Science.gov

Sample records for a549 lung carcinoma

  1. A549 Cells: Lung Carcinoma Cell Line for Adenovirus | NCI Technology Transfer Center | TTC

    Cancer.gov

    Scientists at the National Cancer Institute have developed a cell line designated A549 that was derived from explanted cultures of human lung cancer tissue. The A549 cell line has been tested under the guidance of the United States Food and Drug Administration (FDA) so, under current Good Manufacturing Practices (GMP), these cells may be suitable for use in manufacturing constructs for use in clinical trials. The National Cancer Institute seeks parties to non-exclusively license this research material.

  2. Crocidolite asbestos causes an induction of p53 and apoptosis in cultured A-549 lung carcinoma cells.

    PubMed

    Pääkkö, P; Rämet, M; Vähäkangas, K; Korpela, N; Soini, Y; Turunen, S; Jaworska, M; Gillissen, A

    1998-01-01

    A number of genotoxic chemicals and agents, such as benzo(a)pyrene and ultraviolet light, are able to induce nuclear accumulation of p53 protein. Usually, this response is transient and a consequence of stabilization of the wild-type p53 protein. After withdrawal of the exposure, the amount of p53 protein returns to a normal level within hours or a few days. We have studied the p53 response to the exposure of crocidolite asbestos in A-549 lung carcinoma cells using three different methods, i.e., p53 immunohistochemistry, Western blotting and metabolic labelling followed by p53 immunoprecipitation. With these techniques we demonstrate a dose-dependent p53 nuclear response to crocidolite exposure. The half-life of p53 protein in A-549 lung carcinoma cells cultured in serum-free media increased from 30 up to 80 min, and the protein reacted with a wild-type specific antibody suggesting that it was in a wild-type conformation. In situ 3'-end labelling of A-549 cells demonstrated a dose-dependent increase in apoptotic activity. Our data support the idea that increased apoptotic activity, induced by crocidolite, is mediated by p53.

  3. Ultrafine particles (UFPs) from domestic wood stoves: genotoxicity in human lung carcinoma A549 cells.

    PubMed

    Marabini, Laura; Ozgen, Senem; Turacchi, Silvia; Aminti, Stefania; Arnaboldi, Francesca; Lonati, Giovanni; Fermo, Paola; Corbella, Lorenza; Valli, Gianluigi; Bernardoni, Vera; Dell'Acqua, Manuela; Vecchi, Roberta; Becagli, Silvia; Caruso, Donatella; Corrado, Galli L; Marinovich, Marina

    2017-08-01

    In this paper, results on the potential toxicity of ultrafine particles (UFPs d<100nm) emitted by the combustion of logwood and pellet (hardwood and softwood) are reported. The data were collected during the TOBICUP (TOxicity of BIomass COmbustion generated Ultrafine Particles) project, carried out by a team composed of interdisciplinary research groups. The genotoxic evaluation was performed on A549 cells (human lung carcinomacells) using UFPs whose chemical composition was assessed by a suite of analytical techniques. Comet assay and γ-H2AX evaluation show a significant DNA damage after 24h treatment. The interpretation of the results is based on the correlation among toxicological results, chemical-physical properties of UFPs, and the type and efficiency conditions in residential pellet or logwood stoves. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Induction of apoptosis in non-small cell lung carcinoma A549 cells by PGD₂ metabolite, 15d-PGJ₂.

    PubMed

    Wang, Jun-Jie; Mak, Oi-Tong

    2011-11-01

    PGD2 (prostaglandin D2) is a mediator in various pathophysiological processes, including inflammation and tumorigenesis. PGD2 can be converted into active metabolites and is known to activate two distinct receptors, DP (PGD2 receptor) and CRTH2/DP2 (chemoattractant receptor-homologous molecule expressed on Th2 cells). In the past, PGD2 was thought to be involved principally in the process of inflammation. However, in recent years, several studies have shown that PGD2 has anti-proliferative ability against tumorigenesis and can induce cellular apoptosis via activation of the caspase-dependent pathway in human colorectal cancer cells, leukaemia cells and eosinophils. In the lung, where PGD2 is highly released when sensitized mast cells are challenged with allergen, the mechanism of PGD2-induced apoptosis is unclear. In the present study, A549 cells, a type of NSCLC (non-small cell lung carcinoma), were treated with PGD2 under various conditions, including while blocking DP and CRTH2/DP2 with the selective antagonists BWA868C and ramatroban respectively. We report here that PGD2 induces A549 cell death through the intrinsic apoptotic pathway, although the process does not appear to involve either DP or CRTH2/DP2. Similar results were also found with H2199 cells, another type of NSCLC. We found that PGD2 metabolites induce apoptosis effectively and that 15d-PGJ2 (15-deoxy-Δ12,14-prostaglandin J2) is a likely candidate for the principal apoptotic inducer in PGD2-induced apoptosis in NSCLC A549 cells.

  5. IFN-gamma Impairs Release of IL-8 by IL-1beta-stimulated A549 Lung Carcinoma Cells

    PubMed Central

    Boost, Kim A; Sadik, Christian D; Bachmann, Malte; Zwissler, Bernhard; Pfeilschifter, Josef; Mühl, Heiko

    2008-01-01

    Background Production of interferon (IFN)-γ is key to efficient anti-tumor immunity. The present study was set out to investigate effects of IFNγ on the release of the potent pro-angiogenic mediator IL-8 by human A549 lung carcinoma cells. Methods A549 cells were cultured and stimulated with interleukin (IL)-1β alone or in combination with IFNγ. IL-8 production by these cells was analyzed with enzyme linked immuno sorbent assay (ELISA). mRNA-expression was analyzed by real-time PCR and RNase protection assay (RPA), respectively. Expression of inhibitor-κ Bα, cellular IL-8, and cyclooxygenase-2 was analyzed by Western blot analysis. Results Here we demonstrate that IFNγ efficiently reduced IL-8 secretion under the influence of IL-1β. Surprisingly, real-time PCR analysis and RPA revealed that the inhibitory effect of IFNγ on IL-8 was not associated with significant changes in mRNA levels. These observations concurred with lack of a modulatory activity of IFNγ on IL-1β-induced NF-κB activation as assessed by cellular IκB levels. Moreover, analysis of intracellular IL-8 suggests that IFNγ modulated IL-8 secretion by action on the posttranslational level. In contrast to IL-8, IL-1β-induced cyclooxygenase-2 expression and release of IL-6 were not affected by IFNγ indicating that modulation of IL-1β action by this cytokine displays specificity. Conclusion Data presented herein agree with an angiostatic role of IFNγ as seen in rodent models of solid tumors and suggest that increasing T helper type 1 (Th1)-like functions in lung cancer patients e.g. by local delivery of IFNγ may mediate therapeutic benefit via mechanisms that potentially include modulation of pro-angiogenic IL-8. PMID:18801189

  6. Molecular mechanisms underlying mangiferin-induced apoptosis and cell cycle arrest in A549 human lung carcinoma cells

    PubMed Central

    SHI, WEI; DENG, JIAGANG; TONG, RONGSHENG; YANG, YONG; HE, XIA; LV, JIANZHEN; WANG, HAILIAN; DENG, SHAOPING; QI, PING; ZHANG, DINGDING; WANG, YI

    2016-01-01

    Mangiferin, which is a C-glucosylxanthone (1,3,6,7-tetrahydroxyxanthone-C2-β-D-glucoside) purified from plant sources, has recently gained attention due to its various biological activities. The present study aimed to determine the apoptotic effects of mangiferin on A549 human lung adenocarcinoma cells. In vitro studies demonstrated that mangiferin exerted growth-inhibitory and apoptosis-inducing effects against A549 cells. In addition, mangiferin exhibited anti-tumor properties in A549 xenograft mice in vivo. Mangiferin triggered G2/M phase cell cycle arrest via down-regulating the cyclin-dependent kinase 1-cyclin B1 signaling pathway, and induced apoptotic cell death by inhibiting the protein kinase C-nuclear factor-κB pathway. In addition, mangiferin was able to enhance the antiproliferative effects of cisplatin on A549 cells, thus indicating the potential for a combined therapy. Notably, mangiferin exerted anticancer effects in vivo, where it was able to markedly decrease the volume and weight of subcutaneous tumor mass, and expand the lifespan of xenograft mice. The present study clarified the molecular mechanisms underlying mangiferin-induced antitumor activities, and suggested that mangiferin may be considered a potential antineoplastic drug for the future treatment of cancer. PMID:26935347

  7. Molecular mechanisms underlying mangiferin-induced apoptosis and cell cycle arrest in A549 human lung carcinoma cells.

    PubMed

    Shi, Wei; Deng, Jiagang; Tong, Rongsheng; Yang, Yong; He, Xia; Lv, Jianzhen; Wang, Hailian; Deng, Shaoping; Qi, Ping; Zhang, Dingding; Wang, Yi

    2016-04-01

    Mangiferin, which is a C‑glucosylxanthone (1,3,6,7-tetrahydroxyxanthone-C2-β-D-glucoside) purified from plant sources, has recently gained attention due to its various biological activities. The present study aimed to determine the apoptotic effects of mangiferin on A549 human lung adenocarcinoma cells. In vitro studies demonstrated that mangiferin exerted growth‑inhibitory and apoptosis-inducing effects against A549 cells. In addition, mangiferin exhibited anti-tumor properties in A549 xenograft mice in vivo. Mangiferin triggered G2/M phase cell cycle arrest via downregulating the cyclin-dependent kinase 1-cyclin B1 signaling pathway, and induced apoptotic cell death by inhibiting the protein kinase C-nuclear factor-κB pathway. In addition, mangiferin was able to enhance the antiproliferative effects of cisplatin on A549 cells, thus indicating the potential for a combined therapy. Notably, mangiferin exerted anticancer effects in vivo, where it was able to markedly decrease the volume and weight of subcutaneous tumor mass, and expand the lifespan of xenograft mice. The present study clarified the molecular mechanisms underlying mangiferin-induced antitumor activities, and suggested that mangiferin may be considered a potential antineoplastic drug for the future treatment of cancer.

  8. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells.

    PubMed

    Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Han, Jae Woong; Zhang, Xi-Feng; Park, Jung Hyun; Kim, Jin-Hoi

    2015-01-01

    Silver nanoparticles (AgNPs) are prominent group of nanomaterials and are recognized for their diverse applications in various health sectors. This study aimed to synthesize the AgNPs using the leaf extract of Artemisia princeps as a bio-reductant. Furthermore, we evaluated the multidimensional effect of the biologically synthesized AgNPs in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma (A549) cells. UV-visible (UV-vis) spectroscopy confirmed the synthesis of AgNPs. X-ray diffraction (XRD) indicated that the AgNPs are specifically indexed to a crystal structure. The results from Fourier transform infrared spectroscopy (FTIR) indicate that biomolecules are involved in the synthesis and stabilization of AgNPs. Dynamic light scattering (DLS) studies showed the average size distribution of the particle between 10 and 40 nm, and transmission electron microscopy (TEM) confirmed that the AgNPs were significantly well separated and spherical with an average size of 20 nm. AgNPs caused dose-dependent decrease in cell viability and biofilm formation and increase in reactive oxygen species (ROS) generation and DNA fragmentation in H. pylori and H. felis. Furthermore, AgNPs induced mitochondrial-mediated apoptosis in A549 cells; conversely, AgNPs had no significant effects on L132 cells. The results from this study suggest that AgNPs could cause cell-specific apoptosis in mammalian cells. Our findings demonstrate that this environmentally friendly method for the synthesis of AgNPs and that the prepared AgNPs have multidimensional effects such as anti-bacterial and anti-biofilm activity against H. pylori and H. felis and also cytotoxic effects against human cancer cells. This report describes comprehensively the effects of AgNPs on bacteria and mammalian cells. We believe that biologically synthesized AgNPs will open a new avenue towards various biotechnological and biomedical applications in the near future.

  9. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Han, Jae Woong; Zhang, Xi-Feng; Park, Jung Hyun; Kim, Jin-Hoi

    2015-02-01

    Silver nanoparticles (AgNPs) are prominent group of nanomaterials and are recognized for their diverse applications in various health sectors. This study aimed to synthesize the AgNPs using the leaf extract of Artemisia princeps as a bio-reductant. Furthermore, we evaluated the multidimensional effect of the biologically synthesized AgNPs in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma (A549) cells. UV-visible (UV-vis) spectroscopy confirmed the synthesis of AgNPs. X-ray diffraction (XRD) indicated that the AgNPs are specifically indexed to a crystal structure. The results from Fourier transform infrared spectroscopy (FTIR) indicate that biomolecules are involved in the synthesis and stabilization of AgNPs. Dynamic light scattering (DLS) studies showed the average size distribution of the particle between 10 and 40 nm, and transmission electron microscopy (TEM) confirmed that the AgNPs were significantly well separated and spherical with an average size of 20 nm. AgNPs caused dose-dependent decrease in cell viability and biofilm formation and increase in reactive oxygen species (ROS) generation and DNA fragmentation in H. pylori and H. felis. Furthermore, AgNPs induced mitochondrial-mediated apoptosis in A549 cells; conversely, AgNPs had no significant effects on L132 cells. The results from this study suggest that AgNPs could cause cell-specific apoptosis in mammalian cells. Our findings demonstrate that this environmentally friendly method for the synthesis of AgNPs and that the prepared AgNPs have multidimensional effects such as anti-bacterial and anti-biofilm activity against H. pylori and H. felis and also cytotoxic effects against human cancer cells. This report describes comprehensively the effects of AgNPs on bacteria and mammalian cells. We believe that biologically synthesized AgNPs will open a new avenue towards various biotechnological and biomedical applications in the near future.

  10. TRIM25 is associated with cisplatin resistance in non-small-cell lung carcinoma A549 cell line via downregulation of 14-3-3σ.

    PubMed

    Qin, Xia; Qiu, Feng; Zou, Zhen

    2017-11-04

    Lung cancer, in particular, non-small cell lung cancer (NSCLC), is the leading cause of cancer-related mortality. Cis-Diamminedichloroplatinum (cisplatin, CDDP) as first-line chemotherapy for NSCLC, but resistance occurs frequently. We previously reported that Tripartite motif protein 25 (TRIM25) was highly expressed in cisplatin-resistant human lung adenocarcinoma A549 cells (A549/CDDP) in comparison with its parental A549 cells. Herein, we take a further step to demonstrate the association of TRIM25 and cisplatin resistance and also the underlying mechanisms. Knockdown of TRIM25 by RNA interference in A549/CDDP cells decreased half maximal inhibitory concentration (IC 50 ) values and promoted apoptosis in response to cisplatin, whereas overexpression of TRIM25 had opposite effects. More importantly, we found that concomitant knockdown of 14-3-3σ and TRIM25 absolutely reversed the decreased MDM2, increased p53, increased cleaved-Capsese3 and decreased IC 50 value induced by knockdown of TRIM25 individually, suggesting that TRIM25 mediated cisplatin resistance primarily through downregulation of 14-3-3σ. Our results indicate that TRIM25 is associated with cisplatin resistance and 14-3-3σ-MDM2-p53 signaling pathway is involved in this process, suggesting targeting TRIM25 may be a potential strategy for the reversal of cisplatin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways.

    PubMed

    Min, Jie; Huang, Kenan; Tang, Hua; Ding, Xinyu; Qi, Chen; Qin, Xiong; Xu, Zhifei

    2015-12-01

    Phloretin (Ph) existing in apples, pears and various vegetables is known to have antitumor activities in several cancer cell lines. However, little is known about its effect on human lung cancer cells. The aim of the present study was to see whether Ph could induce apoptosis of non-small cell lung cancer (NSCLC) cells, and explore the possible underlying mechanism of action. We found that Ph markedly induced cell apoptosis of NSCLC cell line A549, and inhibited the migration of A549 cells in a dose-dependent manner. The expression level of BAX, cleaved caspase-3 and -9, and degraded form of PARP was increased and Bcl-2 was decreased after Ph treatment. In addition, the phosphorylation of P38 MAPK, ERK1/2 and JNK1/2 was increased in a dose‑dependent manner in parallel with Ph treatment. Inhibition of P38 MAPK and JNK1/2 by specific inhibitors significantly abolished the Ph-induced activation of the caspase-3 and -9. In vivo tumor-suppression assay further indicated that Ph (20 mg/kg) displayed a more significant inhibitory effect on A549 xenografts in tumor growth. All these findings indicate that Ph is able to inhibit NSCLC A549 cell growth by inducing apoptosis through P38 MAPK and JNK1/2 pathways, and therefore may prove to be an adjuvant to the treatment of NSCLC.

  12. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways

    PubMed Central

    MIN, JIE; LI, XU; HUANG, KENAN; TANG, HUA; DING, XINYU; QI, CHEN; QIN, XIONG; XU, ZHIFEI

    2015-01-01

    Phloretin (Ph) existing in apples, pears and various vegetables is known to have antitumor activities in several cancer cell lines. However, little is known about its effect on human lung cancer cells. The aim of the present study was to see whether Ph could induce apoptosis of non-small cell lung cancer (NSCLC) cells, and explore the possible underlying mechanism of action. We found that Ph markedly induced cell apoptosis of NSCLC cell line A549, and inhibited the migration of A549 cells in a dose-dependent manner. The expression level of BAX, cleaved caspase-3 and -9, and degraded form of PARP was increased and Bcl-2 was decreased after Ph treatment. In addition, the phosphorylation of P38 MAPK, ERK1/2 and JNK1/2 was increased in a dose-dependent manner in parallel with Ph treatment. Inhibition of P38 MAPK and JNK1/2 by specific inhibitors significantly abolished the Ph-induced activation of the caspase-3 and -9. In vivo tumor-suppression assay further indicated that Ph (20 mg/kg) displayed a more significant inhibitory effect on A549 xenografts in tumor growth. All these findings indicate that Ph is able to inhibit NSCLC A549 cell growth by inducing apoptosis through P38 MAPK and JNK1/2 pathways, and therefore may prove to be an adjuvant to the treatment of NSCLC. PMID:26503828

  13. Cytotoxicity of the Roots of Trillium govanianum Against Breast (MCF7), Liver (HepG2), Lung (A549) and Urinary Bladder (EJ138) Carcinoma Cells.

    PubMed

    Khan, Kashif M; Nahar, Lutfun; Al-Groshi, Afaf; Zavoianu, Alexandra G; Evans, Andrew; Dempster, Nicola M; Wansi, Jean D; Ismail, Fyaz M D; Mannan, Abdul; Sarker, Satyajit D

    2016-10-01

    Trillium govanianum Wall. (Melanthiaceae alt. Trilliaceae), commonly known as 'nag chhatri' or 'teen patra', is a native species of the Himalayas. It is used in various traditional medicines containing both steroids and sex hormones. In folk medicine, the rhizomes of T. govanianum are used to treat boils, dysentery, inflammation, menstrual and sexual disorders, as an antiseptic and in wound healing. With the only exception of the recent report on the isolation of a new steroidal saponin, govanoside A, together with three known steroidal compounds with antifungal property from this plant, there has been no systematic pharmacological and phytochemical work performed on T. govanianum. This paper reports, for the first time, on the cytotoxicity of the methanol extract of the roots of T. govanianum and its solid-phase extraction (SPE) fractions against four human carcinoma cell lines: breast (MCF7), liver (HEPG2), lung (A549) and urinary bladder (EJ138), using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide cytotoxicity assay and liquid chromatography and electrospray ionization quadrupole time-of-flight mass spectrometry analysis of the SPE fractions. The methanol extract and all SPE fractions exhibited considerable levels of cytotoxicity against all cell lines, with the IC 50 values ranging between 5 and 16 µg/mL. Like other Trillium species, presence of saponins and sapogenins in the SPE fractions was evident in the liquid chromatography mass spectrometry data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. TU-H-CAMPUS-TeP3-01: Gold Nanoparticle-Enhanced Radiation Therapy in In Vitro A549 Lung Carcinoma: Studies in Both Traditional Monolayer and Three Dimensional Cell Culture Models

    SciTech Connect

    Oumano, M; University of Massachusetts Lowell, Lowell, MA; Ngwa, W

    Purpose: To measure the increase in in vitro radiosensitivity for A549 lung carcinoma cells due to gold nanoparticle (GNP) radiation dose enhancement in both traditional monolayer and three dimensional (3D) cell culture models. Methods: A γH2AX immunofluorescence assay is performed on monolayer A549 cell culture and quantitatively analyzed to measure the increase in double strand breaks (DSBs) resulting from GNP dose enhancement. A clonogenic survival assay (CSA) is then performed on monolayer A549 cell culture to assess true viability after treatment. And lastly, another γH2AX assay is performed on 3D A549 multicellular nodules overlaid on a bed of growth factormore » reduced matrigel to measure dose response in a model that better recapitulates treatment response to actual tumors in vivo. Results: The first γH2AX assay performed on the monolayer cell culture shows a significant increase in DSBs due to GNP dose enhancement. The maximum average observed increase in normalized fluorescent intensity for monolayer cell culture is 171% for the 6Gy-treatment groups incubated in 0.556 mg Au/ml solution. The CSA performed on monolayer cell culture also shows considerable GNP dose enhancement. The maximum decrease in the normalized surviving fraction is 12% for the 4Gy-treatment group incubated in 0.556 mg Au/ml. And lastly, the GNP dose enhancement is confirmed to be mitigated in three dimensional cell culture models as compared to the traditional monolayer model. The maximum average observed dose enhancement for 3D cell culture is 19% for the 6Gy-treatment groups and incubated in 0.556 mg Au/ml. Conclusion: A marked increase in radiosensitivity is observed for A549 lung carcinoma cells when treated with GNPs plus radiation as opposed to radiation alone. Traditional monolayer cell culture also shows a much more pronounced radiation dose enhancement than 3D cell culture.« less

  15. Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands.

    PubMed

    Procházková, Jiřina; Strapáčová, Simona; Svržková, Lucie; Andrysík, Zdeněk; Hýžďalová, Martina; Hrubá, Eva; Pěnčíková, Kateřina; Líbalová, Helena; Topinka, Jan; Kléma, Jiří; Espinosa, Joaquín M; Vondráček, Jan; Machala, Miroslav

    2018-08-01

    Exposure to persistent ligands of aryl hydrocarbon receptor (AhR) has been found to cause lung cancer in experimental animals, and lung adenocarcinomas are often associated with enhanced AhR expression and aberrant AhR activation. In order to better understand the action of toxic AhR ligands in lung epithelial cells, we performed global gene expression profiling and analyze TCDD-induced changes in A549 transcriptome, both sensitive and non-sensitive to CH223191 co-treatment. Comparison of our data with results from previously reported microarray and ChIP-seq experiments enabled us to identify candidate genes, which expression status reflects exposure of lung cancer cells to TCDD, and to predict processes, pathways (e.g. ER stress, Wnt/β-cat, IFNɣ, EGFR/Erbb1), putative TFs (e.g. STAT, AP1, E2F1, TCF4), which may be implicated in adaptive response of lung cells to TCDD-induced AhR activation. Importantly, TCDD-like expression fingerprint of selected genes was observed also in A549 cells exposed acutely to both toxic (benzo[a]pyrene, benzo[k]fluoranthene) and endogenous AhR ligands (2-(1H-Indol-3-ylcarbonyl)-4-thiazolecarboxylic acid methyl ester and 6-formylindolo[3,2-b]carbazole). Overall, our results suggest novel cellular candidates, which could help to improve monitoring of AhR-dependent transcriptional activity during acute exposure of lung cells to distinct types of environmental pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Aqueous extract of Taxus chinensis (Pilger) Rehd inhibits lung carcinoma A549 cells through the epidermal growth factor receptor/mitogen-activated protein kinase pathway in vitro and in vivo.

    PubMed

    Shu, Qijin; Shen, Minhe; Wang, Binbin; Cui, Qingli; Zhou, Xiaoying; Zhu, Luming

    2014-06-01

    To explore the anticancer mechanism of aqueous extract of Taxus Chinensis (Pilger) Rehd (AETC). The serum pharmacological method was used to avoid interference from administration of the crude medicinal herbs. Eight purebred New Zealand rabbits were used for preparation of serum containing various concentrations of AETC. Forty-eight Balb/c-nu mice were used for in vivo experiments. The effects of serum containing AETC on the proliferation of A549 cells and expression levels of the epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) pathway-related proteins in vitro were investigated. Additionally, the effects on the growth of A549 xenografts in nude mice, and expression levels of the EGFR/MAPK pathway-related proteins in the xenografts, were investigated. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that the serum containing AETC significantly decreased the viability of A549 cells in a dose-dependent manner. Western blot showed that the serum containing various concentrations of AETC strongly reduced the levels of phospho-Jun N-terminal kinase (p-JNK) and phospho-extracellular signal-regulated kinasel/2 (ERK1/2) while it increased the level of p-p38. However, no significant effects on the expression levels of JNK, ERK1/2, and p38 MAPK were found. In addition, an anticancer effect from AETC was observed in vivo in the Balb/c-nu mice bearing A549 xenografts. AETC has significant effects on the growth of A549 xenografts and on the activity of the EGFR/MAPK pathway. Therefore, AETC may be beneficial in lung carcinoma treatment.

  17. Apatinib resensitizes cisplatin-resistant non-small cell lung carcinoma A549 cell through reversing multidrug resistance and suppressing ERK signaling pathway.

    PubMed

    Liu, Z-L; Jin, B-J; Cheng, C-G; Zhang, F-X; Wang, S-W; Wang, Y; Wu, B

    2017-12-01

    To observe the reversal effect of apatinib on the resistance to cisplatin (DDP) of A549/cisplatin (A549/DDP) cells and its relevant mechanism. A549/DDP cells were treated with the control method, apatinib alone, DDP alone and DDP combined with apatinib. The cell proliferation was detected by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the cell clone formation assay. The cell apoptosis was detected by Hoechst 33258 staining and annexin V and propidium iodide (PI) double labeling. The changes in apoptotic proteins, multidrug resistance protein 1 (MDR1) and extracellular signal-regulated kinase (ERK) signaling pathway proteins in each group after treatment were detected by Western blotting. MTT assay results showed that compared with A549 cells, A549/DDP cells had obvious resistance to DDP. MTT assay and cell clone formation assay revealed that the tumor inhibition rate of the sub-lethal dose of apatinib (10 μM) combined with DDP was higher than that of DDP alone. The apoptosis detection results indicated that the proportion of apoptotic cells in the apatinib (10 μM) combined with DDP group was significantly increased. Western blotting results revealed that compared with that in parental A549 cells, the expression level of MDR1 in A549/DDP cells was significantly increased, and the ERK signaling pathway was activated. In the apatinib combined with DDP group, the levels of cleaved caspase-3, cleaved caspase-9 and B-cell lymphoma-2 (Bcl-2)-associated X (BAX) proteins were significantly upregulated, while the level of Bcl-2 proteins was downregulated. Apatinib could inhibit the expression of MDR1 and the activity of the ERK signaling pathway in a dose-dependent manner. Apatinib can restore the sensitivity of A549/DDP cells to DDP by down-regulating the expression level of MDR1 and inhibiting the activity of the ERK signaling pathway.

  18. A platycoside-rich fraction from the root of Platycodon grandiflorum enhances cell death in A549 human lung carcinoma cells via mainly AMPK/mTOR/AKT signal-mediated autophagy induction.

    PubMed

    Yim, Nam-Hui; Hwang, Youn-Hwan; Liang, Chun; Ma, Jin Yeul

    2016-12-24

    The root of Platycodon grandiflorum (PG), commonly known as Kilkyong in Korea, Jiegeng in China, and Kikyo in Japan, has been extensively used as a traditional anti-inflammatory medicine in Asia for the treatment of respiratory conditions, such as bronchitis, asthma, and tonsillitis. Platycosides isolated from PG are especially well-known for their anti-cancer effects. We investigated the involvement of autophagic cell death and other potential molecular mechanisms induced by the platycoside-containing butanol fraction of PG (PGB) in human lung carcinoma cells. PGB-induced growth inhibition and cell death were measured using a 5-diphenyl-tetrazolium bromide (MTT) assay. The effects of PGB on autophagy were determined by observing microtubule-associated protein 1 light chain 3 (LC3) redistribution with confocal microscopy. The PGB-mediated regulation of autophagy-associated proteins was investigated using Western blotting analysis. Furthermore, the anti-cancer mechanism of PGB was confirmed using chemical inhibitors. A high-performance liquid chromatography (HPLC)-DAD system was used to analyze the platycosides in PGB. In A549 cells, PGB induced significant autophagic cell death. Specifically, PGB upregulated LC3-II in a time- and dose-dependent manner, and it redistributed LC3 via autophagosome formation in the cytoplasm. PGB treatment increased the phosphorylation of AMP-activated protein kinase (AMPK) and subsequently suppressed the AKT/mammalian target of the rapamycin (mTOR) pathway. Furthermore, PGB inhibited cell proliferation by regulating the mitogen-activated protein kinase (MAPK) pathways. In this study, six types of platycosides were identified in the PGB using HPLC. PGB efficiently induced cancer cell death via autophagy and the modulation of the AMPK/mTOR/AKT and MAPK signaling pathways in A549 cells. Therefore, PGB may be an efficacious herbal anti-cancer therapy. Copyright © 2016. Published by Elsevier Ireland Ltd.

  19. Comparative Cytotoxicity of Glycyrrhiza glabra Roots from Different Geographical Origins Against Immortal Human Keratinocyte (HaCaT), Lung Adenocarcinoma (A549) and Liver Carcinoma (HepG2) Cells.

    PubMed

    Basar, Norazah; Oridupa, Olayinka Ayotunde; Ritchie, Kenneth J; Nahar, Lutfun; Osman, Nashwa Mostafa M; Stafford, Angela; Kushiev, Habibjon; Kan, Asuman; Sarker, Satyajit D

    2015-06-01

    Glycyrrhiza glabra L. (Fabaceae), commonly known as 'liquorice', is a well-known medicinal plant. Roots of this plant have long been used as a sweetening and flavouring agent in food and pharmaceutical products, and also as a traditional remedy for cough, upper and lower respiratory ailments, kidney stones, hepatitis C, skin disorder, cardiovascular diseases, diabetes, gastrointestinal ulcers and stomach ache. Previous pharmacological and clinical studies have revealed its antitussive, antiinflammatory, antiviral, antimicrobial, antioxidant, immunomodulatory, hepatoprotective and cardioprotective properties. While glycyrrhizin, a sweet-tasting triterpene saponin, is the principal bioactive compound, several bioactive flavonoids and isoflavonoids are also present in the roots of this plant. In the present study, the cytotoxicity of the methanol extracts of nine samples of the roots of G. glabra, collected from various geographical origins, was assessed against immortal human keratinocyte (HaCaT), lung adenocarcinoma (A549) and liver carcinoma (HepG2) cell lines using the in vitro 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide cell toxicity/viability assay. Considerable variations in levels of cytotoxicity were observed among various samples of G. glabra. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Enhancement of recombinant myricetin on the radiosensitivity of lung cancer A549 and H1299 cells

    PubMed Central

    2014-01-01

    Objective Myricetin, a common dietary flavonoid is widely distributed in fruits and vegetables, and is used as a health food supplement based on its immune function, anti-oxidation, anti-tumor, and anti-inflammatory properties. The aim of this study was to investigate the effects of myricetin on combination with radiotherapy enhance radiosensitivity of lung cancer A549 and H1299 cells. Methods A549 cells and H1299 cells were exposed to X-ray with or without myricetin treatment. Colony formation assays, CCK-8 assay, flow cytometry and Caspase-3 level detection were used to evaluate the radiosensitization activity of myricetin on cell proliferation and apoptosis in vitro. Nude mouse tumor xenograft model was built to assessed radiosensitization effect of myricetin in vivo. Results Compared with the exposed group without myricetin treatment, the groups treated with myricetin showed significantly suppressed cell surviving fraction and proliferation, increased the cell apoptosis and increased Caspase-3 protein expression after X-ray exposure in vitro. And in vivo assay, growth speed of tumor xenografts was significantly decreased in irradiated mice treated with myricetin. Conclusions The study demonstrated both in vitro and in vivo evidence that combination of myricetin with radiotherapy can enhance tumor radiosensitivity of pulmonary carcinoma A549 and H1299 cells, and myricetin could be a potential radiosensitizer for lung cancer therapy. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5791518001210633 PMID:24650056

  1. Anti-invasive effect of Cyclamen pseudibericum extract on A549 non-small cell lung carcinoma cells via inhibition of ZEB1 mediated by miR-200c.

    PubMed

    Karagur, Ege Riza; Ozay, Cennet; Mammadov, Ramazan; Akca, Hakan

    2018-06-01

    Scientists are increasingly focusing attention on natural products of plant origin for use as agents in cancer protection and treatment. Cyclamen L. tuber extracts contain saponin glycosides that have been shown to have anti-cancer and other biological activities. The epithelial-to-mesenchymal transition (EMT) is thought to enhance malignant tumour progress. The transcriptional repressor zinc-finger E-box binding homeobox 1 (ZEB1) is an important inducer of EMT in different human tumours and has recently been shown to boost invasion by tumour cells. In this study, we investigated the effects of endemic Cyclamen pseudibericum (CP) saponin-rich tuber extract on the capacity of non-small cell lung cancer line A549 cells to proliferate, invade and migrate and also examined the expression levels of several invasion-migration-related microRNAs (miRNAs) to identify those which directly targeted ZEB1. The cytotoxicity effect of the CP extract on the A549 cancer cells was determined by the luminometric method. The half-minimal (50%) inhibitory concentration dose in the A549 cells was determined to be 41.64 ± 2.35 µg/mL. Using the Matrigel invasion chamber system and the wound healing assay we observed that the CP extract suppressed the invasion and migration capacity of A549 cells, respectively. The expression of miRNAs in A549 cells was evaluated by real-time PCR. Our data showed that overexpression of miRNA miR-200c hindered the EMT by increasing the expression of E-cadherin and decreasing the expression of both N-cadherin and vimentin through the direct targeting of ZEB1. These findings suggest that the saponin-rich tuber extract of CP may have considerable anti-cancer properties in lung cancer. Further studies are required to examine in detail the molecular-based mechanism involved in the EMT process of the extract along with isolation and identification of active saponin components.

  2. Antimetastatic Effects of Phyllanthus on Human Lung (A549) and Breast (MCF-7) Cancer Cell Lines

    PubMed Central

    Lee, Sau Har; Jaganath, Indu Bala; Wang, Seok Mui; Sekaran, Shamala Devi

    2011-01-01

    Background Current chemotherapeutic drugs kill cancer cells mainly by inducing apoptosis. However, they become ineffective once cancer cell has the ability to metastasize, hence the poor prognosis and high mortality rate. Therefore, the purpose of this study was to evaluate the antimetastatic potential of Phyllanthus (P. niruri, P. urinaria, P. watsonii, and P. amarus) on lung and breast carcinoma cells. Methodology/Principal Findings Cytotoxicity of Phyllanthus plant extracts were first screened using the MTS reduction assay. They were shown to inhibit MCF-7 (breast carcinoma) and A549 (lung carcinoma) cells growth with IC50 values ranging from 50–180 µg/ml and 65–470 µg/ml for methanolic and aqueous extracts respectively. In comparison, they have lower toxicity on normal cells with the cell viability percentage remaining above 50% when treated up to 1000 µg/ml for both extracts. After determining the non-toxic effective dose, several antimetastasis assays were carried out and Phyllanthus extracts were shown to effectively reduce invasion, migration, and adhesion of both MCF-7 and A549 cells in a dose-dependent manner, at concentrations ranging from 20–200 µg/ml for methanolic extracts and 50–500 µg/ml for aqueous extracts. This was followed by an evaluation of the possible modes of cell death that occurred along with the antimetastatic activity. Phyllanthus was shown to be capable of inducing apoptosis in conjunction with its antimetastastic action, with more than three fold increase of caspases-3 and -7, the presence of DNA-fragmentation and TUNEL-positive cells. The ability of Phyllanthus to exert antimetastatic activities is mostly associated to the presence of polyphenol compounds in its extracts. Conclusions/Significance The presence of polyphenol compounds in the Phyllanthus plant is critically important in the inhibition of the invasion, migration, and adhesion of cancer cells, along with the involvement of apoptosis induction. Hence

  3. Lycium europaeum fruit extract: antiproliferative activity on A549 human lung carcinoma cells and PC12 rat adrenal medulla cancer cells and assessment of its cytotoxicity on cerebellum granule cells.

    PubMed

    Ghali, Wafa; Vaudry, David; Jouenne, Thierry; Marzouki, Mohamed Nejib

    2015-01-01

    Cancer is a major worldwide health problem and one of the leading causes of death either in developed or developing countries. Plant extracts and derivatives have always been used for various disease treatments and many anticancer agents issued from plants and vegetables are clinically recognized and used all over the world. Lycium europaeum (Solanaceae) also called "wolfberry" was known since ancient times in the Mediterranean area as a medicinal plant and used in several traditional remedies. The Lycium species capacity of reducing the incidence of cancer and also of halting or reserving the growth of cancer was reported by traditional healers. In this study, the antiproliferative capacity, protective properties, and antioxidant activity of the hydro-alcoholic fruit extract of Lycium europaeum were investigated. Results showed that Lycium extract exhibits the ability to reduce cancer cell viability, inhibits proliferation, and induces apoptosis in A549 human lung cancer cells and PC12 rat adrenal medulla cancer cells, in a concentration- and time-dependent manner. Cytotoxic effect on normal rat cerebellum granule cells was assessed to be nonsignificant. Results also showed that Lycium fruit extract protected lipids, proteins, and DNA against oxidative stress damages induced by H2O2 via scavenging reactive oxygen species.

  4. Aptamer based electrochemical sensor for detection of human lung adenocarcinoma A549 cells

    NASA Astrophysics Data System (ADS)

    Sharma, Rachna; Varun Agrawal, Ved; Sharma, Pradeep; Varshney, R.; Sinha, R. K.; Malhotra, B. D.

    2012-04-01

    We report results of the studies relating to development of an aptamer-based electrochemical biosensor for detection of human lung adenocarcinoma A549 cells. The aminated 85-mer DNA aptamer probe specific for the A549 cells has been covalently immobilized onto silane self assembled monolayer (SAM) onto ITO surface using glutaraldehyde as the crosslinker. The results of cyclic voltammetry and differential pulse voltammetry studies reveal that the aptamer functionalized bioelectrode can specifically detect lung cancer cells in the concentration range of 103 to 107 cells/ml with detection limit of 103 cells/ml within 60 s. The specificity studies of the bioelectrode have been carried out with control KB cells. No significant change in response is observed for control KB cells as compared to that of the A549 target cells.

  5. Anticancer activity of polysaccharide from Glehnia littoralis on human lung cancer cell line A549.

    PubMed

    Wu, Jun; Gao, Weiping; Song, Zhuoyue; Xiong, Qingping; Xu, Yingtao; Han, Yun; Yuan, Jun; Zhang, Rong; Cheng, Yunbo; Fang, Jiansong; Li, Weirong; Wang, Qi

    2018-01-01

    The purpose of this study was to investigate the anticancer activity of polysaccharide (PGL) from Glehnia littoralis on human lung cancer cell line A549. Based on MTT assay, the results suggested that PGL could significantly reduce A549 cells proliferation in a time- and dose-dependent manner. In addition, PGL displayed an inhibitory activity for the A549 cells migration in Transwell migration assay. The results from both flow cytometry analysis and Hochst 3342 staining of apoptotic cells indicated that PGL could promote apoptosis, and induce cycle arrest of A549 cells. Moreover, immunofluorescence assay elucidated PGL could also down-regulate expression of proliferating cell nuclear antigen (PCNA). Overall, these results showed that PGL exerts a strong anticancer action through inhibiting the A549 cells migration, proliferation and inducing cell apoptosis. It could be a new source of natural anticancer agent against lung cancer with potential value in supplements and medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. [Effect of ginseng rare ginsenoside components combined with paclitaxel on A549 lung cancer].

    PubMed

    Yang, Lei; Zhang, Zhen-Hai; Jia, Xiao-Bin

    2018-04-01

    Traditional Chinese medicine combined with anticancer drugs is a new direction of clinical cancer therapy in recent years. In this study, the optimal ratio of ginseng rare ginsenoside components and paclitaxel was optimized by MTT method, and the proliferative, apoptotic and anti-tumor effects of lung cancer A549 cells were investigated. It was found that the inhibitory effect on the proliferation of lung cancer A549 cells was the same as that on paclitaxel when the ratio of rare ginseng rare ginsenoside components to paclitaxel was 4∶6. Further studies showed that the combined therapy significantly increased the inductive effect of apoptosis in A549 cells, and up-regulated the expression of caspase-3 protein and down-regulated the ratio of Bcl-2/Bax. The tumor-bearing mice model showed that the combination therapy of ginseng rare ginsenoside components and paclitaxel could significantly inhibit the growth of tumor and alleviate the toxic and side effects of paclitaxel on liver. A multi-component system of ginseng rare ginsenoside components-paclitaxel was established in this paper. The proliferation and growth of lung cancer A549 cells were inhibited by paclitaxel-induced apoptosis, the dosage of paclitaxel and the toxicity of paclitaxel were reduced, and the effect of anti-lung cancer was enhanced, which provided a theoretical basis for later studies and clinical application. Copyright© by the Chinese Pharmaceutical Association.

  7. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    PubMed

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells.

  8. Synergistic Antitumor Effect of Oligogalacturonides and Cisplatin on Human Lung Cancer A549 Cells.

    PubMed

    Huang, Cian-Song; Huang, Ai-Chun; Huang, Ping-Hsiu; Lo, Diana; Wang, Yuh-Tai; Wu, Ming-Chang

    2018-06-14

    Cisplatin (DPP), a clinically potent antineoplastic agent, is limited by its severe adverse effects. The aim of this study was to investigate the effect of oligogalacturonides (OGA) and DDP on human lung cancer A549 cells. The combined use of OGA and DDP had a synergistic effect on the growth inhibition of A549 cells, changed the cell cycle distribution, and enhanced apoptotic response, especially in sequential combination treatment group of DDP 12 h + OGA 12 h. Western blot analyses showed that the combination treatment of OGA and DDP upregulated Bax, p53, and Caspase-3 and downregulated Bcl-2 proteins. More importantly, DDP-induced toxicity was attenuated by OGA and DDP combination treatment in normal HEK293 cells. Our data suggests that the combined use of OGA from natural sources and DDP could be an important new adjuvant therapy for lung cancer as well as offer important insights for reducing kidney toxicity of DDP and delaying the development of DDP resistance.

  9. Green tea extract induces protective autophagy in A549 non-small lung cancer cell line.

    PubMed

    Izdebska, Magdalena; Klimaszewska-Wiśniewska, Anna; Hałas, Marta; Gagat, Maciej; Grzanka, Alina

    2015-12-31

    For many decades, polyphenols, including green tea extract catechins, have been reported to exert multiple anti-tumor activities. However, to date the mechanisms of their action have not been completely elucidated. Thus, the aim of this study was to assess the effect of green tea extract on non-small lung cancer A549 cells. A549 cells following treatment with GTE were analyzed using the inverted light and fluorescence microscope. In order to evaluate cell sensitivity and cell death, the MTT assay and Tali image-based cytometer were used, respectively. Ultrastructural alterations were assessed using a transmission electron microscope. The obtained data suggested that GTE, even at the highest dose employed (150 μM), was not toxic to A549 cells. Likewise, the treatment with GTE resulted in only a very small dose-dependent increase in the population of apoptotic cells. However, enhanced accumulation of vacuole-like structures in response to GTE was seen at the light and electron microscopic level. Furthermore, an increase in the acidic vesicular organelles and LC3-II puncta formation was observed under the fluorescence microscope, following GTE treatment. The analysis of the functional status of autophagy revealed that GTE-induced autophagy may provide self-protection against its own cytotoxicity, since we observed that the blockage of autophagy by bafilomycin A1 decreased the viability of A549 cells and potentiated necrotic cell death induction in response to GTE treatment. Collectively, our results revealed that A549 cells are insensitive to both low and high concentrations of the green tea extract, probably due to the induction of cytoprotective autophagy. These data suggest that a potential utility of GTE in lung cancer therapy may lie in its synergistic combinations with drugs or small molecules that target autophagy, rather than in monotherapy.

  10. [Apoptosis inducing effect of Hechanpian on human lung adenocarcinoma A549 cells].

    PubMed

    Xiong, Shao-Quan; Zhou, Dai-Han; Lin, Li-Zhu

    2010-06-01

    To study the apoptosis inducing effects of Hechanpian (HCP) on human lung adenocarcinoma A549 cells. HCP containing rat serum was prepared and applied on A549 cells. The cell growth inhibition rate was tested by MTT assay; the effect of HCP on cell apoptosis was observed with Propidium iodide (PI) staining and flow cytometry analysis; the mRNA expression of epidermal growth factor receptor (EGFR) was detected through RT-PCR. The growth of A549 cells was obviously inhibited after being treated by HCP containing serum, and the cells presented an apoptotic change. The cell apoptosis rate after treated by serum containing 10% and 20% HCP was 20.5% and 33.2%, respectively, significantly higher than that in the control (6.1% in cells didn't treated with HCP, P < 0.05). Compared with control, EGFR mRNA expression in HCP treated cells was significantly lower (P < 0.05). HCP has apoptosis inducing effect on A549 cell, and its molecular mechanism is probably correlated with the inhibition of EGFR gene transcription.

  11. In vitro effects of nicotine on the non-small-cell lung cancer line A549.

    PubMed

    Gao, Tao; Zhou, Xue-Liang; Liu, Sheng; Rao, Chang-Xiu; Shi, Wen; Liu, Ji-Chun

    2016-04-01

    To investigate in vitro effects of nicotine on the non-small-cell lung cancer line A549. The case-control study was conducted at the First Affiliated Hospital of Nanchang University from 1st January to 30th June, 2014 and comprised A549 cells which were treated with a series of concentrations of nicotine (0.01 µM, 0.1 µM, 1 µM and 10 µM) for 24 hours. Control cells were incubated under the same conditions without the addition of nicotine. Cell growth was detected by monotetrazolium salt [3-(4, 5-dimethyl-2-thiazolyl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay. Cell apoptosis was detected by Haematoxylin and Eosin staining, immunofluorescence analysis of Filamentous actin and electron microscope observation. Nicotine had no significant effect on A549 cell growth at the dose of 0.01µM (p>0.05), but had significant growth inhibitory effects at the doses of 0.1µM, 1µM and 10µM (p< 0.05 each). A significant decrease in cell numbers was observed on staining (p< 0.05). Significant changes in the size and shape of cells and concomitant changes in cytoskeletons and organelles were observed by immunofluorescence and electron microscope observation (p< 0.05). The growth inhibitory effects of nicotine on A549 cells were found to be dose-dependent.

  12. Induction of cell death by pyropheophorbide-α methyl ester-mediated photodynamic therapy in lung cancer A549 cells.

    PubMed

    Tu, Ping-Hua; Huang, Wen-Jun; Wu, Zhan-Ling; Peng, Qing-Zhen; Xie, Zhi-Bin; Bao, Ji; Zhong, Ming-Hua

    2017-03-01

    Pyropheophorbide-α methyl ester (MPPa) was a promising photosensitizer with stable chemical structure, strong absorption, higher tissue selectivity and longer activation wavelengths. The present study investigated the effect of MPPa-mediated photodynamic treatment on lung cancer A549 cells as well as the underlying mechanisms. Cell Counting Kit-8 was employed for cell viability assessment. Reactive oxygen species levels were determined by fluorescence microscopy and flow cytometry. Cell morphology was evaluated by Hoechst staining and transmission electron microscopy. Mitochondrial membrane potential, cellular apoptosis and cell cycle distribution were evaluated flow-cytometrically. The protein levels of apoptotic effectors were examined by Western blot. We found that the photocytotoxicity of MPPa showed both drug- and light- dose dependent characteristics in A549 cells. Additionally, MPPa-PDT caused cell apoptosis by reducing mitochondrial membrane potential, increasing reactive oxygen species (ROS) production, inducing caspase-9/caspase-3 signaling activation as well as cell cycle arrest at G 0 /G 1 phase. These results suggested that MPPa-PDT mainly kills cells by apoptotic mechanisms, with overt curative effects, indicating that MPPa should be considered a potent photosensitizer for lung carcinoma treatment. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  13. Curcumin induced autophagy anticancer effects on human lung adenocarcinoma cell line A549

    PubMed Central

    Liu, Furong; Gao, Song; Yang, Yuxuan; Zhao, Xiaodan; Fan, Yameng; Ma, Wenxia; Yang, Danrong; Yang, Aimin; Yu, Yan

    2017-01-01

    To investigate the anticancer effects of curcumin-induced autophagy and its effects on the human lung adenocarcinoma A549 cell line, inverted phase contrast microscopy was used to observe alterations to the cytomorphology of cells. An MTT assay was used to measure cell viability. Autophagy was detected using acridine orange (AO) staining and 3-methyladenine (3-MA) was used as an autophagy-specific inhibitor. Dose- and time-dependent A549 cell viability inhibition was observed following curcumin treatment. A dose-dependent increase in the red fluorescent structures in A549 cells was identified following curcumin treatment for 48 h through AO staining. In addition, the activation of autophagy was determined through changes in the number of autophagic vesicles (AVs; fluorescent particles) infected with monodansylcadaverine (MDC). The fluorescence intensity and density of AVs in the curcumin-treated groups were higher at 48 h compared with the control group. Finally, the MTT assay demonstrated that the survival rates of the curcumin-treated cells were increased when pretreated with 3-MA for 3 h, indicating that the inhibitory effect of curcumin on A549 cells is reduced following the inhibition of autophagy. Furthermore, AO and MDC staining confirmed that 3-MA does inhibit the induction of autophagy. Thus, it was hypothesized that the induction of autophagy is partially involved in the reduction of cell viability observed following curcumin treatment. The anticancer effects of curcumin on A549 cells can be reduced using autophagy inhibitors. This suggests a possible cancer therapeutic application of curcumin through the activation of autophagy. These findings have improved the understanding of the mechanism underlying the anticancer property of curcumin. PMID:28928819

  14. Effects of TGF-β signaling blockade on human A549 lung adenocarcinoma cell lines.

    PubMed

    Xu, Cheng-Cheng; Wu, Lei-Ming; Sun, Wei; Zhang, Ni; Chen, Wen-Shu; Fu, Xiang-Ning

    2011-01-01

    Transforming growth factor β (TGF-β) is overexpressed in a wide variety of cancer types including lung adenocarcinoma (LAC), and the TGF-β signaling pathway plays an important role in tumor development. To determine whether blockade of the TGF-β signaling pathway can inhibit the malignant biological behavior of LAC, RNA interference (RNAi) technology was used to silence the expression of TGF-β receptor, type II (TGFβRII) in the LAC cell line, A549, and its effects on cell proliferation, invasion and metastasis were examined. Three specific small interfering RNAs (siRNAs) designed for targeting human TGFβRII were transfected into A549 cells. The expression of TGFβRII was detected by Western blot analysis. Cell proliferation was measured by MTT and clonogenic assays. Cell apoptosis was assessed by flow cytometry. The invasion and metastasis of A549 cells were investigated using the wound healing and Matrigel invasion assays. The expression of PI3K, phosphorylated Smad2, Smad4, Akt, Erk1/2, P38 and MMPs was detected by Western blot analysis. The TGFβRII siRNA significantly reduced the expression of TGFβRII in A549 cells. The knockdown of TGFβRII in A549 cells resulted in the suppression of cell proliferation, invasion and metastasis and induced cell apoptosis. In addition to the Smad-dependent pathway, independent pathways including the Erk MAPK, PI3K/Akt and p38 MAPK pathways, as well as the expression of MMPs and VEGF, were inhibited. In conclusion, TGF-β signaling is required for LAC progression. Therefore, the blockade of this signaling pathway by the down-regulation of TGFβRII using SiRNA may provide a potential gene therapy for LAC.

  15. Curcumin induced autophagy anticancer effects on human lung adenocarcinoma cell line A549.

    PubMed

    Liu, Furong; Gao, Song; Yang, Yuxuan; Zhao, Xiaodan; Fan, Yameng; Ma, Wenxia; Yang, Danrong; Yang, Aimin; Yu, Yan

    2017-09-01

    To investigate the anticancer effects of curcumin-induced autophagy and its effects on the human lung adenocarcinoma A549 cell line, inverted phase contrast microscopy was used to observe alterations to the cytomorphology of cells. An MTT assay was used to measure cell viability. Autophagy was detected using acridine orange (AO) staining and 3-methyladenine (3-MA) was used as an autophagy-specific inhibitor. Dose- and time-dependent A549 cell viability inhibition was observed following curcumin treatment. A dose-dependent increase in the red fluorescent structures in A549 cells was identified following curcumin treatment for 48 h through AO staining. In addition, the activation of autophagy was determined through changes in the number of autophagic vesicles (AVs; fluorescent particles) infected with monodansylcadaverine (MDC). The fluorescence intensity and density of AVs in the curcumin-treated groups were higher at 48 h compared with the control group. Finally, the MTT assay demonstrated that the survival rates of the curcumin-treated cells were increased when pretreated with 3-MA for 3 h, indicating that the inhibitory effect of curcumin on A549 cells is reduced following the inhibition of autophagy. Furthermore, AO and MDC staining confirmed that 3-MA does inhibit the induction of autophagy. Thus, it was hypothesized that the induction of autophagy is partially involved in the reduction of cell viability observed following curcumin treatment. The anticancer effects of curcumin on A549 cells can be reduced using autophagy inhibitors. This suggests a possible cancer therapeutic application of curcumin through the activation of autophagy. These findings have improved the understanding of the mechanism underlying the anticancer property of curcumin.

  16. Effects of tanshinone nanoemulsion and extract on inhibition of lung cancer cells A549

    NASA Astrophysics Data System (ADS)

    Lee, W. D.; Liang, Y. J.; Chen, B. H.

    2016-12-01

    Danshen (Salvia miltiorrhiza), a Chinese medicinal herb, consists of several functional components including tanshinones responsible for prevention of several chronic diseases. This study intends to prepare tanshinone extract and nanoemulsion from danshen and determine their inhibition effect on lung cancer cells A549. A highly stable tanshinone nanoemulsion composed of Capryol 90, Tween 80, ethanol and deionized water with the mean particle size of 14.2 nm was successfully prepared. Tanshinone nanoemulsion was found to be more effective in inhibiting A549 proliferation than tanshinone extract. Both nanoemulsion and extract could penetrate into cytoplasm through endocytosis, with the former being more susceptible than the latter. A dose-dependent response in up-regulation of p-JNK, p53 and p21 and down-regulation of CDK2, cyclin D1 and cyclin E1 expressions was observed with the cell cycle arrested at G0/G1 phase. The cellular microcompartment change of A549 was also investigated. The study demonstrated that tanshinone nanoemulsion may be used as a botanic drug for treatment of lung cancer.

  17. G4-Tetra DNA Duplex Induce Lung Cancer Cell Apoptosis in A549 Cells

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobo; Zhao, YiZhuo; Lu, Hu; Fu, Cuiping; Li, Xiao; Jiang, Liyan; Li, Shanqun

    2016-10-01

    The specific DNA is typically impermeable to the plasma membrane due to its natural characters, but DNA tetra structures (DTNs) can be readily uptake by cells in the absence of transfection agents, providing a new strategy to deliver DNA drugs. In this research, the delivery efficiency of tetrahedral DNA nanostructures was measured on adenocarcinomic human alveolar basal epithelial (A549) cells via delivering AS1411 (G4). The DNA tetra-AS1411 complex was rapidly and abundantly uptake by A549 cells, and the induced apoptosis was enhanced. Furthermore, biodistribution in mouse proved the rapid clearance from non-targeted organs in vivo. This study improved the understanding of potential function in DNA-based drug delivery and proved that DTNs-AS1411 could be potentially useful for the treatment of lung cancer.

  18. Methyl methanesulfonate induces necroptosis in human lung adenoma A549 cells through the PIG-3-reactive oxygen species pathway.

    PubMed

    Jiang, Ying; Shan, Shigang; Chi, Linfeng; Zhang, Guanglin; Gao, Xiangjing; Li, Hongjuan; Zhu, Xinqiang; Yang, Jun

    2016-03-01

    Methyl methanesulfonate (MMS) is an alkylating agent that can induce cell death through apoptosis and necroptosis. The molecular mechanisms underlying MMS-induced apoptosis have been studied extensively; however, little is known about the mechanism for MMS-induced necroptosis. Therefore, we first established MMS-induced necroptosis model using human lung carcinoma A549 cells. It was found that, within a 24-h period, although MMS at concentrations of 50, 100, 200, 400, and 800 μM can induce DNA damage, only at higher concentrations (400 and 800 μM) MMS treatment lead to necroptosis in A549 cells, as it could be inhibited by the specific necroptotic inhibitor necrostatin-1, but not the specific apoptotic inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-fmk). MMS-induced necroptosis was further confirmed by the induction of the necroptosis biomarkers including the depletion of cellular NADH and ATP and leakage of LDH. This necroptotic cell death was also concurrent with the increased expression of p53, p53-induced gene 3 (PIG-3), high mobility group box-1 protein (HMGB1), and receptor interaction protein kinase (RIP) but not the apoptosis-associated caspase-3 and caspase-9 proteins. Elevated reactive oxygen species (ROS) level was also involved in this process as the specific ROS inhibitor (4-amino-2,4-pyrrolidine-dicarboxylic acid (APDC)) can inhibit the necroptotic cell death. Interestingly, knockdown of PIG-3 expression by small interfering RNA (siRNA) treatment can inhibit the generation of ROS. Taken together, these results suggest that MMS can induce necroptosis in A549 cells, probably through the PIG-3-ROS pathway.

  19. Middle Infrared Radiation Induces G2/M Cell Cycle Arrest in A549 Lung Cancer Cells

    PubMed Central

    Huang, Hsuan-Cheng; Tsai, Shang-Ru; Juan, Hsueh-Fen; Lee, Si-Chen

    2013-01-01

    There were studies investigating the effects of broadband infrared radiation (IR) on cancer cell, while the influences of middle-infrared radiation (MIR) are still unknown. In this study, a MIR emitter with emission wavelength band in the 3–5 µm region was developed to irradiate A549 lung adenocarcinoma cells. It was found that MIR exposure inhibited cell proliferation and induced morphological changes by altering the cellular distribution of cytoskeletal components. Using quantitative PCR, we found that MIR promoted the expression levels of ATM (ataxia telangiectasia mutated), ATR (ataxia-telangiectasia and Rad3-related and Rad3-related), TP53 (tumor protein p53), p21 (CDKN1A, cyclin-dependent kinase inhibitor 1A) and GADD45 (growth arrest and DNA-damage inducible), but decreased the expression levels of cyclin B coding genes, CCNB1 and CCNB2, as well as CDK1 (Cyclin-dependent kinase 1). The reduction of protein expression levels of CDC25C, cyclin B1 and the phosphorylation of CDK1 at Thr-161 altogether suggest G2/M arrest occurred in A549 cells by MIR. DNA repair foci formation of DNA double-strand breaks (DSB) marker γ-H2AX and sensor 53BP1 was induced by MIR treatment, it implies the MIR induced G2/M cell cycle arrest resulted from DSB. This study illustrates a potential role for the use of MIR in lung cancer therapy by initiating DSB and blocking cell cycle progression. PMID:23335992

  20. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    NASA Astrophysics Data System (ADS)

    Brown, David M.; Varet, Julia; Johnston, Helinor; Chrystie, Alison; Stone, Vicki

    2015-10-01

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks' balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle's activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed.

  1. Inhibition of Raf-MEK-ERK and hypoxia pathways by Phyllanthus prevents metastasis in human lung (A549) cancer cell line.

    PubMed

    Lee, Sau Har; Jaganath, Indu Bala; Manikam, Rishya; Sekaran, Shamala Devi

    2013-10-20

    Lung cancer constitutes one of the malignancies with the greatest incidence and mortality rates with 1.6 million new cases and 1.4 million deaths each year. Prognosis remains poor due to deleterious development of multidrug resistance resulting in less than 15% lung cancer patients reaching five years survival. We have previously shown that Phyllanthus induced apoptosis in conjunction with its antimetastastic action. In the current study, we aimed to determine the signaling pathways utilized by Phyllanthus to exert its antimetastatic activities. Cancer 10-pathway reporter array was performed to screen the pathways affected by Phyllanthus in lung carcinoma cell line (A549) to exert its antimetastatic effects. Results from this array were then confirmed with western blotting, cell cycle analysis, zymography technique, and cell based ELISA assay for human total iNOS. Two-dimensional gel electrophoresis was subsequently carried out to study the differential protein expressions in A549 after treatment with Phyllanthus. Phyllanthus was observed to cause antimetastatic activities by inhibiting ERK1/2 pathway via suppression of Raf protein. Inhibition of this pathway resulted in the suppression of MMP2, MMP7, and MMP9 expression to stop A549 metastasis. Phyllanthus also inhibits hypoxia pathway via inhibition of HIF-1α that led to reduced VEGF and iNOS expressions. Proteomic analysis revealed a number of proteins downregulated by Phyllanthus that were involved in metastatic processes, including invasion and mobility proteins (cytoskeletal proteins), transcriptional proteins (proliferating cell nuclear antigen; zinc finger protein), antiapoptotic protein (Bcl2) and various glycolytic enzymes. Among the four Phyllanthus species tested, P. urinaria showed the greatest antimetastatic activity. Phyllanthus inhibits A549 metastasis by suppressing ERK1/2 and hypoxia pathways that led to suppression of various critical proteins for A549 invasion and migration.

  2. Inhibition of Raf-MEK-ERK and Hypoxia pathways by Phyllanthus prevents metastasis in human lung (A549) cancer cell line

    PubMed Central

    2013-01-01

    Background Lung cancer constitutes one of the malignancies with the greatest incidence and mortality rates with 1.6 million new cases and 1.4 million deaths each year. Prognosis remains poor due to deleterious development of multidrug resistance resulting in less than 15% lung cancer patients reaching five years survival. We have previously shown that Phyllanthus induced apoptosis in conjunction with its antimetastastic action. In the current study, we aimed to determine the signaling pathways utilized by Phyllanthus to exert its antimetastatic activities. Methods Cancer 10-pathway reporter array was performed to screen the pathways affected by Phyllanthus in lung carcinoma cell line (A549) to exert its antimetastatic effects. Results from this array were then confirmed with western blotting, cell cycle analysis, zymography technique, and cell based ELISA assay for human total iNOS. Two-dimensional gel electrophoresis was subsequently carried out to study the differential protein expressions in A549 after treatment with Phyllanthus. Results Phyllanthus was observed to cause antimetastatic activities by inhibiting ERK1/2 pathway via suppression of Raf protein. Inhibition of this pathway resulted in the suppression of MMP2, MMP7, and MMP9 expression to stop A549 metastasis. Phyllanthus also inhibits hypoxia pathway via inhibition of HIF-1α that led to reduced VEGF and iNOS expressions. Proteomic analysis revealed a number of proteins downregulated by Phyllanthus that were involved in metastatic processes, including invasion and mobility proteins (cytoskeletal proteins), transcriptional proteins (proliferating cell nuclear antigen; zinc finger protein), antiapoptotic protein (Bcl2) and various glycolytic enzymes. Among the four Phyllanthus species tested, P. urinaria showed the greatest antimetastatic activity. Conclusions Phyllanthus inhibits A549 metastasis by suppressing ERK1/2 and hypoxia pathways that led to suppression of various critical proteins for A549

  3. A549 lung epithelial cells grown as three-dimensional aggregates: alternative tissue culture model for Pseudomonas aeruginosa pathogenesis.

    PubMed

    Carterson, A J; Höner zu Bentrup, K; Ott, C M; Clarke, M S; Pierson, D L; Vanderburg, C R; Buchanan, K L; Nickerson, C A; Schurr, M J

    2005-02-01

    A three-dimensional (3-D) lung aggregate model was developed from A549 human lung epithelial cells by using a rotating-wall vessel bioreactor to study the interactions between Pseudomonas aeruginosa and lung epithelial cells. The suitability of the 3-D aggregates as an infection model was examined by immunohistochemistry, adherence and invasion assays, scanning electron microscopy, and cytokine and mucoglycoprotein production. Immunohistochemical characterization of the 3-D A549 aggregates showed increased expression of epithelial cell-specific markers and decreased expression of cancer-specific markers compared to their monolayer counterparts. Immunohistochemistry of junctional markers on A549 3-D cells revealed that these cells formed tight junctions and polarity, in contrast to the cells grown as monolayers. Additionally, the 3-D aggregates stained positively for the production of mucoglycoprotein while the monolayers showed no indication of staining. Moreover, mucin-specific antibodies to MUC1 and MUC5A bound with greater affinity to 3-D aggregates than to the monolayers. P. aeruginosa attached to and penetrated A549 monolayers significantly more than the same cells grown as 3-D aggregates. Scanning electron microscopy of A549 cells grown as monolayers and 3-D aggregates infected with P. aeruginosa showed that monolayers detached from the surface of the culture plate postinfection, in contrast to the 3-D aggregates, which remained attached to the microcarrier beads. In response to infection, proinflammatory cytokine levels were elevated for the 3-D A549 aggregates compared to monolayer controls. These findings suggest that A549 lung cells grown as 3-D aggregates may represent a more physiologically relevant model to examine the interactions between P. aeruginosa and the lung epithelium during infection.

  4. Hinokitiol Inhibits Migration of A549 Lung Cancer Cells via Suppression of MMPs and Induction of Antioxidant Enzymes and Apoptosis

    PubMed Central

    Jayakumar, Thanasekaran; Liu, Chao-Hong; Wu, Guan-Yi; Lee, Tzu-Yin; Manubolu, Manjunath; Hsieh, Cheng-Ying; Yang, Chih-Hao; Sheu, Joen-Rong

    2018-01-01

    Hinokitiol, a natural monoterpenoid from the heartwood of Calocedrus formosana, has been reported to have anticancer effects against various cancer cell lines. However, the detailed molecular mechanisms and the inhibiting roles of hinokitiol on adenocarcinoma A549 cells remain to be fully elucidated. Thus, the current study was designed to evaluate the effect of hinokitiol on the migration of human lung adenocarcinoma A549 cells in vitro. The data demonstrates that hinokitiol does not effectively inhibit the viability of A549 cells at up to a 10 µM concentration. When treated with non-toxic doses (1–5 µM) of hinokitiol, the cell migration is markedly suppressed at 5 µM. Hinokitiol significantly reduced p53 expression, followed by attenuation of Bax in A549 cells. A dose-dependent inhibition of activated caspase-9 and -3 was observed in the presence of hinokitiol. An observed increase in protein expression of matrix metalloproteinases (MMPs) -2/-9 in A549 cells was significantly inhibited by hinokitiol. Remarkably, when A549 cells were subjected to hinokitiol (1–5 µM), there was an increase in the activities of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) from the reduction in cells. In addition, the incubation of A549 cells with hinokitiol significantly activated the cytochrome c expression, which may be triggered by activation of caspase-9 followed by caspase-3. These observations indicate that hinokitiol inhibited the migration of lung cancer A549 cells through several mechanisms, including the activation of caspases-9 and -3, induction of p53/Bax and antioxidant CAT and SOD, and reduction of MMP-2 and -9 activities. It also induces cytochrome c expression. These findings demonstrate a new therapeutic potential for hinokitiol in lung cancer chemoprevention. PMID:29565268

  5. Hinokitiol Inhibits Migration of A549 Lung Cancer Cells via Suppression of MMPs and Induction of Antioxidant Enzymes and Apoptosis.

    PubMed

    Jayakumar, Thanasekaran; Liu, Chao-Hong; Wu, Guan-Yi; Lee, Tzu-Yin; Manubolu, Manjunath; Hsieh, Cheng-Ying; Yang, Chih-Hao; Sheu, Joen-Rong

    2018-03-22

    Hinokitiol, a natural monoterpenoid from the heartwood of Calocedrus formosana , has been reported to have anticancer effects against various cancer cell lines. However, the detailed molecular mechanisms and the inhibiting roles of hinokitiol on adenocarcinoma A549 cells remain to be fully elucidated. Thus, the current study was designed to evaluate the effect of hinokitiol on the migration of human lung adenocarcinoma A549 cells in vitro. The data demonstrates that hinokitiol does not effectively inhibit the viability of A549 cells at up to a 10 µM concentration. When treated with non-toxic doses (1-5 µM) of hinokitiol, the cell migration is markedly suppressed at 5 µM. Hinokitiol significantly reduced p53 expression, followed by attenuation of Bax in A549 cells. A dose-dependent inhibition of activated caspase-9 and -3 was observed in the presence of hinokitiol. An observed increase in protein expression of matrix metalloproteinases (MMPs) -2/-9 in A549 cells was significantly inhibited by hinokitiol. Remarkably, when A549 cells were subjected to hinokitiol (1-5 µM), there was an increase in the activities of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) from the reduction in cells. In addition, the incubation of A549 cells with hinokitiol significantly activated the cytochrome c expression, which may be triggered by activation of caspase-9 followed by caspase-3. These observations indicate that hinokitiol inhibited the migration of lung cancer A549 cells through several mechanisms, including the activation of caspases-9 and -3, induction of p53/Bax and antioxidant CAT and SOD, and reduction of MMP-2 and -9 activities. It also induces cytochrome c expression. These findings demonstrate a new therapeutic potential for hinokitiol in lung cancer chemoprevention.

  6. 4-Nitroquinoline-1-oxide effects human lung adenocarcinoma A549 cells by regulating the expression of POLD4

    PubMed Central

    HUANG, QIN-MIAO; ZENG, YI-MING; ZHANG, HUA-PING; LV, LIANG-CHAO; YANG, DONG-YONG; LIN, HUI-HUANG

    2016-01-01

    The aim of the present study was to explore the expression of POLD4 in human lung adenocarcinoma A549 cells under 4-nitroquinoline-1-oxide (4NQO) stimulation to investigate the role of POLD4 in smoking-induced lung cancer. The lung cancer A549 cell line was treated with 4NQO, with or without MG132 (an inhibitor of proteasome activity), and subsequently the POLD4 level was determined by western blot analysis. Secondly, the cell sensitivity to 4NQO and Taxol was determined when the POLD4 expression level was downregulated by siRNA. The POLD4 protein levels in the A549 cells decreased following treatment with 4NQO; however, MG132 could reverse this phenotype. Downregulation of the POLD4 expression by siRNA enhanced A549 cell sensitivity to 4NQO, but not to Taxol. In conclusion, 4NQO affects human lung adenocarcinoma A549 cells by regulating the expression of POLD4. PMID:26998273

  7. [Astaxanthin inhibits proliferation and promotes apoptosis of A549 lung cancer cells via blocking JAK1/STAT3 pathway].

    PubMed

    Wu, Chuntao; Zhang, Jinji; Liu, Tienan; Jiao, Guimei; Li, Changzai; Hu, Baoshan

    2016-06-01

    Objective To investigate the anti-tumor effects of astaxanthin on A549 lung cancer cells and the related mechanisms. Methods A549 cells were cultured with various concentrations of astaxanthin (20, 40, 60, 80, 100 μmol/L), and DMSO at the same concentrations served as vehicle controls. The viability of A549 cells was detected by CCK-8 assay; cell cycle and apoptosis were observed by flow cytometry; and the expressions of B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), signal transducers and activators of transcription 3 (STAT3), and Janus kinase 1 (JAK1) were evaluated by Western blotting. Results CCK-8 assay showed that astaxanthin decreased the proliferation of A549 cells in a dose-dependent manner. Flow cytometry showed that astaxanthin increased the number of cells in the G0/G1 phase and induced apoptosis in A549 cells. Western blotting showed that astaxanthin up-regulated the expression of Bax and down-regulated the expressions of Bcl-2, STAT3 and JAK1. Conclusion Astaxanthin functions as a potent inhibitor of A549 lung cancer cell growth by targeting JAK1/STAT3 signaling pathway.

  8. Copper(II) complexes with naringenin and hesperetin: cytotoxic activity against A 549 human lung adenocarcinoma cells and investigation on the mode of action.

    PubMed

    Tamayo, Lenka V; Gouvea, Ligiane R; Sousa, Anna C; Albuquerque, Ronniel M; Teixeira, Sarah Fernandes; de Azevedo, Ricardo Alexandre; Louro, Sonia R W; Ferreira, Adilson Kleber; Beraldo, Heloisa

    2016-02-01

    Copper(II) complexes [Cu(H2O)2 (L1)(phen)](ClO4) (1) and [Cu(H2O)(L2)(phen)](ClO4) (2) (HL1 = naringenin; HL2 = hesperetin) were obtained, in which an anionic flavonoid ligand is attached to the metal center along with 1,10-phenanthroline (phen) as co-ligand. Complexes (1) and (2) were assayed for their cytotoxic activity against A549 lung carcinoma and against normal lung fibroblasts (LL-24) and human umbilical vein endothelial cells (HUVEC). We found IC50 = 16.42 µM (1) and IC50 = 5.82 µM (2) against A549 tumor cells. Complexes (1) and (2) exhibited slight specificity, being more cytotoxic against malignant than against non-malignant cells. 1 and 2 induced apoptosis on A549 cells in a mitochondria-independent pathway, and showed antioxidant activity. The antioxidant effect of the complexes could possibly improve their apoptotic action, most likely by a PI3K-independent reduction of autophagy. Complexes (1) and (2) interact in vitro with calf thymus DNA by an intercalative binding mode. EPR data indicated that 1 and 2 interact with human serum albumin (HSA) forming mixed ligand species.

  9. Bio-fabrication of catalytic platinum nanoparticles and their in vitro efficacy against lungs cancer cells line (A549).

    PubMed

    Ullah, Sadeeq; Ahmad, Aftab; Wang, Aoke; Raza, Muslim; Jan, Amin Ullah; Tahir, Kamran; Rahman, Aziz Ur; Qipeng, Yuan

    2017-08-01

    Platinum based drugs are considered as effective agents against various types of carcinoma; however, the severe toxicity associated with the chemically prepared platinum complexes limit their practical applications. Similarly, water pollution caused by various organic moieties is another serious health problem worldwide. Hence, an intense need exists to develop new, effective and biocompatible materials with catalytic and biomedical applications. In the present contribution, we prepared platinum nanoparticles (PtNPs) by a green route using phytochemicals as a source of reducing and stabilizing agents. Well dispersed and crystalline PtNPs of spherical shapes were prepared and characterized. The bio-fabricated PtNPs were used as catalyst and anticancer agents. Catalytic performance of the PtNPs showed that 84% of the methylene blue can be reduced in 32min under visible light irradiation (K=0.078min -1 ). Similarly the catalytic conversion of 4-nitrophenol to 4-aminophenol was achieved in <20min (K=0.124min -1 ). The in vitro anticancer study revealed that biogenic PtNPs are the efficient nano-agents possessing strong anticancer activity against the lungs cancer cells line (A549). Interestingly, the as prepared PtNPs were well tolerated by normal human cells, and therefore, could be effective and biocompatible agents in the treatment of different cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Global secretome characterization of A549 human alveolar epithelial carcinoma cells during Mycoplasma pneumoniae infection

    PubMed Central

    2014-01-01

    Background Mycoplasma pneumoniae (M. pneumoniae) is one of the major etiological agents for community-acquired pneumonia (CAP) in all age groups. The early host response to M. pneumoniae infection relies on the concerted release of proteins with various biological activities. However, no comprehensive analysis of the secretory proteins has been conducted to date regarding the host response upon M. pneumoniae infection. Results We employed the liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based label-free quantitative proteomic technology to identify and characterize the members of the human alveolar epithelial carcinoma A549 cell secretome during M. pneumoniae infection. A total of 256 proteins were identified, with 113 being differentially expressed (>1.5-fold change), among which 9 were only expressed in control cells, 10 only in M. pneumoniae-treated cells, while 55 were up-regulated and 39 down-regulated by M. pneumoniae. The changed expression of some of the identified proteins was validated by RT-PCR and immunoblot analysis. Cellular localization analysis of the secretome data revealed 59.38% of the proteins were considered as “putative secretory proteins”. Functional analysis revealed that the proteins affected upon M. pneumoniae infection were mainly related to metabolic process, stress response, and immune response. We further examined the level of one up-regulated protein, IL-33, in clinical samples. The result showed that IL-33 levels were significantly higher in the plasma and bronchoalveolar lavage fluid (BALF) of M. pneumoniae pneumonia (MPP) patients. Conclusions The present study provided systematic information about the changes in the expression of secretory proteins during M. pneumoniae infection, which is useful for the discovery of specific biomarkers and targets for pharmacological intervention. PMID:24507763

  11. Effect of Withaferin A on A549 cellular proliferation and apoptosis in non-small cell lung cancer.

    PubMed

    Cai, Yong; Sheng, Zhao-Ying; Chen, Yun; Bai, Chong

    2014-01-01

    To explore the effect of Withaferin A on A549 cellular proliferation and apoptosis in non-small cell lung cancer (NSCLC). NSCNC cell line A549 was selected to explore the effect of Withaferin A on A549 cellular proliferation, apoptosis and the PI3K/Akt signal pathway capable of regulating tumor biological behavior by assessment of cellular proliferation, cellular apoptotic rates and cellular cycling as well as by immuno-blotting. Withaferin A could inhibit A549 cellular proliferation and the control rate was dosage-dependent (P<0.05), which also increased time-dependently with the same dosage of Withaferin A (P<0.05). The apoptotic indexes in A549 cells treated with 0, 2.5, 5.0, 10.0 and 20.0 μmol·L-1 Withaferin A for 48 h were significantly different (P<0.05). In addition, the apoptotic rates of each group in both early and advanced stages were higher than those in 0 μmol·L-1 (P<0.05), which were evidently higher after 48 h than those after 24 h (P<0.05). A549 cells treated by Withaferin A for 48 h were markedly lower in Bcl-2 level and obviously higher in Bax and cleaved caspase-3 levels than those treated by 0 μmol·L-1 Withaferin A (P<0.05), and there were significant differences among 5, 10 and 20 μmol·L-1 Withaferin A (P<0.05). The ratios of A549 cells treated by Withaferin A for 48 h in G0/G1 stage were higher than those in 0 μmol·L-1 , while those in S and G2/M stages were obviously lower than those in G2/M stage, and there were significant differences in 5.0, 10.0 and 20.0 μmol·L-1 Withaferin A (P<0.05). Additionally, p-Akt/Akt values were in reverse association with dosage, and the differences were significant (P<0.05). Withaferin A can inhibit the proliferation and apoptosis of A549 cells by suppressing activation of the PI3K/Akt pathways.

  12. β-elemene reverses the drug resistance of lung cancer A549/DDP cells via the mitochondrial apoptosis pathway.

