifferentiation. When type I-like cells were co-incubated with CSE, P-gp activity was suppressed. Next, we attempted to clarify the effect of CSE on P-gp function in human-derived cultured alveolar epithelial cells. For this purpose, we isolated an A549 clone (A549/P-gp) expressing P-gp, because P-gp expression in native A549 cells was negligible. In A549/P-gp cells, P-gp was functionally expressed, and the inhibitory effect of CSE on P-gp was observed. These results suggested that smoking would directly suppress P-gp activity, and that A549/P-gp cell line should be a useful model to further study the effect of xenobiotics on P-gp function in the alveolar epithelial cells.

  17. Open reading frame 3 of genotype 1 hepatitis E virus inhibits nuclear factor-κappa B signaling induced by tumor necrosis factor-α in human A549 lung epithelial cells.

    PubMed

    Xu, Jian; Wu, Fan; Tian, Deying; Wang, Jingjing; Zheng, Zizheng; Xia, Ningshao

    2014-01-01

    Hepatitis E virus (HEV) is one of the primary causative agents of acute hepatitis, and represents a major cause of severe public health problems in developing countries. The pathogenesis of HEV is not well characterized, however, primarily due to the lack of well-defined cell and animal models. Here, we investigated the effects of genotype 1 HEV open reading frame 3 (ORF3) on TNF-α-induced nucleus factor-κappa B (NF-κB) signaling. Human lung epithelial cells (A549) were transiently transfected with ORF3 containing plasmids. These cells were then stimulated with TNF-α and the nucleus translocation of the p65 NF-κB subunit was assessed using western blot and laser confocal microscopy. DNA-binding activity of p65 was also examined using electrophoretic mobility shift assay (EMSA), and the suppression of NF-κB target genes were detected using real-time RT-PCR and ELISA. These results enabled us to identify the decreased phosphorylation levels of IKBα. We focused on the gene of negative regulation of NF-κB, represented by TNF-α-induced protein 3 (TNFAIP3, also known as A20). Reducing the levels of A20 with siRNAs significantly enhances luciferase activation of NF-κB. Furthermore, HEV ORF3 regulated A20 primarily via activating transcription factor 6 (ATF6), involved in unfolded protein response (UPR), resulting in the degradation or inactivation of the receptor interacting protein 1 (RIP1), a major upstream activator of IKB kinase compounds (IKKs). Consequently, the phosphorylation of IKBα and the nucleus translocation of p65 are blocked, which contributes to diminished NF-κB DNA-binding activation and NF-κB-dependent gene expression. The findings suggest that genotype 1 HEV, through ORF3, may transiently activate NF-κB through UPR in early stage, and subsequently inhibit TNF-α-induced NF-κB signaling in late phase so as to create a favorable virus replication environment.

  18. Pirfenidone inhibits p38-mediated generation of procoagulant microparticles by human alveolar epithelial cells.

    PubMed

    Neri, Tommaso; Lombardi, Stefania; Faìta, Francesca; Petrini, Silvia; Balìa, Cristina; Scalise, Valentina; Pedrinelli, Roberto; Paggiaro, Pierluigi; Celi, Alessandro

    2016-08-01

    Pirfenidone is a drug recently approved for idiopathic pulmonary fibrosis but its mechanisms of action are partially unknown. We have previously demonstrated that the airways of patients with idiopathic pulmonary fibrosis contain procoagulant microparticles that activate coagulation factor X to its active form, Xa, a proteinase that signals fibroblast growth and differentiation, thus potentially contributing to the pathogenesis of the disease. We also reported that in vitro exposure of human alveolar cells to H2O2 causes microparticle generation. Since p38 activation is involved in microparticle generation in some cell models and p38 inhibition is one of the mechanisms of action of pirfenidone, we investigated the hypothesis that H2O2-induced generation of microparticles by alveolar cells is dependent on p38 phosphorylation and is inhibited by pirfenidone. H2O2 stimulation of alveolar cells caused p38 phosphorylation that was inhibited by pirfenidone. The drug also inhibited H2O2 induced microparticle generation as assessed by two independent methods (solid phase thrombin generation and flow cytometry). The shedding of microparticle-bound tissue factor activity was also inhibited by pirfenidone. Inhibition of p38-mediated generation of procoagulant microparticle is a previously unrecognized mechanism of action of the antifibrotic drug, pirfenidone.

  19. Multi-walled carbon nanotube length as a critical determinant of bioreactivity with primary human pulmonary alveolar cells

    PubMed Central

    Sweeney, Sinbad; Berhanu, Deborah; Misra, Superb K.; Thorley, Andrew J.; Valsami-Jones, Eugenia; Tetley, Teresa D.

    2015-01-01

    Multiwalled carbon nanotube (MWCNT) length is suggested to critically determine their pulmonary toxicity. This stems from in vitro and in vivo rodent studies and in vitro human studies using cell lines (typically cancerous). There is little data using primary human lung cells. We addressed this knowledge gap, using highly relevant, primary human alveolar cell models exposed to precisely synthesized and thoroughly characterized MWCNTs. In this work, transformed human alveolar type-I-like epithelial cells (TT1), primary human alveolar type-II epithelial cells (ATII) and alveolar macrophages (AM) were treated with increasing concentrations of MWCNTs before measuring cytotoxicity, inflammatory mediator release and MAP kinase signalling. Strikingly, we observed that short MWCNTs (~0.6 µm in length) induced significantly greater responses from the epithelial cells, whilst AM were particularly susceptible to long MWCNTs (~20 µm). These differences in the pattern of mediator release were associated with alternative profiles of JNK, p38 and ERK1/2 MAP kinase signal transduction within each cell type. This study, using highly relevant target human alveolar cells and well defined and characterized MWCNTs, shows marked cellular responses to the MWCNTs that vary according to the target cell type, as well as the aspect ratio of the MWCNT. PMID:25780270

  20. [Establishment and biological characteristics of a multi-drug resistant cell line A549/Gem.].

    PubMed

    Wang, Weixia; Liu, Xiaoqing; Liu, Guangxian; Lin, Li; Zheng, Xiaoling; Zhu, Yunfeng; Li, Xiaobing

    2008-02-20

    Multi-drug resistance is one of the most important reason why the survival time of non-small cell lung cancer patients is so short. The aim of this study is to establish multi-drug resistant cell line A549/Gem and discuss its biological characters so as to elaborate the possible mechanisms of gemcitabine resistance. Human gemcitabine-resistant non-small cell lung cancer cell line A549/Gem was established by repeated clinical serous peak concentration then low but gradually increasing concentration of gemcitabine from its parental cell human lung adenocarcinoma cell line A549 which is sensitive to gemcitabine. During the course of inducement, monitored its morphology, checked its resistance index and resistant pedigree by MTT method, gathered its growth curve and calculated its doubling time, examined its DNA contents and cell cycles by flow cytometry; at the same time, measured its expression of P53, EGFR, c-erb-B-2, PTEN, PCNA, c-myc, VEGF, MDR-1, Bcl-2, nm23, MMP-9, TIMP-1, CD44v6 Proteins, and RRM1 mRNA. The resistance index of A549/Gem' to gemcitabine was 163.228, and the cell line also exhibited cross-resistance to vinorelbine, taxotere, fluorouraci, etoposide and cisplatin, but kept sensitivity to paclitaxol and oxaliplatin. The doubling time of it was shorter and figures in G0-G1 phase were increased than A549. Compared with A549, A549/Gem' achieved EGFR and c-myc protein expression, nm23 protein expression enhanced, p53, Cerb-B-2 and bcl-2 protein expression reduced, PTEN, PCNA and MDR-1 protein expression vanished, but that of MMP-9, VEGF, CD44v6 and TIMP-1 protein changed trivially. Meanwhile, the expression of RRM1 mRNA was augmented markedly. The resistance index of A549/Gem to gemcitabine was 129.783, and the cell line also held cross-resistance to vinorelbine, taxotere, etoposide, cisplatin and sensitivity to paclitaxol. But the resistance to fluorouracil and sensitivity to oxaliplatin vanished. And the expression of RRM1 mRNA decreased visibly. The

  1. Halothane-induced alterations in cellular structure and proliferation of A549 cells.

    PubMed

    Stephanova, E; Topouzova-Hristova, T; Hazarosova, R; Moskova, V

    2008-12-01

    Genotoxicity, cytotoxicity or teratogenicity are among the well-known detrimental effects of the volatile anaesthetics. The aim of the present work was to study the structural changes, proliferative activity and the possibility of alveolar A549 cells to recover after in vitro exposure to halothane at 1.5 and 2.1mM concentrations. Our data indicated significant reduction of viability, suppression of mitotic activity more than 60%, and that these alterations were accompanied by disturbances of nuclear and nucleolar structures. The most prominent negative effect was the destruction of the lamellar bodies, the main storage organelles of pulmonary surfactant, substantial for the lung physiology. In conclusion, halothane applied at clinically relevant concentrations exerts genotoxic and cytotoxic effect on the alveolar cells in vitro, most likely as a consequence of stress-induced apoptosis, thus modulating the respiratory function.

  2. Antineoplastic effects of deoxyelephantopin, a sesquiterpene lactone from Elephantopus scaber, on lung adenocarcinoma (A549) cells.

    PubMed

    Kabeer, Farha A; Sreedevi, Geetha B; Nair, Mangalam S; Rajalekshmi, Dhanya S; Gopalakrishnan, Latha P; Kunjuraman, Sujathan; Prathapan, Remani

    2013-07-01

    Deoxyelephantopin, a sesquiterpene lactone from Elephantopus scaber, showed inhibition of the growth of various tumor cells in vitro. In the present study, we investigated the cytotoxicity and apoptosis-inducing capacity of deoxyelephantopin on lung adenocarcinoma (A549) cells. The cytotoxic effect of deoxyelephantopin on A549 cells and normal lymphocytes was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 50% inhibitory concentration (IC50) value was determined. The self-renewal and proliferating potential of A549 cells after treatment with deoxyelephantopin were examined by colony formation assay. Cellular morphology of deoxyelephantopin-treated cells was observed using phase-contrast microscopy. The induction of apoptosis was evaluated using acridine orange and ethidium bromide staining, Hoechst 33342 staining, terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end-labeling (TUNEL) assay, DNA fragmentation analysis and Annexin V-fluorescein isothiocyanate staining by flow cytometry. Activation of caspases was detected using fluorogenic substrate specific to caspases 2, 3, 8 and 9 and flow cytometric analysis. The total cellular DNA content and expression of cleaved poly (ADP-ribose) polymerase was also analyzed. Deoxyelephantopin exhibited cytotoxicity to A549 cells (IC50 = 12.287 μg/mL), however, there was no toxicity towards normal human lymphocytes. Deoxyelephantopin suppressed the colony-forming ability of A549 cells in a dose-dependent manner. Acridine orange, ethidium bromide and Hoechst 33342 staining showed cell shrinkage, chromosomal condensation and nuclear fragmentation, indicating induction of apoptosis. Deoxyelephantopin increased apoptosis of A549 cells, as evidenced by more TUNEL-positive cells. DNA fragmentation and Annexin V staining revealed late-stage apoptotic cell population. Deoxyelephantopin inhibited A549 cell growth by cell cycle arrest at G2/M phase and induced apoptosis through

  3. Enhanced DNA double-strand break repair of microbeam targeted A549 lung carcinoma cells by adjacent WI38 normal lung fibroblast cells via bi-directional signaling.

    PubMed

    Kobayashi, Alisa; Tengku Ahmad, Tengku Ahbrizal Farizal; Autsavapromporn, Narongchai; Oikawa, Masakazu; Homma-Takeda, Shino; Furusawa, Yoshiya; Wang, Jun; Konishi, Teruaki

    2017-10-01

    Understanding the mechanisms underlying the radiation-induced bystander effect (RIBE) and bi-directional signaling between irradiated carcinoma cells and their surrounding non-irradiated normal cells is relevant to cancer radiotherapy. The present study investigated propagation of RIBE signals between human lung carcinoma A549 cells and normal lung fibroblast WI38 cells in bystander cells, either directly or indirectly contacting irradiated A549 cells. We prepared A549-GFP/WI38 co-cultures and A549-GFP/A549 co-cultures, in which A549-GFP cells stably expressing H2BGFP were co-cultured with either A549 cells or WI38 cells, respectively. Using the SPICE-NIRS microbeam, only the A549-GFP cells were irradiated with 500 protons per cell. The level of γ-H2AX, a marker for DNA double-strand breaks (DSB), was subsequently measured for up to 24h post-irradiation in three categories of cells: (1) "targeted"/irradiated A549-GFP cells; (2) "neighboring"/non-irradiated cells directly contacting the "targeted" cells; and (3) "distant"/non-irradiated cells, which were not in direct contact with the "targeted" cells. We found that DSB repair in targeted A549-GFP cells was enhanced by co-cultured WI38 cells. The bystander response in A549-GFP/A549 cell co-cultures, as marked by γ-H2AX levels at 8h post-irradiation, showed a decrease to non-irradiated control level when approaching 24h, while the neighboring/distant bystander WI38 cells in A549-GFP/WI38 co-cultures was maintained at a similar level until 24h post-irradiation. Surprisingly, distant A549-GFP cells in A549-GFP/WI38 co-cultures showed time dependency similar to bystander WI38 cells, but not to distant cells in A549-GFP/A549 co-cultures. These observations indicate that γ-H2AX was induced in WI38 cells as a result of RIBE. WI38 cells were not only involved in rescue of targeted A549, but also in the modification of RIBE against distant A549-GFP cells. The present results demonstrate that radiation-induced bi

  4. Enhanced expression levels of aquaporin-1 and aquaporin-4 in A549 cells exposed to silicon dioxide.

    PubMed

    Hao, Xiaohui; Wang, Hongli; Liu, Wei; Liu, Shupeng; Peng, Zihe; Sun, Yue; Zhao, Jinyuan; Jiang, Qiujie; Liu, Heliang

    2016-09-01

    Aquaporins (AQPs), water channel proteins in the cell membranes of mammals, have been reported to be important in maintaining the water balance of the respiratory system. However, little is known regarding the role of AQP in occupational pulmonary diseases such as silicosis. The present study investigated the expression of AQP1 and AQP4 in the human A549 alveolar epithelial cell line stimulated by silica (SiO2). A549 cells were cultured and divided into four groups: Control, SiO2‑stimulated, AQP1 inhibitor and AQP4 inhibitor. The cells of the SiO2‑stimulated group were stimulated with SiO2 dispersed suspension (50 mg/ml). The cells of the inhibitor group were pretreated with mercury (II) chloride (HgCl2; a specific channel inhibitor of AQP1) and 2‑(nicotinamide)‑1,3,4‑thiadiazole (TGN‑020; a specific channel inhibitor of AQP4) and stimulated with SiO2. The mRNA expression levels of AQP1 and AQP4 were detected by reverse transcription‑quantitative polymerase chain reaction, and the protein expression levels of AQP1 and AQP4 were detected by western blotting and immunocytochemistry. Compared with the control group, the expression levels of AQP1 and AQP4 mRNA and protein in SiO2‑stimulated groups increased and subsequently decreased (AQP1 peaked at 2 h and AQP4 at 1h; both P<0.001 compared with control group). In the inhibitor group, expression levels were increased compared with controls; however, they were significantly decreased compared with the SiO2‑stimulated group at 2 h (AQP1; P<0.001) and 1 h (AQP4; P<0.001). The expression of AQP1 and AQP4 increased when exposed to SiO2, and this was inhibited by HgCl2 and TGN‑020, suggesting that AQP1 and AQP4 may contribute to A549 cell damage induced by SiO2. AQP1 and AQP4 may thus be involved in the initiation and development of silicosis.

  5. PM10-biogenic fraction drives the seasonal variation of proinflammatory response in A549 cells.

    PubMed

    Camatini, Marina; Corvaja, Viviana; Pezzolato, Eleonora; Mantecca, Paride; Gualtieri, Maurizio

    2012-02-01

    PM10 was collected in a Milan urban site, representative of the city air quality, during winter and summer 2006. Mean daily PM10 concentration was 48 μg m(-3) during summer and 148 μg m(-3) during winter. Particles collected on Teflon filters were chemically characterized and the endotoxin content determined by the LAL test. PM10-induced cell toxicity, assessed with MTT and LDH methods, and proinflammatory potential, monitored by IL-6 and IL-8 cytokines release, were investigated on the human alveolar epithelial cell line A549 exposed to increasing doses of PM. Besides untreated cells, exposure to inert carbon particles (2-12 μm) was also used as additional control. Both cell toxicity and proinflammatory potency resulted to be higher for summer PM10 with respect of winter PM10, with IL-6 showing the highest dose-dependent release. The relevance of biogenic components adsorbed onto PM10 in eliciting the proinflammatory mediators release was investigated by inhibition experiments. Polymixin B (Poly) was used to inhibit particle-bind LPS while Toll-like receptor-2 antibody (a-TLR2) to specifically block the activation of this receptor. While cell viability was not modulated in cells coexposed to PM10 and Poly or a-TLR2 or both, inflammatory response did it, with IL-6 release being the most inhibited. In conclusion, Milan PM10-induced seasonal-dependent biological effects, with summer particles showing higher cytotoxic and proinflammatory potential. Cytotoxicity seemed to be unaffected by the PM biogenic components, while inflammation was significantly reduced after the inhibition of some biogenic activated pathways. Besides, the PM-associated biogenic activity does not entirely justify the PM-induced inflammatory effects. © 2010 Wiley Periodicals, Inc. Environ Toxicol 2012.

  6. Cathepsin L upregulation-induced EMT phenotype is associated with the acquisition of cisplatin or paclitaxel resistance in A549 cells.

    PubMed

    Han, Mei-Ling; Zhao, Yi-Fan; Tan, Cai-Hong; Xiong, Ya-Jie; Wang, Wen-Juan; Wu, Feng; Fei, Yao; Wang, Long; Liang, Zhong-Qin

    2016-12-01

    Cathepsin L (CTSL), a lysosomal acid cysteine protease, is known to play important roles in tumor metastasis and chemotherapy resistance. In this study we investigated the molecular mechanisms underlying the regulation of chemoresistance by CTSL in human lung cancer cells. Human lung cancer A549 cells, A549/PTX (paclitaxel-resistant) cells and A549/DDP (cisplatin-resistant) cells were tested. The resistance to cisplatin or paclitaxel was detected using MTT and the colony-formation assays. Actin remodeling was observed with FITC-Phalloidin fluorescent staining or immunofluorescence. A wound-healing assay or Transwell assay was used to assess the migration or invasion ability. The expression of CTSL and epithelial and mesenchymal markers was analyzed with Western blotting and immunofluorescence. The expression of EMT-associated transcription factors was measured with Western blotting or q-PCR. BALB/c nude mice were implanted subcutaneously with A549 cells overexpressing CTSL, and the mice were administered paclitaxel (10, 15 mg/kg, ip) every 3 d for 5 times. Cisplatin or paclitaxel treatment (10-80 ng/mL) induced CTSL expression in A549 cells. CTSL levels were much higher in A549/PTX and A549/DDP cells than in A549 cells. Silencing of CTSL reversed the chemoresistance in A549/DDP and A549/TAX cells, whereas overexpression of CTSL attenuated the sensitivity of A549 cells to cisplatin or paclitaxel. Furthermore, A549/DDP and A549/TAX cells underwent morphological and cytoskeletal changes with increased cell invasion and migration abilities, accompanied by decreased expression of epithelial markers (E-cadherin and cytokeratin-18) and increased expression of mesenchymal markers (N-cadherin and vimentin), as well as upregulation of EMT-associated transcription factors Snail, Slug, ZEB1 and ZEB2. Silencing of CTSL reversed EMT in A549/DDP and A549/TAX cells; In contrast, overexpression of CTSL induced EMT in A549 cells. In xenograft nude mouse model, the mice implanted

  7. Cathepsin L upregulation-induced EMT phenotype is associated with the acquisition of cisplatin or paclitaxel resistance in A549 cells

    PubMed Central

    Han, Mei-ling; Zhao, Yi-fan; Tan, Cai-hong; Xiong, Ya-jie; Wang, Wen-juan; Wu, Feng; Fei, Yao; Wang, Long; Liang, Zhong-qin

    2016-01-01

    Aim: Cathepsin L (CTSL), a lysosomal acid cysteine protease, is known to play important roles in tumor metastasis and chemotherapy resistance. In this study we investigated the molecular mechanisms underlying the regulation of chemoresistance by CTSL in human lung cancer cells. Methods: Human lung cancer A549 cells, A549/PTX (paclitaxel-resistant) cells and A549/DDP (cisplatin-resistant) cells were tested. The resistance to cisplatin or paclitaxel was detected using MTT and the colony-formation assays. Actin remodeling was observed with FITC-Phalloidin fluorescent staining or immunofluorescence. A wound-healing assay or Transwell assay was used to assess the migration or invasion ability. The expression of CTSL and epithelial and mesenchymal markers was analyzed with Western blotting and immunofluorescence. The expression of EMT-associated transcription factors was measured with Western blotting or q-PCR. BALB/c nude mice were implanted subcutaneously with A549 cells overexpressing CTSL, and the mice were administered paclitaxel (10, 15 mg/kg, ip) every 3 d for 5 times. Results: Cisplatin or paclitaxel treatment (10–80 ng/mL) induced CTSL expression in A549 cells. CTSL levels were much higher in A549/PTX and A549/DDP cells than in A549 cells. Silencing of CTSL reversed the chemoresistance in A549/DDP and A549/TAX cells, whereas overexpression of CTSL attenuated the sensitivity of A549 cells to cisplatin or paclitaxel. Furthermore, A549/DDP and A549/TAX cells underwent morphological and cytoskeletal changes with increased cell invasion and migration abilities, accompanied by decreased expression of epithelial markers (E-cadherin and cytokeratin-18) and increased expression of mesenchymal markers (N-cadherin and vimentin), as well as upregulation of EMT-associated transcription factors Snail, Slug, ZEB1 and ZEB2. Silencing of CTSL reversed EMT in A549/DDP and A549/TAX cells; In contrast, overexpression of CTSL induced EMT in A549 cells. In xenograft nude mouse

  8. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines

    PubMed Central

    Lanone, Sophie; Rogerieux, Françoise; Geys, Jorina; Dupont, Aurélie; Maillot-Marechal, Emmanuelle; Boczkowski, Jorge; Lacroix, Ghislaine; Hoet, Peter

    2009-01-01

    Background A critical issue with nanomaterials is the clear understanding of their potential toxicity. We evaluated the toxic effect of 24 nanoparticles of similar equivalent spherical diameter and various elemental compositions on 2 human pulmonary cell lines: A549 and THP-1. A secondary aim was to elaborate a generic experimental set-up that would allow the rapid screening of cytotoxic effect of nanoparticles. We therefore compared 2 cytotoxicity assays (MTT and Neutral Red) and analyzed 2 time points (3 and 24 hours) for each cell type and nanoparticle. When possible, TC50 (Toxic Concentration 50 i.e. nanoparticle concentration inducing 50% cell mortality) was calculated. Results The use of MTT assay on THP-1 cells exposed for 24 hours appears to be the most sensitive experimental design to assess the cytotoxic effect of one nanoparticle. With this experimental set-up, Copper- and Zinc-based nanoparticles appear to be the most toxic. Titania, Alumina, Ceria and Zirconia-based nanoparticles show moderate toxicity, and no toxicity was observed for Tungsten Carbide. No correlation between cytotoxicity and equivalent spherical diameter or specific surface area was found. Conclusion Our study clearly highlights the difference of sensitivity between cell types and cytotoxicity assays that has to be carefully taken into account when assessing nanoparticles toxicity. PMID:19405955

  9. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    PubMed

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells.

