Science.gov

Sample records for a549 lung tumor

  1. Vitamin D Analogs Potentiate the Antitumor Effect of Imatinib Mesylate in a Human A549 Lung Tumor Model

    PubMed Central

    Maj, Ewa; Filip-Psurska, Beata; Świtalska, Marta; Kutner, Andrzej; Wietrzyk, Joanna

    2015-01-01

    In previous papers, we presented data on studies on the anticancer activity of the vitamin D3 analogs, named PRI-2191 and PRI-2205, in different cancer models. In this study, we showed the improved antiproliferative activity of a combination of imatinib mesylate (Gleevec, GV) and cytostatic agents in in vitro studies, when used with a third compound, namely PRI-2191, in an A549 human lung cancer model. Furthermore, we analyzed the influence of both PRI-2191, as well as PRI-2205 on the anticancer activity of GV in mice bearing A549 tumors. The route of PRI-2191 analog administration showed a significant impact on the outcome of GV treatment: subcutaneous injection was more efficient and less toxic than oral gavage. Moreover, both vitamin D compounds increased the anticancer activity of GV; however, they might also potentiate some adverse effects. We also evaluated in tumor tissue the expression of VEGF, PDGF-BB, vitamin D receptor, CYP27B1, CYP24, p53 and Bcl-2, as well as PDGF receptors: α and β. We observed the upregulation of p53 expression and the downregulation of Bcl-2, as well as VEGF in A549 tumors as a result of the tested treatment. However, vitamin D analogs did not significantly influence the expression of these proteins. PMID:26580599

  2. Vitamin D Analogs Potentiate the Antitumor Effect of Imatinib Mesylate in a Human A549 Lung Tumor Model.

    PubMed

    Maj, Ewa; Filip-Psurska, Beata; Świtalska, Marta; Kutner, Andrzej; Wietrzyk, Joanna

    2015-11-13

    In previous papers, we presented data on studies on the anticancer activity of the vitamin D₃ analogs, named PRI-2191 and PRI-2205, in different cancer models. In this study, we showed the improved antiproliferative activity of a combination of imatinib mesylate (Gleevec, GV) and cytostatic agents in in vitro studies, when used with a third compound, namely PRI-2191, in an A549 human lung cancer model. Furthermore, we analyzed the influence of both PRI-2191, as well as PRI-2205 on the anticancer activity of GV in mice bearing A549 tumors. The route of PRI-2191 analog administration showed a significant impact on the outcome of GV treatment: subcutaneous injection was more efficient and less toxic than oral gavage. Moreover, both vitamin D compounds increased the anticancer activity of GV; however, they might also potentiate some adverse effects. We also evaluated in tumor tissue the expression of VEGF, PDGF-BB, vitamin D receptor, CYP27B1, CYP24, p53 and Bcl-2, as well as PDGF receptors: α and β. We observed the upregulation of p53 expression and the downregulation of Bcl-2, as well as VEGF in A549 tumors as a result of the tested treatment. However, vitamin D analogs did not significantly influence the expression of these proteins.

  3. Vitamin D Analogs Potentiate the Antitumor Effect of Imatinib Mesylate in a Human A549 Lung Tumor Model.

    PubMed

    Maj, Ewa; Filip-Psurska, Beata; Świtalska, Marta; Kutner, Andrzej; Wietrzyk, Joanna

    2015-01-01

    In previous papers, we presented data on studies on the anticancer activity of the vitamin D₃ analogs, named PRI-2191 and PRI-2205, in different cancer models. In this study, we showed the improved antiproliferative activity of a combination of imatinib mesylate (Gleevec, GV) and cytostatic agents in in vitro studies, when used with a third compound, namely PRI-2191, in an A549 human lung cancer model. Furthermore, we analyzed the influence of both PRI-2191, as well as PRI-2205 on the anticancer activity of GV in mice bearing A549 tumors. The route of PRI-2191 analog administration showed a significant impact on the outcome of GV treatment: subcutaneous injection was more efficient and less toxic than oral gavage. Moreover, both vitamin D compounds increased the anticancer activity of GV; however, they might also potentiate some adverse effects. We also evaluated in tumor tissue the expression of VEGF, PDGF-BB, vitamin D receptor, CYP27B1, CYP24, p53 and Bcl-2, as well as PDGF receptors: α and β. We observed the upregulation of p53 expression and the downregulation of Bcl-2, as well as VEGF in A549 tumors as a result of the tested treatment. However, vitamin D analogs did not significantly influence the expression of these proteins. PMID:26580599

  4. Effect of Avastin on the number and structure of tumor blood vessels of nude mice with A549 lung adenocarcinoma.

    PubMed

    Zhang, Nali; Zhang, Guojun; Zheng, Youguang; Wang, Tongbing; Wang, Honglei

    2014-12-01

    The aim of the present study was to investigate the effect of Avastin on the number and structure of tumor blood vessels of nude mice with A549 lung adenocarcinoma. A total of 30 nude mice were randomly divided into three groups, namely the control, the Avastin I (Avastin 3 mg/kg) and the Avastin II (Avastin 6 mg/kg) groups. Following treatment, ELISA was used to detect the expression level of vascular endothelial growth factor (VEGF) in tumor tissues. The microvascular density in tumor tissues and tumor vascular pericyte coverage was detected by immunofluorescence. The tumor growth and survival rate of mice in the three groups were also analyzed. Compared with the control group, the Avastin I and II groups exhibited significantly decreased VEGF levels and microvascular density in the tumor tissues, with the decrease in the Avastin II group being more prominent (P<0.05). After 7 days of treatment, the vascular pericyte coverage in the tumor tissues of mice in the Avastin I and II groups was significantly increased compared with that in the control group mice (P<0.05). Compared with the control group, the mice in the Avastin I and II groups exhibited a significantly decreased tumor growth rate and this effect was dose-dependent. The survival rate of mice in the Avastin I and II groups was significantly increased compared with that of the mice in the control group (P<0.05). In conclusion, Avastin significantly decreased the microvascular density of the tumor in nude mice with A549 lung adenocarcinoma and also significantly increased tumor vascular pericyte coverage, inhibited tumor growth and increased the survival rate of the mice, through its potent antiangiogenic activity.