    PubMed

    Yao, Cheng-Cai; Tu, Yuan-Rong; Jiang, Jie; Ye, Sheng-Fang; Du, Hao-Xin; Zhang, Yi

    2014-05-01

    β-elemene (β-ELE) is a new anticancer drug extracted from Curcuma zedoaria Roscoe and has been widely used to treat malignant tumors. Recent studies have demonstrated that β-ELE reverses the drug resistance of tumor cells. To explore the possible mechanisms of action of β-ELE, we investigated its effects on cisplatin-resistant human lung adenocarcinoma A549/DDP cells. The effects of β-ELE on the growth of A549/DDP cells in vitro were determined by MTT assay. Apoptosis was assessed by fluorescence microscopy with Hoechst 33258 staining and flow cytometry with Annexin V-FITC/PI double staining. Mitochondrial membrane potential was assessed using JC-1 fluorescence probe and laser confocal scanning microscopy, and intracellular reactive oxygen species levels were measured by 2',7'-dichlorofluorescein-diacetate staining and flow cytometry. Cytosolic glutathione content was determined using GSH kits. The expression of cytochrome c, caspase-3, procaspase-3 and the Bcl-2 family proteins was assessed by western blotting. The results demonstrated that β-ELE inhibited the proliferation of A549/DDP cells in a time- and dose-dependent manner. Furthermore, β-ELE enhanced the sensitivity of A549/DDP cells to cisplatin and reversed the drug resistance of A549/DDP cells. Consistent with a role in activating apoptosis, β-ELE decreased mitochondrial membrane potential, increased intracellular reactive oxygen species concentration and decreased the cytoplasmic glutathione levels in a time- and dose-dependent manner. The combination of β-ELE and cisplatin enhanced the protein expression of cytochrome c, caspase-3 and Bad, and reduced protein levels of Bcl-2 and procaspase-3 in the A549/DDP lung cancer cells. These results define a pathway of procaspase‑3-β-ELE function that involves decreased mitochondrial membrane potential, leading to apoptosis triggered by the release of cytochrome c into the cytoplasm and the modulation of apoptosis-related genes. The reversal of drug

  13. Novel synthetic chalcones induce apoptosis in the A549 non-small cell lung cancer cells harboring a KRAS mutation.

    PubMed

    Wang, Yiqiang; Hedblom, Andreas; Koerner, Steffi K; Li, Mailin; Jernigan, Finith E; Wegiel, Barbara; Sun, Lijun

    2016-12-01

    A series of novel chalcones were synthesized by the Claisen-Schmidt condensation reaction of tetralones and 5-/6-indolecarboxaldehydes. Treatment of human lung cancer cell line harboring KRAS mutation (A549) with the chalcones induced dose-dependent apoptosis. Cell cycle analyses and Western blotting suggested the critical role of the chalcones in interrupting G2/M transition of cell cycle. SAR study demonstrated that substituent on the indole N atom significantly affects the anticancer activity of the chalcones, with methyl and ethyl providing the more active compounds (EC 50 : 110-200nM), Compound 1g was found to be >4-fold more active in the A549 cells (EC 50 : 110nM) than in prostate (PC3) or pancreatic cancer (CLR2119, PAN02) cells. Furthermore, compound 1l selectively induced apoptosis of lung cancer cells A549 (EC 50 : 0.55μM) but did not show measurable toxicity in the normal lung bronchial epithelial cells (hBEC) at doses as high as 10μM, indicating specificity towards cancer cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Apoptosis of human lung adenocarcinoma A549 cells induced by prodigiosin analogue obtained from an entomopathogenic bacterium Serratia marcescens.

    PubMed

    Zhou, Wei; Jin, Zhi-Xiong; Wan, Yong-Ji

    2010-12-01

    An entomopathogenic bacterial strain SCQ1 was isolated from silkworm (Bombyx mori) and identified as Serratia marcescens via 16S rRNA gene analysis. This strain produces a red pigment that causes acute septicemia of silkworm. The red pigment of strain SCQ1 was identified as prodigiosin analogue (PGA) with various reported biological activities. In this study, we found that low concentration of PGA showed significant anticancer activity in human lung adenocarcinoma A549 cells, but has little effect in human bone marrow stem cells, in vitro. By exposure to different concentrations of PGA for 24 h, morphological changes and the MTT assay showed that A549 cell line was very sensitive to PGA, with IC(50) value about 2.2 mg/L. Early stage of apoptosis was detected by flow cytometry while A549 cells were treated with PGA for 4 and 12 h, respectively. The proportion of dead cells was increased with treatment time or the concentrations of PGA, but it was inversely proportional to that of apoptotic cells. These results indicate that PGA obtained from strain SCQ1 induces apoptosis in A549 cells, but the molecular mechanisms of cell death are complicated, and the S. marcescens strain SCQ1 may serve as a source of the anticancer compound, PGA.

  15. The fruit juice of Morinda citrifolia (noni) downregulates HIF-1α protein expression through inhibition of PKB, ERK-1/2, JNK-1 and S6 in manganese-stimulated A549 human lung cancer cells.

    PubMed

    Jang, Byeong-Churl

    2012-03-01

    High exposure of manganese is suggested to be a risk factor for many lung diseases. Evidence suggests anticancerous and antiangiogenic effects by products derived from Morinda citrifolia (noni) fruit. In this study, we investigated the effect of noni fruit juice (NFJ) on the expression of HIF-1α, a tumor angiogenic transcription factor in manganese-chloride (manganese)-stimulated A549 human lung carcinoma cells. Treatment with manganese largely induced expression of HIF-1α protein but did not affect HIF-1α mRNA expression in A549 cells, suggesting the metal-mediated co- and/or post-translational HIF-1α upregulation. Manganese treatment also led to increased phosphorylation of extracellular-regulated protein kinase-1/2 (ERK-1/2), c-Jun N-terminal kinase-1 (JNK-1), protein kinase B (PKB), S6 and eukaryotic translation initiation factor-2α (eIF-2α) in A549 cells. Of note, the exposure of NFJ inhibited the manganese-induced HIF-1α protein upregulation in a concentration-dependent manner. Importantly, as assessed by results of pharmacological inhibition and siRNA transfection studies, the effect of NFJ on HIF-1α protein downregulation seemed to be largely associated with the ability of NFJ to interfere with the metal's signaling to activate PKB, ERK-1/2, JNK-1 and S6 in A549 cells. It was further shown that NFJ could repress the induction of HIF-1α protein by desferoxamine or interleukin-1β (IL-1β), another HIF-1α inducer in A549 cells. Thus, the present study provides the first evidence that NFJ has the ability to strongly downregulate manganese-induced HIF-1α protein expression in A549 human lung cancer cells, which may suggest the NFJ-mediated beneficial effects on lung pathologies in which manganese and HIF-1α overexpression play pathogenic roles.

  16. Predictive role of computer simulation in assessing signaling pathways of crizotinib-treated A549 lung cancer cells.

    PubMed

    Xia, Pu; Mou, Fei-Fei; Wang, Li-Wei

    2012-01-01

    Non-small-cell lung cancer (NSCLC) is a leading cause of cancer deaths worldwide. Crizotinib has been approved by the U.S. Food and Drug Administration for the treatment of patients with advanced NSCLC. However, understanding of mechanisms of action is still limited. In our studies, we confirmed crizotinib-induced apoptosis in A549 lung cancer cells. In order to assess mechanisms, small molecular docking technology was used as a preliminary simulation of signaling pathways. Interesting, our results of experiments were consistent with the results of computer simulation. This indicates that small molecular docking technology should find wide use for its reliability and convenience.

  17. Effects of Nrf2 knockdown on the properties of irradiated cell conditioned medium from A549 human lung cancer cells.

    PubMed

    Yoshino, Hironori; Murakami, Kanna; Nawamaki, Mikoto; Kashiwakura, Ikuo

    2018-05-01

    The nuclear factor erythroid 2-related factor 2 (Nrf2) plays an important role in cellular defense against oxidative stress. Recent studies have demonstrated that Nrf2 is a useful target for cancer treatment, including radiation therapy. Ionizing radiation affects, not only the irradiated cells, but also the non-irradiated neighboring cells, and this effect is known as radiation-induced bystander effect. Upon exposure to radiation, the irradiated cells transmit signals to the non-irradiated cells via gap junctions or soluble factors. These signals in turn cause biological effects, such as a decrease in the clonogenic potential and cell death, in the non-irradiated neighboring cells. Nrf2 inhibition enhances cellular radiosensitivity. However, whether this modification of radiosensitivity by Nrf2 inhibition affects the radiation-induced bystander effects is unknown. In this study, we prepared an Nrf2 knockdown human lung cancer cell A549 and investigated whether the effects of irradiated cell conditioned medium (ICCM) on cell growth and cell death induction of non-irradiated cells vary depending on the Nrf2 knockdown. We found that Nrf2 knockdown resulted in a decrease in the cell growth and an increase in the radiosensitivity of A549 cells. When non-irradiated A549 cells were transfected with control siRNA and treated with ICCM, no significant difference was observed in the cell growth and proportion of Annexin V + dead cells between ICCM from non-irradiated cells and that from 2 or 8 Gy-irradiated cells. Similarly, no significant difference was observed in the cell growth and cell death induction upon treatment with ICCM in the Nrf2 knockdown A549 cells. Taken together, these results suggest that Nrf2 knockdown decreases cell growth and enhances the radiosensitivity of A549 cells; however, it does not alter the effect of ICCM on cell growth.

  18. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus.

    PubMed

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.

  19. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus

    PubMed Central

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells. PMID:26345201

  20. Involvement of lysosomal dysfunction in silver nanoparticle-induced cellular damage in A549 human lung alveolar epithelial cells.

    PubMed

    Miyayama, Takamitsu; Matsuoka, Masato

    2016-01-01

    While silver nanoparticles (AgNPs) are widely used in consumer and medical products, the mechanism by which AgNPs cause pulmonary cytotoxicity is not clear. AgNP agglomerates are found in endo-lysosomal structures within the cytoplasm of treated cells. In this study, the functional role of lysosomes in AgNP-induced cellular damage was examined in A549 human lung alveolar epithelial cells. We evaluated the intracellular distribution of AgNPs, lysosomal pH, cellular viability, Ag dissolution, and metallothionein (MT) mRNA levels in AgNP-exposed A549 cells that were treated with bafilomycin A1, the lysosomal acidification inhibitor. Exposure of A549 cells to citrate-coated AgNPs (20 nm diameter) for 24 h induced cellular damage and cell death at 100 and 200 μg Ag/ml, respectively. Confocal laser microscopic examination of LysoTracker-stained cells showed that AgNPs colocalized with lysosomes and their agglomeration increased in a dose-dependent manner (50-200 μg Ag/ml). In addition, the fluorescence signals of LysoTracker were reduced following exposure to AgNPs, suggesting the elevation of lysosomal pH. Treatment of A549 cells with 200 nM bafilomycin A1 and AgNPs (50 μg Ag/ml) further reduced the fluorescence signals of LysoTracker. AgNP-induced cell death was also increased by bafilomycin A1 treatment. Finally, treatment with bafilomycin A1 suppressed the dissolution of Ag and decreased the mRNA expression levels of MT-I and MT-II following exposure to AgNPs. The perturbation of lysosomal pH by AgNP exposure may play a role in AgNP agglomeration and subsequent cellular damage in A549 cells.

  1. Shikonin Induces Apoptosis, Necrosis, and Premature Senescence of Human A549 Lung Cancer Cells through Upregulation of p53 Expression

    PubMed Central

    Yeh, Yueh-Chiao; Liu, Tsun-Jui; Lai, Hui-Chin

    2015-01-01

    Shikonin, a natural naphthoquinone pigment isolated from Lithospermum erythrorhizon, has been reported to suppress growth of various cancer cells. This study was aimed to investigate whether this chemical could also inhibit cell growth of lung cancer cells and, if so, works via what molecular mechanism. To fulfill this, A549 lung cancer cells were treated with shikonin and then subjected to microscopic, biochemical, flow cytometric, and molecular analyses. Compared with the controls, shikonin significantly induced cell apoptosis and reduced proliferation in a dose-dependent manner. Specially, lower concentrations of shikonin (1–2.5 μg/mL) cause viability reduction; apoptosis and cellular senescence induction is associated with upregulated expressions of cell cycle- and apoptotic signaling-regulatory proteins, while higher concentrations (5–10 μg/mL) precipitate both apoptosis and necrosis. Treatment of cells with pifithrin-α, a specific inhibitor of p53, suppressed shikonin-induced apoptosis and premature senescence, suggesting the role of p53 in mediating the actions of shikonin on regulation of lung cancer cell proliferation. These results indicate the potential and dose-related cytotoxic actions of shikonin on A549 lung cancer cells via p53-mediated cell fate pathways and raise shikonin a promising adjuvant chemotherapeutic agent for treatment of lung cancer in clinical practice. PMID:25737737

  2. Apigenin inhibits cell proliferation, migration, and invasion by targeting Akt in the A549 human lung cancer cell line.

    PubMed

    Zhou, Zhongping; Tang, Miaomiao; Liu, Yi; Zhang, Zhuyi; Lu, Rongzhu; Lu, Jian

    2017-04-01

    Apigenin (APG), a widely distributed flavonoid in vegetables and fruits, with low toxicity, and a nonmutagenic characteristic, has been reported to have many targets. Evidence indicates that APG can inhibit the proliferation, migration, invasion, and metastasis of some tumor cells, but the mechanism, specifically in lung cancer, is unclear. The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway regulates a diverse set of cellular functions relevant to the growth and progression of lung cancer, including proliferation, survival, migration, and invasion. Our results showed that APG exerted anti-proliferation, anti-migration, and anti-invasion effects in A549 human lung cancer cells by targeting the PI3K/Akt signaling pathway. 3-(4, 5-dimethylthiszol-2-yl)-2, 5-diphenytetrazolium bromide assay and colony formation assay showed that APG suppressed cell proliferation in a dose-dependent and time-dependent manner. Cell motility and invasiveness were assayed using a wound healing and Transwell assay, suggesting that APG inhibited the migration and invasion of A549 cells. Western blot analyses were carried out to examine the Akt signaling pathways. The results confirmed that APG decreased Akt expression and its activation. Then, cells were transfected with Akt-active and Akt-DN plasmids separately. The migration and invasion of A549 cells were significantly changed, constitutively activating Akt or knocking down Akt, indicating that APG can suppress the migration and invasion of lung cancer cells by modulating the PI3K/Akt signaling pathway. Furthermore, the results indicated that APG not only suppressed phosphorylation of Akt, thereby preventing its activation, but also inhibited its downstream gene expression of matrix metalloproteinases-9, glycogen synthase kinase-3β, and HEF1. Together, APG is a new inhibitor of Akt in lung cancer and a potential natural compound for cancer chemoprevention.

  3. Chalepin: A Compound from Ruta angustifolia L. Pers Exhibits Cell Cycle Arrest at S phase, Suppresses Nuclear Factor-Kappa B (NF-κB) Pathway, Signal Transducer and Activation of Transcription 3 (STAT3) Phosphorylation and Extrinsic Apoptotic Pathway in Non-small Cell Lung Cancer Carcinoma (A549).

    PubMed

    Richardson, Jaime Stella Moses; Aminudin, Norhaniza; Abd Malek, Sri Nurestri

    2017-10-01

    Plants have been a major source of inspiration in developing novel drug compounds in the treatment of various diseases that afflict human beings worldwide. Ruta angustifolia L. Pers known locally as Garuda has been conventionally used for various medicinal purposes such as in the treatment of cancer. A dihydrofuranocoumarin named chalepin, which was isolated from the chloroform extract of the plant, was tested on its ability to inhibit molecular pathways of human lung carcinoma (A549) cells. Cell cycle analysis and caspase 8 activation were conducted using a flow cytometer, and protein expressions in molecular pathways were determined using Western blot technique. Cell cycle analysis showed that cell cycle was arrested at the S phase. Further studies using Western blotting technique showed that cell cycle-related proteins such as cyclins, cyclin-dependent kinases (CDKs), and inhibitors of CDKs correspond to a cell cycle arrest at the S phase. Chalepin also showed inhibition in the expression of inhibitors of apoptosis proteins. Nuclear factor-kappa B (NF-κB) pathway, signal transducer and activation of transcription 3 (STAT-3), cyclooxygenase-2, and c-myc were also downregulated upon treatment with chalepin. Chalepin was found to induce extrinsic apoptotic pathway. Death receptors 4 and 5 showed a dramatic upregulation at 24 h. Analysis of activation of caspase 8 with the flow cytometer showed an increase in activity in a dose- and time-dependent manner. Activation of caspase 8 induced cleavage of BH3-interacting domain death agonist, which initiated a mitochondrial-dependent or -independent apoptosis. Chalepin causes S phase cell cycle arrest, NF-κB pathway inhibition, and STAT-3 inhibition, induces extrinsic apoptotic pathway, and could be an excellent chemotherapeutic agent. This study reports the capacity of an isolated bioactive compound known as chalepin to suppress the nuclear factor kappa-light-chain-enhancer of activated B cells pathway, signal

  4. Development of drug-loaded chitosan hollow nanoparticles for delivery of paclitaxel to human lung cancer A549 cells.

    PubMed

    Jiang, Jie; Liu, Ying; Wu, Chao; Qiu, Yang; Xu, Xiaoyan; Lv, Huiling; Bai, Andi; Liu, Xuan

    2017-08-01

    In this study, biodegradable chitosan hollow nanospheres (CHN) were fabricated using polystyrene nanospheres (PS) as templates. CHN were applied to increase the solubility of poorly water-soluble drugs. The lung cancer drug paclitaxel (PTX), which is used as a model drug, was loaded into CHN by the adsorption equilibrium method. The drug-loaded sample (PTX-CHN) offered sustained PTX release and good bioavailability. The state characterization of PTX by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) showed that the PTX absorbed into CHN existed in an amorphous state. An in vitro toxicity experiment indicated that CHN were nontoxic as carriers of poorly water-soluble drugs. The PTX-CHN produced a marked inhibition of lung cancer A549 cells proliferation and encouraged apoptosis. A cell uptake experiment indicated that PTX-CHN was successfully taken up by lung cancer A549 cells. Furthermore, a degradation experiment revealed that CHN were readily biodegradable. These findings state clearly that CHN can be regarded as promising biomaterials for lung cancer treatment.

  5. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    SciTech Connect

    Zhang, Jian, E-mail: zhangjian197011@yahoo.com; Zhang, Tao; Ti, Xinyu

    2010-08-13

    Research highlights: {yields} Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells {yields} Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway {yields} Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* {yields} miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities ofmore » curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.« less

  6. Intracellular dynamics and fate of polystyrene nanoparticles in A549 Lung epithelial cells monitored by image (cross-) correlation spectroscopy and single particle tracking.

    PubMed

    Deville, Sarah; Penjweini, Rozhin; Smisdom, Nick; Notelaers, Kristof; Nelissen, Inge; Hooyberghs, Jef; Ameloot, Marcel

    2015-10-01

    Novel insights in nanoparticle (NP) uptake routes of cells, their intracellular trafficking and subcellular targeting can be obtained through the investigation of their temporal and spatial behavior. In this work, we present the application of image (cross-) correlation spectroscopy (IC(C)S) and single particle tracking (SPT) to monitor the intracellular dynamics of polystyrene (PS) NPs in the human lung carcinoma A549 cell line. The ensemble kinetic behavior of NPs inside the cell was characterized by temporal and spatiotemporal image correlation spectroscopy (TICS and STICS). Moreover, a more direct interpretation of the diffusion and flow detected in the NP motion was obtained by SPT by monitoring individual NPs. Both techniques demonstrate that the PS NP transport in A549 cells is mainly dependent on microtubule-assisted transport. By applying spatiotemporal image cross-correlation spectroscopy (STICCS), the correlated motions of NPs with the early endosomes, late endosomes and lysosomes are identified. PS NPs were equally distributed among the endolysosomal compartment during the time interval of the experiments. The cotransport of the NPs with the lysosomes is significantly larger compared to the other cell organelles. In the present study we show that the complementarity of ICS-based techniques and SPT enables a consistent elaborate model of the complex behavior of NPs inside biological systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Cytochrome c oxidase is activated by the oncoprotein Ras and is required for A549 lung adenocarcinoma growth

    PubMed Central

    2012-01-01

    Background Constitutive activation of Ras in immortalized bronchial epithelial cells increases electron transport chain activity, oxygen consumption and tricarboxylic acid cycling through unknown mechanisms. We hypothesized that members of the Ras family may stimulate respiration by enhancing the expression of the Vb regulatory subunit of cytochrome c oxidase (COX). Results We found that the introduction of activated H-RasV12 into immortalized human bronchial epithelial cells increased eIF4E-dependent COX Vb protein expression simultaneously with an increase in COX activity and oxygen consumption. In support of the regulation of COX Vb expression by the Ras family, we also found that selective siRNA-mediated inhibition of K-Ras expression in A549 lung adenocarcinoma cells reduced COX Vb protein expression, COX activity, oxygen consumption and the steady-state concentration of ATP. We postulated that COX Vb-mediated activation of COX activity may be required for the anchorage-independent growth of A549 cells as soft agar colonies or as lung xenografts. We transfected the A549 cells with COX Vb small interfering or shRNA and observed a significant reduction of their COX activity, oxygen consumption, ATP and ability to grow in soft agar and as poorly differentiated tumors in athymic mice. Conclusion Taken together, our findings indicate that the activation of Ras increases COX activity and mitochondrial respiration in part via up-regulation of COX Vb and that this regulatory subunit of COX may have utility as a Ras effector target for the development of anti-neoplastic agents. PMID:22917272

  8. [Overexpression of Keap1 inhibits the cell proliferation and metastasis and overcomes the drug resistance in human lung cancer A549 cells].

    PubMed

    Weng, X; Yan, Y Y; Tong, Y H; Fan, Y; Zeng, J M; Wang, L L; Lin, N M

    2016-06-23

    To investigate the effect of Keap1-Nrf2 pathway on cell proliferation, metastasis and drug resistance of human lung cancer A549 cell line. A549-Keap1 cell line, constantly expressing wild type Keap1, was established by lentiviral transfection. Real-time RT-PCR and western blot were used to determine the expression of Nrf2 and its target gene in A549 cells. Sulforhodamine B (SRB) assay, flow cytometry, colony formation assay, transwell assay, and cell wound-healing assay were performed to explore the effect of wild type Keap1 expression on the proliferation, invasion, migration and drug resistance of A549 cells. Over-expressed Keap1 decreased the expression of Nrf2 protein and the mRNA level of its downstream target genes and inhibited the ability of cell proliferation and clone formation of A549 cells. Keap1 overexpression induced G0/G1 phase arrest. The percentage of A549-Keap1 cells in G0/G1 phase was significantly higher than that of A549-GFP cells (80.2±5.9)% vs. (67.1±0.9%)(P<0.05). Compared with the invasive A549-Keap1 cells (156.33±17.37), the number of invasive A549-GFP cells was significantly higher (306.67±22.19) in a high power field. Keap1 overexpression significantly enhanced the sensitivity of A549 cells to carboplatin and gemcitabine (P<0.01). The IC50s of carboplatin in A549-Keap1 and A549-GFP cells were (52.1±3.3) μmol/L and (107.8±12.9) μmol/L, respectively. The IC50s of gemcitabine in A549-Keap1 and A549-GFP cells were (6.8±1.2) μmol/L and (9.9±0.5) μmol/L, respectively. Keap1 overexpression significantly inhibits the expression of Nrf2 and its downstream target genes, suppresses tumor cell proliferation and metastasis, and enhances the sensitivity of A549 cells to anticancer drugs.

  9. Salvianolic acid A reverses cisplatin resistance in lung cancer A549 cells by targeting c-met and attenuating Akt/mTOR pathway.

    PubMed

    Tang, Xia-Li; Yan, Li; Zhu, Ling; Jiao, De-Min; Chen, Jun; Chen, Qing-Yong

    2017-09-01

    Drug resistance is one of the leading causes of chemotherapy failure in non-small cell lung cancer (NSCLC) treatment. The purpose of this study was to investigate the role of c-met in human lung cancer cisplatin resistance cell line (A549/DDP) and the reversal mechanism of salvianolic acid A (SAA), a phenolic active compound extracted from Salvia miltiorrhiza. In this study, we found that A549/DDP cells exert up-regulation of c-met by activating the Akt/mTOR signaling pathway. We also show that SAA could increase the chemotherapeutic efficacy of cisplatin, suggesting a synergistic effect of SAA and cisplatin. Moreover, we revealed that SAA enhanced sensitivity to cisplatin in A549/DDP cells mainly through suppression of the c-met/AKT/mTOR signaling pathway. Knockdown of c-met revealed similar effects as that of SAA in A549/DDP cells. In addition, SAA effectively prevented multidrug resistance associated protein1 (MDR1) up-regulation in A549/DDP cells. Taken together, our results indicated that SAA suppressed c-met expression and enhanced the sensitivity of lung adenocarcinoma A549 cells to cisplatin through AKT/mTOR signaling pathway. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  10. MLKL-PITPα signaling-mediated necroptosis contributes to cisplatin-triggered cell death in lung cancer A549 cells.

    PubMed

    Jing, Lin; Song, Fei; Liu, Zhenyu; Li, Jianghua; Wu, Bo; Fu, Zhiguang; Jiang, Jianli; Chen, Zhinan

    2018-02-01

    Necroptosis has been reported to be involved in cisplatin-induced cell death, but the mechanisms underlying the occurrence of necroptosis are not fully elucidated. In this study, we show that apart from apoptosis, cisplatin induces necroptosis in A549 cells. The alleviation of cell death by two necroptosis inhibitors-necrostatin-1 (Nec-1) and necrosulfonamide (NSA), and the phosphorylation of mixed lineage kinase domain-like protein (MLKL) at serine 358, suggest the involvement of receptor-interacting protein kinase 1 (RIPK1)-RIPK3-MLKL signaling in cisplatin-treated A549 cells. Additionally, the initiation of cisplatin-induced necroptosis relies on autocrine tumor necrosis factor alpha (TNF-α). Furthermore, we present the first evidence that phosphatidylinositol transfer protein alpha (PITPα) is involved in MLKL-mediated necroptosis by interacting with the N terminal MLKL on its sixth helix and the preceding loop, which facilitates MLKL oligomerization and plasma membrane translocation in necroptosis. Silencing of PITPα expression interferes with MLKL function and reduces cell death. Our data elucidate that cisplatin-treated lung cancer cells undergo a new type of programmed cell death called necroptosis and shed new light on how MLKL translocates to the plasma membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Formoxanthone C, isolated from Cratoxylum formosum ssp. pruniflorum, reverses anticancer drug resistance by inducing both apoptosis and autophagy in human A549 lung cancer cells.

    PubMed

    Kaewpiboon, Chutima; Boonnak, Nawong; Kaowinn, Sirichat; Chung, Young-Hwa

    2018-02-15

    Multidrug resistance (MDR) cancer toward cancer chemotherapy is one of the obstacles in cancer therapy. Therefore, it is of interested to use formoxanthone C (1,3,5,6-tetraoxygenated xanthone; XanX), a natural compound, which showed cytotoxicity against MDR human A549 lung cancer (A549RT-eto). The treatment with XanX induced not only apoptosis- in A549RT-eto cells, but also autophagy-cell death. Inhibition of apoptosis did not block XanX-induced autophagy in A549RT-eto cells. Furthermore, suppression of autophagy by beclin-1 small interfering RNAs (siRNAs) did not interrupt XanX-induced apoptosis, indicating that XanX can separately induce apoptosis and autophagy. Of interest, XanX treatment reduced levels of histone deacetylase 4 (HDAC4) protein overexpressed in A549RT-etocells. The co-treatment with XanX and HDAC4 siRNA accelerated both autophagy and apoptosis more than that by XanX treatment alone, suggesting survival of HDAC4 in A549RT-eto cells. XanX reverses etoposide resistance in A549RT-eto cells by induction of both autophagy and apoptosis, and confers cytotoxicity through down-regulation of HDAC4. Copyright © 2017. Published by Elsevier Ltd.

  12. Osthole induces G2/M arrest and apoptosis in lung cancer A549 cells by modulating PI3K/Akt pathway

    PubMed Central

    2011-01-01

    Background To explore the effects of Osthole on the proliferation, cell cycle and apoptosis of human lung cancer A549 cells. Methods Human lung cancer A549 cells were treated with Osthole at different concentrations. Cell proliferation was measured using the MTT assay. Cell cycle was evaluated using DNA flow cytometry analysis. Induction of apoptosis was determined by flow cytometry and fluorescent microscopy. The expressions of Cyclin B1, p-Cdc2, Bcl-2, Bax, t-Akt and p-Akt were evaluated by Western blotting. Results Osthole inhibited the growth of human lung cancer A549 cells by inducing G2/M arrest and apoptosis. Western blotting demonstrated that Osthole down-regulated the expressions of Cyclin B1, p-Cdc2 and Bcl-2 and up-regulated the expressions of Bax in A549 cells. Inhibition of PI3K/Akt signaling pathway was also observed after treating A549 cells with Osthole. Conclusions Our findings suggest that Osthole may have a therapeutic application in the treatment of human lung cancer. PMID:21447176

  13. Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549

    NASA Astrophysics Data System (ADS)

    Syaefudin; Juniarti, A.; Rosiyana, L.; Setyani, A.; Khodijah, S.

    2016-01-01

    The aim of the present study is to evaluate cytotoxicity effect of nanoparticles of Selaginella doederleinii (S. doederleinii) leaves extract. S. doederleinii was extracted by maceration method using 70%(v/v) ethanol as solvent. Phytochemical content was analyzed qualitatively by using Harborne and Thin Layer Chromatography (TLC) methods. Nanoparticle extract was prepared by ionic gelation using chitosan as encapsulant agent. Anticancer activity was performed by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results showed that S. doederleinii contains of flavonoids. Nanoparticle of S. doederleinii leaves extract greatly inhibited A549 cells growth (cancer cells), with IC50 of 3% or 1020 μg/ml. These nanoparticles extract also inhibited the growth of Chang cells (normal cells), with IC50 of 4% or 1442 μg/ml. The effective concentration of nanoparticles extract which inhibits cancer cells without harming the normal cells is 0.5% or 167 μg/ml. Further studies are needed to obtain the concentration of nanoparticles extract which can selectively suppress cancer cells.

  14. Curcumin inhibits interferon-{alpha} induced NF-{kappa}B and COX-2 in human A549 non-small cell lung cancer cells

    SciTech Connect

    Lee, Jeeyun; Im, Young-Hyuck; Jung, Hae Hyun

    2005-08-26

    The A549 cells, non-small cell lung cancer cell line from human, were resistant to interferon (IFN)-{alpha} treatment. The IFN-{alpha}-treated A549 cells showed increase in protein expression levels of NF-{kappa}B and COX-2. IFN-{alpha} induced NF-{kappa}B binding activity within 30 min and this increased binding activity was markedly suppressed with inclusion of curcumin. Curcumin also inhibited IFN-{alpha}-induced COX-2 expression in A549 cells. Within 10 min, IFN-{alpha} rapidly induced the binding activity of a {gamma}-{sup 32}P-labeled consensus GAS oligonucleotide probe, which was profoundly reversed by curcumin. Taken together, IFN-{alpha}-induced activations of NF-{kappa}B and COX-2 were inhibited by the addition of curcumin in A549more » cells.« less

  15. Glutamine drives glutathione synthesis and contributes to radiation sensitivity of A549 and H460 lung cancer cell lines

    PubMed Central

    Sappington, Daniel R.; Siegel, Eric R.; Hiatt, Gloria; Desai, Abhishek; Penney, Rosalind B.; Jamshidi-Parsian, Azemat; Griffin, Robert J.; Boysen, Gunnar

    2016-01-01

    Background Increased glutamine uptake is known to drive cancer cell proliferation, making tumor cells glutamine-dependent. Glutamine provides additional carbon and nitrogen sources for cell growth. The first step in glutamine utilization is its conversion to glutamate by glutaminase (GLS). Glutamate is a precursor for glutathione synthesis, and we investigated the hypothesis that glutamine drives glutathione synthesis and thereby contributes to cellular defense systems. Methods The importance of glutamine for glutathione synthesis was studied in H460 and A549 lung cancer cell lines using glutamine-free medium and Bis-2-(5-phenyl-acetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) a GLS inhibitor. Metabolic activities were determined by targeted mass spectrometry. Results A significant correlation between glutamine consumption and glutathione excretion was demonstrated in H460 and A549 tumor cells. Culturing in the presence of [13C5]glutamine demonstrated that by 12 hrs >50% of excreted glutathione is derived from glutamine. Culturing in glutamine-free medium or treatment with BPTES, a glutaminase (GLS)-specific inhibitor, reduced cell proliferation and viability, and abolished glutathione excretion. Treatment with glutathione-ester prevented BPTES induced cytotoxicity. Inhibition of GLS markedly radiosensitized the lung tumor cell lines, suggesting an important role of glutamine-derived glutathione in determining radiation sensitivity. Conclusions We demonstrate here for the first time that a significant amount of extracellular glutathione is directly derived from glutamine. This finding adds yet another important function to the already known glutamine dependence of tumor cells and probably tumors as well. General significance Glutamine is essential for synthesis and excretion of glutathione to promote cell growth and viability. PMID:26825773

  16. Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines.

    PubMed

    Tammina, Sai Kumar; Mandal, Badal Kumar; Ranjan, Shivendu; Dasgupta, Nandita

    2017-01-01

    Different sized tetragonal tin oxide nanoparticles (SnO 2 NPs) were synthesized using Piper nigrum seed extract at three different calcination temperatures (300, 500, 900°C) and these nanoparticles (NPs) were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS) and Fourier transform infrared spectrophotometry (FT-IR). The optical properties were studied using UV-Vis and photoluminescence (PL) spectrophotometers. The generation of reactive oxygen species (ROS) was monitored by using a fluorescence spectrophotometer and fluorescence microscope. The cytotoxicity of the synthesized SnO 2 NPs was checked against the colorectal (HCT116) and lung (A549) cancer cell lines and the study results show that SnO 2 NPs were toxic against cancer cell lines depending on their size and dose. IC 50 values of SnO 2 NPs having average particle sizes of 8.85±3.5, 12.76±3.9 and 29.29±10.9nm are 165, 174 and 208μgL -1 against HCT116, while these values are 135, 157 and 187μgL -1 against A549 carcinoma cell lines, respectively. The generated ROS were responsible for the cytotoxicity of SnO 2 NPs to the studied cancer cells and smaller size NPs generated more ROS and hence showed higher cytotoxicity over larger size NPs. The results of this study suggest that the synthesized stable nanoparticles could be a potent therapeutic agent towards cancerous cell lines. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Seleno-short-chain chitosan induces apoptosis in human non-small-cell lung cancer A549 cells through ROS-mediated mitochondrial pathway.

    PubMed

    Zhao, Yana; Zhang, Shaojing; Wang, Pengfei; Fu, Shengnan; Wu, Di; Liu, Anjun

    2017-12-01

    Seleno-short-chain chitosan (SSCC) is a synthesized chitosan derivative. In this study, antitumor activity and underlying mechanism of SSCC on human non-small-cell lung cancer A549 cells were investigated in vitro. The MTT assay showed that SSCC could inhibit cell viability in a dose- and time-dependent manner, and 200 μg/ml SSCC exhibited significantly toxic effects on A549 cells. The cell cycle assay showed that SSCC triggered S phase cell cycle arrest in a dose- and time-dependent manner, which was related to a downregulation of S phase associated cyclin A. The DAPI staining and Annexin V-FITC/PI double staining identified that the SSCC could induce A549 cells apoptosis. Further studies found that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) by DCFH-DA and Rhodamin 123 staining, respectively. Meanwhile, free radical scavengers N-acetyl-L-cysteine (NAC) pretreatment confirmed that SSCC-induced A549 cells apoptosis was associated with ROS generation. Furthermore, real-time PCR and western blot assay showed that SSCC up-regulated Bax and down-regulated Bcl-2, subsequently incited the release of cytochrome c from mitochondria to cytoplasm, activated the increase of cleaved-caspase 3 and finally induced A549 cells apoptosis in vitro. In general, the present study demonstrated that SSCC induced A549 cells apoptosis via ROS-mediated mitochondrial apoptosis pathway.

  18. MG132 as a proteasome inhibitor induces cell growth inhibition and cell death in A549 lung cancer cells via influencing reactive oxygen species and GSH level.

    PubMed

    Han, Yong Hwan; Park, Woo Hyun

    2010-07-01

    Carbobenzoxy-Leu-Leu-leucinal (MG132) as a proteasome inhibitor has been shown to induce apoptotic cell death through formation of reactive oxygen species (ROS). In the present study, we evaluated the effects of MG132 on the growth of A549 lung cancer cells in relation to cell growth, ROS and glutathione (GSH) levels. Treatment with MG132 inhibited the growth of A549 cells with an IC(50) of approximately 20 microM at 24 hours. DNA flow cytometric analysis indicated that 0.5 approximately 30 microM MG132 induced a G1 phase arrest of the cell cycle in A549 cells. Treatment with 10 or 30 microM MG132 also induced apoptosis, as evidenced by sub-G1 cells and annexin V staining cells. This was accompanied by the loss of mitochondrial membrane potential (MMP; Delta psi m). The intracellular ROS levels including O(2) (*-) were strongly increased in 10 or 30 microM MG132-treated A549 cells but were down-regulated in 0.1, 0.5 or 1 microM MG132-treated cells. Furthermore, 10 or 30 microM MG132 increased mitochondrial O(2) (*- ) level but 0.1, 0.5 or 1 microM MG132 decreased that. In addition, 10 or 30 microM MG132 induced GSH depletion in A549 cells. In conclusion, MG132 inhibited the growth of human A549 cells via inducing the cell cycle arrest as well as triggering apoptosis, which was in part correlated with the changes of ROS and GSH levels. Our present data provide important information on the anti-growth mechanisms of MG132 in A549 lung cancer cells in relation to ROS and GSH.

  19. Oxidative Stress Facilitates IFN-γ-Induced Mimic Extracellular Trap Cell Death in A549 Lung Epithelial Cancer Cells.

    PubMed

    Lin, Chiou-Feng; Chen, Chia-Ling; Chien, Shun-Yi; Tseng, Po-Chun; Wang, Yu-Chih; Tsai, Tsung-Ting

    2016-01-01

    We previously demonstrated that IFN-γ induces an autophagy-regulated mimic extracellular trap cell death (ETosis) in A549 human lung cancer cells. Regarding reactive oxygen species (ROS) are involved in ETosis, this study investigated the role of oxidative stress. After IFN-γ stimulation, a necrosis-like cell death mimic ETosis occurred accompanied by the inhibition of cell growth, aberrant nuclear staining, and nucleosome release. ROS were generated in a time-dependent manner with an increase in NADPH oxidase component protein expression. STAT1-mediated IFN regulatory factor-1 activation was essential for upregulating ROS production. By genetically silencing p47phox, IFN-γ-induced ROS and mimic ETosis were significantly attenuated. This mechanistic study indicated that ROS may mediate DNA damage followed by histone H3 citrullination. Furthermore, ROS promoted IFN-γ-induced mimic ETosis in cooperation with autophagy. These findings further demonstrate that ROS regulates IFN-γ-induced mimic ETosis in lung epithelial malignancy.

  20. Oxidative Stress Facilitates IFN-γ-Induced Mimic Extracellular Trap Cell Death in A549 Lung Epithelial Cancer Cells

    PubMed Central

    Lin, Chiou-Feng; Chen, Chia-Ling; Chien, Shun-Yi; Tseng, Po-Chun; Wang, Yu-Chih; Tsai, Tsung-Ting

    2016-01-01

    We previously demonstrated that IFN-γ induces an autophagy-regulated mimic extracellular trap cell death (ETosis) in A549 human lung cancer cells. Regarding reactive oxygen species (ROS) are involved in ETosis, this study investigated the role of oxidative stress. After IFN-γ stimulation, a necrosis-like cell death mimic ETosis occurred accompanied by the inhibition of cell growth, aberrant nuclear staining, and nucleosome release. ROS were generated in a time-dependent manner with an increase in NADPH oxidase component protein expression. STAT1-mediated IFN regulatory factor-1 activation was essential for upregulating ROS production. By genetically silencing p47phox, IFN-γ-induced ROS and mimic ETosis were significantly attenuated. This mechanistic study indicated that ROS may mediate DNA damage followed by histone H3 citrullination. Furthermore, ROS promoted IFN-γ-induced mimic ETosis in cooperation with autophagy. These findings further demonstrate that ROS regulates IFN-γ-induced mimic ETosis in lung epithelial malignancy. PMID:27575372

  1. Mesenchymal stem cells promote cell invasion and migration and autophagy-induced epithelial-mesenchymal transition in A549 lung adenocarcinoma cells.

    PubMed

    Luo, Dan; Hu, Shiyuan; Tang, Chunlan; Liu, Guoxiang

    2018-03-01

    Mesenchymal stem cells (MSCs) are recruited into the tumour microenvironment and promote tumour growth and metastasis. Tumour microenvironment-induced autophagy is considered to suppress primary tumour formation by impairing migration and invasion. Whether these recruited MSCs regulate tumour autophagy and whether autophagy affects tumour growth are controversial. Our data showed that MSCs promote autophagy activation, reactive oxygen species production, and epithelial-mesenchymal transition (EMT) as well as increased migration and invasion in A549 cells. Decreased expression of E-cadherin and increased expression of vimentin and Snail were observed in A549 cells cocultured with MSCs. Conversely, MSC coculture-mediated autophagy positively promoted tumour EMT. Autophagy inhibition suppressed MSC coculture-mediated EMT and reduced A549 cell migration and invasion slightly. Furthermore, the migratory and invasive abilities of A549 cells were additional increased when autophagy was further enhanced by rapamycin treatment. Taken together, this work suggests that microenvironments containing MSCs can promote autophagy activation for enhancing EMT; MSCs also increase the migratory and invasive abilities of A549 lung adenocarcinoma cells. Mesenchymal stem cell-containing microenvironments and MSC-induced autophagy signalling may be potential targets for blocking lung cancer cell migration and invasion. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Houttuynia cordata Thunb extract modulates G0/G1 arrest and Fas/CD95-mediated death receptor apoptotic cell death in human lung cancer A549 cells

    PubMed Central

    2013-01-01

    Background Houttuynia cordata Thunb (HCT) is commonly used in Taiwan and other Asian countries as an anti-inflammatory, antibacterial and antiviral herbal medicine. In this study, we investigated the anti-human lung cancer activity and growth inhibition mechanisms of HCT in human lung cancer A549 cells. Results In order to investigate effects of HCT on A549 cells, MTT assay was used to evaluate cell viability. Flow cytometry was employed for cell cycle analysis, DAPI staining, and the Comet assay was used for DNA fragmentation and DNA condensation. Western blot analysis was used to analyze cell cycle and apoptotic related protein levels. HCT induced morphological changes including cell shrinkage and rounding. HCT increased the G0/G1 and Sub-G1 cell (apoptosis) populations and HCT increased DNA fragmentation and DNA condensation as revealed by DAPI staining and the Comet assay. HCT induced activation of caspase-8 and caspase-3. Fas/CD95 protein levels were increased in HCT-treated A549 cells. The G0/G1 phase and apoptotic related protein levels of cyclin D1, cyclin A, CDK 4 and CDK 2 were decreased, and p27, caspase-8 and caspase-3 were increased in A549 cells after HCT treatment. Conclusions The results demonstrated that HCT-induced G0/G1 phase arrest and Fas/CD95-dependent apoptotic cell death in A549 cells PMID:23506616

  3. Venom present in sea anemone (Heteractis magnifica) induces apoptosis in non-small-cell lung cancer A549 cells through activation of mitochondria-mediated pathway.

    PubMed

    Ramezanpour, Mahnaz; da Silva, Karen Burke; Sanderson, Barbara J S

    2014-03-01

    Lung cancer is a major cause of cancer deaths throughout the world and the complexity of apoptosis resistance in lung cancer is apparent. Venom from Heteractis magnifica caused dose-dependent decreases in survival of the human non-small-cell lung cancer cell line, as determined by the MTT and Crystal Violet assays. The H. magnifica venom induced cell cycle arrest and induced apoptosis of A549 cells, as confirmed by annexin V/propidium iodide staining. The venom-induced apoptosis in A549 cells was characterized by cleavage of caspase-3 and a reduction in the mitochondrial membrane potential. Interestingly, crude extracts from H. magnifica had less effect on the survival of non-cancer cell lines. In the non-cancer cells, the mechanism via which cell death occurred was through necrosis not apoptosis. These findings are important for future work using H. magnifica venom for pharmaceutical development to treat human lung cancer.

  4. [The effect and mechanism of vinorelbine on cisplatin resistance of human lung cancer cell line A549/DDP].

    PubMed

    Qi, Chunsheng; Gao, Sen; Li, Huiqiang; Gao, Weizhen

    2014-02-01

    Drug resistance is a major obstacle on lung cancer treatment and Vinorelbine is an effective drug to inhibition of tumor proliferation and metastasis. In this study, we investigated the effect and mechanism of Vinorelbine on reversing the cisplatin resistance of human lung cancer A549/DDP cell line. With 1 μmol/L and 5 μmol/L Vinorelbine treatment, MTS assay was employed to determine the effect of the cisplatin sensitivity of tumor cells, flow cytometry to determine the apoptosis rate and change of Rh-123 content; Western blot to determine the expression of MDR1, Bcl-2, surviving, PTEN, caspase-3/8 and phosphorylation level of Akt (p-Akt); Real-time PCR was to determine the mRNA expression of MDR1, Bcl-2, survivin and PTEN. Finally the transcriptional activities of NF-κB, Twist and Snail were determined by reporter gene system. With 1 μmol/L and 5 μmol/L Vinorelbine treatment, the sensitivity of cancer cells to cisplatin was increased by 1.91- and 2.54- folds respectively, flow cytometry showed that the content of Rh-123 was elevated 1.93- and 2.95- folds and apoptosis rate was increased 2.25- and 3.82- folds, Western blot showed that the expression of multidrug resistance related proteins MDR, Bcl-2 and survivin were downregulated, caspase-3/8 and PTEN was upregulated, phosphorylation of Akt was downregulated as well, real-time assay showed that the mRNA expression of MDR1 was downregulated 43.5% and 25.8%, Bcl-2 was downregulated 57.3% and 34.1%, survivin was downregulated 37.6% and 12.4%, PTEN was upregulated 183.4% and 154.2%, the transcriptional activities of NF-κB was downregulated 53.2% and 34.5%, Twist was downregulated 61.4% and 33.5%, and Snail was downregulated 57.8% and 18.7%. Vinorelbine treatment led to increase of cisplatin sensitivity of A549/DDP cells and the mechanisms included the regulation of PTEN/AKT/NF-κB signal pathway to decreased drug resistance gene expression and increased pro-apoptosis gene expression.

  5. Synergistic Antiproliferative Effects of a New Cucurbitacin B Derivative and Chemotherapy Drugs on Lung Cancer Cell Line A549.

    PubMed

    Marostica, Lucas Lourenço; Silva, Izabella Thaís; Kratz, Jadel Müller; Persich, Lara; Geller, Fabiana Cristina; Lang, Karen Luise; Caro, Miguel Soriano Balparda; Durán, Fernando Javier; Schenkel, Eloir Paulo; Simões, Cláudia Maria Oliveira

    2015-10-19

    Nonsmall cell lung cancer (NSCLC) represents an important cause of mortality worldwide due to its aggressiveness and growing resistance to currently available therapy. Cucurbitacins have emerged as novel potential anticancer agents showing strong antiproliferative effects and can be promising candidates for combined treatments with clinically used anticancer agents. This study investigates the synergistic antiproliferative effects of a new semisynthetic derivative of cucurbitacin B (DACE) with three chemotherapy drugs: cisplatin (CIS), irinotecan (IRI), and paclitaxel (PAC) on A549 cells. The most effective combinations were selected for studies of the mechanism of action. Using an in silico tool, DACE seems to act by a different mechanism of action when compared with that of different classes of drugs already used in clinical settings. DACE also showed potent synergic effects with drugs, and the most potent combinations induced G2/M cell cycle arrest by modulating survivin and p53 expression, disruption of F-actin cytoskeleton, and cell death by apoptosis. These treatments completely inhibited the clonogenic potential and did not reduce the proliferation of nontumoral lung cells (MRC-5). DACE also showed relevant antimigratory and anti-invasive effects, and combined treatments modulated cell migration signaling pathways evolved with metastasis progression. The effects of DACE associated with drugs was potentiated by the oxidant agent l-buthionine-sulfoximine (BSO), and attenuated by N-acetilcysteine (NAC), an antioxidant agent. The antiproliferative effects induced by combined treatments were attenuated by a pan-caspase inhibitor, indicating that the effects of these treatments are dependent on caspase activity. Our data highlight the therapeutic potential of DACE used in combination with known chemotherapy drugs and offer important insights for the development of more effective and selective therapies against lung cancer.

  6. An imaging flow cytometry method to assess ricin trafficking in A549 human lung epithelial cells.

    PubMed

    Jenner, Dominic; Chong, Damien; Walker, Nicola; Green, A Christopher

    2018-02-01

    The endocytosis and trafficking of ricin in mammalian cells is an important area of research for those producing ricin anti-toxins and other ricin therapeutics. Ricin trafficking is usually observed by fluorescence microscopy techniques. This gives good resolution and leads to a detailed understanding of the internal movement of ricin within cells. However, microscopy techniques are often hampered by complex analysis and quantification techniques, and the inability to look at ricin trafficking in large populations of cells. In these studies we have directly labelled ricin and assessed if its trafficking can be observed using Imaging Flow Cytometry (IFC) both to the cytoplasmic region of cells and specifically to the Golgi apparatus. Using IDEAS® data analysis software the specific fluorescence location of the ricin within the cells was analysed. Then, using cytoplasmic masking techniques to quantify the number of cells with endocytosed cytoplasmic ricin or cells with Golgi-associated ricin, kinetic endocytosis curves were generated. Here we present, to the authors' knowledge, the first example of using imaging flow cytometry for evaluating the subcellular transport of protein cargo, using the trafficking of ricin toxin in lung cells as a model. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  7. Chrysophanol-induced cell death (necrosis) in human lung cancer A549 cells is mediated through increasing reactive oxygen species and decreasing the level of mitochondrial membrane potential.

    PubMed

    Ni, Chien-Hang; Yu, Chun-Shu; Lu, Hsu-Feng; Yang, Jai-Sing; Huang, Hui-Ying; Chen, Po-Yuan; Wu, Shin-Hwar; Ip, Siu-Wan; Chiang, Su-Yin; Lin, Jaung-Geng; Chung, Jing-Gung

    2014-05-01

    Chrysophanol (1,8-dihydroxy-3-methylanthraquinone) is one of the anthraquinone compounds, and it has been shown to induce cell death in different types of cancer cells. The effects of chrysophanol on human lung cancer cell death have not been well studied. The purpose of this study is to examine chrysophanol-induced cytotoxic effects and also to investigate such influences that involved apoptosis or necrosis in A549 human lung cancer cells in vitro. Our results indicated that chrysophanol decreased the viable A549 cells in a dose- and time-dependent manner. Chrysophanol also promoted the release of reactive oxygen species (ROS) and Ca(2+) and decreased the levels of mitochondria membrane potential (ΔΨm ) and adenosine triphosphate in A549 cells. Furthermore, chrysophanol triggered DNA damage by using Comet assay and DAPI staining. Importantly, chrysophanol only stimulated the cytocheome c release, but it did not activate other apoptosis-associated protein levels including caspase-3, caspase-8, Apaf-1, and AIF. In conclusion, human lung cancer A549 cells treated with chrysophanol exhibited a cellular pattern associated with necrotic cell death and not apoptosis in vitro. © 2012 Wiley Periodicals, Inc. Environ Toxicol 29: 740-749, 2014. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  8. MiR-21 suppresses the anticancer activities of curcumin by targeting PTEN gene in human non-small cell lung cancer A549 cells.

    PubMed

    Zhang, W; Bai, W; Zhang, W

    2014-08-01

    Curcumin, a natural phytochemical, exhibits potent anticancer activities. Here, we sought to determine the molecular mechanisms underlying the cytotoxic effects of curcumin against human non-small cell lung cancer (NSCLC) cells. MTT assay and annexin-V/PI staining were used to analyze the effects of curcumin on the proliferation and apoptosis of A549 cells. The expression of microRNA-21 in curcumin-treated A549 cells was measured by quantitative real-time polymerase chain reaction assay. The protein level of phosphatase and tensin homolog (PTEN), a putative target of microRNA-21, was determined by Western blot analysis. Transfection of A549 cells with microRNA-21 mimic or PTEN small interfering RNA was performed to modulate the expression of microRNA-21 and PTEN under the treatment of curcumin. Curcumin at 20-40 μM inhibited cell proliferation and induced apoptosis in A549 cells. Curcumin treatment produced a dose-dependent and significant (P < 0.05) suppression of microRNA-21 expression, compared to untreated A549 cells. Moreover, the protein level of PTEN, a putative target of microRNA-21, was significantly elevated in curcumin-treated A549 cells, as determined by Western blot analysis. Transfection of A549 cells with microRNA-21 mimic or PTEN small interfering RNA significantly (P < 0.05) reversed the growth suppression and apoptosis induction by curcumin, compared to corresponding controls. Our data suggest a novel molecular mechanism in which inhibition of microRNA-21 and upregulation of PTEN mediate the anticancer activities of curcumin in NSCLC cells. Suppression of microRNA-21 may thus have therapeutic benefits against this malignancy.

  9. Quantitative phosphoproteomic analysis of host responses in human lung epithelial (A549) cells during influenza virus infection.

    PubMed

    Dapat, Clyde; Saito, Reiko; Suzuki, Hiroshi; Horigome, Tsuneyoshi

    2014-01-22

    The emergence of antiviral drug-resistant influenza viruses highlights the need for alternative therapeutic strategies. Elucidation of host factors required during virus infection provides information not only on the signaling pathways involved but also on the identification of novel drug targets. RNA interference screening method had been utilized by several studies to determine these host factors; however, proteomics data on influenza host factors are currently limited. In this study, quantitative phosphoproteomic analysis of human lung cell line (A549) infected with 2009 pandemic influenza virus A (H1N1) virus was performed. Phosphopeptides were enriched from tryptic digests of total protein of infected and mock-infected cells using a titania column on an automated purification system followed by iTRAQ labeling. Identification and quantitative analysis of iTRAQ-labeled phosphopeptides were performed using LC-MS/MS. We identified 366 phosphorylation sites on 283 proteins. Of these, we detected 43 upregulated and 35 downregulated proteins during influenza virus infection. Gene ontology enrichment analysis showed that majority of the identified proteins are phosphoproteins involved in RNA processing, immune system process and response to infection. Host-virus interaction network analysis had identified 23 densely connected subnetworks. Of which, 13 subnetworks contained proteins with altered phosphorylation levels during by influenza virus infection. Our results will help to identify potential drug targets that can be pursued for influenza antiviral drug development. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells.

    PubMed

    Yamagata, Kazuo; Izawa, Yuri; Onodera, Daiki; Tagami, Motoki

    2018-04-01

    Previous studies indicated that chlorogenic acid, a compound present in many fruits and vegetables, has anti-cancer activities. We report that chlorogenic acid regulates the expression of apoptosis-related genes and self-renewal-related stem cell markers in cancer cells. The lung cancer cell line A549 was cultured with or without chlorogenic acid. The presence of chlorogenic acid decreased cell proliferation as measured by MTT activity. Polymerase chain reaction (PCR) showed that treatment of cells with chlorogenic acid reduced the expression of BCL2 but increased that of both BAX and CASP3. Chlorogenic acid enhanced annexin V expression as measured using fluorescently labeled annexin V. Chlorogenic acid also induced p38 MAPK and JNK gene expression. Meanwhile, several agents, including SB203580 (p38 MAP kinase inhibitor), N-acetylcysteine (antioxidant inhibitor), dipyridamole (phosphodiesterase inhibitor), and apocynin (NADPH-oxidase inhibitor) blocked chlorogenic acid-induced BAX gene expression. Chlorogenic acid reduced gene expression levels of stem cell-associated markers NANOG, POU5F1, and SOX2. Together these results indicate that chlorogenic acid affects the expression of apoptosis-related genes that are part of oxidative stress and p38 MAP-dependent pathways, as well as genes encoding stem cell markers. In conclusion, chlorogenic acid may contribute to the polyphenolic anti-cancer effect associated with consumption of vegetables and fruits.

  11. Enhanced expression of PKM2 associates with the biological properties of cancer stem cells from A549 human lung cancer cells.

    PubMed

    Guo, Chang-Ying; Yan, Chen; Luo, Lan; Goto, Shinji; Urata, Yoshishige; Xu, Jian-Jun; Wen, Xiao-Ming; Kuang, Yu-Kang; Tou, Fang-Fang; Li, Tao-Sheng

    2017-04-01

    Cancer cells express the M2 isoform of glycolytic enzyme pyruvate kinase (PKM2) for favoring the survival under a hypoxic condition. Considering the relative low oxygen microenvironment in stem cell niche, we hypothesized that an enhanced PKM2 expression associates with the biological properties of cancer stem cells. We used A549 human lung cancer cell line and surgical resected lung cancer tissue samples from patients for experiments. We confirmed the co-localization of PKM2 and CD44, a popular marker for cancer stem cells in lung cancer tissue samples from patients. The expression of PKM2 was clearly observed in approximately 80% of the A549 human lung cancer cells. Remarkably, enhanced expression of PKM2 was specially observed in these cells that also positively expressed CD44. Downregulation of PKM2 in CD44+ cancer stem cells by siRNA significantly impaired the potency for spheroid formation, decreased the cell survival under fetal bovine serum deprivation and hypoxic conditions, but increased their sensitivity to anti-cancer drug of cisplatin and γ-ray. The enhanced expression of PKM2 seems to associate with the biological properties of cancer stem cells from A549 human lung cancer cells. Selective targeting of PKM2 may provide a new strategy for cancer therapy, especially for patients with therapeutic resistance.

  12. Dehydrobruceine B enhances the cisplatin-induced cytotoxicity through regulation of the mitochondrial apoptotic pathway in lung cancer A549 cells.

    PubMed

    Huang, Zhuqing; Yang, Guotao; Shen, Tao; Wang, Xiaoning; Li, Haizhen; Ren, Dongmei

    2017-05-01

    Dehydrobruceine B (DHB) is a quassinoid isolated from Brucea javanica. We have shown previously that DHB induced apoptosis on two kinds of lung cancer cell lines, A549 and NCI-H292. In the present study, we investigated the interactions of DHB and cisplatin (CDDP) on apoptotic-related cancer cell death. Synergistic effects on cell proliferation and apoptosis were observed when A549 cells were treated with DHB plus CDDP. DHB combined CDDP exposure increased depolarization of mitochondrial membrane potential (MMP) and release of cytochrome c from mitochondria into the cytoplasm. The combination treatment also enhanced protein expression of Bax, reduced the protein levels of Bcl-xL and Bcl-2, and increased the cleavage of caspase-3, caspase-9 and poly (ADP-ribose) polymerase (PARP). These results indicated that DHB sensitized A549 cells to cisplatin by regulating the mitochondrial apoptotic pathway. High constitutive expression of Nrf2 was found in A549 cells, which enhance the resistance of cancer cells to chemotherapeutic agents including cisplatin. DHB reduced the protein levels of Nrf2 and its target genes, which may contribute to the increase of intracellular ROS level, consequently, induced mitochondria apoptosis. These results generated a rationale for further investigation of DHB combined with CDDP as a potential therapeutic strategy in lung cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. 4-Methoxychalcone Enhances Cisplatin-Induced Oxidative Stress and Cytotoxicity by Inhibiting the Nrf2/ARE-Mediated Defense Mechanism in A549 Lung Cancer Cells

    PubMed Central

    Lim, Juhee; Lee, Sung Ho; Cho, Sera; Lee, Ik-Soo; Kang, Bok Yun; Choi, Hyun Jin

    2013-01-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcriptional regulator for the protection of cells against oxidative and xenobiotic stresses. Recent studies have demonstrated that high constitutive expression of Nrf2 is observed in many types of cancer cells showing resistance to anti-cancer drugs, suggesting that the suppression of overexpressed Nrf2 could be an attractive therapeutic strategy to overcome cancer drug resistance. In the present study, we aimed to find small molecule compounds that enhance the sensitivity of tumor cells to cisplatin induced cytotoxicity by suppressing Nrf2-mediated defense mechanism. A549 lung cancer cells were shown to be more resistant to the anti-cancer drug cisplatin than HEK293 cells, with higher Nrf2 signaling activity; constitutively high amounts of Nrf2-downstream target proteins were observed in A549 cells. Among the three chalcone derivatives 4-methoxy-chalcone (4-MC), hesperidin methylchalcone, and neohesperidin dihydrochalcone, 4-MC was found to suppress transcriptional activity of Nrf2 in A549 cells but to activate it in HEK293 cells. 4-MC was also shown to down-regulate expression of Nrf2 and the downstream phase II detoxifying enzyme NQO1 in A549 cells. The PI3K/Akt pathway was found to be involved in the 4-MC-induced inhibition of Nrf2/ARE activity in A549 cells. This inhibition of Nrf2 signaling results in the accelerated generation of reactive oxygen species and exacerbation of cytotoxicity in cisplatin-treated A549 cells. Taken together, these results suggest that the small molecule compound 4-MC could be used to enhance the sensitivity of tumor cells to the therapeutic effect of cisplatin through the regulation of Nrf2/ARE signaling. PMID:24046186

  14. 4-methoxychalcone enhances cisplatin-induced oxidative stress and cytotoxicity by inhibiting the Nrf2/ARE-mediated defense mechanism in A549 lung cancer cells.

    PubMed

    Lim, Juhee; Lee, Sung Ho; Cho, Sera; Lee, Ik-Soo; Kang, Bok Yun; Choi, Hyun Jin

    2013-10-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcriptional regulator for the protection of cells against oxidative and xenobiotic stresses. Recent studies have demonstrated that high constitutive expression of Nrf2 is observed in many types of cancer cells showing resistance to anti-cancer drugs, suggesting that the suppression of overexpressed Nrf2 could be an attractive therapeutic strategy to overcome cancer drug resistance. In the present study, we aimed to find small molecule compounds that enhance the sensitivity of tumor cells to cisplatin induced cytotoxicity by suppressing Nrf2-mediated defense mechanism. A549 lung cancer cells were shown to be more resistant to the anti-cancer drug cisplatin than HEK293 cells, with higher Nrf2 signaling activity; constitutively high amounts of Nrf2-downstream target proteins were observed in A549 cells. Among the three chalcone derivatives 4-methoxy-chalcone (4-MC), hesperidin methylchalcone, and neohesperidin dihydrochalcone, 4-MC was found to suppress transcriptional activity of Nrf2 in A549 cells but to activate it in HEK293 cells. 4-MC was also shown to down-regulate expression of Nrf2 and the downstream phase II detoxifying enzyme NQO1 in A549 cells. The PI3K/Akt pathway was found to be involved in the 4-MC-induced inhibition of Nrf2/ARE activity in A549 cells. This inhibition of Nrf2 signaling results in the accelerated generation of reactive oxygen species and exacerbation of cytotoxicity in cisplatin-treated A549 cells. Taken together, these results suggest that the small molecule compound 4-MC could be used to enhance the sensitivity of tumor cells to the therapeutic effect of cisplatin through the regulation of Nrf2/ARE signaling.

  15. A flavonoid isolated from Streptomyces sp. (ERINLG-4) induces apoptosis in human lung cancer A549 cells through p53 and cytochrome c release caspase dependant pathway.

    PubMed

    Balachandran, C; Sangeetha, B; Duraipandiyan, V; Raj, M Karunai; Ignacimuthu, S; Al-Dhabi, N A; Balakrishna, K; Parthasarathy, K; Arulmozhi, N M; Arasu, M Valan

    2014-12-05

    The aim of this study was to investigate the anticancer activity of a flavonoid type of compound isolated from soil derived filamentous bacterium Streptomyces sp. (ERINLG-4) and to explore the molecular mechanisms of action. Cytotoxic properties of ethyl acetate extract was carried out against A549 lung cancer cell line using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Cytotoxic properties of isolated compound were investigated in A549 lung cancer cell line, COLO320DM cancer cell line and Vero cells. The compound showed potent cytotoxic properties against A549 lung cancer cell line and moderate cytotoxic properties against COLO320DM cancer cell line. Isolated compound showed no toxicity up to 2000 μg/mL in Vero cells. So we have chosen the A549 lung cancer cell line for further anticancer studies. Intracellular visualization was done by using a laser scanning confocal microscope. Apoptosis was measured using DNA fragmentation technique. Treatment of the A549 cancer cells with isolated compound significantly reduced cell proliferation, increased formation of fragmented DNA and apoptotic body. Activation of caspase-9 and caspase-3 indicated that compound may be inducing intrinsic and extrinsic apoptosis pathways. Bcl-2, p53, pro-caspases, caspase-3, caspase-9 and cytochrome c release were detected by western blotting analysis after compound treatment (123 and 164 μM). The activities of pro-caspases-3, caspase-9 cleaved to caspase-3 and caspase-9 gradually increased after the addition of isolated compound. But Bcl-2 protein was down regulated after treatment with isolated compound. Molecular docking studies showed that the compound bound stably to the active sites of caspase-3 and caspase-9. These results strongly suggest that the isolated compound induces apoptosis in A549 cancer cells via caspase activation through cytochrome c release from mitochondria. The present results might provide helpful suggestions for the design of

  16. Toxicity of wood smoke particles in human A549 lung epithelial cells: the role of PAHs, soot and zinc.

    PubMed

    Dilger, Marco; Orasche, Jürgen; Zimmermann, Ralf; Paur, Hanns-Rudolf; Diabaté, Silvia; Weiss, Carsten

    2016-12-01

    Indoor air pollution is associated with increased morbidity and mortality. Specifically, the health impact of emissions from domestic burning of biomass and coal is most relevant and is estimated to contribute to over 4 million premature deaths per year worldwide. Wood is the main fuel source for biomass combustion and the shift towards renewable energy sources will further increase emissions from wood combustion even in developed countries. However, little is known about the constituents of wood smoke and biological mechanisms that are responsible for adverse health effects. We exposed A549 lung epithelial cells to collected wood smoke particles and found an increase in cellular reactive oxygen species as well as a response to bioavailable polycyclic aromatic hydrocarbons. In contrast, cell vitality and regulation of the pro-inflammatory cytokine interleukin-8 were not affected. Using a candidate approach, we could recapitulate WSP toxicity by the combined actions of its constituents soot, metals and PAHs. The soot fraction and metals were found to be the most important factors for ROS formation, whereas the PAH response can be mimicked by the model PAH benzo[a]pyrene. Strikingly, PAHs adsorbed to WSPs were even more potent in activating target gene expression than B[a]P individually applied in suspension. As PAHs initiate multiple adverse outcome pathways and are prominent carcinogens, their role as key pollutants in wood smoke and its health effects warrants further investigation. The presented results suggest that each of the investigated constituents soot, metals and PAHs are major contributors to WSP toxicity. Mitigation strategies to prevent adverse health effects of wood combustion should therefore not only aim at reducing the emitted soot and PAHs but also the metal content, through the use of more efficient combustion appliances, and particle precipitation techniques, respectively.

  17. Up-Regulation of Pro-Inflammatory Cytokines and Chemokine Production in Avian Influenza H9N2 Virus-Infected Human Lung Epithelial Cell Line (A549).

    PubMed

    Farzin, Hamidreza; Toroghi, Reza; Haghparast, Alireza

    2016-01-01

    Influenza H9N2 virus mostly infects avian species but poses a potential health risk to humans. Little is known about the mammalian host immune responses to H9N2 virus. To obtain insight into the innate immune responses of human lung epithelial cells to the avian H9N2 virus, the expressions of pro-inflammatory cytokines and chemokine in the human airway epithelial cells infected with avian H9N2 virus were examined by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). H9N2 virus was able to cultivate in the human lung epithelial cell line (A549) and stimulate production of pro-inflammatory cytokines (IL-1β, IL-6) and chemokine (IL-8). Expressions of cytokine genes were up-regulated to a significantly higher level for IL-1β (p < 0.01), IL-6 (p < 0.01 after 12 hours and p < 0.05 after 24 hours) and IL-8 (p < 0.01 after 12 hours and p < 0.001 after 24 hours) in virus-cultured A549 cells as compared with non-virus-cultured cells. The amount of IL-6 and IL-1β proteins secreted into the culture medium was also increased after virus culture infection of A549 cell line compared to non-virus-cultured A549 cells and were significant in both IL-1β (p < 0.05 in 18 hours and p < 0.001 in 24-48 hours harvested supernatant) and IL-6 (p < 0.001). Silencing the p65 component of NF-κB in A549 cells suppressed the stimulatory effects of influenza virus on secretion of pro-inflammatory cytokines and chemokine. The findings in this study will broaden our understanding of host innate immune mechanisms and the pathogenesis of H9N2 influenza viruses in human respiratory epithelium.

  18. Mineral fiber-mediated activation of phosphoinositide-specific phospholipase c in human bronchoalveolar carcinoma-derived alveolar epithelial A549 cells.

    PubMed

    Loreto, Carla; Carnazza, Maria Luisa; Cardile, Venera; Libra, Massimo; Lombardo, Laura; Malaponte, Grazia; Martinez, Giuseppina; Musumeci, Giuseppe; Papa, Veronica; Cocco, Lucio

    2009-02-01

    Given the role of phosphoinositide-specific phospholipase C (PLC) isozymes in the control of cell growth and differentiation we were prompted to analyze the expression of some of these PLC in human bronchoalveolar carcinoma-derived alveolar epithelial A549 cells. The effects of several fluoro-edenite fibers were compared with those of tremolite, a member of the calcic amphibole group of asbestos that originates from Calabria (Italy), and crocidolite, that, due to its high toxicity, is one of the most studied asbestos amphiboles. Our data show an increased expression of both PLC beta1 and PLC gamma1 in A549 cells treated with asbestos-like fibers, hinting at a role of PLC signalling in those cancerous cells.

  19. Mechanisms underlying regulation of cell cycle and apoptosis by hnRNP B1 in human lung adenocarcinoma A549 cells.

    PubMed

    Han, Juan; Tang, Feng-ming; Pu, Dan; Xu, Dan; Wang, Tao; Li, Weimin

    2014-01-01

    Overexpression of heterogeneous nuclear ribonucleoprotein B1 (hnRNP B1), a nuclear RNA binding protein, has been reported to occur in early-stage lung cancer and in premalignant lesions. DNA-dependent protein kinase (DNA-PK) is known to be involved in the repair of double-strand DNA breaks. Reduced capacity to repair DNA has been associated with the risk of lung cancer. We investigated a link between hnRNP B1 and DNA-PK and their effects on proliferation, cell cycle, and apoptosis in the human lung adenocarcinoma cell line A549. We found that hnRNP B1 and DNA-PK interact with each other in a complex fashion. Reducing hnRNP B1 expression in A549 cells with the use of RNAi led to upregulation of p53 activity through upregulation of DNA-PK activity but without inducing p53 expression. Further, suppression of hnRNP B1 in A549 cells slowed cell proliferation, promoted apoptosis, and induced cell cycle arrest at the G1 stage. The presence of NU7026 reduced the arrest of cells at the G1 stage and reduced the apoptosis rate while promoting cell growth. Taken together, our results demonstrate that by regulating DNA-PK activity, hnRNP B1 can affect p53-mediated cell cycle progression and apoptosis, resulting in greater cell survival and subsequent proliferation.

  20. Depleted aldehyde dehydrogenase 1A1 (ALDH1A1) reverses cisplatin resistance of human lung adenocarcinoma cell A549/DDP.

    PubMed

    Wei, Yunyan; Wu, Shuangshuang; Xu, Wei; Liang, Yan; Li, Yue; Zhao, Weihong; Wu, Jianqing

    2017-01-01

    Cisplatin is the standard first-line chemotherapeutic agent for the treatment of non-small cell lung cancer (NSCLC). However, resistance to chemotherapy has been a major obstacle in the management of NSCLC. Aldehyde dehydrogenase 1A1 (ALDH1A1) overexpression has been observed in a variety of cancers, including lung cancer. The purpose of this study was to investigate the effect of ALDH1A1 expression on cisplatin resistance and explore the mechanism responsible. Reverse transcriptase-PCR was applied to measure the messenger RNA expression of ALDH1A1, while Western blot assay was employed to evaluate the protein expression of ALDH1A1, B-cell lymphoma 2, Bcl-2-like protein 4, phospho-protein kinase B (p-AKT) and AKT. A short hairpin RNA was used to knockdown ALDH1A1 expression. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to determine the effect of ALDH1A1 decrease on cell viability. The cell apoptotic rate was tested using flow cytometry assay. ALDH1A1 is overexpressed in cisplatin resistant cell line A549/DDP, compared with A549. ALDH1A1 depletion significantly decreased A549/DDP proliferation, increased apoptosis, and reduced cisplatin resistance. In addition, the phosphoinositide 3-kinase (PI3K) / AKT pathway is activated in A549/DDP, and ALDH1A1 knockdown reduced the phosphorylation level of AKT. Moreover, the combination of ALDH1A1-short hairpin RNA and PI3K/AKT pathway inhibitor LY294002 markedly inhibited cell viability, enhanced apoptotic cell death, and increased cisplatin sensitivity. These results suggest that ALDH1A1 depletion could reverse cisplatin resistance in human lung cancer cell line A549/DDP, and may act as a potential target for the treatment of lung cancers resistant to cisplatin. © 2016 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  1. A novel small molecule, Rosline, inhibits growth and induces caspase-dependent apoptosis in human lung cancer cells A549 through a reactive oxygen species-dependent mechanism.

    PubMed

    Zhao, Ting; Feng, Yang; Jin, Wenling; Pan, Hui; Li, Haizhou; Zhao, Yang

    2016-06-01

    Chemical screening using synthetic small molecule libraries has provided a huge amount of novel active molecules. It generates lead compound for drug development and brings focus on molecules for mechanistic investigations on many otherwise intangible biological processes. In this study, using non-small cell lung cancer cell A549 to screen against a structurally novel and diverse synthetic small molecule library of 2,400 compounds, we identified a molecule named rosline that has strong anti-proliferation activity on A549 cells with a 50% cell growth inhibitory concentration (IC50 ) of 2.87 ± 0.39 µM. We showed that rosline treatment increased the number of Annexin V-positive staining cell, as well as G2/M arrest in their cell cycle progression. Further, we have demonstrated that rosline induces a decrease of mitochondrial membrane potential (Δφm ) and an increase of caspases 3/7 and 9 activities in A549 cells, although having no effect on the activity of caspase 8. Moreover, we found that rosline could induce the production of reactive oxygen species (ROS) and inhibit the phosphorylation of signaling molecule Akt in A549 cells. Alternatively, an antioxidant N-acetyl-L-cysteine (NAC) significantly attenuated rosline's effects on the mitochondrial membrane potential, caspases 3/7 and 9 activities, cell viabilities and the phosphorylation of Akt. Our results demonstrated that ROS played an important role in the apoptosis of A549 cells induced by rosline. © 2016 International Federation for Cell Biology.

  2. Potential targets for lung squamous cell carcinoma

    Cancer.gov

    Researchers have identified potential therapeutic targets in lung squamous cell carcinoma, the second most common form of lung cancer. The Cancer Genome Atlas (TCGA) Research Network study comprehensively characterized the lung squamous cell carcinoma gen

  3. Neferine augments therapeutic efficacy of cisplatin through ROS- mediated non-canonical autophagy in human lung adenocarcinoma (A549 cells).

    PubMed

    Kalai Selvi, Sivalingam; Vinoth, Amirthalingam; Varadharajan, Thiyagarajan; Weng, Ching Feng; Vijaya Padma, Viswanadha

    2017-05-01

    Combination of dietary components with chemotherapy drugs is an emerging new strategy for cancer therapy to increase antitumor responses. Neferine, major bisbenzylisoquinoline alkaloid isolated from the seed embryo of Nelumbo nucifera (Lotus). In the present study, we investigated the efficacy of the combinatorial regimen of neferine and cisplatin compared to cisplatin high dose in human lung adenocarcinoma (A549) cells. Co-treatment with neferine enhanced cisplatin-induced autophagy in A549 cells was accompanied by Acidic vesicular accumulation (AVO), enhanced generation of reactive oxygen species (ROS) and depletion of intracellular glutathione (GSH), down regulation of PI3K/AKT/mTOR pathway, conversion of LC3B-I to LC3B-II. This enhanced autophagy developed via a non-canonical mechanism that did not require Beclin-1, PI3KCIII. In conclusion, these results suggest that neferine enhances cisplatin -induced autophagic cancer cell death through downregulation of PI3K/Akt/mTOR signaling pro-survival pathway and ROS- mediated Beclin-1 and PI3K CIII independent autophagy in human lung adenocarcinoma (A549 cells). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Garcinol from Garcinia indica Downregulates Cancer Stem-like Cell Biomarker ALDH1A1 in Nonsmall Cell Lung Cancer A549 Cells through DDIT3 Activation.

    PubMed

    Wang, Jinhan; Wang, Liwen; Ho, Chi-Tang; Zhang, Kunsheng; Liu, Qiang; Zhao, Hui

    2017-05-10

    Nonsmall cell lung cancer (NSCLC) is the predominant type of lung cancer. Patients with NSCLC show high mortality rates because of failure to clean up cancer stem cells (CSCs). The anticancer activity of phytochemical garcinol has been identified in various cancer cell models. However, the effect of garcinol on NSCLC cell lines is still lacking. Of the NSCLC cell lines we tested, A549 cells were the most sensitive to garcinol. Interestingly, Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) was preferentially expressed in A549 cells and downregulated by the addition of garcinol. We also found that garcinol enriched DNA damage-inducible transcript 3 (DDIT3) and then altered DDIT3-CCAAT-enhancer-binding proteins beta (C/EBPβ) interaction resulting in a decreased binding of C/EBPβ to the endogenous ALDH1A1 promoter. Furthermore, garcinol's inhibition of ALDH1A1 was identified in a xenograft mice model. Garcinol repressed ALDH1A1 transcription in A549 cells through alterations in the interaction between DDIT3 and C/EBPβ. Garcinol could be a potential dietary phytochemical candidate for NSCLCs patients whose tumors harbored high ALDH1A1 expression.