  10. In vitro cytotoxicity of gold nanorods in A549 cells.

    PubMed

    Tang, Ying; Shen, Yafeng; Huang, Libin; Lv, Gaojian; Lei, Changhai; Fan, Xiaoyan; Lin, Fangxing; Zhang, Yuxia; Wu, Lihui; Yang, Yongji

    2015-03-01

    Gold nanoparticles, which have unique physicochemical characteristics, are being used for an increasingly wide range of applications in biomedical research. In this study, gold nanorods (width of 25 nm, length of 52 nm) were found to be internalized by A549 cells and were primarily localized in the lysosomes and membranous vesicles. The integrity of the membranes of A549 cells exposed to gold nanorods for 4h was damaged, as indicated by laser scanning confocal microscopy (LSCM). Increased lactate dehydrogenase (LDH) leakage and decreased cell viability further indicated the concentration-dependent cytotoxicity of the gold nanorods to the A549 cells. Reactive oxygen species (ROS) production was induced in the A549 cells by the gold nanorods, and this effect was positively correlated with the concentration of the gold nanorods. The results of this study indicated that exposure to gold nanorods caused dose-dependent cytotoxicity in A549 cells and that oxidative stress may be the main factor causing cytotoxicity.

  11. Proinflammatory Cytokines Increase Vascular Endothelial Growth Factor Expression in Alveolar Epithelial Cells.

    PubMed

    Maloney, James P; Gao, Li

    2015-01-01

    Vascular endothelial growth factor (VEGF) is an endothelial permeability mediator that is highly expressed in lung epithelium. In nonlung cells proinflammatory cytokines have been shown to increase VEGF expression, but their effects on lung epithelium remain unclear. We hypothesized that increases in alveolar epithelial cell VEGF RNA and protein expression occur after exposure to proinflammatory cytokines. We tested this using human alveolar epithelial cells (A549) stimulated with 5 proinflammatory cytokines. VEGF RNA expression was increased 1.4-2.7-fold in response to IL-1, IL-6, IL-8, TNF-α, or TGF-β over 6 hours, with TGF-β having the largest response. TNF-α increased VEGF RNA as early as 1 hour. A mix of IL-1, IL-6, and IL-8 had effects similar to IL-1. TNF-α increased protein expression as early as 4 hours and had a sustained effect at 16 hours, whereas IL-1 did not increase protein expression. Only VEGF165 was present in cultured A549 cells, yet other isoforms were seen in human lung tissue. Increased expression of VEGF in alveolar epithelial cells occurs in response to proinflammatory cytokines. Increased VEGF expression likely contributes to the pathogenesis of inflammatory lung diseases and to the angiogenic phenotype of lung cancer, a disease typically preceded by chronic inflammation.

  12. Three-dimensional microstructure of human alveolar trabecular bone: a micro-computed tomography study

    PubMed Central

    2017-01-01

    Purpose The microstructural characteristics of trabecular bone were identified using micro-computed tomography (micro-CT), in order to develop a potential strategy for implant surface improvement to facilitate osseointegration. Methods Alveolar bone specimens from the cadavers of 30 humans were scanned by high-resolution micro-CT and reconstructed. Volumes of interest chosen within the jaw were classified according to Hounsfield units into 4 bone quality categories. Several structural parameters were measured and statistically analyzed. Results Alveolar bone specimens with D1 bone quality had significantly higher values for all structural parameters than the other bone quality categories, except for trabecular thickness (Tb.Th). The percentage of bone volume, trabecular separation (Tb.Sp), and trabecular number (Tb.N) varied significantly among bone quality categories. Tb.Sp varied markedly across the bone quality categories (D1: 0.59±0.22 mm, D4: 1.20±0.48 mm), whereas Tb.Th had similar values (D1: 0.30±0.08 mm, D4: 0.22±0.05 mm). Conclusions Bone quality depended on Tb.Sp and number—that is, endosteal space architecture—rather than bone surface and Tb.Th. Regardless of bone quality, Tb.Th showed little variation. These factors should be taken into account when developing individualized implant surface topographies. PMID:28261521

  13. Osteogenic Differentiation of Human Amniotic Epithelial Cells and Its Application in Alveolar Defect Restoration

    PubMed Central

    Jiawen, Si; Jianjun, Zhang; Jiewen, Dai; Dedong, Yu; Hongbo, Yu; Jun, Shi; Xudong, Wang; Shen, Steve G.F.

    2014-01-01

    The present study investigated the detailed in vitro osteogenic differentiation process and in vivo bone regenerative property of human amniotic epithelial cells (hAECs). The in vitro osteogenic differentiation process of hAECs was evaluated by biochemical staining, real-time polymerase chain reaction, and immunofluorescence. Next, β-tricalcium phosphate (β-TCP) scaffolds alone or loaded with hAECs were implanted into the alveolar defects of rats. Micro-computed tomography evaluation and histologic studies were conducted. Our results validated the in vitro osteogenic capacity of hAECs by upregulation of Runx2, osterix, alkaline phosphatase, collagen I, and osteopontin, with positive biochemical staining for osteoblasts. An epithelial-mesenchymal transformation process might be involved in the osteogenic differentiation of hAECs by increased expression of transforming growth factor-β1. Our data also demonstrated that in vivo implantation of hAECs loaded on β-TCP scaffolds, not only improved bone regeneration by direct participation, but also reduced the early host immune response to the scaffolds. The presented data indicate that hAECs possess proper osteogenic differentiation potential and a modulatory influence on the early tissue remodeling process, making these cells a potential source of progenitor cells for clinical restoration of the alveolar defect. PMID:25368378

  14. Incidence, prevalence and geographic distribution of human alveolar echinococcosis in Austria from 1854 to 1990.

    PubMed

    Auer, H; Aspöck, H

    1991-01-01

    Since the second half of the last century it has been known that Austria--like southern Germany, eastern France and Switzerland--is a part of the Central European area of distribution of Echinococcus multilocularis (Em), the causative organism of alveolar echinococcosis (AE). Up until October 1990, 128 human AE cases were documented in Austria; personal, anamnestic and clinical data on the majority of these patients are available. Based on these data, epidemiological parameters (incidence, prevalence, geographic distribution, sex and age distribution, occupation) were evaluated so as to obtain information on the past and recent history of alveolar echinococcosis in Austria. The (retrospective) study led to the following results and conclusions: (a) the (documented) incidence (presently two cases/year) of AE in Austria is rather low; (b) the main endemic Em areas are situated in the western (Tyrol, Vorarlberg) and southern (Carinthia) provinces; (c) a new focus could be detected in Lower Austria (outside the Alps); (d) the sex ratio (M:F) of AE patients was 1.3:1; (e) the average age of men and women at the time of diagnosis was 44 and 47 years, respectively; (f) 98% of Austrian AE patients exhibited Em lesions in the liver; and (g) greater than 50% of AE patients were (or had been) farmers.

  15. Blockage of glycolysis by targeting PFKFB3 alleviates sepsis-related acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells.

    PubMed

    Gong, Yuanqi; Lan, Haibing; Yu, Zhihong; Wang, Meng; Wang, Shu; Chen, Yu; Rao, Haiwei; Li, Jingying; Sheng, Zhiyong; Shao, Jianghua

    2017-09-16

    Sepsis-related acute lung injury (ALI) is characterized by excessive lung inflammation and apoptosis of alveolar epithelial cells resulting in acute hypoxemic respiratory failure. Recent studies indicated that anaerobic glycolysis play an important role in sepsis. However, whether inhibition of aerobic glycolysis exhibits beneficial effect on sepsis-induced ALI is not known. In vivo, a cecal ligation and puncture (CLP)-induced ALI mouse model was set up and mice treated with glycolytic inhibitor 3PO after CLP. The mice treated with the 3PO ameliorated the survival rate, histopathological changes, lung inflammation, lactate increased and lung apoptosis of mice with CLP-induced sepsis. In vitro, the exposure of human alveolar epithelial A549 cells to lipopolysaccharide (LPS) resulted in cell apoptosis, inflammatory cytokine production, enhanced glycolytic flux and reactive oxygen species (ROS) increased. While these changes were attenuated by 3PO treatment. Sequentially, treatment of A549 cells with lactate caused cell apoptosis and enhancement of ROS. Pretreatment with N-acetylcysteine (NAC) significantly lowered LPS and lactate-induced the generation of ROS and cell apoptosis in A549 cells. Therefore, these results indicate that anaerobic glycolysis may be an important contributor in cell apoptosis of sepsis-related ALI. Moreover, LPS specifically induces apoptotic insults to A549 cell through lactate-mediated enhancement of ROS. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Alterations in Gene Expression and DNA Methylation during Murine and Human Lung Alveolar Septation

    PubMed Central

    Cuna, Alain; Halloran, Brian; Faye-Petersen, Ona; Kelly, David; Crossman, David K.; Cui, Xiangqin; Pandit, Kusum; Kaminski, Naftali; Bhattacharya, Soumyaroop; Ahmad, Ausaf; Mariani, Thomas J.

    2015-01-01

    DNA methylation, a major epigenetic mechanism, may regulate coordinated expression of multiple genes at specific time points during alveolar septation in lung development. The objective of this study was to identify genes regulated by methylation during normal septation in mice and during disordered septation in bronchopulmonary dysplasia. In mice, newborn lungs (preseptation) and adult lungs (postseptation) were evaluated by microarray analysis of gene expression and immunoprecipitation of methylated DNA followed by sequencing (MeDIP-Seq). In humans, microarray gene expression data were integrated with genome-wide DNA methylation data from bronchopulmonary dysplasia versus preterm and term lung. Genes with reciprocal changes in expression and methylation, suggesting regulation by DNA methylation, were identified. In mice, 95 genes with inverse correlation between expression and methylation during normal septation were identified. In addition to genes known to be important in lung development (Wnt signaling, Angpt2, Sox9, etc.) and its extracellular matrix (Tnc, Eln, etc.), genes involved with immune and antioxidant defense (Stat4, Sod3, Prdx6, etc.) were also observed. In humans, 23 genes were differentially methylated with reciprocal changes in expression in bronchopulmonary dysplasia compared with preterm or term lung. Genes of interest included those involved with detoxifying enzymes (Gstm3) and transforming growth factor-β signaling (bone morphogenetic protein 7 [Bmp7]). In terms of overlap, 20 genes and three pathways methylated during mouse lung development also demonstrated changes in methylation between preterm and term human lung. Changes in methylation correspond to altered expression of a number of genes associated with lung development, suggesting that DNA methylation of these genes may regulate normal and abnormal alveolar septation. PMID:25387348

  17. In vitro cytotoxicity of Manville Code 100 glass fibers: Effect of fiber length on human alveolar macrophages

    PubMed Central

    Zeidler-Erdely, Patti C; Calhoun, William J; Ameredes, Bill T; Clark, Melissa P; Deye, Gregory J; Baron, Paul; Jones, William; Blake, Terri; Castranova, Vincent

    2006-01-01

    Background Synthetic vitreous fibers (SVFs) are inorganic noncrystalline materials widely used in residential and industrial settings for insulation, filtration, and reinforcement purposes. SVFs conventionally include three major categories: fibrous glass, rock/slag/stone (mineral) wool, and ceramic fibers. Previous in vitro studies from our laboratory demonstrated length-dependent cytotoxic effects of glass fibers on rat alveolar macrophages which were possibly associated with incomplete phagocytosis of fibers ≥ 17 μm in length. The purpose of this study was to examine the influence of fiber length on primary human alveolar macrophages, which are larger in diameter than rat macrophages, using length-classified Manville Code 100 glass fibers (8, 10, 16, and 20 μm). It was hypothesized that complete engulfment of fibers by human alveolar macrophages could decrease fiber cytotoxicity; i.e. shorter fibers that can be completely engulfed might not be as cytotoxic as longer fibers. Human alveolar macrophages, obtained by segmental bronchoalveolar lavage of healthy, non-smoking volunteers, were treated with three different concentrations (determined by fiber number) of the sized fibers in vitro. Cytotoxicity was assessed by monitoring cytosolic lactate dehydrogenase release and loss of function as indicated by a decrease in zymosan-stimulated chemiluminescence. Results Microscopic analysis indicated that human alveolar macrophages completely engulfed glass fibers of the 20 μm length. All fiber length fractions tested exhibited equal cytotoxicity on a per fiber basis, i.e. increasing lactate dehydrogenase and decreasing chemiluminescence in the same concentration-dependent fashion. Conclusion The data suggest that due to the larger diameter of human alveolar macrophages, compared to rat alveolar macrophages, complete phagocytosis of longer fibers can occur with the human cells. Neither incomplete phagocytosis nor length-dependent toxicity was observed in fiber

  18. In vitro cytotoxicity of Manville Code 100 glass fibers: effect of fiber length on human alveolar macrophages.

    PubMed

    Zeidler-Erdely, Patti C; Calhoun, William J; Ameredes, Bill T; Clark, Melissa P; Deye, Gregory J; Baron, Paul; Jones, William; Blake, Terri; Castranova, Vincent

    2006-03-28

    Synthetic vitreous fibers (SVFs) are inorganic noncrystalline materials widely used in residential and industrial settings for insulation, filtration, and reinforcement purposes. SVFs conventionally include three major categories: fibrous glass, rock/slag/stone (mineral) wool, and ceramic fibers. Previous in vitro studies from our laboratory demonstrated length-dependent cytotoxic effects of glass fibers on rat alveolar macrophages which were possibly associated with incomplete phagocytosis of fibers >or= 17 microm in length. The purpose of this study was to examine the influence of fiber length on primary human alveolar macrophages, which are larger in diameter than rat macrophages, using length-classified Manville Code 100 glass fibers (8, 10, 16, and 20 microm). It was hypothesized that complete engulfment of fibers by human alveolar macrophages could decrease fiber cytotoxicity; i.e. shorter fibers that can be completely engulfed might not be as cytotoxic as longer fibers. Human alveolar macrophages, obtained by segmental bronchoalveolar lavage of healthy, non-smoking volunteers, were treated with three different concentrations (determined by fiber number) of the sized fibers in vitro. Cytotoxicity was assessed by monitoring cytosolic lactate dehydrogenase release and loss of function as indicated by a decrease in zymosan-stimulated chemiluminescence. Microscopic analysis indicated that human alveolar macrophages completely engulfed glass fibers of the 20 microm length. All fiber length fractions tested exhibited equal cytotoxicity on a per fiber basis, i.e. increasing lactate dehydrogenase and decreasing chemiluminescence in the same concentration-dependent fashion. The data suggest that due to the larger diameter of human alveolar macrophages, compared to rat alveolar macrophages, complete phagocytosis of longer fibers can occur with the human cells. Neither incomplete phagocytosis nor length-dependent toxicity was observed in fiber-exposed human macrophage

  19. AdipoR-increased intracellular ROS promotes cPLA2 and COX-2 expressions via activation of PKC and p300 in adiponectin-stimulated human alveolar type II cells.

    PubMed

    Chen, Hsiao-Mei; Yang, Chuen-Mao; Chang, Jia-Feng; Wu, Chi-Sheng; Sia, Kee-Chin; Lin, Wei-Ning

    2016-08-01

    Adiponectin, an adipokine, accumulated in lung system via T-cadherin after allergens/ozone challenge. However, the roles of adiponectin on lung pathologies were controversial. Here we reported that adiponectin stimulated expression of inflammatory proteins, cytosolic phospholipase A2 (cPLA2), cyclooxygenase-2 (COX-2), and production of reactive oxygen species (ROS) in human alveolar type II A549 cells. AdipoR1/2 involved in adiponectin-activated NADPH oxidase and mitochondria, which further promoted intracellular ROS accumulation. Protein kinase C (PKC) may involve an adiponectin-activated NADPH oxidase. Similarly, p300 phosphorylation and histone H4 acetylation occurred in adiponectin-challenged A549 cells. Moreover, adiponectin-upregulated cPLA2 and COX-2 expression was significantly abrogated by ROS scavenger (N-acetylcysteine) or the inhibitors of NADPH oxidase (apocynin), mitochondrial complex I (rotenone), PKC (Ro31-8220, Gö-6976, and rottlerin), and p300 (garcinol). Briefly, we reported that adiponectin stimulated cPLA2 and COX-2 expression via AdipoR1/2-dependent activation of PKC/NADPH oxidase/mitochondria resulting in ROS accumulation, p300 phosphorylation, and histone H4 acetylation. These results suggested that adiponectin promoted lung inflammation, resulting in exacerbation of pulmonary diseases via upregulating cPLA2 and COX-2 expression together with intracellular ROS production. Understanding the adiponectin signaling pathways on regulating cPLA2 and COX-2 may help develop therapeutic strategies on pulmonary diseases. Copyright © 2016 the American Physiological Society.

  20. Lung fibroblasts accelerate wound closure in human alveolar epithelial cells through hepatocyte growth factor/c-Met signaling

    PubMed Central

    Correll, Kelly; Schiel, John A.; Finigan, Jay H.; Prekeris, Rytis; Mason, Robert J.

    2014-01-01

    There are 190,600 cases of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) each year in the United States, and the incidence and mortality of ALI/ARDS increase dramatically with age. Patients with ALI/ARDS have alveolar epithelial injury, which may be worsened by high-pressure mechanical ventilation. Alveolar type II (ATII) cells are the progenitor cells for the alveolar epithelium and are required to reestablish the alveolar epithelium during the recovery process from ALI/ARDS. Lung fibroblasts (FBs) migrate and proliferate early after lung injury and likely are an important source of growth factors for epithelial repair. However, how lung FBs affect epithelial wound healing in the human adult lung has not been investigated in detail. Hepatocyte growth factor (HGF) is known to be released mainly from FBs and to stimulate both migration and proliferation of primary rat ATII cells. HGF is also increased in lung tissue, bronchoalveolar lavage fluid, and serum in patients with ALI/ARDS. Therefore, we hypothesized that HGF secreted by FBs would enhance wound closure in alveolar epithelial cells (AECs). Wound closure was measured using a scratch wound-healing assay in primary human AEC monolayers and in a coculture system with FBs. We found that wound closure was accelerated by FBs mainly through HGF/c-Met signaling. HGF also restored impaired wound healing in AECs from the elderly subjects and after exposure to cyclic stretch. We conclude that HGF is the critical factor released from FBs to close wounds in human AEC monolayers and suggest that HGF is a potential strategy for hastening alveolar repair in patients with ALI/ARDS. PMID:24748602

  1. Enhancing the efficiency of bortezomib conjugated to pegylated gold nanoparticles: an in vitro study on human pancreatic cancer cells and adenocarcinoma human lung alveolar basal epithelial cells.

    PubMed

    Coelho, Sílvia Castro; Almeida, Gabriela M; Santos-Silva, Filipe; Pereira, Maria Carmo; Coelho, Manuel A N

    2016-08-01

    Gold nanoparticles have become promising vectors for cancer diagnosis and treatment. The present study investigates the effect of bortezomib (BTZ), a proteasome inhibitor, conjugated with pegylated gold nanoparticles (PEGAuNPs) in pancreatic and lung cancer cells. Synthesized gold nanoparticles (PEGAuNPs) were conjugated with bortezomib antitumor drug. We investigated the cytotoxicity induced by BTZ conjugated with functionalized gold nanoparticles in vitro, in the human pancreatic (S2-013) and lung (A549) cancer cell lines. We found an efficient of conjugation of BTZ with PEGAuNPs. In vitro assays showed that after 72 h' incubation with PEGAuNPs-BTZ cancer cells revealed alterations in morphology; also for S2-013 and A549 cancer cells, the IC50 value of free BTZ is respectively 1.5 and 4.3 times higher than the IC50 value of PEGAuNPs-BTZ. Furthermore, for TERT-HPNE, the IC50 value is around 63 times lower for free BTZ than the conjugated nanovehicle. Cell growth inhibition results showed a remarkable enhancement in the effect of BTZ when conjugated with AuNPs. Our findings showed that conjugation with PEGAuNPs enhance the BTZ growth-inhibition effect on human cancer cells (S2-013 and A549) and decreases its toxicity against normal cells (TERT-HPNE).

