Science.gov

Sample records for a549 human non-small

  1. Enhancement of radiosensitivity by CpG-oligodeoxyribonucleotide-7909 in human non-small cell lung cancer A549 cells.

    PubMed

    Zha, Lin; Qiao, Tiankui; Yuan, Sujuan; Lei, Linjie

    2010-04-01

    CpG-oligodeoxyribonucleotides (CpG-ODNs), which induce signaling through the toll-like receptor 9, are currently under investigation as immunity stimulators against cancer. It has recently been suggested that CpG-ODNs may also enhance sensitivity to traditional therapies including chemotherapy in certain cancer-cell lines. The purpose of this study was to define the activity of CpG-ODN7909 in increasing radiosensitivity of the human non-small cell lung cancer cell line A549 in vitro. First, a dose- and time-dependent inhibitory effect on cell viability was observed after A549 cells were treated with different concentrations of CpG-ODN7909 (5, 10, 30, and 60 microg/mL). Second, decreased cell clonogenic survival, enhanced cell apoptotic index, accumulated percentage of cells in the G2/M phase, and increased tumor necrosis factor (TNF)-alpha secretion were found after combined treatments with 10 microg/mL of CpG-ODN7909 and radiation compared to either treatment alone (p < 0.05). Furthermore, the toll-like receptor 9 mRNA was found to express in A549. The results suggest that CpG-ODN7909 can increase the radiosensitivity of human non-small cell lung cancer A549 cells, which may be associated with reduced cell clonogenic survival, enhanced apoptosis, prolonged cell-cycle arrest in G2/M, and stimulation of TNF-alpha secretion.

  2. Curcumin inhibits interferon-{alpha} induced NF-{kappa}B and COX-2 in human A549 non-small cell lung cancer cells

    SciTech Connect

    Lee, Jeeyun |; Im, Young-Hyuck | E-mail: imyh@smc.samsung.co.kr; Jung, Hae Hyun; Kim, Joo Hyun; Park, Joon Oh |; Kim, Kihyun |; Kim, Won Seog |; Ahn, Jin Seok

    2005-08-26

    The A549 cells, non-small cell lung cancer cell line from human, were resistant to interferon (IFN)-{alpha} treatment. The IFN-{alpha}-treated A549 cells showed increase in protein expression levels of NF-{kappa}B and COX-2. IFN-{alpha} induced NF-{kappa}B binding activity within 30 min and this increased binding activity was markedly suppressed with inclusion of curcumin. Curcumin also inhibited IFN-{alpha}-induced COX-2 expression in A549 cells. Within 10 min, IFN-{alpha} rapidly induced the binding activity of a {gamma}-{sup 32}P-labeled consensus GAS oligonucleotide probe, which was profoundly reversed by curcumin. Taken together, IFN-{alpha}-induced activations of NF-{kappa}B and COX-2 were inhibited by the addition of curcumin in A549 cells.

  3. Oleifolioside B-mediated autophagy promotes apoptosis in A549 human non-small cell lung cancer cells.

    PubMed

    Jin, Cheng-Yun; Yu, Hai Yang; Park, Cheol; Han, Min Ho; Hong, Su Hyun; Kim, Kyoung-Sook; Lee, Young-Choon; Chang, Young-Chae; Cheong, Jaehun; Moon, Sung-Kwon; Kim, Gi-Young; Moon, Hyung-In; Kim, Wun-Jae; Lee, Jai-Heon; Choi, Yung Hyun

    2013-12-01

    The biochemical mechanisms of cell death by oleifolioside B (OB), a cycloartane-type triterpene glycoside isolated from Dendropanax morbifera Leveille, were investigated in A549 human lung carcinoma cells. Our data indicated that exposure to OB led to caspase activation and typical features of apoptosis; however, apoptotic cell death was not prevented by z-VAD-fmk, a pan-caspase inhibitor, demonstrating that OB-induced apoptosis was independent of caspase activation. Subsequently, we found that OB increased autophagy, as indicated by an increase in monodansylcadaverine fluorescent dye-labeled autophagosome formation and in the levels of the autophagic form of microtubule-associated protein 1 light chain 3 and Atg3, an autophagy-specific gene, which is associated with inhibiting phospho-nuclear factor erythroid 2-related factor 2 (Nrf2) expression. However, pretreatment with bafilomycin A1, an autophagy inhibitor, attenuated OB-induced apoptosis and dephosphorylation of Nrf2. The data suggest that OB-induced autophagy functions as a death mechanism in A549 cells and OB has potential as a novel anticancer agent capable of targeting apoptotic and autophagic cell death and the Nrf2 signaling pathway.

  4. Green tea catechin, epigallocatechin-3-gallate, attenuates the cell viability of human non-small-cell lung cancer A549 cells via reducing Bcl-xL expression.

    PubMed

    Sonoda, Jun-Ichiro; Ikeda, Ryuji; Baba, Yasutaka; Narumi, Keiko; Kawachi, Akio; Tomishige, Erisa; Nishihara, Kazuya; Takeda, Yasuo; Yamada, Katsushi; Sato, Keizo; Motoya, Toshiro

    2014-07-01

    Clinical and epidemiological studies have indicated that the consumption of green tea has a number of beneficial effects on health. Epigallocatechin-3-gallate (EGCg), the major polyphenolic compound present in green tea, has received much attention as an active ingredient. Among the numerous promising profiles of EGCg, the present study focused on the anticancer effects. Apoptosis induced by EGCg and subsequent cell growth suppression have been demonstrated in a number of cell culture studies. However, the underlying mechanism of apoptotic cell death remains unclear. Thus, the aim of the present study was to identify the major molecule that mediates proapoptotic cell death by EGCg. The effect of EGCg on cell proliferation and the induction of mRNA that modulates apoptotic cell death was evaluated in the A549 human non-small-cell lung cancer cell line. In addition, morphological changes were assessed by microscopy in A549 cells that had been treated with 100 μM EGCg for 24 h. The MTT assay revealed that cell proliferation was significantly reduced by EGCg in a dose-dependent manner (3-100 μM). The mRNA expression level of B-cell lymphoma-extra large (Bcl-xL) was decreased in A549 cells following 24 h incubation with 100 μM EGCg. Therefore, the results indicated that the inhibition of cell proliferation by EGCg may be achieved via suppressing the expression of the cell death-inhibiting gene, Bcl-xL.

  5. Green tea catechin, epigallocatechin-3-gallate, attenuates the cell viability of human non-small-cell lung cancer A549 cells via reducing Bcl-xL expression

    PubMed Central

    SONODA, JUN-ICHIRO; IKEDA, RYUJI; BABA, YASUTAKA; NARUMI, KEIKO; KAWACHI, AKIO; TOMISHIGE, ERISA; NISHIHARA, KAZUYA; TAKEDA, YASUO; YAMADA, KATSUSHI; SATO, KEIZO; MOTOYA, TOSHIRO

    2014-01-01

    Clinical and epidemiological studies have indicated that the consumption of green tea has a number of beneficial effects on health. Epigallocatechin-3-gallate (EGCg), the major polyphenolic compound present in green tea, has received much attention as an active ingredient. Among the numerous promising profiles of EGCg, the present study focused on the anticancer effects. Apoptosis induced by EGCg and subsequent cell growth suppression have been demonstrated in a number of cell culture studies. However, the underlying mechanism of apoptotic cell death remains unclear. Thus, the aim of the present study was to identify the major molecule that mediates proapoptotic cell death by EGCg. The effect of EGCg on cell proliferation and the induction of mRNA that modulates apoptotic cell death was evaluated in the A549 human non-small-cell lung cancer cell line. In addition, morphological changes were assessed by microscopy in A549 cells that had been treated with 100 μM EGCg for 24 h. The MTT assay revealed that cell proliferation was significantly reduced by EGCg in a dose-dependent manner (3–100 μM). The mRNA expression level of B-cell lymphoma-extra large (Bcl-xL) was decreased in A549 cells following 24 h incubation with 100 μM EGCg. Therefore, the results indicated that the inhibition of cell proliferation by EGCg may be achieved via suppressing the expression of the cell death-inhibiting gene, Bcl-xL. PMID:24944597

  6. Combined treatment of curcumin and small molecule inhibitors suppresses proliferation of A549 and H1299 human non-small-cell lung cancer cells.

    PubMed

    Lin, Hui-Ping; Kuo, Li-Kuo; Chuu, Chih-Pin

    2012-01-01

    Curcumin (diferuloylmethane) is a phenolic compound present in turmeric and is ingested daily in many parts of the world. Curcumin has been reported to cause inhibition on proliferation and induction of apoptosis in many human cancer cell lines, including non-small cell lung cancer cells (NSCLC). However, the clinical application of curcumin is restricted by its low bioavailability. In this report, it was observed that combined treatment of a low dosage of curcumin (5-10 µM) with a low concentration (0.1-2.5 µM) of small molecule inhibitors, including AG1478, AG1024, PD173074, LY294002 and caffeic acid phenethyl ester (CAPE) increased the growth inhibition in two human NSCLC cell lines: A549 and H1299 cells. The observation suggested that combined treatment of a low dosage of curcumin with inhibitors against epidermal growth factor receptor (EGFR), insulin-like growth factor 1 (IGF-1R), fibroblast growth factors receptor (FGFR), phosphatidylinositol 3-kinases (PI3K) or NF-κB signaling pathway may be a potential adjuvant therapy beneficial to NSCLC patients.

  7. Andrographolide down-regulates hypoxia-inducible factor-1α in human non-small cell lung cancer A549 cells.

    PubMed

    Lin, Hui-Hsuan; Tsai, Chia-Wen; Chou, Fen-Pi; Wang, Chau-Jong; Hsuan, Shu-Wen; Wang, Cheng-Kun; Chen, Jing-Hsien

    2011-02-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1α (HIF-1α) in A549 cells. HIF-1α plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1α was correlated with a rapid ubiquitin-dependent degradation of HIF-1α, and was accompanied by increased expressions of hydroxyl-HIF-1α and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1α inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGFβ1/PHD2/HIF-1α pathway, as demonstrated by the transfection of TGFβ1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1α transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  8. Andrographolide down-regulates hypoxia-inducible factor-1{alpha} in human non-small cell lung cancer A549 cells

    SciTech Connect

    Lin, Hui-Hsuan; Tsai, Chia-Wen; Chou, Fen-Pi; Wang, Chau-Jong; Hsuan, Shu-Wen; Wang, Cheng-Kun; Chen, Jing-Hsien

    2011-02-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) in A549 cells. HIF-1{alpha} plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1{alpha} was correlated with a rapid ubiquitin-dependent degradation of HIF-1{alpha}, and was accompanied by increased expressions of hydroxyl-HIF-1{alpha} and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1{alpha} inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGF{beta}1/PHD2/HIF-1{alpha} pathway, as demonstrated by the transfection of TGF{beta}1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1{alpha} transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  9. Inhibitory Effects of Salinomycin on Cell Survival, Colony Growth, Migration, and Invasion of Human Non-Small Cell Lung Cancer A549 and LNM35: Involvement of NAG-1.

    PubMed

    Arafat, Kholoud; Iratni, Rabah; Takahashi, Takashi; Parekh, Khatija; Al Dhaheri, Yusra; Adrian, Thomas E; Attoub, Samir

    2013-01-01

    A major challenge for oncologists and pharmacologists is to develop more potent and less toxic drugs that will decrease the tumor growth and improve the survival of lung cancer patients. Salinomycin is a polyether antibiotic used to kill gram-positive bacteria including mycobacteria, protozoans such as plasmodium falciparum, and the parasites responsible for the poultry disease coccidiosis. This old agent is now a serious anti-cancer drug candidate that selectively inhibits the growth of cancer stem cells. We investigated the impact of salinomycin on survival, colony growth, migration and invasion of the differentiated human non-small cell lung cancer lines LNM35 and A549. Salinomycin caused concentration- and time-dependent reduction in viability of LNM35 and A549 cells through a caspase 3/7-associated cell death pathway. Similarly, salinomycin (2.5-5 µM for 7 days) significantly decreased the growth of LNM35 and A549 colonies in soft agar. Metastasis is the main cause of death related to lung cancer. In this context, salinomycin induced a time- and concentration-dependent inhibition of cell migration and invasion. We also demonstrated for the first time that salinomycin induced a marked increase in the expression of the pro-apoptotic protein NAG-1 leading to the inhibition of lung cancer cell invasion but not cell survival. These findings identify salinomycin as a promising novel therapeutic agent for lung cancer.

  10. A polysaccharide fraction of adlay seed (Coixlachryma-jobi L.) induces apoptosis in human non-small cell lung cancer A549 cells

    SciTech Connect

    Lu, Xiangyi; Liu, Wei; Wu, Junhua; Li, Mengxian; Wang, Juncheng; Wu, Jihui; Luo, Cheng

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer A polysaccharide from adlay seed, its molecular mass, optical rotation and sugars was determined. Black-Right-Pointing-Pointer We demonstrated that a polysaccharide from adlay can induce apoptosis in cancer cells. Black-Right-Pointing-Pointer The polysaccharide inhibited the metabolism and proliferation of NSCLC A549 cells. Black-Right-Pointing-Pointer The polysaccharide may trigger apoptosis via the mitochondria-dependent pathway. -- Abstract: Different seed extracts from Coix lachryma-jobi (adlay seed) have been used for the treatment of various cancers in China, and clinical data support the use of these extracts for cancer therapy; however, their underlying molecular mechanisms have not been well defined. A polysaccharide fraction, designated as CP-1, was extracted from the C.lachryma-jobi L. var. using the ethanol subsiding method. CP-1 induced apoptosis in A549 cells in a dose-dependent manner, as determined by MTT assay. Apoptotic bodies were observed in the cells by scanning electronic microscopy. Apoptosis and DNA accumulation during S-phase of the cell cycle were determined by annexin V-FITC and PI staining, respectively, and measured by flow cytometry. CP-1 also extended the comet tail length on single cell gel electrophoresis, and disrupted the mitochondrial membrane potential. Further analysis by western blotting showed that the expression of caspase-3 and caspase-9 proteins was increased. Taken together, our results demonstrate that CP-1 is capable of inhibiting A549 cell proliferation and inducing apoptosis via a mechanism primarily involving the activation of the intrinsic mitochondrial pathway. The assay data suggest that in addition to its nutritional properties, CP-1 is a very promising candidate polysaccharide for the development of anti-cancer medicines.

  11. A polysaccharide fraction of adlay seed (Coixlachryma-jobi L.) induces apoptosis in human non-small cell lung cancer A549 cells.

    PubMed

    Lu, Xiangyi; Liu, Wei; Wu, Junhua; Li, Mengxian; Wang, Juncheng; Wu, Jihui; Luo, Cheng

    2013-01-11

    Different seed extracts from Coix lachryma-jobi (adlay seed) have been used for the treatment of various cancers in China, and clinical data support the use of these extracts for cancer therapy; however, their underlying molecular mechanisms have not been well defined. A polysaccharide fraction, designated as CP-1, was extracted from the C.lachryma-jobi L. var. using the ethanol subsiding method. CP-1 induced apoptosis in A549 cells in a dose-dependent manner, as determined by MTT assay. Apoptotic bodies were observed in the cells by scanning electronic microscopy. Apoptosis and DNA accumulation during S-phase of the cell cycle were determined by annexin V-FITC and PI staining, respectively, and measured by flow cytometry. CP-1 also extended the comet tail length on single cell gel electrophoresis, and disrupted the mitochondrial membrane potential. Further analysis by western blotting showed that the expression of caspase-3 and caspase-9 proteins was increased. Taken together, our results demonstrate that CP-1 is capable of inhibiting A549 cell proliferation and inducing apoptosis via a mechanism primarily involving the activation of the intrinsic mitochondrial pathway. The assay data suggest that in addition to its nutritional properties, CP-1 is a very promising candidate polysaccharide for the development of anti-cancer medicines.

  12. Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 non-small cell lung cancer cells

    PubMed Central

    Yong, Wai Kuan; Ho, Yen Fong; Malek, Sri Nurestri Abd

    2015-01-01

    Background: Xanthohumol, a major prenylated chalcone found in female hop plant, Humulus lupulus, was reported to have various chemopreventive and anti-cancer properties. However, its apoptotic effect on human alveolar adenocarcinoma cell line (A549) of non-small cell lung cancer (NSCLC) was unknown. Objective: This study aimed to investigate the effects of xanthohumol on apoptosis in A549 human NSCLC cells. Materials and Methods: A549 cell proliferation was determined by sulforhodamine B assay. Morphological changes of the cells were studied via phase contrast and fluorescent microscopy. Induction of apoptosis was assessed by Annexin-V fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining, DNA fragmentation (TUNEL) assay mitochondrial membrane potential assay, cell cycle analysis, and caspase activity studies. Results: Xanthohumol was found to decrease cell proliferation in A549 cells but had relatively low cytotoxicity on normal human lung fibroblast cell line (MRC-5). Typical cellular and nuclear apoptotic features were also observed in A549 cells treated with xanthohumol. Onset of apoptosis in A549 cells was further confirmed by externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells after treatment. Xanthohumol induced accumulation of cells in sub G1 and S phase based on cell cycle analysis and also increased the activities of caspase-3, -8, and -9. Conclusion: This work suggests that xanthohumol as an apoptosis inducer, may be a potent therapeutic compound for NSCLC. PMID:26664015

  13. Proteomic response to 5,6-dimethylxanthenone 4-acetic acid (DMXAA, vadimezan) in human non-small cell lung cancer A549 cells determined by the stable-isotope labeling by amino acids in cell culture (SILAC) approach.

    PubMed

    Pan, Shu-Ting; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Yang, Yin-Xue; Wang, Dong; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    5,6-Dimethylxanthenone 4-acetic acid (DMXAA), also known as ASA404 and vadimezan, is a potent tumor blood vessel-disrupting agent and cytokine inducer used alone or in combination with other cytotoxic agents for the treatment of non-small cell lung cancer (NSCLC) and other cancers. However, the latest Phase III clinical trial has shown frustrating outcomes in the treatment of NSCLC, since the therapeutic targets and underlying mechanism for the anticancer effect of DMXAA are not yet fully understood. This study aimed to examine the proteomic response to DMXAA and unveil the global molecular targets and possible mechanisms for the anticancer effect of DMXAA in NSCLC A549 cells using a stable-isotope labeling by amino acids in cell culture (SILAC) approach. The proteomic data showed that treatment with DMXAA modulated the expression of 588 protein molecules in A549 cells, with 281 protein molecules being up regulated and 306 protein molecules being downregulated. Ingenuity pathway analysis (IPA) identified 256 signaling pathways and 184 cellular functional proteins that were regulated by DMXAA in A549 cells. These targeted molecules and signaling pathways were mostly involved in cell proliferation and survival, redox homeostasis, sugar, amino acid and nucleic acid metabolism, cell migration, and invasion and programed cell death. Subsequently, the effects of DMXAA on cell cycle distribution, apoptosis, autophagy, and reactive oxygen species (ROS) generation were experimentally verified. Flow cytometric analysis showed that DMXAA significantly induced G1 phase arrest in A549 cells. Western blotting assays demonstrated that DMXAA induced apoptosis via a mitochondria-dependent pathway and promoted autophagy, as indicated by the increased level of cytosolic cytochrome c, activation of caspase 3, and enhanced expression of beclin 1 and microtubule-associated protein 1A/1B-light chain 3 (LC3-II) in A549 cells. Moreover, DMXAA significantly promoted intracellular ROS

  14. Intracellular calcium promotes radioresistance of non-small cell lung cancer A549 cells through activating Akt signaling.

    PubMed

    Wang, Yiling; He, Jiantao; Zhang, Shenghui; Yang, Qingbo

    2017-03-01

    Radiotherapy is a major therapeutic approach in non-small cell lung cancer but is restricted by radioresistance. Although Akt signaling promotes radioresistance in non-small cell lung cancer, it is not well understood how Akt signaling is activated. Since intracellular calcium (Ca(2+)) could activate Akt in A549 cells, we investigated the relationship between intracellular calcium (Ca(2+)) and Akt signaling in radioresistant A549 cells by establishing radioresistant non-small cell lung cancer A549 cells. The radioresistant cell line A549 was generated by dose-gradient irradiation of the parental A549 cells. The cell viability, proliferation, and apoptosis were, respectively, assessed using the cell counting kit-8, EdU labeling, and flow cytometry analysis. The phosphorylation of Akt was evaluated by Western blotting, and the intracellular Ca(2+) concentration was assessed by Fluo 4-AM. The radioresistant A549 cells displayed mesenchymal morphology. After additional irradiation, the radioresistant A549 cells showed decreased cell viability and proliferation but increased apoptosis. Moreover, the intracellular Ca(2+) concentration and the phosphorylation level on the Akt473 site in radioresistant A549 cells were higher than those in original cells, whereas the percentage of apoptosis in radioresistant A549 cells was less. All these results could be reversed by verapamil. In conclusion, our study found that intracellular Ca(2+) could promote radioresistance of non-small cell lung cancer cells through phosphorylating of Akt on the 473 site, which contributes to a better understanding on the non-small cell lung cancer radioresistance, and may provide a new target for radioresistance management.

  15. Anti-Proliferative and Apoptosis-Inducing Effect of Theabrownin against Non-small Cell Lung Adenocarcinoma A549 Cells

    PubMed Central

    Wu, Feifei; Zhou, Li; Jin, Wangdong; Yang, Weiji; Wang, Ying; Yan, Bo; Du, Wenlin; Zhang, Qiang; Zhang, Lei; Guo, Yonghua; Zhang, Jin; Shan, Letian; Efferth, Thomas

    2016-01-01

    With the highest cancer incidence rate, lung cancer, especially non-small cell lung cancer (NSCLC), is the leading cause of cancer death in the world. Tea (leaves of Camellia sinensis) has been widely used as a traditional beverage beneficial to human health, including anti-NSCLC activity. Theabrownin (TB) is one major kind of tea pigment responsible for the beneficial effects of tea liquor. However, its effect on NSCLC is unknown. The aim of the present study was to evaluate anti-proliferative and apoptosis-inducing effect of TB on NSCLC (A549) cells, using MTT assay, morphological observation (DAPI staining), in situ terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and annexin-V/PI flow cytometry. Subsequently, the expression of several genes associated with cell proliferation and apoptosis were detected by real time PCR assay to explore its potential underlying mechanism. TB was revealed to inhibit cell proliferation of A549 cells in a concentration-dependent and time-dependent manner. Morphological observation, TUNEL assay and flow cytometric analysis evidenced an apoptosis-inducing effect of TB on A549 cells in a concentration-dependent manner. The real time PCR assay demonstrated that TB down-regulated the expression of TOPO I, TOPO II, and BCL-2, and up-regulated the expression of E2F1, P53, GADD45, BAX, BIM, and CASP 3,7,8,9, which suggests an activation of P53-mediated apoptotic (caspase-dependent) pathway in response to TB treatment. The western blot analysis showed a similar trend for the corresponding protein expression (P53, Bax, Bcl-2, caspase 3,9, and PARP) and further revealed DNA damage as a trigger of the apoptosis (phosphorylation of histone H2A.X). Accordingly, TB can be speculated as a DNA damage inducer and topoisomerase (Topo I and Topo II) inhibitor that can up-regulate P53 expression and subsequently modulate the expression of the downstream genes to induce cell proliferation inhibition and apoptosis of A549 cells

  16. Knockdown of Aurora-B inhibits the growth of non-small cell lung cancer A549 cells.

    PubMed

    Yu, Jing Jing; Zhou, Long Dian; Zhao, Tian Tian; Bai, Wei; Zhou, Jing; Zhang, Wei

    2015-09-01

    Elevated expression of Aurora-B affects cell apoptosis and proliferation in a variety of solid tumors. However, the role of Aurora-B has been poorly evaluated in non-small cell lung cancer (NSCLC). In the present study, it was found that Aurora-B was overexpressed in tissue specimens obtained from 174 patients with lung cancer. It was also demonstrated that knockdown of Aurora-B induces apoptosis and inhibits the growth of lung cancer A549 cells in vitro and in vivo. Furthermore, it was found that silencing Aurora-B decreased the activity of the phosphoinositide 3-kinase (PI3K)/AKT pathway. Therefore, it was concluded that knockdown of Aurora-B induces apoptosis and inhibits growth in NSCLC A549 cells, in addition to inhibiting the activity of the PI3K/AKT signaling pathway. Targeting Aurora-B may provide a novel target for lung cancer therapy.

  17. Venom present in sea anemone (Heteractis magnifica) induces apoptosis in non-small-cell lung cancer A549 cells through activation of mitochondria-mediated pathway.

    PubMed

    Ramezanpour, Mahnaz; da Silva, Karen Burke; Sanderson, Barbara J S

    2014-03-01

    Lung cancer is a major cause of cancer deaths throughout the world and the complexity of apoptosis resistance in lung cancer is apparent. Venom from Heteractis magnifica caused dose-dependent decreases in survival of the human non-small-cell lung cancer cell line, as determined by the MTT and Crystal Violet assays. The H. magnifica venom induced cell cycle arrest and induced apoptosis of A549 cells, as confirmed by annexin V/propidium iodide staining. The venom-induced apoptosis in A549 cells was characterized by cleavage of caspase-3 and a reduction in the mitochondrial membrane potential. Interestingly, crude extracts from H. magnifica had less effect on the survival of non-cancer cell lines. In the non-cancer cells, the mechanism via which cell death occurred was through necrosis not apoptosis. These findings are important for future work using H. magnifica venom for pharmaceutical development to treat human lung cancer.

  18. Lysyl oxidase mediates hypoxia-induced radioresistance in non-small cell lung cancer A549 cells

    PubMed Central

    Gong, Chongwen; Gu, Runxia; Jin, Honglin; Sun, Yao; Li, Zhenyu; Wu, Gang

    2016-01-01

    Hypoxia-induced radioresistance has been well known as the main obstacle in cancer radiotherapy. Lysyl oxidase (LOX) was previously demonstrated to play an important role in hypoxia-induced biological behaviors, such as metastasis and angiogenesis, through hypoxia-inducible factor-1α (HIF-1α), which is an important contributing factor to radioresistance in tumor cells. However, how LOX plays a role in hypoxia-induced radioresistance has yet to be determined. Here, we found that LOX expression was in accordance with HIF-1α expression, and LOX expression at the mRNA and protein level, and enzymatic activity were remarkably upregulated in the hypoxic A549 cells, compared with normoxic A549 cells. Inhibition of LOX resulted in the reduction of the ability to repair double-stranded breaks (DSBs), promotion of apoptosis, relief of G2/M cycle arrest, and eventually reduction of hypoxia-induced radioresistance in the hypoxic A549 cells. This suggests that LOX may play an important role in hypoxia-induced radioresistance. Together, our results might suggest a novel potential therapeutic target in the management of non-small cell lung cancer (NSCLC). PMID:26515140

  19. miR-107 regulates cisplatin chemosensitivity of A549 non small cell lung cancer cell line by targeting cyclin dependent kinase 8

    PubMed Central

    Zhang, Zhe; Zhang, Lu; Yin, Zhi-Yi; Fan, Xing-Long; Hu, Bo; Wang, Lun-Qing; Zhang, Di

    2014-01-01

    Previous studies demonstrated that the acquired drug resistance of non-small cell lung cancer (NSCLC) was related to deregulation of miRNAs. However, the effects of miR-107 and the mechanism through which miR-107 affects the cisplatin chemoresistance in NSCLC have not been reported. TaqMan RT-PCR or Western blot assay was performed to detect the expression of mature miR-107 and cyclin dependent kinase 8 (CDK8) protein. The viabilities of treated cells were analyzed using MTT assay. We found that the expression level of miR-107 in A549 cells was significantly lower than that in normal human bronchial epithelial cells (0.45 ± 0.26 vs. 1.00 ± 0.29, P = 0.032). The MTT assay showed that the A549 cells transfected with miR-107 mimics were significantly more sensitive to the therapy of cisplatin than control cells. A549 cells transfected with miR-107 mimics showed a decreased CDK8 protein expression. Downregulation of CDK8 expression by siRNAs, A549 cells became more sensitive to the therapy of cisplatin. In addition, the enhanced growth-inhibitory effect by the miR-107 mimic transfection was enhanced after the addition of CDK8 siRNA. In conclusion, the present study provides the first evidence that miR-107 plays a key role in cisplatin resistance by targeting the CDK8 protein in NSCLC cell lines, suggesting that miR-107 can be used to predict a patient’s response to chemotherapy as well as serve as a novel potential maker for NSCLC therapy. PMID:25400821

  20. Rhizoma Paridis Saponins Induces Cell Cycle Arrest and Apoptosis in Non-Small Cell Lung Carcinoma A549 Cells

    PubMed Central

    Zhang, Jue; Yang, Yixi; Lei, Lei; Tian, Mengliang

    2015-01-01

    Background As a traditional Chinese medicine herb, Chonglou (Paris polyphylla var. chinensis) has been used as anticancer medicine in China in recent decades, as it can induce cell cycle arrest and apoptosis in numerous cancer cells. The saponins extract from the rhizoma of Chonglou [Rhizoma Paridis saponins (RPS)] is known as the main active component for anticancer treatment. However, the molecular mechanism of the anticancer effect of RPS is unknown. Material/Methods The present study evaluated the effect of RPS in non-small-cell lung cancer (NSCLC) A549 cells using the 3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyl tetrazolium bromide (MTT) assay and flow cytometry. Subsequently, the expression of several genes associated with cell cycle and apoptosis were detected by reverse transcription-quantitative polymerase chain reaction (qRT-PCR) and Western blotting. Results RPS was revealed to inhibit cell growth, causing a number of cells to accumulate in the G 1 phase of the cell cycle, leading to apoptosis. In addition, the effect was dose-dependent. Moreover, the results of qRT-PCR and Western blotting showed that p53 and cyclin-dependent kinase 2 (CDK2) were significantly downregulated, and that BCL2, BAX, and p21 were upregulated, by RPS treatment. Conclusions We speculated that the RPS could act on a pathway, including p53, p21, BCL2, BAX, and CDK2, and results in G1 cell cycle arrest and apoptosis in NSCLC cells. PMID:26311066

  1. microRNA-99a is downregulated and promotes proliferation, migration and invasion in non-small cell lung cancer A549 and H1299 cells.

    PubMed

    Chen, Changjin; Zhao, Ziyi; Liu, Yu; Mu, Dezhi

    2015-03-01

    There is increasing evidence that microRNAs (miRNAs) are able to play a key role in the diagnosis and therapy of cancer. miRNA-99a (miR-99a), which is downregulated in several human malignancies, has been reported as a potential tumor suppressor. However, to the best of our knowledge, the expression and function of miR-99a has not been investigated in human non-small cell lung cancer (NSCLC) at present. The aim of the current study was to evaluate the association between NSCLC and miR-99a. miR-99a expression was analyzed in 15 pairs of NSCLC and non-cancerous tissue samples by reverse transcription-quantitative polymerase chain reaction. In addition, the NSCLC A549 and H1299 cell lines were transfected with miR-99a mimics, and the effect of miR-99a on the cell cycle, cell proliferation, migration and colony formation of A549 and H1299 cells was investigated. It was found that the level of miR-99a expression was significantly downregulated in NSCLC tissues and that ectopic overexpression of miR-99a significantly inhibited the growth of A549 and H1299 cells. Additionally, ectopic overexpression of miR-99a inhibited A549 and H1299 cell migration and invasion by inhibiting epithelial to mesenchymal transition. The downregulation of insulin-like growth factor 1 receptor (IGF-1R) by miR-99a and knockdown of IGF-1R mediated by siRNA were each found to phenocopy the effect of miR-99a overexpression in NSCLC. To the best of our knowledge, the present study demonstrated for the first time that, in NSCLC, miR-99a is downregulated and thus regulates proliferation, colony formation and migration through the IGF-1R pathway, which indicates that miR-99a is a diagnostic biomarker for NSCLC.

  2. [Effects of miR-424 on Proliferation and Migration Abilities in Non-small Cell Lung Cancer A549 Cells and Its Molecular Mechanism].

    PubMed

    Li, Hongmin; Lan, Haitao; Zhang, Ming; An, Ning; Yu, Ruilian; He, Yangke; Gan, Chongzhi

    2016-09-20

    背景与目的 已有的研究表明miR-424可抑制肾癌细胞增殖,抑制宫颈鳞癌细胞的迁移和侵袭能力,而其对非小细胞肺癌(non-small cell lung cancer, NSCLC)细胞的影响目前尚无系统研究。本研究探讨miR-424对NSCLC A549细胞生长和侵袭迁移能力的影响并进一步研讨其分子机制。方法 应用CCK8检测过表达及抑制miR-424的表达对A549细胞增殖的影响。应用Transwell检测过表达及抑制miR-424的表达对A549细胞侵袭能力的影响。应用Western blot检测过表达及抑制miR-424的表达对A549细胞中MMP9和MMP2蛋白水平的影响。构建E2F6 3’UTR区的荧光素酶报告载体,验证miR-424对E2F6的靶向作用。采用Western blot检测过表达及抑制miR-424的表达后,A549细胞中E2F6的表达。结果 过表达miR-424后,A549的生长和侵袭能力显著降低。过表达miR-424后,A549细胞的MMP-2和MMP-9表达下降。荧光素酶活性检测表明miR-424能够抑制E2F6的荧光素酶活性。过表达miR-424后,细胞内E2F6的表达降低。结论 miR-424能够通过调控E2F6而抑制A549的生长和侵袭能力。.

  3. Potent organometallic osmium compounds induce mitochondria-mediated apoptosis and S-phase cell cycle arrest in A549 non-small cell lung cancer cells.

    PubMed

    van Rijt, Sabine H; Romero-Canelón, Isolda; Fu, Ying; Shnyder, Steve D; Sadler, Peter J

    2014-05-01

    The problems of acquired resistance associated with platinum drugs may be addressed by chemotherapeutics based on other transition metals as they offer the possibility of novel mechanisms of action. In this study, the cellular uptake and induction of apoptosis in A549 human non-small cell lung cancer cells of three promising osmium(II) arene complexes containing azopyridine ligands, [Os(η(6)-arene)(p-R-phenylazopyridine)X]PF6, where arene is p-cymene or biphenyl, R is OH or NMe2, and X is Cl or I, were investigated. These complexes showed time-dependent (4–48 h) potent anticancer activity with highest potency after 24 h (IC50 values ranging from 0.1 to 3.6 μM). Cellular uptake of the three compounds as quantified by ICP-MS, was independent of their logP values (hydrophobicity). Furthermore, maximum cell uptake was observed after 24 h, with evident cell efflux of the osmium after 48 and 72 h of exposure, which correlated with the corresponding IC50 values. The most active compound 2, [Os(η(6)-p-cymene)(NMe2-phenylazopyridine)I]PF6, was taken up by lung cancer cells predominately in a temperature-dependent manner indicating that energy-dependent mechanisms are important in the uptake of 2. Cell fractionation studies showed that all three compounds accumulated mainly in cellular membranes. Furthermore, compound 2 induced apoptosis and caused accumulation in the S-phase of the cell cycle. In addition, 2 induced cytochrome c release and alterations in mitochondrial membrane potential even after short exposure times, indicating that mitochondrial apoptotic pathways are involved. This study represents the first steps towards understanding the mode of action of this promising class of new osmium-based chemotherapeutics.

  4. Antiproliferative and antimetastatic action of quercetin on A549 non-small cell lung cancer cells through its effect on the cytoskeleton.

    PubMed

    Klimaszewska-Wiśniewska, Anna; Hałas-Wiśniewska, Marta; Izdebska, Magdalena; Gagat, Maciej; Grzanka, Alina; Grzanka, Dariusz

    2017-03-01

    To our knowledge, this study is the first to investigate the effect of the dietary flavonoid quercetin on the main cytoskeletal elements, namely microfilaments, microtubules and vimentin intermediate filaments, as well as cytoskeleton-driven processes in A549 non-small cell lung cancer cells. The methyl-thiazol-diphenyl-tetrazolium assay, annexin V/propidium iodide test, electron microscopic examination, cell cycle analysis based on DNA content, real-time PCR assays, in vitro scratch wound-healing assay, fluorescence staining of F-actin, β-tubulin and vimentin were performed to assess the effects of quercetin on A549 cells. Our results showed that quercetin triggered BCL2/BAX-mediated apoptosis, as well as necrosis and mitotic catastrophe, and inhibited the migratory potential of A549 cells. The disassembling effect of quercetin on microfilaments, microtubules and vimentin filaments along with its inhibitory impact on vimentin and N-cadherin expression might account for the decreased migration of A549 cells in response to quercetin treatment. We also suggest that the possible mechanism underlying quercetin-induced mitotic catastrophe involves the perturbation of mitotic microtubules leading to monopolar spindle formation, and, consequently, to the failure of cytokinesis. We further propose that cytokinesis failure could also be a result of the depletion of actin filaments by quercetin. These findings are important to our further understanding of the detailed mechanism of the antitumor activity of quercetin and render this flavonoid a potentially useful candidate for combination therapy with conventional antimicrotubule drugs, nucleic acid-directed agents or novel cytoskeletal-directed agents.

  5. Sinomenine inhibits A549 human lung cancer cell invasion by mediating the STAT3 signaling pathway

    PubMed Central

    Jiang, Shulong; Gao, Yebo; Hou, Wei; Liu, Rui; Qi, Xin; Xu, Xia; Li, Jie; Bao, Yanju; Zheng, Honggang; Hua, Baojin

    2016-01-01

    Increasing evidence suggests that the failure of lung cancer treatment may occur as a result of tumor invasion and metastasis. Signal transducer and activator of transcription 3 (STAT3), an epithelial-mesenchymal transition-inducing transcription factor, is a key signaling molecule involved in the proliferation, apoptosis, invasion and metastasis of tumor cells. Sinomenine is an alkaloid compound with an antineoplastic potential against a variety of cancer cells. The aim of the present study was to assess the antitumor mechanisms of sinomenine in the A549 human lung cancer cell line. The results demonstrated that sinomenine manifested dose-dependent cytotoxicity and induced apoptosis in A549 cells. The protein expression of Janus kinase 2, STAT3, phosphorylated-STAT3, Snail, N-cadherin and vimentin decreased in sinomenine-treated cells, while E-cadherin protein expression increased. The regulation of STAT3, N-cadherin and E-cadherin by sinomenine was further confirmed by reverse transcription-quantitative polymerase chain reaction and immunofluorescent staining. It was demonstrated that sinomenine exerts inhibitory effects on A549 human lung cancer cell invasion, possibly through the inhibition of STAT3 signaling. These results provide a novel insight into the role of sinomenine in the treatment of non-small cell lung cancer. PMID:27446441

  6. Non-small-cell lung cancer cell lines A549 and NCI-H460 express hypoxanthine guanine phosphoribosyltransferase on the plasma membrane

    PubMed Central

    Townsend, Michelle H; Anderson, Michael D; Weagel, Evita G; Velazquez, Edwin J; Weber, K Scott; Robison, Richard A; O’Neill, Kim L

    2017-01-01

    In both males and females, lung cancer is one of the most lethal cancers worldwide and accounts for >30% of cancer-related deaths. Despite advances in biomarker analysis and tumor characterization, there remains a need to find suitable biomarker antigen targets for treatment in late-stage lung cancer. Previous research on the salvage pathway enzyme TK1 shows a unique relationship with cancer patients as serum levels are raised according to cancer grade. To expand this analysis, the other salvage pathway enzymes were evaluated for possible upregulation within lung cancer. Adenine phosphoribosyltransferase, deoxycytidine kinase, and hypoxanthine guanine phosphoribosyltransferase (HPRT) were assessed for their presentation on two non-small-cell lung cancer cell lines NCI-H460 and A549. In the present study, we show that deoxycytidine kinase and adenine phosphoribosyltransferase have no significant relationship with the membrane of NCI-H460 cells. However, we found significant localization of HPRT to the membrane of NCI-H460 and A549 cells. When treated with anti-HPRT antibodies, the average fluorescence of the cell population increased by 24.3% and 12.9% in NCI-H460 and A549 cells, respectively, in comparison with controls. To ensure that expression was not attributed to cytoplasmic HPRT, confocal microscopy was performed to visualize HPRT binding on the plasma membrane. After staining NCI-H460 cells treated with both fluorescent antibodies and a membrane-specific dye, we observed direct overlap between HPRT and the membrane of the cancer cells. Additionally, gold-conjugated antibodies were used to label and quantify the amount of HPRT on the cell surface using scanning electron microscopy and energy-dispersive analysis X-ray. Further confirming HPRT presence, the gold weight percentage of the sample increased significantly when NCI-H460 cells were exposed to HPRT antibody (P=0.012) in comparison with isotype controls. Our results show that HPRT is localized on the

  7. Suberoylanilide Hydroxamic Acid Treatment Reveals Crosstalks among Proteome, Ubiquitylome and Acetylome in Non-Small Cell Lung Cancer A549 Cell Line

    PubMed Central

    Wu, Quan; Cheng, Zhongyi; Zhu, Jun; Xu, Weiqing; Peng, Xiaojun; Chen, Chuangbin; Li, Wenting; Wang, Fengsong; Cao, Lejie; Yi, Xingling; Wu, Zhiwei; Li, Jing; Fan, Pingsheng

    2015-01-01

    Suberoylanilide hydroxamic acid (SAHA) is a well-known histone deacetylase (HDAC) inhibitor and has been used as practical therapy for breast cancer and non-small cell lung cancer (NSCLC). It is previously demonstrated that SAHA treatment could extensively change the profile of acetylome and proteome in cancer cells. However, little is known about the impact of SAHA on other protein modifications and the crosstalks among different modifications and proteome, hindering the deep understanding of SAHA-mediated cancer therapy. In this work, by using SILAC technique, antibody-based affinity enrichment and high-resolution LC-MS/MS analysis, we investigated quantitative proteome, acetylome and ubiquitylome as well as crosstalks among the three datasets in A549 cells toward SAHA treatment. In total, 2968 proteins, 1099 acetylation sites and 1012 ubiquitination sites were quantified in response to SAHA treatment, respectively. With the aid of intensive bioinformatics, we revealed that the proteome and ubiquitylome were negatively related upon SAHA treatment. Moreover, the impact of SAHA on acetylome resulted in 258 up-regulated and 99 down-regulated acetylation sites at the threshold of 1.5 folds. Finally, we identified 55 common sites with both acetylation and ubiquitination, among which ubiquitination level in 43 sites (78.2%) was positive related to acetylation level. PMID:25825284

  8. Suberoylanilide hydroxamic acid treatment reveals crosstalks among proteome, ubiquitylome and acetylome in non-small cell lung cancer A549 cell line.

    PubMed

    Wu, Quan; Cheng, Zhongyi; Zhu, Jun; Xu, Weiqing; Peng, Xiaojun; Chen, Chuangbin; Li, Wenting; Wang, Fengsong; Cao, Lejie; Yi, Xingling; Wu, Zhiwei; Li, Jing; Fan, Pingsheng

    2015-03-31

    Suberoylanilide hydroxamic acid (SAHA) is a well-known histone deacetylase (HDAC) inhibitor and has been used as practical therapy for breast cancer and non-small cell lung cancer (NSCLC). It is previously demonstrated that SAHA treatment could extensively change the profile of acetylome and proteome in cancer cells. However, little is known about the impact of SAHA on other protein modifications and the crosstalks among different modifications and proteome, hindering the deep understanding of SAHA-mediated cancer therapy. In this work, by using SILAC technique, antibody-based affinity enrichment and high-resolution LC-MS/MS analysis, we investigated quantitative proteome, acetylome and ubiquitylome as well as crosstalks among the three datasets in A549 cells toward SAHA treatment. In total, 2968 proteins, 1099 acetylation sites and 1012 ubiquitination sites were quantified in response to SAHA treatment, respectively. With the aid of intensive bioinformatics, we revealed that the proteome and ubiquitylome were negatively related upon SAHA treatment. Moreover, the impact of SAHA on acetylome resulted in 258 up-regulated and 99 down-regulated acetylation sites at the threshold of 1.5 folds. Finally, we identified 55 common sites with both acetylation and ubiquitination, among which ubiquitination level in 43 sites (78.2%) was positive related to acetylation level.

  9. 5-allyl-7-gen-difluoromethoxychrysin enhances TRAIL-induced apoptosis in human lung carcinoma A549 cells

    PubMed Central

    2011-01-01

    Background 5-allyl-7-gen-difluoromethoxychrysin (AFMC) is a novel synthetic analogue of chrysin that has been reported to inhibit proliferation in various cancer cell lines. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-cancer agent. Methods The cytotoxicity of A549 and WI-38 cells were determined using colorimetry. Apoptosis was detected by flow cytometry (FCM) after propidium iodide (PI) fluorescence staining and agarose gel electrophoresis. Caspase activities were evaluated using enzyme-linked immunosorbent assay (ELISA).The expressions of DR4 and DR5 were analyzed using FCM and western blot. Results Subtoxic concentrations of AFMC sensitize human non-small cell lung cancer (NSCLC) A549 cells to TRAIL-mediated apoptosis. Combined treatment of A549 cells with AFMC and TRAIL significantly activated caspase-3, -8 and -9. The caspase-3 inhibitor zDEVD-fmk and the caspase-8 inhibitor zIETD-fmk blocked the apoptosis of A549 cells induced by co-treatment with AFMC and TRAIL. In addition, we found that treatment of A549 cells with AFMC significantly induced the expression of death receptor 5 (DR5). AFMC-mediated sensitization of A549 cells to TRAIL was efficiently reduced by administration of a blocking antibody or small interfering RNAs against DR5. AFMC also caused increase of the Sub-G1 cells by TRAIL treatment and increased the expression levels of DR5 in other NSCLC H460 and H157 cell lines. In contrast, AFMC-mediated induction of DR5 expression was not observed in human embryo lung WI-38 cells, and AFMC did not sensitize WI-38 cells to TRAIL-induced apoptosis. Conclusions AFMC synergistically enhances TRAIL-mediated apoptosis in NSCLC cells through up-regulating DR5 expression. PMID:21801359

  10. Cytotoxicity of withasteroids: withametelin induces cell cycle arrest at G2/M phase and mitochondria-mediated apoptosis in non-small cell lung cancer A549 cells.

    PubMed

    Rao, Poorna Chandra; Begum, Sajeli; Jahromi, Mohammad Ali Farboodniay; Jahromi, Zahra Hosseini; Sriram, Saketh; Sahai, Mahendra

    2016-09-01

    Considerable interest has been gained by withasteroids because of their structural uniqueness and wide spectrum of biological activities. However, limited systematic studies for proving their cytotoxic potential have so far been reported. Hence, an attempt was made to test the cytotoxicity of six withasteroids viz., withametelin (WM), withaphysalin D, withaphysalin E, 12-deoxywithastramonolide, Withaperuvin B, and physalolactone against A549, HT-29, and MDA-MB-231 cancer cell lines. Significant cytotoxic effect of WM against A549 cells (IC50 value of 6.0 μM), MDA-MB-231 cells (IC50 value of 7.6 μM), and HT-29 cells (IC50 value of 8.2 μM) was observed. Withaperuvin B and physalolactone were found to be effective against MDA-MB-231 cells. The significantly active WM arrested the A549 cells at G2/M phase and downregulated the expression of G2/M regulatory proteins such as cdc2, cyclin B1, and cdc25C. Apoptosis induced by WM in A549 cells was associated with the generation of ROS and depletion of MMP. Furthermore, WM treatment resulted in Bax upregulation, Bcl-2 downregulation, translocation of cytochrome c to mitochondria, activation of caspase-9 and -3, and PARP cleavage corroborating the apoptosis induction through intrinsic apoptotic pathway. Thus, WM possessing broader cytotoxic effect is a promising lead molecule which has the potential to be developed as a new therapeutic agent for NSCLC.

  11. Paracrine control of differentiation in the alveolar carcinoma, A549, by human foetal lung fibroblasts.

    PubMed

    Speirs, V; Ray, K P; Freshney, R I

    1991-10-01

    Synthesis of pulmonary surfactant (PS) is necessary for normal functioning of the lungs and its production is indicative of normal differentiated lung. The human alveolar carcinoma, A549, has been found to synthesis and secrete PS in vitro. The purpose of this study was to optimise the culture conditions for PS synthesis by A549 as well as to determine the potential role of foetal lung fibroblasts in the induction of PS by glucocorticoids. A549 cells growing in filter wells produced higher levels of PS in response to steroid, a 5-fold increase on the filter well compared to only a 1.5-fold increase when the cells were cultured on a conventional plastic substrate. A549 cells grown in filter wells responded to coculture with fibroblasts whether in direct contact or separated co-culture. A 20-fold increase in PS over control values was observed in separated steroid-treated co-cultures, suggesting the presence of a diffusible factor. A partially purified factor was isolated from fibroblast conditioned medium which was capable of inducing differentiation and other phenotypic changes in A549, namely induction of PS, reduction of plasminogen activator activity and reduction in the in vivo growth of A549 xenografts in nude mice. These results suggest that, under the correct conditions, A549 cells, although transformed, still retain the capacity to respond to differentiation-inducing signals from normal fibroblasts.

  12. Paracrine control of differentiation in the alveolar carcinoma, A549, by human foetal lung fibroblasts.

    PubMed Central

    Speirs, V.; Ray, K. P.; Freshney, R. I.

    1991-01-01

    Synthesis of pulmonary surfactant (PS) is necessary for normal functioning of the lungs and its production is indicative of normal differentiated lung. The human alveolar carcinoma, A549, has been found to synthesis and secrete PS in vitro. The purpose of this study was to optimise the culture conditions for PS synthesis by A549 as well as to determine the potential role of foetal lung fibroblasts in the induction of PS by glucocorticoids. A549 cells growing in filter wells produced higher levels of PS in response to steroid, a 5-fold increase on the filter well compared to only a 1.5-fold increase when the cells were cultured on a conventional plastic substrate. A549 cells grown in filter wells responded to coculture with fibroblasts whether in direct contact or separated co-culture. A 20-fold increase in PS over control values was observed in separated steroid-treated co-cultures, suggesting the presence of a diffusible factor. A partially purified factor was isolated from fibroblast conditioned medium which was capable of inducing differentiation and other phenotypic changes in A549, namely induction of PS, reduction of plasminogen activator activity and reduction in the in vivo growth of A549 xenografts in nude mice. These results suggest that, under the correct conditions, A549 cells, although transformed, still retain the capacity to respond to differentiation-inducing signals from normal fibroblasts. Images Figure 5 PMID:1654985

  13. Migration-stimulating factor (MSF) is over-expressed in non-small cell lung cancer and promotes cell migration and invasion in A549 cells over-expressing MSF

    SciTech Connect

    Deng, Xuefeng; Ma, Qunfeng; Zhang, Bo; Jiang, Hong; Zhang, Zhipei; Wang, Yunjie

    2013-10-15

    Migration-stimulating factor (MSF), an oncofetal truncated isoform of fibronectin, is a potent stimulator of cell invasion. However, its distribution and motogenic role in non-small cell lung cancer (NSCLC) have never been identified. In this study, real-time PCR and immunohistochemical staining (IHC) were performed to detect MSF mRNA and protein levels in tumor tissues and matched adjacent tumor-free tissues. Furthermore, to examine the effect of MSF on invasiveness, MSF was upregulated in A549 cells. The invasiveness and viability of A549 cells were then determined using a transwell migration assay and the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assays, respectively. The expression level of MSF in NSCLC tissue was markedly higher than in matched adjacent tumor-free tissue. Additionally, the level of MSF protein expression in stage III and IV NSCLC samples was higher than in stage I and II NSCLC samples. More importantly, we also demonstrated that migration and invasion of A549 cells increased substantially after upregulating MSF, although proliferation remained unchanged. Meanwhile, we found no correlation between increasing motility and invasiveness of MSF-overexpressing cells and expression levels and activities of matrix metalloprotease MMP-2 and MMP-9. Our current study shows that MSF plays a role in migration and invasion of A549 cells and suggests that MSF may be a potential biomarker of NSCLC progression. - Highlights: • MSF expression was upregulated in NSCLC and correlated with TNM stages. • MSF may be a new biomarker for NSCLC progression. • MSF promoted migration and invasion in A549 cells, independent of MMP-2/MMP-9 expression.

  14. Trichomonas vaginalis induces cytopathic effect on human lung alveolar basal carcinoma epithelial cell line A549.

    PubMed

    Salvador-Membreve, Daile Meek C; Jacinto, Sonia D; Rivera, Windell L

    2014-12-01

    Trichomonas vaginalis, the causative agent of trichomoniasis is generally known to inhabit the genitourinary tract. However, several case reports with supporting molecular and immunological identifications have documented its occurrence in the respiratory tract of neonates and adults. In addition, the reports have documented that its occurrence is associated with respiratory failures. The medical significance or consequence of this association is unclear. Thus, to establish the possible outcome from the interaction of T. vaginalis with lung cells, the cytopathic effects of the parasites were evaluated using monolayer cultures of the human lung alveolar basal carcinoma epithelial cell line A549. The possible effect of association of T. vaginalis with A549 epithelial cells was analyzed using phase-contrast, scanning electron microscopy and fluorescence microscopy. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), crystal-violet and TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling) assays were conducted for cytotoxicity testing. The results demonstrate that T. vaginalis: (1) adheres to A549 epithelial cells, suggesting a density-dependent parasite-cell association; (2) adherence on A549 is through flagella, membrane and axostyle; (3) causes cell detachment and cytotoxicity (50-72.4%) to A549 and this effect is a function of parasite density; and (4) induces apoptosis in A549 about 20% after 6 h of incubation. These observations indicate that T. vaginalis causes cytopathic effects on A549 cell. To date, this is the first report showing a possible interaction of T. vaginalis with the lung cells using A549 monolayer cultures. Further studies are recommended to completely elucidate this association.

  15. Circumvention of drug resistance in human non-small cell lung cancer in vitro by verapamil.

    PubMed

    Merry, S; Courtney, E R; Fetherston, C A; Kaye, S B; Freshney, R I

    1987-10-01

    The sensitivity of 7 human non-small cell lung cancer cell lines to each of 7 cytotoxic drugs was determined. None of the cell lines used in these experiments had been previously exposed to cytotoxic drugs in vitro. A pattern of cross-resistance (P less than 0.05) between the drugs adriamycin (ADR), vincristine (VC) and etoposide (VP16) was noted similar to that seen in other models. The calcium antagonist verapamil (6.6 microM) was shown to increase sensitivity (up to 29-fold) to ADR, VC or VP16 in 5 cell lines. For 2 of the cell lines (A549 and WIL) 2.2 microM verapamil increased VP16 cytotoxicity (up to 4-fold). Drug accumulation studies in 2 cell lines (A549 and SK-MES-1) showed that 6.6 microM verapamil increased intracellular levels of VC up to 4-fold with the greatest increase seen in the cell line (SK-MES-1) for which verapamil produced the greatest increase in cytotoxicity (10-fold). For ADR and VP16 increases in drug accumulation were smaller (up to 1.6-fold). Our data support a potential clinical role for verapamil in overcoming cytotoxic drug resistance in human lung cancer.

  16. Circumvention of drug resistance in human non-small cell lung cancer in vitro by verapamil.

    PubMed Central

    Merry, S.; Courtney, E. R.; Fetherston, C. A.; Kaye, S. B.; Freshney, R. I.

    1987-01-01

    The sensitivity of 7 human non-small cell lung cancer cell lines to each of 7 cytotoxic drugs was determined. None of the cell lines used in these experiments had been previously exposed to cytotoxic drugs in vitro. A pattern of cross-resistance (P less than 0.05) between the drugs adriamycin (ADR), vincristine (VC) and etoposide (VP16) was noted similar to that seen in other models. The calcium antagonist verapamil (6.6 microM) was shown to increase sensitivity (up to 29-fold) to ADR, VC or VP16 in 5 cell lines. For 2 of the cell lines (A549 and WIL) 2.2 microM verapamil increased VP16 cytotoxicity (up to 4-fold). Drug accumulation studies in 2 cell lines (A549 and SK-MES-1) showed that 6.6 microM verapamil increased intracellular levels of VC up to 4-fold with the greatest increase seen in the cell line (SK-MES-1) for which verapamil produced the greatest increase in cytotoxicity (10-fold). For ADR and VP16 increases in drug accumulation were smaller (up to 1.6-fold). Our data support a potential clinical role for verapamil in overcoming cytotoxic drug resistance in human lung cancer. PMID:2825748

  17. Radix Tetrastigma hemsleyani flavone inhibits proliferation, migration, and invasion of human lung carcinoma A549 cells

    PubMed Central

    Zhong, Liangrui; Zheng, Junxian; Sun, Qianqian; Wei, Kemin; Hu, Yijuan

    2016-01-01

    Radix Tetrastigma hemsleyani flavone (RTHF) is widely used as a traditional herb and has detoxification and anti-inflammatory effects. In this study, we investigated the potential effects of RTHF on the growth and metastasis of human lung adenocarcinoma A549 cells and evaluated its mechanisms. A549 cells were treated with RTHF at various concentrations for different periods. In vitro Cell Counting Kit-8 assay and colony formation methods showed that RTHF had dose- and time-dependent antiproliferation effects on A549 cells. A cell adhesion assay showed that RTHF decreased A549 cell adhesion in a dose-dependent manner. Cell invasion and migration were investigated using the Transwell assay and observed using an inverted microscope; the results showed that cell metastasis was significantly lower in the treatment group than that in the control group (P<0.01). Expression of metastasis-related matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) was detected by real-time polymerase chain reaction and Western blotting. The results showed that the expression of MMP-2, MMP-9, and TIMP-1 decreased, while that of TIMP-2 increased significantly in the RTHF group when compared with the results of the control group. These results show that RTHF exhibits antigrowth and antimetastasis activity in lung cancer A549 cells by decreasing the expression of MMP-2/-9 and TIMP-1 and increasing that of TIMP-2. PMID:26893573

  18. Cepharanthine induces apoptosis through reactive oxygen species and mitochondrial dysfunction in human non-small-cell lung cancer cells.

    PubMed

    Hua, Peiyan; Sun, Mei; Zhang, Guangxin; Zhang, Yifan; Tian, Xin; Li, Xin; Cui, Ranji; Zhang, Xingyi

    2015-05-01

    Cepharanthine is a medicinal plant-derived natural compound which possesses potent anti-cancer properties. However, there is little report about its effects on lung cancer cells. In this study, we investigated the effects of cepharanthine on the cell viability and apoptosis in human non-small-cell lung cancer H1299 and A549 cells. It was found that cepharanthine inhibited the growth of H1299 and A549 cells in a dose-dependent manner which was associated with the generation of reactive oxygen species(ROS) and the dissipation of mitochondrial membrane potential (Δψm). These effects were markedly abrogated when cells were pretreated with N-acetylcysteine (NAC), a specific ROS inhibitor, indicating that the apoptosis-inducing effect of cepharanthine in lung cancer cells was mediated by ROS. In addition, cepharanthine triggered apoptosis in non-small lung cancer cells via the upregulation of Bax, downregulation of Bcl-2 and significant activation of caspase-3 and PARP. These results provide the rationale for further research and preclinical investigation of cepharanthine's anti-tumor effect against human non-small-cell lung cancer.

  19. Functional expression of nicotine influx transporter in A549 human alveolar epithelial cells.

    PubMed

    Tega, Yuma; Yuzurihara, Chihiro; Kubo, Yoshiyuki; Akanuma, Shin-ichi; Ehrhardt, Carsten; Hosoya, Ken-ichi

    2016-02-01

    Nicotine is a potent addictive alkaloid, and is rapidly absorbed through the alveoli of the lung. However, the transport mechanism of nicotine at the human alveolar epithelial barrier has not been investigated in great detail. In the present study, the transport mechanism of nicotine across alveolar epithelium was investigated in vitro using A549 cells, a human adenocarcinoma-derived cell line with an alveolar epithelial cell like phenotype. Nicotine uptake by A549 cells exhibited time-, temperature-, and concentration-dependence with a Km of 50.4 μM. These results suggest that a carrier-mediated transport process is involved in nicotine transport in human alveolar epithelial cells. Nicotine uptake by A549 cells was insensitive to change in extracellular pH. Moreover, nicotine uptake by A549 cells could be inhibited by organic cations such as verapamil and pyrilamine, but not typical substrates of organic cation transporters and β2-agonist. These results suggest that a novel, not yet molecularly identified, organic cation transporter plays a role in nicotine transport which is unlikely to interact with β2-agonist transport. This nicotine influx transporter in human alveolar epithelium might have implications for the rapid absorption of nicotine into the systemic circulation.

  20. A high-quality secretome of A549 cells aided the discovery of C4b-binding protein as a novel serum biomarker for non-small cell lung cancer.

    PubMed

    Luo, Xiaoyang; Liu, Yansheng; Wang, Rui; Hu, Haichuan; Zeng, Rong; Chen, Haiquan

    2011-04-01

    Cancer secretomes are a promising source for biomarker discovery. The analysis of cancer secretomes still faces some difficulties mainly related to the intracellular contamination, which hinders the qualification and follow-up validations. This study aimed to establish a high-quality secretome of A549 cells by using the cellular proteome as a reference and to test the merits of this refined secretome for biomarker discovery for non-small cell lung cancer (NSCLC). Using one-dimensional gel electrophoresis followed by liquid-chromatography tandem mass spectrometry, we comprehensively investigated the secretome and the concurrent cellular proteome of A549 cells. A high-quality secretome consisting of 382 proteins was refined from 889 initial secretory proteins. More than 85.3% of proteins were annotated as secreted and 76.8% as extracellular or membrane-bound. The discriminative power of the lung-cancer associated secretome was confirmed by gene expression and serum proteomic data. The elevated level of C4b-binding Protein (C4BP) in NSCLC blood was verified by enzyme-linked immunosorbent assays (ELISA, p = 6.07e-6). Moreover, the serum C4BP level in 89 patients showed a strong association with the clinical staging of NSCLC. Our reference-experiment-driven strategy is simple and widely applicable, and may facilitate the identification of novel promising biomarkers of lung cancer.

  1. Matrine induces cell cycle arrest and apoptosis with recovery of the expression of miR-126 in the A549 non-small cell lung cancer cell line

    PubMed Central

    An, Qi; Han, Chao; Zhou, Yubing; Li, Feng; Li, Duolu; Zhang, Xiaojian; Yu, Zujiang; Duan, Zhenfeng; Kan, Quancheng

    2016-01-01

    Non-small cell lung cancer (NSCLC) is the leading cause of cancer-associated mortality in the United States. Chemotherapy prolongs survival rates among patients with advanced disease, however, this is at the cost of clinically significant adverse effects. Matrine is an active component of traditional Chinese medicine and is a promising alternative drug for the treatment of NSCLC. In the present study, the therapeutic effects and the underlying molecular mechanisms of matrine on the A549 NSCLC cell line were investigated. A high concentration of matrine (1.0 mg/ml) significantly (P<0.05) inhibited cell proliferation, by 52.68±3.32%, under which cell shrinkage and disruption were observed. Flow cytometric analysis showed that the proportion of G1/G0 cells was significantly increased, whereas the proportions of S and G2/M cells were significantly decreased (P<0.05) following treatment with matrine for 48 h. These results indicated that cell arrest was induced by matrine. Upregulation of the expression of microRNA (miR)-126, followed by downregulation of the expression of its target gene, vascular endothelial growth factor, were detected following treatment with a low concentration of matrine (0.2 mg/ml) using reverse transcription-quantitative polymerase chain reaction analysis, immunohistochemistry and western blot analysis. In conclusion, matrine induced cell cycle arrest and apoptosis, and recovered the expression of miR-126 in the A549 NSCLC cell line. PMID:27665734

  2. Erlotinib induces the human non-small-cell lung cancer cells apoptosis via activating ROS-dependent JNK pathways.

    PubMed

    Shan, Fenglian; Shao, Zewei; Jiang, Shenghua; Cheng, Zhaozhong

    2016-11-01

    Although erlotinib (ERL) has drawn more and more attention toward its anticancer properties effect, the underlying mechanisms of ERL's anticancer properties effect remain unclear yet. So, the aim of this research was to explore the underlying anticancer mechanisms of ERL and to explore whether the reactive oxygen species (ROS)-dependent c-Jun N-terminal kinase (JNK) pathway contributed to the anticancer properties provided by ERL. In our study, we used MTT assay to detect the anticell growth ability of ERL on human non-small-cell lung cancer cell lines (A549). The extent of cell apoptosis was determined by Hoechst 33342 staining and fluorescence-activated cell sorter (FACS) assay. Then, DCFH-DA and JC-1 staining were used to monitor intracellular reactive oxygen species (ROS) and mitochondrial membrane potential (MMP), respectively. Finally, the effect of ERL on phosphorylation state of JNK protein and downstream apoptosis concerned proteins were detected by western blotting assay. Results showed that ERL significantly suppressed the growth and reproduction of A549 cells with the concentration rising up in vitro. Hoechst 33342 staining and FACS assay also confirmed the proapoptosis effect of ERL on A549 cells with the concentration rising up. Furthermore, exposure of A549 cells to ERL increased the intracellular ROS production. As expected, intracellular ROS activated the proapoptotic JNK signaling pathway and inhibited the activation of EFGR signaling pathway. Our results also revealed that ERL could induce cell-cycle arrest at G0/G1 period. Activation of JNK protein decreased MMP and downregulated content of antiapoptotic protein Bcl-2 concomitant with the upregulated content of proapoptotic protein Bax in A549 cells. In addition, c-Jun and cleaved caspase-3 were also activated by the phosphorylated JNK induced by ERL. All of these proapoptosis effect of ERL was reversed by administration of N-acetylcysteine (NAC), which performed as a ROS scavenger. Our results

  3. Dichloroacetate alters Warburg metabolism, inhibits cell growth, and increases the X-ray sensitivity of human A549 and H1299 NSC lung cancer cells.

    PubMed

    Allen, Kah Tan; Chin-Sinex, Helen; DeLuca, Thomas; Pomerening, Joseph R; Sherer, Jeremy; Watkins, John B; Foley, John; Jesseph, Jerry M; Mendonca, Marc S

    2015-12-01

    We investigated whether altering Warburg metabolism (aerobic glycolysis) by treatment with the metabolic agent dichloroacetate (DCA) could increase the X-ray-induced cell killing of the radiation-resistant human non-small-cell lung cancer (NSCLC) cell lines A549 and H1299. Treatment with 50mM DCA decreased lactate production and glucose consumption in both A549 and H1299, clear indications of attenuated aerobic glycolysis. In addition, we found that DCA treatment also slowed cell growth, increased population-doubling time, and altered cell cycle distribution. Furthermore, we report that treatment with 50mM DCA significantly increased single and fractionated X-ray-induced cell killing of A549 and H1299 cells. Assay of DNA double-strand break repair by neutral comet assays demonstrated that DCA inhibited both the fast and the slow kinetics of X-ray-induced DSB repair in both A549 and H1299 NSCL cancer cells. Taken together the data suggest a correlation between an attenuated aerobic glycolysis and enhanced cytotoxicity and radiation-induced cell killing in radiation-resistant NSCLC cells.

  4. Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53

    SciTech Connect

    Wang, Jing-Ping; Lin, Kai-Han; Liu, Chun-Yen; Yu, Ya-Chu; Wu, Pei-Tsun; Chiu, Chien-Chih; Su, Chun-Li; Chen, Kwun-Min; Fang, Kang

    2013-11-15

    In this work, we demonstrated that the growth of human non-small-cell-lung-cancer cells H460 and A549 cells can be inhibited by low concentrations of an epoxide derivative, teroxirone, in both in vitro and in vivo models. The cytotoxicity was mediated by apoptotic cell death through DNA damage. The onset of ultimate apoptosis is dependent on the status of p53. Teroxirone caused transient elevation of p53 that activates downstream p21 and procaspase-3 cleavage. The presence of caspase-3 inhibitor reverted apoptotic phenotype. Furthermore, we showed the cytotoxicity of teroxirone in H1299 cells with stable ectopic expression of p53, but not those of mutant p53. A siRNA-mediated knockdown of p53 expression attenuated drug sensitivity. The in vivo experiments demonstrated that teroxirone suppressed growth of xenograft tumors in nude mice. Being a potential therapeutic agent by restraining cell growth through apoptotic death at low concentrations, teroxirone provides a feasible perspective in reversing tumorigenic phenotype of human lung cancer cells. - Highlights: • Teroxirone repressed tumor cell growth in nude mice of human lung cancer cells. • The apoptotic cell death reverted by caspase-3 inhibitor is related to p53 status. • Teroxirone provides a good candidate for lung cancer treatment.

  5. Fucoidan from Undaria pinnatifida induces apoptosis in A549 human lung carcinoma cells.

    PubMed

    Boo, Hye-Jin; Hyun, Jae-Hee; Kim, Sang-Cheol; Kang, Jung-Il; Kim, Min-Kyoung; Kim, Sun-Yeou; Cho, Heeyeong; Yoo, Eun-Sook; Kang, Hee-Kyoung

    2011-07-01

    Fucoidan, a sulfated polysaccharide, has various biological activities, such as anticancer, antiangiogenic and antiinflammatory effects; however, the mechanisms of action of fucoidan on anticancer activity have not been fully elucidated. The anticancer effects of fucoidan from Undaria pinnatifida on A549 human lung carcinoma cells were examined. Treatment of A549 cells with fucoidan resulted in potent antiproliferative activity. Also, some typical apoptotic characteristics, such as chromatin condensation and an increase in the population of sub-G1 hypodiploid cells, were observed. With respect to the mechanism underlying the induction of apoptosis, fucoidan reduced Bcl-2 expression, but the expression of Bax was increased in a dose-dependent manner compared with the controls. Furthermore, fucoidan induced caspase-9 activation, but decreased the level of procaspase-3. Cleavage of poly-ADP-ribose polymerase (PARP), a vital substrate of effector caspase, was found. The study further investigated the role of the MAPK and PI3K/Akt pathways with respect to the apoptotic effect of fucoidan, and showed that fucoidan activates ERK1/2 in A549 cells. Unlike ERK1/2, however, treatment with fucoidan resulted in the down-regulation of phospho-p38 expression. In addition, fucoidan resulted in the down-regulation of phospho-PI3K/Akt. Together, these results indicate that fucoidan induces apoptosis of A549 human lung cancer cells through down-regulation of p38, PI3K/Akt, and the activation of the ERK1/2 MAPK pathway.

  6. Isolinderalactone inhibits proliferation of A549 human non‑small cell lung cancer cells by arresting the cell cycle at the G0/G1 phase and inducing a Fas receptor and soluble Fas ligand-mediated apoptotic pathway.

    PubMed

    Chang, Wei-An; Lin, En-Shyh; Tsai, Ming-Ju; Huang, Ming-Shyan; Kuo, Po-Lin

    2014-05-01

    Lung cancer is currently the leading cause of cancer-related mortality worldwide. In Taiwan, lung cancer is also the type of malignancy that is the major cause of cancer-mortality. Investigating the mechanism of apoptosis of lung cancer cells is important in the treatment of lung cancer. In the present study, isolinderalactone was demonstrated to exhibit anticancer effects in A549 human non-small cell lung cancer cells. The effect of isolinderalactone on apoptosis, cell cycle distribution p21 levels and the Fas receptor and soluble Fas ligand (sFasL) were assayed in order to determine the mechanism underlying the anticancer effect of isolinderalactone. It was demonstrated that isolinderalactone may induce p21 expression and then cause the cell cycle arrest of A549 cells. The data of the present study also revealed that the Fas/sFasL apoptotic system is significant in the mechanism of isolinderalactone‑induced apoptosis of A549 cells. These novel findings demonstrated that isolinderalactone may cause the cell cycle arrest of A549 cells by induction of p21, and induce apoptosis of A549 human non-small-cell lung carcinoma cells through the Fas/sFasL apoptotic system.

  7. Dexamethasone suppresses the growth of human non-small cell lung cancer via inducing estrogen sulfotransferase and inactivating estrogen

    PubMed Central

    Wang, Li-jie; Li, Jian; Hao, Fang-ran; Yuan, Yin; Li, Jing-yun; Lu, Wei; Zhou, Tian-yan

    2016-01-01

    Aim: Dexamethasone (DEX) is a widely used synthetic glucocorticoid, which has shown anti-cancer efficacy and anti-estrogenic activity. In this study we explored the possibility that DEX might be used as an endocrine therapeutic agent to treat human non-small cell lung cancer (NSCLC). Methods: The viability and proliferation of human NSCLC cell lines A549 and H1299 were assessed in vitro. Anti-tumor action was also evaluated in A549 xenograft nude mice treated with DEX (2 or 4 mg·kg−1·d−1, ig) or the positive control tamoxifen (50 mg·kg−1·d−1, ig) for 32 d. The expression of estrogen sulfotransferase (EST) in tumor cells and tissues was examined. The intratumoral estrogen levels and uterine estrogen responses were measured. Results: DEX displayed mild cytotoxicity to the NSCLC cells (IC50 >500 μmol/L) compared to tamoxifen (IC50 <50 μmol/L), but it was able to inhibit the cell proliferation at low micromolar ranges. Furthermore, DEX (0.1–10 μmol/L) dose-dependently up-regulated EST expression in the cells, and inhibited the cell migration in vitro. Triclosan, a sulfation inhibitor, was able to diminish DEX-caused inhibition on the cell viability. In A549 xenograft nude mice, DEX or tamoxifen administration remarkably suppressed the tumor growth. Moreover, DEX administration dose-dependently increased EST expression in tumor tissues, and reduced intratumoral estrogen levels as well as the volumes and weights of uterine. Conclusion: DEX suppresses the growth of A549 xenograft tumors via inducing EST and decreasing estradiol levels in tumor tissues, suggesting that DEX may be used as anti-estrogenic agent for the treatment of NSCLC. PMID:27133297

  8. Tomatidine inhibits invasion of human lung adenocarcinoma cell A549 by reducing matrix metalloproteinases expression.

    PubMed

    Yan, Kun-Huang; Lee, Liang-Ming; Yan, Shao-Han; Huang, Hsiang-Ching; Li, Chia-Chen; Lin, Hui-Ting; Chen, Pin-Shern

    2013-05-25

    Tomatidine is an aglycone of glycoalkaloid tomatine in tomato. Tomatidine is found to possess anti-inflammatory properties and may serve as a chemosensitizer in multidrug-resistant tumor cells. However, the effect of tomatidine on cancer cell metastasis remains unclear. This study examines the effect of tomatidine on the migration and invasion of human lung adenocarcinoma A549 cell in vitro. The data demonstrates that tomatidine does not effectively inhibit the viability of A549 cells. When treated with non-toxic doses of tomatidine, cell invasion is markedly suppressed by Boyden chamber invasion assay, while cell migration is not affected. Tomatidine reduces the mRNA level of matrix metalloproteinase-2 (MMP-2), MMP-9 and increases the expression of reversion-inducing cysteine-rich protein with kazal motifs (RECK), as well as tissue inhibitor of metalloproteinase-1 (TIMP-1). The immunoblotting assays indicate that tomatidine is very effective in suppressing the phosphorylation of Akt and extracellular signal regulating kinase (ERK). In addition, tomatidine significantly decreases the nuclear level of nuclear factor kappa B (NF-κB), which suggests that tomatidine inhibits NF-κB activity. Furthermore, the treatment of inhibitors specific for PI3K/Akt (LY294002), ERK (U0126), or NF-κB (pyrrolidine dithiocarbamate) to A549 cells reduced cell invasion and MMP-2/9 expression. The results suggest that tomatidine inhibits the invasion of A549 cells by reducing the expression of MMPs. It also inhibits ERK and Akt signaling pathways and NF-κB activity. These findings demonstrate a new therapeutic potential for tomatidine in anti-metastatic therapy.

  9. Sodium orthovanadate affects growth of some human epithelial cancer cells (A549, HTB44, DU145).

    PubMed

    Klein, Andrzej; Holko, Przemyslaw; Ligeza, Janusz; Kordowiak, Anna M

    2008-01-01

    Within the concentration range of 1-20 microM, orthovanadate (Na3VO4) demonstrated a time and dose-dependent inhibition of autocrine growth of the human carcinoma cell lines A549 (lung), HTB44 (kidney) and DU145 (prostate), as compared to appropriate controls (without Na3VO4). The investigation was conducted by two methods: staining with N-hexa-methylpararosaniline (crystal violet=CV) or bromide3-(4,5-dimethyltio-azo-2)-2,5-diphenyl-tetrazole (MTT). In 5, 10 and 20 microM of Na3VO4 in serum-free medium, the mean values of these two tests for A549 were approximately 40%, 45% or 65% as compared to the appropriate controls. HTB44 had the greatest opportunity (statistically insignificant) at lower vanadium concentrations (up to 10 microM), whereas at 20 microM growth inhibition of these cells was approximately 50% of the controls. DU145 showed approximately 33%, 65% and 98% growth inhibition for 5, 10 and 20 microM of Na3VO4, respectively Additionally, hypothetical curves obtained by a MANOVA test based on the CV results after 72 h incubation with Na3VO4 in serum-free medium, and an example of a time-dependent effect of Na3VO4 on A549 cells, were also presented. Sodium orthovanadate was also examined for its cytotoxic capabilities, especially its ability to induce tumor cell apoptosis; the results were compared with the effect of paclitaxel. The target cells were dyed by differential staining (HOECHST33258 and propidium iodide) after 3 h and 24 h (DU145) or 3 h and 72 h (A549) of incubation with the vanadium compound. Contrary to the two cancer cell lines (viable, apoptotic or necrotic in experimental conditions), the renal HTB44 cells were insensitive up to 15 microM Na3VO4 concentrations. After 3 h incubation with Na3VO4, both lung (A549) and prostate (DU145) cancer cells showed a slight but significant reduction in the percentage of viable cells, and an increased amount of apoptotic cells. In contrast to the lung cells, DU145 prostate cells after 24 h were more

  10. Cimicifuga foetida L. inhibited human respiratory syncytial virus in HEp-2 and A549 cell lines.

    PubMed

    Wang, Kuo Chih; Chang, Jung San; Chiang, Lien Chai; Lin, Chun Ching

    2012-01-01

    Human respiratory syncytial virus (HRSV) causes serious pediatric infection of the lower respiratory tract without effective therapeutic modality. Sheng-Ma-Ge-Gen-Tang (SMGGT; Shoma-kakkon-to) has been proven to be effective at inhibiting HRSV-induced plaque formation, and Cimicifuga foetida is the major constituent of SMGGT. We tested the hypothesis that C. foetida effectively inhibited the cytopathic effects of HRSV by a plaque reduction assay in both human upper (HEp2) and lower (A549) respiratory tract cell lines. Its ability to stimulate anti-viral cytokines was evaluated by an enzyme-linked immunosorbent assay (ELISA). C. foetida dose-dependently inhibited HRSV-induced plaque formation (p < 0.0001) before and after viral inoculation, especially in A549 cells (p < 0.0001). C. foetida dose-dependently inhibited viral attachment (p < 0.0001) and could increase heparins effect on viral attachment. In addition, C. foetida time-dependently and dose-dependently (p < 0.0001) inhibited HRSV internalization. C. foetida could stimulate epithelial cells to secrete IFN-β to counteract viral infection. However, C. foetida did not stimulate TNF-α secretion. Therefore, C. foetida could be useful in managing HRSV infection. This is the first evidence to support that C. foetida possesses antiviral activity.

  11. Previous heat shock treatment inhibits Mayaro virus replication in human lung adenocarcinoma (A549) cells.

    PubMed

    Virgilio, P L; Godinho-Netto, M C; Carvalho Mda, G

    1997-01-01

    Human lung adenocarcinoma cells (A549) were submitted to mild or severe heat shock (42 degrees C or 44 degrees C) for 1 h, while another group of cells was double-heat-shocked (submitted to 42 degrees C for 1 h, returned to 37 degrees C for 3 h, then exposed to 44 degrees C for 1 h). After each heat treatment, the cells were infected with Mayaro virus for 24 h and incubated at 37 degrees C. The results showed that the double-heat-shocked thermotolerant cells exhibited a 10(4)-fold virus titre inhibition, despite the recovery of protein synthesis and original morphology 24 h post-infection. In contrast, cells submitted to mild or severe heat shock exhibited weaker inhibition of Mayaro virus titre (10(2)-fold). The mildly heat-shocked cells also presented a full recovery in protein synthesis, which was not observed in severely heat-shocked cells. These results indicate that exposure of A549 cells to a mild or to a double heat shock treatment before Mayaro virus infection induces an antiviral state.

  12. Phenotypic modification of human glioma and non-small cell lung carcinoma by glucocorticoids and other agents.

    PubMed

    McLean, J S; Frame, M C; Freshney, R I; Vaughan, P F; Mackie, A E; Singer, I

    1986-01-01

    Glucocorticoids are cytostatic for human glioma grown at a high cell density in cell culture. The effect is not cytotoxic, appears to involve a modification of the cell surface, and has been detected with methyl prednisolone, dexamethasone, and beta-methasone. Glucocorticoids were also found to reduce malignancy-associated properties (plasminogen activator and endothelial mitogenesis) and enhance differentiation (glutamyl synthetase activity and high affinity GABA uptake). Cytostasis was also seen at high cell densities in non-small cell lung carcinoma with a concomitant reduction in plasminogen activator activity and endothelial mitogenesis. Preliminary data on surfactant production in A549 cells suggests that the repression of malignancy-associated properties is accompanied by an increase in cell differentiation. Treatment of the WIL adenocarcinoma gown as a xenograft in nude mice caused total cessation of growth and massive central necrosis in the tumor.