  5. HMGA2 upregulation mediates Cd-induced migration and invasion in A549 cells and in lung tissues of mice.

    PubMed

    Luo, Huiyuan; Li, Zhiguo; Ge, Hong; Mei, Dan; Zhao, Lian; Jiang, Liping; Geng, Chengyan; Li, Qiujuan; Yao, Xiaofeng; Cao, Jun

    2017-11-01

    Cadmium (Cd) is a toxic metal widely found in a number of environmental matrices, and it induces serious adverse effects in various organs and tissues. In this study, the role of high mobility group A2 (HMGA2) in promoting migration and invasion in Cd-treated A549 cells and lung tissues of mice was investigated. Our findings showed that exposure to Cd (2 μM) for 48 h or subcutaneous injection of Cd daily for 6 weeks significantly enhanced the expression of matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-2 (MMP-2), phosphorylated focal adhesion kinase (p-FAK), and HMGA2 in A549 cells or lung tissues of mice. In A549 cells, HMGA2 knockdown significantly decreased expression of MMP-9, MMP-2 and p-FAK and inhibited the migration and invasion compared to that of only Cd-treated cultures. Overexpression of HMGA2 in HEK-293T cells increased expression of MMP-9, MMP-2 and p-FAK and enhanced the migration and invasion compared with the empty vector transfection group. In conclusion, upregulation of HMGA2 plays an important role in Cd-enhanced migration and invasion. Suppressing HMGA2 expression might have potential values in prevention of Cd-resulted toxicities. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. SiRNA/DOX lodeded chitosan based nanoparticles: Development, Characterization and in vitro evaluation on A549 lung cancer cell line.

    PubMed

    Seifi-Najmi, M; Hajivalili, M; Safaralizadeh, R; Sadreddini, S; Esmaeili, S; Razavi, R; Ahmadi, M; Mikaeili, H; Baradaran, B; Shams-Asenjan, K; Yousefi, M

    2016-09-30

    High-mobility group AT-hook2 (HMGA2), involved in epithelial mesenchymal transition (EMT) process, has a pivotal role in lung cancer metastasis. Lung cancer therapy with HMGA2 suppressing small interfering RNA (siRNA) has been introduced recently while doxorubicin (DOX) has been used as a frequent cancer chemotherapy agent. Both reagents have been faced with obstacles in clinic which make them ineffective. NanoParticles (NPs) provided a platform for efficient co delivery of the anticancer drugs. The aim of this study was production and in vitro characterization of different pharmacological groups (siRNA, DOX or siRNA-DOX) of carboxymethyl dextran thrimethyl chitosan nanoparticles (CMDTMChiNPs) on cytotoxicity, gene expression, apoptosis and migration of metastatic lung cancer cell line (A-549). CMDTMChiNPs were synthesized and encapsulated with siRNA, DOX or siRNA-DOX. Then the effects of HMGA2 siRNA and DOX co delivery was assessed in A549 viability and target genes (HMGA2, Ecadherin, vimentin and MMP9) by MTT and real time PCR, respectively. In addition capability of apoptosis induction and anti-migratory features of formulated NPs were analyzed by flowcytometry and wound healing assays. SiRNA-DOX-CMDTM ChiNPs approximate size were 207±5 with poly dispersity index (PDI) and zeta potential of 0.4 and 16.3±0.3, respectively. NPs loaded with DOX and siRNA were the most efficient drug formulations in A549 cell cytotoxicity, altering of EMT markers, apoptosis induction and migration inhibition. Generally our results showed that co delivery of HMGA2 siRNA and DOX by novel designed CMDTMChiNPs is a new therapeutic approach with great potential efficiency for lung cancer treatment.

  7. Umbelliprenin is cytotoxic against QU-DB large cell lung cancer cell line but anti-proliferative against A549 adenocarcinoma cells

    PubMed Central

    2012-01-01

    Background Umbelliprenin is a natural compound, belonging to the class of sesquiterpene coumarins. Recently, umbelliprenin has attracted the researchers' attention for its antitumor activities against skin tumors. Its effect on lung cancer is largely unknown. The aim of our study was to investigate the effects of this natural compound, which is expected to have low adverse effects, on lung cancer. Methods The QU-DB large cell and A549 adenocarcinoma lung cancer cell lines were treated with umbelliprenin. IC50 values were estimated using methyl thiazolely diphenyl-tetrazolium bromide (MTT) assay, in which a decrease in MTT reduction can occur as a result of cell death or cell proliferation inhibition. To quantify the rate of cell death at IC50 values, flow cytometry using Annexin V-FITC (for apoptotic cells), and propidium iodide (for necrotic cells) dyes were employed. Results Data from three independent MTT experiments in triplicate revealed that IC50 values for QU-DB and A549 were 47 ± 5.3 μM and 52 ± 1.97 μM, respectively. Annexin V/PI staining demonstrated that umbelliprenin treatment at IC50 induced 50% cell death in QU-DB cells, but produced no significant death in A549 cells until increasing the umbelliprenin concentration to IC80. The pattern of cell death was predominantly apoptosis in both cell lines. When peripheral blood mononuclear cells were treated with 50 μM and less concentrations of umbelliprenin, no suppressive effect was observed. Conclusions We found cytotoxic/anti-proliferative effects of umbelliprenin against two different types of lung cancer cell lines. PMID:23351548

  8. Low-dose carbon-based nanoparticle-induced effects in A549 lung cells determined by biospectroscopy are associated with increases in genomic methylation

    NASA Astrophysics Data System (ADS)

    Li, Junyi; Tian, Meiping; Cui, Li; Dwyer, John; Fullwood, Nigel J.; Shen, Heqing; Martin, Francis L.

    2016-02-01

    Nanotechnology has introduced many manufactured carbon-based nanoparticles (CNPs) into our environment, generating a debate into their risks and benefits. Numerous nanotoxicology investigations have been carried, and nanoparticle-induced toxic effects have been reported. However, there remain gaps in our knowledge, primarily regarding mechanism. Herein, we assessed the global alterations induced by CNPs in A549 lung cells using biospectroscopy techniques, including attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and surface-enhanced Raman spectroscopy (SERS). A549 cells were treated with fullerene (C60), long or short multi-walled carbon nanotubes, or single-walled carbon nanotubes at concentrations of 0.1 mg/L, 0.01 mg/L and 0.001 mg/L. Exposed cells were then analysed by ATR-FTIR spectroscopy and SERS. Spectra were pre-processed via computational analysis, and information on biochemical alterations in exposed cells were identified. Additionally, global DNA methylation levels in cells exposed to CNPs at 0.1 mg/L were determined using HPLC-MS and genetic regulators (for DNA methylation) were checked by quantitative real-time RT-PCR. It was found that CNPs exert marked effects in A549 cells and also contribute to increases in global DNA methylation. For the first time, this study highlights that real-world levels of nanoparticles can alter the methylome of exposed cells; this could have enormous implications for their regulatory assessment.

  9. Activation of interferon regulatory factor-3 via toll-like receptor 3 and immunomodulatory functions detected in A549 lung epithelial cells exposed to misplaced U1-snRNA.

    PubMed

    Sadik, Christian D; Bachmann, Malte; Pfeilschifter, Josef; Mühl, Heiko

    2009-08-01

    U1-snRNA is an integral part of the U1 ribonucleoprotein pivotal for pre-mRNA splicing. Toll-like receptor (TLR) signaling has recently been associated with immunoregulatory capacities of U1-snRNA. Using lung A549 epithelial/carcinoma cells, we report for the first time on interferon regulatory factor (IRF)-3 activation initiated by endosomally delivered U1-snRNA. This was associated with expression of the IRF3-inducible genes interferon-beta (IFN-beta), CXCL10/IP-10 and indoleamine 2,3-dioxygenase. Mutational analysis of the U1-snRNA-activated IFN-beta promoter confirmed the crucial role of the PRDIII element, previously proven pivotal for promoter activation by IRF3. Notably, expression of these parameters was suppressed by bafilomycin A(1), an inhibitor of endosomal acidification, implicating endosomal TLR activation. Since resiquimod, an agonist of TLR7/8, failed to stimulate A549 cells, data suggest TLR3 to be of prime relevance for cellular activation. To assess the overall regulatory potential of U1-snRNA-activated epithelial cells on cytokine production, co-cultivation with peripheral blood mononuclear cells (PBMC) was performed. Interestingly, A549 cells activated by U1-snRNA reinforced phytohemagglutinin-induced interleukin-10 release by PBMC but suppressed that of tumor necrosis factor-alpha, indicating an anti-inflammatory potential of U1-snRNA. Since U1-snRNA is enriched in apoptotic bodies and epithelial cells are capable of performing efferocytosis, the present data in particular connect to immunobiological aspects of apoptosis at host/environment interfaces.

  10. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo

    SciTech Connect

    Wang, Chunmao; Ding, Chao; Kong, Minjian

    2011-07-08

    Highlights: {yields} We compared lipofection with magnetofection about difference of transfection efficiency on delivery a therapeutic gene in vitro and in vivo. {yields} We investigated the difference of shRNA induced by magnetofection and lipofection into A549 cell and subcutaneous tumor to knockdown IGF-1R overexpressed in A549 cell and A549 tumor. {yields} We investigated in vivo shRNA silenced IGF-1R overexpression 24, 48, and 72 h after shRNA intravenous injection into tumor-bearing mice by way of magnetofection and lipofection. {yields} Our results showed that magnetofection could achieve therapeutic gene targeted delivery into special site, which contributed to targeted gene therapy of lungmore » cancers. -- Abstract: Liposomal magnetofection potentiates gene transfection by applying a magnetic field to concentrate magnetic lipoplexes onto target cells. Magnetic lipoplexes are self-assembling ternary complexes of cationic lipids with plasmid DNA associated with superparamagnetic iron oxide nanoparticles (SPIONs). Type1insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently overexpressed in lung cancer and mediates cancer cell proliferation and tumor growth. In this study, we evaluated the transfection efficiency (percentage of transfected cells) and therapeutic potential (potency of IGF-1R knockdown) of liposomal magnetofection of plasmids expressing GFP and shRNAs targeting IGF-1R (pGFPshIGF-1Rs) in A549 cells and in tumor-bearing mice as compared to lipofection using Lipofectamine 2000. Liposomal magnetofection provided a threefold improvement in transgene expression over lipofection and transfected up to 64.1% of A549 cells in vitro. In vitro, IGF-1R specific-shRNA transfected by lipofection inhibited IGF-1R protein by 56.1 {+-} 6% and by liposomal magnetofection by 85.1 {+-} 3%. In vivo delivery efficiency of the pGFPshIGF-1R plasmid into the tumor was significantly higher in the liposomal magnetofection group than in the

  11. Effects of exogenous IL-37 on the biological characteristics of human lung adenocarcinoma A549 cells and the chemotaxis of regulatory T cells.

    PubMed

    Chen, Yu-Hua; Zhou, Bi-Yun; Wu, Guo-Cai; Liao, De-Quan; Li, Jing; Liang, Si-Si; Wu, Xian-Jin; Xu, Jun-Fa; Chen, Yong-Hua; Di, Xiao-Qing; Lin, Qiong-Yan

    2018-02-14

    This study aims to investigate the effects of exogenous interleukin (IL)-37 on the biological characteristics of human lung adenocarcinoma A549 cells and the chemotaxis of regulatory T (Treg) cells. After isolating the CD4+ CD25+ Treg cells from the peripheral blood, flow cytometry was used to detect the purity of the Treg cells. A549 cells were divided into blank (no transfection), empty plasmid (transfection with pIRES2-EGFP empty plasmid) or IL-37 group (transfection with pIRES2-EGFP-IL-37 plasmid). RT-PCR was used to detect mRNA expression of IL-37 and ELISA to determine IL-37 and MMP-9 expressions. Western blotting was applied to detect the protein expressions of PCNA, Ki-67, Cyclin D1, CDK4, cleaved caspase-3 and cleaved caspase-9. MTT assay, flow cytometry, scratch test and transwell assay were performed to detect cell proliferation, cycle, apoptosis, migration and invasion. Effect of exogenous IL-37 on the chemotaxis of Treg cells was measured through transwell assay. Xenograft models in nude mice were eastablished to detect the impact of IL-37 on A549 cells. The IL-37 group had a higher IL-37 expression, cell apoptosis in the early stage and percentage of cells in the G0/G1 phase than the blank and empty plasmid groups. The IL-37 group had a lower MMP-9 expression, optical density (OD), percentage of cells in the S and G2/M phases, migration, invasion and chemotaxis of CD4+CD25+ Foxp3+ Treg cells. The xenograft volume and weight of nude mice in the IL-37 group were lower than those in the blank and empty plasmid groups. Compared with the blank and empty plasmid groups, the IL-37 group had significantly reduced expression of PCNA, Ki-67, Cyclin D1 and CDK4 but elevated expression of cleaved caspase-3 and cleaved caspase-9. Therefore, exogenous IL-37 inhibits the proliferation, migration and invasion of human lung adenocarcinoma A549 cells as well as the chemotaxis of Treg cells while promoting the apoptosis of A549 cells.

  12. Asiatic Acid (AA) Sensitizes Multidrug-Resistant Human Lung Adenocarcinoma A549/DDP Cells to Cisplatin (DDP) via Downregulation of P-Glycoprotein (MDR1) and Its Targets.

    PubMed

    Cheng, Qilai; Liao, Meixiang; Hu, Haibo; Li, Hongliang; Wu, Longhuo

    2018-01-01

    P-glycoprotein (P-gp, i.e., MDR1) is associated with the phenotype of multidrug resistance (MDR) and causes chemotherapy failure in the management of cancers. Searching for effective MDR modulators and combining them with anticancer drugs is a promising strategy against MDR. Asiatic acid (AA), a natural triterpene isolated from the plant Centella asiatica, may have an antitumor activity. The present study assessed the reversing effect of AA on MDR and possible molecular mechanisms of AA action in MDR1-overexpressing cisplatin (DDP)-resistant lung cancer cells, A549/DDP. Human lung adenocarcinoma A549/DDP cells were either exposed to different concentrations of AA or treated with DDP, and their viability was measured by the MTT assay. A Rhodamine 123 efflux assay, immunofluorescent staining, ATPase assay, reverse-transcription PCR (RT-PCR), and western blot analysis were conducted to elucidate the mechanisms of action of AA on MDR. Our results showed that AA significantly enhanced the cytotoxicity of DDP toward A549/DDP cells but not its parental A549 cells. Furthermore, AA strongly inhibited P-gp expression by blocking MDR1 gene transcription and increased the intracellular accumulation of the P-gp substrate Rhodamine 123 in A549/DDP cells. Nuclear factor (NF)-kB (p65) activity, IkB degradation, and NF-kB/p65 nuclear translocation were markedly inhibited by pretreatment with AA. Additionally, AA inhibited the MAPK-ERK pathway, as indicated by decreased phosphorylation of ERK1 and -2, AKT, p38, and JNK, thus resulting in reduced activity of the Y-box binding protein 1 (YB1) via blockage of its nuclear translocation. AA reversed P-gp-mediated MDR by inhibition of P-gp expression. This effect was likely related to downregulation of YB1, and this effect was mediated by the NF-kB and MAPK-ERK pathways. AA may be useful as an MDR reversal agent for combination therapy in clinical trials. © 2018 The Author(s). Published by S. Karger AG, Basel.

  13. Cytotoxic Effects of 24-Methylenecyloartanyl Ferulate on A549 Nonsmall Cell Lung Cancer Cells through MYBBP1A Up-Regulation and AKT and Aurora B Kinase Inhibition.

    PubMed

    Doello, Sofia; Liang, Zhibin; Cho, Il Kyu; Kim, Jung Bong; Li, Qing X

    2018-04-11

    Lung cancer is the second most prevalent cancer. Nonsmall cell lung cancer (NSCLC) is the most common type of lung cancer. The low efficacy in current chemotherapies impels us to find new alternatives to prevent or treat NSCLC. Rice bran oil is cytotoxic to A549 cells, a NSCLC cell line. Here, we identified 24-methylenecyloartanyl ferulate (24-mCAF) as the main component responsible for the cytotoxicity in A549 cells. An iTRAQ-based quantitative proteomics analysis revealed that 24-mCAF inhibits cell proliferation and activates cell death and apoptosis. 24-mCAF induces up-regulation of Myb binding protein 1A (MYBBP1A), a tumor suppressor that halts cancer progression. 24-mCAF inhibits the activity of AKT and Aurora B kinase, two Ser/Thr kinases involved in MYBBP1A regulation and that represent important targets in NSCLC. This study provides the first insight of the effect of 24-mCAF, the main component of rice bran oil, on A459 cells at the cellular and molecular levels.

  14. Cellular uptake and toxic effects of fine and ultrafine metal-sulfate particles in human A549 lung epithelial cells.

    PubMed

    Könczöl, Mathias; Goldenberg, Ella; Ebeling, Sandra; Schäfer, Bianca; Garcia-Käufer, Manuel; Gminski, Richard; Grobéty, Bernard; Rothen-Rutishauser, Barbara; Merfort, Irmgard; Gieré, Reto; Mersch-Sundermann, Volker

    2012-12-17

    Ambient airborne particulate matter is known to cause various adverse health effects in humans. In a recent study on the environmental impacts of coal and tire combustion in a thermal power station, fine crystals of PbSO(4) (anglesite), ZnSO(4)·H(2)O (gunningite), and CaSO(4) (anhydrite) were identified in the stack emissions. Here, we have studied the toxic potential of these sulfate phases as particulates and their uptake in human alveolar epithelial cells (A549). Both PbSO(4) and CaSO(4) yielded no loss of cell viability, as determined by the WST-1 and NR assays. In contrast, a concentration-dependent increase in cytotoxicity was observed for Zn sulfate. For all analyzed sulfates, an increase in the production of reactive oxygen species (ROS), assessed by the DCFH-DA assay and EPR, was observed, although to a varying extent. Again, Zn sulfate was the most active compound. Genotoxicity assays revealed concentration-dependent DNA damage and induction of micronuclei for Zn sulfate and, to a lower extent, for CaSO(4), whereas only slight effects could be found for PbSO(4). Moreover, changes of the cell cycle were observed for Zn sulfate and PbSO(4). It could be shown further that Zn sulfate increased the nuclear factor kappa-B (NF-κB) DNA binding activity and activated JNK. During our TEM investigations, no effect on the appearance of the A549 cells exposed to CaSO(4) compared to the nonexposed cells was observed, and in our experiments, only one CaSO(4) particle was detected in the cytoplasm. In the case of exposure to Zn sulfate, no particles were found in the cytoplasm of A549 cells, but we observed a concentration-dependent increase in the number and size of dark vesicles (presumably zincosomes). After exposure to PbSO(4), the A549 cells contained isolated particles as well as agglomerates both in vesicles and in the cytoplasm. Since these metal-sulfate particles are emitted into the atmosphere via the flue gas of coal-fired power stations, they may be

  15. Ameliorative Effects of Dimetylthiourea and N-Acetylcysteine on Nanoparticles Induced Cyto-Genotoxicity in Human Lung Cancer Cells-A549

    PubMed Central

    Srivastava, Ritesh Kumar; Rahman, Qamar; Kashyap, Mahendra Pratap; Lohani, Mohtashim; Pant, Aditya Bhushan

    2011-01-01

    We study the ameliorative potential of dimetylthiourea (DMTU), an OH• radical trapper and N-acetylcysteine (NAC), a glutathione precursor/H2O2 scavenger against titanium dioxide nanoparticles (TiO2-NPs) and multi-walled carbon nanotubes (MWCNTs) induced cyto-genotoxicity in cultured human lung cancer cells-A549. Cytogenotoxicity was induced by exposing the cells to selected concentrations (10 and 50 µg/ml) of either of TiO2-NPs or MWCNTs for 24 h. Anti-cytogenotoxicity effects of DMTU and NAC were studied in two groups, i.e., treatment of 30 minutes prior to toxic insult (short term exposure), while the other group received DMTU and NAC treatment during nanoparticles exposure, i.e., 24 h (long term exposure). Investigations were carried out for cell viability, generation of reactive oxygen species (ROS), micronuclei (MN), and expression of markers of oxidative stress (HSP27, CYP2E1), genotoxicity (P53) and CYP2E1 dependent n- nitrosodimethylamine-demethylase (NDMA-d) activity. In general, the treatment of both DMTU and NAC was found to be effective significantly against TiO2-NPs and MWCNTs induced cytogenotoxicity in A549 cells. Long-term treatment of DMTU and NAC during toxic insults has shown better prevention than short-term pretreatment. Although, cells responded significantly to both DMTU and NAC, but responses were chemical specific. In part, TiO2-NPs induced toxic responses were mediated through OH• radicals generation and reduction in the antioxidant defense system. While in the case of MWCNTs, adverse effects were primarily due to altering/hampering the enzymatic antioxidant system. Data indicate the applicability of human lung cancer cells-A549 as a pre-screening tool to identify the target specific prophylactic and therapeutic potential of drugs candidate molecules against nanoparticles induced cellular damages. PMID:21980536

  16. SU-F-T-677: Synergistic Effect(s) of Clotrimazole On Radiation Cell Survival of A549 Lung Cancer Cells in Glucose Vs. Galactose Media

    SciTech Connect

    Boss, G; Tambasco, M; Garakani, M

    Purpose: In order to determine the synergistic effect of clotrimazole on radiosensitivity of A549 lung cancer cells, and the effect of oxidative pathways on modulating radiosensitivity, we studied how these cells survived under varying amounts of radiation and clotrimazole as well ass when glucose was switched for galactose media. Methods: The glucose media was used to determine the presence of any synergistic effect of clotrimazole on radiation using values of radiation and clotrimazole concentrations, varying from 0 – 8 Gy and 0 – 20 µM, respectively. As a galactose diet is known to activate oxidative pathways, which do not relymore » on hexokinase II (HK2), all trials were repeated using galactose media to determine the extent that HK2 unbinding from the mitochondrial membrane plays a role in modulating the observed radiosensitivity. An apoptosis vs. necrosis assay was implemented to find out the modality by which cell death occurred. An intracellular lactate assay was performed to exhibit the extent of anaerobic glycolysis. Results: After running the primary experiments, it was found that in glucose media, the cancer cells showed higher cell kill when clotrimazole was added to the media, followed by the cells being irradiated. Conclusion: Given the preliminary results it is validated that under higher concentrations of clotrimazole, in glucose media, A549 lung cancer cells exhibit a lower amount of survival. While all results have not yet been gathered. We anticipate that in galactose media the A549 cells will exhibit this effect to a much smaller degree, if at all.« less

  17. MiR-509-3-5p causes aberrant mitosis and anti-proliferative effect by suppression of PLK1 in human lung cancer A549 cells

    SciTech Connect

    Wang, Xian-Hui; Lu, Yao; Liang, Jing-Jing

    MicroRNAs (miRNAs) are potent post-transcriptional regulators of gene expression and play roles in DNA damage response (DDR). PLK1 is identified as a modulator of DNA damage checkpoint. Although down-regulation of PLK1 by certain microRNAs has been reported, little is known about the interplay between PLK1 and miR-509-3-5p in DDR. Here we have demonstrated that miR-509-3-5p repressed PLK1 expression by targeting PLK1 3′-UTR, thereby causing mitotic aberration and growth arrest of human lung cancer A549 cells. Repression of PLK1 by miR-509-3-5p was further evidenced by over-expression of miR-509-3-5p in A549, HepG2 and HCT116p53{sup −/−} cancer cells, in which PLK1 protein wasmore » suppressed. Consistently, miR-509-3-5p was stimulated, while PLK1 protein was down-regulated in A549 cells exposed to CIS and ADR, suggesting that suppression of PLK1 by miR-509-3-5p is a component of CIS/ADR-induced DDR pathway. Flow cytometry and immunofluorescence labeling showed that over-expression of miR-509-3-5p in A549 induced G2/M arrest and aberrant mitosis characterized by abnormal bipolar mitotic spindles, condensed chromosomes, lagging DNA and chromosome bridges. In addition, over-expression of miR-509-3-5p markedly blocked A549 cell proliferation and sensitized the cells to CIS and ADR treatment. Taken together, miR-509-3-5p is a feasible suppressor for cancer by targeting PLK1. Our data may provide aid in potential design of combined chemotherapy and in our better understanding of the roles of microRNAs in response to DNA damage. - Highlights: • MiR-509-3-5p represses PLK1 expression by targeting PLK1 3ГЉВ№-UTR. • Expression of miR-509-3-5p is induced and PLK1 repressed upon DNA damage. • Overexpression of miR-509-3-5p induces G2/M arrest and aberrant mitosis. • MiR-509-3-5p inhibits cell proliferation and sensitizes cells to DNA damage agents.« less

  18. Tumor growth affects the metabonomic phenotypes of multiple mouse non-involved organs in an A549 lung cancer xenograft model.

    PubMed

    Xu, Shan; Tian, Yuan; Hu, Yili; Zhang, Nijia; Hu, Sheng; Song, Dandan; Wu, Zhengshun; Wang, Yulan; Cui, Yanfang; Tang, Huiru

    2016-06-22

    The effects of tumorigenesis and tumor growth on the non-involved organs remain poorly understood although many research efforts have already been made for understanding the metabolic phenotypes of various tumors. To better the situation, we systematically analyzed the metabolic phenotypes of multiple non-involved mouse organ tissues (heart, liver, spleen, lung and kidney) in an A549 lung cancer xenograft model at two different tumor-growth stages using the NMR-based metabonomics approaches. We found that tumor growth caused significant metabonomic changes in multiple non-involved organ tissues involving numerous metabolic pathways, including glycolysis, TCA cycle and metabolisms of amino acids, fatty acids, choline and nucleic acids. Amongst these, the common effects are enhanced glycolysis and nucleoside/nucleotide metabolisms. These findings provided essential biochemistry information about the effects of tumor growth on the non-involved organs.

  19. QSAR and docking based semi-synthesis and in vitro evaluation of 18 β-glycyrrhetinic acid derivatives against human lung cancer cell line A-549.

    PubMed

    Yadav, Dharmendra Kumar; Kalani, Komal; Khan, Feroz; Srivastava, Santosh Kumar

    2013-12-01

    For the prediction of anticancer activity of glycyrrhetinic acid (GA-1) analogs against the human lung cancer cell line (A-549), a QSAR model was developed by forward stepwise multiple linear regression methodology. The regression coefficient (r(2)) and prediction accuracy (rCV(2)) of the QSAR model were taken 0.94 and 0.82, respectively in terms of correlation. The QSAR study indicates that the dipole moments, size of smallest ring, amine counts, hydroxyl and nitro functional groups are correlated well with cytotoxic activity. The docking studies showed high binding affinity of the predicted active compounds against the lung cancer target EGFR. These active glycyrrhetinic acid derivatives were then semi-synthesized, characterized and in-vitro tested for anticancer activity. The experimental results were in agreement with the predicted values and the ethyl oxalyl derivative of GA-1 (GA-3) showed equal cytotoxic activity to that of standard anticancer drug paclitaxel.

  20. Three-dimensional quantitative structure-activity relationship study on anti-cancer activity of 3,4-dihydroquinazoline derivatives against human lung cancer A549 cells

    NASA Astrophysics Data System (ADS)

    Cho, Sehyeon; Choi, Min Ji; Kim, Minju; Lee, Sunhoe; Lee, Jinsung; Lee, Seok Joon; Cho, Haelim; Lee, Kyung-Tae; Lee, Jae Yeol

    2015-03-01

    A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human lung cancer A549 cells were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, 1 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields (q2 = 0.720, r2 = 0.897). This model was validated by an external test set of 6 compounds giving satisfactory predictive r2 value of 0.923 as well as the scrambling stability test. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human lung cancer.

  1. Discovery of a Novel Anti-Cancer Agent Targeting Both Topoisomerase I & II as Well as Telomerase Activities in Human Lung Adenocarcinoma A549 Cells In Vitro and In Vivo: Cinnamomum verum Component Cuminaldehyde.

    PubMed

    Chen, Ta-Wei; Tsai, Kuen-Daw; Yang, Shu-Mei; Wong, Ho-Yiu; Liu, Yi-Heng; Cherng, Jonathan; Chou, Kuo-Shen; Wang, Yang-Tz; Cuizon, Janise; Cherng, Jaw-Ming

    2016-01-01

    Cinnamomum verum is used to make the spice cinnamon and has been used for more than 5000 years by both of the two most ancient forms of medicine in the words: Ayurveda and traditional Chinese herbal medicines for various applications such as adenopathy, rheumatism, dermatosis, dyspepsia, stroke, tumors, elephantiasis, trichomonas, yeast, and virus infections. We evaluated the anticancer effect of cuminaldehyde (CuA), a constituent of the bark of the plant, and its underlying molecular biomarkers associated with carcinogenesis in human lung adenocarcinoma A549 cells. The results show that cuminaldehyde suppressed proliferation and induced apoptosis as indicated by mitochondrial membrane potential loss, activation of caspase 3 and 9, increase in annexin V+PI+ cells, and morphological characteristics of apoptosis, including blebbing of plasma membrane, nuclear condensation, fragmentation, apoptotic body formation, and comet with elevated tail intensity and moment. In addition, cuminaldehyde also induced lysosomal vacuolation with increased volume of acidic compartments (VAC), suppressions of both topoisomerase I & II as well as telomerase activities in a dose-dependent manner. Further study reveals the growth-inhibitory effect of cuminaldehyde was also evident in a nude mice model. Taken together, the data suggest that the growth-inhibitory effect of cuminaldehyde against A549 cells is accompanied by downregulations of proliferative control involving apoptosis, both topoisomerase I & II as well as telomerase activities, together with an upregulation of lysosomal vacuolation and VAC. Similar effects (including all of the above-mentioned effects) were found in other cell lines, including human lung squamous cell carcinoma NCI-H520 and colorectal adenocarcinoma COLO 205 (results not shown). Our data suggest that cuminaldehyde could be a potential agent for anticancer therapy.

  2. Inhibition of mitogen activated protein kinases increases the sensitivity of A549 lung cancer cells to the cytotoxicity induced by a kava chalcone analog

    PubMed Central

    Warmka, Janel K.; Solberg, Eric L.; Zeliadt, Nicholette A.; Srinivasan, Balasubramanian; Charlson, Aaron T.; Xing, Chengguo; Wattenberg, Elizabeth V.

    2012-01-01

    We are interested in investigating the biological activity of chalcones, a major class of compounds found in the beverage kava, in order to develop potent and selective chemopreventive candidates. Consumption of kava in the South Pacific Islands is inversely correlated with cancer incidence, even among smokers. Accordingly, chalcones have anti-cancer activities in animal and cell culture models. To investigate signaling pathways that affect chalcone action we studied a potent analog, (E)-3-(3-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (chalcone-24). Chalcone-24 was selected from a series of chalcone analogs that were synthesized based on the structures derived from flavokawain compounds found in kava, and screened in A549 lung cancer cells for induction of cytotoxicity and inhibition of NF-κB, a transcription factor associated with cell survival. Incubation of A549 cells with chalcone-24 resulted in a dose-dependent inhibition of cell viability, inhibition of NF-κB, activation of caspases, and activation of extracellular signal regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK); ERK1/2 and JNK are mitogen activated protein kinases that play central roles in regulating cell fate. Pharmacological inhibitors of ERK1/2 or JNK increased the sensitivity of A549 cells to chalcone-24-induced cytotoxicity, without affecting NF-κB or caspase activity. These results will help refine the synthesis of chalcone analogs to maximize the combination of actions required to prevent and treat cancer. PMID:22771807

  3. Inhibition of mitogen activated protein kinases increases the sensitivity of A549 lung cancer cells to the cytotoxicity induced by a kava chalcone analog.

    PubMed

    Warmka, Janel K; Solberg, Eric L; Zeliadt, Nicholette A; Srinivasan, Balasubramanian; Charlson, Aaron T; Xing, Chengguo; Wattenberg, Elizabeth V

    2012-08-03

    We are interested in investigating the biological activity of chalcones, a major class of compounds found in the beverage kava, in order to develop potent and selective chemopreventive candidates. Consumption of kava in the South Pacific Islands is inversely correlated with cancer incidence, even among smokers. Accordingly, chalcones have anti-cancer activities in animal and cell culture models. To investigate signaling pathways that affect chalcone action we studied a potent analog, (E)-3-(3-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (chalcone-24). Chalcone-24 was selected from a series of chalcone analogs that were synthesized based on the structures derived from flavokawain compounds found in kava, and screened in A549 lung cancer cells for induction of cytotoxicity and inhibition of NF-κB, a transcription factor associated with cell survival. Incubation of A549 cells with chalcone-24 resulted in a dose-dependent inhibition of cell viability, inhibition of NF-κB, activation of caspases, and activation of extracellular signal regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK); ERK1/2 and JNK are mitogen activated protein kinases that play central roles in regulating cell fate. Pharmacological inhibitors of ERK1/2 or JNK increased the sensitivity of A549 cells to chalcone-24-induced cytotoxicity, without affecting NF-κB or caspase activity. These results will help refine the synthesis of chalcone analogs to maximize the combination of actions required to prevent and treat cancer. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Selective Cytotoxicity and Combined Effects of Camptothecin or Paclitaxel with Sodium-R-Alpha Lipoate on A549 Human Non-Small Cell Lung Cancer Cells

    PubMed Central

    Ibrahim, Sherif; Gao, Dayuan; Sinko, Patrick J.

    2013-01-01

    Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and remains the deadliest form of cancer in the US and worldwide. New therapies are highly sought after to improve outcome. The effect of sodium-R-alpha lipoate on camptothecin- and paclitaxel-induced cytotoxicity was evaluated on A549 NSCLC and BEAS-2B ‘normal’ lung epithelial cells. Combination indices (CI) and dose reduction indices (DRI) were investigated by studying the cytotoxicity of sodium-R-alpha lipoate (0–16 mM), camptothecin (0–25 nM) and paclitaxel (0–0.06 nM) alone and in combination. 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium-bromide (MTT) was used to assess cytotoxicity. The combinational cytotoxic effects of sodium-R-alpha lipoate with camptothecin or paclitaxel were analyzed using a simulation of dose effects (CompuSyn®3.01). The effects of sodium-R-alpha lipoate on camptothecin- and paclitaxel-induced cytotoxicity varied based on concentrations and treatment times. It was found that sodium-R-alpha lipoate wasn’t cytotoxic towards BEAS-2B cells at any of the concentrations tested. For A549 cells, CIs [(additive (CI=1); synergistic (CI<1); antagonistic (CI>1)] were lower and DRIs were higher for the camptothecin/sodium-R-alpha-lipoate combination (CI=~0.17–1.5; DRI=~2.2–22.6) than the paclitaxel/sodium-R-alpha-lipoate combination (CI=~0.8–9.9; DRI=~0.10–5.8) suggesting that the camptothecin regimen was synergistic and that the addition of sodium-R-alpha lipoate was important for reducing the camptothecin dose and potential for adverse effects. PMID:24063429

  5. Paclitaxel and the dietary flavonoid fisetin: a synergistic combination that induces mitotic catastrophe and autophagic cell death in A549 non-small cell lung cancer cells.

    PubMed

    Klimaszewska-Wisniewska, Anna; Halas-Wisniewska, Marta; Tadrowski, Tadeusz; Gagat, Maciej; Grzanka, Dariusz; Grzanka, Alina

    2016-01-01

    The use of the dietary polyphenols as chemosensitizing agents to enhance the efficacy of conventional cytostatic drugs has recently gained the attention of scientists and clinicians as a plausible approach for overcoming the limitations of chemotherapy (e.g. drug resistance and cytotoxicity). The aim of this study was to investigate whether a naturally occurring diet-based flavonoid, fisetin, at physiologically attainable concentrations, could act synergistically with clinically achievable doses of paclitaxel to produce growth inhibitory and/or pro-death effects on A549 non-small cell lung cancer cells, and if it does, what mechanisms might be involved. The drug-drug interactions were analyzed based on the combination index method of Chou and Talalay and the data from MTT assays. To provide some insights into the mechanism underlying the synergistic action of fisetin and paclitaxel, selected morphological, biochemical and molecular parameters were examined, including the morphology of cell nuclei and mitotic spindles, the pattern of LC3-II immunostaining, the formation of autophagic vacuoles at the electron and fluorescence microscopic level, the disruption of cell membrane asymmetry/integrity, cell cycle progression and the expression level of LC3-II, Bax, Bcl-2 and caspase-3 mRNA. Here, we reported the first experimental evidence for the existence of synergism between fisetin and paclitaxel in the in vitro model of non-small cell lung cancer. This synergism was, at least partially, ascribed to the induction of mitotic catastrophe. The switch from the cytoprotective autophagy to the autophagic cell death was also implicated in the mechanism of the synergistic action of fisetin and paclitaxel in the A549 cells. In addition, we revealed that the synergism between fisetin and paclitaxel was cell line-specific as well as that fisetin synergizes with arsenic trioxide, but not with mitoxantrone and methotrexate in the A549 cells. Our results provide rationale for

  6. Airborne particulate matter in vitro exposure induces cytoskeleton remodeling through activation of the ROCK-MYPT1-MLC pathway in A549 epithelial lung cells.

    PubMed

    Chirino, Yolanda I; García-Cuellar, Claudia María; García-García, Carlos; Soto-Reyes, Ernesto; Osornio-Vargas, Álvaro Román; Herrera, Luis A; López-Saavedra, Alejandro; Miranda, Javier; Quintana-Belmares, Raúl; Pérez, Irma Rosas; Sánchez-Pérez, Yesennia

    2017-04-15

    Airborne particulate matter with an aerodynamic diameter ≤10μm (PM 10 ) is considered a risk factor for the development of lung cancer. Little is known about the cellular mechanisms by which PM 10 is associated with cancer, but there is evidence that its exposure can lead to an acquired invasive phenotype, apoptosis evasion, inflammasome activation, and cytoskeleton remodeling in lung epithelial cells. Cytoskeleton remodeling occurs through actin stress fiber formation, which is partially regulated through ROCK kinase activation, we aimed to investigate if this protein was activated in response to PM 10 exposure in A549 lung epithelial cells. Results showed that 10μg/cm 2 of PM 10 had no influence on cell viability but increased actin stress fibers, cytoplasmic ROCK expression, and phosphorylation of myosin phosphatase-targeting 1 (MYPT1) and myosin light chain (MLC) proteins, which are targeted by ROCK. The inhibition of ROCK prevented actin stress fiber formation and the phosphorylation of MYPT1 and MLC, suggesting that PM 10 activated the ROCK-MYPT1-MLC pathway in lung epithelial cells. The activation of ROCK1 has been involved in the acquisition of malignant phenotypes, and its induction by PM 10 exposure could contribute to the understanding of PM 10 as a risk factor for cancer development through the mechanisms associated with invasive phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Genotoxicity and apoptotic activity of biologically synthesized magnesium oxide nanoparticles against human lung cancer A-549 cell line

    NASA Astrophysics Data System (ADS)

    Majeed, Shahnaz; Danish, Mohammed; Muhadi, Nur Farisyah Bahriah Binti

    2018-06-01

    The study focussed on the synthesis of magnesium oxide (MgO) nanoparticles from an aqueous extract of Penicillium species isolated from soil. A suitable amount of magnesium nitrate (MgNO3) was mixed with the aqueous extract of Penicillium. Then the colour of the solution changed due to the formation of MgO nanoparticles. These nascent formed MgO nanoparticles were further confirmed by using UV spectrophotometry which showed the maximum absorption at 215 nm indicating the formation of MgO nanoparticles. Fourier transform infrared spectroscopy (FTIR) was used to find the possible functional groups and proteins involving the stabilization of MgO nanoparticles. Transmission electron microscopy (TEM) study revealed the size, the shape as well as the dispersity of the prepared MgO nanoparticles and showed that they were well dispersed around 12–24 nm (scale 200 nm). The anticancer activity against A-549 cell line of these green synthesized MgO nanoparticles was evaluated. The result showed good anticancer effect after 24 h of incubation. Nevertheless these MgO nanoparticles showed less effect on normal Vero cells. Further apoptotic study clearly displayed the effect of MgO nanoparticles on cancer cells. The effect was observed through chromatin condensation by forming apoptotic bodies using propidium iodide, acridine orange and ethidium bromide (AO/EB) staining technique. The DNA was isolated to confirm the DNA damage; the observation clearly showed DNA damage when compared with DNA ladder.

  8. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells

    SciTech Connect

    Yu, Zhenhai, E-mail: tomsyu@163.com; Huang, Liangqian; Qiao, Pengyun

    Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. Thesemore » findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer.« less

  9. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells.

    PubMed

    Yu, Zhenhai; Huang, Liangqian; Qiao, Pengyun; Jiang, Aifang; Wang, Li; Yang, Tingting; Tang, Shengjian; Zhang, Wei; Ren, Chune

    2016-05-13

    Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. These findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Evaluation of Anti-Metastatic Potential of the Combination of Fisetin with Paclitaxel on A549 Non-Small Cell Lung Cancer Cells.

    PubMed

    Klimaszewska-Wiśniewska, Anna; Hałas-Wiśniewska, Marta; Grzanka, Alina; Grzanka, Dariusz

    2018-02-27

    The identification and development of new agents with a therapeutic potential as well as novel drug combinations are gaining the attention of scientists and clinicians as a plausible approach to improve therapeutic regimens for chemoresistant tumors. We have recently reported that the flavonoid fisetin (FIS), at physiologically attainable concentrations, acts synergistically with clinically achievable doses of paclitaxel (PTX) to produce growth inhibitory and pro-death effects on A549 human non-small cell lung cancer (NSCLC) cells. To further investigate a potential therapeutic efficacy of the combination of fisetin with paclitaxel, we decided to assess its impact on metastatic capability of A549 cells as well as its toxicity toward normal human lung fibroblast. Cell viability, cell migration, and invasion were measured by thiazolyl blue tetrazolium bromide (MTT) assay, wound healing assay, and Transwell chamber assay, respectively. The expression of metastasis-related genes was assessed with quantitative reverse transcriptase real-time polymerase chain reaction (qRT-PCR). Actin and vimentin filaments were examined under the fluorescence microscope. The combination of FIS and PTX significantly reduced cancer cell migration and invasion, at least partially, through a marked rearrangement of actin and vimentin cytoskeleton and the modulation of metastasis-related genes. Most of these effects of the combination treatment were significantly greater than those of individual agents. Paclitaxel alone was even more toxic to normal cells than the combination of this drug with the flavonoid, suggesting that FIS may provide some protection against PTX-mediated cytotoxicity. The combination of FIS and PTX is expected to have a synergistic anticancer efficacy and a significant potential for the treatment of NSCLC, however, further in vitro and in vivo studies are required to confirm this preliminary evidence.

  11. Therapeutic effects of gold nanoparticles synthesized using Musa paradisiaca peel extract against multiple antibiotic resistant Enterococcus faecalis biofilms and human lung cancer cells (A549).

    PubMed

    Vijayakumar, S; Vaseeharan, B; Malaikozhundan, B; Gopi, N; Ekambaram, P; Pachaiappan, R; Velusamy, P; Murugan, K; Benelli, G; Suresh Kumar, R; Suriyanarayanamoorthy, M

    2017-01-01

    Botanical-mediated synthesis of nanomaterials is currently emerging as a cheap and eco-friendly nanotechnology, since it does not involve the use of toxic chemicals. In the present study, we focused on the synthesis of gold nanoparticles using the aqueous peel extract of Musa paradisiaca (MPPE-AuNPs) following a facile and cheap fabrication process. The green synthesized MPPE-AuNPs were bio-physically characterized by UV-Vis spectroscopy, FTIR, XRD, TEM, Zeta potential analysis and EDX. MPPE-AuNPs were crystalline in nature, spherical to triangular in shape, with particle size ranging within 50 nm. The biofilm inhibition activity of MPPE-AuNPs was higher against multiple antibiotic resistant (MARS) Gram-positive Enterococcus faecalis. Light and confocal laser scanning microscopic observations evidenced that the MPPE-AuNPs effectively inhibited the biofilm of E. faecalis when tested at 100 μg mL -1 . Cytotoxicity studies demonstrated that MPPE-AuNPs were effective in inhibiting the viability of human A549 lung cancer cells at higher concentrations of 100 μg mL -1 . The morphological changes in the MPPE-AuNPs treated A549 lung cancer cells were visualized under phase-contrast microscopy. Furthermore, the ecotoxicity of MPPE-AuNPs on the freshwater micro crustacean Ceriodaphnia cornuta were evaluated. Notably, no mortality was recorded in MPPE-AuNPs treated C. cornuta at 250 μg mL -1 . This study concludes that MPPE-AuNPs are non-toxic, eco-friendly and act as a multipurpose potential biomaterial for biomedical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Cytotoxicity and genotoxicity in human lung epithelial A549 cells caused by airborne volatile organic compounds emitted from pine wood and oriented strand boards.

    PubMed

    Gminski, Richard; Tang, Tao; Mersch-Sundermann, Volker

    2010-06-16

    Due to the massive reduction of air-change rates in modern, energy-saving houses and dwellings, the contribution of volatile organic compound (VOCs) emissions from wood-based materials to indoor air quality has become increasingly important. To evaluate toxicity of VOC mixtures typically emitted from pine wood and oriented strand boards (OSB) and their main constituents (selected terpenes and aldehydes), cytotoxicity and genotoxicity were investigated in human A549 lung cells. To facilitate exposure directly via gas phase, a 250 L emission chamber was combined with a Vitrocell exposure system. VOC exposure concentrations were measured by GC/MSD. Biological effects were determined after an exposure time of 1h by measuring cytotoxicity (erythrosine B staining) and genotoxicity (comet assay). Neither cytotoxic nor genotoxic effects were observed for VOC mixtures emitted from pine wood or OSB at loading factors of approximately 13 m(2)/m(3) (worst case conditions) of the panels (with maximum VOC levels of about 80 mg/m(3)) in comparison to clean air. While alpha-pinene and Delta(3)-carene did not induce toxic effects even at exposure concentrations of up to 1800 mg/m(3) and 600 mg/m(3), respectively, hexanal showed a cytotoxic effect at 2000 mg/m(3). The alpha,beta-unsaturated aldehydes 2-heptenal and 2-octenal caused genotoxic effects in concentrations exceeding 100mg/m(3) and 40 mg/m(3), respectively. In conclusion, high concentrations of VOCs and VOC mixtures emitted from pine wood and OSB did not lead to adverse effects in A549 human lung cells even at concentrations 10(2) to 10(5)-fold higher than those found in normal indoor air. Attention must be paid to mutagenic and possibly carcinogenic alpha,beta-unsaturated aldehydes. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles.

    PubMed

    Bhattacharya, Kunal; Naha, Pratap C; Naydenova, Izabela; Mintova, Svetlana; Byrne, Hugh J

    2012-12-17

    Increasing utilization of engineered nanoparticles in the field of electronics and biomedical applications demands an assessment of risk associated with deliberate or accidental exposure. Metal based nanoparticles are potentially most important of all the nanoparticles in terms of health risks. Microporous alumino-silicates and pure silicates named as zeolites and zeo-type materials with variety of structures, chemical compositions, particle sizes and morphologies have a significant number of industrial uses such as in catalysis, sorption and ion-exchange processes. In particular, the nanosized particles due to their unique properties are used in hybrid organic-inorganic materials for photography, photonics, electronics, labeling, imaging, and sensing. The aim of the current study is to investigate pure silica MFI-type zeolites nanoparticles with sizes of 50nm and 100nm (samples MFI-50 and MFI-100) under suspended conditions and their toxicological effects on human lung alveolar (A549) cells under in vitro conditions. Live cell imaging showed that the nanoparticles precipitated from the colloidal suspension of cell culture media as large agglomerates, coming in contact with the cell surface through sedimentation. A cellular proliferative capacity test showed the zeolite nanoparticles to exhibit no significant cytotoxicity below a concentration of 100μg/ml. However, both the MFI-50 and MFI-100 nanoparticles induced high intracellular reactive oxygen species (ROS) generation and elevated mitochondrial membrane potential in the A549 cells over the measured time period of 12h and at concentrations up to ≤50μg/ml. DNA fragmentation analysis using the comet assay showed that the MFI-50 and MFI-100 nanoparticles cause genotoxicity in a concentration dependent manner. Furthermore, the rate at which maximum genomic damage was caused by MFI-100 nanoparticles in the A549 cells was found to be high as compared to the MFI-50 nanoparticles. However, the damage caused by the

  14. Knockdown of Immature Colon Carcinoma Transcript 1 Inhibits Proliferation and Promotes Apoptosis of Non–Small Cell Lung Cancer Cells

    PubMed Central

    He, Jiantao; Zhang, Shenghui; Yang, Qingbo; Wang, Bo; Liu, Zhiyu; Wu, Xintian

    2016-01-01

    Non–small cell lung cancer, as the most frequent type lung cancer, has lower survival rate of 5 years, despite improvements in surgery and chemotherapy. Previous studies showed immature colon carcinoma transcript 1 is closely related to tumorigenesis of human cancer cells. In the present study, we found immature colon carcinoma transcript 1 was overexpressed in lung cancer tissues using Oncomine database mining, and the biological effect of immature colon carcinoma transcript 1 was investigated in non–small cell lung cancer cell lines 95D and A549. Lentivirus-mediated RNA interference was used to knock down immature colon carcinoma transcript 1 expression in 95D and A549 cells in vitro, and the knockdown efficiency was determined using quantitative real-time polymerase chain reaction and Western blot assay. Knockdown of immature colon carcinoma transcript 1 significantly suppressed non–small cell lung cancer cell proliferation and colony formation ability confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assay. Flow cytometry was applied to measure cell cycle arrest, and the result showed the cell cycle arrested in G2/M phase in 95D cells and arrested in G0/G1 phase in A549 cells. Furthermore, we measured the levels of cell cycle–associated proteins by Western blot analysis and found immature colon carcinoma transcript 1–mediated cell proliferation inhibition appeared due to downregulation of cell cycle activator cyclin D1 and upregulation of cell cycle inhibitor p21. In addition, immature colon carcinoma transcript 1 silencing significantly induced non–small cell lung cancer cell apoptosis by annexin V/7-amino-actinomycin D double-staining assay. All our data suggest that immature colon carcinoma transcript 1 may play an important role for non–small cell lung cancer cell proliferation and could be a potential molecular target for diagnosing and treating human non–small cell lung cancer. PMID:27413166

  15. Chlorella vulgaris Induces Apoptosis of Human Non-Small Cell Lung Carcinoma (NSCLC) Cells.

    PubMed

    Zhang, Zhi-Dong; Liang, Kai; Li, Kun; Wang, Guo-Quan; Zhang, Ke-Wei; Cai, Lei; Zhai, Shui-Ting; Chou, Kuo-Chen

    2017-01-01

    Chlorella vulgaris (C. vulgaris), a unicellular green microalga, has been widely used as a food supplement and reported to have antioxidant and anticancer properties. The current study was designed to assess the cytotoxic, apoptotic, and DNA-damaging effects of C. vulgaris growth factor (CGF), hot water C. vulgaris extracts, inlung tumor A549 and NCI-H460 cell lines. A549 cells, NCI-H460 cells, and normal human fibroblasts were treated with CGF at various concentrations (0-300 μg/ml) for 24 hr. The comet assay and γH2AX assay showed DNA damage in A549 and NCI-H460 cells upon CGF exposure. Evaluation of apoptosis by the TUNEL assay and DNA fragmentation analysis by agarose gel electrophoresis showed that CGF induced apoptosis in A549 and NCI-H460 cells. Chlorella vulgaris hot water extract induced apoptosis and DNA damage in human lung carcinoma cells. CGF can thus be considered a potential cytotoxic or genotoxic drug for treatment of lung carcinoma. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Fisetin inhibits the growth and migration in the A549 human lung cancer cell line via the ERK1/2 pathway.

    PubMed

    Wang, Junjian; Huang, Shaoxiang

    2018-03-01

    Lung cancer is the most prevalent malignant tumor type in the developed world and the discovery of novel anti-tumor drugs is a research hotspot. Fisetin, a naturally occurring flavonoid, has been reported to have anti-cancer effects in multiple tumor types. The present study found that fisetin inhibited the growth and migration of non-small cell lung cancer in vitro . MTT, wound-healing, cell-matrix adhesion and Transwell assays were performed and demonstrated that fisetin suppressed proliferation, migration, adhesion and invasion, respectively. Flow cytometric analysis indicated that fisetin induced apoptosis in the A549 cell line by decreasing the expression of c-myc, cyclin-D1, cyclooxygenase-2, B cell lymphoma-2, CXC chemokine receptor type 4, cluster of differentiation 44 and metalloproteinase-2/9, increasing the expression of cyclin dependent kinase inhibitor (CDKN) 1A/B, CDKN2D and E-cadherin and increasing the activity of caspase-3/9 via targeting the extracellular signal-regulated kinase signaling pathway. The results provided comprehensive evidence for the anti-tumor effects of fisetin in non-small cell lung cancer in vitro , which may provide a novel approach for clinical treatment.

  17. Fisetin inhibits the growth and migration in the A549 human lung cancer cell line via the ERK1/2 pathway

    PubMed Central

    Wang, Junjian; Huang, Shaoxiang

    2018-01-01

    Lung cancer is the most prevalent malignant tumor type in the developed world and the discovery of novel anti-tumor drugs is a research hotspot. Fisetin, a naturally occurring flavonoid, has been reported to have anti-cancer effects in multiple tumor types. The present study found that fisetin inhibited the growth and migration of non-small cell lung cancer in vitro. MTT, wound-healing, cell-matrix adhesion and Transwell assays were performed and demonstrated that fisetin suppressed proliferation, migration, adhesion and invasion, respectively. Flow cytometric analysis indicated that fisetin induced apoptosis in the A549 cell line by decreasing the expression of c-myc, cyclin-D1, cyclooxygenase-2, B cell lymphoma-2, CXC chemokine receptor type 4, cluster of differentiation 44 and metalloproteinase-2/9, increasing the expression of cyclin dependent kinase inhibitor (CDKN) 1A/B, CDKN2D and E-cadherin and increasing the activity of caspase-3/9 via targeting the extracellular signal-regulated kinase signaling pathway. The results provided comprehensive evidence for the anti-tumor effects of fisetin in non-small cell lung cancer in vitro, which may provide a novel approach for clinical treatment. PMID:29467859

  18. Pleuropterus multiflorus (Hasuo) mediated straightforward eco-friendly synthesis of silver, gold nanoparticles and evaluation of their anti-cancer activity on A549 lung cancer cell line.

    PubMed

    Castro-Aceituno, Verónica; Abbai, Ragavendran; Moon, Seong Soo; Ahn, Sungeun; Mathiyalagan, Ramya; Kim, Yu-Jin; Kim, Yeon-Ju; Yang, Deok Chun

    2017-09-01

    Pleuropterus multiflorus (Hasuo) is a widely used medicinal plant in Korea and China for treating amnesia, isnomia, heart throbbing etc. With the constructive idea of promoting the wide-spread usage of P. multiflorus, we propose its indirect usage in the form of biologically active silver (Pm-AgNPs) and gold nanoparticles (Pm-AuNPs). The synthesized nanoparticles were predominantly spherical, crystalline with the Z-average hydrodynamic diameter of 274.8nm and 104.8nm respectively. Also, proteins and phenols were identified as the major players involved in their synthesis and stability. Further, Pm-AgNPs at 25μg/mL were significantly cytotoxic to lung cancer cells, whereas, Pm-AuNPs were not cytotoxic to both normal keratinocyte and lung cancer cells even at 100μg/mL. In addition, further evaluation of the anti-cancer activity of these new nanoparticles, such as migration and apoptosis, shown that Pm-AgNPs have a potential therapeutic effect on A549 lung cancer cell treatment. To the best of our knowledge, this is the first report dissecting out the ability of the endemic P. multiflorus for the synthesis of bioactive silver and gold nanoparticle which would open up doors for its extensive usage in medicinal field. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. A novel herbal formula induces cell cycle arrest and apoptosis in association with suppressing the PI3K/AKT pathway in human lung cancer A549 cells.

    PubMed

    Xiong, Fei; Jiang, Miao; Huang, Zhenzhou; Chen, Meijuan; Chen, Kejun; Zhou, Jing; Yin, Lian; Tang, Yuping; Wang, Mingyan; Ye, Lihong; Zhan, Zhen; Duan, Jinao; Fu, Haian; Zhang, Xu

    2014-03-01

    In recent years, the incidence of lung cancer, as well as the mortality rate from this disease, has increased. Moreover, because of acquired drug resistance and adverse side effects, the effectiveness of current therapeutics used for the treatment of lung cancer has decreased significantly. Chinese medicine has been shown to have significant antitumor effects and is increasingly being used for the treatment of cancer. However, as the mechanisms of action for many Chinese medicines are undefined, the application of Chinese medicine for the treatment of cancer is limited. The formula tested has been used clinically by the China National Traditional Chinese Medicine Master, Professor Zhonging Zhou for treatment of cancer. In this article, we examine the efficacy of Ke formula in the treatment of non-small cell lung cancer and elucidate its mechanism of action. A Balb/c nude mouse xenograft model using A549 cells was previously established. The mice were randomly divided into normal, mock, Ke, cisplatin (DDP), and co-formulated (Ke + DDP) groups. After 15 days of drug administration, the animals were sacrificed, body weight and tumor volume were recorded, and the tumor-inhibiting rate was calculated. A cancer pathway finder polymerase chain reaction array was used to monitor the expression of 88 genes in tumor tissue samples. The potential antiproliferation mechanism was also investigated by Western blot analysis. Ke formula minimized chemotherapy-related weight loss in tumor-bearing mice without exhibiting distinct toxicity. Ke formula also inhibited tumor growth, which was associated with the downregulation of genes in the PI3K/AKT, MAPK, and WNT/β-catenin pathways. The results from Western blot analyses further indicated that Ke blocked the cell cycle progression at the G1/S phase and induced apoptosis mainly via the PI3K/AKT pathway. Ke formula inhibits tumor growth in an A549 xenograft mouse model with no obvious side effects. Moreover, Ke exhibits synergistic

  20. Dual‑sensitive HRE/Egr1 promoter regulates Smac overexpression and enhances radiation‑induced A549 human lung adenocarcinoma cell death under hypoxia.

    PubMed

    Li, Chang-Feng; Chen, Li-Bo; Li, Dan-Dan; Yang, Lei; Zhang, Bao-Gang; Jin, Jing-Peng; Zhang, Ying; Zhang, Bin

    2014-08-01

    The aim of this study was to construct an expression vector carrying the hypoxia/radiation dual‑sensitive chimeric hypoxia response element (HRE)/early growth response 1 (Egr‑1) promoter in order to overexpress the therapeutic second mitochondria‑derived activator of caspases (Smac). Using this expression vector, the present study aimed to explore the molecular mechanism underlying radiotherapy‑induced A549 human lung adenocarcinoma cell death and apoptosis under hypoxia. The plasmids, pcDNA3.1‑Egr1‑Smac (pE‑Smac) and pcDNA3.1‑HRE/Egr-1‑Smac (pH/E‑Smac), were constructed and transfected into A549 human lung adenocarcinoma cells using the liposome method. CoCl2 was used to chemically simulate hypoxia, followed by the administration of 2 Gy X‑ray irradiation. An MTT assay was performed to detect cell proliferation and an Annexin V‑fluorescein isothiocyanate apoptosis detection kit was used to detect apoptosis. Quantitative polymerase chain reaction and western blot analyses were used for the detection of mRNA and protein expression, respectively. Infection with the pE‑Smac and pH/E‑Smac plasmids in combination with radiation and/or hypoxia was observed to enhance the expression of Smac. Furthermore, Smac overexpression was found to enhance the radiation‑induced inhibition of cell proliferation and promotion of cycle arrest and apoptosis. The cytochrome c/caspase‑9/caspase‑3 pathway was identified to be involved in this regulation of apoptosis. Plasmid infection in combination with X‑ray irradiation was found to markedly induce cell death under hypoxia. In conclusion, the hypoxia/radiation dual‑sensitive chimeric HRE/Egr‑1 promoter was observed to enhance the expression of the therapeutic Smac, as well as enhance the radiation‑induced inhibition of cell proliferation and promotion of cycle arrest and apoptosis under hypoxia. This apoptosis was found to involve the mitochondrial pathway.

  1. KRIBB11 accelerates Mcl-1 degradation through an HSF1-independent, Mule-dependent pathway in A549 non-small cell lung cancer cells.

    PubMed

    Kang, Min-Jung; Yun, Hye Hyeon; Lee, Jeong-Hwa

    2017-10-21

    The Bcl-2 family protein, Mcl-1 is known to have anti-apoptotic functions, and depletion of Mcl-1 by cellular stresses favors the apoptotic process. Moreover, Mcl-1 levels are frequently increased in various cancer cells, including non-small cell lung cancer (NSCLC), and is implicated in resistance to conventional chemotherapy and in cancer metastasis. In this study, we demonstrated that KRIBB11 accelerates the proteasomal degradation of Mcl-1 in the NSCLC cell line, A549. While KRIBB11 is an inhibitor of HSF1, we found that KRIBB11 induced Mcl-1 degradation in an HSF1-independent manner. Furthermore, this process was triggered via increase ubiquitination by the E3 ligase, Mule, rather than via de-ubiquitination by USP9X. Additionally, we found that Mcl-1 levels were only transiently reduced by KRIBB11: Mcl-1 levels were gradually restored as KRIBB11 activity diminished. However, we found that this effect was blocked in BIS (Bcl-2 interacting cell death suppressor, also called BAG3)-depleted cells, and that BIS prevents Mcl-1 from undergoing HSP70-driven proteasomal degradation, through an interaction with HSP70. Taken together, our results suggest that targeting Mcl-1 with KRIBB11 treatment, while simultaneously downregulating BIS, could be a therapeutic strategy in NSCLC. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A methoxyflavanone derivative from the Asian medicinal herb (Perilla frutescens) induces p53-mediated G2/M cell cycle arrest and apoptosis in A549 human lung adenocarcinoma.

    PubMed

    Abd El-Hafeez, Amer Ali; Fujimura, Takashi; Kamei, Rikiya; Hirakawa, Noriko; Baba, Kenji; Ono, Kazuhisa; Kawamoto, Seiji

    2017-07-14

    Perilla frutescens is an Asian dietary herb consumed as an essential seasoning in Japanese cuisine as well as used for a Chinese medicine. Here, we report that a newly found methoxyflavanone derivative from P. frutescens (Perilla-derived methoxyflavanone, PDMF; 8-hydroxy-5,7-dimethoxyflavanone) shows carcinostatic activity on human lung adenocarcinoma, A549. We found that treatment with PDMF significantly inhibited cell proliferation and decreased viability through induction of G 2 /M cell cycle arrest and apoptosis. The PDMF stimulation induces phosphorylation of tumor suppressor p53 on Ser15, and increases its protein amount in conjunction with up-regulation of downstream cyclin-dependent kinase inhibitor p21 Cip1/Waf1 and proapoptotic caspases, caspase-9 and caspase-3. We also found that small interfering RNA knockdown of p53 completely abolished the PDMF-induced G 2 /M cell cycle arrest, and substantially abrogated its proapoptotic potency. These results suggest that PDMF represents a useful tumor-preventive phytochemical that triggers p53-driven G 2 /M cell cycle arrest and apoptosis.

  3. Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cells line

    NASA Astrophysics Data System (ADS)

    Palaniappan, P.; Sathishkumar, G.; Sankar, R.

    2015-03-01

    The present study reports, green synthesis of bioactive silver nanoparticles (AgNPs) under different temperature (60 °C, room temperature and 4° refrigerator) using the aqueous extract of sea grass Cymodocea serrulata as a potential bioreductant. Increased temperature fabricates more AgNPs compare to room temperature and refrigerator condition. At first the reduction of Ag+ ions were confirmed through color change which produces an absorbance spectra at 420 nm in UV-Visible spectrophotometer. Additionally various exclusive instrumentations such as X-ray diffraction (XRD), Dynamic light scattering (DLS), scanning electron microscope (SEM) analysis and Transmission electron microscope (TEM) were authorizes the biosynthesis and physio-chemical characterization of AgNPs. From Fourier transform infrared spectroscopy (FTIR) analysis, it was identified that the water soluble fractions of the sea grass mainly responsible for reduction of ionic silver (Ag+) into (Ag0) nano-ranged particles and also they act as stabilizing agent to sustain the durability of NPs for long period of time. Further, synthesized AgNPs shows potential cytotoxicity against human lung cancer A549 cells (LD50-100 μg/ml). The overall results suggest that C. serrulata is a valuable bioresource to generate rapid and eco-friendly bioactive AgNPs towards cancer therapy.

  4. Exosome cargo reflects TGF-β1-mediated epithelial-to-mesenchymal transition (EMT) status in A549 human lung adenocarcinoma cells.

    PubMed

    Kim, Jiyeon; Kim, Tae Yeon; Lee, Myung Shin; Mun, Ji Young; Ihm, Chunhwa; Kim, Soon Ae

    2016-09-16

    It has been suggested that tumor cells secrete exosomes to modify the local microenvironment, which then promotes intercellular communication and metastasis. Although exosomes derived from cancer cells may contribute to the epithelial-mesenchymal transition (EMT) in untransformed cells, few studies have defined exosome cargo upon induction of EMT. In this study, we investigated the changes in exosomal cargo from the epithelial to mesenchymal cell phenotype by inducing EMT with transforming growth factor (TGF)-β1 in A549 human lung adenocarcinoma cells. The protein content of the exosomes reflects the change in the cell phenotype. In addition, miR-23a was significantly enriched in the exosomes after mesenchymal transition. Following treatment of exosomes from mesenchymal cells via EMT induction with TGF-β1 to the epithelial cell type, phenotypic changes in protein expression level and cell morphology were observed. Autologous treatment of exosomes enhanced the transcriptional activity and abundance of β-catenin. Our results suggest that the exosomal protein and miRNA content reflects the physiological condition of its source and that exosomes induce phenotypic changes via autocrine signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Suberoylanilide hydroxamic acid treatment reveals crosstalks among proteome, ubiquitylome and acetylome in non-small cell lung cancer A549 cell line.

    PubMed

    Wu, Quan; Cheng, Zhongyi; Zhu, Jun; Xu, Weiqing; Peng, Xiaojun; Chen, Chuangbin; Li, Wenting; Wang, Fengsong; Cao, Lejie; Yi, Xingling; Wu, Zhiwei; Li, Jing; Fan, Pingsheng

    2015-03-31

    Suberoylanilide hydroxamic acid (SAHA) is a well-known histone deacetylase (HDAC) inhibitor and has been used as practical therapy for breast cancer and non-small cell lung cancer (NSCLC). It is previously demonstrated that SAHA treatment could extensively change the profile of acetylome and proteome in cancer cells. However, little is known about the impact of SAHA on other protein modifications and the crosstalks among different modifications and proteome, hindering the deep understanding of SAHA-mediated cancer therapy. In this work, by using SILAC technique, antibody-based affinity enrichment and high-resolution LC-MS/MS analysis, we investigated quantitative proteome, acetylome and ubiquitylome as well as crosstalks among the three datasets in A549 cells toward SAHA treatment. In total, 2968 proteins, 1099 acetylation sites and 1012 ubiquitination sites were quantified in response to SAHA treatment, respectively. With the aid of intensive bioinformatics, we revealed that the proteome and ubiquitylome were negatively related upon SAHA treatment. Moreover, the impact of SAHA on acetylome resulted in 258 up-regulated and 99 down-regulated acetylation sites at the threshold of 1.5 folds. Finally, we identified 55 common sites with both acetylation and ubiquitination, among which ubiquitination level in 43 sites (78.2%) was positive related to acetylation level.

  6. Combined treatment of curcumin and small molecule inhibitors suppresses proliferation of A549 and H1299 human non-small-cell lung cancer cells.

    PubMed

    Lin, Hui-Ping; Kuo, Li-Kuo; Chuu, Chih-Pin

    2012-01-01

    Curcumin (diferuloylmethane) is a phenolic compound present in turmeric and is ingested daily in many parts of the world. Curcumin has been reported to cause inhibition on proliferation and induction of apoptosis in many human cancer cell lines, including non-small cell lung cancer cells (NSCLC). However, the clinical application of curcumin is restricted by its low bioavailability. In this report, it was observed that combined treatment of a low dosage of curcumin (5-10 µM) with a low concentration (0.1-2.5 µM) of small molecule inhibitors, including AG1478, AG1024, PD173074, LY294002 and caffeic acid phenethyl ester (CAPE) increased the growth inhibition in two human NSCLC cell lines: A549 and H1299 cells. The observation suggested that combined treatment of a low dosage of curcumin with inhibitors against epidermal growth factor receptor (EGFR), insulin-like growth factor 1 (IGF-1R), fibroblast growth factors receptor (FGFR), phosphatidylinositol 3-kinases (PI3K) or NF-κB signaling pathway may be a potential adjuvant therapy beneficial to NSCLC patients. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures.

    PubMed

    Malacrida, Leonel; Astrada, Soledad; Briva, Arturo; Bollati-Fogolín, Mariela; Gratton, Enrico; Bagatolli, Luis A

    2016-11-01

    Using LAURDAN spectral imaging and spectral phasor analysis we concurrently studied the growth and hydration state of subcellular organelles (lamellar body-like, LB-like) from live A549 lung cancer cells at different post-confluence days. Our results reveal a time dependent two-step process governing the size and hydration of these intracellular LB-like structures. Specifically, a first step (days 1 to 7) is characterized by an increase in their size, followed by a second one (days 7 to 14) where the organelles display a decrease in their global hydration properties. Interestingly, our results also show that their hydration properties significantly differ from those observed in well-characterized artificial lamellar model membranes, challenging the notion that a pure lamellar membrane organization is present in these organelles at intracellular conditions. Finally, these LB-like structures show a significant increase in their hydration state upon secretion, suggesting a relevant role of entropy during this process. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Synthesis, characterization and in vitro studies of doxorubicin-loaded magnetic nanoparticles grafted to smart copolymers on A549 lung cancer cell line.

    PubMed

    Akbarzadeh, Abolfazl; Samiei, Mohammad; Joo, Sang Woo; Anzaby, Maryam; Hanifehpour, Younes; Nasrabadi, Hamid Tayefi; Davaran, Soodabeh

    2012-12-18

    The aim of present study was to develop the novel methods for chemical and physical modification of superparamagnetic iron oxide nanoparticles (SPIONs) with polymers via covalent bonding entrapment. These modified SPIONs were used for encapsulation of anticancer drug doxorubicin. At first approach silane-grafted magnetic nanoparticles was prepared and used as a template for polymerization of the N-isopropylacrylamide (NIPAAm) and methacrylic acid (MAA) via radical polymerization. This temperature/pH-sensitive copolymer was used for preparation of DOX-loaded magnetic nanocomposites. At second approach Vinyltriethoxysilane-grafted magnetic nanoparticles were used as a template to polymerize PNIPAAm-MAA in 1, 4 dioxan and methylene-bis-acrylamide (BIS) was used as a cross-linking agent. Chemical composition and magnetic properties of Dox-loaded magnetic hydrogel nanocomposites were analyzed by FT-IR, XRD, and VSM. The results demonstrate the feasibility of drug encapsulation of the magnetic nanoparticles with NIPAAm-MAA copolymer via covalent bonding. The key factors for the successful prepardtion of magnetic nanocomposites were the structure of copolymer (linear or cross-linked), concentration of copolymer and concentration of drug. The influence of pH and temperature on the release profile of doxorubicin was examined. The in vitro cytotoxicity test (MTT assay) of both magnetic DOx-loaded nanoparticles was examined. The in vitro tests showed that these systems are no toxicity and are biocompatible. IC50 of DOx-loaded Fe3O4 nanoparticles on A549 lung cancer cell line showed that systems could be useful in treatment of lung cancer.

  9. Trehalose Liposomes Suppress the Growth of Tumors on Human Lung Carcinoma-bearing Mice by Induction of Apoptosis In Vivo.

    PubMed

    Ichihara, Hideaki; Kuwabara, Keiji; Matsumoto, Yoko

    2017-11-01

    Previous evidence demonstrates that trehalose liposomes (DMTreC14) composed of L-α-dimyristoylphosphatidylcholine (DMPC) and α-D-glycopyranosyl-α-D-glucopyranoside monomyristate (TreC14) inhibit proliferation and invasion on lung carcinoma (A549 cells) in vitro. Here, we aimed to investigate suppressive effects of DMTreC14 on the growth of tumor on human lung carcinoma bearing mice. DMTreC14 composed of 30 mol% DMPC and 70 mol% TreC14 were prepared by the sonication method. Anti-tumor activities of DMTreC14 using the subcutaneous and orthotopic graft-bearing mice of A549 cells were investigated in vivo. The remarkable reduction of volume and weight in subcutaneous tumors on subcutaneous lung carcinoma-bearing mice topically administrated with DMTreC14 were obtained. Apoptotic-positive cells in the subcutaneous tumor slice of subcutaneous lung carcinoma-bearing mice topically administrated with DMTreC14 were observed using TUNEL staining. Lung weights on the orthotopic graft-bearing mice of lung carcinoma intravenously administrated with DMTreC14 were markedly decreased compared to those of the control group. Remarkable decrease in dimensions of tumor area of lung on the orthotopic graft-bearing mice of lung carcinoma intravenously administrated with DMTreC14 was obtained in histological analysis using the hematoxylin and eosin staining. Remarkably high anti-tumor activities of DMTreC14 for the subcutaneous and orthotopic graft-bearing mice of lung carcinoma accompanied with apoptosis were revealed for the first time in vivo. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Role of {alpha}{sub v}{beta}{sub 5} integrin receptor in endocytosis of crocidolite and its effect on intracellular glutathione levels in human lung epithelial (A549) cells

    SciTech Connect

    Pande, Priyadarshini; Mosleh, Tariq A.; Aust, Ann E.

    Crocidolite, containing 27% iron by weight, is the most carcinogenic form of asbestos. Crocidolite fibers are endocytized by {alpha}{sub v}{beta}{sub 5} integrin receptors in rabbit pleural mesothelial cells. We show here that crocidolite fibers are endocytized in human lung epithelial (A549) cells and in primary small airway epithelial (SAEC) cells. Presence of the integrin {alpha}{sub v}{beta}{sub 5} blocking antibody, P1F6, significantly reduced the uptake of crocidolite fibers in A549 cells. Thus, the integrin {alpha}{sub v}{beta}{sub 5} receptor is involved in endocytosis of crocidolite fibers in A549 cells as well. Previously, it has been observed that asbestos fibers lead to changesmore » in the intracellular redox environment, i.e. a marked decrease in intracellular glutathione concentrations and an increase in the extracellular glutathione in A549 cells. In addition, the decrease in intracellular glutathione was found to be largely independent of iron present on the surface of the fiber. A549 cells were treated with crocidolite in the presence of endocytosis inhibitor cytochalasin D. Our data indicate that, upon preventing endocytosis, we were able to reverse the decrease in total intracellular glutathione. The decrease in total intracellular glutathione could also be prevented in the presence of the monoclonal antibody P1F6. Thus, we observed that endocytosis of crocidolite fibers via integrin {alpha}{sub v}{beta}{sub 5} receptor is linked to the marked decrease in total intracellular glutathione in A549 cells.« less

  11. Effect of functionalized and non-functionalized nanodiamond on the morphology and activities of antioxidant enzymes of lung epithelial cells (A549).

    PubMed

    Solarska-Ściuk, Katarzyna; Gajewska, Agnieszka; Glińska, Sława; Michlewska, Sylwia; Balcerzak, Łucja; Jamrozik, Agnieszka; Skolimowski, Janusz; Burda, Květoslava; Bartosz, Grzegorz

    2014-10-05

    The development of nanotechnology opens up new ways for biomedical applications of unmodified and modified diamond nanoparticles which are one of the most popular nanomaterials used in biology, biotechnology, medicine, cosmetics and engineering. They have been applied as diagnostic and therapeutic agents because they can be targeted to and localized in cells causing apoptosis and necrosis. The problem of biocompatibility of nanodiamonds at higher concentrations is thus of primary importance. The first step in the modification of DNPs is usually the introduction of hydrogen groups, which can bind other functional groups. The basic method to introduce -OH groups onto nanoparticles is the Fenton reaction. The aim of this study was to compare the effect of unmodified nanodiamond particles and nanoparticles modified by introduction of -OH groups and etoposide onto their surface reaction on human non-small lung cancer cells. A549 cells were incubated with 2-100μg/ml nanopowders and at 0.6-24μg/ml etoposide in the DMEM medium. We observed a decrease of cells viability and generation of reactive oxygen/ nitrogen species in the cells after incubation, estimated by oxidation of H2DCF-DA and DAF-FM-DA. Modified detonation nanoparticles affected also the cellular content of glutathione and activities of main antioxidant enzymes (glutathione peroxidase, glutathione reductase, glutathione S-transferase, superoxide dismutase and catalase). The results of TEM microscopy show changes in cell morphology. These data demonstrate that modified nanoparticles induce oxidative stress in the target cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Heteroleptic monometallic and trimetallic ruthenium(II) complexes incorporating a π-extended dipyrrin ligand: Light-activated reactions with the A549 lung cancer cell line.