  2. Basement Membrane Mimics of Biofunctionalized Nanofibers for a Bipolar-Cultured Human Primary Alveolar-Capillary Barrier Model.

    PubMed

    Nishiguchi, Akihiro; Singh, Smriti; Wessling, Matthias; Kirkpatrick, Charles J; Möller, Martin

    2017-03-13

    In vitro reconstruction of an alveolar barrier for modeling normal lung functions and pathological events serve as reproducible, high-throughput pharmaceutical platforms for drug discovery, diagnosis, and regenerative medicine. Despite much effort, the reconstruction of organ-level alveolar barrier functions has failed due to the lack of structural similarity to the natural basement membrane, functionalization with specific ligands for alveolar cell function, the use of primary cells and biodegradability. Here we report a bipolar cultured alveolar-capillary barrier model of human primary cells supported by a basement membrane mimics of fully synthetic bifunctional nanofibers. One-step electrospinning process using a bioresorbable polyester and multifunctional star-shaped polyethylene glycols (sPEG) enables the fabrication of an ultrathin nanofiber mesh with interconnected pores. The nanofiber mesh possessed mechanical stability against cyclic expansion as seen in the lung in vivo. The sPEGs as an additive provide biofunctionality to fibers through the conjugation of peptide to the nanofibers and hydrophilization to prevent unspecific protein adsorption. Biofunctionalized nanofiber meshes facilitated bipolar cultivation of endothelial and epithelial cells with fundamental alveolar functionality and showed higher permeability for molecules compared to microporous films. This nanofiber mesh for a bipolar cultured barrier have the potential to promote growth of an organ-level barrier model for modeling pathological conditions and evaluating drug efficacy, environmental pollutants, and nanotoxicology.

  3. Nitrogen dioxide exposure in vivo and human alveolar macrophage inactivation of influenza virus in vitro

    SciTech Connect

    Frampton, M.W.; Smeglin, A.M.; Roberts, N.J. Jr.; Finkelstein, J.N.; Morrow, P.E.; Utell, M.J.

    1989-04-01

    Epidemiologic studies have reported an increased incidence of respiratory infections and illness in association with elevated indoor levels of nitrogen dioxide (NO2). Animal exposure studies have found that brief exposures to peak levels of NO2 produce greater morbidity than continuous lower level exposure. In order to examine the effect of NO2 inhalation on human alveolar macrophages, normal volunteers were exposed sequentially to air or NO2, by double-blind randomization, in an environmental chamber. Two exposure protocols with comparable concentration x time products were used: (a) continuous 0.60 ppm NO2 (n = 9), and (b) background 0.05 ppm NO2 with three 15-min peaks of 2.0 ppm (n = 15). Inhalation of NO2 caused no significant changes in pulmonary function or airway reactivity in either exposure protocol. Alveolar macrophages obtained by bronchoalveolar lavage 3 1/2 hr after exposure to continuous 0.60 ppm NO2 tended to inactivate influenza virus in vitro less effectively than cells collected after air exposure (1.96 vs 1.25 log10 plaque-forming units on Day 2 of incubation, P less than 0.07). Four of nine subjects accounted for the observed impairment in virus inactivation; cells from these four subjects demonstrated an increase in interleukin-1 (IL-1) production after NO2 vs air, whereas the five remaining subjects decreased IL-1 production after NO2. In contrast, intermittent peak exposure did not alter the rate of viral inactivation or IL-1 production. This methodology has the potential to identify pollutant effects on mechanisms of respiratory defense in humans.

  4. Gefitinib and Erlotinib Lead to Phosphorylation of Eukaryotic Initiation Factor 2 Alpha Independent of Epidermal Growth Factor Receptor in A549 Cells.

    PubMed

    Koyama, Satoshi; Omura, Tomohiro; Yonezawa, Atsushi; Imai, Satoshi; Nakagawa, Shunsaku; Nakagawa, Takayuki; Yano, Ikuko; Matsubara, Kazuo

    2015-01-01

    Gefitinib and erlotinib are anticancer agents, which inhibit epidermal growth factor receptor (EGFR) tyrosine kinase. Interstitial lung disease (ILD) occurs in patients with non-small cell lung cancer receiving EGFR inhibitors. In the present study, we examined whether gefitinib- and erlotinib-induced lung injury related to ILD through endoplasmic reticulum (ER) stress, which is a causative intracellular mechanism in cytotoxicity caused by various chemicals in adenocarcinomic human alveolar basal epithelial cells. These two EGFR inhibitors increased Parkinson juvenile disease protein 2 and C/EBP homologous protein mRNA expressions, and activated the eukaryotic initiation factor (eIF) 2α/activating transcription factor 4 pathway without protein kinase R-like ER kinase activation in A549 cells. Gefitinib and erlotinib caused neither ER stress nor cell death; however, these agents inhibited cell growth via the reduction of cyclin-D1 expression. Tauroursodeoxycholic acid, which is known to suppress eIF2α phosphorylation, cancelled the effects of EGFR inhibitors on cyclin-D1 expression and cell proliferation in a concentration-dependent manner. The results of an EGFR-silencing study using siRNA showed that gefitinib and erlotinib affected eIF2α phosphorylation and cyclin-D1 expression independent of EGFR inhibition. Therefore, the inhibition of cell growth by these EGFR inhibitors might equate to impairment of the alveolar epithelial cell repair system via eIF2α phosphorylation and reduced cyclin-D1 expression.

  5. Sulfidation of silver nanowires inside human alveolar epithelial cells: a potential detoxification mechanism

    NASA Astrophysics Data System (ADS)

    Chen, Shu; Goode, Angela E.; Sweeney, Sinbad; Theodorou, Ioannis G.; Thorley, Andrew J.; Ruenraroengsak, Pakatip; Chang, Yan; Gow, Andrew; Schwander, Stephan; Skepper, Jeremy; Zhang, Junfeng (Jim); Shaffer, Milo S.; Chung, Kian Fan; Tetley, Teresa D.; Ryan, Mary P.; Porter, Alexandra E.

    2013-09-01

    Silver nanowires (AgNWs) are being developed for use in optoelectronics. However before widespread usage, it is crucial to determine their potential effects on human health. It is accepted that Ag nanoparticles (AgNPs) exert toxic effects by releasing Ag+ ions, but much less is known about whether Ag+ reacts with compounds, or any downstream bioactive effects of transformed AgNPs. Analytical high-resolution transmission electron microscopy has been employed to elucidate cellular uptake and reactivity of AgNWs inside human alveolar epithelial type 1-like cells. AgNWs were observed in the cytoplasm and membrane-bound vesicles, and precipitation of Ag2S within the cell occurred after 1 h exposure. Cell viability studies showed no evidence of cytotoxicity and reactive oxygen species were not observed on exposure of cells to AgNWs. We suggest that Ag2S formation acts as a `trap' for free Ag+, significantly limiting short-term toxicological effects - with important consequences for the safety of Ag-nanomaterials to human health.Silver nanowires (AgNWs) are being developed for use in optoelectronics. However before widespread usage, it is crucial to determine their potential effects on human health. It is accepted that Ag nanoparticles (AgNPs) exert toxic effects by releasing Ag+ ions, but much less is known about whether Ag+ reacts with compounds, or any downstream bioactive effects of transformed AgNPs. Analytical high-resolution transmission electron microscopy has been employed to elucidate cellular uptake and reactivity of AgNWs inside human alveolar epithelial type 1-like cells. AgNWs were observed in the cytoplasm and membrane-bound vesicles, and precipitation of Ag2S within the cell occurred after 1 h exposure. Cell viability studies showed no evidence of cytotoxicity and reactive oxygen species were not observed on exposure of cells to AgNWs. We suggest that Ag2S formation acts as a `trap' for free Ag+, significantly limiting short-term toxicological effects

  6. A feasibility study of applying cone-beam computed tomography to observe dimensional changes in human alveolar bone*

    PubMed Central

    Li, Bei; Wang, Yao; Li, Jun

    2014-01-01

    The purpose of this study was to demonstrate the feasibility of applying cone-beam computed tomography (CBCT) to observe dimensional changes in human alveolar bone continuously after tooth extraction. Sixty patients were selected from a CBCT database. Each patient had two CBCT scans (CBCT I and CBCT II), one taken before and one taken after implant surgery. A fixed anatomic reference point was used to orient the horizontal slice of the two scans. The alveolar ridge width was measured on the horizontal slice. In each series of CBCT I sagittal slices, the number of slices from the start point to the pulp center of the test tooth was recorded. The tooth length was measured on the sagittal slice. In each series of CBCT II slices, tooth length was measured on a sagittal slice selected based on the number of slices from the start point to the pulp center recorded in CBCT I. Intraobserver reliability, assessed by the intraclass correlation coefficient (ICC), was high. Paired sample t-tests of repeated measurements of both tooth length and alveolar bone width showed no statistically significant differences (P<0.05). This study has proved that projection differences among CBCT scans taken at different time points from one patient can be neglected without affecting the accuracy of millimeter scale measurements. CBCT is a reliable imaging tool for continuously observing dimensional changes in human alveolar bone. PMID:24711360

  7. Landscape and climatic characteristics associated with human alveolar echinococcosis in France, 1982 to 2007.

    PubMed

    Piarroux, M; Gaudart, J; Bresson-Hadni, S; Bardonnet, K; Faucher, B; Grenouillet, F; Knapp, J; Dumortier, J; Watelet, J; Gerard, A; Beytout, J; Abergel, A; Wallon, M; Vuitton, D A; Piarroux, R

    2015-05-07

    Human alveolar echinococcosis (AE) is a severe hepatic disease caused by Echinococcus multilocularis. In France, the definitive and intermediate hosts of E. multilocularis (foxes and rodents, respectively) have a broader geographical distribution than that of human AE. In this two-part study, we describe the link between AE incidence in France between 1982 and 2007 and climatic and landscape characteristics. National-level analysis demonstrated a dramatic increase in AE risk in areas with very cold winters and high annual rainfall levels. Notably, 52% (207/401) of cases resided in French communes (smallest French administrative level) with a mountain climate. The mountain climate communes displayed a 133-fold (95% CI: 95-191) increase in AE risk compared with communes in which the majority of the population resides. A case-control study performed in the most affected areas confirmed the link between AE risk and climatic factors. This arm of the study also revealed that populations residing in forest or pasture areas were at high risk of developing AE. We therefore hypothesised that snow-covered ground may facilitate predators to track their prey, thus increasing E. multilocularis biomass in foxes. Such climatic and landscape conditions could lead to an increased risk of developing AE among humans residing in nearby areas.

  8. Selenium pretreatment attenuates formaldehyde-induced genotoxicity in A549 cell lines.

    PubMed

    Shi, Yu-Qin; Chen, Xin; Dai, Juan; Jiang, Zhong-Fa; Li, Ning; Zhang, Ben-Yan; Zhang, Zhi-Bing

    2014-11-01

    Formaldehyde is a major industrial chemical and has been extensively used in the manufacture of synthetic resins and chemicals. Numerous studies indicate that formaldehyde can induce various genotoxic effects in vitro and in vivo. A recent study indicated that formaldehyde impaired antioxidant cellular defences and enhanced lipid peroxidation. Selenium is an important antioxidant. We hypothesized that reactive oxygen species (ROS) and lipid peroxidation are involved in formaldehyde-induced genotoxicity in human lung cancer cell line, A549 cell line. To test the hypothesis, we investigated the effects of selenium on formaldehyde-induced genotoxicity in A549 cell lines. The results indicated that exposure to formaldehyde showed the induction of DNA-protein cross-links (DPCs). Formaldehyde significantly increased the malondialdehyde levels and decreased the activities of superoxide dismutase and glutathione peroxidase. In addition, the activations of necrosis factor-κB (NF-κB) and activator protein 1 (AP-1) were induced by the formaldehyde treatment. The pretreatment with selenium counteracted the formaldehyde-induced oxidative stress, ameliorated DPCs and attenuated the activation of NF-κB and AP-1 in A549 cell lines. All the results suggested that the pretreatment with selenium attenuated the formaldehyde-induced genotoxicity through its ROS scavenging and anti-DPCs effects in A549 cell lines. © The Author(s) 2012.

  9. [Effect of two different acellular lung matrices on α-SMA expression in A549 cells].

    PubMed

    Chen, C; Wang, Z Y; Weng, J; Wang, Z B; Mei, J; Du, X H; Wang, L

    2017-01-24

    Objective: To explore the effect of acellular normal and fibrotic lung matrices on alpha smooth muscle actin (α-SMA) expression in human lung adenocarcinoma cell line A549. Methods: Twenty adult SD rats were randomly divided into normal group and idiopathic pulmonary fibrosis(IPF)group (n=10 each). The pulmonary fibrosis was induced by Bleomycin. Normal and fibrotic decellularized lungs were made, then sections with 500 μm thick were cut by a standard Vibratome. None scaffold was set as control group. A549 cells were seeded dropwise into different slices (normal and fibrotic scaffolds), and cultured for one week in vitro. The expression of α-SMA was measured by immunofluorescence staining and quantitative real time polymerase chain reaction (qRT-PCR). Results: In control group, the expression of α-SMA protein was positive in A549 cells by immunofluorescence staining. However, it expressed weakly both in normal and fibrotic scaffold group, and the fluorescence intensity in fibrotic scaffold group was significant lower than that in normal group (P<0.05). The relative expression amount of α-SMA mRNA in normal and fibrotic scaffold group were (0.70±0.11) and (0.55±0.12), which were significant lower than that of control group (1.28±0.21) (P<0.05). Moreover, the relative expression of α-SMA mRNA in fibrotic scaffold group was decreased compared to that in normal scaffold group (P<0.05). Conclusions: Acellular normal and fibrotic lung scaffold can downregulate the expression of α-SMA in human lung adenocarcinoma cell line A549. It may inhibit the movement of A549 cells in acellular normal and fibrotic lung matrices, especially in acellular fibrotic lung scaffold.

  10. Apoptosis induced by ozone and oxysterols in human alveolar epithelial cells

    PubMed Central

    Kosmider, Beata; Loader, Joan E.; Murphy, Robert C.; Mason, Robert J.

    2010-01-01

    The mechanism of ozone-induced lung cell injury is poorly understood. One hypothesis is that ozone induces lipid peroxidation and that these peroxidased lipids produce oxidative stress and DNA damage. Oxysterols are lipid peroxide formed by the direct effect of ozone on pulmonary surfactant and cell membranes. We studied the effects of ozone and the oxysterol 5β,6β-epoxycholesterol (β-epoxide) and its metabolite cholestan-6-oxo-3,5-diol (6-oxo-3,5-diol) on human alveolar epithelial type I-like cells (ATI-like cells) and type II cells (ATII cells). Ozone and oxysterols induced apoptosis and cytotoxicity in ATI-like cells. They also generated reactive oxygen species and DNA damage. Ozone and β-epoxide were strong inducers of nuclear factor erythroid 2-related factor 2 (Nrf2), heat shock protein 70 (Hsp70) and Fos-related antigen 1 (Fra1) protein expressions. Furthermore, we found higher sensitivity of ATI-like cells than ATII cells exposed to ozone or treated with β-epoxide or 6-oxo-3,5-diol. In general the response to the cholesterol epoxides was similar to the effect of ozone. The importance of understanding the response of human ATI-like cells and ATII cells to oxysterols may be useful for further studies, because these compounds may represent useful biomarkers in other diseases. PMID:20219673

  11. Quantitative comparison of C-X-C chemokines produced by endotoxin-stimulated human alveolar macrophages.

    PubMed

    Goodman, R B; Strieter, R M; Frevert, C W; Cummings, C J; Tekamp-Olson, P; Kunkel, S L; Walz, A; Martin, T R

    1998-07-01

    The C-X-C chemokines are a structurally related and functionally redundant family of proteins with neutrophil chemotactic activity. Many of the C-X-C chemokines are produced by endotoxin-stimulated alveolar macrophages (AMs), but knowledge of their relative quantities and their relative contributions to the total chemotactic activity released from these cells is incomplete. Human AMs were stimulated with or without Escherichia coli endotoxin for 2, 4, 8, and 24 h. The mRNA sequences of interleukin (IL)-8, the 78-amino acid epithelial cell-derived neutrophil activator (ENA-78), growth-related protein (GRO) alpha, GRObeta, and GROgamma were cloned by PCR and identified by sequence analysis. The relative mRNA quantities were compared by Northern analysis, and IL-8 was found to predominate. Similarly, IL-8 protein concentrations in the cell supernatants were consistently higher than either the ENA-78 or GRO concentration, and by 24 h, IL-8 concentrations were 10-fold higher than those of the other C-X-C chemokines. Blocking polyclonal antibodies to IL-8 substantially reduced the chemotactic activity in the AM supernatants, whereas antibodies to ENA-78 and GRO had little or no effect. We conclude that IL-8 is the predominant C-X-C chemokine and the dominant neutrophil chemoattractant accumulating in 24-h supernatants of lipopolysaccharide-stimulated human AMs. These studies provide insight into potentially effective strategies of interrupting AM-derived inflammatory signals in the lungs.

  12. Induction of human alveolar epithelial cell growth factor receptors by dendrimeric nanostructures.

    PubMed

    Omidi, Yadollah; Barar, Jaleh

    2009-01-01

    Although nonviral dendrimeric nanostructures have been widely used as gene delivery systems, key questions about target cells responses to these nanostructures are yet to be answered. Here, we report the responsiveness of A431 and A549 cells upon treatment with polypropylenimine diaminobutane (DAB) dendrimers nanosystems. Complexation of DAB dendrimers with DNA reduced the zeta potential of nanostructures, but increased their size. Fluorescence microscopy revealed high transfection efficiency in both cell lines treated with DAB dendrimers with induced cytotoxicity evidenced by MTT assay. The A549 cells showed upregulation of epidermal growth factor receptor (EGFR) and its downstream signalling biomolecule Akt kinase upon treatment with DAB dendrimers, while no changes were observed in A431 cells. Based on our findings, the biological impacts of these nanosystems appeared to be cell dependent. Thus, the biological responses of target cells should be taken into account when these nanostructures are used as gene delivery system.

  13. Rapamycin‐induced autophagy sensitizes A549 cells to radiation associated with DNA damage repair inhibition

    PubMed Central

    Li, Yong; Liu, Fen; Wang, Yong; Li, Donghai; Guo, Fei; Xu, Liyao; Zeng, Zhengguo; Zhong, Xiaojun

    2016-01-01

    Abstract Background Autophagy has been reported to increase in cancer cells after radiation. However, it remains unknown whether increased autophagy as a result of radiation affects DNA damage repair and sensitizes cancer cells. In this study, the radiosensitization effect of rapamycin, a mammalian target of rapamycin inhibitor that induces autophagy, on human lung adenocarcinoma A549 cells was investigated. Methods A549 cells were treated with different concentrations of rapamycin. Cell viability was evaluated by methyl‐thiazolyl‐tetrazolium assay. Survival fraction values of A549 cells after radiotherapy were detected by colony formation assay. Autophagosome was observed by a transmission electron microscope. Furthermore, Western blot was employed to examine alterations in autophagy protein LC3 and p62, DNA damage protein γ–H2AX, and DNA damage repair proteins Rad51, Ku70, and Ku80. Rad51, Ku70, and Ku80 messenger ribonucleic acid (mRNA) expression levels were examined by real‐time polymerase chain reaction. Results Rapamycin suppressed A549 cell proliferation in dose and time‐dependent manners. An inhibitory concentration (IC) 10 dose of rapamycin could induce autophagy in A549 cells. Rapamycin combined with radiation significantly decreased the colony forming ability of cells, compared with rapamycin or radiation alone. Rapamycin and radiation combined increased γ–H2AX expression levels and decreased Rad51 and Ku80 expression levels, compared with single regimens. However, rapamycin treatment did not induce any change in Rad51, Ku70, and Ku80 mRNA levels, regardless of radiation. Conclusions These findings indicate that increasing autophagy sensitizes lung cancer cells to radiation. PMID:27385978

  14. Assessing the survival of MRC5 and a549 cell lines upon exposure to pyruvic Acid, sodium citrate and sodium bicarbonate - biomed 2013.

    PubMed

    Farah, Ibrahim O; Lewis, Veshell L; Ayensu, Wellington K; Cameron, Joseph A

    2013-01-01

    Lung cancer is among the most prevalent and deadly cancers in United States. In general, cancer cells are known to exhibit higher rates of glycolysis in comparison to normal cells. In attempting to exploit this unique cancer-dependent ATP generation phenomenon, it was our hypothesis that upon exposure to organic inhibitors of glycolysis, cancer cells would not survive normally and that their growth and viability would be vastly decreased; essential glycolytic ATP production will be exhausted to the point of collapsing energy utilization. Furthermore, we hypothesize that no negative effect would be seen with exposures to organic inhibitors for normal lung cells. The human lung fibroblast MRC-5 and the human A549 alveolar epithelial cell lines were used as in vitro models of normal lung and lung cancers respectively. Using standard methods, both cell lines were maintained and exposed to pyruvic acid, sodium citrate and sodium bicarbonate reagents at concentration levels ranging from 31.3-2,000 µg/ml in 96 well plates in quadruplets and experiments repeated at least three times using MTT, and cell counting (T4 Cellometer) assays as well as phase-contrast photo-imaging for parallel morphological displays of any changes in the course of their vitality and metabolic activities. Our results indicate that exposure of both cell lines to these organics resulted in concentration dependent cell destruction/cell survival depending on the cell line exposed. Pyruvic acid, sodium citrate and sodium bicarbonate showed statistically significant (p<0.05) differential negative effects on the A549 cell line in comparison to its unexposed control as well as to their effects on the MRC-5 cell line, presenting a potential promise for their use as cancer biotherapeutics.