  13. Genistein inhibits A549 human lung cancer cell proliferation via miR-27a and MET signaling

    PubMed Central

    Yang, Yang; Zang, Aimin; Jia, Youchao; Shang, Yanhong; Zhang, Zhuoqi; Ge, Kun; Zhang, Jinchao; Fan, Wufang; Wang, Bei

    2016-01-01

    Genistein is a soybean isoflavone; in its aglycone it has various biological activities. Animal experiments, clinical studies and epidemiological investigations suggest that genistein has preventative and curative functions for a number of diseases, particularly in cancer. The present study explored the potential anti-cancer effect of genistein by observing its role in inhibiting A549 human lung cancer cell proliferation and investigating the possible mechanism. A549 cells were exposed to various concentrations of genistein (0, 10, 25, 50, 100 and 200 µM; dissolved in physiological saline) for 1, 2 and 3 days. Subsequently, the viability of A549 cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell apoptosis was examined using a flow cytometer, caspase 3/9 activity was measured using commercial kits, reverse transcription quantitative polymerase chain reaction was used to analyze the miR-27a expression and western blotting was used to investigate MET protein expression. The results suggested a significant inhibition of A549 cell growth following treatment with genistein in a time- and dose-dependent manner. The current study also indicated that treatment with genistein significantly induces cell apoptosis and promotes caspase-3/9 activation of A549 cells in a dose-dependent manner. Further functional assays revealed that the anti-cancer effect of genistein activated microRNA-27a (miR-27a) expression levels and reduced MET protein expression in A549 cells. In conclusion, the present study demonstrates that genistein inhibits A549 human lung cancer cell proliferation. Furthermore, this study reports, for the first time, a correlation between the anti-cancer effect of genistein and miR-27a-mediated MET signaling. PMID:27602162

  14. Jolkinolide A and Jolkinolide B Inhibit Proliferation of A549 Cells and Activity of Human Umbilical Vein Endothelial Cells

    PubMed Central

    Shen, Lei; Zhang, Shan-Qiang; Liu, Lei; Sun, Yu; Wu, Yu-Xuan; Xie, Li-Ping; Liu, Ji-Cheng

    2017-01-01

    Background Jolkinolide A (JA) and Jolkinolide B (JB) are diterpenoids extracted from the roots of Euphorbia fischeriana Steud and have been shown to have anti-tumor activity. However, their effects on the ability of tumor cells to invade blood vessels and metastasize remain largely unknown. Investigations into the effects of JA and JB on the angiogenesis of tumor tissues may facilitate the identification of new natural drugs with anti-tumor growth and metastasis activities. Material/Methods We used different concentrations of JA and JB (20 μg/ml, 40 μg/ml, 60 μg/ml, 80 μg/ml, and 100 μg/ml) to stimulate A549 cells and then studied the effects on the growth and metastasis of lung cancers. In addition, we used conditional media from A549 cells (A549-CM) stimulated by either JA or JB in different concentrations to culture human umbilical vein endothelial cells (HUVECs). Results We found that both JA and JB significantly inhibited the Akt-STAT3-mTOR signaling pathway and reduced the expression of VEGF in A549 cells, but JB exhibited more significant inhibitory effects than JA. The JB-stimulated A549 cell conditional media had a greater inhibitory effect on the proliferation and migration of HUVECs than did the conditional media of JA-stimulated A549 cells. This effect gradually increased with increasing concentrations of either type of Jolkinolide. Conclusions Our results suggest that JA and JB inhibited VEGF expression in A549 cells through the inhibition of the Akt-STAT3-mTOR signaling pathway, and directly inhibited the proliferation and migration of HUVECs. These findings are of great significance for the development of new plant-derived chemotherapy agents for the treatment of cancer. PMID:28087861

  15. Schisandrin B inhibits the proliferation of human lung adenocarcinoma A549 cells by inducing cycle arrest and apoptosis

    PubMed Central

    Lv, Xue-Jiao; Zhao, Li-Jing; Hao, Yu-Qiu; Su, Zhen-Zhong; Li, Jun-Yao; Du, Yan-Wei; Zhang, Jie

    2015-01-01

    Lung cancer is the leading cause of cancer death in the world. Schizandrin B (Sch B) is one of the main dibenzocyclooctadiene lignans present in the fruit of Schisandra chinensis (Schisandraceae). Sch B has multiple functions against cancer. The aim of this study was to determine the effect of Sch B on the proliferation, cell cycling, apoptosis and invasion of lung adenocarcinoma A549 cells by MTT, flow cytometry, wound healing and transwell invasion assays. Treatment with Sch B inhibited the proliferation of A549 cells in a dose-dependent manner. Sch B induced cell cycle arrest at G0/G1 phase by down-regulating the expression of cyclin D1, cyclin-dependent kinase (CDK)4, and CDK6, but up-regulating p53 and p21 expression in A549 cells. Furthermore, Sch B triggered A549 cell apoptosis by increasing Bax, cleaved caspase-3, 9, Cyto C, but decreasing Bcl-2 and PCNA expression. In addition, Sch B inhibited the invasion and migration of A549 cells by down-regulating the expressions of HIF-1, VEGF, MMP-9 and MMP-2. Therefore, Sch B has potent anti-tumor activity and may be a promising traditional Chinese medicine for human lung carcinoma. PMID:26221229

  16. Rosemary extract reduces Akt/mTOR/p70S6K activation and inhibits proliferation and survival of A549 human lung cancer cells.

    PubMed

    Moore, Jessy; Megaly, Mark; MacNeil, Adam J; Klentrou, Panagiota; Tsiani, Evangelia

    2016-10-01

    Compounds of plant origin and food components have attracted scientific attention for use as agents for cancer prevention and treatment. Rosemary extract contains polyphenols that were shown to have anti-cancer and other health benefits. The survival pathways of Akt, mammalian target of rapamycin (mTOR) and p70S6K, and the apoptotic protein poly ADP ribose polymerase (PARP) are key modulators of cancer cell growth and survival. In this study, we examined the effects of rosemary extract on proliferation, survival and apoptosis of human non-small cell lung cancer (NSCLC) cells and its influence on signaling events. Human NSCLC adenocarcinoma A549 cells were used. Cell proliferation and clonogenic survival were assessed using specific assays. Immunoblotting was used to examine total and phosphorylated levels of Akt, mTOR and p70S6K, and cleavage of PARP. Rosemary extract dose-dependently inhibited cell proliferation and reduced clonogenic survival of A549 cells, while PARP cleavage, an indicator of apoptosis, was enhanced. Rosemary extract significantly reduced total and phosphorylated/activated Akt, mTOR and p70S6K levels. In conclusion, rosemary extract inhibited proliferation, blocked clonogenic survival, and enhanced apoptosis of A549 lung cancer cells. These effects were associated with inhibition of Akt and downstream mTOR and p70S6K activity. Our data suggest that rosemary extract may have considerable anti-tumor and chemoprevention properties in lung cancer and deserves further systematic investigation in animal models of lung cancer.

  17. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling

    NASA Astrophysics Data System (ADS)

    Cheng, C.-Y.; Perevedentseva, E.; Tu, J.-S.; Chung, P.-H.; Cheng, C.-L.; Liu, K.-K.; Chao, J.-I.; Chen, P.-H.; Chang, C.-C.

    2007-04-01

    This letter presents direct observation of growth hormone receptor in one single cancer cell using nanodiamond-growth hormone complex as a specific probe. The interaction of surface growth hormone receptor of A549 human lung epithelial cells with growth hormone was observed using nanodiamond's unique spectroscopic signal via confocal Raman mapping. The growth hormone molecules were covalent conjugated to 100nm diameter carboxylated nanodiamonds, which can be recognized specifically by the growth hormone receptors of A549 cell. The Raman spectroscopic signal of diamond provides direct and in vitro observation of growth hormone receptors in physiology condition in a single cell level.

  18. Combined toxic effect of airborne heavy metals on human lung cell line A549.

    PubMed

    Choi, Yeowool; Park, Kihong; Kim, Injeong; Kim, Sang D

    2016-11-25

    Many studies have demonstrated that heavy metals existing as a mixture in the atmospheric environment cause adverse effects on human health and are important key factors of cytotoxicity; however, little investigation has been conducted on a toxicological study of a metal mixture from atmospheric fine particulate matter. The objective of this study was to predict the combined effects of heavy metals in aerosol by using in vitro human cells and obtain a suitable mixture toxicity model. Arsenic, nickel, and lead were selected for mixtures exposed to A549 human lung cancer cells. Cell proliferation (WST-1), glutathione (GSH), and interleukin (IL)-8 inhibition were observed and applied to the prediction models of mixture toxicity, concentration addition (CA) and independent action (IA). The total mixture concentrations were set by an IC10-fixed ratio of individual toxicity to be more realistic for mortality and enzyme inhibition tests. The results showed that the IA model was statistically closer to the observed results than the CA model in mortality, indicating dissimilar modes of action. For the GSH inhibition, the results predicted by the IA and CA models were highly overestimated relative to mortality. Meanwhile, the IL-8 results were stable with no significant change in immune reaction related to inflammation. In conclusion, the IA model is a rapid prediction model in heavy metals mixtures; mortality, as a total outcome of cell response, is a good tool for demonstrating the combined toxicity rather than other biochemical responses.

  19. Transcriptome Profiles of Human Lung Epithelial Cells A549 Interacting with Aspergillus fumigatus by RNA-Seq

    PubMed Central

    Jia, Xiaodong; Wang, Shuo; Wang, Jing; Chen, Yong; Zhao, Jingya; Tian, Shuguang; Han, Xuelin; Han, Li

    2015-01-01

    Lung epithelial cells constitute the first defense line of host against the inhaled Aspergillus fumigatus; however, the transcriptional response of human alveolar type II epithelial cells was still unclear. Here we used RNA-Seq technology to assess the transcriptome profiles of A549 cells following direct interaction with conidia of A. fumigatus. The total number of identified genes was 19118. Compared with uninfected A549 cells, 459 genes were differentially expressed in cells co-incubated with conidia for 8 h, including 302 up-regulated genes and 157 down-regulated genes. GO and KEGG pathway enrichment analysis showed that most of the up-regulated genes were related to immune response, chemotaxis and inflammatory response and enriched in cytokine-cytokine receptor interaction, JAK-STAT and MAPK signaling pathways. The down-regulated genes were mainly enriched for terms associated with development, hemopoiesis and ion transport. Among them, EGR4 and HIST1H4J gene had the maximum of fold change in up-regulated and down-regulated genes, respectively. Fourteen up-regulated genes and three down-regulated genes were further validated and significant increase on expression of IL-6, IL-8 and TNF-α in A549 cells were confirmed by qRT-PCR during the interaction of A549 cells with A. fumigatus. Besides, western blot showed that expression of two proteins (ARC, EGR1) significantly increased in A549 cells during interaction with A. fumigatus conidia for 8h. Interference of endogenous expression of ARC or EGR1 protein in A549 cells reduced the internalization of A. fumigatus. These results provided important insights into dynamic changes of gene expression in lung epithelial cells, especially its strong immunological response against A. fumigatus infection. PMID:26273834

  20. Pomegranate fruit extract inhibits prosurvival pathways in human A549 lung carcinoma cells and tumor growth in athymic nude mice.

    PubMed

    Khan, Naghma; Hadi, Naghma; Afaq, Farrukh; Syed, Deeba N; Kweon, Mee-Hyang; Mukhtar, Hasan

    2007-01-01

    Developing novel mechanism-based chemopreventive approaches for lung cancer through the use of dietary substances which humans can accept has become an important goal. In the present study, employing normal human bronchial epithelial cells (NHBE) and human lung carcinoma A549 cells, we first compared the growth inhibitory effects of pomegranate fruit extract (PFE). Treatment of PFE (50-150 microg/ml) for 72 h was found to result in a decrease in the viability of A549 cells but had only minimal effects on NHBE cells as assessed by the MTT and Trypan blue assays. PFE treatment of A549 cells also resulted in dose-dependent arrest of cells in G0-G1 phase of the cell cycle (as assessed by DNA cell cycle analysis). We further found that PFE treatment also resulted in (i) induction of WAF1/p21 and KIP1/p27, (ii) decrease in the protein expressions of cyclins D1, D2 and E, and (iii) decrease in cyclin-dependent kinase (cdk) 2, cdk4 and cdk6 expression. The treatment of cells with PFE inhibited (i) phosphorylation of MAPK proteins, (ii) inhibition of PI3K, (iii) phosphorylation of Akt at Thr308, (iv) NF-kappaB and IKKalpha, (v) degradation and phosphorylation of IkappaBalpha, and (vi) Ki-67 and PCNA. We also found that PFE treatment to A549 cells resulted in inhibition of NF-kappaB DNA-binding activity. Oral administration of PFE (0.1 and 0.2%, wt/vol) to athymic nude mice implanted with A549 cells resulted in a significant inhibition in tumor growth. Our results provide a suggestion that PFE can be a useful chemopreventive/chemotherapeutic agent against human lung cancer.

  1. Nedaplatin sensitization of cisplatin-resistant human non-small cell lung cancer cells

    PubMed Central

    WANG, HUAN; ZHU, XIAOLI; HUANG, JING; CHEN, PINGSHENG; HAN, SHUHUA; YAN, XING

    2016-01-01

    Cisplatin (DDP) has been one of the most widely used chemotherapy drugs for advanced non-small cell lung cancer. However, the increase in the number of DDP-resistant cancer cells has become a major impediment in the clinical management of cancer. In the present study, for the first time, the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay was used to demonstrate that nedaplatin (NDP) could have a stronger inhibitory effect than DDP alone in DDP-resistant A549 (A549DDP) cells and that it could attenuate the resistance of these cells. Additionally, flow cytometry analysis showed that the apoptosis rate of these resistant cells when exposed to NDP was markedly increased and the number of cells in the G2 stage of the cell cycle was significantly increased. Furthermore, western blot analysis indicated that NDP decreased the protein expression of P-glycoprotein, tumor protein p53 and B-cell lymphoma 2, and increased the expression of Bcl-2-associated X protein, all of which could possibly improve the NDP intracellular drug concentration and promote cell apoptosis. These observations suggested that NDP could have higher efficacy in DDP-resistant lung cancer cells, and further studies applying more detailed analyses are warranted to elucidate the mechanism(s) behind this effect. PMID:27073518

  2. Effect of copper overload on the survival of HepG2 and A-549 human-derived cells.

    PubMed

    Arnal, N; de Alaniz, M J T; Marra, C A

    2013-03-01

    We investigated the effect of copper (Cu) overload (20-160 µM/24 h) in two cell lines of human hepatic (HepG2) and pulmonary (A-549) origin by determining lipid and protein damage and the response of the antioxidant defence system. A-549 cells were more sensitive to Cu overload than HepG2 cells. A marked increase was observed in both the cell lines in the nitrate plus nitrite concentration, protein carbonyls and thiobarbituric acid reactive substances (TBARS). The TBARS increase was consistent with an increment in saturated fatty acids at the expense of polyunsaturated acids in a Cu concentration-dependent fashion. Antioxidant enzymes were stimulated by Cu overload. Superoxide dismutase activity increased significantly in both the cell lines, with greater increases in HepG2 than in A-549 cells. A marked increase in ceruloplasmin and metallothionein content in both the cell types was also observed. Dose-dependent decreases in α-tocopherol and ferric reducing ability were observed. Total glutathione content was lower in A-549 cells and higher in HepG2. Calpain and caspase-3 were differentially activated in a dose-dependent manner under copper-induced reactive oxygen species production. We conclude that Cu exposure of human lung- and liver-derived cells should be considered a reliable experimental system for detailed study of mechanism/mechanisms by which Cu overload exerts its deleterious effects.

  3. Molecular mechanisms underlying mangiferin-induced apoptosis and cell cycle arrest in A549 human lung carcinoma cells

    PubMed Central

    SHI, WEI; DENG, JIAGANG; TONG, RONGSHENG; YANG, YONG; HE, XIA; LV, JIANZHEN; WANG, HAILIAN; DENG, SHAOPING; QI, PING; ZHANG, DINGDING; WANG, YI

    2016-01-01

    Mangiferin, which is a C-glucosylxanthone (1,3,6,7-tetrahydroxyxanthone-C2-β-D-glucoside) purified from plant sources, has recently gained attention due to its various biological activities. The present study aimed to determine the apoptotic effects of mangiferin on A549 human lung adenocarcinoma cells. In vitro studies demonstrated that mangiferin exerted growth-inhibitory and apoptosis-inducing effects against A549 cells. In addition, mangiferin exhibited anti-tumor properties in A549 xenograft mice in vivo. Mangiferin triggered G2/M phase cell cycle arrest via down-regulating the cyclin-dependent kinase 1-cyclin B1 signaling pathway, and induced apoptotic cell death by inhibiting the protein kinase C-nuclear factor-κB pathway. In addition, mangiferin was able to enhance the antiproliferative effects of cisplatin on A549 cells, thus indicating the potential for a combined therapy. Notably, mangiferin exerted anticancer effects in vivo, where it was able to markedly decrease the volume and weight of subcutaneous tumor mass, and expand the lifespan of xenograft mice. The present study clarified the molecular mechanisms underlying mangiferin-induced antitumor activities, and suggested that mangiferin may be considered a potential antineoplastic drug for the future treatment of cancer. PMID:26935347

  4. Capsaicin-induced genotoxic stress does not promote apoptosis in A549 human lung and DU145 prostate cancer cells.

    PubMed

    Lewinska, Anna; Jarosz, Paulina; Czech, Joanna; Rzeszutek, Iwona; Bielak-Zmijewska, Anna; Grabowska, Wioleta; Wnuk, Maciej

    2015-02-01

    Capsaicin is the major pungent component of the hot chili peppers of the genus Capsicum, which are consumed worldwide as a food additive. More recently, the selective action of capsaicin against cancer cells has been reported. Capsaicin was found to induce apoptosis and inhibit proliferation of a wide range of cancer cells in vitro, whereas being inactive against normal cells. As data on capsaicin-induced genotoxicity are limited and the effects of capsaicin against human lung A549 and DU145 prostate cancer cells were not explored in detail, we were interested in determining whether capsaicin-associated genotoxicity may also provoke A549 and DU145 cell death. Capsaicin-induced decrease in metabolic activity and cell proliferation, and changes in the cell cycle were limited to high concentrations used (≥ 100 μM), whereas, at lower concentrations, capsaicin stimulated both DNA double strand breaks and micronuclei production. Capsaicin was unable to provoke apoptotic cell death when used up to 250 μM concentrations. Capsaicin induced oxidative stress, but was ineffective in provoking the dissipation of the mitochondrial inner transmembrane potential. A different magnitude of p53 binding protein 1 (53BP1) recruitment contributed to diverse capsaicin-induced genotoxic effects in DU145 and A549 cells. Capsaicin was also found to be a DNA hypermethylating agent in A549 cells. In summary, we have shown that genotoxic effects of capsaicin may contribute to limited susceptibility of DU145 and A549 cancer cells to apoptosis in vitro, which may question the usefulness of capsaicin-based anticancer therapy, at least in a case of lung and prostate cancer.

  5. Oxidative stress and inflammatory response to printer toner particles in human epithelial A549 lung cells.

    PubMed

    Könczöl, Mathias; Weiß, Adilka; Gminski, Richard; Merfort, Irmgard; Mersch-Sundermann, Volker

    2013-02-04

    Reports on adverse health effects related to occupational exposure to toner powder are still inconclusive. Therefore, we have previously conducted an in vitro-study to characterize the genotoxic potential of three commercially available black printer toner powders in A549 lung cells. In these cell-based assays it was clearly demonstrated that the tested toner powders damage DNA and induce micronucleus (MN) formation. Here, we have studied the cytotoxic and proinflammatory potential of these three types of printer toner particles and the influence of ROS and NF-κB induction in order to unravel the underlying mechanisms. A549 cells were exposed to various concentrations of printer toner particle suspensions for 24 h. The toner particles were observed to exert significant cytotoxic effects in the WST-1 and neutral red (NR)-assays, although to a varying extent. Caspase 3/7 activity increased, while the mitochondrial membrane potential (MMP) was not affected. Particles of all three printer toner powders induced concentration-dependent formation of reactive oxygen species (ROS), as measured in the DCFH-DA assay. Furthermore, toner particle exposure enhanced interleukin-6 and interleukin-8 production, which is in agreement with activation of the transcription factor NF-κB in A549 cells shown by the electrophoretic mobility shift assay (EMSA). Therefore, it can be concluded that exposure of A549 lung cells to three selected printer toner powders caused oxidative stress through induction of ROS. Increased ROS formation may trigger genotoxic effects and activate proinflammatory pathways.

  6. Physalin A induces G2/M phase cell cycle arrest in human non-small cell lung cancer cells: involvement of the p38 MAPK/ROS pathway.

    PubMed

    Kang, Ning; Jian, Jun-Feng; Cao, Shi-Jie; Zhang, Qiang; Mao, Yi-Wei; Huang, Yi-Yuan; Peng, Yan-Fei; Qiu, Feng; Gao, Xiu-Mei

    2016-04-01

    Physalin A (PA) is an active withanolide isolated from Physalis alkekengi var. franchetii, a traditional Chinese herbal medicine named Jindenglong, which has long been used for the treatment of sore throat, hepatitis, and tumors in China. In the present study, we firstly investigated the effects of PA on proliferation and cell cycle distribution of the human non-small cell lung cancer (NSCLC) A549 cell line, and the potential mechanisms involved. Here, PA inhibited cell growth in dose- and time-dependent manners. Treatment of A549 cells with 28.4 μM PA for 24 h resulted in approximately 50 % cell death. PA increased the amount of intracellular ROS and the proportion of cells in G2/M. G2/M arrest was attenuated by the addition of ROS scavenger NAC. ERK and P38 were triggered by PA through phosphorylation in a time-dependent manner. The phosphorylation of ERK and P38 were not attenuated by the addition of NAC, but the use of the p38 inhibitor could reduce, at least in part, PA-induced ROS and the proportion of cells in G2/M. PA induces G2/M cell cycle arrest in A549 cells involving in the p38 MAPK/ROS pathway. This study suggests that PA might be a promising therapeutic agent against NSCLC.

  7. Carbon-Ion Beam Irradiation Effectively Suppresses Migration and Invasion of Human Non-Small-Cell Lung Cancer Cells

    SciTech Connect

    Akino, Yuichi; Teshima, Teruki Kihara, Ayaka; Kodera-Suzumoto, Yuko; Inaoka, Miho; Higashiyama, Shigeki; Furusawa, Yoshiya; Matsuura, Nariaki

    2009-10-01

    Purpose: Control of cancer metastasis is one of the most important issues in cancer treatment. We previously demonstrated that carbon particle irradiation suppresses the metastatic potential of cancer cells, and many studies have reported that photon irradiation promotes it. The purpose of this study was to investigate the effect of carbon beam on non-small-cell lung cancer (NSCLC) cell aggressiveness and gene expression. Methods and Materials: A549 (lung adenocarcinoma) and EBC-1 (lung squamous cell carcinoma) cells were treated with 290 MeV/nucleon carbon ion beam at the Heavy Ion Medical Accelerator in Chiba or with 4-MV X-ray at Osaka University. We tested proliferative, migratory, and invasive activities by cell proliferation assay, Boyden chamber assay, and Matrigel chemoinvasion assay, respectively. cDNA microarray and reverse transcription polymerase chain reaction were also performed to assess mRNA expression alteration. Results: X-irradiation increased cell proliferation of A549 cells at 0.5 Gy, whereas high-dose X-ray reduced migration and invasion of A549 cells. By contrast, carbon beam irradiation did not enhance proliferation, and it reduced the migration and invasion capabilities of both A549 and EBC-1 cells more effectively than did X-irradiation. Carbon beam irradiation induced alteration of various gene expression profiles differently from X-ray irradiation. mRNA expression of ANLN, a homologue of anillin, was suppressed to 60% levels of basal expression in carbon beam-irradiated A549 cells after 12 h. Conclusion: Carbon beam effectively suppresses the metastatic potential of A549 and EBC-1 cells. Carbon beam also has different effects on gene expressions, and downregulation of ANLN was induced only by carbon beam irradiation.

  8. Induction of apoptosis in human lung carcinoma A549 epithelial cells with an ethanol extract of Tremella mesenterica.

    PubMed

    Chen, Nan-Yin; Lai, Hsi-Huai; Hsu, Tai-Hao; Lin, Fang-Yi; Chen, Jian-Zhi; Lo, Hui-Chen

    2008-05-01

    Tremella mesenterica (TM) is a common food and folk medicine widely used in several Asian countries as a tonic for the lungs. In the present study, we compared the effects of extracellular polysaccharides (EPS), intracellular polysaccharides (IPS), and ethanol extract (EE) of Tremella mesenterica on the induction of apoptosis into human lung carcinoma A549 epithelial cells. The EE, but not the EPS or the IPS, almost completely inhibited the growth of A549 cells. The results of Annexin V-FITC/PI staining and flow cytometric analysis indicated that the percentage of Annexin V(+)/PI(-) cells in EE-treated cells increased to 32.8%. The results of further investigation showed a disruption of mitochondrial transmembrane potential (DeltaPsi(m)), the production of reactive oxygen species (ROS), and the activation of caspase-3 protein in EE-treated cells. These findings suggest that EE can decrease cell viability and induce apoptosis in A549 cell lines by activating a mitochondrial pathway.

  9. Therapeutic effects of sorafenib on the A549/DDP human lung adenocarcinoma cell line in vitro.

    PubMed

    Chen, Xiang-Qi; Wang, Yu-Lan; Li, Zhi-Ying; Lin, Ting-Yan

    2014-07-01

    The aim of the present study was to observe the effects of sorafenib on the proliferation, apoptosis and invasion of A549/DDP cisplatin-resistant lung adenocarcinoma cells cultured in vitro. The A549/DDP cisplatin-resistant lung adenocarcinoma cell strain was cultured in vitro, the cell culture group incubated in culture medium only was set as the control group (Group S0) and the four concentration gradients of sorafenib were added to the culture groups as the experimental groups: S1, 2 µmol/l; S2, 4 µmol/l; S3, 8 µmol/l; and S4, 16 µmol/l. The MTT assay was used to determine the growth inhibition rate of the cells, which were respectively subjected to sorafenib treatment for 24, 48 and 72 h. Flow cytometry was used to determine the rate of apoptosis of cells in each group following sorafenib treatment for 72 h. Furthermore, the Transwell invasion experiment was used to determine the effect on A549/DDP cell invasion following sorafenib treatment for 24 h. Based on the MTT assay, it was found that the inhibition rates of A549/DDP cisplatin-resistant lung adenocarcinoma cells in groups S1-4 following sorafenib treatment for 24 h were 4.58±2.82, 14.93±2.62, 37.58±7.13 and 58.39±8.15%, respectively. For 48 h, inhibition rates in S1-4 were 14.98±2.93, 26.28±7.31, 63.00±3.05 and 78.84±3.96%, respectively, and for 72 h, inhibition rates were 18.80±2.82, 32.71±2.55, 75.51±4.73 and 87.50±3.36%, respectively. The difference in the inhibition rates of cells among the experimental groups for the same incubation time showed statistical significance (P<0.05). Flow cytometric analysis indicated that the rate of apoptosis in the control group was 8.88±0.81% following sorafenib treatment for 72 h, and the rates of apoptosis in groups S1-4 were, 12.84±0.24, 17.27±0.78, 21.98±0.75 and 49.67±1.38%, respectively. The rate of apoptosis in each experimental group was higher compared with that in the control group (P<0.05). The difference in the rate of apoptosis

  10. Cytotoxicity, oxidative stress and genotoxicity induced by glass fibers on human alveolar epithelial cell line A549.

    PubMed

    Rapisarda, Venerando; Loreto, Carla; Ledda, Caterina; Musumeci, Giuseppe; Bracci, Massimo; Santarelli, Lory; Renis, Marcella; Ferrante, Margherita; Cardile, Venera

    2015-04-01

    Man-made vitreous fibers have been widely used as insulation material as asbestos substitutes; however their morphology and composition raises concerns. In 1988 the International Agency for Research on Cancer classified fiberglass, rock wool, slag wool, and ceramic fibers as Group 2B, i.e. possibly carcinogenic to humans. In 2002 it reassigned fiberglass, rock and slag wool, and continuous glass filaments to Group 3, not classifiable as carcinogenic to humans. The aim of this study was to verify the cytotoxic and genotoxic effects and oxidative stress production induced by in vitro exposure of human alveolar epithelial cells A549 to glass fibers with a predominant diameter <3 μm (97%) and length >5 μm (93%). A549 cells were incubated with 5, 50, or 100 μg/ml (2.1, 21, and 42 μg/cm(2), respectively) of glass fibers for 72 h. Cytotoxicity and DNA damage were tested by the MTT and the Comet assay, respectively. Oxidative stress was determined by measuring inducible nitric oxide synthase (iNOS) expression by Western blotting, production of nitric oxide (NO) with Griess reagent, and concentration of reactive oxygen species by fluorescent quantitative analysis with 2',7'-dichlorofluorescein-diacetate (DCFH-DA). The results showed that glass fiber exposure significantly reduced cell viability and increased DNA damage and oxidative stress production in a concentration-dependent manner, demonstrating that glass fibers exert cytotoxic and genotoxic effects related to increased oxidative stress on the human alveolar cell line A549.

  11. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    SciTech Connect

    Zhang, Jian; Zhang, Tao; Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling; Yin, Hong

    2010-08-13

    Research highlights: {yields} Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells {yields} Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway {yields} Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* {yields} miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  12. Claudin-18 inhibits cell proliferation and motility mediated by inhibition of phosphorylation of PDK1 and Akt in human lung adenocarcinoma A549 cells.

    PubMed

    Shimobaba, Shun; Taga, Saeko; Akizuki, Risa; Hichino, Asami; Endo, Satoshi; Matsunaga, Toshiyuki; Watanabe, Ryo; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Sugatani, Junko; Ikari, Akira

    2016-06-01

    Abnormal expression of claudin subtypes has been reported in various cancers. However, the pathological role of each claudin has not been clarified in detail. Claudin-18 was absent in human non-small cell and small cell lung cancers, although it is expressed in normal lung tissues. Here, we examined the effect of claudin-18 expression on the expression of junctional proteins, cell proliferation, and cell motility using human lung adenocarcinoma A549 cells. Real-time PCR and western blotting showed that exogenous expression of claudin-18 had no effect on the expression of junctional proteins including claudin-1, zonula occludens-1 (ZO-1), occludin, and E-cadherin. Claudin-18 was mainly distributed in cell-cell contact areas concomitant with ZO-1. Cell proliferation was significantly decreased at 48 and 72h after seeding of claudin 18-expressing cells. Claudin-18 suppressed cell motility, whereas it increased cell death in anoikis. Claudin-18 decreased phosphorylated (p)-3-phosphoinositide-dependent protein kinase-1 (PDK1) and p-Akt levels without affecting p-epidermal growth factor receptor and p-phosphatidylinositol-3 kinase (PI3K) levels. Furthermore, claudin-18 was bound with PDK1 and suppressed the nuclear localization of PDK1. We suggest that claudin-18 suppresses the abnormal proliferation and motility of lung epithelial cells mediated by inhibition of the PI3K/PDK1/Akt signaling pathway.

  13. A Comprehensive Proteomic View of Responses of A549 Type II Alveolar Epithelial Cells to Human Respiratory Syncytial Virus Infection*

    PubMed Central

    Dave, Keyur A.; Norris, Emma L.; Bukreyev, Alexander A.; Headlam, Madeleine J.; Buchholz, Ursula J.; Singh, Toshna; Collins, Peter L.; Gorman, Jeffrey J.

    2014-01-01

    Human respiratory syncytial virus is a major respiratory pathogen for which there are no suitable antivirals or vaccines. A better understanding of the host cell response to this virus may redress this problem. The present report concerns analysis of multiple independent biological replicates of control and 24 h infected lysates of A549 cells by two different proteomic workflows. One workflow involved fractionation of lysates by in-solution protein IEF and individual fractions were digested using trypsin prior to capillary HPLC-LTQ-OrbitrapXL-MS/MS. A second workflow involved digestion of whole cell lysates and analysis by nanoUltraHPLC-LTQ-OrbitrapElite-MS/MS. Both workflows resulted in the quantification of viral proteins exclusively in lysates of infected cells in the relative abundances anticipated from previous studies. Unprecedented numbers (3247 - 5010) of host cell protein groups were also quantified and the infection-specific regulation of a large number (191) of these protein groups was evident based on a stringent false discovery rate cut-off (<1%). Bioinformatic analyses revealed that most of the regulated proteins were potentially regulated by type I, II, and III interferon, TNF-α and noncanonical NF-κB2 mediated antiviral response pathways. Regulation of specific protein groups by infection was validated by quantitative Western blotting and the cytokine-/key regulator-specific nature of their regulation was confirmed by comparable analyses of cytokine treated A549 cells. Overall, it is evident that the workflows described herein have produced the most comprehensive proteomic characterization of host cell responses to human respiratory syncytial virus published to date. These workflows will form the basis for analysis of the impacts of specific genes of human respiratory syncytial virus responses of A549 and other cell lines using a gene-deleted version of the virus. They should also prove valuable for the analysis of the impact of other infectious

  14. A comprehensive proteomic view of responses of A549 type II alveolar epithelial cells to human respiratory syncytial virus infection.

    PubMed

    Dave, Keyur A; Norris, Emma L; Bukreyev, Alexander A; Headlam, Madeleine J; Buchholz, Ursula J; Singh, Toshna; Collins, Peter L; Gorman, Jeffrey J

    2014-12-01

    Human respiratory syncytial virus is a major respiratory pathogen for which there are no suitable antivirals or vaccines. A better understanding of the host cell response to this virus may redress this problem. The present report concerns analysis of multiple independent biological replicates of control and 24 h infected lysates of A549 cells by two different proteomic workflows. One workflow involved fractionation of lysates by in-solution protein IEF and individual fractions were digested using trypsin prior to capillary HPLC-LTQ-OrbitrapXL-MS/MS. A second workflow involved digestion of whole cell lysates and analysis by nanoUltraHPLC-LTQ-OrbitrapElite-MS/MS. Both workflows resulted in the quantification of viral proteins exclusively in lysates of infected cells in the relative abundances anticipated from previous studies. Unprecedented numbers (3247 - 5010) of host cell protein groups were also quantified and the infection-specific regulation of a large number (191) of these protein groups was evident based on a stringent false discovery rate cut-off (<1%). Bioinformatic analyses revealed that most of the regulated proteins were potentially regulated by type I, II, and III interferon, TNF-α and noncanonical NF-κB2 mediated antiviral response pathways. Regulation of specific protein groups by infection was validated by quantitative Western blotting and the cytokine-/key regulator-specific nature of their regulation was confirmed by comparable analyses of cytokine treated A549 cells. Overall, it is evident that the workflows described herein have produced the most comprehensive proteomic characterization of host cell responses to human respiratory syncytial virus published to date. These workflows will form the basis for analysis of the impacts of specific genes of human respiratory syncytial virus responses of A549 and other cell lines using a gene-deleted version of the virus. They should also prove valuable for the analysis of the impact of other infectious

  15. Cardiac glycosides induce autophagy in human non-small cell lung cancer cells through regulation of dual signaling pathways.

    PubMed

    Wang, Yan; Qiu, Qiang; Shen, Jia-Jia; Li, Dian-Dong; Jiang, Xue-Jun; Si, Shu-Yi; Shao, Rong-Guang; Wang, Zhen

    2012-11-01

    Na(+)/K(+)-ATPase targeted cancer therapy has attracted increasing interests of oncologists in lung cancer field. Although multiple anti-cancer mechanisms of cardiac glycosides as Na(+)/K(+)-ATPase inhibitors are revealed, the role of autophagy and related molecular signaling pathway for the class of compounds in human non-small cell lung cancer (NSCLC) cells has not been systematically examined. We herein investigated the anti-cancer effects of two representative cardiac glycosides, digoxin and ouabain, in A549 and H460 cell lines. Both agents caused significant growth inhibition at nanomolar level. The cardiac glycosides were found to induce moderate G(2)/M arrest but not apoptosis at IC(50) level in the NSCLC cell lines. Moreover, autophagy was markedly induced by both agents, as evidenced by the time- and dose-dependent increase of LC3-II, up-regulation of Atg5 and Beclin1, as well as by the observations through acridine orange staining, transmission electron microscopy and quantification of GFP-LC3 fluorescence. Importantly, AMP-activated protein kinase (AMPK) pathway was activated, resulting in mammalian target of rapamycin (mTOR) deactivation during autophagy induction. Moreover, extracellular-signal-regulated kinase 1/2 (ERK1/2) activation was simultaneously found to be involved in the autophagy regulation. Co-treatment with respective inhibitors or siRNAs could either block the autophagic phenotypes and signals, or significantly increase the cellular viability, indicating the drugs-induced autophagy plays tumor-suppressing role. This work provides first evidence showing that the cardiac glycosides induce autophagy in human NSCLC cells through regulation of both mTOR and ERK1/2 signaling pathways. The autophagy may at least partially account for the growth inhibitory effects of the compounds in human NSCLC cells.

  16. CDK-associated Cullin 1 promotes cell proliferation with activation of ERK1/2 in human lung cancer A549 cells

    SciTech Connect

    Chen, Tian Jun; Gao, Fei; Yang, Tian; Thakur, Asmitanand; Ren, Hui; Li, Yang; Zhang, Shuo; Wang, Ting; Chen, Ming Wei

    2013-07-19

    Highlights: •CDK-associated Cullin 1 (CAC1) expression increases in human lung carcinoma. •CAC1 promotes the proliferation of lung cancer A549 cells. •CAC1 promotes human lung cancer A549 cell proliferation with activation of ERK1/2. -- Abstract: Lung cancer is one of the most common causes of cancer-related death in the world, but the mechanisms remain unknown. In this study, we investigated the expression of CDK-associated Cullin 1 (CAC1) in lung cancer, the effect of CAC1 on the proliferation of human lung cancer A549 cells, and the activation of signaling pathways of mitogen-activated protein kinases (MAPKs). Results showed that CAC1 expression was higher levels in human lung carcinoma than normal lung tissue, and CAC1 siRNA reduced the proliferation of lung cancer A549 cells by decreasing cell activity and cell division in vitro. The proportion of cells treated with CAC1 siRNA increased in the G1 phase and decreased in the S and G2/M phase, indicative of G1 cell cycle arrest. Furthermore, the proportions of early/late apoptosis in lung cancer A549 cells were enhanced with CAC1 siRNA treatment. It was also found that activation of extracellular signal-regulated protein kinase (ERK) and p38 signaling pathways were involved in the proliferation of A549 cells. After CAC1 siRNA treatment, p-ERK1/2 levels decreased, and meanwhile p-p38 level increased, A549 cell proliferation increased when ERK1/2 signaling is activated by PMA. Our findings demonstrated that CAC1 promoted the proliferation of human lung cancer A549 cells with activation of ERK1/2 signaling pathways, suggesting a potential cure target for treatment of human lung cancer.

  17. Lipoteichoic acids from Staphylococcus aureus stimulate proliferation of human non-small-cell lung cancer cells in vitro.

    PubMed

    Hattar, Katja; Reinert, Christian P; Sibelius, Ulf; Gökyildirim, Mira Y; Subtil, Florentine S B; Wilhelm, Jochen; Eul, Bastian; Dahlem, Gabriele; Grimminger, Friedrich; Seeger, Werner; Grandel, Ulrich

    2017-03-17

    Pulmonary infections are frequent complications in lung cancer and may worsen its outcome and survival. Inflammatory mediators are suspected to promote tumor growth in non-small-cell lung cancer (NSCLC). Hence, bacterial pathogens may affect lung cancer growth by activation of inflammatory signalling. Against this background, we investigated the effect of purified lipoteichoic acids (LTA) of Staphylococcus aureus (S. aureus) on cellular proliferation and liberation of interleukin (IL)-8 in the NSCLC cell lines A549 and H226. A549 as well as H226 cells constitutively expressed TLR-2 mRNA. Even in low concentrations, LTA induced a prominent increase in cellular proliferation of A549 cells as quantified by automatic cell counting. In parallel, metabolic activity of A549 cells was enhanced. The increase in proliferation was accompanied by an increase in IL-8 mRNA expression and a dose- and time-dependent release of IL-8. Cellular proliferation as well as the release of IL-8 was dependent on specific ligation of TLR-2. Interestingly, targeting IL-8 by neutralizing antibodies completely abolished the LTA-induced proliferation of A549 cells. The pro-proliferative effect of LTA could also be reproduced in the squamous NSCLC cell line H226. In summary, LTA of S. aureus induced proliferation of NSCLC cell lines of adeno- and squamous cell carcinoma origin. Ligation of TLR-2 followed by auto- or paracrine signalling by endogenously synthesized IL-8 is centrally involved in LTA-induced tumor cell proliferation. Therefore, pulmonary infections may exert a direct pro-proliferative effect on lung cancer growth.

  18. Coenzyme Q0 from Antrodia cinnamomea in Submerged Cultures Induces Reactive Oxygen Species-Mediated Apoptosis in A549 Human Lung Cancer Cells

    PubMed Central

    Chung, Cheng-Han; Lee, Kung-Ta

    2014-01-01

    We investigated the anticancer effects of Antrodia cinnamomea, a medicinal mushroom from Taiwan, on A549 human lung cancer cells using the ethyl acetate extract from submerged culture filtrates. Our results showed that 2,3-dimethoxy-5-methyl-1,4-benzoquinone (coenzyme Q0; CoQ0) derived from A. cinnamomea submerged culture filtrates has anticancer activity. CoQ0 treatment reduced the viability of A549, HepG2, and SW480 cancer cell lines. Furthermore, CoQ0 induced reactive oxygen species (ROS) generation and apoptosis in A549 cells, which was inhibited by the antioxidant ascorbic acid. To our knowledge, these data demonstrate for the first time that CoQ0 derived from A. cinnamomea submerged culture filtrates exerts its anticancer effect through the induction of ROS-mediated apoptosis in A549 human lung cancer cells. PMID:25431605

  19. The verapamil transporter expressed in human alveolar epithelial cells (A549) does not interact with β2-receptor agonists.

    PubMed

    Salomon, Johanna J; Ehrhardt, Carsten; Hosoya, Ken-Ichi

    2014-01-01

      Affinity of different organs for verapamil is highly variable and organ-specific. For example, the drug exhibits high levels of accumulation in lung tissues. A transporter recognising verapamil as a substrate has previously been identified in human retinal pigment epithelial (RPE) and in rat retinal capillary endothelial (TR-iBRB2) cells. This transporter is distinct from any of the cloned organic cation transporters. Therefore, we hypothesised that the verapamil transporter is also functionally expressed in the human respiratory mucosa. Moreover, we tested the hypothesis that this transporter interacts with pulmonary administered cationic drugs such as β2-agonists. The uptake of [(3)H]verapamil was studied in A549 human alveolar epithelial cell monolayers at different times and concentrations. The influence of extracellular proton concentration and various organic cations on verapamil uptake was determined. Verapamil uptake into A549 cells was time- and concentration-dependent, sensitive to pH and had a Km value of 39.8 ± 8.2 µM. Verapamil uptake was also sensitive to inhibition by amantadine, quinidine and pyrilamine, but insensitive to other typical modulators of organic cation and choline transporters. Whilst we demonstrated functional activity of the elusive verapamil transporter at the lung epithelium, our data suggest that this transporter does not interact with β2-agonists at therapeutic concentrations.

  20. Ultrasensitive cytosensing based on an aptamer modified nanobiosensor with a bioconjugate: Detection of human non-small-cell lung cancer cells.

    PubMed

    Mir, Tanveer A; Yoon, Jang-Hee; Gurudatt, N G; Won, Mi-Sook; Shim, Yoon-Bo

    2015-12-15

    A novel aptamer-based amperometric nanobiosensor was designed for the sensitive and selective detection of A549 human non-small-cell lung cancer (NSCLC) cells. The cytosensing was performed using a MUC1 aptamer probe with a bioconjugate, where the probe was fabricated by the covalent immobilization on a conducting polymer nanocomposite formed through the self-assembly of 4-([2,2':5',2''-terthiophen]-3'-yl) benzoic acid (TTBA) on AuNPs. A bioconjugate composed of hydrazine and aptamer attached on AuNPs was used to reveal the selectively amplified detection signal. The cells were quantitatively analyzed using chronoamperometric measurements, and the results were further compared and confirmed using microscopic and DPV methods based on silver staining cytosensing experiments. The proposed aptasensor showed a high affinity for MUC1 positive lung cancer cells (A549) compared with the other control cancer cells, including human prostate (PC3), MUC1 negative normal lung (MRC-5), and liver tumors (HepG2) cells. An excellent dynamic range of the proposed method was obtained from 15 to 1×10(6) cells/mL with a detection limit of 8 cells/mL.

  1. Cellular uptake and toxic effects of fine and ultrafine metal-sulfate particles in human A549 lung epithelial cells.

    PubMed

    Könczöl, Mathias; Goldenberg, Ella; Ebeling, Sandra; Schäfer, Bianca; Garcia-Käufer, Manuel; Gminski, Richard; Grobéty, Bernard; Rothen-Rutishauser, Barbara; Merfort, Irmgard; Gieré, Reto; Mersch-Sundermann, Volker

    2012-12-17

    Ambient airborne particulate matter is known to cause various adverse health effects in humans. In a recent study on the environmental impacts of coal and tire combustion in a thermal power station, fine crystals of PbSO(4) (anglesite), ZnSO(4)·H(2)O (gunningite), and CaSO(4) (anhydrite) were identified in the stack emissions. Here, we have studied the toxic potential of these sulfate phases as particulates and their uptake in human alveolar epithelial cells (A549). Both PbSO(4) and CaSO(4) yielded no loss of cell viability, as determined by the WST-1 and NR assays. In contrast, a concentration-dependent increase in cytotoxicity was observed for Zn sulfate. For all analyzed sulfates, an increase in the production of reactive oxygen species (ROS), assessed by the DCFH-DA assay and EPR, was observed, although to a varying extent. Again, Zn sulfate was the most active compound. Genotoxicity assays revealed concentration-dependent DNA damage and induction of micronuclei for Zn sulfate and, to a lower extent, for CaSO(4), whereas only slight effects could be found for PbSO(4). Moreover, changes of the cell cycle were observed for Zn sulfate and PbSO(4). It could be shown further that Zn sulfate increased the nuclear factor kappa-B (NF-κB) DNA binding activity and activated JNK. During our TEM investigations, no effect on the appearance of the A549 cells exposed to CaSO(4) compared to the nonexposed cells was observed, and in our experiments, only one CaSO(4) particle was detected in the cytoplasm. In the case of exposure to Zn sulfate, no particles were found in the cytoplasm of A549 cells, but we observed a concentration-dependent increase in the number and size of dark vesicles (presumably zincosomes). After exposure to PbSO(4), the A549 cells contained isolated particles as well as agglomerates both in vesicles and in the cytoplasm. Since these metal-sulfate particles are emitted into the atmosphere via the flue gas of coal-fired power stations, they may be

  2. MicroRNA-1304 suppresses human non-small cell lung cancer cell growth in vitro by targeting heme oxygenase-1

    PubMed Central

    Li, Cheng-gang; Pu, Meng-fan; Li, Chun-zhu; Gao, Man; Liu, Ming-xia; Yu, Cun-zhi; Yan, Hong; Peng, Chun; Zhao, Yang; Li, Yu; Ma, Ze-long; Qi, Xin-ming; Wang, Yi-zheng; Miao, Ling-ling; Ren, Jin

    2017-01-01

    Previous studies have shown that microRNA-1304 (miR-1304) is dysregulated in certain types of cancers, including non-small cell lung cancer (NSCLC), and might be involved in tumor survival and/or growth. In this study we investigated the direct target of miR-1304 and its function in NSCLC in vitro. Human lung adenocarcinoma cell lines (A549 and NCI-H1975) were studied. The cell proliferation and survival were investigated via cell counting, MTT and colony-formation assays. Cell apoptosis and cell cycle were examined using annexin V-PE/7-AAD and PI staining assays, respectively. The dual-luciferase reporter assay was used to verify post-transcriptional regulation of heme oxygenase-1 (HO-1) by miR-1304. CRISPR/Cas9 was used to deplete endogenous miR-1304. Overexpression of MiR-1304 significantly decreased the number and viability of NSCLC cells and colony formation, and induced cell apoptosis and G0/G1 phase cell cycle arrest. HO-1 was demonstrated to be a direct target of miR-1304 in NSCLC cells. Restoration of HO-1 expression by hemin (20 μmol/L) abolished the inhibition of miR-1304 on cell growth and rescued miR-1304-induced apoptosis in A549 cells. Suppression of endogenous miR-1304 with anti-1304 significantly increased HO-1 expression and promoted cell growth and survival in A549 cells. In 17 human NSCLC tissue samples, miR-1304 expression was significantly decreased, while HO-1 expression was significantly increased as compared to normal lung tissues. MicroRNA-1304 is a tumor suppressor and HO-1 is its direct target in NSCLC. The results suggest the potential for miR-1304 as a therapeutic target for NSCLC. PMID:27641735

  3. Cyclooxygenase-2-dependent expression of angiogenic CXC chemokines ENA-78/CXC Ligand (CXCL) 5 and interleukin-8/CXCL8 in human non-small cell lung cancer.

    PubMed

    Põld, Mehis; Zhu, Li X; Sharma, Sherven; Burdick, Marie D; Lin, Ying; Lee, Peter P N; Põld, Anu; Luo, Jie; Krysan, Kostyantyn; Dohadwala, Mariam; Mao, Jenny T; Batra, Raj K; Strieter, Robert M; Dubinett, Steven M

    2004-03-01

    Elevated tumor cyclooxygenase (COX)-2 activity plays a multifaceted role in non-small cell lung cancer (NSCLC). To elucidate the role of COX-2 in the in vitro and in vivo expression of two known NSCLC angiogenic peptides, CXC ligand (CXCL) 8 and CXCL5, we studied two COX-2 gene-modified NSCLC cell lines, A549 and H157. COX-2 overexpression enhanced the in vitro expression of both CXCL8 and CXCL5. In contrast, specific COX-2 inhibition decreased the production of both peptides as well as nuclear translocation of nuclear factor kappaB. In a severe combined immunodeficient mouse model of human NSCLC, the enhanced tumor growth of COX-2-overexpressing tumors was inhibited by neutralizing anti-CXCL5 and anti-CXCL8 antisera. We conclude that COX-2 contributes to the progression of NSCLC tumorigenesis by enhancing the expression of angiogenic chemokines CXCL8 and CXCL5.

  4. Extract from Nandina domestica inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in human pulmonary epithelial A549 cells.

    PubMed

    Ueki, Takuro; Akaishi, Tatsuhiro; Okumura, Hidenobu; Abe, Kazuho

    2012-01-01

    Extract from fruits of Nandina domestica THUNBERG (NDE) has been used to improve cough and breathing difficulty in Japan for many years. To explore whether NDE may alleviate respiratory inflammation, we investigated its effect on expression of cyclooxygenase-2 (COX-2) and production of prostaglandin E₂ (PGE₂) in human pulmonary epithelial A549 cells in culture. Treatment with lipopolysaccharide (LPS; 6 µg/mL) resulted in an increase of COX-2 expression and PGE₂ production in A549 cells. Both the LPS-induced COX-2 expression and PGE₂ production were significantly inhibited by NDE (1-10 µg/mL) in a concentration-dependent manner. NDE did not affect COX-1 expression nor COX activity. These results suggest that NDE downregulates LPS-induced COX-2 expression and inhibits PGE₂ production in pulmonary epithelial cells. Furthermore, higenamine and nantenine, two major constituents responsible for tracheal relaxing effect of NDE, did not mimic the inhibitory effect of NDE on LPS-induced COX-2 expression in A549 cells. To identify active constituent(s) of NDE responsible for the anti-inflammatory effect, NDE was introduced in a polyaromatic absorbent resin column and stepwise eluted to yield water fraction, 20% methanol fraction, 40% methanol fraction, 99.8% methanol fraction, and 99.5% acetone fraction. However, none of these five fractions alone inhibited LPS-induced COX-2 expression. On the other hand, exclusion of water fraction from NDE abolished the inhibitory effect of NDE on LPS-induced COX-2 expression. These results suggest that constituent(s) present in water fraction is required but not sufficient for the anti-inflammatory activity of NDE, which may result from interactions among multiple constituents.

  5. MicroRNA-221 promotes human non-small cell lung cancer cell H460 growth.

    PubMed

    Xu, Yiming; Zhong, Chongjun; Ding, Shengguang; Huang, Haitao; Shen, Zhenya

    2015-01-01

    MicroRNA (miRNA-221) has been reported to be a regulator of cell proliferation. Here we intended to investigate the role of miRNA-221 in regulating the growth of human non-small cell lung cancer cell line H460. H460 cells were transfected with miRNA-221 mimics/inhibitors or their respective negative controls. Real-time quantitative PCRs (qRT-PCRs) were used to confirm the effects of miRNA-221 mimics and inhibitors in H460 cells while Cell Counting Kit 8 (CCK-8) and 5-Ethynyl-2'-deoxyuridine (EdU) assay were used to access the cell viability and proliferation. P27 and P57, as putative targets of miRNA-221, were determined by qRT-PCRs in H460 cells. We found that overexpression of miRNA-221 led to increased proliferative rate and cell viability in H460 cells while down-regulation of miRNA-221 decreased those effects. P27 but not P57 was identified as a potential target gene of miRNA-221 in H460 as P27 was negatively regulated by miRNA-221 in the protein level. In conclusion, this study suggests that miRNA-221 controls human non-small cell lung cancer cell H460 growth potentially by targeting P57. Inhibition of miRNA-221 represents a novel potential treatment for human non-small cell lung cancer.

  6. Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549

    NASA Astrophysics Data System (ADS)

    Syaefudin; Juniarti, A.; Rosiyana, L.; Setyani, A.; Khodijah, S.

    2016-01-01

    The aim of the present study is to evaluate cytotoxicity effect of nanoparticles of Selaginella doederleinii (S. doederleinii) leaves extract. S. doederleinii was extracted by maceration method using 70%(v/v) ethanol as solvent. Phytochemical content was analyzed qualitatively by using Harborne and Thin Layer Chromatography (TLC) methods. Nanoparticle extract was prepared by ionic gelation using chitosan as encapsulant agent. Anticancer activity was performed by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results showed that S. doederleinii contains of flavonoids. Nanoparticle of S. doederleinii leaves extract greatly inhibited A549 cells growth (cancer cells), with IC50 of 3% or 1020 μg/ml. These nanoparticles extract also inhibited the growth of Chang cells (normal cells), with IC50 of 4% or 1442 μg/ml. The effective concentration of nanoparticles extract which inhibits cancer cells without harming the normal cells is 0.5% or 167 μg/ml. Further studies are needed to obtain the concentration of nanoparticles extract which can selectively suppress cancer cells.

  7. In vitro cytotoxicity and morphological assessment of smoke from polymer combustion in human lung derived cells (A549).

    PubMed

    Lestari, F; Hayes, A J; Green, A R; Chattopadhyay, G

    2012-04-01

    The application of polymer and composites in building and modern transport interiors raises concerns of potential health hazards during combustion. Cytotoxicity and morphological assessment of smoke from polymer combustion in human lung derived cells (A549) has been investigated. A laboratory scale vertical tube furnace was used for the generation of combustion products. A range of materials used in the building and transport industry including high density-polyethylene (HDPE), polypropylene (PP), polycarbonate (PC), and polyvinyl chloride (PVC), fiberglass reinforced polymers (FRPs), and melamine faced plywood (MFP) were studied. The exposure of combustion toxicants to human lung cells (A549) at the air/liquid interface was acquired using a Harvard Navicyte Chamber. Cytotoxic effects on human cells were assessed based on cell viability using a selected in vitro cytotoxicity assays, including NRU (neutral red uptake) and ATP (adenosine triphosphate). Morphological assessment on the effects of combustion products in human lung cells from selected materials including PVC, FRP and MFP was assessed using scanning electron microscopy (SEM). The volatile organic compounds from thermal decomposition products were identified using ATD-GCMS (Automatic Thermal Desorption Gas Chromatography Mass Spectrometry). NOAEC (No Observable Adverse Effect Concentration), IC(10) (10% inhibitory concentration), IC(50) (50% inhibitory concentration), and TLC (Total Lethal Concentration) values (mg/l) were generated. The following toxicity ranking was observed from the most toxic material to the least toxic using the NRU assay: PVC>PP>HDPE>PC >FRP-10>MFP>FRP-16; and the ATP assay: PVC>HDPE>PP>FRP-10>FRP-16>MFP>PC. The method described here could potentially be an alternative to current fire toxicity standards.

  8. Portulaca oleracea Seed Oil Exerts Cytotoxic Effects on Human Liver Cancer (HepG2) and Human Lung Cancer (A-549) Cell Lines.

    PubMed

    Al-Sheddi, Ebtesam Saad; Farshori, Nida Nayyar; Al-Oqail, Mai Mohammad; Musarrat, Javed; Al-Khedhairy, Abdulaziz Ali; Siddiqui, Maqsood Ahmed

    2015-01-01

    Portulaca oleracea (Family: Portulacaceae), is well known for its anti-inflammatory, antioxidative, anti- bacterial, and anti-tumor activities. However, cytotoxic effects of seed oil of Portulaca oleracea against human liver cancer (HepG2) and human lung cancer (A-549) cell lines have not been studied previously. Therefore, the present study was designed to investigate the cytotoxic effects of Portulaca oleracea seed oil on HepG2 and A-549 cell lines. Both cell lines were exposed to various concentrations of Portulaca oleracea seed oil for 24h. After the exposure, percentage cell viability was studied by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT), neutral red uptake (NRU) assays, and cellular morphology by phase contrast inverted microscopy. The results showed a concentration-dependent significant reduction in the percentage cell viability and an alteration in the cellular morphology of HepG2 and A-549 cells. The percentage cell viability was recorded as 73%, 63%, and 54% by MTT assay and 76%, 61%, and 50% by NRU assay at 250, 500, and 1000 μg/ml, respectively in HepG2 cells. Percentage cell viability was recorded as 82%, 72%, and 64% by MTT assay and 83%, 68%, and 56% by NRU assay at 250, 500, and 1000 μg/ml, respectively in A-549 cells. The 100 μg/ml and lower concentrations were found to be non cytotoxic to A-549 cells, whereas decrease of 14% and 12% were recorded by MTT and NRU assay, respectively in HepG2 cells. Both HepG2 and A-549 cell lines exposed to 250, 500, and 1000 μg/ ml of Portulaca oleracea seed oil lost their normal morphology, cell adhesion capacity, become rounded, and appeared smaller in size. The data from this study showed that exposure to seed oil of Portulaca oleracea resulted in significant cytotoxicity and inhibition of growth of the human liver cancer (HepG2) and human lung cancer (A-549) cell lines.

  9. Short-Course Treatment With Gefitinib Enhances Curative Potential of Radiation Therapy in a Mouse Model of Human Non-Small Cell Lung Cancer

    SciTech Connect

    Bokobza, Sivan M.; Jiang, Yanyan; Weber, Anika M.; Devery, Aoife M.; Ryan, Anderson J.

    2014-03-15

    Purpose: To evaluate the combination of radiation and an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) in preclinical models of human non-small cell lung cancer. Methods and Materials: Sensitivity to an EGFR TKI (gefitinib) or radiation was assessed using proliferation assays and clonogenic survival assays. Effects on receptor signal transduction pathways (pEGFR, pAKT, pMAPK) and apoptosis (percentage of cleaved PARP Poly (ADP-ribose) polymerase (PARP)) were assessed by Western blotting. Radiation-induced DNA damage was assessed by γH2AX immunofluorescence. Established (≥100 mm{sup 3}) EGFR-mutated (HCC287) or EGFR wild-type (A549) subcutaneous xenografts were treated with radiation (10 Gy, day 1) or gefitinib (50 mg/kg, orally, on days 1-3) or both. Results: In non-small cell lung cancer (NSCLC) cell lines with activating EGFR mutations (PC9 or HCC827), gefitinib treatment markedly reduced pEGFR, pAKT, and pMAPK levels and was associated with an increase in cleaved PARP but not in γH2AX foci. Radiation treatment increased the mean number of γH2AX foci per cell but did not significantly affect EGFR signaling. In contrast, NSCLC cell lines with EGFR T790M (H1975) or wild-type EGFR (A549) were insensitive to gefitinib treatment. The combination of gefitinib and radiation treatment in cell culture produced additive cell killing with no evidence of synergy. In xenograft models, a short course of gefitinib (3 days) did not significantly increase the activity of radiation treatment in wild-type EGFR (A549) tumors (P=.27), whereas this combination markedly increased the activity of radiation (P<.001) or gefitinib alone (P=.002) in EGFR-mutated HCC827 tumors, producing sustained tumor regressions. Conclusions: Gefitinib treatment increases clonogenic cell killing by radiation but only in cell lines sensitive to gefitinib alone. Our data suggest additive rather than synergistic interactions between gefitinib and radiation and that a

  10. The histone acetylranseferase hMOF acetylates Nrf2 and regulates anti-drug responses in human non-small cell lung cancer

    PubMed Central

    Chen, Zhiwei; Ye, Xiangyun; Tang, Naiwang; Shen, Shengping; Li, Ziming; Niu, Xiaomin; Lu, Shun; Xu, Ling

    2014-01-01

    BACKGROUND AND PURPOSE The histone acetyltransferase MOF is a member of the MYST family. In mammals, MOF plays critical roles by acetylating histone H4 at K16 and non-histone substrates such as p53. Here we have investigated the role of MOF in human lung cancer and possible new substrates of hMOF. EXPERIMENTAL APPROACH Samples of human non-small cell lung cancer (NSCLC) were used to correlate MOF with clinicopathological parameters and NF–E2-related factor 2 (Nrf2) downstream genes. 293T-cells were used to study interactions between MOF and Nrf2, and acetylation of Nrf2 by MOF. Mouse embryonic fibroblast and A549 cells were utilized to assess involvement of MOF in antioxidative and anti-drug responses. A549 cells were used to analysis the role of MOF in anti-drug response in vitro and in vivo. KEY RESULTS hMOF was overexpressed in human NSCLC tissues and was associated with large tumour size, advanced disease stage and metastasis, and with poor prognosis. hMOF levels were positively correlated with Nrf2-downstream genes. MOF/hMOF physically interacted with and acetylated Nrf2 at Lys588. MOF-mediated acetylation increased nuclear retention of Nrf2 and transcription of its downstream genes. Importantly, MOF/hMOF was essential for anti-oxidative and anti-drug responses in vitro and regulated tumour growth and drug resistance in vivo in an Nrf2-dependent manner. CONCLUSION AND IMPLICATIONS hMOF was overexpressed in human NSCLC and was a predictor of poor survival. hMOF-mediated Nrf2 acetylation and nuclear retention are essential for anti-oxidative and anti-drug responses. hMOF may provide a therapeutic target for the treatment of NSCLC. PMID:24571482

  11. ALKBH3, a human AlkB homologue, contributes to cell survival in human non-small-cell lung cancer

    PubMed Central

    Tasaki, M; Shimada, K; Kimura, H; Tsujikawa, K; Konishi, N

    2011-01-01

    Background: We have demonstrated for the first time that a novel human AlkB homologue, ALKBH3, contributes to prostate cancer development, but its clinical and biological roles in lung cancer remain unclear. Methods: Expression of both mRNA and protein of PCA-1 was examined by RT–PCR and western blotting. We also assessed association with senescence and in vivo ALKBH3 treatment on orthotopic tumour cell inoculation, and analysed it clinicopathologically. Results: We have since found novel biological roles for ALKBH3 in human lung cancers, particularly in adenocarcinoma. Our immunohistochemical analysis of human adenocarcinomas and squamous cell carcinomas of the lung not only showed overexpression of ALKBH3 in these tumours but the percentage of cells positive for ALKBH3 also correlated statistically to recurrence-free survival in adenocarcinoma. Knockdown of ALKBH3 by siRNA transfection induced expression of p21WAF1/Cip1 and p27Kip1 in the human lung adenocarcinoma cell line A549, resulting in cell cycle arrest, senescence and strong suppression of cell growth in vitro. In vivo, peritoneal tumour growth and dissemination was inhibited in nude mice, previously inoculated with the A549 cell line, by intraperitoneal injection of ALKBH3 siRNA + atelocollagen, as demonstrated by the reduction in both number and diameter of tumours developing in the peritoneum. Conclusion: We suggest that ALKBH3 contributes significantly to cancer cell survival and may be a therapeutic target for human adenocarcinoma of the lung. PMID:21285982

  12. Nimesulide, a selective COX-2 inhibitor, acts synergistically with ionizing radiation against A549 human lung cancer cells through the activation of caspase-8 and caspase-3.

    PubMed

    Kim, Byeong Mo; Won, Juyoon; Maeng, Kyung Ah; Han, Young Soo; Yun, Yeon-Sook; Hong, Sung Hee

    2009-05-01

    Several lines of evidence suggest that non-steroidal anti-inflammatory drugs (NSAIDs) have a radiosensitizing effect on cancer cells in vitro and in vivo, but little is known about the underlying cellular mechanism. In this study, we found that the treatment with the NSAID nimesulide significantly increased the sensitivity of A549 human non-small cell lung cancer cells to radiotherapy. The combined nimesulide-radiation treatment increased apoptosis, induced the cleavage of caspase-3, caspase-9, and poly(ADP-ribose) polymerase (PARP), activated caspase-8, and induced cleavage of Bid. A pan-caspase inhibitor, z-VAD-fmk, suppressed this increase in apoptosis and also suppressed the cleavage of caspase-8, caspase-3, and PARP, suggesting a caspase-dependent mechanism. In addition, z-IETD-fmk, a selective caspase-8 inhibitor, suppressed the nimesulide- and radiation-induced cleavage activation of caspase-9, caspase-3, caspase-8, and Bid, and suppressed the concomitant apoptosis, indicating that the nimesulide-induced increase in radiosensitivity was initiated by caspase-8. However, the caspase-3 inhibitor z-DEVD-fmk failed to suppress activation of the caspase-8/Bid pathway, indicating that caspase-3 activation occurred downstream of caspase-8 activation in our experiments. Marked antitumor effects, which were evaluated by measuring protracted tumor regression, were observed when nude mice were treated with a combination of nimesulide at a clinically achievable dose (0.5 mg/kg) and radiation therapy. Our results, demonstrating the radiosensitivity-increasing and tumor growth-inhibiting effects of nimesulide, suggest that nimesulide may be suitable as an adjuvant to enhance the efficacy and selectivity of radiotherapy.

  13. Digoxin downregulates NDRG1 and VEGF through the inhibition of HIF-1α under hypoxic conditions in human lung adenocarcinoma A549 cells.

    PubMed

    Wei, Dong; Peng, Jing-Jing; Gao, Hui; Li, Hua; Li, Dong; Tan, Yong; Zhang, Tao

    2013-04-02

    Digoxin, an inhibitor of Na+/K+ ATPase, has been used in the treatment of heart-related diseases (such as congestive heart failure and atrial arrhythmia) for decades. Recently, it was reported that digoxin is also an effective HIF-1α inhibitor. We investigated whether digoxin could suppress tumor cell growth through HIF-1α in non-small cell lung cancer cells (A549 cells) under hypoxic conditions. An MTT assay was used to measure cell viability. RT-PCR and western blotting were performed to analyze the mRNA and protein expression of VEGF, NDRG1, and HIF-1α. HIF-1α nuclear translocation was then determined by EMSA. Digoxin was found to inhibit the proliferation of A549 cells under hypoxic conditions. Our results showed that hypoxia led to the upregulation of VEGF, NDRG1, and HIF-1α both at the mRNA and protein levels. We also found that the hypoxia-induced overexpression of VEGF, NDRG1, and HIF-1α was suppressed by digoxin in a concentration-dependent manner. As expected, our EMSA results demonstrated that under hypoxic conditions HIF-1α nuclear translocation was also markedly reduced by digoxin in a concentration-dependent manner. Our results suggest that digoxin downregulated hypoxia-induced overexpression of VEGF and NDRG1 at the transcriptional level probably through the inhibition of HIF-1α synthesis in A549 cells.

  14. Gene expression modulation in A549 human lung cells in response to combustion-generated nano-sized particles.

    PubMed

    Arenz, Andrea; Hellweg, Christine E; Stojicic, Nevena; Baumstark-Khan, Christa; Grotheer, Horst-Henning

    2006-12-01

    High levels of ambient air pollution are associated in humans with aggravation of asthma and of respiratory and cardiopulmonary morbidity; long-term exposures to particulate matter (PM) have been linked to possible increases in lung cancer risk, chronic respiratory disease, and increased death rates. The Biodiagnostics Group of the DLR Institute of Aerospace Medicine develops cellular test systems capable of monitoring the biological consequences of environmental conditions on humans already on cellular and molecular level. Such bioassays rely on the receptor-reporter principle, where cell lines are transfected with plasmids carrying a reporter gene under control of environment-dependent promoters (receptor), which play a key role in regulating gene expressions in response to extracellular signals. We developed the recombinant human lung epithelial cell line A549-NF-kappaB-EGFP/Neo carrying a genetically encoded fluorescent indicator for monitoring activation of the NF-kappaB signaling pathway in living cells in response to genotoxic and cytotoxic environmental influences. With this cell line we screened several candidate human radiation-responsive genes (GADD45beta, CDKN1A) and NF-kappaB-dependent genes (IL-6, NFkappaBIA, and pNF-kappaB-EGFP) for gene expression changes by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assay, using cDNA obtained from total RNA isolated at various time points after exposure to combustion generated nano-sized particle samples.

  15. Raman spectroscopy identifies radiation response in human non-small cell lung cancer xenografts

    NASA Astrophysics Data System (ADS)

    Harder, Samantha J.; Isabelle, Martin; Devorkin, Lindsay; Smazynski, Julian; Beckham, Wayne; Brolo, Alexandre G.; Lum, Julian J.; Jirasek, Andrew

    2016-02-01

    External beam radiation therapy is a standard form of treatment for numerous cancers. Despite this, there are no approved methods to account for patient specific radiation sensitivity. In this report, Raman spectroscopy (RS) was used to identify radiation-induced biochemical changes in human non-small cell lung cancer xenografts. Chemometric analysis revealed unique radiation-related Raman signatures that were specific to nucleic acid, lipid, protein and carbohydrate spectral features. Among these changes was a dramatic shift in the accumulation of glycogen spectral bands for doses of 5 or 15 Gy when compared to unirradiated tumours. When spatial mapping was applied in this analysis there was considerable variability as we found substantial intra- and inter-tumour heterogeneity in the distribution of glycogen and other RS spectral features. Collectively, these data provide unique insight into the biochemical response of tumours, irradiated in vivo, and demonstrate the utility of RS for detecting distinct radiobiological responses in human tumour xenografts.

  16. In vitro and in vivo antitumor activity of scutebarbatine A on human lung carcinoma A549 cell lines.

    PubMed

    Yang, Xiao-Kun; Xu, Ming-Yuan; Xu, Gui-Sen; Zhang, Yu-Lan; Xu, Zhao-Xia

    2014-06-25

    During our systematic study on the anticancer activities of Scutellaria barbata, scutebarbatine A (SBT-A), one of the major alkaloids in S. barbata, was found to have antitumor effects on A549 cells. Thus, we designed the present study to investigate in detail the antitumor effects of SBT-A. The cytotoxic effect of SBT-A on A549 in vitro were determined by an MTT assay and evaluated by IC50 values. Furthermore, results of Hoechst 33258 and Annexin V/PI staining assays demonstrated that SBT-A had significant antitumor effects on A549 cells via apoptosis, in a concentration-dependent manner. What's more, the mechanism was explored by western blotting, and our study revealed that SBT-A can up-regulate the expressions of cytochrome c, caspase-3 and 9, and down-regulate the levels of Bcl-2 in A549 cells. Finally, the antitumor effects of SBT-A were evaluated in vivo by using transplanted tumor nude mice, and the results confirmed that SBT-A has a notable antitumor effect on A549 cancer via mitochondria-mediated apoptosis. Collectively, our results demonstrated that SBT-A showed significant antitumor effects on A549 cells in vivo and in vitro via mitochondria-mediated apoptosis by up-regulating expressions of caspase-3 and 9, and down-regulating Bcl-2.

  17. Effects of sodium lactate Ringer's injection on transfection of human protein kinase C-α antisense oligonucleotide in A549 lung cancer cells.

    PubMed

    Wang, Z H; Sun, W W; Han, Y L; Ma, Z

    2016-08-26

    In the present study, we evaluated the effects of four solutions [Dulbecco's modified Eagle's medium (DMEM), sodium lactate Ringer's injection (SLRI), phosphate-buffered saline (PBS), and NaCl] on the transfection of the human protein kinase C-a antisense oligonucleotide (PKC-a ASO) aprinocarsen in human lung carcinoma A549 cells. Specifically, SLRI, DMEM, PBS, or NaCl were used as the growth solutions for A549 cells, and OPTI-MEM was used as the PKC-a ASO diluent for transfection. Additionally, SLRI, DMEM, PBS, or NaCl were used as both the growth solutions and diluents for transfection. The cell viability and transfection efficiency were determined. The results demonstrated that when SLRI was used as either the growth solution or both the growth solution and diluent for aprinocarsen transfection in A549 cells, the effects were close to the best effects observed with DMEM as the growth solution and OPTI-MEM as the diluent, which supported the transfection of aprinocarsen into the cells. Moreover, SLRI resulted in higher transfection efficiency than those of PBS and NaCl. In in vitro experiments, aprinocarsen effectively induced apoptosis in A549 cells. In conclusion, SLRI may replace PBS or NaCl in clinical trials as a transfection solution readily accepted by the human body. To our knowledge, this is the first report demonstrating the use of SLRI as a transfection solution in lung-cancer cell lines.

  18. Up-Regulation of Pro-Inflammatory Cytokines and Chemokine Production in Avian Influenza H9N2 Virus-Infected Human Lung Epithelial Cell Line (A549).

    PubMed

    Farzin, Hamidreza; Toroghi, Reza; Haghparast, Alireza

    2016-01-01

    Influenza H9N2 virus mostly infects avian species but poses a potential health risk to humans. Little is known about the mammalian host immune responses to H9N2 virus. To obtain insight into the innate immune responses of human lung epithelial cells to the avian H9N2 virus, the expressions of pro-inflammatory cytokines and chemokine in the human airway epithelial cells infected with avian H9N2 virus were examined by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). H9N2 virus was able to cultivate in the human lung epithelial cell line (A549) and stimulate production of pro-inflammatory cytokines (IL-1β, IL-6) and chemokine (IL-8). Expressions of cytokine genes were up-regulated to a significantly higher level for IL-1β (p < 0.01), IL-6 (p < 0.01 after 12 hours and p < 0.05 after 24 hours) and IL-8 (p < 0.01 after 12 hours and p < 0.001 after 24 hours) in virus-cultured A549 cells as compared with non-virus-cultured cells. The amount of IL-6 and IL-1β proteins secreted into the culture medium was also increased after virus culture infection of A549 cell line compared to non-virus-cultured A549 cells and were significant in both IL-1β (p < 0.05 in 18 hours and p < 0.001 in 24-48 hours harvested supernatant) and IL-6 (p < 0.001). Silencing the p65 component of NF-κB in A549 cells suppressed the stimulatory effects of influenza virus on secretion of pro-inflammatory cytokines and chemokine. The findings in this study will broaden our understanding of host innate immune mechanisms and the pathogenesis of H9N2 influenza viruses in human respiratory epithelium.

  19. Psoralen reverses docetaxel-induced multidrug resistance in A549/D16 human lung cancer cells lines.

    PubMed

    Hsieh, Ming-Ju; Chen, Mu-Kuan; Yu, Ya-Yen; Sheu, Gwo-Tarng; Chiou, Hui-Ling

    2014-06-15

    Chemotherapy is the recommended treatment for advanced-stage cancers. However, the emergence of multidrug resistance (MDR), the ability of cancer cells to become simultaneously resistant to different drugs, limits the efficacy of chemotherapy. Previous studies have shown that herbal medicine or natural food may be feasible for various cancers as potent chemopreventive drug. This study aims to explore the capablility of reversing the multidrug resistance of docetaxel (DOC)-resistant A549 cells (A549/D16) of psoralen and the underlying mechanisms. In this study, results showed that the cell viability of A549/D16 subline is decreased when treated with psoralen plus DOC, while psoralen has no effect on the cell proliferation on A549 and A549/D16 cells. Furthermore, mRNA and proteins levels of ABCB1 were decreased in the presence of psoralen, while decreased ABCB1 activity was also revealed by flow cytometry. Based on these results, we believe that psoralen may be feasible for reversing the multidrug resistance by inhibiting ABCB1 gene and protein expression. Such inhibition will lead to a decrease in ABCB1 activity and anti-cancer drug efflux, which eventually result in drug resistance reversal and therefore, sensitizing drug-resistant cells to death in combination with chemotherapeutic drugs.

  20. Gliotoxin promotes Aspergillus fumigatus internalization into type II human pneumocyte A549 cells by inducing host phospholipase D activation.

    PubMed

    Jia, Xiaodong; Chen, Fangyan; Pan, Weihua; Yu, Rentao; Tian, Shuguang; Han, Gaige; Fang, Haiqin; Wang, Shuo; Zhao, Jingya; Li, Xianping; Zheng, Dongyu; Tao, Sha; Liao, Wanqing; Han, Xuelin; Han, Li

    2014-06-01

    The internalization of Aspergillus fumigatus into lung epithelial cells is critical for the infection process in the host. Gliotoxin is the most potent toxin produced by A. fumigatus. However, its role in A. fumigatus internalization into the lung epithelial cells is still largely unknown. In the present study, the deletion of the gliP gene regulating the production of gliotoxin in A. fumigatus suppressed the internalization of conidia into the A549 lung epithelial cells, and this suppression could be rescued by the exogenous addition of gliotoxin. At lower concentrations, gliotoxin enhanced the internalization of the conidia of A. fumigatus into A549 cells; in contrast, it inhibited the phagocytosis of J774 macrophages in a dose-dependent manner. Under a concentration of 100 ng/ml, gliotoxin had no effect on A549 cell viability but attenuated ROS production in a dose-dependent manner. Gliotoxin significantly stimulated the phospholipase D activity in the A549 cells at a concentration of 50 ng/ml. This stimulation was blocked by the pretreatment of host cells with PLD1- but not PLD2-specific inhibitor. Morphological cell changes induced by gliotoxin were observed in the A549 cells accompanying with obvious actin cytoskeleton rearrangement and a moderate alteration of phospholipase D distribution. Our data indicated that gliotoxin might be responsible for modulating the A. fumigatus internalization into epithelial cells through phospholipase D1 activation and actin cytoskeleton rearrangement.

  1. Picfeltarraenin IA inhibits lipopolysaccharide-induced inflammatory cytokine production by the nuclear factor-κB pathway in human pulmonary epithelial A549 cells.

    PubMed

    Shi, Rong; Wang, Qing; Ouyang, Yang; Wang, Qian; Xiong, Xudong

    2016-02-01

    The present study aimed to investigate the effect of picfeltarraenin IA (IA) on respiratory inflammation by analyzing its effect on interleukin (IL)-8 and prostaglandin E2 (PGE2) production. The expression of cyclooxygenase 2 (COX2) in human pulmonary adenocarcinoma epithelial A549 cells in culture was also examined. Human pulmonary epithelial A549 cells and the human monocytic leukemia THP-1 cell line were used in the current study. Cell viability was measured using a methylthiazol tetrazolium assay. The production of IL-8 and PGE2 was investigated using an enzyme-linked immunosorbent assay. The expression of COX2 and nuclear factor-κB (NF-κB)-p65 was examined using western blot analysis. Treatment with lipopolysaccharide (LPS; 10 µg/ml) resulted in the increased production of IL-8 and PGE2, and the increased expression of COX2 in the A549 cells. Furthermore, IA (0.1-10 µmol/l) significantly inhibited PGE2 production and COX2 expression in cells with LPS-induced IL-8, in a concentration-dependent manner. The results suggested that IA downregulates LPS-induced COX2 expression, and inhibits IL-8 and PGE2 production in pulmonary epithelial cells. Additionally, IA was observed to suppress the expression of COX2 in THP-1 cells, and also to regulate the expression of COX2 via the NF-κB pathway in the A549 cells, but not in the THP-1 cells. These results indicate that IA regulates LPS-induced cytokine release in A549 cells via the NF-κB pathway.

  2. In vitro antiproliferative effect of trastuzumab (Herceptin(®)) combined with cetuximab (Erbitux(®)) in a model of human non-small cell lung cancer expressing EGFR and HER2.

    PubMed

    Privitera, G; Luca, T; Musso, N; Vancheri, C; Crimi, N; Barresi, V; Condorelli, D; Castorina, S

    2016-05-01

    Lung cancer is the leading cause of cancer death. For this reason, new therapies are needed for the treatment of this devastating disease. In this study, we investigated the effects of combining cetuximab and the trastuzumab on the growth of a model of human non-small cell lung carcinoma cell line (A549). The results were compared with those obtained from a human lung squamous carcinoma cell line (NCI-H226). Both cell lines were treated with cetuximab and trastuzumab, alone or in combination, at various concentrations, for 24, 48 and 72 h. Cell proliferation was measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. EGFR and HER-2 mRNA expression was detected by reverse transcription polymerase chain reaction, and the gene amplification status of receptors was evaluated by fluorescence in situ hybridisation. The colorimetric proliferation assay showed that trastuzumab combined with cetuximab significantly inhibited A549 cells at a dose of 40 μg/ml after 72 h of treatment (p < 0.05), while no time-dose dependent inhibition was observed in NCI-H226 cells. The combined treatment influenced both levels of EGFR and HER-2 mRNA in A549 cells and only EGFR mRNA levels in NCI-H226 cells. Fluorescence in situ hybridisation showed that both cell lines were aneuploid for the two genes with equally increased EGFR and CEN7 signals, as well as HER-2 and CEN17 signals, indicating a condition of polysomy without amplification. The preliminary results of this study encourage further investigations to elucidate the downstream events involved and to understand how these mechanisms influence non-small cell lung cancers growth.

  3. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT

    NASA Astrophysics Data System (ADS)

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-07-01

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway.

  4. Bufalin inhibits TGF-β-induced epithelial-to-mesenchymal transition and migration in human lung cancer A549 cells by downregulating TGF-β receptors

    PubMed Central

    ZHAO, LEI; LIU, SHIZHOU; CHE, XIAOFANG; HOU, KEZUO; MA, YANJU; LI, CE; WEN, TI; FAN, YIBO; HU, XUEJUN; LIU, YUNPENG; QU, XIUJUAN

    2015-01-01

    The epithelial-to-mesenchymal transition (EMT) is a well-known prerequisite for cancer cells to acquire the migratory and invasive capacity, and to subsequently metastasize. Bufalin is one of the major active components of the traditional Chinese medicine Chan Su, and accumulating evidence has shown its anticancer effect in multipe types of cancer. However, the role of bufalin in transforming growth factor-β (TGF-β)-induced EMT and migration remains unclear. In the present study, the effect of bufalin on TGF-β-induced EMT and migration was investigated in human lung cancer A549 cells. TGF-β induced EMT in A549 cells and increased their migratory ability, which were markedly suppressed by bufalin. Additionally, TGF-β-induced upregulation of Twist2 and zinc finger E-box binding homeobox 2 (ZEB2), as well as the phosphorylation of Smad2 and Smad3 were also inhibited by bufalin. However, the Smad-independent signaling pathways were not affected. Further analysis showed that the TGF-β receptor I (TβRI) and TGF-β receptor II (TβRII) were downregulated in the presence of bufalin. Pretreatment with SB431542, a potent inhibitor of the phosphorylation of TβRI, significantly attenuated TGF-β-induced EMT, mimicking the effect of bufalin on A549 cells. Taken together, these results suggest that bufalin suppresses TGF-β-induced EMT and migration by downregulating TβRI and TβRII in A549 cells. PMID:26133118

  5. Alpha-tomatine inactivates PI3K/Akt and ERK signaling pathways in human lung adenocarcinoma A549 cells: effect on metastasis.