    PubMed

    Swavey, Shawn; Morford, Krista; Tsao, Max; Comfort, Kristen; Kilroy, Mary Kate

    2017-10-01

    A heteroleptic monometallic ruthenium(II) and a heteroleptic trimetallic ruthenium(II) complex have been synthesized and characterized. Both complexes have an overall 3+ charge, with the charge density greater for the monometallic complex. The electronic spectra of the monometallic ruthenium(II) complex exhibits intense π-π* transitions associated with the bipyridyl groups along with overlapping metal to ligand charge transfer (MLCT) and ligand centered π-π* transitions ranging from 520nm to approximately 600nm. The trimetallic ruthenium(II) complex, on the other hand, displays more well defined transitions with the expected π-π* transition of the bipyridyl groups at 294nm and Ru(dπ) to bpy(π*) MLCT transitions at 355nm and 502nm. In addition to these absorption bands an intense transition, 578nm, resulting from overlapping dipyrrin (π-π*) and Ru(dπ) to dipyrrin(π*) transitions is observed. Electrochemical and spectroelectrochemical experiments were used to help in assigning these transitions. Irradiation of the complexes in the presence of plasmid DNA within the photodynamic therapy window (600nm to 850nm) reveal, using electrophoresis, that both complexes are capable of causing photo-damage to the DNA backbone. The trimetallic ruthenium(II) complex; however, also shows the ability to generate photoinduced DNA damage in the absence of oxygen, suggesting a photo-oxidative process. Studies of the complexes toward lung cancer cells (A549 cell line) in the absence of light indicate little cytotoxicity up to 50μM. Upon irradiation of the cells with a low power 420nm light source the trimetallic complex showed considerably greater photo-cytotoxicity compared to the monometallic analog. A dose-dependent response curve gives an IC50 of 92μM for complex B. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Migration-stimulating factor (MSF) is over-expressed in non-small cell lung cancer and promotes cell migration and invasion in A549 cells over-expressing MSF

    SciTech Connect

    Deng, Xuefeng, E-mail: dengxfdoctor@hotmail.com; Department of Cardio-thoracic Surgery, Affiliated Hospital of Academy of Military Medical Sciences; Ma, Qunfeng

    Migration-stimulating factor (MSF), an oncofetal truncated isoform of fibronectin, is a potent stimulator of cell invasion. However, its distribution and motogenic role in non-small cell lung cancer (NSCLC) have never been identified. In this study, real-time PCR and immunohistochemical staining (IHC) were performed to detect MSF mRNA and protein levels in tumor tissues and matched adjacent tumor-free tissues. Furthermore, to examine the effect of MSF on invasiveness, MSF was upregulated in A549 cells. The invasiveness and viability of A549 cells were then determined using a transwell migration assay and the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assays, respectively. The expression level ofmore » MSF in NSCLC tissue was markedly higher than in matched adjacent tumor-free tissue. Additionally, the level of MSF protein expression in stage III and IV NSCLC samples was higher than in stage I and II NSCLC samples. More importantly, we also demonstrated that migration and invasion of A549 cells increased substantially after upregulating MSF, although proliferation remained unchanged. Meanwhile, we found no correlation between increasing motility and invasiveness of MSF-overexpressing cells and expression levels and activities of matrix metalloprotease MMP-2 and MMP-9. Our current study shows that MSF plays a role in migration and invasion of A549 cells and suggests that MSF may be a potential biomarker of NSCLC progression. - Highlights: • MSF expression was upregulated in NSCLC and correlated with TNM stages. • MSF may be a new biomarker for NSCLC progression. • MSF promoted migration and invasion in A549 cells, independent of MMP-2/MMP-9 expression.« less

  14. The Association Between Lung Carcinoma and Tuberculosis

    PubMed Central

    Cukic, Vesna

    2017-01-01

    Introduction: The association between lung tuberculosis and lung carcinoma is still controversial. Objective: to describe the characteristics of patients with associated lung tuberculosis (TB) and lung carcinoma (LC) in patients treated in Clinic for pulmonary diseases and TB “Podhrastovi”. Material and Methods: This is the retrospective study of patients with LC associated with TB treated in Clinic for pulmonary diseases and TB “Podhrastovi” in five-year period -from 2012 to 2016. We analyzed sex and age of patients, whether TB preceded LC or LC preceded TB, a time period between the developments of these two diseases, activity of TB, the histopathological type of LC, localization of LC in lungs (bronchial, peripheral, cavern) according to histopathological type. Results: In this period there were 2608 patients treated for LC. Among them there were 34 patients with diagnosed TB or 1.3%. All of them were smokers. No one had active TB. TB was the first diagnosis in all these patients. Each patient was previously treated for TB in hospital and had regular anti TB treatment. TB preceded LC in median time of 5 years (interquartile range 2 to 25 years). In 21 cases it was carcinoma of the drainage bronchus, in 11 cases it was peripheral lung carcinoma and 2 cases it was cavern carcinoma. Conlusion: patients with cured pulmonary tuberculosis represent a group at risk for developing lung carcinoma. Changes in the bronchial and alveolar mucosa which tuberculosis leaves behind in the lungs must be taken as a possible place of later malignant alteration. Patients with any form of pulmonary tuberculosis have to be controlled continuously. PMID:28974836

  15. Plumbagin reduces osteopontin-induced invasion through inhibiting the Rho-associated kinase signaling pathway in A549 cells and suppresses osteopontin-induced lung metastasis in BalB/c mice.

    PubMed

    Kang, Chi Gu; Im, Eunji; Lee, Hyo-Jeong; Lee, Eun-Ok

    2017-05-01

    Lung cancer is the second most commonly diagnosed cancer and the leading cause of cancer deaths in both men and women in the United States. It has been recently demonstrated that osteopontin (OPN) effectively inhibits cofilin activity through the focal adhesion kinase (FAK)/AKT/Rho-associated kinase (ROCK) pathway to induce the invasion of human non-small cell lung cancer (NSCLC) cells. Plumbagin was isolated from the roots of the medicinal plant Plumbago zeylanica L. and has been reported to possess anticancer activities. However, the molecular mechanisms by which plumbagin inhibits the invasion of cancer cells is still unclear. In this study, the anti-invasive and anti-metastatic mechanisms of plumbagin were investigated in OPN-treated NSCLC A549 cells. OPN effectively induced the motility and invasion of NSCLC A549 cells and H1299 cells, which was strongly suppressed by plumbagin with no evidence of cytotoxicity. In addition, lamellipodia formation at the leading edge of cells by OPN was dramatically decreased in plumbagin-treated cells. Plumbagin caused an effective inhibition in OPN-induced the expression of ROCK1 as well as the phosphorylation of LIM kinase 1 and 2 (LIMK1/2), and cofilin. OPN-induced the phosphorylation of FAK and AKT was impaired without affecting their total forms by plumbagin treatment. OPN facilitated metastatic lung colonization, which was effectively suppressed in plumbagin-treated mice. Taken together, these results suggest that plumbagin reduces OPN-induced the invasion of NSCLC A549 cells, which resulted from inhibiting the ROCK pathway mediated by the FAK/AKT pathway and suppresses lung metastasis in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Proteomic response to 5,6-dimethylxanthenone 4-acetic acid (DMXAA, vadimezan) in human non-small cell lung cancer A549 cells determined by the stable-isotope labeling by amino acids in cell culture (SILAC) approach

    PubMed Central

    Pan, Shu-Ting; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Yang, Yin-Xue; Wang, Dong; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    5,6-Dimethylxanthenone 4-acetic acid (DMXAA), also known as ASA404 and vadimezan, is a potent tumor blood vessel-disrupting agent and cytokine inducer used alone or in combination with other cytotoxic agents for the treatment of non-small cell lung cancer (NSCLC) and other cancers. However, the latest Phase III clinical trial has shown frustrating outcomes in the treatment of NSCLC, since the therapeutic targets and underlying mechanism for the anticancer effect of DMXAA are not yet fully understood. This study aimed to examine the proteomic response to DMXAA and unveil the global molecular targets and possible mechanisms for the anticancer effect of DMXAA in NSCLC A549 cells using a stable-isotope labeling by amino acids in cell culture (SILAC) approach. The proteomic data showed that treatment with DMXAA modulated the expression of 588 protein molecules in A549 cells, with 281 protein molecules being up regulated and 306 protein molecules being downregulated. Ingenuity pathway analysis (IPA) identified 256 signaling pathways and 184 cellular functional proteins that were regulated by DMXAA in A549 cells. These targeted molecules and signaling pathways were mostly involved in cell proliferation and survival, redox homeostasis, sugar, amino acid and nucleic acid metabolism, cell migration, and invasion and programed cell death. Subsequently, the effects of DMXAA on cell cycle distribution, apoptosis, autophagy, and reactive oxygen species (ROS) generation were experimentally verified. Flow cytometric analysis showed that DMXAA significantly induced G1 phase arrest in A549 cells. Western blotting assays demonstrated that DMXAA induced apoptosis via a mitochondria-dependent pathway and promoted autophagy, as indicated by the increased level of cytosolic cytochrome c, activation of caspase 3, and enhanced expression of beclin 1 and microtubule-associated protein 1A/1B-light chain 3 (LC3-II) in A549 cells. Moreover, DMXAA significantly promoted intracellular ROS

  17. The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line.

    PubMed

    Xie, Jun; Liu, Jiahui; Liu, Heng; Liang, Shihui; Lin, Meigui; Gu, Yueyu; Liu, Taoli; Wang, Dongmei; Ge, Hui; Mo, Sui-Lin

    2015-11-01

    The effects of tanshinone IIA on the proliferation of the human non-small cell lung cancer cell line A549 and its possible mechanism on the VEGF/VEGFR signal pathway were investigated. The exploration of the interaction between tanshinone IIA and its target proteins provides a feasible platform for studying the anticancer mechanism of active components of herbs. The CCK-8 assay was used to evaluate the proliferative activity of A549 cells treated with tanshinone IIA (2.5-80 μmol/L) for 24, 48 and 72 h, respectively. Flow cytometry was used for the detection of cell apoptosis and cell cycle perturbation. VEGF and VEGFR2 expression were studied by Western blotting. The binding mode of tanshinone IIA within the crystal structure of the VEGFR2 protein was evaluated with molecular docking analysis by use of the CDOCKER algorithm in Discovery Studio 2.1. The CCK-8 results showed that tanshinone IIA can significantly inhibit A549 cell proliferation in a dose- and time-dependent manner. Flow cytometry results showed that the apoptosis rate of tested group was higher than the vehicle control, and tanshinone IIA-treated cells accumulated at the S phase, which was higher than the vehicle control. Furthermore, the expression of VEGF and VEGFR2 was decreased in Western blot. Finally, molecular docking analysis revealed that tanshinone IIA could be stably docked into the kinase domain of VEGFR2 protein with its unique modes to form H-bonds with Cys917 and π-π stacking interactions with Val848. In conclusion, tanshinone IIA may suppress A549 proliferation, induce apoptosis and cell cycle arrest at the S phase. This drug may suppress angiogenesis by targeting the protein kinase domains of VEGF/VEGFR2.

  18. The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line

    PubMed Central

    Xie, Jun; Liu, Jiahui; Liu, Heng; Liang, Shihui; Lin, Meigui; Gu, Yueyu; Liu, Taoli; Wang, Dongmei; Ge, Hui; Mo, Sui-lin

    2015-01-01

    The effects of tanshinone IIA on the proliferation of the human non-small cell lung cancer cell line A549 and its possible mechanism on the VEGF/VEGFR signal pathway were investigated. The exploration of the interaction between tanshinone IIA and its target proteins provides a feasible platform for studying the anticancer mechanism of active components of herbs. The CCK-8 assay was used to evaluate the proliferative activity of A549 cells treated with tanshinone IIA (2.5−80 μmol/L) for 24, 48 and 72 h, respectively. Flow cytometry was used for the detection of cell apoptosis and cell cycle perturbation. VEGF and VEGFR2 expression were studied by Western blotting. The binding mode of tanshinone IIA within the crystal structure of the VEGFR2 protein was evaluated with molecular docking analysis by use of the CDOCKER algorithm in Discovery Studio 2.1. The CCK-8 results showed that tanshinone IIA can significantly inhibit A549 cell proliferation in a dose- and time-dependent manner. Flow cytometry results showed that the apoptosis rate of tested group was higher than the vehicle control, and tanshinone IIA-treated cells accumulated at the S phase, which was higher than the vehicle control. Furthermore, the expression of VEGF and VEGFR2 was decreased in Western blot. Finally, molecular docking analysis revealed that tanshinone IIA could be stably docked into the kinase domain of VEGFR2 protein with its unique modes to form H-bonds with Cys917 and π–π stacking interactions with Val848. In conclusion, tanshinone IIA may suppress A549 proliferation, induce apoptosis and cell cycle arrest at the S phase. This drug may suppress angiogenesis by targeting the protein kinase domains of VEGF/VEGFR2. PMID:26713270

  19. A polysaccharide fraction of adlay seed (Coixlachryma-jobi L.) induces apoptosis in human non-small cell lung cancer A549 cells

    SciTech Connect

    Lu, Xiangyi; Liu, Wei; Wu, Junhua

    Highlights: Black-Right-Pointing-Pointer A polysaccharide from adlay seed, its molecular mass, optical rotation and sugars was determined. Black-Right-Pointing-Pointer We demonstrated that a polysaccharide from adlay can induce apoptosis in cancer cells. Black-Right-Pointing-Pointer The polysaccharide inhibited the metabolism and proliferation of NSCLC A549 cells. Black-Right-Pointing-Pointer The polysaccharide may trigger apoptosis via the mitochondria-dependent pathway. -- Abstract: Different seed extracts from Coix lachryma-jobi (adlay seed) have been used for the treatment of various cancers in China, and clinical data support the use of these extracts for cancer therapy; however, their underlying molecular mechanisms have not been well defined. A polysaccharide fraction, designated asmore » CP-1, was extracted from the C.lachryma-jobi L. var. using the ethanol subsiding method. CP-1 induced apoptosis in A549 cells in a dose-dependent manner, as determined by MTT assay. Apoptotic bodies were observed in the cells by scanning electronic microscopy. Apoptosis and DNA accumulation during S-phase of the cell cycle were determined by annexin V-FITC and PI staining, respectively, and measured by flow cytometry. CP-1 also extended the comet tail length on single cell gel electrophoresis, and disrupted the mitochondrial membrane potential. Further analysis by western blotting showed that the expression of caspase-3 and caspase-9 proteins was increased. Taken together, our results demonstrate that CP-1 is capable of inhibiting A549 cell proliferation and inducing apoptosis via a mechanism primarily involving the activation of the intrinsic mitochondrial pathway. The assay data suggest that in addition to its nutritional properties, CP-1 is a very promising candidate polysaccharide for the development of anti-cancer medicines.« less

  20. Mucoepidermoid carcinoma of lung masquerading as urothelial carcinoma of bladder

    PubMed Central

    Graham, Donna M.; O’Connor, Kate M.; Hinchion, John; Coate, Linda E.; Burke, Louise; Power, Derek G.

    2013-01-01

    Background Mucoepidermoid carcinoma (MEC) of the lung is a rare subtype of non-small cell lung cancer. There is no consensus regarding optimal management for this disease. Case report We present a case of MEC of the lung in a 75 year-old female with a history of superficial urothelial carcinoma of the bladder. The patient was found to have an asymptomatic lung mass. Initial biopsy suggested metastatic recurrence of urothelial carcinoma and therefore, cisplatin and gemcitabine chemotherapy was administered prior to surgical resection. Pathological analysis of the resected specimen confirmed a diagnosis of stage IIIA MEC with focal high-grade features including transitional cell-like areas. Adjuvant radiotherapy was administered due to a positive microscopic resection margin. No chemotherapy was given due to lack of supporting data. The patient developed widespread metastatic disease 3 months following completion of radiotherapy and died 1 month later. Conclusion This case demonstrates the possibility of dual pathology in cases where metastatic disease is suspected. The use of small tissue samples may complicate diagnosis due to the heterogeneity of malignant tumours. PMID:24936321

  1. PM2.5 induces Nrf2-mediated defense mechanisms against oxidative stress by activating PIK3/AKT signaling pathway in human lung alveolar epithelial A549 cells.

    PubMed

    Deng, Xiaobei; Rui, Wei; Zhang, Fang; Ding, Wenjun

    2013-06-01

    It has been well documented in in vitro studies that ambient airborne particulate matter (PM) with an aerodynamic diameter less than 2.5 μm (PM(2.5)) is capable of inducing oxidative stress, which plays a key role in PM(2.5)-mediated cytotoxicity. Although nuclear factor erythroid-2-related factor 2 (Nrf2) has been shown to regulate the intracellular defense mechanisms against oxidative stress, a potential of the Nrf2-mediated cellular defense against oxidative stress induced by PM(2.5) remains to be determined. This study was aimed to explore the potential signaling pathway of Nrf2-mediated defense mechanisms against PM(2.5)-induced oxidative stress in human type II alveolar epithelial A549 cells. We exposed A549 cells to PM(2.5) particles collected from Beijing at a concentration of 16 μg/cm(2). We observed that PM(2.5) triggered an increase of intracellular reactive oxygen species (ROS) in a time-dependent manner during a period of 2 h exposure. We also found that Nrf2 overexpression suppressed and Nrf2 knockdown increased PM(2.5)-induced ROS generation. Using Western blot and confocal microscopy, we found that PM(2.5) exposure triggered significant translocation of Nrf2 into nucleus, resulting in AKT phosphorylation and significant transcription of ARE-driven phases II enzyme genes, such as NAD(P)H:quinone oxidoreductase (NQO-1), heme oxygenase-1 (HO-1), and glutamate-cysteine ligase catalytic subunit (GCLC) in A549 cells. Evaluation of signaling pathways showed that a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), but not an ERK 1/2 inhibitor (PD98059) or a p38 MAPK (SB203580), significantly down-regulated PM(2.5)-induced Nrf2 nuclear translocation and HO-1 mRNA expression, indicating PI3K/AKT is involved in the signaling pathway leads to the PM(2.5)-induced nuclear translocation of Nrf2 and subsequent Nrf2-mediated HO-1 transcription. Taken together, our results suggest that PM(2.5)-induced ROS may function as signaling molecules to activate Nrf

  2. Anti-proliferative and anti-angiogenic effects of CB2R agonist (JWH-133) in non-small lung cancer cells (A549) and human umbilical vein endothelial cells: an in vitro investigation.

    PubMed

    Vidinský, B; Gál, P; Pilátová, M; Vidová, Z; Solár, P; Varinská, L; Ivanová, L; Mojžíš, J

    2012-01-01

    Non-small cell lung cancer has one of the highest mortality rates among cancer-suffering patients. It is well known that the unwanted psychotropic effects of cannabinoids (CBs) are mediated via the CB(1) receptor (R), and selective targeting of the CB(2)R would thus avoid side effects in cancer treatment. Therefore, the aim of our study was to evaluate the effect of selective CB(2)R agonist, JWH-133, on A549 cells (non-small lung cancer) and human umbilical vein endothelial cells (HUVECs). Cytotoxicity assay and DNA fragmentation assay were employed to evaluate the influence of JWH-133 (3-(1,1-dimethylbutyl)- 1-deoxy-Δ8-tetrahydrocannabinol) on investigated cancer cells. In addition, migration assay and gelatinase zymography were performed in HUVECs to asses JWH-133 anti-angiogenic activity. Our study showed that JWH-133 exerted cytotoxic effect only at the highest concentration used (10(-4) mol/l), while inhibition of colony formation was also detected at the non-toxic concentrations (10(-5)-10(-8) mol/l). JWH-133 was also found to be able to induce weak DNA fragmentation in A549 cells. Furthermore, JWH-133 at non-toxic concentrations inhibited some steps in the process of angiogenesis. It significantly inhibited endothelial cell migration after 17 h of incubation at concentrations of 10(-4)-10(-6) mol/l. In addition, JWH-133 inhibited MMP-2 secretion as assessed by gelatinase zymography. The present study demonstrates the in vitro anti-proliferative and anti-angiogenic potential of CB(2)R agonist, JWH-133, in nonsmall lung cancer cells and HUVECs. Our results generate a rationale for further in vivo efficacy studies with this compound in preclinical cancer models.

  3. Hyaluronic acid-fabricated nanogold delivery of the inhibitor of apoptosis protein-2 siRNAs inhibits benzo[a]pyrene-induced oncogenic properties of lung cancer A549 cells

    NASA Astrophysics Data System (ADS)

    Lin, Chung-Ming; Kao, Wei-Chien; Yeh, Chun-An; Chen, Hui-Jye; Lin, Shinn-Zong; Hsieh, Hsien-Hsu; Sun, Wei-Shen; Chang, Chih-Hsuan; Hung, Huey-Shan

    2015-03-01

    Benzo[a]pyrene (BaP), a component of cooking oil fumes (COF), promotes lung cancer cell proliferation and survival via the induction of inhibitor of apoptosis protein-2 (IAP-2) proteins. Thus knockdown of IAP-2 would be a promising way to battle against lung cancer caused by COF. Functionalized gold nanoparticle (AuNP) is an effective delivery system for bio-active materials. Here, biocompatible hyaluronic acid (HA) was fabricated into nanoparticles to increase the target specificity by binding to CD44-over-expressed cancer cells. IAP-2-specific small-interfering RNA (siRNAs) or fluorescein isothiocyanate (FITC) were then incorporated into AuNP-HA. Conjugation of IAP-2 siRNA into AuNPs-HA was verified by the UV-vis spectrometer and Fourier transform infrared spectrometer. Further studies showed that AuNP-HA/FITC were effectively taken up by A549 cells through CD44-mediated endocytosis. Incubation of BaP-challenged cells with AuNP-HA-IAP-2 siRNAs silenced the expression of IAP-2, decreased cell proliferation and triggered pronounced cell apoptosis by the decrease in Bcl-2 protein and the increase in Bax protein as well as the active form of caspases-3. The BaP-elicited cell migration and enzymatic activity of the secreted matrix metalloproteinase-2 were also substantially suppressed by treatment with AuNP-HA-IAP-2 siRNAs. These results indicated that IAP-2 siRNAs can be efficiently delivered into A549 cells by functionalized AuNP-HA to repress the IAP-2 expression and BaP-induced oncogenic events, suggesting the potential therapeutic application of IAP-2 siRNA or other siRNA-conjugated AuNP-HA composites to COF-induced lung cancer and other gene-caused diseases in the future.

  4. Cytotoxic and genotoxic effects of defence secretion of Ulomoides dermestoides on A549 cells.

    PubMed

    Crespo, Rosana; Villaverde, M Luciana; Girotti, Juan R; Güerci, Alba; Juárez, M Patricia; de Bravo, Margarita G

    2011-06-14

    Ulomoides dermestoides (Fairmaire, 1893) is a cosmopolitan tenebrionid beetle reared by Argentine people who consume them alive as an alternative medicine in the treatment of different illnesses such as asthma, Parkinson's, diabetes, arthritis, HIV and specially cancer. To evaluate the cytotoxicity and DNA damage of the major volatile components released by Ulomoides dermestoides on human lung carcinoma epithelial cell line A549. The defence compounds of Ulomoides dermestoides were extracted with dichloromethane and analyzed and quantified by capillary gas chromatography. The toxicity effects of the beetle's extract against A549 cell line were evaluated. Cytotoxicity was evaluated by MTT test and Trypan blue assay and genotoxicity was evaluated by the comet assay. The synthetic compounds, individually or combined, were also tested in A549 cells and normal mononuclear human cells. The defence compounds of Ulomoides dermestoides extracted with dichloromethane (methyl-1,4-benzoquinones, ethyl-1,4-benzoquinones and 1-pentadecene as major components) showed cytotoxic activity on A549 cells demonstrated by MTT test and Trypan blue assay, with IC(50) values of 0.26equivalent/ml and 0.34equivalent/ml, respectively (1equivalent=amount of components extracted per beetle). The inhibition of A549 cell proliferation with the synthetic blend (1,4-benzoquinone and 1-pentadecene) or 1,4-benzoquinone alone was similar to that obtained with the insect extract. 1-Pentadecene showed no inhibitory effect. Low doses of insect extract or synthetic blend (0.15equivalent/ml) inhibited mononuclear cell proliferation by 72.2±2.7% and induced significant DNA damage both in tumor and mononuclear cells. Results of this study demonstrated that defence compounds of Ulomoides dermestoides reduced cell viability and induced DNA damage. We also concluded that the insect benzoquinones are primarily responsible for inducing cytotoxicity and genotoxicity in culture cells. Copyright © 2011 Elsevier

  5. Radiation enhanced efficiency of combined electromagnetic hyperthermia and chemotherapy of lung carcinoma using cisplatin functionalized magnetic nanoparticles.

    PubMed

    Babincová, M; Kontrisova, K; Durdík, S; Bergemann, C; Sourivong, P

    2014-02-01

    The effect of trimodality treatment consisting of hyperthermia, cisplatin and radiation was investigated in two non-small lung carcinoma cell lines with different sensitivities to cisplatin. Hyperthermia treatment was performed using heat released via Neél and Brown relaxation of magnetic nanoparticles in an alternating magnetic field. Radiation with dose 1.5 Gy was performed after 15 min electromagnetic hyperthermia and cisplatin treatment. Electromagnetic hyperthermia enhanced cisplatin-induced radiosensitization in both the cisplatin-sensitive H460 (viability 11.2 +/- 1.8 %) and cisplatin-resistant A549 (viability 14.5 +/- 2.3 %) lung carcinoma cell line. Proposed nanotechnology based trimodality cancer treatment may have therefore important clinical applications.

  6. In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of Zinc oxide doped TiO2 nanocrystals: Investigation of bio-medical application by chemical method.

    PubMed

    Kaviyarasu, K; Geetha, N; Kanimozhi, K; Maria Magdalane, C; Sivaranjani, S; Ayeshamariam, A; Kennedy, J; Maaza, M

    2017-05-01

    We report the synthesis of high quality ZnO doped TiO 2 nanocrystals by chemical method at room temperature (RT), it can cause serious oxidative stress and DNA damage to human lung epithelial cells (A549) lines. Our aim in this study, to reduce the cytotoxicity effect of ZnO doped TiO 2 nanocrystals are widely in biological fields. Several studies have been performed to understand the influence of ZnO doped titanium dioxide (TiO 2 -NPs) on cell function; however the effects of nanoparticle against to exposure on the cell membrane have been duly addressed fascinatingly so far. However, In this interaction, which may alter cell metabolism and integrity, it is one of the importance to understand the modifications of the cell membrane, mechanisms of pulmonary A549 cell lines nanoparticles were uptake and the molecular pathway during the initial cell responses are still unclear and much more investigative efforts are need to properly characterize the ZnO doped titanium dioxide nanoparticles were reported successfully. In particular of the epithelial cells, upon particles are exposed human pulmonary epithelial cells (A549) to various concentrations of composition, structure and morphology of the nanocrystals were analyzed by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). XRD assessed the crystal structure of the nanocrystals which identified peaks associated with (002), (100) and (101) planes of hexagonal wurtzite-type ZnO with lattice constants of a=b=3.249Å and c=5.219Å. The IR results showed high purity of products and indicated that the nanocrystals are made up of TiO and ZnO bonds. The Photoluminescence (PL) spectra are dominated by a strong narrow band edge emission tunable in the blue region of the visible spectra indicating a narrow size distribution of ZnO/TiO 2 nanocrystals which exhibits antibacterial activity over a broad range of bacterial species and in particular against Stre. Mut where it out competes four other

  7. Effects of calcitriol (1, 25-dihydroxy-vitamin D3) on the inflammatory response induced by H9N2 influenza virus infection in human lung A549 epithelial cells and in mice.

    PubMed

    Gui, Boxiang; Chen, Qin; Hu, Chuanxia; Zhu, Caihui; He, Guimei

    2017-01-23

    H9N2 influenza viruses circulate globally and are considered to have pandemic potential. The hyper-inflammatory response elicited by these viruses is thought to contribute to disease severity. Calcitriol plays an important role in modulating the immune response to viral infections. However, its unknown whether calcitriol can attenuate the inflammatory response elicited by H9N2 influenza virus infection. Human lung A549 epithelial cells were treated with calcitriol (100 nM) and then infected with an H9N2 influenza virus, or infected and then treated with calcitriol (30 nM). Culture supernatants were collected every 24 h post infection and the viral growth kinetics and inflammatory response were evaluated. Calcitriol (5 mg/kg) was administered daily by intraperitoneal injection to BABL/c mice for 15 days following H9N2 influenza virus infection. Mice were monitored for clinical signs of disease, lung pathology and inflammatory responses. Calcitriol treatment prior to and post infection with H9N2 influenza significantly decreased expression of the influenza M gene, IL-6, and IFN-β in A549 cells, but did not affect virus replication. In vivo, we found that calcitriol treatment significantly downregulated pulmonary inflammation in mice 2 days post-infection, but increased the inflammatory response 4 to 6 days post-infection. In contrast, the antiviral cytokine IFN-β was significantly higher in calcitriol-treated mice than in the untreated infected mice at 2 days post-infection, but lower than in untreated infected mice on days 4 and 8 post-infection. The elevated levels of pro-inflammatory cytokines and the decreased levels of antiviral cytokine are consistent with the period of maximum body weight loss and the lung damage in calcitriol-treated mice. These results suggest that calcitriol treatment might have a negative impact on the innate immune response elicited by H9N2 infection in mice, especially at the later stage of influenza virus infection. This study

  8. Lipotoxin F of Pseudomonas aeruginosa is an AlgU-dependent and alginate-independent outer membrane protein involved in resistance to oxidative stress and adhesion to A549 human lung epithelia.

    PubMed

    Damron, F Heath; Napper, Jennifer; Teter, M Allison; Yu, Hongwei D

    2009-04-01

    Chronic lung infection with P. aeruginosa and excessive neutrophil-associated inflammation are major causes of morbidity and mortality in patients with cystic fibrosis (CF). Overproduction of an exopolysaccharide known as alginate leads to the formation of mucoid biofilms that are resistant to antibiotics and host defences. Alginate overproduction or mucoidy is controlled by a stress-related ECF sigma factor AlgU/T. Mutation in the anti-sigma factor MucA is a known mechanism for conversion to mucoidy. Recently, we showed that inactivation of a kinase (KinB) in nonmucoid strain PAO1 results in overproduction of alginate. Here, we report the initial characterization of lipotoxin F (LptF, PA3692), an OmpA-like outer membrane protein that exhibited increased expression in the mucoid PAO1kinB mutant. The lipotoxin family of proteins has been previously shown to induce inflammation in lung epithelia, which may play a role in CF disease progression. Expression of LptF was observed to be AlgU-dependent and upregulated in CF isolates. Deletion of lptF from the kinB mutant had no effect on alginate production. Deletion of lptF from PAO1 caused a differential susceptibility to oxidants that can be generated by phagocytes. The lptF and algU mutants were more sensitive to hypochlorite than PAO1. However, the lptF mutant displayed increased resistance to hydrogen peroxide. LptF also contributed to adhesion to A549 human lung epithelial cells. Our data suggest that LptF is an outer membrane protein that may be important for P. aeruginosa survival in harsh environments, including lung colonization in CF.

  9. Lipotoxin F of Pseudomonas aeruginosa is an AlgU-dependent and alginate-independent outer membrane protein involved in resistance to oxidative stress and adhesion to A549 human lung epithelia

    PubMed Central

    Damron, F. Heath; Napper, Jennifer; Teter, M. Allison; Yu, Hongwei D.

    2009-01-01

    Chronic lung infection with P. aeruginosa and excessive neutrophil-associated inflammation are major causes of morbidity and mortality in patients with cystic fibrosis (CF). Overproduction of an exopolysaccharide known as alginate leads to the formation of mucoid biofilms that are resistant to antibiotics and host defences. Alginate overproduction or mucoidy is controlled by a stress-related ECF sigma factor AlgU/T. Mutation in the anti-sigma factor MucA is a known mechanism for conversion to mucoidy. Recently, we showed that inactivation of a kinase (KinB) in nonmucoid strain PAO1 results in overproduction of alginate. Here, we report the initial characterization of lipotoxin F (LptF, PA3692), an OmpA-like outer membrane protein that exhibited increased expression in the mucoid PAO1kinB mutant. The lipotoxin family of proteins has been previously shown to induce inflammation in lung epithelia, which may play a role in CF disease progression. Expression of LptF was observed to be AlgU-dependent and upregulated in CF isolates. Deletion of lptF from the kinB mutant had no effect on alginate production. Deletion of lptF from PAO1 caused a differential susceptibility to oxidants that can be generated by phagocytes. The lptF and algU mutants were more sensitive to hypochlorite than PAO1. However, the lptF mutant displayed increased resistance to hydrogen peroxide. LptF also contributed to adhesion to A549 human lung epithelial cells. Our data suggest that LptF is an outer membrane protein that may be important for P. aeruginosa survival in harsh environments, including lung colonization in CF. PMID:19332805

  10. 6-Shogaol, an active constituent of dietary ginger, induces autophagy by inhibiting the AKT/mTOR pathway in human non-small cell lung cancer A549 cells.

    PubMed

    Hung, Jen-Yu; Hsu, Ya-Ling; Li, Chien-Te; Ko, Ying-Chin; Ni, Wen-Chiu; Huang, Ming-Shyan; Kuo, Po-Lin

    2009-10-28

    This study is the first study to investigate the anticancer effect of 6-shogaol in human non-small cell lung cancer A549 cells. 6-Shogaol inhibited cell proliferation by inducing autophagic cell death, but not, predominantly, apoptosis. Pretreatment of cells with 3-methyladenine (3-MA), an autophagy inhibitor, suppressed 6-shogaol mediated antiproliferation activity, suggesting that induction of autophagy by 6-shogaol is conducive to cell death. We also found that 6-shogaol inhibited survival signaling through the AKT/mTOR signaling pathway by blocking the activation of AKT and downstream targets, including the mammalian target of rapamycin (mTOR), forkhead transcription factors (FKHR) and glycogen synthase kinase-3beta (GSK-3beta). Phosphorylation of both of mTOR's downstream targets, p70 ribosomal protein S6 kinase (p70S6 kinase) and 4E-BP1, was also diminished. Overexpression of AKT by AKT cDNA transfection decreased 6-shogaol mediated autophagic cell death, supporting inhibition of AKT beneficial to autophagy. Moreover, reduction of AKT expression by siRNA potentiated 6-shogaol's effect, also supporting inhibition of AKT beneficial to autophagy. Taken together, these findings suggest that 6-shogaol may be a promising chemopreventive agent against human non-small cell lung cancer.

  11. Sustainability of CD24 expression, cell proliferation and migration, cisplatin-resistance, and caspase-3 expression during mesenchymal-epithelial transition induced by the removal of TGF-β1 in A549 lung cancer cells.

    PubMed

    Kim, Seong-Kwan; Park, Jin-A; Zhang, Dan; Cho, Sang-Hyun; Yi, Hee; Cho, Soo-Min; Chang, Byung-Joon; Kim, Jin-Suk; Shim, Jae-Han; Abd El-Aty, A M; Shin, Ho-Chul

    2017-08-01

    Epithelial-mesenchymal transition (EMT) is a notable mechanism underlying cancer cell metastasis. Transforming growth factor β1 (TGF-β1) has been used to induce EMT; however, there is a lack of information regarding the role of TGF-β1 in mesenchymal-epithelial transition (MET). In the present study, EMT was induced in A549 lung cancer cells using TGF-β1 (TGF-β1-treated group) and MET was induced sequentially from the TGF-β1-treated group by removing the TGF-β1 (MET/return group). Untreated A549 lung cancer cells were used as a control. Characteristic features, including cancer stem cell markers [cluster of differentiation (CD)24, CD44 and CD133], cell proliferation and migration and diverse intracellular mechanisms, were observed in all groups. Using western blot analysis, the TGF-β1-treated group demonstrated increased vimentin and reduced E-cadherin expression, whereas the MET/return group demonstrated the opposite trend. Among cancer stem cell markers, the population of CD24 low cells was reduced in the TGF-β1-treated group. Furthermore, the G2/M phase cell cycle population, cisplatin-sensitivity, and cell proliferation and migration ability were increased in the TGF-β1-treated group. These features were unaltered in the MET/return group when compared to the TGF-β1-treated group. Immunoblotting revealed an increase in the levels of SMAD3, phosphorylated SMAD3, phosphorylated extracellular signal-regulated kinase and caspase-3, and a decrease in active caspase-3 levels in the TGF-β1-treated group. Increased caspase-3 and reduced active caspase-3 levels were observed in the MET/return group, similar to those in the TGF-β1-treated group; however, levels of other signalling proteins were unchanged compared with the control group. EMT induced by TGF-β1 was not preserved; however, stemness-associated properties (CD24 expression, caspase-3 expression, cell proliferation and cisplatin-resistance) were sustained following removal of TGF-β1.

  12. Caffeic acid phenethyl ester down-regulates claudin-2 expression at the transcriptional and post-translational levels and enhances chemosensitivity to doxorubicin in lung adenocarcinoma A549 cells.

    PubMed

    Sonoki, Hiroyuki; Tanimae, Asami; Furuta, Takumi; Endo, Satoshi; Matsunaga, Toshiyuki; Ichihara, Kenji; Ikari, Akira

    2018-06-01

    Claudin-2 is highly expressed in human lung adenocarcinoma cells and involved in the promotion of proliferation. Here, we searched for a compound, which can decrease claudin-2 expression using lung adenocarcinoma A549 cells. In the screening using compounds included in royal jelly and propolis, the protein level of claudin-2 was dose-dependently decreased by caffeic acid phenethyl ester (CAPE), whereas the mRNA level and promoter activity were only decreased by 50 μM CAPE. These results suggest that CAPE down-regulates claudin-2 expression mediated by two different mechanisms. CAPE (50 μM) decreased the level of p-NF-κB, whereas it increased that of IκB. The CAPE-induced decrease in promoter activity of claudin-2 was blocked by the mutation in an NF-κB-binding site. The inhibition of NF-κB may be involved in the decrease in mRNA level of claudin-2. The CAPE (10 μM)-induced decrease in claudin-2 expression was inhibited by chloroquine, a lysosomal inhibitor. CAPE increased the expression and activity of protein phosphatase (PP) 1 and 2A. The CAPE-induced decrease in claudin-2 expression was blocked by cantharidin, a potent PPs inhibitor. The cell proliferation was suppressed by CAPE, which was partially rescued by ectopic expression of claudin-2. In addition, the toxicity and accumulation of doxorubicin in 3D spheroid cells were enhanced by CAPE, which was inhibited by ectopic expression of claudin-2. Taken together, CAPE down-regulates claudin-2 expression at the transcriptional and post-translational levels, and enhances sensitivity of cells to doxorubicin in 3D culture conditions. CAPE may be a useful adjunctive compound in the treatment of lung adenocarcinoma. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Polymeric Nano-Encapsulation of Curcumin Enhances its Anti-Cancer Activity in Breast (MDA-MB231) and Lung (A549) Cancer Cells Through Reduction in Expression of HIF-1α and Nuclear p65 (Rel A).

    PubMed

    Khan, Mohammed N; Haggag, Yusuf A; Lane, Majella E; McCarron, Paul A; Tambuwala, Murtaza M

    2018-02-14

    The anti-cancer potential of curcumin, a natural NFκβ inhibitor, has been reported extensively in breast, lung and other cancers. In vitro and in vivo studies indicate that the therapeutic efficacy of curcumin is enhanced when formulated in a nanoparticulate carrier. However, the mechanism of action of curcumin at the molecular level in the hypoxic tumour micro-environment is not fully understood. Hence, the aim of our study was to investigate the mechanism of action of curcumin formulated as nanoparticles in in vitro models of breast and lung cancer under an hypoxic microenvironment. Biodegradable poly(lactic-co-glycolic acid) PLGA nanoparticles (NP), loaded with curcumin (cur-PLGA-NP), were fabricated using a solvent evaporation technique to overcome solubility issues and to facilitate intracellular curcumin delivery. Cytotoxicity of free curcumin and cur-PLGA-NP was evaluated in MDA-MB-231 and A549 cell lines using migration, invasion and colony formation assays. All treatments were performed under an hypoxic micro-environment and whole cell lysates from controls and test groups were used to determine the expression of HIF-1α and p65 levels using ELISA assays. A ten-fold increase in solubility, three-fold increase in anti-cancer activity and a significant reduction in the levels of cellular HIF-1α and nuclear p65 (Rel A) were observed for cur-PLGA-NP, when compared to free curcumin. Our findings indicate that curcumin can effectively lower the elevated levels of HIF-1α and nuclear p65 (Rel A) in breast and lung cancer cells under an hypoxic tumour micro-environment when delivered in nanoparticulate form. This applied means of colloidal delivery could explain the improved anti-cancer efficacy of curcumin and has further potential applications in enhancing the activity of anti-cancer agents of low solubility. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Assessement of angiogenesis reveals blood vessel heterogeneity in lung carcinoma

    PubMed Central

    BIRAU, AMALIA; CEAUSU, RALUCA AMALIA; CIMPEAN, ANCA MARIA; GAJE, PUSA; RAICA, MARIUS; OLARIU, TEODORA

    2012-01-01

    Despite advances in treatment, the prognosis for lung cancer patients remains poor. Angiogenesis appears to be a promising target for lung cancer therapy; however, the clinical significance of vascular changes are not completely understood. The aim of this study was to evaluate the types and morphology of blood vessels in various lung carcinomas. Using double immunostaining, we investigated 39 biopsies from patients admitted with various histological types of lung carcinoma. Tumor blood vessels were quantified separately for CD34/smooth muscle actin and described as either immature, intermediate or mature. Double immunostaining evaluation of the type of blood vessels in lung carcinomas revealed a marked heterogeneity. The immature and intermediate type of vessels were more common in adenocarcinomas (ADCs) and squamous cell carcinomas (SCCs) of the lung. Small cell lung carcinomas revealed a significant correlation between pathological and immature types of blood vessels. Therefore, quantifying the types of tumor vessels in lung carcinomas may be an important element to improve the results of anti-vascular therapy. PMID:23205116

  15. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179.

    PubMed

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-07-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non-small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1-induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1-mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1-mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1-induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1-mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1-induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1-induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Kaempferol Suppresses Transforming Growth Factor-β1–Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-1791

    PubMed Central

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-01-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non–small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1–induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1–mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1–mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1–induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1–mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1–induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1–induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. PMID:26297431

  17. [Four Cases Report on Primary Lung Adenoid Cystic Carcinoma].

    PubMed

    He, Xilan; Chen, Jianhua

    2017-11-20

    Lung adenoid cystic carcinoma is a kind of rare lung cancer. Diagnosis and treatment is not enough understandable for them. We collected and analyzed 4 cases of lung adenoid cystic carcinoma for broadening the sight of this disease. Retrospectively analysed the 4 cases we collected from Hunan Cancer Hospital Between January 2012 and December 2016. We depicted the pathology, immunohistochemical, epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) arrangement in these cases. And the methods of the diagnosis and treatment were analyzed. Lung adenoid cystic carcinoma is usually located in the airway, EGFR mutation and ALK arrangement is rare in this disease. Generally the metastasis of the lung cancer occurred in the advanced stage. The prognosis is good if the mass could be resected completely. Diagnosis of the lung adenoid cystic carcinoma depends on pathological experiments, surgery is the main treatment in the early stage, radiotherapy and chemotherapy is an advisable therapy in the advanced stage. And the prognosis of this kind of lung cancer is better than small cell lung cancer and non-small cell lung cancer.

  18. Cancer Associated Fibroblast-Derived Hepatocyte Growth Factor Inhibits the Paclitaxel-Induced Apoptosis of Lung Cancer A549 Cells by Up-Regulating the PI3K/Akt and GRP78 Signaling on a Microfluidic Platform

    PubMed Central

    Xu, Zhiyun; He, Tianrui; Li, Encheng; Guo, Zhe; Liu, Fen; Jiang, Chunmeng; Wang, Qi

    2015-01-01

    Tumor stroma and growth factors provide a survival environment to tumor cells and can modulate their chemoresistance by dysregulating several signal pathways. In this study, we fabricated a three-dimensional (3D) microfluidic chip using polydimethylsiloxane (PDMS) to investigate the impact of hepatocyte growth factor (HGF) from cancer-associated fibroblasts (CAF) on the Met/PI3K/AKT activation, glucose regulatory protein (GRP78) expression and the paclitaxel-induced A549 cell apoptosis. With a concentration gradient generator, the assembled chip was able to reconstruct a tumor microenvironment in vitro. We found high levels of HGF in the supernatants of CAF and the CAF matrix from the supernatants of activated HFL1 fibroblasts or HGF enhanced the levels of Met, PI3K and AKT phosphorylation and GRP78 expression in A549 cells cultured in a 3D cell chamber, which was abrogated by anti-HGF. Inhibition of Met attenuated the CAF matrix-enhanced PI3K/AKT phosphorylation and GRP78 expression while inhibition of PI3K reduced GRP78 expression, but not Met phosphorylation in A549 cells. Inhibition of GRP78 failed to modulate the CAF matrix-enhanced Met/PI3K/AKT phosphorylation in A549 cells. Furthermore, inhibition of PI3K or GRP78 enhanced spontaneous and paclitaxel-induced A549 cell apoptosis. Moreover, treatment with the CAF matrix inhibited spontaneous and medium or high dose of paclitaxel-induced A549 cell apoptosis. Inhibition of PI3K or GRP78 attenuated the CAF matrix-mediated inhibition on paclitaxel-induced A549 cell apoptosis. Our data indicated that HGF in the CAF matrix activated the Met/PI3K/AKT and up-regulated GRP78 expression, promoting chemoresistance to paclitaxel-mediated apoptosis in A549 cells. Our findings suggest that the microfluidic system may represent an ideal platform for signaling research and drug screening. PMID:26115510

  19. Tangeretin suppresses IL-1beta-induced cyclooxygenase (COX)-2 expression through inhibition of p38 MAPK, JNK, and AKT activation in human lung carcinoma cells.

    PubMed

    Chen, Kuan-Hung; Weng, Meng-Shih; Lin, Jen-Kun

    2007-01-15

    Tangeretin (5,6,7,8,4'-pentamethoxyflavone) is a polymethoxylated flavonoid concentrated in the peel of citrus fruits. Recent studies have shown that tangeretin exhibits anti-proliferative, anti-invasive, anti-metastatic, and antioxidant activities. However, the anti-inflammatory properties of tangeretin are unclear. In this study, we examine the effects of tangeretin and its structure-related compound, nobiletin, on the expression of cyclooxygenases-2 (COX-2) in human lung epithelial carcinoma cells, A549, and human non-small cell lung carcinoma cells, H1299. Tangeretin exerts a much better inhibitory activity than nobiletin against IL-1beta-induced production of COX-2 in A549 cells, and it effectively represses the constitutively expressed COX-2 in H1299. RT-PCR was used to investigate the transcriptional inhibition of COX-2 by tangeretin. COX-2 mRNA was rapidly induced by IL-1beta in 3h and markedly suppressed by tangeretin. IL-1beta-induced the activation of ERK, p38 MAPK, JNK, and AKT in A549 cells. COX-2 expression in response to IL-1beta was attenuated by pretreatment with SB203580, SP600125, and LY294002, but not with PD98059, suggesting the involvement of p38 MAPK, JNK, and PI3K in this response. Pretreatment of cells with tangeretin inhibited IL-1beta-induced p38 MAPK, JNK, and AKT phosphorylation and the downstream activation of NF-kappaB. These results may reveal that the tangeretin inhibition of IL-1beta-induced COX-2 expression in A549 cells is, at least in part, mediated through suppression of NF-kappaB transcription factor as well as through suppression of the signaling proteins of p38 MAPK, JNK, and PI3K, but not of ERK.

  20. Squamous carcinoma of the lung metastases to the patella.

    PubMed

    Feng, Helin; Li, Huan; Wang, Jin; Zhang, Xiaoyu; Feng, Jiangang

    2015-06-01

    We report a case of a 65-year-old man with newly diagnosed squamous carcinoma of the lung, who presented with worsening left-knee pain. A bone scintigraphy displayed an increased radioactivity in the left patella. The patient underwent left patellectomy. Histopathological examination revealed metastasis to the patella from the known lung cancer.

  1. Novel taspine derivative 12k inhibits cell growth and induces apoptosis in lung cell carcinoma.

    PubMed

    Dai, Bingling; Wang, Wenjie; Liu, Rui; Wang, Hongying; Zhang, Yanmin

    2015-03-01

    Taspine is an active compound in anticancer agent development. 12k was synthesized with taspine as lead compound bearing biphenyl scaffold and showed potent anticancer activity. Here, we investigated the effect of taspine derivative 12k on A549 lung cells. We showed that 12k not only decreased significantly A549 cell viability, A549 cell colony formation but also impaired A549 cell migration. Moreover, 12k treatment blocked cell cycle progression by increasing cell number in S phase to 42.80% for 6 μmol/L vs. 28.86% for control while decreasing cell number in G1 phase. Accordingly, this was associated with an increase protein expression of cyclin E and a decrease protein expression of cyclin D1, cyclin B1 and its associated CDK1 (cdc2). Meanwhile, we found that 12k induced A549 cell apoptosis, which was closely associated with the effect of the Bcl-2 family. Increase of Bad, Bak and Bax expression levels, decrease of Bcl-2 and Mcl-1 expression levels were observed. SiRNA knockdown of c-myc in A549 cells significantly attenuated tumor inhibition effects of 12k. In conclusion, our results demonstrate that 12k has an inhibitory effect on growth of A549 cell by inducing cell cycle arrest and apoptosis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Reevaluation and reclassification of resected lung carcinomas originally diagnosed as squamous cell carcinoma using immunohistochemical analysis

    PubMed Central

    Kadota, Kyuichi; Nitadori, Jun-ichi; Rekhtman, Natasha; Jones, David R.; Adusumilli, Prasad S.; Travis, William D.

    2015-01-01

    Currently, non-small cell lung carcinomas are primarily classified by light microscopy. However, recent studies have shown that poorly-differentiated tumors are more accurately classified by immunohistochemistry. In this study, we investigated the use of immunohistochemical analysis in reclassifying lung carcinomas that were originally diagnosed as squamous cell carcinoma. Tumor slides and blocks were available for histologic evaluation, and tissue microarrays were constructed from 480 patients with resected lung carcinomas originally diagnosed as squamous cell carcinoma between 1999 and 2009. Immunohistochemistry for p40, p63, thyroid transcription factor-1 (TTF-1; clone SPT24 and 8G7G3/1), Napsin A, Chromogranin A, Synaptophysin, and CD56 were performed. Staining intensity (weak, moderate, or strong) and distribution (focal or diffuse) were also recorded. Of all, 449 (93.5%) patients were confirmed as having squamous cell carcinomas; the cases were mostly diffusely positive for p40 and negative for TTF-1 (8G7G3/1). Twenty cases (4.2%) were reclassified as adenocarcinoma since they were positive for TTF-1 (8G7G3/1 or SPT24) with either no or focal p40 expression, and all of them were poorly-differentiated with squamoid morphology. In addition, 1 case was reclassified as adenosquamous carcinoma, 4 cases as large cell carcinoma, 4 cases as large cell neuroendocrine carcinoma, and 2 cases as small cell carcinoma. In poorly-differentiated non-small cell lung carcinomas, an accurate distinction between squamous cell carcinoma and adenocarcinoma cannot be reliably determined by morphology alone and requires immunohistochemical analysis, even in resected specimens. Our findings suggest that TTF-1 8G7G3/1 may be better suited as the primary antibody in differentiating adenocarcinoma from squamous cell carcinoma. PMID:25871623

  3. Ghrelin promotes human non-small cell lung cancer A549 cell proliferation through PI3K/Akt/mTOR/P70S6K and ERK signaling pathways.

    PubMed

    Zhu, Jianhua; Yao, Jianfeng; Huang, Rongfu; Wang, Yueqin; Jia, Min; Huang, Yan

    2018-04-06

    Ghrelin is a gastric acyl-peptide that plays an important role in cell proliferation. In the present study, we explored the role of ghrelin in A549 cell proliferation and the possible molecular mechanisms. We found that ghrelin promotes A549 cell proliferation, knockdown of the growth hormone secretagogue receptor (GHSR) attenuated A549 cell proliferation caused by ghrelin. Ghrelin induced the rapid phosphorylation of phosphatidylinositol 3-kinase (PI3K), Akt, ERK, mammalian target of rapamycin (mTOR) and P70S6K. PI3K inhibitor (LY 294002), ERK inhibitor (PD98059) and mTOR inhibitor (Rapamycin) inhibited ghrelin-induced A549 cell proliferation. Moreover, GHSR siRNA inhibited phosphorylation of PI3K, Akt, ERK, mTOR and P70S6K induced by ghrelin. Akt and mTOR/P70S6K phosphorylation was inhibited by LY 294002 but not by PD98059. These results indicate that ghrelin promotes A549 cell proliferation via GHSR-dependent PI3K/Akt/mTOR/P70S6K and ERK signaling pathways. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Open Reading Frame 3 of Genotype 1 Hepatitis E Virus Inhibits Nuclear Factor-κappa B Signaling Induced by Tumor Necrosis Factor-α in Human A549 Lung Epithelial Cells

    PubMed Central

    Tian, Deying; Wang, Jingjing; Zheng, Zizheng; Xia, Ningshao

    2014-01-01

    Hepatitis E virus (HEV) is one of the primary causative agents of acute hepatitis, and represents a major cause of severe public health problems in developing countries. The pathogenesis of HEV is not well characterized, however, primarily due to the lack of well-defined cell and animal models. Here, we investigated the effects of genotype 1 HEV open reading frame 3 (ORF3) on TNF-α-induced nucleus factor-κappa B (NF-κB) signaling. Human lung epithelial cells (A549) were transiently transfected with ORF3 containing plasmids. These cells were then stimulated with TNF-α and the nucleus translocation of the p65 NF-κB subunit was assessed using western blot and laser confocal microscopy. DNA-binding activity of p65 was also examined using electrophoretic mobility shift assay (EMSA), and the suppression of NF-κB target genes were detected using real-time RT-PCR and ELISA. These results enabled us to identify the decreased phosphorylation levels of IKBα. We focused on the gene of negative regulation of NF-κB, represented by TNF-α-induced protein 3 (TNFAIP3, also known as A20). Reducing the levels of A20 with siRNAs significantly enhances luciferase activation of NF-κB. Furthermore, HEV ORF3 regulated A20 primarily via activating transcription factor 6 (ATF6), involved in unfolded protein response (UPR), resulting in the degradation or inactivation of the receptor interacting protein 1 (RIP1), a major upstream activator of IKB kinase compounds (IKKs). Consequently, the phosphorylation of IKBα and the nucleus translocation of p65 are blocked, which contributes to diminished NF-κB DNA-binding activation and NF-κB-dependent gene expression. The findings suggest that genotype 1 HEV, through ORF3, may transiently activate NF-κB through UPR in early stage, and subsequently inhibit TNF-α-induced NF-κB signaling in late phase so as to create a favorable virus replication environment. PMID:24959724

  5. Primary mucoepidermoid carcinoma of the lung with prominent clear cells

    PubMed Central

    Fink, David D.; Lomas, Angela M.; Roden, Anja C.; Shah, Prashant C.

    2017-01-01

    Mucoepidermoid carcinoma of the lung is a rare malignancy of salivary gland-type origin. We report a case of a 21-year-old man with a right mainstem bronchus mass composed predominantly of clear cells. This case represents a rare primary pulmonary low-grade mucoepidermoid carcinoma positive for MAML2 rearrangement by fluorescence in situ hybridization with a prominent clear cell component. PMID:28670072

  6. Drug Transporter Protein Quantification of Immortalized Human Lung Cell Lines Derived from Tracheobronchial Epithelial Cells (Calu-3 and BEAS2-B), Bronchiolar-Alveolar Cells (NCI-H292 and NCI-H441), and Alveolar Type II-like Cells (A549) by Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Sakamoto, Atsushi; Matsumaru, Takehisa; Yamamura, Norio; Suzuki, Shinobu; Uchida, Yasuo; Tachikawa, Masanori; Terasaki, Tetsuya

    2015-09-01

    Understanding the mechanisms of drug transport in the human lung is an important issue in pulmonary drug discovery and development. For this purpose, there is an increasing interest in immortalized lung cell lines as alternatives to primary cultured lung cells. We recently reported the protein expression in human lung tissues and pulmonary epithelial cells in primary culture, (Sakamoto A, Matsumaru T, Yamamura N, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. 2013. J Pharm Sci 102(9):3395-3406) whereas comprehensive quantification of protein expressions in immortalized lung cell lines is sparse. Therefore, the aim of the present study was to clarify the drug transporter protein expression of five commercially available immortalized lung cell lines derived from tracheobronchial cells (Calu-3 and BEAS2-B), bronchiolar-alveolar cells (NCI-H292 and NCI-H441), and alveolar type II cells (A549), by liquid chromatography-tandem mass spectrometry-based approaches. Among transporters detected, breast cancer-resistance protein in Calu-3, NCI-H292, NCI-H441, and A549 and OCTN2 in BEAS2-B showed the highest protein expression. Compared with data from our previous study,(Sakamoto A, Matsumaru T, Yamamura N, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. 2013. J Pharm Sci 102(9):3395-3406) NCI-H441 was the most similar with primary lung cells from all regions in terms of protein expression of organic cation/carnitine transporter 1 (OCTN1). In conclusion, the protein expression profiles of transporters in five immortalized lung cell lines were determined, and these findings may contribute to a better understanding of drug transport in immortalized lung cell lines. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. MicroRNA-1285-5p influences the proliferation and metastasis of non-small-cell lung carcinoma cells via downregulating CDH1 and Smad4.

    PubMed

    Zhou, Shixia; Zhang, Zhongmian; Zheng, Pengyuan; Zhao, Wenchao; Han, Na

    2017-06-01

    Abnormal expression of microRNAs has been reported to regulate gene expression and cancer cell growth, invasion, and migration. Recently, upregulation of hsa-miR-1285 was demonstrated in bronchoalveolar lavage fluid samples from patients with lung cancer and downregulation in plasma level of stage-I lung cancer patients. However, the function and the underlying mechanism of miR-1285 in non-small-cell lung carcinoma have not been elucidated. In this study, we found that miR-1285-5p, the mature form of miR-1285, was significantly upregulated in human non-small-cell lung carcinoma cell lines A549 and SK-MES-1. Additionally, cells transfected with the miR-1285-5p inhibitor LV-anti-miR-1285-5p demonstrated significantly inhibited proliferation and invasion and depressed migration. Further analysis demonstrated that the miR-1285-5p precursor LV-miR-1285-5p attenuated the expression of Smad4 and cadherin-1 (CDH1) but that LV-anti-miR-1285-5p showed opposite results. A luciferase reporter assay confirmed that miR-1285-5p targeted Smad4 and CDH1. Mechanism analyses revealed that silence of Smad4 and CDH1 significantly attenuated the inhibitory effects of LV-anti-miR-1285-5p on non-small-cell lung carcinoma growth and invasion. Taken together, our data suggest that miR-1285-5p functions as a tumor promoter in the development of non-small-cell lung carcinoma by targeting Smad4 and CDH1, indicating a novel therapeutic strategy for non-small-cell lung carcinoma patients.

  8. Synchronous B3 thymoma and lung bronchoalveolar carcinoma.

    PubMed

    Patella, Miriam; Anile, Marco; Vitolo, Domenico; Venuta, Federico

    2011-01-01

    The association between thymic tumors and other intrathoracic or extrathoracic neoplasms is relatively rare; the synchronous occurrence of thymoma and bronchoalveolar carcinoma of the lung has never been described so far. A huge B3 cystic thymoma was found at thoracotomy to be associated with stage IV bronchoalveolar carcinoma (intraparenchymal and pleural metastases). The thymic tumor was completely resected; lung cancer was biopsied only for diagnosis and staging purposes. After an uneventful postoperative course the patient underwent chemotherapy; she is still alive and well one year after surgery.

  9. Solitary fibular metastasis from nonsmall cell lung carcinoma

    PubMed Central

    Akram, Mohammad; Zaheer, Samreen; Hussain, Asif; Siddiqui, Shahid A; Afrose, Ruquiya; Khalid, Saifullah

    2017-01-01

    Solitary bone metastasis to fibula in patients of lung carcinoma is a rare entity, with only four cases reported in literature. We, hereby, present a case of a 50 year-old-male who was given three cycles of chemotherapy for lung carcinoma with no distant metastasis but presented 2 months later with a fusiform, painful swelling around the knee that was clinically suspected to be inflammatory in nature but proved to be fibular metastasis on cytology. There was no evidence of skeletal metastasis on initial bone scan. He was given palliative radiotherapy for this with symptomatic relief. PMID:28469322

  10. Solitary fibular metastasis from nonsmall cell lung carcinoma.

    PubMed

    Akram, Mohammad; Zaheer, Samreen; Hussain, Asif; Siddiqui, Shahid A; Afrose, Ruquiya; Khalid, Saifullah

    2017-01-01

    Solitary bone metastasis to fibula in patients of lung carcinoma is a rare entity, with only four cases reported in literature. We, hereby, present a case of a 50 year-old-male who was given three cycles of chemotherapy for lung carcinoma with no distant metastasis but presented 2 months later with a fusiform, painful swelling around the knee that was clinically suspected to be inflammatory in nature but proved to be fibular metastasis on cytology. There was no evidence of skeletal metastasis on initial bone scan. He was given palliative radiotherapy for this with symptomatic relief.

  11. Present and future molecular testing of lung carcinoma.

    PubMed

    Dacic, Sanja; Nikiforova, Marina N

    2014-03-01

    The rapid development of targeted therapies has tremendously changed clinical management of lung carcinoma patients and set the stage for similar developments in other tumor types. Many studies have been published in the past decade in search for the most acceptable method of assessment for predictors of response to targeted therapies in lung cancer. As a result, several guidelines for molecular testing have been published in a past couple of years. Because of accumulated evidence that targetable drugs show the best efficacy and improved progression survival rates in lung cancer patients whose tumors have a specific genotype, molecular testing for predictors of therapy response has became standard of care. Presently, testing for EGFR mutations and ALK rearrangements in lung adenocarcinoma has been standardized. The landscape of targetable genomic alterations in lung carcinoma is expanding, but none of other potentially targetable biomarkers have been standardized outside of clinical trials. This review will summarize current practice of molecular testing. Future methods in molecular testing of lung carcinoma will be briefly reviewed.

  12. Artesunate induces AIF-dependent apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Zhou, Chen-juan; Chen, Tong-Sheng

    2012-03-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  13. Lung carcinoma mimicking malignant lymphoma: report of three cases.

    PubMed

    Matsui, K; Kitagawa, M; Wakaki, K; Masuda, S

    1993-10-01

    Three cases of lung carcinomas with unusual histologic appearances that have received little or no comment in the literature are presented. They were initially confused with malignant lymphoma because of a diffuse proliferation of relatively monotonous cells simulating large-cell immunoblastic lymphoma. In each case, the possibility of malignant lymphoma was excluded with confidence after the immunohistochemical study (leucocyte common antigen negative and cytokeratins positive), although with conventional microscopy several foci of cohesive groups of tumor cells were observed. The tumors were ranked at the clinical stage II or III when they were initially discovered, but all patients died of disease within 1 year. The present three tumors show an aggressive behavior and could be classified into a peculiar variant of 'large cell' carcinoma. It is necessary for surgical pathologists to have an idea of these variants of lung carcinoma in order to avoid erroneous diagnosis.

  14. Development of a transmission alpha particle dosimetry technique using A549 cells and a Ra-223 source for targeted alpha therapy.

    PubMed

    Al Darwish, R; Staudacher, A H; Li, Y; Brown, M P; Bezak, E

    2016-11-01

    In targeted radionuclide therapy, regional tumors are targeted with radionuclides delivering therapeutic radiation doses. Targeted alpha therapy (TAT) is of particular interest due to its ability to deliver alpha particles of high linear energy transfer within the confines of the tumor. However, there is a lack of data related to alpha particle distribution in TAT. These data are required to more accurately estimate the absorbed dose on a cellular level. As a result, there is a need for a dosimeter that can estimate, or better yet determine the absorbed dose deposited by alpha particles in cells. In this study, as an initial step, the authors present a transmission dosimetry design for alpha particles using A549 lung carcinoma cells, an external alpha particle emitting source (radium 223; Ra-223) and a Timepix pixelated semiconductor detector. The dose delivery to the A549 lung carcinoma cell line from a Ra-223 source, considered to be an attractive radionuclide for alpha therapy, was investigated in the current work. A549 cells were either unirradiated (control) or irradiated for 12, 1, 2, or 3 h with alpha particles emitted from a Ra-223 source positioned below a monolayer of A549 cells. The Timepix detector was used to determine the number of transmitted alpha particles passing through the A549 cells and DNA double strand breaks (DSBs) in the form of γ-H2AX foci were examined by fluorescence microscopy. The number of transmitted alpha particles was correlated with the observed DNA DSBs and the delivered radiation dose was estimated. Additionally, the dose deposited was calculated using Monte Carlo code SRIM. Approximately 20% of alpha particles were transmitted and detected by Timepix. The frequency and number of γ-H2AX foci increased significantly following alpha particle irradiation as compared to unirradiated controls. The equivalent dose delivered to A549 cells was estimated to be approximately 0.66, 1.32, 2.53, and 3.96 Gy after 12, 1, 2, and 3 h

  15. Sarcomatoid carcinoma of the lung -  a case report.

    PubMed

    Szkorupa, M; Bohanes, T; Neoral, C; Vomackova, K; Chudacek, J

    2015-01-01

    Sarcomatoid carcinoma (SARC) of the lung is a very rare and aggressive type of nonsmall cell lung cancer. It belongs to a group of poorly differentiated carcinomas with partial sarcomatoid differentiation or with a direct sarcoma component. Characteristic findings include a large tumor with an invasive tendency, early recurrence and systemic metastases. The authors present a case of SARC in the 77-year-old patient. Preoperative staging confirmed sarcomatoid carcinoma of the lower lobe of the left lung without generalization on PET/CT. However, an infiltration of more than 2/3 of the diaphragm was ascertained. A resection was performed -  a left lower lobectomy with resection of the diaphragm and its replacement by a muscle flap made from the latissimus dorsi muscle with vascular pedicle. Histological findings confirmed the dia-gnosis of sarcomatoid (pleomorphic) carcinoma pT3N0M0. The patient underwent adjuvant chemotherapy; recurrence and systemic dissemination of the disease occurred after 20 months; the patient died 21 months after the surgery.

  16. 'Dancing eyes, dancing feet syndrome' in small cell lung carcinoma.

    PubMed

    Sharma, Chandramohan; Acharya, Mihir; Kumawat, Bansi Lal; Kochar, Abhishek

    2014-04-23

    A 60-year-old man presented with a 25-day history of acute onset instability of gait, tremulousness of limbs and involuntary eye movements. Examination revealed presence of opsoclonus, myoclonus and ataxia, without any loss of motor power in the limbs. Prompt investigations were directed towards identifying an underlying malignancy which is often associated with this type of clinical scenario. CT of the brain was normal and cerebrospinal fluid examination showed lymphocytic pleocytosis. A cavitatory lesion was found in the right lung base on the high-resolution CT of the chest and histopathological examination of this lung mass showed small cell lung carcinoma. The patient was managed symptomatically with levetiracetam and baclofen and referred to oncology department for resection of the lung mass.

  17. Nanosecond-Pulsed DBD Plasma-Generated Reactive Oxygen Species Trigger Immunogenic Cell Death in A549 Lung Carcinoma Cells through Intracellular Oxidative Stress

    PubMed Central

    Lin, Abraham; Truong, Billy; Patel, Sohil; Kaushik, Nagendra; Choi, Eun Ha; Fridman, Gregory; Fridman, Alexander; Miller, Vandana

    2017-01-01

    A novel application for non-thermal plasma is the induction of immunogenic cancer cell death for cancer immunotherapy. Cells undergoing immunogenic death emit danger signals which facilitate anti-tumor immune responses. Although pathways leading to immunogenic cell death are not fully understood; oxidative stress is considered to be part of the underlying mechanism. Here; we studied the interaction between dielectric barrier discharge plasma and cancer cells for oxidative stress-mediated immunogenic cell death. We assessed changes to the intracellular oxidative environment after plasma treatment and correlated it to emission of two danger signals: surface-exposed calreticulin and secreted adenosine triphosphate. Plasma-generated reactive oxygen and charged species were recognized as the major effectors of immunogenic cell death. Chemical attenuators of intracellular reactive oxygen species successfully abrogated oxidative stress following plasma treatment and modulated the emission of surface-exposed calreticulin. Secreted danger signals from cells undergoing immunogenic death enhanced the anti-tumor activity of macrophages. This study demonstrated that plasma triggers immunogenic cell death through oxidative stress pathways and highlights its potential development for cancer immunotherapy. PMID:28467380

  18. Lung microenvironment promotes the metastasis of human hepatocellular carcinoma cells to the lungs.

    PubMed

    Jin, Yun; Ai, Junhua; Shi, Jun

    2015-01-01

    Cancer metastasis is a highly tissue-specific and organ-selective process. It has been shown that the affected tissues and/or organs play a major role in this complex process. The lung is the most common target organ of extrahepatic hepatocellular carcinoma (HCC) metastasis, but the precise molecular mechanism underlying this organ-specific metastasis remains unclear. We hypothesized that lung microenvironment was able to promote the metastasis of HCC cells to the lungs leading to distant metastases. In support of our hypothesis, we provided evidence from targeted metastasis in various types of cancer and contributing factors in the microenvironment of targeted tissues/organs. A better understanding of the steps involved in the interplay between HCC cells and lung microenvironment may offer new perspectives for the medical management of lung metastases of HCC.

  19. [Mechanism of Chlorogenic Acid in Apoptotic Regulation through Notch1 
Pathway in Non-small Cell Lung Carcinoma in Animal Level].

    PubMed

    Li, Wei; Liu, Xu; Zhang, Guoqian; Zhang, Linlin

    2017-08-20

    It has been proven that chlorogenic acids can produce anticancer effects by regulating cell cycle, inducing apoptosis, inhibiting cell growth, Notch signaling pathways are closely related to many human tumors. The aim of this study is to study the mechanism of chlorogenic acid on apoptosis of non-small lung cancer through Notch1 pathway in animal level, and hope to provide theory basis on clinical treatment and research aimed at targeting Notch1 signaling in non-small cell carcinoma (NSCLC). MTT assay was used to evaluate the A549 cell proliferation under the treatment of chlorogenic acid. The effect of chlorogenic acid on apoptotic and cell cycle were detected by flow cytometry. The animal model of A549 cell transplanted in nude was established, tumer size and weight were detected. The mRNA level of Notch1 signal pathway related facter were detected by RT-PCR; the expression of Notch1 signal pathway related facter in tumor tissue was detected by western blot. Chlorogenic acid inhibited the A549 cell proliferation. incresed cell apoptotic and cell percentagein G2/M (P<0.05), and in a dose-dependent manner. In animal model, tumer size and weight were lower than control group, the difference was statistically significant (P<0.05). The relative expression of mRNA of Notch1, VEGF, Delta4, HES1 and HEY1 were decreaced (P<0.05) in tumor tissue which treated with chlorogenic. The expression of Notch1 were decreaced, PTEN, p-PTEN, p-AKT were increced significantly in tumor tissue which treated with chlorogenic (P<0.05). Chlorogenic acid can regulate theapoptosis of non-small lung cancer through Notch pathway in animal level, which may be associated with the down-regulating the expression of VEGF and Delta4. Notch pathway may cross talk with PI3K/AKT pathway through PTEN in NSCLC.

  20. The impact of anticancer activity upon Beta vulgaris extract mediated biosynthesized silver nanoparticles (ag-NPs) against human breast (MCF-7), lung (A549) and pharynx (Hep-2) cancer cell lines.

    PubMed

    Venugopal, K; Ahmad, H; Manikandan, E; Thanigai Arul, K; Kavitha, K; Moodley, M K; Rajagopal, K; Balabhaskar, R; Bhaskar, M

    2017-08-01

    The present study tried for a phyto-synthetic method of producing silver nanoparticles (Ag-NPs) with size controlled as and eco-friendly route that can lead to their advanced production with decorative tranquil morphology. By inducing temperature fluctuation of the reaction mixture from 25 to 80°C the plasmon resonance band raised slowly which had an ultimate effect on size and shape of Ag-NPs as shown by UV-visible spectroscopy and TEM results. The biosynthesized nanoparticles showed good cytotoxic impact against MCF-7, A549 and Hep2 cells compared to normal cell lines. Compared to control plates, the percentage of cell growth inhibition was found to be high with as concentrations of Ag-NPs becomes more as determined by MTT assay. The AO/EtBr staining observations demonstrated that the mechanism of cell death induced by Ag-NPs was due to apoptosis in cancer cells. These present results propose that the silver nanoparticles (Ag-NPs) may be utilized as anticancer agents for the treatment of various cancer types. However, there is a need for study of in vivo examination of these nanoparticles to find their role and mechanism inside human body. Further, studies we plan to do biomarker fabrication from the green synthesized plant extract nanoparticles like silver, gold and copper nanoparticles with optimized shape and sizes and their enhancement of these noble nanoparticles. Copyright © 2017. Published by Elsevier B.V.

  1. Combined treatment with apatinib and docetaxel in A549 xenograft mice and its cellular pharmacokinetic basis.

    PubMed

    Feng, Si-Qi; Wang, Guang-Ji; Zhang, Jing-Wei; Xie, Yuan; Sun, Run-Bin; Fei, Fei; Huang, Jing-Qiu; Wang, Ying; Aa, Ji-Ye; Zhou, Fang

    2018-05-17

    Apatinib, a small-molecule inhibitor of VEGFR-2, has attracted much attention due to its encouraging anticancer activity in third-line clinical treatment for many malignancies, including non-small cell lung cancer (NSCLC). Its usage in second-line therapy with chemotherapeutic drugs is still under exploration. In this study we investigated the antitumor effect of apatinib combined with docetaxel against NSCLC and its cellular pharmacokinetic basis. A549 xenograft nude mice were treated with apatinib (100 mg/kg every day for 20 days) combined with docetaxel (8 mg/kg, ip, every four days for 5 times). Apatinib significantly enhanced the antitumor effect of docetaxel and alleviated docetaxel-induced liver damage as well as decreased serum transaminases (ALT and AST). LC-MS/MS analysis revealed that apatinib treatment significantly increased the docetaxel concentration in tumors (up to 1.77 times) without enhancing the docetaxel concentration in the serum, heart, liver, lung and kidney. Furthermore, apatinib decreased docetaxel-induced upregulation of P-glycoprotein in tumors. The effects of apatinib on the uptake, efflux and subcellular distribution of docetaxel were investigated in A549 and A549/DTX (docetaxel-resistant) cells in vitro. A cellular pharmacokinetic study revealed that apatinib significantly increased cellular/subcellular accumulation (especially in the cytosol) and decreased the efflux of docetaxel in A549/DTX cells through P-gp, while apatinib exerted no significant effect on the cellular pharmacokinetics of docetaxel in A549 cells. Consequently, the IC 50 value of docetaxel in A549/DTX cells was more significantly decreased by apatinib than that in A549 cells. These results demonstrate that apatinib has potential for application in second-line therapy combined with docetaxel for NSCLC patients, especially for docetaxel-resistant or multidrug-resistant patients.

  2. Airway Basal Cell Heterogeneity and Lung Squamous Cell Carcinoma.

    PubMed

    Hynds, Robert E; Janes, Sam M

    2017-09-01

    Basal cells are stem/progenitor cells that maintain airway homeostasis, enact repair following epithelial injury, and are a candidate cell-of-origin for lung squamous cell carcinoma. Heterogeneity of basal cells is recognized in terms of gene expression and differentiation capacity. In this Issue, Pagano and colleagues isolate a subset of immortalized basal cells that are characterized by high motility, suggesting that they might also be heterogeneous in their biophysical properties. Motility-selected cells displayed an increased ability to colonize the lung in vivo The possible implications of these findings are discussed in terms of basal cell heterogeneity, epithelial cell migration, and modeling of metastasis that occurs early in cancer evolution. Cancer Prev Res; 10(9); 491-3. ©2017 AACR See related article by Pagano et al., p. 514 . ©2017 American Association for Cancer Research.

  3. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells.

    PubMed

    Zu, Yuangang; Yu, Huimin; Liang, Lu; Fu, Yujie; Efferth, Thomas; Liu, Xia; Wu, Nan

    2010-04-30

    Ten essential oils, namely, mint (Mentha spicata L., Lamiaceae), ginger (Zingiber officinale Rosc., Zingiberaceae), lemon (Citrus limon Burm.f., Rutaceae), grapefruit (Citrus paradisi Macf., Rutaceae), jasmine (Jasminum grandiflora L., Oleaceae), lavender (Mill., Lamiaceae), chamomile (Matricaria chamomilla L., Compositae), thyme (Thymus vulgaris L., Lamiaceae), rose (Rosa damascena Mill., Rosaceae) and cinnamon (Cinnamomum zeylanicum N. Lauraceae) were tested for their antibacterial activities towards Propionibacterium acnes and in vitro toxicology against three human cancer cell lines. Thyme, cinnamon and rose essential oils exhibited the best antibacterial activities towards P. acnes, with inhibition diameters of 40 +/- 1.2 mm, 33.5 +/- 1.5 mm and 16.5 +/- 0.7 mm, and minimal inhibitory concentrations of 0.016% (v/v), 0.016% (v/v) and 0.031% (v/v), respectively. Time-kill dynamic procedures showed that thyme, cinnamon, rose, and lavender essential oils exhibited the strongest bactericidal activities at a concentration of 0.25% (v/v), and P. acnes was completely killed after 5 min. The thyme essential oil exhibited the strongest cytotoxicity towards three human cancer cells. Its inhibition concentration 50% (IC(50)) values on PC-3, A549 and MCF-7 tumor cell lines were 0.010% (v/v), 0.011% (v/v) and 0.030% (v/v), respectively. The cytotoxicity of 10 essential oils on human prostate carcinoma cell (PC-3) was significantly stronger than on human lung carcinoma (A549) and human breast cancer (MCF-7) cell lines.

  4. Drug Resistance Mechanisms in Non-Small Cell Lung Carcinoma

    PubMed Central

    Wangari-Talbot, Janet; Hopper-Borge, Elizabeth

    2014-01-01

    Lung cancer is the most commonly diagnosed cancer in the world. “Driver” and “passenger” mutations identified in lung cancer indicate that genetics play a major role in the development of the disease, progression, metastasis and response to therapy. Survival rates for lung cancer treatment have remained stagnant at ~15% over the past 40 years in patients with disseminated disease despite advances in surgical techniques, radiotherapy and chemotherapy. Resistance to therapy; either intrinsic or acquired has been a major hindrance to treatment leading to great interest in studies seeking to understand and overcome resistance. Genetic information gained from molecular analyses has been critical in identifying druggable targets and tumor profiles that may be predictors of therapeutic response and mediators of resistance. Mutated or overexpressed epidermal growth factor receptor (EGFR) and translocations in the echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) genes (EML4-ALK) are examples of genetic aberrations resulting in targeted therapies for both localized and metastatic disease. Positive clinical responses have been noted in patients harboring these genetic mutations when treated with targeted therapies compared to patients lacking these mutations. Resistance is nonetheless a major factor contributing to the failure of targeted agents and standard cytotoxic agents. In this review, we examine molecular mechanisms that are potential drivers of resistance in non-small cell lung carcinoma, the most frequently diagnosed form of lung cancer. The mechanisms addressed include resistance to molecular targeted therapies as well as conventional chemotherapeutics through the activity of multidrug resistance proteins. PMID:24634705

  5. Mixture effects of benzene, toluene, ethylbenzene, and xylenes (BTEX) on lung carcinoma cells via a hanging drop air exposure system.

    PubMed

    Liu, Faye F; Escher, Beate I; Were, Stephen; Duffy, Lesley; Ng, Jack C

    2014-06-16

    A recently developed hanging drop air exposure system for toxicity studies of volatile chemicals was applied to evaluate the cell viability of lung carcinoma A549 cells after 1 and 24 h of exposure to benzene, toluene, ethylbenzene, and xylenes (BTEX) as individual compounds and as mixtures of four or six components. The cellular chemical concentrations causing 50% reduction of cell viability (EC50) were calculated using a mass balance model and came to 17, 12, 11, 9, 4, and 4 mmol/kg cell dry weight for benzene, toluene, ethylbenzene, m-xylene, o-xylene, and p-xylene, respectively, after 1 h of exposure. The EC50 decreased by a factor of 4 after 24 h of exposure. All mixture effects were best described by the mixture toxicity model of concentration addition, which is valid for chemicals with the same mode of action. Good agreement with the model predictions was found for benzene, toluene, ethylbenzene, and m-xylene at four different representative fixed concentration ratios after 1 h of exposure, but lower agreement with mixture prediction was obtained after 24 h of exposure. A recreated car exhaust mixture, which involved the contribution of the more toxic p-xylene and o-xylene, yielded an acceptable, but lower quality, prediction as well.