  15. Preliminary Proteomic Analysis of A549 Cells Infected with Avian Influenza Virus H7N9 and Influenza A Virus H1N1

    PubMed Central

    Ding, Xiaoman; Lu, Jiahai; Yu, Ruoxi; Wang, Xin; Wang, Ting; Dong, Fangyuan; Peng, Bo; Wu, Weihua; Liu, Hui; Geng, Yijie; Zhang, Renli; Ma, Hanwu; Cheng, Jinquan; Yu, Muhua; Fang, Shisong

    2016-01-01

    A newly emerged H7N9 influenza virus poses high risk to human beings. However, the pathogenic mechanism of the virus remains unclear. The temporal response of primary human alveolar adenocarcinoma epithelial cells (A549) infected with H7N9 influenza virus and H1N1 influenza A virus (H1N1, pdm09) were evaluated using the proteomics approaches (2D-DIGE combined with MALDI-TOF-MS/MS) at 24, 48 and 72 hours post of the infection (hpi). There were 11, 12 and 33 proteins with significant different expressions (P<0.05) at 24, 48 and 72hpi, especially F-actin-capping protein subunit alpha-1 (CAPZA1), Ornithine aminotransferase (OAT), Poly(rC)-binding protein 1 (PCBP1), Eukaryotic translation initiation factor 5A-1 (EIF5A) and Platelet-activating factor acetylhydrolaseⅠb subunit beta (PAFAH1B2) were validated by western-blot analysis. The functional analysis revealed that the differential proteins in A549 cells involved in regulating cytopathic effect. Among them, the down-regulation of CAPZA1, OAT, PCBP1, EIF5A are related to the death of cells infected by H7N9 influenza virus. This is the first time show that the down-regulation of PAFAH1B2 is related to the later clinical symptoms of patients infected by H7N9 influenza virus. These findings may improve our understanding of pathogenic mechanism of H7N9 influenza virus in proteomics. PMID:27223893

  16. Expression of Ia like (HLA-DR) antigens on human alveolar macrophages.

    PubMed Central

    Clerici, N; Reboiras, S; Fierro, C; Leyva-Cobian, F

    1984-01-01

    The distribution of Ia like (HLA-DR) antigens on human alveolar macrophages (HAM phi) has been investigated by indirect immunofluorescence staining of viable macrophages with a panel of monoclonal antibodies (MoAb) to common determinants of these antigens. HAM phi were characterized by non-specific esterase stain, plastic adherence, phagocytosis and IgG-Fc receptor expression. Ia like antigens were expressed in approximately 45-80% of HAM phi, being localized as patchy and lineal fluorescence along the membrane. Ia like expression was higher in macrophages from non-smoker subjects (P less than 0.025). No difference in Ia like antigen expression was found between adherent and non-adherent HAM phi subsets. Ia like positive HAM phi from both smoker and non-smoker subjects consisted of a large subpopulation of phagocytic cells (60-70%) and a smaller non-phagocytic subpopulation (20-25%). These subpopulations were also present in the Ia like negative HAM phi. The percentage of Ia like positive macrophages showed variable results depending on the MoAb used, suggesting that not all anti-Ia like antibodies recognize the same antigenic determinants. Moreover, lack of staining of one macrophage subset occurred with all MoAb tested, over a large range of concentrations. PMID:6209043

  17. Inhibition of proteasome activity is involved in cobalt-induced apoptosis of human alveolar macrophages.

    PubMed

    Araya, Jun; Maruyama, Muneharu; Inoue, Akira; Fujita, Tadashi; Kawahara, Junko; Sassa, Kazuhiko; Hayashi, Ryuji; Kawagishi, Yukio; Yamashita, Naohiro; Sugiyama, Eiji; Kobayashi, Masashi

    2002-10-01

    Inhalation of particulate cobalt has been known to induce interstitial lung disease. There is growing evidence that apoptosis plays a crucial role in physiological and pathological settings and that the ubiquitin-proteasome system is involved in the regulation of apoptosis. Cadmium, the same transitional heavy metal as cobalt, has been reported to accumulate ubiquitinated proteins in neuronal cells. On the basis of these findings, we hypothesized that cobalt would induce apoptosis in the lung by disturbance of the ubiquitin-proteasome pathway. To evaluate this, we exposed U-937 cells and human alveolar macrophages (AMs) to cobalt chloride (CoCl(2)) and examined their apoptosis by DNA fragmentation assay, 4',6-diamidino-2'-phenylindol dihydrochloride staining, and Western blot analysis. CoCl(2) induced apoptosis and accumulated ubiquitinated proteins. Exposure to CoCl(2) inhibited proteasome activity in U-937 cells. Cobalt-induced apoptosis was mediated via mitochondrial pathway because CoCl(2) released cytochrome c from mitochondria. These results suggest that cobalt-induced apoptosis of AMs may be one of the mechanisms for cobalt-induced lung injury and that the accumulation of ubiquitinated proteins might be involved in this apoptotic process.

  18. Culture of osteogenic cells from human alveolar bone: a useful source of alkaline phosphatase.

    PubMed

    Simão, Ana Maria S; Beloti, Marcio M; Rosa, Adalberto L; de Oliveira, Paulo T; Granjeiro, José Mauro; Pizauro, João M; Ciancaglini, Pietro

    2007-11-01

    The aim of this study was to obtain membrane-bound alkaline phosphatase from osteoblastic-like cells of human alveolar bone. Cells were obtained by enzymatic digestion and maintained in primary culture in osteogenic medium until subconfluence. First passage cells were cultured in the same medium and at 7, 14, and 21 days, total protein content, collagen content, and alkaline phosphatase activity were evaluated. Bone-like nodule formation was evaluated at 21 days. Cells in primary culture at day 14 were washed with Tris-HCl buffer, and used to extract the membrane-bound alkaline phosphatase. Cells expressed osteoblastic phenotype. The apparent optimum pH for PNPP hydrolysis by the enzyme was pH 10.0. This enzyme also hydrolyzes ATP, ADP, fructose-1-phosphate, fructose-6-phosphate, pyrophosphate and beta-glycerophosphate. PNPPase activity was reduced by typical inhibitors of alkaline phosphatase. SDS-PAGE of membrane fraction showed a single band with activity of approximately 120 kDa that could be solubilized by phospholipase C or Polidocanol.

  19. Effects of Electromagnetic Fields on Osteogenesis of Human Alveolar Bone-Derived Mesenchymal Stem Cells

    PubMed Central

    Lim, KiTaek; Hexiu, Jin; Kim, Jangho; Seonwoo, Hoon; Cho, Woo Jae; Choung, Pill-Hoon; Chung, Jong Hoon

    2013-01-01

    This study was performed to investigate the effects of extremely low frequency pulsed electromagnetic fields (ELF-PEMFs) on the proliferation and differentiation of human alveolar bone-derived mesenchymal stem cells (hABMSCs). Osteogenesis is a complex series of events involving the differentiation of mesenchymal stem cells to generate new bone. In this study, we examined not merely the effect of ELF-PEMFs on cell proliferation, alkaline phosphatase (ALP) activity, and mineralization of the extracellular matrix but vinculin, vimentin, and calmodulin (CaM) expressions in hABMSCs during osteogenic differentiation. Exposure of hABMSCs to ELF-PEMFs increased proliferation by 15% compared to untreated cells at day 5. In addition, exposure to ELF-PEMFs significantly increased ALP expression during the early stages of osteogenesis and substantially enhanced mineralization near the midpoint of osteogenesis within 2 weeks. ELF-PEMFs also increased vinculin, vimentin, and CaM expressions, compared to control. In particular, CaM indicated that ELF-PEMFs significantly altered the expression of osteogenesis-related genes. The results indicated that ELF-PEMFs could enhance early cell proliferation in hABMSCs-mediated osteogenesis and accelerate the osteogenesis. PMID:23862141

  20. Modulation of human alveolar macrophage properties by ozone exposure in vitro

    SciTech Connect

    Becker, S.; Madden, M.C.; Newman, S.L.; Devlin, R.B.; Koren, H.S.

    1991-01-01

    The study investigated changes in human alveolar macrophage (HAM) function after exposure in vitro to ozone (O3)(0.1-1.0 ppm for 2-4 hr). The functions studied reflect concern that O3 is detrimental to host defense mechanisms in the bronchoalveolar spaces. Exposure of HAM to O3 caused a concentration-dependent increase in release of prostaglandin E2(PGE2), an important modulator of inflammation, phagocytosis, and oxidative burst. Although phagocytosis of particulate immune complexes was decreased by O3, the authors found no change in the quantity of Fc receptors and complement receptors on the HAM surface. Superoxide (O2) production in response to phorbol ester was reduced after exposure of HAM to O3 while the basal O2 release in response to plastic adherence was not affected. Growth inhibition of the opportunistic yeast Cryptococcus neoformans by HAM was not affected by O3 exposure. The production of inflammatory mediators and immune modulators such as tumor necrosis factor-alpha, interleukin 1, and interleukin 6 were not induced by exposure to O3. However, compared to controls, O3-exposed HAM produced significantly lower levels of these cytokines when simulated with bacterial lipopolysaccharide (LPS).

  1. Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions

    PubMed Central

    Bordbar, Aarash; Lewis, Nathan E; Schellenberger, Jan; Palsson, Bernhard Ø; Jamshidi, Neema

    2010-01-01

    Metabolic coupling of Mycobacterium tuberculosis to its host is foundational to its pathogenesis. Computational genome-scale metabolic models have shown utility in integrating -omic as well as physiologic data for systemic, mechanistic analysis of metabolism. To date, integrative analysis of host–pathogen interactions using in silico mass-balanced, genome-scale models has not been performed. We, therefore, constructed a cell-specific alveolar macrophage model, iAB-AMØ-1410, from the global human metabolic reconstruction, Recon 1. The model successfully predicted experimentally verified ATP and nitric oxide production rates in macrophages. This model was then integrated with an M. tuberculosis H37Rv model, iNJ661, to build an integrated host–pathogen genome-scale reconstruction, iAB-AMØ-1410-Mt-661. The integrated host–pathogen network enables simulation of the metabolic changes during infection. The resulting reaction activity and gene essentiality targets of the integrated model represent an altered infectious state. High-throughput data from infected macrophages were mapped onto the host–pathogen network and were able to describe three distinct pathological states. Integrated host–pathogen reconstructions thus form a foundation upon which understanding the biology and pathophysiology of infections can be developed. PMID:20959820

  2. KL-6, a Human MUC1 Mucin, as a prognostic marker for diffuse alveolar hemorrhage syndrome.

    PubMed

    Kida, Yoshiko; Ohshimo, Shinichiro; Ota, Kohei; Tamura, Tomoko; Otani, Tadatsugu; Une, Kazunobu; Sadamori, Takuma; Iwasaki, Yasumasa; Bonella, Francesco; Hattori, Noboru; Hirohashi, Nobuyuki; Guzman, Josune; Costabel, Ulrich; Kohno, Nobuoki; Tanigawa, Koichi

    2012-12-17

    Diffuse alveolar hemorrhage syndrome is a life threatening condition with diverse etiologies. Sensitive prognostic markers for diffuse alveolar hemorrhage have not been well investigated. Serum KL-6 is a biomarker for various interstitial lung disease associated with disease activity and prognosis. The purpose of the present study was to evaluate the clinical utility of serum KL-6 level as a prognostic marker for diffuse alveolar hemorrhage. We retrospectively collected 41 consecutive patients clinically diagnosed as having diffuse alveolar hemorrhage who were admitted to the Intensive Care Unit of Hiroshima University Hospital between 2004 and 2011. Correlation between prognosis and age, sex, laboratory findings including serum KL-6, radiological findings, ventilatory modes or therapeutic regimens were evaluated. Baseline and peak serum KL-6 levels were significantly higher in non-survivors compared with survivors. An increase in KL-6 levels during the initial week was associated with a subsequent deterioration of the oxygenation index. Higher baseline KL-6 levels and higher peak KL-6 levels were strongly correlated with death. With a cut-off level of 700 U/mL for peak KL-6, the sensitivity, specificity and accuracy for non-survival were 75%, 85% and 78%, respectively. In the multivariate analysis, only the peak KL-6 level ≥ 700 U/ml was an independent poor prognostic factor for diffuse alveolar hemorrhage. Peak serum KL-6 level ≥ 700 U/ml may become a clinically useful marker of poor prognosis for diffuse alveolar hemorrhage.

  3. An epidemiological and ecological study of human alveolar echinococcosis transmission in south Gansu, China.

    PubMed

    Craig, P S; Giraudoux, P; Shi, D; Bartholomot, B; Barnish, G; Delattre, P; Quere, J P; Harraga, S; Bao, G; Wang, Y; Lu, F; Ito, A; Vuitton, D A

    2000-11-02

    Human alveolar echinococcosis (AE) is usually a rare, highly pathogenic zoonotic disease, transmitted across the northern hemisphere between fox and rodent hosts. In China the first cases were described in 1965; however very few epidemiological studies have been undertaken since. Following identification in 1991 of a serious focus of human AE in south Gansu province, detailed village-based community and ecological studies were carried out between 1994 and 1997. Hepatic ultrasound mass screening with serological testing (five tests) identified 84/2482 new AE cases (3%). An overall prevalence of 4.1% (135/3331) was recorded for the area when previous cases were also included. Based on a seropositive result only, without an ultrasound scan indication, no additional AE cases were identified. Of the evolutive AE cases, 96% were seropositive in at least one test, while up 15-20% of individuals who exhibited hepatic calcified lesions and 12-15% exhibiting hepatic nodular lesions were seropositive for specific Em2 or Em18 antibodies. Village (n=31) human AE prevalence rates varied from 0 to 15.8%. Questionnaire analysis indicated that total number of dogs owned over a period was a risk factor (P<0.006), but not a history of red fox hunting (P>0.6). Rodent ecology studies revealed an association between density indices of voles (Microtus limnophilus) and village AE prevalence rates, on the one hand, and village landscape characterised by a ratio of scrub/grassland to total area above 50% (P<0.005). Long-term transmission of Echinococcus multilocularis and risk of zoonotic infection of south Gansu farmers may be related ultimately to a process of deforestation driven by agriculture. This in turn probably results in creation of optimal peri-domestic habitats for rodents that serve as intermediate host species (such as M. limnophilus) and subsequent development of a peri-domestic cycle involving dogs.

  4. Lung endothelial cells strengthen, but brain endothelial cells weaken barrier properties of a human alveolar epithelium cell culture model.

    PubMed

    Neuhaus, Winfried; Samwer, Fabian; Kunzmann, Steffen; Muellenbach, Ralf M; Wirth, Michael; Speer, Christian P; Roewer, Norbert; Förster, Carola Y

    2012-11-01

    The blood-air barrier in the lung consists of the alveolar epithelium, the underlying capillary endothelium, their basement membranes and the interstitial space between the cell layers. Little is known about the interactions between the alveolar and the blood compartment. The aim of the present study was to gain first insights into the possible interplay between these two neighbored cell layers. We established an in vitro Transwell model of the alveolar epithelium based on human cell line H441 and investigated the influence of conditioned medium obtained from human lung endothelial cell line HPMEC-ST1.6R on the barrier properties of the H441 layers. As control for tissue specificity H441 layers were exposed to conditioned medium from human brain endothelial cell line hCMEC/D3. Addition of dexamethasone was necessary to obtain stable H441 cell layers. Moreover, dexamethasone increased expression of cell type I markers (caveolin-1, RAGE) and cell type II marker SP-B, whereas decreased the transepithelial electrical resistance (TEER) in a concentration dependent manner. Soluble factors obtained from the lung endothelial cell line increased the barrier significantly proven by TEER values and fluorescein permeability on the functional level and by the differential expression of tight junctional proteins on the molecular level. In contrast to this, soluble factors derived from brain endothelial cells weakened the barrier significantly. In conclusion, soluble factors from lung endothelial cells can strengthen the alveolar epithelium barrier in vitro, which suggests communication between endothelial and epithelial cells regulating the integrity of the blood-air barrier.

  5. Microvesicles Derived From Human Mesenchymal Stem Cells Restore Alveolar Fluid Clearance in Human Lungs Rejected for Transplantation.

    PubMed

    Gennai, S; Monsel, A; Hao, Q; Park, J; Matthay, M A; Lee, J W

    2015-09-01

    The need to increase the donor pool for lung transplantation is a major public health issue. We previously found that administration of mesenchymal stem cells "rehabilitated" marginal donor lungs rejected for transplantation using ex vivo lung perfusion. However, the use of stem cells has some inherent limitation such as the potential for tumor formation. In the current study, we hypothesized that microvesicles, small anuclear membrane fragments constitutively released from mesenchymal stem cells, may be a good alternative to using stem cells. Using our well established ex vivo lung perfusion model, microvesicles derived from human mesenchymal stem cells increased alveolar fluid clearance (i.e. ability to absorb pulmonary edema fluid) in a dose-dependent manner, decreased lung weight gain following perfusion and ventilation, and improved airway and hemodynamic parameters compared to perfusion alone. Microvesicles derived from normal human lung fibroblasts as a control had no effect. Co-administration of microvesicles with anti-CD44 antibody attenuated these effects, suggesting a key role of the CD44 receptor in the internalization of the microvesicles into the injured host cell and its effect. In summary, microvesicles derived from human mesenchymal stem cells were as effective as the parent mesenchymal stem cells in rehabilitating marginal donor human lungs. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  6. Properties and inflammatory effects of various size fractions of ambient particulate matter from Beijing on A549 and J774A.1 cells.

    PubMed

    Wang, Bin; Li, Kexin; Jin, Wenjie; Lu, Yan; Zhang, Yuzhong; Shen, Guofeng; Wang, Rong; Shen, Huizhong; Li, Wei; Huang, Ye; Zhang, Yanyan; Wang, Xilong; Li, Xiqing; Liu, Wenxin; Cao, Hongying; Tao, Shu

    2013-09-17

    Particulate matter (PM) is a major ambient air pollutant causing millions of premature deaths each year in China. The toxicity of PM is property and size dependent. In this study, ambient PM samples collected in Beijing were divided into five size fractions with nominal aerodynamic ranges of <0.40, 0.40-1.1, 1.1-3.3, 3.3-5.8, and 5.8-10 μm. Individual size fractions were characterized for a number of properties including particle size distribution, specific surface area, zeta potential, dithiothreitol (DTT)-based redox ability, and contents of water-soluble organic carbon (WSOC), polycyclic aromatic hydrocarbons (PAHs), selected metals, and endotoxin. Human adenocarcinomic alveolar epithelial cell line A549 and small mouse monocyte-macrophage cell line J774A.1 were tested for their relative viabilities and inflammatory effects (interleukine-8 for A549 and tumor necrosis factor-α for J774A.1) after exposure to PM of various sizes. It was found that PM specific area was positively correlated with WSOC, high molecular weight PAHs, DTT-based redox ability, negatively correlated with surface zeta potential and lithophile metals. Several trace metals from combustion sources were enriched in intermediate size fractions. For both endotoxin concentrations of the PM and PM induced inflammatory cytokine expressions by the two cell lines, there were general increasing trends as PM size increased with an exception of the finest fraction, which induced the highest inflammatory effects. It seems that the size dependence of cytokine expression was associated with a number of properties including endotoxin content, zeta potential, settling velocity, metal content, and DTT-based redox ability.

  7. FGFR3 silencing by siRNA inhibits invasion of A549 cells

    PubMed Central

    Li, Yuhua; Liu, Xiguang; Zhang, Hongjun; Jiang, Tao; Xiao, Wenjing; Zhao, Shufen; Yu, Xiaoyun; Han, Fanjie

    2016-01-01

    The present study identified that fibroblast growth factor receptor 3 (FGFR3) was significantly upregulated in bone metastasis of lung adenocarcinoma. RNA interference (RNAi) is a powerful approach for treating a wide range of human diseases, including cancer, through downregulating the expression of selected genes. In the present study, the invasiveness of A549 cells cultured in vitro was altered by small interfering (si)RNA targeting FGFR3, and the regulatory effect of silencing FGFR3 on the expression levels of E-cadherin and matrix metalloproteinase (MMP)9 was investigated. Human lung adenocarcinoma A549 cells were transfected with synthetic specific siRNAs targeting a fragment of the FGFR3 gene (namely, siRNA-855, siRNA-1447 and siRNA-2076) or with negative control (NC) siRNA. Cells were divided into five groups (A, siRNA-855 group; B, siRNA-1447 group; C, siRNA-2076 group; D, NC-siRNA group; and E, blank control group). The effect of the above siRNAs targeting FGFR3 on the invasion capacity of A549 cells was detected by Transwell assay. siRNAs against FGFR3 were transfected into A549 cells with by Lipofectamine® 2000, and the expression levels of FGFR3, E-cadherin and MMP9 were measured by reverse transcription-quantitative polymerase chain reaction and western blot assay. The experimental findings indicated that the expression levels of FGFR3 and MMP9 were significantly reduced in the siRNA-FGFR3-transfected groups (A-C groups), compared with those in the D and E groups (P<0.01). In addition, the expression levels of E-cadherin were markedly elevated in the A-C groups, compared with those in the D and E groups (P<0.01). There was no significant difference in E-cadherin expression between the A-C groups, or between the D and E groups (P>0.05). These results indicated that siRNA-FGFR3 was able to decrease the invasiveness of A549 cells, inhibit the expression of MMP9 and increase the expression of E-cadherin by downregulating the expression of FGFR3. Taken

  8. FGFR4 blockade exerts distinct anti-tumorigenic effects in human embryonal versus alveolar rhabdomyosarcoma

    PubMed Central

    Crose, Lisa E.S.; Etheridge, Katherine T.; Chen, Candy; Belyea, Brian; Talbot, Lindsay J.; Bentley, Rex C.; Linardic, Corinne M.