    PubMed

    Shih, Yuan-Wei; Shieh, Jiunn-Min; Wu, Pei-Fen; Lee, Yi-Chieh; Chen, Yi-Zhi; Chiang, Tai-An

    2009-08-01

    This study first investigates the anti-metastatic effect of alpha-tomatine in the human lung adenocarcinoma cell line: A549. In this study, we first noted alpha-tomatine inhibited A549 cells invasion and migration by wound-healing assay and Boyden chamber assay. The data also showed alpha-tomatine could inhibit phosphorylation of Akt and extracellular signal-regulated kinase 1 and 2 (ERK1/2), which is involved in the up-regulating matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) or urokinase-type plasminogen activator (u-PA), whereas it did not affect phosphorylation of c-Jun N-terminal kinase (JNK) and p38. Next, alpha-tomatine significantly decreased the nuclear levels of nuclear factor kappa B (NF-kappaB), c-Fos, and c-Jun. Also, treating A549 cells with alpha-tomatine also leads to a dose-dependent inhibition on the binding abilities of NF-kappaB and activator protein-1 (AP-1). Further, the treatment of inhibitors specific for PI3K (Wortmannin) or ERK (U0126) to A549 cells could cause reduced activities of MMP-2, MMP-9, and u-PA. These results showed alpha-tomatine could inhibit the metastatic ability of A549 cells by reducing MMP-2, MMP-9, and u-PA activities through suppressing phosphoinositide 3-kinase/Akt (PI3K/Akt) or ERK1/2 signaling pathway and inhibition NF-kappaB or AP-1 binding activities. These findings proved alpha-tomatine might be an anti-metastatic agent against human lung adenocarcinoma.

  6. Winter fine particulate matter from Milan induces morphological and functional alterations in human pulmonary epithelial cells (A549).

    PubMed

    Gualtieri, Maurizio; Mantecca, Paride; Corvaja, Viviana; Longhin, Eleonora; Perrone, Maria Grazia; Bolzacchini, Ezio; Camatini, Marina

    2009-07-10

    Samples of PM(2.5) were gravimetrically collected during the winter 2005/2006 in the urban area of Milan (North Italy). Samples were chemically characterized and the particles were detached from filters to determine their cytotoxic effects on the A549 cell line. Based on the potential toxicological relevance of its components, Milan winter PM(2.5) contained high concentrations of pro-oxidant transition metals and PAHs, while re-suspended particles showed a relatively high frequency of dimensional classes ranging from 40 nm to 300 nm. A549 cells exposed to particle suspensions showed a concentration-dependent decrease in viability, starting from 10 microg/cm(2). Phagocytosis of particles by A549 cells and particle aggregates were morphologically characterized and seemed to depend on both particle concentration and exposure time, with the majority of particles being engulfed in membrane-bound vacuoles after 24h of exposure. The ability of ultrafine particles to penetrate and spread throughout the cells was also verified. Cell membrane lysis and mitochondrial ultrastructural disruption appeared to be the main modifications induced by PM(2.5) on A549 cells. Concomitantly to the adverse effects observed in terms of cell mortality and ultrastructural lesions, a significant intracellular production of reactive oxygen species (ROS) was observed, suggesting that the cytotoxicity, exerted by the winter PM(2.5) in Milan, derived also from its oxidative potential, probably associated with particle-adsorbed metals and PAHs.

  7. Overexpression of polo-like kinase 1 and its clinical significance in human non-small cell lung cancer.

    PubMed

    Wang, Zhao-Xia; Xue, Dong; Liu, Zhi-Li; Lu, Bin-Bin; Bian, Hai-Bo; Pan, Xuan; Yin, Yong-Mei

    2012-01-01

    Polo-like kinase 1 is a serine/threonine kinase which plays an essential role in mitosis and malignant transformation. The aim of this study was to investigate the prognostic significance of polo-like kinase 1 expression and determine its possibility as a therapeutic target in non-small cell lung cancer. Semi-quantitative RT-PCR assay was performed to detect polo-like kinase 1 mRNA expression in non-small cell lung cancer cells or tissues. Immunohistochemistry was performed to detect polo-like kinase 1 protein expression in 100 non-small cell lung cancer tissue samples, and the associations of polo-like kinase 1 expression with clinicopathological factors or prognosis of non-small cell lung cancer patients were evaluated. RNA interference was employed to inhibit endogenous polo-like kinase 1 expression and analyzed the effects of polo-like kinase 1 inhibition on the malignant phenotypes of non-small cell lung cancer cells including growth, apoptosis, radio- or chemoresistance. Also, the possible molecular mechanisms were also investigated. The levels of polo-like kinase 1 mRNA expression in non-small cell lung cancer cell lines or tissues were significantly higher than those in normal human bronchial epithelial cell line or corresponding non-tumor tissues. High polo-like kinase 1 expression was significantly correlated with advanced clinical stage, higher tumor classification and lymph node metastasis of non-small cell lung cancer patients (P=0.001, 0.004 and 0.001, respectively). Meanwhile, high polo-like kinase 1 protein expression was also an independent prognostic molecular marker for non-small cell lung cancer patients (hazard ratio: 2.113; 95% confidence interval: 1.326-3.557; P=0.017). Polo-like kinase 1 inhibition could significantly inhibit in vitro and in vivo proliferation, induce cell arrest of G(2)/M phase and apoptosis enhancement in non-small cell lung cancer cells, which might be activation of the p53 pathway and the Cdc25C/cdc2/cyclin B1 feedback

  8. Anti-Inflammatory Effects of Ginsenoside Rg3 via NF-κB Pathway in A549 Cells and Human Asthmatic Lung Tissue

    PubMed Central

    Lee, In-Seung; Uh, InJoon; Kim, Ki-Suk; Kim, Kang-Hoon; Park, Jiyoung; Kim, Yumi; Jung, Ji-Hoon; Jung, Hee-Jae

    2016-01-01

    Objective. There is limited information of the anti-inflammatory effects of Rg3 on inflamed lung cells and tissues. Therefore, we confirmed the anti-inflammatory mechanism of ginsenoside Rg3 in inflamed human airway epithelial cells (A549) and tissues whether Rg3 regulates nuclear factor kappa B (NF-κB) activity. Methods. To induce the inflammation, IL-1β (10 ng/ml) was treated to A549 cells for 4 h. The effects of Rg3 on NF-κB activity and COX-2 expression were evaluated by western blotting analysis in both IL-1β-induced inflamed A549 cell and human asthmatic airway epithelial tissues. Using multiplex cytokines assay, the secretion levels of NF-κB-mediated cytokines/chemokines were measured. Result. Rg3 showed the significant inhibition of NF-κB activity thereby reduced COX-2 expression was determined in both IL-1β-induced inflamed A549 cell and human asthmatic airway epithelial tissues. In addition, among NF-κB-mediated cytokines, the secretion levels of IL-4, TNF-α, and eotaxin were significantly decreased by Rg3 in asthma tissues. Even though there was no significant difference, IL-6, IL-9, and IL-13 secretion showed a lower tendency compared to saline-treated human asthmatic airway epithelial tissues. Conclusion. The results from this study demonstrate the potential of Rg3 as an anti-inflammatory agent through regulating NF-κB activity and reducing the secretion of NF-κB-mediated cytokines/chemokines. PMID:28116321

  9. Apoptotic action of peroxisome proliferator-activated receptor-gamma activation in human non small-cell lung cancer is mediated via proline oxidase-induced reactive oxygen species formation.

    PubMed

    Kim, Ki Young; Ahn, Jin Hee; Cheon, Hyae Gyeong

    2007-09-01

    Peroxisome proliferator-activated receptor (PPAR)-gamma ligands have been shown to inhibit human lung cancers by inducing apoptosis and differentiation. In the present study, we elucidated the apoptotic mechanism of PPARgamma activation in human lung cancers by using a novel PPARgamma agonist, 1-(trans-methylimino-N-oxy)-6-(2-morpholinoethoxy)-3-phenyl-(1H-indene-2-carboxylic acid ethyl ester (KR-62980), and rosiglitazone. PPARgamma activation selectively inhibited cell viability of non-small-cell lung cancer with little effect on small-cell lung cancer and normal lung cells. The cell death induced by PPARgamma activation presented apoptotic features of oligonucleosomal DNA fragmentation in A549 human non-small-cell lung cancer cell line. Reactive oxygen species (ROS) production was accompanied by increased expression of proline oxidase (POX), a redox enzyme expressed in mitochondria, upon incubation with the agonists. POX RNA interference treatment blocked PPARgamma-induced ROS formation and cytotoxicity, suggesting that POX plays a functional role in apoptosis through ROS formation. The apoptotic effects by the agonists were antagonized by bisphenol A diglycidyl ether, a PPARgamma antagonist, and by knockdown of PPARgamma expression, indicating the involvement of PPARgamma in these actions. The results of the present study suggest that PPARgamma activation induces apoptotic cell death in non-small-cell lung carcinoma mainly through ROS formation via POX induction.

  10. DLC-1 operates as a tumor suppressor gene in human non-small cell lung carcinomas.

    PubMed

    Yuan, Bao-Zhu; Jefferson, Amy M; Baldwin, Kimberly T; Thorgeirsson, Snorri S; Popescu, Nicholas C; Reynolds, Steven H

    2004-02-19

    The deleted in liver cancer (DLC-1) gene at chromosome 8p21-22 is altered mainly by genomic deletion or aberrant promoter methylation in a large number of human cancers such as breast, liver, colon and prostate and is known to have an inhibitory effect on breast and liver tumor cell growth. Given the high frequency of deletion involving region 8p21-22 in human non-small cell lung carcinoma (NSCLC), we examined alterations of DLC-1 in a series of primary tumors and tumor cell lines and tested effects of DLC-1 on tumor cell growth. A significant decrease or absence of the DLC-1 mRNA expression was found in 95% of primary NSCLC (20/21) and 58% of NSCLC cell lines (11/19). Transcriptional silencing of DLC-1 was primarily associated with aberrant DNA methylation, rather than genomic deletion as 5-aza-2'-deoxycytidine induced reactivation of DLC-1 expression in 82% (9/11) NSCLC cell lines showing downregulated DLC-1. It was further evidenced by an aberrant DLC-1 promoter methylation pattern, which was detected by Southern blotting in 73% (8/11) of NSCLC cell lines with downregulation of the gene. The transfer of DLC-1 into three DLC-1 negative cell lines caused a significant inhibition in cell proliferation and/or a decrease in colony formation. Furthermore, stable transfer of DLC-1 abolished tumorigenicity in nude mice of two cell lines, suggesting that DLC-1 plays a role in NSCLC by acting as a bona fide new tumor suppressor gene.

  11. Human microRNA-24 modulates highly pathogenic avian-origin H5N1 influenza A virus infection in A549 cells by targeting secretory pathway furin.

    PubMed

    Loveday, Emma-Kate; Diederich, Sandra; Pasick, John; Jean, François

    2015-01-01

    A common critical cellular event that many human enveloped viruses share is the requirement for proteolytic cleavage of the viral glycoprotein by furin in the host secretory pathway. For example, the furin-dependent proteolytic activation of highly pathogenic (HP) influenza A (infA) H5 and H7 haemagglutinin precursor (HA0) subtypes is critical for yielding fusion-competent infectious virions. In this study, we hypothesized that viral hijacking of the furin pathway by HP infA viruses to permit cleavage of HA0 could represent a novel molecular mechanism controlling the dynamic production of fusion-competent infectious virus particles during the viral life cycle. We explored the biological role of a newly identified furin-directed human microRNA, miR-24, in this process as a potential post-transcriptional regulator of the furin-mediated activation of HA0 and production of fusion-competent virions in the host secretory pathway. We report that miR-24 and furin are differentially expressed in human A549 cells infected with HP avian-origin infA H5N1. Using miR-24 mimics, we demonstrated a robust decrease in both furin mRNA levels and intracellular furin activity in A549 cells. Importantly, pretreatment of A549 cells with miR-24 mimicked these results: a robust decrease of H5N1 infectious virions and a complete block of H5N1 virus spread that was not observed in A549 cells infected with low-pathogenicity swine-origin infA H1N1 virus. Our results suggest that viral-specific downregulation of furin-directed microRNAs such as miR-24 during the life cycle of HP infA viruses may represent a novel regulatory mechanism that governs furin-mediated proteolytic activation of HA0 glycoproteins and production of infectious virions.

  12. Monitoring of TGF-β 1-Induced Human Lung Adenocarcinoma A549 Cells Epithelial-Mesenchymal Transformation Process by Measuring Cell Adhesion Force with a Microfluidic Device.

    PubMed

    Li, Yuan; Gao, AnXiu; Yu, Ling

    2016-01-01

    The epithelial-mesenchymal transition (EMT) is a process in which epithelial cells lose their cell polarity and cell-cell adhesion, and gain migratory and invasive properties. It is believed that EMT is associated with initiation and completion of the invasion-metastasis cascade. In this study, an economic approach was developed to fabricate a microfluidic device with less instrumentation requirement for the investigation of EMT by quantifying cell adhesion force. Fluid shear force was precisely controlled by a homemade microfluidic perfusion apparatus and interface. The adhesion capability of the human lung adenocarcinoma cell line A549 on different types of extracellular matrix protein was studied. In addition, effects of transforming growth factor-β (TGF-β) on EMT in A549 cells were investigated by characterizing the adhesion force changes and on-chip fluorescent staining. The results demonstrate that the microfluidic device is a potential tool to characterize the epithelial-mesenchymal transition process by measuring cell adhesion force.

  13. Erucin, a new promising cancer chemopreventive agent from rocket salads, shows anti-proliferative activity on human lung carcinoma A549 cells.

    PubMed

    Melchini, A; Costa, C; Traka, M; Miceli, N; Mithen, R; De Pasquale, R; Trovato, A

    2009-07-01

    Erucin (ER) is a dietary isothiocyanate present in cruciferous vegetables, such as rocket salads (Erucasativa Mill., Diplotaxis sp.), that has been recently considered a promising cancer chemopreventive phytochemical. Biological activity of ER was investigated on human lung adenocarcinoma A549 cells, analyzing its effects on molecular pathways involved in apoptosis and cell cycle arrest, such as PARP-1 cleavage, p53 and p21 protein expression. Our results show that ER affects the A549 cell proliferation, enhancing significantly p53 and p21 protein expression in a dose-dependent manner (p<0.001). PARP-1 cleavage occurs only after exposure to high concentrations of ER (50 microM), in accordance to previous studies showing similar bioactivity of other isothiocyanates (ITCs). Our study reports for the first time that the induction of p53, p21 and PARP-1 cleavage may participate in the anti-proliferative activity of ER in human lung adenocarcinoma A549 cells. Comparison of data with those obtained with the isothiocyanate sulforaphane (SF), structurally related to ER, underlines the strong relationship between structural analogy of ITCs and their biological activity. The ability of dietary compounds to modulate molecular mechanisms that affect cancer cell proliferation is certainly a key point of the cancer prevention potential by functional foods.

  14. Effect of silencing SATB1 on proliferation, invasion and apoptosis of A549 human lung adenocarcinoma cells

    PubMed Central

    Huang, Bo; Zhou, Hongli; Wang, Siwang; Lang, Xian Ping; Wang, Xiaodong

    2016-01-01

    The present study aimed to explore the clinical characteristics of special adenine-thymine-rich sequence-binding protein 1 (SATB1) in lung adenocarcinoma and its role in the proliferation, invasion, migration and apoptosis of the lung adenocarcinoma cell line A549. The expression of SATB1 was first studied in tumor tissues of lung adenocarcinoma and adjacent non-tumor tissues. The siRNA green fluorescent protein expression vector of SATB1 was constructed and transfected into the lung adenocarcinoma cell line A549, then a fluorescence microscope was used to study the transfection efficiency. Western blot analysis was adopted to measure the silencing efficiency. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Transwell and scratch assays were used to study cell proliferation, invasion and migration activity, and the apoptosis rate was tested by flow cytometry. SATB1 expression was low in the adjacent non-tumor tissues but high in lung adenocarcinoma tissues, and it was reversely proportional to the differentiation degree. Following transfection with SATB1-siRNA, the expression of SATB1 in A549 cells was blocked (P<0.01). In addition, the proliferation, invasion and migration abilities of cells decreased significantly while the apoptosis rate increased significantly (P<0.01). In conclusion SATB1 is closely associated with the pathogenesis and development of lung adenocarcinoma. PMID:27895736

  15. Preferential expansion of pro-inflammatory Tregs in human non-small cell lung cancer

    PubMed Central

    Phillips, Joseph D.; Blatner, Nichole R.; Haghi, Leila; DeCamp, Malcolm M.; Meyerson, Shari L.; Heiferman, Michael J.; Heiferman, Jeffrey R.; Gounari, Fotini; Bentrem, David J.; Khazaie, Khashayarsha

    2016-01-01

    Objectives Lung cancer is the leading cause of cancer-related death in the USA. Regulatory T cells (Tregs) normally function to temper immune responses and decrease inflammation. Previous research has demonstrated different subsets of Tregs with contrasting anti- or pro-inflammatory properties. This study aimed to determine Treg subset distributions and characteristics present in non-small cell lung cancer (NSCLC) patients. Methods Peripheral blood was collected from healthy controls (HC) and NSCLC patients preceding surgical resection, and mononuclear cells were isolated, stained, and analyzed by flow cytometry. Tregs were defined by expression of CD4 and CD25 and classified into CD45RA+Foxp3int (naïve, Fr. I) or CD45RA−Foxp3hi (activated Fr. II). Activated conventional T cells were CD4+CD45RA−Foxp3int (Fr. III). Results Samples from 23 HC and 26 NSCLC patients were collected. Tregs isolated from patients with NSCLC were found to have enhanced suppressive function on naive T cells. Cancer patients had significantly increased frequencies of activated Tregs (fraction II: FrII), 17.5 versus 3.2 % (P < 0.001). FrII Tregs demonstrated increased RORγt and IL17 expression and decreased IL10 expression compared to Tregs from HC, indicating pro-inflammatory characteristics. Conclusions This study demonstrates that a novel subset of Tregs with pro-inflammatory characteristics preferentially expand in NSCLC patients. This Treg subset appears identical to previously reported pro-inflammatory Tregs in human colon cancer patients and in mouse models of polyposis. We expect the pro-inflammatory Tregs in lung cancer to contribute to the immune pathogenesis of disease and propose that targeting this Treg subset may have protective benefits in NSCLC. PMID:26047578

  16. Identification of epigallocatechin-3-gallate in green tea polyphenols as a potent inducer of p53-dependent apoptosis in the human lung cancer cell line A549.

    PubMed

    Yamauchi, Rieko; Sasaki, Kaori; Yoshida, Kenichi

    2009-08-01

    The effects of green tea polyphenols on cultured cancer cells have been well characterized, especially the effects of epigallocatechin-3-gallate (EGCg), since EGCg suppresses oncogenic signaling pathways and induces cell cycle arrest or apoptosis by regulating cell cycle-associated proteins. In the present study, we attempted to identify signaling pathways or target molecules regulated by each of or a mixture of green tea polyphenols, including epicatechin (EC), epicatechin-3-gallate (ECg), epigallocatechin (EGC), and EGCg, in the human lung cancer cell line A549. ECg, EGC, and a catechin mixture, in addition to EGCg, significantly decreased cell viability. In contrast, caspase 3/7 activity, an apoptosis indicator, was specifically induced by EGCg. By conducting a series of luciferase-based reporter assays, we revealed that the catechin mixture only up-regulates the p53 reporter. EGCg was a more potent inducer of p53-dependent transcription, and this induction was further supported by the induced level of p53 protein. RNA interference (RNAi)-mediated p53 knockdown completely abolished EGCg-induced apoptosis. Finally, a proteome and western blot analysis using approximately 70 different antibodies failed to detect up-regulated proteins in catechin mixture-treated A549 cells. Taken together, these results indicate that EGCg, among several green tea polyphenols, is a potent apoptosis inducer that functions exclusively through a p53-dependent pathway in A549 cells.

  17. Comparison of oxycodone and morphine on the proliferation, apoptosis and expression of related molecules in the A549 human lung adenocarcinoma cell line

    PubMed Central

    Tian, Mi; Jin, Li; Li, Renqi; Zhu, Sihai; Ji, Muhuo; Li, Weiyan

    2016-01-01

    The present study aimed to compare the effects of oxycodone and morphine hydrochloride on the proliferation, apoptosis and migration of A549 lung cancer cells. A549 human lung cancer cells were cultured in vitro and treated with oxycodone or morphine at various concentrations (10, 20 and 40 µg/ml). Cell migration was determined using a wound healing assay, whereas apoptosis was detected using flow cytometry. Reverse transcription quantitative-polymerase chain reaction was performed in order to assess the apoptosis-related gene expression levels, including p53, B-cell lymphoma (Bcl)-2 and Bcl-2-associated X protein (Bax). The levels of vascular endothelial growth factor (VEGF) and urokinase-type plasminogen activator (uPA) were detected using enzyme-linked immunosorbent assays. The expression levels of intercellular cell adhesion molecule (ICAM)-1 were determined by immunofluorescence. In the present study, oxycodone and morphine induced apoptosis in A549 lung cancer cells with similar potency; however, >20 µg/ml oxycodone was more effective at inhibiting cell proliferation (P<0.05) and migration (P<0.05), as compared with morphine at the same concentration. Oxycodone induced a dose-dependent increase in the expression levels of p53 and Bax apoptosis-related genes, whereas it decreased the gene expression levels of Bcl-2. Furthermore, oxycodone decreased, whereas morphine increased, the expression levels of ICAM-1 in a concentration-dependent manner. In addition, at 40 µg/ml, the expression levels of VEGF and uPA in the morphine group were significantly higher than those demonstrated in the oxycodone group (P<0.05). In conclusion, oxycodone was more effective in inhibiting the proliferation and migration of A549 lung cancer cells, as compared with morphine. PMID:27446244

  18. Effect of Recombinant Human Endostatin on Radiosensitivity in Patients With Non-Small-Cell Lung Cancer

    SciTech Connect

    Jiang Xiaodong; Dai Peng; Wu Jin; Song Daan; Yu Jinming

    2012-07-15

    Purpose: To observe the effects of recombinant human endostatin (RHES) on the radiosensitivity of non-small cell lung cancer (NSCLC). Methods and Materials: First, 10 hypoxia-positive cases of pathology-diagnosed NSCLC selected from 15 patients were used to determine the normalization window, a period during which RHES improves NSCLC hypoxia. Second, 50 hypoxia-positive cases of pathology-diagnosed NSCLC (Stages I-III) were randomly divided into a RHES plus radiotherapy group (25 cases) and a radiotherapy-alone group (25 cases). Intensity = modulated radiotherapy with a total dose of 60 Gy in 30 fractions for 6 weeks was adopted in the two groups. The target area included primary foci and metastatic lymph nodes. In the RHES plus radiotherapy group, RHES (15 mg/day) was intravenously given during the normalization window. Results: After RHES administration, the tumor-to=normal tissue radioactivity ratio and capillary permeability surface were first decreased and then increased, with their lowest points on the fifth day compared with the first day (all p < 0.01). Blood flow was first increased and then decreased, with the highest point on the fifth day, compared with the first and tenth day (all p < 0.01). In the RHES plus radiotherapy group and the radiotherapy-alone group, the total effective rates (complete response plus partial response) were 80% and 44% (p = 0.009), respectively. The median survival times were 21.1 {+-} 0.97 months and 16.5 {+-} 0.95 months (p = 0.004), respectively. The 1-year and 2-year local control rates were 78.9 {+-} 8.4% and 68.1 {+-} 7.8% (p = 0.027) and 63.6 {+-} 7.2% and 43.4 {+-} 5.7% (p = 0.022), respectively. The 1-year and 2-year overall survival rates were 83.3 {+-} 7.2% and 76.6 {+-} 9.3% (p = 0.247) and 46.3 {+-} 2.4% and 37.6 {+-} 9.1% (p = 0.218), respectively. Conclusion: The RHES normalization window is within about 1 week after administration. RHES combined with radiotherapy within the normalization window has better short

  19. Alternative splicing variants of carbonic anhydrase IX in human non-small cell lung cancer.

    PubMed

    Malentacchi, Francesca; Simi, Lisa; Nannelli, Caterina; Andreani, Matteo; Janni, Alberto; Pastorekova, Silvia; Orlando, Claudio

    2009-06-01

    In human cancers, carbonic anhydrase IX (CAIX) contributes to maintain intracellular and extracellular pH under hypoxic conditions, but also influences regulation of cell proliferation and tumor progression. CaIX was previously indicated as an independent prognostic marker in non-small cell lung carcinoma (NSCLC). Very recently a CAIX alternative splicing isoform, generating a transcript lacking of exons 8-9, was detected in cancer cells independently from the levels of hypoxia. This alternative splicing (AS) generates a truncated protein lacking the transmembrane region, the intracellular tail and the C-terminal of the catalytic domain and competes with the full-length (FL) isoform in the regulation of the extracellular pH, mainly in a mild hypoxic status. In the present study we measured the mRNA expression of FL and AS CAIX isoforms in 101 NSCLC and in paired not affected tissues. The two isoforms were coexpressed in all NSCLC and normal tissues but while AS mRNA was prevalent in normal tissues (66+/-3%), the FL isoform was higher in NSCLC (58+/-2%, p=0.001). FL mRNA, but not AS, was statistically increased in NSCLC (p=0.01) and showed a statistical association with lymphnode involvement (p=0.009) and tumor stage (p=0.04). Global survival analysis of cancer/related death showed that high levels of FL mRNA were predictive of unfavorable outcome (p<0.0001) and shorter disease-free survival (p<0.0001). Multivariate analysis indicated that FL is an independent prognostic factor for overall survival and higher levels of mRNA in NSCLC sensibly increase hazard ratio ( approximately sixfold). In conclusion, our results seems to indicate that, at least in NSCLC, FL CAIX is the most accurate surrogate of hypoxic stress and represents the only variant with a prognostic role. These data indicate the importance of a separate measurement of the two isoforms in cancer and the need of an accurate re-evaluation of most studies on the clinical role of CAIX in cancer diagnosis.

  20. Inhibitory effect of radiotherapy combined with weekly recombinant human endostatin on the human pulmonary adenocarcinoma A549 xenografts in nude mice.

    PubMed

    Jiang, Xiao-dong; Dai, Peng; Wu, Jin; Song, Da-an; Yu, Jin-ming

    2011-05-01

    The aim of this study was to investigate the inhibitory effect of radiotherapy combined with weekly recombinant human endostatin (RHES) on the human pulmonary adenocarcinoma A549 xenografts in nude mice. The 40 A549 xenograft nude mice models were randomly divided into 4 groups (each group with 10 nude mice). Single radiotherapy group (group 1) was given a single external irradiation (6MV-X ray, 10 Gy) and peritumoral subcutaneous injection of 0.2 ml normal saline every day for 7 days. Single RHES group (group 2) was given peritumoral subcutaneous injection of 0.2 ml RHES (0.75 mg/ml) for 7 days. Combination therapy group (group 3) was given radiotherapy as the same as group 1 and RHES as the same as group 2. Control group was given normal saline as the same as group 1. The tumor volume was smaller in group 3 than in control group from the 8th day after treatment (P<0.05) and tumor regression occurred from the second week after treatment in group 3. On the 15th day after treatment, the inhibitory rates of tumor volume were 69.65%, 92.64% and 116.4% in groups 2, 1 and 3, respectively; MVD number was lower in group 3 than in group 1 (P<0.05); there was no statistical significance in VEGF expression between group 2 and control group as well as between group 3 and group 1 (P>0.05). Apoptosis was marked in group 3. Radiotherapy combined with weekly RHES can significantly inhibit tumor growth and earlier induce tumor regression, which may be related to the improvement of tumor hypoxia and the inhibition of radiation-induced tumor angiogenesis. Short-term application (1 week) of RHES is beneficial to clinical practice.

  1. Streptococcus pneumoniae ClpL Modulates Adherence to A549 Human Lung Cells through Rap1/Rac1 Activation

    PubMed Central

    Nguyen, Cuong Thach; Le, Nhat-Tu; Tran, Thao Dang-Hien; Kim, Eun-Hye; Park, Sang-Sang; Luong, Truc Thanh; Chung, Kyung-Tae; Pyo, Suhkneung

    2014-01-01

    Caseinolytic protease L (ClpL) is a member of the HSP100/Clp chaperone family, which is found mainly in Gram-positive bacteria. ClpL is highly expressed during infection for refolding of stress-induced denatured proteins, some of which are important for adherence. However, the role of ClpL in modulating pneumococcal virulence is poorly understood. Here, we show that ClpL impairs pneumococcal adherence to A549 lung cells by inducing and activating Rap1 and Rac1, thus increasing phosphorylation of cofilin (inactive form). Moreover, infection with a clpL mutant (ΔclpL) causes a greater degree of filopodium formation than D39 wild-type (WT) infection. Inhibition of Rap1 and Rac1 impairs filopodium formation and pneumococcal adherence. Therefore, ClpL can reduce pneumococcal adherence to A549 cells, likely via modulation of Rap1- and Rac1-mediated filopodium formation. These results demonstrate a potential role for ClpL in pneumococcal resistance to host cell adherence during infection. This study provides insight into further understanding the interactions between hosts and pathogens. PMID:24980975

  2. DUAL INHIBITION OF PI3K/AKT AND mTOR SIGNALING IN HUMAN NON-SMALL CELL LUNG CANCER CELLS BY A DIETARY FLAVONOID FISETIN

    PubMed Central

    Khan, Naghma; Afaq, Farrukh; Khusro, Fatima H.; Adhami, Vaqar Mustafa; Suh, Yewseok; Mukhtar, Hasan

    2011-01-01

    Lung cancer is one of the most commonly occurring malignancies. It has been reported that mTOR is phosphorylated in lung cancer and its activation was more frequent in tumors with over-expression of PI3K/Akt. Therefore, dual inhibitors of PI3K/Akt and mTOR signaling could be valuable agents for treating lung cancer. In the present study, we show that fisetin, a dietary tetrahydroxyflavone inhibits cell-growth with the concomitant suppression of PI3K/Akt and mTOR signaling in human non-small cell lung cancer (NSCLC) cells. Using autodock 4, we found that fisetin physically interacts with the mTOR complex at two sites. Fisetin treatment was also found to reduce the formation of A549 cell colonies in a dose-dependent manner. Treatment of cells with fisetin caused decrease in the protein expression of PI3K (p85 and p110), inhibition of phosphorylation of Akt, mTOR, p70S6K1, eIF-4E and 4E-BP1. Fisetin-treated cells also exhibited dose-dependent inhibition of the constituents of mTOR signaling complex like Rictor, Raptor, GβL and PRAS40. There was increase in the phosphorylation of AMPKα and decrease in the phosphorylation of TSC2 on treatment of cells with fisetin. We also found that treatment of cells with mTOR inhibitor rapamycin and mTOR-siRNA caused decrease in phosphorylation of mTOR and its target proteins which were further downregulated on treatment with fisetin, suggesting that these effects are mediated in part, through mTOR signaling. Our results show that fisetin suppressed PI3K/Akt and mTOR signaling in NSCLC cells and thus, could be developed as a chemotherapeutic agent against human lung cancer. PMID:21618507

  3. Determination of in vitro free radical scavenging and antiproliferative effect of Pennisetum alopecuroides on cultured A549 human lung cancer cells

    PubMed Central

    Mathew, Githa Elizabeth; Mathew, Bijo; Gokul, S.; Krishna, Rahul; Farisa, M. P.

    2015-01-01

    Context: Pennisetum alopecuroides (Poaceae) is a grass predominantly distributed in tropics and sub tropics. It is used as a cattle feed in many regions. Aim: The objective of the present study was to investigate the in vitro free radical scavenging and antiproliferative activity of ethanol extract of P. alopecuroides (EEPA) on cultured A549 human lung cancer cell lines. Settings and Design: The anti-oxidant activity of ethanol extract was evaluated at dose level 12.5, 25, 50, 100, and 200 μg/ml. The in vitro antiproliferative activity was measured at doses of 10, 50, and 100 μg/ml. Materials and Methods: The free radical scavenging activity of the EEPA was determined by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) method and in vitro antiproliferative activity on A549 human lung cancer cells was conducted by using MTT assay method. Results: The phytochemical screening revealed that the P. alopecuroides contained alkaloids, tannins, saponins, and flavonoids as the major secondary metabolites. The IC50 value of DPPH scavenging activity was found to be 44.41 μg/ml and 31.02 μg/ml  for a mixture of EEPA and standard ascorbic acid, respectively. In vitro MTT assay showed that EEPA had anti-proliferation effects on A549 cells in a dose dependent manner. Conclusions: This is the 1st time a pharmacological exploration of P. alopecuroides grasses has been conducted. We have shown that P. alopecuroides exhibits good free radical scavenging and strong in vitro cytotoxic activities against human lung cancer cell lines. PMID:26120234

  4. Effect of Allium sativum (garlic) diallyl disulfide (DADS) on human non-small cell lung carcinoma H1299 cells.

    PubMed

    Hui, C; Jun, W; Ya, L N; Ming, X

    2008-04-01

    This study was undertaken to elucidate the effect of diallyl disulfide from Allium sativum, an oil-soluble organosulfur compound found in garlic, in suppressing human non-small cell lung carcinoma H1299 cells. A potent increase in apoptotic cells has accompanied 1) a decrease in cell viability, 2) an increase of the fraction of G2/M-phase cells by up to 48.80 %, and 3) a transient increase of the phospho-p42/44 (phosphorylated p42/44 MAPK) in a time- and concentration-dependent manner. These results indicated that diallyl disulfide could induce apoptosis in human non-small cell lung carcinoma H1299 cells via, at least partly, G2/M-phase block of the cell cycle, related to a rise in MAPK phosphorylation.

  5. Profiling ribonucleotide and deoxyribonucleotide pools perturbed by gemcitabine in human non-small cell lung cancer cells

    PubMed Central

    Guo, Jian-Ru; Chen, Qian-Qian; Lam, Christopher Wai Kei; Wang, Cai-Yun; Wong, Vincent Kam Wai; Chang, Zee-Fen; Zhang, Wei

    2016-01-01

    In this study, we investigated the dosage effect of gemcitabine, an inhibitor of ribonucleotide reductase (RR), on cellular levels of ribonucleotides and deoxyribonucleotides using high performance liquid chromatography-electrospray ionization tandem mass spectrometric method. As anticipated, after 4-h incubation of non-small cell lung cancer (A549) cells with gemcitabine at 0.5 and 2 μM, there were consistent reductions in levels of deoxyribonucleoside diphosphates (dNDP) and their corresponding deoxyribonucleoside triphosphates (dNTP). However, after 24-h exposure to 0.5 μM gemcitabine, the amounts of dNTP were increased by about 3 fold, whereas cells after 24-h 2 μM gemcitabine treatment exhibited deoxycytidine diphosphate (dCDP), deoxyadenosine diphosphate (dADP) and deoxyguanosine diphosphate (dGDP) levels less than 50% of control values, with deoxycytidine triphosphate (dCTP) and deoxyguanosine triphosphate (dGTP) returning to the control level. Using cell cycle analysis, we found that 24-h incubation at 0.5 μM gemcitabine resulted in a significant increase in S phase arrest, while 2 μM treatment increased G0/G1 population. Our data demonstrated the correlation between the level of RR and the increased levels of dNTPs in the group of 0.5 μM treatment for 24-h with a markedly reduced level of dFdCTP. Accordingly, we proposed that the dosage of dFdC could determine the arrested phase of cell cycle, in turn affecting the recovery of dNTPs pools. PMID:27845436

  6. Α-MMC and MAP30, two ribosome-inactivating proteins extracted from Momordica charantia, induce cell cycle arrest and apoptosis in A549 human lung carcinoma cells.

    PubMed

    Fan, Xiang; He, Lingli; Meng, Yao; Li, Gangrui; Li, Linli; Meng, Yanfa

    2015-05-01

    α‑Momorcharin (α‑MMC) and momordica anti‑human immunodeficiency virus protein (MAP30), produced by Momordica charantia, are ribosome‑inactivating proteins, which have been reported to exert inhibitory effects on cultured tumor cells. In order to further elucidate the functions of these agents, the present study aimed to investigate the effects of α‑MMC and MAP30 on cell viability, the induction of apoptosis, cell cycle arrest, DNA integrity and superoxide dismutase (SOD) activity. α‑MMC and MAP30 were purified from bitter melon seeds using ammonium sulfate precipitation in combination with sulfopropyl (SP)‑sepharose fast flow, sephacryl S‑100 and macro‑Cap‑SP chromatography. MTT, flow cytometric and DNA fragmentation analyses were then used to determine the effects of α‑MMC and MAP30 on human lung adenocarcinoma epithelial A549 cells. The results revealed that A549 cells were sensitive to α‑MMC and MAP30 cytotoxicity assays in vitro. Cell proliferation was significantly suppressed following α‑MMC and MAP30 treatment in a dose‑ and time‑dependent manner; in addition, the results indicated that MAP30 had a more potent anti‑tumor activity compared with that of α‑MMC. Cell cycle arrest in S phase and a significantly increased apoptotic rate were observed following treatment with α‑MMC and MAP30. Furthermore, DNA integrity analysis revealed that the DNA of A549 cells was degraded following treatment with α‑MMC and MAP30 for 48 h. The pyrogallol autoxidation method and nitrotetrazolium blue chloride staining were used to determine SOD activity, the results of which indicated that α‑MMC and MAP30 did not possess SOD activity. In conclusion, the results of the present study indicated that α‑MMC and MAP30 may have potential as novel therapeutic agents for the prophylaxis and treatment of cancer.

  7. MicroRNA-107 inhibits tumor growth and metastasis by targeting the BDNF-mediated PI3K/AKT pathway in human non-small lung cancer.

    PubMed

    Xia, Huan; Li, Yang; Lv, Xiaohong

    2016-10-01

    Abnormal expression of microRNA-107 (miR-107) was found in non-small cell lung cancer (NSCLC). However, little is known about its role and molecular mechanism in NSCLC progression and metastasis. Therefore, the aims of this study were to clarify the potential role of miR-107 and molecular mechanism in NSCLC progression and metastasis. Quantitative real-time polymerase chain reaction assay showed that miR-107 expression levels were significantly decreased in NSCLC tissue and cell lines. Low miR-107 levels in tumor tissue correlated with advanced TNM stage and lymph node metastasis. Function assays showed that overexpression of miR-107 suppressed cell proliferation, migration and invasion in A549 cells in vitro, and inhibited NSCLC tumor growth in vivo. Further mechanism assays suggested the brain-derived neurotrophic factor (BDNF) was identified as a target gene of miR-107 in NSCLC cells. In addition, BDNF expression was upregulated, and inversely correlated with miR-107 in NSCLC tissues. Enforced overexpression of BDNF effectively reversed the tumor suppressive functions of miR-107 on NSCLC proliferation, migration and invasion. miR-107 overexpression or downregulation of BDNF was able to inhibit activation of PI3K/AKT signaling pathway. Taken together, our findings present the first evidence that miR-107 could suppress NSCLC metastasis by targeting BDNF and indirectly regulating PI3K/AKT signaling pathway, which might lead to a potential therapeutic strategy focusing on miR-107 and BDNF for human NSCLC.

  8. MicroRNA-7 inhibits cell proliferation, migration and invasion in human non-small cell lung cancer cells by targeting FAK through ERK/MAPK signaling pathway

    PubMed Central

    Shi, Yu-Jia; Chen, Yi; Sun, Yun; Zhang, Qian; Song, Lei; Peng, Li-Ping

    2016-01-01

    Objective To investigate the effects of microRNA-7 (miR-7) on the proliferation, migration and invasion of non-small cell lung cancer NSCLC) cells by targeting FAK through ERK/MAPK signaling pathway. Methods NSCLC tissues and adjacent normal tissues were obtained from 160 NSCLC patients after operation. NSCLC cell lines (A549, H1299 and H1355) and a normal human fetal lung fibroblast cell line (MRC-5) were obtained. NSCLC cells were assigned into miR-7 inhibitors, miR-7 mimics, blank, miR-7 mimics control, miR-7 inhibitors control, FAK siRNA and miR-7 inhibitors + FAK siRNA groups. The expressions of miR-7 and FAK mRNA in tissues and cell lines were detected by qRT-PCR and Western-Blotting. Cell proliferation, migration and invasion were detected by MTT assay, wound scratch assay and Transwell assay. Results Compared with adjacent normal tissues, miR-7 expression was down-regulated, but the mRNA and protein expressions of FAK, ERK and MAPK were up-regulated. Compared with the blank and mimics control groups, miR-7 significantly increased but FAK, ERK and MAPK expressions decreased in miR-7 mimics and FAK siRNA groups. Cell proliferation, migration and invasion were inhibited in the miR-7 mimics and FAK siRNA groups, while opposite regarding miR-7 inhibitors group. Conclusion The miR-7 can inhibit the activation of ERK/MAPK signaling pathway by down-regulating FAK expression, thereby suppressing the proliferation, migration and invasion of NSCLC cells. The miR-7 and its target gene FAK may be novel targets for the diagnosis and treatment of NSCLC. PMID:27764812

  9. Effects of targeted silencing of FOXC1 gene on proliferation and in vitro migration of human non-small-cell lung carcinoma cells

    PubMed Central

    Chen, Sumei; Jiao, Shunchang; Jia, Youchao; Li, Yang

    2016-01-01

    Background: The aim of this study was to evaluate the effects of targeted silencing of forkhead box C1 (FOXC1) gene with small interfering RNA (siRNA) on the proliferation and in vitro migration of human non-small-cell lung carcinoma (NSCLC) A549 and NCIH460 cells, and to explore the molecular mechanism. Methods: These cells were divided into FOXC1 siRNA groups and negative control groups. Results: Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) showed that compared with normal cells and paracancerous tissues, FOXC1 mRNA expressions in NSCLC cells and tissues were significantly higher (P<0.05). qRT-PCR and Western blot showed that FOXC1 siRNA effectively silenced FOXC1 gene expression in NSCLC cells. EdU labeling assay revealed that the proliferative capacity significantly decreased compared with that of normal control group after FOXC1 silencing (P<0.05). Significantly fewer cells in the transfected group migrated than those in negative control group did. After FOXC1 silencing, NSCLC cells were arrested in the G0/G1 phase, which were significantly different from those in negative control group (P<0.05). Compared with negative control group, the expression of cyclin D1 decreased and that of E-cadherin increased. Meanwhile, vimentin and MMP-2 expressions significantly reduced (P<0.05). FOXC1 siRNA effectively silenced FOXC1 gene expressions in NSCLC cells, inhibited their proliferation and invasion, and arrested them in the G0/G1 phase, suggesting that FOXC1 affected proliferation probably by regulating the expression of cell cycle-related protein cyclin D1. Conclusion: Silencing FOXC1 may evidently inhibit the migration of these cells by reversing the EMT process through suppressing cadherin, being associated with the expressions of extracellular MMPs. PMID:27648121

  10. Multidrug Resistant Protein-Three Gene Regulation by the Transcription Factor Nrf2 in Human Bronchial Epithelial and Non-Small Cell Lung Carcinoma

    PubMed Central

    Mahaffey, Christopher M.; Zhang, Hongqiao; Rinna, Alessandra; Holland, William; Mack, Philip C.; Forman, Henry Jay

    2009-01-01

    Multidrug Resistant Proteins (MRP) are members of the ATP-binding cassette superfamily that facilitate detoxification by transporting toxic compounds, including chemotherapeutic drugs, out of cells. Chemotherapy, radiation, and other xenobiotic stresses have been shown to increase levels of select MRPs, although, the underlying mechanism remains largely unknown. Additionally, MRP3 is suspected of playing a role in the drug resistance of non-small cell lung carcinoma (NSCLC). Analysis of the MRP3 promoter revealed the presence of multiple putative electrophile responsive elements (EpRE), sequences that suggested possible regulation of this gene by Nrf2, the key transcription factor that binds to EpRE. The goal of this investigation was to determine whether MRP3 induction was dependent upon the transcription factor Nrf2. Keap1, a key regulator of Nrf2, sequesters Nrf2 in the cytoplasm, preventing entry into the nucleus. The electrophilic lipid peroxidation product, 4-hydroxy-2-nonenal (HNE) has been shown to modify Keap1 allowing Nrf2 to enter the nucleus. We found that HNE up-regulated MRP3 mRNA and protein levels in cell lines with wild type Keap1 (human bronchial epithelial cell line HBE1 and the NSCLC cell line H358), but not in the Keap1 mutant NSCLC cell lines (A549 and H460). Cell lines with mutant Keap1 had constitutively higher MRP3 that was not increased by HNE treatment. In HBE1 cells, silencing of Nrf2 with siRNA inhibited induction of MRP3 and by HNE. Finally, we found that silencing Nrf2 also increased the toxicity of cisplatin in H358 cells. The combined results therefore support the hypothesis that MRP3 induction by HNE involves Nrf2 activation. PMID:19345732

  11. ROS/Autophagy/Nrf2 Pathway Mediated Low-Dose Radiation Induced Radio-Resistance in Human Lung Adenocarcinoma A549 Cell.

    PubMed

    Chen, Ni; Wu, Lijun; Yuan, Hang; Wang, Jun

    2015-01-01

    Low-dose ionizing radiation (LDIR) can induce radio-resistance to following high dose radiation in various mammalian cells. The protective role of LDIR has been thought to be associated with the overall outcomes of cancer radiotherapy. NF-E2 related factor 2 (Nrf2) is a transcription factor that plays pivotal roles in maintaining cellular oxidative equilibrium. Since oxidative stress has been indicated to be a mediator of LDIR induced radio-resistance, the role of Nrf2 in this process was investigated in this research. Our results showed that in human lung adenocarcinoma A549 cell, 5cGy alpha particle induced radio-resistance to following 75cGy alpha particle radiation. The expression level of Nrf2 and its target Heme Oxygenase-1(HO-1) increased after 5cGy radiation. Both the shRNA of Nrf2 and the chemical inhibitor of HO-1 suppressed the induced radio-resistance, indicating the involvement of Nrf2 antioxidant pathway in this process. Further, we found 5cGy radiation stimulated autophagy process in A549. Inhibition of the autophagy process resulted in suppression of the radio-resistance and the induced expression of Nrf2 and HO-1. ROS scavenger N-acetyl-L-cysteine (NAC) blocked the autophagy process induced by 5cGy alpha particle, the upregulation of Nrf2 and HO-1, as well as the induced radio-resistance. In conclusion, ROS elevation caused by LDIR promoted Autophagy/Nrf2-HO-1 and conferred radio-resistance in A549.

  12. ROS/Autophagy/Nrf2 Pathway Mediated Low-Dose Radiation Induced Radio-Resistance in Human Lung Adenocarcinoma A549 Cell

    PubMed Central

    Chen, Ni; Wu, Lijun; Yuan, Hang; Wang, Jun

    2015-01-01

    Low-dose ionizing radiation (LDIR) can induce radio-resistance to following high dose radiation in various mammalian cells. The protective role of LDIR has been thought to be associated with the overall outcomes of cancer radiotherapy. NF-E2 related factor 2 (Nrf2) is a transcription factor that plays pivotal roles in maintaining cellular oxidative equilibrium. Since oxidative stress has been indicated to be a mediator of LDIR induced radio-resistance, the role of Nrf2 in this process was investigated in this research. Our results showed that in human lung adenocarcinoma A549 cell, 5cGy alpha particle induced radio-resistance to following 75cGy alpha particle radiation. The expression level of Nrf2 and its target Heme Oxygenase-1(HO-1) increased after 5cGy radiation. Both the shRNA of Nrf2 and the chemical inhibitor of HO-1 suppressed the induced radio-resistance, indicating the involvement of Nrf2 antioxidant pathway in this process. Further, we found 5cGy radiation stimulated autophagy process in A549. Inhibition of the autophagy process resulted in suppression of the radio-resistance and the induced expression of Nrf2 and HO-1. ROS scavenger N-acetyl-L-cysteine (NAC) blocked the autophagy process induced by 5cGy alpha particle, the upregulation of Nrf2 and HO-1, as well as the induced radio-resistance. In conclusion, ROS elevation caused by LDIR promoted Autophagy/Nrf2-HO-1 and conferred radio-resistance in A549. PMID:26078725

  13. Overexpression and activation of hepatocyte growth factor/scatter factor in human non-small-cell lung carcinomas.

    PubMed Central

    Olivero, M.; Rizzo, M.; Madeddu, R.; Casadio, C.; Pennacchietti, S.; Nicotra, M. R.; Prat, M.; Maggi, G.; Arena, N.; Natali, P. G.; Comoglio, P. M.; Di Renzo, M. F.

    1996-01-01

    Hepatocyte growth factor/scatter factor (HGF/SF) stimulates the invasive growth of epithelial cells via the c-MET oncogene-encoded receptor. In normal lung, both the receptor and the ligand are detected, and the latter is known to be a mitogenic and a motogenic factor for both cultured bronchial epithelial cells and non-small-cell carcinoma lines. Here, ligand and receptor expression was examined in 42 samples of primary human non-small-cell lung carcinoma of different histotype. Each carcinoma sample was compared with adjacent normal lung tissue. The Met/HGF receptor was found to be 2 to 10-fold increased in 25% of carcinoma samples (P = 0.0113). The ligand, HGF/SF, was found to be 10 to 100-fold overexpressed in carcinoma samples (P < 0.0001). Notably, while HGF/SF was occasionally detectable and found exclusively as a single-chain inactive precursor in normal tissues, it was constantly in the biologically-active heterodimeric form in carcinomas. Immunohistochemical staining showed homogeneous expression of both the receptor and the ligand in carcinoma samples, whereas staining was barely detectable in their normal counterparts. These data show that HGF/SF is overexpressed and consistently activated in non-small-cell lung carcinomas and may contribute to the invasive growth of lung cancer. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8980383

  14. miR-129b suppresses cell proliferation in the human lung cancer cell lines A549 and H1299.

    PubMed

    Zheng, L; Qi, Y X; Liu, S; Shi, M L; Yang, W P

    2016-10-17

    Lung cancer is one of the most prevalent malignant tumors, and is one of the primary causes of cancer-associated deaths. In 2002, an estimated 1.18 million lung cancer-associated deaths were recorded, accounting for 18% of cancer-related deaths and 2% of total mortality. Despite the great progress that has been made in lung cancer therapies, the mechanisms underlying lung cancer formation and development remain largely unknown. Meanwhile, the microRNA miR-129 has been shown to be involved in the formation of many types of cancer. Therefore, this study aims to investigate whether miR129b could suppress proliferation of lung cancer cell lines. NSCLC tissue samples were collected from the Department of Respiratory Medicine between April 2013 and December 2015. Ten normal health individuals were recruited as controls. Lung cancer cell lines A549 and H1299 were used to examine the suppressive effects of miR129b. Quantitative real-time PCR was used to detect miR129b expression. The MTT assay was used to analyze cell proliferation. Results indicated that miR-129b is down-regulated in lung cancer cell lines and NSCLC tissues. Furthermore, overexpression of miR-129b inhibited proliferation of lung cancer cells. In conclusion, miR-129b suppresses lung cancer cell proliferation, and can be a potential therapeutic target for treatment of lung cancers.

  15. Human primary bronchial epithelial cells respond differently to titanium dioxide nanoparticles than the lung epithelial cell lines A549 and BEAS-2B.

    PubMed

    Ekstrand-Hammarström, Barbro; Akfur, Christine M; Andersson, Per Ola; Lejon, Christian; Osterlund, Lars; Bucht, Anders

    2012-09-01

    We have compared the cellular uptake and responses of five preparations of nanocrystalline titanium dioxide (TiO(2)) between normal human bronchial epithelial (NHBE) cells and epithelial cell lines (A549 and BEAS-2B). The P25 nanoparticles, containing both anatase and rutile modifications, induced reactive oxygen species (ROS) and secretion of the neutrophil chemoattractant IL-8 in all three cell types used. Pure anatase and rutile particles provoked differential IL-8 response in A549 and no response in BEAS-2B cells despite similar formation of ROS. The pure TiO(2) modifications also provoked release of the inflammatory mediators: IL-6, G-CSF and VEGF, in NHBE cells but not in the two cell lines. We conclude that the responsiveness of lung epithelial cells is strongly dependent on both the physicochemical properties of TiO(2) nanoparticles and the type of responder cells. The differential pro-inflammatory responsiveness of primary lung epithelial cells compared with immortalized cell lines should be considered in the assessment of adverse reactions to inhaled nanoparticles.

  16. Biological impacts of TiO2 on human lung cell lines A549 and H1299: particle size distribution effects

    NASA Astrophysics Data System (ADS)

    Tedja, Roslyn; Marquis, Christopher; Lim, May; Amal, Rose

    2011-09-01

    Increasing use of titanium dioxide (TiO2) nanoparticles in many commercial applications has led to emerging concerns regarding the safety and environmental impact of these materials. In this study, we have investigated the biological impact of nano-TiO2 (with particle primary size of 20 nm Aeroxide P25) on human lung cell lines in vitro and also the effect of particle size distribution on the particle uptake and apparent toxicity. The biological impact of nano-TiO2 is shown to be influenced by the concentration and particle size distribution of the TiO2 and the impact was shown to differ between the two cell lines (A549 and H1299) investigated herein. A549 cell line was shown to be relatively resistant to the total amount of TiO2 particles uptaken, as measured by cell viability and metabolic assays, while H1299 had a much higher capacity to ingest TiO2 particles and aggregates, with consequent evidence of impact at concentrations as low as 30-150 μg/mL TiO2. Evidence gathered from this study suggests that both viability and metabolic assays (measuring metabolic and mitochondrial activities and also cellular ATP level) should be carried out collectively to gain a true assessment of the impact of exposure to TiO2 particles.

  17. Steroid sulphatase and oestrogen sulphotransferase in human non-small-cell lung carcinoma

    PubMed Central

    Iida, S; Kakinuma, H; Miki, Y; Abe, K; Sakurai, M; Suzuki, S; Niikawa, H; Akahira, J; Suzuki, T; Sasano, H

    2013-01-01

    Background: Steroid sulphatase (STS) is one of the steroid-metabolising enzymes involved in desulphating inactive steroid sulphates and oestrogen sulphotransferase (EST) sulphates active oestrogen. The roles of both STS and EST have not been examined in oestrogen-dependent non-small-cell lung cancer (NSCLC). Methods: We evaluated the immunoreactivity of STS and EST in NSCLC cases using immunohistochemistry. The function of STS and EST was further demonstrated using NSCLC cell lines. Results: The immunoreactivity of STS and EST was detected in 49.5% and 27.8% of NSCLC cases, respectively. The immunoreactivity of STS was significantly higher in female adenocarcinoma cases. The STS-positive NSCLCs were also significantly correlated in an inversed manner with tumour size and cell proliferation and tended to be associated with better clinical outcome. However, the immunoreactivity of EST was significantly correlated with intracellular oestradiol concentration. Results of in vitro analysis demonstrated that oestrone sulphate (E1-S) induced and pregnenolone sulphate (Preg-S) inhibited the proliferation in STS-expressing cell lines. The inhibition by Preg-S was reversed by a specific progesterone receptor blocker. Simultaneous addition of E1-S and Preg-S significantly suppressed the proliferation. Conclusion: In NSCLC patients, STS is considered a good prognostic factor. Results of our present study also indicated the benefits of potential progesterone therapy for NSCLC patients. PMID:23531699

  18. Deoxypodophyllotoxin triggers necroptosis in human non-small cell lung cancer NCI-H460 cells.

    PubMed

    Wu, Meijuan; Jiang, Zhenzhou; Duan, Huaqin; Sun, Lixin; Zhang, Shuang; Chen, Mi; Wang, Yun; Gao, Qin; Song, Yuming; Zhu, Xiong; Zhang, Luyong

    2013-10-01

    Deoxypodophyllotoxin (DPT), a naturally occurring microtubule destabilizer, inhibits tubulin polymerization and causes cell cycle arrest at G2/M phase in tumor cells. However, the anti-tumor effect and specific mechanism of DPT in non-small cell lung cancer (NSCLC) are still poorly understood. In this study, we determined the anti-tumor effect and potential mechanism of DPT in the NSCLC cell line, NCI-H460 (H460). First, we demonstrated that DPT significantly inhibits the proliferation of H460 cells in vitro and the growth of H460 xenografts in vivo. In further studies, DPT triggered necroptosis in H460 cells with the following characteristics: (I) necrotic cell death morphology; (II) autophagy; (III) loss of plasma membrane integrity; (IV) loss of mitochondria membrane potential; (V) elevation of reactive oxygen species levels; and (VI) specific inhibition of necroptosis via a small molecule, necrostatin-1. This study also revealed that DPT has a similar effect towards the drug-sensitive cancer cell line, H460, and the drug-resistant cell line, H460/Bcl-xL. To our knowledge, this is the first report to document the induction of necroptosis by a microtubule-targeting agent to circumvent cancer drug resistance, thereby providing a new potential choice for clinical cancer therapy, especially drug-resistant cancer therapy.

  19. Three-dimensional quantitative structure-activity relationship study on anti-cancer activity of 3,4-dihydroquinazoline derivatives against human lung cancer A549 cells

    NASA Astrophysics Data System (ADS)

    Cho, Sehyeon; Choi, Min Ji; Kim, Minju; Lee, Sunhoe; Lee, Jinsung; Lee, Seok Joon; Cho, Haelim; Lee, Kyung-Tae; Lee, Jae Yeol

    2015-03-01

    A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human lung cancer A549 cells were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, 1 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields (q2 = 0.720, r2 = 0.897). This model was validated by an external test set of 6 compounds giving satisfactory predictive r2 value of 0.923 as well as the scrambling stability test. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human lung cancer.

  20. Role of {alpha}{sub v}{beta}{sub 5} integrin receptor in endocytosis of crocidolite and its effect on intracellular glutathione levels in human lung epithelial (A549) cells

    SciTech Connect

    Pande, Priyadarshini; Mosleh, Tariq A.; Aust, Ann E. . E-mail: aaust@cc.usu.edu

    2006-01-15

    Crocidolite, containing 27% iron by weight, is the most carcinogenic form of asbestos. Crocidolite fibers are endocytized by {alpha}{sub v}{beta}{sub 5} integrin receptors in rabbit pleural mesothelial cells. We show here that crocidolite fibers are endocytized in human lung epithelial (A549) cells and in primary small airway epithelial (SAEC) cells. Presence of the integrin {alpha}{sub v}{beta}{sub 5} blocking antibody, P1F6, significantly reduced the uptake of crocidolite fibers in A549 cells. Thus, the integrin {alpha}{sub v}{beta}{sub 5} receptor is involved in endocytosis of crocidolite fibers in A549 cells as well. Previously, it has been observed that asbestos fibers lead to changes in the intracellular redox environment, i.e. a marked decrease in intracellular glutathione concentrations and an increase in the extracellular glutathione in A549 cells. In addition, the decrease in intracellular glutathione was found to be largely independent of iron present on the surface of the fiber. A549 cells were treated with crocidolite in the presence of endocytosis inhibitor cytochalasin D. Our data indicate that, upon preventing endocytosis, we were able to reverse the decrease in total intracellular glutathione. The decrease in total intracellular glutathione could also be prevented in the presence of the monoclonal antibody P1F6. Thus, we observed that endocytosis of crocidolite fibers via integrin {alpha}{sub v}{beta}{sub 5} receptor is linked to the marked decrease in total intracellular glutathione in A549 cells.

  1. Toxic Effects of the Major Components of Diesel Exhaust in Human Alveolar Basal Epithelial Cells (A549).

    PubMed

    Rossner, Pavel; Strapacova, Simona; Stolcpartova, Jitka; Schmuczerova, Jana; Milcova, Alena; Neca, Jiri; Vlkova, Veronika; Brzicova, Tana; Machala, Miroslav; Topinka, Jan

    2016-08-26

    We investigated the toxicity of benzo[a]pyrene (B[a]P), 1-nitropyrene (1-NP) and 3-nitrobenzanthrone (3-NBA) in A549 cells. Cells were treated for 4 h and 24 h with: B[a]P (0.1 and 1 μM), 1-NP (1 and 10 μM) and 3-NBA (0.5 and 5 μM). Bulky DNA adducts, lipid peroxidation, DNA and protein oxidation and mRNA expression of CYP1A1, CYP1B1, NQO1, POR, AKR1C2 and COX2 were analyzed. Bulky DNA adducts were induced after both treatment periods; the effect of 1-NP was weak. 3-NBA induced high levels of bulky DNA adducts even after 4-h treatment, suggesting rapid metabolic activation. Oxidative DNA damage was not affected. 1-NP caused protein oxidation and weak induction of lipid peroxidation after 4-h incubation. 3-NBA induced lipid peroxidation after 24-h treatment. Unlike B[a]P, induction of the aryl hydrocarbon receptor, measured as mRNA expression levels of CYP1A1 and CYP1B1, was low after treatment with polycyclic aromatic hydrocarbon (PAH) nitro-derivatives. All test compounds induced mRNA expression of NQO1, POR, and AKR1C2 after 24-h treatment. AKR1C2 expression indicates involvement of processes associated with reactive oxygen species generation. This was supported further by COX2 expression induced by 24-h treatment with 1-NP. In summary, 3-NBA was the most potent genotoxicant, whereas 1-NP exhibited the strongest oxidative properties.

  2. Toxicity of wood smoke particles in human A549 lung epithelial cells: the role of PAHs, soot and zinc.

    PubMed

    Dilger, Marco; Orasche, Jürgen; Zimmermann, Ralf; Paur, Hanns-Rudolf; Diabaté, Silvia; Weiss, Carsten

    2016-12-01

    Indoor air pollution is associated with increased morbidity and mortality. Specifically, the health impact of emissions from domestic burning of biomass and coal is most relevant and is estimated to contribute to over 4 million premature deaths per year worldwide. Wood is the main fuel source for biomass combustion and the shift towards renewable energy sources will further increase emissions from wood combustion even in developed countries. However, little is known about the constituents of wood smoke and biological mechanisms that are responsible for adverse health effects. We exposed A549 lung epithelial cells to collected wood smoke particles and found an increase in cellular reactive oxygen species as well as a response to bioavailable polycyclic aromatic hydrocarbons. In contrast, cell vitality and regulation of the pro-inflammatory cytokine interleukin-8 were not affected. Using a candidate approach, we could recapitulate WSP toxicity by the combined actions of its constituents soot, metals and PAHs. The soot fraction and metals were found to be the most important factors for ROS formation, whereas the PAH response can be mimicked by the model PAH benzo[a]pyrene. Strikingly, PAHs adsorbed to WSPs were even more potent in activating target gene expression than B[a]P individually applied in suspension. As PAHs initiate multiple adverse outcome pathways and are prominent carcinogens, their role as key pollutants in wood smoke and its health effects warrants further investigation. The presented results suggest that each of the investigated constituents soot, metals and PAHs are major contributors to WSP toxicity. Mitigation strategies to prevent adverse health effects of wood combustion should therefore not only aim at reducing the emitted soot and PAHs but also the metal content, through the use of more efficient combustion appliances, and particle precipitation techniques, respectively.

  3. Toxic Effects of the Major Components of Diesel Exhaust in Human Alveolar Basal Epithelial Cells (A549)

    PubMed Central

    Rossner, Pavel; Strapacova, Simona; Stolcpartova, Jitka; Schmuczerova, Jana; Milcova, Alena; Neca, Jiri; Vlkova, Veronika; Brzicova, Tana; Machala, Miroslav; Topinka, Jan

    2016-01-01

    We investigated the toxicity of benzo[a]pyrene (B[a]P), 1-nitropyrene (1-NP) and 3-nitrobenzanthrone (3-NBA) in A549 cells. Cells were treated for 4 h and 24 h with: B[a]P (0.1 and 1 μM), 1-NP (1 and 10 μM) and 3-NBA (0.5 and 5 μM). Bulky DNA adducts, lipid peroxidation, DNA and protein oxidation and mRNA expression of CYP1A1, CYP1B1, NQO1, POR, AKR1C2 and COX2 were analyzed. Bulky DNA adducts were induced after both treatment periods; the effect of 1-NP was weak. 3-NBA induced high levels of bulky DNA adducts even after 4-h treatment, suggesting rapid metabolic activation. Oxidative DNA damage was not affected. 1-NP caused protein oxidation and weak induction of lipid peroxidation after 4-h incubation. 3-NBA induced lipid peroxidation after 24-h treatment. Unlike B[a]P, induction of the aryl hydrocarbon receptor, measured as mRNA expression levels of CYP1A1 and CYP1B1, was low after treatment with polycyclic aromatic hydrocarbon (PAH) nitro-derivatives. All test compounds induced mRNA expression of NQO1, POR, and AKR1C2 after 24-h treatment. AKR1C2 expression indicates involvement of processes associated with reactive oxygen species generation. This was supported further by COX2 expression induced by 24-h treatment with 1-NP. In summary, 3-NBA was the most potent genotoxicant, whereas 1-NP exhibited the strongest oxidative properties. PMID:27571070

  4. Reversine Induced Multinucleated Cells, Cell Apoptosis and Autophagy in Human Non-Small Cell Lung Cancer Cells

    PubMed Central

    Lin, Ching-Yen; Chen, Yih-Yuan; Chen, Ping-Tzu; Tseng, Ya-Shih

    2016-01-01

    Reversine, an A3 adenosine receptor antagonist, has been shown to induce differentiated myogenic-lineage committed cells to become multipotent mesenchymal progenitor cells. We and others have reported that reversine has an effect on human tumor suppression. This study revealed anti-tumor effects of reversine on proliferation, apoptosis and autophagy induction in human non-small cell lung cancer cells. Treatment of these cells with reversine suppressed cell growth in a time- and dosage-dependent manner. Moreover, polyploidy occurred after reversine treatment. In addition, caspase-dependent apoptosis and activation of autophagy by reversine in a dosage-dependent manner were also observed. We demonstrated in this study that reversine contributes to growth inhibition, apoptosis and autophagy induction in human lung cancer cells. Therefore, reversine used as a potential therapeutic agent for human lung cancer is worthy of further investigation. PMID:27385117

  5. Dose-biomarker-response modeling of the anticancer effect of ethaselen in a human non-small cell lung cancer xenograft mouse model

    PubMed Central

    Ye, Suo-fu; Li, Jian; Ji, Shuang-min; Zeng, Hui-hui; Lu, Wei

    2017-01-01

    Thioredoxin reductase (TrxR) is a component of several redox-sensitive signaling cascades that mediate important biological processes such as cell survival, maturation, growth, migration and inhibition of apoptosis. The expression levels of TrxR1 in some human carcinoma cell lines are nearly 10 times higher than those in normal cells. Ethaselen is a novel antitumor candidate that exerts potent inhibition on non-small cell lung cancer (NSCLC) by targeting TrxR. In this study we explored the relationship between the ethaselen dose and TrxR activity level and the relationship between TrxR degradation and tumor apoptosis in a human lung carcinoma A549 xenograft model. BALB/c nude mice implanted with human NSCLC cell line A54 were administered ethaselen (36, 72, 108 mg·kg−1·d−1, ig) or vehicle for 10 d. The tumor size and TrxR activity levels in tumor tissues were daily recorded and detected. Based on the experimental data, NONMEM 7.2 was used to develop an integrated dose-biomarker-response model for describing the quantitative relationship between ethaselen dose and tumor eradication effects. The time course of TrxR activity levels was modeled using an indirect response model (IDR model), in which the influence of the tumor growth rates on Kin with the linear correction factor γ1 (0.021 d/mm). The drug binding-inhibition effects on Kout was described using a sigmoidal Emax model with Smax (5.95), SC50 (136 mg/kg) and Hill's coefficient γ2 (2.29). The influence of TrxR activity inhibition on tumor eradication was characterized by an Emax model with an Emax (130 mm3/d) and EC50 (0.0676). This model was further validated using a visual predictive check (VPC) and was used to predict the efficacy of different doses. In conclusion, the properties and characteristics of ethaselen acting on TrxR degradation and subsequently resulting in tumor apoptosis are characterized by the IDR model and integrated dose-biomarker-response model with high goodness-of-fit and great

  6. The lncRNA XIST exhibits oncogenic properties via regulation of miR-449a and Bcl-2 in human non-small cell lung cancer This article has been corrected since Advanced Online Publication, and an erratum is also printed in this issue.

    PubMed Central

    Zhang, Ya-long; Li, Xue-bing; Hou, Yan-xu; Fang, Nian-zhen; You, Jia-cong; Zhou, Qing-hua

    2017-01-01

    Long non-coding RNAs (lncRNAs) are associated with the occurrence, development and prognoses of non-small cell lung cancer (NSCLC). In the present study, we investigated the functional mechanisms of the lncRNA XIST in two human NSCLC cell lines, A549 and NCI-H1299. In all the 5 NSCLC cell lines (NL9980, NCI-H1299, NCI-H460, SPC-A-1 and A549) tested, the expression levels of XIST were significantly elevated, as compared with those in normal human bronchial epithelial cell line BEAS-2B. In A549 and NCI-H1299 cells, knockdown of XIST by siRNA significantly inhibited the cell proliferation, migration and invasion, and promoted cell apoptosis. Furthermore, XIST knockdown elevated the expression of E-cadherin, and suppressed the expression of Bcl-2. Moreover, knockdown of XIST significantly suppressed the tumor growth in NSCLC A549 xenograft mouse model. Bioinformatic analysis and luciferase reporter assays revealed that XIST was negatively regulated by miR-449a. We further identified reciprocal repression between XIST and miR-449a, which eventually influenced the expression of Bcl-2: XIST functioned as a miRNA sponge of miR-449a, which was a negative regulator of Bcl-2. These data show that expression of the lncRNA XIST is associated with an increased growth rate and metastatic potential in NSCLC A549 and NCI-H1299 cells partially through miR-449a, and suggest that XIST may be a potential prognostic factor and therapeutic target for patients with NSCLC. PMID:28248928

  7. Fyn mediates transforming growth factor-beta1-induced down-regulation of E-cadherin in human A549 lung cancer cells.

    PubMed

    Kim, An Na; Jeon, Woo-Kwang; Lim, Kyu-Hyoung; Lee, Hui-Young; Kim, Woo Jin; Kim, Byung-Chul

    2011-04-01

    Transforming growth factor-beta (TGF-β) signaling positively contributes to the regulation of tumor metastasis. However, the underlying molecular mechanisms are less well defined. We here show that Fyn, a member of Src family tyrosine kinases, plays a critical role in mediating TGF-β1-induced down-regulation of E-cadherin in human A549 lung cancer cells. Blockade of Fyn with siRNA knockdown or ligand-binding defective mutant significantly lowered the ability of TGF-β1 to repress E-cadherin expression. Furthermore, our results demonstrated that Fyn facilitates TGF-β1-mediated suppression of E-cadherin through p38 kinase-dependent induction of Snail. Collectively, our findings identify a Fyn-p38-Snail cascade as a new signaling pathway mediating oncogenic TGF-β function.

  8. Separation of an aqueous extract Inonotus obliquus (Chaga). A novel look at the efficiency of its influence on proliferation of A549 human lung carcinoma cells.

    PubMed

    Mazurkiewicz, Witold; Rydel, Katarzyna; Pogocki, Dariusz; Lemieszek, Marta Kinga; Langner, Ewa; Rzeski, Wojciech

    2010-01-01

    Aqueous extract of Inonotus obliquus was hydrolyzed in dilute hydrochloric acid. The products were extracted applying organic solvents, and separated chromatographically on a silica gel-packed column. Eluted fractions were analyzed by means of GC-MS. The presence of hydrocarbons, alcohols, phenols and various carbonyl compounds in analyzed fractions has been detected and quantified. Preliminarily experiments on the influence of certain separated samples on the proliferation of A549 human lung carcinoma cells were performed. Therefore, we hypothesize that the major antiproliferative effects are related to the presence of benzaldehyde, which is a benzyl alcohol metabolite formed in situ in the cells culture with the yield moderated by the presence of trace amounts of "high molecular mass compounds".

  9. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Han, Jae Woong; Zhang, Xi-Feng; Park, Jung Hyun; Kim, Jin-Hoi

    2015-02-01

    Silver nanoparticles (AgNPs) are prominent group of nanomaterials and are recognized for their diverse applications in various health sectors. This study aimed to synthesize the AgNPs using the leaf extract of Artemisia princeps as a bio-reductant. Furthermore, we evaluated the multidimensional effect of the biologically synthesized AgNPs in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma (A549) cells. UV-visible (UV-vis) spectroscopy confirmed the synthesis of AgNPs. X-ray diffraction (XRD) indicated that the AgNPs are specifically indexed to a crystal structure. The results from Fourier transform infrared spectroscopy (FTIR) indicate that biomolecules are involved in the synthesis and stabilization of AgNPs. Dynamic light scattering (DLS) studies showed the average size distribution of the particle between 10 and 40 nm, and transmission electron microscopy (TEM) confirmed that the AgNPs were significantly well separated and spherical with an average size of 20 nm. AgNPs caused dose-dependent decrease in cell viability and biofilm formation and increase in reactive oxygen species (ROS) generation and DNA fragmentation in H. pylori and H. felis. Furthermore, AgNPs induced mitochondrial-mediated apoptosis in A549 cells; conversely, AgNPs had no significant effects on L132 cells. The results from this study suggest that AgNPs could cause cell-specific apoptosis in mammalian cells. Our findings demonstrate that this environmentally friendly method for the synthesis of AgNPs and that the prepared AgNPs have multidimensional effects such as anti-bacterial and anti-biofilm activity against H. pylori and H. felis and also cytotoxic effects against human cancer cells. This report describes comprehensively the effects of AgNPs on bacteria and mammalian cells. We believe that biologically synthesized AgNPs will open a new avenue towards various biotechnological and biomedical applications in the near future.

  10. Cytotoxicity and genotoxicity in human lung epithelial A549 cells caused by airborne volatile organic compounds emitted from pine wood and oriented strand boards.

    PubMed

    Gminski, Richard; Tang, Tao; Mersch-Sundermann, Volker

    2010-06-16

    Due to the massive reduction of air-change rates in modern, energy-saving houses and dwellings, the contribution of volatile organic compound (VOCs) emissions from wood-based materials to indoor air quality has become increasingly important. To evaluate toxicity of VOC mixtures typically emitted from pine wood and oriented strand boards (OSB) and their main constituents (selected terpenes and aldehydes), cytotoxicity and genotoxicity were investigated in human A549 lung cells. To facilitate exposure directly via gas phase, a 250 L emission chamber was combined with a Vitrocell exposure system. VOC exposure concentrations were measured by GC/MSD. Biological effects were determined after an exposure time of 1h by measuring cytotoxicity (erythrosine B staining) and genotoxicity (comet assay). Neither cytotoxic nor genotoxic effects were observed for VOC mixtures emitted from pine wood or OSB at loading factors of approximately 13 m(2)/m(3) (worst case conditions) of the panels (with maximum VOC levels of about 80 mg/m(3)) in comparison to clean air. While alpha-pinene and Delta(3)-carene did not induce toxic effects even at exposure concentrations of up to 1800 mg/m(3) and 600 mg/m(3), respectively, hexanal showed a cytotoxic effect at 2000 mg/m(3). The alpha,beta-unsaturated aldehydes 2-heptenal and 2-octenal caused genotoxic effects in concentrations exceeding 100mg/m(3) and 40 mg/m(3), respectively. In conclusion, high concentrations of VOCs and VOC mixtures emitted from pine wood and OSB did not lead to adverse effects in A549 human lung cells even at concentrations 10(2) to 10(5)-fold higher than those found in normal indoor air. Attention must be paid to mutagenic and possibly carcinogenic alpha,beta-unsaturated aldehydes.

  11. Interleukin 7 signaling prevents apoptosis by regulating bcl-2 and bax via the p53 pathway in human non-small cell lung cancer cells.

    PubMed

    Liu, Zi-Hui; Wang, Ming-Hui; Ren, Hong-Jiu; Qu, Wei; Sun, Li-Mei; Zhang, Qing-Fu; Qiu, Xue-Shan; Wang, En-Hua

    2014-01-01

    Interleukin 7/Interleukin 7 receptor (IL-7/IL-7R) signaling induces the upregulation of cyclin D1 to promote cell proliferation in lung cancer, but its role in preventing the apoptosis of non-small cell lung cancer (NSCLC) cell lines remains unknown. To study the role of IL-7 in lung cancer cell apoptosis, normal HBE cells as well as A549 and H1299 NSCLC cells were examined using flow cytometry. The results showed that the activation of IL-7R by its specific ligand, exogenous interleukin-7, was associated with a significant decline in apoptotic cells. Western blot and real-time PCR assays indicated that the activation of IL-7/IL-7R significantly upregulated anti-apoptotic bcl-2 and downregulated pro-apoptotic bax and p53 at both protein and mRNA levels. The knockdown of IL-7R through small interfering RNAs significantly attenuated these effects of exogenous IL-7. However, there was no significant anti-apoptotic effect in H1299 (p53-) cells. Furthermore, the inhibition of p53 significantly abolished the effects of IL-7/IL-7R on lung cancer cell apoptosis. These results strongly suggest that IL-7/IL-7R prevents apoptosis by upregulating the expression of bcl-2 and by downregulating the expression of bax, potentially via the p53 pathway in A549 and HBE cells.

  12. Zinc transporters are differentially expressed in human non-small cell lung cancer

    PubMed Central

    Yang, Jingxuan; Li, Min

    2016-01-01

    Lung cancer is one of the most common human malignancies worldwide, but its oncogenesis process remains unclear. Recent studies demonstrated that zinc (Zn) and Zn transporters were associated with the development and progression of human cancers. The role of Zn transporters including ZIPs and ZnTs in lung cancer, however, has never been evaluated. Thus, we aimed to investigate the expression levels of all human Zn transporters, including 14 ZIPs and 10 ZnTs, in eight different lung cancer cell lines and paired human tumor tissues. We observed great variations in ZIPs and ZnTs mRNA levels across cell lines and human lung cancer specimens. ZIPs showed a tendency to be upregulated, while ZnTs exhibited a downward expression trend. ZIP4 was overexpressed in six lung cancer cell lines and 59% (26/44) of tumor tissues, which was consistent with results from lung cancer datasets including TCGA database. Our results indicated that the dysregulation of Zn transporters may contribute to lung tumorigenesis. PMID:27611948

  13. Therapeutic effects of gold nanoparticles synthesized using Musa paradisiaca peel extract against multiple antibiotic resistant Enterococcus faecalis biofilms and human lung cancer cells (A549).

    PubMed

    Vijayakumar, S; Vaseeharan, B; Malaikozhundan, B; Gopi, N; Ekambaram, P; Pachaiappan, R; Velusamy, P; Murugan, K; Benelli, G; Suresh Kumar, R; Suriyanarayanamoorthy, M

    2017-01-01

    Botanical-mediated synthesis of nanomaterials is currently emerging as a cheap and eco-friendly nanotechnology, since it does not involve the use of toxic chemicals. In the present study, we focused on the synthesis of gold nanoparticles using the aqueous peel extract of Musa paradisiaca (MPPE-AuNPs) following a facile and cheap fabrication process. The green synthesized MPPE-AuNPs were bio-physically characterized by UV-Vis spectroscopy, FTIR, XRD, TEM, Zeta potential analysis and EDX. MPPE-AuNPs were crystalline in nature, spherical to triangular in shape, with particle size ranging within 50 nm. The biofilm inhibition activity of MPPE-AuNPs was higher against multiple antibiotic resistant (MARS) Gram-positive Enterococcus faecalis. Light and confocal laser scanning microscopic observations evidenced that the MPPE-AuNPs effectively inhibited the biofilm of E. faecalis when tested at 100 μg mL(-1). Cytotoxicity studies demonstrated that MPPE-AuNPs were effective in inhibiting the viability of human A549 lung cancer cells at higher concentrations of 100 μg mL(-1). The morphological changes in the MPPE-AuNPs treated A549 lung cancer cells were visualized under phase-contrast microscopy. Furthermore, the ecotoxicity of MPPE-AuNPs on the freshwater micro crustacean Ceriodaphnia cornuta were evaluated. Notably, no mortality was recorded in MPPE-AuNPs treated C. cornuta at 250 μg mL(-1). This study concludes that MPPE-AuNPs are non-toxic, eco-friendly and act as a multipurpose potential biomaterial for biomedical applications.

  14. Comparative physicochemical and biological characterization of NIST Interim Reference Material PM2.5 and SRM 1648 in human A549 and mouse RAW264.7 cells.

    PubMed

    Mitkus, Robert J; Powell, Jan L; Zeisler, Rolf; Squibb, Katherine S

    2013-12-01

    The epidemiological association between exposure to fine particulate matter (PM2.5) and adverse health effects is well-known. Here we report the size distribution, metals content, endotoxin content, and biological activity of National Institute of Standards and Technology (NIST) Interim Reference Material (RM) PM2.5. Biological activity was measured in vitro by effects on cell viability and the release of four inflammatory immune mediators, from human A549 alveolar epithelial cells or murine RAW264.7 monocytes. A dose range covering three orders of magnitude (1-1000μg/mL) was tested, and biological activity was compared to an existing Standard Reference Material (SRM) for urban PM (NIST SRM 1648). Robust release of IL-8 and MCP-1 from A549 cells was observed in response to IRM PM2.5 exposures. Significant TNF-α, but not IL-6, secretion from RAW264.7 cells was observed in response to both IRM PM2.5 and SRM 1648 particle types. Cytokine or chemokine release at high doses often occurred in the presence of cytotoxicity, likely as a result of externalization of preformed mediator. Our results are consistent with a local cytotoxic and pro-inflammatory mechanism of response to exposure to inhaled ambient PM2.5 and reinforce the continued relevance of in vitro assays for mechanistic research in PM toxicology. Our study furthers the goal of developing reference samples of environmentally relevant particulate matter of various sizes that can be used for hypothesis testing by multiple investigators.

  15. Avastin® in combination with gemcitabine and cisplatin significantly inhibits tumor angiogenesis and increases the survival rate of human A549 tumor-bearing mice

    PubMed Central

    LIU, YING; XIA, XIZHENG; ZHOU, MINGKAI; LIU, XIAOJUN

    2015-01-01

    The aim of this study was to investigate the effect of Avastin® in combination with gemcitabine and cisplatin (GP) on the tumor growth of A549 tumor-bearing mice and the potential anti-tumor mechanism. A total of 30 human A549 tumor-bearing nude mice were randomly divided into the Avastin, chemotherapy and combined treatment groups for treatment with an intraperitoneal injection of Avastin (5 mg/kg) (Avastin group); an intraperitoneal injection of gemcitabine (4 mg/kg) and cisplatin (4 mg/kg) (chemotherapy group); or intraperitoneal injections of Avastin and GP (combined treatment group). The mice were observed for 30 days and the tumor growth, survival and body weight of the mice in the three groups were analyzed. The protein level of vascular endothelial growth factor (VEGF) in the tumor tissues was analyzed by ELISA. The vascular density and structural changes of the tumor were analyzed using immunohistochemistry. Compared with the Avastin and chemotherapy groups, the tumor growth of mice in the combined treatment group was significantly inhibited, and the survival rate of the mice was increased significantly. No difference in body weight was observed among the three groups of mice (P>0.05). The levels of VEGF in the combined treatment group tumor tissues were significantly reduced compared with those in the chemotherapy group tumor tissues (P<0.05). Furthermore, the vessel density of the tumor tissue in the combined treatment group was significantly reduced compared with that in the chemotherapy group (P<0.05), and the number of normal vessels in the combined treatment group tumors was significantly higher than that in the chemotherapy group tumors after 7 days of treatment (P<0.05). In conclusion, Avastin can significantly decrease the level of VEGF in tumor tissue, inhibit tumor angiogenesis and promote the normalization of tumor vascular structure, which may explain the enhanced efficacy of Avastin in combination with chemotherapy. PMID:26136956

  16. Orally active microtubule-targeting agent, MPT0B271, for the treatment of human non-small cell lung cancer, alone and in combination with erlotinib.