  6. Adenosquamous carcinoma of the lung diagnosed by cytology?: a diagnostic dilemma.

    PubMed

    Shelton, David A; Rana, Durgesh N; Holbrook, Miles; Taylor, Paul; Bailey, Simon

    2012-09-01

    Adenosquamous cell carcinomas of the lung are rare tumours and are associated with a poor prognosis compared to other non-small cell carcinomas. We report a case of a solitary lung carcinoma evaluated by bronchial brush and lavage cytology, bronchial biopsy and pleural fluid cytology. Cytological assessment of the pleural fluid demonstrated non-small cell carcinoma and immunohistochemical staining confirmed a metastatic lung adenocarcinoma. The bronchial brush and lavage specimens, however, demonstrated the cytomorphological features of squamous cell carcinoma, which was confirmed by the bronchial biopsy. The finding of a mixed squamous and glandular component predicts a poor prognosis for this patient. The identification of a squamous component with the non-small cell carcinoma is important as this excludes the patient from anti-VEGF monoclonal antibody treatment due to the increased risk of haemorrhage. Copyright © 2011 Wiley Periodicals, Inc.

  7. Role of ATM in bystander signaling between human monocytes and lung adenocarcinoma cells.

    PubMed

    Ghosh, Somnath; Ghosh, Anu; Krishna, Malini

    2015-12-01

    The response of a cell or tissue to ionizing radiation is mediated by direct damage to cellular components and indirect damage mediated by radiolysis of water. Radiation affects both irradiated cells and the surrounding cells and tissues. The radiation-induced bystander effect is defined by the presence of biological effects in cells that were not themselves in the field of irradiation. To establish the contribution of the bystander effect in the survival of the neighboring cells, lung carcinoma A549 cells were exposed to gamma-irradiation, 2Gy. The medium from the irradiated cells was transferred to non-irradiated A549 cells. Irradiated A549 cells as well as non-irradiated A549 cells cultured in the presence of medium from irradiated cells showed decrease in survival and increase in γ-H2AX and p-ATM foci, indicating a bystander effect. Bystander signaling was also observed between different cell types. Phorbol-12-myristate-13-acetate (PMA)-stimulated and gamma-irradiated U937 (human monocyte) cells induced a bystander response in non-irradiated A549 (lung carcinoma) cells as shown by decreased survival and increased γ-H2AX and p-ATM foci. Non-stimulated and/or irradiated U937 cells did not induce such effects in non-irradiated A549 cells. Since ATM protein was activated in irradiated cells as well as bystander cells, it was of interest to understand its role in bystander effect. Suppression of ATM with siRNA in A549 cells completely inhibited bystander effect in bystander A549 cells. On the other hand suppression of ATM with siRNA in PMA stimulated U937 cells caused only a partial inhibition of bystander effect in bystander A549 cells. These results indicate that apart from ATM, some additional factor may be involved in bystander effect between different cell types. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Synchronous Papillary Carcinoma and Hemangiopericytoma with Lung Metastases

    PubMed Central

    Malagutti, Nicola; Iannini, Valeria; Rocchi, Andrea; Stomeo, Francesco; Frassoldati, Antonio; Borin, Michela; Pelucchi, Stefano

    2013-01-01

    Hemangiopericytomas (HPC) are uncommon tumors that originate from perivascular cells of capillary vessels. HPC are about 1% of all vascular tumors and can be found in the head-neck region with an incidence between 16% and 33%. HPC is a neoplasm of uncertain malignant potential; it can behave as an aggressive tumor with metastases and increased mitotic activity or as a relatively benign neoplasm with only local development. In this paper we describe a case of hemangiopericytoma with uncertain malignant potential with cervical location associated with a concomitant papillary thyroid carcinoma and lung metastasis of unknown origin; this case led us to follow a specific and uncommon diagnostic and therapeutic strategy. PMID:24368958

  9. Carcinoma of the Lung in Nonsmoking Chinese Women

    PubMed Central

    Green, Jerold P.; Brophy, Pegi

    1982-01-01

    The records of 452 lung cancer patients seen in San Francisco between 1972 and 1979 were retrospectively analyzed according to race, sex, findings at histology and smoking history. Of 31 Chinese women with adenocarcinoma or large cell undifferentiated carcinoma, 20 (64.5 percent) had never smoked, which is in sharp contrast to all other subsets. At least 12 of the women were of Cantonese origin. These data support the findings of previous studies carried out in Cantonese women residing in Hong Kong, Singapore and Hawaii. As the incidence of adenocarcinoma in nonsmokers is appreciably higher than that noted in Canton, the possibility must be considered that the cause may be the result of an interaction between some traditional and nontraditional exposures. PMID:6283744

  10. A non-metastatic remote effect of lung carcinoma.

    PubMed

    van der Pol, B A; Planten, J T

    1987-01-01

    A 37-year-old man, who had an oat cell carcinoma of the left lung, lost in a few months a substantial part of both visual fields, on account of a destructive retinal process. This syndrome is known in the literature as a visual paraneoplastic syndrome, which clinically shows the very rapid development of a pseudoretinitis pigmentosa sine pigmento. For most of the patients described the visual problem was the presenting symptom. In contrast with most other described cases, our patient responded very well to systemic tumor treatment and his ocular process also came to a standstill after some delay. The nature of the relationship between the primary tumor and the photoreceptor destruction is not yet clear in detail. An auto-immune process probably forms the basis of the syndrome, but hormonal activity of the tumor could not be excluded in all cases.

  11. A Novel Model for Squamous Cell Carcinoma of the Lung | Center for Cancer Research

    Cancer.gov

    In the U.S. lung cancer remains the most deadly cancer type with less than one in five patients alive five years after diagnosis. The majority of lung cancer deaths are due to tobacco smoke, and the squamous cell carcinoma (SCC) subtype of lung cancer is strongly associated with smoking. Researchers have identified a number of mutations in lung SCC tumors but have failed to

  12. Squamous Cell Cancer of The Lung with Synchronous Renal Cell Carcinoma

    PubMed Central

    Ateş, İhsan; Yazıcı, Ozan; Ateş, Hale; Yazılıtaş, Doğan; Özcan, Ayşe Naz; Ağaçkıran, Yetkin; Zengin, Nurullah

    2016-01-01

    Coexistence of two or more primary cancers is a relatively rare case. Not with standing that the coexistence of multiple primary cancers is often discussed in the literature, there is a small number of publications concerning the coexistence of squamous cell lung carcinoma and renal cancer. In this case report, detection of both squamous cell lung carcinoma and primary renal cancer in one male patient is going to be discussed. PMID:29404140

  13. Plasmodium circumsporozoite protein suppresses the growth of A549 cells via inhibiting nuclear transcription factor κB.

    PubMed

    Deng, Xu-Feng; Zhou, Dong; Liu, Quan-Xing; Zheng, Hong; Ding, Yan; Xu, Wen-Yue; Min, Jia-Xin; Dai, Ji-Gang

    2018-05-01

    Blocking the activation of nuclear factor κB (NF-κB) is a promising strategy for the treatment of non-small cell lung cancer. The circumsporozoite protein (CSP), a key component of the sporozoite stage of the malaria parasite, was previously reported to block NF-κB activation in hepatocytes. Therefore, in the present study, the effect of CSP on the growth of the human lung cancer cell line, A549, was investigated. It was demonstrated that transfection with a recombinant plasmid expressing CSP was able to inhibit the proliferation of A549 cells in a dose-dependent manner and induce the apoptosis of A549 cells. A NF-κB gene reporter assay indicated that CSP and its nuclear localization signal (NLS) motif were able to equally suppress the activation of NF-κB following stimulation with human recombinant tumor necrosis factor (TNF)-α in A549 cells. Furthermore, western blot analysis indicated that NLS did not affect the phosphorylation and degradation of IκB, but was able to markedly inhibit the nuclear translocation of NF-κB in TNF-α stimulated A549 cells. Therefore, the data suggest that CSP may be investigated as a potential novel NF-κB inhibitor for the treatment of lung cancer.

  14. Squamous cell carcinoma lung: Presented with bilateral lower limb deep venous thrombosis with gangrene formation

    PubMed Central

    Saha, Kaushik; Sengupta, Amitabha; Patra, Anupam; Jash, Debraj

    2013-01-01

    Bilateral venous thrombosis due to underlying malignancy is a rare entity. It is worthy to search for malignancy in patients of bilateral venous gangrene. Our patient presented with severe bilateral leg pain as a result of venous gangrene. There was associated left sided massive pleural effusion with scalp nodule. Fine needle aspiration cytology of scalp nodule revealed metastatic squamous cell carcinoma and fiber optic bronchoscopy guided biopsy from growth at left upper lobe bronchus confirmed the case as squamous cell carcinoma lung. It was rare for squamous cell carcinoma lung to present as bilateral venous gangrene with anticardiolipin antibody negative. PMID:24455526

  15. Primary Lung Signet Ring Cell Carcinoma Presenting as a Cavitary Pancoast Tumor in a 32-Year-Old Man.

    PubMed

    Corvini, Michael; Koorji, Alysha; Sgroe, Erica; Nguyen, Uyen

    2018-06-01

    Signet ring cell carcinoma, a subtype of adenocarcinoma, is a rare cause of primary lung cancer. The authors report a case of primary lung signet ring cell carcinoma presenting as a cavitary Pancoast tumor in a 32-year-old male smoker. Beyond the rarity of primary lung signet ring cell carcinoma itself, the youth of the patient, his smoking status, the presence of cavitation, and the location of the tumor in the superior sulcus make it especially atypical.

  16. Squamous cell carcinoma of the lung with highly proliferating fibromatosis-like stroma: a rare phenomenon.

    PubMed

    Tajima, Shogo; Takanashi, Yusuke; Koda, Kenji

    2015-01-01

    Few cases of carcinoma with exuberant stromal proliferation have been documented, apart from scirrhous carcinoma. To the best of our knowledge, previous cases of carcinoma exhibiting exuberant stromal proliferation have exclusively been reported in the thyroid gland, specifically as papillary carcinoma. The exuberant stromal proliferation has been recognized to be similar to either fibromatosis or nodular fasciitis. Herein, we report a case of a 74-year-old Japanese man whose tumor in the upper lobe of his right lung displayed highly proliferating stroma with dispersed, poorly differentiated squamous cell carcinoma nests. The stromal spindle cells (fibroblasts/myofibroblasts) had similar molecular profiles to those typically observed in fibromatosis rather than nodular fasciitis, resulting in the designation of "fibromatosis-like" stroma. The presence of carcinoma cells, along with stromal cells, expressing TGF-β in this case likely fostered continuous stromal proliferation, presumably in conjunction with the unique microenvironment in which the carcinoma cells were present.

  17. The clinical and prognostic value of polo-like kinase 1 in lung squamous cell carcinoma patients: immunohistochemical analysis

    PubMed Central

    Li, Hefei; Sun, Zhenqing; Guo, Qiang; Shi, Hongyun; Jia, Youchao

    2017-01-01

    Polo-like kinase 1 (PLK1) has been suggested to serve as an oncogene in most human cancers. The aim of our study is to present more evidence about the clinical and prognostic value of PLK1 in lung squamous cell carcinoma patients. The status of PLK1 was observed in lung adenocarcinoma, lung squamous cell carcinoma, and normal lung tissues through analyzing microarray dataset (GEO accession numbers: GSE1213 and GSE 3627). PLK1 mRNA and protein expressions were detected in lung squamous cell carcinoma and normal lung tissues by using quantitative real-time PCR (qRT-PCR) and immunohistochemistry. In our results, the levels of PLK1 in lung squamous cell carcinoma tissues were higher than that in lung adenocarcinoma tissues. Compared with paired adjacent normal lung tissues, the PLK1 expression was increased in lung squamous cell carcinoma tissues. Furthermore, high expression of PLK1 protein was correlated with differentiated degree, clinical stage, tumor size, lymph node metastasis, and distant metastasis. The univariate and multivariate analyses showed PLK1 protein high expression was an unfavorable prognostic biomarker for lung squamous cell carcinoma patients. In conclusion, high expression of PLK1 is associated with the aggressive progression and poor prognosis in lung squamous cell carcinoma patients. PMID:28724602

  18. A Novel Model for Squamous Cell Carcinoma of the Lung | Center for Cancer Research

    Cancer.gov

    In the U.S. lung cancer remains the most deadly cancer type with less than one in five patients alive five years after diagnosis. The majority of lung cancer deaths are due to tobacco smoke, and the squamous cell carcinoma (SCC) subtype of lung cancer is strongly associated with smoking. Researchers have identified a number of mutations in lung SCC tumors but have failed to generate an animal model of lung SCC, which is critical for understanding the biology of the disease and for identifying novel therapeutic targets.

  19. Anti-inflammatory effects of embelin in A549 cells and human asthmatic airway epithelial tissues.

    PubMed

    Lee, In-Seung; Cho, Dong-Hyuk; Kim, Ki-Suk; Kim, Kang-Hoon; Park, Jiyoung; Kim, Yumi; Jung, Ji Hoon; Kim, Kwanil; Jung, Hee-Jae; Jang, Hyeung-Jin

    2018-02-01

    Allergic asthma is the most common type in asthma, which is defined as a chronic inflammatory disease of the lung. In this study, we investigated whether embelin (Emb), the major component of Ardisia japonica BL. (AJB), exhibits anti-inflammatory effects on allergic asthma via inhibition of NF-κB activity using A549 cells and asthmatic airway epithelial tissues. Inflammation was induced in A549 cells, a human airway epithelial cell line, by IL-1β (10 ng/ml) treatment for 4 h. The effects of Emb on NF-κB activity and COX-2 protein expression in inflamed airway epithelial cells and human asthmatic airway epithelial tissues were analyzed via western blot. The secretion levels of NF-κB-mediated cytokines/chemokines, including IL-4, 6, 9, 13, TNF-α and eotaxin, were measured by a multiplex assay. Emb significantly blocked NF-κB activity in IL-1β-treated A549 cells and human asthmatic airway epithelial tissues. COX-2 expression was also reduced in both IL-1β-treated A549 cells and asthmatic tissues Emb application. Emb significantly reduced the secretion of IL-4, IL-6 and eotaxin in human asthmatic airway epithelial tissues by inhibiting activity of NF-κB. The results of this study suggest that Emb may be used as an anti-inflammatory agent via inhibition of NF-κB and related cytokines.

  20. Revelation of Different Nanoparticle-Uptake Behavior in Two Standard Cell Lines NIH/3T3 and A549 by Flow Cytometry and Time-Lapse Imaging

    PubMed Central

    Jochums, André; Friehs, Elsa; Sambale, Franziska; Lavrentieva, Antonina; Bahnemann, Detlef; Scheper, Thomas

    2017-01-01

    The uptake of nanomaterials into different cell types is a central pharmacological issue for the determination of nanotoxicity as well as for the development of drug delivery strategies. Most responses of the cells depend on their intracellular interactions with nanoparticles (NPs). Uptake behavior can be precisely investigated in vitro, with sensitive high throughput methods such as flow cytometry. In this study, we investigated two different standard cell lines, human lung carcinoma (A549) and mouse fibroblast (NIH/3T3) cells, regarding their uptake behavior of titanium dioxide NPs. Cells were incubated with different concentrations of TiO2 NPs and samples were taken at certain time points to compare the uptake kinetics of both cell lines. Samples were analyzed with the help of flow cytometry by studying changes in the side and forward scattering signal. To additionally enable a detection via fluorescence, NPs were labeled with the fluorescent dye fluorescein isothiocyanate (FITC) and propidium iodide (PI). We found that NIH/3T3 cells take up the studied NPs more efficiently than A549 cells. These findings were supported by time-lapse microscopic imaging of the cells incubated with TiO2 NPs. Our results confirm that the uptake behavior of individual cell types has to be considered before interpreting any results of nanomaterial studies. PMID:29051447

  1. Giant cell lung carcinoma in a man with acquired immunodeficiency syndrome.

    PubMed

    Kodama, Takahide; Miyazaki, Kunihiko; Satoh, Hiroaki; Hitomi, Shigemi; Ohtsuka, Morio

    2009-01-01

    A 66-year-old man, who was discovered to have human immunodeficiency virus (HIV) infection 22 months previously and was treated with highly active antiretroviral (HAART) therapy, developed giant cell carcinoma of the lung. In English literature, this is the first case of such cell type of lung cancer during HAART therapy. Since giant cell carcinoma of the lung occurs mainly in elderly men who smoke heavily, there may not be a possibility that the HIV or HAART was causative in our patient.

  2. Paraneoplastic neurologic disorders in small cell lung carcinoma

    PubMed Central

    Woodhall, Mark; Chapman, Caroline; Nibber, Anjan; Waters, Patrick; Vincent, Angela; Lang, Bethan; Maddison, Paul

    2015-01-01

    Objective: To determine the frequency and range of paraneoplastic neurologic disorders (PNDs) and neuronal antibodies in small cell lung carcinoma (SCLC). Methods: Two hundred sixty-four consecutive patients with biopsy-proven SCLC were recruited at the time of tumor diagnosis. All patients underwent full neurologic examination. Serum samples were taken prior to chemotherapy and analyzed for 15 neuronal antibodies. Thirty-eight healthy controls were analyzed in parallel. Results: PNDs were quite prevalent (n = 24, 9.4%), most frequently Lambert-Eaton myasthenic syndrome (3.8%), sensory neuronopathy (1.9%), and limbic encephalitis (1.5%). Eighty-seven percent of all patients with PNDs had antibodies to SOX2 (62.5%), HuD (41.7%), or P/Q VGCC (50%), irrespective of their syndrome. Other neuronal antibodies were found at lower frequencies (GABAb receptor [12.5%] and N-type VGCC [20.8%]) or very rarely (GAD65, amphiphysin, Ri, CRMP5, Ma2, Yo, VGKC complex, CASPR2, LGI1, and NMDA receptor [all <5%]). Conclusions: The spectrum of PNDs is broader and the frequency is higher than previously appreciated, and selected antibody tests (SOX2, HuD, VGCC) can help determine the presence of an SCLC. PMID:26109714

  3. A squamous cell lung carcinoma with abscess-like distant metastasis.

    PubMed

    Dursunoğlu, Neşe; Başer, Sevin; Evyapan, Fatma; Kiter, Göksel; Ozkurt, Sibel; Polat, Bahattin; Karabulut, Nevzat

    2007-01-01

    This is a metastatic spread of squamous cell lung carcinoma to lungs, liver, lymph node, bone and subcutanous region as multiple abscess-like lesions. A fifty-five years old man admitted to the out-patient clinic with fever, cough, hemopthysis, night sweats, chest pain, abdominal pain and weight loss. In a short period of time abcess like lesions developed in his lungs, liver, lymph node, bone and subcutanous region. Though the clinical presentation is suggestive for an infectious condition, no success to antimicrobial treatment and negative results of microbiological studies have arised a need to further investigations. Histopathological studies of the abscess wall ultimately gave the definitive diagnosis as metastatic squamous cell carcinoma. We believe that case report is interesting because of the uncommon metastatic lesions masquerading the abscesses and also wide-spread multiple distant invasions of a squamous cell lung carcinoma in a short time period.

  4. Ferrous glycinate regulates cell energy metabolism by restrictinghypoxia-induced factor-1α expression in human A549 cells.

    PubMed

    Kuo, Yung-Ting; Jheng, Jhong-Huei; Lo, Mei-Chen; Chen, Wei-Lu; Wang, Shyang-Guang; Lee, Horng-Mo

    2018-06-04

    Iron or oxygen regulates the stability of hypoxia inducible factor-1α (HIF-1α). We investigated whether ferrous glycinate would affect HIF-1α accumulation, aerobic glycolysis and mitochondrial energy metabolism in human A549 lung cancer cells. Incubation of A549 cells with ferrous glycinate decreased the protein levels of HIF-1α, which was abrogated by proteosome inhibitor, or prolyl hydroxylase inhibitor. The addition of ferrous glycinate decreased protein levels of glucose transporter-1, hexokinase-2, and lactate dehydrogenase A, and decreased pyruvate dehydrogenase kinase-1 (PDK-1) and pyruvate dehydrogenase (PDH) phosphorylation in A549 cells. Ferrous glycinate also increased the expression of the mitochondrial transcription factor A (TFAM), and the mitochondrial protein, cytochrome c oxidase (COX-IV). Silencing of HIF-1α expression mimicked the effects of ferrous glycinate on PDK-1, PDH, TFAM and COX-IV in A549 cells. Ferrous glycinate increased mitochondrial membrane potential and ATP production in A549 cells. These results suggest that ferrous glycinate may reverse Warburg effect through down regulating HIF-1α in A549 cells.

  5. Synthetic Lethal Therapy for KRAS Mutant Non-small-cell Lung Carcinoma with Nanoparticle-mediated CDK4 siRNA Delivery

    PubMed Central

    Mao, Cheng-Qiong; Xiong, Meng-Hua; Liu, Yang; Shen, Song; Du, Xiao-Jiao; Yang, Xian-Zhu; Dou, Shuang; Zhang, Pei-Zhuo; Wang, Jun

    2014-01-01

    The KRAS mutation is present in ~20% of lung cancers and has not yet been effectively targeted for therapy. This mutation is associated with a poor prognosis in non-small-cell lung carcinomas (NSCLCs) and confers resistance to standard anticancer treatment drugs, including epidermal growth factor receptor tyrosine kinase inhibitors. In this study, we exploited a new therapeutic strategy based on the synthetic lethal interaction between cyclin-dependent kinase 4 (CDK4) downregulation and the KRAS mutation to deliver micellar nanoparticles (MNPs) containing small interfering RNA targeting CDK4 (MNPsiCDK4) for treatment in NSCLCs harboring the oncogenic KRAS mutation. Following MNPsiCDK4 administration, CDK4 expression was decreased, accompanied by inhibited cell proliferation, specifically in KRAS mutant NSCLCs. However, this intervention was harmless to normal KRAS wild-type cells, confirming the proposed mechanism of synthetic lethality. Moreover, systemic delivery of MNPsiCDK4 significantly inhibited tumor growth in an A549 NSCLC xenograft murine model, with depressed expression of CDK4 and mutational KRAS status, suggesting the therapeutic promise of MNPsiCDK4 delivery in KRAS mutant NSCLCs via a synthetic lethal interaction between KRAS and CDK4. PMID:24496383

  6. Squamous cell lung carcinoma presenting as melena: a case report and review of the literature.

    PubMed

    Azar, Ibrahim; Koutroumpakis, Efstratios; Patel, Raina; Mehdi, Syed

    2017-10-03

    Lung cancer has a predilection to widely metastasize to the liver, bone, brain and adrenal glands. Metastasis of primary lung tumors to the stomach is infrequent, with only sporadic cases reported. Most cases are asymptomatic and diagnosed post-mortem on autopsy. The incidence of symptomatic gastrointestinal metastases is extremely rare. Herein, we describe a case of gastric metastasis by squamous cell lung carcinoma, presenting as melena and diagnosed by esophagogastroduodenoscopy. To the best of our knowledge, only twenty other cases in the English literature have reported symptomatic gastric metastasis of lung cancer diagnosed by endoscopic biopsy. A brief review of the literature shows gastric metastasis of lung cancer to have a predilection to occur most frequently in male smokers with the most common type of tumor likely to be squamous cell carcinoma.

  7. Effect of taxol from Pestalotiopsis mangiferae on A549 cells-In vitro study

    PubMed Central

    Kathiravan, Govindarajan; Sureban, Sripathi M.

    2009-01-01

    Pestalotiopsis mangiferae Coelomycete fungi were used to examine the production of taxol. The taxol isolated from this fungus is biologically active against cancer cell lines were investigated for its antiproliferative activity in human Non Small Cell Lung Cancer A549 cells. The results showed that the methylene chloride extraction of Pestalotiopsis mangiferae inhibited the proliferation of A 549 cells as measured by MTT and Trypan blue assay. Flow cytometric analysis showed that methylene chloride extraction of Pestalotiopsis mangiferae blocked cell cycle progression in G0/G1 phase. In addition fungal taxol induced A549 cell apoptosis as determined by propidium iodide staining. Further the percentage of LDH release was increased at increasing concentrations which is a measure of cell death. The levels of sialic acid levels and DNA, RNA and protein levels were decreased after treatment with methylene chloride extraction of Pestalotiopsis mangiferae. We suggests that methylene chloride extraction of Pestalotiopsis mangiferae might be considered for future therapeutic application with further studies against lung cancer. PMID:25206246

  8. Effect of taxol from Pestalotiopsis mangiferae on A549 cells-In vitro study.

    PubMed

    Kathiravan, Govindarajan; Sureban, Sripathi M

    2009-12-01

    Pestalotiopsis mangiferae Coelomycete fungi were used to examine the production of taxol. The taxol isolated from this fungus is biologically active against cancer cell lines were investigated for its antiproliferative activity in human Non Small Cell Lung Cancer A549 cells. The results showed that the methylene chloride extraction of Pestalotiopsis mangiferae inhibited the proliferation of A 549 cells as measured by MTT and Trypan blue assay. Flow cytometric analysis showed that methylene chloride extraction of Pestalotiopsis mangiferae blocked cell cycle progression in G0/G1 phase. In addition fungal taxol induced A549 cell apoptosis as determined by propidium iodide staining. Further the percentage of LDH release was increased at increasing concentrations which is a measure of cell death. The levels of sialic acid levels and DNA, RNA and protein levels were decreased after treatment with methylene chloride extraction of Pestalotiopsis mangiferae. We suggests that methylene chloride extraction of Pestalotiopsis mangiferae might be considered for future therapeutic application with further studies against lung cancer.

  9. Cytogenetics of small cell carcinoma of the lung.

    PubMed

    Wurster-Hill, D H; Cannizzaro, L A; Pettengill, O S; Sorenson, G D; Cate, C C; Maurer, L H

    1984-12-01

    Nineteen cell lines derived from various malignant tissues of 15 patients with small cell carcinoma of the lung (SCCL) have been studied. The results showed heterogeneity in all cell lines, with no one consistent abnormality among them. Cell lines from 11 of the patients had minute and double minute chromosomes, and cell lines from 2 patients had abnormally banding regions, designated as ABRs, as distinguished from homogeneously staining regions (HSRs). The latter 2 and several of the former cell lines were derived from specimens taken before the patients were placed on therapy. All but 2 of the cell lines had a constant marker load, consisting of 24%-35% of the complement. Some markers remained stable through months and years of culture life, while other markers came and went. Chromosomes #1, #6 and #11 were most frequently involved in marker formation in the cell lines, and these were compared to similar markers in direct bone marrow preparations. Chromosome #1 markers were of variable structure, whereas #6 and #11 most often took the form of 6q- and 11p+ markers, with breakpoints most frequently at 6q23-25 and 11p11-12. A 3p- marker was found in a minority of cell lines. All of these markers were also found in direct marrow preparations from some patients with SCCL. Nonmonoclonal tumors arose from inoculation of bimodal cell lines into nude mice, but population selection by undetermined mechanism was evident. Cytogenetic parameters showed no positive correlation with hormone production by these cell lines.

  10. ALK-rearranged squamous cell lung carcinoma responding to crizotinib: A missing link in the field of non-small cell lung cancer?

    PubMed

    Vergne, Florence; Quéré, Gilles; Andrieu-Key, Sophie; Descourt, Renaud; Quintin-Roué, Isabelle; Talagas, Matthieu; De Braekeleer, Marc; Marcorelles, Pascale; Uguen, Arnaud

    2016-01-01

    ALK-rearrangements are mainly encountered in lung adenocarcinomas and allow treating patients with anti-ALK targeted therapy. ALK-rearranged squamous cell lung carcinomas are rare tumors that can also respond to anti-ALK-targeted therapy. Nevertheless, ALK screening is not always performed in patients with squamous cell lung carcinomas making the identification and treatment of this molecular tumor subtype challenging. We intend to report a rare case of ALK-rearranged lung squamous cell carcinoma with response to crizotinib therapy. We report clinical, pathological, immunohistochemical and fluorescent in situ hybridization data concerning a patient having an ALK-rearranged squamous cell lung cancer diagnosed in our institution. The patient was a 58-year old woman with a metastatic-stage lung cancer. Histopathological and immunohistochemical analyses were performed on a bronchial biopsy sample and concluded in a non-keratinizing squamous cell lung carcinoma expressing strongly cytokeratin 5/6, p63 and p40, which are classic hallmarks of lung squamous cell carcinomas, but also cytokeratin 7 which is more commonly expressed in lung adenocarcinomas. The tumor did not express thyroid transcription factor-1. ALK rearrangement was searched because of the never-smoker status of the patient and resulted in strong positive fluorescent in situ hybridization test and ALK/p80 immunohistochemistry. The patient responded to crizotinib therapy during 213 days. Our observation points out the interest of considering ALK screening in patients with metastatic lung squamous cell carcinomas, especially in patients lacking a usual heavy-smoker clinical history. The histopathological and immunohistochemical features of this particular tumor highlighting the overlapping criteria between lung adenocarcinomas and rare ALK-rearranged squamous cell lung carcinomas could also be relevant to extend ALK screening to tumors with intermediate phenotypes between squamous cell carcinomas and

  11. [Study on thaspine in inducing apoptosis of A549 cell].

    PubMed

    Zhang, Yan-min; He, Lang-chong

    2007-04-01

    To investigate the effect of thaspine on the cellular proliferation, apoptosis and cell cycle in A549 cell line. A549 cell was cultured with different concentrations of thaspine. Cellular proliferation was detected with MTT, apoptosis and cell cycle were checked with Flow Cytometer, and change of microstructure was observed by transmission electron microscope. Thaspine could inhibit the proliferation and induce apoptosis of A549 cell in a time-dose dependent manner. Cell cycle was significantly stopped at the S phase by thaspine with FCM technology. Under electronic microscope, the morphology of A549 cell showed nuclear karyopycnosis, chromatin agglutination and typical apoptotic body when the cell was treated with thaspine. Thaspine has the effects of anti-tumor and inducing apoptosis.

  12. [Suppression of WIFI transcript and protein in non-small cell lung carcinomas].

    PubMed

    Korobko, E V; Kalinichenko, S V; Shepelev, M V; Zborovskaia, I B; Allakhverdiev, A K; Zinov'eva, M V; Vinogradova, T V; Sverdlov, E D; Korobko, I V

    2007-01-01

    Changes in WIFI expression, an extracellular inhibitor of Wnt pathway, in non-small cell lung carcinomas were analyzed. Frequent (67% cases) suppression of WIFI transcript in non-small cell lung carcinomas were found. Our results, together with previously published data, suggest that inhibition of WIFI expression often occurs in squamous cell carcinomas and is less typical of adenocarcinomas. It was also found that a decrease in the WIFI transcript in tumors is parallel to concomitant suppression of the WIFI protein level. Our results provide further evidence that the WIFI suppression is a frequent event in the lung carcinogenesis, which might lead to disregulation of Wnt signaling pathway and contribute to tumor progression.

  13. MUC4, a novel immunohistochemical marker identified by gene expression profiling, differentiates pleural sarcomatoid mesothelioma from lung sarcomatoid carcinoma.

    PubMed

    Amatya, Vishwa Jeet; Kushitani, Kei; Mawas, Amany Sayed; Miyata, Yoshihiro; Okada, Morihito; Kishimoto, Takumi; Inai, Kouki; Takeshima, Yukio

    2017-05-01

    Sarcomatoid mesothelioma, a histological subtype of malignant pleural mesothelioma, is a very aggressive tumor with a poor prognosis. Histological diagnosis of sarcomatoid mesothelioma largely depends on the histomorphological feature of spindled tumor cells with immunohistochemical reactivity to cytokeratins. Diagnosis also requires clinico-radiological and/or macroscopic evidence of an extrapulmonary location to differentiate it from lung sarcomatoid carcinoma. Although there are promising immunohistochemical antibody panels to differentiate mesothelioma from lung carcinoma, a consensus on the immunohistochemical markers that distinguish sarcomatoid mesothelioma from lung sarcomatoid carcinoma has not been reached and requires further study. We performed whole gene expression analysis of formalin-fixed paraffin-embedded tissue from sarcomatoid mesothelioma and lung sarcomatoid carcinoma and observed significant differences in the expression of MUC4 and other genes between sarcomatoid mesothelioma and lung sarcomatoid carcinoma. Immunohistochemistry demonstrated that MUC4 was expressed in the spindled tumor cells of lung sarcomatoid carcinoma (21/29, 72%) but was not expressed in any sarcomatoid mesothelioma (0/31, 0%). To differentiate sarcomatoid mesothelioma from lung sarcomatoid carcinoma, negative MUC4 expression showed 100% sensitivity and 72% specificity and accuracy rate of 87%, which is higher than immunohistochemical markers such as calretinin, D2-40 and Claudin-4. Therefore, we recommend to include MUC4 as a novel and useful negative immunohistochemical marker for differentiating sarcomatoid mesothelioma from lung sarcomatoid carcinoma.

  14. EML4-ALK translocation in both metachronous second primary lung sarcomatoid carcinoma and lung adenocarcinoma: a case report.

    PubMed

    Alì, Greta; Proietti, Agnese; Niccoli, Cristina; Pelliccioni, Serena; Borrelli, Nicla; Giannini, Riccardo; Lupi, Cristiana; Valetto, Angelo; Bertini, Veronica; Lucchi, Marco; Mussi, Alfredo; Fontanini, Gabriella

    2013-08-01

    The EML4-ALK gene translocation was described in a non small cell lung cancer (NSCLC) subset, with a potent oncogenic activity. It represents one of the newest molecular targets in NSCLC. We report on the case of a metachronous second primary lung sarcomatoid carcinoma after resection of lung adenocarcinoma both with ALK translocation, in a non-smoking patient. EML4-ALK rearrangement was detected with immunohistochemistry and confirmed with fluorescent in situ hybridization (FISH). To assess the clonal relationship between the two tumors, both adenocarcinoma and sarcomatoid carcinoma were analyzed by array comparative genomic hybridization (aCGH). We observed different genomic profiles suggesting that the tumors arose independently and were thus multiple primaries. To the best of our knowledge, this is the first report concerning the presence of the EML4-ALK fusion gene in a sarcomatoid carcinoma of the lung. Crizotinib, the ALK tyrosine kinase inhibitor, is highly effective in ALK-rearranged NSCLC; therefore, it may be imperative to identify all NSCLC that harbor ALK translocations in the near future. Starting from our evidence, tumors with sarcomatoid histology may need to be screened for the presence of EML4-ALK rearrangement. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. [Treatment of non-small cell lung carcinoma in early stages].

    PubMed

    Meneses, José Carlos; Avila Martínez, Régulo J; Ponce, Santiago; Zuluaga, Mauricio; Bartolomé, Adela; Gámez, Pablo

    2013-12-01

    Treatment of lung carcinoma is multidisciplinary. There are different therapeutic strategies available, although surgery shows the best results in those patients with lung carcinoma in early stages. Other options such as stereotactic radiation therapy are relegated to patients with small tumors and poor cardiopulmonary reserve or to those who reject surgery. Adjuvant chemotherapy is not justified in patients with stage i of the disease and so double adjuvant chemotherapy should be considered. This adjuvant chemotherapy should be based on cisplatin after surgery in those patients with stages ii and IIIA. Copyright © 2012 AEC. Published by Elsevier Espana. All rights reserved.

  16. β3 integrin expression is required for invadopodia-mediated ECM degradation in lung carcinoma cells

    PubMed Central

    Morales, Xabier; Salvo, Elizabeth; Garasa, Saray; Ortiz de Solórzano, Carlos; Martínez, Alfredo; Larrayoz, Ignacio M.; Rouzaut, Ana

    2017-01-01

    Cancer related deaths are primarily due to tumor metastasis. To facilitate their dissemination to distant sites, cancer cells develop invadopodia, actin-rich protrusions capable of degrading the surrounding extracellular matrix (ECM). We aimed to determine whether β3 integrin participates in invadopodia formed by lung carcinoma cells, based on our previous findings of specific TGF-β induction of β3 integrin dependent metastasis in animal models of lung carcinoma. In this study, we demonstrate that lung carcinoma cells form invadopodia in response to TGF-β exposure. Invadopodia formation and degradation activity is dependent on β3 integrin expression since β3 integrin deficient cells are not able to degrade gelatin-coated surfaces. Even more, transient over-expression of SRC did not restore invadopodia formation in β3 integrin deficient cells. Finally, we observed that blockade of PLC-dependent signaling leads to more intense labeling for β3 integrin in invadopodia. Our results suggest that β3 integrin function, and location, in lung cancer cells are essential for invadopodia formation, and this integrin regulates the activation of different signal pathways necessary for the invasive structure. β3 integrin has been associated with poor prognosis and increased metastasis in several carcinoma types, including lung cancer. Our findings provide new evidence to support the use of targeted therapies against this integrin to combat the onset of metastases. PMID:28767724

  17. The preparation of <100 particles per trial having the same mole fraction of 12 inorganic compounds at diameters of 6.8, 3.8, or 2.6 [mu]m followed by their deposition onto human lung cells (A549) with measurement of the relative downstream differential expression of ICAM-1

    NASA Astrophysics Data System (ADS)

    Eleghasim, Ndukauba M.; Haddrell, Allen E.; van Eeden, Stephen; Agnes, George R.

    2006-12-01

    The characterization of particulate matter suspended in the troposphere (PM10) based on size is an important basis for assessing the extent of their adverse effects on human health. The relevance of such assessments is anticipated to be significantly improved through the continued development of tools that can identify the chemical components within individual ambient particles, and the injury that they cause. We use recently reported methodology to create mimics of ambient particle types of known size and chemical composition that are levitated within an ac trap. The ac trap uses electric fields to levitate the particles that have a given mass and net elementary charge, and as such the ac trap is a mass-to-charge filter. The ac trap was used to levitate populations of particles where the size of particles in any given population could be altered. The levitated particles are delivered direct from the ac trap to human lung cells (A549), in vitro, with downstream measurement of differential expression of intercellular adhesion molecule (ICAM)-1 and counting of the number of particles actually delivered to the culture using an optical microscope. In this study, the chemical composition of the ambient particle mimics was restricted to inorganic compounds whose relative abundance was purposely designed to mimic the average abundance in Environmental Health Center-93 (EHC-93) particles. The sizes of the multilelement particle types prepared were 6.8 +/- 0.5, 3.8 +/- 0.3, 2.6 +/- 0.2 (mean +/- S.D.). Particles of either elemental carbon, or elemental carbon containing glycerol were used as control particle types. In any given experiment, a known number of particles, but always <100, of a given size, were deposited onto a small region of an A549 cell culture. Following an 18-h incubation period and anti-body labeling of ICAM-1, the fluorescence emission from a 1.07 mm2 area of the cell culture centered at the site of particle deposition was acquired. The relative

  18. Study on invadopodia formation for lung carcinoma invasion with a microfluidic 3D culture device.

    PubMed

    Wang, Shanshan; Li, Encheng; Gao, Yanghui; Wang, Yan; Guo, Zhe; He, Jiarui; Zhang, Jianing; Gao, Zhancheng; Wang, Qi

    2013-01-01

    Invadopodia or invasive feet, which are actin-rich membrane protrusions with matrix degradation activity formed by invasive cancer cells, are a key determinant in the malignant invasive progression of tumors and represent an important target for cancer therapies. In this work, we presented a microfluidic 3D culture device with continuous supplement of fresh media via a syringe pump. The device mimicked tumor microenvironment in vivo and could be used to assay invadopodia formation and to study the mechanism of human lung cancer invasion. With this device, we investigated the effects of epidermal growth factor (EGF) and matrix metalloproteinase (MMP) inhibitor, GM6001 on invadopodia formation by human non-small cell lung cancer cell line A549 in 3D matrix model. This device was composed of three units that were capable of achieving the assays on one control group and two experimental groups' cells, which were simultaneously pretreated with EGF or GM6001 in parallel. Immunofluorescence analysis of invadopodia formation and extracellular matrix degradation was conducted using confocal imaging system. We observed that EGF promoted invadopodia formation by A549 cells in 3D matrix and that GM6001 inhibited the process. These results demonstrated that epidermal growth factor receptor (EGFR) signaling played a significant role in invadopodia formation and related ECM degradation activity. Meanwhile, it was suggested that MMP inhibitor (GM6001) might be a powerful therapeutic agent targeting invadopodia formation in tumor invasion. This work clearly demonstrated that the microfluidic-based 3D culture device provided an applicable platform for elucidating the mechanism of cancer invasion and could be used in testing other anti-invasion agents.

  19. Jolkinolide A and Jolkinolide B Inhibit Proliferation of A549 Cells and Activity of Human Umbilical Vein Endothelial Cells.

    PubMed

    Shen, Lei; Zhang, Shan-Qiang; Liu, Lei; Sun, Yu; Wu, Yu-Xuan; Xie, Li-Ping; Liu, Ji-Cheng

    2017-01-14

    BACKGROUND Jolkinolide A (JA) and Jolkinolide B (JB) are diterpenoids extracted from the roots of Euphorbia fischeriana Steud and have been shown to have anti-tumor activity. However, their effects on the ability of tumor cells to invade blood vessels and metastasize remain largely unknown. Investigations into the effects of JA and JB on the angiogenesis of tumor tissues may facilitate the identification of new natural drugs with anti-tumor growth and metastasis activities. MATERIAL AND METHODS We used different concentrations of JA and JB (20 μg/ml, 40 μg/ml, 60 μg/ml, 80 μg/ml, and 100 μg/ml) to stimulate A549 cells and then studied the effects on the growth and metastasis of lung cancers. In addition, we used conditional media from A549 cells (A549-CM) stimulated by either JA or JB in different concentrations to culture human umbilical vein endothelial cells (HUVECs). RESULTS We found that both JA and JB significantly inhibited the Akt-STAT3-mTOR signaling pathway and reduced the expression of VEGF in A549 cells, but JB exhibited more significant inhibitory effects than JA. The JB-stimulated A549 cell conditional media had a greater inhibitory effect on the proliferation and migration of HUVECs than did the conditional media of JA-stimulated A549 cells. This effect gradually increased with increasing concentrations of either type of Jolkinolide. CONCLUSIONS Our results suggest that JA and JB inhibited VEGF expression in A549 cells through the inhibition of the Akt-STAT3-mTOR signaling pathway, and directly inhibited the proliferation and migration of HUVECs. These findings are of great significance for the development of new plant-derived chemotherapy agents for the treatment of cancer.

  20. Jolkinolide A and Jolkinolide B Inhibit Proliferation of A549 Cells and Activity of Human Umbilical Vein Endothelial Cells

    PubMed Central

    Shen, Lei; Zhang, Shan-Qiang; Liu, Lei; Sun, Yu; Wu, Yu-Xuan; Xie, Li-Ping; Liu, Ji-Cheng

    2017-01-01

    Background Jolkinolide A (JA) and Jolkinolide B (JB) are diterpenoids extracted from the roots of Euphorbia fischeriana Steud and have been shown to have anti-tumor activity. However, their effects on the ability of tumor cells to invade blood vessels and metastasize remain largely unknown. Investigations into the effects of JA and JB on the angiogenesis of tumor tissues may facilitate the identification of new natural drugs with anti-tumor growth and metastasis activities. Material/Methods We used different concentrations of JA and JB (20 μg/ml, 40 μg/ml, 60 μg/ml, 80 μg/ml, and 100 μg/ml) to stimulate A549 cells and then studied the effects on the growth and metastasis of lung cancers. In addition, we used conditional media from A549 cells (A549-CM) stimulated by either JA or JB in different concentrations to culture human umbilical vein endothelial cells (HUVECs). Results We found that both JA and JB significantly inhibited the Akt-STAT3-mTOR signaling pathway and reduced the expression of VEGF in A549 cells, but JB exhibited more significant inhibitory effects than JA. The JB-stimulated A549 cell conditional media had a greater inhibitory effect on the proliferation and migration of HUVECs than did the conditional media of JA-stimulated A549 cells. This effect gradually increased with increasing concentrations of either type of Jolkinolide. Conclusions Our results suggest that JA and JB inhibited VEGF expression in A549 cells through the inhibition of the Akt-STAT3-mTOR signaling pathway, and directly inhibited the proliferation and migration of HUVECs. These findings are of great significance for the development of new plant-derived chemotherapy agents for the treatment of cancer. PMID:28087861

  1. Protein regulator of cytokinesis-1 expression: prognostic value in lung squamous cell carcinoma patients

    PubMed Central

    Zhan, Ping; Xi, Guang-Min; Liu, Hong-Bing; Liu, Ya-Fang; Xu, Wu-Jian; Zhu, Qingqing; Zhou, Ze-Jun; Miao, Ying-Ying; Wang, Xiao-Xia; Jin, Jia-Jia

    2017-01-01

    Background Protein regulator of cytokinesis-1 (PRC1) has been shown to participate in the completion of cytokinesis, and it is dysregulated in cancer processes. However, its relevance in lung squamous cell carcinoma (SCC) remained largely unknown. We aimed to study the expression pattern of PRC1 and assess its clinical significance in lung SCC. Methods PRC1 protein expression in human lung SCC and adjacent normal lung tissues was detected by immunohistochemistry. PRC1 expression was assessed in association with clinicopathological features and clinical outcomes of lung SCC patients. Results In lung SCC tissues, PRC1 protein expression was significantly higher than those in paired normal lung tissues. The lung SCC patients with PRC1 overexpression had an advanced pathological stage (TNM stage), positive lymph node metastasis, and a shorter overall survival (OS) time more frequently than patients with low PRC1 expression. Additional, PRC1 expression was also shown to be poor as a prognostic factor for OS in patients with lung SCC. Conclusions Our study indicated that aberrant expression of PRC1 may point to biochemical recurrence in lung SCC. This highlights its potential as a valuable prognostic marker for lung SCC. PMID:28840006

  2. Patterns of interstitial lung disease during everolimus treatment in patients with metastatic renal cell carcinoma.

    PubMed

    Mizuno, Ryuichi; Asano, Koichiro; Mikami, Shuji; Nagata, Hirohiko; Kaneko, Gou; Oya, Mototsugu

    2012-05-01

    To elucidate the patterns of interstitial lung disease during everolimus treatment in patients with metastatic renal cell carcinoma, we reviewed seven cases of everolimus-induced interstitial lung disease. Seven patients with metastatic renal cell carcinoma, which continued to progress despite treatment with sunitinib or sorafenib, developed interstitial lung disease after treatment with everolimus. Chest X-ray demonstrated diffuse infiltrates in lung fields, and chest computed tomography showed bilateral reticular and ground-glass opacities. Serum levels of lactate dehydrogenase (7/7), C-reactive protein (6/7), pulmonary surfactant associated protein D (1/7) and Krebs von den Lungen 6 (5/7) were elevated. The bronchoalveolar lavage fluid obtained from four patients with Grade 3 interstitial lung disease showed lymphocytosis. The transbronchial lung biopsy specimens showed interstitial lymphocytic infiltration and septal thickening of alveolar walls. In two cases with mild interstitial lung disease, the everolimus therapy was successfully continued. In four cases with Grade 3 interstitial lung disease, the drug was discontinued and steroid therapy was initiated. Pulmonary symptoms and radiological abnormalities resolved within 2 months. Serum Krebs von den Lungen 6 was elevated compared with baseline in all cases with interstitial lung disease. Some patients who developed mild interstitial lung disease during everolimus treatment could continue to receive the treatment. Even when severe interstitial lung disease developed, withdrawal of the drug and short-term use of high-dose steroids resulted in rapid recovery. Prompt recognition of interstitial lung disease exacerbation as well as exclusion of progressive disease or infection is of primary importance.

  3. MUC4 immunohistochemistry is useful in distinguishing epithelioid mesothelioma from adenocarcinoma and squamous cell carcinoma of the lung.

    PubMed

    Mawas, Amany Sayed; Amatya, Vishwa Jeet; Kushitani, Kei; Kai, Yuichiro; Miyata, Yoshihiro; Okada, Morihito; Takeshima, Yukio

    2018-01-09

    The differential diagnosis of epithelioid mesothelioma from lung adenocarcinoma and squamous cell carcinoma requires the positive and negative immunohistochemical markers of mesothelioma. The IMIG guideline has suggested the use of Calretinin, D2-40, WT1, and CK5/6 as mesothelial markers, TTF-1, Napsin-A, Claudin 4, CEA as lung adenocarcinoma markers p40, p63, CK5/6, MOC-31 as squamous cell markers. However, use of other immunohistochemical markers is still necessary. We evaluated 65 epithelioid mesotheliomas, 60 adenocarcinomas, and 57 squamous cell carcinomas of the lung for MUC4 expression by immunohistochemistry and compared with the previously known immunohistochemical markers. MUC4 expression was not found in any of 65 cases of epithelioid mesothelioma. In contrast, MUC4 expression was observed in 50/60(83.3%) cases of lung adenocarcinoma and 50/56(89.3%) cases of lung squamous cell carcinoma. The negative MUC4 expression showed 100% sensitivity, 86.2% specificity and accuracy rate of 91.2% to differentiate epithelioid mesothelioma from lung carcinoma. The sensitivity, specificity, and accuracy of MUC4 are comparable to that of previously known markers of lung adenocarcinoma and squamous cell carcinoma, namely CEA, Claudin 4 and better than that of MOC-31. In conclusion, MUC4 immunohistochemistry is useful for differentiation of epithelioid mesothelioma from lung carcinoma, either adenocarcinoma or squamous cell carcinoma.

  4. Erlotinib in Treating Patients With Advanced Non-Small Cell Lung Cancer, Ovarian Cancer, or Squamous Cell Carcinoma of the Head and Neck

    ClinicalTrials.gov

    2013-01-08

    Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx

  5. Leptospermum flavescens Constituent-LF1 Causes Cell Death through the Induction of Cell Cycle Arrest and Apoptosis in Human Lung Carcinoma Cells

    PubMed Central

    Navanesan, Suerialoasan; Abdul Wahab, Norhanom; Manickam, Sugumaran; Sim, Kae Shin

    2015-01-01

    Leptospermum flavescens Sm. (Myrtaceae), locally known as ‘Senna makki’ is a smallish tree that is widespread and recorded to naturally occur in the montane regions above 900 m a.s.l from Burma to Australia. Although the species is recorded to be used traditionally to treat various ailments, there is limited data on biological and chemical investigations of L. flavescens. The aim of the present study was to investigate and understand the ability of L. flavescens in inducing cell death in lung cancer cells. The cytotoxic potentials of the extraction yields (methanol, hexane, ethyl acetate and water extracts as wells as a semi pure fraction, LF1) were evaluated against two human non-small cell lung carcinoma cell lines (A549 and NCI-H1299) using the MTT assay. LF1 showed the greatest cytotoxic effect against both cell lines with IC50 values of 7.12 ± 0.07 and 9.62 ± 0.50 μg/ml respectively. LF1 treated cells showed a sub-G1 region in the cell cycle analysis and also caused the presence of apoptotic morphologies in cells stained with acridine orange and ethidium bromide. Treatment with LF1 manifested an apoptotic population in cells that were evaluated using the Annexin V/ propidium iodide assay. Increasing dosage of LF1 caused a rise in the presence of activated caspase-3 enzymes in treated cells. Blockage of cell cycle progression was also observed in LF1-treated cells. These findings suggest that LF1 induces apoptosis and cell cycle arrest in treated lung cancer cells. Further studies are being conducted to isolate and identify the active compound as well to better understand the mechanism involved in inducing cell death. PMID:26287817

  6. [HDAC1 expression and effect of TSA on proliferation and apoptosis of A549 cells].

    PubMed

    Huang, Hong; Zhang, Zhen-Xiang; Xu, Yong-Jian; Shao, Jing-Fang

    2003-09-01

    control group, 18.91%,14.30%, 36.99%, and 51.92% in test groups A, B, D, and E, respectively. The expression of HDAC1 plays an important role in the proliferation and apoptosis of A549 cells, which is regulated by hypoxia. TSA may serve as a new target for therapy of lung cancer.

  7. Cationic lipid-assisted polymeric nanoparticle mediated GATA2 siRNA delivery for synthetic lethal therapy of KRAS mutant non-small-cell lung carcinoma.

    PubMed

    Shen, Song; Mao, Chong-Qiong; Yang, Xian-Zhu; Du, Xiao-Jiao; Liu, Yang; Zhu, Yan-Hua; Wang, Jun

    2014-08-04

    Synthetic lethal interaction provides a conceptual framework for the development of wiser cancer therapeutics. In this study, we exploited a therapeutic strategy based on the interaction between GATA binding protein 2 (GATA2) downregulation and the KRAS mutation status by delivering small interfering RNA targeting GATA2 (siGATA2) with cationic lipid-assisted polymeric nanoparticles for treatment of non-small-cell lung carcinoma (NSCLC) harboring oncogenic KRAS mutations. Nanoparticles carrying siGATA2 (NPsiGATA2) were effectively taken up by NSCLC cells and resulted in targeted gene suppression. NPsiGATA2 selectively inhibited cell proliferation and induced cell apoptosis in KRAS mutant NSCLC cells. However, this intervention was harmless to normal KRAS wild-type NSCLC cells and HL7702 hepatocytes, confirming the advantage of synthetic lethality-based therapy. Moreover, systemic delivery of NPsiGATA2 significantly inhibited tumor growth in the KRAS mutant A549 NSCLC xenograft murine model, suggesting the therapeutic promise of NPsiGATA2 delivery in KRAS mutant NSCLC therapy.

  8. Non-Small Cell Carcinoma of the Lung With Osteoclast-Like Giant Cells.

    PubMed

    Dahm, Hans Helmut

    2017-05-01

    Carcinomas of the lung with benign osteoclast-like giant cells are rare. A literature search showed only 8 previously reported examples. These tumors resemble a giant cell tumor of bone. Many of these tumors, which occur in most epithelium-containing organs, are composed of an undifferentiated, sarcomatoid component that contains benign osteoclast-like giant cells and a conventional carcinoma. In some tumors the epithelial origin may be revealed by immunohistochemistry only; others lack any evidence of an epithelial component. A 59-year-old man had an inoperable tumor in the upper lobe of the left lung. The tumor did not respond to radiation therapy, and chemotherapy resulted in minimal relief of symptoms. Light microscopy of biopsy samples showed benign osteoclast-like giant cells distributed irregularly between proliferations of undifferentiated medium-sized tumor cells. Approximately one third of the undifferentiated tumor cells were cytokeratin AE1/AE3-positive, and a minor alveolar clear cell component of the tumor was cytokeratin 7-positive. The osteoclast-like giant cells were strongly CD68-positive. The clinical and histologic findings supported the diagnosis of a non-small cell carcinoma of the lung with benign osteoclast-like giant cells. The differential diagnosis is composed of giant cell carcinoma, carcinosarcoma, and mesenchymal tumors of the lung.

  9. Dietary supplementation with curcumin enhances metastatic growth of Lewis lung carcinoma in mice

    USDA-ARS?s Scientific Manuscript database

    The present study investigated the effects of dietary supplementation with curcumin (the principal curcuminoid of the popular Indian spice turmeric) on spontaneous metastasis of Lewis lung carcinoma (LLC) in female C57/BL6 mice. Mice were fed the AIN93G control diet or that diet supplemented with 2...

  10. Curcumin reduces trabecular and cortical bone in naive and Lewis lung carcinoma-bearing mice

    USDA-ARS?s Scientific Manuscript database

    The present study investigated the effects of dietary supplementation with curcumin on bone microstructural changes in female C57BL/6 mice in the presence or absence of Lewis lung carcinoma. Morphometric analysis showed that in tumor-bearing mice curcumin at 2% and 4% dietary levels (w/w) significa...

  11. Effects of dietary fat on spontaneous metastasis of Lewis lung carcinoma in mice

    USDA-ARS?s Scientific Manuscript database

    The present study assessed the effects of dietary fat on spontaneous metastasis of Lewis lung carcinoma in mice. Three-week old male C57BL/6 mice were fed the AIN-93G standard diet or a 45% fat diet (kcal %) for seven weeks before they were subcutaneously injected with 2.5 x 105 viable cells into th...

  12. Antioxidant Activity and Cytotoxicity Effect of Cocoa Beans Subjected to Different Processing Conditions in Human Lung Carcinoma Cells

    PubMed Central

    Bauer, Deborah; de Abreu, Joel Pimentel; Oliveira, Hilana Salete Silva; Goes-Neto, Aristoteles; Koblitz, Maria Gabriela Bello

    2016-01-01

    Lung cancer is a common malignancy in men and the second leading cause of cancer-related mortality in men in the western world. Phenolic cocoa ingredients have a strong antioxidative activity and the potential to have a protective effect against cancer. In the present study, we have evaluated the influence of cocoa beans subjected to different processing conditions on cell viability and apoptosis of human lung cancer cells (A549). We measured the viability of lung cells treated with cocoa beans, unroasted slates (US), roasted slates (RS), unroasted well fermented (UWF) cocoa, and roasted well fermented (RWF) cocoa for 24 h. Using an MTT assay, we observed a decrease in the viability of A549 cells after treatment with cocoa bean extracts. Flow cytometer analysis revealed that cocoa beans increased the percentage of cells in sub-G1 phase and promoted up to twofold increase of apoptotic cells when compared to the control group. Taken together, the present study suggests that cocoa beans may have a protective effect against lung cancer. PMID:27034742

  13. Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells.

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Siddiqui, Maqsood A; Ahmad, Javed; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; AlSalhi, Mohamad S; Alrokayan, Salman A

    2011-05-10

    Due to the interesting magnetic and electrical properties with good chemical and thermal stabilities, nickel ferrite nanoparticles are being utilized in many applications including magnetic resonance imaging, drug delivery and hyperthermia. Recent studies have shown that nickel ferrite nanoparticles produce cytotoxicity in mammalian cells. However, there is very limited information concerning the toxicity of nickel ferrite nanoparticles at the cellular and molecular level. The aim of this study was to investigate the cytotoxicity, oxidative stress and apoptosis induction by well-characterized nickel ferrite nanoparticles (size 26 nm) in human lung epithelial (A549) cells. Nickel ferrite nanoparticles induced dose-dependent cytotoxicity in A549 cells demonstrated by MTT, NRU and LDH assays. Nickel ferrite nanoparticles were also found to induce oxidative stress evidenced by generation of reactive oxygen species (ROS) and depletion of antioxidant glutathione (GSH). Further, co-treatment with the antioxidant L-ascorbic acid mitigated the ROS generation and GSH depletion due to nickel ferrite nanoparticles suggesting the potential mechanism of oxidative stress. Quantitative real-time PCR analysis demonstrated that following the exposure of A549 cells to nickel ferrite nanoparticles, the level of mRNA expressions of cell cycle checkpoint protein p53 and apoptotic proteins (bax, caspase-3 and caspase-9) were significantly up-regulated, whereas the expression of anti-apoptotic proteins (survivin and bcl-2) were down-regulated. Moreover, activities of caspase-3 and caspase-9 enzymes were also significantly higher in nickel ferrite nanoparticles exposed cells. To the best of our knowledge this is the first report showing that nickel ferrite nanoparticles induced apoptosis in A549 cells through ROS generation and oxidative stress via p53, survivin, bax/bcl-2 and caspase pathways. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Prognostic significance of blood coagulation tests in carcinoma of the lung and colon.

    PubMed

    Wojtukiewicz, M Z; Zacharski, L R; Moritz, T E; Hur, K; Edwards, R L; Rickles, F R

    1992-08-01

    Blood coagulation test results were collected prospectively in patients with previously untreated, advanced lung or colon cancer who entered into a clinical trial. In patients with colon cancer, reduced survival was associated (in univariate analysis) with higher values obtained at entry to the study for fibrinogen, fibrin(ogen) split products, antiplasmin, and fibrinopeptide A and accelerated euglobulin lysis times. In patients with non-small cell lung cancer, reduced survival was associated (in univariate analysis) with higher fibrinogen and fibrin(ogen) split products, platelet counts and activated partial thromboplastin times. In patients with small cell carcinoma of the lung, only higher activated partial thromboplastin times were associated (in univariate analysis) with reduced survival in patients with disseminated disease. In multivariate analysis, higher activated partial thromboplastin times were a significant independent predictor of survival for patients with non-small cell lung cancer limited to one hemithorax and with disseminated small cell carcinoma of the lung. Fibrin(ogen) split product levels were an independent predictor of survival for patients with disseminated non-small cell lung cancer as were both the fibrinogen and fibrinopeptide A levels for patients with disseminated colon cancer. These results suggest that certain tests of blood coagulation may be indicative of prognosis in lung and colon cancer. The heterogeneity of these results suggests that the mechanism(s), intensity, and pathophysiological significance of coagulation activation in cancer may differ between tumour types.

  15. Two microRNA panels to discriminate three subtypes of lung carcinoma in bronchial brushing specimens.

    PubMed

    Huang, Wei; Hu, Jie; Yang, Da-wei; Fan, Xin-ting; Jin, Yi; Hou, Ying-yong; Wang, Ji-ping; Yuan, Yun-feng; Tan, Yun-shan; Zhu, Xiong-Zeng; Bai, Chun-xue; Wu, Ying; Zhu, Hong-guang; Lu, Shao-hua

    2012-12-01

    Effective treatment for lung cancer requires accuracy in subclassification of carcinoma subtypes. To identify microRNAs in bronchial brushing specimens for discriminating small cell lung cancer (SCLC) from non-small cell lung cancer (NSCLC) and for further differentiating squamous cell carcinoma (SQ) from adenocarcinoma (AC). Microarrays were used to screen 723 microRNAs in laser-captured, microdissected cancer cells from 82 snap-frozen surgical lung specimens. Quantitative reverse-transcriptase polymerase chain reaction was performed on 153 macrodissected formalin-fixed, paraffin-embedded (FFPE) surgical lung specimens to evaluate seven microRNA candidates discovered from microarrays. Two microRNA panels were constructed on the basis of a training cohort (n = 85) and validated using an independent cohort (n = 68). The microRNA panels were applied as differentiators of SCLC from NSCLC and of SQ from AC in 207 bronchial brushing specimens. Two microRNA panels yielded high diagnostic accuracy in discriminating SCLC from NSCLC (miR-29a and miR-375; area under the curve [AUC], 0.991 and 0.982 for training and validation data set, respectively) and in differentiating SQ from AC (miR-205 and miR-34a; AUC, 0.977 and 0.982 for training and validation data set, respectively) in FFPE surgical lung specimens. Moreover, the microRNA panels accurately differentiated SCLC from NSCLC (AUC, 0.947) and SQ from AC (AUC, 0.962) in bronchial brushing specimens. We found two microRNA panels that accurately discriminated between the three subtypes of lung carcinoma in bronchial brushing specimens. The identified microRNA panels may have considerable clinical value in differential diagnosis and optimizing treatment strategies based on lung cancer subtypes.

  16. Downregulation of MTSS1 expression is an independent prognosticator in squamous cell carcinoma of the lung.

    PubMed

    Kayser, G; Csanadi, A; Kakanou, S; Prasse, A; Kassem, A; Stickeler, E; Passlick, B; Zur Hausen, A

    2015-03-03

    The metastasis suppressor 1 (MTSS1) is a newly discovered protein putatively involved in tumour progression and metastasis. Immunohistochemical expression of MTSS1 was analysed in 264 non-small-cell lung carcinomas (NSCLCs). The metastasis suppressor 1 was significantly overexpressed in NSCLC compared with normal lung (P=0.01). Within NSCLC, MTSS1 expression was inversely correlated with pT-stage (P=0.019) and histological grading (P<0.001). NSCLC with MTSS1 downregulation (<20%) showed a significantly worse outcome (P=0.007). This proved to be an independent prognostic factor in squamous cell carcinomas (SCCs; P=0.041), especially in early cancer stages (P=0.006). The metastasis suppressor 1 downregulation could thus serve as a stratifying marker for adjuvant therapy in early-stage SCC of the lung.

  17. Induction of ER Stress-Mediated Apoptosis by α-Lipoic Acid in A549 Cell Lines

    PubMed Central

    Kim, Jong In; Lee, Chang Min; Park, Eok-Sung; Kim, Ki Nyun; Kim, Hyung Chul; Lee, Hae Young

    2012-01-01

    Background α-Lipoic acid (α-LA) has been studied as an anticancer agent as well as a therapeutic agent for diabetes and obesity. We performed this study to evaluate the anticancer effects and mechanisms of α-LA in a lung cancer cell line, A549. Materials and Methods α-LA-induced apoptosis of A549 cells was detected by fluorescence-activated cell sorting analysis and a DNA fragmentation assay. Expression of apoptosis-related genes was analyzed by western blot and reverse transcription-polymerase chain reaction analyses. Results α-LA induced apoptosis and DNA fragmentation in A549 cells in a dose- and time-dependent manner. α-LA increased caspase activity and the degradation of poly (ADP-ribose) polymerase. It induced expression of endoplasmic reticulum (ER) stress-related genes, such as glucose-regulated protein 78, C/EBP-homologous protein, and the short form of X-box binding protein-1, and decreased expression of the anti-apoptotic protein, X-linked inhibitor of apoptosis protein. Reactive oxygen species (ROS) production was induced by α-LA, and the antioxidant N-acetyl-L-cysteine decreased the α-LA-induced increase in expression of apoptosis and ER stress-related proteins. Conclusion α-LA induced ER stress-mediated apoptosis in A549 cells via ROS. α-LA may therefore be clinically useful for treating lung cancer. PMID:22363901

  18. Metuzumab enhanced chemosensitivity and apoptosis in non-small cell lung carcinoma

    PubMed Central

    Feng, Fei; Wang, Bin; Sun, Xiuxuan; Zhu, Yumeng; Tang, Hao; Nan, Gang; Wang, Lijuan; Wu, Bo; Huhe, Muren; Liu, Shuangshuang; Diao, Tengyue; Hou, Rong; Zhang, Yang; Zhang, Zheng

    2017-01-01

    ABSTRACT Targeted therapeutics is used as an alternative treatment of non-small cell lung cancer (NSCLC); however, treatment effect is far from being satisfactory, and therefore identification of new targets is needed. We have previously shown that metuzumab inhibit tumor growth in vivo. The present study was performed to investigate the anti-tumor efficacy of metuzumab combined with gemcitabine and cisplatin (GP), paclitaxel and cisplatin (TP) or navelbine and cisplatin (NP) regimens in multiple NSCLC cell lines. Our results demonstrate that, in comparison to single agent metuzumab or GP treated cells, metuzumab combined with GP display inhibitory effects on tumor growth. Furthermore, we found that metuzumab elevated the sensitivity of cell lines to gemcitabine, which was identified by MTT assay. Flow cytometric analysis showed that metuzumab combined with gemcitabine (GEM) treatment led to an obvious G1 arrest and an elevated apoptosis in A549, NCI-H460 and NCI-H520 cells. Western blot analysis also demonstrated a significantly reduced level of cyclin D1, Bcl-2, and an obviously increase level of Bax and full-length caspase-3 in A549, NCI-H460 and NCI-H520 cells treated with metuzumab/gemcitabine combination in comparison with single agent treated cells. In addition, metuzumab/gemcitabine treated A549, NCI-H460 and NCI-H520 cells also demonstrated a significantly increase in deoxycytidine kinase (dCK) protein level compared with single agent metuzumab or gemcitabine treated cells. Xenograft models also demonstrated that this metuzumab/gemcitabine combination led to upregulation of dCK. Taken together, the mechanisms of metuzumab combined with GP repress tumor growth were that the combined treatment significantly inhibited the tumor cell proliferation, apoptosis and cell cycle in vitro and in vivo and at least partially by induction of dCK expression. Our results suggested that metuzumab could significantly enhance chemosensitivity of human NSCLC cells to

  19. Alveolar Macrophages Drive Hepatocellular Carcinoma Lung Metastasis by Generating Leukotriene B4.

    PubMed

    Nosaka, Takuto; Baba, Tomohisa; Tanabe, Yamato; Sasaki, Soichiro; Nishimura, Tatsunori; Imamura, Yoshiaki; Yurino, Hideaki; Hashimoto, Shinichi; Arita, Makoto; Nakamoto, Yasunari; Mukaida, Naofumi

    2018-03-01

    Macrophages in lungs can be classified into two subpopulations, alveolar macrophages (AMs) and interstitial macrophages (IMs), which reside in the alveolar and interstitial spaces, respectively. Accumulating evidence indicates the involvement of IMs in lung metastasis, but the roles of AMs in lung metastasis still remain elusive. An i.v. injection of a mouse hepatocellular carcinoma (HCC) cell line, BNL, caused lung metastasis foci with infiltration of AMs and IMs. Comprehensive determination of arachidonic acid metabolite levels revealed increases in leukotrienes and PGs in lungs in this metastasis model. A 5-lipoxygenase (LOX) inhibitor but not a cyclooxygenase inhibitor reduced the numbers of metastatic foci, particularly those of a larger size. A major 5-LOX metabolite, LTB 4 , augmented in vitro cell proliferation of human HCC cell lines as well as BNL cells. Moreover, in this lung metastasis course, AMs exhibited higher expression levels of the 5-LOX and LTB 4 than IMs. Consistently, 5-LOX-expressing AMs increased in the lungs of human HCC patients with lung metastasis, compared with those without lung metastasis. Furthermore, intratracheal clodronate liposome injection selectively depleted AMs but not IMs, together with reduced LTB 4 content and metastatic foci numbers in this lung metastasis process. Finally, IMs in mouse metastatic foci produced CCL2, thereby recruiting blood-borne, CCR2-expressing AMs into lungs. Thus, AMs can be recruited under the guidance of IM-derived CCL2 into metastatic lungs and can eventually contribute to the progression of lung metastasis by providing a potent arachidonic acid-derived tumor growth promoting mediator, LTB 4 . Copyright © 2018 by The American Association of Immunologists, Inc.

  20. Identification of Prognostic Biomarkers for Progression of Invasive Squamous Cell Carcinoma

    ClinicalTrials.gov

    2017-10-09

    Carcinoma, Squamous Cell; Carcinoma, Squamous; Squamous Cell Carcinoma; Lung Neoplasms; Cancer of Lung; Cancer of the Lung; Lung Cancer; Neoplasms, Lung; Neoplasms, Pulmonary; Pulmonary Cancer; Pulmonary Neoplasms

  1. The anti-apoptotic BAG3 protein is expressed in lung carcinomas and regulates small cell lung carcinoma (SCLC) tumor growth.

    PubMed

    Chiappetta, Gennaro; Basile, Anna; Barbieri, Antonio; Falco, Antonia; Rosati, Alessandra; Festa, Michelina; Pasquinelli, Rosa; Califano, Daniela; Palma, Giuseppe; Costanzo, Raffaele; Barcaroli, Daniela; Capunzo, Mario; Franco, Renato; Rocco, Gaetano; Pascale, Maria; Turco, Maria Caterina; De Laurenzi, Vincenzo; Arra, Claudio

    2014-08-30

    BAG3, member the HSP70 co-chaperones family, has been shown to play a relevant role in the survival, growth and invasiveness of different tumor types. In this study, we investigate the expression of BAG3 in 66 specimens from different lung tumors and the role of this protein in small cell lung cancer (SCLC) tumor growth. Normal lung tissue did not express BAG3 while we detected the expression of BAG3 by immunohistochemistry in all the 13 squamous cell carcinomas, 13 adenocarcinomas and 4 large cell carcinomas. Furthermore, we detected BAG3 expression in 22 of the 36 SCLCs analyzed. The role on SCLC cell survival was determined by down-regulating BAG3 levels in two human SCLC cell lines, i.e. H69 and H446, in vitro and measuring cisplatin induced apoptosis. Indeed down-regulation of BAG3 determines increased cell death and sensitizes cells to cisplatin treatment. The effect of BAG3 down-regulation on tumor growth was also investigated in an in vivo xenograft model by treating mice with an adenovirus expressing a specific bag3 siRNA. Treatment with bag3 siRNA-Ad significantly reduced tumor growth and improved animal survival. In conclusion we show that a subset of SCLCs over express BAG3 that exerts an anti-apoptotic effect resulting in resistance to chemotherapy.

  2. Dosimetric and clinical predictors of radiation-induced lung toxicity in esophageal carcinoma.

    PubMed

    Zhu, Shu-Chai; Shen, Wen-Bin; Liu, Zhi-Kun; Li, Juan; Su, Jing-Wei; Wang, Yu-Xiang

    2011-01-01

    Radiation-induced lung toxicity occurs frequently in patients with esophageal carcinoma. This study aims to evaluate the clinical and three-dimensional dosimetric parameters associated with lung toxicity after radiotherapy for esophageal carcinoma. The records of 56 patients treated for esophageal carcinoma were reviewed. The Radiation Therapy Oncology Group criteria for grading of lung toxicity were followed. Spearman's correlation test, the chi-square test and logistic regression analyses were used for statistical analysis. Ten of the 56 patients developed acute toxicity. The toxicity grades were grade 2 in 7 patients and grade 3 in 3 patients; none of the patients developed grade 4 or worse toxicity. One case of toxicity occurred during radiotherapy and 9 occurred 2 weeks to 3 months after radiotherapy. The median time was 2.0 months after radiotherapy. Fourteen patients developed late irradiated lung injury, 3 after 3.5 months, 7 after 9 months, and 4 after 14 months. Radiographic imaging demonstrated patchy consolidation (n = 5), atelectasis with parenchymal distortion (n = 6), and solid consolidation (n = 3). For acute toxicity, the irradiated esophageal volume, number of fields, and most dosimetric parameters were predictive. For late toxicity, chemotherapy combined with radiotherapy and other dosimetric parameters were predictive. No obvious association between the occurrence of acute and late injury was observed. The percent of lung tissue receiving at least 25 Gy (V25), the number of fields, and the irradiated length of the esophagus can be used as predictors of the risk of acute toxicity. Lungs V30, as well as chemotherapy combined with radiotherapy, are predictive of late lung injury.

  3. TRX is up-regulated by fibroblast growth factor-2 in lung carcinoma.

    PubMed

    Deng, Zheng-Hao; Cao, Hui-Qiu; Hu, Yong-Bin; Wen, Ji-Fang; Zhou, Jian-Hua

    2011-01-01

    We have previously shown that exogenous fibroblast growth factor-2 (FGF-2) inhibits apoptosis of the small-cell lung cancer (SCLC) cell line NCI-H446, but the underlying mechanism remains unknown. In this study, the protein profiles of FGF-2-treated and untreated NCI-H446 cells were determined by 2-D gel electrophoresis combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and bioinformatics. Differential expression analysis of the protein profiles after FGF-2 treatment identified a total of 24 protein spots, of which nine were up-regulated and 15 were down-regulated. Four proteins were identified by MALDI-TOF-MS: thioredoxin (TRX), visfatin, ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) and Cu/Zn superoxide dismutase (CuZn-SOD). Western blotting revealed that TRX was up-regulated in NCI-H446 and A549 cells treated with FGF-2. Furthermore, immunohistochemical staining confirmed that both FGF-2 and TRX were overexpressed in lung cancer tissues and could be correlated with both lymph node metastasis and clinical stage. These data indicate that TRX may be involved in the FGF-2 signaling pathway. © 2010 The Authors. APMIS © 2010 APMIS.

  4. CD10/NEP in non-small cell lung carcinomas. Relationship to cellular proliferation.

    PubMed Central

    Ganju, R K; Sunday, M; Tsarwhas, D G; Card, A; Shipp, M A

    1994-01-01

    The cell surface metalloproteinase CD10/neutral endopeptidase 24.11 (NEP) hydrolyzes a variety of peptide substrates and reduces cellular responses to specific peptide hormones. Because CD10/NEP modulates peptide-mediated proliferation of small cell carcinomas of the lung (SCLC) and normal fetal bronchial epithelium, we evaluated the enzyme's expression in non-small cell lung carcinomas (NSCLC). Bronchoalveolar and large cell carcinoma cell lines had low levels of CD10/NEP expression whereas squamous, adenosquamous, and adenocarcinoma cell lines had higher and more variable levels of the cell surface enzyme. Regional variations in CD10/NEP immunostaining in primary NSCLC specimens prompted us to correlate CD10/NEP expression with cell growth. In primary carcinomas of the lung, clonal NSCLC cell lines and SV40-transformed fetal airway epithelium, subsets of cells expressed primarily CD10/NEP or the proliferating cell nuclear antigen (PCNA). Cultured airway epithelial cells had the lowest levels of CD10/NEP expression when the highest percentage of cells were actively dividing; in addition, these cells grew more rapidly when cell surface CD10/NEP was inhibited. NSCLC cell lines had receptors for a variety of mitogenic peptides known to be CD10/NEP substrates, underscoring the functional significance of growth-related variability in CD10/NEP expression. Images PMID:7962523

  5. Lipase member H is a novel secreted protein selectively upregulated in human lung adenocarcinomas and bronchioloalveolar carcinomas

    SciTech Connect

    Seki, Yasuhiro; Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology; Yoshida, Yukihiro

    2014-01-24

    Highlights: • Most of the adenocarcinomas and bronchioloalveolar carcinomas were LIPH-positive. • LIPH is necessary for the proliferation of lung cancer cells in vitro. • A high level of LIPH in serum is correlated with better survival in early phase lung-cancer patients after surgery. - Abstract: Lung cancer is one of the most frequent causes of cancer-related death worldwide. However, molecular markers for lung cancer have not been well established. To identify novel genes related to lung cancer development, we surveyed publicly available DNA microarray data on lung cancer tissues. We identified lipase member H (LIPH, also known as mPA-PLA1)more » as one of the significantly upregulated genes in lung adenocarcinoma. LIPH was expressed in several adenocarcinoma cell lines when they were analyzed by quantitative real-time polymerase chain reaction (qPCR), western blotting, and sandwich enzyme-linked immunosorbent assay (ELISA). Immunohistochemical analysis detected LIPH expression in most of the adenocarcinomas and bronchioloalveolar carcinomas tissue sections obtained from lung cancer patients. LIPH expression was also observed less frequently in the squamous lung cancer tissue samples. Furthermore, LIPH protein was upregulated in the serum of early- and late-phase lung cancer patients when they were analyzed by ELISA. Interestingly, high serum level of LIPH was correlated with better survival in early phase lung cancer patients after surgery. Thus, LIPH may be a novel molecular biomarker for lung cancer, especially for adenocarcinoma and bronchioloalveolar carcinoma.« less

  6. [What is the prognostic significance of histomorphology in small cell lung carcinoma?].