  5. Tumor growth affects the metabonomic phenotypes of multiple mouse non-involved organs in an A549 lung cancer xenograft model

    PubMed Central

    Xu, Shan; Tian, Yuan; Hu, Yili; Zhang, Nijia; Hu, Sheng; Song, Dandan; Wu, Zhengshun; Wang, Yulan; Cui, Yanfang; Tang, Huiru

    2016-01-01

    The effects of tumorigenesis and tumor growth on the non-involved organs remain poorly understood although many research efforts have already been made for understanding the metabolic phenotypes of various tumors. To better the situation, we systematically analyzed the metabolic phenotypes of multiple non-involved mouse organ tissues (heart, liver, spleen, lung and kidney) in an A549 lung cancer xenograft model at two different tumor-growth stages using the NMR-based metabonomics approaches. We found that tumor growth caused significant metabonomic changes in multiple non-involved organ tissues involving numerous metabolic pathways, including glycolysis, TCA cycle and metabolisms of amino acids, fatty acids, choline and nucleic acids. Amongst these, the common effects are enhanced glycolysis and nucleoside/nucleotide metabolisms. These findings provided essential biochemistry information about the effects of tumor growth on the non-involved organs. PMID:27329570

  6. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo

    SciTech Connect

    Wang, Chunmao; Ding, Chao; Kong, Minjian; Dong, Aiqiang; Qian, Jianfang; Jiang, Daming; Shen, Zhonghua

    2011-07-08

    Highlights: {yields} We compared lipofection with magnetofection about difference of transfection efficiency on delivery a therapeutic gene in vitro and in vivo. {yields} We investigated the difference of shRNA induced by magnetofection and lipofection into A549 cell and subcutaneous tumor to knockdown IGF-1R overexpressed in A549 cell and A549 tumor. {yields} We investigated in vivo shRNA silenced IGF-1R overexpression 24, 48, and 72 h after shRNA intravenous injection into tumor-bearing mice by way of magnetofection and lipofection. {yields} Our results showed that magnetofection could achieve therapeutic gene targeted delivery into special site, which contributed to targeted gene therapy of lung cancers. -- Abstract: Liposomal magnetofection potentiates gene transfection by applying a magnetic field to concentrate magnetic lipoplexes onto target cells. Magnetic lipoplexes are self-assembling ternary complexes of cationic lipids with plasmid DNA associated with superparamagnetic iron oxide nanoparticles (SPIONs). Type1insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently overexpressed in lung cancer and mediates cancer cell proliferation and tumor growth. In this study, we evaluated the transfection efficiency (percentage of transfected cells) and therapeutic potential (potency of IGF-1R knockdown) of liposomal magnetofection of plasmids expressing GFP and shRNAs targeting IGF-1R (pGFPshIGF-1Rs) in A549 cells and in tumor-bearing mice as compared to lipofection using Lipofectamine 2000. Liposomal magnetofection provided a threefold improvement in transgene expression over lipofection and transfected up to 64.1% of A549 cells in vitro. In vitro, IGF-1R specific-shRNA transfected by lipofection inhibited IGF-1R protein by 56.1 {+-} 6% and by liposomal magnetofection by 85.1 {+-} 3%. In vivo delivery efficiency of the pGFPshIGF-1R plasmid into the tumor was significantly higher in the liposomal magnetofection group than in the

  7. Encapsulated paclitaxel nanoparticles exhibit enhanced anti-tumor efficacy in A549 non-small lung cancer cells.

    PubMed

    Huang, Guojin; Zang, Bao; Wang, Xiaowei; Liu, Gang; Zhao, Jianqiang

    2015-12-01

    In the present study, paclitaxel (PTX) were encapsulated with polyethylene glycol (PEG)-polylactide (PLA)/D-α tocopheryl polyethylene glycol 1000 succinate (TPGS) (PEG-PLA/TPGS) and the enhanced anti-tumor activity of this PTX mixed micelles (PTX-MM) was evaluated in lung cancer cells. The PTX-MM prepared by a solvent evaporation method was demonstrated to have high drug-loading efficiency (23.2%), high encapsulation efficiency (76.4%), and small size (59 nm). In vitro release assay showed the slow release behavior of PTX-MM, suggesting the good stability of the PTX-MM essential for long circulation time. In vitro kinetics assay demonstrated that PTX-MM could promote absorption and increase relative bioavailability. The anti-cancer efficiency of PTX-MM was also examined by both in vitro and in vivo studies. PTX-MM exhibits obvious cytotoxicity against lung cancer cells with much lower IC50 value when compared with commercial formulated PTX or PTX + TPGS. The xenograft tumor model studies on nude mice indicated that PTX-MM inhibits tumor growth more effectively than other formulations. It was also found that most of mixed micelles were integral in tumor site to exhibit anti-cancer activity. Our results suggested that the use of PTX-MM as an anti-cancer drug may be an effective approach to treat lung cancer. PMID:26525950

  8. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells.

    PubMed

    Yu, Zhenhai; Huang, Liangqian; Qiao, Pengyun; Jiang, Aifang; Wang, Li; Yang, Tingting; Tang, Shengjian; Zhang, Wei; Ren, Chune

    2016-05-13

    Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. These findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer. PMID:27045080

  9. Sinomenine inhibits A549 human lung cancer cell invasion by mediating the STAT3 signaling pathway

    PubMed Central

    Jiang, Shulong; Gao, Yebo; Hou, Wei; Liu, Rui; Qi, Xin; Xu, Xia; Li, Jie; Bao, Yanju; Zheng, Honggang; Hua, Baojin

    2016-01-01

    Increasing evidence suggests that the failure of lung cancer treatment may occur as a result of tumor invasion and metastasis. Signal transducer and activator of transcription 3 (STAT3), an epithelial-mesenchymal transition-inducing transcription factor, is a key signaling molecule involved in the proliferation, apoptosis, invasion and metastasis of tumor cells. Sinomenine is an alkaloid compound with an antineoplastic potential against a variety of cancer cells. The aim of the present study was to assess the antitumor mechanisms of sinomenine in the A549 human lung cancer cell line. The results demonstrated that sinomenine manifested dose-dependent cytotoxicity and induced apoptosis in A549 cells. The protein expression of Janus kinase 2, STAT3, phosphorylated-STAT3, Snail, N-cadherin and vimentin decreased in sinomenine-treated cells, while E-cadherin protein expression increased. The regulation of STAT3, N-cadherin and E-cadherin by sinomenine was further confirmed by reverse transcription-quantitative polymerase chain reaction and immunofluorescent staining. It was demonstrated that sinomenine exerts inhibitory effects on A549 human lung cancer cell invasion, possibly through the inhibition of STAT3 signaling. These results provide a novel insight into the role of sinomenine in the treatment of non-small cell lung cancer. PMID:27446441