    2013-01-01

    Purpose Rhabdomyosarcoma (RMS) is a malignancy with features of skeletal muscle, and the most common soft-tissue sarcoma of childhood. Survival for high risk groups is ~30% at 5 years and there are no durable therapies tailored to its genetic aberrations. During genetic modeling of the common RMS variants, embryonal (eRMS) and alveolar (aRMS), we noted that the RTK FGFR4 was upregulated as an early event in aRMS. Herein, we evaluated the expression of FGFR4 in eRMS compared to aRMS, and whether FGFR4 had similar or distinct roles in their tumorigenesis. Experimental Design Human RMS cell lines and tumor tissue were analyzed for FGFR4 expression by immunoblot and IHC. Genetic and pharmacologic loss-of-function of FGFR4 using virally-transduced shRNAs and the FGFR small molecule inhibitor PD173074, respectively, were used to study the role of FGFR4 in RMS cell lines in vitro and xenografts in vivo. Expression of the anti-apoptotic protein BCL2L1 was also examined. Results FGFR4 is expressed in both RMS subtypes, but protein expression is higher in aRMS. The signature aRMS gene fusion product, PAX3-FOXO1, induced FGFR4 expression in primary human myoblasts. In eRMS, FGFR4 loss-of-function reduced cell proliferation in vitro and xenograft formation in vivo. In aRMS, it diminished cell survival in vitro. In myoblasts and aRMS, FGFR4 was necessary and sufficient for expression of BCL2L1, while in eRMS, this induction was not observed, suggesting differential FGFR4 signaling. Conclusion These studies define dichotomous roles for FGFR4 in RMS subtypes, and support further study of FGFR4 as a therapeutic target. PMID:22648271

  9. Morphometric Characterization of Rat and Human Alveolar Macrophage Cell Models and their Response to Amiodarone using High Content Image Analysis.

    PubMed

    Hoffman, Ewelina; Patel, Aateka; Ball, Doug; Klapwijk, Jan; Millar, Val; Kumar, Abhinav; Martin, Abigail; Mahendran, Rhamiya; Dailey, Lea Ann; Forbes, Ben; Hutter, Victoria

    2017-05-24

    Progress to the clinic may be delayed or prevented when vacuolated or "foamy" alveolar macrophages are observed during non-clinical inhalation toxicology assessment. The first step in developing methods to study this response in vitro is to characterize macrophage cell lines and their response to drug exposures. Human (U937) and rat (NR8383) cell lines and primary rat alveolar macrophages obtained by bronchoalveolar lavage were characterized using high content fluorescence imaging analysis quantification of cell viability, morphometry, and phospholipid and neutral lipid accumulation. Cell health, morphology and lipid content were comparable (p < 0.05) for both cell lines and the primary macrophages in terms of vacuole number, size and lipid content. Responses to amiodarone, a known inducer of phospholipidosis, required analysis of shifts in cell population profiles (the proportion of cells with elevated vacuolation or lipid content) rather than average population data which was insensitive to the changes observed. A high content image analysis assay was developed and used to provide detailed morphological characterization of rat and human alveolar-like macrophages and their response to a phospholipidosis-inducing agent. This provides a basis for development of assays to predict or understand macrophage vacuolation following inhaled drug exposure.

  10. Genomic organization of the human PAX 3 gene: DNA sequence analysis of the region disrupted in alveolar rhabdomyosarcoma

    SciTech Connect

    Macina, R.A.; Galili, N.; Riethman, H.C.

    1995-03-01

    Mutations in the human PAX3 gene have previously been associated with two distinct diseases, Waardenburg syndrome and alveolar rhabdomyosarcoma. In this report the authors establish that the normal human PAX3 gene is encoded by 8 exons. Intron-exon boundary sequences were obtained for PAX 3 exons 5, 6, 7, and 8 and together with previous work provide the complete genomic sequence organization for PAX3. Difficulties in obtaining overlapping genomic clone coverage of PAX3 were circumvented in part by RARE cleavage mapping, which showed that the entire PAX3 gene spans 100 kb of chromosome 2. Sequence analysis of the last intron of PAX3, which contains the previously mapped t(2;13)(q35;q14) translocation breakpoints of alveolar rhabdomyosarcoma, revealed the presence of a pair of inverted Alu repeats and a pair of inverted (GT){sub n}-rich microsatellite repeats with in a 5k-kb region. This work establishes the complete structure of PAX 3 and will permit high-resolution analyses of this locus for mutations associated with Waardenburg syndrome, alveolar rhabdomyosarcoma, and other phenotypes for which PAX3 may be a candidate locus.31 refs., 5 figs., 1 tab.

  11. Urban particle-induced apoptosis and phenotype shifts in human alveolar macrophages.

    PubMed Central

    Holian, A; Hamilton, R F; Morandi, M T; Brown, S D; Li, L

    1998-01-01

    Epidemiological studies report a small but positive association between short-term increases in airborne particulate matter and small increases in morbidity and mortality from respiratory and cardiovascular disease in urban areas. However, the lack of a mechanistic explanation to link particle exposure and human health effects makes it difficult to validate the human health effects. The present study tested the hypothesis that urban particles could cause apoptosis of human alveolar macrophages(AM) and a shift of their phenotypes to a higher immune active state, which would provide a mechanism to explain an inflammatory response. Freshly isolated human AM were incubated for 24 hr with urban particles (#1648 and #1649), Mount Saint Helen's ash (MSH), and residual oil fly ash (ROFA).Cell viability was assessed by trypan blue exclusion and apoptosis was demonstrated by morphology, cell death ELISA, and DNA ladder formation. Additionally, AM were characterized according to RFD1(+) (immune stimulatory macrophages) and RFD1(+)7(+) (suppressor macrophages) phenotypes by flow cytometry. ROFA particles caused AM necrosis at concentrations as low as 10 microg/ml, urban particles had no effect except at 200 microg/ml, and MSH had no effect at 200 microg/ml. ROFA (25 microg/ml) and particles #1648 or #1649 (100 microg/ml) caused apoptosis of AM by all three criteria, but 200 microg/ml MSH had no effect. Finally, 25 microg/ml ROFA and 100 microg/ml particles #1648 or #1649 up regulated the expression of the RFD1(+) AM phenotype, while only ROFA decreased the RFD1(+)7(+) phenotype. Consequently, ROFA and urban particles can induce apoptosis of human AM and increase the ratio of AM phenotypes toward a higher immune active state (i.e., increased RFD1(+):RFD1(+)7(+) ratio). Ifurban particles cause similar changes in vivo, this could result in lung inflammation and possible increased pulmonary and cardiovascular disease. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID

  12. A computer model for the simulation of nanoparticle deposition in the alveolar structures of the human lungs

    PubMed Central

    2015-01-01

    Background According to epidemiological and experimental studies, inhalation of nanoparticles is commonly believed as a main trigger for several pulmonary dysfunctions and lung diseases. Concerning the transport and deposition of such nano-scale particles in the different structures of the human lungs, some essential questions are still in need of a clarification. Therefore, main objective of the study was the simulation of nanoparticle deposition in the alveolar region of the human respiratory tract (HRT). Methods Respective factors describing the aerodynamic behavior of spherical and non-spherical particles in the inhaled air stream (i.e., Cunningham slip correction factors, dynamic shape factors, equivalent-volume diameters, aerodynamic diameters) were computed. Alveolar deposition of diverse nanomaterials according to several known mechanisms, among which Brownian diffusion and sedimentation play a superior role, was approximated by the use of empirical and analytical formulae. Deposition calculations were conducted with a currently developed program, termed NANODEP, which allows the variation of numerous input parameters with regard to particle geometry, lung morphometry, and aerosol inhalation. Results Generally, alveolar deposition of nanoparticles concerned for this study varies between 0.1% and 12.4% during sitting breathing and between 2.0% and 20.1% during heavy-exercise breathing. Prolate particles (e.g., nanotubes) exhibit a significant increase in deposition, when their aspect ratio is enhanced. In contrast, deposition of oblate particles (e.g., nanoplatelets) is remarkably declined with any reduction of the aspect ratio. Conclusions The study clearly demonstrates that alveolar deposition of nanoparticles represents a topic certainly being of superior interest for physicists and respiratory physicians in future. PMID:26697441

  13. A computer model for the simulation of nanoparticle deposition in the alveolar structures of the human lungs.

    PubMed

    Sturm, Robert

    2015-11-01

    According to epidemiological and experimental studies, inhalation of nanoparticles is commonly believed as a main trigger for several pulmonary dysfunctions and lung diseases. Concerning the transport and deposition of such nano-scale particles in the different structures of the human lungs, some essential questions are still in need of a clarification. Therefore, main objective of the study was the simulation of nanoparticle deposition in the alveolar region of the human respiratory tract (HRT). Respective factors describing the aerodynamic behavior of spherical and non-spherical particles in the inhaled air stream (i.e., Cunningham slip correction factors, dynamic shape factors, equivalent-volume diameters, aerodynamic diameters) were computed. Alveolar deposition of diverse nanomaterials according to several known mechanisms, among which Brownian diffusion and sedimentation play a superior role, was approximated by the use of empirical and analytical formulae. Deposition calculations were conducted with a currently developed program, termed NANODEP, which allows the variation of numerous input parameters with regard to particle geometry, lung morphometry, and aerosol inhalation. Generally, alveolar deposition of nanoparticles concerned for this study varies between 0.1% and 12.4% during sitting breathing and between 2.0% and 20.1% during heavy-exercise breathing. Prolate particles (e.g., nanotubes) exhibit a significant increase in deposition, when their aspect ratio is enhanced. In contrast, deposition of oblate particles (e.g., nanoplatelets) is remarkably declined with any reduction of the aspect ratio. The study clearly demonstrates that alveolar deposition of nanoparticles represents a topic certainly being of superior interest for physicists and respiratory physicians in future.

  14. Role of Alveolar β2-Adrenergic Receptors on Lung Fluid Clearance and Exercise Ventilation in Healthy Humans

    PubMed Central

    Paolillo, Stefania; Pellegrino, Riccardo; Salvioni, Elisabetta; Contini, Mauro; Iorio, Annamaria; Bovis, Francesca; Antonelli, Andrea; Torchio, Roberto; Gulotta, Carlo; Locatelli, Alessandro; Agostoni, Piergiuseppe

    2013-01-01

    Background In experimental conditions alveolar fluid clearance is controlled by alveolar β2-adrenergic receptors. We hypothesized that if this occurs in humans, then non-selective β-blockers should reduce the membrane diffusing capacity (DM), an index of lung interstitial fluid homeostasis. Moreover, we wondered whether this effect is potentiated by saline solution infusion, an intervention expected to cause interstitial lung edema. Since fluid retention within the lungs might trigger excessive ventilation during exercise, we also hypothesized that after the β2-blockade ventilation increased in excess to CO2 output and this was further enhanced by interstitial edema. Methods and Results 22 healthy males took part in the study. On day 1, spirometry, lung diffusion for carbon monoxide (DLCO) including its subcomponents DM and capillary volume (VCap), and cardiopulmonary exercise test were performed. On day 2, these tests were repeated after rapid 25 ml/kg saline infusion. Then, in random order 11 subjects were assigned to oral treatment with Carvedilol (CARV) and 11 to Bisoprolol (BISOPR). When heart rate fell at least by 10 beats·min−1, the tests were repeated before (day 3) and after saline infusion (day 4). CARV but not BISOPR, decreased DM (−13±7%, p = 0.001) and increased VCap (+20±22%, p = 0.016) and VE/VCO2 slope (+12±8%, p<0.01). These changes further increased after saline: −18±13% for DM (p<0.01), +44±28% for VCap (p<0.001), and +20±10% for VE/VCO2 slope (p<0.001). Conclusions These findings support the hypothesis that in humans in vivo the β2-alveolar receptors contribute to control alveolar fluid clearance and that interstitial lung fluid may trigger exercise hyperventilation. PMID:23613962

  15. Upregulation of AQP3 and AQP5 induced by dexamethasone and ambroxol in A549 cells.

    PubMed

    Ben, Yong; Chen, Jie; Zhu, Rong; Gao, Lei; Bai, Chunxue

    2008-04-30

    Aquaporins (AQPs) are membrane channel proteins that play roles in the regulation of water permeability in many tissues. AQP1 and AQP5 expressed in lung provide the principal route for osmotically driven water transport. In the airways, AQP3 and AQP4 facilitate water transport. Dexamethasone and ambroxol are often used to treat patients with pulmonary diseases accompanied by airway hypersecretion. The role of AQPs in these effective treatments has not been addressed. In this study, we analyzed the expression of AQPs in a human airway epithelial cell line (A549 cells) and showed that AQP3 and 5, but not AQP1 and 4, were expressed in A549 cells. Both dexamethasone and ambroxol stimulated the expression of AQP3 and 5 at the mRNA and protein levels. The data suggest potential roles of AQP3 and 5 in the regulation of airway hypersecretion, perhaps ultimately providing a target for treating such diseases.

  16. A proposed alveolar model for adult human lungs: the regular dodecahedron.

    PubMed

    Linhartová, A; Caldwell, W; Anderson, A E

    1986-03-01

    In an endeavor to delineate an alveolar configuration that would reasonably mirror the natural state, polygonal shapes of normal alveoli were tabulated in histological sections from inflation-fixed specimens of 16 men aged 16-48 years. The resulting alveolar population varied from three- to ten-sided polygons with a preponderance of tetragons, pentagons, and hexagons. These observations were compared with the possible combinations of polygonal sections through various polyhedral models proposed by other workers and the five classical regular polyhedrons. The potential types of sections through the regular dodecahedron, i.e., a twelve-sided shape with faces consisting of pentagons, seemed to fit best with present findings, and this is suggested as an idealized configuration that might be useful in various geometric determinations, e.g., estimates of alveolar surface area and volume.

  17. Toxicity of Lunar and Martian Dust Simulants to Alveolar Macrophages Isolated from Human Volunteers

    NASA Technical Reports Server (NTRS)

    Latch, Judith N.; Hamilton, Raymond F., Jr.; Holian, Andrij; James, John T.

    2007-01-01

    NASA is planning to build a habitat on the Moon and use the Moon as a stepping stone to Mars. JSC-1, an Arizona volcanic ash that has mineral properties similar to lunar soil, is used to produce lunar environments for instrument and equipment testing. NASA is concerned about potential health risks to workers exposed to these fine dusts in test facilities. The potential toxicity of JSC-1 and a Martian soil simulant (JSC-Mars-1, a Hawaiian volcanic ash) was evaluated using human alveolar macrophages (HAM) isolated from volunteers; titanium dioxide and quartz were used as reference dusts. This investigation is a prerequisite to studies of actual lunar dust. HAM were treated in vitro with these test dusts for 24 h; assays of cell viability and apoptosis showed that JSC-1 and TiO2 were comparable, and more toxic than saline control, but less toxic than quartz. HAM treated with JSC-1 or JSC-Mars 1 showed a dose-dependent increase in cytotoxicity. To elucidate the mechanism by which these dusts induce apoptosis, we investigated the involvement of the scavenger receptor (SR). Pretreatment of cells with polyinosinic acid, an SR blocker, significantly inhibited both apoptosis and necrosis. These results suggest HAM cytotoxicity may be initiated by interaction of the dust particles with SR. Besides being cytotoxic, silica is known to induce shifting of HAM phenotypes to an immune active status. The immunomodulatory effect of the simulants was investigated. Treatment of HAM with either simulant caused preferential damage to the suppressor macrophage subpopulation, leading to a net increase in the ratio of activator (RFD1+) to suppressor (RFD1+7+) macrophages, a result similar to treatment with silica. It is recommended that appropriate precautions be used to minimize exposure to these fine dusts in large-scale engineering applications.

  18. Toxicity of lunar and martian dust simulants to alveolar macrophages isolated from human volunteers.

    PubMed

    Latch, Judith N; Hamilton, Raymond F; Holian, Andrij; James, John T; Lam, Chiu-wing

    2008-01-01

    NASA is planning to build a habitat on the Moon and use the Moon as a stepping stone to Mars. JSC-1, an Arizona volcanic ash that has mineral properties similar to those of lunar soil, is used to produce lunar environments for instrument and equipment testing. NASA is concerned about potential health risks to workers exposed to these fine dusts in test facilities. The potential toxicity of JSC-1 lunar soil simulant and a Martian soil simulant (JSC-Mars-1, a Hawaiian volcanic ash) was evaluated using human alveolar macrophages (HAM) isolated from volunteers; titanium dioxide and quartz were used as reference dusts. This investigation is a prerequisite to studies of actual lunar dust. HAM were treated in vitro with these test dusts for 24 h; assays of cell viability and apoptosis showed that JSC-1 and TiO2 were comparable, and more toxic than saline control but less toxic than quartz. HAM treated with JSC-1 or JSC-Mars 1 showed a dose-dependent increase in cytotoxicity. To elucidate the mechanism by which these dusts induce apoptosis, we investigated the involvement of scavenger receptors (SR). Pretreatment of cells with polyinosinic acid, an SR blocker, significantly inhibited both apoptosis and necrosis. These results suggest HAM cytotoxicity may be initiated by interaction of the dust particles with SR. Besides being cytotoxic, silica is known to induce shifting of HAM phenotypes to an immune active status. The immunomodulatory effect of the dust simulants was investigated. Treatment of HAM with either simulant caused preferential damage to the suppressor macrophage subpopulation, leading to a net increase in the ratio of activator (RFD1+) to suppressor (RFD1+7+) macrophages, an effect similar to that of treatment with silica. It is recommended that appropriate precautions be used to minimize exposure to these fine dusts in large-scale engineering applications.

  19. Lipocortin 1 mediates dexamethasone-induced growth arrest of the A549 lung adenocarcinoma cell line.

    PubMed Central

    Croxtall, J D; Flower, R J

    1992-01-01

    The synthetic glucocorticoid dexamethasone (1 microM to 1 pM) strongly (maximum greater than 80%) inhibits proliferation of the A549 human lung adenocarcinoma line (EC50 greater than 1 nM) and leads to the appearance, or a further increase (approximately 3-fold) in the expression on the cell surface, of the calcium and phospholipid binding protein lipocortin (annexin) 1. Both these effects, which are shared by hydrocortisone (1 microM) but not by progesterone or aldosterone (1 microM), are inhibited by the antiglucocorticoids RU38486 and RU43044 (1 microM). The nonsteroidal antiinflammatory drugs indomethacin (1 microM) and naproxen (10 microM) and human recombinant lipocortin 1 (0.05-5.0 micrograms/ml) also produce growth arrest in this cell line. During proliferation A549 cells spontaneously release prostaglandin E2 [10-20 ng (28-57 pmol) per ml per 5-day period] into the growth medium. In concentrations that cause growth-arrest, dexamethasone, indomethacin, and lipocortin 1 abolish the generation of this eicosanoid by A549 cells. Prostaglandin E2 itself (0.01-1 pM) stimulates cell growth and partially reverses (approximately 50%) the inhibition of growth caused by dexamethasone and indomethacin. Addition of the neutralizing anti-lipocortin 1 monoclonal antibody 1A (5 micrograms/ml), but not the nonneutralizing anti-lipocortin monoclonal antibody 1B, substantially reversed (greater than 80%) the inhibitory activity of dexamethasone on both growth and prostaglandin E2 synthesis. The generation of prostaglandin E2 by A549 cells seems to be an important regulator of cell proliferation in vitro and the dexamethasone-induced suppression of proliferation in this model is attributable to eicosanoid inhibition caused by lipocortin 1. Images PMID:1533045

  20. Mesenchymal Stromal Cells are Readily Recoverable from Lung Tissue, but not the Alveolar Space, in Healthy Humans.

    PubMed

    Sinclair, K A; Yerkovich, S T; Chen, T; McQualter, J L; Hopkins, P M-A; Wells, C A; Chambers, D C

    2016-10-01

    Stromal support is critical for lung homeostasis and the maintenance of an effective epithelial barrier. Despite this, previous studies have found a positive association between the number of mesenchymal stromal cells (MSCs) isolated from the alveolar compartment and human lung diseases associated with epithelial dysfunction. We hypothesised that bronchoalveolar lavage derived MSCs (BAL-MSCs) are dysfunctional and distinct from resident lung tissue MSCs (LT-MSCs). In this study, we comprehensively interrogated the phenotype and transcriptome of human BAL-MSCs and LT-MSCs. We found that MSCs were rarely recoverable from the alveolar space in healthy humans, but could be readily isolated from lung transplant recipients by bronchoalveolar lavage. BAL-MSCs exhibited a CD90(Hi) , CD73(Hi) , CD45(Neg) , CD105(Lo) immunophenotype and were bipotent, lacking adipogenic potential. In contrast, MSCs were readily recoverable from healthy human lung tissue and were CD90(Hi or Lo) , CD73(Hi) , CD45(Neg) , CD105(Int) and had full tri-lineage potential. Transcriptional profiling of the two populations confirmed their status as bona fide MSCs and revealed a high degree of similarity between each other and the archetypal bone-marrow MSC. 105 genes were differentially expressed; 76 of which were increased in BAL-MSCs including genes involved in fibroblast activation, extracellular matrix deposition and tissue remodelling. Finally, we found the fibroblast markers collagen 1A1 and α-smooth muscle actin were increased in BAL-MSCs. Our data suggests that in healthy humans, lung MSCs reside within the tissue, but in disease can differentiate to acquire a profibrotic phenotype and migrate from their in-tissue niche into the alveolar space. Stem Cells 2016;34:2548-2558.