    PubMed

    Facilone, F; Cimmino, A; Assennato, G; Sardelli, P; Colucci, G A; Resta, L

    1993-01-01

    What is the prognostic significant of the histomorphology in the small cell carcinomas of the lung? After the WHO classification of the lung cancer (1981), several studies criticized the subdivision of the small cell carcinoma in three sub-types (oat-cell, intermediate cell and combined types). The role of histology in the prognostic predition has been devaluated. In order to verify the prognostic value of the morphology of the small cell types of lung cancer, we performed a multivariate analysis in 62 patients. The survival rate was analytically compared with the following parameters: nuclear maximum diameter, nuclear form, nuclear chromatism, chromatine distribution, presence of nucleolus, evidence of cytoplasm. The results showed that none of these parameters are able to express a prognostic value. According to the recent studies, we think that the small cell carcinoma of the lung is a neoplasia with a multiform histologic pattern. Differences observed in clinical management are not correlate with the morphology, but with other biological parameters still unknown.

  7. Glycogen Synthase Kinase 3 Protein Kinase Activity Is Frequently Elevated in Human Non-Small Cell Lung Carcinoma and Supports Tumour Cell Proliferation

    PubMed Central

    O′Flaherty, Linda; Pardo, Olivier E.; Dzien, Piotr; Phillips, Lois; Morgan, Carys; Pawade, Joya; May, Margaret T.; Sohail, Muhammad; Hetzel, Martin R.; Seckl, Michael J.; Tavaré, Jeremy M.

    2014-01-01

    Background Glycogen synthase kinase 3 (GSK3) is a central regulator of cellular metabolism, development and growth. GSK3 activity was thought to oppose tumourigenesis, yet recent studies indicate that it may support tumour growth in some cancer types including in non-small cell lung carcinoma (NSCLC). We examined the undefined role of GSK3 protein kinase activity in tissue from human NSCLC. Methods The expression and protein kinase activity of GSK3 was determined in 29 fresh frozen samples of human NSCLC and patient-matched normal lung tissue by quantitative immunoassay and western blotting for the phosphorylation of three distinct GSK3 substrates in situ (glycogen synthase, RelA and CRMP-2). The proliferation and sensitivity to the small-molecule GSK3 inhibitor; CHIR99021, of NSCLC cell lines (Hcc193, H1975, PC9 and A549) and non-neoplastic type II pneumocytes was further assessed in adherent culture. Results Expression and protein kinase activity of GSK3 was elevated in 41% of human NSCLC samples when compared to patient-matched control tissue. Phosphorylation of GSK3α/β at the inhibitory S21/9 residue was a poor biomarker for activity in tumour samples. The GSK3 inhibitor, CHIR99021 dose-dependently reduced the proliferation of three NSCLC cell lines yet was ineffective against type II pneumocytes. Conclusion NSCLC tumours with elevated GSK3 protein kinase activity may have evolved dependence on the kinase for sustained growth. Our results provide further important rationale for exploring the use of GSK3 inhibitors in treating NSCLC. PMID:25486534

  8. Effect of three fatty acids from the leaf extract of Tiliacora triandra on P-glycoprotein function in multidrug-resistant A549RT-eto cell line

    PubMed Central

    Kaewpiboon, Chutima; Winayanuwattikun, Pakorn; Yongvanich, Tikamporn; Phuwapraisirisan, Preecha; Assavalapsakul, Wanchai

    2014-01-01

    Background: Cancer cells have the ability to develop resistance to chemotherapy drugs, which then leads to a reduced effectiveness and success of the treatment. Multidrug resistance (MDR) involves the resistance in the same cell/tissue to a diverse range of drugs of different structures. One of the characteristics of MDR is an overexpression of P-glycoprotein (P-gp), which causes the efflux of the accumulated drug out of the cell. The MDR human non-small cell lung carcinoma cell line with a high P-gp expression level (A549RT-eto) was used to investigate the bioactive compounds capable of reversing the etoposide resistance in this cell line. Materials and Methods: The leaves of Tiliacora triandra were sequentially extracted with hexane, dichloromethane, methanol and water. Only the hexane extract reduced the etoposide resistance of the A549RT-eto cell line, and was further fractionated by column chromatography using the TLC-pattern and the restoration of etoposide sensitivity as the selection criteria. Results: The obtained active fraction (F22) was found by nuclear magnetic resonance and gas chromatography-mass spectroscopy analyses to be comprised of a 49.5:19.6:30.9 (w/w/w) mixture of hexadecanoic: octadecanoic acid: (Z)-6-octadecenoic acids. This stoichiometric mixture was recreated using pure fatty acids (MSFA) and gave a similar sensitization to etoposide and enhanced the relative rate of rhodamine-123 accumulation to a similar extent as F22, supporting the action via reducing P-gp activity. In contrast, the fatty acids alone did not show this effect. Conclusion: This is the first report of the biological activity from the leaves of T. triandra as a potential source of a novel chemosensitizer. PMID:25298673

  9. Effect of three fatty acids from the leaf extract of Tiliacora triandra on P-glycoprotein function in multidrug-resistant A549RT-eto cell line.

    PubMed

    Kaewpiboon, Chutima; Winayanuwattikun, Pakorn; Yongvanich, Tikamporn; Phuwapraisirisan, Preecha; Assavalapsakul, Wanchai

    2014-08-01

    Cancer cells have the ability to develop resistance to chemotherapy drugs, which then leads to a reduced effectiveness and success of the treatment. Multidrug resistance (MDR) involves the resistance in the same cell/tissue to a diverse range of drugs of different structures. One of the characteristics of MDR is an overexpression of P-glycoprotein (P-gp), which causes the efflux of the accumulated drug out of the cell. The MDR human non-small cell lung carcinoma cell line with a high P-gp expression level (A549RT-eto) was used to investigate the bioactive compounds capable of reversing the etoposide resistance in this cell line. The leaves of Tiliacora triandra were sequentially extracted with hexane, dichloromethane, methanol and water. Only the hexane extract reduced the etoposide resistance of the A549RT-eto cell line, and was further fractionated by column chromatography using the TLC-pattern and the restoration of etoposide sensitivity as the selection criteria. The obtained active fraction (F22) was found by nuclear magnetic resonance and gas chromatography-mass spectroscopy analyses to be comprised of a 49.5:19.6:30.9 (w/w/w) mixture of hexadecanoic: octadecanoic acid: (Z)-6-octadecenoic acids. This stoichiometric mixture was recreated using pure fatty acids (MSFA) and gave a similar sensitization to etoposide and enhanced the relative rate of rhodamine-123 accumulation to a similar extent as F22, supporting the action via reducing P-gp activity. In contrast, the fatty acids alone did not show this effect. This is the first report of the biological activity from the leaves of T. triandra as a potential source of a novel chemosensitizer.

  10. [Combined effects of interferon γ and γ ray irradiation on A549 cells in vitro].

    PubMed

    Xia, Hui; Zhang, Yi-ming; Yu, Chang-hai; Zhang, Wen; Zhang, Bao-shi; Fang, Fang

    2012-02-07

    To define the role of interferon-γ on radiotherapy of lung cancer and explore a new way to clinical treatment. A549 cells were exposed to γ ray with or without IFN-γ co-treatment. MTT assay was performed to evaluate cell viability. Western blot was used to observe the expression of P53 protein. The results showed that co-treatment of IFN-γ decreased the cell viability significantly compared with the γ ray irradiation group (71.4% ± 2.1% vs 44.1% ± 3.1%, n = 7, P < 0.01). In addition, the expression of P53 protein also increased significantly after co-treatment (P < 0.01); Furthermore, the cell cycle was changed obviously in co-treatment group compared with γ ray irradiation group, S phase increased (12.9% vs 20.9%, n = 5, P < 0.05) and also blocked the G2/M phase (28.8% vs 38.9%, n = 5, P < 0.05). The results suggested that γ ray irradiation combined with IFN-γ can increase the efficiency of radiotherapy on A549 cells and there is much broad prospect in the clinical treatment of lung cancer.

  11. Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells

    DTIC Science & Technology

    2014-10-01

    AD_________________ Award Number: W81XWH-13-1-0325 TITLE: Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using ...Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING ORGANIZATION ...Novel Therapeutic Approaches in Small Cell Lung 5a. CONTRACT NUMBER W81XWH-13-1-0325 Carcinoma Using Genetically Engineered Mouse Models and 5b

  12. Unusual case of cavitary lung metastasis from squamous cell carcinoma of the uterine cervix

    PubMed Central

    Raissouni, Soundouss; Ghizlane, Rais; Mouzount, Houda; Saoussane, Kharmoum; Khadija, Setti; Zouaidia, Fouad; Latib, Rachida; Mrabti, Hind; Errihani, Hassan

    2013-01-01

    Spontaneous excavation of primary lung cancer is common; however cavitation of metastatic lung lesions is rare and usually confused with benign lesions. In Moroccan context tuberculosis is the first suspected diagnosis of lung excavations. We report a rare case of cavitary lung metastasis of a uterine cervix cancer, treated initially as tuberculosis. A 40-year old non-smoking woman with a known history of squamous cell carcinoma of the uterine cervix since August 2005; presented on September 2008 with right chest pain without fever, hemoptysis or weight loss. CT scan showed a thin walled cavity. Empirical Antibiotic therapy was conducted 15 days with poor outcome. Then antibacillary treatment was started with no proof of mycobacterial infection. A month later, the patient presented with gynecological bleeding and a pneumothorax. Bronchoscopy with transbronchial biopsy of the cavitary mass was performed. Pathology demonstrated a metastatic squamous cell carcinoma. Pelvic examination and MRI showed a subsequent local cervix recurrence. Patient underwent 3 courses of systemic chemotherapy. She died on June 2009 due to progressive disease. Even cavitary lung metastases are rare and benign differential diagnosis are more common, clinician should be careful in neoplastic context and investigation should be done to eliminate a recurrence. PMID:23560120

  13. [A case of fulminant hepatic failure secondary to hepatic metastasis of small cell lung carcinoma].

    PubMed

    Hwang, Young Tae; Shin, Jung Woo; Lee, Jun Ho; Hwang, Dae Sung; Eum, Jun Bum; Choi, Hye Jeong; Park, Neung Hwa

    2007-12-01

    Although liver metastasis is commonly found in cancer patients, fulminant hepatic failure secondary to diffuse cancer infiltration into the liver is rare. Liver metastasis-induced fulminant hepatic failure has been reported in patients with primary cancer of the gastrointestinal tract, breast and uroepithelium, and in patients with melanoma and hematologic malignancy. Small cell lung cancer is so highly invasive that hepatic metastasis is common, but rapid progression to fulminant hepatic failure is extremely rare. We report here on a case of a patient who died because of rapid progression to fulminant hepatic failure as a result of hepatic metastasis of small cell lung carcinoma.

  14. A case of squamous cell carcinoma of lung presenting with paraneoplastic type of acanthosis nigricans

    PubMed Central

    Mukherjee, Subhasis; Pandit, Sudipta; Deb, Jaydip; Dattachaudhuri, Arunabha; Bhuniya, Sourin; Bhanja, Pulakesh

    2011-01-01

    A 70-years-old male presented with blackening of both hands and face for last six months which was progressive and attended dermatology outpatients department. Dermatologist opined the skin lesions as acanthosis nigricans. He was referred to our department to evaluate for any underlying internal malignancy as he was a smoker. His chest X-ray revealed right sided hilar prominence with a mid zone cavity with fluid level. Fibreoptic bronchoscopy was done, there was one ulcerative growth in right middle lobe bronchus. Biopsy from the ulcer revealed probable squamous cell carcinoma. CT scan of thorax was also done and CT guided FNAC of Rt lung lesion yielded non small cell carcinoma. His skin lesions were also biopsied and diagnosis of acanthosis nigricans was confirmed. Here we report a case of acanthosis nigricans associated with non-small cell cancer of lung. PMID:21654990

  15. Identification of somatic mutations in non-small cell lung carcinomas using whole-exome sequencing

    PubMed Central

    Liu, Pengyuan; Morrison, Carl; Wang, Liang; Xiong, Donghai; Vedell, Peter; Cui, Peng; Hua, Xing; Ding, Feng; Lu, Yan; James, Michael; Ebben, John D.; Xu, Haiming; Adjei, Alex A.; Head, Karen; Andrae, Jaime W.; Tschannen, Michael R.; Jacob, Howard; Pan, Jing; Zhang, Qi; Van den Bergh, Francoise; Xiao, Haijie; Lo, Ken C.; Patel, Jigar; Richmond, Todd; Watt, Mary-Anne; Albert, Thomas; Selzer, Rebecca; Anderson, Marshall; Wang, Jiang; Wang, Yian; Starnes, Sandra; Yang, Ping; You, Ming

    2012-01-01

    Lung cancer is the leading cause of cancer-related death, with non-small cell lung cancer (NSCLC) being the predominant form of the disease. Most lung cancer is caused by the accumulation of genomic alterations due to tobacco exposure. To uncover its mutational landscape, we performed whole-exome sequencing in 31 NSCLCs and their matched normal tissue samples. We identified both common and unique mutation spectra and pathway activation in lung adenocarcinomas and squamous cell carcinomas, two major histologies in NSCLC. In addition to identifying previously known lung cancer genes (TP53, KRAS, EGFR, CDKN2A and RB1), the analysis revealed many genes not previously implicated in this malignancy. Notably, a novel gene CSMD3 was identified as the second most frequently mutated gene (next to TP53) in lung cancer. We further demonstrated that loss of CSMD3 results in increased proliferation of airway epithelial cells. The study provides unprecedented insights into mutational processes, cellular pathways and gene networks associated with lung cancer. Of potential immediate clinical relevance, several highly mutated genes identified in our study are promising druggable targets in cancer therapy including ALK, CTNNA3, DCC, MLL3, PCDHIIX, PIK3C2B, PIK3CG and ROCK2. PMID:22510280

  16. Accuracy of cytology in sub typing non small cell lung carcinomas.

    PubMed

    Patel, Trupti S; Shah, Majal G; Gandhi, Jahnavi S; Patel, Pratik

    2017-07-01

    Sub typing of non small cell lung carcinoma (NSCLC) has an important task in the era of molecular and targeted therapies. Differentiating between squamous cell carcinoma (SQCC) and adenocarcinoma (ADC) is challenging when limited material is available in lung carcinoma. We investigated the accuracy and feasibility of sub typing NSCLCs in cytology and small biopsy material. Concurrent cytology and biopsy material obtained in a single CT- guided procedure in lung carcinoma over a year period retrospectively. Both materials were individually sub typed and analyzed. Immunohistochemistry (IHC) was performed. Accuracy was determined by comparing the results with IHC. Total 107 of 126 cases of NSCLCs were included for analysis, where both cytology and biopsy material were adequate for interpretation. FNAC allowed tumor typing in 83 (77.6%) cases; 36 (33.6%) were ADC, 47 (43.9%) cases were SQCC and 24 (22.4%) cases diagnosed as Non-small cell carcinoma not otherwise specified (NSCLC-NOS). In biopsy, 86 cases (80.4%) were typed, among which 34 (31.8%) were ADC, 52 (48.6%) were SQCC and 21 (19.6%) were of NSCLC-NOS type. The result of Chi-square index was significant. With the aid of IHC, NSCLC-NOS reduced from 14 (13%) cases to 2 (1.9%) cases. Cytology and small biopsy specimens achieved comparable specificity and accuracy in sub-typing NSCLC and optimal results were obtain when findings from both modalities combine. The advantage of paired specimens is to maximize overall diagnostic yield and the remaining material will be available for ancillary technique like IHC or for molecular testing. Diagn. Cytopathol. 2017;45:598-603. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Positive nuclear BAP1 immunostaining helps differentiate non-small cell lung carcinomas from malignant mesothelioma

    PubMed Central

    Carbone, Michele; Shimizu, David; Napolitano, Andrea; Tanji, Mika; Pass, Harvey I.; Yang, Haining; Pastorino, Sandra

    2016-01-01

    The differential diagnosis between pleural malignant mesothelioma (MM) and lung cancer is often challenging. Immunohistochemical (IHC) stains used to distinguish these malignancies include markers that are most often positive in MM and less frequently positive in carcinomas, and vice versa. However, in about 10–20% of the cases, the IHC results can be confusing and inconclusive, and novel markers are sought to increase the diagnostic accuracy. We stained 45 non-small cell lung cancer samples (32 adenocarcinomas and 13 squamous cell carcinomas) with a monoclonal antibody for BRCA1-associated protein 1 (BAP1) and also with an IHC panel we routinely use to help differentiate MM from carcinomas, which include, calretinin, Wilms Tumor 1, cytokeratin 5, podoplanin D2-40, pankeratin CAM5.2, thyroid transcription factor 1, Napsin-A, and p63. Nuclear BAP1 expression was also analyzed in 35 MM biopsies. All 45 non-small cell lung cancer biopsies stained positive for nuclear BAP1, whereas 22/35 (63%) MM biopsies lacked nuclear BAP1 staining, consistent with previous data. Lack of BAP1 nuclear staining was associated with MM (two-tailed Fisher's Exact Test, P = 5.4 × 10−11). Focal BAP1 staining was observed in a subset of samples, suggesting polyclonality. Diagnostic accuracy of other classical IHC markers was in agreement with previous studies. Our study indicated that absence of nuclear BAP1 stain helps differentiate MM from lung carcinomas. We suggest that BAP1 staining should be added to the IHC panel that is currently used to distinguish these malignancies. PMID:27447750

  18. Bronchoalveolar carcinoma of lung masquerading as iodine avid metastasis in a patient with minimally invasive follicular carcinoma of thyroid.

    PubMed

    Malhotra, Gaurav; Nair, Narendra; Menon, Hari; Gujral, Sumit; Abhyankar, Amit; Baghel, Nawab S; Awasare, Sushama; Nabar, Swapna J; Abhyankar, Suman; Kand, Purushottam G

    2008-01-01

    A 52-year-old man with follicular thyroid carcinoma was administered 182 mCi of radioiodine (I-131) a month after total thyroidectomy. Post-therapy scan revealed diffuse uptake of radioiodine in the apical left lung. CT-guided biopsy of this mass revealed mucinous bronchoalveolar carcinoma. Immunohistochemistry for thyroglobulin was negative. An FDG PET scan showed avid uptake in the lung mass. Surgery was ruled out, so he was given chemotherapy, without benefit. The lesion continued to show I-131 uptake even while on daily T3 substitution, suggesting that the mass was thyroid stimulating hormone-independent. Because the mass showed I-131 uptake and chemotherapy was not beneficial, it was decided to treat with I-131. He was continued on T3 substitution therapy and was given 209 mCi of I-131. Follow-up CT scan a few weeks later reported a 1-cm all round reduction of the mass. I-131 scan showed avid tracer uptake in the mass. This case suggests the possibility of this therapeutic option in nonthyroidal tumors that may concentrate radioiodine.

  19. Basaloid large cell lung carcinoma presenting as cutaneous metastasis at the colostomy site after abdominoperineal resection for rectal carcinoma.

    PubMed

    Sabater-Marco, Vicente; García-García, José Angel; Roig-Vila, José Vicente

    2013-08-01

    The occurrence of a tumor at the colostomy site after abdominoperineal resection for rectal carcinoma is rare and it may be related to a previously resected carcinoma or another primary tumor. We report a 61-year-old man who developed an ulcerated skin nodule at her colostomy site 6 years after resection of a rectal adenocarcinoma. Histopathologically, the skin nodule was composed of atypical large and pleomorphic cells with high mitotic rate and they were arranged in nests and within lymphatic channels in the dermis. The neoplastic cells were immunoreactive for cytokeratin (CK) AE1/3, CK7, CK34ßE12, epithelial membrane antigen and vimentin while detection of human papillomavirus and Epstein-Barr virus DNA was negative. A diagnosis of basaloid large cell carcinoma of pulmonary origin was suggested and it was confirmed by computed tomography-guided fine needle aspiration of a right subpleural mass. A metastatic tumor at the colostomy site is an exceptional finding and may be the first manifestation of lung cancer, especially if it consist of pleomorphic large cells with high mitotic rate and basaloid immunophenotype. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. High-fat diet enhances and plasminogen activator inhibitor-1 deficiency attenuates bone loss in mice with Lewis Lung carcinoma

    USDA-ARS?s Scientific Manuscript database

    This study determined the effects of a high-fat diet and plasminogen activator inhibitor-1 deficiency (PAI-1-/-) on bone structure in mice bearing Lewis lung carcinoma (LLC) in lungs. Reduction in bone volume fraction (BV/TV) by 22% and 21%, trabecular number (Tb.N) by 8% and 4% and bone mineral de...

  1. Phytol shows anti-angiogenic activity and induces apoptosis in A549 cells by depolarizing the mitochondrial membrane potential.

    PubMed

    Sakthivel, Ravi; Malar, Dicson Sheeja; Devi, Kasi Pandima

    2018-06-13

    In the present study, the antiproliferative activity of phytol and its mechanism of action against human lung adenocarcinoma cell line A549 were studied in detail. Results showed that phytol exhibited potent antiproliferative activity against A549 cells in a dose and time-dependent manner with an IC 50 value of 70.81 ± 0.32 μM and 60.7 ± 0.47 μM at 24 and 48 h, respectively. Phytol showed no adverse toxic effect in normal human lung cells (L-132), but mild toxic effect was observed when treated with maximum dose (67 and 84 μM). No membrane-damaging effect was evidenced by PI staining and SEM analysis. The results of mitochondrial membrane potential analysis, cell cycle analysis, FT-IR and Western blotting analysis clearly demonstrated the molecular mechanism of phytol as induction of apoptosis in A549 cells, as evidenced by formation of shrinked cell morphology with membrane blebbing, depolarization of mitochondrial membrane potential, increased cell population in the sub-G0 phase, band variation in the DNA and lipid region, downregulation of Bcl-2, upregulation of Bax and the activation of caspase-9 and -3. In addition, phytol inhibited the CAM vascular growth as evidenced by CAM assay, which positively suggests that phytol has anti-angiogenic potential. Taken together, these findings clearly demonstrate the mode of action by which phytol induces cell death in A549 lung adenocarcinoma cells. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. [Immunohistochemical description of proliferative activity and apoptosis of lung squamous cell carcinoma (literature review)].

    PubMed

    Филенко, Борис Н; Ройко, Наталия В; Степанчук, Алла П; Проскурня, Сергей А

    2016-01-01

    The analysis of the publications are describe immunohistochemical study of proliferative activity and apoptosis of lung squamous cell carcinoma. Established that the imbalance between proliferation and cell death is a key process in the development of tumors. However, the value of tumor markers in histogenesis and morfogenesis of tumors and forecast their occurrence is not studied enough. Despite the significant amount of scientific literature devoted to this issue, has not yet established a clear link expression of immunohistochemical markers of proliferation and apoptosis with the degree of differentiation of squamous cell lung cancer. Analysis of the literature shows that the morphology of this histogenetics type lung cancer at the cellular, subcellular structural and functional levels are controversial and require detailed investigation.

  3. Identification of differentially expressed genes in human lung squamous cell carcinoma using suppression subtractive hybridization.

    PubMed

    Sun, Wenyue; Zhang, Kaitai; Zhang, Xinyu; Lei, Wendong; Xiao, Ting; Ma, Jinfang; Guo, Suping; Shao, Shujuan; Zhang, Husheng; Liu, Yan; Yuan, Jinsong; Hu, Zhi; Ma, Ying; Feng, Xiaoli; Hu, Songnian; Zhou, Jun; Cheng, Shujun; Gao, Yanning

    2004-08-20

    Lung cancer is one of the major causes of cancer-related deaths. Over the past decade, much has been known about the molecular changes associated with lung carcinogenesis; however, our understanding to lung tumorigenesis is still incomplete. To identify genes that are differentially expressed in squamous cell carcinoma (SCC) of the lung, we compared the expression profiles between primarily cultured SCC tumor cells and bronchial epithelial cells derived from morphologically normal bronchial epithelium of the same patient. Using suppression subtractive hybridization (SSH), two cDNA libraries containing up- and down-regulated genes in the tumor cells were constructed, named as LCTP and LCBP. The two libraries comprise 258 known genes and 133 unknown genes in total. The known up-regulated genes in the library LCTP represented a variety of functional groups; including metabolism-, cell adhesion and migration-, signal transduction-, and anti-apoptosis-related genes. Using semi-quantitative reverse transcription-polymerase chain reaction, seven genes chosen randomly from the LCTP were analyzed in the tumor tissue paired with its corresponding adjacent normal lung tissue derived from 16 cases of the SCC. Among them, the IQGAP1, RAP1GDS1, PAICS, MLF1, and MARK1 genes showed a consistent expression pattern with that of the SSH analysis. Identification and further characterization of these genes may allow a better understanding of lung carcinogenesis.

  4. IL-17 Promotes Angiogenic Factors IL-6, IL-8, and Vegf Production via Stat1 in Lung Adenocarcinoma.

    PubMed

    Huang, Qi; Duan, Limin; Qian, Xin; Fan, Jinshuo; Lv, Zhilei; Zhang, Xiuxiu; Han, Jieli; Wu, Feng; Guo, Mengfei; Hu, Guorong; Du, Jiao; Chen, Caiyun; Jin, Yang

    2016-11-07

    Inflammation and angiogenesis are two hallmarks of carcinoma. The proinflammatory cytokine interleukin-17 (IL-17) facilitates angiogenesis in lung cancer; however, the underlying mechanism is not fully understood. In this study, tumour microvessel density (MVD) was positively associated with IL-17, interleukin-6 (IL-6), interleukin-8 (IL-8), and vascular endothelial cell growth factor (VEGF) expression in human lung adenocarcinoma tissues, and it was increased in tumour tissues of A549-IL-17 cell-bearing nude mice. Importantly, positive correlations were also detected between IL-17 expression and IL-6, IL-8 and VEGF expression in human lung adenocarcinoma tissues. Furthermore, IL-6, IL-8 and VEGF production, as well as STAT1 phosphorylation, were increased in tumour tissues of A549-IL-17 cell-bearing nude mice in vivo and in A549 and H292 cells following IL-17 stimulation in vitro. In addition, STAT1 knockdown using an inhibitor and siRNA attenuated the IL-17-mediated increases in IL-6, IL-8 and VEGF expression in A549 and H292 cells. In conclusion, IL-17 may promote the production of the angiogenic inducers IL-6, IL-8 and VEGF via STAT1 signalling in lung adenocarcinoma.

  5. Combined therapy for small cell undifferentiated carcinoma of the lung.

    PubMed

    Mandelbaum, I; Williams, S D; Hornback, N B; Joe, B T; Einhorn, L H

    1978-09-01

    Fifty-eight patients with small cell lung cancer were treated from September, 1974, to March, 1976, with combined chemotherapy and radiotherapy. Surgical resection of the lung lesion was performed in three patients, and a number of surgical diagnostic methods were carried out in the remaining patients with unresectable of disseminated lesions. Nineteen patients were from the Veterans Administration Hospital and 39 from Indiana University Medical Center. The median Karnofsky performance status was 60. Thirty-nine patients had extensive disease, and 19 had disease limited to the chest and supraclavicular area. All patients received chest radiotherapy and prophylactic whole brain radiation. Adriamycin, cyclophosphamide, and vincristine were given on day 1 and continued every 3 weeks. There were 27 (48 percent) partial remissions of a median duration of 26 weeks. There were 25 patients (43 percent) with complete remission. The median survival for the entire group was 51 weeks. Six of 58 patients (10 percent) are alive and disease free from 24 to 38 months after treatment. Six of 19 patients with limited disease (32 percent) are presently alive and disease free. This includes one patient in whom surgical resection was performed. Combined therapy influences favorably the prognosis of small cell cancer of the ling, expecially in those patients with limited disease and favorable performance status.

  6. Radon Exposure, IL-6 Promoter Variants, and Lung Squamous Cell Carcinoma in Former Uranium Miners

    SciTech Connect

    Leng, Shuguang; Thomas, Cynthia L.; Snider, Amanda M.

    Background: High radon exposure is a risk factor for squamous cell carcinoma, a major lung cancer histology observed in former uranium miners. Radon exposure can cause oxidative stress, leading to pulmonary inflammation. Interleukin-6 (IL-6) is a pro-carcinogenic inflammatory cytokine that plays a pivotal role in lung cancer development. Objectives: We assessed whether single nucleotide polymorphisms (SNPs) in the IL6 promoter are associated with lung cancer in former uranium miners with high occupational exposure to radon gas. Methods: Genetic associations were assessed in a case–control study of former uranium miners (242 cases and 336 controls). A replication study was performed usingmore » data from the Gene Environment Association Studies (GENEVA) Genome Wide Association Study (GWAS) of Lung Cancer and Smoking. Functional relevance of the SNPs was characterized using in vitro approaches. Results: We found that rs1800797 was associated with squamous cell carcinoma in miners and with a shorter time between the midpoint of the period of substantial exposure and diagnosis among the cases. Furthermore, rs1800797 was also associated with lung cancer among never smokers in the GENEVA dataset. Functional studies identified that the risk allele was associated with increased basal IL-6 mRNA level and greater promoter activity. Furthermore, fibroblasts with the risk allele showed greater induction of IL-6 secretion by hydrogen peroxide or benzo[a]pyrene diolepoxide treatments. Conclusions: An IL6 promoter variant was associated with lung cancer in uranium miners and never smokers in two external study populations. Lastly, the associations are strongly supported by the functional relevance that the IL6 promoter SNP affects basal expression and carcinogen-induced IL-6 secretion« less

  7. Radon Exposure, IL-6 Promoter Variants, and Lung Squamous Cell Carcinoma in Former Uranium Miners

    DOE PAGES

    Leng, Shuguang; Thomas, Cynthia L.; Snider, Amanda M.; ...

    2015-09-15

    Background: High radon exposure is a risk factor for squamous cell carcinoma, a major lung cancer histology observed in former uranium miners. Radon exposure can cause oxidative stress, leading to pulmonary inflammation. Interleukin-6 (IL-6) is a pro-carcinogenic inflammatory cytokine that plays a pivotal role in lung cancer development. Objectives: We assessed whether single nucleotide polymorphisms (SNPs) in the IL6 promoter are associated with lung cancer in former uranium miners with high occupational exposure to radon gas. Methods: Genetic associations were assessed in a case–control study of former uranium miners (242 cases and 336 controls). A replication study was performed usingmore » data from the Gene Environment Association Studies (GENEVA) Genome Wide Association Study (GWAS) of Lung Cancer and Smoking. Functional relevance of the SNPs was characterized using in vitro approaches. Results: We found that rs1800797 was associated with squamous cell carcinoma in miners and with a shorter time between the midpoint of the period of substantial exposure and diagnosis among the cases. Furthermore, rs1800797 was also associated with lung cancer among never smokers in the GENEVA dataset. Functional studies identified that the risk allele was associated with increased basal IL-6 mRNA level and greater promoter activity. Furthermore, fibroblasts with the risk allele showed greater induction of IL-6 secretion by hydrogen peroxide or benzo[a]pyrene diolepoxide treatments. Conclusions: An IL6 promoter variant was associated with lung cancer in uranium miners and never smokers in two external study populations. Lastly, the associations are strongly supported by the functional relevance that the IL6 promoter SNP affects basal expression and carcinogen-induced IL-6 secretion« less

  8. Depletion of hepatoma-derived growth factor-related protein-3 induces apoptotic sensitization of radioresistant A549 cells via reactive oxygen species-dependent p53 activation

    SciTech Connect

    Yun, Hong Shik; Hong, Eun-Hee; Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791

    2013-09-27

    Highlights: •HRP-3 is a radiation- and anticancer drug-responsive protein in A549 cells. •Depletion of HRP-3 induces apoptosis of radio- and chemoresistant A549 cells. •Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. •Depletion of HRP-3 enhances ROS-dependent p53 activation and PUMA expression. -- Abstract: Biomarkers based on functional signaling have the potential to provide greater insight into the pathogenesis of cancer and may offer additional targets for anticancer therapeutics. Here, we identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistance-related gene and characterized the molecular mechanism by which its encoded protein regulates the radio- and chemoresistant phenotypemore » of lung cancer-derived A549 cells. Knockdown of HRP-3 promoted apoptosis of A549 cells and potentiated the apoptosis-inducing action of radio- and chemotherapy. This increase in apoptosis was associated with a substantial generation of reactive oxygen species (ROS) that was attributable to inhibition of the Nrf2/HO-1 antioxidant pathway and resulted in enhanced ROS-dependent p53 activation and p53-dependent expression of PUMA (p53 upregulated modulator of apoptosis). Therefore, the HRP-3/Nrf2/HO-1/ROS/p53/PUMA cascade is an essential feature of the A549 cell phenotype and a potential radiotherapy target, extending the range of targets in multimodal therapies against lung cancer.« less

  9. Cytotoxicity and gene expression profiling of polyhexamethylene guanidine hydrochloride in human alveolar A549 cells.

    PubMed

    Jung, Ha-Na; Zerin, Tamanna; Podder, Biswajit; Song, Ho-Yeon; Kim, Yong-Sik

    2014-06-01

    In Korea, lung disease of children and pregnant women associated with humidifier disinfectant use has become a major concern. A common sterilizer is polyhexamethylene guanidine (PHMG), a member of the guanidine family of antiseptics. This study was done to elucidate the putative cytotoxic effect of PHMG and the PHMG-mediated altered gene expression in human alveolar epithelial A549 cells in vitro. Cell viability analyses revealed the potent cytotoxicity of PHMG, with cell death evident at as low as 5 μg/mL. Death was dose- and time-dependent, and was associated with formation of intracellular reactive oxygen species, and apoptosis significantly, at even 2 μg/mL concentration. The gene expression profile in A549 cells following 24 h exposure to 5 μg/mL of PHMG was investigated using DNA microarray analysis. Changes in gene expression relevant to the progression of cell death included induction of genes related to apoptosis, autophagy, fibrosis, and cell cycle. However, the expressions of genes encoding antioxidant and detoxifying enzymes were down-regulated or not affected. The altered expression of selected genes was confirmed by quantitative reverse transcription-polymerase chain reaction and Western blot analyses. The collective data suggest that PHMG confers cellular toxicity through the generation of intracellular reactive oxygen species and alteration of gene expression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Evaluation of whole cigarette smoke induced oxidative stress in A549 and BEAS-2B cells.

    PubMed

    Zhang, Shimin; Li, Xiang; Xie, Fuwei; Liu, Kejian; Liu, Huimin; Xie, Jianping

    2017-09-01

    Cigarette smoke is a complex and oxidative aerosol. Previous researches on the hazards of cigarette smoke mainly focused on the adverse bioeffects induced by its condensates or gas vapor phase, which ignored the dynamic processes of smoking and the cigarette smoke aging. To overcome these disadvantages, we performed air-liquid interface exposure of whole smoke, which used native and unmodified smoke and ensured the exposure similar to physiological inhalation. Our results indicated that whole cigarette smoke induced lung epithelial cells (A549) and bronchial epithelial cells (BEAS-2B) damages in cytotoxicity assays (methyl thiazoly tetrazolium and neutral red uptake assays). In addition, A549 and BEAS-2B cells showed oxidative damages in whole smoke exposure, with concentration change of several biomarkers (reduced and oxidized glutathione, malondialdehyde, 4-hydroxyhydroxy-2-nonenal, extracellular superoxide dismutase, and 8-hydroxyl deoxyguanosine). These results indicate that whole smoke-induced oxidative stress occurs in two different kinds of cells at air-liquid interface. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Anti-tumor activity and mechanism of apoptosis of A549 induced by ruthenium complex.

    PubMed

    Sun, Dongdong; Mou, Zhipeng; Li, Nuan; Zhang, Weiwei; Wang, Yazhe; Yang, Endong; Wang, Weiyun

    2016-12-01

    Two new ruthenium (II) polypyridyl complexes [Ru(MeIm) 4 (pip)] 2+ (1) and [Ru(MeIm) 4 (4-npip)] 2+ (2) were synthesized under the guidance of computational studies (DFT). Their binding property to human telomeric G-quadruplex studied by UV-Vis absorption spectroscopy, the fluorescent resonance energy transfer (FRET) melting assay and circular dichroism (CD) spectroscopy for validating the theoretical prediction. Both of them were evaluated for their potential anti-proliferative activity against four human tumor cell lines. Complex 2 shows growth inhibition against all the cell lines tested, especially the human lung tumor cell (A549). The RTCA analysis not only validated the inhibition activity but also showed the ability of reducing A549 cells' migration. DNA-flow cytometric analysis, mitochondrial membrane potential (ΔΨm) and the scavenger measurements of reactive oxygen species (ROS) analysis carried out to investigate the mechanism of cell growth inhibition and apoptosis-inducing effect of complex 2. The results demonstrated that complex 2 induces tumor cells apoptosis by acting on both mitochondrial homeostasis destruction and death receptor signaling pathways. And those suggested that complex 2 could be a candidate for further evaluation as a chemotherapeutic agent against human tumor.

  12. Prognostic value of lncRNAs in lung carcinoma: a meta-analysis.

    PubMed

    Fan, Fan; Zhu, Zhengqiu; Gao, Chao; Liu, Yun; Wang, Baoqing; Wang, Ziquan; Feng, Jifeng

    2017-10-10

    Many different long non-coding RNAs (lncRNAs) have been reported to be abnormally expressed in lung carcinoma and may thus serve as prognostic biomarkers for this disease. We conducted this meta-analysis, which included a total of 30 studies identified via searches of PubMed, Embase, Medline, and Web of Science and included 2912 patients from China (28), Germany (1), and Japan (1), to investigate the prognostic value of different lncRNAs in lung carcinoma. The results revealed that lncRNA transcription levels were significantly associated with overall survival in lung cancer patients (HR:1.46, 95% CI: 1.16-1.83, P = 0.000). However, lncRNA transcription levels were not associated with progression-free survival (PFS) (HR: 1.55, 95% CI: 0.50-4.80, P = 0.449). Further analysis showed that high lncRNA transcription levels were significantly associated with tumour-node-metastasis (TNM) stage (III/IV vs I/II: RR = 1.339, 95% CI: 1.046-1.716, P = 0.012), lymph node metastasis (positive vs negative: RR = 1.442, 95% CI: 1.103-1.885, P = 0.007), and distant metastasis (yes vs no: RR = 3.187,95% CI: 1.393-7.294, P = 0.006). Taken together, the results of our present meta-analysis revealed that lncRNAs may be useful prognostic markers for lung carcinoma and may also have value as biomarkers for TNM stage, lymph node metastasis and distant metastasis.

  13. Prognostic value of lncRNAs in lung carcinoma: a meta-analysis

    PubMed Central

    Fan, Fan; Zhu, Zhengqiu; Gao, Chao; Liu, Yun; Wang, Baoqing; Wang, Ziquan; Feng, Jifeng

    2017-01-01

    Many different long non-coding RNAs (lncRNAs) have been reported to be abnormally expressed in lung carcinoma and may thus serve as prognostic biomarkers for this disease. We conducted this meta-analysis, which included a total of 30 studies identified via searches of PubMed, Embase, Medline, and Web of Science and included 2912 patients from China (28), Germany (1), and Japan (1), to investigate the prognostic value of different lncRNAs in lung carcinoma. The results revealed that lncRNA transcription levels were significantly associated with overall survival in lung cancer patients (HR:1.46, 95% CI: 1.16–1.83, P = 0.000). However, lncRNA transcription levels were not associated with progression-free survival (PFS) (HR: 1.55, 95% CI: 0.50–4.80, P = 0.449). Further analysis showed that high lncRNA transcription levels were significantly associated with tumour-node-metastasis (TNM) stage (III/IV vs I/II: RR = 1.339, 95% CI: 1.046–1.716, P = 0.012), lymph node metastasis (positive vs negative: RR = 1.442, 95% CI: 1.103–1.885, P = 0.007), and distant metastasis (yes vs no: RR = 3.187,95% CI: 1.393–7.294, P = 0.006). Taken together, the results of our present meta-analysis revealed that lncRNAs may be useful prognostic markers for lung carcinoma and may also have value as biomarkers for TNM stage, lymph node metastasis and distant metastasis. PMID:29137343

  14. A novel polysaccharide from Sargassum integerrimum induces apoptosis in A549 cells and prevents angiogensis in vitro and in vivo.

    PubMed

    Liu, Ge; Kuang, Shan; Wu, Shimei; Jin, Weihua; Sun, Chaomin

    2016-05-24

    Many polysaccharides isolated from plants have exhibited promising antitumor activities. The aim of this study is to investigate the antitumor activity of the novel polysaccharide named SPS from Sargassum integerrimum, elucidate the underlying anticancer mechanism in a human lung cancer cell line A549, and evaluate its anti-angiogenic activity both in vitro and in vivo. The results show that SPS significantly reduces A549 cells viability in a dose- and time-dependent manner via MTT method. Flow cytometry analysis indicates that SPS could induce cell apoptosis, the loss of mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS) and G2/M phase cell cycle arrest of A549 cells. Up-regulation of the expressions of P53 and Bax, down-regulation of the expression of Bcl-2, and activation of cleaved caspase-3, caspase-9 and PARP are also detected by western blotting after the treatment of SPS. In addition, SPS inhibits the proliferation, migration and cord formation of human umbilical vein endothelial cells (HUVECs) in vitro, and prevents the vascular development of zebrafish embryos in vivo. Altogether, our data prove the anticancer and anti-angiogenesis properties of SPS, and provide further insights into the potential pharmacological application of SPS as antitumor and anti-angiogenic agent against lung cancer.

  15. Identification of Key Transcription Factors Associated with Lung Squamous Cell Carcinoma

    PubMed Central

    Zhang, Feng; Chen, Xia; Wei, Ke; Liu, Daoming; Xu, Xiaodong; Zhang, Xing; Shi, Hong

    2017-01-01

    Background Lung squamous cell carcinoma (lung SCC) is a common type of lung cancer, but its mechanism of pathogenesis is unclear. The aim of this study was to identify key transcription factors in lung SCC and elucidate its mechanism. Material/Methods Six published microarray datasets of lung SCC were downloaded from Gene Expression Omnibus (GEO) for integrated bioinformatics analysis. Significance analysis of microarrays was used to identify differentially expressed genes (DEGs) between lung SCC and normal controls. The biological functions and signaling pathways of DEGs were mapped in the Gene Otology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, respectively. A transcription factor gene regulatory network was used to obtain insights into the functions of DEGs. Results A total of 1,011 genes, including 539 upregulated genes and 462 downregulated genes, were filtered as DEGs between lung SCC and normal controls. DEGs were significantly enriched in cell cycle, DNA replication, p53 signaling pathway, pathways in cancer, adherens junction, and cell adhesion molecules signaling pathways. There were 57 transcription factors identified, which were used to construct a regulatory network. The network consisted of 736 interactions between 49 transcription factors and 486 DEGs. NFIC, BRCA1, and NFATC2 were the top 3 transcription factors that had the highest connectivity with DEGs and that regulated 83, 82, and 75 DEGs in the network, respectively. Conclusions NFIC, BRCA1, and NFATC2 might be the key transcription factors in the development of lung SCC by regulating the genes involved in cell cycle and DNA replication pathways. PMID:28081052

  16. Lifetime risk of urothelial carcinoma and lung cancer in the arseniasis-endemic area of Northeastern Taiwan

    NASA Astrophysics Data System (ADS)

    Yang, Tse-Yen; Hsu, Ling-I.; Chen, Hui-Chi; Chiou, Hung-Yi; Hsueh, Yu-Mei; Wu, Meei-Maan; Chen, Chi-Ling; Wang, Yuan-Hung; Liao, Ya-Tang; Chen, Chien-Jen

    2013-11-01

    Arsenic in drinking water has been shown to increase the risk of urothelial carcinoma and lung cancer. However, the lifetime risk of developing urothelial carcinoma and lung cancer caused by exposure to arsenic in drinking water has not been reported. This study aimed to assess the lifetime risk of urothelial carcinoma and lung cancer caused by arsenic exposure from drinking water and cigarette smoking habit for residents living in the arseniasis-endemic area in Northeastern Taiwan. We recruited 8086 residents in 1991-1994 and monitored them for their newly developed types of cancers, identified by computerized linkage with the national cancer registry profile. There were 37 newly diagnosed urothelial carcinoma cases and 223 new lung cancer cases during the follow-up period (until 2007). The lifetime (35-85 years old) cumulative risk of developing urothelial carcinoma from an arsenic concentration in the drinking water of <10, 10-99, and 100+ μg/L was 0.29%, 1.07% and 3.43%, respectively. The corresponding probabilities were 7.42%, 8.99% and 17.09% for the lifetime risk of developing lung cancer. Cigarette smoking was associated with an increased risk of urothelial carcinoma and lung cancer, showing the hazard ratio (95% confidence interval) of 2.48 (1.27-4.82) and 3.44 (2.00-5.90) after adjusting for the arsenic concentration in drinking water. After adjusting for cigarette smoking, the hazard ratio (95% confidence interval) of developing urothelial carcinoma caused by the arsenic concentration in drinking water of <10, 10-99 and 100+ μg/L was 1.0 (the reference group), 2.18 (0.59-8.01), and 8.71 (2.49-30.48), respectively. The corresponding figures were 1.0 (the reference group), 1.14 (0.80-1.61), 1.84 (1.28-2.65) for lung cancer. Synergistic effects on the development of urothelial carcinoma and lung cancer existed between the arsenic exposure level and cigarette smoking. It is suggested that people who have had a high exposure to arsenic in drinking water

  17. Pulmonary Endpoints (Lung Carcinomas and Asbestosis) Following Inhalation Exposure to Asbestos

    PubMed Central

    Mossman, Brooke T.; Lippmann, Morton; Hesterberg, Thomas W.; Kelsey, Karl T.; Barchowsky, Aaron; Bonner, James C.

    2011-01-01

    Lung carcinomas and pulmonary fibrosis (asbestosis) occur in asbestos workers. Understanding the pathogenesis of these diseases is complicated because of potential confounding factors, such as smoking, which is not a risk factor in mesothelioma. The modes of action (MOA) of various types of asbestos in the development of lung cancers, asbestosis, and mesotheliomas appear to be different. Moreover, asbestos fibers may act differentially at various stages of these diseases, and have different potencies as compared to other naturally occurring and synthetic fibers. This literature review describes patterns of deposition and retention of various types of asbestos and other fibers after inhalation, methods of translocation within the lung, and dissolution of various fiber types in lung compartments and cells in vitro. Comprehensive dose-response studies at fiber concentrations inhaled by humans as well as bivariate size distributions (lengths and widths), types, and sources of fibers are rarely defined in published studies and are needed. Species-specific responses may occur. Mechanistic studies have some of these limitations, but have suggested that changes in gene expression (either fiber-catalyzed directly or by cell elaboration of oxidants), epigenetic changes, and receptor-mediated or other intracellular signaling cascades may play roles in various stages of the development of lung cancers or asbestosis. PMID:21534086

  18. Cryptogenic organizing pneumonia masquerading as lung carcinoma: A case report and review of the literature

    PubMed Central

    Huo, Ji-Ping; Liu, Cui; Jin, Bei-Bei; Duan, Feng-Xia; Mei, Sheng-Hui; Li, Xin-Gang; Zhao, Zhi-Gang

    2018-01-01

    Cryptogenic organizing pneumonia (COP) is a rare pulmonary disorder of unknown etiology. COP with hemoptysis as the primary presenting symptom has rarely been reported. The present study reported a case of COP that resembled lung carcinoma with hemoptysis as the only clinical symptom. The patient recovered well following thoracoscope surgery. A literature review of 119 COP cases between 1995 and 2015 was presented. Cough, fever and dyspnea were the most common clinical manifestations. The most common imaging manifestations were multiple or single consolidation, lung nodules, migratory sign, reversed halo sign, and multiple ground-glass opacity. A total of 3 cases exhibited COP accompanied by lung cancer. Glucocorticoids were effective for the majority of cases and invasive surgeries were implemented in most cases. The majority of cases recovered or relieved, and the prognosis of COP was relatively good. COP was easily confused with lung tumor and it is necessary to make differential diagnosis between COP and lung cancer. Invasive surgery should be avoided when possible to avoid or reduce patient trauma. PMID:29399056

  19. Identification of immunohistochemical markers for distinguishing lung adenocarcinoma from squamous cell carcinoma

    PubMed Central

    Zhan, Cheng; Yan, Li; Wang, Lin; Sun, Yang; Wang, Xingxing; Lin, Zongwu; Zhang, Yongxing; Wang, Qun

    2015-01-01

    Background Immunohistochemical staining has been widely used in distinguishing lung adenocarcinoma (LUAD) from lung squamous cell carcinoma (LUSC), which is of vital importance for the diagnosis and treatment of lung cancer. Due to the lack of a comprehensive analysis of different lung cancer subtypes, there may still be undiscovered markers with higher diagnostic accuracy. Methods Herein first, we systematically analyzed high-throughput data obtained from The Cancer Genome Atlas (TCGA) database. Combining differently expressed gene screening and receiver operating characteristic (ROC) curve analysis, we attempted to identify the genes which might be suitable as immunohistochemical markers in distinguishing LUAD from LUSC. Then we detected the expression of six of these genes (MLPH, TMC5, SFTA3, DSG3, DSC3 and CALML3) in lung cancer sections using immunohistochemical staining. Results A number of genes were identified as candidate immunohistochemical markers with high sensitivity and specificity in distinguishing LUAD from LUSC. Then the staining results confirmed the potentials of the six genes (MLPH, TMC5, SFTA3, DSG3, DSC3 and CALML3) in distinguishing LUAD from LUSC, and their sensitivity and specificity were not less than many commonly used markers. Conclusions The results revealed that the six genes (MLPH, TMC5, SFTA3, DSG3, DSC3 and CALML3) might be suitable markers in distinguishing LUAD from LUSC, and also validated the feasibility of our methods for identification of candidate markers from high-throughput data. PMID:26380766

  20. Prohormone convertase and autocrine growth factor mRNAs are coexpressed in small cell lung carcinoma.

    PubMed

    Rounseville, M P; Davis, T P

    2000-08-01

    A hallmark of small cell lung carcinoma (SCLC) is the expression of autocrine growth factors such as neurotensin and gastrin-releasing peptide, which bind to cellular receptors and stimulate cell division. The biological activity of autocrine growth factors requires the concurrent expression of prohormone convertases that cleave the growth factors to their active form, suggesting the expression of these genes is linked in SCLCs. RNase protection assays were used to detect the expression of autocrine growth factor and prohormone convertase mRNAs in a panel of lung cancer cell lines. These mRNAs are coexpressed in SCLC and lung carcinoid cell lines, but not in normal lung epithelium or in non-small cell lung cancers. These findings, together with earlier results from our laboratory, suggest the expression of prohormone convertases has an important role in the development and maintenance of the SCLC phenotype and that autocrine growth factor and prohormone convertase genes respond to a common transcriptional activator in SCLC.

  1. Activation of the protein-tyrosine kinase associated with the bombesin receptor complex in small cell lung carcinomas

    SciTech Connect

    Gaudino, G.; Cirillo, D.; Naldini, L.

    1988-04-01

    It has been hypothesized that bombesin-like peptides produced by small cell lung carcinomas may sustain deregulated proliferation through an autocrine mechanism. The authors have shown that the neuropeptide bombesin leads to the activation of a protein-tyrosine kinase that phosphorylates a 115-kDa protein (p115) associated with the bombesin receptor complex in mouse Swiss 3T3 fibroblasts. They now report that phosphotyrosine antibodies recognize a 115-kDa protein, phosphorylated on tyrosine, in four human small cell lung carcinoma cell lines producing bombesin but not in a nonproducer variant line. p115 from detergent-treated small cell lung carcinoma cells binds to bombesin-Sepharose and can be phosphorylatedmore » on tyrosine in the presence of radiolabeled ATP and Mn{sup 2+}. As for the p115 immunoprecipitated from mouse fibroblast, the small cell lung carcinoma p115 can be phosphorylated in an immunocomplex kinase assay. However, the latter does not require the presence of exogenous bombesin for activity. Binding data, obtained by using radiolabeled ligand, suggest receptor occupancy in the cell lines producing bombesin. These observations are consistent with the hypothesis that proliferation in some human small cell lung carcinoma lines is under autocrine control, regulated through activation of bombesin receptors.« less

  2. Comparison of bronchoalveolar lavage cytology and transbronchial biopsy in the diagnosis of carcinoma of lung.

    PubMed

    Ahmed, Ayesha; Ahmed, Sajjad

    2004-01-01

    The objectives of this study were to compare bronchoalveolar lavage (BAL) cytology and transbronchial biopsy in the diagnosis of carcinoma lung and to determine accuracy of BAL cytology using histopathlologic examination of transbronchial biopsy as gold standard at our center. This study was carried out at Department of Histopathology, Ayub Medical College, Abbottabad, from 1.09.2000 to 28.02.2003. BAL fluid and bronchial biopsy were received and processed simultaneously. Four cytology and a set of histopathology slides were prepared. These were screened and diagnosis recorded. Sensitivity, Specificity, False Positive, False Negative, Positive predictive value and Negative predictive value of BAL cytology were determined using histopathology of transbronchial biopsy as gold standard. We found the sensitivity of BAL cytology to be 93.44% as compared with transbronchial biopsy. The specificity was 100%. There was no false positive while false negative results were 6.55 %. The positive predictive value was 100 %, while the negative predictive value was 75 %. The overall diagnostic efficacy of BAL cytology was 94.52 %. BAL cytology is a highly sensitive and specific test for diagnosis of carcinoma lung. It can be used as a quick and reliable diagnostic method for diagnosis of lung malignancy.

  3. Correlation of clinicopathologic features and lung squamous cell carcinoma subtypes according to the 2015 WHO classification.

    PubMed

    Chen, Rongrong; Ding, Zhengping; Zhu, Lei; Lu, Shun; Yu, Yongfeng

    2017-12-01

    This study aimed to determine the relationship between clinicopathologic features and lung squamous cell carcinoma (LSCC) subtypes according to the 2015 WHO classification. We identified 824 operable LSCC patients undergoing a complete surgical resection at Shanghai Chest Hospital between April 2015 and January 2017. Immunohistochemistry was used to investigate the clinicopathologic features. Among them, the percentages of LSCC subtypes were 66.1% (545/824), 28.6% (236/824), and 5.2% (43/824) for keratinizing squamous cell carcinoma (KSCC), nonkeratinizing squamous cell carcinoma (NKSCC), and basaloid squamous cell carcinoma (BSCC), respectively. There were more males, more smokers, and more pneumonectomy surgeries in KSCC patients (p = 0.008, p = 0.000, p = 0.043). There were more N2 lymph node involvement and pathological stage III in NKSCC patients (p = 0.01, p = 0.03). BSCC did not demonstrate specificity to anything, but expressed adenocarcinoma markers more frequently. No significant difference existed between pathological subtypes and other clinicopathologic features, such as age, location type, visceral pleural involvement and lymphovascular invasion. The frequencies of EGFR sensitive mutations and ALK rearrangements were not significantly different among three subtypes. Significant relationships exist between some clinicopathologic features and LSCC subtypes. Copyright © 2017 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  4. [Bronchogenic carcinoma of the lungs in 3 workers with asbestosis employed in the same factory].

    PubMed

    Herceg, Z; Herceg, K; Car, Z; Remskar, Z; Kovac, S; Beritić, T

    1989-01-01

    In two female workers (nonsmokers) and in one male worker (a smoker) employed in the same mill with a history of asbestosis, bronchogenic lung carcinoma type adenocarcinoma (women), respectively anaplastic carcinoma (a man) had developed. All the three patients worked in the same area in a spinning-mill. The duration of exposure to asbestos was relatively short (10 to 15 years) in female workers, while the duration of exposure to asbestos was much longer in a male worker (29 years), although it was intermittent. Dyspnea was the main and the only discomfort. In accordance with the International Labour Organization (ILO) classification, a chest radiograph revealed the lesions of s/t 1/2 and s/t 2/1 features. There was also a ventilation deficit (very decreased carbon monoxide diffusing capacity).

  5. Assessment of Erythroid and Granulocytic Hematopoietic Lineages in Patients with Non-Small-Cell Lung Carcinoma.

    PubMed

    Goldberg, V E; Polyakova, T Yu; Popova, N O; Vysotskaya, V V; Simolina, E I; Belevich, Yu V; Tuzikova, T P; Goldberg, A V; Zhdanov, V V; Miroshnichenko, L A; Udut, E V; Simanina, E V; Dygai, A M; Zyuz'kov, G N

    2017-08-01

    The toxic effects of combined cisplatin/docetaxel therapy cycles on erythroid and granulocytic hematopoietic lineages as well as their intercycle recovery were examined in patients with stage III-IV non-small-cell lung carcinoma. Responsiveness of the blood system to this therapy remained at a high level. Combined therapy pronouncedly activated the key elements of the erythroid and granulocytic hematopoietic lineages leading to accumulation of immature and mature myelokaryocytes in the bone marrow, enlargement of the medullary pool of mature neutrophils, and increase in the count of medullary erythroid and granulocytic precursor cells under conditions of their accelerated maturation.

  6. miR-448 is a novel prognostic factor of lung squamous cell carcinoma and regulates cells growth and metastasis by targeting DCLK1.

    PubMed

    Shan, Changting; Fei, Fan; Li, Fengzhu; Zhuang, Bo; Zheng, Yulong; Wan, Yufeng; Chen, Jianhui

    2017-05-01

    MicroRNA-448 (miR-448) has been showed to be low-expressed and function as tumor suppressor in most human cancers. However, there are limited reports on the clinical significance and biological function of miR-448 in lung squamous cell carcinoma. In this study, we observed that miR-448 expression was decreased in lung squamous cell carcinoma tissues and cell lines. Meanwhile, miR-448 expression associated with differentiated degree, T classification (tumor size), N classification (lymph node metastasis), M classification (distant metastasis), clinical stage and prognosis of lung squamous cell carcinoma patients. In survival analysis, low expression of miR-448 was a poor independent prognostic factor for lung squamous cell carcinoma patients. Moreover, gain-of-function and loss-of-function studies showed miR-448 acted as a tumor suppressor regulating lung squamous cell carcinoma cells growth and metastasis. Furthermore, DCLK1 has been identified as a potential target for miR-448 to regulate lung squamous cell carcinoma cells growth and metastasis. In conclusion, miR-448 low-expression was a poor prognostic factor for lung squamous cell carcinoma patients, and miR-448 served as a tumor suppressor in lung squamous cell carcinoma cells via targeting DCLK1. Copyright © 2017. Published by Elsevier Masson SAS.

  7. The GSK3 Signaling Axis Regulates Adaptive Glutamine Metabolism in Lung Squamous Cell Carcinoma.

    PubMed

    Momcilovic, Milica; Bailey, Sean T; Lee, Jason T; Fishbein, Michael C; Braas, Daniel; Go, James; Graeber, Thomas G; Parlati, Francesco; Demo, Susan; Li, Rui; Walser, Tonya C; Gricowski, Michael; Shuman, Robert; Ibarra, Julio; Fridman, Deborah; Phelps, Michael E; Badran, Karam; St John, Maie; Bernthal, Nicholas M; Federman, Noah; Yanagawa, Jane; Dubinett, Steven M; Sadeghi, Saman; Christofk, Heather R; Shackelford, David B

    2018-05-14

    Altered metabolism is a hallmark of cancer growth, forming the conceptual basis for development of metabolic therapies as cancer treatments. We performed in vivo metabolic profiling and molecular analysis of lung squamous cell carcinoma (SCC) to identify metabolic nodes for therapeutic targeting. Lung SCCs adapt to chronic mTOR inhibition and suppression of glycolysis through the GSK3α/β signaling pathway, which upregulates glutaminolysis. Phospho-GSK3α/β protein levels are predictive of response to single-therapy mTOR inhibition while combinatorial treatment with the glutaminase inhibitor CB-839 effectively overcomes therapy resistance. In addition, we identified a conserved metabolic signature in a broad spectrum of hypermetabolic human tumors that may be predictive of patient outcome and response to combined metabolic therapies targeting mTOR and glutaminase. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Difference in Postsurgical Prognostic Factors between Lung Adenocarcinoma and Squamous Cell Carcinoma

    PubMed Central

    Sakai, Hiroki; Kimura, Hiroyuki; Miyazawa, Tomoyuki; Marushima, Hideki; Saji, Hisashi

    2017-01-01

    Purpose: The aim of this study was to compare the clinicopathologic prognostic factors between patients who underwent lung resection for adenocarcinoma (AD) and those with squamous cell carcinoma (SQ). Methods: A database of patients with lung AD or SQ who underwent surgery with curative intent in our department from January 2008 to December 2014 was reviewed. Associations between various clinicopathologic factors, postsurgical recurrence-free survival (RFS), and overall survival (OS) were analyzed to find significant prognostic factors. Results: A total of 537 lung cancer patients (AD, 434; SQ, 103) were included in this study. Although RFS was similar in patients with AD and SQ, OS was significantly poorer in those with SQ. Multivariate analysis in patients with AD revealed that age (≥69 vs. <69), lymphatic invasion, and histologic pleural invasion (p0 vs. p1–3) were associated with RFS, while gender and pleural invasion were associated with OS. In SQ, however, smoking, clinical stage, and pulmonary metastasis were associated with RFS in the multivariate analysis. Conclusion: Since significant postoperative prognostic factors are quite different between lung AD and SQ, these two histologic types should be differently analyzed in a clinical study. PMID:28966230

  9. Integrated High Throughput Analysis Identifies GSK3 as a Crucial Determinant of p53-Mediated Apoptosis in Lung Cancer Cells.

    PubMed

    Zhang, Yu; Zhu, Chenyang; Sun, Bangyao; Lv, Jiawei; Liu, Zhonghua; Liu, Shengwang; Li, Hai

    2017-01-01

    p53 dysfunction is frequently observed in lung cancer. Although restoring the tumour suppressor function of p53 is recently approved as a putative strategy for combating cancers, the lack of understanding of the molecular mechanism underlying p53-mediated lung cancer suppression has limited the application of p53-based therapies in lung cancer. Using RNA sequencing, we determined the transcriptional profile of human non-small cell lung carcinoma A549 cells after treatment with two p53-activating chemical compounds, nutlin and RITA, which could induce A549 cell cycle arrest and apoptosis, respectively. Bioinformatics analysis of genome-wide gene expression data showed that distinct transcription profiles were induced by nutlin and RITA and 66 pathways were differentially regulated by these two compounds. However, only two of these pathways, 'Adherens junction' and 'Axon guidance', were found to be synthetic lethal with p53 re-activation, as determined via integrated analysis of genome-wide gene expression profile and short hairpin RNA (shRNA) screening. Further functional protein association analysis of significantly regulated genes associated with these two synthetic lethal pathways indicated that GSK3 played a key role in p53-mediated A549 cell apoptosis, and then gene function study was performed, which revealed that GSK3 inhibition promoted p53-mediated A549 cell apoptosis in a p53 post-translational activity-dependent manner. Our findings provide us with new insights regarding the mechanism by which p53 mediates A549 apoptosis and may cast light on the development of more efficient p53-based strategies for treating lung cancer. © 201 The Author(s). Published by S. Karger AG, Basel.

  10. Squamous cell carcinomas of the lung and of the head and neck: new insights on molecular characterization

    PubMed Central

    Polo, Valentina; Pasello, Giulia; Frega, Stefano; Favaretto, Adolfo; Koussis, Haralabos; Conte, Pierfranco; Bonanno, Laura

    2016-01-01

    Squamous cell carcinomas of the lung and of the head and neck district share strong association with smoking habits and are characterized by smoke-related genetic alterations. Driver mutations have been identified in small percentage of lung squamous cell carcinoma. In parallel, squamous head and neck tumors are classified according to the HPV positivity, thus identifying two different clinical and molecular subgroups of disease. This review depicts different molecular portraits and potential clinical application in the field of targeted therapy, immunotherapy and chemotherapy personalization. PMID:26933818

  11. Gene Therapy for Human Lung Adenocarcinoma Using a Suicide Gene Driven by a Lung-Specific Promoter Delivered by JC Virus-Like Particles.

    PubMed

    Chao, Chun-Nun; Lin, Mien-Chun; Fang, Chiung-Yao; Chen, Pei-Lain; Chang, Deching; Shen, Cheng-Huang; Wang, Meilin

    2016-01-01

    Lung adenocarcinoma, the most commonly diagnosed type of lung cancer, has a poor prognosis even with combined surgery, chemotherapy, or molecular targeted therapies. Most patients are diagnosed with an in-operable advanced or metastatic disease, both pointing to the necessity of developing effective therapies for lung adenocarcinoma. Surfactant protein B (SP-B) has been found to be overexpressed in lung adenocarcinoma. In addition, it has also been demonstrated that human lung adenocarcinoma cells are susceptible to the JC polyomavirus (JCPyV) infection. Therefore, we designed that the JCPyV virus-like particle (VLP) packaged with an SP-B promoter-driven thymidine kinase suicide gene (pSPB-tk) for possible gene therapy of human lung adenocarcinoma. Plasmids expressing the GFP (pSPB-gfp) or thymidine kinase gene (pSPB-tk) under the control of the human SP-B promoter were constructed. The promoter's tissue specificity was tested by transfection of pSPB-gfp into A549, CH27, and H460 human lung carcinoma cells and non-lung cells. The JCPyV VLP's gene transfer efficiency and the selective cytotoxicity of pSPB-tk combined with ganciclovir (GCV) were tested in vitro and in a xenograft mouse model. In the current study, we found that SP-B promoter-driven GFP was specifically expressed in human lung adenocarcinoma (A549) and large cell carcinoma (H460) cells. JCPyV VLPs were able to deliver a GFP reporter gene into A549 cells for expression. Selective cytotoxicity was observed in A549 but not non-lung cells that were transfected with pSPB-tk or infected with pSPB-tk-carrying JCPyV VLPs. In mice injected with pSPB-tk-carrying JCPyV VLPs through the tail vein and treated with ganciclovir (GCV), a potent 80% inhibition of growth of human lung adenocarcinoma nodules resulted. The JCPyV VLPs combined with the use of SP-B promoter demonstrates effectiveness as a potential gene therapy against human lung adenocarcinoma.

  12. Nur77 attenuates endothelin-1 expression via downregulation of NF-κB and p38 MAPK in A549 cells and in an ARDS rat model.

    PubMed

    Jiang, Yujie; Zeng, Yi; Huang, Xia; Qin, Yueqiu; Luo, Weigui; Xiang, Shulin; Sooranna, Suren R; Pinhu, Liao

    2016-12-01

    Acute respiratory distress syndrome (ARDS) is characterized by inflammatory injury to the alveolar and capillary barriers that results in impaired gas exchange and severe acute respiratory failure. Nuclear orphan receptor Nur77 has emerged as a regulator of gene expression in inflammation, and its role in the pathogenesis of ARDS is not clear. The objective of this study is to investigate the potential role of Nur77 and its underlying mechanism in the regulation of endothelin-1 (ET-1) expression in lipopolysaccharide (LPS)-induced A549 cells and an ARDS rat model. We demonstrate that LPS induced Nur77 expression and nuclear export in A549 cells. Overexpression of Nur77 markedly decreased basal and LPS-induced ET-1 expression in A549 cells, whereas knockdown of Nur77 increased the ET-1 expression. LPS-induced phosphorylation and nuclear translocation of NF-κB and p38 MAPK were blocked by Nur77 overexpression and augmented by Nur77 knockdown in A549 cells. In vivo, LPS induced Nur77 expression in lung in ARDS rats. Pharmacological activation of Nur77 by cytosporone B (CsnB) inhibited ET-1 expression in ARDS rats, decreased LPS-induced phosphorylation of NF-κB and p38 MAPK, and relieved lung, liver, and kidney injury. Pharmacological deactivation of Nur77 by 1,1-bis-(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH, C-DIM8) had no effect on ET-1 expression and lung injury. These results indicated that Nur77 decreases ET-1 expression by suppressing NF-κB and p38 MAPK in LPS-stimulated A549 cells in vitro, and, in an LPS-induced ARDS rat model, CsnB reduced ET-1 expression and lung injury in ARDS rats. Copyright © 2016 the American Physiological Society.

  13. Oral Rigosertib for Squamous Cell Carcinoma

    ClinicalTrials.gov

    2017-06-22

    Head and Neck Squamous Cell Carcinoma; Anal Squamous Cell Carcinoma; Lung Squamous Cell Carcinoma; Cervical Squamous Cell Carcinoma; Esophageal Squamous Cell Carcinoma; Skin Squamous Cell Carcinoma; Penile Squamous Cell Carcinoma

  14. Dihydroartemisinin Inhibits Glucose Uptake and Cooperates with Glycolysis Inhibitor to Induce Apoptosis in Non-Small Cell Lung Carcinoma Cells

    PubMed Central

    Gao, Jing; Luo, Xian-yang; Liu, Yu; Li, Ning; Li, Chun-lei; Chen, Yu-qiang; Yu, Xiu-yi; Jiang, Jie

    2015-01-01

    Despite recent advances in the therapy of non-small cell lung cancer (NSCLC), the chemotherapy efficacy against NSCLC is still unsatisfactory. Previous studies show the herbal antimalarial drug dihydroartemisinin (DHA) displays cytotoxic to multiple human tumors. Here, we showed that DHA decreased cell viability and colony formation, induced apoptosis in A549 and PC-9 cells. Additionally, we first revealed DHA inhibited glucose uptake in NSCLC cells. Moreover, glycolytic metabolism was attenuated by DHA, including inhibition of ATP and lactate production. Consequently, we demonstrated that the phosphorylated forms of both S6 ribosomal protein and mechanistic target of rapamycin (mTOR), and GLUT1 levels were abrogated by DHA treatment in NSCLC cells. Furthermore, the upregulation of mTOR activation by high expressed Rheb increased the level of glycolytic metabolism and cell viability inhibited by DHA. These results suggested that DHA-suppressed glycolytic metabolism might be associated with mTOR activation and GLUT1 expression. Besides, we showed GLUT1 overexpression significantly attenuated DHA-triggered NSCLC cells apoptosis. Notably, DHA synergized with 2-Deoxy-D-glucose (2DG, a glycolysis inhibitor) to reduce cell viability and increase cell apoptosis in A549 and PC-9 cells. However, the combination of the two compounds displayed minimal toxicity to WI-38 cells, a normal lung fibroblast cell line. More importantly, 2DG synergistically potentiated DHA-induced activation of caspase-9, -8 and -3, as well as the levels of both cytochrome c and AIF of cytoplasm. However, 2DG failed to increase the reactive oxygen species (ROS) levels elicited by DHA. Overall, the data shown above indicated DHA plus 2DG induced apoptosis was involved in both extrinsic and intrinsic apoptosis pathways in NSCLC cells. PMID:25799586

  15. Dihydroartemisinin inhibits glucose uptake and cooperates with glycolysis inhibitor to induce apoptosis in non-small cell lung carcinoma cells.

    PubMed

    Mi, Yan-jun; Geng, Guo-jun; Zou, Zheng-zhi; Gao, Jing; Luo, Xian-yang; Liu, Yu; Li, Ning; Li, Chun-lei; Chen, Yu-qiang; Yu, Xiu-yi; Jiang, Jie

    2015-01-01

    Despite recent advances in the therapy of non-small cell lung cancer (NSCLC), the chemotherapy efficacy against NSCLC is still unsatisfactory. Previous studies show the herbal antimalarial drug dihydroartemisinin (DHA) displays cytotoxic to multiple human tumors. Here, we showed that DHA decreased cell viability and colony formation, induced apoptosis in A549 and PC-9 cells. Additionally, we first revealed DHA inhibited glucose uptake in NSCLC cells. Moreover, glycolytic metabolism was attenuated by DHA, including inhibition of ATP and lactate production. Consequently, we demonstrated that the phosphorylated forms of both S6 ribosomal protein and mechanistic target of rapamycin (mTOR), and GLUT1 levels were abrogated by DHA treatment in NSCLC cells. Furthermore, the upregulation of mTOR activation by high expressed Rheb increased the level of glycolytic metabolism and cell viability inhibited by DHA. These results suggested that DHA-suppressed glycolytic metabolism might be associated with mTOR activation and GLUT1 expression. Besides, we showed GLUT1 overexpression significantly attenuated DHA-triggered NSCLC cells apoptosis. Notably, DHA synergized with 2-Deoxy-D-glucose (2DG, a glycolysis inhibitor) to reduce cell viability and increase cell apoptosis in A549 and PC-9 cells. However, the combination of the two compounds displayed minimal toxicity to WI-38 cells, a normal lung fibroblast cell line. More importantly, 2DG synergistically potentiated DHA-induced activation of caspase-9, -8 and -3, as well as the levels of both cytochrome c and AIF of cytoplasm. However, 2DG failed to increase the reactive oxygen species (ROS) levels elicited by DHA. Overall, the data shown above indicated DHA plus 2DG induced apoptosis was involved in both extrinsic and intrinsic apoptosis pathways in NSCLC cells.

  16. Differential diagnosis of lung carcinoma with three-dimensional quantitative molecular vibrational imaging

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Hammoudi, Ahmad A.; Li, Fuhai; Thrall, Michael J.; Cagle, Philip T.; Chen, Yuanxin; Yang, Jian; Xia, Xiaofeng; Fan, Yubo; Massoud, Yehia; Wang, Zhiyong; Wong, Stephen T. C.

    2012-06-01

    The advent of molecularly targeted therapies requires effective identification of the various cell types of non-small cell lung carcinomas (NSCLC). Currently, cell type diagnosis is performed using small biopsies or cytology specimens that are often insufficient for molecular testing after morphologic analysis. Thus, the ability to rapidly recognize different cancer cell types, with minimal tissue consumption, would accelerate diagnosis and preserve tissue samples for subsequent molecular testing in targeted therapy. We report a label-free molecular vibrational imaging framework enabling three-dimensional (3-D) image acquisition and quantitative analysis of cellular structures for identification of NSCLC cell types. This diagnostic imaging system employs superpixel-based 3-D nuclear segmentation for extracting such disease-related features as nuclear shape, volume, and cell-cell distance. These features are used to characterize cancer cell types using machine learning. Using fresh unstained tissue samples derived from cell lines grown in a mouse model, the platform showed greater than 97% accuracy for diagnosis of NSCLC cell types within a few minutes. As an adjunct to subsequent histology tests, our novel system would allow fast delineation of cancer cell types with minimum tissue consumption, potentially facilitating on-the-spot diagnosis, while preserving specimens for additional tests. Furthermore, 3-D measurements of cellular structure permit evaluation closer to the native state of cells, creating an alternative to traditional 2-D histology specimen evaluation, potentially increasing accuracy in diagnosing cell type of lung carcinomas.

  17. [Apoptosis of human lung carcinoma cell line GLC-82 induced by high power electromagnetic pulse].

    PubMed

    Cao, Xiao-zhe; Zhao, Mei-lan; Wang, De-wen; Dong, Bo

    2002-09-01

    Electromagnetic pulse (EMP) could be used for sterilization of food and the efficiency is higher than 2450 MHz continuous microwave done. This study was designed to evaluate the effect of electromagnetic pulse (EMP) on apoptosis of human lung carcinoma cell line GLC-82, so that to explore and develop therapeutic means for cancer. The injury changes in GLC-82 cells after irradiated with EMP (electric field intensity was 60 kV/m, 5 pulses/2 min) were analyzed by cytometry, MTT chronometry, and flow cytometry. The immunohistochemical SP staining was used to determine the expressions of bcl-2 protein and p53 protein. The stained positive cells were analyzed by CMIAS-II image analysis system at a magnification 400. All data were analyzed by SPSS8.0 software. EMP could obviously inhibited proliferation and activity of lung carcinoma cell line GLC-82. The absorbance value (A570) of MTT decreased immediately, at 0 h, 1 h, and 6 h after the GLC-82 cells irradiated by EMP as compared with control group. The highest apoptosis rate was found to reach 13.38% by flow cytometry at 6 h after EMP irradiation. Down-regulation of bcl-2 expression and up-regulation of p53 expression were induced by EMP. EMP promotes apoptosis of GLC-82 cells. At same time, EMP can down-regulate bcl-2 expression and up-regulate p53 expression in GLC-82 cells. The bcl-2 and the p53 protein may involve the apoptotic process.