    PubMed

    Tsai, A-C; Wang, C-Y; Liou, J-P; Pai, H-C; Hsiao, C-J; Chang, J-Y; Wang, J-C; Teng, C-M; Pan, S-L

    2014-04-10

    Microtubule-binding agents, such as taxanes and vinca alkaloids, are used in the treatment of cancer. The limitations of these treatments, such as resistance to therapy and the need for intravenous administration, have encouraged the development of new agents. MPT0B271 (N-[1-(4-Methoxy-benzenesulfonyl)-2,3-dihydro-1H-indol-7-yl]-1-oxy-isonicotinamide), an orally active microtubule-targeting agent, is a completely synthetic compound that possesses potent anticancer effects in vitro and in vivo. Tubulin polymerization assay and immunofluorescence experiment showed that MPT0B271 caused depolymerization of tubulin at both molecular and cellular levels. MPT0B271 reduced cell growth and viability at nanomolar concentrations in numerous cancer cell lines, including a multidrug-resistant cancer cell line NCI/ADR-RES. Further studies indicated that MPT0B271 is not a substrate of P-glycoprotein (P-gp), as determined by flow cytometric analysis of rhodamine-123 (Rh-123) dye efflux and the calcein acetoxymethyl ester (calcein AM) assay. MPT0B271 also caused G2/M cell-cycle arrest, accompanied by the up-regulation of cyclin B1, p-Thr161 Cdc2/p34, serine/threonine kinases polo-like kinase 1, aurora kinase A and B and the downregulation of Cdc25C and p-Tyr15 Cdc2/p34 protein levels. The appearance of MPM2 and the nuclear translocation of cyclin B1 denoted M phase arrest in MPT0B271-treated cells. Moreover, MPT0B271 induced cell apoptosis in a concentration-dependent manner; it also reduced the expression of Bcl-2, Bcl-xL, and Mcl-1 and increased the cleavage of caspase-3 and -7 and poly (ADP-ribose) polymerase (PARP). Finally, this study demonstrated that MPT0B271 in combination with erlotinib significantly inhibits the growth of the human non-small cell lung cancer A549 cells as compared with erlotinib treatment alone, both in vitro and in vivo. These findings identify MPT0B271 as a promising new tubulin-binding compound for the treatment of various cancers.

  17. Nintedanib modulates surfactant protein-D expression in A549 human lung epithelial cells via the c-Jun N-terminal kinase-activator protein-1 pathway.

    PubMed

    Kamio, Koichiro; Usuki, Jiro; Azuma, Arata; Matsuda, Kuniko; Ishii, Takeo; Inomata, Minoru; Hayashi, Hiroki; Kokuho, Nariaki; Fujita, Kazue; Saito, Yoshinobu; Miya, Toshimichi; Gemma, Akihiko

    2015-06-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease with a high mortality rate. Signalling pathways activated by several tyrosine kinase receptors are known to be involved in lung fibrosis, and this knowledge has led to the development of the triple tyrosine kinase inhibitor nintedanib, an inhibitor of vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and fibroblast growth factor receptor (FGFR), for the treatment of IPF. Pulmonary surfactant protein D (SP-D), an important biomarker of IPF, reportedly attenuates bleomycin-induced pulmonary fibrosis in mice. In this study, we investigated whether nintedanib modulates SP-D expression in human lung epithelial (A549) cells using quantitative real-time reverse transcriptase polymerase chain reaction and western blotting. To investigate the mechanisms underlying the effects of nintedanib, we evaluated the phosphorylation of c-Jun N-terminal kinase (JNK) and its downstream target c-Jun. The effect of the JNK inhibitor SP600125 on c-Jun phosphorylation was also tested. Activation of activator protein-1 (AP-1) was examined using an enzyme-linked immunosorbent assay-based test, and cell proliferation assays were performed to estimate the effect of nintedanib on cell proliferation. Furthermore, we treated mice with nintedanib to examine its in vivo effect on SP-D levels in lungs. These experiments showed that nintedanib up-regulated SP-D messenger RNA expression in a dose-dependent manner at concentrations up to 5 μM, with significant SP-D induction observed at concentrations of 3 μM and 5 μM, in comparison with that observed in vehicle controls. Nintedanib stimulated a rapid increase in phosphorylated JNK in A549 cells within 30 min of treatment and stimulated c-Jun phosphorylation, which was inhibited by the JNK inhibitor SP600125. Additionally, nintedanib was found to activate AP-1. A549 cell proliferation was not affected by nintedanib at any of the tested

  18. MicroRNA-222 promotes human non-small cell lung cancer H460 growth by targeting p27.

    PubMed

    Zhong, Chongjun; Ding, Shengguang; Xu, Yiming; Huang, Haitao

    2015-01-01

    Two highly homologous microRNAs (miRNAs, miRs), miR-222 and miR-221, act as a cluster in cellular regulation. We have previously reported that miR-221 promoted the growth of human non-small cell lung cancer cell line H460. However, the role of miR-222 in regulating the growth of H460 is unclear. H460 cells were transfected with miR-222 mimics, inhibitors or their negative controls and their effects were confirmed by Real-time quantitative reverse transcription polymerase chain reactions (qRT-PCRs). Cell viability was assessed by Cell Counting Kit-8 (CCK-8) while cell proliferation was determined by 5-Ethynyl-2'-deoxyuridine (EdU) assay. P27 and P57, two putative targets of miR-222, were checked by qRT-PCRs. We found that miR-222 overexpression increased cell viability and proliferative rate in H460 cells while opposite effects were obtained by down-regulation of miR-222. P27 but not P57 was identified as a potential target of miR-222 in H460 cells as P27 was negatively regulated by miR-222 in the protein level. In summary, the present study indicates that miR-222 controls the growth of H460 likely by targeting P27. Inhibition of miR-222 might be a novel therapy for human non-small cell lung cancer.

  19. Expression of human eukaryotic initiation factor 3f oscillates with cell cycle in A549 cells and is essential for cell viability

    PubMed Central

    2010-01-01

    Background Transcriptional and postranslational regulation of the cell cycle has been widely studied. However, there is scarce knowledge concerning translational control of this process. Several mammalian eukaryotic initiation factors (eIFs) seem to be implicated in controlling cell proliferation. In this work, we investigated if the human eIF3f expression and function is cell cycle related. Results The human eIF3f expression has been found to be upregulated in growth-stimulated A549 cells and downregulated in G0. Western blot analysis and eIF3f promotor-luciferase fusions revealed that eIF3f expression peaks twice in the cell cycle: in the S and the M phases. Deregulation of eIF3f expression negatively affects cell viability and induces apoptosis. Conclusions The expression pattern of human eIF3f during the cell cycle confirms that this gene is cell division related. The fact that eIF3f expression peaks in two cell cycle phases raises the possibility that this gene may exert a differential function in the S and M phases. Our results strongly suggest that eIF3f is essential for cell proliferation. PMID:20462454

  20. The fruit juice of Morinda citrifolia (noni) downregulates HIF-1α protein expression through inhibition of PKB, ERK-1/2, JNK-1 and S6 in manganese-stimulated A549 human lung cancer cells.

    PubMed

    Jang, Byeong-Churl

    2012-03-01

    High exposure of manganese is suggested to be a risk factor for many lung diseases. Evidence suggests anticancerous and antiangiogenic effects by products derived from Morinda citrifolia (noni) fruit. In this study, we investigated the effect of noni fruit juice (NFJ) on the expression of HIF-1α, a tumor angiogenic transcription factor in manganese-chloride (manganese)-stimulated A549 human lung carcinoma cells. Treatment with manganese largely induced expression of HIF-1α protein but did not affect HIF-1α mRNA expression in A549 cells, suggesting the metal-mediated co- and/or post-translational HIF-1α upregulation. Manganese treatment also led to increased phosphorylation of extracellular-regulated protein kinase-1/2 (ERK-1/2), c-Jun N-terminal kinase-1 (JNK-1), protein kinase B (PKB), S6 and eukaryotic translation initiation factor-2α (eIF-2α) in A549 cells. Of note, the exposure of NFJ inhibited the manganese-induced HIF-1α protein upregulation in a concentration-dependent manner. Importantly, as assessed by results of pharmacological inhibition and siRNA transfection studies, the effect of NFJ on HIF-1α protein downregulation seemed to be largely associated with the ability of NFJ to interfere with the metal's signaling to activate PKB, ERK-1/2, JNK-1 and S6 in A549 cells. It was further shown that NFJ could repress the induction of HIF-1α protein by desferoxamine or interleukin-1β (IL-1β), another HIF-1α inducer in A549 cells. Thus, the present study provides the first evidence that NFJ has the ability to strongly downregulate manganese-induced HIF-1α protein expression in A549 human lung cancer cells, which may suggest the NFJ-mediated beneficial effects on lung pathologies in which manganese and HIF-1α overexpression play pathogenic roles.

  1. MicroRNA-429 induces tumorigenesis of human non-small cell lung cancer cells and targets multiple tumor suppressor genes

    SciTech Connect

    Lang, Yaoguo; Xu, Shidong; Ma, Jianqun; Wu, Jun; Jin, Shi; Cao, Shoubo; Yu, Yan

    2014-07-18

    Highlights: • MiR-429 expression is upregulated in non-small cell lung cancer (NSCLC). • MiR-429 inhibits PTEN, RASSF8 and TIMP2 expression. • MiR-429 promotes metastasis and proliferation. • We report important regulatory mechanisms involved in NSCLC progression. • MiR-429 is a potential therapeutic target and diagnostic marker. - Abstract: Lung cancer is the major cause of cancer death globally. MicroRNAs are evolutionally conserved small noncoding RNAs that are critical for the regulation of gene expression. Aberrant expression of microRNA (miRNA) has been implicated in cancer initiation and progression. In this study, we demonstrated that the expression of miR-429 are often upregulated in non-small cell lung cancer (NSCLC) compared with normal lung tissues, and its expression level is also increased in NSCLC cell lines compared with normal lung cells. Overexpression of miR-429 in A549 NSCLC cells significantly promoted cell proliferation, migration and invasion, whereas inhibition of miR-429 inhibits these effects. Furthermore, we demonstrated that miR-429 down-regulates PTEN, RASSF8 and TIMP2 expression by directly targeting the 3′-untranslated region of these target genes. Taken together, our results suggest that miR-429 plays an important role in promoting the proliferation and metastasis of NSCLC cells and is a potential target for NSCLC therapy.

  2. Expression and clinical significance of CXCR5/CXCL13 in human non-small cell lung carcinoma

    PubMed Central

    SINGH, RAJESH; GUPTA, PRANAV; KLOECKER, GOETZ H.; SINGH, SHAILESH; LILLARD, JAMES W.

    2014-01-01

    CXCR5 and/or CXCL13 expression is elevated in certain carcinomas and lymphomas. To determine if these factors are involved in progression of non-small cell lung cancer (LuCa), we evaluated their expression in patients with various forms of this disease. Lung biopsies from patients with non-neoplastic cells (n=8), squamous cell carcinoma (SCC; n=24), or adenocarcinoma (AC; n=54) were stained for CXCR5. Histopathological analysis of these samples showed significantly higher expression of CXCR5 (p<0.001) in carcinomas (i.e., SCCs and ACs) relative to non-neoplastic lung tissue. Nuclear and membrane CXCR5 intensities were highest in ACs, with median values of 185 and 130, respectively, followed by SCCs with median values of 170 and 110, respectively. The lowest nuclear and membrane expressions of CXCR5 were found in non-neoplastic tissues, having median values of 142 and 90, respectively. Sera from SCC patients (n=17), AC patients (n=14), and healthy controls (n=9) were tested for the presence of CXCL13. Serum CXCL13 levels in LuCa patients were higher than in healthy controls. CXCR5 expression in cell lines of human non-small cell lung carcinoma (NCI-H1915) and small cell lung carcinoma (SW-1271) were evaluated by flow cytometry. CXCR5 expression was higher in NCI-H1915 cells relative to SW-1271 cells. The functional significance of CXCR5 expression was tested in a migration assay. In response to CXCL13, more NCI-H1915 cells migrated than SW-1271 cells. These findings suggest that the CXCR5-CXCL13 axis influences LuCa progression. After validation in larger patient groups, CXCR5 and CXCL13 may prove useful as biomarkers for LuCa. Correspondingly, blockade of this axis could serve as an effective therapy for LuCa. PMID:25271023

  3. Organic compounds in tire particle induce reactive oxygen species and heat-shock proteins in the human alveolar cell line A549.

    PubMed

    Gualtieri, Maurizio; Mantecca, Paride; Cetta, Francesco; Camatini, Marina

    2008-05-01

    Debris produced from the attrition of tires of motor vehicles constitutes 5-7% of the atmospheric particulate matter (PM10). Debris particles are indeed small enough to enter human lung and thus morphological and chemical characterization has been performed. We demonstrated that the organic fraction of tire debris induces a dose-dependent increase in cell mortality, DNA damage, as well as a significant modification of cell morphology at the dose of 60 microg/ml, which may correspond to the quantity present in the air humans inhale daily. The present research aims at investigating if reactive oxygen species (ROS) production and Hsp70 expression are involved in the cascade of toxic effects produced on the A549 cell line, as it has been suggested for the ultrafine atmospheric particles and diesel exhaust. To this end, cells were exposed at the doses of 10, 50, 60, 75 microg/ml of TD organic extract (TDOE) and analyzed at different exposure time. ROS were detected by the oxidation of 2'7'-dichlorodihydrofluorescein diacetate to dichlorofluorescein, and fluorescence was measured by flow cytometry. Hsp70 protein expression was determined by immunochemical analysis, and protein expression quantification performed by optical densitometry. ROS production was analysed after 2 h of treatment. A statistically significant increase in fluorescence was observed and the intensity of the stress response was parallel to the increasing concentrations used. An evident increase of Hsp70 expression at lower doses (10, 50 microg/ml) and at longer exposure times (72 h) was observed, during the time that our previous studies showed that cell viability, plasma membrane integrity, and DNA molecules were not affected. Thus it can be deduced that the increase in Hsp70 expression protected the cells from those damages, which became evident at the higher doses, and that this parameter might be used as a sensitive indicator of exposure. These data suggest that ROS production may be the first

  4. Protein C inhibits endocytosis of thrombin-thrombomodulin complexes in A549 lung cancer cells and human umbilical vein endothelial cells

    SciTech Connect

    Maruyama, I.; Majerus, P.W.

    1987-05-01

    We investigated the effect of protein C on the endocytosis of thrombin-thrombomodulin complexes. We previously showed that exposure of umbilical vein endothelial cells to thrombin stimulated the internalization and degradation of thrombin. A similar internalization was stimulated by a monoclonal antithrombomodulin antibody. We have repeated these studies in the presence of protein C and found that endocytosis of /sup 125/I-thrombin-thrombomodulin complexes, but not /sup 125/I-antithrombomodulin-thrombomodulin complexes, is inhibited. Activated protein C did not inhibit endocytosis of thrombin-thrombomodulin complexes. Protein C inhibited both internalization and degradation of /sup 125/I-thrombin and diisopropylphosphoryl (DIP) /sup 125/I-thrombin in human lung cancer cells (A549). These effects were observed at protein C concentrations found in human plasma. Protein S had no effect on the inhibition of endocytosis of thrombin-thrombomodulin complexes by protein C. We propose that protein C may regulate the rate of endocytosis of thrombin-thrombomodulin complexes in vivo and thereby control the capacity for endothelium to activate protein C.

  5. Transcriptome Sequencing Reveals Key Pathways and Genes Associated with Cisplatin Resistance in Lung Adenocarcinoma A549 Cells

    PubMed Central

    Fang, Yani; Zhang, Cheng; Wu, Tong; Wang, Qi; Liu, Jinhui; Dai, Penggao

    2017-01-01

    Acquired resistance to cisplatin-based chemotherapy frequently occurs in patients with non-small cell lung cancer, and the underlying molecular mechanisms are not well understood. The aim of this study was to investigate whether a distinct gene expression pattern is associated with acquired resistance to cisplatin in human lung adenocarcinoma. Whole-transcriptome sequencing was performed to compare the genome-wide gene expression patterns of the human lung adenocarcinoma A549 cisplatin-resistant cell line A549/DDP with those of its progenitor cell line A549. A total of 1214 differentially expressed genes (DEGs) were identified, 656 of which were upregulated and 558 were downregulated. Functional annotation of the DEGs in the Kyoto Encyclopedia of Genes and Genomes database revealed that most of the identified genes were enriched in the PI3K/AKT, mitogen-activated protein kinase, actin cytoskeleton regulation, and focal adhesion pathways in A549/DDP cells. These results support previous studies demonstrating that the pathways regulating cell proliferation and invasion confer resistance to chemotherapy. Furthermore, the results proved that cell adhesion and cytoskeleton regulation is associated with cisplatin resistance in human lung cancer. Our study provides new promising biomarkers for lung cancer prognosis and potential therapeutic targets for lung cancer treatment. PMID:28114404

  6. The histone demethylase PHF8 is an oncogenic protein in human non-small cell lung cancer

    SciTech Connect

    Shen, Yuzhou; Pan, Xufeng; Zhao, Heng

    2014-08-15

    Highlights: • PHF8 overexpresses in human NSCLC and predicts poor survival. • PHF8 regulates lung cancer cell growth and transformation. • PHF8 regulates apoptosis in human lung cancer cells. • PHF8 promotes miR-21 expression in human lung cancer. • MiR-21 is critically essential for PHF8 function in human lung cancer cells. - Abstract: PHF8 is a JmjC domain-containing protein and erases repressive histone marks including H4K20me1 and H3K9me1/2. It binds to H3K4me3, an active histone mark usually located at transcription start sites (TSSs), through its plant homeo-domain, and is thus recruited and enriched in gene promoters. PHF8 is involved in the development of several types of cancer, including leukemia, prostate cancer, and esophageal squamous cell carcinoma. Herein we report that PHF8 is an oncogenic protein in human non-small cell lung cancer (NSCLC). PHF8 is up-regulated in human NSCLC tissues, and high PHF8 expression predicts poor survival. Our in vitro and in vivo evidence demonstrate that PHF8 regulates lung cancer cell proliferation and cellular transformation. We found that PHF8 knockdown induces DNA damage and apoptosis in lung cancer cells. PHF8 promotes miR-21 expression in human lung cancer, and miR-21 knockdown blocks the effects of PHF8 on proliferation and apoptosis of lung cancer cells. In summary, PHF8 promotes lung cancer cell growth and survival by regulating miR-21.

  7. Human Lung Cancer Cell Line A-549 ATCC Is Differentially Affected by Supranutritional Organic and Inorganic Selenium

    PubMed Central

    Flores Villavicencio, Lérida Liss; Cruz-Jiménez, Gustavo; Barbosa-Sabanero, Gloria; Kornhauser-Araujo, Carlos; Mendoza-Garrido, M. Eugenia; de la Rosa, Guadalupe; Sabanero-López, Myrna

    2014-01-01

    The effects of organic and inorganic forms of selenium (Se) on human cells have been extensively studied for nutritional concentrations; however, to date, little is known about the potential toxicity at supranutritional levels. In the present study we determined the effects of sodium selenite (SSe) and selenomethionine (SeMet) on cell growth and intracellular structures in lung cancer cells exposed at Se concentrations between 0 and 3 mM. Our results showed that SSe affected cell growth more rapidly than SeMet (24 h and 48 h, resp.). After 24 h of cells exposure to 0.5, 1.5, and 3 mM SSe, cell growth was reduced by 10, 50, and 60%, as compared to controls. After 48 h, nuclear fragmentation was evident in cells exposed to SSe, suggesting an induction to cell death. In contrast, SeMet did not affect cell proliferation, and the cells were phenotypically similar to controls. Microtubules and microfilaments structures were also affected by both Se compounds, again SSe being more toxic than SeMet. To our knowledge, this is the first report on the differential effects of organic and inorganic Se in supranutritional levels in lung cancer cells. PMID:25477771

  8. Identification of a Short Cell-Penetrating Peptide from Bovine Lactoferricin for Intracellular Delivery of DNA in Human A549 Cells.

    PubMed

    Liu, Betty R; Huang, Yue-Wern; Aronstam, Robert S; Lee, Han-Jung

    2016-01-01

    Cell-penetrating peptides (CPPs) have been shown to deliver cargos, including protein, DNA, RNA, and nanomaterials, in fully active forms into live cells. Most of the CPP sequences in use today are based on non-native proteins that may be immunogenic. Here we demonstrate that the L5a CPP (RRWQW) from bovine lactoferricin (LFcin), stably and noncovalently complexed with plasmid DNA and prepared at an optimal nitrogen/phosphate ratio of 12, is able to efficiently enter into human lung cancer A549 cells. The L5a CPP delivered a plasmid containing the enhanced green fluorescent protein (EGFP) coding sequence that was subsequently expressed in cells, as revealed by real-time PCR and fluorescent microscopy at the mRNA and protein levels, respectively. Treatment with calcium chloride increased the level of gene expression, without affecting CPP-mediated transfection efficiency. Zeta-potential analysis revealed that positively electrostatic interactions of CPP/DNA complexes correlated with CPP-mediated transport. The L5a and L5a/DNA complexes were not cytotoxic. This biomimetic LFcin L5a represents one of the shortest effective CPPs and could be a promising lead peptide with less immunogenic for DNA delivery in gene therapy.

  9. Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cells line

    NASA Astrophysics Data System (ADS)

    Palaniappan, P.; Sathishkumar, G.; Sankar, R.

    2015-03-01

    The present study reports, green synthesis of bioactive silver nanoparticles (AgNPs) under different temperature (60 °C, room temperature and 4° refrigerator) using the aqueous extract of sea grass Cymodocea serrulata as a potential bioreductant. Increased temperature fabricates more AgNPs compare to room temperature and refrigerator condition. At first the reduction of Ag+ ions were confirmed through color change which produces an absorbance spectra at 420 nm in UV-Visible spectrophotometer. Additionally various exclusive instrumentations such as X-ray diffraction (XRD), Dynamic light scattering (DLS), scanning electron microscope (SEM) analysis and Transmission electron microscope (TEM) were authorizes the biosynthesis and physio-chemical characterization of AgNPs. From Fourier transform infrared spectroscopy (FTIR) analysis, it was identified that the water soluble fractions of the sea grass mainly responsible for reduction of ionic silver (Ag+) into (Ag0) nano-ranged particles and also they act as stabilizing agent to sustain the durability of NPs for long period of time. Further, synthesized AgNPs shows potential cytotoxicity against human lung cancer A549 cells (LD50-100 μg/ml). The overall results suggest that C. serrulata is a valuable bioresource to generate rapid and eco-friendly bioactive AgNPs towards cancer therapy.

  10. Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cells line.

    PubMed

    Palaniappan, P; Sathishkumar, G; Sankar, R

    2015-03-05

    The present study reports, green synthesis of bioactive silver nanoparticles (AgNPs) under different temperature (60°C, room temperature and 4° refrigerator) using the aqueous extract of sea grass Cymodocea serrulata as a potential bioreductant. Increased temperature fabricates more AgNPs compare to room temperature and refrigerator condition. At first the reduction of Ag(+) ions were confirmed through color change which produces an absorbance spectra at 420nm in UV-Visible spectrophotometer. Additionally various exclusive instrumentations such as X-ray diffraction (XRD), Dynamic light scattering (DLS), scanning electron microscope (SEM) analysis and Transmission electron microscope (TEM) were authorizes the biosynthesis and physio-chemical characterization of AgNPs. From Fourier transform infrared spectroscopy (FTIR) analysis, it was identified that the water soluble fractions of the sea grass mainly responsible for reduction of ionic silver (Ag(+)) into (Ag(0)) nano-ranged particles and also they act as stabilizing agent to sustain the durability of NPs for long period of time. Further, synthesized AgNPs shows potential cytotoxicity against human lung cancer A549 cells (LD50-100μg/ml). The overall results suggest that C. serrulata is a valuable bioresource to generate rapid and eco-friendly bioactive AgNPs towards cancer therapy.

  11. Genotoxic effects of three selected black toner powders and their dimethyl sulfoxide extracts in cultured human epithelial A549 lung cells in vitro.

    PubMed

    Gminski, Richard; Decker, Katharina; Heinz, Christina; Seidel, Albrecht; Könczöl, Mathias; Goldenberg, Ella; Grobéty, Bernard; Ebner, Winfried; Gieré, Reto; Mersch-Sundermann, Volker

    2011-05-01

    Until now, the adverse effects of toner powders on humans have been considered to be minimal. However, several recent reports have suggested possible significant adverse health effects from toner dust inhalation. The aim of this study was to evaluate the genotoxic potential of black toner powders in vitro. For the study of DNA damage, A549 cells were exposed to toner-powder suspensions and to their DMSO extracts, and then subjected to the comet assay and to the in-vitro cytokinesis block micronucleus test (CB-MNvit). Cytotoxic effects of the toner samples were assessed by the erythrosin B assay. Furthermore, size, shape, and composition of the toner powders were investigated. None of the three toner powders or their DMSO extracts reduced cell viability; however, they did induce DNA damage and formed micronuclei at concentrations from 80 to 400 μg cm(-2) , although to a varying extent. All toner powders contain considerable amounts of the pigments carbon black and magnetite (Fe(3) O(4) ) as well as small amounts of polycyclic aromatic hydrocarbons (PAHs). The overall results of our in-vitro study suggest that the investigated toner-powder samples are not cytotoxic but genotoxic. From the results of the physical and chemical characterization, we conclude that metals and metalloids as components of magnetite, or PAHs as components of the carbon-bearing material, are responsible for the genotoxic effects. Further research is necessary to determine the relevance of these in-vitro observations for private and occupational toner powder exposure.

  12. Evaluation of cytotoxic, oxidative stress, proinflammatory and genotoxic responses of micro- and nano-particles of dolomite on human lung epithelial cells A(549).

    PubMed

    Patil, Govil; Khan, Mohd Imran; Patel, Devendra Kumar; Sultana, Sarwat; Prasad, Rajendra; Ahmad, Iqbal

    2012-09-01

    Dolomite is a natural mineral of great industrial importance and used worldwide, thus millions of workers are at risk of occupational exposure. Its toxicity is however, meagerly documented. In the present investigation, a dolomite powder obtained from its milling unit was analyzed by some standard methods namely, optical microscopy, transmission electron microscopy and dynamic light scattering. Results showed that dolomite powder contained particles of different shapes and size both microparticles (MPs) and nanoparticles (NPs), suggesting potential occupational exposure of these particles. An attempt was therefore, made to investigate dolomite toxicity in a particle size-dependent manner in human lung epithelial cells A(549). The comparative toxicity evaluation of MPs and NPs was carried out by assessing their effects on cell viability, membrane damage, glutathione, reactive oxygen species (ROS), lipid peroxidation (LPO), micronucleus (MN) and proinflammatory cytokines, namely tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). These markers of cytotoxicity, genotoxicity and inflammation were assayed in cells exposed to MPs and NPs in a dose-and time-dependent manner. Invariably, their toxic effects were dose-and time-dependent while NPs in general were significantly more toxic. Notably, NPs caused oxidative stress, genotoxicity and inflammatory responses, as seen by significant induction of ROS, LPO, MN, TNF-α, IL-1β and IL-6. Thus, the study tends to suggest that separate health safety standards would be required for micrometer and nanometer scale particles of dolomite.

  13. E3 ubiquitin ligase Pirh2 enhances tumorigenic properties of human non-small cell lung carcinoma cells

    PubMed Central

    Fedorova, Olga; Shuvalov, Oleg; Merkulov, Valeriy; Vasileva, Elena; Antonov, Alexey; Barlev, Nikolai A.

    2016-01-01

    The product of RCHY1 human gene, Pirh2, is a RING-finger containing E3 ligase that modifies p53 with ubiquitin residues resulting in its subsequent degradation in proteasomes. Transcription of RCHY1 is regulated by p53 itself thus forming a negative regulatory feedback loop. Functionally, by eliminating p53, Pirh2 facilitates tumorigenesis. However, the role of Pirh2 in cancer cells lacking p53 is yet not well understood. Therefore, we decided to elucidate the role of Pirh2 in p53-negative human non-small cell lung carcinoma cells, H1299. We found that ectopic expression of Pirh2 enhanced cell proliferation, resistance to doxorubicin, and increased migration potential. Ablation of Pirh2 by specific shRNA reversed these phenotypes. Mechanistically, Pirh2 increased mRNA and protein levels of the c-Myc oncogene. The bioinformatics data indicate that co-expression of both c-Myc and Pirh2 strongly correlated with poor survival of lung cancer patients. Collectively, our results suggest that Pirh2 can be considered as a potential pharmacological target for developing anticancer therapies to treat p53-negative cancers. PMID:28191284

  14. Knockdown of Immature Colon Carcinoma Transcript 1 Inhibits Proliferation and Promotes Apoptosis of Non-Small Cell Lung Cancer Cells.

    PubMed

    Wang, Yiling; He, Jiantao; Zhang, Shenghui; Yang, Qingbo; Wang, Bo; Liu, Zhiyu; Wu, Xintian

    2016-07-13

    Non-small cell lung cancer, as the most frequent type lung cancer, has lower survival rate of 5 years, despite improvements in surgery and chemotherapy. Previous studies showed immature colon carcinoma transcript 1 is closely related to tumorigenesis of human cancer cells. In the present study, we found immature colon carcinoma transcript 1 was overexpressed in lung cancer tissues using Oncomine database mining, and the biological effect of immature colon carcinoma transcript 1 was investigated in non-small cell lung cancer cell lines 95D and A549. Lentivirus-mediated RNA interference was used to knock down immature colon carcinoma transcript 1 expression in 95D and A549 cells in vitro, and the knockdown efficiency was determined using quantitative real-time polymerase chain reaction and Western blot assay. Knockdown of immature colon carcinoma transcript 1 significantly suppressed non-small cell lung cancer cell proliferation and colony formation ability confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assay. Flow cytometry was applied to measure cell cycle arrest, and the result showed the cell cycle arrested in G2/M phase in 95D cells and arrested in G0/G1 phase in A549 cells. Furthermore, we measured the levels of cell cycle-associated proteins by Western blot analysis and found immature colon carcinoma transcript 1-mediated cell proliferation inhibition appeared due to downregulation of cell cycle activator cyclin D1 and upregulation of cell cycle inhibitor p21. In addition, immature colon carcinoma transcript 1 silencing significantly induced non-small cell lung cancer cell apoptosis by annexin V/7-amino-actinomycin D double-staining assay. All our data suggest that immature colon carcinoma transcript 1 may play an important role for non-small cell lung cancer cell proliferation and could be a potential molecular target for diagnosing and treating human non-small cell lung cancer.

  15. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells.

    PubMed

    Ko, Jen-Chung; Chen, Jyh-Cheng; Wang, Tai-Jing; Zheng, Hao-Yu; Chen, Wen-Ching; Chang, Po-Yuan; Lin, Yun-Wei

    2016-04-01

    Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects, including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination, and studies show that chemo-resistant carcinomas exhibit high levels of Rad51 expression. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Astaxanthin treatment (2.5-20 μM) decreased Rad51 expression and phospho-AKT(Ser473) protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector rescued the decreased Rad51 mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 or wortmannin) further decreased the Rad51 expression in astaxanthin-exposed A549 and H1703 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA or cotreatment with LY294002 further enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Additionally, mitomycin C (MMC) as an anti-tumor antibiotic is widely used in clinical NSCLC chemotherapy. Combination of MMC and astaxanthin synergistically resulted in cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced phospho-AKT(Ser473) level and Rad51 expression. Overexpression of AKT-CA or Flag-tagged Rad51 reversed the astaxanthin and MMC-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in astaxanthin and MMC co-treated cells. In conclusion, astaxanthin enhances MMC-induced cytotoxicity by decreasing Rad51 expression and AKT activation. These findings may provide rationale to combine astaxanthin with MMC for the treatment of NSCLC.

  16. The environmental carcinogen 3-nitrobenzanthrone and its main metabolite 3-aminobenzanthrone enhance formation of reactive oxygen intermediates in human A549 lung epithelial cells.

    PubMed

    Hansen, Tanja; Seidel, Albrecht; Borlak, Jürgen

    2007-06-01

    The environmental contaminant 3-nitrobenzanthrone (3-NBA) is highly mutagenic and a suspected human carcinogen. We aimed to evaluate whether 3-NBA is able to deregulate critical steps in cell cycle control and apoptosis in human lung epithelial A549 cells. Increased intracellular Ca(2+) and caspase activities were detected upon 3-NBA exposure. As shown by cell cycle analysis, an increased number of S-phase cells was observed after 24 h of treatment with 3-NBA. Furthermore, 3-NBA was shown to inhibit cell proliferation when added to subconfluent cell cultures. The main metabolite of 3-NBA, 3-ABA, induced statistically significant increases in tail moment as judged by alkaline comet assay. The potential of 3-NBA and 3-ABA to enhance the production of reactive oxygen species (ROS) was demonstrated by flow cytometry using 2',7'-dichlorofluorescein-diacetate (DCFH-DA). The enzyme inhibitors allopurinol, dicumarol, resveratrol and SKF525A were used to assess the impact of metabolic conversion on 3-NBA-mediated ROS production. Resveratrol decreased dichlorofluorescein (DCF) fluorescence by 50%, suggesting a role for CYP1A1 in 3-NBA-mediated ROS production. Mitochondrial ROS production was significantly attenuated (20% reduction) by addition of rotenone (complex I inhibition) and thenoyltrifluoroacetone (TTFA, complex II inhibition). Taken together, the results of the present study provide evidence for a genotoxic potential of 3-ABA in human epithelial lung cells. Moreover, both compounds lead to increased intracellular ROS and create an environment favorable to DNA damage and the promotion of cancer.

  17. The environmental carcinogen 3-nitrobenzanthrone and its main metabolite 3-aminobenzanthrone enhance formation of reactive oxygen intermediates in human A549 lung epithelial cells

    SciTech Connect

    Hansen, Tanja . E-mail: tanja.hansen@item.fraunhofer.de; Seidel, Albrecht; Borlak, Juergen

    2007-06-01

    The environmental contaminant 3-nitrobenzanthrone (3-NBA) is highly mutagenic and a suspected human carcinogen. We aimed to evaluate whether 3-NBA is able to deregulate critical steps in cell cycle control and apoptosis in human lung epithelial A549 cells. Increased intracellular Ca{sup 2+} and caspase activities were detected upon 3-NBA exposure. As shown by cell cycle analysis, an increased number of S-phase cells was observed after 24 h of treatment with 3-NBA. Furthermore, 3-NBA was shown to inhibit cell proliferation when added to subconfluent cell cultures. The main metabolite of 3-NBA, 3-ABA, induced statistically significant increases in tail moment as judged by alkaline comet assay. The potential of 3-NBA and 3-ABA to enhance the production of reactive oxygen species (ROS) was demonstrated by flow cytometry using 2',7'-dichlorofluorescein-diacetate (DCFH-DA). The enzyme inhibitors allopurinol, dicumarol, resveratrol and SKF525A were used to assess the impact of metabolic conversion on 3-NBA-mediated ROS production. Resveratrol decreased dichlorofluorescein (DCF) fluorescence by 50%, suggesting a role for CYP1A1 in 3-NBA-mediated ROS production. Mitochondrial ROS production was significantly attenuated (20% reduction) by addition of rotenone (complex I inhibition) and thenoyltrifluoroacetone (TTFA, complex II inhibition). Taken together, the results of the present study provide evidence for a genotoxic potential of 3-ABA in human epithelial lung cells. Moreover, both compounds lead to increased intracellular ROS and create an environment favorable to DNA damage and the promotion of cancer.

  18. Mimulone-induced autophagy through p53-mediated AMPK/mTOR pathway increases caspase-mediated apoptotic cell death in A549 human lung cancer cells.

    PubMed

    An, Hyun-Kyu; Kim, Kyoung-Sook; Lee, Ji-Won; Park, Mi-Hyun; Moon, Hyung-In; Park, Shin-Ji; Baik, Ji-Sue; Kim, Cheorl-Ho; Lee, Young-Choon

    2014-01-01

    Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3) puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC) staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA), pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ) suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α) and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy.

  19. Mimulone-Induced Autophagy through p53-Mediated AMPK/mTOR Pathway Increases Caspase-Mediated Apoptotic Cell Death in A549 Human Lung Cancer Cells

    PubMed Central

    Lee, Ji-Won; Park, Mi-Hyun; Moon, Hyung-In; Park, Shin-Ji; Baik, Ji-Sue; Kim, Cheorl-Ho; Lee, Young-Choon

    2014-01-01

    Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3) puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC) staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA), pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ) suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α) and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy. PMID:25490748

  20. Involvement of TP53 and TP16 expression in human papillomavirus-associated non-small cell lung cancer

    PubMed Central

    Li, Ming; Zhang, Xiao-Lei; Deng, Fang; Qian, Li-Ting; Meng, Shui-Ping; Shan, Wu-Lin; Wang, Bao-Long

    2016-01-01

    Human papilloma virus (HPV) infection has previously been reported to be associated with TP53 and TP16 expression in Japanese and Taiwanese patients with lung cancer, but data for advanced non-small cell lung cancer (NSCLC) patients is limited. The present study examined the association between HPV infection and TP53 and TP16 expression in Chinese patients with advanced NSCLC. HPV DNA was detected in 20 out of 83 (24%) lung tumors, and was observed more frequently in non-smokers, patients with lymph node metastasis, and patients with poorly differentiated tumors (P=0.048, P=0.044 and P=0.024, respectively). Thirteen (65%) out of 20 HPV-infected tumors were positive for TP53 expression while eight (40%) were positive for TP16 expression. Multivariate analysis revealed that poor differentiation alone (OR=0.163) was an independent predictive factor of HPV infection in NSCLC. TP16-positive patients had a significantly longer survival time when compared with TP16-negative patients (P<0.001, log-rank test), a trend a not observed for TP53. Our results suggest that TP53 and TP16 protein expression is not associated with the expression of HPV DNA, but that TP16 expression may be an independent prognostic factor of long survival in advanced NSCLC. PMID:27900000

  1. KRAS-mutation status dependent effect of zoledronic acid in human non-small cell cancer preclinical models

    PubMed Central

    Kenessey, István; Kói, Krisztina; Horváth, Orsolya; Cserepes, Mihály; Molnár, Dávid; Izsák, Vera; Dobos, Judit; Hegedűs, Balázs

    2016-01-01

    Background In non-small cell lung cancer (NSCLC) KRAS-mutant status is a negative prognostic and predictive factor. Nitrogen-containing bisphosphonates inhibit prenylation of small G-proteins (e.g. Ras, Rac, Rho) and thus may affect proliferation and migration. In our preclinical work, we investigated the effect of an aminobisphosphonate compound (zoledronic acid) on mutant and wild type KRAS-expressing human NSCLC cell lines. Results We confirmed that zoledronic acid was unable to inhibit the prenylation of mutant K-Ras unlike in the case of wild type K-Ras. In case of in vitro proliferation, the KRAS-mutant human NSCLC cell lines showed resistance to zoledronic acid wild-type KRAS-cells proved to be sensitive. Combinatory application of zoledronic acid enhanced the cytostatic effect of cisplatin. Zoledronic acid did not induce significant apoptosis. In xenograft model, zoledronic acid significantly reduced the weight of wild type KRAS-EGFR-expressing xenograft tumor by decreasing the proliferative capacity. Futhermore, zoledronic acid induced VEGF expression and improved in vivo tumor vascularization. Materials and methods Membrane association of K-Ras was examined by Western-blot. In vitro cell viability, apoptotic cell death and migration were measured in NSCLC lines with different molecular background. The in vivo effect of zoledronic acid was investigated in a SCID mouse subcutaneous xenograft model. Conclusions The in vitro and in vivo inhibitory effect of zoledronic acid was based on the blockade of cell cycle in wild type KRAS-expressing human NSCLC cells. The zoledronic acid induced vascularization supported in vivo cytostatic effect. Our preclinical investigation suggests that patients with wild type KRAS-expressing NSCLC could potentially benefit from aminobisphosphonate therapy. PMID:27780929

  2. Oxidative damage to DNA and repair induced by Norwegian wood smoke particles in human A549 and THP-1 cell lines.

    PubMed

    Danielsen, Pernille Høgh; Loft, Steffen; Kocbach, Anette; Schwarze, Per E; Møller, Peter

    2009-03-31

    Genotoxic effects of traffic-generated particulate matter (PM) are well described, whereas little data are available on PM from combustion of biomass and wood, which contributes substantially to air pollution world wide. The aim of this study was to compare the genotoxicity of wood smoke particulate matter (WSPM), authentic traffic-generated particles, mineral PM and standard reference material (SRM2975) of diesel exhaust particles in human A549 lung epithelial and THP-1 monocytic cell lines. DNA damage was measured as strand breaks (SB) and formamidopyrimidine DNA glycosylase (FPG) sites by the comet assay, whereas cell cytotoxicity was determined as lactate dehydrogenase release. The exposure to WSPM generated SB and FPG sites in both cell lines at concentrations from 2.5 or 25 microg/ml, which were not cytotoxic. Compared to all other studied particles, WSPM generated greater responses in terms of both SB and FPG sites. Organic extracts of WSPM and SRM2975 elicited higher levels of SB than native and washed PM at 25 and 100 microg/ml, whereas assay saturation precluded reliable assessment of FPG sites. During a 6h post-exposure period, in which the medium with PM had been replaced by fresh medium, 60% of the DNA lesions generated by WSPM were removed. In conclusion, WSPM generated more DNA damage than traffic-generated PM per unit mass in human cell lines, possibly due to the high level of polycyclic aromatic hydrocarbons in WSPM. This suggests that exposure to WSPM might be more hazardous than PM collected from vehicle exhaust with respect to development of lung cancer.

  3. MiR-153 inhibits migration and invasion of human non-small-cell lung cancer by targeting ADAM19

    SciTech Connect

    Shan, Nianxi; Shen, Liangfang; Wang, Jun; He, Dan; Duan, Chaojun

    2015-01-02

    Highlights: • Decreased miR-153 and up-regulated ADAM19 are correlated with NSCLC pathology. • MiR-153 inhibits the proliferation and migration and invasion of NSCLC cells in vitro. • ADAM19 is a direct target of miR-153. • ADAM19 is involved in miR-153-suppressed migration and invasion of NSCLC cells. - Abstract: MiR-153 was reported to be dysregulated in some human cancers. However, the function and mechanism of miR-153 in lung cancer cells remains unknown. In this study, we investigated the role of miR-153 in human non-small-cell lung cancer (NSCLC). Using qRT-PCR, we demonstrated that miR-153 was significantly decreased in clinical NSCLC tissues and cell lines, and downregulation of miR-153 was significantly correlated with lymph node status. We further found that ectopic expression of miR-153 significantly inhibited the proliferation and migration and invasion of NSCLC cells in vitro, suggesting that miR-153 may be a novel tumor suppressor in NSCLC. Further integrated analysis revealed that ADAM19 is as a direct and functional target of miR-153. Luciferase reporter assay demonstrated that miR-153 directly targeted 3′UTR of ADAM19, and correlation analysis revealed an inverse correlation between miR-153 and ADAM19 mRNA levels in clinical NSCLC tissues. Knockdown of ADAM19 inhibited migration and invasion of NSCLC cells which was similar with effects of overexpression of miR-153, while overexpression of ADAM19 attenuated the function of miR-153 in NSCLC cells. Taken together, our results highlight the significance of miR-153 and ADAM19 in the development and progression of NSCLC.

  4. Cardiac troponin I is abnormally expressed in non-small cell lung cancer tissues and human cancer cells.

    PubMed

    Chen, Chao; Liu, Jia-Bao; Bian, Zhi-Ping; Xu, Jin-Dan; Wu, Heng-Fang; Gu, Chun-Rong; Shi, Yi; Zhang, Ji-Nan; Chen, Xiang-Jian; Yang, Di

    2014-01-01

    Cardiac troponin I (cTnI) is the only sarcomeric protein identified to date that is expressed exclusively in cardiac muscle. Its expression in cancer tissues has not been reported. Herein, we examined cTnI expression in non-small cell lung cancer (NSCLC) tissues, human adenocarcinoma cells SPCA-1 (lung) and BGC 823 (gastric) by immunohistochemistry, western blot analysis and real-time PCR. Immunopositivity for cTnI was demonstrated in 69.4% (34/49) NSCLC tissues evaluated, and was strong intensity in 35.3% (6/17) lung squamous cell carcinoma cases. The non-cancer-bearing lung tissues except tuberculosis (9/9, 100%) showed negative staining for cTnI. Seven monoclonal antibodies (mAbs) against human cTnI were applied in immunofluorescence. The result showed that the staining pattern within SPCA-1 and BGC 823 was dependent on the epitope of the cTnI mAbs. The membrane and nucleus of cancer cells were stained by mAbs against N-terminal peptides of cTnI, and cytoplasm was stained by mAbs against the middle and C-terminal peptides of cTnI. A ~25 kD band was identified by anti-cTnI mAb in SPCA-1 and BGC 823 extracts by western blot, as well as in cardiomyocyte extracts. The cTnI mRNA expressions in SPCA-1 and BGC 823 cells were about ten thousand times less than that in cardiomyocytes. Our study shows for the first time that cTnI protein and mRNA were abnormally expressed in NSCLC tissues, SPCA-1 and BGC 823 cells. These findings challenge the conventional view of cTnI as a cardiac-specific protein, enabling the potential use of cTnI as a diagnostic marker or targeted therapy for cancer.

  5. Alpha-chaconine-reduced metastasis involves a PI3K/Akt signaling pathway with downregulation of NF-kappaB in human lung adenocarcinoma A549 cells.

    PubMed

    Shih, Yuan-Wei; Chen, Pin-Shern; Wu, Cheng-Hsun; Jeng, Ya-Fang; Wang, Chau-Jong

    2007-12-26

    Alpha-chaconine, isolated from Solanum tuberosum Linn., is a naturally occurring steroidal glycoalkaloid in potato sprouts. Some reports demonstrated that alpha-chaconine had various anticarcinogenic properties. The aim of this study is to investigate the inhibitory effect of alpha-chaconine on lung adenocarcinoma cell metastasis in vitro. We chose the highly metastatic A549 cells, which were treated with various concentrations of alpha-chaconine to clarify the potential of inhibiting A549 cells invasion and migration. Data showed that alpha-chaconine inhibited A549 cell invasion/migration according to wound healing assay and Boyden chamber assay. Our results also showed that alpha-chaconine could inhibit phosphorylation of c-Jun N-terminal kinase (JNK) and Akt, whereas it did not affected phosphorylation of extracellular signal regulating kinase (ERK) and p38. In addition, alpha-chaconine significantly decreased the nuclear level of nuclear factor kappa B (NF-kappaB) and the binding ability of NF-kappaB. These results suggested that alpha-chaconine inhibited A549 cell metastasis by a reduction of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) activities involving suppression of phosphoinositide 3-kinase/Akt/NF-kappaB (PI3K/Akt/NF-kappaB) signaling pathway. Inhibiting metastasis by alpha-chaconine might offer a pivotal mechanism for its effective chemotherapeutic action.

  6. Expression of cytochrome P450 2A13 in human non-small cell lung cancer and its clinical significance

    PubMed Central

    Sun, Li; Fan, Xiaoli

    2013-01-01

    Lung cancer is one of the most important causes of cancer-related mortality worldwide. Human cytochrome P450 2A13 enzyme (CYP2A13) is predominantly expressed in the respiratory tract and could catalyze various carcinogens. In this study, we quantified CYP2A13 expression in non-small cell lung cancer (NSCLC) tissues and examined the relation between CYP2A13 and clinicopathologic factors. Thirty-five paired lung cancer and normal tissues were studied for the expression of the CYP2A13 gene by using real-time PCR and Western blotting assays. We also investigated the relationship between CYP2A13 expression and clinicopathologic factors such as age, gender, histology and lymph node status in tumor tissues. SPSS (17.0) statistical software was applied for data analysis. The real-time PCR results showed that there was no significant difference in the CYP2A13 mRNA transcript levels between tumor and paired normal tissues in the 35 samples and in 12 paired squamous cell carcinomas. In adenocarcinoma, the expression of CYP2A13 mRNA in tumor tissues was 12.5% of that in adjacent tissues (P < 0.05) and it was not associated with age, gender, histology and lymph node status of the patients. The amounts of CYP2A13 proteins detected by Western blotting assays correlated well with those of the corresponding mRNAs. In conclusion, the expression of CYP2A13 was downregulated in lung adenocarcinoma. CYP2A13 may be involved in the development and progression of lung adenocarcinoma. PMID:23720675

  7. Suppression of reactive oxygen species-mediated ERK and JNK activation sensitizes dihydromyricetin-induced mitochondrial apoptosis in human non-small cell lung cancer.

    PubMed

    Kao, Shang-Jyh; Lee, Wei-Jiunn; Chang, Jer-Hwa; Chow, Jyh-Ming; Chung, Chi-Li; Hung, Wen-Yueh; Chien, Ming-Hsien

    2017-04-01

    Nonsmall cell lung cancer (NSCLC) is the most common type of lung cancer with a high mortality rate and still remains a therapeutic challenge. A strategy for targeting NSCLC is to identify agents that are effective against NSCLC cells while sparing normal cells. Dihydromyricetin (DHM) is the major flavonoid component derived from Ampelopsis grossedentata, which has a long history of use in medicine. Herein, the molecular mechanisms by which DHM exerts its anticancer effects against NSCLC cells were investigated. Results from MTS, colony formation, Western blot, flow cytometric, and JC-1 mitochondrial membrane potential assays revealed that DHM showed a selective cytotoxic effect against NSCLC cells (A549 and H1975), but not against normal lung (WI-38) fibroblasts, by inducing apoptosis. DHM-induced cell apoptosis occurred through Bcl-w suppression-mediated mitochondrial membrane depolarization, caspase-9/-7/-3 activation, and poly(ADP-ribose) polymerase (PARP) cleavage in A549 and H1975 cells. Moreover, treatment of A549 and H1975 cells with DHM induced increase of intracellular peroxide and sustained activation of extracellular signal-regulated kinase (ERK)1/2 and c-Jun N-terminal kinase (JNK)1/2, and the reactive oxygen species scavenger, N-acetylcysteine (NAC), reversed DHM-induced ERK and JNK activation. Furthermore, treatment of cells with specific inhibitors of ERK and JNK or NAC significantly promoted the DHM-induced activation of caspase-9/-7/-3 and PARP cleavage and also sensitized the antitumorigenic effect of DHM on NSCLC cells. These findings define and support a novel function of DHM of inducing mitochondrion-derived apoptosis in human NSCLC cells, and a combination of DHM with ERK and JNK inhibitors should be a good strategy for preventing NSCLC proliferation. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1426-1438, 2017.

  8. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    SciTech Connect

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.

  9. Comparative evaluation of antiproliferative activity and induction of apoptosis by some fluoroquinolones with a human non-small cell lung cancer cell line in culture.

    PubMed

    Mondal, E R; Das, S K; Mukherjee, P

    2004-01-01

    Lung cancer is the leading cause of cancer- related death in the world today. Since the effective management of drug resistant lung cancer, and particularly non-small cell lung carcinomas is a major problem, attempts need to be made to identify new potential anticancer drugs that can kill non-small cell lung cancer cells efficiently. In the present study, a human non-small cell lung carcinoma NCI-H460 cell line was used to evaluate the antiproliferative activity of Fluoroquinolones like Enoxacin, Norfloxacin, Ciprofloxacin and Levofloxacin. As determined by Sulphorodhamine B assay (SRB assay), all Fluoroquinolones caused cellular growth inhibition in a concentration and time-dependent manner. Enoxacin was found to be the most effective Fluoroquinolone followed by Norfloxacin, Ciprofloxacin and Levofloxacin. Growth inhibitory effects were also found to be independent of the concentrations of serum growth factors in culture medium or variation of initial cell seeding density and proved to be irreversible in nature. Appearance of rounded cells with altered morphology and cell surface blebbing indicated cell killing by apoptosis. Cell shrinkage, nuclear condensation & fragmentation, and cytoplasmic blebbing as indicated by MGG staining confirmed this to be the case. Thus, this investigation clearly demonstrated that the NCI-H460 human non-small cell lung carcinoma cell line is highly sensitive to Fluoroquinolone treatment. The Fluoroquinolones used in this study which are clinically used as antibacterial agents, can also inhibit tumor cell growth suggesting their potential use in a strategy for cancer treatment which might help in controlling cancer.

  10. Comparison of wood smoke PM2.5 obtained from the combustion of FIR and beech pellets on inflammation and DNA damage in A549 and THP-1 human cell lines.

    PubMed

    Corsini, Emanuela; Budello, Silvia; Marabini, Laura; Galbiati, Valentina; Piazzalunga, Andrea; Barbieri, Pierluigi; Cozzutto, Sergio; Marinovich, Marina; Pitea, Demetrio; Galli, Corrado L

    2013-12-01

    The aim of this study was to investigate the effect on the induction of interleukin-8 of particulate matter (PM) from fir and beech pellets burnt in domestic appliances on two human cells lines, namely the lung epithelial cell line A549 and the promyelocytic cell line THP-1. The effects of PM2.5 obtained from combustion of beech and fir pellets were compared to reference diesel exhaust particulates (DEP). In parallel, wood smoke PM-induced genotoxicity and oxidative stress were also investigated in A549 cells. Cells were treated for different times (3-72 h) with increasing concentrations of PM2.5 obtained from sequential combustions of fir and beech pellets or reference DEP. Cell viability was assessed by lactate dehydrogenase leakage, and the release of interleukin-8 or CXCL8 (IL-8) was measured to evaluate the pro-inflammatory effect. Oxidative stress was evaluated by the 5(6)-carboxy-2',7'dichlorofluorescein diacetate (DCFH-DA) assay and DNA damage by the alkaline comet assay and micronucleus frequency by flow cytometry. Both A549 and THP-1 cells responded in a dose- and time-related manner to wood smoke PM2.5 with IL-8 release, particles obtained from late combustions being the most active. THP-1 cells were more sensitive than A549 cells. On a mass base, similar effects were observed for both fir and beech PM2.5. However, the combustion of beech pellets generated approximately three times more PM2.5 than fir pellets. Regarding the mechanism of PM2.5 uptake, in both THP-1 and A549 cells, cytochalasin D prevented PM2.5-induced IL-8 mRNA expression and cytokine release, indicating a key role for actin polymerization in particles uptake and that the production of IL-8 correlated with particle phagocytosis. As signal transduction pathway involvement, in both THP-1 and A549 cells, PM2.5-induced IL-8 release could be completely blocked by the selective inhibitor SB203580, indicating a role of p38 MAPK activation. PM2.5 from both fir and beech pellets also induced

  11. Regulation of different components from Ophiopogon japonicus on autophagy in human lung adenocarcinoma A549Cells through PI3K/Akt/mTOR signaling pathway.

    PubMed

    Chen, Juan; Yuan, Jiarui; Zhou, Liqiang; Zhu, Maomao; Shi, Ziqi; Song, Jie; Xu, Qingyu; Yin, Guowen; Lv, You; Luo, Yi; Jia, Xiaobin; Feng, Liang

    2017-03-01

    Autophagy plays a dual role in the development of cancer, acting as both a tumor suppressor and a cell survival inducer. Ophiopogon japonicus (L.f) Ker-Gawl (OJ), as a traditional Chinese medicine, specially possesses remarkable anti-cancer activity in the clinical. Previously, studies have indicated that flavonoids (FOJ) and steroidal saponins (SSOJ) are the main active substances of OJ. However, the effects of FOJ and SSOJ on autophagy of A549 cells have not been fully elucidated. In this study, we found that the expressions of autophagy-related mediators (LC3-II/LC3-I ratio, Atg-3, Atg-7 and Beclin-1) were increased in A549 cells by the treatment with FOJ (7.9mg crude drug/mL) and SSOJ (12.2mg crude drug/mL). Meanwhile, FOJ or SSOJ could induce the up-regulation of LC3-II at both protein and mRNA levels. Moreover, we observed the cytoplasmic vaculoes which formed double-layered membranes and only some cytoplasmic organelles or myelin figures remained in FOJ or SSOJ-treated A549 cells for 24h by Transmission Electron Microscopy (TEM). Further detection about the PI3K/Akt/mTOR signaling pathway showed that the levels of PI3K, Akt and mTOR were significantly suppressed with the FOJ or SSOJ treatment. The 3-MA (an autophagy inhibitor) and LY294002 (a PI3K inhibitor) further confirmed the underlying mechanism in the FOJ or SSOJ-induced autophagy of A549 cells. Additionally, the pretreatment with FOJ and SSOJ increased the level of p53, whereas decreased the expression of Ki67. These findings suggested that FOJ or SSOJ could activate the autophagy of A549 cells, wherein the mechanism might be associated with their inhibition of PI3K/Akt/mTOR signaling pathway. Thus, FOJ or SSOJ could be a potential autophagy inducer to prevent the process of lung cancer.

  12. Minocycline enhances mitomycin C-induced cytotoxicity through down-regulating ERK1/2-mediated Rad51 expression in human non-small cell lung cancer cells.

    PubMed

    Ko, Jen-Chung; Wang, Tai-Jing; Chang, Po-Yuan; Syu, Jhan-Jhang; Chen, Jyh-Cheng; Chen, Chien-Yu; Jian, Yun-Ting; Jian, Yi-Jun; Zheng, Hao-Yu; Chen, Wen-Ching; Lin, Yun-Wei

    2015-10-01

    Minocycline is a semisynthetic tetracycline derivative; it has anti-inflammatory and anti-cancer effects distinct from its antimicrobial function. However, the molecular mechanism of minocycline-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination and high levels of Rad51 expression are observed in chemo- or radioresistant carcinomas. Our previous studies have shown that the MKK1/2-ERK1/2 signal pathway maintains the expression of Rad51 in NSCLC cells. In this study, minocycline treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1975. Treatment with minocycline decreased Rad51 mRNA and protein levels through MKK1/2-ERK1/2 inactivation. Furthermore, expression of constitutively active MKK1 (MKK1-CA) vectors significantly rescued the decreased Rad51 protein and mRNA levels in minocycline-treated NSCLC cells. However, combined treatment with MKK1/2 inhibitor U0126 and minocycline further decreased the Rad51 expression and cell viability of NSCLC cells. Knocking down Rad51 expression by transfection with small interfering RNA of Rad51 enhanced the cytotoxicity and cell growth inhibition of minocycline. Mitomycin C (MMC) is typically used as a first or second line regimen to treat NSCLC. Compared to a single agent alone, MMC combined with minocycline resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells, accompanied with reduced activation of phospho-ERK1/2, and reduced Rad51 protein levels. Overexpression of MKK1-CA or Flag-tagged Rad51 could reverse the minocycline and MMC-induced synergistic cytotoxicity. These findings may have implications for the rational design of future drug regimens incorporating minocycline and MMC for the treatment of NSCLC.

  13. Ginsenoside Rg3 sensitizes human non-small cell lung cancer cells to γ-radiation by targeting the nuclear factor-κB pathway.

    PubMed

    Wang, Lei; Li, Xiankui; Song, Yi-Min; Wang, Bin; Zhang, Fu-Rui; Yang, Rui; Wang, Hua-Qi; Zhang, Guo-Jun

    2015-07-01

    At present, it is elusive how non-small cell lung cancer (NSCLC) develops resistance to γ-radiation; however, the transcription factor nuclear factor-κB (NF-κB) and NF-κB-regulated gene products have been proposed as mediators. Ginsenoside Rg3 is a steroidal saponin, which was isolated from Panax ginseng. Ginsenoside Rg3 possesses high pharmacological activity and has previously been shown to suppress NF-κB activation in various types of tumor cell. Therefore, the present study aimed to determine whether Rg3 could suppress NF-κB activation in NSCLC cells and sensitize NSCLC to γ-radiation, using an NSCLC cell line and NSCLC xenograft. A clone formation assay and lung tumor xenograft experiment were used to assess the radiosensitizing effects of ginsenoside Rg3. NF-κB/inhibitor of NF-κB (IκB) modulation was ascertained using an electrophoretic mobility shift assay and western blot analysis. NF-κB-regulated gene products were monitored by western blot analysis. The present study demonstrated that ginsenoside Rg3 was able to sensitize A549 and H1299 lung carcinoma cells to γ-radiation and significantly enhance the efficacy of radiation therapy in C57BL/6 mice bearing a Lewis lung carcinoma cell xenograft tumor. Furthermore, ginsenoside Rg3 suppressed NF-κB activation, phosphorylation of IκB protein and expression of NF-κB-regulated gene products (cyclin D1, c-myc, B-cell lymphoma 2, cyclooxygenase-2, matrix metalloproteinase-9 and vascular endothelial growth factor), a number of which were induced by radiation therapy and mediate radioresistance. In conclusion, the results of the present study suggested that ginsenoside Rg3 may potentiate the antitumor effects of radiation therapy in NSCLC by suppressing NF-κB activity and NF-κB-regulated gene products, leading to the inhibition of tumor progression.

  14. Anticancer activity of Noscapine, an opioid alkaloid in combination with Cisplatin in human non-small cell lung cancer.

    PubMed

    Chougule, Mahavir; Patel, Apurva R; Sachdeva, Pratik; Jackson, Tanise; Singh, Mandip

    2011-03-01

    The purpose of this study was to examine the efficacy of Noscapine (Nos) and Cisplatin (Cis) combination treatment in vitro in A549 and H460 lung cancer cells, in vivo in murine xenograft model and to investigate the underlying mechanism. The combination index values (< 0.6) suggested synergistic effects of Nos+Cis and resulted in the highest increase in percentage of apoptotic NSCLC cells and increased expression of p53, p21, caspase 3, cleaved caspase 3, cleaved PARP, Bax, and decreased expression of Bcl₂ and surviving proteins compared with treatment with either agent. Nos+Cis treatment reduced tumor volume by 78.1 ± 7.5% compared with 38.2 ± 6.8% by Cis or 35.4 ± 6.9% by Nos alone in murine xenograft lung cancer model. Nos+Cis treatment decreased expression of pAkt, Akt, cyclin D1, survivin, PARP, Bcl₂, and increased expression of p53, p21, Bax, cleaved PARP, caspase 3, cleaved caspase 3, cleaved caspase 8, caspase 8, cleaved caspase 9 and caspase 9 compared to single-agent treated and control groups. Our results suggest that Nos enhanced the anticancer activity of Cis in an additive to synergistic manner by activating multiple signaling pathways including apoptosis. These findings suggest potential benefit for use of Nos and Cis combination in treatment of lung cancer.

  15. Functional expression of the voltage-gated Na⁺-channel Nav1.7 is necessary for EGF-mediated invasion in human non-small cell lung cancer cells.

    PubMed

    Campbell, Thomas M; Main, Martin J; Fitzgerald, Elizabeth M

    2013-11-01

    Various ion channels are expressed in human cancers where they are intimately involved in proliferation, angiogenesis, invasion and metastasis. Expression of functional voltage-gated Na(+) channels (Nav) is implicated in the metastatic potential of breast, prostate, lung and colon cancer cells. However, the cellular mechanisms that regulate Nav expression in cancer remain largely unknown. Growth factors are attractive candidates; they not only play crucial roles in cancer progression but are also key regulators of ion channel expression and activity in non-cancerous cells. Here, we examine the role of epidermal growth factor receptor (EGFR) signalling and Nav in non-small cell lung carcinoma (NSCLC) cell lines. We show unequivocally, that functional expression of the α subunit Nav1.7 promotes invasion in H460 NSCLC cells. Inhibition of Nav1.7 activity (using tetrodotoxin) or expression (by using small interfering RNA), reduces H460 cell invasion by up to 50%. Crucially, non-invasive wild type A549 cells lack functional Nav, whereas exogenous overexpression of the Nav1.7 α subunit is sufficient to promote TTX-sensitive invasion of these cells. EGF/EGFR signalling enhances proliferation, migration and invasion of H460 cells but we find that, specifically, EGFR-mediated upregulation of Nav1.7 is necessary for invasive behaviour in these cells. Examination of Nav1.7 expression at mRNA, protein and functional levels further reveals that EGF/EGFR signalling via the ERK1/2 pathway controls transcriptional regulation of channel expression to promote cellular invasion. Immunohistochemistry of patient biopsies confirms the clinical relevance of Nav1.7 expression in NSCLC. Thus, Nav1.7 has significant potential as a new target for therapeutic intervention and/or as a diagnostic or prognostic marker in NSCLC.

  16. Aspergillus fumigatus germ tube growth and not conidia ingestion induces expression of inflammatory mediator genes in the human lung epithelial cell line A549.

    PubMed

    Bellanger, Anne-Pauline; Millon, Laurence; Khoufache, Khaled; Rivollet, Danièle; Bièche, Ivan; Laurendeau, Ingrid; Vidaud, Michel; Botterel, Françoise; Bretagne, Stéphane

    2009-02-01

    Inhalation of conidia is the main cause of invasive pulmonary aspergillosis (IPA) and the respiratory epithelium is the first line of defence. To explore the triggering factor for the inflammatory response to Aspergillus fumigatus, the species mainly responsible for IPA, this study analysed the differential expression of three inflammatory genes in A549 cells after challenge with live and killed conidia. The influence of steroids, one of the main risk factors for developing IPA, was also investigated. Quantification of mRNAs of the inflammatory mediator genes encoding interleukin (IL)-8, tumour necrosis factor (TNF)-alpha and granulocyte-monocyte colony-stimulating factor (GM-CSF) was carried out using real-time PCR. Ingestion rates were studied for the conidia of A. fumigatus and Penicillium chrysogenum using a fluorescence brightener. Similar results were obtained for both species, with ingestion rates ranging from 35 to 40 %. Exposure of A549 cells to live A. fumigatus conidia only induced a four- to fivefold increase in the mRNA levels of the three genes, starting 8 h after the initial contact. Both inactivation of live A. fumigatus conidia and treatment by dexamethasone (10(-7) M) prevented the overexpression of TNF-alpha, IL-8 and GM-CSF. Fungal growth, rather than conidia ingestion, appears to be the main stimulus for the production of inflammatory mediators by epithelial cells, and this production is inhibited by steroid therapy. These results underline the role that the epithelium plays in the innate response against IPA.

  17. Overexpression of SAMD9 suppresses tumorigenesis and progression during non small cell lung cancer

    SciTech Connect

    Ma, Qing; Yu, Tao; Ren, Yao-Yao; Gong, Ting; Zhong, Dian-Sheng

    2014-11-07

    Highlights: • SAMD9 is down-regulated in human non-small cell lung cancer (NSCLC). • Knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro. • Overexpression of SAMD9 suppressed proliferation and invasion in A549 cells in vitro. • Depletion of SAMD9 increases tumor formation in vivo. - Abstract: The Sterile Alpha Motif Domain-containing 9 (SAMD9) gene has been recently emphasized during the discovery that it is expressed at a lower level in aggressive fibromatosis and some cases of breast and colon cancer, however, the underlying mechanisms are poorly understood. Here, we found that SAMD9 is down-regulated in human non-small cell lung cancer (NSCLC). Furthermore, knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro and overexpression of SAMD9 suppressed proliferation and invasion in A549 cells. Finally, depletion of SAMD9 increases tumor formation in vivo. Our results may provide a strategy for blocking NSCLC tumorigenesis and progression.

  18. Rubus idaeus L Inhibits Invasion Potential of Human A549 Lung Cancer Cells by Suppression Epithelial-to-Mesenchymal Transition and Akt Pathway In Vitro and Reduces Tumor Growth In Vivo.

    PubMed

    Chu, Shu-Chen; Hsieh, Yih-Shou; Hsu, Li-Sung; Chen, Kuo-Shuen; Chiang, Chien-Cheng; Chen, Pei-Ni

    2014-05-01

    The metastasis of lung cancer is the most prevalent cause of patient death. Various treatment strategies have targeted the prevention of the occurrence of metastasis. The epithelial-mesenchymal transition (EMT) in lung cancer cells is considered a prerequisite to acquire the invasive/migratory phenotype and to subsequently achieve metastasis. However, the effects ofRubus idaeuson cancer invasion and the EMT of the human lung carcinoma remain unclear. In this article, we test the hypothesis thatR idaeusethyl acetate (RIAE) possesses an antimetastatic effect and reverses the EMT potential of human lung A549 cells. We extract the raspberryR idaeuswith methanol (RIME), chloroform (RICE), ethyl acetate (RIAE),n-butanol (RIBE), and water (RIWE). The RIAE treatment obviously inhibits the invasive (P< .001), motility (P< .001), spreading, and migratory potential (P< .001) of highly metastatic human lung cancer A549 cells. The zymography and promoter luciferase analysis reveals that RIAE decreases the proteinase and transcription activities of MMP-2 and u-PA. Molecular analyses show that RIAE increases the E-cadherin level that is mainly localized at the cellular membrane. This result was also verified through confocal analyses. RIAE also induces the upregulation of an epithelial marker, such as α-catenin, and decreases mesenchymal markers, such as snail-1 and N-cadherin, that promote cell invasion and metastasis. RIAE inhibits MMP-2 and u-PA by attenuating the NF-κB and p-Akt expression. The inhibition of RIAE on the growth of A549 cells in vivo was also verified using a cancer cell xenograft nude mice model. Our results show the anti-invasive/antitumor effects of RIAE and associated mechanisms, which suggest that RIAE should be further tested in clinically relevant models to exploit its potential benefits against metastatic lung cancer cells.

  19. Polymeric Nanoparticles Containing Taxanes Enhance Chemoradiotherapeutic Efficacy in Non-small Cell Lung Cancer

    SciTech Connect

    Jung, Joohee; Park, Sung-Jin; Chung, Hye Kyung; Kang, Hye-Won; Lee, Sa-Won; Seo, Min Hyo; Park, Heon Joo; Song, Si Yeol; Jeong, Seong-Yun; Choi, Eun Kyung

    2012-09-01

    Purpose: To reduce the side effects and improve the efficacy of chemoradiation therapy, taxanes were incorporated into polymeric nanoparticles (PNP), and their synergic effect on radiation therapy in non-small cell lung cancer was evaluated. Methods and Materials: The properties of PNP-taxanes were characterized by transmission electron microscopy and dynamic light scattering. The chemoradiotherapeutic efficacy of PNP-taxanes was determined by clonogenic assay, cellular morphology, and flow cytometry in A549 cells. In mice bearing A549-derived tumors, the tumor growth delay was examined after the treatment of PNP-taxanes and/or ionizing radiation (IR). Results: The PNP-taxanes were found to be approximately 45 nm in average diameter and to have high solubility in water. They showed the properties of active internalization into cells and preserved the anticancer effect of free taxanes. The survival fraction of A549 cells by clonogenic assay was significantly reduced in the group receiving combined treatment of PNP-taxanes and IR. In addition, in vivo radiotherapeutic efficacy was markedly enhanced by the intravenous injection of PNP-taxanes into the xenograft mice. Conclusions: We have demonstrated the feasibility of PNP-taxanes to enhance the efficacy of chemoradiation therapy. These results suggest PNP-taxanes can hold an invaluable and promising position in treating human cancers as a novel and effective chemoradiation therapy agent.

  20. Silencing survivin expression inhibits the tumor growth of non-small-cell lung cancer cells in vitro and in vivo.

    PubMed

    Zhang, Kejian; Li, Yang; Liu, Wei; Gao, Xinliang; Zhang, Kewei

    2015-01-01

    Survivin is a promising anticancer therapeutic target due to its important role in the inhibition of apoptosis of tumor cells. However, little is currently known about its role in non small cell lung cancer (NSCLC). The present study evaluated whether the downregulation of survivin expression would affect cell proliferation, cell cycle distribution, apoptosis and colony formation of NSCLC. A recombinant lentiviral small hairpin RNA (shRNA) expression vector, which specifically targeted survivin, was constructed and transfected into the A549 human NSCLC cell line. Quantitative polymerase chain reaction and western blotting were used to determine the mRNA and protein expression levels of survivin, 48 h following the knockdown of survivin expression. Cell proliferation, apoptosis, cell cycle distribution and colony formation were determined following the downregulation of survivin by shRNA. In addition, A549 cells were injected into nude mice, and the effects of shRNA targeting the survivin gene on tumor growth were assessed. Downregulation of survivin expression, using the RNA silencing approach in A549 tumor cells, significantly suppressed the proliferation and colony formation ability of the cells, and induced tumor apoptosis in vitro. The nude mice inoculated with A549 cells developed cancer, and treatment with shRNA targeting survivin markedly inhibited the growth of these cancers, with no obvious side effects. The results of the present study suggest that suppression of survivin expression by RNA interference may induce NSCLC apoptosis, and provide a novel approach for anticancer gene therapy.

  1. STIP overexpression confers oncogenic potential to human non-small cell lung cancer cells by regulating cell cycle and apoptosis.

    PubMed

    Tang, Yani; Yan, Guobei; Song, Xin; Wu, Kuangpei; Li, Zhen; Yang, Chao; Deng, Tanggang; Sun, Yang; Hu, Xiaoxiao; Yang, Cai; Bai, Huarong; Li, Hui; Tan, Weihong; Ye, Mao; Liu, Jing

    2015-12-01

    Sip1/tuftelin-interacting protein (STIP), a multidomain nuclear protein, is a novel factor associated with the spliceosome, yet its role and molecular function in cancer remain unknown. In this study, we show, for the first time, that STIP is overexpressed in non-small cell lung cancer (NSCLC) tissues compared to adjacent normal lung tissues. The depletion of endogenous STIP inhibited NSCLC cell proliferation in vitro and in vivo, caused cell cycle arrest and induced apoptosis. Cell cycle arrest at the G2/M phase was associated with the expression and activity of the cyclin B1-CDK1 (cyclin-dependent kinase 1) complex. We also provide evidence that STIP knockdown induced apoptosis by activating both caspase-9 and caspase-3 and by altering the Bcl-2/Bax expression ratio. RNA sequencing data indicated that the MAPK mitogen-activated protein kinases, Wnt, PI3K/AKT, and NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) signalling pathways might be involved in STIP-mediated tumour regulation. Collectively, these results suggest that STIP may be a novel potential diagnostic and therapeutic target for NSCLC.

  2. Allelic imbalance and instability of microsatellite loci on chromosome 1p in human non-small-cell lung cancer.

    PubMed Central

    Gasparian, A. V.; Laktionov, K. K.; Belialova, M. S.; Pirogova, N. A.; Tatosyan, A. G.; Zborovskaya, I. B.

    1998-01-01

    The mapping of allelic loss on the short arm of chromosome 1 has been performed in non-small-cell lung cancer. We used a set of 11 microsatellite loci spanning 1p to examine the frequency of allelic imbalance in a panel of 58 tumours. Fifty-one of 58 (87.9%) cases have shown somatic allelic loss at one or more loci tested. The two shortest regions of the overlap (SRO) of the deletions have been identified: SRO 1 at 1p13.1 and SRO 2 at 1p32-pter. Allelic losses at these regions have been compared among adenocarcinoma and squamous cell carcinoma and no difference has been found. In contrast to SRO 1, deletions at SRO 2 significantly correlated with advanced stage of the disease as well as post-operative metastasizing and relapse. These data may suggest that SRO 1 and SRO 2 can harbour tumour-supressor genes (TSGs) involved in different stages of NSCLC development. SRO 2 is still quite large and its refined mapping should help attempts to clone and identify the putative TSG(s). Microsatellite instability (replication errors) affecting only 6 (10.3%) of 58 tumour samples is an infrequent genetic alteration at the loci tested. Images Figure 2 PMID:9635835

  3. Long noncoding RNA TCF7 promotes invasiveness and self-renewal of human non-small cell lung cancer cells.

    PubMed

    Wu, Jinhui; Wang, Dongshuang

    2017-01-01

    Lung cancer is the most common solid tumor and the leading cause of cancer-related death worldwide. Non-small cell lung cancer (NSCLC) represents the major histological subtype and accounts for about 80 % cases of lung cancer cases. Recently, lncRNA lncTCF7 was identified, which is highly expressed in hepatocellular carcinoma (HCC) tumors and liver cancer stem cells (CSCs). However, the role of lnTCF7 in NSCLC remains largely unknown. In this study, Gain- and loss-of-function studies demonstrated the critical role of lncTCF7 in promoting invasion and self-renewal in NSCLC cells. We showed that lncTCF7 increased slug expression to promote the invasive capability of NSCLC cells and upregulated EpCAM expression to promote the self-renewal. Collectively, these findings provide new insights into the potential role of lncTCF7 upregulation in NSCLC metastasis and suggest a promising potential to suppress lncTCF7 for NSCLC patients.

  4. Elevated expression of USP9X correlates with poor prognosis in human non-small cell lung cancer

    PubMed Central

    Wang, You; Liu, Yu; Yang, Bo; Cao, Hong; Yang, Chun-Xu; Ouyang, Wen; Zhang, Shi-Min; Yang, Gui-Fang; Zhou, Fu-Xiang; Zhou, Yun-Feng

    2015-01-01

    Background The aim of this study was to investigate the expression of ubiquitin-specific peptidase 9, X-linked (USP9X) in non-small cell lung cancer (NSCLC) patients and to evaluate the relevance of USP9X expression to tumor prognosis. Methods Ninety-five patients who underwent surgical resection for clinical stage I-IIIA NSCLC between July 2008 and July 2011 were included in this study. Immunohistochemical analysis of USP9X expression was performed on 95 NSCLC tissues and 32 adjacent normal lung parenchymal tissues from these patients. The Chi-squared test was used to compare the clinicopathological characteristics between different groups. Kaplan-Meier analysis and a Cox regression model were used to determine the independent prognostic factors. A P value <0.05 was considered to be significant. Results The expression of USP9X was found to be significantly higher in NSCLC tissue (44.2%) than in adjacent normal lung parenchymal tissue (6.3%) (P<0.001). High USP9X expression was significantly associated with positive lymph node metastasis (P<0.001), clinical stage (P<0.001) and a reduced overall survival rate (P=0.001) in patients with NSCLC. Based on the multivariate analysis, the elevated expression of the USP9X protein was a significant predictor of poor prognosis for NSCLC patients (HR =2.244, P=0.028). Conclusions The current study demonstrated that the expression of USP9X in NSCLC tissue was significantly higher than that in normal lung tissue and that this elevated expression level of USP9X was associated with poor prognosis among NSCLC patients, suggesting that USP9X might serve as a prognostic biomarker for NSCLC. PMID:25973233

  5. Non-small-cell lung cancer-induced immunosuppression by increased human regulatory T cells via Foxp3 promoter demethylation.

    PubMed

    Ke, Xing; Zhang, Shuping; Xu, Jian; Liu, Genyan; Zhang, Lixia; Xie, Erfu; Gao, Li; Li, Daqian; Sun, Ruihong; Wang, Fang; Pan, Shiyang

    2016-05-01

    Patients with non-small-cell lung cancer (NSCLC) have immune defects that are poorly understood. Forkhead box protein P3 (Foxp3) is crucial for immunosuppression by CD4(+) regulatory T cells (Tregs). It is not well known how NSCLC induces Foxp3 expression and causes immunosuppression in tumor-bearing patients. Our study found a higher percentage of CD4(+) Tregs in the peripheral blood of NSCLC compared with healthy donors. NSCLC patients showed demethylation of eight CpG sites within the Foxp3 promoter with methylation ratios negatively correlated with CD4(+)CD25(+)Foxp3(+) T levels. Foxp3 expression in CD4(+) Tregs was directly regulated by Foxp3 promoter demethylation and was involved in immunosuppression by NSCLC. To verify the effect of tumor cells on the phenotype and function of CD4(+) Tregs, we established a coculture system using NSCLC cell line and healthy CD4(+) T cells and showed that SPC-A1 induced IL-10 and TGF-β1 secretion by affecting the function of CD4(+) Tregs. The activity of DNA methyltransferases from CD4(+) T was decreased during this process. Furthermore, eight CpG sites within the Foxp3 promoter also appeared to have undergone demethylation. Foxp3 is highly expressed in CD4(+) T cells, and this may be caused by gene promoter demethylation. These induced Tregs are highly immunosuppressive and dramatically inhibit the proliferative activity of naïve CD4(+) T cells. Our study provides one possible mechanism describing Foxp3 promoter demethylation changes by which NSCLC down-regulates immune responses and contributes to tumor progression. Foxp3 represents an important target for NSCLC anti-tumor immunotherapy.

  6. Honokiol inhibits EMT-mediated motility and migration of human non-small cell lung cancer cells in vitro by targeting c-FLIP

    PubMed Central

    Lv, Xiao-qin; Qiao, Xin-ran; Su, Ling; Chen, Shu-zhen

    2016-01-01

    Aim: Honokiol (HNK) is a natural compound isolated from the magnolia plant with numerous pharmacological activities, including inhibiting epithelial-mesenchymal transition (EMT), which has been proposed as an attractive target for anti-tumor drugs to prevent tumor migration. In this study we investigated the effects of HNK on EMT in human NSCLC cells in vitro and the related signaling mechanisms. Methods: TNF-α (25 ng/mL) in combination with TGF-β1 (5 ng/mL) was used to stimulate EMT of human NSCLC A549 and H460 cells. Cell proliferation was analyzed using a sulforhodamine B assay. A wound-healing assay and a transwell assay were performed to examine cell motility. Western blotting was used to detect the expression levels of relevant proteins. siRNAs were used to knock down the gene expression of c-FLIP and N-cadherin. Stable overexpression of c-FLIP L (H157-FLIP L) or Lac Z (H157-Lac Z) was also performed. Results: Treatment with TNF-α+TGF-β1 significantly enhanced the migration of A549 and H460 cells, increased c-FLIP, N-cadherin (a mesenchymal marker), snail (a transcriptional modulator) and p-Smad2/3 expression, and decreased IκB levels in the cells; these changes were abrogated by co-treatment with HNK (30 μmol/L). Further studies demonstrated that expression level of c-FLIP was highly correlated with the movement and migration of NSCLC cells, and the downstream effectors of c-FLIP signaling were NF-κB signaling and N-cadherin/snail signaling, while Smad signaling might lie upstream of c-FLIP. Conclusion: HNK inhibits EMT-mediated motility and migration of human NSCLC cells in vitro by targeting c-FLIP, which can be utilized as a promising target for cancer therapy, while HNK may become a potential anti-metastasis drug or lead compound. PMID:27593221

  7. Vitamin A (retinol) downregulates the receptor for advanced glycation endproducts (RAGE) by oxidant-dependent activation of p38 MAPK and NF-kB in human lung cancer A549 cells.