  1. Comparative analysis of microRNA expression profiles between A549, A549/DDP and their respective exosomes.

    PubMed

    Qin, Xiaobing; Yu, Shaorong; Xu, Xiaoyue; Shen, Bo; Feng, Jifeng

    2017-06-27

    Exosomes were reported to transport bioactive molecules and influence the biology behavior of recipient cells. In order to study the role of exosomal microRNAs in the mechanism of cisplatin resistance to lung cancer cells, we analyzed the expression profiles of microRNAs in A549, A549/DDP cells and their exosomes by microarray. The results showed that a certain proportion of microRNAs were co-expressed in the cells and exosomes. Linear regression analysis showed that the expression of microRNAs in A549 and A549/DDP cells were strongly correlated with those in their respective exosomes. The expression level of 5 microRNAs (miR-197-5p, miR-4443, miR-642a-3p, miR-27b-3p and miR-100-5p) with the most differential expression were verified by qRT-PCR. The results were consistent with those of the microarray. Target gene prediction and pathway analysis discovered that the microRNAs in the intersections may participate in drug resistance. And the prediction of their association with diseases found that most of these microRNAs was associated with lung cancer. We could draw a preliminary conclusion that microRNAs in exosomes may be involved in the drug resistance of lung cancer cells to cisplatin.

  2. Comparative analysis of microRNA expression profiles between A549, A549/DDP and their respective exosomes

    PubMed Central

    Xu, Xiaoyue; Shen, Bo; Feng, Jifeng

    2017-01-01

    Exosomes were reported to transport bioactive molecules and influence the biology behavior of recipient cells. In order to study the role of exosomal microRNAs in the mechanism of cisplatin resistance to lung cancer cells, we analyzed the expression profiles of microRNAs in A549, A549/DDP cells and their exosomes by microarray. The results showed that a certain proportion of microRNAs were co-expressed in the cells and exosomes. Linear regression analysis showed that the expression of microRNAs in A549 and A549/DDP cells were strongly correlated with those in their respective exosomes. The expression level of 5 microRNAs (miR-197-5p, miR-4443, miR-642a-3p, miR-27b-3p and miR-100-5p) with the most differential expression were verified by qRT-PCR. The results were consistent with those of the microarray. Target gene prediction and pathway analysis discovered that the microRNAs in the intersections may participate in drug resistance. And the prediction of their association with diseases found that most of these microRNAs was associated with lung cancer. We could draw a preliminary conclusion that microRNAs in exosomes may be involved in the drug resistance of lung cancer cells to cisplatin. PMID:28178672

  3. Fine ambient particles induce oxidative stress and metal binding genes in human alveolar machrophages

    EPA Science Inventory

    Exposure to ambient pollutant particles (APP) increased respiratory morbidity and mortality. The alveolar macrophages (AMs) are one cell type in the lung directly exposed to APP. Upon contact with APP, AMs are activated and produce reactive oxygen species, but the scope ofthis ox...

  4. Fine ambient particles induce oxidative stress and metal binding genes in human alveolar machrophages

    EPA Science Inventory

    Exposure to ambient pollutant particles (APP) increased respiratory morbidity and mortality. The alveolar macrophages (AMs) are one cell type in the lung directly exposed to APP. Upon contact with APP, AMs are activated and produce reactive oxygen species, but the scope ofthis ox...

  5. DIFFERENTIAL GENE EXPRESSION BY CHAPEL HILL FINE PARTICLES IN HUMAN ALVEOLAR MACHROPHAGES

    EPA Science Inventory

    Pollutant particles (PM) induce systemic and lung inflammation. Alveolar macrophages (AM) are one of the lung cells directly exposed to PM that may initiate these responses. In this study, we determined the gene expression profile induced by Chapel Hill fine particles (PM2.5) in ...

  6. DIFFERENTIAL GENE EXPRESSION BY CHAPEL HILL FINE PARTICLES IN HUMAN ALVEOLAR MACHROPHAGES

    EPA Science Inventory

    Pollutant particles (PM) induce systemic and lung inflammation. Alveolar macrophages (AM) are one of the lung cells directly exposed to PM that may initiate these responses. In this study, we determined the gene expression profile induced by Chapel Hill fine particles (PM2.5) in ...

  7. Phagocytic Dysfunction of Human Alveolar Macrophages and Severity of Chronic Obstructive Pulmonary Disease

    PubMed Central

    Berenson, Charles S.; Kruzel, Ragina L.; Eberhardt, Ellana; Sethi, Sanjay

    2013-01-01

    Background. Alveolar macrophages in chronic obstructive pulmonary disease (COPD) have fundamental impairment of phagocytosis for nontypeable Haemophilus influenzae (NTHI). However, relative selectivity of dysfunctional phagocytosis among diverse respiratory pathogens: NTHI, Moraxella catarrhalis (MC), Streptococcus pneumoniae (SP), and nonbacterial particles, as well as the contribution of impaired phagocytosis to severity of COPD, has not been explored. Methods. Alveolar macrophages, obtained from nonsmokers (n = 20), COPD ex-smokers (n = 32), and COPD active smokers (n = 64), were incubated with labeled NTHI, MC, SP, and fluorescent microspheres. Phagocytosis was measured as intracellular percentages of each. Results. Alveolar macrophages of COPD ex-smokers and active smokers had impaired complement-independent phagocytosis of NTHI (P = .003) and MC (P = .0007) but not SP or microspheres. Nonetheless, complement-mediated phagocytosis was enhanced within each group only for SP. Defective phagocytosis was significantly greater for NTHI than for MC among COPD active smokers (P < .0001) and ex-smokers (P = .028). Moreover, severity of COPD (FEV1%predicted) correlated with impaired AM phagocytosis for NTHI (P = .0016) and MC (P = .01). Conclusions. These studies delineate pathogen- and host-specific differences in defective alveolar macrophages phagocytosis of respiratory bacteria in COPD, further elucidating the immunologic basis for bacterial persistence in COPD and provide the first demonstration of association of impaired phagocytosis to severity of disease. PMID:23908477

  8. Transport Rather Than Diffusion-Dependent Route for Nitric Oxide Gas Activity in Alveolar Epithelium

    PubMed Central

    Brahmajothi, Mulugu V.; Mason, S. Nicholas; Whorton, A. Richard; McMahon, Timothy J.; Auten, Richard L.

    2010-01-01

    The pathway by which inhaled NO gas enters pulmonary alveolar epithelial cells has not been directly tested. Although the expected mechanism is diffusion, another route is the formation of S-nitroso-L-cysteine, which then enters the cell through the L-type amino acid transporter(LAT). To determine if NO gas also enters alveolar epithelium this way, we exposed alveolar epithelial—rat type I, type II, L2, R3/1, and human A549—cells to NO gas at air liquid interface in the presence of L- and D-cysteine ± LAT competitors. NO gas exposure concentration-dependently increased intracellular NO and S-nitrosothiol levels in the presence of L- but not D-cysteine, which was inhibited by LAT competitors, and was inversely proportional to diffusion distance. The effect of L-cysteine on NO uptake was also concentration dependent. Without pre-incubation with L-cysteine, NO uptake was significantly reduced. We found similar effects using ethyl nitrite gas in place of NO. Exposure to either gas induced activation of soluble guanylyl cylase in a parallel manner, consistent with LAT-dependence. We conclude that NO gas uptake by alveolar epithelium achieves NO-based signaling predominantly by forming extracellular S-nitroso-L-cysteine that is taken up through LAT, rather than by diffusion. Augmenting extracellular S-nitroso-L-cysteine formation may augment pharmacological actions of inhaled NO gas. PMID:20423728

  9. TLE1 promotes EMT in A549 lung cancer cells through suppression of E-cadherin.

    PubMed

    Yao, Xin; Ireland, Shubha Kale; Pham, Tri; Temple, Brandi; Chen, Renwei; Raj, Madhwa H G; Biliran, Hector

    2014-12-12

    The Groucho transcriptional corepressor TLE1 protein has recently been shown to be a putative lung specific oncogene, but its underlying oncogenic activity in lung cancer has not been fully elucidated. In this report, we investigated whether TLE1 regulates lung cancer aggressiveness using the human lung adenocarcinoma cell line A549 as a model system. Through a combination of genetic approaches, we found that TLE1 potentiates epithelial-to-mesenchymal transition (EMT) in A549 cells in part through suppression of the tumor suppressor gene E-cadherin. Exogenous expression of TLE1 in A549 cells resulted in heightened EMT phenotypes (enhanced fibroblastoid morphology and increased cell migratory potential) and in molecular alterations characteristic of EMT (downregulation of the epithelial marker E-cadherin and upregulation of the mesenchymal marker Vimentin). Conversely, downregulation of endogenous TLE1 expression in these cells resulted in reversal of basal EMT characterized by a cuboidal-like epithelial cell phenotype, reduced cell motility, and upregulated E-cadherin expression. Mechanistic studies showed that TLE1 suppresses E-cadherin expression at the transcriptional level in part by recruiting histone deacetylase (HDAC) activity to the E-cadherin promoter. Consistently, the HDAC inhibitor TSA partially reversed the TLE1-induced E-cadherin downregulation and cell migration, suggesting a role for HDACs in TLE1-mediated transcriptional repression of E-cadherin and EMT function. These findings uncover a novel role of TLE1 in regulating EMT in A549 cells through its repressive effect on E-cadherin and provide a mechanism for TLE1 oncogenic activity in lung cancer.

  10. The biophysical property of A549 cells transferred by VEGF-D.

    PubMed

    Wang, Zhen; Wu, Xiu-Li; Wang, Xu; Tian, Hong-Xia; Chen, Zhi-Hong; Li, Yang-Qiu

    2014-01-01

    Vascular endothelial growth factor-D (VEGF-D) together with VEGF-C is considered to be associated with lymphangiogenesis and angiogenesis and involve in tumorization. This study aims to investigate the influence of exogenous VEGF-D gene on the biophysical property of cell surface of lung adenocarcinoma cell line. A panel of lung adenocarcinoma cell lines were examined the expression of VEGF-D and VEGF-C by real-time PCR. The VEGF-D recombinant plasmid containing enhanced green fluorescence protein (EGFP) was constructed and transfected to the cell line with no expression of VEGF-D and confirmed by real-time PCR and Western blot analysis. Topographic images of cells were obtained by using atomic force microscope (AFM) in contact mode. Unlike VEGF-C, VEGF-D was found to have a very low expression or undetectable expression in lung adenocarcinoma cell lines. The VEGF-D recombinant plasmid had been constructed successfully and was transferred into the human lung adenocarcinoma cell line A549 cells which had no endogenous expression of VEGF-D, and exogenous VEGF-D could be detected in mRNA and protein expression levels in the gene modified cells, while the VEGF-C gene expression had no change after VEGF-D transfection. After transfection, the irregular microspikes or nano clusters could observe on the surface of A549 cells, and VEGF-D transfected A549 cells became more rigid. The exogenous VEGF-D gene might cause the remarkable biophysical architectural changes in the A549 cells, which might as a novel biomarker for evaluation of its biological function.

  11. Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells.

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Siddiqui, Maqsood A; Ahmad, Javed; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; AlSalhi, Mohamad S; Alrokayan, Salman A

    2011-05-10

    Due to the interesting magnetic and electrical properties with good chemical and thermal stabilities, nickel ferrite nanoparticles are being utilized in many applications including magnetic resonance imaging, drug delivery and hyperthermia. Recent studies have shown that nickel ferrite nanoparticles produce cytotoxicity in mammalian cells. However, there is very limited information concerning the toxicity of nickel ferrite nanoparticles at the cellular and molecular level. The aim of this study was to investigate the cytotoxicity, oxidative stress and apoptosis induction by well-characterized nickel ferrite nanoparticles (size 26 nm) in human lung epithelial (A549) cells. Nickel ferrite nanoparticles induced dose-dependent cytotoxicity in A549 cells demonstrated by MTT, NRU and LDH assays. Nickel ferrite nanoparticles were also found to induce oxidative stress evidenced by generation of reactive oxygen species (ROS) and depletion of antioxidant glutathione (GSH). Further, co-treatment with the antioxidant L-ascorbic acid mitigated the ROS generation and GSH depletion due to nickel ferrite nanoparticles suggesting the potential mechanism of oxidative stress. Quantitative real-time PCR analysis demonstrated that following the exposure of A549 cells to nickel ferrite nanoparticles, the level of mRNA expressions of cell cycle checkpoint protein p53 and apoptotic proteins (bax, caspase-3 and caspase-9) were significantly up-regulated, whereas the expression of anti-apoptotic proteins (survivin and bcl-2) were down-regulated. Moreover, activities of caspase-3 and caspase-9 enzymes were also significantly higher in nickel ferrite nanoparticles exposed cells. To the best of our knowledge this is the first report showing that nickel ferrite nanoparticles induced apoptosis in A549 cells through ROS generation and oxidative stress via p53, survivin, bax/bcl-2 and caspase pathways.

  12. Downregulation of LRRC8A protects human ovarian and alveolar carcinoma cells against Cisplatin-induced expression of p53, MDM2, p21Waf1/Cip1, and Caspase-9/-3 activation

    PubMed Central

    Sørensen, Belinda Halling; Nielsen, Dorthe; Thorsteinsdottir, Unnur Arna; Hoffmann, Else Kay

    2016-01-01

    The leucine-rich repeat containing 8A (LRRC8A) protein is an essential component of the volume-sensitive organic anion channel (VSOAC), and using pharmacological anion channel inhibitors (NS3728, DIDS) and LRRC8A siRNA we have investigated its role in development of Cisplatin resistance in human ovarian (A2780) and alveolar (A549) carcinoma cells. In Cisplatin-sensitive cells Cisplatin treatment increases p53-protein level as well as downstream signaling, e.g., expression of p21Waf1/Cip1, Bax, Noxa, MDM2, and activation of Caspase-9/-3. In contrast, Cisplatin-resistant cells do not enter apoptosis, i.e., their p53 and downstream signaling are reduced and caspase activity unaltered following Cisplatin exposure. Reduced LRRC8A expression and VSOAC activity are previously shown to correlate with Cisplatin resistance, and here we demonstrate that pharmacological inhibition and transient knockdown of LRRC8A reduce the protein level of p53, MDM2, and p21Waf1/Cip1 as well as Caspase-9/-3 activation in Cisplatin-sensitive cells. Cisplatin resistance is accompanied by reduction in total LRRC8A expression (A2780) or LRRC8A expression in the plasma membrane (A549). Activation of Caspase-3 dependent apoptosis by TNFα-exposure or hyperosmotic cell shrinkage is almost unaffected by pharmacological anion channel inhibition. Our data indicate 1) that expression/activity of LRRC8A is essential for Cisplatin-induced increase in p53 protein level and its downstream signaling, i.e., Caspase-9/-3 activation, expression of p21Waf1/Cip1 and MDM2; and 2) that downregulation of LRRC8A-dependent osmolyte transporters contributes to acquirement of Cisplatin resistance in ovarian and lung carcinoma cells. Activation of LRRC8A-containing channels is upstream to apoptotic volume decrease as hypertonic cell shrinkage induces apoptosis independent of the presence of LRRC8A. PMID:26984736

  13. The antiproliferative effect of Moringa oleifera crude aqueous leaf extract on cancerous human alveolar epithelial cells

    PubMed Central

    2013-01-01

    Background The incidence of lung cancer is expected to increase due to increases in exposure to airborne pollutants and cigarette smoke. Moringa oleifera (MO), a medicinal plant found mainly in Asia and South Africa is used in the traditional treatment of various ailments including cancer. This study investigated the antiproliferative effect of MO leaf extract (MOE) in cancerous A549 lung cells. Methods A crude aqueous leaf extract was prepared and the cells were treated with 166.7 μg/ml MOE (IC50) for 24 h and assayed for oxidative stress (TBARS and Glutathione assays), DNA fragmentation (comet assay) and caspase (3/7 and 9) activity. In addition, the expression of Nrf2, p53, Smac/DIABLO and PARP-1 was determined by Western blotting. The mRNA expression of Nrf2 and p53 was assessed using qPCR. Results A significant increase in reactive oxygen species with a concomitant decrease in intracellular glutathione levels (p < 0.001) in MOE treated A549 cells was observed. MOE showed a significant reduction in Nrf2 protein expression (1.89-fold, p < 0.05) and mRNA expression (1.44-fold). A higher level of DNA fragmentation (p < 0.0001) was seen in the MOE treated cells. MOE’s pro-apoptotic action was confirmed by the significant increase in p53 protein expression (1.02-fold, p < 0.05), p53 mRNA expression (1.59-fold), caspase-9 (1.28-fold, p < 0.05), caspase-3/7 (1.52-fold) activities and an enhanced expression of Smac/DIABLO. MOE also caused the cleavage and activation of PARP-1 into 89 KDa and 24 KDa fragments (p < 0.0001). Conclusion MOE exerts antiproliferative effects in A549 lung cells by increasing oxidative stress, DNA fragmentation and inducing apoptosis. PMID:24041017

  14. Rapid and Easy Histological Evaluation of Alveolar Human Bone Quality at Dental Implant Sites Using a Nondecalcified Frozen Cryofilm Section Technique: A Technical Report.

    PubMed

    Ito, Yuichi; Fujita, Hiroshi; Kanou, Miwa; Takahashi-Nakagawa, Yasuko; Nakajima, Yoichiro; Sunano, Akihiro; Kimura, Yoshihiro; Ueno, Takaaki

    2015-08-01

    The evaluation of bone quality at the site of the alveolar bone for a dental implant is very important. This study presents an easy technique for direct evaluation of alveolar bone quality using nondecalcified cryofilm frozen sections on human alveolar bone core samples. Core samples harvested from alveolar bone were immediately frozen in cooled hexanen and slowly cut using a disposable tungsten carbide blade; the sliced sections were collected with adhesive cryofilms. Staining was performed using von toluidine blue and von Kossa for microscopic observations. All core samples clearly showed bone structure components of cortical bone, trabecular bone, bone marrow, blood vessels, and bone-related cells. These results suggest the efficacy of a nondecalcified cryofilm frozen section technique for histological observation of surgical implant sites.

  15. Adenovirus Vectors Block Human Immunodeficiency Virus–1 Replication in Human Alveolar Macrophages by Inhibition of the Long Terminal Repeat

    PubMed Central

    Kaner, Robert J.; Santiago, Francisco; Rahaghi, Franck; Michaels, Elizabeth; Moore, John P.; Crystal, Ronald G.

    2010-01-01

    Heterologous viruses may transactivate or suppress human immunodeficiency virus (HIV)–1 replication. An adenovirus type 5 gene transfer vector (Ad5) HIV-1 vaccine was recently evaluated in a clinical trial, without efficacy. In this context, it is relevant to ask what effect Ad vectors have on HIV-1 replication, particularly in cells that are part of the innate immune system. Infection of HIV-1–infected human alveolar macrophages (AMs) obtained from HIV-1+ individuals with an Ad vector containing no transgene (AdNull) resulted in dose-responsive inhibition of endogenous HIV-1 replication. HIV-1 replication in normal AMs infected with HIV-1 in vitro was inhibited by AdNull with a similar dose response. Ad reduced AM HIV-1 replication up to 14 days after HIV-1 infection. Fully HIV-1–infected AMs were treated with 3′-azido-3′-deoxythymidine, after which Ad infection still inhibited HIV-1 replication, suggesting a postentry step was affected. Substantial HIV-1 DNA was still produced after Ad infection, as quantified by TaqMan real-time PCR, suggesting that the replication block occurred after reverse transcription. AdNull blocked HIV-1 long terminal repeat (LTR) transcription, as assessed by an vesicular stomatitis virus G protein pseudotyped HIV-1 LTR luciferase construct. The formation of HIV-1 DNA integrated into the host chromosome was not inhibited by Ad, as quantified by a two-step TaqMan real-time PCR assay, implying a postintegration block to HIV-1 replication. These data indicate that Ad vectors are inhibitory to HIV-1 replication in human AMs based, in part, on their ability to inhibit LTR-driven transcription. PMID:19805482

  16. A new data management system for the French National Registry of human alveolar echinococcosis cases

    PubMed Central

    Charbonnier, Amandine; Knapp, Jenny; Demonmerot, Florent; Bresson-Hadni, Solange; Raoul, Francis; Grenouillet, Frédéric; Millon, Laurence; Vuitton, Dominique Angèle; Damy, Sylvie

    2014-01-01

    Alveolar echinococcosis (AE) is an endemic zoonosis in France due to the cestode Echinococcus multilocularis. The French National Reference Centre for Alveolar Echinococcosis (CNR-EA), connected to the FrancEchino network, is responsible for recording all AE cases diagnosed in France. Administrative, epidemiological and medical information on the French AE cases may currently be considered exhaustive only on the diagnosis time. To constitute a reference data set, an information system (IS) was developed thanks to a relational database management system (MySQL language). The current data set will evolve towards a dynamic surveillance system, including follow-up data (e.g. imaging, serology) and will be connected to environmental and parasitological data relative to E. multilocularis to better understand the pathogen transmission pathway. A particularly important goal is the possible interoperability of the IS with similar European and other databases abroad; this new IS could play a supporting role in the creation of new AE registries. PMID:25526544

  17. A new data management system for the French National Registry of human alveolar echinococcosis cases.

    PubMed

    Charbonnier, Amandine; Knapp, Jenny; Demonmerot, Florent; Bresson-Hadni, Solange; Raoul, Francis; Grenouillet, Frédéric; Millon, Laurence; Vuitton, Dominique Angèle; Damy, Sylvie

    2014-01-01

    Alveolar echinococcosis (AE) is an endemic zoonosis in France due to the cestode Echinococcus multilocularis. The French National Reference Centre for Alveolar Echinococcosis (CNR-EA), connected to the FrancEchino network, is responsible for recording all AE cases diagnosed in France. Administrative, epidemiological and medical information on the French AE cases may currently be considered exhaustive only on the diagnosis time. To constitute a reference data set, an information system (IS) was developed thanks to a relational database management system (MySQL language). The current data set will evolve towards a dynamic surveillance system, including follow-up data (e.g. imaging, serology) and will be connected to environmental and parasitological data relative to E. multilocularis to better understand the pathogen transmission pathway. A particularly important goal is the possible interoperability of the IS with similar European and other databases abroad; this new IS could play a supporting role in the creation of new AE registries.