  10. TLE1 promotes EMT in A549 lung cancer cells through suppression of E-cadherin

    PubMed Central

    Yao, Xin; Ireland, Shubha Kale; Pham, Tri; Temple, Brandi; Chen, Renwei; Raj, Madhwa HG; Biliran, Hector

    2014-01-01

    The Groucho transcriptional corepressor TLE1 protein has recently been shown to be a putative lung specific oncogene, but its underlying oncogenic activity in lung cancer has not been fully elucidated. In this report, we investigated whether TLE1 regulates lung cancer aggressiveness using the human lung adenocarcinoma cell line A549 as a model system. Through a combination of genetic approaches, we found that TLE1 potentiates Epithelial-to-Mesenchymal Transition (EMT) in A549 cells in part through suppression of the tumor suppressor gene E-cadherin. Exogenous expression of TLE1 in A549 cells resulted in heightened EMT phenotypes (enhanced fibroblastoid morphology and increased cell migratory potential) and in molecular alterations characteristic of EMT (downregulation of the epithelial marker E-cadherin and upregulation of the mesenchymal marker Vimentin). Conversely, downregulation of endogenous TLE1 expression in these cells resulted in reversal of basal EMT characterized by a cuboidal-like epithelial cell phenotype, reduced cell motility, and upregulated E-cadherin expression. Mechanistic studies showed that TLE1 suppresses E-cadherin expression at the transcriptional level in part by recruiting Histone Deacetylase (HDAC) activity to the E-cadherin promoter. Consistently, the HDAC inhibitor TSA partially reversed the TLE1-induced E-cadherin downregulation and cell migration, suggesting a role for HDACs in TLE1-mediated transcriptional repression of E-cadherin and EMT function. These findings uncover a novel role of TLE1 in regulating EMT in A549 cells through its repressive effect on E-cadherin and provide a mechanism for TLE1 oncogenic activity in lung cancer. PMID:25446087

  11. Middle infrared radiation induces G2/M cell cycle arrest in A549 lung cancer cells.

    PubMed

    Chang, Hsin-Yi; Shih, Meng-Her; Huang, Hsuan-Cheng; Tsai, Shang-Ru; Juan, Hsueh-Fen; Lee, Si-Chen

    2013-01-01

    There were studies investigating the effects of broadband infrared radiation (IR) on cancer cell, while the influences of middle-infrared radiation (MIR) are still unknown. In this study, a MIR emitter with emission wavelength band in the 3-5 µm region was developed to irradiate A549 lung adenocarcinoma cells. It was found that MIR exposure inhibited cell proliferation and induced morphological changes by altering the cellular distribution of cytoskeletal components. Using quantitative PCR, we found that MIR promoted the expression levels of ATM (ataxia telangiectasia mutated), ATR (ataxia-telangiectasia and Rad3-related and Rad3-related), TP53 (tumor protein p53), p21 (CDKN1A, cyclin-dependent kinase inhibitor 1A) and GADD45 (growth arrest and DNA-damage inducible), but decreased the expression levels of cyclin B coding genes, CCNB1 and CCNB2, as well as CDK1 (Cyclin-dependent kinase 1). The reduction of protein expression levels of CDC25C, cyclin B1 and the phosphorylation of CDK1 at Thr-161 altogether suggest G(2)/M arrest occurred in A549 cells by MIR. DNA repair foci formation of DNA double-strand breaks (DSB) marker γ-H2AX and sensor 53BP1 was induced by MIR treatment, it implies the MIR induced G(2)/M cell cycle arrest resulted from DSB. This study illustrates a potential role for the use of MIR in lung cancer therapy by initiating DSB and blocking cell cycle progression.

  12. Exosomes: decreased sensitivity of lung cancer A549 cells to cisplatin.

    PubMed

    Xiao, Xia; Yu, Shaorong; Li, Shuchun; Wu, Jianzhong; Ma, Rong; Cao, Haixia; Zhu, Yanliang; Feng, Jifeng

    2014-01-01

    Exosomes are small extracellular membrane vesicles of endocytic origin released by many cells that could be found in most body fluids. The main functions of exosomes are cellular communication and cellular waste clean-up. This study was conducted to determine the involvement of exosomes in the regulation of sensitivity of the lung cancer cell line A549 to cisplatin (DDP). When DDP was added to A549 cells, exosomes secretion was strengthened. Addition of the secreted exosomes to other A549 cells increased the resistance of these A549 cells to DDP. Upon exposure of A549 to DDP, the expression levels of several miRNAs and mRNAs reportedly associated with DDP sensitivity changed significantly in exosomes; these changes may mediate the resistance of A549 cells to DDP. Exosomes released by A549 cells during DDP exposure decreased the sensitivity of other A549 cells to DDP, which may be mediated by miRNAs and mRNAs exchange by exosomes via cell-to-cell communication. Although the detailed mechanism of resistance remains unclear, we believed that inhibition of exosomes formation and release might present a novel strategy for lung cancer treatment in the future. PMID:24586853

  13. Intratumoral injection of taxol in vivo suppresses A549 tumor showing cytoplasmic vacuolization.

    PubMed

    Wang, Chaoyang; Chen, Tongsheng

    2012-04-01

    Based on our recent in vitro studies, this report was designed to explore the mechanism by which high concentration of taxol (70 µM) induced paraptosis-like cell death in human lung carcinoma (A549) cells, and to evaluate the therapeutic efficacy of taxol using A549 tumor-bearing mice in vivo. Exposure of cells to taxol induced time-dependent cytotoxicity and cytoplasmic vacuolization without the involvement of Bax, Bak, Mcl-1, Bcl-XL, and caspase-3. Although taxol treatment induced activating transcription factor 6 (ATF6) cleavage indicative of endoplasmic reticulum (ER) stress, silencing ATF6 by shATF6 did not prevent taxol-induced both cytotoxcity and cytoplasmic vacuolization, suggesting that taxol-induced cytoplasmic vacuolization and cell death were not due to ER stress. Moreover, taxol-treated cells did not show DNA fragmentation and loss of mitochondrial membrane potential, the typical characteristics of apoptosis. In addition, taxol-induced cytoplasmic vacuolization did not show the cellular lysis, the characteristics of oncosis, and positive of β-galactosidase, the characteristic of senescence, indicating that taxol induced paraptosis-like cell death is neither oncosis nor senescence. Moreover, our in vivo data showed that intratumoral injection of taxol (50 mg/kg) in A549 tumor xenograft mice on day 1 and day 19 potently suppressed tumor growth showing significant ER vacuolization without toxicity. In conclusion, high concentration of taxol exhibits a significant anticancer activity by inducing paraptosis-like cell death in vitro and in vivo, without significant toxicity, suggesting a promising therapeutic strategy for apoptosis-resistance cancer by inducing ER vacuolization.