    PubMed

    de Bittencourt Pasquali, Matheus Augusto; Gelain, Daniel Pens; Zeidán-Chuliá, Fares; Pires, André Simões; Gasparotto, Juciano; Terra, Silvia Resende; Moreira, José Cláudio Fonseca

    2013-04-01

    As an essential component of the diet, retinol supplementation is often considered harmless and its application is poorly controlled. However, recent works demonstrated that retinol may induce a wide array of deleterious effects, especially when doses used are elevated. Controlled clinical trials have demonstrated that retinol supplementation increased the incidence of lung cancer and mortality in smokers. Experimental works in cell cultures and animal models showed that retinol may induce free radical production, oxidative stress and extensive biomolecular damage. Here, we evaluated the effect of retinol on the regulation of the receptor for advanced glycation end-products (RAGE) in the human lung cancer cell line A549. RAGE is constitutively expressed in lungs and was observed to be down-regulated in lung cancer patients. A549 cells were treated with retinol doses reported as physiologic (2 μM) or therapeutic (5, 10 or 20 μM). Retinol at 10 and 20 μM increased free radical production, oxidative damage and antioxidant enzyme activity in A549 cells. These doses also downregulated RAGE expression. Antioxidant co-treatment with Trolox®, a hydrophilic analog of α-tocopherol, reversed the effects of retinol on oxidative parameters and RAGE downregulation. The effect of retinol on RAGE was mediated by p38 MAPK activation, as blockade of p38 with PD169316 (10 μM), SB203580 (10 μM) or siRNA to either p38α (MAPK14) or p38β (MAPK11) reversed the effect of retinol on RAGE. Trolox also inhibited p38 phosphorylation, indicating that retinol induced a redox-dependent activation of this MAPK. Besides, we observed that NF-kB acted as a downstream effector of p38 in RAGE downregulation by retinol, as NF-kB inhibition by SN50 (100 μg/mL) and siRNA to p65 blocked the effect of retinol on RAGE, and p38 inhibitors reversed NF-kB activation. Taken together, our results indicate a pro-oxidant effect of retinol on A549 cells, and suggest that modulation of RAGE expression by

  8. Sp1 inhibition-mediated upregulation of VEGF 165 b induced by rh-endostatin enhances antiangiogenic and anticancer effect of rh-endostatin in A549.

    PubMed

    Li, Zhen-yu; Zhu, Fang; Hu, Jian-li; Peng, Gang; Chen, Jing; Zhang, Sheng; Chen, Xu; Zhang, Rui-guang; Chen, Ling-juan; Liu, Pian; Luo, Ming; Sun, Zhi-hua; Ren, Jing-hua; Huang, Li-li; Wu, Gang

    2011-08-01

    Recombinant human endostatin (rh-endostatin), a potential antiangiogenic agent, is used in non-small cell lung carcinoma treatment and represses vascular endothelial cell growth factor (VEGF) levels in tumor cell. However, precise affection of rh-endostatin on the proangiogenic VEGF isoforms (VEGF(165)) or antiangiogenic VEGF isoforms (VEGF(165)b) is not clear. We therefore tested the hypothesis that rh-endostatin could alter expression of these isoforms to regulate tumor growth. A549 cells were exposed to rh-endostatin, and the expression of VEGF(165) and VEGF(165)b was detected. The role of SP1 as a regulator of isoform expression was investigated. We then examined the anticancer and antiangiogenic efficacy of rh-endostatin in combination with exogenous VEGF(165)b against A549 cells, EA.HY 926 cells and xenograft model of human lung cancer. rh-Endostatin reduced VEGF(165) and induced VEGF(165)b as well as inhibited SP1 in A549 cells. SP1 inhibitor (betulinic acid) also developed those changes. VEGF(165)b-rh-endostatin combination was highly synergistic and inhibited growth, survival, and migration of A549 cells, VEGF-mediated VEGFR2 phosphorylation in EA.HY 926 cells, and tumor growth in xenograft model of human lung cancer. rh-Endostatin downregulates proangiogenic vascular endothelial growth factor A (VEGFA) isoform and upregulates antiangiogenic VEGFA isoform, possibly through inhibition of SP1. Furthermore, VEGF(165)b sensitizes A549 to rh-endostatin treatment and enhances the anticancer effect of rh-endostatin.

  9. Effect of Paclitaxel-Mesoporous Silica Nanoparticles with a Core-Shell Structure on the Human Lung Cancer Cell Line A549

    NASA Astrophysics Data System (ADS)

    Wang, Tieliang; Liu, Ying; Wu, Chao

    2017-01-01

    A nanodrug delivery system of paclitaxel-mesoporous silica nanoparticles with a core-shell structure (PAC-csMSN) was used to increase the dissolution of paclitaxel (PAC) and improve its treatment of lung cancer. PAC was loaded into the core-shell mesoporous silica nanoparticles (csMSN) by the adsorption equilibrium method and was in an amorphous state in terms of its mesoporous structure. In vitro and in vivo studies showed that csMSN increased the dissolution rate of PAC and improved its lung absorption. The area under concentration-time curve (AUC) value of PAC-csMSN used for pulmonary delivery in rabbits was 2.678-fold higher than that obtained with the PAC. After continuous administration for 3 days, a lung biopsy showed no signs of inflammation. Cell apoptosis results obtained by flow cytometry indicated that PAC-csMSN was more potent than pure PAC in promoting cell apoptosis. An absorption investigation of PAC-csMSN in A549 cells was carried out by transmission electron microscopy (TEM) and laser scanning confocal microscopy (LSCM). The obtained results indicated that the cellular uptake was time-dependent and csMSN was uptaken into the cytoplasm. All these results demonstrate that csMSN have the potential to achieve pulmonary inhalation administration of poorly water-soluble drugs for the treatment of lung cancer.

  10. Green tea induces annexin-I expression in human lung adenocarcinoma A549 cells: involvement of annexin-I in actin remodeling.

    PubMed

    Lu, Qing-Yi; Jin, Yu Sheng; Zhang, Zuo-Feng; Le, Anh D; Heber, David; Li, Frederick P; Dubinett, Steven M; Rao, Jian Yu

    2007-05-01

    Green tea polyphenols exhibit multiple antitumor activities in various in vitro and in vivo tumor models, and the mechanisms of action are not clear. Previously, we found that green tea extract (GTE) regulates actin remodeling in different cell culture systems. Actin remodeling plays an important role in cancer cell morphology, cell adhesion, motility, and invasion. Using proteomic approaches, we found GTE-induced expression of annexin-I, a multifunctional actin binding protein, in these cell lines. In this study, we aimed to further define the functional role of GTE-induced annexin-I expression in actin remodeling, cell adhesion, and motility in lung adenocarcinoma A549 cells. We found that GTE stimulates the expression of annexin-I in a dose-dependent fashion. The GTE-induced annexin-I expression appears to be at the transcription level, and the increased annexin-I expression mediates actin polymerization, resulting in enhanced cell adhesion and decreased motility. Annexin-I specific interference resulted in loss of GTE-induced actin polymerization and cell adhesion, but not motility. In fact, annexin-I specific interference itself inhibited motility even without GTE. Together, annexin-I plays an important role in GTE-induced actin remodeling, and it may serve as a potential molecular target associated with the anticancer activities of green tea.

  11. Gracilaria edulis exhibit antiproliferative activity against human lung adenocarcinoma cell line A549 without causing adverse toxic effect in vitro and in vivo.

    PubMed

    Sakthivel, Ravi; Muniasamy, Samuthirapandi; Archunan, Govindaraju; Devi, Kasi Pandima

    2016-02-01

    In the present study, the antiproliferative potential of various solvent extracts of Gracilaria edulis (GE) was tested against various cancer cell lines. In the A549 lung cancer cell line model, GE ethyl acetate extract (GEEA) (100 μg mL(-1)) treated group showed the maximum and significant (P < 0.05) growth inhibition at 48 h. The IC50 value was found to be 24.5 ± 19.1 μg mL(-1) at 48 h. Moreover, a low level of LDH release was observed at 48 h at various concentrations of (40, 60, 80 and 100 μg mL(-1)) GEEA extract-treated group compared to a control group. Changes in the cell morphology and echinoid spikes formation were observed at 48 h. Safety evaluation of GEEA in a non-cancerous liver cell line, PBMC and in Wistar rats positively revealed that the extract did not show any adverse toxic effects. The GEEA extract was partially purified by column chromatography and the active fraction was characterized through LC-MS analysis. Furthermore, HPLC and FT-IR analysis of the active fractions confirmed the presence of phytol, a diterpene compound with potent antiproliferative activity, which positively suggests that the red alga G. edulis contains a potent anticancer active principle.

  12. Irciniastatin A induces potent and sustained activation of extracellular signal-regulated kinase and thereby promotes ectodomain shedding of tumor necrosis factor receptor 1 in human lung carcinoma A549 cells.

    PubMed

    Quach, Hue Tu; Hirano, Seiya; Fukuhara, Sayuri; Watanabe, Tsubasa; Kanoh, Naoki; Iwabuchi, Yoshiharu; Usui, Takeo; Kataoka, Takao

    2015-01-01

    Irciniastatin A is a pederin-type marine product that potently inhibits translation. We have recently shown that irciniastatin A induces ectodomain shedding of tumor necrosis factor (TNF) receptor 1 with slower kinetics than other translation inhibitors. In human lung carcinoma A549 cells, irciniastatin A induced a marked and sustained activation of extracellular signal-regulated kinase (ERK) and induced little activation of p38 mitogen-activated protein (MAP) kinase and c-Jun N-terminal kinase (JNK). Moreover, the TNF receptor 1 shedding induced by irciniastatin A was blocked by the MAP kinase/ERK kinase inhibitor U0126, but not by the p38 MAP kinase inhibitor SB203580 or the JNK inhibitor SP600125. Thus unlike other translation inhibitors that trigger ribotoxic stress response, our results show that irciniastatin A is a unique translation inhibitor that induces a potent and sustained activation of the ERK pathway, and thereby promotes the ectodomain shedding of TNF receptor 1 in A549 cells.

  13. Autocrine activity of BDNF induced by the STAT3 signaling pathway causes prolonged TrkB activation and promotes human non-small-cell lung cancer proliferation

    PubMed Central

    Chen, Bo; Liang, Yan; He, Zheng; An, Yunhe; Zhao, Weihong; Wu, Jianqing

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin superfamily, which has been implicated in the pathophysiology of the nervous system. Recently, several studies have suggested that BDNF and/or its receptor, tropomyosin related kinase B (TrkB), are involved in tumor growth and metastasis in several cancers, including prostate cancer, neuroblastoma, pancreatic ductal carcinoma, hepatocellular carcinoma, and lung cancer. Despite the increasing emphasis on BDNF/TrkB signaling in human tumors, how it participates in primary tumors has not yet been determined. Additionally, little is known about the molecular mechanisms that elicit signaling downstream of TrkB in the progression of non-small-cell lung cancer (NSCLC). In this study, we report the significant expression of BDNF in NSCLC samples and show that BDNF stimulation increases the synthesis of BDNF itself through activation of STAT3 in lung cancer cells. The release of BDNF can in turn activate TrkB signaling. The activation of both TrkB and STAT3 contribute to downstream signaling and promote human non-small-cell lung cancer proliferation. PMID:27456333

  14. Multifunctional gold nanocomposites designed for targeted CT/MR/optical trimodal imaging of human non-small cell lung cancer cells

    NASA Astrophysics Data System (ADS)

    Chen, Jingwen; Sun, Yingqi; Chen, Qian; Wang, Le; Wang, Suhe; Tang, Yun; Shi, Xiangyang; Wang, Han

    2016-07-01

    Multifunctional gold nanocomposites, which were designed as dendrimer-entrapped gold nanoparticles functionalized with gadolinium, cyanine dye (Cy5.5), and folic acid, were synthesized to be used as the first dendrimer-based clinical nanoprobes for targeted X-ray computed tomography/magnetic resonance/optical trimodal imaging in vitro and in vivo of human non-small cell cancer cells.Multifunctional gold nanocomposites, which were designed as dendrimer-entrapped gold nanoparticles functionalized with gadolinium, cyanine dye (Cy5.5), and folic acid, were synthesized to be used as the first dendrimer-based clinical nanoprobes for targeted X-ray computed tomography/magnetic resonance/optical trimodal imaging in vitro and in vivo of human non-small cell cancer cells. Electronic supplementary information (ESI) available: Synthesis and characterization data of the nanoprobes; biocompatibility results; confirmation of the tumor cell uptake of the nanoprobes in vitro and in vivo; biodistribution results in vivo. See DOI: 10.1039/c6nr03143a

  15. CCL21/CCR7 up-regulate vascular endothelial growth factor-D expression via ERK pathway in human non-small cell lung cancer cells.

    PubMed

    Sun, Limei; Zhang, Qingfu; Li, Yang; Tang, Na; Qiu, Xueshan

    2015-01-01

    Lymphangiogenesis has received considerable attention and become a new research hotspot of tumor metastasis. Recently, C-C chemokine receptor 7 (CCR7) is known to promote metastasis of non-small cell lung cancer (NSCLC) cells into lymph nodes. In this study, we investigated the relationship between CCL21/CCR7 and the lymphangiogenic factor vascular endothelial growth factor (VEGF)-D in human lung cancer cells and its impact on patients' prognosis. We found that CCL21/CCR7 increase the expression of VEGF-D in NSCLC Cell Lines through induced ERK1/2 and Akt phosphorylation. In addition, our study found that the expression levels of CCR7 and CCL21 were correlated with VEGF-D, lymphatic vessels density (LVD), clinical stages, lymph node metastasis, and patient Survival in 90 human non-small cell lung cancer (NSCLC) specimens. Taken together, our results provide evidence that CCL21/CCR7 induce VEGF-D up-regulation and promote lymphangiogenesis via ERK/Akt pathway in lung cancer.

  16. In vivo-in vitro comparison of acute respiratory tract toxicity using human 3D airway epithelial models and human A549 and murine 3T3 monolayer cell systems.

    PubMed

    Sauer, Ursula G; Vogel, Sandra; Hess, Annemarie; Kolle, Susanne N; Ma-Hock, Lan; van Ravenzwaay, Bennard; Landsiedel, Robert

    2013-02-01

    The usefulness of in vitro systems to predict acute inhalation toxicity was investigated. Nineteen substances were tested in three-dimensional human airway epithelial models, EpiAirway™ and MucilAir™, and in A549 and 3T3 monolayer cell cultures. IC(50) values were compared to rat four-hour LC(50) values classified according to EPA and GHS hazard categories. Best results were achieved with a prediction model distinguishing toxic from non-toxic substances, with satisfactory specificities and sensitivities. Using a self-made four-level prediction model to classify substances into four in vitro hazard categories, in vivo-in vitro concordance was mediocre, but could be improved by excluding substances causing pulmonary edema and emphysema in vivo. None of the test systems was outstanding, and there was no evidence that tissue or monolayer systems using respiratory tract cells provide an added value. However, the test systems only reflected bronchiole epithelia and alveolar cells and investigated cytotoxicity. Effects occurring in other cells by other mechanisms could not be recognised. Further work should optimise test protocols and expand the set of substances tested to define applicability domains. In vivo respiratory toxicity data for in vitro comparisons should distinguish different modes of action, and their relevance for human health effects should be ensured.

  17. Modulation of intrinsic in vitro resistance to carboplatin by edatrexate in the A549 human nonsmall cell lung cancer cell line.

    PubMed

    Perez, E A; Hack, F M; Fletcher, T S; Chou, T C

    1994-01-01

    Edatrexate (10-ethyl-deazaaminopterin) is a methotrexate analog that has been shown to have greater antitumor activity and improved therapeutic index compared to its parent compound in preclinical systems. We have evaluated the ability of edatrexate to modulate the intrinsic resistance of the lung adenocarcinoma A549 cell line to carboplatin. Concentration effects, exposure time and schedule dependence were assessed. Modulation of resistance was observed with edatrexate treatment (0.2 microM for 1 h) prior to carboplatin. The concentrations of carboplatin to achieve IC50 at the 1-, 3-, and 24-h IC50 were decreased by a mean of 16.8 times (12.2-22.2) with edatrexate preexposure. In contrast, there was little modulation observed of carboplatin resistance when carboplatin was administered prior to edatrexate. In addition, schedule dependency experiments were performed using the method described by Chou and Talalay, in which the ratio of carboplatin to edatrexate was constant or nonconstant, and both the potency of effects and the shapes of the concentration-effect curves were taken into account in a computerized analysis. These experiments also demonstrated schedule dependency. Although both treatments resulted in a reduced IC50 vs. carboplatin alone, the reduction was much greater when edatrexate was added first (12.59 vs. 2.59 times). We conclude that the combination of edatrexate and carboplatin demonstrates schedule-dependent modulation of intrinsic carboplatin resistance in this in vitro model at clinically achievable edatrexate plasma levels (0.01 to 10 microM). The greatest modulatory synergism was observed in the setting of edatrexate treatment before carboplatin. Our findings suggest a potentially useful schedule when combining edatrexate and carboplatin for the treatment of malignant disease.

  18. Induction of human microsomal prostaglandin E synthase 1 by activated oncogene RhoA GTPase in A549 human epithelial cancer cells

    SciTech Connect

    Choi, Hye Jin; Lee, Dong-Hyung; Park, Seong-Hwan; Kim, Juil; Do, Kee Hun; An, Tae Jin; Ahn, Young Sup; Park, Chung Berm; Moon, Yuseok

    2011-09-30

    Highlights: {yields} As a target of oncogene RhoA-linked signal, a prostaglandin metabolism is assessed. {yields} RhoA activation increases PGE{sub 2} levels and its metabolic enzyme mPGES-1. {yields} RhoA-activated NF-{kappa}B and EGR-1 are positively involved in mPGES-1 induction. -- Abstract: Oncogenic RhoA GTPase has been investigated as a mediator of pro-inflammatory responses and aggressive carcinogenesis. Among the various targets of RhoA-linked signals, pro-inflammatory prostaglandin E{sub 2} (PGE{sub 2}), a major prostaglandin metabolite, was assessed in epithelial cancer cells. RhoA activation increased PGE{sub 2} levels and gene expression of the rate-limiting PGE{sub 2} producing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase 1 (mPGES-1). In particular, human mPGES-1 was induced by RhoA via transcriptional activation in control and interleukin (IL)-1{beta}-activated cancer cells. To address the involvement of potent signaling pathways in RhoA-activated mPGES-1 induction, various signaling inhibitors were screened for their effects on mPGES-1 promoter activity. RhoA activation enhanced basal and IL-1{beta}-mediated phosphorylated nuclear factor-{kappa}B and extracellular signal-regulated kinase1/2 proteins, all of which were positively involved in RhoA-induced gene expression of mPGES-1. As one potent down-stream transcription factor of ERK1/2 signals, early growth response gene 1 product also mediated RhoA-induced gene expression of mPGES-1 by enhancing transcriptional activity. Since oncogene-triggered PGE{sub 2} production is a critical modulator of epithelial tumor cells, RhoA-associated mPGES-1 represents a promising chemo-preventive or therapeutic target for epithelial inflammation and its associated cancers.

  19. Griffipavixanthone from Garcinia oblongifolia champ induces cell apoptosis in human non-small-cell lung cancer H520 cells in vitro.

    PubMed

    Shi, Jun-Min; Huang, Hui-Juan; Qiu, Sheng-Xiang; Feng, Shi-Xiu; Li, Xu-E

    2014-01-27

    Griffipavixanthone (GPX) is a dimeric xanthone which was isolated in a systematic investigation of Garcinia oblongifolia Champ. In this study, we investigate the effect of GPX on cell proliferation and apoptosis on human Non-small-cell lung cancer (NSCLC) cells in vitro and determine the mechanisms of its action. GPX inhibited the growth of H520 cells in dose- and time-dependent manners, with IC50 values of 3.03 ± 0.21 μM at 48 h. The morphologic characteristics of apoptosis and apoptotic bodies were observed by fluorescence microscope and transmission electron microscope. In addition, Annexin V/PI double staining assay revealed that cells in early stage of apoptosis were significantly increased upon GPX treatment dose-dependently. Rh123 staining assay indicated that GPX reduced the mitochondrial membrane potential. DCFH-DA staining revealed that intracellular ROS increased with GPX treatment. Moreover, GPX cleaved and activated caspase-3. In summary, this study showed that GPX inhibited H520 cell proliferation in dose- and time-dependent manner. Further mechanistic study indicated that GPX induced cell apoptosis through mitochondrial apoptotic pathway accompanying with ROS production. Our results demonstrate the potential application of GPX as an anti-non-small cell lung cancer agent.

  20. The apoptotic effect of 1’S-1’-Acetoxychavicol Acetate (ACA) enhanced by inhibition of non-canonical autophagy in human non-small cell lung cancer cells

    PubMed Central

    Sok, Sophia P. M.; Arshad, Norhafiza M.; Azmi, Mohamad Nurul; Awang, Khalijah; Ozpolat, Bulent

    2017-01-01

    Autophagy plays a role in deciding the fate of cells by inducing either survival or death. 1’S-1-acetoxychavicol acetate (ACA) is a phenylpropanoid isolated from rhizomes of Alpinia conchigera and has been reported previously on its apoptotic effects on various cancers. However, the effect of ACA on autophagy remains ambiguous. The aims of this study were to investigate the autophagy-inducing ability of ACA in human non-small cell lung cancer (NSCLC), and to determine its role as pro-survival or pro-death mechanism. Cell viability assay was conducted using MTT. The effect of autophagy was assessed by acridine orange staining, GFP-LC3 punctate formation assay, and protein level were analysed using western blot. Annexin V-FITC/PI staining was performed to detect percentage of cells undergoing apoptosis by using flow cytometry. ACA inhibits the cell viability and induced formation of cytoplasmic vacuoles in NSCLC cells. Acidic vesicular organelles and GFP-LC3 punctate formation were increased in response to ACA exposure in A549 and SK-LU-1 cell lines; implying occurrence of autophagy. In western blot, accumulation of LC3-II accompanied by degradation of p62 was observed, which further confirmed the full flux of autophagy induction by ACA. The reduction of Beclin-1 upon ACA treatment indicated the Beclin-1-independent autophagy pathway. An early autophagy inhibitor, 3-methyaldenine (3-MA), failed to suppress the autophagy triggered by ACA; validating the existence of Beclin-1-independent autophagy. Silencing of LC3-II using short interfering RNA (siRNA) abolished the autophagy effects, enhancing the cytotoxicity of ACA through apoptosis. This proposed ACA triggered a pro-survival autophagy in NSCLC cells. Consistently, co-treatment with lysosomal inhibitor, chloroquine (CQ), exerted a synergistic effect resulting in apoptosis. Our findings suggested ACA induced pro-survival autophagy through Beclin-1-independent pathway in NSCLC. Hence, targeting autophagy pathway

  1. ∆Np73beta induces caveolin-1 in human non-small cell lung cancer cell line H1299.

    PubMed

    Caiola, Elisa; Marrazzo, Eleonora; Alesci, Simona; Broggini, Massimo; Marabese, Mirko

    2016-02-01

    Caveolins have recently attracted attention for their possible involvement in signal transduction. Their role in cancer is debated, being reported both a suppressive and oncogenic role in different experimental conditions. Caveolin-1 is regulated by the tumor suppressor p53 which is able to bind its promoter and activate transcription. We had previous evidences indicating that a specific p73 isoform, namely ∆Np73β, when overexpressed in NCI-H1299 induced growth arrest and cell death. By gene expression analysis in cell transiently overexpressed with ∆Np73β, a strong induction of caveolin-1 was found. Caveolin was induced both at mRNA and protein level, and we characterised the promoter sequence of the gene encoding for caveolin-1 and found that the promoter region containing the putative p53 (and hence p73) binding sequence was responsive to ∆Np73β, but not to ∆Np73α and ∆Np73γ which do not induce growth arrest as ∆Np73β does. A reduction in cell adhesion was observed in ∆Np73β overexpressing cells, again supporting a possible role of caveolins in determining these effects. By using specific siRNA directed against human caveolin-1, we could not however antagonize the effects induced by ∆Np73β. Although caveolin-1 represents one of the genes whose expression is strongly activated by ∆Np73β, we could not define a role of caveolin-1 as a mediator of ∆Np73β associated growth arrest. It could well be that the expression of caveolin-1 is able to mediate other activities of ∆Np73β, and studies are in progress to determine whether its expression is mainly associated to metastatic spread.

  2. Hyperthermia in the febrile range induces HSP72 expression proportional to exposure temperature but not to HSF-1 DNA-binding activity in human lung epithelial A549 cells.

    PubMed

    Tulapurkar, Mohan E; Asiegbu, Benedict E; Singh, Ishwar S; Hasday, Jeffrey D

    2009-09-01

    Expression of heat shock proteins (HSPs) is classically activated at temperatures above the physiologic range (>or=42 degrees C) via activation of the stress-activated transcription factor, heat shock factor-1 (HSF-1). Several studies suggest that less extreme hyperthermia, especially within the febrile range, as occurs during fever and exertional/environmental hyperthemia, can also activate HSF-1 and enhance HSP expression. We compared HSP72 protein and mRNA expression in human A549 lung epithelial cells continuously exposed to 38.5 degrees C, 39.5 degrees C, or 41 degrees C or exposed to a classic heat shock (42 degrees C for 2 h). We found that expression of HSP72 protein and mRNA increased linearly as incubation temperature was increased from 37 degrees C to 41 degrees C, but increased abruptly when the incubation temperature was raised to 42 degrees C. A similar response in luciferase activity was observed using A549 cells stably transfected with an HSF-1-responsive luciferase reporter plasmid. However, activation of intranuclear HSF-1 DNA-binding activity was comparable at 38.5 degrees C, 39.5 degrees C, and 41 degrees C and only modestly greater at 42 degrees C but the mobility of HSF1 protein on a denaturing gel was altered with increasing exposure temperature and was distinctly different at 42 degrees C. These findings indicate that the proportional changes in HSF-1-dependent HSP72 expression at febrile-range temperatures are dependent upon exposure time and temperature but not on the degree of HSF-1 DNA-binding activity. Instead, HSF-1-mediated HSP expression following hyperthermia and heat shock appears to be mediated, in addition to HSF-1 activation, by posttranslational modifications of HSF-1 protein.

  3. Synergistic effects of the purine analog sulfinosine and curcumin on the multidrug resistant human non-small cell lung carcinoma cell line (NCI-H460/R).

    PubMed

    Andjelkovic, Tijana; Pesic, Milica; Bankovic, Jasna; Tanic, Nikola; Markovic, Ivanka D; Ruzdijic, Sabera

    2008-07-01

    Multidrug resistance (MDR) is the main obstacle to a successful chemotherapy of lung cancer. We tested the potential of sulfinosine and curcumin, alone and in combination, for modulating MDR in the human resistant, non-small cell lung carcinoma cell line (NCI-H460/R). First, we determined the mutational status of the p53 gene in NCI-H460/R cells by PCR-SSCP and DNA sequencing and identified mutations which could at least partially contribute to the development of the MDR phenotype. The effects of sulfinosine and curcumin were studied, both separately and in combination, at the level of cytotoxicity, cell cycle distribution and gene expression. Sulfinosine displayed dose-dependent growth inhibition in both resistant and control sensitive cell lines, whereas curcumin considerably inhibited their growth only at relatively high doses. When sulfinosine was combined with a low dose of curcumin the drugs exerted a synergistic cytotoxic effect in NCI-H460/R cells. The expression of MDR-related genes mdr1, gst-pi and topo IIalpha, was altered by sulfinosine and curcumin. The most pronounced effect was observed when the agents were applied together. Sulfinosine and curcumin caused perturbations in cell cycle distribution in the NCI-H460/R cell line. The combination of the two drugs induced a more pronounced cell cycle arrest in S and G(2)/M in NCI-H460/R cells. Our results show that sulfinosine and curcumin overcome MDR in non-small cell lung carcinoma cell line (NSCLC), especially in combination despite the presence of a mutated p53 gene.

  4. The effect of ataxia-telangiectasia mutated kinase-dependent hyperphosphorylation of checkpoint kinase-2 on oligodeoxynucleotide 7909 containing CpG motifs-enhanced sensitivity to X-rays in human lung adenocarcinoma A549 cells

    PubMed Central

    Liu, Xiaoqun; Liu, Xiangdong; Qiao, Tiankui; Chen, Wei; Yuan, Sujuan

    2015-01-01

    Objective The aim of the study reported here was to further investigate the potential effect of ataxia-telangiectasia mutated (ATM) kinase-dependent hyperphosphorylation of checkpoint kinase-2 (Chk2) on radiosensitivity enhanced by oligodeoxynucleotide 7909 containing CpG motifs (CpG ODN7909) in human lung adenocarcinoma A549 cells. Methods In vitro A549 cells were randomly separated into control, CpG, X-ray, CpG+ X-ray, ATM kinase-small interfering RNA (siRNA)+CpG+X-ray (ATM-siRNA), and Chk2-siRNA+CpG+X-ray (Chk2-siRNA) groups. siRNAs were adopted to silence the ATM and Chk2 genes. Expression and phosphorylation of ATM kinase and Chk2 were detected by Western blot assay. Cell colonies were observed under inverted phase-contrast microscopy. Cellular survival curves were fitted using a multi-target single-hitting model. Cell cycle and apoptosis were analyzed by flow cytometry. Results Expression of ATM kinase and Chk2 was similar among the control, CpG, X-ray, and CpG+X-ray groups. Phosphorylated ATM kinase and Chk2 were significantly increased in the CpG+X-ray group compared with in the X-ray group (t=6.00, P<0.01 and t=3.13, P<0.05, respectively), though these were hardly detected in the control and CpG groups. However, expression of ATM kinase and Chk2 was clearly downregulated in the ATM-siRNA and Chk2-siRNA groups, respectively. Similarly, their phosphorylation levels were also significantly decreased in the ATM-siRNA group (t=14.35, P<0.01 and t=8.46, P<0.01, respectively) and a significant decrease in phosphorylated Chk2 was observed in the Chk2-siRNA group (t=7.28, P<0.01) when compared with the CpG+X-ray group. Further, the number of A549 cells at Gap 2/mitotic phase and the apoptosis rate were clearly increased in the CpG+X-ray group compared with in the other groups (all P<0.05). The multi-target single-hitting model showed that the sensitization enhancement ratio calculated by mean death dose was 1.39 in CpG+X-ray group (vs 1.04 and 1.03 in the ATM

  5. Cordycepin induces autophagy-mediated c-FLIPL degradation and leads to apoptosis in human non-small cell lung cancer cells

    PubMed Central

    Liu, Xianfang; Guo, Sen; Lin, Yidan; Liu, Xiangguo; Su, Ling

    2017-01-01

    Cordycepin, a main active composition extracted from Cordyceps militaris, has been reported to exert anti-tumor activity in a broad spectrum of cancer types. However, the function of cordycepin on human non-small cell lung cancer cells is still obscure. Our present work showed that cordycepin inhibited cell growth by inducing apoptosis and autophagy in human NSCLC cells. Further study revealed that cordycepin triggered extrinsic apoptosis associated with down-regulation of c-FLIPL which suppresses the activity of caspase-8. And ectopic expression of c-FLIPL dramatically prevented cordycepin-caused apoptosis. Meanwhile, cordycepin stimulated autophagy through suppressing mTOR signaling pathway in lung cancer cells. When autophagy was blocked by Atg5 siRNA or PI3K inhibitor LY294002, the levels of apoptosis caused by cordycepin were obviously attenuated. In addition, suppression of autophagy could also elevate the level of c-FLIPL which indicated cordycepin-triggered autophagy promoted the degradation of c-FLIPL. Therefore, we conclude that cordycepin induces apoptosis through autophagy-mediated downregulation of c-FLIPL in human NSCLC cells. Taken together, our findings provide a novel prospect on the anti-tumor property of cordycepin, which may further prompt cordycepin to serve as a promising therapeutic approach in NSCLC treatment. PMID:28035061

  6. The antitumor activity of an anti-CD54 antibody in SCID mice xenografted with human breast, prostate, non-small cell lung, and pancreatic tumor cell lines.

    PubMed

    Brooks, Kimberly J; Coleman, Elaine J; Vitetta, Ellen S

    2008-11-15

    We have previously described the development and testing of a monoclonal anti-human CD54 antibody (UV3) in SCID mice xenografted with human multiple myeloma, lymphoma, and melanoma cell lines. In all 3 cases, UV3 was highly effective at slowing the growth of tumors and/or prolonging survival. Since CD54 (ICAM-1) is up-regulated on many different types of cancer cells, we have now investigated the anti-tumor activity of UV3 in several other CD54(+) epithelial tumors. A panel of 16 human breast, prostate, non-small cell (NSC) lung, and pancreatic tumor cell lines was examined for reactivity with UV3, and 13 were positive. A representative CD54(+) cell line from each cancer was grown subcutaneously in SCID mice. Once the tumors were established, UV3 was administered using different dose regimens. UV3 slowed the growth of all 4 tumors, although it was not curative. When UV3 or gemcitabine were administered to SCID mice xenografted with a NSC lung tumor cell line or a pancreatic tumor cell line, UV3 was as effective as the chemotherapy alone. When gemcitabine and UV3 were administered together, the best anti-tumor responses were observed. UV3 has been chimerized (cUV3) and both toxicology studies and clinical trials are planned to assess the safety and activity of cUV3 in patients with one or more of these tumors.

  7. Inhibition of TRPC6 reduces non-small cell lung cancer cell proliferation and invasion

    PubMed Central

    Lu, Xiao-Yu; Yan, Yan; Zhai, Yu-Jia; Bao, Qing; Doetsch, Paul W.; Deng, Xingming; Thai, Tiffany L.; Alli, Abdel A.; Eaton, Douglas C.; Shen, Bao-Zhong; Ma, He-Ping

    2017-01-01

    Recent studies indicate that the transient receptor potential canonical 6 (TRPC6) channel is highly expressed in several types of cancer cells. However, it remains unclear whether TRPC6 contributes to the malignancy of human non-small cell lung cancer (NSCLC). We used a human NSCLC A549 cell line as a model and found that pharmacological blockade or molecular knockdown of TRPC6 channel inhibited A549 cell proliferation by arresting cell cycle at the S-G2M phase and caused a significant portion of cells detached and rounded-up, but did not induce any types of cell death. Western blot and cell cycle analysis show that the detached round cells at the S-G2M phase expressed more TRPC6 than the still attached polygon cells at the G1 phase. Patch-clamp data also show that TRPC whole-cell currents in the detached cells were significantly higher than in the still attached cells. Inhibition of Ca2+-permeable TRPC6 channels significantly reduced intracellular Ca2+ in A549 cells. Interestingly, either blockade or knockdown of TRPC6 strongly reduced the invasion of this NSCLC cell line and decreased the expression of an adherent protein, fibronectin, and a tight junction protein, zonula occluden protein-1 (ZO-1). These data suggest that TRPC6-mediated elevation of intracellular Ca2+ stimulates NSCLC cell proliferation by promoting cell cycle progression and that inhibition of TRPC6 attenuates cell proliferation and invasion. Therefore, further in vivo studies may lead to a consideration of using a specific TRPC6 blocker as a complement to treat NSCLC. PMID:28030826

  8. Artesunate induces AIF-dependent apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Zhou, Chen-juan; Chen, Tong-Sheng

    2012-03-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  9. Relationship between intercellular communication and adriamycin resistance in non-small cell lung cancer.

    PubMed

    Bradley, C; Freshney, R I; Pitts, J

    1994-01-01

    The adriamycin chemosensitivity and extent of gap junctional intercellular communication were assessed in a panel of seven human non-small cell lung cancer (NSCLC) cell lines. Communication was assessed by autoradiographic detection of transfer of 3H uridine nucleotides between coupled cells. The strength of coupling varied widely between the cell lines and they could be separated into 3 groups: those which exhibited strong coupling, L-DAN and A549; those which exhibited weak coupling, SK-MES-1, Calu-3 and NCI-H125; and an intermediate group, WIL and NCI-H23. Adriamycin chemosensitivity was assessed by both clonogenic and MTT assays. The range of IC50 values as measured by either assay was extremely narrow, with no important differences between the lines. Thus, despite the wide spectrum of intercellular communication observed in these lines, this did not correlate with their adriamycin resistance.

  10. Effect of Adjuvant Magnetic Fields in Radiotherapy on Non-Small-Cell Lung Cancer Cells In Vitro

    PubMed Central

    Feng, Jianguo; Sheng, Huaying; Zhu, Chihong; Jiang, Hao; Ma, Shenglin

    2013-01-01

    Objectives. To explore sensitization and possible mechanisms of adjuvant magnetic fields (MFs) in radiotherapy (RT) of non-small-cell lung cancer. Methods. Human A549 lung adenocarcinoma cells were treated with MF, RT, and combined MF-RT. Colony-forming efficiency was calculated, cell cycle and apoptosis were measured, and changes in cell cycle- and apoptosis-related gene expression were measured by microarray. Results. A 0.5 T, 8 Hz stationary MF showed a duration-dependent inhibitory effect lasting for 1–4 hours. The MF-treated groups had significantly greater cell inhibition than did controls (P < 0.05). Surviving fractions and growth curves derived from colony-forming assay showed that the MF-only, RT-only, and MF-RT groups had inhibited cell growth; the MF-RT group showed a synergetic effect. Microarray of A549 cells exposed for 1 hour to MF showed that 19 cell cycle- and apoptosis-related genes had 2-fold upregulation and 40 genes had 2-fold downregulation. MF significantly arrested cells in G2 and M phases, apparently sensitizing the cells to RT. Conclusions. MF may inhibit A549 cells and can increase their sensitivity to RT, possibly by affecting cell cycle- and apoptosis-related signaling pathways. PMID:24224175

  11. Overexpression of PP2A inhibitor SET oncoprotein is associated with tumor progression and poor prognosis in human non-small cell lung cancer.

    PubMed

    Liu, Hao; Gu, Yixue; Wang, Hongsheng; Yin, Jiang; Zheng, Guopei; Zhang, Zhijie; Lu, Minyin; Wang, Chenkun; He, Zhimin

    2015-06-20

    SET oncoprotein is an endogenous inhibitor of protein phosphatase 2A (PP2A), and SET-mediated PP2A inhibition is an important regulatory mechanism for promoting cancer initiation and progression of several types of human leukemia disease. However, its potential relevance in solid tumors as non-small cell lung cancer (NSCLC) remains mostly unknown. In this study, we showed that SET was evidently overexpressed in human NSCLC cell lines and NSCLC tissues. Clinicopathologic analysis showed that SET expression was significantly correlated with clinical stage (p < 0.001), and lymph node metastasis (p < 0.05). Kaplan-Meier analysis revealed that patients with high SET expression had poorer overall survival rates than those with low SET expression. Moreover, knockdown of SET in NSCLC cells resulted in attenuated proliferative and invasive abilities. The biological effect of SET on proliferation and invasion was mediated by the inhibition of the PP2A, which in turn, activation of AKT and ERK, increased the expression of cyclin D1 and MMP9, and decreased the expression of p27. Furthermore, we observed that restoration of PP2A using SET antagonist FTY720 impaired proliferative and invasive potential in vitro, as well as inhibited tumor growth in vivo of NSCLC cells. Taken together, SET oncoprotein plays an important role in NSCLC progression, which could serve as a potential prognosis marker and a novel therapeutic target for NSCLC patients.

  12. Adenovirus vector-mediated FAM176A overexpression induces cell death in human H1299 non-small cell lung cancer cells.

    PubMed

    Xie, Hong; Hu, Jia; Pan, Huan; Lou, Yaxin; Lv, Ping; Chen, Yingyu

    2014-02-01

    FAM176A (family with sequence similarity 176 member A) is a novel molecule related to programmed cell death. A decreased expression of FAM176A has been found in several types of human tumors in including lung cancers. In the present study, we investigated the biological activities of FAM176A on the human non-small cell lung cancer cell line H1299 cells. We constructed a recombinant adenovirus 5-FAM176A vector (Ad5-FAM176A) and evaluated the expression and anti-tumor activities in vitro. Cell viability analysis revealed that the adenovirus-mediated increase of FAM176A inhibited the growth of the tumor cells in a dose- and time-dependent manner. This inhibitory effect was mediated by both autophagy and apoptosis that involved caspase activation. In addition, cell cycle analysis suggested that Ad5-FAM176A could induce cell cycle arrest at the G2/M phase, all of which suggested that adenovirus-mediated FAM176A gene transfer might present a new therapeutic approach for lung cancer treatment.

  13. NADPH:cytochrome c (P450) reductase activates tirapazamine (SR4233) to restore hypoxic and oxic cytotoxicity in an aerobic resistant derivative of the A549 lung cancer cell line

    PubMed Central

    Saunders, M P; Patterson, A V; Chinje, E C; Harris, A L; Stratford, I J

    2000-01-01

    Tirapazamine (TPZ, SR4233, WIN 59075) is a bioreductive drug that is activated in regions of low oxygen tension to a cytotoxic radical intermediate. This labile metabolite shows high selective toxicity towards hypoxic cells, such as those found in solid tumours. Under aerobic conditions, redox cycling occurs with subsequent generation of superoxide radicals, which are also cytotoxic. NADPH:cytochrome c (P450) reductase (P450R) is a one-electron reducing enzyme that efficiently activates TPZ. Recently a derivative of the A549 non-small cell lung cancer cell line (A549c50) was generated that showed substantially reduced P450R activity compared to its parental line (Elwell et al (1997) Biochem Pharmacol54: 249–257). Here, it is demonstrated that the A549c50 cells are markedly more resistant to TPZ under both aerobic and hypoxic conditions. In addition, these cells have a dramatically impaired ability to metabolize TPZ to its two-electron reduction product, SR4317, under hypoxic conditions when compared to wild-type cells. P450R activity in the A549c50 cells was reintroduced to similar levels as that seen in the parental A549 cells by transfection of the full-length cDNA for human P450R. These P450R over-expressing cells exhibit restored sensitivity to TPZ under both aerobic and hypoxic conditions, comparable to that found in the original parental A549 cells. Further, the ability of the transfected cells to metabolize TPZ to SR4317 under hypoxic conditions is also shown to be restored. This provides further evidence that P450R can play an important role in the activation, metabolism and toxicity of this lead bioreductive drug. © 2000 Cancer Research Campaign PMID:10682679

  14. Down-regulation of the DNA-repair endonuclease 8-oxo-guanine DNA glycosylase 1 (hOGG1) by sodium dichromate in cultured human A549 lung carcinoma cells.

    PubMed

    Hodges, N J; Chipman, J K

    2002-01-01

    Hexavalent chromium is a genotoxic human pulmonary carcinogen that elevates DNA oxidation, apparently through the generation of reactive DNA-damaging intermediates including Cr(V), Cr(IV) and reactive oxygen species. We tested the hypothesis that elevation of DNA oxidation may also be through inhibition of the expression of the repair glycosylase for 8-oxo deoxyguanine (hOGG1) in cultured A549 human lung epithelial cells. Treatment with sodium dichromate (0-100 microM, 16 h) resulted in a concentration-dependent decrease in the levels of OGG1 mRNA as measured by both RT-PCR and RNase protection assay. Sodium dichromate at 25 microM and above gave a marked reduction of OGG1 mRNA expression which was not seen at 1 microM and below. No effect on the expression of the apurinic endonuclease hAPE or the house-keeping gene GAPDH was observed at any of the concentrations of sodium dichromate investigated. Treatment of cells with the pro-oxidant H(2)O(2) (0-200 microM) for 16 h had no detectable effect on the levels of OGG1 mRNA or protein expression suggesting that the effect of sodium dichromate is not mediated by H(2)O(2). Western blotting demonstrated that sodium dichromate (100 microM; 16 h and >25 microM; 28 h) markedly reduced levels of OGG1 protein in nuclear cell extracts. Additionally, treatment of cells with sodium dichromate (>25 microM, 28 h) resulted in a concentration-dependent decrease in the ability of nuclear extracts to nick a synthetic oligonucleotide containing 8-oxo deoxyguanine (8-oxo dG). We conclude that the elevation of 8-oxo dG levels observed in A549 cells treated with sodium dichromate may be, at least in part, due to a reduced capacity to repair endogenous and hexavalent chromium-induced 8-oxo dG.

  15. Fisetin induces apoptosis and endoplasmic reticulum stress in human non-small cell lung cancer through inhibition of the MAPK signaling pathway.

    PubMed

    Kang, Kyoung Ah; Piao, Mei Jing; Madduma Hewage, Susara Ruwan Kumara; Ryu, Yea Seong; Oh, Min Chang; Kwon, Taeg Kyu; Chae, Sungwook; Hyun, Jin Won

    2016-07-01

    Fisetin (3,3',4',7-tetrahydroxyflavone), a dietary flavonoid compound, is currently being investigated for its anticancer effect in various cancer models, including lung cancer. Recent studies show that fisetin induces cell growth inhibition and apoptosis in the human non-small cell lung cancer line NCI-H460. In this study, we investigated whether fisetin can induce endoplasmic reticulum (ER) stress-mediated apoptosis in NCI-H460 cells. Fisetin induced mitochondrial reactive oxygen species (ROS) and characteristic signs of ER stress: ER staining; mitochondrial Ca(2+) overload; expression of ER stress-related proteins; glucose-regulated protein (GRP)-78, phosphorylation of protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK) and phosphorylation of eukaryotic initiation factor-2 α subunit; cleavage of activating transcription factor-6; phosphorylation of inositol-requiring kinase-1 and splicing of X-box transcription factor-1; induction of C/EBP homologous protein and cleaved caspase-12. siRNA-mediated knockdown of CHOP and ATF-6 attenuated fisetin-induced apoptotic cell death. In addition, fisetin induced phosphorylation of ERK, JNK, and p38 MAPK. Moreover, silencing of the MAPK signaling pathway prevented apoptotic cell death. In summary, our results indicate that, in NCI-H460 cells, fisetin induces apoptosis and ER stress that is mediated by induction of the MAPK signaling pathway.

  16. Morphological changes and nuclear translocation of DLC1 tumor suppressor protein precede apoptosis in human non-small cell lung carcinoma cells

    SciTech Connect

    Yuan Baozhu Jefferson, Amy M.; Millecchia, Lyndell; Popescu, Nicholas C.; Reynolds, Steven H.

    2007-11-01

    We have previously shown that reactivation of DLC1, a RhoGAP containing tumor suppressor gene, inhibits tumorigenicity of human non-small cell lung carcinoma cells (NSCLC). After transfection of NSCLC cells with wild type (WT) DLC1, changes in cell morphology were observed. To determine whether such changes have functional implications, we generated several DLC1 mutants and examined their effects on cell morphology, proliferation, migration and apoptosis in a DLC1 deficient NSCLC cell line. We show that WT DLC1 caused actin cytoskeleton-based morphological alterations manifested as cytoplasmic extensions and membrane blebbings in most cells. Subsequently, a fraction of cells exhibiting DLC1 protein nuclear translocation (PNT) underwent caspase 3-dependent apoptosis. We also show that the RhoGAP domain is essential for the occurrence of morphological alterations, PNT and apoptosis, and the inhibition of cell migration. DLC1 PNT is dependent on a bipartite nuclear localizing sequence and most likely is regulated by a serine-rich domain at N-terminal part of the DLC1 protein. Also, we found that DLC1 functions in the cytoplasm as an inhibitor of tumor cell proliferation and migration, but in the nucleus as an inducer of apoptosis. Our analyses provide evidence for a possible link between morphological alterations, PNT and proapoptotic and anti-oncogenic activities of DLC1 in lung cancer.

  17. Programmed death-1 upregulation is correlated with dysfunction of tumor-infiltrating CD8+ T lymphocytes in human non-small cell lung cancer.

    PubMed

    Zhang, Yan; Huang, Shengdong; Gong, Dejun; Qin, Yanghua; Shen, Qian

    2010-09-01

    T-cell tolerance is an important mechanism for tumor escape, but the molecular pathways involved in T-cell tolerance remain poorly understood. It remains unknown whether the inhibitory immunoreceptor programmed death-1 (PD-1) plays a role in conditions of human non-small cell lung cancer (NSCLC). In this study, we detected PD-1 expression on CD8+ T cells from healthy control peripheral blood mononuclear cells (PBMCs) and the PBMCs of NSCLC patients as well as NSCLC tissues. Results showed that tumor-infiltrating CD8+ T cells had increased PD-1 expression and impaired immune function, including reducing cytokine production capability and impairing capacity to proliferate. Blockade of the PD-1/PD-L1 pathway by the PD-L1-specific antibody partially restored cytokine production and cell proliferation. These data provide direct evidence that the PD-1/PD-L1 pathway is involved in CD8+ T-cell dysfunction in NSCLC patients. Moreover, blocking this pathway provides a potential therapy target in lung cancer.

  18. Siamese crocodile bile induces apoptosis in NCI-H1299 human non-small cell lung cancer cells via a mitochondria-mediated intrinsic pathway and inhibits tumorigenesis.

    PubMed

    Tian, Ling; Deng, Yi-Tao; Dong, Xin; Fan, Jia-Yi; Li, Hua-Liang; Ding, Yu-Mei; Peng, Wei-Xi; Chen, Qing-Xi; Shen, Dong-Yan

    2017-02-16

    Non-small-cell lung cancer (NSCLC) is a widespread and particularly aggressive form of cancer. Patients with NSCLC and early metastases typically have poor prognosis, highlighting the critical need for additional drugs to improve disease outcome following surgical resection. The present study aimed to determine if Siamese crocodile bile (SCB) had an anti‑cancer effect on NCI‑H1299 human NSCLC cells. The inhibitory mechanism of SCB was examined in cell culture and nude mice. In vitro experimental results revealed that SCB inhibited the proliferation and colony‑forming ability of NCI‑H1299 cells by arresting cell cycle and inducing apoptosis. The loss of the mitochondrial membrane potential and the release of cytochrome c indicated that SCB treatment may lead to mitochondrial dysfunction in NCI‑H1299 cells. At the molecular level, SCB altered the ratio of protein expression of Bax/Bcl‑2 and activated associated caspases, suggesting that intrinsic pathway involvement in the SCB‑induced apoptosis of NCI‑H1299 cells. In the in vivo experiments, intraperitoneal injection of SCB for 4 weeks inhibited xenograft tumor growth by 46.8% without observable toxicity in nude mice. Immunohistochemistry analysis of proliferating cell nuclear antigen and vascular endothelial growth factor also revealed that SCB inhibited cell proliferation and metastasis in NSCLC xenograft tumors. Overall, SCB exerted an anti-cancer effect on NCI‑H1299 human NSCLC cells in vitro and in vivo and may have therapeutic potential for the treatment of human NSCLC.

  19. Flavonoids from Gynostemma pentaphyllum exhibit differential induction of cell cycle arrest in H460 and A549 cancer cells.

    PubMed

    Tsui, Ko-Chung; Chiang, Tzu-Hsuan; Wang, Jinn-Shyan; Lin, Li-Ju; Chao, Wei-Chih; Chen, Bing-Huei; Lu, Jyh-Feng

    2014-10-31

    Flavonoids, containing mainly kaempferol rhamnohexoside derivatives, were extracted from Gynostemma pentaphyllum (G. pentaphyllum) and their potential growth inhibition effects against H460 non-small cell lung cancer cells was explored and compared to that on A549 cells. The extracted flavonoids were found to exhibit antiproliferation effects against H460 cells (IC50 = 50.2 μg/mL), although the IC50 of H460 is 2.5-fold that of A549 cells (IC50 = 19.8 μg/mL). Further investigation revealed that H460 cells are more susceptible to kaempferol than A549, whereas A549 cell growth is better inhibited by kaempferol rhamnohexoside derivatives as compared with H460. In addition, flavonoids from G. pentaphyllum induced cell cycle arrest at both S and G2/M phases with concurrent modulated expression of the cellular proteins cyclin A, B, p53 and p21 in A549 cells, but not H460. On the contrary, apoptosis and concomitant alteration in balance of BCL-2 and BAX expression as well as activation of caspase-3 were equally affected between both cells by flavonoid treatment. These observations strongly suggest the growth inhibition discrepancy between H460 and A549 following flavonoid treatment can be attributed to the lack of cell cycle arrest in H460 cells and the differences between H460 and A549 cells may serve as contrasting models for further mechanistic investigations.

  20. Pharmacokinetic correlation between experimental and clinical effects on human non-small cell lung cancers of cis-diammineglycolatoplatinum (254-S) and cis-diamminedichloroplatinum.

    PubMed

    Koenuma, M; Kasai, H; Uchida, N; Wada, T; Hattori, M; Oguma, T; Totani, T; Inaba, M

    1995-01-01

    We attempted to correlate the in vitro and in vivo antitumor activities of cis-diammineglycolatoplatinum (254-S), a novel platinum complex, and cis-diamminedichloro-platinum (CDDP) against the established culture cell lines and xenografts of human non-small cell lung cancer (NSCLC) with their clinical effects, based on the previous finding that the cytotoxicity of CDDP depends on the area under the curve (AUC). The concentration of 254-S and CDDP inhibiting the in vitro growth of 4 cultured NSCLC lines by 50% (IC50) was 0.82-7.8 and 0.53-4.2 micrograms/ml, respectively, showing a similar level. Of the 4 cell lines, only the most sensitive line, RERF-LC-AI, showed an IC50 close to a specific concentration (0.50 for 254-S and 0.32 micrograms/ml for CDDP) that reproduces in vitro the clinical AUCfree (24.8 and 5.34 micrograms-hr/ml) of the respective drugs. We treated 6 lines of human NSCLC xenografts implanted in nude mice with 254-S and CDDP at a particular dose (13.2 and 3.7 mg/kg) that is equivalent to the clinical doses with respect to the plasma AUCfree. 254-S and CDDP exhibited significant antitumor effects on 2 and 1 of the 6 lines, respectively. These in vitro and in vivo findings were considered to be relatively well correlated with the reported clinical response rates of 15-19% for 254-S and 14-15% for CDDP.

  1. Metformin inhibits growth of human non-small cell lung cancer cells via liver kinase B-1-independent activation of adenosine monophosphate-activated protein kinase

    PubMed Central

    GUO, QIANQIAN; LIU, ZHIYAN; JIANG, LILI; LIU, MENGJIE; MA, JIEQUN; YANG, CHENGCHENG; HAN, LILI; NAN, KEJUN; LIANG, XUAN

    2016-01-01

    Metformin, the most widely administered oral anti-diabetic therapeutic agent, exerts its glucose-lowering effect predominantly via liver kinase B1 (LKB1)-dependent activation of adenosine monophosphate-activated protein kinase (AMPK). Accumulating evidence has demonstrated that metformin possesses potential antitumor effects. However, whether the antitumor effect of metformin is via the LKB1/AMPK signaling pathway remains to be determined. In the current study, the effects of metformin on proliferation, cell cycle progression, and apoptosis of human non-small cell lung cancer (NSCLC) H460 (LKB1-null) and H1299 (LKB1-positive) cells were assessed, and the role of LKB1/AMPK signaling in the anti-growth effects of metformin were investigated. Cell viability was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell cycle distribution and apoptosis were assessed by flow cytometry, and protein expression levels were measured by western blotting. Metformin inhibited proliferation, induced significant cell cycle arrest at the G0–G1 phase and increased apoptosis in NSCLC cells in a time- and concentration-dependent manner, regardless of the level of LKB1 protein expression. Furthermore, knockdown of LKB1 with short hairpin RNA (shRNA) did not affect the antiproliferative effect of metformin in the H1299 cells. Metformin stimulated AMPK phosphorylation and subsequently suppressed the phosphorylation of mammalian target of rapamycin and its downstream effector, 70-kDa ribosomal protein S6 kinase in the two cell lines. These effects were abrogated by silencing AMPK with small interfering RNA (siRNA). In addition, knockdown of AMPK with siRNA inhibited the effect of metformin on cell proliferation in the two cell lines. These results provide evidence that the growth inhibition of metformin in NSCLC cells is mediated by LKB1-independent activation of AMPK, indicating that metformin may be a potential therapeutic agent for the treatment of

  2. Chlorin e6 – polyvinylpyrrolidone mediated photosensitization is effective against human non-small cell lung carcinoma compared to small cell lung carcinoma xenografts

    PubMed Central

    Chin, William WL; Heng, Paul WS; Olivo, Malini

    2007-01-01

    Background Photodynamic therapy (PDT) is an effective local cancer treatment that involves light activation of a photosensitizer, resulting in oxygen-dependent, free radical-mediated cell death. Little is known about the comparative efficacy of PDT in treating non-small cell lung carcinoma (NSCLC) and small cell lung carcinoma (SCLC), despite ongoing clinical trials treating lung cancers. The present study evaluated the potential use of chlorin e6 – polyvinylpyrrolidone (Ce6-PVP) as a multimodality photosensitizer for fluorescence detection and photodynamic therapy (PDT) on NSCLC and SCLC xenografts. Results Human NSCLC (NCI-H460) and SCLC (NCI-H526) tumor cell lines were used to establish tumor xenografts in the chick chorioallantoic membrane (CAM) model as well as in the Balb/c nude mice. In the CAM model, Ce6-PVP was applied topically (1.0 mg/kg) and fluorescence intensity was charted at various time points. Tumor-bearing mice were given intravenous administration of Ce6-PVP (2.0 mg/kg) and laser irradiation at 665 nm (fluence of 150 J/cm2 and fluence rate of 125 mW/cm2). Tumor response was evaluated at 48 h post PDT. Studies of temporal fluorescence pharmacokinetics in CAM tumor xenografts showed that Ce6-PVP has a selective localization and a good accuracy in demarcating NSCLC compared to SCLC from normal surrounding CAM after 3 h post drug administration. Irradiation at 3 h drug-light interval showed greater tumor necrosis against human NSCLC xenografts in nude mice. SCLC xenografts were observed to express resistance to photosensitization with Ce6-PVP. Conclusion The formulation of Ce6-PVP is distinctly advantageous as a diagnostic and therapeutic agent for fluorescence diagnosis and PDT of NSCLC. PMID:18053148

  3. Comparative Cytotoxicity of Glycyrrhiza glabra Roots from Different Geographical Origins Against Immortal Human Keratinocyte (HaCaT), Lung Adenocarcinoma (A549) and Liver Carcinoma (HepG2) Cells.

    PubMed

    Basar, Norazah; Oridupa, Olayinka Ayotunde; Ritchie, Kenneth J; Nahar, Lutfun; Osman, Nashwa Mostafa M; Stafford, Angela; Kushiev, Habibjon; Kan, Asuman; Sarker, Satyajit D

    2015-06-01

    Glycyrrhiza glabra L. (Fabaceae), commonly known as 'liquorice', is a well-known medicinal plant. Roots of this plant have long been used as a sweetening and flavouring agent in food and pharmaceutical products, and also as a traditional remedy for cough, upper and lower respiratory ailments, kidney stones, hepatitis C, skin disorder, cardiovascular diseases, diabetes, gastrointestinal ulcers and stomach ache. Previous pharmacological and clinical studies have revealed its antitussive, antiinflammatory, antiviral, antimicrobial, antioxidant, immunomodulatory, hepatoprotective and cardioprotective properties. While glycyrrhizin, a sweet-tasting triterpene saponin, is the principal bioactive compound, several bioactive flavonoids and isoflavonoids are also present in the roots of this plant. In the present study, the cytotoxicity of the methanol extracts of nine samples of the roots of G. glabra, collected from various geographical origins, was assessed against immortal human keratinocyte (HaCaT), lung adenocarcinoma (A549) and liver carcinoma (HepG2) cell lines using the in vitro 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide cell toxicity/viability assay. Considerable variations in levels of cytotoxicity were observed among various samples of G. glabra.

  4. Lycium europaeum fruit extract: antiproliferative activity on A549 human lung carcinoma cells and PC12 rat adrenal medulla cancer cells and assessment of its cytotoxicity on cerebellum granule cells.

    PubMed

    Ghali, Wafa; Vaudry, David; Jouenne, Thierry; Marzouki, Mohamed Nejib

    2015-01-01

    Cancer is a major worldwide health problem and one of the leading causes of death either in developed or developing countries. Plant extracts and derivatives have always been used for various disease treatments and many anticancer agents issued from plants and vegetables are clinically recognized and used all over the world. Lycium europaeum (Solanaceae) also called "wolfberry" was known since ancient times in the Mediterranean area as a medicinal plant and used in several traditional remedies. The Lycium species capacity of reducing the incidence of cancer and also of halting or reserving the growth of cancer was reported by traditional healers. In this study, the antiproliferative capacity, protective properties, and antioxidant activity of the hydro-alcoholic fruit extract of Lycium europaeum were investigated. Results showed that Lycium extract exhibits the ability to reduce cancer cell viability, inhibits proliferation, and induces apoptosis in A549 human lung cancer cells and PC12 rat adrenal medulla cancer cells, in a concentration- and time-dependent manner. Cytotoxic effect on normal rat cerebellum granule cells was assessed to be nonsignificant. Results also showed that Lycium fruit extract protected lipids, proteins, and DNA against oxidative stress damages induced by H2O2 via scavenging reactive oxygen species.

  5. Mer or Axl receptor tyrosine kinase inhibition promotes apoptosis, blocks growth and enhances chemosensitivity of human non-small cell lung cancer.

    PubMed

    Linger, R M A; Cohen, R A; Cummings, C T; Sather, S; Migdall-Wilson, J; Middleton, D H G; Lu, X; Barón, A E; Franklin, W A; Merrick, D T; Jedlicka, P; DeRyckere, D; Heasley, L E; Graham, D K

    2013-07-18

    Non-small cell lung cancer (NSCLC) is a prevalent and devastating disease that claims more lives than breast, prostate, colon and pancreatic cancers combined. Current research suggests that standard chemotherapy regimens have been optimized to maximal efficiency. Promising new treatment strategies involve novel agents targeting molecular aberrations present in subsets of NSCLC. We evaluated 88 human NSCLC tumors of diverse histology and identified Mer and Axl as receptor tyrosine kinases (RTKs) overexpressed in 69% and 93%, respectively, of tumors relative to surrounding normal lung tissue. Mer and Axl were also frequently overexpressed and activated in NSCLC cell lines. Ligand-dependent Mer or Axl activation stimulated MAPK, AKT and FAK signaling pathways indicating roles for these RTKs in multiple oncogenic processes. In addition, we identified a novel pro-survival pathway-involving AKT, CREB, Bcl-xL, survivin, and Bcl-2-downstream of Mer, which is differentially modulated by Axl signaling. We demonstrated that short hairpin RNA (shRNA) knockdown of Mer or Axl significantly reduced NSCLC colony formation and growth of subcutaneous xenografts in nude mice. Mer or Axl knockdown also improved in vitro NSCLC sensitivity to chemotherapeutic agents by promoting apoptosis. When comparing the effects of Mer and Axl knockdown, Mer inhibition exhibited more complete blockade of tumor growth while Axl knockdown more robustly improved chemosensitivity. These results indicate that Mer and Axl have complementary and overlapping roles in NSCLC and suggest that treatment strategies targeting both RTKs may be more effective than singly-targeted agents. Our findings validate Mer and Axl as potential therapeutic targets in NSCLC and provide justification for development of novel therapeutic compounds that selectively inhibit Mer and/or Axl.

  6. Overexpression of collagen triple helix repeat containing 1 (CTHRC1) is associated with tumour aggressiveness and poor prognosis in human non-small cell lung cancer.

    PubMed

    Ke, Zunfu; He, Weiling; Lai, Yuanhui; Guo, Xuefeng; Chen, Sharon; Li, Shuhua; Wang, Yuefeng; Wang, Liantang

    2014-10-15

    Collagen triple helix repeat-containing 1 (CTHRC1), a novel oncogene, was identified to be aberrantly overexpressed in several malignant tumors. However, the expression profile of CTHRC1 and its clinical significance in non-small cell lung cancer (NSCLC) remain unknown. In this study, we showed that CTHRC1 was evidently overexpressed in human NSCLC tissues and NSCLC cell lines at the protein and mRNA level. Ectopic up-regulation of CTHRC1 in cancer cells resulted in elevated invasive and proliferative abilities, which were attenuated by the specific CTHRC1 siRNA. The biological effect of CTHRC1 on metastasis and proliferation was mediated by the activation of the Wnt/β-catenin pathway. Furthermore, CTHRC1 immunoreactivity was evidently overexpressed in paraffin-embedded NSCLC tissues (212/292, 72.60%) in comparison to corresponding adjacent non-cancerous tissues (6/66, 9.09%) (p<0.001). Clinicopathologic analysis showed that CTHRC1 expression was significantly correlated with differentiation degree (p<0.001), clinical stage (p<0.001), T classification (p<0.001), lymph node metastasis (p=0.013) and distant metastasis (p<0.001). Kaplan-Meier analysis revealed that patients with high CTHRC1 expression had poorer overall survival rates than those with low CTHRC1 expression. Multivariate analysis indicated that CTHRC1 expression was an independent prognostic factor for the overall survival of NSCLC patients. Collectively, CTHRC1 plays important roles in NSCLC progression, and the evaluation of CTHRC1 expression could serve as a potential marker for metastasis progression and prognosis in NSCLC patients.

  7. Human Leukocyte Antigen G Polymorphism and Expression Are Associated with an Increased Risk of Non-Small-Cell Lung Cancer and Advanced Disease Stage

    PubMed Central

    Ben Amor, Amira; Beauchemin, Karine; Faucher, Marie-Claude; Hamzaoui, Agnes; Hamzaoui, Kamel; Roger, Michel

    2016-01-01

    Human leukocyte antigen (HLA)-G acts as negative regulator of the immune responses and its expression may enable tumor cells to escape immunosurveillance. The purpose of this study was to investigate the influence of HLA-G allelic variants and serum soluble HLA-G (sHLA-G) levels on risk of non-small-cell lung cancer (NSCLC). We analyzed 191 Caucasian adults with NSCLC and 191 healthy subjects recruited between January 2009 and March 2014 in Ariana (Tunisia). Serum sHLA-G levels were measured by immunoassay and HLA-G alleles were determined using a direct DNA sequencing procedures. The heterozygous genotypes of HLA-G 010101 and -G 010401 were associated with increased risks of both NSCLC and advanced disease stages. In contrast, the heterozygous genotypes of HLA-G 0105N and -G 0106 were associated with decreased risks of NSCC and clinical disease stage IV, respectively. Serum sHLA-G levels were significantly higher in patients with NSCLC and particularly in those with advanced disease stages compared to healthy subjects. The area under the receiver-operating characteristic (ROC) curves was 0.82 for controls vs patients. Given 100% specificity, the highest sensitivity achieved to detect NSCLC was 52.8% at a cutoff value of 24.9 U/ml. Patients with the sHLA-G above median level (≥ 50 U/ml) had a significantly shorter survival time. This study demonstrates that HLA-G allelic variants are independent risk factors for NSCLC. Serum sHLA-G levels in NSCLC patients could be useful biomarkers for the diagnostic and prognosis of NSCLC. PMID:27517300

  8. Human Leukocyte Antigen G Polymorphism and Expression Are Associated with an Increased Risk of Non-Small-Cell Lung Cancer and Advanced Disease Stage.

    PubMed

    Ben Amor, Amira; Beauchemin, Karine; Faucher, Marie-Claude; Hamzaoui, Agnes; Hamzaoui, Kamel; Roger, Michel

    2016-01-01

    Human leukocyte antigen (HLA)-G acts as negative regulator of the immune responses and its expression may enable tumor cells to escape immunosurveillance. The purpose of this study was to investigate the influence of HLA-G allelic variants and serum soluble HLA-G (sHLA-G) levels on risk of non-small-cell lung cancer (NSCLC). We analyzed 191 Caucasian adults with NSCLC and 191 healthy subjects recruited between January 2009 and March 2014 in Ariana (Tunisia). Serum sHLA-G levels were measured by immunoassay and HLA-G alleles were determined using a direct DNA sequencing procedures. The heterozygous genotypes of HLA-G 010101 and -G 010401 were associated with increased risks of both NSCLC and advanced disease stages. In contrast, the heterozygous genotypes of HLA-G 0105N and -G 0106 were associated with decreased risks of NSCC and clinical disease stage IV, respectively. Serum sHLA-G levels were significantly higher in patients with NSCLC and particularly in those with advanced disease stages compared to healthy subjects. The area under the receiver-operating characteristic (ROC) curves was 0.82 for controls vs patients. Given 100% specificity, the highest sensitivity achieved to detect NSCLC was 52.8% at a cutoff value of 24.9 U/ml. Patients with the sHLA-G above median level (≥ 50 U/ml) had a significantly shorter survival time. This study demonstrates that HLA-G allelic variants are independent risk factors for NSCLC. Serum sHLA-G levels in NSCLC patients could be useful biomarkers for the diagnostic and prognosis of NSCLC.

  9. Synergistic induction of the Fas (CD95) ligand promoter by Max and NFkappaB in human non-small lung cancer cells.

    PubMed

    Wiener, Zoltan; Ontsouka, Edgar C; Jakob, Sabine; Torgler, Ralph; Falus, Andras; Mueller, Christoph; Brunner, Thomas

    2004-09-10

    Fas (CD95/APO-1) ligand is a member of the Tumor Necrosis Factor family and a potent inducer of apoptosis. Fas ligand is expressed in activated T cells and represents a major cytotoxic effector mechanism by which T cells kill their target cells. Activation-induced Fas ligand expression in T cells is under the stringent control of various transcription factors, including nuclear factor kappaB (NFkappaB) and c-Myc/Max. There is accumulating evidence that Fas ligand is also expressed by various non-hematopoietic tumor cells, however, little is known about Fas ligand regulation in tumor cells. In this study, we have analyzed the regulation of the Fas ligand gene promoter induction in two non-small cell lung cancer cell lines, with a major focus on the role of the c-Myc/Max transcription factor. Our results revealed that inhibition of c-Myc/Max did not substantially reduce basal levels of Fas ligand promoter activity, nor did overexpression of c-Myc significantly induce promoter activity. In contrast, we observed that overexpression of Max resulted in a marked increase in basal promoter activity and synergistically enhanced phorbolester- and doxorubicin-induced NFkappaB-mediated Fas ligand promoter activity. These results were confirmed by analyzing endogenous Fas ligand transcription. We conclude that high levels of Max and stress-induced NFkappaB activation may result in elevated expression of Fas ligand in human lung cancer cells and possibly contribute to Fas ligand-associated immune escape mechanisms.

  10. Curcumin induces apoptosis in human non-small cell lung cancer NCI-H460 cells through ER stress and caspase cascade- and mitochondria-dependent pathways.

    PubMed

    Wu, Shin-Hwar; Hang, Liang-Wen; Yang, Jai-Sing; Chen, Hung-Yi; Lin, Hui-Yi; Chiang, Jo-Hua; Lu, Chi-Cheng; Yang, Jiun-Long; Lai, Tung-Yuan; Ko, Yang-Ching; Chung, Jing-Gung

    2010-06-01

    It has been reported that curcumin inhibited various types of cancer cells in vitro and in vivo. However, mechanisms of curcumin-inhibited cell growth and -induced apoptosis in human non-small cell lung cancer cells (NCI-H460) still remain unclear. In this study, NCI-H460 cells were treated with curcumin to determine its anticancer activity. Different concentrations of curcumin were used for different durations in NCI-H460 cells and the subsequent changes in the cell morphology, viability, cell cycle, mRNA and protein expressions were determined. Curcumin induced apoptotic morphologic changes in NCI-H460 cells in a dose-dependent manner. After curcumin treatment, BAX and BAD were up-regulated, BCL-2, BCL-X(L) and XIAP were down-regulated. In addition, reactive oxygen species (ROS), intracellular Ca(2+) and endoplasmic reticulum (ER) stress were increased in NCI-H460 cells after exposure to curcumin. These signals led to a loss of mitochondrial membrane potential (Delta Psi(m)) and culminated in caspase-3 activation. Curcumin-induced apoptosis was also stimulated through the FAS/caspase-8 (extrinsic) pathway and ER stress proteins, growth arrest- and DNA damage-inducible gene 153 (GADD153) and glucose-regulated protein 78 (GRP78) were activated in the NCI-H460 cells. Apoptotic cell death induced by curcumin was significantly reversed by pretreatment with ROS scavenger or caspase-8 inhibitor. Furthermore, the NCI-H460 cells tended to be arrested at the G(2)/M cell cycle stage after curcumin treatment and down-regulation of cyclin-dependent kinase 1 (CDK1) may be involved. In summary, curcumin exerts its anticancer effects on lung cancer NCI-H460 cells through apoptosis or cell cycle arrest.

  11. MicroRNA-346 facilitates cell growth and metastasis, and suppresses cell apoptosis in human non-small cell lung cancer by regulation of XPC/ERK/Snail/E-cadherin pathway

    PubMed Central

    Sun, Cheng-Cao; Li, Shu-Jun; Yuan, Zhan-Peng; Li, De-Jia

    2016-01-01

    Determinants of growth and metastasis in cancer remain of great interest to define. MicroRNAs (miRNAs) have frequently emerged as tumor metastatic regulator by acting on multiple signaling pathways. Here we report the definition of miR-346 as a novel oncogenic microRNA that facilitates non-small cell lung cancer (NSCLC) cell growth and metastasis. XPC, an important DNA damage recognition factor in nucleotide excision repair was defined as a target for down-regulation by miR-346, functioning through direct interaction with the 3′-UTR of XPC mRNA. Blocking miR-346 by an antagomiR was sufficient to inhibit NSCLC cell growth and metastasis, an effect that could be phenol-copied by RNAi-mediated silencing of XPC. In vivo studies established that miR-346 overexpression was sufficient to promote tumor growth by A549 cells in xenografts mice, relative to control cells. Overall, our results defined miR-346 as an oncogenic miRNA in NSCLC, the levels of which contributed to tumor growth and invasive aggressiveness. PMID:27777383

  12. Ski prevents TGF-β-induced EMT and cell invasion by repressing SMAD-dependent signaling in non-small cell lung cancer.

    PubMed

    Yang, Haiping; Zhan, Lei; Yang, Tianjie; Wang, Longqiang; Li, Chang; Zhao, Jun; Lei, Zhe; Li, Xiangdong; Zhang, Hong-Tao

    2015-07-01

    Epithelial-mesenchymal transition (EMT) is a key event in cancer metastasis, which confers cancer cells with increased motility and invasiveness, and EMT is characterized by loss of epithelial marker E-cadherin and gain of mesenchymal marker N-cadherin. Transforming growth factor-β (TGF-β) signaling is a crucial inducer of EMT in various types of cancer. Ski is an important negative regulator of TGF-β signaling, which interacts with SMADs to repress TGF-β signaling activity. Although there is accumulating evidence that Ski functions as a promoter or suppressor in human types of cancer, the molecular mechanisms by which Ski affects TGF-β-induced EMT and invasion in non-small cell lung cancer (NSCLC) are not largely elucidated. In the present study, we investigated the mechanistic role of Ski in NSCLC metastasis. Ski was significantly reduced in metastatic NSCLC cells or tissues when compared with non-metastatic NSCLC cells or tissues. Moreover, following TGF-β stimulation Ski-silenced A549 cells had more significant features of EMT and a higher invasive activity when compared with A549 cells overexpressing Ski. Mechanistically, Ski-silenced and overexpressed A549 cells showed an increase and a reduction in the SMAD3 phosphorylation level, respectively. This was supported by plasminogen activator inhibitor-1 (PAI-1) promoter activity obtained in Ski-silenced and overexpressed A549 cells. However, after treatment of SIS3 (inhibitor of SMAD3 phosphorylation) followed by TGF-β1 stimulation, we did not observe any effect of Ski on TGF-β-induced EMT, and invasion in Ski-silenced and overexpressed A549 cells. In conclusion, our findings suggest that Ski represses TGF-β-induced EMT and invasion by inhibiting SMAD-dependent signaling in NSCLC.

  13. Enhanced Replication of Hepatitis E Virus Strain 47832c in an A549-Derived Subclonal Cell Line

    PubMed Central

    Schemmerer, Mathias; Apelt, Silke; Trojnar, Eva; Ulrich, Rainer G.; Wenzel, Jürgen J.; Johne, Reimar

    2016-01-01

    Hepatitis E virus (HEV) is a human pathogen with increasing importance. The lack of efficient cell culture systems hampers systematic studies on its replication cycle, virus neutralization and inactivation. Here, several cell lines were inoculated with the HEV genotype 3c strain 47832c, previously isolated from a chronically infected transplant patient. At 14 days after inoculation the highest HEV genome copy numbers were found in A549 cells, followed by PLC/PRF/5 cells, whereas HepG2/C3A, Huh-7 Lunet BLR and MRC-5 cells only weakly supported virus replication. Inoculation of A549-derived subclone cell lines resulted in most cases in reduced HEV replication. However, the subclone A549/D3 was susceptible to lower virus concentrations and resulted in higher virus yields as compared to parental A549 cells. Transcriptome analysis indicated a downregulation of genes for carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 5 and 6, and an upregulation of the syndecan 2 (SDC2) gene in A549/D3 cells compared to A549 cells. However, treatment of A549/D3 cells or A549 cells with CEACAM- or syndecan 2-specific antisera did not influence HEV replication. The results show that cells supporting more efficient HEV replication can be selected from the A549 cell line. The specific mechanisms responsible for the enhanced replication remain unknown. PMID:27690085

  14. The influence of ciprofloxacin on viability of A549, HepG2, A375.S2, B16 and C6 cell lines in vitro.

    PubMed

    Kloskowski, Tomasz; Gurtowska, Natalia; Nowak, Monika; Joachimiak, Romana; Bajek, Anna; Olkowska, Joanna; Drewa, Tomasz

    2011-01-01

    Ciprofloxacin is a chemotherapeutic agent mainly used in the treatment of the pulmonary and urinary tract infections but is also known for its anticancer properties. The aim of these study was to check the anticancer effect of ciprofloxacin on selected five cell lines. Human non-small cell lung cancer line A549, human hepatocellular carcinoma line HepG2, human and mouse melanoma lines (A375.S2 and B16) and rat glioblastoma line C6 were used for evaluation of cytotoxic properties of ciprofloxacin (in concentration range: 10-1000 microg/mL). Viability was established using trypan blue assay and MTT. Ciprofloxacin induced morphological changes and decreased viability of A549 cells in a concentration and time dependent manner. In case of A375.S2 and B16 cell lines, cytotoxicyty of ciprofloxacin was observed but we were not able to eradicate all cells from A375.S2 and B16 cultures. HepG2 line was sensitive to ciprofloxacin, but this effect was independent from concentration and incubation time. The C6 cells were insensitive to ciprofloxacin. Our results showed that ciprofloxacin can be potentially used for the experimental adjunctive therapy of lung cancer.

  15. Rab27A regulates exosome secretion from lung adenocarcinoma cells A549: involvement of EPI64.

    PubMed

    Li, Wenhai; Hu, Yunsheng; Jiang, Tao; Han, Yong; Han, Guoliang; Chen, Jiakuan; Li, Xiaofei

    2014-11-01

    Exosomes are small membrane vesicles secreted into the extracellular compartment by exocytosis. The unique composition of exosomes can be transported to other cells which allow cells to exert biological functions at distant sites. However, in lung cancer, the regulation of exosome secretion was poorly understood. In this study, we employed human lung adenocarcinoma A549 cells to determine the exosome secretion and involved regulation mechanism. We found that Rab27A was expressed in A549 cells and the reduction of Rab27A by Rab27A-specific shRNA could significantly decrease the secretion of exosome by A549 cells. EPI64, a candidate GAP that is specific for Rab27, was also detected in A549 cells. By pull-down assay, we found that EPI64 participated in the exosome secretion of A549 cells by acting as a specific GAP for Rab27A, not Rab27B. Overexpression of EPI64 enhanced exosome secretion. Taken together, in A549 cells, EPI64 could regulate the exosome secretion by functioning as a GAP specific for Rab27A.

  16. Role of gambogic acid and NaI131 in A549/DDP cells

    PubMed Central

    Huang, Jing; Zhu, Xiaoli; Wang, Huan; Han, Shuhua; Liu, Lu; Xie, Yan; Chen, Daozhen; Zhang, Qiang; Zhang, Li; Hu, Yue

    2017-01-01

    Resistance to platinum in tumor tissue is a considerable barrier against effective lung cancer treatment. Radionuclide therapy is the primary adjuvant treatment, however, the toxic side effects limit its dosage in the clinical setting. Therefore, the present study aimed to determine whether an NaI131 radiosensitizer could help reduce the toxic side effects of radionuclide therapy. In vitro experiments were conducted to determine whether NaI131 can inhibit platinum resistance in A549/DDP cells, which are cisplatin-resistant non-small cell lung cancer cells, and whether gambogic acid (GA) is an effective NaI131 radiosensitizer. Cell proliferation following drug intervention was analyzed using MTT and isobolographic analysis. Apoptosis was assessed by flow cytometry. In addition, the mechanisms of drug intervention were analyzed by measuring the expression of P-glycoprotein (P-gP), B cell lymphoma 2 (Bcl-2), Bcl2-associated X protein (Bax) and P53 using western blot analysis and immunocytochemistry. According to isobolographic analysis, a low concentration of NaI131 combined with GA had a synergistic effect on the inhibition of A549/DDP cell proliferation, which was consistent with an increased rate of apoptosis. Furthermore, the overexpression of Bax, and the downregulation of P-gP, P53 and Bcl-2 observed demonstrated the potential mechanism(s) of NaI131 and GA intervention. NaI131 may induce apoptosis in A549/DDP cells by regulating apoptosis-related proteins. A low concentration combination of NaI131 and GA was able to significantly inhibit A549/DDP cell proliferation and induce cell apoptosis. Thus, the two drugs appear to have a synergistic effect on apoptosis of A549/DDP cells. PMID:28123519

  17. Three tumor-suppressor regions on chromosome 11p identified by high-resolution deletion mapping in human non-small-cell lung cancer

    SciTech Connect

    Bepler, G.; Garcia-Blanco, A. )

    1994-06-07

    Non-small-cell lung cancer is the leading cause of cancer death for men and women in the industrialized nations. Identification of regions for genes involved in its pathogenesis has been difficult. Data presented here show three distinct regions identified on chromosome 11p. Two regions on 11p13 distal to the Wilms tumor gene WT1 and on 11p15.5 between the markers HBB and D11S860 are described. The third region on the telomere of 11p15.5 has been previously described and is further delineated in this communication. By high-resolution mapping the size of each of these regions was estimated to be 2-3 megabases. The frequency of somatic loss of genetic information in these regions (57%, 71%, and 45%, respectively) was comparable to that seen in heritable tumors such as Wilms tumor (55%) and retinoblastoma (70%) and suggests their involvement in pathogenesis of non-small-cell lung cancer. Gene dosage analyses revealed duplication of the remaining allele in the majority of cases in the 11p13 and the proximal 11p15.5 region but rarely in the distal 11p15.5 region. In tumors with loss of heterozygosity in all three regions any combination of duplication or simple deletion was observed, suggesting that loss of heterozygosity occurs independently and perhaps at different points in time. These results provide a basis for studies directed at cloning potential tumor-suppressor genes in these regions and for assessing their biological and clinical significance in non-small-cell lung cancer.

  18. Open reading frame 3 of genotype 1 hepatitis E virus inhibits nuclear factor-κappa B signaling induced by tumor necrosis factor-α in human A549 lung epithelial cells.