  18. Recombinant Human Factor VIIa for Alveolar Hemorrhage Following Allogeneic Stem Cell Transplantation

    PubMed Central

    Elinoff, Jason M.; Bagci, Ulas; Moriyama, Brad; Dreiling, Jennifer L.; Foster, Brent; Gormley, Nicole J.; Salit, Rachel B.; Cai, Rongman; Sun, Junfeng; Beri, Andrea; Reda, Debra J.; Fakhrejahani, Farhad; Battiwalla, Minoo; Baird, Kristin; Cuellar-Rodriguez, Jennifer M.; Kang, Elizabeth M.; Pavletic, Stephen Z.; Fowler, Dan H.; Barrett, A. John; Lozier, Jay N.; Kleiner, David E.; Mollura, Daniel J.; Childs, Richard W.; Suffredini, Anthony F.

    2014-01-01

    The mortality rate of alveolar hemorrhage following allogeneic hematopoietic stem cell transplantation is greater than 60% with supportive care and high dose steroids. We performed a retrospective cohort analysis to assess the benefits and risks of rFVIIa as a therapeutic adjunct for alveolar hemorrhage. From 2005 to 2012, 57 episodes of alveolar hemorrhage occurred in 37 patients. Fourteen episodes (in 14 patients) were treated with steroids alone and 43 episodes (in 23 patients) were treated with steroids and rFVIIa. The median (interquartile range) steroid dose was 1.9 mg/kg/d (0.8 – 3.5; methylprednisolone equivalents) and did not differ statistically between the two groups. The median rFVIIa dose was 41 μg/kg (39-62) and a median of 3 doses (2-17) was administered per episode. Concurrent infection was diagnosed in 65% of the episodes. Patients had moderately severe hypoxia (median PaO2/FiO2, 193 [141-262]); 72% required mechanical ventilation and 42% survived to extubation. The addition of rFVIIa did not alter time to resolution of alveolar hemorrhage (p = 0.50), duration of mechanical ventilation (p = 0.89), duration of oxygen supplementation (p = 0.55), or hospital mortality (p = 0.27). Four possible thrombotic events (9% of 43 episodes) occurred with rFVIIa. rFVIIa when used in combination with corticosteroids did not confer clear clinical advantages compared to corticosteroids alone. In patients with AH following hematopoietic stem cell transplant, clinical factors (i.e. worsening infection, multiple organ failure or recrudescence of primary disease) may be more important than the benefit of enhanced hemostasis from rFVIIa. PMID:24657447

  19. Transcriptome Sequencing Reveals Key Pathways and Genes Associated with Cisplatin Resistance in Lung Adenocarcinoma A549 Cells

    PubMed Central

    Fang, Yani; Zhang, Cheng; Wu, Tong; Wang, Qi; Liu, Jinhui; Dai, Penggao

    2017-01-01

    Acquired resistance to cisplatin-based chemotherapy frequently occurs in patients with non-small cell lung cancer, and the underlying molecular mechanisms are not well understood. The aim of this study was to investigate whether a distinct gene expression pattern is associated with acquired resistance to cisplatin in human lung adenocarcinoma. Whole-transcriptome sequencing was performed to compare the genome-wide gene expression patterns of the human lung adenocarcinoma A549 cisplatin-resistant cell line A549/DDP with those of its progenitor cell line A549. A total of 1214 differentially expressed genes (DEGs) were identified, 656 of which were upregulated and 558 were downregulated. Functional annotation of the DEGs in the Kyoto Encyclopedia of Genes and Genomes database revealed that most of the identified genes were enriched in the PI3K/AKT, mitogen-activated protein kinase, actin cytoskeleton regulation, and focal adhesion pathways in A549/DDP cells. These results support previous studies demonstrating that the pathways regulating cell proliferation and invasion confer resistance to chemotherapy. Furthermore, the results proved that cell adhesion and cytoskeleton regulation is associated with cisplatin resistance in human lung cancer. Our study provides new promising biomarkers for lung cancer prognosis and potential therapeutic targets for lung cancer treatment. PMID:28114404

  20. Production of Fibronectin by the Human Alveolar Macrophage: Mechanism for the Recruitment of Fibroblasts to Sites of Tissue Injury in Interstitial Lung Diseases

    NASA Astrophysics Data System (ADS)

    Rennard, Stephen I.; Hunninghake, Gary W.; Bitterman, Peter B.; Crystal, Ronald G.

    1981-11-01

    Because cells of the mononuclear phagocyte system are known to produce fibronectin and because alveolar macrophages are activated in many interstitial lung diseases, the present study was designed to evaluate a role for the alveolar macrophage as a source of the increased levels of fibronectin found in the lower respiratory tract in interstitial lung diseases and to determine if such fibronectin might contribute to the development of the fibrosis found in these disorders by being a chemoattractant for human lung fibroblasts. Production of fibronectin by human alveolar macrophages obtained by bronchoalveolar lavage and maintained in short-term culture in serum-free conditions was demonstrated; de novo synthesis was confirmed by the incorporation of [14C]proline. This fibronectin had a monomer molecular weight of 220,000 and was antigenically similar to plasma fibronectin. Macrophages from patients with idiopathic pulmonary fibrosis produced fibronectin at a rate 20 times higher than did normal macrophages; macrophages from patients with pulmonary sarcoidosis produced fibronectin at 10 times the normal rate. Macrophages from 6 of 10 patients with various other interstitial disorders produced fibronectin at rates greater than the rate of highest normal control. Human alveolar macrophage fibronectin was chemotactic for human lung fibroblasts, suggesting a functional role for this fibronectin in the derangement of the alveolar structures that is characteristic of these disorders.

  1. Propofol Protects Rats and Human Alveolar Epithelial Cells Against Lipopolysaccharide-Induced Acute Lung Injury via Inhibiting HMGB1 Expression.

    PubMed

    Wang, Xiaoyan; Liu, Chengxiao; Wang, Gongming

    2016-06-01

    High-mobility group box 1 (HMGB1) plays a key role in the development of acute lung injury (ALI). Propofol, a general anesthetic with anti-inflammatory properties, has been suggested to be able to modulate lipopolysaccharide (LPS)-induced ALI. In this study, we investigated the effects of propofol on the expression of HMGB1 in a rat model of LPS-induced ALI. Rats underwent intraperitoneal injection of LPS to mimic sepsis-induced ALI. Propofol bolus (1, 5, or 10 mg/kg) was infused continuously 30 min after LPS administration, followed by infusion at 5 mg/(kg · h) through the left femoral vein cannula. LPS increased wet to dry weight ratio and myeloperoxidase activity in lung tissues and caused the elevation of total protein and cells, neutrophils, macrophages, and neutrophils in bronchoalveolar lavage fluid (BALF). Moreover, HMGB1 and other cytokine levels were increased in BALF and lung tissues and pathological changes of lung tissues were excessively aggravated in rats after LPS administration. Propofol inhibited all the above effects. It also inhibited LPS-induced toll-like receptor (TLR)2/4 protein upexpression and NF-κB activation in lung tissues and human alveolar epithelial cells. Propofol protects rats and human alveolar epithelial cells against HMGB1 expression in a rat model of LPS-induced ALI. These effects may partially result from reductions in TLR2/4 and NF-κB activation.

  2. Post-transcriptional silencing of CCR3 downregulates IL-4 stimulated release of eotaxin-3 (CCL26) and other CCR3 ligands in alveolar type II cells.

    PubMed

    Taka, Equar; Errahali, Younes J; Abonyo, Barack O; Bauer, David M; Heiman, Ann S

    2008-12-01

    Trafficking and inflammation in airway diseases are, in part, modulated by members of the CC chemokine family, eotaxin-1 (CCL11), eotaxin-2 (CCL24), and eotaxin-3 (CCL26), which transduce signals through their CCR3 receptor. In this context, we hypothesized that transfecting alveolar type II epithelial cells with CCR3-targeted siRNA or antisense (AS-ODN) sequences will downregulate cellular synthesis and release of the primary CCR3 ligands CCL26 and CCL24 and will modulate other CCR3 ligands. The human A549 alveolar type II epithelium-like cell culture model was used for transfection and subsequent effects on CCR3 agonists. siRNAs were particularly effective. PCR showed a 60-80% decrease in mRNA and immunoblots showed up to 75-84% reduction of CCR3 in siRNA treated cells. CCR3-siRNA treatments reduced IL-4 stimulated CCL26 release and constitutive CCL24 release by 65% and 80%, respectively. Release of four additional CCR3 agonists RANTES, MCP-2, MCP-3 and MCP-4 was also significantly reduced by CCR3-siRNA treatments of the alveolar type II cells. Activation of eosinophils, assessed as superoxide anion generation, was reduced when eosinophils were treated with supernatants of A549 cells pretreated with CCR3-targeted siRNAs or AS-ODNs. Collectively, the data suggest that post-transcriptional regulation of CCR3 receptors may be a potential therapeutic approach for interrupting proinflammatory signaling.

  3. [Alveolar hemorrhage].

    PubMed

    Parrot, A; Fartoukh, M; Cadranel, J

    2015-04-01

    Alveolar hemorrhage occurs relatively rarely and is a therapeutic emergency because it can quickly lead to acute respiratory failure, which can be fatal. Hemoptysis associated with anemia and pulmonary infiltrates suggest the diagnosis of alveolar hemorrhage, but may be absent in one third of cases including patients in respiratory distress. The diagnosis of alveolar hemorrhage is based on the findings of a bronchoalveolar lavage. The causes are numerous. It is important to identify alveolar hemorrhage due to sepsis, then separate an autoimmune cause (vasculitis associated with antineutrophil cytoplasmic antibody, connective tissue disease and Goodpasture's syndrome) with the search for autoantibodies and biopsies from readily accessible organs, from a non-immune cause, performing echocardiography. Lung biopsy should be necessary only in exceptional cases. If the hemorrhage has an immune cause, treatment with steroids and cyclophosphamide may be started. The indications for treatment with rituximab are beginning to be established (forms that are not severe and refractory forms). The benefit of plasma exchange is unquestionable in Goodpasture's syndrome. In patients with an immune disease that can lead to an alveolar hemorrhage, removing any source of infection is the first priority.

  4. Discovery of 2'-hydroxychalcones as autophagy inducer in A549 lung cancer cells.

    PubMed

    Wang, Fang-Wu; Wang, Sheng-Qing; Zhao, Bao-Xiang; Miao, Jun-Ying

    2014-05-21

    A series of 2'-hydroxychalcone derivatives was synthesized and the effects of all the compounds on growth of A549 lung cancer cell were investigated. The results showed that all compounds had inhibitory effects on the growth of A549 lung cancer cells and compound possessed the highest growth inhibitory effect and induced autophagy of A549 lung cancer cells.

  5. Anti-tumor activity and mechanism of apoptosis of A549 induced by ruthenium complex.

    PubMed

    Sun, Dongdong; Mou, Zhipeng; Li, Nuan; Zhang, Weiwei; Wang, Yazhe; Yang, Endong; Wang, Weiyun

    2016-12-01

    Two new ruthenium (II) polypyridyl complexes [Ru(MeIm)4(pip)](2+) (1) and [Ru(MeIm)4(4-npip)](2+) (2) were synthesized under the guidance of computational studies (DFT). Their binding property to human telomeric G-quadruplex studied by UV-Vis absorption spectroscopy, the fluorescent resonance energy transfer (FRET) melting assay and circular dichroism (CD) spectroscopy for validating the theoretical prediction. Both of them were evaluated for their potential anti-proliferative activity against four human tumor cell lines. Complex 2 shows growth inhibition against all the cell lines tested, especially the human lung tumor cell (A549). The RTCA analysis not only validated the inhibition activity but also showed the ability of reducing A549 cells' migration. DNA-flow cytometric analysis, mitochondrial membrane potential (ΔΨm) and the scavenger measurements of reactive oxygen species (ROS) analysis carried out to investigate the mechanism of cell growth inhibition and apoptosis-inducing effect of complex 2. The results demonstrated that complex 2 induces tumor cells apoptosis by acting on both mitochondrial homeostasis destruction and death receptor signaling pathways. And those suggested that complex 2 could be a candidate for further evaluation as a chemotherapeutic agent against human tumor.

  6. Transplantation of human embryonic stem cell-derived alveolar epithelial type II cells abrogates acute lung injury in mice.

    PubMed

    Wang, Dachun; Morales, John E; Calame, Daniel G; Alcorn, Joseph L; Wetsel, Rick A

    2010-03-01

    Respiratory diseases are a major cause of mortality and morbidity worldwide. Current treatments offer no prospect of cure or disease reversal. Transplantation of pulmonary progenitor cells derived from human embryonic stem cells (hESCs) may provide a novel approach to regenerate endogenous lung cells destroyed by injury and disease. Here, we examine the therapeutic potential of alveolar type II epithelial cells derived from hESCs (hES-ATIICs) in a mouse model of acute lung injury. When transplanted into lungs of mice subjected to bleomycin (BLM)-induced acute lung injury, hES-ATIICs behaved as normal primary ATIICs, differentiating into cells expressing phenotypic markers of alveolar type I epithelial cells. Without experiencing tumorigenic side effects, lung injury was abrogated in mice transplanted with hES-ATIICs, demonstrated by recovery of body weight and arterial blood oxygen saturation, decreased collagen deposition, and increased survival. Therefore, transplantation of hES-ATIICs shows promise as an effective therapeutic to treat acute lung injury.

  7. Transplantation of Human Embryonic Stem Cell–Derived Alveolar Epithelial Type II Cells Abrogates Acute Lung Injury in Mice

    PubMed Central

    Wang, Dachun; Morales, John E; Calame, Daniel G; Alcorn, Joseph L; Wetsel, Rick A

    2010-01-01

    Respiratory diseases are a major cause of mortality and morbidity worldwide. Current treatments offer no prospect of cure or disease reversal. Transplantation of pulmonary progenitor cells derived from human embryonic stem cells (hESCs) may provide a novel approach to regenerate endogenous lung cells destroyed by injury and disease. Here, we examine the therapeutic potential of alveolar type II epithelial cells derived from hESCs (hES-ATIICs) in a mouse model of acute lung injury. When transplanted into lungs of mice subjected to bleomycin (BLM)-induced acute lung injury, hES-ATIICs behaved as normal primary ATIICs, differentiating into cells expressing phenotypic markers of alveolar type I epithelial cells. Without experiencing tumorigenic side effects, lung injury was abrogated in mice transplanted with hES-ATIICs, demonstrated by recovery of body weight and arterial blood oxygen saturation, decreased collagen deposition, and increased survival. Therefore, transplantation of hES-ATIICs shows promise as an effective therapeutic to treat acute lung injury. PMID:20087316

  8. Alveolar distraction osteogenesis in the human mandible: a clinical and histomorphometric study.

    PubMed

    Sezer, Bahar; Koyuncu, Banu Özveri; Günbay, Tayfun; Sezak, Murat

    2012-08-01

    To identify the quality of newly formed bone in the distraction region and to determine the percentage of mineralized bone formed in the distraction area. Ten patients with vertically deficient mandibular alveolar ridges were treated by means of distraction osteogenesis. Four months after consolidation of distracted segments, a total of 40 dental implants were inserted in native bone and distracted bone. Bone biopsies were taken at the implant sites with trephine burrs for histological and histometric analyses. Four months after implant placement, abutments were connected, and prosthetic loading of the implants was started. The mean bone gain at the end of distraction was 7.2 ± 0.8 mm. The cumulative success rate of implants 3 years after the onset of prosthetic loading was 100%. The newly formed bone consisted of woven bone reinforced by parallel-fibered bone with bone marrow spaces and the percentage of mineralized bone ranged from 50.56% to 76.88%. Alveolar distraction osteogenesis is able to produce adequate mature bone for the correction of mandibular bone deficits before dental implant insertion.

  9. Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer.

    PubMed

    Khan, Merajuddin; Khan, Mujeeb; Al-Marri, Abdulhadi H; Al-Warthan, Abdulrahman; Alkhathlan, Hamad Z; Siddiqui, Mohammed Rafiq H; Nayak, Vadithe Lakshma; Kamal, Ahmed; Adil, Syed F

    2016-01-01

    Recently, graphene and graphene-based materials have been increasingly used for various biological applications due to their extraordinary physicochemical properties. Here, we demonstrate the anticancer properties and apoptosis-inducing ability of silver doped highly reduced graphene oxide nanocomposites synthesized by employing green approach. These nano composites (PGE-HRG-Ag) were synthesized by using Pulicaria glutinosa extract (PGE) as a reducing agent and were evaluated for their anticancer properties against various human cancer cell lines with tamoxifen as the reference drug. A correlation between the amount of Ag nanoparticles on the surface of highly reduced graphene oxide (HRG) and the anticancer activity of nanocomposite was observed, wherein an increase in the concentration of Ag nanoparticles on the surface of HRG led to the enhanced anticancer activity of the nanocomposite. The nanocomposite PGE-HRG-Ag-2 exhibited more potent cytotoxicity than standard drug in A549 cells, a human lung cancer cell line. A detailed investigation was undertaken and Fluorescence activated cell sorting (FACS) analysis demonstrated that the nanocomposite PGE-HRG-Ag-2 showed G0/G1 phase cell cycle arrest and induced apoptosis in A549 cells. Studies such as, measurement of mitochondrial membrane potential, generation of reactive oxygen species (ROS) and Annexin V-FITC staining assay suggested that this compound induced apoptosis in human lung cancer cells.

  10. Burkholderia mallei and Burkholderia pseudomallei stimulate differential inflammatory responses from human alveolar type II cells (ATII) and macrophages

    PubMed Central

    Lu, Richard; Popov, Vsevolod; Patel, Jignesh; Eaves-Pyles, Tonyia

    2012-01-01

    Alveolar type II pneumocytes (ATII) and alveolar macrophages (AM) play a crucial role in the lung's innate immune response. Burkholderia pseudomallei (BP) and Burkholderia mallei (BM) are facultative Gram-negative bacilli that cause melioidosis and glanders, respectively. The inhalation of these pathogens can cause lethal disease and death in humans. We sought to compare the pathogenesis of and host responses to BP and BM through contact with human primary ATII cells and monocytes-derived macrophages (MDM). We hypothesized that because BP and BM induce different disease outcomes, each pathogen would induce distinct, unique host immune responses from resident pulmonary cells. Our findings showed that BP adhered readily to ATII cells compared to BM. BP, but not BM, was rapidly internalized by macrophages where it replicated to high numbers. Further, BP-induced significantly higher levels of pro-inflammatory cytokine secretion from ATII cells (IL-6, IL-8) and macrophages (IL-6, TNFα) at 6 h post-infection compared to BM (p < 0.05). Interestingly, BM-induced the anti-inflammatory cytokine, IL-10, in ATII cells and macrophages at 6 h post-infection, with delayed induction of inflammatory cytokines at 24 h post-infection. Because BP is flagellated and produces LPS, we confirmed that it stimulated both Toll-like receptor (TLR) 4 and TLR5 via NF-κb activation while the non-flagellated BM stimulated only TLR4. These data show the differences in BP and BM pathogenicity in the lung when infecting human ATII cells and macrophages and demonstrate the ability of these pathogens to elicit distinct immune responses from resident lung cells which may open new targets for therapeutic intervention to fight against these pathogens. PMID:23293773

  11. Variations in Alveolar Partial Pressure for Carbon Dioxide and Oxygen Have Additive Not Synergistic Acute Effects on Human Pulmonary Vasoconstriction

    PubMed Central

    Croft, Quentin P. P.; Formenti, Federico; Talbot, Nick P.; Lunn, Daniel; Robbins, Peter A.; Dorrington, Keith L.