  14. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    SciTech Connect

    Zhang, Jian; Zhang, Tao; Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling; Yin, Hong

    2010-08-13

    Research highlights: {yields} Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells {yields} Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway {yields} Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* {yields} miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  15. Trichomonas vaginalis induces cytopathic effect on human lung alveolar basal carcinoma epithelial cell line A549.

    PubMed

    Salvador-Membreve, Daile Meek C; Jacinto, Sonia D; Rivera, Windell L

    2014-12-01

    Trichomonas vaginalis, the causative agent of trichomoniasis is generally known to inhabit the genitourinary tract. However, several case reports with supporting molecular and immunological identifications have documented its occurrence in the respiratory tract of neonates and adults. In addition, the reports have documented that its occurrence is associated with respiratory failures. The medical significance or consequence of this association is unclear. Thus, to establish the possible outcome from the interaction of T. vaginalis with lung cells, the cytopathic effects of the parasites were evaluated using monolayer cultures of the human lung alveolar basal carcinoma epithelial cell line A549. The possible effect of association of T. vaginalis with A549 epithelial cells was analyzed using phase-contrast, scanning electron microscopy and fluorescence microscopy. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), crystal-violet and TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling) assays were conducted for cytotoxicity testing. The results demonstrate that T. vaginalis: (1) adheres to A549 epithelial cells, suggesting a density-dependent parasite-cell association; (2) adherence on A549 is through flagella, membrane and axostyle; (3) causes cell detachment and cytotoxicity (50-72.4%) to A549 and this effect is a function of parasite density; and (4) induces apoptosis in A549 about 20% after 6 h of incubation. These observations indicate that T. vaginalis causes cytopathic effects on A549 cell. To date, this is the first report showing a possible interaction of T. vaginalis with the lung cells using A549 monolayer cultures. Further studies are recommended to completely elucidate this association.

  16. α5-nAChR modulates nicotine-induced cell migration and invasion in A549 lung cancer cells.

    PubMed

    Sun, Haiji; Ma, Xiaoli

    2015-09-01

    Cigarette smoking is the most important risk factor in the development of human lung cancer. Nicotine, the major component in tobacco, not only contributes to carcinogenesis but also promotes tumor metastasis. By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and migration of non-small cell lung cancer. Recently studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. Nevertheless, it is unclear whether nicotine promotes the migration and invasion through activation of α5-nAChR in lung cancer. In the present study, A549 cell was exposed to 1μN nicotine for 8, 24 or 48h. Wound-healing assay and transwell assay were used to evaluate the capability of A549 cell migration and cell invasion, respectively. Silencing of α5-nAChR was done by siRNA. Western blotting and PCR were used to detect α5-nAChR expression. Nicotine can induce activation of α5-nAChR in association with increased migration and invasion of human lung cancer A549 cell. Treatment of cells with α5-nAChR specific siRNA blocks nicotine-stimulated activation of α5-nAChR and suppresses A549 cell migration and invasion. Reduction of α5-nAChR resulted in upregulation of E-cadherin, consistent with E-cadherin being inhibitive of cancer cell invasion. These findings suggest that nicotine-induced migration and invasion may occur in a mechanism through activation of α5-nAChR, which can contribute to metastasis or development of human lung cancer.

  17. Aptamer based electrochemical sensor for detection of human lung adenocarcinoma A549 cells

    NASA Astrophysics Data System (ADS)

    Sharma, Rachna; Varun Agrawal, Ved; Sharma, Pradeep; Varshney, R.; Sinha, R. K.; Malhotra, B. D.

    2012-04-01

    We report results of the studies relating to development of an aptamer-based electrochemical biosensor for detection of human lung adenocarcinoma A549 cells. The aminated 85-mer DNA aptamer probe specific for the A549 cells has been covalently immobilized onto silane self assembled monolayer (SAM) onto ITO surface using glutaraldehyde as the crosslinker. The results of cyclic voltammetry and differential pulse voltammetry studies reveal that the aptamer functionalized bioelectrode can specifically detect lung cancer cells in the concentration range of 103 to 107 cells/ml with detection limit of 103 cells/ml within 60 s. The specificity studies of the bioelectrode have been carried out with control KB cells. No significant change in response is observed for control KB cells as compared to that of the A549 target cells.

  18. Radix Tetrastigma hemsleyani flavone inhibits proliferation, migration, and invasion of human lung carcinoma A549 cells

    PubMed Central

    Zhong, Liangrui; Zheng, Junxian; Sun, Qianqian; Wei, Kemin; Hu, Yijuan

    2016-01-01

    Radix Tetrastigma hemsleyani flavone (RTHF) is widely used as a traditional herb and has detoxification and anti-inflammatory effects. In this study, we investigated the potential effects of RTHF on the growth and metastasis of human lung adenocarcinoma A549 cells and evaluated its mechanisms. A549 cells were treated with RTHF at various concentrations for different periods. In vitro Cell Counting Kit-8 assay and colony formation methods showed that RTHF had dose- and time-dependent antiproliferation effects on A549 cells. A cell adhesion assay showed that RTHF decreased A549 cell adhesion in a dose-dependent manner. Cell invasion and migration were investigated using the Transwell assay and observed using an inverted microscope; the results showed that cell metastasis was significantly lower in the treatment group than that in the control group (P<0.01). Expression of metastasis-related matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) was detected by real-time polymerase chain reaction and Western blotting. The results showed that the expression of MMP-2, MMP-9, and TIMP-1 decreased, while that of TIMP-2 increased significantly in the RTHF group when compared with the results of the control group. These results show that RTHF exhibits antigrowth and antimetastasis activity in lung cancer A549 cells by decreasing the expression of MMP-2/-9 and TIMP-1 and increasing that of TIMP-2. PMID:26893573