    PubMed

    Xu, Jian; Wu, Fan; Tian, Deying; Wang, Jingjing; Zheng, Zizheng; Xia, Ningshao

    2014-01-01

    Hepatitis E virus (HEV) is one of the primary causative agents of acute hepatitis, and represents a major cause of severe public health problems in developing countries. The pathogenesis of HEV is not well characterized, however, primarily due to the lack of well-defined cell and animal models. Here, we investigated the effects of genotype 1 HEV open reading frame 3 (ORF3) on TNF-α-induced nucleus factor-κappa B (NF-κB) signaling. Human lung epithelial cells (A549) were transiently transfected with ORF3 containing plasmids. These cells were then stimulated with TNF-α and the nucleus translocation of the p65 NF-κB subunit was assessed using western blot and laser confocal microscopy. DNA-binding activity of p65 was also examined using electrophoretic mobility shift assay (EMSA), and the suppression of NF-κB target genes were detected using real-time RT-PCR and ELISA. These results enabled us to identify the decreased phosphorylation levels of IKBα. We focused on the gene of negative regulation of NF-κB, represented by TNF-α-induced protein 3 (TNFAIP3, also known as A20). Reducing the levels of A20 with siRNAs significantly enhances luciferase activation of NF-κB. Furthermore, HEV ORF3 regulated A20 primarily via activating transcription factor 6 (ATF6), involved in unfolded protein response (UPR), resulting in the degradation or inactivation of the receptor interacting protein 1 (RIP1), a major upstream activator of IKB kinase compounds (IKKs). Consequently, the phosphorylation of IKBα and the nucleus translocation of p65 are blocked, which contributes to diminished NF-κB DNA-binding activation and NF-κB-dependent gene expression. The findings suggest that genotype 1 HEV, through ORF3, may transiently activate NF-κB through UPR in early stage, and subsequently inhibit TNF-α-induced NF-κB signaling in late phase so as to create a favorable virus replication environment.

  19. Downregulated TIPE2 is associated with poor prognosis and promotes cell proliferation in non-small cell lung cancer

    SciTech Connect

    Li, Yuexia; Li, Xiaohui; Liu, Gang; Sun, Rongqing; Wang, Lirui; Wang, Jing; Wang, Hongmin

    2015-01-30

    Highlights: • TIPE2 is down-regulated in NSCLC tissues. • TIPE2 inhibits NSCLC cell proliferation, colony formation and invasion. • TIPE2 reduces the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. - Abstract: The present study aims to investigate the expression pattern of TIPE2 protein and its clinical significance in human non-small cell lung cancer (NSCLC). We investigated the expression levels of TIPE2 in 96 NSCLC tumor samples by immunohistochemistry and then analyzed its clinical significance. Furthermore, the role of TIPE2 on the biological properties of the NSCLC cell line H1299 and A549 was experimentally tested in vitro and in vivo. We found that the expression level of TIPE2 was significantly higher in normal lung tissues compared with NSCLC tissues (P < 0.001), and TIPE2 downregulation was significantly correlated with advanced TNM stage (P = 0.006). TIPE2 expression was lower in lung cancer cell lines than normal bronchial cell line HBE. Transfection of TIPE2 plasmid was performed in H1299 and A549 cells. TIPE2 overexpression inhibited lung cancer cell proliferation, colony formation and cell invasive in vitro, and prevented lung tumor growth in vivo. In addition, TIPE2 transfection reduced the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. Taken together, our results demonstrate that TIPE2 might serve as a tumor suppressor in NSCLC progression.

  20. Green tea inhibits cycolooxygenase-2 in non-small cell lung cancer cells through the induction of Annexin-1.

    PubMed

    Lu, Qing-Yi; Jin, Yusheng; Mao, Jenny T; Zhang, Zuo-Feng; Heber, David; Dubinett, Steven M; Rao, Jianyu

    2012-11-02

    Elevated cyclooygenase-2 (COX-2) expression is frequently observed in human non-small cell lung cancer (NSCLC) and associated with poor prognosis, indicating critical involvement of the inflammatory pathway in lung carcinogenesis. Recently, we found that green tea extract (GTE) induced Annexin-1 (ANX1) in the lung adenocarcinoma A549 cells. ANX1 is a glucocorticoid-inducible 37kDa protein involved in a wide range biological function and is an important anti-inflammatory mediator. The present study further examines the interplay between the expressions and production of ANX1, COX-2, phospholipase A(2) (cPLA(2)) and prostaglandin E(2) (PGE(2)) following the treatment of NSCLC cell lines with GTE. We found that GTE induced ANX1 and inhibited COX-2 expression in lung cancer A549, H157 and H460 cell lines. Addition of pro-inflammatory cytokine IL-1β diminished GTE-induced ANX1. Silence of ANX1 in cells abrogates the inhibitory activity on COX-2, indicating that the anti-inflammatory activity of GTE is mediated at least partially by the up-regulation of ANX1. However, differential pattern of inhibitory effects of ANX1 on cPLA(2) expression was observed among various cell types, suggesting that the anti-inflammatory activity mediated by ANX1 is cell type specific. Our study may provide a new mechanism of GTE on the prevention of lung cancer and other diseases related to inflammation.

  1. Anticancer effects of novel thalidomide analogs in A549 cells through inhibition of vascular endothelial growth factor and matrix metalloproteinase-2.

    PubMed

    El-Aarag, Bishoy; Kasai, Tomonari; Masuda, Junko; Agwa, Hussein; Zahran, Magdy; Seno, Masaharu

    2017-01-01

    Lung cancer is one of the major causes of cancer-related mortality worldwide, and non-small-cell lung cancer is the most common form of lung cancer. Several studies had shown that thalidomide has potential for prevention and therapy of cancer. Therefore, the current study aimed to investigate the antitumor effects of two novel thalidomide analogs in human lung cancer A549 cells. The antiproliferative, antimigratory, and apoptotic effects in A549 cells induced by thalidomide analogs were examined. In addition, their effects on the expression of mRNAs encoding vascular endothelial growth factor165 (VEGF165) and matrix metalloproteinase-2 (MMP-2) were evaluated. Their influence on the tumor volume in nude mice was also determined. Results revealed that thalidomide analogs exhibited antiproliferative, antimigratory, and apoptotic activities with more pronounced effect than thalidomide drug. Furthermore, analogs 1 and 2 suppressed the expression levels of VEGF165 by 42% and 53.2% and those of MMP-2 by 45% and 52%, respectively. Thalidomide analogs 1 and 2 also reduced the tumor volume by 30.11% and 53.52%, respectively. Therefore, this study provides evidence that thalidomide analogs may serve as a new therapeutic option for treating lung cancer.

  2. Metuzumab enhanced chemosensitivity and apoptosis in non-small cell lung carcinoma

    PubMed Central

    Feng, Fei; Wang, Bin; Sun, Xiuxuan; Zhu, Yumeng; Tang, Hao; Nan, Gang; Wang, Lijuan; Wu, Bo; Huhe, Muren; Liu, Shuangshuang; Diao, Tengyue; Hou, Rong; Zhang, Yang; Zhang, Zheng

    2017-01-01

    ABSTRACT Targeted therapeutics is used as an alternative treatment of non-small cell lung cancer (NSCLC); however, treatment effect is far from being satisfactory, and therefore identification of new targets is needed. We have previously shown that metuzumab inhibit tumor growth in vivo. The present study was performed to investigate the anti-tumor efficacy of metuzumab combined with gemcitabine and cisplatin (GP), paclitaxel and cisplatin (TP) or navelbine and cisplatin (NP) regimens in multiple NSCLC cell lines. Our results demonstrate that, in comparison to single agent metuzumab or GP treated cells, metuzumab combined with GP display inhibitory effects on tumor growth. Furthermore, we found that metuzumab elevated the sensitivity of cell lines to gemcitabine, which was identified by MTT assay. Flow cytometric analysis showed that metuzumab combined with gemcitabine (GEM) treatment led to an obvious G1 arrest and an elevated apoptosis in A549, NCI-H460 and NCI-H520 cells. Western blot analysis also demonstrated a significantly reduced level of cyclin D1, Bcl-2, and an obviously increase level of Bax and full-length caspase-3 in A549, NCI-H460 and NCI-H520 cells treated with metuzumab/gemcitabine combination in comparison with single agent treated cells. In addition, metuzumab/gemcitabine treated A549, NCI-H460 and NCI-H520 cells also demonstrated a significantly increase in deoxycytidine kinase (dCK) protein level compared with single agent metuzumab or gemcitabine treated cells. Xenograft models also demonstrated that this metuzumab/gemcitabine combination led to upregulation of dCK. Taken together, the mechanisms of metuzumab combined with GP repress tumor growth were that the combined treatment significantly inhibited the tumor cell proliferation, apoptosis and cell cycle in vitro and in vivo and at least partially by induction of dCK expression. Our results suggested that metuzumab could significantly enhance chemosensitivity of human NSCLC cells to

  3. Role of microRNA-4458 in patients with non-small-cell lung cancer

    PubMed Central

    Bao, Lidao; Wang, Linlin; Wei, Guomin; Wang, Yuehong; Wuyun, Gerile; Bo, Agula

    2016-01-01

    Incidence and progression of non-small-cell lung cancer (NSCLC) is a multi-factor, multi-step process. The present study investigated the association between the expression level of microRNA (miR)-4458 in NSCLC and paracarcinoma liver tissues and survival rates, and studied the biological functions of miR-4458 at the cellular and protein level. NSCLC and paracarcinoma tissues were sequenced using a miR expression chip. The association between miR-4458 expression and tumor-node-metastasis staging, total survival rate and relapse-free survival rate was analyzed. miR-4458 was subjected to target gene prediction. The target protein of cyclin D1 (CCND1) was verified with western blot analysis, immunohistochemistry and a luciferase reporter assay. The relative level of miR-4458 in paracarcinoma tissues of 9 NSCLC patients decreased from 2.38 to 0.65 (P<0.001). Total five-year survival rates of the high-expression miR-4458 group (29.21%) significantly exceeded that of the low-expression group (14.37%) (P=0.025). The viability of human lung carcinoma A549 and H460 cells transfected with miR-4458 decreased significantly compared with cells transfected with a normal control (blank control plasmid) within 72 h (P<0.001). The percentage of A549 and H460 cells transfected with a miR-4458 mimic at the cell cycle stage G0/G1 was 69.94±8.05 and 68.15±7.75%, respectively. The percentages increased significantly compared with the control group (46.06±6.93 for A549 cells; 45.22±7.24 for H640 cells; P<0.001). CCND1 mRNA was downregulated significantly in H460 cells 72 h subsequent to the addition of miR-4458 mimics (P<0.001). The activity of mutant-CCND1 altered slightly, while the fluorescence intensity of the wild-type-CCND1 group decreased significantly following the addition of miR-4458 mimics. In conclusion, miR-4458 was expressed at low levels in lung cancer tissues, and it arrested cells in vitro at stage G0/G1 and inhibited cell proliferation. Therefore, miR-4458 may

  4. Cathepsin L upregulation-induced EMT phenotype is associated with the acquisition of cisplatin or paclitaxel resistance in A549 cells

    PubMed Central

    Han, Mei-ling; Zhao, Yi-fan; Tan, Cai-hong; Xiong, Ya-jie; Wang, Wen-juan; Wu, Feng; Fei, Yao; Wang, Long; Liang, Zhong-qin

    2016-01-01

    Aim: Cathepsin L (CTSL), a lysosomal acid cysteine protease, is known to play important roles in tumor metastasis and chemotherapy resistance. In this study we investigated the molecular mechanisms underlying the regulation of chemoresistance by CTSL in human lung cancer cells. Methods: Human lung cancer A549 cells, A549/PTX (paclitaxel-resistant) cells and A549/DDP (cisplatin-resistant) cells were tested. The resistance to cisplatin or paclitaxel was detected using MTT and the colony-formation assays. Actin remodeling was observed with FITC-Phalloidin fluorescent staining or immunofluorescence. A wound-healing assay or Transwell assay was used to assess the migration or invasion ability. The expression of CTSL and epithelial and mesenchymal markers was analyzed with Western blotting and immunofluorescence. The expression of EMT-associated transcription factors was measured with Western blotting or q-PCR. BALB/c nude mice were implanted subcutaneously with A549 cells overexpressing CTSL, and the mice were administered paclitaxel (10, 15 mg/kg, ip) every 3 d for 5 times. Results: Cisplatin or paclitaxel treatment (10–80 ng/mL) induced CTSL expression in A549 cells. CTSL levels were much higher in A549/PTX and A549/DDP cells than in A549 cells. Silencing of CTSL reversed the chemoresistance in A549/DDP and A549/TAX cells, whereas overexpression of CTSL attenuated the sensitivity of A549 cells to cisplatin or paclitaxel. Furthermore, A549/DDP and A549/TAX cells underwent morphological and cytoskeletal changes with increased cell invasion and migration abilities, accompanied by decreased expression of epithelial markers (E-cadherin and cytokeratin-18) and increased expression of mesenchymal markers (N-cadherin and vimentin), as well as upregulation of EMT-associated transcription factors Snail, Slug, ZEB1 and ZEB2. Silencing of CTSL reversed EMT in A549/DDP and A549/TAX cells; In contrast, overexpression of CTSL induced EMT in A549 cells. In xenograft nude mouse

  5. Over-expression of Orai1 mediates cell proliferation and associates with poor prognosis in human non-small cell lung carcinoma.

    PubMed

    Zhan, Zheng-Yu; Zhong, Lu-Xing; Feng, Miao; Wang, Jian-Feng; Liu, Di-Bin; Xiong, Jian-Ping

    2015-01-01

    Orai1 and STIM1 mediate calcium release-activated calcium current (CRAC) which is the best characterized store-operated calcium current involving in a wide range of cell progresses, such as cell proliferation, metastasis, apoptosis. Orai1 has been studied as a carcinogenic biomarker in some cancers such as esophageal cancer. However, its function and clinical significance in non-small cell lung cancer (NSCLC) have not been well studied. The present study was aimed at discussing the relationship between Orai1 and lung cancer malignant behavior with its clinical significance. We used quantitative real-time-PCR and Western blot to detect the expression of Orai1 in NSCLC cell lines and fresh cancer tissues. Immunohistochemistry were performed to test the location and expression of Orai1 in paraffin sections. We found that Orai1 was markedly overexpressed in both NSCLC cell lines and fresh cancer tissues. Immunohistochemistry data also revealed that overexpression of Orai1 was present in 42.4% of NSCLC tissues, compared with the corresponding adjacent nontumorous tissues. Furthermore, NSCLC patients with high Orai1 expression survived shorter than those with low Orai1 expression. In addition, when knockdown Orai1 by RNAi technic, we found the PI3k/AKT/ERK pathway was inhibited which may indicated that Orai1 could influence cell proliferation. Taken together, our study demonstrated that Orai1 was remarkably overexpressed in NSCLC and could be served as a potential prognostic marker for patients with this deadly disease.

  6. Eosinophil Granulocytes Account for Indoleamine 2,3-Dioxygenase-Mediated Immune Escape in Human Non-Small Cell Lung Cancer1

    PubMed Central

    Astigiano, Simonetta; Morandi, Barbara; Costa, Roberta; Mastracci, Luca; D'Agostino, Antonella; Battista Ratto, Giovanni; Melioli, Giovanni; Frumento, Guido

    2005-01-01

    Abstract Indoleamine 2,3-dioxygenase (IDO), a catabolizing enzyme of tryptophan, is supposed to play a role in tumor immune escape. Its expression in solid tumors has not yet been well elucidated: IDO can be expressed by the tumor cells themselves, or by ill-defined infiltrating cells, possibly depending on tumor type. We have investigated IDO expression in 25 cases of non-small cell lung cancer (NSCLC). Using histochemistry and immunohistochemistry, we found that IDO was expressed not by tumor cells, but by normal cells infiltrating the peritumoral stroma. These cells were neither macrophages nor dendritic cells, and were identified as eosinophil granulocytes. The amount of IDO-positive eosinophils varied in different cases, ranging from a few cells to more than 50 per field at x200 magnification. IDO protein in NSCLC was enzymatically active. Therefore, at least in NSCLC cases displaying a large amount of these cells in the inflammatory infiltrate, IDO-positive eosinophils could exert an effective immunosuppressive action. On analyzing the 17 patients with adequate follow-up, a significant relationship was found between the amount of IDO-positive infiltrate and overall survival. This finding suggests that the degree of IDO-positive infiltrate could be a prognostic marker in NSCLC. PMID:15967116

  7. Chaetocin induces endoplasmic reticulum stress response and leads to death receptor 5-dependent apoptosis in human non-small cell lung cancer cells.

    PubMed

    Liu, Xianfang; Guo, Sen; Liu, Xiangguo; Su, Ling

    2015-11-01

    Epigenetic abnormalities are associated with non-small cell lung cancer (NSCLC) initiation and progression. Epigenetic drugs are being studied and in clinical trials. However, the molecular mechanism underlying the apoptosis by the epigenetic agents remains unclear. SUV39H1 is an important methyl-transferase for lysine 9 on histone H3 and usually related to gene transcriptional suppression, and chaetocin acts as the inhibitor of SUV39H1. We demonstrated here that chaetocin effectively suppressed the growth of multiple lung cancer cells through inducing apoptosis in a death receptor 5 (DR5)-dependent manner. Chaetocin treatment activated endoplasmic reticulum (ER) stress which gave rise to the up-regulation of ATF3 and CHOP. Furthermore, ATF3 and CHOP contributed to the induction of DR5 and subsequent apoptosis. When SUV39H1 was silenced with siRNA, the expression of ATF3, CHOP and DR5 was elevated. Thereafter, knockdown of SUV39H1 induced apoptosis in NSCLC cells. In summary, chaetocin pharmacologically inhibits the activity of SUV39H1 which provokes ER stress and results in up-regulation of ATF3 and CHOP, leading to DR5-dependent apoptosis eventually. These findings provide a novel interpretation on the anti-neoplastic activity of epigenetic drugs as a new therapeutic approach in NSCLC.

  8. Role of α7-nicotinic acetylcholine receptor in nicotine-induced invasion and epithelial-to-mesenchymal transition in human non-small cell lung cancer cells

    PubMed Central

    Yang, Xin-Jie; An, Shi-Min; Wang, Hao; Xu, Lu; Zhu, Liang; Chen, Hong-Zhuan

    2016-01-01

    Nicotine via nicotinic acetylcholine receptors (nAChRs) stimulates non-small cell lung cancer (NSCLC) cell invasion and epithelial to mesenchymal transition (EMT) which underpin the cancer metastasis. However, the receptor subtype-dependent effects of nAChRs on NSCLC cell invasion and EMT, and the signaling pathway underlying the effects remain not fully defined. We identified that nicotine induced NSCLC cell invasion, migration, and EMT; the effects were suppressed by pharmacological intervention using α7-nAChR selective antagonists or by genetic intervention using α7-nAChR knockdown via RNA inference. Meanwhile, nicotine induced activation of MEK/ERK signaling in NSCLC cells; α7-nAChR antagonism or MEK/ERK signaling pathway inhibition suppressed NSCLC cell invasion and EMT marker expression. These results indicate that nicotine induces NSCLC cell invasion, migration, and EMT; the effects are mediated by α7-nAChRs and involve MEK/ERK signaling pathway. Delineating the effect of nicotine on the NSCLC cell invasion and EMT at receptor subtype level would improve the understanding of cancer biology and offer potentials for the exploitation of selective ligands for the control of the cancer metastasis. PMID:27409670

  9. Catechin-7-O-xyloside induces apoptosis via endoplasmic reticulum stress and mitochondrial dysfunction in human non-small cell lung carcinoma H1299 cells.

    PubMed

    Yoon, Jang Won; Lee, Jong Suk; Kim, Byeong Mo; Ahn, Joungjwa; Yang, Kyung Mi

    2014-01-01

    The medicinal plant Ulmus davidiana var. japonica has significant potential as a cancer chemoprevention agent. Catechin-7-O-xyloside (C7Ox) was purified from ultrafine U. davidiana var. japonica ethanol extract. In the present study, we investigated the apoptotic effect of C7Ox in the non-small cell lung cancer (NSCLC) cell line H1299. C7Ox treatment induced cell death and decreased plasma membrane integrity, an event typical of apoptosis. C7Ox-induced apoptosis was associated with the proteolytic activation of caspase-6, cleavage of poly(ADP-ribose) polymerase (PARP) and loss of mitochondrial membrane potential. C7Ox also induced the endoplasmic reticulum (ER) stress-regulated pro-apoptotic transcription factor CHOP. The suppression of CHOP expression significantly decreased C7Ox-induced cell death, LDH leakage and caspase-6 activation. Antitumor effects, evaluated based on protracted tumor regression, were observed when nude-mice bearing H1299 xenografts were treated with C7Ox. C7Ox-induced tumor regression was accompanied by enhanced expression of CHOP mRNA. Our data suggest that C7Ox can trigger mitochondrial-mediated apoptosis, and that ER stress is critical for C7Ox-induced apoptosis in H1299 NSCLC cells.

  10. Lung cancer - non-small cell

    MedlinePlus

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk depends on the number of cigarettes ...

  11. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    PubMed

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells.

  12. In vitro cytotoxicity of gold nanorods in A549 cells.

    PubMed

    Tang, Ying; Shen, Yafeng; Huang, Libin; Lv, Gaojian; Lei, Changhai; Fan, Xiaoyan; Lin, Fangxing; Zhang, Yuxia; Wu, Lihui; Yang, Yongji

    2015-03-01

    Gold nanoparticles, which have unique physicochemical characteristics, are being used for an increasingly wide range of applications in biomedical research. In this study, gold nanorods (width of 25 nm, length of 52 nm) were found to be internalized by A549 cells and were primarily localized in the lysosomes and membranous vesicles. The integrity of the membranes of A549 cells exposed to gold nanorods for 4h was damaged, as indicated by laser scanning confocal microscopy (LSCM). Increased lactate dehydrogenase (LDH) leakage and decreased cell viability further indicated the concentration-dependent cytotoxicity of the gold nanorods to the A549 cells. Reactive oxygen species (ROS) production was induced in the A549 cells by the gold nanorods, and this effect was positively correlated with the concentration of the gold nanorods. The results of this study indicated that exposure to gold nanorods caused dose-dependent cytotoxicity in A549 cells and that oxidative stress may be the main factor causing cytotoxicity.

  13. Minichromosome Maintenance Protein 7 is a potential therapeutic target in human cancer and a novel prognostic marker of non-small cell lung cancer

    PubMed Central

    2011-01-01

    Background The research emphasis in anti-cancer drug discovery has always been to search for a drug with the greatest antitumor potential but fewest side effects. This can only be achieved if the drug used is against a specific target located in the tumor cells. In this study, we evaluated Minichromosome Maintenance Protein 7 (MCM7) as a novel therapeutic target in cancer. Results Immunohistochemical analysis showed that MCM7 was positively stained in 196 of 331 non-small cell lung cancer (NSCLC), 21 of 29 bladder tumor and 25 of 70 liver tumor cases whereas no significant staining was observed in various normal tissues. We also found an elevated expression of MCM7 to be associated with poor prognosis for patients with NSCLC (P = 0.0055). qRT-PCR revealed a higher expression of MCM7 in clinical bladder cancer tissues than in corresponding non-neoplastic tissues (P < 0.0001), and we confirmed that a wide range of cancers also overexpressed MCM7 by cDNA microarray analysis. Suppression of MCM7 using specific siRNAs inhibited incorporation of BrdU in lung and bladder cancer cells overexpressing MCM7, and suppressed the growth of those cells more efficiently than that of normal cell strains expressing lower levels of MCM7. Conclusions Since MCM7 expression was generally low in a number of normal tissues we examined, MCM7 has the characteristics of an ideal candidate for molecular targeted cancer therapy in various tumors and also as a good prognostic biomarker for NSCLC patients. PMID:21619671

  14. The effects and mechanisms of SLC34A2 on tumorigenicity in human non-small cell lung cancer stem cells.

    PubMed

    Jiang, Zhanxin; Hao, Yanhong; Ding, Xiaoquan; Zhang, Zhibin; Liu, Peng; Wei, Xueqiang; Xi, Junfeng

    2016-08-01

    A novel paradigm in tumor biology suggests that non-small cell lung cancer (NSCLC) growth is driven by lung cancer stem cell-like cells (LCSCs), but molecular mechanisms regulating tumorigenic and self-renewal potential of LCSCs are still unclear. Here, we aim to investigate biological function of SLC34A2 in regulating tumorigenicity of LCSCs and its underlying mechanisms. Our findings testified that CD166(+) cells which were derived from fresh primary NSCLC samples displayed stem cell-like features. Fluorescence-activated cell sorting (FACS) analysis showed the presence of a variable fraction of CD166 cells in 15 out of 15 NSCLC samples. Significantly, CD166(+) LCSCs from primary NSCLC tumors expressed high level of SLC34A2 which was required for CD166(+) LCSCs tumorigenic and self-renewal potential. In NSCLC patient cohort, increased SLC34A2 expression correlated with histology, which suggests a potential role of SLC34A2 in CD166(+) LCSCs. Furthermore, Wnt/β-catenin pathway and Bmi1 were found necessary for tumorigenicity and self-renewal capacity of CD166(+) LCSCs by a series in vitro and in vivo experiments. Then, our study indicated that SLC34A2 regulated Bmi1 to promote tumorigenic and self-renewal potential of CD166(+) LCSCs through Wnt/β-catenin pathway. In this study, the characterization of molecular basis of SLC34A2 in CD166(+) LCSCs not only allows for better understanding of the mechanisms regulating tumorigenicity of this specific population of NSCLC cells but also provides insight into the gradual improvement of more effective cancer therapies against this disease.

  15. Identification of GlcNAcylated alpha-1-antichymotrypsin as an early biomarker in human non-small-cell lung cancer by quantitative proteomic analysis with two lectins

    PubMed Central

    Jin, Yanxia; Wang, Jie; Ye, Xiangdong; Su, Yanting; Yu, Guojun; Yang, Qing; Liu, Wei; Yu, Wenhui; Cai, Jie; Chen, Xi; Liang, Yi; Chen, Yijie; Wong, Barry Hon Cheung; Fu, Xiangning; Sun, Hui

    2016-01-01

    Background: Non-small-cell lung cancer (NSCLC) is the main type of lung cancer with high mortality rates in worldwide. There is a need to identify better biomarkers to detect NSCLC at an early stage as this will improve therapeutic effect and patient survival rates. Methods: Two lectins (AAL/AAGL and AAL2/AANL), which specifically bind to tumour-related glycan antigens, were first used to enrich serum glycoproteins from the serum of early NSCLC patients, benign lung diseases subjects and healthy individuals. The samples were investigated by using iTRAQ labelling and LC-MS/MS. Results: A total of 53 differentially expressed proteins were identified by quantitative proteomics and four glycoproteins (AACT, AGP1, CFB and HPX) were selected for further verification by western blotting. Receiver operating characteristic analysis showed AACT was the best candidate for early NSCLC diagnosis of the four proteins, with 94.1% sensitivity in distinguishing early tumour Stage (IA+IB) from tumour-free samples (healthy and benign samples, HB). The GlcNAcylated AACT was further detected by lectin-based ELISA and has better advantage in clinical application than total AACT. The GlcNAcylated AACT can effectively differentiate Stage I from HB samples with an AUC of 0.908 and 90.9% sensitivity at a specificity of 86.2%. A combination of GlcNAcylated AACT and carcinoembryonic antigen (CEA) was able to effectively differing Stage I from HB samples (AUC=0.914), which significantly improve the specificity of CEA. The combination application also has the better clinical diagnostic efficacy in distinguishing cancer (NSCLC) from HB samples than CEA or GlcNAcylated AACT used alone, and yielded an AUC of 0.817 with 93.1% specificity. Conclusions: Our findings suggest that the GlcNAcylated AACT will be a promising clinical biomarker in diagnosis of early NSCLC. PMID:26908325

  16. Capilliposide from Lysimachia capillipes inhibits AKT activation and restores gefitinib sensitivity in human non-small cell lung cancer cells with acquired gefitinib resistance

    PubMed Central

    Zhang, Shi-rong; Xu, Ya-si; Jin, Er; Zhu, Lu-cheng; Xia, Bing; Chen, Xu-feng; Li, Fan-zhu; Ma, Sheng-lin

    2017-01-01

    Most gefitinib-treated patients with non-small cell lung cancer (NSCLC) would eventually develop resistance. Lysimachia capillipes (LC) capilliposide extracts from LC Hemsl. show both in vitro and in vivo anti-cancer effects. In this study we investigated whether LC capilliposide in combination with gefitinib could overcome the resistance of NSCLC cells to gefitinib and identified the signaling pathways involved. Treatment with LC capilliposide alone inhibited the growth of a panel of NSCLC cell lines (PC-9, H460, H1975, H1299 and PC-9-GR) sensitive or resistant to gefitinib with IC50 values in the range of μg/mL. In the gefitinib-resistant PC-9-GR cells (which have a T790M EGFR mutation), LC capilliposide (at the IC30, i.e.1.2 μg/mL) markedly enhanced the inhibitory effects of gefitinib with its IC50 value being decreased from 6.80±1.00 to 0.77±0.12 μmol/L. By using the median effect analysis we showed that combination treatment of LC capilliposide and gefitinib could restore gefitinib sensitivity in PC-9-GR cells. Furthermore, LC capilliposide (1.2 μg/mL) significantly increased the apoptotic responses to gefitinib (0.77 μmol/L) in PC-9-GR cells, but did not affect gefitinib-induced G0/G1 arrest. Moreover, LC capilliposide (1.2 μg/mL) in combination with gefitinib (0.77, 1.0 μmol/L) markedly decreased the phosphorylation of the EGFR downstream signaling molecule AKT, which neither LC capilliposide nor gefitinib alone affected. In PC-9-GR cells with siRNA knockdown of AKT, addition of LC capilliposide was unable to increase gefitinib sensitivity. In a PC-9-GR xenograft mouse model, combination treatment with LC capilliposide (15 mg·kg−1·d−1, ip) and gefitinib (50 mg·kg−1·d−1, ip) dramatically enhanced tumor growth suppression (with a TGI of 109.3%), compared with TGIs of 22.6% and 56.6%, respectively, in mice were treated with LC capilliposide or gefitinib alone. LC capilliposide can restore the cells' sensitivity to gefitinib through

  17. Green tea polyphenol EGCG reverse cisplatin resistance of A549/DDP cell line through candidate genes demethylation.

    PubMed

    Zhang, Youwei; Wang, Xiang; Han, Liang; Zhou, Yizhou; Sun, Sanyuan

    2015-02-01

    Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, has been extensively studied as a potential demethylating agent. Our hypothesis is that EGCG could resensitize non-small-cell lung cancer (NSCLC) cells to cisplatin (DDP) through candidate genes demethylation. The A549/DDP cell line was established by continuous exposure of A549 cells to increasing concentrations of DDP. MTT, colony formation assay, flow cytometric analysis, Hoechst staining, real time-PCR, quantitative methylation-specific PCR and in vivo experiments were performed in this study. EGCG+DDP treatment significantly caused proliferation inhibition, cell cycle arrest in G1 phase, increase of apoptosis in A549/DDP cells, along with inhibition of DNA methyltransferase (DNMT) activity and histone deacetylase (HDAC) activity, reversal of hypermethylated status and downregulated expression of GAS1, TIMP4, ICAM1 and WISP2 gene in A549/DDP cells. Furthermore, pre-treatment with EGCG followed by DDP caused significant tumor inhibition in vivo. Methylation levels of GAS1, TIMP4, ICAM1 and WISP2 were decreased and their expression levels were increased in EGCG-treatment groups, but only combinatorial treatment group caused growth inhibition. In conclusion, we identified EGCG pretreatment resensitized cells to DDP, along with the demethylation and restoration of expression of candidate genes.

  18. Targeted Therapy Against VEGFR and EGFR With ZD6474 Enhances the Therapeutic Efficacy of Irradiation in an Orthotopic Model of Human Non-Small-Cell Lung Cancer

    SciTech Connect

    Shibuya, Keiko; Komaki, Ritsuko; Shintani, Tomoaki; Itasaka, Satoshi; Ryan, Anderson; Juergensmeier, Juliane M.; Milas, Luka; Ang, Kian; Herbst, Roy S.; O'Reilly, Michael S.

    2007-12-01

    Purpose: Conventional therapies for patients with lung cancer have reached a therapeutic plateau. We therefore evaluated the feasibility of combined vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) and epidermal growth factor (EGF) receptor (EGFR) targeting with radiation therapy in an orthotopic model that closely recapitulates the clinical presentation of human lung cancer. Methods and Materials: Effects of irradiation and/or ZD6474, a small-molecule inhibitor of VEGFR2 and EGFR tyrosine kinases, were studied in vitro for human lung adenocarcinoma cells by using proliferation and clonogenic assays. The feasibility of combining ZD6474 with radiation therapy was then evaluated in an orthotopic model of human lung adenocarcinoma. Lung tumor burden and spread within the thorax were assessed, and tumor and adjacent tissues were analyzed by means of immunohistochemical staining for multiple parameters, including CD31, VEGF, VEGFR2, EGF, EGFR, matrix metalloproteinase-2 and -9, and basic fibroblast growth factor. Results: ZD6474 enhanced the radioresponse of NCI-H441 human lung adenocarcinoma cells by a factor of 1.37 and markedly inhibited sublethal damage repair. In vivo, the combined blockade of VEGFR2 and EGFR by ZD6474 blocked pleural effusion formation and angiogenesis and enhanced the antivascular and antitumor effects of radiation therapy in the orthotopic human lung cancer model and was superior to chemoradiotherapy. Conclusions: When radiation therapy is combined with VEGFR2 and EGFR blockade, significant enhancement of antiangiogenic, antivascular, and antitumor effects are seen in an orthotopic model of lung cancer. These data provide support for clinical trials of biologically targeted and conventional therapies for human lung cancer.

  19. Functional EpoR Pathway Utilization Is Not Detected in Primary Tumor Cells Isolated from Human Breast, Non-Small Cell Lung, Colorectal, and Ovarian Tumor Tissues

    PubMed Central

    Patterson, Scott D.; Rossi, John M.; Paweletz, Katherine L.; Fitzpatrick, V. Dan; Begley, C. Glenn; Busse, Leigh; Elliott, Steve; McCaffery, Ian

    2015-01-01

    Several clinical trials in oncology have reported increased mortality or disease progression associated with erythropoiesis-stimulating agents. One hypothesis proposes that erythropoiesis-stimulating agents directly stimulate tumor proliferation and/or survival through cell-surface receptors. To test this hypothesis and examine if human tumors utilize the erythropoietin receptor pathway, the response of tumor cells to human recombinant erythropoietin was investigated in disaggregated tumor cells obtained from 186 patients with colorectal, breast, lung, ovarian, head and neck, and other tumors. A cocktail of well characterized tumor growth factors (EGF, HGF, and IGF-1) were analyzed in parallel as a positive control to determine whether freshly-isolated tumor cells were able to respond to growth factor activation ex vivo. Exposing tumor cells to the growth factor cocktail resulted in stimulation of survival and proliferation pathways as measured by an increase in phosphorylation of the downstream signaling proteins AKT and ERK. In contrast, no activation by human recombinant erythropoietin was observed in isolated tumor cells. Though tumor samples exhibited a broad range of cell-surface expression of EGFR, c-Met, and IGF-1R, no cell-surface erythropoietin receptor was detected in tumor cells from the 186 tumors examined (by flow cytometry or Western blot). Erythropoiesis-stimulating agents did not act directly upon isolated tumor cells to stimulate pathways known to promote proliferation or survival of human tumor cells isolated from primary and metastatic tumor tissues. PMID:25807104

  20. Infection of A549 human type II epithelial cells with Mycobacterium tuberculosis induces changes in mitochondrial morphology, distribution and mass that are dependent on the early secreted antigen, ESAT-6.

    PubMed

    Fine-Coulson, Kari; Giguère, Steeve; Quinn, Frederick D; Reaves, Barbara J

    2015-10-01

    Pulmonary infection by Mycobacterium tuberculosis (Mtb) involves the invasion of alveolar epithelial cells (AECs). We used Mitotracker Red(®) to assess changes in mitochondrial morphology/distribution and mass from 6 to 48 h post infection (hpi) by confocal microscopy and flow cytometry in Mtb-infected A549 type II AECs. During early infection there was no effect on mitochondrial morphology, however, by 48 hpi mitochondria appeared fragmented and concentrated around the nucleus. In flow cytometry experiments, the median fluorescence intensity (MFI) decreased by 44% at 48 hpi; double-labelling using antibodies to the integral membrane protein COXIV revealed that these changes were due to a decrease in mitochondrial mass. These changes did not occur with the apathogenic strain, Mycobacterium bovis BCG. ESAT-6 is a virulence factor present in Mtb Erdman but lacking in M. bovis BCG. We performed similar experiments using Mtb Erdman, an ESAT-6 deletion mutant and its complement. MFI decreased at 48 hpi in the parent and complemented strains versus uninfected controls by 52% and 36% respectively; no decrease was detected in the deletion mutant. These results indicate an involvement of ESAT-6 in the perturbation of mitochondria induced by virulent Mtb in AECs and suggest mitophagy may play a role in the infection process.

  1. Knockdown of eIF3d inhibits cell proliferation through G2/M phase arrest in non-small cell lung cancer.

    PubMed

    Lin, Zhifeng; Xiong, Liwen; Lin, Qiang

    2015-07-01

    Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and remains the leading cause of cancer-related death worldwide. Eukaryotic translation initiation factor 3, subunit d (eIF3d) has been recognized recently in several human cancers. In this paper, we attempt to evaluate the functional role of eIF3d in NSCLC cells. Lentivirus-mediated RNA interference (RNAi) was applied to silence eIF3d in the human NSCLC cell lines A549 and 95D. Cell viability was measured by MTT. Cell colony-forming ability was measured by colony formation. Cell cycle progression was determined by propidium iodide staining and flow cytometry. Intracellular signaling molecules were detected using a PathScan(®) intracellular signaling array kit. In this study, we firstly proved that lentivirus-mediated RNAi specifically suppressed the expression of eIF3d both at the mRNA and protein levels in A549 and 95D cell lines. Further investigations revealed that eIF3d knockdown significantly inhibited cell proliferation and colony formation. Moreover, the cell cycle of A549 cells was arrested at G2/M phase after eIF3d knockdown. Furthermore, the activations of AKT, HSP27 and SAPK/JNK were suppressed by eIF3d knockdown. This study highlights the crucial role of eIF3d in promoting NSCLC cell proliferation, and provides a foundation for further study into the clinical potential of lentiviral-mediated delivery of eIF3d RNAi therapy for treatment of NSCLC.

  2. [Effect of two different acellular lung matrices on α-SMA expression in A549 cells].

    PubMed

    Chen, C; Wang, Z Y; Weng, J; Wang, Z B; Mei, J; Du, X H; Wang, L

    2017-01-24

    Objective: To explore the effect of acellular normal and fibrotic lung matrices on alpha smooth muscle actin (α-SMA) expression in human lung adenocarcinoma cell line A549. Methods: Twenty adult SD rats were randomly divided into normal group and idiopathic pulmonary fibrosis(IPF)group (n=10 each). The pulmonary fibrosis was induced by Bleomycin. Normal and fibrotic decellularized lungs were made, then sections with 500 μm thick were cut by a standard Vibratome. None scaffold was set as control group. A549 cells were seeded dropwise into different slices (normal and fibrotic scaffolds), and cultured for one week in vitro. The expression of α-SMA was measured by immunofluorescence staining and quantitative real time polymerase chain reaction (qRT-PCR). Results: In control group, the expression of α-SMA protein was positive in A549 cells by immunofluorescence staining. However, it expressed weakly both in normal and fibrotic scaffold group, and the fluorescence intensity in fibrotic scaffold group was significant lower than that in normal group (P<0.05). The relative expression amount of α-SMA mRNA in normal and fibrotic scaffold group were (0.70±0.11) and (0.55±0.12), which were significant lower than that of control group (1.28±0.21) (P<0.05). Moreover, the relative expression of α-SMA mRNA in fibrotic scaffold group was decreased compared to that in normal scaffold group (P<0.05). Conclusions: Acellular normal and fibrotic lung scaffold can downregulate the expression of α-SMA in human lung adenocarcinoma cell line A549. It may inhibit the movement of A549 cells in acellular normal and fibrotic lung matrices, especially in acellular fibrotic lung scaffold.

  3. Utility and applications of orthotopic models of human non-small cell lung cancer (NSCLC) for the evaluation of novel and emerging cancer therapeutics.

    PubMed

    Justilien, Verline; Fields, Alan P

    2013-10-08

    Lung cancer is a leading cause of cancer deaths worldwide. Despite advances in chemotherapy, radiation therapy, and surgery, lung cancer continues to have a low 5-year survival rate, highlighting a dire need for more effective means of prevention, diagnosis, prognosis, and treatment. Mouse models that recapitulate the clinical features of advanced human lung cancer are critical for testing novel therapeutic approaches. This unit describes a highly reproducible, easy-to-establish orthotopic murine model of lung cancer, provides methods for in vivo imaging and monitoring of tumor growth, and discusses the usefulness of this model for translational lung cancer research and the development of therapeutic strategies.

  4. MiR-122 Induces Radiosensitization in Non-Small Cell Lung Cancer Cell Line

    PubMed Central

    Ma, Debin; Jia, Hui; Qin, Mengmeng; Dai, Wenjie; Wang, Tao; Liang, Erguang; Dong, Guofu; Wang, Zuojun; Zhang, Zhiyuan; Feng, Fan

    2015-01-01

    MiR-122 is a novel tumor suppresser and its expression induces cell cycle arrest, or apoptosis, and inhibits cell proliferation in multiple cancer cells, including non-small cell lung cancer (NSCLC) cells. Radioresistance of cancer cell leads to the major drawback of radiotherapy for NSCLC and the induction of radiosensitization could be a useful strategy to fix this problem. The present work investigates the function of miR-122 in inducing radiosensitization in A549 cell, a type of NSCLC cells. MiR-122 induces the radiosensitization of A549 cells. MiR-122 also boosts the inhibitory activity of ionizing radiation (IR) on cancer cell anchor-independent growth and invasion. Moreover, miR-122 reduced the expression of its targeted genes related to tumor-survival or cellular stress response. These results indicate that miR-122 would be a novel strategy for NSCLC radiation-therapy. PMID:26389880

  5. Induction of DNA damage by deguelin is mediated through reducing DNA repair genes in human non-small cell lung cancer NCI-H460 cells.

    PubMed

    Ji, Bin-Chuan; Yu, Chien-Chih; Yang, Su-Tso; Hsia, Te-Chun; Yang, Jai-Sing; Lai, Kuang-Chi; Ko, Yang-Ching; Lin, Jen-Jyh; Lai, Tung-Yuan; Chung, Jing-Gung

    2012-04-01

    It has been shown that deguelin, one of the compounds of rotenoids from flavonoid family, induced cytotoxic effects through induction of cell cycle arrest and apoptosis in many types of human cancer cell lines, but deguelin-affected DNA damage and repair gene expression (mRNA) are not clarified yet. We investigated the effects of deguelin on DNA damage and associated gene expression in human lung cancer NCI-H460 cells in vitro. DNA damage was assayed by using the comet assay and DNA gel electrophoresis and the results indicated that NCI-H460 cells treated with 0, 50, 250 and 500 nM deguelin led to a longer DNA migration smear based on the single cell electrophoresis and DNA fragmentation occurred based on the examination of DNA gel electrophoresis. DNA damage and repair gene expression (mRNA) were evaluated by using real-time PCR assay and the results indicated that 50 and 250 nM deguelin for a 24-h exposure in NCI-H460 cells, decreased the gene levels of breast cancer 1, early onset (BRCA1), DNA-dependent serine/threonine protein kinase (DNA-PK), O6-methylguanine-DNA methyltransferase (MGMT), p53, ataxia telangiectasia mutated (ATM) and ataxia-telangiectasia and Rad3-related (ATR) mRNA expressions. Collectively, the present study showed that deguelin caused DNA damage and inhibited DNA damage and repair gene expressions, which might be due to deguelin-inhibited cell growth in vitro.

  6. Synergistic activity of vorinostat combined with gefitinib but not with sorafenib in mutant KRAS human non-small cell lung cancers and hepatocarcinoma

    PubMed Central

    Jeannot, Victor; Busser, Benoit; Vanwonterghem, Laetitia; Michallet, Sophie; Ferroudj, Sana; Cokol, Murat; Coll, Jean-Luc; Ozturk, Mehmet; Hurbin, Amandine

    2016-01-01

    Development of drug resistance limits the efficacy of targeted therapies. Alternative approaches using different combinations of therapeutic agents to inhibit several pathways could be a more effective strategy for treating cancer. The effects of the approved epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (gefitinib) or a multi-targeted kinase inhibitor (sorafenib) in combination with a histone deacetylase inhibitor (vorinostat) on cell proliferation, cell cycle distribution, apoptosis, and signaling pathway activation in human lung adenocarcinoma and hepatocarcinoma cells with wild-type EGFR and mutant KRAS were investigated. The effects of the synergistic drug combinations were also studied in human lung adenocarcinoma and hepatocarcinoma cells in vivo. The combination of gefitinib and vorinostat synergistically reduced cell growth and strongly induced apoptosis through inhibition of the insulin-like growth factor-1 receptor/protein kinase B (IGF-1R/AKT)-dependent signaling pathway. Moreover, the gefitinib and vorinostat combination strongly inhibited tumor growth in mice with lung adenocarcinoma or hepatocarcinoma tumor xenografts. In contrast, the combination of sorafenib and vorinostat did not inhibit cell proliferation compared to a single treatment and induced G2/M cell cycle arrest without apoptosis. The sorafenib and vorinostat combination sustained the IGF-1R-, AKT-, and mitogen-activated protein kinase-dependent signaling pathways. These results showed that there was synergistic cytotoxicity when vorinostat was combined with gefitinib for both lung adenocarcinoma and hepatocarcinoma with mutant KRAS in vitro and in vivo but that the combination of vorinostat with sorafenib did not show any benefit. These findings highlight the important role of the IGF-1R/AKT pathway in the resistance to targeted therapies and support the use of histone deacetylase inhibitors in combination with EGFR-tyrosine kinase inhibitors, especially for treating

  7. Induction of multiple programmed cell death pathways by IFN-beta in human non-small-cell lung cancer cell lines.

    PubMed

    Zhang, H; Koty, P P; Mayotte, J; Levitt, M L

    1999-02-25

    Tissue transglutaminase (tTG) and keratinocyte transglutaminase (kTG), as well as the cross-linked envelopes (CLE) that they form, have been associated with squamous differentiation and programmed cell death in epithelial cells. When interferon-beta (IFN-beta) was used to stimulate differentiation and programmed cell death in the human lung cancer cell lines NCI-H596 and NCI-H226, the cells underwent a decrease in cellular density. In NCI-H596 IFN-beta caused an increase in kTG activity and DNA fragmentation in the lower density cells, which were significantly slower growing than control cells. However, in the higher density cells, which were only slightly slower growing than control cells, IFN-beta caused an increase in tTG activity and CLE competence. Dual-parameter flow cytometry demonstrated that IFN-beta-induced squamous differentiation preceded programmed cell death. Treatment of NCI-H596 cells with monodansylcadaverine, a transglutaminase inhibitor, prevented the increase in CLE competence, but did not inhibit DNA fragmentation. These results suggest that IFN-beta can induce NCI-H596 cells to enter multiple cell death pathways and that these pathways are not only differentiation related, but may also be growth driven.

  8. Claudin-7 suppresses the cytotoxicity of TRAIL-expressing mesenchymal stem cells in H460 human non-small cell lung cancer cells.

    PubMed

    Xia, Pu; Wang, Wei; Bai, Yang

    2014-03-01

    Evidence suggests that the cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising candidate for cancer therapeutics. Studies have also shown that claudin-7 (CLDN7) expression is variably dysregulated in various malignant neoplasms, with a role in lung cancer that has not been definitively decided. This work investigated the differential sensitivity of CLDN7-overexpressing human NSCLC H460 cells to TRAIL in vitro and in mouse xenografts, and explored the molecular mechanisms responsible for these effects. NCI-H460 cells were transfected or not with green fluorescent protein-tagged CLDN7. Each group was then exposed to mesenchymal stem cells (MSCs) or red fluorescent protein-tagged MSCs transduced with lentivirus expressing membrane-bound TRAIL. The effects and related mechanisms of these treatments were evaluated in vitro, and in vivo in murine xenografts. Our results indicate that TRAIL induced apoptosis in H460 cells in vitro, and in established xenograft tumors TRAIL was associated with a decrease in tumor size, tumor weight, and circulating tumor cells. CLDN7 was found to inhibit the MEK/ERK signaling pathway, leading to inhibition of death receptor 5 (TNFRSF10B). The cytotoxicity of TRAIL was confirmed in H460 cells and in vivo, and CLDN7 suppressed the cytotoxicity of TRAIL in H460 cells. Our results indicate that TRAIL may be a useful therapy to enhance apoptosis in CLDN7-negative lung cancer cells.

  9. COPD promotes migration of A549 lung cancer cells: the role of chemokine CCL21.

    PubMed

    Kuźnar-Kamińska, Barbara; Mikuła-Pietrasik, Justyna; Sosińska, Patrycja; Książek, Krzysztof; Batura-Gabryel, Halina

    2016-01-01

    Patients with COPD develop lung cancer more frequently than healthy smokers. At the same time, molecular mediators promoting various aspects of cancer cell progression are still elusive. In this report, we examined whether COPD can be coupled with increased migration of non-small-cell lung cancer cells A549 and, if so, whether this effect may be related to altered production and activity of chemokines CCL21, CXCL5, and CXCL12. The study showed that the migration of A549 cells through the polycarbonate membrane and basement membrane extract toward a chemotactic gradient elicited by serum from patients with COPD was markedly higher as compared with serum from healthy donors. The concentration of CCL21 and CXCL12, but not CXCL5, in serum from patients with COPD was also increased. Experiments in which CCL21- and CXCL12-dependent signaling was blocked revealed that increased migration of the cancer cells upon treatment with serum from patients with COPD was mediated exclusively by CCL21. Collectively, our results indicate that COPD may contribute to the progression of lung cancer via CCL21-dependent intensification of cancer cell migration.

  10. Rapamycin‐induced autophagy sensitizes A549 cells to radiation associated with DNA damage repair inhibition

    PubMed Central

    Li, Yong; Liu, Fen; Wang, Yong; Li, Donghai; Guo, Fei; Xu, Liyao; Zeng, Zhengguo; Zhong, Xiaojun

    2016-01-01

    Abstract Background Autophagy has been reported to increase in cancer cells after radiation. However, it remains unknown whether increased autophagy as a result of radiation affects DNA damage repair and sensitizes cancer cells. In this study, the radiosensitization effect of rapamycin, a mammalian target of rapamycin inhibitor that induces autophagy, on human lung adenocarcinoma A549 cells was investigated. Methods A549 cells were treated with different concentrations of rapamycin. Cell viability was evaluated by methyl‐thiazolyl‐tetrazolium assay. Survival fraction values of A549 cells after radiotherapy were detected by colony formation assay. Autophagosome was observed by a transmission electron microscope. Furthermore, Western blot was employed to examine alterations in autophagy protein LC3 and p62, DNA damage protein γ–H2AX, and DNA damage repair proteins Rad51, Ku70, and Ku80. Rad51, Ku70, and Ku80 messenger ribonucleic acid (mRNA) expression levels were examined by real‐time polymerase chain reaction. Results Rapamycin suppressed A549 cell proliferation in dose and time‐dependent manners. An inhibitory concentration (IC) 10 dose of rapamycin could induce autophagy in A549 cells. Rapamycin combined with radiation significantly decreased the colony forming ability of cells, compared with rapamycin or radiation alone. Rapamycin and radiation combined increased γ–H2AX expression levels and decreased Rad51 and Ku80 expression levels, compared with single regimens. However, rapamycin treatment did not induce any change in Rad51, Ku70, and Ku80 mRNA levels, regardless of radiation. Conclusions These findings indicate that increasing autophagy sensitizes lung cancer cells to radiation. PMID:27385978

  11. FOXP4 modulates tumor growth and independently associates with miR-138 in non-small cell lung cancer cells.

    PubMed

    Yang, Tian; Li, Hong; Thakur, Asmitananda; Chen, Tianjun; Xue, Jing; Li, Dan; Chen, Mingwei

    2015-09-01

    Family of forkhead box transcription factors, including forkhead box P4 (FOXP4), plays an important role in oncogenesis. The current study is to evaluate the role of FOXP4 in regulating human non-small cell lung cancer (NSCLC). Quantitative RT-PCR and Western blot were performed to evaluate the gene and protein expressions of FOXP4 in six NSCLC cell lines and 55 NSCLC patients. Lentivirus of small hairpin RNA (FOXP4-shRNA) was used to downregulate FOXP4 in NSCLC cell lines A549 and H1703 cells. Its effect on NSCLC growth, invasion, and cell cycle were evaluated by cell proliferation assay, migration assay, and cell cycle assay, respectively. Dual luciferase assay and Western blot were used to examine whether microRNA-138 (miR-138) was an upstream regulator of FOXP4. The dependence of FOXP4 on miR-138 associated signaling pathway was evaluated by ectopically overexpressing enhancer of zeste homolog 2 (EZH2), a known miR-138 target in NSCLC. FOXP4 was highly expressed in both NSCLC cell lines and NSCLC patients. FOXP4 downregulation by FOXP4-shRNA markedly reduced cancer cell growth and invasion, as well as induced cell cycle arrest in A549 and H1703 cells. MiR-138 was confirmed to be an upstream regulator of FOXP4 and directly regulated FOXP4 expression in A549 and H1703 cells. FOXP4 downregulation-mediated inhibition on cancer cell growth and invasion was independent on overexpressing EZH2, another direct target of miR-138 in NSCLC. Our data demonstrated that FOXP4 was a critical regulator in NSCLC and independently associated with miR-138 regulation.

  12. Downregulation of miR-21 increases cisplatin sensitivity of non-small-cell lung cancer.

    PubMed

    Xu, Liyun; Huang, Yanyan; Chen, Dongdong; He, Jianying; Zhu, Wangyu; Zhang, Yongkui; Liu, Xiaoguang

    2014-05-01

    Recent studies have shown that plasma miR-21 is a biomarker of chemotherapeutic response in lung cancer, but the influence of miR-21 on the sensitivity of non-small-cell lung cancer (NSCLC) to cisplatin (DDP) has not been confirmed. The aim of this study was to evaluate the role of miR-21 in NSCLC sensitivity to DDP in vitro and in vivo. Real-time quantitative PCR was used to detect miR-21 expression in lung cancer cell lines. Synthesized locked nucleic acid (LNA) anti-miR-21 was transiently transfected into A549 cells and pre-miR-21 was transfected into SK-MES-1 cells. We also investigated the effects of miR-21 downregulation and upregulation on growth and colony formation in DDP-treated cells. Finally, the effect of miR-21 downregulation on in vivo sensitivity of A549 cells to DDP was determined in BALB/c nude mice. miR-21 expression was significantly higher in A549 than in other lung cancer cell lines. LNA-based knockdown of miR-21 significantly inhibited growth and induced death in A549 cells, possibly via apoptotic signaling. Pre-miR-21 significantly promoted growth and inhibited death in SK-MES-1 cells. Moreover, ectopic suppression of miR-21 sensitized A549 cells to DDP in vivo. Our findings demonstrate that miR-21 suppression enhances the sensitivity of lung cancer cells to DDP in vitro and in vivo.

  13. Drug Transporter Protein Quantification of Immortalized Human Lung Cell Lines Derived from Tracheobronchial Epithelial Cells (Calu-3 and BEAS2-B), Bronchiolar-Alveolar Cells (NCI-H292 and NCI-H441), and Alveolar Type II-like Cells (A549) by Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Sakamoto, Atsushi; Matsumaru, Takehisa; Yamamura, Norio; Suzuki, Shinobu; Uchida, Yasuo; Tachikawa, Masanori; Terasaki, Tetsuya

    2015-09-01

    Understanding the mechanisms of drug transport in the human lung is an important issue in pulmonary drug discovery and development. For this purpose, there is an increasing interest in immortalized lung cell lines as alternatives to primary cultured lung cells. We recently reported the protein expression in human lung tissues and pulmonary epithelial cells in primary culture, (Sakamoto A, Matsumaru T, Yamamura N, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. 2013. J Pharm Sci 102(9):3395-3406) whereas comprehensive quantification of protein expressions in immortalized lung cell lines is sparse. Therefore, the aim of the present study was to clarify the drug transporter protein expression of five commercially available immortalized lung cell lines derived from tracheobronchial cells (Calu-3 and BEAS2-B), bronchiolar-alveolar cells (NCI-H292 and NCI-H441), and alveolar type II cells (A549), by liquid chromatography-tandem mass spectrometry-based approaches. Among transporters detected, breast cancer-resistance protein in Calu-3, NCI-H292, NCI-H441, and A549 and OCTN2 in BEAS2-B showed the highest protein expression. Compared with data from our previous study,(Sakamoto A, Matsumaru T, Yamamura N, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. 2013. J Pharm Sci 102(9):3395-3406) NCI-H441 was the most similar with primary lung cells from all regions in terms of protein expression of organic cation/carnitine transporter 1 (OCTN1). In conclusion, the protein expression profiles of transporters in five immortalized lung cell lines were determined, and these findings may contribute to a better understanding of drug transport in immortalized lung cell lines.

  14. FGFR3 silencing by siRNA inhibits invasion of A549 cells

    PubMed Central

    Li, Yuhua; Liu, Xiguang; Zhang, Hongjun; Jiang, Tao; Xiao, Wenjing; Zhao, Shufen; Yu, Xiaoyun; Han, Fanjie

    2016-01-01

    The present study identified that fibroblast growth factor receptor 3 (FGFR3) was significantly upregulated in bone metastasis of lung adenocarcinoma. RNA interference (RNAi) is a powerful approach for treating a wide range of human diseases, including cancer, through downregulating the expression of selected genes. In the present study, the invasiveness of A549 cells cultured in vitro was altered by small interfering (si)RNA targeting FGFR3, and the regulatory effect of silencing FGFR3 on the expression levels of E-cadherin and matrix metalloproteinase (MMP)9 was investigated. Human lung adenocarcinoma A549 cells were transfected with synthetic specific siRNAs targeting a fragment of the FGFR3 gene (namely, siRNA-855, siRNA-1447 and siRNA-2076) or with negative control (NC) siRNA. Cells were divided into five groups (A, siRNA-855 group; B, siRNA-1447 group; C, siRNA-2076 group; D, NC-siRNA group; and E, blank control group). The effect of the above siRNAs targeting FGFR3 on the invasion capacity of A549 cells was detected by Transwell assay. siRNAs against FGFR3 were transfected into A549 cells with by Lipofectamine® 2000, and the expression levels of FGFR3, E-cadherin and MMP9 were measured by reverse transcription-quantitative polymerase chain reaction and western blot assay. The experimental findings indicated that the expression levels of FGFR3 and MMP9 were significantly reduced in the siRNA-FGFR3-transfected groups (A-C groups), compared with those in the D and E groups (P<0.01). In addition, the expression levels of E-cadherin were markedly elevated in the A-C groups, compared with those in the D and E groups (P<0.01). There was no significant difference in E-cadherin expression between the A-C groups, or between the D and E groups (P>0.05). These results indicated that siRNA-FGFR3 was able to decrease the invasiveness of A549 cells, inhibit the expression of MMP9 and increase the expression of E-cadherin by downregulating the expression of FGFR3. Taken

  15. Silver nanoparticles from Dendropanax morbifera Léveille inhibit cell migration, induce apoptosis, and increase generation of reactive oxygen species in A549 lung cancer cells.

    PubMed

    Castro Aceituno, Verónica; Ahn, Sungeun; Simu, Shakina Yesmin; Wang, Chao; Mathiyalagan, Ramya; Yang, Deok Chun

    2016-12-01

    Green synthesized silver nanoparticles have significant potential in the pharmaceutical field because of their biological functions such as antioxidant and anticancer activities. Novel silver nanoparticles synthesized from Dendropanax morbifera Léveille leaves (D-AgNPs) exhibit antimicrobial activity and reduce the viability of cancer cells without affecting the viability of RAW 264.7 macrophage-like cells. In this study, we evaluated the anticancer effect of D-AgNPs by measuring the levels of reactive oxygen species (ROS) production and toxicity against A549 and HepG2 cell lines. The effect of D-AgNPs on cell migration, induction of apoptosis, and modification of gene and/or protein expression of cancer-related markers was determined using A549 cells. D-AgNPs exhibited cytotoxicity in A549 and HepG2 cell at different concentrations and enhanced the production of ROS in both cell lines. An increase in cell apoptosis and a reduction in cell migration in A549 cells were also observed after D-AgNP treatment. Furthermore, the effect of D-AgNPs in A549 cells was shown to be related to modification of the EGFR/p38 MAPK pathway. Our data provide the first evidence supporting the potential of D-AgNPs as a possible anticancer agent, particularly for the treatment of non-small cell lung carcinoma.

  16. G4-Tetra DNA Duplex Induce Lung Cancer Cell Apoptosis in A549 Cells

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobo; Zhao, YiZhuo; Lu, Hu; Fu, Cuiping; Li, Xiao; Jiang, Liyan; Li, Shanqun

    2016-10-01

    The specific DNA is typically impermeable to the plasma membrane due to its natural characters, but DNA tetra structures (DTNs) can be readily uptake by cells in the absence of transfection agents, providing a new strategy to deliver DNA drugs. In this research, the delivery efficiency of tetrahedral DNA nanostructures was measured on adenocarcinomic human alveolar basal epithelial (A549) cells via delivering AS1411 (G4). The DNA tetra-AS1411 complex was rapidly and abundantly uptake by A549 cells, and the induced apoptosis was enhanced. Furthermore, biodistribution in mouse proved the rapid clearance from non-targeted organs in vivo. This study improved the understanding of potential function in DNA-based drug delivery and proved that DTNs-AS1411 could be potentially useful for the treatment of lung cancer.

  17. Upregulation of AQP3 and AQP5 induced by dexamethasone and ambroxol in A549 cells.

    PubMed

    Ben, Yong; Chen, Jie; Zhu, Rong; Gao, Lei; Bai, Chunxue

    2008-04-30

    Aquaporins (AQPs) are membrane channel proteins that play roles in the regulation of water permeability in many tissues. AQP1 and AQP5 expressed in lung provide the principal route for osmotically driven water transport. In the airways, AQP3 and AQP4 facilitate water transport. Dexamethasone and ambroxol are often used to treat patients with pulmonary diseases accompanied by airway hypersecretion. The role of AQPs in these effective treatments has not been addressed. In this study, we analyzed the expression of AQPs in a human airway epithelial cell line (A549 cells) and showed that AQP3 and 5, but not AQP1 and 4, were expressed in A549 cells. Both dexamethasone and ambroxol stimulated the expression of AQP3 and 5 at the mRNA and protein levels. The data suggest potential roles of AQP3 and 5 in the regulation of airway hypersecretion, perhaps ultimately providing a target for treating such diseases.

  18. Triptolide inhibits COX-2 expression by regulating mRNA stability in TNF-{alpha}-treated A549 cells

    SciTech Connect

    Sun, Lixin; Zhang, Shuang; Jiang, Zhenzhou; Huang, Xin; Wang, Tao; Huang, Xiao; Li, Han; Zhang, Luyong

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Triptolide inhibited COX-2 expression and the half-life of COX-2 mRNA is decreased. Black-Right-Pointing-Pointer The HuR protein shuttling from nucleus to cytoplasm is inhibited by triptolide. Black-Right-Pointing-Pointer Triptolide inhibited 3 Prime -UTR fluorescence reporter gene activity. Black-Right-Pointing-Pointer COX-2 mRNA binding to HuR is decreased by triptolide in pull-down experiments. -- Abstract: Cyclooxygenase-2 (COX-2) over-expression is frequently associated with human non-small-cell lung cancer (NSCLC) and involved in tumor proliferation, invasion, angiogenesis and resistance to apoptosis. In the present study, the effects of triptolide on COX-2 expression in A549 cells were investigated and triptolide was found to inhibit TNF-{alpha}-induced COX-2 expression. In our further studies, it was found that triptolide decreased the half-life of COX-2 mRNA dramatically and that it inhibited 3 Prime -untranslated region (3 Prime -UTR) fluorescence reporter gene activity. Meanwhile, triptolide inhibited the HuR shuttling from nucleus to cytoplasm. After triptolide treatment, decreased COX-2 mRNA in pull-down experiments with anti-HuR antibodies was observed, indicating that the decreased cytoplasmic HuR is responsible for the decreased COX-2 mRNA. Taken together, our results provided evidence for the first time that triptolide inhibited COX-2 expression by COX-2 mRNA stability modulation and post-transcriptional regulation. These results provide a novel mechanism of action for triptolide which may be important in the treatment of lung cancer.

  19. Erlotinib pretreatment improves photodynamic therapy of non-small cell lung carcinoma xenografts via multiple mechanisms

    PubMed Central

    Gallagher-Colombo, Shannon M.; Miller, Joann; Cengel, Keith A.; Putt, Mary E.; Vinogradov, Sergei A.; Busch, Theresa M.

    2015-01-01

    Aberrant expression of the epidermal growth factor receptor (EGFR) is a common characteristic of many cancers including non-small cell lung carcinoma (NSCLC), head and neck squamous cell carcinoma, and ovarian cancer. While EGFR is currently a favorite molecular target for treatment of these cancers, inhibition of the receptor with small molecule inhibitors (i.e.- erlotinib) or monoclonal antibodies (i.e.- cetuximab) does not provide long-term therapeutic benefit as standalone treatment. Interestingly, we have found that addition of erlotinib to photodynamic therapy (PDT) can improve treatment response in typically erlotinib-resistant NSCLC tumor xenografts. Ninety-day complete response rates of 63% are achieved when erlotinib is administered in three doses before PDT of H460 human tumor xenografts, compared to 16% after PDT-alone. Similar benefit is found when erlotinib is added to PDT of A549 NCSLC xenografts. Improved response is accompanied by increased vascular shutdown, and erlotinib increases the in vitro cytotoxicity of PDT to endothelial cells. Tumor uptake of the photosensitizer (benzoporphyrin derivative monoacid ring A; BPD) is increased by the in vivo administration of erlotinib; nevertheless, this elevation of BPD levels only partially accounts for the benefit of erlotinib to PDT. Thus, pretreatment with erlotinib augments multiple mechanisms of PDT effect that collectively lead to large improvements in therapeutic efficacy. These data demonstrate that short-duration administration of erlotinib before PDT can greatly improve the responsiveness of even erlotinib-resistant tumors to treatment. Results will inform clinical investigation of EGFR-targeting therapeutics in conjunction with PDT. PMID:26054596

  20. Nrf2 mediates redox adaptation in NOX4-overexpressed non-small cell lung cancer cells.

    PubMed

    Wu, Qipeng; Yao, Bei; Li, Ning; Ma, Lei; Deng, Yanchao; Yang, Yang; Zeng, Cheng; Yang, Zhicheng; Liu, Bing

    2017-02-11

    The redox adaptation mechanisms in cancer cells are very complex and remain largely unclear. Our previous studies have confirmed that NADPH oxidase 4 (NOX4) is abundantly expressed in non-small cell lung cancer (NSCLC) and confers apoptosis resistance on NSCLC cells. However, the comprehensive mechanisms for NOX4-mediated oxidative resistance of cancer cells remain still undentified. The present study found that NOX4-derived H2O2 enhanced the nuclear factor erythroid 2-related factor 2 (Nrf2) stability via disruption of redox-dependent proteasomal degradation and stimulated its activity through activation of PI3K signaling. Specifically, the results showed that ectopic NOX4 expression did not induce apoptosis of A549 cells; however, inhibition of Nrf2 resulted in obvious apoptotic death of NOX4-overexpressed A549 cells, accompanied by a significant increase in H2O2 level and decrease in GSH content. Besides, inhibition of Nrf2 could suppress cell growth and efficiently reverse the enhancement effect of NOX4 on cell growth. The in vivo data confirmed that inhibition of Nrf2 could interfere apoptosis resistance in NOX4-overexpressed A549 tumors and led to cell growth inhibition. In conclusion, these results reveal that Nrf2 is critically involved in redox adaptation regulation in NOX4-overexpressed NSCLC cells. Therefore, NOX4 and Nrf2 may be promising combination targets against malignant progression of NSCLC.

  1. Typing of killer-cell immunoglobulin-like receptors and their cognate human leukocyte antigen class I ligands predicts survival of Chinese Han patients with metastatic non-small-cell lung cancer

    PubMed Central

    Yu, Hui; Liu, Fang; Sansas, Benoit; Kang, Bin; Preville, Xavier; Wu, Xianghua; Chang, Jianhua; Micol, Romain; Wang, Jialei; Meng, Xia

    2017-01-01

    Non-small-cell lung cancer (NSCLC) may establish an immunosuppressive tumor microenvironment that is conducive to tumor growth. Natural killer (NK) cells play a pivotal role in immunological surveillance. Activation of NK cells partially depends on the interactions between killer-cell immunoglobulin-like receptors (KIRs) and human leukocyte antigen (HLA) class I ligands. We herein investigated the association of KIRs and HLA ligands with survival in metastatic NSCLC (mNSCLC) patients treated with chemotherapy in a Chinese Han population. Polymerase chain reaction with sequence-specific primers was used to type 15 KIRs at the DNA and mRNA level and 6 HLA ligands in 70 mNSCLC patients. Survival curves were estimated using the Kaplan-Meier method and compared with the log-rank test. Cox proportional hazard regression model was applied for multivariate survival analysis, with the stepwise selection, to determine independent predictors of survival. It was observed that patients with KIR2DS4del gene expression at the mRNA level or HLA-Bw4T80 exhibited poor overall survival (OS). The multivariate analysis revealed that HLA-Bw4T80 and KIR2DS4del expression were independent predictors of OS. This observation indicated that the KIR/HLA ligand is a promising predictor of survival in mNSCLC and may also provide a strategy for treatment stratification and patient management.

  2. Co-expression of ILT4/HLA-G in human non-small cell lung cancer correlates with poor prognosis and ILT4-HLA-G interaction activates ERK signaling.

    PubMed

    Zhang, Yanwen; Zhao, Jianqiang; Qiu, Lijun; Zhang, Pei; Li, Juan; Yang, Dong; Wei, Xiaojuan; Han, Yali; Nie, Siyue; Sun, Yuping

    2016-08-01

    Non-small cell lung cancer (NSCLC) is the most common malignant tumor in the world, of which prognosis is generally poor due to insufficient mechanistic understanding. To explore the molecular pathogenesis of NSCLC, the co-expression of immunoglobulin-like transcript 4 (ILT4) and its ligand human leukocyte antigen G (HLA-G) in NSCLC tissues and cells were investigated. Here, we detected the expression of ILT4 and HLA-G in 81 tumor specimens from primary NSCLC patients, and we found that co-expression of ILT4/HLA-G was significantly associated with regional lymph node involvement, advanced stages, and the overall survival of patients. In NSCLC cell lines, HLA-G expression increased/decreased accordingly when ILT4 was up-/down-regulated, and ILT4 expression increased in a concentration-dependent manner via the stimulation of HLA-G fusion protein. Interestingly, HLA-G fusion protein could also up-regulate the phospho-ERK1/2 expression, which means the activation of extracellular signal-regulated kinase (ERK) signaling. All in all, our results indicate that the ILT4-HLA-G interaction might play an important role in NSCLC progression. Identification of ILT4 and HLA-G expression may provide an indicator to predict prognosis and guide prevention and treatment of NSCLC.

  3. TLE1 promotes EMT in A549 lung cancer cells through suppression of E-cadherin.

    PubMed

    Yao, Xin; Ireland, Shubha Kale; Pham, Tri; Temple, Brandi; Chen, Renwei; Raj, Madhwa H G; Biliran, Hector

    2014-12-12

    The Groucho transcriptional corepressor TLE1 protein has recently been shown to be a putative lung specific oncogene, but its underlying oncogenic activity in lung cancer has not been fully elucidated. In this report, we investigated whether TLE1 regulates lung cancer aggressiveness using the human lung adenocarcinoma cell line A549 as a model system. Through a combination of genetic approaches, we found that TLE1 potentiates epithelial-to-mesenchymal transition (EMT) in A549 cells in part through suppression of the tumor suppressor gene E-cadherin. Exogenous expression of TLE1 in A549 cells resulted in heightened EMT phenotypes (enhanced fibroblastoid morphology and increased cell migratory potential) and in molecular alterations characteristic of EMT (downregulation of the epithelial marker E-cadherin and upregulation of the mesenchymal marker Vimentin). Conversely, downregulation of endogenous TLE1 expression in these cells resulted in reversal of basal EMT characterized by a cuboidal-like epithelial cell phenotype, reduced cell motility, and upregulated E-cadherin expression. Mechanistic studies showed that TLE1 suppresses E-cadherin expression at the transcriptional level in part by recruiting histone deacetylase (HDAC) activity to the E-cadherin promoter. Consistently, the HDAC inhibitor TSA partially reversed the TLE1-induced E-cadherin downregulation and cell migration, suggesting a role for HDACs in TLE1-mediated transcriptional repression of E-cadherin and EMT function. These findings uncover a novel role of TLE1 in regulating EMT in A549 cells through its repressive effect on E-cadherin and provide a mechanism for TLE1 oncogenic activity in lung cancer.

  4. The biophysical property of A549 cells transferred by VEGF-D.

    PubMed

    Wang, Zhen; Wu, Xiu-Li; Wang, Xu; Tian, Hong-Xia; Chen, Zhi-Hong; Li, Yang-Qiu

    2014-01-01

    Vascular endothelial growth factor-D (VEGF-D) together with VEGF-C is considered to be associated with lymphangiogenesis and angiogenesis and involve in tumorization. This study aims to investigate the influence of exogenous VEGF-D gene on the biophysical property of cell surface of lung adenocarcinoma cell line. A panel of lung adenocarcinoma cell lines were examined the expression of VEGF-D and VEGF-C by real-time PCR. The VEGF-D recombinant plasmid containing enhanced green fluorescence protein (EGFP) was constructed and transfected to the cell line with no expression of VEGF-D and confirmed by real-time PCR and Western blot analysis. Topographic images of cells were obtained by using atomic force microscope (AFM) in contact mode. Unlike VEGF-C, VEGF-D was found to have a very low expression or undetectable expression in lung adenocarcinoma cell lines. The VEGF-D recombinant plasmid had been constructed successfully and was transferred into the human lung adenocarcinoma cell line A549 cells which had no endogenous expression of VEGF-D, and exogenous VEGF-D could be detected in mRNA and protein expression levels in the gene modified cells, while the VEGF-C gene expression had no change after VEGF-D transfection. After transfection, the irregular microspikes or nano clusters could observe on the surface of A549 cells, and VEGF-D transfected A549 cells became more rigid. The exogenous VEGF-D gene might cause the remarkable biophysical architectural changes in the A549 cells, which might as a novel biomarker for evaluation of its biological function.

  5. Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells.

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Siddiqui, Maqsood A; Ahmad, Javed; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; AlSalhi, Mohamad S; Alrokayan, Salman A

    2011-05-10

    Due to the interesting magnetic and electrical properties with good chemical and thermal stabilities, nickel ferrite nanoparticles are being utilized in many applications including magnetic resonance imaging, drug delivery and hyperthermia. Recent studies have shown that nickel ferrite nanoparticles produce cytotoxicity in mammalian cells. However, there is very limited information concerning the toxicity of nickel ferrite nanoparticles at the cellular and molecular level. The aim of this study was to investigate the cytotoxicity, oxidative stress and apoptosis induction by well-characterized nickel ferrite nanoparticles (size 26 nm) in human lung epithelial (A549) cells. Nickel ferrite nanoparticles induced dose-dependent cytotoxicity in A549 cells demonstrated by MTT, NRU and LDH assays. Nickel ferrite nanoparticles were also found to induce oxidative stress evidenced by generation of reactive oxygen species (ROS) and depletion of antioxidant glutathione (GSH). Further, co-treatment with the antioxidant L-ascorbic acid mitigated the ROS generation and GSH depletion due to nickel ferrite nanoparticles suggesting the potential mechanism of oxidative stress. Quantitative real-time PCR analysis demonstrated that following the exposure of A549 cells to nickel ferrite nanoparticles, the level of mRNA expressions of cell cycle checkpoint protein p53 and apoptotic proteins (bax, caspase-3 and caspase-9) were significantly up-regulated, whereas the expression of anti-apoptotic proteins (survivin and bcl-2) were down-regulated. Moreover, activities of caspase-3 and caspase-9 enzymes were also significantly higher in nickel ferrite nanoparticles exposed cells. To the best of our knowledge this is the first report showing that nickel ferrite nanoparticles induced apoptosis in A549 cells through ROS generation and oxidative stress via p53, survivin, bax/bcl-2 and caspase pathways.

  6. Thiazolidinediones enhance vascular endothelial growth factor expression and induce cell growth inhibition in non-small-cell lung cancer cells

    PubMed Central

    2010-01-01

    Background It is known that thiazolidinediones are involved in regulating the expression of various genes, including the vascular endothelial growth factor (VEGF) gene via peroxisome proliferator-activated receptor γ (PPARγ); VEGF is a prognostic biomarker for non-small-cell lung cancer (NSCLC). Methods In this study, we investigated the effects of troglitazone and ciglitazone on the mRNA expression of VEGF and its receptors in human NSCLC cell lines, RERF-LC-AI, SK-MES-1, PC-14, and A549. These mRNA expressions were evaluated by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis. We also studied the effect of Je-11, a VEGF inhibitor, on the growth of these cells. Results In NSCLC cells, thiazolidinediones increased the mRNA expression of VEGF and neuropilin-1, but not that of other receptors such as fms-like tyrosine kinase and kinase insert domain receptor-1. Furthermore, the PPARγ antagonist GW9662 completely reversed this thiazolidinedione-induced increase in VEGF expression. Furthermore, the addition of VEGF inhibitors into the culture medium resulted in the reversal of thiazolidinedione-induced growth inhibition. Conclusions Our results indicated that thiazolidinediones enhance VEGF and neuropilin-1 expression and induce the inhibition of cell growth. We propose the existence of a pathway for arresting cell growth that involves the interaction of thiazolidinedione-induced VEGF and neuropilin-1 in NSCLC. PMID:20214829

  7. IL-6 promotes growth and epithelial-mesenchymal transition of CD133+ cells of non-small cell lung cancer.

    PubMed

    Lee, Soo Ok; Yang, Xiaodong; Duan, Shanzhou; Tsai, Ying; Strojny, Laura R; Keng, Peter; Chen, Yuhchyau

    2016-02-09

    We examined IL-6 effects on growth, epithelial-mesenchymal transition (EMT) process, and metastatic ability of CD133+ and CD133- cell subpopulations isolated from three non-small cell lung cancer (NSCLC) cell lines: A549, H157, and H1299. We developed IL-6 knocked-down and scramble (sc) control cells of A549 and H157 cell lines by lentiviral infection system, isolated CD133+ and CD133- sub-populations, and investigated the IL-6 role in self-renewal/growth of these cells. IL-6 showed either an inhibitory or lack of effect in modulating growth of CD133- cells depending on intracellular IL-6 levels, but there was higher self-renewal ability of IL-6 expressing CD133+ cells than IL-6 knocked down cells, confirming the promoter role of IL-6 in CD133+ cells growth. We then examined tumor growth of xenografts developed from CD133+ cells of A549IL-6si vs. A549sc cell lines. Consistently, there was retarded growth of tumors developed from A549IL-6si, CD133+ cells compared to tumors originating from A549sc, CD133+ cells. The effect of IL-6 in promoting CD133+ self-renewal was due to hedgehog (Hhg) and Erk signaling pathway activation and higher Bcl-2/Bcl-xL expression. We also investigated whether IL-6 regulates the EMT process of CD133- and CD133+ cells differently. Expression of the EMT/metastasis-associated molecules in IL-6 expressing cells was higher than in IL-6 knocked down cells. Together, we demonstrated dual roles of IL-6 in regulating growth of CD133- and CD133+ subpopulations of lung cancer cells and significant regulation of IL-6 on EMT/metastasis increase in CD133+ cells, not in CD133- cells.

  8. Effect of functionalized and non-functionalized nanodiamond on the morphology and activities of antioxidant enzymes of lung epithelial cells (A549).

    PubMed

    Solarska-Ściuk, Katarzyna; Gajewska, Agnieszka; Glińska, Sława; Michlewska, Sylwia; Balcerzak, Łucja; Jamrozik, Agnieszka; Skolimowski, Janusz; Burda, Květoslava; Bartosz, Grzegorz

    2014-10-05

    The development of nanotechnology opens up new ways for biomedical applications of unmodified and modified diamond nanoparticles which are one of the most popular nanomaterials used in biology, biotechnology, medicine, cosmetics and engineering. They have been applied as diagnostic and therapeutic agents because they can be targeted to and localized in cells causing apoptosis and necrosis. The problem of biocompatibility of nanodiamonds at higher concentrations is thus of primary importance. The first step in the modification of DNPs is usually the introduction of hydrogen groups, which can bind other functional groups. The basic method to introduce -OH groups onto nanoparticles is the Fenton reaction. The aim of this study was to compare the effect of unmodified nanodiamond particles and nanoparticles modified by introduction of -OH groups and etoposide onto their surface reaction on human non-small lung cancer cells. A549 cells were incubated with 2-100μg/ml nanopowders and at 0.6-24μg/ml etoposide in the DMEM medium. We observed a decrease of cells viability and generation of reactive oxygen/ nitrogen species in the cells after incubation, estimated by oxidation of H2DCF-DA and DAF-FM-DA. Modified detonation nanoparticles affected also the cellular content of glutathione and activities of main antioxidant enzymes (glutathione peroxidase, glutathione reductase, glutathione S-transferase, superoxide dismutase and catalase). The results of TEM microscopy show changes in cell morphology. These data demonstrate that modified nanoparticles induce oxidative stress in the target cells.

  9. Tangeretin derivative, 5-acetyloxy-6,7,8,4'-tetramethoxyflavone induces G2/M arrest, apoptosis and autophagy in human non-small cell lung cancer cells in vitro and in vivo.

    PubMed

    Li, Yi Rong; Li, Shiming; Ho, Chi-Tang; Chang, Ya-Han; Tan, Kok-Tong; Chung, Ting-Wen; Wang, Bing-Yen; Chen, Yu-Kuo; Lin, Chi-Chen

    2016-01-01

    Tangeretin, a major phytochemicals in tangerine peels--an important Chinese herb, has been found to have anti-carcinogenic properties. To improve bioavailability and increase potency of tangeretin, its derivative, 5-acetyloxy-6,7,8,4'-tetramethoxyflavone (5-AcTMF), has been synthesized and shown potent inhibition of proliferation activity against human breast and leukemia cancer cell lines. In this study, we have further investigated the anticancer effects of 5-AcTMF on CL1-5 non-small cell lung cancer cells (NSCLC) both in vitro and in vivo and demonstrated that 5-AcTMF effectively inhibited cancer cell proliferation, induced G2/M-phase arrest associated with cdc2 and CDC25c and increased in the apoptotic cells associated with caspase activation, down regulation of Bcl-2, XIAP and Survivn, inducing release of cytochrome c into the cytosol and disruption of mitochondrial membrane potential. We also found that 5-AcTMF treatment of CL1-5 activated autophagy, indicated by triggered autophagosome formation and increased LC3-II levels and formation of LC3 puncta. Moreover, we also found that 5-AcTMF lowered phophoatidylinositol 3-kinase/AKT/mTOR signaling pathway. Over-expression of AKT by AKT cDNA transfection decreased 5-AcTMF mediated apoptosis and autophagy, supporting the induction of apoptosis and autophagy by inhibition of AKT pathway. In an animal study, 5-AcTMF effectively delayed tumor growth in a nude mouse model of CL1-5 xenografts without observed adverse effect. Immunohistochemistry Analysis indicated that 5-AcTMF induced CL1-5 cell apoptosis and autophagy in vivo. Taken together, these data demonstrate that 5-AcTMF is a novel small molecule agent that can inhibit NSCLC cell proliferation, and induce G(2)/M phase arrest and via the mitochondrial apoptotic pathway and autophagy.