  18. Identification of TRA2B-DNAH5 fusion as a novel oncogenic driver in human lung squamous cell carcinoma

    PubMed Central

    Li, Fei; Fang, Zhaoyuan; Zhang, Jian; Li, Chen; Liu, Hongyan; Xia, Jufeng; Zhu, Hongwen; Guo, Chenchen; Qin, Zhen; Li, Fuming; Han, Xiangkun; Wang, Yuetong; Feng, Yan; Wang, Ye; Zhang, Wenjing; Wang, Zuoyun; Jin, Yujuan; Sun, Yihua; Wei, Wenyi; Zeng, Rong; Chen, Haiquan; Ji, Hongbin

    2016-01-01

    Lung squamous cell carcinoma (SCC) is one of the major subtypes of lung cancer. Our current knowledge of oncogenic drivers in this specific subtype of lung cancer is largely limited compared with lung adenocarcinoma (ADC). Through exon array analyses, molecular analyses and functional studies, we here identify the TRA2B-DNAH5 fusion as a novel oncogenic driver in lung SCC. We found that this gene fusion occurs exclusively in lung SCC (3.1%, 5/163), but not in lung ADC (0/119). Through mechanistic studies, we further revealed that this TRA2B-DNAH5 fusion promotes lung SCC malignant progression through regulating a SIRT6-ERK1/2-MMP1 signaling axis. We show that inhibition of ERK1/2 activation using selumetinib efficiently inhibits the growth of lung SCC with TRA2B-DNAH5 fusion expression. These findings improve our current knowledge of oncogenic drivers in lung SCC and provide a potential therapeutic strategy for lung SCC patients with TRA2B-DNAH5 fusion. PMID:27670699

  19. Dietary diindolylmethane suppresses inflammation-driven lung squamous cell carcinoma in mice

    PubMed Central

    Song, Jung Min; Qian, Xuemin; Teferi, Fitsum; Pan, Jing; Wang, Yian; Kassie, Fekadu

    2014-01-01

    Inflammatory conditions of the lung such as chronic obstructive pulmonary disease (COPD) are known to increase lung cancer risk, particularly lung squamous cell carcinoma (LSCC). In the present study, we developed a mouse model of inflammation-driven LSCC that was induced by N-nitroso-trischloroethylurea (NTCU) and enhanced by lipopolysaccharide (LPS), a potent proinflammatory agent contained in tobacco and tobacco smoke, and determined the chemopreventive effects of BioResponse diindolylmethane (DIM) in the same model. Compared to mice treated with NTCU alone, mice treated with the combination of NTCU and LPS had a 9-fold increase in the number of bronchioles with LSCC. Also, compared to mice treated with LPS alone, mice treated with NTCU plus LPS showed significantly increased expression of the inflammatory cytokines IL-1α, IL-6, and TNFα (all three increased about 7-fold). Parallel to the increased cytokine gene expression, the NTCU plus LPS-treated group exhibited significantly enhanced activation of NF-κB, STAT3, ERK, p-38, and Akt, expression of p53, COX-2, and Mcl-1, and NF-κB- and STAT3-DNA binding in the lung. Dietary administration of DIM (10 µmol/g diet or 2460 ppm) to mice treated with NTCU plus LPS reduced the incidence of LSCC by 2-fold, suppressed activation/expression of proinflammatory and procarcinogenic proteins and NF-κB- and STAT3-DNA binding, but not the expression of cytokines and p53. This study highlights the potential significance of our mouse model to identify promising drugs or dietary agents for the chemoprevention of human LSCC and that DIM is a very good candidate for clinical lung cancer chemoprevention trials. PMID:25403850

  20. The Use of P63 Immunohistochemistry for the Identification of Squamous Cell Carcinoma of the Lung

    PubMed Central

    Conde, Esther; Angulo, Bárbara; Redondo, Pilar; Toldos, Oscar; García-García, Elena; Suárez-Gauthier, Ana; Rubio-Viqueira, Belén; Marrón, Carmen; García-Luján, Ricardo; Sánchez-Céspedes, Montse; López-Encuentra, Angel; Paz-Ares, Luis; López-Ríos, Fernando

    2010-01-01

    Introduction While some targeted agents should not be used in squamous cell carcinomas (SCCs), other agents might preferably target SCCs. In a previous microarray study, one of the top differentially expressed genes between adenocarcinomas (ACs) and SCCs is P63. It is a well-known marker of squamous differentiation, but surprisingly, its expression is not widely used for this purpose. Our goals in this study were (1) to further confirm our microarray data, (2) to analize the value of P63 immunohistochemistry (IHC) in reducing the number of large cell carcinoma (LCC) diagnoses in surgical specimens, and (3) to investigate the potential of P63 IHC to minimize the proportion of “carcinoma NOS (not otherwise specified)” in a prospective series of small tumor samples. Methods With these goals in mind, we studied (1) a tissue-microarray comprising 33 ACs and 99 SCCs on which we performed P63 IHC, (2) a series of 20 surgically resected LCCs studied for P63 and TTF-1 IHC, and (3) a prospective cohort of 66 small thoracic samples, including 32 carcinoma NOS, that were further classified by the result of P63 and TTF-1 IHC. Results The results in the three independent cohorts were as follows: (1) P63 IHC was differentially expressed in SCCs when compared to ACs (p<0.0001); (2) half of the 20 (50%) LCCs were positive for P63 and were reclassified as SCCs; and (3) all P63 positive cases (34%) were diagnosed as SCCs. Conclusions P63 IHC is useful for the identification of lung SCCs. PMID:20808915

  1. Magneto-reactance based detection of MnO nanoparticle-embedded Lewis lung carcinoma cells

    NASA Astrophysics Data System (ADS)

    Devkota, J.; Howell, M.; Mukherjee, P.; Srikanth, H.; Mohapatra, S.; Phan, M. H.

    2015-05-01

    We demonstrate the capacity of detecting magnetically weak manganese oxide (MnO) nanoparticles and the Lewis lung carcinoma (LLC) cancer cells that have taken up these nanoparticles using a novel biosensor based on the magneto-reactance (MX) effect of a soft ferromagnetic amorphous ribbon with a microhole-patterned surface. While the magnetic moment of the MnO nanoparticles is relatively small, and a magneto-impedance based sensor fails to detect them in solution (0.05 mg/ml manganese oxide lipid micellar nanoparticles) and inside cells at low concentrations (8.25 × 104 cells/ml), the detection of these nanoparticles and the LLC cells containing them is achieved with the MX-based sensor, which, respectively, reaches the detection sensitivity of ˜3.6% and 2.8% as compared to the blank cells. Since the MnO nanoparticles are a promising contrast agent for magnetic resonance imaging (MRI) of lung cells, the MX-based biosensing technique can be developed as a pre-detection method for MRI of lung cancer cells.

  2. Putative lung adenocarcinoma with epidermal growth factor receptor mutation presenting as carcinoma of unknown primary site

    PubMed Central

    Yamasaki, Masahiro; Funaishi, Kunihiko; Saito, Naomi; Sakano, Ayaka; Fujihara, Megumu; Daido, Wakako; Ishiyama, Sayaka; Deguchi, Naoko; Taniwaki, Masaya; Ohashi, Nobuyuki; Hattori, Noboru

    2018-01-01

    Abstract Rationale: Only a few cases of putative lung adenocarcinoma presenting as carcinoma of unknown primary site (CUP) with epidermal growth factor receptor (EGFR) mutation have been reported, and the efficacy of EGFR-tyrosine kinase inhibitors (TKIs) for these cases is unclear. Patient concerns and diagnoses: A 67-year-old man complained of paresis of the right lower extremity, dysarthria, and memory disturbance. Computed tomography and magnetic resonance imaging showed multiple brain tumors with brain edema and swelling of the left supraclavicular, mediastinal, and upper abdominal lymph nodes. Moreover, a metastatic duodenal tumor was detected via upper gastrointestinal endoscopy examination. The biopsy specimen of the lesion was examined and was diagnosed as adenocarcinoma with CK7 and TTF-1 positivity. Finally, the case was diagnosed as EGFR mutation-positive putative lung adenocarcinoma presenting as CUP. Interventions and outcomes: Oral erlotinib, an EGFR-TKI, was administered at 150 mg daily. Five weeks later, the brain lesions and several swollen lymph nodes showed marked improvement, and the symptoms of the patient also improved. Three months later, the duodenal lesion was undetected on upper gastrointestinal endoscopy. After an 8-month follow-up, the patient was well with no disease progression. Lessons: Putative lung adenocarcinoma presenting as CUP may have EGFR mutation, and EGFR-TKI therapy may be effective for such malignancy. PMID:29443782

  3. Should EGFR mutations be tested in advanced lung squamous cell carcinomas to guide frontline treatment?

    PubMed

    Chiu, Chao-Hua; Chou, Teh-Ying; Chiang, Chi-Lu; Tsai, Chun-Ming

    2014-10-01

    There is no argument over using epidermal growth factor receptor (EGFR) mutation status to guide the frontline treatment for advanced lung adenocarcinoma (LADC); however, the role of the testing in lung squamous cell carcinoma (LSQC) remains controversial. Currently, the guidelines/consensus statements regarding EGFR mutation testing in LSQC are not consistent among different oncology societies. American Society of Clinical Oncology recommends performing EGFR mutation testing in all patients; European Society for Medical Oncology, College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology, and National Comprehensive Cancer Network suggest for some selected group. EGFR mutation is rarely found in LSQC; however, more importantly, it is not a valid predictive biomarker for EGFR tyrosine kinase inhibitors (EGFR-TKI) in LSQC as it has been shown in LADC. Available data showed that the response rate and progression-free survival in EGFR mutant LSQC patients treated with EGFR-TKI are not better than that observed in patients treated with platinum-doublet chemotherapy in the first-line setting. Therefore, in contrast to advanced LADC, EGFR mutation testing may not be necessarily performed upfront in advanced LSQC because not only the mutation rate is low, but also the predictive value is insufficient. For LSQC patients with known sensitizing-EGFR mutations, both conventional chemotherapy and EGFR-TKI are acceptable frontline treatment options.

  4. A Case of Metachronous Metastasis to the Breast from Non-Small Cell Lung Carcinoma

    PubMed Central

    Yoon, Min Yong; Song, Chang Seok; Seo, Mi Hae; Kim, Min Jae; Oh, Tae Yun; Jang, Un Ha; Kwag, Hyon Joo; Kim, Hee Sung; Lim, Si Young; Lim, Seong Yong

    2010-01-01

    Breast metastases from an extramammary primary tumor are very rare and the prognosis for such patients is generally poor. We report here on a case of a 42-year-old female with metastasis of non-small cell lung cancer to the breast, and she is now being followed up on an outpatient basis. In 2004, she presented with a solitary pulmonary nodule in the left lung, and this lesion had been noted to have gradually increased in size over time. The final pathological diagnosis was adenocarcinoma, and the diagnosis was made by performing percutaneous needle aspiration and lobectomy of the left upper lobe. Adjuvant chemotherapy and radiotherapy were given. Unfortunately, a nodule in the left breast was noted three years later, and metastatic non-small-cell lung cancer to the breast was diagnosed by excisional biopsy. Making the correct diagnosis to distinguish a primary breast carcinoma from a metastatic one is important, because the therapeutic plan and outcome for these two types of cancer are quite different. PMID:20948923

  5. Dietary energy restriction reduces high-fat diet-enhanced metastasis of Lewis lung carcinoma in mice

    USDA-ARS?s Scientific Manuscript database

    Obesity is a risk factor for cancer. The objective of this study was to determine the effects of dietary energy restriction on high-fat diet-enhanced spontaneous metastasis of Lewis lung carcinoma (LLC) in mice. Male C57BL/6 mice were fed an AIN93G diet or a high-fat diet (16% or 45% of energy fro...

  6. Monocyte chemotactic protein-1 deficiency reduces spontaneous metastasis of Lewis lung carcinoma in mice fed a high-fat diet

    USDA-ARS?s Scientific Manuscript database

    Obesity is a risk factor for cancer. Adipose tissue produces pro-inflammatory adipokines that contribute obesity-related malignant progression. This study investigated the effects of monocyte chemotactic protein-1 (MCP-1) deficiency on pulmonary metastasis of Lewis lung carcinoma (LLC) in male C57...

  7. Effects of dietary fat on spontaneous metastasis of Lewis lung carcinoma and changes in plasma cytokine concentrations in mice

    USDA-ARS?s Scientific Manuscript database

    The present study assessed the effects of dietary fat on spontaneous metastasis of Lewis lung carcinoma in mice. Three-week old male C57BL/6 mice were fed the AIN-93G standard diet or a 45% fat diet (kcal %) for seven weeks before they were subcutaneously injected with 2.5 x 105 viable cells into th...

  8. Beta sitosterol and Daucosterol (phytosterols identified in Grewia tiliaefolia) perturbs cell cycle and induces apoptotic cell death in A549 cells.

    PubMed

    Rajavel, Tamilselvam; Mohankumar, Ramar; Archunan, Govindaraju; Ruckmani, Kandasamy; Devi, Kasi Pandima

    2017-06-13

    Lung cancer is the leading cause of cancer related deaths both in developed and developing countries. Since majority of the existing therapeutic methods harms both normal and malignant cells, a viable alternative is to switch into safe and beneficial traditional medicinal plants. Hence the present study was framed to identify selective anti-lung cancer agents from the medicinal plant Grewia tiliaefolia (GT). Cell viability experiments showed that benzene extract of GT (BGT) leaf effectively inhibited the growth of A549 cells, while being non-toxic to normal human lung L132 and PBMC cells. Ames and comet assays demonstrated that BGT is of non-mutagenic and non-genotoxic nature in untransformed cells. The hematological and histopathological profiles of the in vivo acute and sub-acute toxicity studies demonstrated that BGT is safe and tolerable. Importantly, western blot analysis and Annexin V-FITC staining confirmed that BGT promotes mitochondrial dependent apoptotic cell death in A549 cells by arresting cell cycle at G2/M phase. Bio-assay guided fractionation revealed the presence of phytosteols (β-sitosterol and daucosterol) which significantly inhibited the growth of A549 cells both alone and in combination. This study warrants that these phytosterols in alone or in combination can be considered as safe and potential drug candidates for lung cancer treatment.

  9. PARTICULATE MATTER (PM) INHIBITS NEUROTROPHIN RELEASE FROM A549 CELLS

    EPA Science Inventory

    Several investigations have linked PM exposure to the exacerbation of allergic lung diseases. Many PM effects are mediated by cells within the lung including the airway epithelium, eosinophils, and lymphocytes. These cells also produce neurotophins such as NGF and/or express neur...

  10. Lewis lung carcinoma progression is facilitated by TIG-3 fibroblast cells.

    PubMed

    Yamauchi, Yoshikane; Izumi, Yotaro; Asakura, Keisuke; Kawai, Kenji; Wakui, Masatoshi; Ohmura, Mitsuyo; Suematsu, Makoto; Nomori, Hiroaki

    2013-09-01

    The interactions of tumor cells with stromal fibroblasts influence tumor biology, but the exact mechanisms involved are still unclear. In the present study, we evaluated the effects of a human lung fibroblast cell line, TIG-3, on Lewis lung carcinoma (LLC) cells both in vitro and in vivo. LLC and TIG-3 cells were co-cultured/co-implanted in vitro and in vivo. Cell invasion was assayed. Local tumor growth, as well as lung metastasis, were evaluated after subcutaneous cell co-implantation into NOD/SCID/γ-null (NOG) mice. LLC, and TIG-3 cells were pre-treated with either SB431542, a small molecule TGF-β receptor antagonist, or siRNA for transforming growth factor (TGF)-β before co-culture or co-implantation, and the effects of pre-treatments were compared both in cell culture and in mice. Subcutaneous LLC tumor growth (L group) in NOG mice was significantly increased by co-implantation of TIG-3 cells (L+T group) at four weeks. The number of macroscopic lung metastases was also significantly increased in the L+T group in comparison to the L group. In vitro cell invasion was significantly increased in the L+T group in comparison to the L group. In vitro expression of phosphorylated-SMAD3 was significantly increased in the L+T group in comparison to the L group. Furthermore, pre-treatment with either SB431542 or siRNA for TGF-β reduced the invasiveness both in culture and in mice. This study suggested that in vitro as well as in vivo progression of LLC was facilitated by co-culture/co-implantation with TIG-3 cells, and that this process was at least in part dependent on TGF-β-mediated interactions.

  11. Effects of quercetin on CDK4 mRNA and protein expression in A549 cells infected by H1N1

    PubMed Central

    WAN, QIAOFENG; WANG, HAO; LIN, YUAN; GU, LIGANG; HAN, MEI; YANG, ZHIWEI; ZHANG, YANLI; MA, RUI; WANG, LI; WANG, ZHISHENG

    2013-01-01

    This study was conducted to investigate the effects of quercetin on the expression of cyclin-dependent kinase (CDK4) mRNA and protein in A549 lung epithelial tumor cells infected by H1N1. First, the Thiazolyl Blue Tetrazolium Bromide (MTT) method was used to determine H1N1 virulence, quercetin cytotoxicity and inhibition of the cytopathic effect of H1N1 on A549 cells by quercetin. Subsequently, 100 TCID50 H1N1 was used to infect A549 cells for 2 h prior to culture in maintenance media containing 10 mg/l quercetin. After 4, 12, 24 and 48 h of culture, the cells were collected and total RNA and protein were extracted. Fluorescent quantitative polymerase chain reaction and western blot analysis were then performed to assess the expression of CDK4 mRNA and protein. The experiment demonstrated that the TCID50 of H1N1 in A549 cells was 10−4.75, the maximum non-toxic concentration of quercetin in A549 cells was 30–60 mg/l and the minimum effective concentration of quercetin for the inhibition of the H1N1 cytopathic effect on A549 cells was 10 mg/l. The results indicated that quercetin may significantly inhibit CDK4 mRNA and protein overexpression caused by H1N1 within 4–48 h. In conclusion, quercetin may protect against H1N1 infection by effectively reducing the mRNA and protein expression of CDK4 caused by H1N1 infection. PMID:24649026

  12. Myocyte enhancer factor 2D provides a cross-talk between chronic inflammation and lung cancer.

    PubMed

    Zhu, Hai-Xing; Shi, Lin; Zhang, Yong; Zhu, Yi-Chun; Bai, Chun-Xue; Wang, Xiang-Dong; Zhou, Jie-Bai

    2017-03-24

    Lung cancer is the leading cause of cancer-related morbidity and mortality worldwide. Patients with chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD), are exposed to a higher risk of developing lung cancer. Chronic inflammation may play an important role in the lung carcinogenesis among those patients. The present study aimed at identifying candidate biomarker predicting lung cancer risk among patients with chronic respiratory diseases. We applied clinical bioinformatics tools to analyze different gene profile datasets with a special focus on screening the potential biomarker during chronic inflammation-lung cancer transition. Then we adopted an in vitro model based on LPS-challenged A549 cells to validate the biomarker through RNA-sequencing, quantitative real time polymerase chain reaction, and western blot analysis. Bioinformatics analyses of the 16 enrolled GSE datasets from Gene Expression Omnibus online database showed myocyte enhancer factor 2D (MEF2D) level significantly increased in COPD patients coexisting non-small-cell lung carcinoma (NSCLC). Inflammation challenge increased MEF2D expression in NSCLC cell line A549, associated with the severity of inflammation. Extracellular signal-regulated protein kinase inhibition could reverse the up-regulation of MEF2D in inflammation-activated A549. MEF2D played a critical role in NSCLC cell bio-behaviors, including proliferation, differentiation, and movement. Inflammatory conditions led to increased MEF2D expression, which might further contribute to the development of lung cancer through influencing cancer microenvironment and cell bio-behaviors. MEF2D might be a potential biomarker during chronic inflammation-lung cancer transition, predicting the risk of lung cancer among patients with chronic respiratory diseases.

  13. The Production of lnterleukin-1 Receptor Antagonist by Human Bronchogenic Carcinoma

    PubMed Central

    Smith, Daniel R.; Kunkel, Steven L.; Standiford, Theodore J.; Chensue, Stephen W.; Rolfe, Mark W.; Orringer, Mark B.; Whyte, Richard I.; Burdick, Marie D.; Danforth, Jean M.; Gilbert, Andrew R.; Strieter, Robert M.

    1993-01-01

    Bronchogenic carcinoma displays an aggressive clinical course that may reflect a capacity to evade host defenses. We postulated that tumors may elaborate interleukin-1 receptor antagonist protein (IRAP) to escape host interleukin-1-dependent responses. Homogenates of human bronchogenic lung tumors demonstrated significant increases of IRAP compared with normal lung tissue controls (n = 48). There was no significant difference in interleukin-1 β levels between tumor and normal lung tissue. Immunohistochemical staining localized IRAP to tumor cells. Semiquantitative pathological analysis demonstrated a modest inflammatory cell infiltrate with qualitative differences between tumors of different histology. Western blot analysis of tumor homogenates demonstrated several molecular weight forms of IRAP. Finally, antigenic IRAP was detected in supernatants of the human bronchogenic carcinoma cell line (A549) maintained in vitro. These findings illustrate the capacity of bronchogenic tumors to produce and secrete IRAP that may be important in tumor evasion of host defenses. ImagesFigure 3Figure 4 PMID:8362978

  14. Integration of chemotherapy and radiation therapy for small cell carcinoma of the lung

    SciTech Connect

    Holoye, P.Y.; Libnoch, J.A.; Byhardt, R.W.

    1982-09-01

    Two chemotherapy trials using cyclophosphamide, doxorubicine hydrochloride and high-dose vincristine sulfate with or without methotrexate have induced a 93% incidence of complete remission in limited disease presentation of small cell bronchogenic carcinoma of the lung and 39% incidence in extensive disease. The first without consolidation radiotherapy had a local failure rate of 65%, which dropped to 17% with consolidation radiotherapy to the primary and mediastinum. Prophylactic whole brain radiotherapy prevented local recurrence in 98% of evaluable patients. One carcinomatous meningitis and 5 intraspinal recurrences were noted among the 38 patients in the CAV-M trial. We conclude that high-dose vincristine sulfatemore » is associated with an improved incidence of complete remission; that prophylactic whole brain radiotherapy has been highly successful; that prevention of intraspinal recurrence will necessitate the use of craniospinal axis radiation therapy and consolidation radiation therapy improves local control of primary and mediastinum.« less

  15. Prospective study of etoposide scheduling in combination chemotherapy for limited disease small cell lung carcinoma.

    PubMed

    Abratt, R P; Willcox, P A; de Groot, M; Goodman, H T; Jansen, E R; Salton, D G

    1991-01-01

    78 patients with limited disease small cell lung carcinoma (SCLC) were entered into a prospective randomised study of two combination regimens (AVE-5 and AVE-1) that differed only in the scheduling of etoposide. Patients in the AVE-5 arm received etoposide intravenously 60 mg/m2 on day 1 and orally 120 mg/m2 on days 2-5 of each cycle. Patients in the AVE-1 arm received etoposide 300 mg/m2 intravenously on day 1. Patients in both arms received doxorubicin and vincristine on day 1 of each cycle. The complete (53% vs. 26%) and the overall (75% vs. 52%) response rates were significantly higher in the AVE-5 arm. Median survival was also increased from 11 to 14 months in this arm. Toxicity was low and similar in both groups. The daily administration of etoposide in low toxicity combination therapy for SCLC is important. This can be conveniently achieved by using etoposide orally.

  16. Interactions of ozone and antineoplastic drugs on rat lung fibroblasts and Walker rat carcinoma cells

    SciTech Connect

    Wenzel, D.G.; Morgan, D.L.

    Cultured rat lung fibroblasts (F-cells) and Walker rat carcinoma cells (WRC-cells) labeled with /sup 51/Cr were exposed to the following antitumor drugs alone or with O/sub 3/: carmustine (BCNU), doxorubicin (Dox), cisplatin (CPt), mitomycin C (Mit C) or vitamin K/sub 3/ (Vit K). Release of /sup 51/Cr (cell injury) was greater for F-cells than WRC-cells with any single treatment. Pretreatment with any drug (400 microM), except for Vit K with WRC-cells, did not significantly increase O/sub 3/-induced loss of /sup 51/Cr. Co-exposure of F-cells to drugs and O/sub 3/ resulted in a marked potentiation of O/sub 3/-induced injury with Vitmore » K, and an inhibition with Dox.« less

  17. Fructose-Bisphosphate Aldolase A Is a Potential Metastasis-Associated Marker of Lung Squamous Cell Carcinoma and Promotes Lung Cell Tumorigenesis and Migration

    PubMed Central

    Hao, Lihong; Song, Yang; Wang, Lan; Gong, Linlin; Liu, Lu; Qi, Xiaoyu; Hou, Zhaoyuan; Shao, Shujuan

    2014-01-01

    Fructose-bisphosphate aldolase A (ALDOA) is a key enzyme in glycolysis and is responsible for catalyzing the reversible conversion of fructose-1,6-bisphosphate to glyceraldehydes-3-phosphate and dihydroxyacetone phosphate. ALDOA contributes to various cellular functions such as muscle maintenance, regulation of cell shape and mobility, striated muscle contraction, actin filament organization and ATP biosynthetic process. Here, we reported that ALDOA is a highly expressed in lung squamous cell carcinoma (LSCC) and its expression level is correlated with LSCC metastasis, grades, differentiation status and poor prognosis. Depletion of ALDOA expression in the lung squamous carcinoma NCI-H520 cells reduces the capabilities of cell motility and tumorigenesis. These data suggest that ALDOA could be a potential marker for LSCC metastasis and a therapeutic target for drug development. PMID:24465716

  18. Fructose-bisphosphate aldolase a is a potential metastasis-associated marker of lung squamous cell carcinoma and promotes lung cell tumorigenesis and migration.

    PubMed

    Du, Sha; Guan, Zhuzhu; Hao, Lihong; Song, Yang; Wang, Lan; Gong, Linlin; Liu, Lu; Qi, Xiaoyu; Hou, Zhaoyuan; Shao, Shujuan

    2014-01-01

    Fructose-bisphosphate aldolase A (ALDOA) is a key enzyme in glycolysis and is responsible for catalyzing the reversible conversion of fructose-1,6-bisphosphate to glyceraldehydes-3-phosphate and dihydroxyacetone phosphate. ALDOA contributes to various cellular functions such as muscle maintenance, regulation of cell shape and mobility, striated muscle contraction, actin filament organization and ATP biosynthetic process. Here, we reported that ALDOA is a highly expressed in lung squamous cell carcinoma (LSCC) and its expression level is correlated with LSCC metastasis, grades, differentiation status and poor prognosis. Depletion of ALDOA expression in the lung squamous carcinoma NCI-H520 cells reduces the capabilities of cell motility and tumorigenesis. These data suggest that ALDOA could be a potential marker for LSCC metastasis and a therapeutic target for drug development.

  19. Expression of vascular endothelial growth factor mRNA in non-small-cell lung carcinomas

    PubMed Central

    Fontanini, G; Boldrini, L; Chinè, S; Pisaturo, F; Basolo, F; Calcinai, A; Lucchi, M; Mussi, A; Angeletti, C A; Bevilacqua, G

    1999-01-01

    The vascular endothelial growth factor (VEGF) has been shown to be strictly related to vascular permeability and endothelial cell growth under physiological and pathological conditions. In tumour development and progression, VEGF plays a pivotal role in the development of the tumoral vascular network, and useful information in the progression of human cancer can be obtained by analysing the vascular endothelial growth factor expression of the tumours. In this study, we investigated the vascular endothelial growth factor transcript expression in non-small-cell lung carcinomas to evaluate the significance of this factor in a group of cancers in which the vascular pattern has been shown to significantly affect progression. Surgical samples of 42 patients with NSCLC were studied using reverse transcription polymerase chain reaction (PCR) analysis and in situ hybridization. Thirty-three out of 42 cases (78.6%) showed VEGF transcript expression predominantly as transcripts for the secretory forms of VEGF (isoforms 121 and 165). In situ hybridization, performed on 24 out of 42 samples, showed that the VEGF transcript expression was in several cases present in the cytoplasm both of neoplastic and normal cells, even if the VEGF mRNA was less expressed in the corresponding non-tumoral part. The VEGF 121 expression was associated with hilar and/or mediastinal nodal involvement (P = 0.02), and, taken together, the VEGF isoforms were shown to significantly influence overall (P = 0.02) and disease-free survival (P = 0.03). As a regulator of tumour angiogenesis, VEGF may represent a useful indicator of progression and poor prognosis in non-small-cell lung carcinomas. © 1999 Cancer Research Campaign PMID:9888482

  20. The pitfalls in cytology diagnosis of poorly differentiated neuroendocrine carcinoma of lung and their treatment response.

    PubMed

    Saha, Debarshi; Kumar, Ankit; Banerjee, Sourjya; Nirupama, M; Sridevi, H B; Garg, Priya; Lobo, Flora D

    2017-01-01

    Lung is the most common site of small cell carcinoma (SCLC) - a poorly differentiated neuroendocrine carcinoma (PDNEC). SCLC comprises 15-20% of the invasive cancers of the lung. This study was conducted to appraise the accuracy and pitfalls of the diagnosis of PDNEC on cytology along with treatment responses if available. Retrospective study for 2 years yielded 21 cases on cytology. Slides of fine-needle aspiration of lymph nodes, the tumor, bronchial brush, and bronchoalveolar lavage specimens were used. The histological correlation was obtained as were treatment responses. Eighteen SCLCs were confirmed on review. Of these, 13 initial reports were concordant and five, discordant. The rest three cases which initially reported as SCLC were found to be negative (2) and combined SCLC (1). One SCLC with concordant initial and reviewed diagnoses failed to confirm on histopathology. The patients, all heavy smokers, were predominantly males in the seventh to eighth decade age group. The sensitivity and specificity of reviewed diagnoses were better than that of the original. The difference between histopathology and cytology diagnoses (reviewed and original) was statistically insignificant. All patients were categorized as "extensive stage" by positron emission tomography-computerized tomography, and five were treated with etoposide and cisplatin with/without radiotherapy. Age group (61-70) and gender (males) distribution were statistically significant. Intermediate variants of SCLC may be misdiagnosed as adenocarcinoma. Similarly, combined SCLC may be missed on cytology if the observer does not sustain a high index of suspicion. Unequivocal cytology diagnosis opposed to negative histopathology report demands repeat biopsy.

  1. The influence of Hurricanes Katrina and Rita on the inflammatory cytokine response and protein expression in A549 cells exposed to PM2.5 collected in the Baton Rouge-Port Allen industrial corridor of Southeastern Louisiana in 2005.

    PubMed

    Bourgeois, Brian; Owens, John Wesley

    2014-03-01

    Hurricanes Katrina and Rita hit the coast of Louisiana in 2005 and killed more than 2000 people. The two storms resulted in a significant spike in particulate matter (PM2.5) levels across the state of Louisiana. This report focuses on PM2.5 samples collected in 2005 from two monitoring sites in the neighboring cities of Baton Rouge and Port Allen, Louisiana. Inductively coupled plasma (ICP) revealed the presence of PM2.5-adsorbed representative and Fenton-active transition metals. Gas chromatography/mass spectrometry (GC-MS) analyses revealed the presence of 23 PAH compounds. Endotoxins were also detected. Metals and endotoxins were extracted with water. PAH were extracted with dichloromethane. In order to assess cytotoxicity, aqueous PM2.5 extracts were introduced to A549 Human Epithelial Lung Carcinoma Cells. Results indicated decreased cell viability in a dose-dependent manner, with an LC50 of 235 µg/ml and 250 µg/ml, respectively, for the two sites featured here. Endotoxins alone were not cytotoxic. The concentration of reactive oxygen species (ROS) and released LDH activity increased following exposure of A549 cells to aqueous PM2.5 extracts. Fluorescence microscopy revealed apoptotic and necrotic cell death mechanisms. ELISA revealed increased secretion of primary pro-inflammatory cytokines, IL-6, IL-8, and TNF-α. Global PCR gene expression revealed up-regulation of proteins associated with the cytokine storm; e.g. interleukins, chemokines, and TNF-α. Global antibody microarray was consistent with an inflammatory response, with up-regulation of cytokines involved in the down-field activation of the caspase cascade and kinase pathways. The up-regulation of metal-redox sensitive transcription factors, NF-κβ and AP-1, is consistent with a cell death mechanism initiated by Fenton-active transition metal redox catalysis.

  2. Oleiferoside W from the roots of Camellia oleifera C. Abel, inducing cell cycle arrest and apoptosis in A549 cells.

    PubMed

    Wu, Jiang-Ping; Kang, Nai-Xin; Zhang, Mi-Ya; Gao, Hong-Wei; Li, Xiao-Ran; Liu, Yan-Li; Xu, Qiong-Ming; Yang, Shi-Lin

    2017-07-06

    Camellia oleifera C. Abel has been widely cultivated in China, and a group of bioactive constituents such as triterpeniod saponin have been isolated from C. oleifera C. Abel. In the current study, a new triterpeniod saponin was isolated from the EtOH extract of the roots of C. oleifera C. Abel, named as oleiferoside W, and the cytotoxic properties of oleiferoside W were evaluated in non-small cell lung cancer A549 cells. At the same time the inducing apoptosis, the depolarization of mitochondrial membrane potential (Δψ), the up-regulation of related pro-apoptotic proteins, such as cleaved-PARP, cleaved-caspase-3, and the down-regulation of anti-apoptotic marker Bcl-2/Bax were measured on oleiferoside W. Furthermore, the function, inducing the generation of reactive oxygen species (ROS) and apoptosis, of oleiferoside W could be reversed by N-acetylcysteine (NAC). In conclusion, our findings showed that oleiferoside W induced apoptosis involving mitochondrial pathway and increasing intracellular ROS production in the A549 cells, suggesting that oleiferoside W may have the possibility to be a useful anticancer agent for therapy in lung cancer.

  3. Synchronous diffuse large B-cell lymphoma of the stomach and small cell lung carcinoma: A case report.

    PubMed

    Li, Jia; Zhou, Changli; Liu, Wanqi; Sun, Xun; Meng, Xiangwei

    2017-12-01

    The synchronous occurrence of lung cancer in patients with gastric neoplasms is relatively uncommon, especially the cases of synchronous coexistence of small cell lung carcinoma and diffuse large B-cell lymphoma of the stomach. We encountered a case of synchronous primary small cell lung carcinoma and diffuse large B-cell lymphoma of the stomach. A 63-year-old patient with a 7.5 × 5.09 cm mass in the superior lobe of the right lung diagnosed with small cell lung cancer and synchronous diffuse large B-cell lymphoma of the stomach. The diseases were diagnosed by the pathological biopsy and immunohistochemical methods. As the patient received CHOP chemotherapy, pulmonary function deterioraed. Etoposide was added to the chemotherapy. However, after the first treatment, chest computed tomography showed that the mass in the superior lobe of the right lung had increased to 8.5 × 5.2 cm. This report draws attention to the fact that the treatment of synchronous tumors is a challenge. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  4. Developing a radiomics framework for classifying non-small cell lung carcinoma subtypes

    NASA Astrophysics Data System (ADS)

    Yu, Dongdong; Zang, Yali; Dong, Di; Zhou, Mu; Gevaert, Olivier; Fang, Mengjie; Shi, Jingyun; Tian, Jie

    2017-03-01

    Patient-targeted treatment of non-small cell lung carcinoma (NSCLC) has been well documented according to the histologic subtypes over the past decade. In parallel, recent development of quantitative image biomarkers has recently been highlighted as important diagnostic tools to facilitate histological subtype classification. In this study, we present a radiomics analysis that classifies the adenocarcinoma (ADC) and squamous cell carcinoma (SqCC). We extract 52-dimensional, CT-based features (7 statistical features and 45 image texture features) to represent each nodule. We evaluate our approach on a clinical dataset including 324 ADCs and 110 SqCCs patients with CT image scans. Classification of these features is performed with four different machine-learning classifiers including Support Vector Machines with Radial Basis Function kernel (RBF-SVM), Random forest (RF), K-nearest neighbor (KNN), and RUSBoost algorithms. To improve the classifiers' performance, optimal feature subset is selected from the original feature set by using an iterative forward inclusion and backward eliminating algorithm. Extensive experimental results demonstrate that radiomics features achieve encouraging classification results on both complete feature set (AUC=0.89) and optimal feature subset (AUC=0.91).

  5. Decursin and decursinol from Angelica gigas inhibit the lung metastasis of murine colon carcinoma.

    PubMed

    Son, Seung Hwa; Park, Kwang-Kyun; Park, Sun Kyu; Kim, Young Choong; Kim, Yeong Shik; Lee, Sang-Kook; Chung, Won-Yoon

    2011-07-01

    The principal objective of the present study was to evaluate the antimetastatic activity of decursin and decursinol isolated from Angelica gigas. Decursin and decursinol inhibited the proliferation and invasion of CT-26 colon carcinoma cells. The expressions of matrix metalloproteinase (MMP)-2 and MMP-9 in cells and the activities in the culture medium were also reduced by decursin and decursinol treatment. In CT-26 cells, the extracellular signal-regulated kinase (ERK) inhibitor inhibited cell proliferation, invasion and MMP-9 expression, and the c-Jun N-terminal kinase (JNK) inhibitor suppressed the expression of both MMPs, as well as cell proliferation and cell invasion. The phosphatidylinositol-3 kinase (PI3K) inhibitor reduced only the expression of MMP-2. In addition, the invasion of CT-26 cells was inhibited by the treatment with anti-MMP-9 antibody, rather than anti-MMP-2 antibody. These results indicate that MMP-9 expression via ERK and JNK plays a critical role for the invasion of CT26 cells. Decursin and decursinol downregulated ERK and JNK phosphorylation. Moreover, oral administration of decursin and decursinol reduced the formation of tumor nodules in the lungs and the increase in lung weight caused by CT-26 metastases. Therefore, both decursin and decursinol may be beneficial antimetastatic agents, targeting MMPs and their upstream signaling molecules. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Minnelide: A Novel Therapeutic That Promotes Apoptosis in Non-Small Cell Lung Carcinoma In Vivo

    PubMed Central

    Rousalova, Ilona; Banerjee, Sulagna; Sangwan, Veena; Evenson, Kristen; McCauley, Joel A.; Kratzke, Robert; Vickers, Selwyn M.; Saluja, Ashok; D’Cunha, Jonathan

    2013-01-01

    Background Minnelide, a pro-drug of triptolide, has recently emerged as a potent anticancer agent. The precise mechanisms of its cytotoxic effects remain unclear. Methods Cell viability was studied using CCK8 assay. Cell proliferation was measured real-time on cultured cells using Electric Cell Substrate Impedence Sensing (ECIS). Apoptosis was assayed by Caspase activity on cultured lung cancer cells and TUNEL staining on tissue sections. Expression of pro-survival and anti-apoptotic genes (HSP70, BIRC5, BIRC4, BIRC2, UACA, APAF-1) was estimated by qRTPCR. Effect of Minnelide on proliferative cells in the tissue was estimated by Ki-67 staining of animal tissue sections. Results In this study, we investigated in vitro and in vivo antitumor effects of triptolide/Minnelide in non-small cell lung carcinoma (NSCLC). Triptolide/Minnelide exhibited anti-proliferative effects and induced apoptosis in NSCLC cell lines and NSCLC mouse models. Triptolide/Minnelide significantly down-regulated the expression of pro-survival and anti-apoptotic genes (HSP70, BIRC5, BIRC4, BIRC2, UACA) and up-regulated pro-apoptotic APAF-1 gene, in part, via attenuating the NF-κB signaling activity. Conclusion In conclusion, our results provide supporting mechanistic evidence for Minnelide as a potential in NSCLC. PMID:24143232

  7. Minnelide: a novel therapeutic that promotes apoptosis in non-small cell lung carcinoma in vivo.

    PubMed

    Rousalova, Ilona; Banerjee, Sulagna; Sangwan, Veena; Evenson, Kristen; McCauley, Joel A; Kratzke, Robert; Vickers, Selwyn M; Saluja, Ashok; D'Cunha, Jonathan

    2013-01-01

    Minnelide, a pro-drug of triptolide, has recently emerged as a potent anticancer agent. The precise mechanisms of its cytotoxic effects remain unclear. Cell viability was studied using CCK8 assay. Cell proliferation was measured real-time on cultured cells using Electric Cell Substrate Impedence Sensing (ECIS). Apoptosis was assayed by Caspase activity on cultured lung cancer cells and TUNEL staining on tissue sections. Expression of pro-survival and anti-apoptotic genes (HSP70, BIRC5, BIRC4, BIRC2, UACA, APAF-1) was estimated by qRTPCR. Effect of Minnelide on proliferative cells in the tissue was estimated by Ki-67 staining of animal tissue sections. In this study, we investigated in vitro and in vivo antitumor effects of triptolide/Minnelide in non-small cell lung carcinoma (NSCLC). Triptolide/Minnelide exhibited anti-proliferative effects and induced apoptosis in NSCLC cell lines and NSCLC mouse models. Triptolide/Minnelide significantly down-regulated the expression of pro-survival and anti-apoptotic genes (HSP70, BIRC5, BIRC4, BIRC2, UACA) and up-regulated pro-apoptotic APAF-1 gene, in part, via attenuating the NF-κB signaling activity. In conclusion, our results provide supporting mechanistic evidence for Minnelide as a potential in NSCLC.

  8. Tissue spray ionization mass spectrometry for rapid recognition of human lung squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Wei, Yiping; Chen, Liru; Zhou, Wei; Chingin, Konstantin; Ouyang, Yongzhong; Zhu, Tenggao; Wen, Hua; Ding, Jianhua; Xu, Jianjun; Chen, Huanwen

    2015-05-01

    Tissue spray ionization mass spectrometry (TSI-MS) directly on small tissue samples has been shown to provide highly specific molecular information. In this study, we apply this method to the analysis of 38 pairs of human lung squamous cell carcinoma tissue (cancer) and adjacent normal lung tissue (normal). The main components of pulmonary surfactants, dipalmitoyl phosphatidylcholine (DPPC, m/z 757.47), phosphatidylcholine (POPC, m/z 782.52), oleoyl phosphatidylcholine (DOPC, m/z 808.49), and arachidonic acid stearoyl phosphatidylcholine (SAPC, m/z 832.43), were identified using high-resolution tandem mass spectrometry. Monte Carlo sampling partial least squares linear discriminant analysis (PLS-LDA) was used to distinguish full-mass-range mass spectra of cancer samples from the mass spectra of normal tissues. With 5 principal components and 30 - 40 Monte Carlo samplings, the accuracy of cancer identification in matched tissue samples reached 94.42%. Classification of a tissue sample required less than 1 min, which is much faster than the analysis of frozen sections. The rapid, in situ diagnosis with minimal sample consumption provided by TSI-MS is advantageous for surgeons. TSI-MS allows them to make more informed decisions during surgery.

  9. CXCR6 expression in non-small cell lung carcinoma supports metastatic process via modulating metalloproteinases.

    PubMed

    Mir, Hina; Singh, Rajesh; Kloecker, Goetz H; Lillard, James W; Singh, Shailesh

    2015-04-30

    Lung cancer (LuCa) is the leading cause of cancer-related deaths worldwide regardless of the gender. High mortality associated with LuCa is due to metastasis, molecular mechanisms of which are yet to be defined. Here, we present evidence that chemokine receptor CXCR6 and its only natural ligand, CXCL16, are significantly expressed by non-small cell lung cancer (NSCLC) and are involved in the pathobiology of LuCa. CXCR6 expression was significantly higher in two subtypes of NSCLC (adenocarcinomas-ACs and squamous cell carcinoma-SCCs) as compared to non-neoplastic tissue. Additionally, serum CXCL16 was significantly elevated in LuCa cases as compared to healthy controls. Similar to CXCR6 tissue expression, serum level of CXCL16 in AC patients was significantly higher than SCC patients. Biological significance of this axis was validated using SCC and AC cell lines. Expression of CXCR6 was higher in AC cells, which also showed higher migratory and invasive potential than SCC. Differences in migratory and invasive potential between AC and SCC were due to differential expression of metalloproteinases following CXCL16 stimulation. Hence, our findings suggest clinical and biological significance of CXCR6/CXCL16 axis in LuCa, which could be used as potential prognostic marker and therapeutic target.

  10. CXCR6 expression in non-small cell lung carcinoma supports metastatic process via modulating metalloproteinases

    PubMed Central

    Mir, Hina; Singh, Rajesh; Kloecker, Goetz H.; Lillard, James W.; Singh, Shailesh

    2015-01-01

    Lung cancer (LuCa) is the leading cause of cancer-related deaths worldwide regardless of the gender. High mortality associated with LuCa is due to metastasis, molecular mechanisms of which are yet to be defined. Here, we present evidence that chemokine receptor CXCR6 and its only natural ligand, CXCL16, are significantly expressed by non-small cell lung cancer (NSCLC) and are involved in the pathobiology of LuCa. CXCR6 expression was significantly higher in two subtypes of NSCLC (adenocarcinomas-ACs and squamous cell carcinoma-SCCs) as compared to non-neoplastic tissue. Additionally, serum CXCL16 was significantly elevated in LuCa cases as compared to healthy controls. Similar to CXCR6 tissue expression, serum level of CXCL16 in AC patients was significantly higher than SCC patients. Biological significance of this axis was validated using SCC and AC cell lines. Expression of CXCR6 was higher in AC cells, which also showed higher migratory and invasive potential than SCC. Differences in migratory and invasive potential between AC and SCC were due to differential expression of metalloproteinases following CXCL16 stimulation. Hence, our findings suggest clinical and biological significance of CXCR6/CXCL16 axis in LuCa, which could be used as potential prognostic marker and therapeutic target. PMID:25888629

  11. Antitumor activities of ginseng polysaccharide in C57BL/6 mice with Lewis lung carcinoma.

    PubMed

    Zhou, Xiao; Shi, Huaiyin; Jiang, Gening; Zhou, Yongan; Xu, Jianfang

    2014-12-01

    In the present study, we prepared ginseng polysaccharide (GP) and evaluated its antitumor and immunomodulatory activities in C57BL/6 mice bearing with Lewis lung carcinoma (LLC). Administration of GP (50, 100, and 200 mg/kg) could not only significantly inhibit the growth of transplantable LLC tumor in C57BL/6 mice but also remarkably increase relative weight of spleen and thymus, splenocytes proliferation, and the ratio of CD4(+)/CD8(+) T lymphocyte in peripheral blood in LLC-bearing mice. Furthermore, the serum IL-2 and IFN-γ production and NK cytolytic activity were also prompted in LLC-bearing mice in response to GP treatment at three doses. Additionally, GP showed no side effects such as weight loss in body weight and internal organs (lung, liver, kidney, and heart) as well as inactivity during the experiment. Therefore, GP might be conveniently exploited to be good immune-stimulating modifiers and had the potential value for tumor therapy.

  12. Determination of safe margin in the surgical pathologic specimens of non-small cell carcinoma of the lung.

    PubMed

    Feizi, Iraj; Sokouti, Mohsen; Golzari, Samad E J; Gojazede, Morteza; Farahnak, Mohammad Reza; Hashemzadeh, Shahriar; Rahimi-Rad, Mohammad Hossein

    2013-01-01

    Local recurrences of the tumor at the surgical margin are serious problems in pulmonary resections for lung cancer. The aim of this study is to determine the involved margins and safe distances of the resection sites from tumor for prevention of local recurrences. In this prospective study, 66 patients operated for non-small cell lung carcinoma (NSCLC) from Jan 2006 to Sep 2008 were evaluated. After performing pulmonary resections, multiple biopsies were taken up from 5 mm (A), 10 mm (B), 15 mm (C), and 20 mm (D) distance from tumor. The specimens were studied histopathologically. From a total of66 patients with NSCLC admitted to our referral hospital, 25 (38%) had adenocarcinoma, 18 (27.3%) squamous cell carcinoma, 5 (7.5%) large cell carcinoma, 4 (6%) bronchoalveolar cell carcinoma, 4 (6%) adenoid cystic carcinoma, 3 (4.6%) malignant carcinoid tumor and 7 (10.6%) had metastasis. The most common symptoms were dyspnea and cough. Histopathologically tumor positive margins were found in 84.8% (A), 10.6% (B), 4.5% (C), and 0% (D). There was a significant statistically difference between tumor involvement at distances 5 mm (A) versus 10-20 mm (B-D) (P <0.001). A 20 mm distance from the gross tumor is considered as a safe surgical margin in any type of malignant pulmonary resections for prevention of local surgical recurrences if there was no pathologic examination before surgery.

  13. [A case of neuroendocrine cell carcinoma of the esophagus with lung metastases successfully treated with CPT-11/CDDP].

    PubMed

    Takeoka, Tomohira; Hirao, Motohiro; Fujitani, Kazumasa; Yamamoto, Kazuyoshi; Asaoka, Tadafumi; Ikenaga, Masakazu; Miyamoto, Atsushi; Ikeda, Masataka; Nakamori, Shoji; Sekimoto, Mitsugu

    2013-11-01

    A 70-year-old man presented with dysphagia to another institution and was referred to our hospital. We diagnosed the patient with primary neuroendocrine cell carcinoma and squamous cell carcinoma of the esophagus. Following 2 courses of CDDP+5-FU+ADM combination neoadjuvant chemotherapy, the primary tumor had reduced in size. Thereafter, we performed subtotal esophagectomy by right thoracotomy, retrosternal gastric tube reconstruction, and 2-field lymph node dissection. Computed tomography scan 3 months after the surgery revealed lung metastasis. He received CPT-11+CDDP chemotherapy, and the disease was diagnosed as cCR. At present, he is alive without any evidence of recurrence 12 months after the surgery.

  14. Perfluorocarbon reduces cell damage from blast injury by inhibiting signal paths of NF-κB, MAPK and Bcl-2/Bax signaling pathway in A549 cells

    PubMed Central

    Li, Huaidong; Li, Chunsun; Yang, Zhen; Li, Yanqin; She, Danyang; Cao, Lu; Wang, Wenjie; Liu, Changlin; Chen, Liangan

    2017-01-01

    Background and objective Blast lung injury is a common type of blast injury and has very high mortality. Therefore, research to identify medical therapies for blast injury is important. Perfluorocarbon (PFC) is used to improve gas exchange in diseased lungs and has anti-inflammatory functions in vitro and in vivo. The aim of this study was to determine whether PFC reduces damage to A549 cells caused by blast injury and to elucidate its possible mechanisms of action. Study design and methods A549 alveolar epithelial cells exposed to blast waves were treated with and without PFC. Morphological changes and apoptosis of A549 cells were recorded. PCR and enzyme-linked immunosorbent assay (ELISA) were used to measure the mRNA or protein levels of IL-1β, IL-6 and TNF-α. Malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity levels were detected. Western blot was used to quantify the expression of NF-κB, Bax, Bcl-2, cleaved caspase-3 and MAPK cell signaling proteins. Results A549 cells exposed to blast wave shrank, with less cell-cell contact. The morphological change of A549 cells exposed to blast waves were alleviated by PFC. PFC significantly inhibited the apoptosis of A549 cells exposed to blast waves. IL-1β, IL-6 and TNF-α cytokine and mRNA expression levels were significantly inhibited by PFC. PFC significantly increased MDA levels and decreased SOD activity levels. Further studies indicated that NF-κB, Bax, caspase-3, phospho-p38, phosphor-ERK and phosphor-JNK proteins were also suppressed by PFC. The quantity of Bcl-2 protein was increased by PFC. Conclusion Our research showed that PFC reduced A549 cell damage caused by blast injury. The potential mechanism may be associated with the following signaling pathways: 1) the signaling pathways of NF-κB and MAPK, which inhibit inflammation and reactive oxygen species (ROS); and 2) the signaling pathways of Bcl-2/Bax and caspase-3, which inhibit apoptosis. PMID:28323898

  15. Detection of human papillomaviruses type 16, 18 and 33 in bronchial aspirates of lung carcinoma patients by polymerase chain reaction: a study of 84 cases in Croatia.

    PubMed

    Branica, Bozica Vrabec; Smojver-Jezek, Silvana; Juros, Zrinka; Grgić, Sandra; Srpak, Nives; Mitrecić, Dinko; Gajović, Srećko

    2010-03-01

    Besides its well-known role in cervical carcinoma, HPV is also suggested to be involved in lung cancer development. A number of authors have been investigating the presence of HPV in histological materials. We used routine bronchial aspirates from 84 patients with lung carcinoma for DNA extraction and then performed polymerase chain reaction for high-risk HPV types 16, 18 and 33. The results were compared to those obtained from buccal and eyelid mucosa. Only three patients were positive for HPV in bronchial aspirates: one for HPV 16 type, one for HPV 18 type, and one for HPV 33. Our data indicated the low prevalence of HPV in patients with lung carcinomas in Croatia, therefore it seems unlikely that HPV contributes to the development of lung carcinomas in this region.

  16. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT

    PubMed Central

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-01-01

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway. PMID:26177797

  17. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT

    NASA Astrophysics Data System (ADS)

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-07-01

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway.

  18. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT.

    PubMed

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-07-16

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway.

  19. Anacardic acid, a histone acetyltransferase inhibitor, modulates LPS-induced IL-8 expression in a human alveolar epithelial cell line A549

    PubMed Central

    Takizawa, Hajime

    2013-01-01

    Objective and design: The histone acetylation processes, which are believed to play a critical role in the regulation of many inflammatory genes, are reversible and regulated by histone acetyltransferases (HATs), which promote acetylation, and histone deacetylases (HDACs), which promote deacetylation. We studied the effects of lipopolysaccharide (LPS) on histone acetylation and its role in the regulation of interleukin (IL)-8 expression.  Material: A human alveolar epithelial cell line A549 was used in vitro. Methods: Histone H4 acetylation at the IL-8 promoter region was assessed by a chromatin immunoprecipitation (ChIP) assay. The expression and production of IL-8 were evaluated by quantitative polymerase chain reaction and specific immunoassay. Effects of a HDAC inhibitor, trichostatin A (TSA), and a HAT inhibitor, anacardic acid, were assessed.  Results: Escherichia coli-derived LPS showed a dose- and time-dependent stimulatory effect on IL-8 protein production and mRNA expression in A549 cells in vitro. LPS showed a significant stimulatory effect on histone H4 acetylation at the IL-8 promoter region by ChIP assay. Pretreatment with TSA showed a dose-dependent stimulatory effect on IL-8 release from A549 cells as compared to LPS alone. Conversely, pretreatment with anacardic acid inhibited IL-8 production and expression in A549 cells.  Conclusion: These data suggest that LPS-mediated proinflammatory responses in the lungs might be modulated via changing chromatin remodeling by HAT inhibition. PMID:24627774

  20. Taspine derivative 12k suppressed A549 cell migration through the Wnt/β-catenin and EphrinB2 signaling pathway.

    PubMed

    Dai, Bingling; Ma, Yujiao; Yang, Tianfeng; Wang, Wenjie; Zhang, Yanmin

    2017-03-01

    12k, a taspine derivative, has been demonstrated to have the potent anti-tumor activity in lung cancer and colorectal cancer. The study aims to further explore the underlying mechanisms of 12k on A549 cell migration in vitro. Our data demonstrated that 12k negatively regulated Wnt signaling pathway by suppressing the phosphorylation of LRP5/6, and inhibiting the expression and nuclear translocation of β-catenin. 12k was shown to downregulate MMP3 and MMP7 expression which regulated by β-catenin interacts with TCF/LEF in the nucleus, and effectively impaired the related migration protein expression of MMP2 and MMP9 in A549 cells. In addition, 12k repressed the EphrinB2 and its PDZ protein, impairing the VEGFR2 and VEGFR3 expression in A549 cells, as well as inhibited the downstream of VEGFR2 included PI3K/AKT/mTOR and ERK/MAPK signaling pathways. Taken together, our findings revealed that 12k suppressed migration of A549 cells through the Wnt/β-catenin signaling pathway and EphrinB2 related signaling pathway. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. S0819: Carboplatin and Paclitaxel With or Without Bevacizumab and/or Cetuximab in Treating Patients With Stage IV or Recurrent Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2017-10-03

    Recurrent Large Cell Lung Carcinoma; Recurrent Lung Adenocarcinoma; Recurrent Squamous Cell Lung Carcinoma; Stage IV Large Cell Lung Carcinoma; Stage IV Lung Adenocarcinoma; Stage IV Squamous Cell Lung Carcinoma

  2. Somatic alterations of the serine/threonine kinase LKB1 gene in squamous cell (SCC) and large cell (LCC) lung carcinoma.

    PubMed

    Strazisar, Mojca; Mlakar, Vid; Rott, Tomaz; Glavac, Damjan

    2009-05-01

    Somatic LKB1 serine/threonine kinase alterations are rare in sporadic cancers, with the exception lung adenocarcinoma, but no mutations in squamous cell or large cell primary carcinoma were discovered. We screened the LKB1 gene in 129 primary nonsmall cell lung carcinomas, adjacent healthy lung tissue, and control blood samples. Forty-five percent of nonsmall cell lung tumors harbored either intron or exon alterations. We identified R86G, F354L, Y272Y and three polymorphisms: 290+36G/T, 386+156G/T, and 862+145C/T (novel). R86G (novel) and F354L mutations were found in six squamous cell carcinomas and three large cell cancer carcinomas, but not in the adjacent healthy tissue or controls samples. The F354L mutation was found in advanced squamous cell carcinomas with elevated COX-2 expression, rare P53, and no K-RAS mutation. Results indicate that the LKB1 gene is changed in a certain proportion of nonsmall cell lung tumors, predominately in advanced squamous lung carcinoma. Inactivation of the gene takes place via the C-terminal domain and could be related to mechanisms influencing tumor initiation, differentiation, and metastasis.

  3. Copper doping enhanced the oxidative stress-mediated cytotoxicity of TiO2 nanoparticles in A549 cells.

    PubMed

    Ahmad, J; Siddiqui, M A; Akhtar, M J; Alhadlaq, H A; Alshamsan, A; Khan, S T; Wahab, R; Al-Khedhairy, A A; Al-Salim, A; Musarrat, J; Saquib, Q; Fareed, M; Ahamed, M

    2018-05-01

    Physicochemical properties of titanium dioxide nanoparticles (TiO 2 NPs) can be tuned by doping with metals or nonmetals. Copper (Cu) doping improved the photocatalytic behavior of TiO 2 NPs that can be applied in various fields such as environmental remediation and nanomedicine. However, interaction of Cu-doped TiO 2 NPs with human cells is scarce. This study was designed to explore the role of Cu doping in cytotoxic response of TiO 2 NPs in human lung epithelial (A549) cells. Characterization data demonstrated the presence of both TiO 2 and Cu in Cu-doped TiO 2 NPs with high-quality lattice fringes without any distortion. The size of Cu-doped TiO 2 NPs (24 nm) was lower than pure TiO 2 NPs (30 nm). Biological results showed that both pure and Cu-doped TiO 2 NPs induced cytotoxicity and oxidative stress in a dose-dependent manner. Low mitochondrial membrane potential and higher caspase-3 enzyme (apoptotic markers) activity were also observed in A549 cells exposed to pure and Cu-doped TiO 2 NPs. We further observed that cytotoxicity caused by Cu-doped TiO 2 NPs was higher than pure TiO 2 NPs. Moreover, antioxidant N-acetyl cysteine effectively prevented the reactive oxygen species generation, glutathione depletion, and cell viability reduction caused by Cu-doped TiO 2 NPs. This is the first report showing that Cu-doped TiO 2 NPs induced cytotoxicity and oxidative stress in A549 cells. This study warranted further research to explore the role of Cu doping in toxicity mechanisms of TiO 2 NPs.

  4. Evaluation of the Feasibility of Screening Patients for Early Signs of Lung Carcinoma in Web Search Logs.

    PubMed

    White, Ryen W; Horvitz, Eric

    2017-03-01

    A statistical model that predicts the appearance of strong evidence of a lung carcinoma diagnosis via analysis of large-scale anonymized logs of web search queries from millions of people across the United States. To evaluate the feasibility of screening patients at risk of lung carcinoma via analysis of signals from online search activity. We identified people who issue special queries that provide strong evidence of a recent diagnosis of lung carcinoma. We then considered patterns of symptoms expressed as searches about concerning symptoms over several months prior to the appearance of the landmark web queries. We built statistical classifiers that predict the future appearance of landmark queries based on the search log signals. This was a retrospective log analysis of the online activity of millions of web searchers seeking health-related information online. Of web searchers who queried for symptoms related to lung carcinoma, some (n = 5443 of 4 813 985) later issued queries that provide strong evidence of recent clinical diagnosis of lung carcinoma and are regarded as positive cases in our analysis. Additional evidence on the reliability of these queries as representing clinical diagnoses is based on the significant increase in follow-on searches for treatments and medications for these searchers and on the correlation between lung carcinoma incidence rates and our log-based statistics. The remaining symptom searchers (n = 4 808 542) are regarded as negative cases. Performance of the statistical model for early detection from online search behavior, for different lead times, different sets of signals, and different cohorts of searchers stratified by potential risk. The statistical classifier predicting the future appearance of landmark web queries based on search log signals identified searchers who later input queries consistent with a lung carcinoma diagnosis, with a true-positive rate ranging from 3% to 57% for false-positive rates ranging

  5. [Construction of BAD Lentivirus Vector and Its Effect on Proliferation in A549 Cell Lines].

    PubMed

    Huang, Na; He, Yan-qi; Zhu, Jing; Li, Wei-min

    2015-05-01

    To construct the recombinant lentivirus expressing vector BAD (Bcl-2-associated death protein) gene and to study its effect on A549 cell proliferation. The BAD gene was amplified from plasmid pAV-MCMV-BAD-GFP by PCR. The purified BAD gene fragment was inserted into a lentivirus vector (pLVX-IRES-ZsGreen 1), and the insertion was identified by PCR, restriction endonuclease analysis and DNA sequencing. A549 cells were then transfected with the packaged recombinant lentivirus, and resistant cell clones were selected with flow cytometry. The expression of BAD in A549 cell lines stably transduction with a lentivirus was examined using Western blot. The effect of BAD overexpression on proliferation of A549 cells was evaluated by using CCK-8 kit. Restriction enzyme digestion and DNA sequencing showed that the full-length BAD gene (507 bp) had been successfully subcloned into the lentiviral vector to result in the recombinant vector pLVX-IRES-ZsGreen 1. Monoclonal cell lines BAD-A549 was produced after transfection with the recombinant lentivirus and selected with flow cytometry. Stable expression of BAD protein was verified by Western blot. In vitro, the OD value in BAD group was significantly lower than that of control groups from 120-144 h (P<0. 05). A549 cell lines stably transduced with a lentivirus expressing the BAD gene had been successfully generated. In vitro, BAD overexpression significantly inhibited A549 cells proliferation.

  6. Sarcomatoid Carcinoma of the Lung: The Mayo Clinic Experience in 127 Patients.

    PubMed

    Maneenil, Kunlatida; Xue, Zhiqiang; Liu, Ming; Boland, Jennifer; Wu, Fengying; Stoddard, Shawn M; Molina, Julian; Yang, Ping

    2018-05-01

    Pulmonary sarcomatoid carcinoma (PSC) is an unusual form of non-small-cell lung cancer (NSCLC). Because of its rarity and heterogeneity, the treatment and prognosis of PSC have not been clearly described. We retrospectively evaluated all patients with a diagnosis of PSC from 1997 to 2015 at the Mayo Clinic (Rochester, MN). The clinical characteristics, treatment details, and outcomes were collected. The survival rates of the PSC patients were compared with those for other subtypes of NSCLC. We used propensity score matching to minimize the bias resulting from to imbalanced comparison groups. The study included 127 PSC patients. The median age at diagnosis was 68 years (range, 32-89 years), most of whom were men (61%) and smokers (82%). The clinical stage was I, II, III, and IV in 15.9%, 20.6%, 22.2%, and 41.3%, respectively. The median survival time was 9.9 months (95% confidence interval [CI], 7.6-12.6 months). The 1-, 2-, and 5-year survival rates were 42%, 23%, and 15%, respectively. Most patients received multimodality treatment. Of the 3 patients who received neoadjuvant chemotherapy, a partial response was demonstrated in 2. Twenty-five patients who underwent palliative chemotherapy were evaluated for tumor response: 52% experienced progression, 40% stable disease, 8.0% a partial response, and 0% a complete response. Multivariate analysis showed T stage, M stage, and treatment with surgery plus neoadjuvant chemotherapy or surgery plus adjuvant therapy were independent prognostic factors (P < .05). In matched analysis, multivariate models revealed worse overall survival for PSC compared with adenocarcinoma (hazard ratio, 2.38; 95% CI, 1.61-2.53) and squamous cell carcinoma (hazard ratio, 2.20; 95% CI, 1.44-2.34). We found the outcome of PSC to be significantly worse than that of adenocarcinoma and squamous cell carcinoma. Neoadjuvant or adjuvant chemotherapy, in addition to surgical resection, should be considered. Copyright © 2017 Elsevier Inc. All rights

  7. Clinical and Genetic Implications of Mutation Burden in Squamous Cell Carcinoma of the Lung.

    PubMed

    Okamoto, Tatsuro; Takada, Kazuki; Sato, Seijiro; Toyokawa, Gouji; Tagawa, Tetsuzo; Shoji, Fumihiro; Nakanishi, Ryota; Oki, Eiji; Koike, Terumoto; Nagahashi, Masayuki; Ichikawa, Hiroshi; Shimada, Yoshifumi; Watanabe, Satoshi; Kikuchi, Toshiaki; Akazawa, Kouhei; Lyle, Stephen; Takabe, Kazuaki; Okuda, Shujiro; Sugio, Kenji; Wakai, Toshifumi; Tsuchida, Masanori; Maehara, Yoshihiko

    2018-06-01

    Lung squamous cell carcinoma (LSCC) is a major histological subtype of lung cancer. In this study, we investigated genomic alterations in LSCC and evaluated the clinical implications of mutation burden (MB) in LSCC. Genomic alterations were determined in Japanese patients with LSCC (N = 67) using next-generation sequencing of 415 known cancer genes. MB was defined as the number of non-synonymous mutations per 1 Mbp. Programmed death-ligand 1 (PD-L1) protein expression in cancer cells was evaluated by immunohistochemical analysis. TP53 gene mutations were the most common alteration (n = 51/67, 76.1%), followed by gene alterations in cyclin-dependent kinase inhibitor 2B (CDKN2B; 35.8%), CDKN2A (31.3%), phosphatase and tensin homolog (30.0%), and sex-determining region Y-box 2 (SOX2, 28.3%). Histological differentiation was significantly poorer in tumors with high MB (greater than or equal to the median MB) compared with that in tumors with low MB (less than the median MB; p = 0.0446). The high MB group had more tumors located in the upper or middle lobe than tumors located in the lower lobe (p = 0.0019). Moreover, cancers in the upper or middle lobes had significantly higher MB than cancers in the lower lobes (p = 0.0005), and tended to show higher PD-L1 protein expression (p = 0.0573). SOX2 and tyrosine kinase non-receptor 2 amplifications were associated with high MB (p = 0.0065 and p = 0.0010, respectively). The MB level differed according to the tumor location in LSCC, suggesting that the location of cancer development may influence the genomic background of the tumor.

  8. The enhancing effect of genistein on apoptosis induced by trichostatin A in lung cancer cells with wild type p53 genes is associated with upregulation of histone acetyltransferase

    SciTech Connect

    Wu, Tzu-Chin; Lin, Yi-Chin; Chen, Hsiao-Ling

    Genistein has been shown to enhance the antitumor activity of trichostatin A (TSA) in human lung carcinoma A549 cells. However, whether the combined treatment exerts the same effect in other lung cancer cells is unclear. In the present study we first compared the enhancing effect of genistein on the antitumor effect of TSA in ABC-1, NCI-H460 (H460) and A549 cells. Second, we investigated whether the effects of genistein are associated with increased histone/non-histone protein acetylation. We found that the enhancing effect of genistein on cell-growth-arrest in ABC-1 cells (p53 mutant) was less than in A549 and H460 cells. Genistein enhancedmore » TSA induced apoptosis in A549 and H460 cells rather than in ABC-1 cells. After silencing p53 expression in A549 and H460 cells, the enhancing effect of genistein was diminished. In addition, genistein increased TSA-induced histone H3/H4 acetylation in A549 and H460 cells. Genistein also increased p53 acetylation in H460 cells. The inhibitor of acetyltransferase, anacardic acid, diminished the enhancing effect of genistein on all TSA-induced histone/p53 acetylation and apoptosis. Genistein in combination with TSA increased the expression of p300 protein, an acetyltransferase, in A549 and NCI-H460 cells. Furthermore, we demonstrated that genistein also enhanced the antitumor effect of genistein in A549-tumor-bearing mice. Taken together, these results suggest that the enhancing effects of genistein on TSA-induced apoptosis in lung cancer cells were p53-dependent and were associated with histone/non-histone protein acetylation. - Highlights: • Genistein enhances the antitumor effect of TSA through p53-associated pathways. • Genistein enhances TSA-induced histone acetylation commonly. • An acetyltransferase inhibitor diminishes the antitumor effect of genistein + TSA. • TSA in combination with genistein increases the expression of p300. • Genistein given by i.p. injection increases the antitumor effect of TSA in

  9. Exposure to diethylhexyl phthalate (DEHP) and monoethylhexyl phthalate (MEHP) promotes the loss of alveolar epithelial phenotype of A549 cells.

    PubMed

    Rafael-Vázquez, L; García-Trejo, Semiramis; Aztatzi-Aguilar, O G; Bazán-Perkins, B; Quintanilla-Vega, B

    2018-05-17

    Di(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer that is metabolized to mono(2-ethylhexyl) phthalate (MEHP). Inhalation is an important exposure route for both phthalates, and their effects on lungs include inflammation, alteration of postnatal maturation (alveolarization), enlarged airspaces and cell differentiation changes, suggesting that alveolar epithelial cells-2 (AEC) are targets of phthalates. This study evaluated the cell progression, epithelial and mesenchymal markers, including surfactant secretion in A549 cells (AEC) that were exposed to DEHP (1-100 μM) or MEHP (1-50 μM) for 24-72 h. The results showed an increased cell proliferation at all concentrations of each phthalate at 24 and 48 h. Cell migration showed a concentration-dependent increase at 24 and 48 h of exposure to either phthalate and enlarged structures were seen. Decreased levels of both surfactants (SP-B/SP-C) were observed after the exposure to either phthalate at 48 h, and of SP-C positive cells exposed to MEHP, suggesting a loss of the epithelial phenotype. While a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal marker fibronectin were observed following exposure to either phthalate. Our results showed that DEHP and MEHP altered the structure and migration of A549 cells and promoted the loss of the epithelial phenotype. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Increased levels of the long noncoding RNA, HOXA-AS3, promote proliferation of A549 cells.

    PubMed

    Zhang, Hongyue; Liu, Ying; Yan, Lixin; Zhang, Min; Yu, Xiufeng; Du, Wei; Wang, Siqi; Li, Qiaozhi; Chen, He; Zhang, Yafeng; Sun, Hanliang; Tang, Zhidong; Zhu, Daling

    2018-06-13

    Many long noncoding RNAs (lncRNAs) have been identified as powerful regulators of lung adenocarcinoma (LAD). However, the role of HOXA-AS3, a novel lncRNA, in LAD is largely unknown. In this study, we showed that HOXA-AS3 was significantly upregulated in LAD tissues and A549 cells. After knockdown of HOXA-AS3, cell proliferation, migration, and invasion were inhibited. Xenografts derived from A549 cells transfected with shRNA/HOXA-AS3 had significantly lower tumor weights and smaller tumor volumes. We also demonstrated that HOXA-AS3 increased HOXA6 mRNA stability by forming an RNA duplex. In addition, HOXA6 promoted cell proliferation, migration, and invasion in vitro. Using a RNA pull-down assay, we found that HOXA-AS3 bonded with NF110, which regulated the cell localization of HOXA-AS3. Moreover, histone acetylation was involved in upregulation of HOXA-AS3. These results demonstrate that HOXA-AS3 was activated in LAD and supported cancer cell progression. Therefore, inhibition of HOXA-AS3 could be an effective targeted therapy for patients with LAD.

  11. Ionizing Radiation Potentiates Dihydroartemisinin-Induced Apoptosis of A549 Cells via a Caspase-8-Dependent Pathway

    PubMed Central

    Chen, Tongsheng; Chen, Min; Chen, Jingqin

    2013-01-01

    This report is designed to explore the molecular mechanism by which dihydroartemisinin (DHA) and ionizing radiation (IR) induce apoptosis in human lung adenocarcinoma A549 cells. DHA treatment induced a concentration- and time-dependent reactive oxygen species (ROS)-mediated cell death with typical apoptotic characteristics such as breakdown of mitochondrial membrane potential (Δψm), caspases activation, DNA fragmentation and phosphatidylserine (PS) externalization. Inhibition of caspase-8 or -9 significantly blocked DHA-induced decrease of cell viability and activation of caspase-3, suggesting the dominant roles of caspase-8 and -9 in DHA-induced apoptosis. Silencing of proapoptotic protein Bax but not Bak significantly inhibited DHA-induced apoptosis in which Bax but not Bak was activated. In contrast to DHA treatment, low-dose (2 or 4 Gy) IR induced a long-playing generation of ROS. Interestingly, IR treatment for 24 h induced G2/M cell cycle arrest that disappeared at 36 h after treatment. More importantly, IR synergistically potentiated DHA-induced generation of ROS, activation of caspase-8 and -3, irreparable G2/M arrest and apoptosis, but did not enhance DHA-induced loss of Δψm and activation of caspase-9. Taken together, our results strongly demonstrate the remarkable synergistic efficacy of combination treatment with DHA and low-dose IR for A549 cells in which IR potentiates DHA-induced apoptosis largely by enhancing the caspase-8-mediated extrinsic pathway. PMID:23536891

  12. Utility of the quantitative Ki-67 proliferation index and CD56 together in the cytologic diagnosis of small cell lung carcinoma and other lung neuroendocrine tumors.

    PubMed

    Zheng, Gang; Ettinger, David S; Maleki, Zahra

    2013-01-01

    Distinction of small cell lung carcinoma (SCLC) from non-small cell lung carcinoma (NSCLC) is critical because of the differences in prognosis and management. Patients with SCLC usually present with distant metastasis, and clinicians demand an accurate diagnosis in order to initiate appropriate therapy. Limited cytology material, occasionally with crush artifact, is not uncommon. Therefore, robust cytomorphologic features and a small immunostaining panel would be ideal to differentiate SCLC from NSCLC and other neuroendocrine neoplasms. We evaluated CD56 and the quantitative Ki-67 immunohistochemical panel in comparison to synaptophysin and chromogranin, along with cytomorphology to diagnose SCLC. Eighty-eight cases of SCLC were retrieved from the cytology archives of The Johns Hopkins Hospital. Forty neuroendocrine neoplasms were used as control cases. SCLCs included 33 lung cases and 55 metastatic lesions. The specimens were obtained by fine needle aspiration, thoracocentesis, bronchoalveolar lavage and abdominal paracentesis. CD56 was expressed in 98.9% of SCLCs, which is significantly more sensitive than synaptophysin and chromogranin. The Ki-67 labeling index was high (>70%) in all cases, which is a reliable marker to differentiate SCLC from other neuroendocrine neoplasms and NSCLC. CD56 and quantitative Ki-67 along with cytomorphology is a robust immunohistochemical panel to differentiate SCLC from other neuroendocrine neoplasms and NSCLC. Copyright © 2013 S. Karger AG, Basel.

  13. Combined human papillomavirus typing and TP53 mutation analysis in distinguishing second primary tumors from lung metastases in patients with head and neck squamous cell carcinoma.

    PubMed

    Daher, Tamas; Tur, Mehmet Kemal; Brobeil, Alexander; Etschmann, Benjamin; Witte, Biruta; Engenhart-Cabillic, Rita; Krombach, Gabriele; Blau, Wolfgang; Grimminger, Friedrich; Seeger, Werner; Klussmann, Jens Peter; Bräuninger, Andreas; Gattenlöhner, Stefan

    2018-06-01

    In head and neck squamous cell carcinoma (HNSCC), the occurrence of concurrent lung malignancies poses a significant diagnostic challenge because metastatic HNSCC is difficult to discern from second primary lung squamous cell carcinoma (SCC). However, this differentiation is crucial because the recommended treatments for metastatic HNSCC and second primary lung SCC differ profoundly. We analyzed the origin of lung tumors in 32 patients with HNSCC using human papillomavirus (HPV) typing and targeted next generation sequencing of all coding exons of tumor protein 53 (TP53). Lung tumors were clearly identified as HNSCC metastases or second primary tumors in 29 patients, thus revealing that 16 patients had received incorrect diagnoses based on clinical and morphological data alone. The HPV typing and mutation analysis of all TP53 coding exons is a valuable diagnostic tool in patients with HNSCC and concurrent lung SCC, which can help to ensure that patients receive the most suitable treatment. © 2018 Wiley Periodicals, Inc.

  14. Combination Chemotherapy, Radiation Therapy, and Bevacizumab in Treating Patients With Newly Diagnosed Stage III Non-small Cell Lung Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-03-22

    Adenosquamous Lung Carcinoma; Large Cell Lung Carcinoma; Lung Adenocarcinoma; Minimally Invasive Lung Adenocarcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7

  15. Bronchial airway gene expression signatures in mouse lung squamous cell carcinoma and their modulation by cancer chemopreventive agents

    PubMed Central

    Szabo, Eva; Miller, Mark Steven; Lubet, Ronald A.; You, Ming; Wang, Yian

    2017-01-01

    Due to exposure to environmental toxicants, a “field cancerization” effect occurs in the lung resulting in the development of a field of initiated but morphologically normal appearing cells in the damaged epithelium of bronchial airways with dysregulated gene expression patterns. Using a mouse model of lung squamous cell carcinoma (SCC), we performed transcriptome sequencing (RNA-Seq) to profile bronchial airway gene expression and found activation of the PI3K and Myc signaling networks in cytologically normal bronchial airway epithelial cells of mice with preneopastic lung SCC lesions, which was reversed by treatment with the PI3K Inhibitor XL-147 and pioglitazone, respectively. Activated MYC signaling was also present in premalignant and tumor tissues from human lung SCC patients. In addition, we identified a key microRNA, mmu-miR-449c-5p, whose suppression significantly up-regulated Myc expression in the normal bronchial airway epithelial cells of mice with early stage SCC lesions. We developed a novel bronchial genomic classifier in mice and validated it in humans. In the classifier, Ppbp (pro-platelet basic protein) was overexpressed 115 fold in the bronchial airways of mice with preneoplastic lung SCC lesions. This is the first report that demonstrates Ppbp as a novel biomarker in the bronchial airway for lung cancer diagnosis. PMID:27935865

  16. Photothermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres

    NASA Astrophysics Data System (ADS)

    Liu, Huiyu; Chen, Dong; Tang, Fangqiong; Du, Gangjun; Li, Linlin; Meng, Xianwei; Liang, Wei; Zhang, Yangde; Teng, Xu; Li, Yi

    2008-11-01

    A new approach towards the design of gold nanoshells on carboxylated polystyrene spheres (GNCPSs) is reported here. Gold nanoshells were self-assembled on the surface of carboxylated polystyrene spheres by a seed growth method. Chitosan (CHI) was used as a functional agent of carboxylated polystyrene spheres for attaching gold seeds. The surface plasmon resonance (SPR) peak of GNCPSs can be tuned, greatly redshifted, over a broad spectral range including the near-infrared (NIR) wavelength region, which provides maximal penetration of light through tissue. Irradiation of GNCPSs at their peak extinction coefficient results in the conversion of light to heat energy that produces a local rise in temperature. Our study revealed that the Lewis lung carcinoma (LLC) in mice treated with GNCPSs exposed to a low dose of NIR light (808 nm, 4 W cm-2) induced irreversible tissue damage. The tumor volumes of the treatment group by GNCPSs were significantly lower than those of control groups, with an average inhibition rate over 55% (P<0.005). This study proves that GNCPSs are promising in plasmonic photothermal tumor therapy.