  19. Human lung epithelial cell A549 proteome data after treatment with titanium dioxide and carbon black.

    PubMed

    Vuong, Ngoc Q; Goegan, Patrick; Mohottalage, Susantha; Breznan, Dalibor; Ariganello, Marianne; Williams, Andrew; Elisma, Fred; Karthikeyan, Subramanian; Vincent, Renaud; Kumarathasan, Premkumari

    2016-09-01

    Here, we have described the dataset relevant to the A549 cellular proteome changes after exposure to either titanium dioxide or carbon black particles as compared to the non-exposed controls, "Proteomic changes in human lung epithelial cells (A549) in response to carbon black and titanium dioxide exposures" (Vuong et al., 2016) [1]. Detailed methodologies on the separation of cellular proteins by 2D-GE and the subsequent mass spectrometry analyses using MALDI-TOF-TOF-MS are documented. Particle exposure-specific protein expression changes were measured via 2D-GE spot volume analysis. Protein identification was done by querying mass spectrometry data against SwissProt and RefSeq protein databases using Mascot search engine. Two-way ANOVA analysis data provided information on statistically significant A549 protein expression changes associated with particle exposures. PMID:27508218

  20. Human lung epithelial cell A549 proteome data after treatment with titanium dioxide and carbon black.

    PubMed

    Vuong, Ngoc Q; Goegan, Patrick; Mohottalage, Susantha; Breznan, Dalibor; Ariganello, Marianne; Williams, Andrew; Elisma, Fred; Karthikeyan, Subramanian; Vincent, Renaud; Kumarathasan, Premkumari

    2016-09-01

    Here, we have described the dataset relevant to the A549 cellular proteome changes after exposure to either titanium dioxide or carbon black particles as compared to the non-exposed controls, "Proteomic changes in human lung epithelial cells (A549) in response to carbon black and titanium dioxide exposures" (Vuong et al., 2016) [1]. Detailed methodologies on the separation of cellular proteins by 2D-GE and the subsequent mass spectrometry analyses using MALDI-TOF-TOF-MS are documented. Particle exposure-specific protein expression changes were measured via 2D-GE spot volume analysis. Protein identification was done by querying mass spectrometry data against SwissProt and RefSeq protein databases using Mascot search engine. Two-way ANOVA analysis data provided information on statistically significant A549 protein expression changes associated with particle exposures.

  1. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    PubMed

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells.

  2. Effect of fucoidan from Turbinaria conoides on human lung adenocarcinoma epithelial (A549) cells.

    PubMed

    Alwarsamy, Madhavarani; Gooneratne, Ravi; Ravichandran, Ramanibai

    2016-11-01

    Fucoidan was purified from seaweed, Turbinaria conoides. Isolated fragments were characterized with NMR ((13)C, (1)H), Gas Chromatography-Mass Spectronomy (GC-MS) and HPLC analysis. The autohydrolysate of fucoidans consisted of sulfated fuco-oligosaccharides having the backbone of α-(1, 3)-linked fuco-pyranose derivatives and minor components of galactose, glucose, mannose and xylose sugars. Fucoidan induced a dose-dependent reduction in cell survival of lung cancer A549 cells by MTT assay (GI50, 75μg/mL). However, it was not cytotoxic to a non-tumorigenic human keratinocyte cell line of skin tissue (HaCaT) (GI50>1.0mg/mL). The apoptotic cells in fucoidan-treated A549 cells were visualized by laser confocal microscopy and cell cycle analysis showed induction of G0/G1 phase arrest of the cell progression cycle. Further, CFSE labeling and flow cytometry highlighted that fucoidan significantly (P<0.05) inhibited the proliferation rate of A549 cells by up to 2-fold compared with the control cells. It is concluded that fucoidan has the potential to act as an anti-proliferative agent on lung carcinoma (A549) cells.

  3. Oxidative stress and inflammatory response to printer toner particles in human epithelial A549 lung cells.

    PubMed

    Könczöl, Mathias; Weiß, Adilka; Gminski, Richard; Merfort, Irmgard; Mersch-Sundermann, Volker

    2013-02-01

    Reports on adverse health effects related to occupational exposure to toner powder are still inconclusive. Therefore, we have previously conducted an in vitro-study to characterize the genotoxic potential of three commercially available black printer toner powders in A549 lung cells. In these cell-based assays it was clearly demonstrated that the tested toner powders damage DNA and induce micronucleus (MN) formation. Here, we have studied the cytotoxic and proinflammatory potential of these three types of printer toner particles and the influence of ROS and NF-κB induction in order to unravel the underlying mechanisms. A549 cells were exposed to various concentrations of printer toner particle suspensions for 24 h. The toner particles were observed to exert significant cytotoxic effects in the WST-1 and neutral red (NR)-assays, although to a varying extent. Caspase 3/7 activity increased, while the mitochondrial membrane potential (MMP) was not affected. Particles of all three printer toner powders induced concentration-dependent formation of reactive oxygen species (ROS), as measured in the DCFH-DA assay. Furthermore, toner particle exposure enhanced interleukin-6 and interleukin-8 production, which is in agreement with activation of the transcription factor NF-κB in A549 cells shown by the electrophoretic mobility shift assay (EMSA). Therefore, it can be concluded that exposure of A549 lung cells to three selected printer toner powders caused oxidative stress through induction of ROS. Increased ROS formation may trigger genotoxic effects and activate proinflammatory pathways.

  4. Effect of fucoidan from Turbinaria conoides on human lung adenocarcinoma epithelial (A549) cells.

    PubMed

    Alwarsamy, Madhavarani; Gooneratne, Ravi; Ravichandran, Ramanibai

    2016-11-01

    Fucoidan was purified from seaweed, Turbinaria conoides. Isolated fragments were characterized with NMR ((13)C, (1)H), Gas Chromatography-Mass Spectronomy (GC-MS) and HPLC analysis. The autohydrolysate of fucoidans consisted of sulfated fuco-oligosaccharides having the backbone of α-(1, 3)-linked fuco-pyranose derivatives and minor components of galactose, glucose, mannose and xylose sugars. Fucoidan induced a dose-dependent reduction in cell survival of lung cancer A549 cells by MTT assay (GI50, 75μg/mL). However, it was not cytotoxic to a non-tumorigenic human keratinocyte cell line of skin tissue (HaCaT) (GI50>1.0mg/mL). The apoptotic cells in fucoidan-treated A549 cells were visualized by laser confocal microscopy and cell cycle analysis showed induction of G0/G1 phase arrest of the cell progression cycle. Further, CFSE labeling and flow cytometry highlighted that fucoidan significantly (P<0.05) inhibited the proliferation rate of A549 cells by up to 2-fold compared with the control cells. It is concluded that fucoidan has the potential to act as an anti-proliferative agent on lung carcinoma (A549) cells. PMID:27516266

  5. Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells.