    2013-01-01

    The human pulmonary vasculature constricts in response to hypercapnia and hypoxia, with important consequences for homeostasis and adaptation. One function of these responses is to direct blood flow away from poorly-ventilated regions of the lung. In humans it is not known whether the stimuli of hypercapnia and hypoxia constrict the pulmonary blood vessels independently of each other or whether they act synergistically, such that the combination of hypercapnia and hypoxia is more effective than the sum of the responses to each stimulus on its own. We independently controlled the alveolar partial pressures of carbon dioxide (Paco2) and oxygen (Pao2) to examine their possible interaction on human pulmonary vasoconstriction. Nine volunteers each experienced sixteen possible combinations of four levels of Paco2 (+6, +1, −4 and −9 mmHg, relative to baseline) with four levels of Pao2 (175, 100, 75 and 50 mmHg). During each of these sixteen protocols Doppler echocardiography was used to evaluate cardiac output and systolic tricuspid pressure gradient, an index of pulmonary vasoconstriction. The degree of constriction varied linearly with both Paco2 and the calculated haemoglobin oxygen desaturation (1-So2). Mixed effects modelling delivered coefficients defining the interdependence of cardiac output, systolic tricuspid pressure gradient, ventilation, Paco2 and So2. No interaction was observed in the effects on pulmonary vasoconstriction of carbon dioxide and oxygen (p>0.64). Direct effects of the alveolar gases on systolic tricuspid pressure gradient greatly exceeded indirect effects arising from concurrent changes in cardiac output. PMID:23935847

  12. [Construction of A eukaryotic expression vector carrying the iNOS gene and its effect on A549 lung cancer cells].

    PubMed

    Ye, Sujuan; Yang, Weihan; Wang, Yu; Ou, Wenjing; Ma, Qingping; Zhu, Wen

    2012-05-01

    The iNOS gene is associated with NO-mediated antitumor effects. The aims of this study are to construct a eukaryotic expression plasmid that carries the iNOS gene and to detect the expression levels and antitumor effects of the iNOS gene on A549 lung cancer cells. A DNA fragment of the human iNOS coding sequence was amplified using reverse transcription polymerase chain reaction (RT-PCR). The DNA fragment was subsequently cloned into the multiple cloning sites of the eukaryotic expression vector pVAX. The recombinant plasmid was confirmed using restriction enzyme treatment, PCR, and sequencing and was then transfected into A549 lung cancer cells. The expression of the iNOS gene in the A549 lung cancer cells after transfection was verified by RT-PCR and Western blot analysis. The effects of iNOS on cell apoptosis, proliferation, and migration were identified by staining with Hoechst 3235, an MTT assay, and a scratch assay, respectively. The results of the restriction enzyme digestion, PCR, and sequencing verified the successful construction of the eukaryotic expression plasmid pVAX-iNOS. The iNOS gene expression level was increased in the transfected A549 cells. Further experiments also showed increased cell apoptosis among the A549 lung cancer cells transfected with pVAX-iNOS. Meanwhile, the proliferation and migration of A549 cells were significantly inhibited by the enhanced iNOS gene expression. The recombinant eukaryotic expression vector pVAX-iNOS was successfully constructed and transfected into A549 cells. The enhanced iNOS gene expression significantly promoted cell apoptosis, whereas the proliferation and migration of A549 cells were inhibited. These findings contribute to the development of novel and effective gene therapies for lung cancer.

  13. Apigenin inhibits PMA-induced expression of pro-inflammatory cytokines and AP-1 factors in A549 cells.

    PubMed

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Ramesh, Govindarajan T; Chidananda Sharma, S

    2015-05-01

    Acute and chronic alveolar or bronchial inflammation is thought to be central to the pathogenesis of many respiratory disorders. Cytokines and granulocyte macrophage colony-stimulating factors (GM-CSF) play an important role in chronic inflammation. Activator protein-1 (AP-1) the superfamily of transcription factors is involved in proliferation, differentiation, apoptosis, and transformation including inflammation. Understanding the function and regulation of proinflammatory factors involved in inflammation may provide the novel therapeutic strategies in the treatment of inflammatory diseases. Our aim of the present study is to investigate the pro-inflammatory cytokines and pattern of AP-1 factors expressed during activation of lung adenocarcinoma A549 cells by Phorbol-12-myristate-13-acetate (PMA) and to understand the anti-inflammatory effect of apigenin. A549 cells were treated with and without PMA or apigenin, and the cell viability was assessed by MTT assay. Expressions of inflammatory mediators and different AP-1 factors were analyzed by semi-quantitative RT-PCR. IL-6 protein secreted was analyzed by ELISA, and expressions of IL-1β, c-Jun, and c-Fos proteins were analyzed by Western blotting. Activation of A549 cells by PMA, induced the expression of pro-inflammatory cytokine (IL-1β, IL-2, IL-6, IL-8, and TNF-α) mRNAs and secretion of IL-6 and the expression of specific AP-1 factors (c-Jun, c-Fos, and Fra-1). Treatment of cells with apigenin, significantly inhibited PMA-stimulated mRNA expression of above pro-inflammatory cytokines, AP-1 factors, cyclooxygenase-2, and secretion of IL-6 protein. Results suggested that the AP-1 factors may be involved in inflammation and apigenin has anti-inflammatory effect, which may be useful for therapeutic management of lung inflammatory diseases.

  14. Cigarette Smoke Enhances the Expression of Profibrotic Molecules in Alveolar Epithelial Cells.

    PubMed

    Checa, Marco; Hagood, James S; Velazquez-Cruz, Rafael; Ruiz, Victor; García-De-Alba, Carolina; Rangel-Escareño, Claudia; Urrea, Francisco; Becerril, Carina; Montaño, Martha; García-Trejo, Semiramis; Cisneros Lira, José; Aquino-Gálvez, Arnoldo; Pardo, Annie; Selman, Moisés

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal disease of unknown etiology. A growing body of evidence indicates that it may result from an aberrant activation of alveolar epithelium, which induces the expansion of the fibroblast population, their differentiation to myofibroblasts and the excessive accumulation of extracellular matrix. The mechanisms that activate the alveolar epithelium are unknown, but several studies indicate that smoking is the main environmental risk factor for the development of IPF. In this study we explored the effect of cigarette smoke on the gene expression profile and signaling pathways in alveolar epithelial cells. Lung epithelial cell line from human (A549), was exposed to cigarette smoke extract (CSE) for 1, 3, and 5 weeks at 1, 5 and 10% and gene expression was evaluated by complete transcriptome microarrays. Signaling networks were analyzed with the Ingenuity Pathway Analysis software. At 5 weeks of exposure, alveolar epithelial cells acquired a fibroblast-like phenotype. At this time, gene expression profile revealed a significant increase of more than 1000 genes and deregulation of canonical signaling pathways such as TGF-β and Wnt. Several profibrotic genes involved in EMT were over-expressed, and incomplete EMT was observed in these cells, and corroborated in mouse (MLE-12) and rat (RLE-6TN) epithelial cells. The secretion of activated TGF-β1 increased in cells exposed to cigarette smoke, which decreased when the integrin alpha v gene was silenced. These findings suggest that the exposure of alveolar epithelial cells to CSE induces the expression and release of a variety of profibrotic genes, and the activation of TGF-β1, which may explain at least partially, the increased risk of developing IPF in smokers.

  15. Cigarette Smoke Enhances the Expression of Profibrotic Molecules in Alveolar Epithelial Cells

    PubMed Central

    Checa, Marco; Hagood, James S.; Velazquez-Cruz, Rafael; Ruiz, Victor; García-De-Alba, Carolina; Rangel-Escareño, Claudia; Urrea, Francisco; Becerril, Carina; Montaño, Martha; García-Trejo, Semiramis; Cisneros Lira, José; Aquino-Gálvez, Arnoldo; Pardo, Annie; Selman, Moisés

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal disease of unknown etiology. A growing body of evidence indicates that it may result from an aberrant activation of alveolar epithelium, which induces the expansion of the fibroblast population, their differentiation to myofibroblasts and the excessive accumulation of extracellular matrix. The mechanisms that activate the alveolar epithelium are unknown, but several studies indicate that smoking is the main environmental risk factor for the development of IPF. In this study we explored the effect of cigarette smoke on the gene expression profile and signaling pathways in alveolar epithelial cells. Lung epithelial cell line from human (A549), was exposed to cigarette smoke extract (CSE) for 1, 3, and 5 weeks at 1, 5 and 10% and gene expression was evaluated by complete transcriptome microarrays. Signaling networks were analyzed with the Ingenuity Pathway Analysis software. At 5 weeks of exposure, alveolar epithelial cells acquired a fibroblast-like phenotype. At this time, gene expression profile revealed a significant increase of more than 1000 genes and deregulation of canonical signaling pathways such as TGF-β and Wnt. Several profibrotic genes involved in EMT were over-expressed, and incomplete EMT was observed in these cells, and corroborated in mouse (MLE-12) and rat (RLE-6TN) epithelial cells. The secretion of activated TGF-β1 increased in cells exposed to cigarette smoke, which decreased when the integrin alpha v gene was silenced. These findings suggest that the exposure of alveolar epithelial cells to CSE induces the expression and release of a variety of profibrotic genes, and the activation of TGF-β1, which may explain at least partially, the increased risk of developing IPF in smokers. PMID:26934369

  16. T helper 2 cytokines differently regulate monocyte chemoattractant protein-1 production by human peripheral blood monocytes and alveolar macrophages.

    PubMed

    Yano, S; Yanagawa, H; Nishioka, Y; Mukaida, N; Matsushima, K; Sone, S

    1996-09-15

    Th2 cytokines, such as IL-4, IL-10, and IL-13, suppress proinflammatory cytokine production by monocytes/macrophages. Since monocyte chemoattractant protein-1 (MCP-1) is presumed to play an important role in monocyte recruitment and activation during inflammatory and immune responses, we examined here the effects of these Th2 cytokines on MCP-1 production by human blood monocytes and alveolar macrophages. Unstimulated, highly purified blood monocytes did not produce MCP-1 spontaneously, while LPS treatment induced the production of MCP-1 and its mRNA expression. All Th2 cytokines tested suppressed LPS-induced MCP-1 production and its mRNA expression, although the suppressive effect of IL-13 was weaker than that of IL-4 or IL-10. In contrast, IL-10, but neither IL-4 nor IL-13, induced unstimulated peripheral blood monocytes to produce biologically active MCP-1 protein within 4 h, reaching a maximal level at 12 h. IL-10-induced MCP-1 production was reduced by pretreatment of IL-10 with anti-IL-10 Ab, negating the involvement of contaminated endotoxin. Moreover, IL-10 induced MCP-1 mRNA expression in unstimulated monocytes, independent of de novo protein synthesis. Furthermore, human alveolar macrophages produced MCP-1 spontaneously, and the production was inhibited by IL-4 or IL-13, but was augmented by IL-10. These findings suggest that IL-10 regulates MCP-1 production by monocytes/macrophages in a different way from other Th2 cytokines, such as IL-4 and IL-13, and contributes to host defense responses.

  17. Autophagy protects type II alveolar epithelial cells from Mycobacterium tuberculosis infection

    SciTech Connect

    Guo, Xu-Guang; Ji, Tian-Xing; Xia, Yong; Ma, Yue-Yun

    2013-03-08

    Highlights: ► We investigated the protective effect of autophagy pathway against MTB infection. ► MTB-infected A549 cells had higher LDH release. ► Inhibition of autophagy signaling significantly enhanced the MTB-induced necrosis. ► Autophagy prevents apoptosis and promotes cell survival in infected cells. -- Abstract: This study was designed to investigate the protective effect of the autophagy signaling pathway against Mycobacterium tuberculosis infection in type II alveolar epithelial cells. An in vitro M. tuberculosis system was established using human A549 cells. Infection-induced changes in the expression of the autophagic marker LC3 were assessed by reverse transcription-PCR and Western blotting. Morphological changes in autophagosomes were detected by transmission electron microscopy (TEM). The function of the autophagy signaling pathway during infection was assessed by measuring the level of cell death and the amount of lactate dehydrogenase (LDH) released in the presence or absence of the inhibitor 3-methyladenine (3-MA). In addition, effects on LDH release were assessed after the siRNA-mediated knockdown of the essential autophagosomal structural membrane protein Atg5. LC3 mRNA expression was significantly reduced in M.tuberculosis-infected A549 cells (16888.76 ± 1576.34 vs. uninfected: 12744.29 ± 1089.37; P < 0.05). TEM revealed M.tuberculosis bacilli-containing compartments that were surrounded by double membranes characteristic of the autophagic process. M.tuberculosis-infected A549 cells released more LDH (1.45 ± 0.12 vs. uninfected: 0.45 ± 0.04; P < 0.05). The inhibition of autophagy signaling significantly enhanced M.tuberculosis-induced necrosis (3-MA: 75 ± 5% vs. untreated: 15 ± 1%; P < 0.05) and LDH release (3-MA: 2.50 ± 0.24 vs. untreated: 0.45 ± 0.04; Atg5 knockdown: 3.19 ± 0.29 vs. untreated: 1.28 ± 0.11; P < 0.05). Our results indicate that autophagy signaling pathway prevents apoptosis in type II alveolar epithelial cells

  18. TGF-β suppresses the expression of genes related to mitochondrial function in lung A549 cells.

    PubMed

    Sohn, E J; Kim, J; Hwang, Y; Im, S; Moon, Y; Kang, D M

    2012-10-08

    TGF-β is a mediator of lung fibrosis and regulates the alveolar epithelial type II cell phenotype. TGF-β can induce epithelial mesenchymal transition of idiopathic pulmonary disease and cancer metastasis. Peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1 α) is a key metabolic regulator that stimulates mitochondrial biogenesis and promotes remodeling of muscle tissue to oxidative fiber-type composition. Here, we report that the induction of TGF-β decreased mRNA expression of PGC-1α, and PGC-1 target genes, such as the transcription factors NRF-2, ERR-α, and PPAR-γ in lung epithelial A549 cells. In addition, TGF-β led to the reduction of super oxide dismutase 2 (anti-oxidant enzyme), cytochrome C (electron transport chain in mitochondria), and MCAD (a mitochondrial β-oxidant enzyme) in A549 cells. Together, our results suggest that TGF-β may suppress the transcriptional activity of the genes related to mitochondrial biogenesis or function. This mechanism may provide a novel insight into the understanding of fibrosis disease.

  19. Resveratrol raises in vitro anticancer effects of paclitaxel in NSCLC cell line A549 through COX-2 expression.

    PubMed

    Kong, Fanhua; Zhang, Runqi; Zhao, Xudong; Zheng, Guanlin; Wang, Zhou; Wang, Peng

    2017-09-01

    The aim of this study was to determine the raising anticancer effects of resveratrol (Res) on paclitaxel (PA) in non-small cell lung cancer (NSCLC) cell line A549. The 10 µg/ml of Res had no effect on human fetal lung fibroblast MRC-5 cells or on A549 cancer cells and the 5 or 10 µg/ml of PA also had no effect on MRC-5 normal cells. PA-L (5 µg/ml) and PA-H (10 µg/ml) had the growth inhibitory effects in NSCLC cell line A549, and Res increased these growth inhibitory effects. By flow cytometry experiment, after Res (5 µg/ml)+PA-H (10 µg/ml) treatment, the A549 cells showed the most apoptosic cells compared to other group treatments, and after additional treatment with Res, the apoptosic cells of both two PA concentrations were raised. Res+PA could reduce the mRNA and protein expressions of COX-2, and Res+PA could reduce the COX-2 related genes of VEGF, MMP-1, MMP-2, MMP-9, NF-κB, Bcl-2, Bcl-xL, procollagen I, collagen I, collagen III and CTGF, TNF-α, IL-1β, iNOS and raise the TIMP-1, TIMP-2, TIMP-3, IκB-α, p53, p21, caspase-3, caspase-8, caspase-9, Bax genes compared to the control cells and the PA treated cells. From these results, it can be suggested that Res could raise the anticancer effects of PA in A549 cells, thus Res might be used as a good sensitizing agent for PA.

  20. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus

    PubMed Central

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells. PMID:26345201

  1. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus.

    PubMed

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.

  2. Nur77 attenuates endothelin-1 expression via downregulation of NF-κB and p38 MAPK in A549 cells and in an ARDS rat model.

    PubMed

    Jiang, Yujie; Zeng, Yi; Huang, Xia; Qin, Yueqiu; Luo, Weigui; Xiang, Shulin; Sooranna, Suren R; Pinhu, Liao

    2016-12-01

    Acute respiratory distress syndrome (ARDS) is characterized by inflammatory injury to the alveolar and capillary barriers that results in impaired gas exchange and severe acute respiratory failure. Nuclear orphan receptor Nur77 has emerged as a regulator of gene expression in inflammation, and its role in the pathogenesis of ARDS is not clear. The objective of this study is to investigate the potential role of Nur77 and its underlying mechanism in the regulation of endothelin-1 (ET-1) expression in lipopolysaccharide (LPS)-induced A549 cells and an ARDS rat model. We demonstrate that LPS induced Nur77 expression and nuclear export in A549 cells. Overexpression of Nur77 markedly decreased basal and LPS-induced ET-1 expression in A549 cells, whereas knockdown of Nur77 increased the ET-1 expression. LPS-induced phosphorylation and nuclear translocation of NF-κB and p38 MAPK were blocked by Nur77 overexpression and augmented by Nur77 knockdown in A549 cells. In vivo, LPS induced Nur77 expression in lung in ARDS rats. Pharmacological activation of Nur77 by cytosporone B (CsnB) inhibited ET-1 expression in ARDS rats, decreased LPS-induced phosphorylation of NF-κB and p38 MAPK, and relieved lung, liver, and kidney injury. Pharmacological deactivation of Nur77 by 1,1-bis-(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH, C-DIM8) had no effect on ET-1 expression and lung injury. These results indicated that Nur77 decreases ET-1 expression by suppressing NF-κB and p38 MAPK in LPS-stimulated A549 cells in vitro, and, in an LPS-induced ARDS rat model, CsnB reduced ET-1 expression and lung injury in ARDS rats.

  3. Nur77 attenuates endothelin-1 expression via downregulation of NF-κB and p38 MAPK in A549 cells and in an ARDS rat model

    PubMed Central

    Jiang, Yujie; Zeng, Yi; Huang, Xia; Qin, Yueqiu; Luo, Weigui; Xiang, Shulin; Sooranna, Suren R.

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is characterized by inflammatory injury to the alveolar and capillary barriers that results in impaired gas exchange and severe acute respiratory failure. Nuclear orphan receptor Nur77 has emerged as a regulator of gene expression in inflammation, and its role in the pathogenesis of ARDS is not clear. The objective of this study is to investigate the potential role of Nur77 and its underlying mechanism in the regulation of endothelin-1 (ET-1) expression in lipopolysaccharide (LPS)-induced A549 cells and an ARDS rat model. We demonstrate that LPS induced Nur77 expression and nuclear export in A549 cells. Overexpression of Nur77 markedly decreased basal and LPS-induced ET-1 expression in A549 cells, whereas knockdown of Nur77 increased the ET-1 expression. LPS-induced phosphorylation and nuclear translocation of NF-κB and p38 MAPK were blocked by Nur77 overexpression and augmented by Nur77 knockdown in A549 cells. In vivo, LPS induced Nur77 expression in lung in ARDS rats. Pharmacological activation of Nur77 by cytosporone B (CsnB) inhibited ET-1 expression in ARDS rats, decreased LPS-induced phosphorylation of NF-κB and p38 MAPK, and relieved lung, liver, and kidney injury. Pharmacological deactivation of Nur77 by 1,1-bis-(3′-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH, C-DIM8) had no effect on ET-1 expression and lung injury. These results indicated that Nur77 decreases ET-1 expression by suppressing NF-κB and p38 MAPK in LPS-stimulated A549 cells in vitro, and, in an LPS-induced ARDS rat model, CsnB reduced ET-1 expression and lung injury in ARDS rats. PMID:27765761

  4. Microarray identifies ADAM family members as key responders to TGF-beta1 in alveolar epithelial cells.

    PubMed

    Keating, Dominic T; Sadlier, Denise M; Patricelli, Andrea; Smith, Sinead M; Walls, Dermot; Egan, Jim J; Doran, Peter P

    2006-09-01

    The molecular mechanisms of Idiopathic Pulmonary Fibrosis (IPF) remain elusive. Transforming Growth Factor beta 1(TGF-beta1) is a key effector cytokine in the development of lung fibrosis. We used microarray and computational biology strategies to identify genes whose expression is significantly altered in alveolar epithelial cells (A549) in response to TGF-beta1, IL-4 and IL-13 and Epstein Barr virus. A549 cells were exposed to 10 ng/ml TGF-beta1, IL-4 and IL-13 at serial time points. Total RNA was used for hybridisation to Affymetrix Human Genome U133A microarrays. Each in vitro time-point was studied in duplicate and an average RMA value computed. Expression data for each time point was compared to control and a signal log ratio of 0.6 or greater taken to identify significant differential regulation. Using normalised RMA values and unsupervised Average Linkage Hierarchical Cluster Analysis, a list of 312 extracellular matrix (ECM) proteins or modulators of matrix turnover was curated via Onto-Compare and Gene-Ontology (GO) databases for baited cluster analysis of ECM associated genes. Interrogation of the dataset using ontological classification focused cluster analysis revealed coordinate differential expression of a large cohort of extracellular matrix associated genes. Of this grouping members of the ADAM (A disintegrin and Metalloproteinase domain containing) family of genes were differentially expressed. ADAM gene expression was also identified in EBV infected A549 cells as well as IL-13 and IL-4 stimulated cells. We probed pathologenomic activities (activation and functional activity) of ADAM19 and ADAMTS9 using siRNA and collagen assays. Knockdown of these genes resulted in diminished production of collagen in A549 cells exposed to TGF-beta1, suggesting a potential role for these molecules in ECM accumulation in IPF.

  5. Alveolar ridge dimensional changes following ridge preserv