  10. Tangeretin derivative, 5-acetyloxy-6,7,8,4′-tetramethoxyflavone induces G2/M arrest, apoptosis and autophagy in human non-small cell lung cancer cells in vitro and in vivo

    PubMed Central

    Li, Yi Rong; Li, Shiming; Ho, Chi-Tang; Chang, Ya-Han; Tan, Kok-Tong; Chung, Ting-Wen; Wang, Bing-Yen; Chen, Yu-Kuo; Lin, Chi-Chen

    2016-01-01

    ABSTRACT Tangeretin, a major phytochemicals in tangerine peels - an important Chinese herb, has been found to have anti-carcinogenic properties. To improve bioavailability and increase potency of tangeretin, its derivative, 5-acetyloxy-6,7,8,4′-tetramethoxyflavone (5-AcTMF), has been synthesized and shown potent inhibition of proliferation activity against human breast and leukemia cancer cell lines. In this study, we have further investigated the anticancer effects of 5-AcTMF on CL1-5 non-small cell lung cancer cells (NSCLC) both in vitro and in vivo and demonstrated that 5-AcTMF effectively inhibited cancer cell proliferation, induced G2/M-phase arrest associated with cdc2 and CDC25c and increased in the apoptotic cells associated with caspase activation, down regulation of Bcl-2, XIAP and Survivn, inducing release of cytochrome c into the cytosol and disruption of mitochondrial membrane potential. We also found that 5-AcTMF treatment of CL1-5 activated autophagy, indicated by triggered autophagosome formation and increased LC3-II levels and formation of LC3 puncta. Moreover, we also found that 5-AcTMF lowered phophoatidylinositol 3-kinase/AKT/mTOR signaling pathway. Over-expression of AKT by AKT cDNA transfection decreased 5-AcTMF mediated apoptosis and autophagy, supporting the induction of apoptosis and autophagy by inhibition of AKT pathway. In an animal study, 5-AcTMF effectively delayed tumor growth in a nude mouse model of CL1-5 xenografts without observed adverse effect. Immunohistochemistry Analysis indicated that 5-AcTMF induced CL1-5 cell apoptosis and autophagy in vivo. Taken together, these data demonstrate that 5-AcTMF is a novel small molecule agent that can inhibit NSCLC cell proliferation, and induce G(2)/M phase arrest and via the mitochondrial apoptotic pathway and autophagy. PMID:26569090

  11. Cytochrome P450 ω-hydroxylase promotes angiogenesis and metastasis by upregulation of VEGF and MMP-9 in non-small cell lung cancer

    PubMed Central

    Yu, Wei; Chen, Li; Yang, Yu-Qing; Falck, John R.; Guo, Austin M.; Li, Ying

    2013-01-01

    Purpose Cytochrome P450 (CYP) ω-hydroxylase, mainly consisting of CYP4A and CYP4F, converts arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE) that induces angiogenic responses in vivo and in vitro. The present study examined the role of CYP ω-hydroxylase in angiogenesis and metastasis of human non-small cell lung cancer (NSCLC). Methods The effect of WIT003, a stable 20-HETE analog, on invasion was evaluated using a modified Boyden chamber in three NSCLC cell lines. A549 cells were transfected with CYP4A11 expression vector or exposed to CYP ω-hydroxylase inhibitor (HET0016) or 20-HETE antagonist (WIT002), and then ω-hydroxylation activity toward arachidonic acid and the levels of matrix metalloproteinases (MMPs) and VEGF were detected. The in vivo effects of CYP ω-hydroxylase were tested in established tumor xenografts and an experimental metastasis model in athymic mice. Results Addition of WIT003 or overexpression of CYP4A11 with an associated increase in 20-HETE production significantly induced invasion and expression of VEGF and MMP-9. Treatment of A549 cells with HET0016 or WIT002 inhibited invasion with reduction in VEGF and MMP-9. The PI3 K or ERK inhibitors also attenuated expression of VEGF and MMP-9. Compared with control, CYP4A11 transfection significantly increased tumor weight, microvessel density (MVD), and lung metastasis by 2.5-fold, 2-fold, and 3-fold, respectively. In contrast, WIT002 or HET0016 decreased tumor volume, MVD, and spontaneous pulmonary metastasis occurrences. Conclusion CYP ω-hydroxylase promotes tumor angiogenesis and metastasis by upregulation of VEGF and MMP-9 via PI3 K and ERK1/2 signaling in human NSCLC cells. PMID:21120482

  12. Toll-like receptor 5 agonist inhibition of growth of A549 lung cancer cells in vivo in a Myd88 dependent manner.

    PubMed

    Zhou, Shi-Xiang; Li, Feng-Sheng; Qiao, Yu-Lei; Zhang, Xue-Qing; Wang, Zhi-Dong

    2012-01-01

    The purpose of this study was to examine the effect of a Toll-like receptor 5 (TLR5) agonist, CBLB502, on the growth and radiosensitivity of A549 lung cancer cells in vivo. Expression of myeloid differentiation factor 88 (MyD88) or TLR5 was stably knocked down in human lung cancer cells (A549) using lentivirus expressing short hairpin RNA targeting human MyD88 or TLR5. Lack of MyD88 or TLR5 expression enhanced tumor growth in mouse xenografts of A549 lung cancer cells. CBLB502 inhibited the growth of A549 lung cancer cells, not A549-MyD88-KD cells in vivo in the murine xenograft model. Our results showed that the inhibition of A549 by CBLB502 in vivo was realized through regulating the expression of neutrophil recruiting cytokines and neutrophil infiltration. Finally, we found that activation of TLR5 signaling did not affect the radiosensitivity of tumors in vivo.

  13. Discovery of 2'-hydroxychalcones as autophagy inducer in A549 lung cancer cells.

    PubMed

    Wang, Fang-Wu; Wang, Sheng-Qing; Zhao, Bao-Xiang; Miao, Jun-Ying

    2014-05-21

    A series of 2'-hydroxychalcone derivatives was synthesized and the effects of all the compounds on growth of A549 lung cancer cell were investigated. The results showed that all compounds had inhibitory effects on the growth of A549 lung cancer cells and compound possessed the highest growth inhibitory effect and induced autophagy of A549 lung cancer cells.

  14. Usefulness of dynamic contrast-enhanced magnetic resonance imaging for predicting treatment response to vinorelbine-cisplatin with or without recombinant human endostatin in bone metastasis of non-small cell lung cancer

    PubMed Central

    Zhang, Rui; Wang, Zhi-Yu; Li, Yue-Hua; Lu, Yao-Hong; Wang, Shuai; Yu, Wen-Xi; Zhao, Hui

    2016-01-01

    Metastatic bone disease is a frequent complication of advanced non-small cell lung cancer (NSCLC) and causes skeletal-related events, which result in a poor prognosis. Currently, no standard method has been developed to precisely assess the therapeutic response of bone metastases (BM) and the early efficacy of anti-angiogenic therapy, which does not conform to the concept of precision medicine. This study aimed to investigate the usefulness of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for precise evaluation of the response to chemotherapy with anti-angiogenic agents in NSCLC patients with BM. Patients were randomly assigned to a treatment group (vinorelbine + cisplatin [NP] + recombinant human endostatin [rh-endostatin]) or a control group (NP + placebo). All patients were evaluated before treatment and after 2 cycles of treatment using DCE-MRI quantitative analysis technology for BM lesions and chest computed tomography (CT). Correlations between changes in the DCE-MRI quantitative parameters and treatment effect were analyzed. We enrolled 33 patients, of whom 28 were evaluable (20 in the treatment group and 8 in the control group). The results suggested a higher objective response rate (30% vs. 0%), better overall survival (21.44 ± 17.28 months vs. 7.71 ± 4.68 months), and a greater decrease in the transport constant (Ktrans) value (60% vs. 4.4%) in the treatment group than in the control group (P < 0.05). The Ktrans values in the “partial remission plus stable disease (PR + SD)” group were significantly lower after treatment (P < 0.05). Patients with a decrease of > 50% in the Ktrans value showed a significantly better overall survival than those with a decrease of ≤ 50% (13.2 vs. 9.8 months, P < 0.05). Ktrans as a DEC-MRI quantitative parameter could be used for the precise evaluation of BM lesions after anti-angiogenic therapy and as a predictor of survival. In addition, we reconfirmed the anti-angiogenic effect of rh-endostatin in

  15. A plasma membrane 'vacuum cleaner' for daunorubicin in non-P-glycoprotein multidrug-resistant SW-1573 human non-small cell lung carcinoma cells. A study using fluorescence resonance energy transfer.

    PubMed

    Mülder, H S; van Grondelle, R; Westerhoff, H V; Lankelma, J

    1993-12-15

    A multidrug resistant (MDR) human non-small cell lung carcinoma cell line, SW-1573/2R120 (2R120), not containing the drug-efflux pump P-glycoprotein (PgP), has been studied for the transport of daunorubicin (DN) across the cellular plasma membrane. Earlier, reduced initial DN-uptake rates and lower cellular DN steady-state concentrations were found for this cell line, when it was compared to the SW-1573 wild-type cell line. This finding was an indication for the presence of another cellular drug-efflux pump. However, we found similar DN-efflux rates in drug-free medium for the two cell lines, while for Pgp-containing MDR SW-1573/2R160 (2R160) cells the efflux rate was increased compared to wild-type cells. In order to elucidate differences in DN transport across the cellular plasma membrane, the association of DN with plasma membranes of intact cells was investigated, using fluorescence-resonance-energy transfer. For this purpose, the plasma-membrane probe 1-(4-trimethyl-ammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) was chosen since, because of the overlap between the emission spectrum of TMA-DPH and the excitation spectrum of DN, transfer of energy can be achieved from TMA-DPH to DN. Cells were loaded with TMA-DPH and, after addition of 10 microM DN, the TMA-DPH fluorescence was quenched. Rapid initial quenching proved to be similar in the MDR 2R160 (Pgp-containing) cells and in the SW-1573 wild-type cells (21 +/- 1% and 20 +/- 2%, respectively), but was less in the MDR 2R120 cells not containing Pgp (14 +/- 1%). This finding correlated with a lowered amount of DN dissolved in the plasma membrane of 2R120 cells. We interpret these data to be the result of a 'vacuum-cleaner' pumping system other than Pgp which removes DN from a plasma membrane compartment and equilibrates relatively slowly with the interior of the cell.

  16. Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer.

    PubMed

    Khan, Merajuddin; Khan, Mujeeb; Al-Marri, Abdulhadi H; Al-Warthan, Abdulrahman; Alkhathlan, Hamad Z; Siddiqui, Mohammed Rafiq H; Nayak, Vadithe Lakshma; Kamal, Ahmed; Adil, Syed F

    2016-01-01

    Recently, graphene and graphene-based materials have been increasingly used for various biological applications due to their extraordinary physicochemical properties. Here, we demonstrate the anticancer properties and apoptosis-inducing ability of silver doped highly reduced graphene oxide nanocomposites synthesized by employing green approach. These nano composites (PGE-HRG-Ag) were synthesized by using Pulicaria glutinosa extract (PGE) as a reducing agent and were evaluated for their anticancer properties against various human cancer cell lines with tamoxifen as the reference drug. A correlation between the amount of Ag nanoparticles on the surface of highly reduced graphene oxide (HRG) and the anticancer activity of nanocomposite was observed, wherein an increase in the concentration of Ag nanoparticles on the surface of HRG led to the enhanced anticancer activity of the nanocomposite. The nanocomposite PGE-HRG-Ag-2 exhibited more potent cytotoxicity than standard drug in A549 cells, a human lung cancer cell line. A detailed investigation was undertaken and Fluorescence activated cell sorting (FACS) analysis demonstrated that the nanocomposite PGE-HRG-Ag-2 showed G0/G1 phase cell cycle arrest and induced apoptosis in A549 cells. Studies such as, measurement of mitochondrial membrane potential, generation of reactive oxygen species (ROS) and Annexin V-FITC staining assay suggested that this compound induced apoptosis in human lung cancer cells.

  17. TRAIL-coated lipid-nanoparticles overcome resistance to soluble recombinant TRAIL in non-small cell lung cancer cells

    NASA Astrophysics Data System (ADS)

    De Miguel, Diego; Gallego-Lleyda, Ana; María Ayuso, José; Erviti-Ardanaz, Sandra; Pazo-Cid, Roberto; del Agua, Celia; José Fernández, Luis; Ochoa, Ignacio; Anel, Alberto; Martinez-Lostao, Luis

    2016-05-01

    Purpose. Non-small cell lung cancer (NSCLC) is one the types of cancer with higher prevalence and mortality. Apo2-Ligand/TRAIL is a TNF family member able to induce apoptosis in tumor cells but not in normal cells. It has been tested in clinical trials against different types of human cancer including NSCLC. However, results of clinical trials have shown a limited efficacy of TRAIL-based therapies. Recently we have demonstrated that artificial lipid nanoparticles coated with bioactive Apo2L/TRAIL (LUV-TRAIL) greatly improved TRAIL cytotoxic ability being capable of killing chemoresistant hematological cancer cells. In the present work we have extended the study to NSCLC. Methods/patients. LUV-TRAIL-induced cytotoxicity was assessed on different NSCLC cell lines with different sensitivity to soluble TRAIL and on primary human tumor cells from three patients suffering from NSCLC cancer. We also tested LUV-TRAIL-cytotoxic ability in combination with several anti-tumor agents. Results. LUV-TRAIL exhibited a greater cytotoxic effect compared to soluble TRAIL both in A549 cells and primary human NSCLC cells. LUV-TRAIL-induced cell death was dependent on caspase-8 and caspase-3 activation. Moreover, combination of LUV-TRAIL with other anti-tumor agents such as flavopiridol, and SNS-032 clearly enhanced LUV-TRAIL-induced cytotoxicity against NSCLC cancer cells. Conclusion. The novel formulation of TRAIL based on displaying it on the surface of lipid nanoparticles greatly increases its anti-tumor activity and has clinical potential in cancer treatment.

  18. Small-molecule BH3 mimetic and pan-Bcl-2 inhibitor AT-101 enhances the antitumor efficacy of cisplatin through inhibition of APE1 repair and redox activity in non-small-cell lung cancer

    PubMed Central

    Ren, Tao; Shan, Jinlu; Li, Mengxia; Qing, Yi; Qian, Chengyuan; Wang, Guangjie; Li, Qing; Lu, Guoshou; Li, Chongyi; Peng, Yu; Luo, Hao; Zhang, Shiheng; Yang, Yuxing; Cheng, Yi; Wang, Dong; Zhou, Shu-Feng

    2015-01-01

    AT-101 is a BH3 mimetic and pan-Bcl-2 inhibitor that has shown potent anticancer activity in non-small-cell lung cancer (NSCLC) in murine models, but failed to show clinical efficacy when used in combination with docetaxel in NSCLC patients. Our recent study has demonstrated that AT-101 enhanced the antitumor effect of cisplatin (CDDP) in a murine model of NSCLC via inhibition of the interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway. This study explored the underlying mechanisms for the enhanced anticancer activity of CDDP by AT-101. Our results show that, when compared with monotherapy, AT-101 significantly enhanced the inhibitory effects of CDDP on proliferation and migration of A549 cells and on tube formation and migration in human umbilical vein endothelial cells. AT-101 promoted the proapoptotic activity of CDDP in A549 cells. AT-101 also enhanced the inhibitory effect of CDDP on DNA repair and redox activities of apurinic/apyrimidinic endonuclease 1 (APE1) in A549 cells. In tumor tissues from nude mice treated with AT-101 plus CDDP or monotherapy, the combination therapy resulted in greater inhibition of angiogenesis and tumor cell proliferation than the monotherapy. These results suggest that AT-101 can enhance the antitumor activity of CDDP in NSCLC via inhibition of APE1 DNA repair and redox activities and by angiogenesis and induction of apoptosis, but other mechanisms cannot be excluded. We are now conducting a Phase II trial to examine the clinical efficacy and safety profile of combined use of AT-101 plus CDDP in advanced NSCLC patients. PMID:26089640

  19. DNA Repair Genes ERCC1 and BRCA1 Expression in Non-Small Cell Lung Cancer Chemotherapy Drug Resistance.

    PubMed

    Wang, Shuai; Liu, Feng; Zhu, Jingyan; Chen, Peng; Liu, Hongxing; Liu, Qi; Han, Junqing

    2016-06-12

    BACKGROUND Surgery combined with chemotherapy is an important therapy for non-small cell lung cancer (NSCLC). However, chemotherapy drug resistance seriously hinders the curative effect. Studies show that DNA repair genes ERCC1 and BRCA1 are associated with NSCLC chemotherapy, but their expression and mechanism in NSCLC chemotherapy drug-resistant cells has not been elucidated. MATERIAL AND METHODS NSCLC cell line A549 and drug resistance cell line A549/DDP were cultured. Real-time PCR and Western blot analyses were used to detect ERCC1 and BRCA1 mRNA expression. A549/DDP cells were randomly divided into 3 groups: the control group; the siRNA-negative control group (scramble group); and the siRNA ERCC1 and BRCA1siRNA transfection group. Real-time PCR and Western blot analyses were used to determine ERCC1 and BRCA1 mRNA and protein expression. MTT was used to detect cell proliferation activity. Caspase 3 activity was tested by use of a kit. Western blot analysis was performed to detect PI3K, AKT, phosphorylated PI3K, and phosphorylated AKT protein expression. RESULTS ERCC1 and BRCA1 were overexpressed in A549/DDP compared with A549 (P<0.05). ERCC1 and BRCA1siRNA transfection can significantly reduce ERCC1 and BRCA1 mRNA and protein expression (P<0.05). Downregulating ERCC1 and BRCA1 expression obviously inhibited cell proliferation and increased caspase 3 activity (P<0.05). Downregulating ERCC1 and BRCA1 significantly decreased PI3K and AKT phosphorylation levels (P<0.05). CONCLUSIONS ERCC1 and BRCA1 were overexpressed in NSCLC drug-resistant cells, and they regulated lung cancer occurrence and development through the phosphorylating PI3K/AKT signaling pathway.

  20. AZD5438, an Inhibitor of Cdk1, 2, and 9, Enhances the Radiosensitivity of Non-Small Cell Lung Carcinoma Cells

    SciTech Connect

    Raghavan, Pavithra; Tumati, Vasu; Yu Lan; Chan, Norman; Tomimatsu, Nozomi; Burma, Sandeep; Bristow, Robert G.; Saha, Debabrata

    2012-11-15

    Purpose: Radiation therapy (RT) is one of the primary modalities for treatment of non-small cell lung cancer (NSCLC). However, due to the intrinsic radiation resistance of these tumors, many patients experience RT failure, which leads to considerable tumor progression including regional lymph node and distant metastasis. This preclinical study evaluated the efficacy of a new-generation cyclin-dependent kinase (Cdk) inhibitor, AZD5438, as a radiosensitizer in several NSCLC models that are specifically resistant to conventional fractionated RT. Methods and Materials: The combined effect of ionizing radiation and AZD5438, a highly specific inhibitor of Cdk1, 2, and 9, was determined in vitro by surviving fraction, cell cycle distribution, apoptosis, DNA double-strand break (DSB) repair, and homologous recombination (HR) assays in 3 NSCLC cell lines (A549, H1299, and H460). For in vivo studies, human xenograft animal models in athymic nude mice were used. Results: Treatment of NSCLC cells with AZD5438 significantly augmented cellular radiosensitivity (dose enhancement ratio rangeing from 1.4 to 1.75). The degree of radiosensitization by AZD5438 was greater in radioresistant cell lines (A549 and H1299). Radiosensitivity was enhanced specifically through inhibition of Cdk1, prolonged G{sub 2}-M arrest, inhibition of HR, delayed DNA DSB repair, and increased apoptosis. Combined treatment with AZD5438 and irradiation also enhanced tumor growth delay, with an enhancement factor ranging from 1.2-1.7. Conclusions: This study supports the evaluation of newer generation Cdk inhibitors, such as AZD5438, as potent radiosensitizers in NSCLC models, especially in tumors that demonstrate variable intrinsic radiation responses.

  1. JAM-C promotes lymphangiogenesis and nodal metastasis in non-small cell lung cancer.

    PubMed

    Hao, SongNan; Yang, YanMei; Liu, Yan; Yang, ShuCai; Wang, Geng; Xiao, JianBing; Liu, HuiDong

    2014-06-01

    This study aims to investigate lymphatic metastasis-related genes in non-small cell lung carcinomas (NSCLC). NSCLC tissue was analyzed for expression of junctional adhesion molecule-C (JAM-C) protein. Our data revealed novel associations between JAM-C overexpression in primary tumors and lymphatic microvessel density (LMVD), lymph node metastasis, and poorer overall survival and recurrence-free survival. We used the highly metastatic human lung adenocarcinoma cell line Anip973 and its parental line AGZY83-a, which has a low metastatic capacity, in vivo and vitro. We found that JAM-C played an important role in different metastasis capacity of lymph node. JAM-C affected tumor growth, LNM, JAM-C, VEGF-C, vasculature, and ERK1/2 phosphorylation (p-ERK1/2). β1 integrin was involved in lymph node metastasis. Moreover, JAM-C knockdown in highly metastatic Anip973 decreased cell migration in scratch-wound assays. The JAM-C knockdown in Anip973 cells and JAM-C cDNA in AGZY83-a cells regulated the vascular endothelial growth factor C (VEGF-C) expression. Immunofluorescence showed that blocked VEGF-C expression in JAM-C shRNA Anip973 cells were restored after JAM-C treatment. JAM-C-induced VEGF-C in JAM-C cDNA AGZY83-a cells was also effectively inhibited by treatment with an antibody specifically against JAM-C. Use of media from Anip973 cells, AGZY83-a, and A549cells lung cancer cells that overexpressed or downregulated JAM-C was demonstrated to affect activity of VEGF-C-induced β1 integrin subunit or ERK activity in human dermal lymphatic endothelial cells (HDLEC) treated with VEGF-C or inhibitory antibody to JAM-C. Overall, these results indicate that JAM-C could mediate metastasis as it contributes to VEGF-C expression in cancer cells. JAM-C affects β1and ERK activation in HDLEC, thus promoting lymphangiogenesis and nodal metastasis. Our findings indicate that JAM-C may be a therapeutic target for preventing and treating lymphatic metastases.

  2. MicroRNA-138 acts as a tumor suppressor in non small cell lung cancer via targeting YAP1

    PubMed Central

    Xiao, Ling; Zhou, Hui; Li, Xiang-Ping; Chen, Juan; Fang, Chao; Mao, Chen-Xue; Cui, Jia-Jia; Zhang, Wei; Zhou, Hong-Hao; Yin, Ji-Ye; Liu, Zhao-Qian

    2016-01-01

    MicroRNA (miR)-138 was found to have suppressive effects on the growth and metastasis of different human cancers. In this study, we aimed to investigate the regulatory mechanism of miR-138 in non-small cell lung cancer (NSCLC). We applied the Quantitative real-time PCR (qRT-PCR) to detect the miR-138 levels in NSCLC tissues (n=21) and cell lines, Bioinformatical predication, luciferase reporter assay and western blot to identify the target gene of miR-138. We also applied Cell transfection, MTT, transwell, and wound healing assays to reveal the role of miR-138 in NSCLC cell proliferation and malignant transformation. We observed that miR-138 expression level was significantly decreased in NSCLC tissues compared to their matched adjacent normal tissues. It was also downregulated in tissues with poor differentiation, advanced stage or lymph nodes metastasis, as well as in several NSCLC cell lines compared to normal lung epithelial cell. We further identified YAP1 as a direct target gene of miR-138, and observed that the protein level of YAP1 was negatively mediated by miR-138 in NSCLC A549 cells. Moreover, overexpression of miR-138 significantly inhibited A549 cell growth, invasion and migration, while knockdown of miR-138 enhanced such capacities. Further investigation showed that the cell proliferation capacity was higher in the miR-138+YAP1 group, when compared with that in the miR-138 group, suggesting that overexpression of YAP1 rescued the suppressive effects of miR-138 upregulation on NSCLC cell proliferation. However, we found no difference of cell invasion and migration capacities between miR-138+YAP1 group and miR-138 group. Finally, YAP1 was markedly upregulated in NSCLC tissues compared to their marched adjacent normal tissues. Its mRNA levels were reversely correlated with the miR-138 levels in NSCLC tissues. In summary, our study suggests that miR-138 may play a suppressive role in the growth and metastasis of NSCLC cells partly at least by targeting

  3. Cytostatic activity of peptide extracts of medicinal plants on transformed A549, H1299, and HeLa Cells.

    PubMed

    Tepkeeva, I I; Aushev, V N; Zborovskaya, I B; Demushkin, V P

    2009-01-01

    Biological activity of peptide extracts of medicinal plants was studied on transformed non-small-cell lung carcinoma A549 cells, lung cancer H1299 cells, and cervical cancer HeLa cells at various cell densities. Cell survival and proliferation were evaluated 72 h after treatment with extracts in concentrations of 0.05, 0.25, and 0.5 microg/microl. The cytostatic effect was produced by peptide extracts of Camelia sinesis Kuntze, Inonotus obliquus, and a mixture Inula helenium L., Chelidonium majus L., Equisetum arvense L., and Inonotus obliquus. Peptide extracts of Hypericum perforatum L. and Laurus nobilis L. in the same concentrations had no effects on proliferative activity and growth of tumor cells.

  4. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus

    PubMed Central

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells. PMID:26345201

  5. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus.

    PubMed

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.

  6. TASK-1 Regulates Apoptosis and Proliferation in a Subset of Non-Small Cell Lung Cancers

    PubMed Central

    Leithner, Katharina; Hirschmugl, Birgit; Li, Yingji; Tang, Bi; Papp, Rita; Nagaraj, Chandran; Stacher, Elvira; Stiegler, Philipp; Lindenmann, Jörg; Olschewski, Andrea; Olschewski, Horst; Hrzenjak, Andelko

    2016-01-01

    Lung cancer is the leading cause of cancer deaths worldwide; survival times are poor despite therapy. The role of the two-pore domain K+ (K2P) channel TASK-1 (KCNK3) in lung cancer is at present unknown. We found that TASK-1 is expressed in non-small cell lung cancer (NSCLC) cell lines at variable levels. In a highly TASK-1 expressing NSCLC cell line, A549, a characteristic pH- and hypoxia-sensitive non-inactivating K+ current was measured, indicating the presence of functional TASK-1 channels. Inhibition of TASK-1 led to significant depolarization in these cells. Knockdown of TASK-1 by siRNA significantly enhanced apoptosis and reduced proliferation in A549 cells, but not in weakly TASK-1 expressing NCI-H358 cells. Na+-coupled nutrient transport across the cell membrane is functionally coupled to the efflux of K+ via K+ channels, thus TASK-1 may potentially influence Na+-coupled nutrient transport. In contrast to TASK-1, which was not differentially expressed in lung cancer vs. normal lung tissue, we found the Na+-coupled nutrient transporters, SLC5A3, SLC5A6, and SLC38A1, transporters for myo-inositol, biotin and glutamine, respectively, to be significantly overexpressed in lung adenocarcinomas. In summary, we show for the first time that the TASK-1 channel regulates apoptosis and proliferation in a subset of NSCLC. PMID:27294516

  7. YKT6 expression, exosome release, and survival in non-small cell lung cancer

    PubMed Central

    Ruiz-Martinez, Marc; Navarro, Alfons; Marrades, Ramón M.; Viñolas, Nuria; Santasusagna, Sandra; Muñoz, Carmen; Ramírez, Josep; Molins, Laureano; Monzo, Mariano

    2016-01-01

    Background Cancer-derived exosomes are involved in metastasis. YKT6 is a SNARE protein that participates in the regulation of exosome production and release, but its role in non-small cell lung cancer (NSCLC) has not been examined. Materials and Methods Ultracentrifugation-purified exosomes from the A549 cell line were studied by CRYO-TEM, nanoparticle tracking analysis and western blot (TSG101 marker). YKT6 was inhibited using a DsiRNA and selected pre-microRNAs. MicroRNAs targeting YKT6 were validated by Renilla/Luciferase assay and western blot. YKT6 expression and its prognostic impact were analyzed in 98 tissue specimens from resected NSCLC patients. Results Membranous nanosized vesicles (mode size: 128nm) with TSG101 protein were purified from A549 cells. YKT6 inhibition reduced exosome release by 80.9%. We validated miR-134 and miR-135b as miRNAs targeting YKT6, and transfection with the pre-miRNAs also produced a significant reduction in exosome release. The analysis of YKT6 in tumor samples showed that patients with high levels had shorter disease-free and overall survival. Conclusions YKT6 is a key molecule in the regulation of exosome release in lung cancer cells and is in turn precisely regulated by miR-134 and miR-135b. Moreover, YKT6 levels impact prognosis of resected NSCLC patients. PMID:27285987

  8. Effect of miR-335 upregulation on the apoptosis and invasion of lung cancer cell A549 and H1299.

    PubMed

    Wang, Huaqi; Li, Min; Zhang, Ren; Wang, Yuanyuan; Zang, Wenqiao; Ma, Yunyun; Zhao, Guoqiang; Zhang, Guojun

    2013-10-01

    MicroRNAs are small non-coding RNAs that may also function as oncogenes and tumor-suppressor genes, as the abnormal expression of microRNAs is associated with various human tumors. However, the effect of miR-335 on the lung cancer cells remains unclear. The aim of the paper was to study the expression of miR335 in non-small cell lung cancer (NSCLC) and miR335's relation to the metastasis, invasion, and apoptosis in lung cancer cells A549 and H1299. qRT-PCR was used to identify the miR-335 expression. The effects of miR-335 on cell proliferation, apoptosis, and invasion were further analyzed. Luciferase reporter assay and Western blot were to verify Bcl-w and SP1 as potential major target genes of miR-335. Finally, the effect of Bcl-w on miR-335-induced cell survival was determined. Our results showed that miR-335 expression was significantly lower in NSCLC tissue, which was significantly associated with lymph node metastasis. In contrast to cells in blank and negative control groups, incidence of apoptosis was significantly higher (P < 0.05) and the number of cells migrating through matrigel was significantly lower (P < 0.05) in miR-335 mimics transfected group. Western blot and luciferase reporter assay demonstrated that miR-335 could bind to the putative binding sites in Bcl-w (or SP1) mRNA 3'-untranslated region to visibly lower the expression of Bcl-w (or SP1). The introduction of Bcl-w cDNA without 3'-untranslated region abrogated miR-335-induced cell survival. These results indicated that upregulation of miR-335 can simultaneously suppress the invasiveness and promote apoptosis of lung cancer cell A549 and H1299 by targeting Bcl-w and SP1. Therefore, miR-335 may be a potential therapeutic target in NSCLC treatment.

  9. Knockdown of Merm1/Wbscr22 attenuates sensitivity of H460 non-small cell lung cancer cells to SN-38 and 5-FU without alteration to p53 expression levels.

    PubMed

    Yan, Dongmei; Zheng, Xiaoliang; Tu, Linglan; Jia, Jing; Li, Qin; Cheng, Liyan; Wang, Xiaoju

    2015-01-01

    Merm1/Wbscr22 is a novel metastasis promoter that has been shown to be involved in tumor metastasis, viability and apoptosis. To the best of our knowledge, there are currently no studies suggesting the possible correlation between the expression of Merm1/Wbscr22 in tumor cells and chemosensitivity to antitumor agents. In the present study, two human non-small cell lung cancer cell lines, H1299 and H460, were used to investigate whether Merm1/Wbscr22 affects chemosensitivity to antitumor agents, including cisplatin (CDDP), doxorubicin (ADM), paclitaxel (PTX), mitomycin (MMC), 7-Ethyl-10-hydroxycamptothecin (SN-38; the active metabolite of camptothecin) and 5-fluorouracil (5-FU). Merm1/Wbscr22 knockdown cell lines (H1299-shRNA and H460-shRNA) and negative control cell lines (H1299-NC and H460-NC) were established by stable transfection, and the efficiency of Merm1/Wbscr22 knockdown was confirmed by western blotting, immunofluorescence microscopy and quantitative polymerase chain reaction. The results demonstrated that shRNA-mediated knockdown of Merm1/Wbscr22 did not affect cell proliferation in vitro and in vivo. The H460 cells harboring wild type p53 were markedly more sensitive to all six antitumor agents as compared with the p53-null H1299 cells. Downregulation of Merm1/Wbscr22 did not affect H1299 sensitivity to any of the six antitumor agents, whereas attenuated H460 sensitivity to SN-38 and 5-FU, without significant alteration in p53 at both mRNA and protein levels, was identified. The reduced H460 sensitivity to SN-38 was further confirmed in vivo. SN-38 demonstrated significant tumor growth inhibitory activity in both H460 and H460‑NC tumor xenograft models, but only marginally suppressed the H460-shRNA xenograft tumor growth. Furthermore, CDDP (4, 10, 15 µg/ml)-resistant human non-small lung cancer cells A549 (A549-CDDPr-4, 10, 15) expressed significant amounts of Merm1/Wbscr22 protein, as compared with the parental A549 cells. In conclusion, sh

  10. Cytotoxicity of semiconductor nanoparticles in A549 cells is attributable to their intrinsic oxidant activity

    NASA Astrophysics Data System (ADS)

    Escamilla-Rivera, Vicente; Uribe-Ramirez, Marisela; Gonzalez-Pozos, Sirenia; Velumani, Subramaniam; Arreola-Mendoza, Laura; De Vizcaya-Ruiz, Andrea

    2016-04-01

    Copper indium gallium diselenide (CIGS) and cadmium sulfide (CdS) nanoparticles (NP) are next generation semiconductors used in photovoltaic cells (PV). They possess high quantum efficiency, absorption coefficient, and cheaper manufacturing costs compared to silicon. Due to their potential for an industrial development and the lack of information about the risk associated in their use, we investigated the influence of the physicochemical characteristics of CIGS (9 nm) and CdS (20 nm) in relation to the induction of cytotoxicity in human alveolar A549 cells through ROS generation and mitochondrial dysfunction. CIGS induced cytotoxicity in a dose dependent manner in lower concentrations than CdS; both NP were able to induce ROS in A549. Moreover, CIGS interact directly with mitochondria inducing depolarization that leads to the induction of apoptosis compared to CdS. Antioxidant pretreatment significantly prevented the loss of mitochondrial membrane potential and cytotoxicity, suggesting ROS generation as the main cytotoxic mechanism. These results demonstrate that semiconductor characteristics of NP are crucial for the type and intensity of the cytotoxic effects. Our work provides relevant information that may help guide the production of a safer NP-based PV technologies, and would be a valuable resource on future risk assessment for a safer use of nanotechnology in the development of clean sources of renewable energy.

  11. Promoter methylation status of tumor suppressor genes and inhibition of expression of DNA methyltransferase 1 in non-small cell lung cancer

    PubMed Central

    Liu, Bangqing; Song, Jianfei; Luan, Jiaqiang; Sun, Xiaolin; Bai, Jian; Wang, Haiyong; Li, Angui; Zhang, Lifei; Feng, Xiaoyan

    2016-01-01

    DNA methylation is an epigenetic DNA modification catalyzed by DNA methyltransferase 1 (DNMT1). The purpose of this study was to investigate DNMT1 gene and protein expression and the effects of methylation status on tumor suppressor genes in human non-small cell lung cancer (NSCLC) cell lines grown in vitro and in vivo. Human lung adenocarcinoma cell lines, A549 and H838, were grown in vitro and inoculated subcutaneously into nude mice to form tumors and were then treated with the DNA methylation inhibitor, 5-aza-2′-deoxycytidine, with and without treatment with the benzamide histone deacetylase inhibitor, entinostat (MS-275). DNMT1 protein expression was quantified by Western blot. Promoter methylation status of tumor suppressor genes (RASSF1A, ASC, APC, MGMT, CDH13, DAPK, ECAD, P16, and GATA4) was evaluated by methylation-specific polymerase chain reaction. Methylation status of the tumor suppressor genes was regulated by the DNMT1 gene, with the decrease of DNMT1 expression following DNA methylation treatment. Demethylation of tumor suppressor genes (APC, ASC, and RASSF1A) restored tumor growth in nude mice. The results of this study support a role for methylation of DNA as a potential epigenetic clinical biomarker of prognosis or response to therapy and for DNMT1 as a potential therapeutic target in NSCLC. PMID:27190263

  12. Decorin is responsible for progression of non-small-cell lung cancer by promoting cell proliferation and metastasis.

    PubMed

    Shi, Xuefei; Liang, Wenjun; Yang, Wen; Xia, Rui; Song, Yong

    2015-05-01

    Decorin, a member of the small leucine-rich proteoglycans family, exists and plays multifunctional roles in stromal and epithelial cells. Emerging evidences showed that decorin is dysregulated expression in a wide variety of human tumors and affects a broad biology process of cancer cells, including growth, metastasis, and angiogenesis. Recent studies demonstrated that decorin could affect A549 proliferation though decreasing TGF-β1, cycling D1 expression and increasing P53 and P21 expression. However, limited data are available on the effect of decorin on metastasis of non-small-cell lung cancer (NSCLC) cell lines and how decorin impacts metastasis is still unknown. In this study, we identified decorin mRNA expression through Oncomine database and verified the expression of decorin mRNA and protein in 50 patients who underwent primary surgical resection of a NSCLC in the Department of Thoracic Surgery, Jinling Hospital, Nanjing University School of Medicine, China, between September 2013 and March 2014 by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and Western blot. Also, the correlationship between decorin and the NSCLC patients' clinical characteristics or survival ( www.kmplot.com ) was analyzed. Via ectopic expression analyses and Western blot, the roles of decorin in proliferation, metastasis, and the underline mechanism for decorin expression were further explored. We found that decorin was downregulated in NSCLC tissues compared with the adjacent normal lung tissues or normal tissues. Additionally, the expression of decorin was correlated with tumor size, lymph node metastasis, tumor stage, and prognosis. We also showed that overexpression of decorin could inhibit NSCLC cell lines proliferation and metastasis. Through Western blot analysis, we identified that E-cadherin and vascular endothelial growth factor (VEGF) are two key factors responsible for the growth arrest and metastasis inhibition induced by decorin in NSCLC. Our

  13. Gold nanoparticles induce cytotoxicity in the alveolar type-II cell lines A549 and NCIH441

    PubMed Central

    Uboldi, Chiara; Bonacchi, Daniele; Lorenzi, Giada; Hermanns, M Iris; Pohl, Christine; Baldi, Giovanni; Unger, Ronald E; Kirkpatrick, C James

    2009-01-01

    Background During the last years engineered nanoparticles (NPs) have been extensively used in different technologies and consequently many questions have arisen about the risk and the impact on human health following exposure to nanoparticles. Nevertheless, at present knowledge about the cytotoxicity induced by NPs is still largely incomplete. In this context, we have investigated the cytotoxicity induced by gold nanoparticles (AuNPs), which differed in size and purification grade (presence or absence of sodium citrate residues on the particle surface) in vitro, in the human alveolar type-II (ATII)-like cell lines A549 and NCIH441. Results We found that the presence of sodium citrate residues on AuNPs impaired the viability of the ATII-like cell lines A549 and NCIH441. Interestingly, the presence of an excess of sodium citrate on the surface of NPs not only reduced the in vitro viability of the cell lines A549 and NCIH441, as shown by MTT assay, but also affected cellular proliferation and increased the release of lactate dehydrogenase (LDH), as demonstrated by Ki-67 and LDH-release assays respectively. Furthermore, we investigated the internalization of AuNPs by transmission electron microscopy (TEM) and we observed that particles were internalized by active endocytosis in the cell lines A549 and NCIH441 within 3 hr. In addition, gold particles accumulated in membrane-bound vesicles and were not found freely dispersed in the cytoplasm. Conclusion Our data suggest that the presence of contaminants, such as sodium citrate, on the surface of gold nanoparticles might play a pivotal role in inducing cytotoxicity in vitro, but does not influence the uptake of the particles in human ATII-like cell lines. PMID:19545423

  14. A novel polysaccharide from Sargassum integerrimum induces apoptosis in A549 cells and prevents angiogensis in vitro and in vivo

    PubMed Central

    Liu, Ge; Kuang, Shan; Wu, Shimei; Jin, Weihua; Sun, Chaomin

    2016-01-01

    Many polysaccharides isolated from plants have exhibited promising antitumor activities. The aim of this study is to investigate the antitumor activity of the novel polysaccharide named SPS from Sargassum integerrimum, elucidate the underlying anticancer mechanism in a human lung cancer cell line A549, and evaluate its anti-angiogenic activity both in vitro and in vivo. The results show that SPS significantly reduces A549 cells viability in a dose- and time-dependent manner via MTT method. Flow cytometry analysis indicates that SPS could induce cell apoptosis, the loss of mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS) and G2/M phase cell cycle arrest of A549 cells. Up-regulation of the expressions of P53 and Bax, down-regulation of the expression of Bcl-2, and activation of cleaved caspase-3, caspase-9 and PARP are also detected by western blotting after the treatment of SPS. In addition, SPS inhibits the proliferation, migration and cord formation of human umbilical vein endothelial cells (HUVECs) in vitro, and prevents the vascular development of zebrafish embryos in vivo. Altogether, our data prove the anticancer and anti-angiogenesis properties of SPS, and provide further insights into the potential pharmacological application of SPS as antitumor and anti-angiogenic agent against lung cancer. PMID:27216943

  15. miR-126 inhibits non-small cell lung cancer cells proliferation by targeting EGFL7

    SciTech Connect

    Sun, Yanqin; Bai, Yifeng; Zhang, Fan; Wang, Yu; Guo, Ying; Guo, Linlang

    2010-01-15

    MicroRNAs (miRNAs) represent an abundant group of small non-coding RNAs that regulate gene expression, and have been demonstrated to play roles as tumor suppressor genes (oncogenes), and affect homeostatic processes such as development, cell proliferation, and cell death. Subsequently, epidermal growth factor-like domain 7 (EGFL7), which is confirmed to be involved in cellular responses such as cell migration and blood vessel formation, is identified as a potential miR-126 target by bioinformatics. However, there is still no evidence showing EGFL7's relationship with miR-126 and the proliferation of lung cancer cells. The aim of this work is to investigate whether miR-126, together with EGFL7, have an effect on non-small cell lung cancer (NSCLC) cells' proliferation. Therefore, we constructed overexpressed miR-126 plasmid to target EGFL7 and transfected them into NSCLC cell line A549 cells. Then, we used methods like quantitative RT-PCR, Western blot, flow cytometry assay, and immunohistochemistry staining to confirm our findings. The result was that overexpression of miR-126 in A549 cells could increase EGFL7 expression. Furthermore, the most notable finding by cell proliferation related assays is that miR-126 can inhibit A549 cells proliferation in vitro and inhibit tumor growth in vivo by targeting EGFL7. As a result, our study demonstrates that miR-126 can inhibit proliferation of non-small cell lung cancer cells through one of its targets, EGFL7.

  16. Docetaxel inhibits the proliferation of non-small-cell lung cancer cells via upregulation of microRNA-7 expression.

    PubMed

    He, Xigan; Li, Chunxia; Wu, Xiaoyan; Yang, Guotao

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide and about 85% of these are non-small cell lung cancer (NSCLC). Several new chemotherapeutic agents have recently shown encouraging activity in NSCLC, especially docetaxel. MiRNAs (MicroRNAs) are closely related to cancer development. We studied miRNAs in NSCLC cell lines to identify those that can regulate and predict the effectiveness of docetaxel on NSCLC. CCK8, Annexin and V-FITC assays were carried out to evaluate the inhibitory effect of docetaxel on NSCLC cell lines A549 and H460, and qRT-PCR was used to detect and compare six miRNAs expression levels in the two cells with docetaxel or not. Knockdown of miR-7 by RNA interference and overexpression of miR-7 were taken to evaluate the effect of miR-7 on docetaxel effectiveness. Western blotting was used to evaluate the effect of miR-7 on Bcl2 in A549 and H460 cells. Docetaxel induced non-small cell lung cancer cell apoptosis and suppressed cell proliferation in vitro. MiR-7 expression levels were increased by docetaxel in the two cell lines. MiR-7 overexpression improved anti-proliferative and pro-apoptotic effects of docetaxel on the NSCLC cells and that miR-7 down-regulation decreased those effects. Moreover, subsequent experiments showed that BCL-2 was downregulated by miR-7 at both transcriptional and translational levels. This study further extends the biological role of miR-7 in NSCLC A549 and H460 cells and identifies BCL-2 as a novel target possibly involved in miR-7-mediated growth suppression and apoptosis induction of NSCLC cells.

  17. High Throughput Determination of TGFβ1/SMAD3 Targets in A549 Lung Epithelial Cells

    PubMed Central

    Kaplan, Tommy; Yu, Haiying; Bais, Abha S.; Richards, Thomas; Pandit, Kusum V.; Zeng, Qilu; Benos, Panayiotis V.; Friedman, Nir; Eickelberg, Oliver; Kaminski, Naftali

    2011-01-01

    Background Transforming growth factor beta 1 (TGFβ1) plays a major role in many lung diseases including lung cancer, pulmonary hypertension, and pulmonary fibrosis. TGFβ1 activates a signal transduction cascade that results in the transcriptional regulation of genes in the nucleus, primarily through the DNA-binding transcription factor SMAD3. The objective of this study is to identify genome-wide scale map of SMAD3 binding targets and the molecular pathways and networks affected by the TGFβ1/SMAD3 signaling in lung epithelial cells. Methodology We combined chromatin immunoprecipitation with human promoter region microarrays (ChIP-on-chip) along with gene expression microarrays to study global transcriptional regulation of the TGFβ1/SMAD3 pathway in human A549 alveolar epithelial cells. The molecular pathways and networks associated with TGFβ1/SMAD3 signaling were identified using computational approaches. Validation of selected target gene expression and direct binding of SMAD3 to promoters were performed by quantitative real time RT-PCR and electrophoretic mobility shift assay on A549 and human primary lung epithelial cells. Results and Conclusions Known TGFβ1 target genes such as SERPINE1, SMAD6, SMAD7, TGFB1 and LTBP3, were found in both ChIP-on-chip and gene expression analyses as well as some previously unrecognized targets such as FOXA2. SMAD3 binding of FOXA2 promoter and changed expression were confirmed. Computational approaches combining ChIP-on-chip and gene expression microarray revealed multiple target molecular pathways affected by the TGFβ1/SMAD3 signaling. Identification of global targets and molecular pathways and networks associated with TGFβ1/SMAD3 signaling allow for a better understanding of the mechanisms that determine epithelial cell phenotypes in fibrogenesis and carcinogenesis as does the discovery of the direct effect of TGFβ1 on FOXA2. PMID:21625455

  18. Cetuximab in non-small-cell lung cancer.

    PubMed

    Carillio, Guido; Montanino, Agnese; Costanzo, Raffaele; Sandomenico, Claudia; Piccirillo, Maria Carmela; Di Maio, Massimo; Daniele, Gennaro; Giordano, Pasqualina; Bryce, Jane; Normanno, Nicola; Rocco, Gaetano; Perrone, Francesco; Morabito, Alessandro

    2012-02-01

    Cetuximab is a chimeric human-mouse anti-EGF receptor monoclonal antibody. In Phase I studies, no dose-limiting toxicities were observed with cetuximab as a single agent or combined with chemotherapy; pharmacokinetic and pharmacodynamic analyses supported 250 mg/m(2) weekly administration. Skin toxicity, diarrhea and fatigue were the most common toxicities. The positive results obtained in Phase II trials in patients with advanced non-small-cell lung cancer prompted two randomized Phase III trials evaluating cetuximab in addition to first-line chemotherapy. Both trials showed a small benefit in overall survival for the experimental treatment, which was considered insufficient by the EMA for marketing approval. However, a subgroup analysis of the FLEX Phase III trial recently demonstrated a larger survival benefit from the experimental treatment in patients with high immunohistochemical EGF receptor expression. This finding, if confirmed prospectively, could represent a new opportunity for positioning cetuximab into the standard treatment of advanced non-small-cell lung carcinoma.

  19. Wheatgrass Extract Ameliorates Hypoxia-induced Mucin Gene Expression in A549 cells

    PubMed Central

    Sim, Ju hwan; Choi, Moon-Hee; Shin, Hyun-Jae; Lee, Ji-Eun

    2017-01-01

    Background: Wheatgrass is known to have antioxidant, antiaging, and anti-inflammatory effect. However, its protective effect against hypoxia is not yet evaluated. Objective: In this study, we evaluated the protective and anti-inflammatory effect of wheatgrass against the hypoxia in airway epithelial cells. Materials and Methods: A549 human lung adenocarcinoma cells were incubated in a hypoxic condition (CO2 5%/O2 1%) for 24 hr in the presence of different concentration of wheatgrass 50, 75, 100, and 150 μg/mL, and the magnitude of each immunologic response produced by the A549 cells was compared. The mRNA expression level of mucin gene (MUC), 5A, 5B, 8, GM-CSF, TNF-α, and VEGF were evaluated by using real-time polymerase chain reaction. The MUC proteins level before and after knocking out the hypoxia-inducible factor (hif)-1α via short interfering (si) RNA transfection were assessed by immunoblot analysis. Accordingly, the involved cell signaling pathway was evaluated by immunoblot analysis. Results: The inflammatory cytokines (GM-CSF, TNF- α) and the expressions of MUC 5A, 5B, and 8 were augmented by hypoxia. The augmented MUC expression was decreased by the wheatgrass extract administration. Hif-1α gene expression after hypoxia exposure was decreased by wheatgrass. Knockdown of hif-1α by siRNA reduced the mucin gene expression and which was more enhanced by wheatgrass extract. Conclusion: Theses results suggest that wheatgrass may be useful in the treatment of sinonasal disease by inhibiting mucus hypersecretion in airway epithelium. SUMMARY Wheatgrass extract decreases the hypoxia-induced MUC 5A, 5B and 8 expression.Hif-1α gene expression after hypoxia exposure was decreased by wheatgrass.Wheatgrass inhibits p44/42 phosphorylation in hypoxia-exposed airway epithelial cells. Abbreviations used: A549: human lung adenocarcinoma cells, GM-CSF: granulocyte-macrophage colony stimulating factor, HIF: hypoxia inducible factor, IL: interleukin, MUC: mucin, MTT: 3

  20. Induction of reactive oxygen species-stimulated distinctive autophagy by chelerythrine in non-small cell lung cancer cells.

    PubMed

    Tang, Zheng-Hai; Cao, Wen-Xiang; Wang, Zhao-Yu; Lu, Jia-Hong; Liu, Bo; Chen, Xiuping; Lu, Jin-Jian

    2017-03-09

    Chelerythrine (CHE), a natural benzo[c]phenanthridine alkaloid, shows anti-cancer effect through a number of mechanisms. Herein, the effect and mechanism of the CHE-induced autophagy, a type II programmed cell death, in non-small cell lung cancer (NSCLC) cells were studied for the first time. CHE induced cell viability decrease, colony formation inhibition, and apoptosis in a concentration-dependent manner in NSCLC A549 and NCI-H1299 cells. In addition, CHE triggered the expression of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3-II). The CHE-induced expression of LC3-II was further increased in the combination treatment with chloroquine (CQ), an autophagy inhibitor, and large amounts of red-puncta were observed in the CHE-treated A549 cells with stable expression of mRFP-EGFP-LC3, indicating that CHE induces autophagy flux. Silence of beclin 1 reversed the CHE-induced expression of LC3-II. Inhibition of autophagy remarkably reversed the CHE-induced cell viability decrease and apoptosis in NCI-H1299 cells but not in A549 cells. Furthermore, CHE triggered reactive oxygen species (ROS) generation in both cell lines. A decreased level of ROS through pretreatment with N-acetyl-L-cysteine reversed the CHE-induced cell viability decrease, apoptosis, and autophagy. Taken together, CHE induced distinctive autophagy in A549 (accompanied autophagy) and NCI-H1299 (pro-death autophagy) cells and a decreased level of ROS reversed the effect of CHE in NSCLC cells in terms of cell viability, apoptosis, and autophagy.

  1. 13-Methyl-palmatrubine induces apoptosis and cell cycle arrest in A549 cells in vitro and in vivo

    PubMed Central

    Chen, Jingxian; Lu, Xingang; Lu, Chenghua; Wang, Chunying; Xu, Haizhu; Xu, Xiaoli; Gou, Haixin; Zhu, Bing; Du, Wangchun

    2016-01-01

    Corydalis yanhusuo, a well-known herbaceous plant, is commonly used in the treatment of inflammation, injury and pain. One natural agent isolated from Corydalis yanhusuo, 13-methyl-palmatrubine, was found to have a cytotoxic effect on cancer cells as reported in published studies. In the present study, we synthesized a potential anti-lung tumor agent, 13-methyl-palmatrubine and analyzed its activity. 13-Methyl-palmatrubine exhibited a cytotoxic effect on a panel of cancer cell lines in a time- and concentration-dependent manner. Among all the tested cancer cell lines, lung cancer A549 cells were most sensitive to 13-methyl-palmatrubine treatment. Meanwhile 13-methyl-palmatrubine showed less cytotoxicity in human normal cells. Our investigation revealed that 13-methyl-palmatrubine induced apoptosis and cell cycle arrest in A549 cells in a dose-dependent manner. Furthermore, 13-methyl-palmatrubine treatment caused activation of P38 and JNK pathways and blocked the EGFR pathway. In conclusion, our findings demonstrated that 13-methyl-palmatrubine inhibited the growth of A549 cells mediated by blocking of the EGFR signaling pathway and activation of the MAPK signaling pathway and provides a better understanding of the molecular mechanisms of 13-methyl-palmatrubine. PMID:27633656

  2. Suppression of SCARA5 by Snail1 is essential for EMT-associated cell migration of A549 cells

    PubMed Central

    Liu, J; Hu, G; Chen, D; Gong, A-Y; Soori, G S; Dobleman, T J; Chen, X-M

    2013-01-01

    Accumulating evidence indicates that epithelial-to-mesenchymal transition (EMT) might be a key event for cancer progression. The upregulation of Snail1, one of the most extensively studied EMT regulators, has been implicated in cancer metastasis, but the underlying mechanisms remain unclear. This study aims to identify that Snail1 targets regulating EMT-associated cancer cell migration. Human lung carcinoma A549 cells were treated with transforming growth factor beta 1 (TGF-β1), and EMT-associated phenotypic and functional alterations were monitored. TGF-β1 induced typical EMT-like morphological changes, ‘cadherin switching' and cell migration in A549 cells. TGF-β1 stimulation induced rapid and persistent upregulation of Snail1. Moreover, Snail1 upregulation was required for EMT-associated cell migration. Several metastasis suppressors with putative Snail1-binding sites in their promoters were dramatically repressed in A549 cells during TGF-β1-induced EMT. Gain- and loss-of Snail1 function experiments demonstrated that scavenger receptor class A member 5 (SCARA5) was negatively regulated by Snail1. Importantly, SCARA5 downregulation was essential for EMT-induced migration in A549 cells. The chromatin immunoprecipitation assay revealed that Snail1 could bind to the E-box elements in SCARA5 promoter, implying that SCARA5 is a direct Snail1 target modulating cancer cell mobility during EMT. In addition, we showed that DNA methyltransferase 1 was physically associated with Snail1 to silence SCARA5 expression with an unidentified DNA methylation-independent mechanism, suggesting the complexity of Snail1-mediated epigenetic regulation. Collectively, our data demonstrated that EMT-regulator Snail1 suppresses the expression of SCARA5 to promote cancer progression, highlighting the possibility to target Snail1 and SCARA5 for cancer treatment. PMID:24061576

  3. Suppression of SCARA5 by Snail1 is essential for EMT-associated cell migration of A549 cells.

    PubMed

    Liu, J; Hu, G; Chen, D; Gong, A-Y; Soori, G S; Dobleman, T J; Chen, X-M

    2013-09-23

    Accumulating evidence indicates that epithelial-to-mesenchymal transition (EMT) might be a key event for cancer progression. The upregulation of Snail1, one of the most extensively studied EMT regulators, has been implicated in cancer metastasis, but the underlying mechanisms remain unclear. This study aims to identify that Snail1 targets regulating EMT-associated cancer cell migration. Human lung carcinoma A549 cells were treated with transforming growth factor beta 1 (TGF-β1), and EMT-associated phenotypic and functional alterations were monitored. TGF-β1 induced typical EMT-like morphological changes, 'cadherin switching' and cell migration in A549 cells. TGF-β1 stimulation induced rapid and persistent upregulation of Snail1. Moreover, Snail1 upregulation was required for EMT-associated cell migration. Several metastasis suppressors with putative Snail1-binding sites in their promoters were dramatically repressed in A549 cells during TGF-β1-induced EMT. Gain- and loss-of Snail1 function experiments demonstrated that scavenger receptor class A member 5 (SCARA5) was negatively regulated by Snail1. Importantly, SCARA5 downregulation was essential for EMT-induced migration in A549 cells. The chromatin immunoprecipitation assay revealed that Snail1 could bind to the E-box elements in SCARA5 promoter, implying that SCARA5 is a direct Snail1 target modulating cancer cell mobility during EMT. In addition, we showed that DNA methyltransferase 1 was physically associated with Snail1 to silence SCARA5 expression with an unidentified DNA methylation-independent mechanism, suggesting the complexity of Snail1-mediated epigenetic regulation. Collectively, our data demonstrated that EMT-regulator Snail1 suppresses the expression of SCARA5 to promote cancer progression, highlighting the possibility to target Snail1 and SCARA5 for cancer treatment.

  4. Overexpression of miR-30a in lung adenocarcinoma A549 cell line inhibits migration and invasion via targeting EYA2

    PubMed Central

    Yuan, Yuncang; Zheng, Shangyong; Li, Qian; Xiang, Xudong; Gao, Tangxin; Ran, Pengzhan; Sun, Lijuan; Huang, Qionglin; Xie, Fei; Du, Jing; Xiao, Chunjie

    2016-01-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs and closely related to the pathogenesis of cancers. Increasing evidence indicates that miR-30a plays a profound role during the development of cancers. However, the functions of miR-30a in non-small-cell lung cancer (NSCLC) are still ambiguous. Here we found that miR-30a was decreased in lung adenocarcinoma A549 cells and in tissue samples from 14 patients by qRT-PCR, and also found that overexpression of miR-30a in A549 cells inhibited migration and invasion but not cell proliferation and cell cycle progression by wound-healing assay, matrigel invasion assay, MTS-based cell proliferation assay, and flow cytometry-based cell cycle analysis, respectively. We further explored the potential mechanism of miR-30a-mediated gene regulation in lung adenocarcinoma cell lines. EYA2 is a predicted target of miR-30a, and it has been found that EYA2 expression is inhibited by miR-30a in breast cancer cells. We demonstrated that EYA2 is a direct target of miR-30a by using the dual-luciferase reporter assay in A549 cells and showed that EYA2 protein levels are inversely correlated with miR-30a expression in A549 and BEAS-2B cells. In addition, we also confirmed the rescue effects of EYA2 overexpression in A549 cells by cotransfection with EYA2 expression vector and miR-30a mimics. Taken together, our results demonstrate that overexpression of miR-30a in lung adenocarcinoma A549 cells can inhibit cell migration and invasion, which is partially attributed to the decrease of EYA2 expression. Our findings suggest that miR-30a may be used as a new potential target for the treatment of lung adenocarcinoma in the future. PMID:26837415

  5. Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells.

    PubMed

    Chen, Bo; Tan, Yaoxi; Liang, Yan; Li, Yan; Chen, Lei; Wu, Shuangshuang; Xu, Wei; Wang, Yan; Zhao, Weihong; Wu, Jianqing

    2017-01-01

    Period2 (Per2) is a key mammalian circadian clock protein, and additionally has a tumor suppressive function. The present study aimed to investigate its role in drug resistance in A549/cisplatin (DDP) lung adenocarcinoma cells. Per2 knockdown and overexpression in A549/DDP cells were used to compare cell proliferation (by MTT assay), apoptosis (active-caspase 3 western blot) and clone forming assay. The activation of AKT/mechanistic target of rapamycin (mTOR) was investigated by a western blot assay. The Per2 expression level was decreased in A549/DDP cells compared with A549 cells. Per2 knockdown by short hairpin RNA protects A549/DDP cells from apoptosis, and promotes proliferation and migration. Per2 knockdown results in increased activation of the phosphoinositide 3-kinase (PI3K)/AKT/mTOR signaling pathway. Overexpression of Per2 in A549/DDP cells may reduce the activity of the PI3K/AKT/mTOR signaling pathway, and promote apoptosis of A549 cells. The results of the present study suggest that Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells.

  6. Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells

    PubMed Central

    Chen, Bo; Tan, Yaoxi; Liang, Yan; Li, Yan; Chen, Lei; Wu, Shuangshuang; Xu, Wei; Wang, Yan; Zhao, Weihong; Wu, Jianqing

    2017-01-01

    Period2 (Per2) is a key mammalian circadian clock protein, and additionally has a tumor suppressive function. The present study aimed to investigate its role in drug resistance in A549/cisplatin (DDP) lung adenocarcinoma cells. Per2 knockdown and overexpression in A549/DDP cells were used to compare cell proliferation (by MTT assay), apoptosis (active-caspase 3 western blot) and clone forming assay. The activation of AKT/mechanistic target of rapamycin (mTOR) was investigated by a western blot assay. The Per2 expression level was decreased in A549/DDP cells compared with A549 cells. Per2 knockdown by short hairpin RNA protects A549/DDP cells from apoptosis, and promotes proliferation and migration. Per2 knockdown results in increased activation of the phosphoinositide 3-kinase (PI3K)/AKT/mTOR signaling pathway. Overexpression of Per2 in A549/DDP cells may reduce the activity of the PI3K/AKT/mTOR signaling pathway, and promote apoptosis of A549 cells. The results of the present study suggest that Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells. PMID:28123577

  7. Lack of correlation between growth inhibition by TGF-beta and the percentage of cells expressing type II TGF-beta receptor in human non-small cell lung carcinoma cell lines.

    PubMed

    López-González, José Sullivan; Aguilar-Cázares, Dolores; Prado-García, Heriberto; Nieto-Rodríguez, Alejandro; Mandoki, Juan José; Avila-Moreno, Federico; Rivera, Rosa María; Chavarría-Garcés, Jorge

    2002-11-01

    To determine the mechanisms involved in the evasion from TGF-beta growth regulation in the small cell lung carcinoma (SCLC) cell lines and the non-small cell lung carcinoma (NSCLC) cell lines, we studied: (a) production of TGF-beta1 and TGF-beta2; (b) percentage of cells expressing TGF-beta RII; (c) responsiveness of the tumour cell lines to exogenous TGF-beta1 or TGF-beta2; and (d) presence of mRNA transcripts of the three TGF-beta isoforms and of the TGF-beta RII. Our results indicate that the SCLC cell lines do not synthesize the isoforms TGF-beta1 and TGF-beta2 nor the TGF-beta RII, thus avoiding inhibitory autocrine and paracrine TGF-beta actions. However, NSCLC cell lines express not only TGF-beta1, TGF-beta2 and TGF-beta RII mRNA transcripts, but also synthesize both isoforms and the TGF-beta RII. Although approximately 50% of the cells from the studied cell lines expressed the TGF-beta RII, different cell lines varied greatly in the sensitivity to the inhibitory action of TGF-beta. This could result from alterations in: (i) the structure of TGF-beta RII; (ii) the phosphorylation motif of TGF-beta RI; (iii) the molecules involved in the intracellular signalling pathway of TGF-beta; and (iv) cell cycle regulation.

  8. Calcium is not required for triggering volume restoration in hypotonically challenged A549 epithelial cells.

    PubMed

    Ponomarchuk, Olga; Boudreault, Francis; Orlov, Sergei N; Grygorczyk, Ryszard

    2016-11-01

    Maintenance of cell volume is a fundamental housekeeping function in eukaryotic cells. Acute cell swelling activates a regulatory volume decrease (RVD) process with poorly defined volume sensing and intermediate signaling mechanisms. Here, we analyzed the putative role of Ca(2+) signaling in RVD in single substrate-adherent human lung epithelial A549 cells. Acute cell swelling was induced by perfusion of the flow-through imaging chamber with 50 % hypotonic solution at a defined fluid turnover rate. Changes in cytosolic Ca(2+) concentration ([Ca(2+)]i) and cell volume were monitored simultaneously with ratiometric Fura-2 fluorescence and 3D reconstruction of stereoscopic single-cell images, respectively. Hypotonic challenge caused a progressive swelling peaking at ∼20 min and followed, during the next 20 min, by RVD of 60 ± 7 % of the peak volume increase. However, at the rate of swelling used in our experiments, these processes were not accompanied by a measurable increment of [Ca(2+)]i. Loading with intracellular Ca(2+) chelator BAPTA slightly delayed peak of swelling but did not prevent RVD in 82 % of cells. Further, electrophysiology whole-cell patch-clamp experiments showed that BAPTA did not block activation of volume-regulated anion channel (VRAC) measured as swelling-induced outwardly rectifying 5-nitro-2-(3-phenylpropyl-amino) benzoic acid sensitive current. Together, our data suggest that intracellular Ca(2+)-mediated signaling is not essential for VRAC activation and subsequent volume restoration in A549 cells.

  9. Pre-irradiation with low-dose 12C6+ beam significantly enhances the efficacy of AdCMV-p53 gene therapy in human non-small lung cancer

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Zhang, Hong; Li, Wenjian; Li, Qiang; Zhou, Guangming; Xie, Yi; Hao, Jifang; Min, Fengling; Zhou, Qingming; Duan, Xin

    2007-04-01

    The combination of ionizing radiation and gene therapy has been investigated. However, there are very few reports about the combination of heavy-ion irradiation and gene therapy. To determine if the pre-exposure to low-dose heavy ion beam enhances the suppression of AdCMV-p53 on non-small lung cancer (NSLC), the cells pre-irradiated or non-irradiated were infected with 20, 40 MOI of AdCMV-p53. Survival fraction and the relative biology effect (RBE) were determined by clonogenic assay. The results showed that the proportions of p53 positive cells in 12C6+ beam induced AdCMV-p53 infected cells were more than 90%, which were significantly more than those in γ-ray induced AdCMV-p53 infected cells. The pre-exposure to low-dose 12C6+ beam significantly prevented the G0/G1 arrest and activated G2/M checkpoints. The pre-exposure to 12C6+ beam significantly improved cell to apoptosis. RBEs for the 12C6+ + AdCMV-p53 infection groups were 30% 60%, 20% 130% and 30% 70% more than those for the 12C6+-irradiated only, AdCMV-p53 infected only, and γ-irradiation induced AdCMVp53 infected groups, respectively. The data suggested that the pre-exposure to low-dose 12C6+ beam significantly promotes exogenous p53 expression in NSLC, and the suppression of AdCMV-p53 gene therapy on NSLC.

  10. A genome-wide siRNA screen for regulators of tumor suppressor p53 activity in human non-small lung cancer cells identifies components of the RNA splicing machinery as targets for anticancer treatment.

    PubMed

    Siebring-van Olst, Ellen; Blijlevens, Maxime; de Menezes, Renee X; van der Meulen-Muileman, Ida H; Smit, Egbert F; van Beusechem, Victor W

    2017-03-13

    Reinstating wild-type tumor suppressor p53 activity could be a valuable option for the treatment of cancer. To contribute to development of new treatment options for non-small cell lung cancer (NSCLC), we performed genome-wide siRNA screens for determinants of p53 activity in NSCLC cells. We identified many genes not previously known to be involved in regulating p53 activity. Silencing p53 pathway inhibitor genes was associated with loss of cell viability. The largest functional gene cluster influencing p53 activity was mRNA splicing. Prominent p53 activation was observed upon silencing of specific spliceosome components, rather than by general inhibition of the spliceosome. Ten genes were validated as inhibitors of p53 activity in multiple NSCLC cell lines: genes encoding the Ras-pathway activator SOS1, the zinc finger protein TSHZ3, the mitochondrial membrane protein COX16 and the spliceosome components SNRPD3, SF3A3, SF3B1, SF3B6, XAB2, CWC22 and HNRNPL. Silencing these genes generally increased p53 levels, with distinct effects on CDKN1A expression, induction of cell cycle arrest and cell death. Silencing spliceosome components was associated with alternative splicing of MDM4 mRNA, which could contribute to activation of p53. In addition, silencing splice factors was particularly effective in killing NSCLC cells, albeit in a p53-independent manner. Interestingly, silencing SNRPD3 and SF3A3 exerted much stronger cytotoxicity to NSCLC cells than to lung fibroblasts, suggesting that these genes could represent useful therapeutic targets. This article is protected by copyright. All rights reserved.

  11. Quantitative proteomic approach to understand metabolic adaptation in non-small cell lung cancer.

    PubMed

    Martín-Bernabé, Alfonso; Cortés, Roldán; Lehmann, Sylvia G; Seve, Michel; Cascante, Marta; Bourgoin-Voillard, Sandrine

    2014-11-07

    KRAS mutations in non-small cell lung cancer (NSCLC) are a predictor of resistance to EGFR-targeted therapies. Because approaches to target RAS signaling have been unsuccessful, targeting lung cancer metabolism might help to develop a new strategy that could overcome drug resistance in such cancer. In this study, we applied a large screening quantitative proteomic analysis to evidence key enzymes involved in metabolic adaptations in lung cancer. We carried out the proteomic analysis of two KRAS-mutated NSCLC cell lines (A549 and NCI-H460) and a non tumoral bronchial cell line (BEAS-2B) using an iTRAQ (isobaric tags for relative and absolute quantitation) approach combined with two-dimensional fractionation (OFFGEL/RP nanoLC) and MALDI-TOF/TOF mass spectrometry analysis. Protein targets identified by our iTRAQ approach were validated by Western blotting analysis. Among 1038 proteins identified and 834 proteins quantified, 49 and 82 proteins were respectively found differently expressed in A549 and NCI-H460 cells compared to the BEAS-2B non tumoral cell line. Regarding the metabolic pathways, enzymes involved in glycolysis (GAPDH/PKM2/LDH-A/LDH-B) and pentose phosphate pathway (PPP) (G6PD/TKT/6PGD) were up-regulated. The up-regulation of enzyme expression in PPP is correlated to their enzyme activity and will be further investigated to confirm those enzymes as promising metabolic targets for the development of new therapeutic treatments or biomarker assay for NSCLC.

  12. Long-chain carboxychromanols are the major metabolites of tocopherols and tocotrienols in A549 lung epithelial cells but not HepG2 cells.

    PubMed

    You, Cha-Sook; Sontag, Timothy J; Swanson, Joy E; Parker, Robert S

    2005-02-01

    Human lung type II cell derived A549 epithelial cancer cells and HepG2 hepatocytes constitutively express cytochrome P4504F2, a P450 we previously identified as a tocopherol-omega-hydroxylase. To determine if A549 cells would metabolize tocochromanols via the omega-hydroxylase pathway, we compared the metabolism of tocopherols (alpha-, gamma-, delta-TOH) and tocotrienols (alpha-, gamma-, delta-T3) in these 2 cell lines. Cultures were incubated with alpha-, gamma-, or delta-TOH, or the analogous T3s, and synthesis of their metabolites quantitated by GC-MS. A549 cells metabolized all tocochromanols 2-3 times more extensively than HepG2 cells (P < 0.001) except alpha-TOH, a difference not related to cell uptake of substrate but rather was reflective of greater microsomal TOH-omega-hydroxylase enzyme activity. Notably, 9'-carboxychromanols were the major metabolites of all gamma- and delta-TOHs and T3s in A549 cultures, whereas 3'- and 5'-carboxychromanols predominated in HepG2 cultures. Accumulation of 9'-carboxychromanols in A549 cultures was due to their inefficient conversion to 7'-carboxychromanols relative to HepG2 cells. Sesamin inhibited tocochromanol metabolism in both cells types, and neither cell type exhibited evidence of alternative (sesamin-insensitive) pathways of metabolism. TOH-omega-hydroxylase activity was undetectable in rat primary lung type II cells, suggesting that expression of activity was associated with transformation of normal type II cells to cancer cells. Long-chain carboxychromanol metabolites of gamma-TOH and other forms of vitamin E can be biosynthesized in A549 cultures for assessment of their biological activity, including their potential inhibition of synthesis of inflammatory mediators.

  13. Preclinical and Pilot Clinical Studies of Docetaxel Chemoradiation for Stage III Non-Small-Cell Lung Cancer

    SciTech Connect

    Chen Yuhchyau; Pandya, Kishan J.; Hyrien, Ollivier; Keng, Peter C.; Smudzin, Therese; Anderson, Joy; Qazi, Raman; Smith, Brian; Watson, Thomas J.; Feins, Richard H.; Johnstone, David W.

    2011-08-01

    Purpose: Local and distant failure rates remain high despite aggressive chemoradiation (CRT) treatment for Stage III non-small-cell lung cancer. We conducted preclinical studies of docetaxel's cytotoxic and radiosensitizing effects on lung cancer cell lines and designed a pilot study to target distant micrometastasis upfront with one-cycle induction chemotherapy, followed by low-dose radiosensitizing docetaxel CRT. Methods and Materials: A preclinical study was conducted in human lung cancer cell lines NCI 520 and A549. Cells were treated with two concentrations of docetaxel for 3 h and then irradiated immediately or after a 24-h delay. A clonogenic survival assay was conducted and analyzed for cytotoxic effects vs. radiosensitizing effects of docetaxel. A pilot clinical study was designed based on preclinical study findings. Twenty-two patients were enrolled with a median follow-up of 4 years. Induction chemotherapy consisted of 75 mg/m{sup 2} of docetaxel and 75 mg/m{sup 2} of cisplatin on Day 1 and 150 mg/m{sup 2} of recombinant human granulocyte colony-stimulating factor on Days 2 through 10. Concurrent CRT was started 3 to 6 weeks later with twice-weekly docetaxel at 10 to 12 mg/m{sup 2} and daily delayed radiation in 1.8-Gy fractions to 64.5 Gy for gross disease. Results: The preclinical study showed potent cytotoxic effects of docetaxel and subadditive radiosensitizing effects. Delaying radiation resulted in more cancer cell death. The pilot clinical study resulted in a median survival of 32.6 months for the entire cohort, with 3- and 5-year survival rates of 50% and 19%, respectively, and a distant metastasis-free survival rate of 61% for both 3 and 5 years. A pattern-of-failure analysis showed 75% chest failures and 36% all-distant failures. Therapy was well tolerated with Grade 3 esophagitis observed in 23% of patients. Conclusions: One-cycle full-dose docetaxel/cisplatin induction chemotherapy with recombinant human granulocyte colony-stimulating factor

  14. Detection of microRNA-200b may predict the inhibitory effect of gefitinib on non-small cell lung cancer and its potential mechanism

    PubMed Central

    Liu, Zhiwu; Yao, Liqiong; Tan, Bangyun; Li, Li; Chen, Baojin

    2016-01-01

    The present study aimed to investigate the association and underlying mechanisms between microRNA-200b level and the inhibitory effect of gefitinib on non-small cell lung cancer. In total, 100 patients (43 males and 57 females; median age, 63 years) with advanced non-small cell lung cancer (NSCLC) were selected. All patients were administered with gefitinib orally (250 mg/day) and the effect of gefitinib was evaluated according to the Response Evaluation Criteria in Solid Tumors guidelines. Tumor tissue and plasma samples were collected prior to and subsequent to therapy. The microRNA-200b levels in tissues and plasma were determined by quantitative polymerase chain reaction (PCR). A549 cells were cultured in vitro and transfected with microRNA-200b mimic. Using Cell Counting Kit-8 assay, the proliferation inhibition detected was induced by 0.1 µM gefitinib in transfected or non-transfected A549 cells. Cell apoptosis and cell cycle progression were analyzed by flow cytometry and the migration of cells was observed by Transwell assay. In addition, mRNA and protein levels of insulin-like growth factor 1 receptor (IGF-1R), protein kinase B (AKT) and extracellular signal-related kinase (ERK), together with the phosphorylation of AKT and ERK in A549 cells, were determined by quantitative PCR and western blot analysis, respectively. The microRNA-200b levels in gefitinib-insensitive patients were decreased compared with gefitinib-sensitive patients. Transfection with microRNA-200b mimic increased the gefitinib induced proliferation inhibition, apoptosis and cell cycle arrest in A549 cells. Also, transfection with microRNA-200b mimic increased the migration inhibitory effect of gefitinib on A549 cells. Decreased IGF-1R expression together with reduced phosphorylation of AKT and ERK were observed following transfection of A549 cells with the microRNA 200b mimic. In conclusion, detection of microRNA-200b may predict the inhibitory effect of gefitinib on NSCLC. Upregulation

  15. Cooperative cell-growth inhibition by combination treatment with ZD1839 (Iressa) and trastuzumab (Herceptin) in non-small-cell lung cancer.

    PubMed

    Nakamura, Hisashi; Takamori, Shinzo; Fujii, Teruhiko; Ono, Mayumi; Yamana, Hideaki; Kuwano, Michihiko; Shirouzu, Kazuo

    2005-12-08

    An important recent advance in anticancer therapy was the development of molecular-targeting drugs, such as the epidermal growth-factor receptor (EGFR)-targeting drug ZD1839 (Iressa) and the HER2-trageting anti-HER2 monoclonal antibody trastuzumab (Herceptin). ZD1839 and trastuzumab are reported to improve the therapeutic efficacy of treatment for non-small-cell lung cancer (NSCLC) and breast cancer, respectively, although the effectiveness of either drug alone is not satisfactory. NSCLC cells often express both EGFR and HER2. We therefore investigated whether a combination of ZD1839 and trastuzumab had an additive or synergistic antitumor effect. In culture ZD1839 inhibited the growth of four NSCLC cell lines (A549, NCI-H23, NCI-H727, and NCI-H661) that expressed various levels of EGFR, HER2, HER3, and HER4. A significant cytotoxic effect was observed when ZD1839 was combined with trastuzumab in A549 cells. However, this combination had no apparent effect in NCI-H23 cells. Significant G(1)-phase arrest, increased p27 expression and decreased cyclin E or D1 levels were detected in A549 cells treated with ZD1839 and trastuzumab. No significant effects were detected in NCI-H23 cells examined. The combination treatment significantly inhibited the phosphorylation of EGFR, HER2, retinoblastoma, extracellular signal-regulated kinase-1/2, and protein kinase B/Akt in A549 cells, but not in NCI-H23 cells. Our results indicated that increased levels of constitutive EGFR/HER2 heterodimers were formed in A549 cells in the presence of ZD1839, whereas no heterodimer formation was detected in NCI-H23 cells. We therefore suggest that combination treatment with ZD1839 and trastuzumab might have improved therapeutic efficacy against NSCLC cells expressing both EGFR and HER2.

  16. Copper-transporting P-type adenosine triphosphatase (ATP7A) is associated with platinum-resistance in non-small cell lung cancer (NSCLC)

    PubMed Central

    2012-01-01

    Background Copper export protein ATP7A is important for maintaining copper homeostasis. Recent studies have shown that copper transporters are also involved in the transport of platinum. The goal of this study was to determine the role of ATP7A in the platinum-resistance of non-small cell lung cancer (NSCLC). Methods Sensitivities to platinums were detected by MTT assay and drug-resistance related genes were analyzed by real-time PCR and immunoblotting between DDP-sensitive A549 and the corresponding DDP-resistant cell subline (A549/DDP). ATP7A expression was evaluated by immunohistochemistry in tumor tissues of unresectable NSCLC patients who received cisplatin-basing chemotherapy. Results The expression of ATP7A was significantly higher in A549/DDP cell subline than in A549 cells at both mRNA and protein levels. The silencing of ATP7A expression in A549/DDP by siRNA partially reversed DDP-resistance (29.62%) and increased cell apoptosis. ATP7A expression was detected in 41.6%of NSCLC patients, but not in adjacent stroma nor normal lung tissues. ATP7A-positive patients had a significantly poorer histological grade (p = 0.039) and poorer response to platinum-basing chemotherapy (p = 0.001) compared with ATP7A-negative patients. Cox's proportional hazards analysis showed that ATP7A expression was an independent prognostic factor for overall survival (p = 0.045). Conclusions ATP7A overexpression played an important role in platinum-resistance of NSCLC, and was a negative prognostic factor of NSCLC patients treated with platinum-based chemotherapy. PMID:22304828

  17. Radiation-Induced Bystander Effects in A549 Cells Exposed to 6 MV X-rays.

    PubMed

    Yang, Shuning; Xu, Jing; Shao, Weixian; Geng, Chong; Li, Jia; Guo, Feng; Miao, Hui; Shen, Wenbin; Ye, Tao; Liu, Yazhou; Xu, Haiting; Zhang, Xuguang

    2015-07-01

    The aim of the study is to explore the bystander effects in A549 cells that have been exposed to 6MV X-ray. Control group, irradiated group, irradiated conditioned medium (ICM)-received group, and fresh medium group were designed in this study. A549 cells in the logarithmic growth phase were irradiated with 6MV X-ray at 0, 0.5, 1, 1.5, and 2. In ICM-received group, post-irradiation A549 cells were cultured for 3 h and were transferred into non-irradiated A549 cells for further cultivation. Clone forming test was applied to detect the survival fraction of cells. Annexin V-FITC/PI double-staining assay was used to detect the apoptosis of A549 cells 24, 48, 72, and 96 h after 2-Gy 6MV X-ray irradiation, and the curves of apoptosis were drawn. The changes in the cell cycles 4, 48, 72, and 96 h after 2-Gy 6MV X-ray irradiation were detected using PI staining flow cytometry. With the increase of irradiation dose, the survival fraction of A549 cells after the application of 0.5 Gy irradiation was decreasing continuously. In comparison to the control group, the apoptosis rate of the ICM-received group was increased in a time-dependent pattern, with the highest apoptosis rate observed at 72 h (p < 0.05). Cell count in G2/M stages was obviously increased compared with that of the control group (p < 0.05), with the highest count observed at 72 h, after which G2/M stage arrest was diminished. ICM can cause apparent A549 cell damage, indicating that 6MV X-ray irradiation can induce bystander effect on A549 cells, which reaches a peak at 72 h.

  18. 3′,4′,5′,5,7-Pentamethoxyflavone Sensitizes Cisplatin-Resistant A549 Cells to Cisplatin by Inhibition of Nrf2 Pathway

    PubMed Central

    Hou, Xiangyu; Bai, Xupeng; Gou, Xiaoli; Zeng, Hang; Xia, Chen; Zhuang, Wei; Chen, Xinmeng; Zhao, Zhongxiang; Huang, Min; Jin, Jing

    2015-01-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important redox-sensitive transcription factor that regulates the expression of several cytoprotective genes. More recently, genetic analyses of human tumors have indicated that Nrf2 may cause resistance to chemotherapy. In this study, we found that the expression levels of Nrf2 and its target genes GCLC, HO-1, NQO1 were significantly higher in cisplatin-resistant A549 (A549/CDDP) cells than those in A549 cells, and this resistance was partially reversed by Nrf2 siRNA. 3′,4′,5′,5,7-Pentamethoxyflavone (PMF), a natural flavonoid extracted from Rutaceae plants, sensitized A549/CDDP to CDDP and substantially induced apoptosis compared with that of CDDP alone treated group, and this reversal effect decreased when Nrf2 was downregulated by siRNA. Mechanistically, PMF reduced Nrf2 expression leading to a reduction of Nrf2 downstream genes, and in contrast, this effect was decreased by blocking Nrf2 with siRNA. Taken together, these results demonstrated that PMF could be used as an effective adjuvant sensitizer to increase the efficacy of chemotherapeutic drugs by downregulating Nrf2 signaling pathway. PMID:25843086

  19. Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance.