    PubMed

    Fan, Chuandong; Wang, Weiwei; Zhao, Baoxiang; Zhang, Shangli; Miao, Junying

    2006-05-01

    To investigate the effects of chloroquine diphosphate (CQ) on lung cancer cell growth, we treated A549 cells, a lung cancer cell line, with the drug at various concentrations (0.25-128 microM) for 24-72 h. The results showed that, at lower concentrations (from 0.25 to 32 microM), CQ inhibited the growth of A549 cells and, at the same time, it induced vacuolation with increased volume of acidic compartments (VAC). On the other hand, at higher concentrations (64-128 microM), CQ induced apoptosis at 24 h, while its effect of inducing vacuolation declined. The lactate dehydrogenase (LDH) assay showed that with the treatment of CQ 32-64 microM for 72 h or 128 microM for 48 h, CQ induced necrosis of A549 cells. To understand the possible mechanism by which CQ acts in A549 cells, we further incubated the cells with this drug at the concentrations of 32 or 128 microM in the presence of D609, a specific inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC). The results showed that D609 (50 microM) could inhibit the effects of CQ 32 microM on the viability and VAC, but it could not change the effects of CQ 128 microM on the same. Our data suggested that CQ inhibited A549 lung cancer cell growth at lower concentrations by increasing the volume of lysosomes and that PC-PLC might be involved in this process. The data also indicated that, at higher concentrations, CQ induced apoptosis and necrosis, but at this time its ability to increase the volume of lysosome gradually declined, and PC-PLC might not be implicated in the process. PMID:16413786

  6. Role of WNT1-inducible-signaling pathway protein 1 in etoposide resistance in lung adenocarcinoma A549 cells

    PubMed Central

    Xu, Yunhua; Lu, Shun

    2015-01-01

    Object: The aim of this study was to explore the role of WNT1-inducible-signaling Pathway Protein 1 (WISP-1) in etoposide resistance in lung adenocarcinoma A549 cells. Methods: WISP-1 overexpression A549 lung adenocarcinoma cell was established. After exposure to ultraviolet (UV) and etoposide, cell viability and apoptosis were evaluated. Moreover, western-blot was employed to examine the expression of apoptotic pathway proteins. In addition, a nude mice tumor model was established to examine the effect of WISP-1 overexpression in vivo and TUNEL staining was used to assess cell apoptosis of tumor tissue. Results: WISP-1 overexpression significantly increased cell viability and decreased cell apoptosis after treatment with UV and etoposide. Decreased expression of Bad and Bax and increased expression of Bcl-2 was found after etoposide treatment in WISP-1 overexpressed cells. A significantly increasing of tumor volume in WISP-1 overexpressed group was found and TUNEL staining revealed that decreased cell apoptosis in WISP-1 overexpressed group. Conclusion: Our results demonstrated that WISP-1 may have a facilitating role in etoposide resistance through increasing cell viability and decreasing cell apoptosis. PMID:26628978

  7. Novel CHOP activator LGH00168 induces necroptosis in A549 human lung cancer cells via ROS-mediated ER stress and NF-κB inhibition

    PubMed Central

    Ma, Yi-ming; Peng, Yan-min; Zhu, Qiong-hua; Gao, An-hui; Chao, Bo; He, Qiao-jun; Li, Jia; Hu, You-hong; Zhou, Yu-bo

    2016-01-01

    Aim: C/EBP homologous protein (CHOP) is a transcription factor that is activated at multiple levels during ER stress and plays an important role in ER stress-induced apoptosis. In this study we identified a novel CHOP activator, and further investigated its potential to be a therapeutic agent for human lung cancer. Methods: HEK293-CHOP-luc reporter cells were used in high-throughput screening (HTS) to identify CHOP activators. The cytotoxicity against cancer cells in vitro was measured with MTT assay. The anticancer effects were further examined in A549 human non-small cell lung cancer xenograft mice. The mechanisms underlying CHOP activation were analyzed using luciferase assays, and the anticancer mechanisms were elucidated in A549 cells. Results: From chemical libraries of 50 000 compounds, LGH00168 was identified as a CHOP activator, which showed cytotoxic activities against a panel of 9 cancer cell lines with an average IC50 value of 3.26 μmol/L. Moreover, administration of LGH00168 significantly suppressed tumor growth in A549 xenograft bearing mice. LGH00168 activated CHOP promoter via AARE1 and AP1 elements, increased DR5 expression, decreased Bcl-2 expression, and inhibited the NF-κB pathway. Treatment of A549 cells with LGH00168 (10 μmol/L) did not induce apoptosis, but lead to RIP1-dependent necroptosis, accompanied by cell swelling, plasma membrane rupture, lysosomal membrane permeabilization, MMP collapse and caspase 8 inhibition. Furthermore, LGH00168 (10 and 20 μmol/L) dose-dependently induced mito-ROS production in A549 cells, which was reversed by the ROS scavenger N-acetyl-L-cysteine (NAC, 10 mmol/L). Moreover, NAC significantly diminished LGH00168-induced CHOP activation, NF-κB inhibition and necroptosis in A549 cells. Conclusion: LGH00168 is a CHOP activator that inhibits A549 cell growth in vitro and lung tumor growth in vivo. PMID:27264312

  8. Induction of p53-independent growth inhibition in lung carcinoma cell A549 by gypenosides.

    PubMed

    Liu, Jung-Sen; Chiang, Tzu-Hsuan; Wang, Jinn-Shyan; Lin, Li-Ju; Chao, Wei-Chih; Inbaraj, Baskaran Stephen; Lu, Jyh-Feng; Chen, Bing-Huei