  17. Absorption, Distribution and Excretion of 14C-Probimane in Mice Bearing Lewis Lung Carcinoma

    PubMed Central

    Lu, Da-Yong; Chen, Rui-Ting; Lu, Ting-Ren; Wu, Hong-Ying; Qu, Rong-Xin; Che, Jin-Yu; Xu, Bin

    2010-01-01

    Spontaneous neoplasm metastasis, a fatalist pathological feature of cancer, is a long-evolving, multi-steps process that can now only be treated or controlled by drugs or immuno-modulators. Probimane (Pro), as a representative of the well-known class of antimetastatic agents ‘Bisdioxopiperazine compounds (Biz)’, is systematically studied for its absorption, distribution and excretion in mice bearing Lewis lung carcinoma by a radioactivity-detective method in this investigation. It is found that the 14C-Pro concentrations in different normal organs of mice at 2 hrs are very high and dramatically declined at 24 and 48 hrs. However, Pro concentrations in metastatic foci are slightly changed at the same time. Almost no change of Pro concentrations is observed in pulmonary metastatic nodules within 48 hrs. This evidence can be used to explain the characteristics of good metastatic inhibition by Biz compounds. The radioactivity in brain is relatively low because Pro can hardly penetrate into the blood-brain-barrier to eliminate brain tumors. The excretion of 14C-Pro is observed at the same ratios from both urine and feces and also at constant rates. These data are much useful for better understanding of the general pharmacological characters and possible antimetastatic mechanisms of actions of probimane and other Biz compounds from a new perspective and research angles. PMID:21179357

  18. Lectin-resistant variants of mouse Lewis lung carcinoma cells. II. Altered glycosylation of membrane glycoproteins.

    PubMed

    Debray, H; Dus, D; Hueso, P; Radzikowski, C; Montreuil, J

    1990-01-01

    Lectin-resistant variants of mouse Lewis lung carcinoma LL2 cell line, selected with wheat germ agglutinin (WGAR), Ricinus communis agglutinin II (RCA IIR) and Aleuria aurantia agglutinin (AAAR) were studied. Total cellular glycopeptides of the parent LL2 line and of the five lectin-resistant variants were analyzed by gel filtration and affinity chromatography on immobilized concanavalin A and Lens culinaris agglutinin. The results revealed that low-metastatic WGAR and RCA IIR variants possessed less highly branched tri- and tetra-antennary N-acetyllactosaminic type glycans with a simultaneous increase in biantennary N-acetyllactosaminic type, oligomannosidic type or hybrid type glycans, as compared to the parent metastasizing LL2 cell line. These findings imply that cell surface carbohydrate changes may possibly be relevant for metastasis. However, the AAAR variant, which possessed reduced spontaneous metastatic ability after s.c. administration, but increased experimental metastatic ability after i.v. inoculation, exhibited apparently the same glycan pattern than the parent LL2 line. This particular variant is under investigation in order to find specific modification(s) of glycan(s) which could play a specific role in the metastatic process.

  19. Effector mechanism of magnolol-induced apoptosis in human lung squamous carcinoma CH27 cells

    PubMed Central

    Yang, Shu-Er; Hsieh, Ming-Tsuen; Tsai, Tung-Hu; Hsu, Shih-Lan

    2003-01-01

    Magnolol, an active component isolated from the root and stem bark of Magnolia officinalis, has been reported to exhibit antitumour effects, but little is known about its molecular mechanisms of action. Magnolol inhibited proliferation of human lung squamous carcinoma CH27 cells at low concentrations (10–40 μM), and induced apoptosis at high concentrations (80–100 μM). Treatment with 80 μM magnolol significantly increased the expression of Bad and Bcl-XS proteins, whereas it decreased the expression of Bcl-XL. Overexpression of Bcl-2 protected CH27 cells against magnolol-triggered apoptosis. Magnolol treatment resulted in accumulation of cytosolic cytochrome c and activation of caspase-9 and downstream caspases (caspase-3 and -6). Pretreatment with z-VAD-fmk markedly inhibited magnolol-induced cell death, but did not prevent cytosolic cytochrome c accumulation. Magnolol induced a modest and persistent JNK activation and ERK inactivation in CH27 cells without evident changes in the protein levels. The responsiveness of JNK and ERK to magnolol suggests the involvement of these kinases in the initiation of the apoptosis process. These results indicate that regulation of the Bcl-2 family, accumulation of cytosolic cytochrome c, and activation of caspase-9 and caspase-3 may be the effector mechanisms of magnolol-induced apoptosis. PMID:12522090

  20. Acute secondary effects in the esophagus in patients undergoing radiotherapy for carcinoma of the lung

    SciTech Connect

    Mascarenhas, F.; Silvestre, M.E.; Sa da Costa, M.

    1989-02-01

    The incidence and nature of acute secondary irradiation esophagitis was studied in a series of 38 patients undergoing 60Co teletherapy for carcinoma of the lung. Thirty-four patients were male and four female, with ages ranging from 38 to 78 years. The mediastinum being irradiated in the process, all the patients underwent endoscopy for signs of esophagitis and/or gastritis after a dose of 30-40 Gy was delivered to the esophagus. Eighteen patients complained of dysphagia, but only in 12 of them did endoscopy show esophagitis. Of the remaining patients without complaints five had endoscopic signs of esophagitis. Gastritis was found inmore » 18 cases and confirmed histologically in 14. In 17 cases, esophagitis and/or gastritis were confirmed histologically. It is believed that there is a fairly close correlation among clinical, endoscopic, and histological findings to support the claim that esophagitis in these patients is radiation induced. However, the cause of gastritis is not well understood. Data in the literature suggest that nonsteroid anti-inflammatory agents can act as prophylactic means of preventing radiation esophagitis.« less

  1. Spontaneous lung metastasis formation of human Merkel cell carcinoma cell lines transplanted into scid mice.

    PubMed

    Knips, Jill; Czech-Sioli, Manja; Spohn, Michael; Heiland, Max; Moll, Ingrid; Grundhoff, Adam; Schumacher, Udo; Fischer, Nicole

    2017-07-01

    Merkel cell carcinoma (MCC) is an aggressive skin cancer entity that frequently leads to rapid death due to its high propensity to metastasize. The etiology of most MCC cases is linked to Merkel cell polyomavirus (MCPyV), a virus which is monoclonally integrated in up to 95% of tumors. While there are presently no animal models to study the role of authentic MCPyV infection on transformation, tumorigenesis or metastasis formation, xenograft mouse models employing engrafted MCC-derived cell lines (MCCL) represent a promising approach to study certain aspects of MCC pathogenesis. Here, the two MCPyV-positive MCC cell lines WaGa and MKL-1 were subcutaneously engrafted in scid mice. Engraftment of both MCC cell lines resulted in the appearance of circulating tumor cells and metastasis formation, with WaGa-engrafted mice showing a significantly shorter survival time as well as increased numbers of spontaneous lung metastases compared to MKL-1 mice. Interestingly, explanted tumors compared to parental cell lines exhibit an upregulation of MCPyV sT-Antigen expression in all tumors, with WaGa tumors showing significantly higher sT-Antigen expression than MKL-1 tumors. RNA-Seq analysis of explanted tumors and parental cell lines furthermore revealed that in the more aggressive WaGa tumors, genes involved in inflammatory response, growth factor activity and Wnt signalling pathway are significantly upregulated, suggesting that sT-Antigen is the driver of the observed differences in metastasis formation. © 2017 UICC.

  2. Synergistic Inhibition of Thalidomide and Icotinib on Human Non-Small Cell Lung Carcinomas Through ERK and AKT Signaling.

    PubMed

    Sun, Xiang; Xu, Yang; Wang, Yi; Chen, Qian; Liu, Liu; Bao, Yangyi

    2018-05-15

    BACKGROUND Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have been widely used in the treatment of non-small cell lung cancer (NSCLC) patients with sensitive EGFR mutations. However, the survival of patients with EGFR-TKI administration is limited by the inevitable development of acquired drug resistance. Recently, multi-targeted drugs combination has been shown to be a promising strategy to improve the efficacy of EGFR-TKI treatment and enable the reduction of drug resistance in NSCLC. MATERIAL AND METHODS Humanized NSCLC cell lines PC9 and A549 were co-cultured with thalidomide and/or icotinib to test for anti-tumor efficiency. Cell proliferation was measured by MTT assay, cell apoptosis by flow cytometry and cell migration by wound healing assay. Western blot was performed to determine the expression of caspase-3, -8, -9, Bax, EGFR, VEGF-R, AKT, ERK, MMP2, MMP9, and NF-κB. The xenograft mouse model was used to explore the effects of thalidomide and icotinib in vivo. Immunohistochemical testing was used to determine the expression of Ki-67 and TUNEL staining in tumor tissues. RESULTS Treatments of thalidomide and/or icotinib reduced cell viability, induced apoptosis, and suppressed migration. Attenuation of pEGFR and pVEGF-R resulted in deactivation of ERK and AKT pathways, which eventually increased the anti-proliferative response. In PC9 xenograft model, combined administration of thalidomide and icotinib restrained tumor growth with remarkable reduced Ki-67 index and increased TUNEL positive cells. CONCLUSIONS Thalidomide sensitizes icotinib to increase apoptosis and prevent migration, and it may be a potentially promising anti-tumor drug in lung cancer multi-modality therapy.

  3. Pirfenidone inhibits TGF-β1-induced over-expression of collagen type I and heat shock protein 47 in A549 cells

    PubMed Central

    2012-01-01

    Background Pirfenidone is a novel anti-fibrotic and anti-inflammatory agent that inhibits the progression of fibrosis in animal models and in patients with idiopathic pulmonary fibrosis (IPF). We previously showed that pirfenidone inhibits the over-expression of collagen type I and of heat shock protein (HSP) 47, a collagen-specific molecular chaperone, in human lung fibroblasts stimulated with transforming growth factor (TGF)-β1 in vitro. The increased numbers of HSP47-positive type II pneumocytes as well as fibroblasts were also diminished by pirfenidone in an animal model of pulmonary fibrosis induced by bleomycin. The present study evaluates the effects of pirfenidone on collagen type I and HSP47 expression in the human alveolar epithelial cell line, A549 cells in vitro. Methods The expression of collagen type I, HSP47 and E-cadherin mRNAs in A549 cells stimulated with TGF-β1 was evaluated by Northern blotting or real-time PCR. The expression of collagen type I, HSP47 and fibronectin proteins was assessed by immunocytochemical staining. Results TGF-β1 stimulated collagen type I and HSP47 mRNA and protein expression in A549 cells, and pirfenidone significantly inhibited this process. Pirfenidone also inhibited over-expression of the fibroblast phenotypic marker fibronectin in A549 cells induced by TGF-β1. Conclusion We concluded that the anti-fibrotic effects of pirfenidone might be mediated not only through the direct inhibition of collagen type I expression but also through the inhibition of HSP47 expression in alveolar epithelial cells, which results in reduced collagen synthesis in lung fibrosis. Furthermore, pirfenidone might partially inhibit the epithelial-mesenchymal transition. PMID:22694981

  4. Differential protein-coding gene and long noncoding RNA expression in smoking-related lung squamous cell carcinoma.

    PubMed

    Li, Shicheng; Sun, Xiao; Miao, Shuncheng; Liu, Jia; Jiao, Wenjie

    2017-11-01

    Cigarette smoking is one of the greatest preventable risk factors for developing cancer, and most cases of lung squamous cell carcinoma (lung SCC) are associated with smoking. The pathogenesis mechanism of tumor progress is unclear. This study aimed to identify biomarkers in smoking-related lung cancer, including protein-coding gene, long noncoding RNA, and transcription factors. We selected and obtained messenger RNA microarray datasets and clinical data from the Gene Expression Omnibus database to identify gene expression altered by cigarette smoking. Integrated bioinformatic analysis was used to clarify biological functions of the identified genes, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, the construction of a protein-protein interaction network, transcription factor, and statistical analyses. Subsequent quantitative real-time PCR was utilized to verify these bioinformatic analyses. Five hundred and ninety-eight differentially expressed genes and 21 long noncoding RNA were identified in smoking-related lung SCC. GO and KEGG pathway analysis showed that identified genes were enriched in the cancer-related functions and pathways. The protein-protein interaction network revealed seven hub genes identified in lung SCC. Several transcription factors and their binding sites were predicted. The results of real-time quantitative PCR revealed that AURKA and BIRC5 were significantly upregulated and LINC00094 was downregulated in the tumor tissues of smoking patients. Further statistical analysis indicated that dysregulation of AURKA, BIRC5, and LINC00094 indicated poor prognosis in lung SCC. Protein-coding genes AURKA, BIRC5, and LINC00094 could be biomarkers or therapeutic targets for smoking-related lung SCC. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  5. Therapeutic strategies and genetic profile comparisons in small cell carcinoma and large cell neuroendocrine carcinoma of the lung using next-generation sequencing.

    PubMed

    Ito, Masaoki; Miyata, Yoshihiro; Hirano, Shoko; Kimura, Shingo; Irisuna, Fumiko; Ikeda, Kyoko; Kushitani, Kei; Tsutani, Yasuhiro; Ueda, Daisuke; Tsubokawa, Norifumi; Takeshima, Yukio; Okada, Morihito

    2017-12-12

    Small cell lung cancer (SCLC) and large cell neuroendocrine carcinoma (LCNEC) of the lung are classified as variants of endocrine carcinoma and subdivided into pure or combined type. Clinical benefit of target therapy has not been established in these tumors. This study aimed to compare genetic and clinicopathological features between SCLC and LCNEC or pure and combined types, and explore the possibility of target therapy using next-generation sequencing. In 13 SCLC and 22 LCNEC cases, 72 point mutations, 19 deletions, and 3 insertions were detected. As therapeutically targetable variants, mutations in EGFR (L858R), KRAS (G12D, G12A, G12V), and PIK3CA (E545K) were detected in 5 cases. The case harboring EGFR mutation showed response to EGFR-tyrosine kinase inhibitor. However, there are no clinicopathological features associated with therapeutically targetable cases. And there was no significant genetic feature between SCLC and LCNEC or pure and combined types. In conclusion, although patients with SCLC and LCNEC may benefit from target therapy, they were not identifiable by clinicopathologic background. And there was not significant genetic difference between SCLC and LCNEC, including between pure and combined types. Classifying SCLC and LCNEC in same category is reasonable. However, distinguishing the pure type from combined type was not validated. Comprehensive genetic analysis should be performed to detect targetable variants in any type of SCLC and LCNEC.

  6. Metachronous solitary metastasis to the thyroid gland from squamous cell carcinoma of the lung: a case report and literature review.

    PubMed

    Gelsomino, Francesco; Lamberti, Giuseppe; Ambrosini, Valentina; Sperandi, Francesca; Agosti, Roberto; Morganti, Alessio G; Ardizzoni, Andrea

    2017-11-15

    Non-small cell lung cancer presents at an advanced stage at diagnosis in two-thirds of cases. The most frequent metastatic sites are the central nervous system, adrenal glands and bones. By contrast, the thyroid gland is an extremely rare site of dissemination. A 64-year-old Caucasian man previously treated with radiosurgery and brain metastasectomy followed by right middle lobectomy for a squamous cell lung carcinoma had a metachronous solitary metastasis to the thyroid gland, as confirmed by fine-needle aspiration cytology and open biopsy. He underwent curative radiotherapy, with an initial response. At 9 months' follow-up the tumor relapsed both in the thyroid and the lung. Review of the literature confirmed that thyroid metastasis from lung cancer is very uncommon in clinical practice. No data on the role of surgery or curative radiotherapy in thyroid metastasis are available because of the lack of prospective studies addressing the impact on survival of these treatment strategies either alone or in combination. In the case described here, radical treatment with radiotherapy allowed to obtain a modest benefit in terms of relapse-free survival. A diagnosis of metastasis to the thyroid gland should be suspected in patients who present a thyroid nodule or suggestive imaging findings when there is a history of malignancy, including lung cancer. Indeed, an early diagnosis allows to pursue radical treatment that, in selected patients, could lead to long-term survival.

  7. Enhanced sensitivity of A549 cells to the cytotoxic action of anticancer drugs via suppression of Nrf2 by procyanidins from Cinnamomi Cortex extract

    SciTech Connect

    Ohnuma, Tomokazu; Matsumoto, Takashi; Itoi, Ayano

    Highlights: {yields} We found a novel inhibitor of Nrf2 known as a chemoresistance factor. {yields} Overexpressed Nrf2 in lung cancer cells was suppressed by Cinnamomi Cortex extract. {yields} Cytotoxic action of anticancer drugs in cells treated with the extract was enhanced. {yields} Procyanidin tetramers and pentamers were active components in suppressing Nrf2. -- Abstract: Nuclear factor-E2-related factor 2 (Nrf2) is an important cytoprotective transcription factor because Nrf2-regulated enzymes play a key role in antioxidant and detoxification processes. Recent studies have reported that lung cancer cells overexpressing Nrf2 exhibit increased resistance to chemotherapy. Suppression of overexpressed Nrf2 is needed for amore » new therapeutic approach against lung cancers. In the present study, we found that Cinnamomi Cortex extract (CCE) has an ability to suppress Nrf2-regulated enzyme activity and Nrf2 expression in human lung cancer A549 cells with high Nrf2 activity. Moreover, we demonstrated that CCE significantly enhances sensitivity of A549 cells to the cytotoxic action of doxorubicin and etoposide as well as increasing the intracellular accumulation of both drugs. These results suggest that CCE might be an effective concomitant agent to reduce anticancer drug resistance derived from Nrf2 overexpression. Bioactivity-guided fractionation revealed that procyanidin tetramers and pentamers contained in CCE were active components in suppressing Nrf2.« less

  8. Suppression of A549 cell proliferation and metastasis by calycosin via inhibition of the PKC‑α/ERK1/2 pathway: An in vitro investigation.

    PubMed

    Cheng, Xu-Dong; Gu, Jun-Fei; Yuan, Jia-Rui; Feng, Liang; Jia, Xiao-Bin

    2015-12-01

    The migration and invasion of lung cancer cells into the extracellular matrix contributes to the high mortality rates of lung cancer. The protein kinase C (PKC) and downstream signaling pathways are important in the invasion and migration of lung cancer cells. Calycosin (Cal), an effector chemical from Astragalus has been reported to affect the recurrence and metastasis of cancer cells via the regulation of the protein expression of matrix metalloproteinases (MMPs). The inhibition of Cal on the migration and invasion of A549 cells was investigated in the present study. Cell viability and apoptosis assays were performed using MTT and flow cytometric analyses. A wound healing assay and Transwell invasion assay were performed to evaluate the effect of Cal on A549 cell migration and invasion. Invasion‑associated proteins, including MMP‑2, MMP‑9, E‑cadherin (E‑cad), integrin β1, PKC‑α and extracellular signal‑regulated kinase 1/2 (ERK1/2) were detected using western blotting. In addition, PKC‑α inhibitor, AEB071, and ERK1/2 inhibitor, PD98059, were used to determine the association between the suppression of PKC‑α /ERK1/2 and invasion, MMP‑2, MMP‑9, E‑cad and integrin β1. Cal was observed to suppress cell proliferation and induce apoptosis. There were significant differences between the phorbol‑12‑myristate‑13‑acetate (TPA)‑induced A549 cells treated with Cal and the untreated cells in the rates of migration and invasion. The levels of MMP‑2, MMP‑9, E‑cad and integrin β1 in the TPA‑induced A549 cells changed markedly, compared with the untreated cells. In addition, the suppression of Cal was affected by the PKC inhibitor, AEB071, an ERK1/2 inhibitor, PD98059. The results of the present study indicated that Cal inhibited the proliferation, adhesion, migration and invasion of the TPA‑induced A549 cells. The Cal‑induced repression of PKC‑α/ERK1/2, increased the expression of E‑Cad and inhibited the expression

  9. Primary epithelial-myoepithelial carcinoma of the lung: A case report demonstrating high-grade transformation-like changes.

    PubMed

    Tajima, Shogo; Aki, Michihiko; Yajima, Kiyoshige; Takahashi, Tsuyoshi; Neyatani, Hiroshi; Koda, Kenji

    2015-07-01

    Primary salivary gland-type tumors of the lung are rare; among them, epithelial-myoepithelial carcinomas (EMC) represent a minor histological subtype. The present case documents an EMC that occluded the B8 segment of the left lung in a 72-year-old woman. Macroscopically, the tumor was well-demarcated; however, microscopic examination demonstrated that it had infiltrated the lung parenchyma. The majority of the tumor mass was composed of a myoepithelial overgrowth in conjunction with conventional bilayered ductal structures comprising epithelial and myoepithelial cells. At the advancing edge of the tumor, the myoepithelial overgrowth was observed to be gradually transitioning to a higher-grade component, which demonstrated venous invasion. The Ki-67 labeling index was reduced compared with high-grade transformation (HGT) of salivary gland EMC; p53 was sparsely observed on immunostaining. However, cyclin D1, which is reported to be overexpressed in certain subtypes of salivary gland carcinomas with HGT, was overexpressed in the higher-grade component of the tumor, indicating a potential HGT initiation. The surgical margin was tumor free, and no recurrence has been observed for 4 months. A thorough follow-up is required considering the HGT-like changes and venous invasion of the tumor. Additional studies are required to elucidate the characteristics of pulmonary EMC, with an emphasis on detecting HGT or HGT-like changes.

  10. Monocyte chemotactic protein-1 deficiency attenuates and high-fat diet exacerbates bone loss in mice with Lewis lung carcinoma.

    PubMed

    Yan, Lin; Nielsen, Forrest H; Sundaram, Sneha; Cao, Jay

    2017-04-04

    Bone loss occurs in obesity and cancer-associated complications including wasting. This study determined whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects in male C57BL/6 mice with Lewis lung carcinoma (LLC) metastases in lungs. Compared to non-tumor-bearing mice, LLC reduced bone volume fraction, connectivity density, trabecular number, trabecular thickness and bone mineral density and increased trabecular separation in femurs. Similar changes occurred in vertebrae. The high-fat diet compared to the AIN93G diet exacerbated LLC-induced detrimental structural changes; the exacerbation was greater in femurs than in vertebrae. Mice deficient in MCP-1 compared to wild-type mice exhibited increases in bone volume fraction, connectivity density, trabecular number and decreases in trabecular separation in both femurs and vertebrae, and increases in trabecular thickness and bone mineral density and a decrease in structure model index in vertebrae. Lewis lung carcinoma significantly decreased osteocalcin but increased tartrate-resistant acid phosphatase 5b (TRAP 5b) in plasma. In LLC-bearing mice, the high-fat diet increased and MCP-1 deficiency decreased plasma TRAP 5b; neither the high-fat diet nor MCP-1 deficiency resulted in significant changes in plasma concentration of osteocalcin. In conclusion, pulmonary metastasis of LLC is accompanied by detrimental bone structural changes; MCP-1 deficiency attenuates and high-fat diet exacerbates the metastasis-associated bone wasting.

  11. Metastatic potential of lung squamous cell carcinoma associated with HSPC300 through its interaction with WAVE2.

    PubMed

    Cai, Xiongwei; Xiao, Ting; James, Sharon Y; Da, Jiping; Lin, Dongmei; Liu, Yu; Zheng, Yang; Zou, Shuangmei; Di, Xuebing; Guo, Suping; Han, Naijun; Lu, Yong-Jie; Cheng, Shujun; Gao, Yanning; Zhang, Kaitai

    2009-09-01

    The small protein, HSPC300 (haematopoietic stem/progenitor cell protein 300), is associated with reorganization of actin filaments and cell movement, but its activity has not been reported in human cancer cells. Here, we investigated the association of HSPC300 expression with clinical features of lung squamous cell carcinoma. High levels of HSPC300 protein were detected in 84.1% of tumour samples, and in 30.8% of adjacent morphologically normal tissues. The number of primary tumours with elevated HSPC300 levels was significantly higher in primary tumours with lymph node metastases as opposed to those without, and also in tumours from patients with more advanced disease. HSPC300 modulates the morphology and motility of cells, as siRNA knockdown caused the reorganization of actin filaments, decreased the formation of pseudopodia, and inhibited the migration of a lung cancer cell line. We further showed that HSPC300 interacted with the WAVE2 protein, and HSPC300 silencing resulted in the degradation of WAVE2 in vitro. HSPC300 and WAVE2 were co-expressed in approximately 85.7% of primary tumours with lymph node metastases. We hypothesize that HSPC300 is associated with metastatic potential of lung squamous cell carcinoma through its interaction with WAVE2.

  12. FNA, core biopsy, or both for the diagnosis of lung carcinoma: Obtaining sufficient tissue for a specific diagnosis and molecular testing.

    PubMed

    Coley, Shana M; Crapanzano, John P; Saqi, Anjali

    2015-05-01

    Increasingly, minimally invasive procedures are performed to assess lung lesions and stage lung carcinomas. In cases of advanced-stage lung cancer, the biopsy may provide the only diagnostic tissue. The aim of this study was to determine which method-fine-needle aspiration (FNA), core biopsy (CBx), or both (B)--is optimal for providing sufficient tissue for rendering a specific diagnosis and pursuing molecular studies for guiding tumor-specific treatment. A search was performed for computed tomography-guided lung FNA, CBx, or B cases with rapid onsite evaluation. Carcinomas were assessed for the adequacy to render a specific diagnosis; this was defined as enough refinement to subtype a primary carcinoma or to assess a metastatic origin morphologically and/or immunohistochemically. In cases of primary lung adenocarcinoma, the capability of each modality to yield sufficient tissue for molecular studies (epidermal growth factor receptor, KRAS, or anaplastic lymphoma kinase) was also assessed. There were 210 cases, and 134 represented neoplasms, including 115 carcinomas. For carcinomas, a specific diagnosis was reached in 89% of FNA cases (33 of 37), 98% of CBx cases (43 of 44), and 100% of B cases (34 of 34). For primary lung adenocarcinomas, adequate tissue remained to perform molecular studies in 94% of FNA cases (16 of 17), 100% of CBx cases (19 of 19), and 86% of B cases (19 of 22). No statistical difference was found among the modalities for either reaching a specific diagnosis (p = .07, Fisher exact test) or providing sufficient tissue for molecular studies (p = .30, Fisher exact test). The results suggest that FNA, CBx, and B are comparable for arriving at a specific diagnosis and having sufficient tissue for molecular studies: they specifically attained the diagnostic and prognostic goals of minimally invasive procedures for lung carcinoma. © 2015 American Cancer Society.

  13. Chemotherapy and Radiation Therapy With or Without Metformin Hydrochloride in Treating Patients With Stage III Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-04-30

    Adenosquamous Lung Carcinoma; Bronchioloalveolar Carcinoma; Large Cell Lung Carcinoma; Lung Adenocarcinoma; Non-Small Cell Lung Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer

  14. [Multi-channel promotion of lung cancer progress by bone marrow derived mesenchymal stem cells in tumor microenvironment].

    PubMed

    Luo, D; Hu, S Y; Liu, G X

    2018-02-23

    was 100.0% and 16.7%, respectively, P <0.05; the tumor metastatic incidence of H446+ BMSCs and H446 alone was 100.0% and 0.0%, respectively, P <0.05). Furthermore, BMSCs increased tumor vessel formation (the MVD of A549+ BMSCs and A549 alone was 53.2±11.4 and 25.3±11.5, respectively, P <0.05; the MVD of H446+ BMSCs and H446 alone was 56.8±12.5 and 24.8±10.0, respectively, P <0.05). BMSCs were able to differentiate to fibroblasts in the lung squamous cell carcinoma and promoted the migration and invasion of lung cancer cells (the A of cells in the migrated lower chambers of A549+ BMSCs and A549 alone was 1.9±0.2 and 1.1±0.1, respectively, P <0.05; the A of cells in the migrated lower chambers of H446+ BMSCs and H446 alone was 1.9±0.3 and 0.9±0.2, respectively, P <0.05). The cell shape was longer and sharper, the intercellular junctions were reduced and the relative expression level of E-Cadherin protein in A549 co-cultured with BMDCs was 0.36, significantly down-regulated when compared to 0.55 of A549 alone ( P <0.05), and the relative expression level of E-Cadherin protein in H446 co-cultured with BMDCs was 0.28, significantly down-regulated when compared to 0.46 of H446 cells alone ( P <0.05). The concentration of IL-6 in the conditional medium of BMSCs, A549 co-cultured with BMSCs and H446 co-cultured with BMSCs was 910.5, 957.2, and 963.8, respectively, significantly up-regulated when compared to 18.8 of control group ( P <0.05). The expression level of PGE2 in A549 co-cultured with BMSCs and H446 co-cultured with BMSCs was 130.5 and 87.2, significantly up-regulated when compared to 13.8 of control group and 23.8 of BMSCs group ( P <0.05). Conclusions: Our results suggest that BMSCs contribute to the tumor growth through facilitating angiogenesis, and promote tumor metastasis through paracrine manner and down-regulation of E-Cadherin protein. IL-6 and PGE2 produced by BMDCs might be the potentially important cytokines.

  15. Genetic alteration profiling of patients with resected squamous cell lung carcinomas

    PubMed Central

    Zhang, Ningning; Lin, Dongmei; Wu, Di; Zhu, Xinxin; Song, Wenya; Shi, Yuankai

    2016-01-01

    In this study, we analyzed the genetic profiles of squamous cell lung carcinoma (SqCLC) to identify potential therapeutic targets. Approximately 2,800 COSMIC mutations from 50 genes were determined by next-generation sequencing. Amplification/deletion of SOX2, CDKN2A, PTEN, FGFR1, EGFR, CCND1, HER2 and PDGFRA were detected by FISH and expression of VEGFR2, PD-L1 and PTEN were examined by IHC. One hundred and fifty-seven samples of SqCLC were collected. Somatic mutations was identified in 73.9% of cases, with TP53 (56.1%), CDKN2A (8.9%), PIK3CA (8.9%), KRAS (4.5%) and EGFR (3.2%). Gene copy number alterations were identified in 75.8% of cases, including SOX2 amplification (31.2%), CDKN2A deletion (21.7%), PTEN deletion (16.6%), FGFR1 amplification (15.9%), EGFR amplification (14.0%), CCND1 amplification (14.0%), HER2 amplification (9.6%) and PDGFRA amplification (7.6%). Positive expression of VEGFR2 and PD-L1 and loss of PTEN expression were observed in 80.5%, 47.2%, and 42.7% of cases, respectively. Multivariate analysis showed that positive expression of PD-L1 was an independent favorable prognostic factor for DFS (HR = 0.610; P = 0.044). In conclusion, nearly all (93.6%) SqCLC cases harbored at least one potential druggable target. The findings of this study could facilitate the identification of therapeutic target candidates for precision medicine of SqCLC. PMID:27145277

  16. Pulmonary atelectasis and survival in advanced non-small cell lung carcinoma.

    PubMed

    Bulbul, Yilmaz; Eris, Bulent; Orem, Asim; Gulsoy, Ayhan; Oztuna, Funda; Ozlu, Tevfik; Ozsu, Savas

    2010-08-01

    Atelectasis was reported as a favorable prognostic sign of pulmonary carcinoma; however, the underlying mechanism in those patients is not known. In this study, we aimed to investigate prospectively the potential impact of atelectasis and/or obstructive pneumonitis (AO) on survival and the relation between atelectasis and some laboratory blood parameters. The study was conducted on 87 advanced stage non-small cell lung cancer (NSCLC) patients. Clinical and laboratory parameters of patients at first presentation were recorded, and patients were divided into two groups according to the presence of AO in thorax computed tomography (CT). Survival was calculated using Kaplan-Meier and univariate Cox's regression analyses. Laboratory parameters that might be related with prolonged survival in atelectasis were compared using chi-square, Student's t, and Mann-Whitney U tests. Of the patients, 54% had stage IV disease, and AO was detected in 48.3% of all cases. Overall median survival was 13.2 months for all cases, 10.9 months for patients without AO, and 13.9 months for patients with AO (P=0.067). Survival was significantly longer in stage III patients with AO (14.5 months versus 9.2 months, P=0.032), but not in stage IV patients. Patients with AO in stage III had significantly lower platelet counts (P=0.032) and blood sedimentation rates than did those with no AO (P=0.045). We concluded that atelectasis and/or obstructive pneumonitis was associated with prolonged survival in locally advanced NSCLC. There was also a clear association between atelectasis and/or obstructive pneumonitis and platelets and blood sedimentation rate.

  17. Pulmonary atelectasis and survival in advanced non-small cell lung carcinoma

    PubMed Central

    2010-01-01

    Atelectasis was reported as a favorable prognostic sign of pulmonary carcinoma; however, the underlying mechanism in those patients is not known. In this study, we aimed to investigate prospectively the potential impact of atelectasis and/or obstructive pneumonitis (AO) on survival and the relation between atelectasis and some laboratory blood parameters. The study was conducted on 87 advanced stage non-small cell lung cancer (NSCLC) patients. Clinical and laboratory parameters of patients at first presentation were recorded, and patients were divided into two groups according to the presence of AO in thorax computed tomography (CT). Survival was calculated using Kaplan-Meier and univariate Cox's regression analyses. Laboratory parameters that might be related with prolonged survival in atelectasis were compared using chi-square, Student's t, and Mann-Whitney U tests. Of the patients, 54% had stage IV disease, and AO was detected in 48.3% of all cases. Overall median survival was 13.2 months for all cases, 10.9 months for patients without AO, and 13.9 months for patients with AO (P = 0.067). Survival was significantly longer in stage III patients with AO (14.5 months versus 9.2 months, P = 0.032), but not in stage IV patients. Patients with AO in stage III had significantly lower platelet counts (P = 0.032) and blood sedimentation rates than did those with no AO (P = 0.045). We concluded that atelectasis and/or obstructive pneumonitis was associated with prolonged survival in locally advanced NSCLC. There was also a clear association between atelectasis and/or obstructive pneumonitis and platelets and blood sedimentation rate. PMID:20636252

  18. Curcumin reduces trabecular and cortical bone in naive and lewis lung carcinoma-bearing mice.

    PubMed

    Yan, Lin; Yee, John A; Cao, Jay

    2013-08-01

    The present study investigated the effects of curcumin on bone microstructure in non-tumor-bearing and Lewis lung carcinoma-(LLC)-bearing female C57BL/6 mice. Morphometric analysis showed that dietary supplementation with curcumin (2% or 4%) significantly reduced the bone volume to total volume ratio, connectivity density and trabecular number, and significantly increased the structure model index (an indicator of the plate- and rod-like geometry of trabecular structure) and trabecular separation in vertebral bodies compared to controls in both non-tumor-bearing and LLC-bearing mice. Similar changes in trabecular bone were observed in the femoral bone in curcumin-fed mice. Curcumin significantly reduced the cortical bone area to total area ratio and cortical thickness in femoral mid-shaft, but not in vertebral bodies, in both non-tumor-bearing and LLC-bearing mice. Curcumin feeding reduced plasma concentrations of osteocalcin and increased tartrate-resistant acid phosphate 5b in mice regardless of the presence of LLC, indicating that curcumin disrupts the balance of bone remodeling. Our results demonstrated that curcumin reduced the trabecular bone volume and cortical bone density. The skeleton is a favored site of metastasis for many types of cancers, and curcumin has been investigated in clinical trials in patients with cancer for its chemopreventive effects. Our results suggest the possibility of a combined effect of cancer-induced osteolysis and curcumin-stimulated bone loss in patients using curcumin. The assessment of bone structural changes should be considered for those who participate in curcumin clinical trials to determine its effects on skeleton health, particularly for those with advanced malignancies.

  19. Novel Humoral Prognostic Markers in Small-Cell Lung Carcinoma: A Prospective Study

    PubMed Central

    Gozzard, Paul; Chapman, Caroline; Vincent, Angela; Lang, Bethan; Maddison, Paul

    2015-01-01

    Purpose Favourable small cell lung carcinoma (SCLC) survival outcomes have been reported in patients with paraneoplastic neurological disorders (PNDs) associated with neuronal antibodies (Neur-Abs), but the presence of a PND might have expedited diagnosis. Our aim was to establish whether neuronal antibodies, independent of clinical neurological features, correlate with SCLC survival. Experimental Design 262 consecutive SCLC patients were examined: of these, 24 with neurological disease were excluded from this study. The remaining 238 were tested for a broad array of Neur-Abs at the time of cancer diagnosis; survival time was established from follow-up clinical data. Results Median survival of the non-PND cohort (n = 238) was 9.5 months. 103 patients (43%) had one or more antigen-defined Neur-Abs. We found significantly longer median survival in 23 patients (10%) with HuD/anti-neuronal nuclear antibody type 1 (ANNA-1, 13.0 months P = 0.037), but not with any of the other antigen-defined antibodies, including the PND-related SOX2 (n = 56, 24%). An additional 28 patients (12%) had uncharacterised anti-neuronal nuclear antibodies (ANNA-U); their median survival time was longer still (15.0 months, P = 0.0048), contrasting with the survival time in patients with non-neuronal anti-nuclear antibodies (detected using HEp-2 cells, n = 23 (10%), 9.25 months). In multivariate analyses, both ANNA-1 and ANNA-U independently reduced the mortality hazard by a ratio of 0.532 (P = 0.01) and 0.430 (P<0.001) respectively. Conclusions ANNAs, including the newly described ANNA-U, may be key components of the SCLC immunome and have a potential role in predicting SCLC survival; screening for them could add prognostic value that is similar in magnitude to that of limited staging at diagnosis. PMID:26606748

  20. Simultaneous EGFR and VEGF Alterations in Non-Small Cell Lung Carcinoma Based on Tissue Microarrays

    PubMed Central

    Tsiambas, Evangelos; Stamatelopoulos, Athanasios; Karameris, Andreas; Panagiotou, Ioannis; Rigopoulos, Dimitrios; Chatzimichalis, Antonios; Bouros, Demosthenes; Patsouris, Efstratios

    2007-01-01

    Background: Epidermal growth factor receptor (EGFR) overexpression is observed in significant proportions of non-small cell lung carcinomas (NSCLC). Furthermore, overactivation of vascular endothelial growth factor (VEGF) leads to increased angiogenesis implicated as an important factor in vascularization of those tumors. Patients and Methods: Using tissue microarray technology, forty-paraffin (n = 40) embedded, histologically confirmed primary NSCLCs were cored and re-embedded into a recipient block. Immunohistochemistry was performed for the determination of EGFR and VEGF protein levels which were evaluated by the performance of computerized image analysis. EGFR gene amplification was studied by chromogenic in situ hybridization based on the use of EGFR gene and chromosome 7 centromeric probes. Results: EGFR overexpression was observed in 23/40 (57.5%) cases and was correlated to the stage of the tumors (p = 0.001), whereas VEGF was overexpressed in 35/40 (87.5%) cases and was correlated to the stage of the tumors (p = 0.005) and to the smoking history of the patients (p = 0.016). Statistical significance was assessed comparing the protein levels of EGFR and VEGF (p = 0.043, k = 0.846). EGFR gene amplification was identified in 2/40 (5%) cases demonstrating no association to its overall protein levels (p = 0.241), whereas chromosome 7 aneuploidy was detected in 7/40 (17.5%) cases correlating to smoking history of the patients (p = 0.013). Conclusions: A significant subset of NSCLC is characterized by EGFR and VEGF simultaneous overexpression and maybe this is the eligible target group for the application of combined anti-EGFR/VEGF targeted therapies at the basis of genetic deregulation (especially gene amplification for EGFR). PMID:19455247

  1. Combinational treatment with retinoic acid derivatives in non-small cell lung carcinoma in vitro.

    PubMed

    Choi, Eun Jung; Whang, Young Mi; Kim, Seok Jin; Kim, Hyun Jin; Kim, Yeul Hong

    2007-09-01

    The growth inhibitory effects of four retinoic acid (RA) derivatives, 9-cis RA, 13-cis RA, N-(4-hydroxyphenyl) retinamide (4-HPR), and all-trans retinoic acid (ATRA) were compared. In addition, the effects of various combinations of these four agents were examined on non-small cell lung carcinoma (NSCLC) cell-lines, and on the expressions of retinoic acid receptors (RARs) and retinoid X receptors (RXRs) on these cells. At the clinically achievable concentration of 1 microM, only 4-HPR inhibited the growths of H1299 and H460 cells-lines. However, retinoic acid receptor beta(RAR beta) expression was up-regulated on H460 and H1299 cells treated with 1 microM of ATRA, 13-cis RA, or 9-cis RA. All NSCLC cell lines showed growth inhibition when exposed sequentially to 1 microM ATRA and 0.1 microM 4-HPR. In particular, sequential treatment with 1 microM ATRA or 13-cis RA and 4-HPR markedly inhibited H1703 cell growth; these cells exhibited no basal RAR beta expression and were refractory to 4-HPR. However, in NSCLC cell lines that expressed RAR beta, the expressional levels of RAR beta were up-regulated by ATRA alone and by sequential treatment with ATRA and 4-HPR. 4-HPR was found to be the most active of the four agents in terms of NSCLC growth-inhibition. Moreover, sequential treatments with ATRA or 13-cis RA followed by 4-HPR were found to have synergistic growth-inhibitory effects and to regulate RAR expression.

  2. Low dose elective brain irradiation in small cell carcinoma of the lung

    SciTech Connect

    Beiler, D.D.; Kane, R.C.; Bernath, A.M.

    Elective brain irradiation (EBI) in a dosage of 3000 rad (midplane) in 2 weeks (nominal standard dose (NSD) = 1314 ret) has proven highly effective in preventing initial brain relapse in small cell lung carcinoma. However, the optimal radiation dose for EBI is unknown. 55 patients (31 with regional disease, 24 with extensive disease) without brain metastases were treated with a 4 drug chemotherapy program, (lomustine (CCNU), methotrexate, cyclophosphamide, vincristine) plus radiotherapy (R.T.), 3000 rad in 2 weeks to the primary chest lesion and were randomized to EBI or a control group. The EBI consisted of 2400 rad whole brain,more » midplane, in 8 fractions, 10 days (NSD = 1130 ret) given at the same time as the R.T. to the primary (3 weeks post-initial chemotherapy). Though all 54 evaluable patients received CCNU 50 mg/M/sup 2/q. 6 weeks, there were 5 initial brain relapses among 31 control patients (16%) vs none in the 23 EBI patients. The time at risk for recurrence was similar in the two groups, i.e. 31 weeks median in the EBI and 32 weeks in the no-EBI patients. Brain relapses occurred in 2/17 with limited disease and 3/14 with extensive disease. It appears that 2400 rad in 8 fractions is as effective for EBI as larger doses. Toxicity was limited to alopecia. Survival was not significantly affected by EBI, though there is a suggestion of improvement in the regional group.« less

  3. ALK status testing in non-small cell lung carcinoma: correlation between ultrasensitive IHC and FISH.

    PubMed

    Minca, Eugen C; Portier, Bryce P; Wang, Zhen; Lanigan, Christopher; Farver, Carol F; Feng, Yan; Ma, Patrick C; Arrossi, Valeria A; Pennell, Nathan A; Tubbs, Raymond R

    2013-05-01

    ALK gene rearrangements in advanced non-small cell lung carcinomas (NSCLC) are an indication for targeted therapy with crizotinib. Fluorescence in situ hybridization (FISH) using a recently approved companion in vitro diagnostic class FISH system commonly assesses ALK status. More accessible IHC is challenged by low expression of ALK-fusion transcripts in NSCLC. We compared ultrasensitive automated IHC with FISH for detecting ALK status on 318 FFPE and 40 matched ThinPrep specimens from 296 patients with advanced NSCLC. IHC was concordant with FFPE-FISH on 229 of 231 dual-informative samples (31 positive and 198 negative) and with ThinPrep-FISH on 34 of 34 samples (5 positive and 29 negative). Two cases with negative IHC and borderline-positive FFPE-FISH (15% and 18%, respectively) were reclassified as concordant based on negative matched ThinPrep-FISH and clinical data consistent with ALK-negative status. Overall, after including ThinPrep-FISH and amending the false-positive FFPE-FISH results, IHC demonstrated 100% sensitivity and specificity (95% CI, 0.86 to 1.00 and 0.97 to 1.00, respectively) for ALK detection on 249 dual-informative NSCLC samples. IHC was informative on significantly more samples than FFPE-FISH, revealing additional ALK-positive cases. The high concordance with FISH warrants IHC's routine use as the initial component of an algorithmic approach to clinical ALK testing in NSCLC, followed by reflex FISH confirmation of IHC-positive cases. Copyright © 2013 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  4. Cytomorphology of non-small cell lung carcinoma with anaplastic lymphoma kinase gene rearrangement.

    PubMed

    Toll, Adam D; Maleki, Zahra

    2015-01-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase demonstrating activating mutations in several malignancies including a subset (1-5%) of non-small cell lung carcinomas (NSCLC). Prior work examining, the histologic features of these tumors found a spectrum of findings, notably a solid/acinar pattern, as well as a mucinous cribriform pattern. We present the first study to date describing the cytomorphology of NSCLC harboring ALK rearrangements. A retrospective database search was conducted to identify cytologic specimens of NSCLC demonstrating ALK rearrangement. Cytogenetic analysis was performed with fluorescence in situ hybridization. A total of 12 patients were identified, 10 with available material. Cellular morphology and smear background was evaluated in the study group, as well as control cases lacking ALK rearrangement. A total of 25 specimens from 10 patients were obtained. Five patients never smoked, and four patients had a remote smoking history. ALK rearrangements were identified in cells with unique cytologic characteristics. All cases demonstrated moderate to poor differentiation with a predominance of single cells showing anisonucleosis and frequent intracytoplasmic neutrophils. The control cases showed cells with smaller, less pleomorphic nuclei, and smaller nucleoli with more clusters/tissue fragments. Several unique cytomorphologic features were consistently identified in the study population relative to the control population and include a prominence of single, markedly enlarged tumor cells with plasmacytoid features and anisonucleosis, as well as intracytoplasmic neutrophils. Larger studies are warranted to confirm our preliminary findings, as these features may help establish a more cost-effective means to select patients being tested for ALK mutational analysis. © 2014 Wiley Periodicals, Inc.

  5. Pulmonary function after segmentectomy for small peripheral carcinoma of the lung.

    PubMed

    Takizawa, T; Haga, M; Yagi, N; Terashima, M; Uehara, H; Yokoyama, A; Kurita, Y

    1999-09-01

    The aim of this study is to compare the pulmonary function after a segmentectomy with that after a lobectomy for small peripheral carcinoma of the lung. Between 1993 and 1996, segmentectomy and lobectomy were performed on 48 and 133 good-risk patients, respectively. Lymph node metastases were detected after the operation in 6 and 24 patients of the segmentectomy and lobectomy groups, respectively. For bias reduction in comparison with a nonrandomized control group, we paired 40 segmentectomy patients with 40 lobectomy patients using nearest available matching method on the estimated propensity score. Twelve months after the operation, the segmentectomy and lobectomy groups had forced vital capacities of 2.67 +/- 0.73 L (mean +/- standard deviation) and 2.57 +/- 0.59 L, which were calculated to be 94.9% +/- 10.6% and 91.0% +/- 13.2% of the preoperative values (P =.14), respectively. The segmentectomy and lobectomy groups had postoperative 1-second forced expiratory volumes of 1.99 +/- 0.63 L and 1.95 +/- 0.49 L, which were calculated to be 93.3% +/- 10.3% and 87.3% +/- 14.0% of the preoperative values, respectively (P =.03). The multiple linear regression analysis showed that the alternative of segmentectomy or lobectomy was not a determinant for postoperative forced vital capacity but did affect postoperative 1-second forced expiratory volume. Pulmonary function after a segmentectomy for a good-risk patient is slightly better than that after a lobectomy. However, segmentectomy should be still the surgical procedure for only poor-risk patients because of the difficulty in excluding patients with metastatic lymph nodes from the candidates for the procedure.

  6. Lewis lung carcinoma regulation of mechanical stretch-induced protein synthesis in cultured myotubes.

    PubMed

    Gao, Song; Carson, James A

    2016-01-01

    Mechanical stretch can activate muscle and myotube protein synthesis through mammalian target of rapamycin complex 1 (mTORC1) signaling. While it has been established that tumor-derived cachectic factors can induce myotube wasting, the effect of this catabolic environment on myotube mechanical signaling has not been determined. We investigated whether media containing cachectic factors derived from Lewis lung carcinoma (LLC) can regulate the stretch induction of myotube protein synthesis. C2C12 myotubes preincubated in control or LLC-derived media were chronically stretched. Protein synthesis regulation by anabolic and catabolic signaling was then examined. In the control condition, stretch increased mTORC1 activity and protein synthesis. The LLC treatment decreased basal mTORC1 activity and protein synthesis and attenuated the stretch induction of protein synthesis. LLC media increased STAT3 and AMP-activated protein kinase phosphorylation in myotubes, independent of stretch. Both stretch and LLC independently increased ERK1/2, p38, and NF-κB phosphorylation. In LLC-treated myotubes, the inhibition of ERK1/2 and p38 rescued the stretch induction of protein synthesis. Interestingly, either leukemia inhibitory factor or glycoprotein 130 antibody administration caused further inhibition of mTORC1 signaling and protein synthesis in stretched myotubes. AMP-activated protein kinase inhibition increased basal mTORC1 signaling activity and protein synthesis in LLC-treated myotubes, but did not restore the stretch induction of protein synthesis. These results demonstrate that LLC-derived cachectic factors can dissociate stretch-induced signaling from protein synthesis through ERK1/2 and p38 signaling, and that glycoprotein 130 signaling is associated with the basal stretch response in myotubes. Copyright © 2016 the American Physiological Society.

  7. Lung Carcinoma Predictive Biomarker Testing by Immunoperoxidase Stains in Cytology and Small Biopsy Specimens: Advantages and Limitations.

    PubMed

    Zhou, Fang; Moreira, Andre L

    2016-12-01

    - In the burgeoning era of molecular genomics, immunoperoxidase (IPOX) testing grows increasingly relevant as an efficient and effective molecular screening tool. Patients with lung carcinoma may especially benefit from the use of IPOX because most lung carcinomas are inoperable at diagnosis and only diagnosed by small tissue biopsy or fine-needle sampling. When such small specimens are at times inadequate for molecular testing, positive IPOX results still provide actionable information. - To describe the benefits and pitfalls of IPOX in the detection of biomarkers in lung carcinoma cytology specimens and small biopsies by summarizing the currently available commercial antibodies, preanalytic variables, and analytic considerations. - PubMed. - Commercial antibodies exist for IPOX detection of aberrant protein expression due to EGFR L858R mutation, EGFR E746_A750 deletion, ALK rearrangement, ROS1 rearrangement, and BRAF V600E mutation, as well as PD-L1 expression in tumor cells. Automated IPOX protocols for ALK and PD-L1 detection were recently approved by the Food and Drug Administration as companion diagnostics for targeted therapies, but consistent interpretive criteria remain to be elucidated, and such protocols do not yet exist for other biomarkers. The inclusion of cytology specimens in clinical trials would expand patients' access to testing and treatment, yet there is a scarcity of clinical trial data regarding the application of IPOX to cytology, which can be attributed to trial designers' lack of familiarity with the advantages and limitations of cytology. The content of this review may be used to inform clinical trial design and advance IPOX validation studies.

  8. Tanshinone IIA combined with adriamycin inhibited malignant biological behaviors of NSCLC A549 cell line in a synergistic way.

    PubMed

    Xie, Jun; Liu, Jia-Hui; Liu, Heng; Liao, Xiao-Zhong; Chen, Yuling; Lin, Mei-Gui; Gu, Yue-Yu; Liu, Tao-Li; Wang, Dong-Mei; Ge, Hui; Mo, Sui-Lin

    2016-11-18

    The study was designed to develop a platform to verify whether the extract of herbs combined with chemotherapy drugs play a synergistic role in anti-tumor effects, and to provide experimental evidence and theoretical reference for finding new effective sensitizers. Inhibition of tanshinone IIA and adriamycin on the proliferation of A549, PC9 and HLF cells were assessed by CCK8 assays. The combination index (CI) was calculated with the Chou-Talalay method, based on the median-effect principle. Migration and invasion ability of A549 cells were determined by wound healing assay and transwell assay. Flow cytometry was used to detect the cell apoptosis and the distribution of cell cycles. TUNEL staining was used to detect the apoptotic cells. Immunofluorescence staining was used to detect the expression of Cleaved Caspase-3. Western blotting was used to detect the proteins expression of relative apoptotic signal pathways. CDOCKER module in DS 2.5 was used to detect the binding modes of the drugs and the proteins. Both tanshinone IIA and adriamycin could inhibit the growth of A549, PC9, and HLF cells in a dose- and time-dependent manner, while the proliferative inhibition effect of tanshinone IIA on cells was much weaker than that of adriamycin. Different from the cancer cells, HLF cells displayed a stronger sensitivity to adriamycin, and a weaker sensitivity to tanshinone IIA. When tanshinone IIA combined with adriamycin at a ratio of 20:1, they exhibited a synergistic anti-proliferation effect on A549 and PC9 cells, but not in HLF cells. Tanshinone IIA combined with adriamycin could synergistically inhibit migration, induce apoptosis and arrest cell cycle at the S and G2 phases in A549 cells. Both groups of the single drug treatment and the drug combination up-regulated the expressions of Cleaved Caspase-3 and Bax, but down-regulated the expressions of VEGF, VEGFR2, p-PI3K, p-Akt, Bcl-2, and Caspase-3 protein. Compared with the single drug treatment groups, the drug

  9. Inflammatory effects induced by selected limonene oxidation products: 4-OPA, IPOH, 4-AMCH in human bronchial (16HBE14o-) and alveolar (A549) epithelial cell lines.

    PubMed

    Lipsa, Dorelia; Leva, Paolo; Barrero-Moreno, Josefa; Coelhan, Mehmet

    2016-11-16

    Limonene, a monoterpene abundantly present in most of the consumer products (due to its pleasant citrus smell), easily undergoes ozonolysis leading to several limonene oxidation products (LOPs) such as 4-acetyl-1-methylcyclohexene (4-AMCH), 4-oxopentanal (4-OPA) and 3-isopropenyl-6-oxoheptanal (IPOH). Toxicological studies have indicated that human exposure to limonene and ozone can cause adverse airway effects. However, little attention has been paid to the potential health impact of specific LOPs, in particular of IPOH, 4-OPA and 4-AMCH. This study evaluates the cytotoxic effects of the selected LOPs on human bronchial epithelial (16HBE14o-) and alveolar epithelial (A549) cell lines by generating concentration-response curves using the neutral red uptake assay and analyzing the inflammatory response with a series of cytokines/chemokines. The cellular viability was mostly reduced by 4-OPA [IC 50 =1.6mM (A549) and 1.45mM (16HBE14o-)] when compared to IPOH [IC 50 =3.5mM (A549) and 3.4mM (16HBE14o-)] and 4-AMCH [IC 50 could not be calculated]. As a result from the inflammatory response, IPOH [50μM] induced an increase of both IL-6 and IL-8 secretion in A549 (1.5-fold change) and in 16HBE14o- (2.8- and 7-fold change respectively). 4-OPA [50μM] treatment of A549 increased IL-6 (1.4-times) and IL-8 (1.3-times) levels, while in 16HBE14o- had an opposite effect. A549 treated with 4-AMCH [50μM] elevate both IL-6 and IL-8 levels by 1.2-times, while in 16HBE14o- had an opposite effect. Based on our results, lung cellular injury characterized by inflammatory cytokine release was observed for both cell lines treated with the selected chemicals at concentrations that did not affect their cellular viability. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. Randomized trial of thoracic irradiation plus combination chemotherapy for unresectable adenocarcinoma and large cell carcinoma of the lung

    SciTech Connect

    Eagan, R.T.; Lee, R.E.; Frytak, S.

    1979-08-01

    Sixty-eight evaluable patients with unresectable adenocarcinoma and large cell carcinoma of the lung were treated on a prospective randomized trial comparing thoracic radiation therapy (TRT) plus combination chemotherapy with either cyclophosphamide, Adriamycin and cis-platinum (CAP) or cyclophosphamide, Adriamycin (same dosages) and DTIC (CAD), 34 on each arm. Patients treated with TRT plus CAP had a better overall regression rate (59% vs 47%) and a statistically significant superiority in time to disease progression (147 days vs 303 days) and survival (217 days vs 504 days).

  11. Mediastinal irradiation in a patient affected by lung carcinoma after heart transplantation: Helical tomotherapy versus three dimensional conformal radiotherapy.

    PubMed

    Giugliano, Francesca M; Iorio, Vincenzo; Cammarota, Fabrizio; Toledo, Diego; Senese, Rossana; Francomacaro, Ferdinando; Muto, Matteo; Muto, Paolo

    2016-04-26

    Patients who have undergone solid organ transplants are known to have an increased risk of neoplasia compared with the general population. We report our experience using mediastinal irradiation with helical tomotherapy versus three-dimensional conformal radiation therapy to treat a patient with lung carcinoma 15 years after heart transplantation. Our dosimetric evaluation showed no particular difference between the techniques, with the exception of some organs. Mediastinal irradiation after heart transplantation is feasible and should be considered after evaluation of the risk. Conformal radiotherapy or intensity-modulated radiotherapy appears to be the appropriate treatment in heart-transplanted oncologic patients.

  12. Interim report on intrathoracic radiotherapy of human small-cell lung carcinoma in nude mice with Re-188-RC-160, a radiolabeled somatostatin analogue

    SciTech Connect

    Zamora, P.O.; Bender, H.; Biersack, H.J.

    1995-07-01

    The purpose of this study was to evaluate the therapeutic efficacy of Re-188-RC-160 in experimental models of human small cell lung carcinomas which mimic the clinical presentation. In the experimental model, cells from the human small cell lung carcinoma cell line NCI-H69 cells were inoculated into the thoracic cavity of athymic mice and rats. Subsequently, the biodistribution of Re-188-RC-160 after injection into the pleural cavity, a radiolabeled somatostatin analogue, was monitored as was the effect on the subsequent growth of tumors. The results presented here, and which are a part of a larger series of studies, suggest that Re-188-RC-160 canmore » be effectively used in this animal model to restrict the growth of small cell lung carcinoma in the thoracic cavity.« less

  13. β-Sitosterol targets Trx/Trx1 reductase to induce apoptosis in A549 cells via ROS mediated mitochondrial dysregulation and p53 activation.

    PubMed

    Rajavel, Tamilselvam; Packiyaraj, Pandian; Suryanarayanan, Venkatesan; Singh, Sanjeev Kumar; Ruckmani, Kandasamy; Pandima Devi, Kasi

    2018-02-01

    β-Sitosterol (BS), a major bioactive constituent present in plants and vegetables has shown potent anticancer effect against many human cancer cells, but the underlying mechanism remain elusive on NSCLC cancers. We found that BS significantly inhibited the growth of A549 cells without harming normal human lung and PBMC cells. Further, BS treatment triggered apoptosis via ROS mediated mitochondrial dysregulation as evidenced by caspase-3 & 9 activation, Annexin-V/PI positive cells, PARP inactivation, loss of MMP, Bcl-2-Bax ratio alteration and cytochrome c release. Moreover, generation of ROS species and subsequent DNA stand break were found upon BS treatment which was reversed by addition of ROS scavenger (NAC). Indeed BS treatment increased p53 expression and its phosphorylation at Ser15, while silencing the p53 expression by pifithrin-α, BS induced apoptosis was reduced in A549 cells. Furthermore, BS induced apoptosis was also observed in NCI-H460 cells (p53 wild) but not in the NCI-H23 cells (p53 mutant). Down-regulation of Trx/Trx1 reductase contributed to the BS induced ROS accumulation and mitochondrial mediated apoptotic cell death in A549 and NCI-H460 cells. Taken together, our findings provide evidence for the novel anti-cancer mechanism of BS which could be developed as a promising chemotherapeutic drug against NSCLC cancers.

  14. Paraquat induces extrinsic pathway of apoptosis in A549 cells by induction of DR5 and repression of anti-apoptotic proteins, DDX3 and GSK3 expression.

    PubMed

    Hathaichoti, Sasiphen; Visitnonthachai, Daranee; Ngamsiri, Pronrumpa; Niyomchan, Apichaya; Tsogtbayar, Oyu; Wisessaowapak, Churaibhon; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2017-08-01

    Paraquat (PQ) is a bipyridyl derivative herbicide known to cause lung toxicity partly through induction of apoptosis. Here we demonstrated that PQ caused apoptosis in A549 cells. PQ increased cleavage of caspase-8 and Bid, indicating caspase-8 activation and truncated Bid, the two key mediators of extrinsic apoptosis. Additionally, PQ treatment caused an increase in DR5 (death receptor-5) and caspase-8 interaction, indicating formation of DISC (death-inducing signaling complex). These results indicate that PQ induces apoptosis through extrinsic pathway in A549 cells. Moreover, PQ drastically increased DR5 expression and membrane localization. Furthermore, PQ caused prominent concentration dependent reductions of DDX3 (the DEAD box protein-3) and GSK3 (glycogen synthase kinase-3) which can associate with DR5 and prevent DISC formation. Additionally, PQ decreased DR5-DDX3 interaction, suggesting a reduction of DDX3/GSK3 anti-apoptotic complex. Inhibition of GSK3, which is known to promote extrinsic apoptosis by its pharmacological inhibitor, BIO accentuated PQ-induced apoptosis. Moreover, GSK3 inhibition caused a further decrease in PQ-reduced DR5-DDX3 interaction. Taken together, these results suggest that PQ may induce extrinsic pathway of apoptosis in A549 cells through upregulation of DR5 and repression of anti-apoptotic proteins, DDX3/GSK3 leading to reduction of anti-apoptotic complex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Technical and clinical performance of a new assay to detect squamous cell carcinoma antigen levels for the differential diagnosis of cervical, lung, and head and neck cancer.

    PubMed

    Holdenrieder, Stefan; Molina, Rafael; Qiu, Ling; Zhi, Xiuyi; Rutz, Sandra; Engel, Christine; Kasper-Sauer, Pia; Dayyani, Farshid; Korse, Catharina M

    2018-04-01

    In squamous cell carcinoma, squamous cell carcinoma antigen levels are often elevated. This multi-center study evaluated the technical performance of a new Elecsys ® squamous cell carcinoma assay, which measures serum squamous cell carcinoma antigen 1 and 2 levels in an equimolar manner, and investigated the potential of squamous cell carcinoma antigen for differential diagnosis of cervical, lung, and head and neck squamous cell carcinoma.Assay precision and method comparison experiments were performed across three European sites. Reference ranges for reportedly healthy individuals were determined using samples from banked European and Chinese populations. Differential diagnosis experiments determined whether cervical, lung, or head and neck cancer could be differentiated from apparently healthy, benign, or other malignant cohorts using squamous cell carcinoma antigen levels alone. Squamous cell carcinoma antigen cut-off levels were calculated based on squamous cell carcinoma antigen levels at 95% specificity. Repeatability coefficients of variation across nine analyte concentrations were ≤5.3%, and intermediate precision coefficients of variation were ≤10.3%. Method comparisons showed good correlations with Architect and Kryptor systems (slopes of 1.1 and 1.5, respectively). Reference ranges for 95th percentiles for apparently healthy individuals were 2.3 ng/mL (95% confidence interval: 1.9-3.8; European cohort, n = 153) and 2.7 ng/mL (95% confidence interval: 2.2-3.3; Chinese cohort, n = 146). Strongest differential diagnosis results were observed for cervical squamous cell carcinoma: receiver operating characteristic analysis showed that squamous cell carcinoma antigen levels (2.9 ng/mL cut-off) differentiate cervical squamous cell carcinoma (n = 127) from apparently healthy females (n = 286; area under the curve: 86.2%; 95% confidence interval: 81.8-90.6; sensitivity: 61.4%; specificity: 95.6%), benign diseases (n = 187; area

  16. First Case Report of Metastatic Squamous Cell Carcinoma of Lung Associated with Mounier-Kuhn Syndrome and Review of Literature.

    PubMed

    Ayub, Fatima; Saif, Muhammad W

    2017-06-26

    Mounier-Kuhn syndrome is a relatively rare condition, mostly involving the trachea and main stem bronchi. It is caused either by the atrophy of elastic fibers or faulty fetal development of cartilage and smooth muscles, hence leading to an overall increase in the diameter of lower respiratory tract. No certain etiology was found in the majority of cases reported previously, however, several other connective tissue diseases have also been implicated with the congenital tracheobronchomegaly. One anecdotal case report mentioned the development of lung malignancy in a patient who had previously received external beam radiotherapy. Herein, we report the first case of Mounier-Kuhn syndrome in a 62-year-old male with a recent diagnosis of metastatic squamous cell carcinoma (SCC) of the lung.

  17. Small-Cell Carcinomas of the Bladder and Lung Are Characterized by a Convergent but Distinct Pathogenesis.

    PubMed

    Chang, Matthew T; Penson, Alexander; Desai, Neil B; Socci, Nicholas D; Shen, Ronglai; Seshan, Venkatraman E; Kundra, Ritika; Abeshouse, Adam; Viale, Agnes; Cha, Eugene K; Hao, Xueli; Reuter, Victor E; Rudin, Charles M; Bochner, Bernard H; Rosenberg, Jonathan E; Bajorin, Dean F; Schultz, Nikolaus; Berger, Michael F; Iyer, Gopa; Solit, David B; Al-Ahmadie, Hikmat A; Taylor, Barry S

    2018-04-15

    Purpose: Small-cell carcinoma of the bladder (SCCB) is a rare and aggressive neuroendocrine tumor with a dismal prognosis and limited treatment options. As SCCB is histologically indistinguishable from small-cell lung cancer, a shared pathogenesis and cell of origin has been proposed. The aim of this study is to determine whether SCCBs arise from a preexisting urothelial carcinoma or share a molecular pathogenesis in common with small-cell lung cancer. Experimental Design: We performed an integrative analysis of 61 SCCB tumors to identify histology- and organ-specific similarities and differences. Results: SCCB has a high somatic mutational burden driven predominantly by an APOBEC-mediated mutational process. TP53, RB1 , and TERT promoter mutations were present in nearly all samples. Although these events appeared to arise early in all affected tumors and likely reflect an evolutionary branch point that may have driven small-cell lineage differentiation, they were unlikely the founding transforming event, as they were often preceded by diverse and less common driver mutations, many of which are common in bladder urothelial cancers, but not small-cell lung tumors. Most patient tumors (72%) also underwent genome doubling (GD). Although arising at different chronologic points in the evolution of the disease, GD was often preceded by biallelic mutations in TP53 with retention of two intact copies. Conclusions: Our findings indicate that small-cell cancers of the bladder and lung have a convergent but distinct pathogenesis, with SCCBs arising from a cell of origin shared with urothelial bladder cancer. Clin Cancer Res; 24(8); 1965-73. ©2017 AACR See related commentary by Oser and Jänne, p. 1775 . ©2017 American Association for Cancer Research.

  18. TC-99m MIBI SPECT imaging in patients with lung carcinoma: is it a functional probe of multidrug resistance genes?

    PubMed

    Ak, Ilknur; Gülbaş, Zafer; Ocak, Suna; Kaya, Eser; Alataş, Füsun; Vardareli, Erkan; Metintaş, Muzaffer

    2007-01-01

    Multidrug-resistance (MDR) phenotype concerns altered membrane transport that results in lower cell concentrations of cytotoxic drug in many cancer types, including lung cancer, and is related to the overexpression of a variety of proteins that act as adenosine triphosphate-dependent extrusion pumps. Tc-99m Sestamibi (MIBI) is a transport substrate for P-glycoprotein (Pgp) pump. In this study, we assessed the uptake and clearance of technetium-99m-2-hexakis 2-methoxyisobutylisonitrile (Tc-99m MIBI) from the tumor and its correlation with messenger RNA (mRNA) levels of Pgp, MDR-associated protein (MRP1), and lung resistance protein (LRP) in lung carcinoma. This study was carried out on 19 patients (mean age, 60.1 +/- 2.07 years) with advanced-stage lung carcinoma. The tumor samples obtained by bronchoscopy were assessed to estimate the levels of Pgp, MRP1, and LRP expression on mRNA level by quantitative real-time reverse-transcription polymerase chain reaction. Tc-99m MIBI chest imaging was performed 15 and 180 minutes after injection of 740 MBq Tc-99m MIBI. The early (T/Be) and delayed (T/Bd) Tc-99m MIBI uptakes and washout rate (WR) of Tc-99m MIBI from the tumor were measured. No correlation was found between the T/Be Tc-99m MIBI uptake of tumors (T/Be) and the levels of Pgp mRNA, MRP1 mRNA, and LRP mRNA by reverse-transcription polymerase chain reaction. There was a correlation between the mean T/Bd Tc-99m MIBI uptake and Pgp expression of the tumors (P = 0.001, Spearman rho = - 0.702). There was a correlation between the WR of Tc-99m MIBI from the tumor and Pgp expression of the tumor (P = 0.000, Spearman rho = 0.875). Washout rate of Tc-99m MIBI was not related to the levels of MRP1 mRNA (P = 0.93, Spearman rho = 0.02) or LRP mRNA (P = 0.47, Spearman rho = 0.177). Increased WR of Tc-99m MIBI is related in Pgp over expression of the tumor. Tc-99m MIBI single photon emission computed tomography imaging may be a functional probe of overexpression of Pgp in

  19. Sirolimus and Auranofin in Treating Patients With Advanced or Recurrent Non-Small Cell Lung Cancer or Small Cell Lung Cancer

    ClinicalTrials.gov

    2017-08-28

    Extensive Stage Small Cell Lung Carcinoma; Lung Adenocarcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Small Cell Lung Carcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  20. Cytotoxic, Antiproliferative and Apoptotic Effects of Perillyl Alcohol and Its Biotransformation Metabolite on A549 and HepG2 Cancer Cell Lines.

    PubMed

    Oturanel, Ceren E; Kıran, İsmail; Özşen, Özge; Çiftçi, Gülşen A; Atlı, Özlem

    2017-01-01

    A monoterpene, perillyl alcohol, has attracted attention in medicinal chemistry since it exhibited chemo-preventive and therapeutic properties against a variety of cancers. In the present work, it was aimed to obtain derivatives of perillyl alcohol through microbial biotransformation and investigate their anticancer activities against A549 and HepG2 cancer cell lines. Biotransformation studies were carried out in a α-medium for 7 days at 25oC. XTT assay was performed to investigate the anticancer activities of perillyl alcohol and its biotransformation metabolite, dehydroperillic acid, against A549 and HepG2 cell lines and their selectivity using healthy cell line, NIH/3T3. Cell proliferation ELISA, BRDU (colorimetric) assay was used for measurement of proliferation in replicative cells in which DNA synthesis occurs. Flow cytometric analyses were also carried out for measuring apoptotic cell percentages, caspase 3 activation and mitochondrial membrane potential. Biotransformation of perillyl alcohol with Fusarium culmorum yielded dehydroperillic acid in a yield of 20.4 %. In in vitro anticancer studies, perillyl alcohol was found to exert cytotoxicity against HepG2 cell line with an IC50 value of 409.2 μg/mL. However, this effect was not found to be selective because of its higher IC50 (250 μg/mL) value against NIH/3T3 cell line. On the other hand, dehydroperillic acid was found to be effective and also selective against A549 cell line with an IC50 value of 125 μg/mL and a selectivity index (SI) value of 400. Apoptosis inducing effects of dehydroperillic acid was better in A549 cell line. Dehydroperillic acid may be a good candidate for therapy of lung adenocarcinoma and may show this anticancer activity by inducing apoptosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Prognostic indicators of outcomes in patients with lung metastases from differentiated thyroid carcinoma during long-term follow-up.

    PubMed

    Sohn, Seo Young; Kim, Hye In; Kim, Young Nam; Kim, Tae Hyuk; Kim, Sun Wook; Chung, Jae Hoon

    2018-02-01

    Distant metastases, although uncommon, represent maximum disease-related mortality in differentiated thyroid carcinoma (DTC). Lungs are the most frequent sites of metastases. We aimed to evaluate long-term outcomes and identify prognostic factors in metastatic DTC limited to the lungs. This retrospective study included 89 patients with DTC and metastases limited to the lungs, who were treated between 1996 and 2012 at Samsung Medical Center. Progression-free survival (PFS) and cancer-specific survival (CSS) rates were evaluated according to clinicopathologic factors. Cox regression analysis was used to identify independent factors associated with structural progressive disease (PD) and cancer-specific death. With a median follow-up of 84 months, the 5- and 10-year CSS rates were 78% and 73%, respectively. Older age at diagnosis (≥55 years), radioactive iodine (RAI) nonavidity, preoperative or late diagnosis of metastasis and macro-nodular metastasis (≥1 cm) were predictive of decreased PFS and CSS. Multivariate analysis identified older age (P = .002), RAI nonavidity (P = .045) and preoperative (P = .030) or late diagnosis (P = .026) as independent predictors of structural PD. RAI avidity was also independent predictor of cancer-specific death (P = .025). Patients with DTC and metastatic disease limited to the lungs had favourable long-term outcomes. Age, RAI avidity and timing of metastasis were found to be major factors for predicting prognosis. © 2017 John Wiley & Sons Ltd.

  2. Meta-analysis of incidence of early lung toxicity in 3-dimensional conformal irradiation of breast carcinomas

    PubMed Central

    2013-01-01

    Background This meta-analysis aims to ascertain the significance of early lung toxicity with 3-Dimensional (3D) conformal irradiation for breast carcinomas and identify the sub-groups of patients with increased risk. Methods Electronic databases, reference sections of major oncological textbooks and identified studies were searched for synonyms of breast radiotherapy and radiation pneumonitis (RP). Major studies in thoracic irradiation were reviewed to identify factors frequently associated with RP. Meta-analysis for RP incidence estimation and odds ratio calculation were carried out. Results The overall incidence of Clinical and Radiological RP is 14% and 42% respectively. Ten studies were identified. Dose-volume Histogram (DVH) related dosimetric factors (Volume of lung receiving certain dose, Vdose and Mean lung Dose, MLD), supraclavicular fossa (SCF) irradiation and age are significantly associated with RP, but not sequential chemotherapy and concomitant use of Tamoxifen. A poorly powered study in IMN group contributed to the negative finding. Smoking has a trend towards protective effect against RP. Conclusion Use of other modalities may be considered when Ipsilateral lung V20Gy > 30% or MLD > 15 Gy. Extra caution is needed in SCF and IMN irradiation as they are likely to influence these dosimetric parameters. PMID:24229418

  3. ALK-rearranged lung squamous cell carcinoma responding to alectinib: a case report and review of the literature.

    PubMed

    Mamesaya, Nobuaki; Nakashima, Kazuhisa; Naito, Tateaki; Nakajima, Takashi; Endo, Masahiro; Takahashi, Toshiaki

    2017-07-06

    Although anaplastic lymphoma kinase (ALK) fusion genes are generally identified in lung adenocarcinoma patients, they are relatively rare in patients with squamous cell carcinoma (SqCC). Metastatic ALK-rearranged lung adenocarcinoma patients treated with ALK inhibitors demonstrate higher response rates, improved progression-free survival, and reduced toxicity relative to those treated with conventional chemotherapy regimens. However, the efficacy of treatment with ALK inhibitors in patients with ALK-rearranged lung SqCC remains unknown. We discuss a 52-year-old Japanese-Brazilian woman without a history of smoking who was referred to our hospital for evaluation of severe left back pain and a left hilar mass observed on a chest radiograph. The patient was eventually diagnosed on the basis of computed tomography, pathological, and immunohistochemical findings as having Stage IV lung SqCC. First-line treatment with palliative radiotherapy and systemic chemotherapy with cisplatin plus vinorelbine was administered, but was not effective. ALK testing was subsequently performed, revealing positive ALK expression and gene rearrangement. Alectinib therapy was then initiated, which resulted in a gradual, but substantial reduction in tumor size. To the best of our knowledge, this is the first case report to discuss the successful management of ALK-rearranged lung SqCC with alectinib. We propose that molecular testing for driver mutations should be considered in young patients with a light or no smoking history, even if the histological findings correspond with SqCC, and alectinib therapy represents a reasonable option in cases of ALK-rearranged lung SqCC.

  4. Endometrial thickness and risk of breast and endometrial carcinomas in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial

    PubMed Central

    Felix, Ashley S.; Weissfeld, Joel L.; Pfeiffer, Ruth M.; Modugno, Francesmary; Black, Amanda; Hill, Lyndon M.; Martin, Jerry; Sit, Anita S.; Sherman, Mark E.; Brinton, Louise A.

    2013-01-01

    Postmenopausal women with higher circulating estrogen levels are at increased risk of developing breast and endometrial carcinomas. In the endometrium, excess estrogen relative to progesterone produces a net proliferative stimulus, which may result in endometrial thickening. Therefore, we tested the hypothesis that endometrial thickness is a biological marker of excess estrogen stimulation that is associated with risk of breast and endometrial carcinomas. Endometrial thickness was measured in 1,272 postmenopausal women, aged 55–74, who underwent transvaginal ultrasound (TVU) screening as part of the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Serial endometrial thickness measurements were available for a subset of women at one (n=1,018), two (n=869) and three years (n=641) after baseline. We evaluated associations between endometrial thickness and breast (n=91) and endometrial (n=14) carcinoma by estimating relative risks (RRs) and 95% confidence intervals (CIs) using Cox proportional hazards regression with age as the time metric. Models incorporating baseline endometrial thickness and as a time-varying covariate using all measurements were examined. Median follow-up among study participants was 12.5 years (range: 0.3–13.8 years). Compared to baseline endometrial thickness of 1.0 – 2.99 mm, women with baseline endometrial thickness greater than or equal to 5.0 mm had an increased risk of breast (RR: 2.00, 95% CI 1.15, 3.48) and endometrial (RR: 5.02, 95% CI 0.96, 26.36) carcinomas in models adjusted for menopausal hormone use and BMI. Our data suggest that increased endometrial thickness as assessed by TVU was associated with increased risk of breast and endometrial carcinomas. PMID:23907658

  5. In vitro studies data on anticancer activity of Caesalpinia sappan L. heartwood and leaf extracts on MCF7 and A549 cell lines.

    PubMed

    Naik Bukke, Arunkumar; Nazneen Hadi, Fathima; Babu, K Suresh; Shankar, P Chandramati

    2018-08-01

    This article contains data on in vitro cytotoxicity activity of chloroform, methanolic and water extracts of leaf and heartwood of Caesalpinia sappan L. a medicinal plant against Breast cancer (MCF-7) and Lung cancer (A-549) cells. This data shows that Brazilin A, a natural bioactive compound in heartwood of Caesalpinia sappan L. induced cell death in breast cancer (MCF-7) cells. The therapeutic property was further proved by docking the Brazilin A molecule against BCL-2 protein (an apoptotic inhibitor) using auto dock tools.

  6. White Tea Extract Induces Apoptosis in Nonsmall Cell Lung Cancer Cells– The Role of PPAR-γ and 15-Lipoxygenases

    PubMed Central

    Mao, Jenny T.; Nie, Wen-Xian; Tsu, I-Hsien; Jin, Yu-Sheng; Rao, Jian yu; Lu, Qing-Yi; Zhang, Zuo-Feng; Go, Vay Liang W.; Serio, Kenneth J.

    2010-01-01

    Purpose Emerging preclinical data suggests that tea possess anticarcinogenic and antimutagenic properties. We therefore hypothesize that white tea extract (WTE) is capable of favorably modulating apoptosis, a mechanism associated with lung tumorigenesis. Experimental Design We examined the effects of physiologically relevant doses of WTE on the induction of apoptosis in the nonsmall cell lung cancer (NSCLC) cell lines, A549 (adenocarcinoma) and H520 (squamous cell carcinoma) cells. We further characterized the molecular mechanisms responsible for the WTE-induced apoptosis, including the induction of PPAR-γ and the 15-lipoxygenase (15-LOX) signaling pathway. Results We found that WTE was effective in inducing apoptosis in both A549 and H520 cells, and inhibition of PPAR-γ with GW 9662 partially reversed the WTE-induced apoptosis. We further demonstra