    PubMed

    Singh, Anju; Bodas, Manish; Wakabayashi, Nobunao; Bunz, Fred; Biswal, Shyam

    2010-12-01

    Nuclear factor erythroid-2 related factor 2 (Nrf2), a redox-sensitive transcription factor, regulates the expression of antioxidant enzymes and several anti-apoptotic proteins, which confer cytoprotection against oxidative stress and apoptosis. Constitutive activation of Nrf2 in lung cancer cells promotes tumorigenicity and contributes to chemoresistance by upregulation of glutathione, thioredoxin, and the drug efflux pathways involved in detoxification of electrophiles and broad spectrum of drugs. In this study, we show that RNAi-mediated lowering of Nrf2 levels in non-small-cell lung cancer (NSCLC) cell lines (A549 and H460) led to a dramatic increase in endogenous reactive oxygen species (ROS) levels. Similarly, γ-irradiation-induced formation of protein carbonyls were significantly higher in Nrf2-depleted lung cancer cells, suggesting increased lethality of ionizing radiation in the absence of Nrf2. Radiation-induced protein oxidation in Nrf2shRNA cells correlated with reduced survival as measured by clonogenic assay. Radiation-induced cell death was abrogated by pretreatment with antioxidants such as N-acetyl-L-cysteine, glutathione, and vitamin-E, highlighting the importance of antioxidants in conferring protection against radiation injury. Using genetically-modified gain and loss of function models of Nrf2, in mouse embryonic fibroblasts, we establish that constitutive activation of Nrf2 protects against ionizing radiation toxicity and confers radioresistance. Thus, targeting Nrf2 activity in radioresistant tumors could be a promising strategy to circumvent radioresistance.

  20. Gain of Nrf2 Function in Non-Small-Cell Lung Cancer Cells Confers Radioresistance

    PubMed Central

    Singh, Anju; Bodas, Manish; Wakabayashi, Nobunao; Bunz, Fred

    2010-01-01

    Abstract Nuclear factor erythroid-2 related factor 2 (Nrf2), a redox-sensitive transcription factor, regulates the expression of antioxidant enzymes and several anti-apoptotic proteins, which confer cytoprotection against oxidative stress and apoptosis. Constitutive activation of Nrf2 in lung cancer cells promotes tumorigenicity and contributes to chemoresistance by upregulation of glutathione, thioredoxin, and the drug efflux pathways involved in detoxification of electrophiles and broad spectrum of drugs. In this study, we show that RNAi-mediated lowering of Nrf2 levels in non-small-cell lung cancer (NSCLC) cell lines (A549 and H460) led to a dramatic increase in endogenous reactive oxygen species (ROS) levels. Similarly, γ-irradiation-induced formation of protein carbonyls were significantly higher in Nrf2-depleted lung cancer cells, suggesting increased lethality of ionizing radiation in the absence of Nrf2. Radiation-induced protein oxidation in Nrf2shRNA cells correlated with reduced survival as measured by clonogenic assay. Radiation-induced cell death was abrogated by pretreatment with antioxidants such as N-acetyl-L-cysteine, glutathione, and vitamin-E, highlighting the importance of antioxidants in conferring protection against radiation injury. Using genetically-modified gain and loss of function models of Nrf2, in mouse embryonic fibroblasts, we establish that constitutive activation of Nrf2 protects against ionizing radiation toxicity and confers radioresistance. Thus, targeting Nrf2 activity in radioresistant tumors could be a promising strategy to circumvent radioresistance. Antioxid. Redox Signal. 13, 1627–1637. PMID:20446773

  1. Autophagy regulates resistance of non-small cell lung cancer cells to paclitaxel.

    PubMed

    Chen, Kan; Shi, Wenjun

    2016-08-01

    Paclitaxel is a chemotherapeutic drug that is effective for treating non-small cell lung cancer (NSCLC). However, some NSCLCs are not sensitive to paclitaxel treatment with undetermined underlying molecular mechanisms. In this study, we found that paclitaxel dose-dependently activated Beclin-1 in 2 NSCLC cell lines, A549 and Calu-3. Inhibition of autophagy significantly increased the paclitaxel-induced NSCLC cell death in a cell counting kit-8 (CCK-8) assay. Moreover, microRNA (miR)-216b levels were significantly downregulated in paclitaxel-treated NSCLC cells. Bioinformatics study showed that miR-216b targeted the 3'-UTR of Beclin-1 mRNA to inhibit its translation, which was confirmed by luciferase reporter assay. Together, these data suggest that paclitaxel may decrease miR-216b levels in NSCLC cells, which subsequently upregulates Beclin-1 to increase NSCLC cell autophagy to antagonize paclitaxel-induced cell death. Strategies that increase miR-216b levels or inhibit cell autophagy may improve the outcome of paclitaxel treatment in NSCLC therapy.

  2. Radiosensitization of non-small cell lung cancer by kaempferol.

    PubMed

    Kuo, Wei-Ting; Tsai, Yuan-Chung; Wu, His-Chin; Ho, Yung-Jen; Chen, Yueh-Sheng; Yao, Chen-Han; Yao, Chun-Hsu

    2015-11-01

    The aim of the present study was to determine whether kaempferol has a radiosensitization potential for lung cancer in vitro and in vivo. The in vitro radio-sensitization activity of kaempferol was elucidated in A-549 lung cancer cells by using an MTT (3-(4 5-dimethylthiazol-2-yl)-25-diphenyl-tetrazolium bromide) assay, cell cycle analysis and clonogenic assay. The in vivo activity was evaluated in the BALB/c nude mouse xenograft model of A-549 cells by hematoxylin and eosin staining and immunohistochemistry, and the tumor volume was recorded. Protein levels of the apoptotic pathway were detected by western blot analysis. Treatment with kaempferol inhibited the growth of A-549 cells through activation of apoptotic pathway. However, the same doses did not affect HFL1 normal lung cell growth. Kaempferol induced G2/M cell cycle arrest and the enhancement of radiation-induced death and clonogenic survival inhibition. The in vivo data showed that kaempferol increased tumor cell apoptosis and killing of radiation. In conclusion, the findings demonstrated that kaempferol increased tumor cell killing by radiation in vitro and in vivo through inhibition of the AKT/PI3K and ERK pathways and activation of the mitochondria apoptosis pathway. The results of the present study provided solid evidence that kaempferol is a safe and potential radiosensitizer.

  3. Activation of paracrine growth factors by heparan sulphate induced by glucocorticoid in A549 lung carcinoma cells.

    PubMed

    Yevdokimova, N; Freshney, R I

    1997-01-01

    Alkaline phosphatase, a marker of differentiation in the human alveolar adenocarcinoma cell line A549, is inducible by conditioned medium from lung fibroblasts and by cytokines including oncostatin M and interleukin 6, but only in the presence of a glucocorticoid, dexamethasone. Dexamethasone was shown to induce incorporation of [3H]glucosamine into three fractions of medium and cell trypsinate from subconfluent A549 cells, eluting from DEAE ion-exchange chromatography. The first peak did not correspond to any of the unlabelled glycosaminoglycans and was not characterized further. Induction was seen in two other peaks, corresponding to hyaluronic acid and heparan sulphate. Of these, heparan sulphate, eluting as one well-defined peak (referred to as HS1) and another of lower activity and less well defined (HS2), was selected as the most likely to interact with growth factors and cytokines and was isolated from the eluate, concentrated and desalted, and used in alkaline phosphatase induction experiments in place of dexamethasone. HS1 isolated from the medium (HS1m) of subconfluent A549 cells was shown to replace dexamethasone in induction experiments with fibroblast-conditioned medium, oncostatin M and interleukin 6. HS1 from the cell trypsinate and HS2 from the medium and trypsinate were inactive. As the activity of HS1m could be abolished by heparinase and heparitinase but not by chondroitinase ABC, it was concluded that HS1m was a fraction of heparan sulphate involved in the regulation of paracrine growth factor activity in lung fibroblast-conditioned medium, and in the regulation of other growth factors with potential roles in the paracrine control of cell differentiation.

  4. Activation of paracrine growth factors by heparan sulphate induced by glucocorticoid in A549 lung carcinoma cells.

    PubMed Central

    Yevdokimova, N.; Freshney, R. I.

    1997-01-01

    Alkaline phosphatase, a marker of differentiation in the human alveolar adenocarcinoma cell line A549, is inducible by conditioned medium from lung fibroblasts and by cytokines including oncostatin M and interleukin 6, but only in the presence of a glucocorticoid, dexamethasone. Dexamethasone was shown to induce incorporation of [3H]glucosamine into three fractions of medium and cell trypsinate from subconfluent A549 cells, eluting from DEAE ion-exchange chromatography. The first peak did not correspond to any of the unlabelled glycosaminoglycans and was not characterized further. Induction was seen in two other peaks, corresponding to hyaluronic acid and heparan sulphate. Of these, heparan sulphate, eluting as one well-defined peak (referred to as HS1) and another of lower activity and less well defined (HS2), was selected as the most likely to interact with growth factors and cytokines and was isolated from the eluate, concentrated and desalted, and used in alkaline phosphatase induction experiments in place of dexamethasone. HS1 isolated from the medium (HS1m) of subconfluent A549 cells was shown to replace dexamethasone in induction experiments with fibroblast-conditioned medium, oncostatin M and interleukin 6. HS1 from the cell trypsinate and HS2 from the medium and trypsinate were inactive. As the activity of HS1m could be abolished by heparinase and heparitinase but not by chondroitinase ABC, it was concluded that HS1m was a fraction of heparan sulphate involved in the regulation of paracrine growth factor activity in lung fibroblast-conditioned medium, and in the regulation of other growth factors with potential roles in the paracrine control of cell differentiation. PMID:9252193

  5. RNA interference-mediated knockdown of Aurora-B alters the metastatic behavior of A549 cells via modulation of the phosphoinositide 3-kinase/Akt signaling pathway.

    PubMed

    Zhou, Long Dian; Xiong, Xu; Long, Xin Hua; Liu, Zhi Li; Huang, Shan Hu; Zhang, Wei

    2014-11-01

    Accumulating evidence has revealed that an elevated expression level of Aurora-B is associated with metastasis in various types of malignant tumor. However, it is currently unclear whether this molecule is involved in non-small lung cancer (NSCLC) metastasis, and the molecular mechanisms associated with Aurora-B and metastasis remain unknown. In the present study, in order to investigate whether Aurora-B is involved in the development and metastasis of NSCLC, the Aurora-B protein expression in NSCLC tissues was detected by immunohistochemistry and its association with metastasis was analyzed. The results revealed that the expression levels of the Aurora-B protein in tissues obtained from NSCLC patients with lymph node metastasis were significantly higher than those without metastatic disease. Furthermore, the effect of Aurora-B inhibition on A549 cell migration and invasion, as well as the activity of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway was evaluated. Aurora-B was inhibited in the A549 cells using short hairpin RNA, and the cell migration and invasion rates were investigated using wound healing and Transwell invasion assays. In addition, the expression of the main proteins in the PI3K/Akt/nuclear factor-κB (NF-κB) signaling pathway, and matrix metalloproteinase (MMP)-2 and -9 were measured by western blot analysis. The results demonstrated that cell migration and invasion were decreased as a result of silencing Aurora-B. Furthermore, the activity of the PI3K/Akt/NF-κB signaling pathway and the expression of MMP-2 and -9 protein were suppressed by silencing Aurora-B. The results of the present study indicate that the knockdown of Aurora-B suppresses A549 cell invasion and migration via the inhibition of the PI3K/Akt signaling pathway in vitro and thus, targeting Aurora-B may present a potential treatment strategy for NSCLC.

  6. RNA interference-mediated knockdown of Aurora-B alters the metastatic behavior of A549 cells via modulation of the phosphoinositide 3-kinase/Akt signaling pathway

    PubMed Central

    ZHOU, LONG DIAN; XIONG, XU; LONG, XIN HUA; LIU, ZHI LI; HUANG, SHAN HU; ZHANG, WEI

    2014-01-01

    Accumulating evidence has revealed that an elevated expression level of Aurora-B is associated with metastasis in various types of malignant tumor. However, it is currently unclear whether this molecule is involved in non-small lung cancer (NSCLC) metastasis, and the molecular mechanisms associated with Aurora-B and metastasis remain unknown. In the present study, in order to investigate whether Aurora-B is involved in the development and metastasis of NSCLC, the Aurora-B protein expression in NSCLC tissues was detected by immunohistochemistry and its association with metastasis was analyzed. The results revealed that the expression levels of the Aurora-B protein in tissues obtained from NSCLC patients with lymph node metastasis were significantly higher than those without metastatic disease. Furthermore, the effect of Aurora-B inhibition on A549 cell migration and invasion, as well as the activity of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway was evaluated. Aurora-B was inhibited in the A549 cells using short hairpin RNA, and the cell migration and invasion rates were investigated using wound healing and Transwell invasion assays. In addition, the expression of the main proteins in the PI3K/Akt/nuclear factor-κB (NF-κB) signaling pathway, and matrix metalloproteinase (MMP)-2 and -9 were measured by western blot analysis. The results demonstrated that cell migration and invasion were decreased as a result of silencing Aurora-B. Furthermore, the activity of the PI3K/Akt/NF-κB signaling pathway and the expression of MMP-2 and -9 protein were suppressed by silencing Aurora-B. The results of the present study indicate that the knockdown of Aurora-B suppresses A549 cell invasion and migration via the inhibition of the PI3K/Akt signaling pathway in vitro and thus, targeting Aurora-B may present a potential treatment strategy for NSCLC. PMID:25295091

  7. Proteomic Analysis of Cellular Response Induced by Multi-Walled Carbon Nanotubes Exposure in A549 Cells

    PubMed Central

    Zhang, Xing; Jia, Zhenyu; Gao, Xiangjing; Jiang, Ying; Yan, Chunlan; Duerksen-Hughes, Penelope J.; Chen, Fanqing Frank; Li, Hongjuan; Zhu, Xinqiang; Yang, Jun

    2014-01-01

    The wide application of multi-walled carbon nanotubes (MWCNT) has raised serious concerns about their safety on human health and the environment. However, the potential harmful effects of MWCNT remain unclear and contradictory. To clarify the potentially toxic effects of MWCNT and to elucidate the associated underlying mechanisms, the effects of MWCNT on human lung adenocarcinoma A549 cells were examined at both the cellular and the protein level. Cytotoxicity and genotoxicity were examined, followed by a proteomic analysis (2-DE coupled with LC-MS/MS) of the cellular response to MWCNT. Our results demonstrate that MWCNT induces cytotoxicity in A549 cells only at relatively high concentrations and longer exposure time. Within a relatively low dosage range (30 µg/ml) and short time period (24 h), MWCNT treatment does not induce significant cytotoxicity, cell cycle changes, apoptosis, or DNA damage. However, at these low doses and times, MWCNT treatment causes significant changes in protein expression. A total of 106 proteins show altered expression at various time points and dosages, and of these, 52 proteins were further identified by MS. Identified proteins are involved in several cellular processes including proliferation, stress, and cellular skeleton organization. In particular, MWCNT treatment causes increases in actin expression. This increase has the potential to contribute to increased migration capacity and may be mediated by reactive oxygen species (ROS). PMID:24454774

  8. Pulmonary metastases of the A549-derived lung adenocarcinoma tumors growing in nude mice. A multiple case study.

    PubMed

    Jakubowska, Monika; Sniegocka, Martyna; Podgórska, Ewa; Michalczyk-Wetula, Dominika; Urbanska, Krystyna; Susz, Anna; Fiedor, Leszek; Pyka, Janusz; Płonka, Przemysław M

    2013-01-01

    Lung adenocarcinoma is a leading human malignancy with fatal prognosis. Ninety percent of the deaths, however, are caused by metastases. The model of subcutaneous tumor xenograft in nude mice was adopted to study the growth of control and photodynamically treated tumors derived from the human A549 lung adenocarcinoma cell line. As a side-result of the primary studies, observations on the metastasis of these tumors to the murine lungs were collected, and reported in the present paper. The metastasizing primary tumors were drained by a prominent number of lymphatic vessels. The metastatic tissue revealed the morphology of well-differentiated or trans-differentiated adenocarcinoma. Further histological and histochemical analyses demonstrated the presence of golden-brown granules in the metastatic tissue, similar to these found in the tumor tissue. In contrast to the primary tumors, the electron paramagnetic resonance spectroscopy revealed no nitric oxide - hemoglobin complexes (a source of intense paramagnetic signals), in the metastases. No metastases were found in other murine organs; however, white infarctions were identified in a single liver. Taken together, the A549-derived tumors growing subcutaneously in nude mice can metastasize and grow on site in the pulmonary tissue. Thus, they can represent an alternative for the model of induced metastatic nodule formation, following intravenous administration of the cancerous cells.

  9. Artemisinin induces A549 cell apoptosis dominantly via a reactive oxygen species-mediated amplification activation loop among caspase-9, -8 and -3.

    PubMed

    Gao, Weijie; Xiao, Fenglian; Wang, Xiaoping; Chen, Tongsheng

    2013-10-01

    This report is designed to explore the roles of caspase-8, -9 and -3 in artemisinin (ARTE)-induced apoptosis in non-small cell lung cancer cells (A549 cells). ARTE induced reactive oxygen species (ROS)-mediated apoptosis in dose- and time-dependent fashion. Although ARTE treatment did not induce Bid cleavage and significant loss of mitochondrial membrane potential, it induced release of Smac and AIF but not cytochrome c from mitochondria, and silencing of Bak but not Bax significantly prevented ARTE-induced cytotoxicity. Moreover, ARTE treatment induced ROS-dependent activation of caspase-9, -8 and -3. Of the utmost importance, silencing or inhibiting any one of caspase-8, -9 and -3 almost completely prevented ARTE-induced activation of all the three caspases and remarkably abrogated the cytotoxicity of ARTE, suggesting that ARTE triggered an amplification activation loop among caspase-9, -8 and -3. Collectively, our data demonstrate that ARTE induces a ROS-mediated amplification activation loop among caspase-9, -8 and -3 to dominantly mediate the apoptosis of A549 cells.

  10. Growth and Metastases of Human Lung Cancer Are Inhibited in Mouse Xenografts by a Transition State Analogue of 5′-Methylthioadenosine Phosphorylase*

    PubMed Central

    Basu, Indranil; Locker, Joseph; Cassera, Maria B.; Belbin, Thomas J.; Merino, Emilio F.; Dong, Xinyuan; Hemeon, Ivan; Evans, Gary B.; Guha, Chandan; Schramm, Vern L.

    2011-01-01

    The S-adenosylmethionine (AdoMet) salvage enzyme 5′-methylthioadenosine phosphorylase (MTAP) has been implicated as both a cancer target and a tumor suppressor. We tested these hypotheses in mouse xenografts of human lung cancers. AdoMet recycling from 5′-methylthioadenosine (MTA) was blocked by inhibition of MTAP with methylthio-DADMe-Immucillin-A (MTDIA), an orally available, nontoxic, picomolar transition state analogue. Blood, urine, and tumor levels of MTA increased in response to MTDIA treatment. MTDIA treatment inhibited A549 (human non-small cell lung carcinoma) and H358 (human bronchioloalveolar non-small cell lung carcinoma cells) xenograft tumor growth in immunodeficient Rag2−/−γC−/− and NCr-nu mice. Systemic MTA accumulation is implicated as the tumor-suppressive metabolite because MTDIA is effective for in vivo treatment of A549 MTAP−/− and H358 MTAP+/+ tumors. Tumors from treated mice showed increased MTA and decreased polyamines but little alteration in AdoMet, methionine, or adenine levels. Gene expression profiles of A549 tumors from treated and untreated mice revealed only modest alterations with 62 up-regulated and 63 down-regulated mRNAs (≥3-fold). MTDIA antitumor activity in xenografts supports MTAP as a target for lung cancer therapy. PMID:21135097

  11. Long Term Culture of the A549 Cancer Cell Line Promotes Multilamellar Body Formation and Differentiation towards an Alveolar Type II Pneumocyte Phenotype

    PubMed Central

    Cooper, James Ross; Abdullatif, Muhammad Bilal; Burnett, Edward C.; Kempsell, Karen E.; Conforti, Franco; Tolley, Howard; Collins, Jane E.; Davies, Donna E.

    2016-01-01

    Pulmonary research requires models that represent the physiology of alveolar epithelium but concerns with reproducibility, consistency and the technical and ethical challenges of using primary or stem cells has resulted in widespread use of continuous cancer or other immortalized cell lines. The A549 ‘alveolar’ cell line has been available for over four decades but there is an inconsistent view as to its suitability as an appropriate model for primary alveolar type II (ATII) cells. Since most work with A549 cells involves short term culture of proliferating cells, we postulated that culture conditions that reduced proliferation of the cancer cells would promote a more differentiated ATII cell phenotype. We examined A549 cell growth in different media over long term culture and then used microarray analysis to investigate temporal regulation of pathways involved in cell cycle and ATII differentiation; we also made comparisons with gene expression in freshly isolated human ATII cells. Analyses indicated that long term culture in Ham’s F12 resulted in substantial modulation of cell cycle genes to result in a quiescent population of cells with significant up-regulation of autophagic, differentiation and lipidogenic pathways. There were also increased numbers of up- and down-regulated genes shared with primary cells suggesting adoption of ATII characteristics and multilamellar body (MLB) development. Subsequent Oil Red-O staining and Transmission Electron Microscopy confirmed MLB expression in the differentiated A549 cells. This work defines a set of conditions for promoting ATII differentiation characteristics in A549 cells that may be advantageous for studies with this cell line. PMID:27792742

  12. Biosynthesis of gold nanoparticles and related cytotoxicity evaluation using A549 cells.

    PubMed

    Sathishkumar, M; Pavagadhi, S; Mahadevan, A; Balasubramanian, R

    2015-04-01

    Biosynthesis of gold nanoparticles (AuNPs) has become an attractive area of research as it is environmentally benign. The toxicity of AuNPs synthesized by chemical routes has been widely studied. However, little is known about the toxicity associated with the biological synthesis of AuNPs. The present study was carried out to synthesize AuNPs using star anise (Illicium verum; a commercially available spice in abundance)and evaluate its toxicity using human epithelial lung cells (A549) in comparison with AuNPs synthesized by the traditional chemical methods (using sodium citrate and sodium borohydride). Apart from cell viability, markers of oxidative stress (reduced glutathione) and cell death (caspases) were also evaluated to understand the mechanisms of toxicity. Cell viability was observed to be 65.7 percent and 72.3 percent in cells exposed to chemically synthesized AuNPs at the highest dose (200nM) as compared to 80.2 percent for biologically synthesized AuNPs. Protective coating/capping of AuNPs by various polyphenolic compounds present in star anise extract appears to be a major contributor to lower toxicity observed in biologically synthesized AuNPs.

  13. Taxol-induced paraptosis-like A549 cell death is not senescence

    NASA Astrophysics Data System (ADS)

    Wang, Chao-yang; Chen, Tong-Sheng

    2011-03-01

    Our previous studies have shown that taxol, a potent anticancer agent, induces caspase-independent cell death and cytoplasmic vacuolization in human lung cancer cells. However, the mechanisms of taxol-induced cytoplasmic vacuolization are poorly understood. Cytoplasmic vacuolization have been reported to be a characteristic of cell senescence. Here, we employed confocal fluorescence microscopy imaging to study the reversibility of taxol-induced cytoplasmic vacuolization and whether taxol triggers senescence in A549 cells. We found that taxol-induced cytoplasmic vacuolization at 6 or 9 h after treatment with taxol did not decrease but increase at 24 h or 72 h after refreshing the culture medium without taxol, indicating taxol-induced cytoplasmic vacuolization is irreversible. We used SA-β-Gal (senescence-associated β-galactosidase) to assess whether taxol-induced cell death in cytoplasmic vacuolization fashion is senescence, and found that hydrogen peroxide (H2O2)-treated, but not taxol-treated cells is significantly stained by the SA-β-Gal, a senescence testing kit, indicating that the form of taxol-induced cell death is not senescence.

  14. In vivo evaluation of curcumin-loaded nanoparticles in a A549 xenograft mice model.

    PubMed

    Yin, Hai-Tao; Zhang, De-Geng; Wu, Xiao-Li; Huang, Xin-En; Chen, Gang

    2013-01-01

    Curcumin (Cum) has been reported to have potential chemo-preventive and chemotherapeutic activity through influencing various processes, inducing cell cycle arrest, differentiation and apoptosis in a series of cancers. However, the poor solubility of Cum limits its further applications in the treatment of cancer. We have previously reported Cum-loaded nanoparticles (Cum-NPs) prepared with amphilic methoxy poly(ethylene glycol)-polycaprolactone (mPEG-PCL) block copolymers. The current study demonstrated superior antitumor efficacy of Cum-NPs over free Cum in the treatment of lung cancer. In vivo evaluation further demonstrated superior anticancer effects of Cum-NPs by delaying tumor growth compared to free Cum in an established A549 transplanted mice model. Moreover, Cum-NPs showed little toxicity to normal tissues including bone marrow, liver and kidney at a therapeutic dose. These results suggest that Cum-NPs are effective to inhibit the growth of human lung cancer with little toxicity to normal tissues, and could provide a clinically useful therapeutic regimen. They thus merit more research to evaluate the feasibility of clinical application.

  15. Pinus massoniana bark extract inhibits migration of the lung cancer A549 cell line

    PubMed Central

    Mao, Ping; Zhang, Ershao; Chen, Yang; Liu, Likun; Rong, Daqing; Liu, Qingfeng; Li, Weiling

    2017-01-01

    The bark of Pinus massoniana is a traditional Chinese medicine for the treatment of various health disorders. Previous studies have demonstrated that P. massoniana bark extract (PMBE) may induce the apoptosis of hepatoma and cervical cancer cells. However, whether PMBE is able to inhibit the migration of lung cancer cells requires further investigation. In the current study, the effects of PMBE on the viability of human lung cancer A549 cells were detected using an MTT assay. The migration of lung cancer cells following exposure to PMBE were quantified using wound healing and Transwell assays, respectively. The expression levels of matrix metalloproteinase (MMP)-9 were determined using western blotting. The results revealed that PMBE significantly inhibited the growth of the lung cancer cells. In addition, the wound closure rate and the migration of the lung cancer cells were suppressed by PMBE. Furthermore, the expression levels of MMP-9 were reduced. These findings indicated that PMBE is able to restrict the migration and invasion of lung cancer cells, and that PMBE may serve as a novel therapeutic agent for patients with metastatic lung cancer in the future. PMID:28356994

  16. Phosphorylation of p53 at serine 15 in A549 pulmonary epithelial cells exposed to vanadate: Involvement of ATM pathway

    SciTech Connect

    Suzuki, Katsura; Inageda, Kiyoshi; Nishitai, Gen; Matsuoka, Masato . E-mail: matsuoka@research.twmu.ac.jp

    2007-04-01

    When A549 cells were exposed to sodium metavanadate (NaVO{sub 3}), the pentavalent species of vanadium (vanadate), phosphorylation of p53 protein at Ser15 was found in a time (8-48 h)- and dose (10-200 {mu}M)-dependent manner. After the incubation with 50 or 100 {mu}M NaVO{sub 3} for 48 h, accumulation of p53 protein was accompanied with Ser15 phosphorylation. Among serines in p53 protein immunoprecipitated from A549 cells treated with 100 {mu}M NaVO{sub 3} for 48 h, only Ser15 was markedly phosphorylated. Treatment with other vanadate compounds, sodium orthovanadate (Na{sub 3}VO{sub 4}) and ammonium metavanadate (NH{sub 4}VO{sub 3}), also induced Ser15 phosphorylation and accumulation of p53 protein. While phosphorylation of extracellular signal-regulated protein kinase (ERK) was found in cells treated with NaVO{sub 3}, treatment with U0126 did not suppress Ser15 phosphorylation. On the other hand, treatment with wortmannin or caffeine, the inhibitors to phosphatidylinositol 3-kinase related kinases (PIKKs), suppressed both NaVO{sub 3}-induced Ser15 phosphorylation and accumulation of p53 protein. The silencing of ataxia telangiectasia mutated (ATM) expression using short-interference RNA resulted in the marked suppression of Ser15 phosphorylation in A549 cells exposed to NaVO{sub 3}. However, treatment with antioxidants such as catalase and N-acetylcysteine did not suppress NaVO{sub 3}-induced Ser15 phosphorylation. Transcriptional activation of p53 and DNA fragmentation in A549 cells treated with NaVO{sub 3} were suppressed only slightly by S15A mutation, suggesting that Ser15 phosphorylation is not essential for these responses. The present results showed that vanadate induces the phosphorylation of p53 at Ser15 depending on ATM, one of the members of PIKK family, in this human pulmonary epithelial cell line.

  17. A novel cytostatic form of autophagy in sensitization of non-small cell lung cancer cells to radiation by vitamin D and the vitamin D analog, EB 1089

    PubMed Central

    Sharma, Khushboo; Goehe, Rachel W; Di, Xu; Hicks, Mark Anthony; Torti, Suzy V; Torti, Frank M; Harada, Hisashi; Gewirtz, David A.

    2015-01-01

    The standard of care for unresectable lung cancer is chemoradiation. However, therapeutic options are limited and patients are rarely cured. We have previously shown that vitamin D and vitamin D analogs such as EB 1089 can enhance the response to radiation in breast cancer through the promotion of a cytotoxic form of autophagy. In A549 and H460 non-small cell lung cancer (NSCLC) cells, 1,25-D3 (the hormonally active form of vitamin D) and EB 1089 prolonged the growth arrest induced by radiation alone and suppressed proliferative recovery, which translated to a significant reduction in clonogenic survival. In H838 or H358 NSCLC cells, which lack VDR/vitamin D receptor or functional TP53, respectively, 1,25-D3 failed to modify the extent of radiation-induced growth arrest or suppress proliferative recovery post-irradiation. Sensitization to radiation in H1299 NSCLC cells was evident only when TP53 was induced in otherwise tp53-null H1299 NSCLC cells. Sensitization was not associated with increased DNA damage, decreased DNA repair or an increase in apoptosis, necrosis, or senescence. Instead sensitization appeared to be a consequence of the conversion of the cytoprotective autophagy induced by radiation alone to a novel cytostatic form of autophagy by the combination of 1,25-D3 or EB 1089 with radiation. While both pharmacological and genetic suppression of autophagy or inhibition of AMPK phosphorylation sensitized the NSCLC cells to radiation alone, inhibition of the cytostatic autophagy induced by the combination treatment reversed sensitization. Evidence for selectivity was provided by lack of radiosensitization in normal human bronchial cells and cardiomyocytes. Taken together, these studies have identified a unique cytostatic function of autophagy that appears to be mediated by VDR, TP53, and possibly AMPK in the promotion of an enhanced response to radiation by 1,25-D3 and EB 1089 in NSCLC. PMID:25629933

  18. Identification and Testing of Novel CARP-1 Functional Mimetic Compounds as Inhibitors of Non-Small Cell Lung and Triple Negative Breast Cancers

    PubMed Central

    Muthu, Magesh; Somagoni, Jaganmohan; Cheriyan, Vino T.; Munie, Sara; Levi, Edi; Ashour, Abdelkader E.; Yassin, Alaa Eldeen B.; Alafeefy, Ahmed M.; Sochacki, Paula; Polin, Lisa A.; Reddy, Kaladhar B.; Larsen, Scott D.; Singh, Mandip; Rishi, Arun K.

    2016-01-01

    The triple negative breast cancer (TNBCs) and non-small cell lung cancers (NSCLCs) often acquire mutations that contribute to failure of drugs in clinic and poor prognosis, thus presenting an urgent need to develop new and improved therapeutic modalities. Here we report that CARP-1 functional mimetic (CFMs) compounds 4 and 5, and 4.6, a structurally related analog of CFM-4, are potent inhibitors of TNBC and NSCLC cells in vitro. Cell growth suppression by CFM-4 and -4.6 involved interaction and elevated expression of CARP-1/CCAR1 and Death Effector Domain (DED) containing DNA binding (DEDD)2 proteins. Apoptosis by these compounds also involved activation of pro-apoptotic stress-activated kinases p38 and JNK1/2, cleavage of PARP and loss of mitotic cyclin B1. Both the CFMs inhibited abilities of NSCLC and TNBC cells to migrate, invade, and form colonies in suspension, while disrupting tubule formation by the human umbilical vein endothelial cells (HUVECs). Nano-lipid formulation of CFM-4 (CFM-4 NLF) enhanced its serum bioavailability when compared with the free CFM-4. Oral administration of CFM-4 NLF reduced weights and volume of the xenografted tumors derived from A549 NSCLC and MDA-MB-231 TNBC cells. Although no gross tissue or histological toxicities were noticed, the immuno-histochemical analysis revealed increased CARP-1 and DNA fragmentation in tumors of the CFM-4 NLF-treated animals. In conclusion, while stimulation of pro-apoptotic CARP-1 and DEDD2 expression and their binding underscore a novel mechanism of apoptosis transduction by CFM compounds, our proof-of-concept xenograft studies demonstrate therapeutic potential of CFM-4 for TNBC and NSCLC. PMID:26485930

  19. A novel cytostatic form of autophagy in sensitization of non-small cell lung cancer cells to radiation by vitamin D and the vitamin D analog, EB 1089.

    PubMed

    Sharma, Khushboo; Goehe, Rachel W; Di, Xu; Hicks, Mark Anthony; Torti, Suzy V; Torti, Frank M; Harada, Hisashi; Gewirtz, David A

    2014-01-01

    The standard of care for unresectable lung cancer is chemoradiation. However, therapeutic options are limited and patients are rarely cured. We have previously shown that vitamin D and vitamin D analogs such as EB 1089 can enhance the response to radiation in breast cancer through the promotion of a cytotoxic form of autophagy. In A549 and H460 non-small cell lung cancer (NSCLC) cells, 1,25-D3 (the hormonally active form of vitamin D) and EB 1089 prolonged the growth arrest induced by radiation alone and suppressed proliferative recovery, which translated to a significant reduction in clonogenic survival. In H838 or H358 NSCLC cells, which lack VDR/vitamin D receptor or functional TP53, respectively, 1,25-D3 failed to modify the extent of radiation-induced growth arrest or suppress proliferative recovery post-irradiation. Sensitization to radiation in H1299 NSCLC cells was evident only when TP53 was induced in otherwise tp53-null H1299 NSCLC cells. Sensitization was not associated with increased DNA damage, decreased DNA repair or an increase in apoptosis, necrosis, or senescence. Instead sensitization appeared to be a consequence of the conversion of the cytoprotective autophagy induced by radiation alone to a novel cytostatic form of autophagy by the combination of 1,25-D3 or EB 1089 with radiation. While both pharmacological and genetic suppression of autophagy or inhibition of AMPK phosphorylation sensitized the NSCLC cells to radiation alone, inhibition of the cytostatic autophagy induced by the combination treatment reversed sensitization. Evidence for selectivity was provided by lack of radiosensitization in normal human bronchial cells and cardiomyocytes. Taken together, these studies have identified a unique cytostatic function of autophagy that appears to be mediated by VDR, TP53, and possibly AMPK in the promotion of an enhanced response to radiation by 1,25-D3 and EB 1089 in NSCLC.

  20. A novel dual PI3Kalpha/mTOR inhibitor PI-103 with high antitumor activity in non-small cell lung cancer cells.

    PubMed

    Zou, Zu-Quan; Zhang, Xiao-Hong; Wang, Feng; Shen, Qi-Jun; Xu, Jin; Zhang, Li-Na; Xing, Wen-Hua; Zhuo, Ren-Jie; Li, Duo

    2009-07-01

    PI-103, the first synthetic multitargeted compound which simultaneously inhibits PI3Kalpha and mammalian target of rapamycin (mTOR) shows high antitumor activity in glioma xenografts. In the present study, clear antitumor activity was observed with PI-103 treatment in two gefitinib-resistant non-small cell lung cancer (NSCLC) cell lines, A549 and H460, by simultaneously inhibiting p70s6k phosporylation and Akt phosphorylation in response to mTOR inhibition. In addition, H460 cells with activating mutations of PIK3CA were more sensitive to PI-103 than A549 cells with wild-type PIK3CA. PI-103 was found to inhibit growth by causing G0-G1 arrest in A549 and H460 cells. Western blotting showed that PI-103 induced down-regulation of cyclin D1 and E1 and simultaneously up-regulated p21 and p27, associated with arrest in the G0-G1 phase of the cell cycle. Furthermore, p53, the tumor suppressor which transcriptionally regulates p21, was also upregulated with PI-103 treatment. Collectively, our results suggest that multitargeted intervention is the most effective tumor therapy, and the cooperative blockade of PI3Kalpha and mTOR with PI-103 shows promise for treating gefitinib-resistant NSCLC.

  1. Decitabine reverses TGF-β1-induced epithelial–mesenchymal transition in non-small-cell lung cancer by regulating miR-200/ZEB axis

    PubMed Central

    Zhang, Nan; Liu, Yanyang; Wang, Yuyi; Zhao, Maoyuan; Tu, Li; Luo, Feng

    2017-01-01

    Objective Epithelial–mesenchymal transition (EMT) is a crucial driver of tumor progression. Tumor growth factor-beta 1 (TGF-β1) is an important factor in EMT induction in tumorigenesis. The targeting of EMT may, therefore, represent a promising approach in anticancer treatment. Methods In this study, we determined the effect of decitabine, a DNA methyltransferase inhibitor, on TGF-β1-induced EMT in non-small-cell lung cancer (NSCLC) PC9 and A549 cells. We also assessed the involvement of the miR-200/ZEB axis. Results Decitabine reversed TGF-β1-induced EMT in PC9 cells, but not in A549 cells. This phenomenon was associated with epigenetic changes in the miR-200 family, which regulated EMT by altering the expression of ZEB1 and ZEB2. TGF-β1 induced aberrant methylation in miR-200 promoters, leading to EMT in PC9 cells. Decitabine attenuated this effect and inhibited tumor cell migration in vitro and in vivo. In A549 cells, however, neither TGF-β1 nor decitabine exhibited an effect on miR-200 promoter methylation. Conclusion Our findings suggest that epigenetic regulation of the miR-200/ZEB axis is responsible for EMT induction by TGF-β1 in PC9 cells. Decitabine inhibits EMT in NSCLC cell PC9 through its epigenetic-based therapeutic activity.

  2. Prediction of non-small cell lung cancer metastasis-associated microRNAs using bioinformatics

    PubMed Central

    Wang, Rong; Chen, Xiao-Feng; Shu, Yong-Qian

    2015-01-01

    Distant metastasis is one of the most common causes for failure in treatment of advanced NSCLC, and it is a key factor to determine the patients’ prognosis. This study aims to screen the microRNAs associated with non-small cell lung cancer metastasis, so as to provide theoretical basis for investigating their roles in non-small cell lung cancer metastasis. In this study, the fluorescent transfected human non-small cell lung cancer cell lines H460 developed tumors subcutaneously, which were then in situ transplanted into the left lung of nude mice to obtain the tissue specimens of primary tumor and metastatic tumor. The differentially expressed microRNAs associated with non-small cell lung cancer metastasis were identified using the microRNA microarray and real-time quantitative polymerase chain reaction (RT-PCR) analysis, and bioinformatics analysis of the microRNAs was performed. The microarray analysis results revealed that 17 microRNAs with up-regulated expression and 7 with down-regulated expression between the non-small cell lung cancer metastatic primary loci and the non-metastatic primary loci (Group A), while 20 microRNAs with up-regulated expression (ratio > 1.5 times, P < 0.05) and 16 with down-regulated expression (ratio < 0.65 times, P < 0.05) between the non-small cell lung cancer metastatic loci and the metastatic primary loci (Group B). RT-PCR validation and bioinformatics analysis of some microRNAs identified 2 microRNAs with up-regulated expression, miR-10b and miR-144, and 3 microRNAs with down-regulated expression, miR-9, miR-31 and miR-34b in Group A; and 4 microRNAs with down-regulated expression, miR-25, miR-92a, miR-202 and miR-326 in Group B, which may be mediated by transcription factors activator protein 1 (AP-1), p53, STATs and NF-κB, regulate cell development, proliferation and cycle, DNA and RNA metabolism and signal transduction pathway, and promote tumor growth and metastasis through the effects on target genes like RARβ, RASSF1

  3. Disulfiram-loaded porous PLGA microparticle for inhibiting the proliferation and migration of non-small-cell lung cancer

    PubMed Central

    Wang, Chenhui; Yang, Jiebing; Han, Haobo; Chen, Jiawen; Wang, Yudi; Li, Quanshun; Wang, Yanbo

    2017-01-01

    In this study, poly(lactic-co-glycolic acid) (PLGA) was used as a carrier to construct disulfiram-loaded porous microparticle through the emulsion solvent evaporation method, using ammonium bicarbonate as a porogen. The microparticle possessed highly porous surface, suitable aerodynamic diameter for inhalation (8.31±1.33 µm), favorable drug loading (4.09%±0.11%), and sustained release profile. The antiproliferation effect of release supernatant was detected through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay using non-small-cell lung cancer A549 as a model, with only 13.3% of cell viability observed for the release supernatant at 7 days. The antiproliferation mechanism was elucidated to be associated with the enhanced induction of cell apoptosis and cell cycle arrest at S phase through flow cytometry and Western blotting analysis. Finally, wound healing and transwell migration assay showed that they could efficiently inhibit the cell migration. These results demonstrated that disulfiram-loaded porous PLGA microparticle could achieve favorable antitumor efficiency, implying the potential of treating non-small-cell lung cancer in a pulmonary administration. PMID:28182125

  4. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells.

    PubMed

    Zu, Yuangang; Yu, Huimin; Liang, Lu; Fu, Yujie; Efferth, Thomas; Liu, Xia; Wu, Nan

    2010-04-30

    Ten essential oils, namely, mint (Mentha spicata L., Lamiaceae), ginger (Zingiber officinale Rosc., Zingiberaceae), lemon (Citrus limon Burm.f., Rutaceae), grapefruit (Citrus paradisi Macf., Rutaceae), jasmine (Jasminum grandiflora L., Oleaceae), lavender (Mill., Lamiaceae), chamomile (Matricaria chamomilla L., Compositae), thyme (Thymus vulgaris L., Lamiaceae), rose (Rosa damascena Mill., Rosaceae) and cinnamon (Cinnamomum zeylanicum N. Lauraceae) were tested for their antibacterial activities towards Propionibacterium acnes and in vitro toxicology against three human cancer cell lines. Thyme, cinnamon and rose essential oils exhibited the best antibacterial activities towards P. acnes, with inhibition diameters of 40 +/- 1.2 mm, 33.5 +/- 1.5 mm and 16.5 +/- 0.7 mm, and minimal inhibitory concentrations of 0.016% (v/v), 0.016% (v/v) and 0.031% (v/v), respectively. Time-kill dynamic procedures showed that thyme, cinnamon, rose, and lavender essential oils exhibited the strongest bactericidal activities at a concentration of 0.25% (v/v), and P. acnes was completely killed after 5 min. The thyme essential oil exhibited the strongest cytotoxicity towards three human cancer cells. Its inhibition concentration 50% (IC(50)) values on PC-3, A549 and MCF-7 tumor cell lines were 0.010% (v/v), 0.011% (v/v) and 0.030% (v/v), respectively. The cytotoxicity of 10 essential oils on human prostate carcinoma cell (PC-3) was significantly stronger than on human lung carcinoma (A549) and human breast cancer (MCF-7) cell lines.

  5. Induction of p53-independent growth inhibition in lung carcinoma cell A549 by gypenosides

    PubMed Central

    Liu, Jung-Sen; Chiang, Tzu-Hsuan; Wang, Jinn-Shyan; Lin, Li-Ju; Chao, Wei-Chih; Inbaraj, Baskaran Stephen; Lu, Jyh-Feng; Chen, Bing-Huei

    2015-01-01

    The objectives of this study are to investigate antiproliferative effect and mechanisms of bioactive compounds from Gynostemma pentaphyllum (G. pentaphyllum) on lung carcinoma cell A549. Saponins, carotenoids and chlorophylls were extracted and fractionated by column chromatography, and were subjected to high-performance liquid chromatography-mass spectrometry analyses. The saponin fraction, which consisted mainly of gypenoside (Gyp) XXII and XXIII, rather than the carotenoid and chlorophyll ones, was effective in inhibiting A549 cell growth in a concentration- and a time-dependent manner as evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The estimated half maximal inhibitory concentration (IC50) of Gyp on A549 cells was 30.6 μg/ml. Gyp was further demonstrated to induce an apparent arrest of the A549 cell cycle at both the S phase and the G2/M phase, accompanied by a concentration- and a time-dependent increase in the proportions of both the early and late apoptotic cells. Furthermore, Gyp down-regulated cellular expression of cyclin A and B as well as BCL-2, while up-regulated the expression of BAX, DNA degradation factor 35 KD, poly [ADP-ribose] polymerase 1, p53, p21 and caspase-3. Nevertheless, both the treatment of a p53 inhibitor, pifithrin-α, and the small hairpin RNA-mediated p53 knockdown in the A549 cells did not alter the growth inhibition effect induced by Gyp. As a result, the cell cycle arrest and apoptosis of A549 cells induced by Gyp would most likely proceed through p53-independent pathway(s). PMID:25781909

  6. Anticancer effect of luteolin is mediated by downregulation of TAM receptor tyrosine kinases, but not interleukin-8, in non-small cell lung cancer cells.

    PubMed

    Lee, Youn Ju; Lim, Taeho; Han, Min Su; Lee, Sun-Hwa; Baek, Suk-Hwan; Nan, Hong-Yan; Lee, Chuhee

    2017-02-01

    TAM receptor tyrosine kinases (RTKs), Tyro3, Axl and MerTK, transduce diverse signals responsible for cell survival, growth, proliferation and anti-apoptosis. In the present study, we demonstrated the effect of luteolin, a flavonoid with antioxidant, anti-inflammatory and anticancer activities, on the expression and activation of TAM RTKs and the association with its cytotoxicity in non-small cell lung cancer (NSCLC) cells. We observed the cytotoxic effect of luteolin in parental A549 and H460 cells as well as in cisplatin-resistant A549/CisR and H460/CisR cells. Exposure of these cells to luteolin also resulted in a dose‑dependent decrease in clonogenic ability. Next, luteolin was found to decrease the protein levels of all three TAM RTKs in the A549 and A549/CisR cells in a dose‑dependent manner. In a similar manner, in H460 and H460/CisR cells, the protein levels of Axl and Tyro3 were decreased following luteolin treatment. In addition, Axl promoter activity was decreased by luteolin, indicating that luteolin suppresses Axl expression at the transcriptional level. We next found that luteolin abrogated Axl phosphorylation in response to growth arrest-specific 6 (Gas6), its ligand, implying the inhibitory effect of luteolin on Gas6-induced Axl activation. Ectopic expression of Axl was observed to attenuate the antiproliferative effect of luteolin, while knockdown of the Axl protein level using a gold nanoparticle-assisted gene delivery system increased its cytotoxicity. In contrast to the inhibitory effect of luteolin on the expression of TAM RTKs, interleukin-8 (IL-8) production was not decreased by luteolin in H460 and H460/CisR cells, while IL-8 production/cell was increased. Collectively, our data suggest that TAM RTKs, but not IL-8, are promising therapeutic targets of luteolin to abrogate cell proliferation and to overcome chemoresistance in NSCLC cells.

  7. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179.

    PubMed

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-07-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non-small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1-induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1-mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1-mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1-induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1-mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1-induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1-induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol.

  8. Cytoprotective Effect of Makgeolli Lees on Paraquat Induced Oxidative Stress in A549 Cells via Activation of NRF2 and Antioxidant Genes.

    PubMed

    Jeon, Miso; Rahman, Naimur; Kim, Yong-Sik

    2016-02-01

    Makgeolli lees (ML) has several physiological effects such as antioxidant, antidiabetic, and anticancer properties, but its biological functions have not been determined definitively. Here, we tested whether ML has a cytoprotective effect on paraquat (PQ)-induced oxidative stress in the human lung carcinoma cell line A549. At 0.1 mg/ml ML, viability of PQ-exposed A549 cells was restored by 12.4%, 18.5%, and 48.6% after 24, 48, and 72 h, respectively. ML also reduced production of the intracellular reactive oxygen species (ROS) that were generated by PQ treatment. Further experiments revealed that ML treatment enhanced the expression and nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) as well as ARE-GFP reporter activity. ML treatment also effectively increased the expression of NRF2's target genes NAD(P)H dehydrogenase quinone 1 (NQO1) and heme oxygenase 1 (HO-1). Moreover, we found that expression of cytoprotective genes, including glutathione peroxidases (GPXs), superoxide dismutase (SOD1), catalase (CAT), peroxiredoxin 3 (PRDX3), and peroxiredoxin 4 (PRDX4), was greatly enhanced by treatment with ML during PQ exposure. Taken together, the data suggest that treatment of PQ-exposed A549 cells with ML ameliorates cytotoxicity through induction of NRF2 expression and its target genes HO-1, NQO1, and other antioxidant genes. Thus, ML may serve as a functional food applicable to ROS-mediated human diseases.

  9. Imaging and characterization of stretch-induced ATP release from alveolar A549 cells.

    PubMed

    Grygorczyk, Ryszard; Furuya, Kishio; Sokabe, Masahiro

    2013-03-01

    Abstract  Mechano-transduction at cellular and tissue levels often involves ATP release and activation of the purinergic signalling cascade. In the lungs, stretch is an important physical stimulus but its impact on ATP release, the underlying release mechanisms and transduction pathways are poorly understood. Here, we investigated the effect of unidirectional stretch on ATP release from human alveolar A549 cells by real-time luciferin-luciferase bioluminescence imaging coupled with simultaneous infrared imaging, to monitor the extent of cell stretch and to identify ATP releasing cells. In subconfluent (<90%) cell cultures, single 1 s stretch (10-40%)-induced transient ATP release from a small fraction (1.5%) of cells that grew in number dose-dependently with increasing extent of stretch. ATP concentration in the proximity (150 μm) of releasing cells often exceeded 10 μm, sufficient for autocrine/paracrine purinoreceptor stimulation of neighbouring cells. ATP release responses were insensitive to the putative ATP channel blockers carbenoxolone and 5-nitro-2-(3-phenylpropyl-amino) benzoic acid, but were inhibited by N-ethylmaleimide and bafilomycin. In confluent cell cultures, the maximal fraction of responding cells dropped to <0.2%, but was enhanced several-fold in the wound/scratch area after it was repopulated by new cells during the healing process. Fluo8 fluorescence experiments revealed two types of stretch-induced intracellular Ca(2+) responses, rapid sustained Ca(2+) elevations in a limited number of cells and delayed secondary responses in neighbouring cells, seen as Ca(2+) waves whose propagation was consistent with extracellular diffusion of released ATP. Our experiments revealed that a single >10% stretch was sufficient to initiate intercellular purinergic signalling in alveolar cells, which may contribute to the regulation of surfactant secretion and wound healing.

  10. PM10-biogenic fraction drives the seasonal variation of proinflammatory response in A549 cells.

    PubMed

    Camatini, Marina; Corvaja, Viviana; Pezzolato, Eleonora; Mantecca, Paride; Gualtieri, Maurizio

    2012-02-01

    PM10 was collected in a Milan urban site, representative of the city air quality, during winter and summer 2006. Mean daily PM10 concentration was 48 μg m(-3) during summer and 148 μg m(-3) during winter. Particles collected on Teflon filters were chemically characterized and the endotoxin content determined by the LAL test. PM10-induced cell toxicity, assessed with MTT and LDH methods, and proinflammatory potential, monitored by IL-6 and IL-8 cytokines release, were investigated on the human alveolar epithelial cell line A549 exposed to increasing doses of PM. Besides untreated cells, exposure to inert carbon particles (2-12 μm) was also used as additional control. Both cell toxicity and proinflammatory potency resulted to be higher for summer PM10 with respect of winter PM10, with IL-6 showing the highest dose-dependent release. The relevance of biogenic components adsorbed onto PM10 in eliciting the proinflammatory mediators release was investigated by inhibition experiments. Polymixin B (Poly) was used to inhibit particle-bind LPS while Toll-like receptor-2 antibody (a-TLR2) to specifically block the activation of this receptor. While cell viability was not modulated in cells coexposed to PM10 and Poly or a-TLR2 or both, inflammatory response did it, with IL-6 release being the most inhibited. In conclusion, Milan PM10-induced seasonal-dependent biological effects, with summer particles showing higher cytotoxic and proinflammatory potential. Cytotoxicity seemed to be unaffected by the PM biogenic components, while inflammation was significantly reduced after the inhibition of some biogenic activated pathways. Besides, the PM-associated biogenic activity does not entirely justify the PM-induced inflammatory effects. © 2010 Wiley Periodicals, Inc. Environ Toxicol 2012.

  11. Suitable parameter choice on quantitative morphology of A549 cell in epithelial–mesenchymal transition

    PubMed Central

    Ren, Zhou-Xin; Yu, Hai-Bin; Li, Jian-Sheng; Shen, Jun-Ling; Du, Wen-Sen

    2015-01-01

    Evaluation of morphological changes in cells is an integral part of study on epithelial to mesenchymal transition (EMT), however, only a few papers reported the changes in quantitative parameters and no article compared different parameters for demanding better parameters. In the study, the purpose was to investigate suitable parameters for quantitative evaluation of EMT morphological changes. A549 human lung adenocarcinoma cell line was selected for the study. Some cells were stimulated by transforming growth factor-β1 (TGF-β1) for EMT, and other cells were as control without TGF-β1 stimulation. Subsequently, cells were placed in phase contrast microscope and three arbitrary fields were captured and saved with a personal computer. Using the tools of Photoshop software, some cells in an image were selected, segmented out and exchanged into unique hue, and other part in the image was shifted into another unique hue. The cells were calculated with 29 morphological parameters by Image Pro Plus software. A parameter between cells with or without TGF-β1 stimulation was compared statistically and nine parameters were significantly different between them. Receiver operating characteristic curve (ROC curve) of a parameter was described with SPSS software and F-test was used to compare two areas under the curves (AUCs) in Excel. Among them, roundness and radius ratio were the most AUCs and were significant higher than the other parameters. The results provided a new method with quantitative assessment of cell morphology during EMT, and found out two parameters, roundness and radius ratio, as suitable for quantification. PMID:26182364

  12. DNA double-strand breaks activate ATM independent of mitochondrial dysfunction in A549 cells.

    PubMed

    Kalifa, Lidza; Gewandter, Jennifer S; Staversky, Rhonda J; Sia, Elaine A; Brookes, Paul S; O'Reilly, Michael A

    2014-10-01

    Excessive nuclear or mitochondrial DNA damage can lead to mitochondrial dysfunction, decreased energy production, and increased generation of reactive oxygen species (ROS). Although numerous cell signaling pathways are activated when cells are injured, the ataxia telangiectasia mutant (ATM) protein has emerged as a major regulator of the response to both mitochondrial dysfunction and nuclear DNA double-strand breaks (DSBs). Because mitochondrial dysfunction is often a response to excessive DNA damage, it has been difficult to determine whether nuclear and/or mitochondrial DNA DSBs activate ATM independent of mitochondrial dysfunction. In this study, mitochondrial and nuclear DNA DSBs were generated in the A549 human lung adenocarcinoma cell line by infecting with retroviruses expressing the restriction endonuclease PstI fused to a mitochondrial targeting sequence (MTS) or nuclear localization sequence (NLS) and a hemagglutinin antigen epitope tag (HA). Expression of MTS-PstI-HA or NLS-PstI-HA activated the DNA damage response defined by phosphorylation of ATM, the tumor suppressor protein p53 (TP53), KRAB-associated protein (KAP)-1, and structural maintenance of chromosomes (SMC)-1. Phosphorylated ATM and SMC1 were detected in nuclear fractions, whereas phosphorylated TP53 and KAP1 were detected in both mitochondrial and nuclear fractions. PstI also enhanced expression of the cyclin-dependent kinase inhibitor p21 and inhibited cell growth. This response to DNA damage occurred in the absence of detectable mitochondrial dysfunction and excess production of ROS. These findings reveal that DNA DSBs are sufficient to activate ATM independent of mitochondrial dysfunction and suggest that the activated form of ATM and some of its substrates are restricted to the nuclear compartment, regardless of the site of DNA damage.

  13. Gene expression profile of A549 cells from tissue of 4D model predicts poor prognosis in lung cancer patients.

    PubMed

    Mishra, Dhruva K; Creighton, Chad J; Zhang, Yiqun; Gibbons, Don L; Kurie, Jonathan M; Kim, Min P

    2014-02-15

    The tumor microenvironment plays an important role in regulating cell growth and metastasis. Recently, we developed an ex vivo lung cancer model (four dimensional, 4D) that forms perfusable tumor nodules on a lung matrix that mimics human lung cancer histopathology and protease secretion pattern. We compared the gene expression profile (Human OneArray v5 chip) of A549 cells, a human lung cancer cell line, grown in a petri dish (two-dimensional, 2D), and of the same cells grown in the matrix of our ex vivo model (4D). Furthermore, we obtained gene expression data of A549 cells grown in a petri dish (2D) and matrigel (three-dimensional, 3D) from a previous study and compared the 3D expression profile with that of 4D. Expression array analysis showed 2,954 genes differentially expressed between 2D and 4D. Gene ontology (GO) analysis showed upregulation of several genes associated with extracellular matrix, polarity and cell fate and development. Moreover, expression array analysis of 2D vs. 3D showed 1,006 genes that were most differentially expressed, with only 36 genes (4%) having similar expression patterns as observed between 2D and 4D. Finally, the differential gene expression signature of 4D cells (vs. 2D) correlated significantly with poor survival in patients with lung cancer (n = 1,492), while the expression signature of 3D vs. 2D correlated with better survival in lung cancer patients with lung cancer. As patients with larger tumors have a worse rate of survival, the ex vivo 4D model may be a good mimic of natural progression of tumor growth in lung cancer patients.

  14. Cold stress increases reactive oxygen species formation via TRPA1 activation in A549 cells.

    PubMed

    Sun, Wenwu; Wang, Zhonghua; Cao, Jianping; Cui, Haiyang; Ma, Zhuang

    2016-03-01

    Reactive oxygen species (ROS) are responsible for lung damage during inhalation of cold air. However, the mechanism of the ROS production induced by cold stress in the lung is still unclear. In this work, we measured the changes of ROS and the cytosolic Ca(2+) concentration ([Ca(2+)]c) in A549 cell. We observed that cold stress (from 20 to 5 °C) exposure of A549 cell resulted in an increase of ROS and [Ca(2+)]c, which was completely attenuated by removing Ca(2+) from medium. Further experiments showed that cold-sensing transient receptor potential subfamily member 1 (TRPA1) agonist (allyl isothiocyanate, AITC) increased the production of ROS and the level of [Ca(2+)]c in A549 cell. Moreover, HC-030031, a TRPA1 selective antagonist, significantly inhibited the enhanced ROS and [Ca(2+)]c induced by AITC or cold stimulation, respectively. Taken together, these data demonstrated that TRPA1 activation played an important role in the enhanced production of ROS induced by cold stress in A549 cell.

  15. The role of PRRX1 in the apoptosis of A549 cells induced by cisplatin

    PubMed Central

    Zhu, Hongbin; Sun, Gengyun; Dong, Jiahui; Fei, Liming

    2017-01-01

    Paired related homeobox1 (PRRX1) was a newly identified Epithelial mesenchymal transition (EMT) inducer. It was found that the decreased expression of PRRX1 in breast cancer and liver cancer could enable tumor cells to obtain tumor stem cell characteristics in vitro studies. However, the role of PRRX1 in lung cancer was still unknown. The down-regulated PRRX1 gene in A549 cells was established by slow virus infection in this study. The apoptosis of A549 cells was observed after the treatment of different concentrations of cisplatin and the role of PRRX1 in the apoptosis of A549 cells was explored. MTT results showed that down-regulated PRRX1 gene could resist the inhibitory effect of cisplatin on cell proliferation. The results of flow cytometry assay showed that down-regulated PRRX1 gene could reduce the apoptosis and promote A549 cells to enter G2 phase. Mitochondrial membrane potential detection showed that PRRX1 gene could inhibit the decrease of mitochondrial membrane potential. Western blotting results showed that down-regulated PRRX1 gene could reduce the expression levels of Caspase3, caspase9, Apaf-1 and cytochrome C. In a word, down-regulation of PRRX1 could cause lung cancer cells to produce anti apoptotic ability and resistance to cisplatin, which maybe through caspase3 pathway. PMID:28337269

  16. Edaravone Decreases Paraquat Toxicity in A549 Cells and Lung Isolated Mitochondria

    PubMed Central

    Shokrzadeh, Mohammad; Shaki, Fatemeh; Mohammadi, Ebrahim; Rezagholizadeh, Neda; Ebrahimi, Fatemeh

    2014-01-01

    Edaravone, an antioxidant and radical scavenger, showed protective effects against oxidative stress-like condition. Paraquat (PQ) is toxic herbicide considerable evidence suggests that oxidative stress and mitochondrial dysfunction contribute to PQ toxicity. In this study, protective effect of edaravone against PQ induced toxicity and reactive oxygen species (ROS) generation in A549 cells and lung isolated mitochondria were evaluated. A549 cells and lung isolated mitochondria were divided into control group, PQ group, edaravone group and PQ plus edaravone-pretreated group. Cellular and mitochondrial viability assayed using MTT test and ROS generations in both cellular and mitochondrial fraction were determined by fluorometry using DCFH-DA as indicator. Our results showed that edaravone (5–100 µM) prevented PQ (500 µM) induced cytotoxicity in A549 cells that the best protective effect was observed at concentration of 50 µM of edaravone. In addition, PQ-induced ROS generation in A549 cells significantly inhibited by edaravone. Moreover, PQ decreased mitochondria viability and also increased ROS generation in lung isolated mitochondria that edaravone (25–400 µM) markedly inhibited these toxic effects. In overall, the results of this study suggest that lung mitochondria maintenance is essential for maintaining PQt cytotoxicity and Edaravone is a protective drug against PQ toxicity in-vitro. PMID:25237364

  17. Evaluation of a549 as a new vaccine cell substrate: digging deeper with massively parallel sequencing.

    PubMed

    Shabram, Paul; Kolman, John L

    2014-01-01

    In the past three decades, the use of tumorigenic cell substrates has been the topic of five Vaccine and Related Biological Products Advisory Committee (VRBPAC) meetings, including a review of the A549 cell line in September 2012. Over that period of time, major technological advances in biotechnology have improved our ability to assess the risk associated with using a tumorigenic cell line. As part of the September 2012 review, we assessed the history of A549 cells and evaluated the probable transforming event based on patterns of mutations to cancer genes. In addition, massively parallel sequencing was used to first screen then augment the characterization of A549 cells by searching for the presence of hidden viral threats using sequencing of the entire cellular transcriptome and comparing sequences to a curated viral sequence database. Based upon the combined results of next-generation sequencing technology along with standard cell characterization as outlined in published regulatory guidances, we believe that A549 cells pose no more risk than any other cell substrate for the manufacture of vaccines.

  18. Changes in the cellular proteins of A549 infected with Hepatitis E virus by proteomics analysis

    PubMed Central

    2014-01-01

    Background Our understanding of Hepatitis E virus (HEV) has changed enormously over the past 30 years, from a waterborne infection causing outbreaks of acute hepatitis in developing countries to an infection of global distribution causing a range of hepatic and extra-hepatic illness. However, the key proteins playing important parts in the virus infection were still unknown. Understanding the changes of cellular proteins in these cells exposed to HEV is helpful for elucidating molecular mechanisms associated with function alterations of HEV-infected susceptible cells. In the present study, a comparative gel-based proteomic analysis was employed to study the changes in cellular proteins of A549 exposed to HEV in vitro to provide novel information for understanding the functional alterations of A549 induced by HEV infection. Result Of 2 585-3 152 protein spots visualized on each gel using silver staining, a total of 31 protein spots were found to be differentially expressed in HEV-infected A549 cells compared with mock-infected A549, including 10 significantly up-regulated protein spots and 21 significantly down-regulated protein spots. Conclusion Our work is the first time regarding the proteomic analysis on the cellular responses to HEV infection. This work is helpful for investigating the molecular basis associated with the interaction between HEV and the host cells although more efforts should be required to discover the mechanisms. PMID:25175408

  19. Autophagy inhibition enhances isorhamnetin-induced mitochondria-dependent apoptosis in non-small cell lung cancer cells

    PubMed Central

    RUAN, YUSHU; HU, KE; CHEN, HONGBO

    2015-01-01

    Isorhamnetin (ISO) is a flavonoid from plants of the Polygonaceae family and is also an immediate metabolite of quercetin in mammals. To date, the anti-tumor effects of ISO and the underlying mechanisms have not been elucidated in lung cancer cells. The present study investigated the inhibitory effects of ISO on the growth of human lung cancer A549 cells. Treatment of the lung cancer cells with ISO significantly suppressed cell proliferation and colony formation. ISO treatment also resulted in a significant increase in apoptotic cell death of A549 cells in a time- and dose-dependent manner. Further investigation showed that the apoptosis proceeded via the mitochondria-dependent pathway as indicated by alteration of the mitochondrial membrane potential, the release of cytochrome C and caspase activation. Of note, treatment with ISO also induced the formation of autophagosomes and light chain 3-II protein in A549 cells. Furthermore, co-treatment with autophagy inhibitors 3-methyladenine and hydroxychloroquine significantly inhibited the ISO-induced autophagy and enhanced the ISO-induced apoptotic cell death in vitro as well as in vivo. Thus, the results of the present study suggested that ISO is a potential anti-lung cancer agent. In addition, the results indicated that the inhibition of autophagy may be a useful strategy for enhancing the chemotherapeutic effect of ISO on lung cancer cells. PMID:26238746

  20. Nestin servers as a promising prognostic biomarker in non-small cell lung cancer

    PubMed Central

    Liu, Fang; Zhang, Yuan; Lu, Ming; Wang, Cong; Li, Qingbao; Gao, Yongsheng; Mu, Dianbin; Cao, Yan; Li, Miaomiao; Meng, Xiangjiao

    2017-01-01

    Lung cancer is currently the leading cause of cancer-related death worldwide and it is important to identify the predictive and/or prognostic markers for the cancer. Nestin, a proliferative and multipotent biomarker has been reported to be associated with prognosis in non-small cell lung cancer (NSCLC) in a few studies. In the present study, we retrospectively recruited 153 patients with NSCLC. Nestin protein expression in tumor samples was determined by immunohistochemistry staining. Nestin expression was related with tumor differentiation (P=0.036), lymphatic metastasis (N stage, P=0.011), and p-TNM stage (P=0.013), while there was no significant association between Nestin expression level and age, smoking habits, gender, histologic type, and T stage. Nestin was an independent prognostic factor for overall survival in NSCLC with an adjusted hazard ratio of 2.701 (95% CI, 1.616-4.513, P<0.001) after controlling the confounding factors. Then we determined the effects of Nestin on cell proliferation, colony formation, invasion, and apoptosis by knockout of Nestin with a new developed method, CRISPR/Cas9 mediated genome editing. It was observed that knockout of Nestin caused enhancement of cancer cell apoptosis and inhibition of cell proliferation, colony formation, and invasion in A549 and H1299 cell lines. Furthermore, we examined the expression of epithelial-mesenchymal transition (EMT) related biomarkers such as E-cadherin and Vimentin in Nestin-depleted lung cancer cells and knockout of Nestin was found to inhibit EMT, suggesting the involvement of Nestin mediated EMT signaling in lung cancer. The finding above demonstrated that Nestin might serve as a prognostic factor and therapeutic target in NSCLCs. PMID:28386364

  1. Nestin servers as a promising prognostic biomarker in non-small cell lung cancer.

    PubMed

    Liu, Fang; Zhang, Yuan; Lu, Ming; Wang, Cong; Li, Qingbao; Gao, Yongsheng; Mu, Dianbin; Cao, Yan; Li, Miaomiao; Meng, Xiangjiao

    2017-01-01

    Lung cancer is currently the leading cause of cancer-related death worldwide and it is important to identify the predictive and/or prognostic markers for the cancer. Nestin, a proliferative and multipotent biomarker has been reported to be associated with prognosis in non-small cell lung cancer (NSCLC) in a few studies. In the present study, we retrospectively recruited 153 patients with NSCLC. Nestin protein expression in tumor samples was determined by immunohistochemistry staining. Nestin expression was related with tumor differentiation (P=0.036), lymphatic metastasis (N stage, P=0.011), and p-TNM stage (P=0.013), while there was no significant association between Nestin expression level and age, smoking habits, gender, histologic type, and T stage. Nestin was an independent prognostic factor for overall survival in NSCLC with an adjusted hazard ratio of 2.701 (95% CI, 1.616-4.513, P<0.001) after controlling the confounding factors. Then we determined the effects of Nestin on cell proliferation, colony formation, invasion, and apoptosis by knockout of Nestin with a new developed method, CRISPR/Cas9 mediated genome editing. It was observed that knockout of Nestin caused enhancement of cancer cell apoptosis and inhibition of cell proliferation, colony formation, and invasion in A549 and H1299 cell lines. Furthermore, we examined the expression of epithelial-mesenchymal transition (EMT) related biomarkers such as E-cadherin and Vimentin in Nestin-depleted lung cancer cells and knockout of Nestin was found to inhibit EMT, suggesting the involvement of Nestin mediated EMT signaling in lung cancer. The finding above demonstrated that Nestin might serve as a prognostic factor and therapeutic target in NSCLCs.

  2. TSPYL5 is involved in cell growth and the resistance to radiation in A549 cells via the regulation of p21{sup WAF1/Cip1} and PTEN/AKT pathway

    SciTech Connect

    Kim, Eun Jin; Lee, So Yong; Kim, Tae Rim; Choi, Soo Im; Cho, Eun Wie; Kim, Kug Chan; Kim, In Gyu

    2010-02-12

    TSPYL5, encoding testis-specific Y-like protein, has been postulated to be a tumor suppressor gene, and its hypermethylation is often associated with human disease, especially cancer. In this study, we report that the TSPYL5 gene was less methylated (30%) in A549 lung adenocarcinoma cells, which are relatively resistant to {gamma}-radiation, than in H460 lung cancer cells, in which the TSPYL5 gene was hypermethylated (95%); thus, the expression level of TSPYL5 is much higher in A549 cells than in H460 cells. We showed that TSPYL5 suppression with silencing RNA in A549 cells up-regulated cellular PTEN, followed by down-regulation of AKT activation. Therefore, blockage of TSPYL5 sensitized A549 cells to cytotoxic agents such as {gamma}-radiation. In addition, TSPYL5 suppression also showed an increased level of p21{sup WAF1/Cip1} and subsequently induced inhibition of cell growth in A549 cells. The overexpression of TSPYL5 in H460 cells showed the opposite effects. This study provides the first demonstration that TSPYL5 modulates cell growth and sensitization of cells to the detrimental effects of damaging agents via regulation of p21{sup WAF1/Cip1} and PTEN/AKT pathway.

  3. 5-Caffeoylquinic acid inhibits invasion of non-small cell lung cancer cells through the inactivation of p70S6K and Akt activity: Involvement of p53 in differential regulation of signaling pathways.

    PubMed

    In, Jae-Kyung; Kim, Jin-Kyu; Oh, Joa Sub; Seo, Dong-Wan

    2016-05-01

    In the present study, we investigated the effects and molecular mechanism of 5-caffeoylquinic acid (5-CQA), a natural phenolic compound isolated from Ligularia fischeri, on cell invasion, proliferation and adhesion in p53 wild-type A549 and p53-deficient H1299 non-small cell lung cancer (NSCLC) cells. 5-CQA abrogated mitogen-stimulated invasion, but not proliferation, in both A549 and H1299 cells. In addition, 5-CQA inhibited mitogen-stimulated adhesion in A549 cells only. Anti-invasive activity of 5-CQA in A549 cells was mediated by the inactivation of p70(S6K)-dependent signaling pathway. In contrast, in H1299 cells the inactivation of Akt was found to be involved in 5-CQA-mediated inhibition of cell invasion. Collectively, these findings demonstrate the pharmacological roles and molecular targets of 5-CQA in regulating NSCLC cell fate, and suggest further evaluation and development of 5-CQA as a potential therapeutic agent for the treatment and prevention of lung cancer.

  4. Down-regulation of protein kinase Ceta by antisense oligonucleotides sensitises A549 lung cancer cells to vincristine and paclitaxel.

    PubMed

    Sonnemann, Jürgen; Gekeler, Volker; Ahlbrecht, Katrin; Brischwein, Klaus; Liu, Chao; Bader, Peter; Müller, Cornelia; Niethammer, Dietrich; Beck, James F

    2004-06-25

    Previous studies point to protein kinase C (PKC) isozyme eta as a resistance factor in cancer cells. Therefore, we investigated whether down-regulation of PKCeta with second generation antisense oligonucleotides (ODNs) would sensitise A549 human lung carcinoma cells to cytostatics. The effects were compared to the outcome of Bcl-xL down-regulation. Upon treatment with antisense ODNs, PKCeta and Bcl-xL were both significantly reduced on mRNA and protein level. Down-regulation of either PKCeta or Bcl-xL in combination with vincristine or paclitaxel resulted in a significant increase in caspase-3 activity compared to that in the control oligonucleotide treated cells. In addition, PKCeta down-regulation augmented vincristine-induced dissipation of mitochondrial transmembrane potential. In conclusion, these results confirm that PKCeta might represent a considerable resistance factor and an interesting target to improve anticancer chemotherapy.

  5. Rapid induction and persistence of paracrine-induced cellular antiviral states arrest viral infection spread in A549 cells

    PubMed Central

    Voigt, Emily A; Swick, Adam; Yin, John

    2016-01-01

    The virus/host interaction is a complex interplay between pro- and anti-viral factors that ultimately determines the spread or halt of virus infections in tissues. This interplay develops over multiple rounds of infection. The purpose of this study was to determine how cellular-level processes combine to impact the spatial spread of infection. We measured the kinetics of virus replication (VSV), antiviral paracrine signal upregulation and secretion, spatial spread of virus and paracrine antiviral signaling, and inhibition of virus production in antiviral-exposed A549 human lung epithelial cells. We found that initially infected cells released antiviral signals 4-to-7 hours following production of virus. However, the subsequent rapid dissemination of signal and fast induction of a robust and persistent antiviral state ultimately led to a suppression of infection spread. This work shows how cellular responses to infection and activation of antiviral responses can integrate to ultimately control infection spread across host cell populations. PMID:27254596

  6. Bevacizumab in non-small cell lung cancer.

    PubMed

    Di Costanzo, Francesco; Mazzoni, Francesca; Micol Mela, Marinella; Antonuzzo, Lorenzo; Checcacci, Daniele; Saggese, Matilde; Di Costanzo, Federica

    2008-01-01

    Lung cancer continues to be the leading cause of cancer death in Western countries. The median survival time for advanced non-small cell lung cancer (NSCLC) remains poor and chemotherapy is the treatment of choice for most patients with metastatic NSCLC. Platinum-based chemotherapy has long been the standard of care for advanced NSCLC. The formation of new blood vessels (angiogenesis) is needed for the growth and invasiveness of primary tumours, and plays an important role in metastatic growth. Vascular endothelial growth factor (VEGF) has emerged as a key potential target for the pharmacological inhibition of tumour angiogenesis. This review discusses current data and the future potential of bevacizumab, a recombinant humanized monoclonal antibody that binds VEGF, in the treatment of NSCLC. Results from a phase II study showed that the addition of bevacizumab to the first-line chemotherapy with paclitaxel and carboplatin (CP) may increase the overall survival (OS) and the time to progression in advanced NSCLC. Based on these promising results, a randomized phase III trial compared the combination of bevacizumab with CP versus CP alone in the treatment of advanced non-squamous NSCLC. The combination of CP plus bevacizumab led to a statistically significant increase in median OS and progression-free survival (PFS) compared with CP alone, with a response rate (RR) in the CP arm of 15% compared with 35% in the bevacizumab plus CP arm (p < 0.001). More recently, the randomized AVAIL (Avastin in Lung Cancer) study, which evaluated cisplatin with gemcitabine plus bevacizumab in two different dosages versus chemotherapy alone in 1043 patients with recurrent or advanced non-squamous NSCLC, reported a significant increase of PFS, RR and duration of response for both of the bevacizumab-containing arms. Bevacizumab has also been investigated in combination with erlitonib as second-line treatment in two small early phase trials, with interesting results. Bevacizumab was

  7. Telomerase Cajal body protein 1 depletion inhibits telomerase trafficking to telomeres and induces G1 cell cycle arrest in A549 cells.

    PubMed

    Yuan, Ping; Wang, Zhitian; Lv, Wang; Pan, Hui; Yang, Yunhai; Yuan, Xiaoshuai; Hu, Jian

    2014-09-01

    Telomerase Cajal body protein 1 (TCAB1) is a telomerase holoenzyme, which is markedly enriched in Cajal bodies (CBs) and facilitates the recruitment of telomerase to CBs in the S phase of the cell cycle. This recruitment is dependent on TCAB1 binding to a telomerase RNA component. The majority of cancer cells are able to grow indefinitely due to telomerase and its mechanism of trafficking to telomeres. In the present study, a certain level of TCAB1 expression in A549 human lung cells was identified and TCAB1 knockdown exhibited a potent antiproliferative effect on these cells, which was coupled with a decrease in the cell density and activity of the cellular enzymes. In addition, TCAB1-depletion was demonstrated to inhibit telomerase trafficking to telomeres in the A549 cells, leading to subsequent G1 cell cycle arrest without inducing apoptotic cell death. Overall, these observations indicated that TCAB1 may be essential for A549 cell proliferation and cell cycle regulation, and may be a potential candidate for the development of a therapeutic target for lung adenocarcinomas.

  8. Effect of exogenous surfactants on viability and DNA synthesis in A549, immortalized mouse type II and isolated rat alveolar type II cells

    PubMed Central

    2011-01-01

    Background In mechanically ventilated preterm infants with respiratory distress syndrome (RDS), exogenous surfactant application has been demonstrated both to decrease DNA-synthesis but also and paradoxically to increase epithelial cell proliferation. However, the effect of exogenous surfactant has not been studied directly on alveolar type II cells (ATII cells), a key cell type responsible for alveolar function and repair. Objective The aim of this study was to investigate the effects of two commercially available surfactant preparations on ATII cell viability and DNA synthesis. Methods Curosurf® and Alveofact® were applied to two ATII cell lines (human A549 and mouse iMATII cells) and to primary rat ATII cells for periods of up to 24 h. Cell viability was measured using the redox indicator resazurin and DNA synthesis was measured using BrdU incorporation. Results Curosurf® resulted in slightly decreased cell viability in all cell culture models. However, DNA synthesis was increased in A549 and rat ATII cells but decreased in iMATII cells. Alveofact® exhibited the opposite effects on A549 cells and had very mild effects on the other two cell models. Conclusion This study showed that commercially available exogenous surfactants used to treat preterm infants with RDS can have profound effects on cell viability and DNA synthesis. PMID:21324208

  9. Up- regulation of miR-328-3p sensitizes non-small cell lung cancer to radiotherapy

    PubMed Central

    Ma, Wei; Ma, Chao-nan; Zhou, Nan-nan; Li, Xian-dong; Zhang, Yi-jie

    2016-01-01

    MicroRNAs (miRNAs) are believed to be resistant against radiotherapy in certain types of cancers. The aim of our study was to determine the clinical application of miRNAs in non-small cell lung cancer (NSCLC). Sixty NSCLC tissue samples and adjacent histologically normal tissues were obtained for miRNAs microarray analysis and validated by RT-qPCR. Correlation between miRNA expression level and clinicopathological features was evaluated. Our study examined the influence of changed miRNA expression on the damaged DNA and its associated radio sensitivity. Luciferase assay was performed to determine potential effects on the targeted gene. Our study identified fifteen altered miRNAs in which miR-328-3p was down regulated in NSCLC tumour tissue as compared to normal tissues. Down-expression of miR-328-3p was positively associated with an enhanced lymph node metastasis, advanced clinical stage and a shortened survival rate. miR-328-3p expression was decreased in A549 cells compared to other NSCLC cell lines. Up-regulation of miR-328-3p demonstrated a survival inhibition effect in A549 and restored NSCLC cells’ sensitivity to radio therapy. An increased miR-328-3p expression promoted irradiation-induced DNA damage in cells. γ-H2AX was identified as the direct target of miR-328-3p. Over-expressed miR-328-3p can improve the radiosensitvity of cells by altering the DNA damage/repair signalling pathways in NSCLC. PMID:27530148

  10. Relative sensitivity of immunohistochemistry, multiple reaction monitoring mass spectrometry, in situ hybridization and PCR to detect Coxsackievirus B1 in A549 cells

    PubMed Central

    Laiho, Jutta E.; Oikarinen, Maarit; Richardson, Sarah J.; Frisk, Gun; Nyalwidhe, Julius; Burch, Tanya C.; Morris, Margaret A.; Oikarinen, Sami; Pugliese, Alberto; Dotta, Francesco; Campbell-Thompson, Martha; Nadler, Jerry; Morgan, Noel G.; Hyöty, Heikki

    2017-01-01

    Background Enteroviruses (EVs) have been linked to the pathogenesis of several diseases and there is a collective need to develop improved methods for the detection of these viruses in tissue samples. Objectives This study evaluates the relative sensitivity of immunohistochemistry (IHC), proteomics, in situ hybridization (ISH) and RT-PCR to detect one common EV, Coxsackievirus B1 (CVB1), in acutely infected human A549 cells in vitro. Study design A549 cells were infected with CVB1 and diluted with uninfected A549 cells to produce a limited dilution series in which the proportion of infected cells ranged from 10−1 to 10−8. Analyses were carried out by several laboratories using IHC with different anti-EV antibodies, ISH with both ViewRNA and RNAScope systems, liquid chromatography multiple reaction monitoring mass spectrometry (LC/MRM/MS/MS), and two modifications of RT-PCR. Results RT-PCR was the most sensitive method for EV detection yielding positive signals in the most diluted sample (10−8). LC/MRM/MS/MS detected viral peptides at dilutions as high as 10−7. The sensitivity of IHC depended on the antibody used, and the most sensitive antibody (Dako clone 5D8/1) detected virus proteins at a dilution of 10−6, while ISH detected the virus at dilutions of 10−4. Conclusions All methods were able to detect CVB1 in infected A549 cells. RT-PCR was most sensitive followed by LC/MRM/MS/MS and then IHC. The results from this in vitro survey suggest