    2015-07-01

    The objectives of this study are to investigate antiproliferative effect and mechanisms of bioactive compounds from Gynostemma pentaphyllum (G. pentaphyllum) on lung carcinoma cell A549. Saponins, carotenoids and chlorophylls were extracted and fractionated by column chromatography, and were subjected to high-performance liquid chromatography-mass spectrometry analyses. The saponin fraction, which consisted mainly of gypenoside (Gyp) XXII and XXIII, rather than the carotenoid and chlorophyll ones, was effective in inhibiting A549 cell growth in a concentration- and a time-dependent manner as evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The estimated half maximal inhibitory concentration (IC50 ) of Gyp on A549 cells was 30.6 μg/ml. Gyp was further demonstrated to induce an apparent arrest of the A549 cell cycle at both the S phase and the G2/M phase, accompanied by a concentration- and a time-dependent increase in the proportions of both the early and late apoptotic cells. Furthermore, Gyp down-regulated cellular expression of cyclin A and B as well as BCL-2, while up-regulated the expression of BAX, DNA degradation factor 35 KD, poly [ADP-ribose] polymerase 1, p53, p21 and caspase-3. Nevertheless, both the treatment of a p53 inhibitor, pifithrin-α, and the small hairpin RNA-mediated p53 knockdown in the A549 cells did not alter the growth inhibition effect induced by Gyp. As a result, the cell cycle arrest and apoptosis of A549 cells induced by Gyp would most likely proceed through p53-independent pathway(s). PMID:25781909

  9. Lysyl oxidase mediates hypoxia-induced radioresistance in non-small cell lung cancer A549 cells

    PubMed Central

    Gong, Chongwen; Gu, Runxia; Jin, Honglin; Sun, Yao; Li, Zhenyu; Wu, Gang

    2016-01-01

    Hypoxia-induced radioresistance has been well known as the main obstacle in cancer radiotherapy. Lysyl oxidase (LOX) was previously demonstrated to play an important role in hypoxia-induced biological behaviors, such as metastasis and angiogenesis, through hypoxia-inducible factor-1α (HIF-1α), which is an important contributing factor to radioresistance in tumor cells. However, how LOX plays a role in hypoxia-induced radioresistance has yet to be determined. Here, we found that LOX expression was in accordance with HIF-1α expression, and LOX expression at the mRNA and protein level, and enzymatic activity were remarkably upregulated in the hypoxic A549 cells, compared with normoxic A549 cells. Inhibition of LOX resulted in the reduction of the ability to repair double-stranded breaks (DSBs), promotion of apoptosis, relief of G2/M cycle arrest, and eventually reduction of hypoxia-induced radioresistance in the hypoxic A549 cells. This suggests that LOX may play an important role in hypoxia-induced radioresistance. Together, our results might suggest a novel potential therapeutic target in the management of non-small cell lung cancer (NSCLC). PMID:26515140

  10. Wnt/{beta}-catenin signaling regulates cancer stem cells in lung cancer A549 cells

    SciTech Connect

    Teng, Ying; Wang, Xiuwen; Wang, Yawei; Ma, Daoxin

    2010-02-12

    Wnt/{beta}-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that {beta}-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of {beta}-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of {beta}-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/{beta}-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.

  11. G4-Tetra DNA Duplex Induce Lung Cancer Cell Apoptosis in A549 Cells

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobo; Zhao, YiZhuo; Lu, Hu; Fu, Cuiping; Li, Xiao; Jiang, Liyan; Li, Shanqun

    2016-10-01

    The specific DNA is typically impermeable to the plasma membrane due to its natural characters, but DNA tetra structures (DTNs) can be readily uptake by cells in the absence of transfection agents, providing a new strategy to deliver DNA drugs. In this research, the delivery efficiency of tetrahedral DNA nanostructures was measured on adenocarcinomic human alveolar basal epithelial (A549) cells via delivering AS1411 (G4). The DNA tetra-AS1411 complex was rapidly and abundantly uptake by A549 cells, and the induced apoptosis was enhanced. Furthermore, biodistribution in mouse proved the rapid clearance from non-targeted organs in vivo. This study improved the understanding of potential function in DNA-based drug delivery and proved that DTNs-AS1411 could be potentially useful for the treatment of lung cancer.

  12. MicroRNA Profiling of the Effect of the Heptapeptide Angiotensin-(1-7) in A549 Lung Tumor Cells Reveals a Role for miRNA149-3p in Cellular Migration Processes.

    PubMed

    Silva, Brenda de Oliveira da; Lima, Kelvin Furtado; Gonçalves, Letícia Rocha; Silveira, Marina Bonfogo da; Moraes, Karen C M

    2016-01-01

    Lung cancer is one of the most frequent types of cancer in humans and a leading cause of death worldwide. The high mortality rates are correlated with late diagnosis, which leads to high rates of metastasis found in patients. Thus, despite all the improvement in therapeutic approaches, the development of new drugs that control cancer cell migration and metastasis are required. The heptapeptide angiotensin-(1-7) [ang-(1-7)] has demonstrated the ability to control the growth rates of human lung cancer cells in vitro and in vivo, and the elucidation of central elements that control the fine-tuning of cancer cells migration in the presence of the ang-(1-7), will support the development of new therapeutic approaches. Ang-(1-7) is a peptide hormone of the renin-angiotensin system (RAS) and this study investigates the modulatory effect of the heptapeptide on the expression pattern of microRNAs (miRNAs) in lung tumor cells, to elucidate mechanistic concerns about the effect of the peptide in the control of tumor migratory processes. Our primary aim was to compare the miRNA profiling between treated and untreated-heptapeptide cells to characterize the relevant molecule that modulates cellular migration rates. The analyses selected twenty one miRNAs, which are differentially expressed between the groups; however, statistical analyses indicated miRNA-149-3p as a relevant molecule. Once functional analyses were performed, we demonstrated that miRNA-149-3p plays a role in the cellular migration processes. This information could be useful for future investigations on drug development. PMID:27598578

  13. MicroRNA Profiling of the Effect of the Heptapeptide Angiotensin-(1-7) in A549 Lung Tumor Cells Reveals a Role for miRNA149-3p in Cellular Migration Processes

    PubMed Central

    da Silva, Brenda de Oliveira; Lima, Kelvin Furtado; Gonçalves, Letícia Rocha; da Silveira, Marina Bonfogo; Moraes, Karen C. M.

    2016-01-01

    Lung cancer is one of the most frequent types of cancer in humans and a leading cause of death worldwide. The high mortality rates are correlated with late diagnosis, which leads to high rates of metastasis found in patients. Thus, despite all the improvement in therapeutic approaches, the development of new drugs that control cancer cell migration and metastasis are required. The heptapeptide angiotensin-(1–7) [ang-(1–7)] has demonstrated the ability to control the growth rates of human lung cancer cells in vitro and in vivo, and the elucidation of central elements that control the fine-tuning of cancer cells migration in the presence of the ang-(1–7), will support the development of new therapeutic approaches. Ang-(1–7) is a peptide hormone of the renin-angiotensin system (RAS) and this study investigates the modulatory effect of the heptapeptide on the expression pattern of microRNAs (miRNAs) in lung tumor cells, to elucidate mechanistic concerns about the effect of the peptide in the control of tumor migratory processes. Our primary aim was to compare the miRNA profiling between treated and untreated-heptapeptide cells to characterize the relevant molecule that modulates cellular migration rates. The analyses selected twenty one miRNAs, which are differentially expressed between the groups; however, statistical analyses indicated miRNA-149-3p as a relevant molecule. Once functional analyses were performed, we demonstrated that miRNA-149-3p plays a role in the cellular migration processes. This information could be useful for future investigations on drug development. PMID:27598578

  14. Deguelin inhibits the migration and invasion of lung cancer A549 and H460 cells via regulating actin cytoskeleton rearrangement.

    PubMed

    Zhao, Honggang; Jiao, Yan; Zhang, Zuncheng

    2015-01-01

    Deguelin, the main components from Mundulea sericea, was reported to suppress the growth of various cancer cells. However, the effect of Deguelin on tumor cell invasion and metastasis and its mechanism still unclear so far. In this study, we investigated the effects of Deguelin on the cell invasion in human lung cancer A549 and H460 cells. Our results demonstrate that Deguelin can significantly inhibited cell proliferation, cell migration and cell invasion. Moreover, Deguelin could also affected reorganization of the actin cytoskeleton and decreased filopodia and lamellipodia formation. Furthermore, deguelin-treated tumors showed decreased the tumor metastasis related genes such as CD44, MMP2 and MMP9 at protein and mRNA levels and the content of CEA, SCC, NSE, CYFAR21-1. In addition, Deguelin down-regulated protein expression of Rac1 and Rock1, which are impotent in actin cytoskeleton rearrangements and cell motility. Together, our results suggest that Deguelin inhibit tumor growth and metastasis of lung cancer cells and might be a candidate compound for curing lung cancer. PMID:26884827

  15. Induction of the endoplasmic reticulum stress and autophagy in human lung carcinoma A549 cells by anacardic acid.

    PubMed

    Seong, Yeong-Ae; Shin, Pyung-Gyun; Yoon, Jin-Soo; Yadunandam, Anandam Kasin; Kim, Gun-Do

    2014-03-01

    Anacardic acid (AA, 2-hydroxy-6-pentadecylbenzoic acid), a constituent of the cashew-nut shell, has a variety of beneficial effects on the treatment of cancer and tumors. However, the fact that AA induces ER stress and autophagy in cancer cell is not known. We investigated the effect of AA on ER-stress and autophagy-induced cell death in cancer cells. Because of our interest in lung cancer, we used the non-small cell lung adenocarcinoma A549 cells treated with 3.0 μg/ml of AA for this research. In this research we found that AA induces intracellular Ca(2+) mobilization and ER stress. AA induced the ER stress-inducing factors, especially IRE1α, and the hallmarks of UPR, Grp78/Bip and GADD153/CHOP. AA inhibited the expression of p-PERK and its downstream substrate, p-elF2α. We also demonstrated that AA induces autophagy. Up-regulation of autophagy-related genes and the appearance of autophagosome in transfected cells with green fluorescent protein (GFP)-LC3 and GFP-Beclin1 plasmids showed the induction of autophagy in AA-treated A549 cells. The morphological analysis of intracellular organelles by TEM also showed the evidence that AA induces ER stress and autophagy. For the first time, our research showed that AA induces ER stress and autophagy in cancer cells. PMID:23955513

  16. Safrole oxide induces apoptosis in A549 human lung cancer cells.

    PubMed

    Du, Aiying; Zhang, Shangli; Miao, Junying; Zhao, Baoxiang

    2004-09-01

    3,4-(Methylenedioxy)-1-(2',3'-epoxypropyl)-benzene (safrole oxide) was synthesized in the authors' laboratory. To investigate the effects of safrole oxide on the growth and apoptosis of A549 human lung cancer cells, the authors treated the cells with safrole oxide, 112.36 to 449.44 micromol/L, for 24 to 48 hours. The results showed that the drug led A549 cells to apoptosis and blocked cell cycle completely at G1 phase and partly at G(2)-M phase. To further study the correlated mechanism, the authors examined P53 and H-Ras protein expressions by using immunofluorescence assay. They found that the expression of P53 was dramatically up-regulated but the expression of H-Ras was hardly affected by safrole oxide, 224.72 micromol/L, within 24 hours. Taken together, these results revealed that safrole oxide could induce apoptosis of A549 cells and suggested that safrole oxide might perform its function by blocking cells completely at G1 phase and partly at G(2)-M phase, and also by up-regulating the expression of P53 protein. These findings would raise exciting possibilities for cancer therapy in future.

  17. Lipocortin 1 mediates dexamethasone-induced growth arrest of the A549 lung adenocarcinoma cell line.

    PubMed Central

    Croxtall, J D; Flower, R J

    1992-01-01

    The synthetic glucocorticoid dexamethasone (1 microM to 1 pM) strongly (maximum greater than 80%) inhibits proliferation of the A549 human lung adenocarcinoma line (EC50 greater than 1 nM) and leads to the appearance, or a further increase (approximately 3-fold) in the expression on the cell surface, of the calcium and phospholipid binding protein lipocortin (annexin) 1. Both these effects, which are shared by hydrocortisone (1 microM) but not by progesterone or aldosterone (1 microM), are inhibited by the antiglucocorticoids RU38486 and RU43044 (1 microM). The nonsteroidal antiinflammatory drugs indomethacin (1 microM) and naproxen (10 microM) and human recombinant lipocortin 1 (0.05-5.0 micrograms/ml) also produce growth arrest in this cell line. During proliferation A549 cells spontaneously release prostaglandin E2 [10-20 ng (28-57 pmol) per ml per 5-day period] into the growth medium. In concentrations that cause growth-arrest, dexamethasone, indomethacin, and lipocortin 1 abolish the generation of this eicosanoid by A549 cells. Prostaglandin E2 itself (0.01-1 pM) stimulates cell growth and partially reverses (approximately 50%) the inhibition of growth caused by dexamethasone and indomethacin. Addition of the neutralizing anti-lipocortin 1 monoclonal antibody 1A (5 micrograms/ml), but not the nonneutralizing anti-lipocortin monoclonal antibody 1B, substantially reversed (greater than 80%) the inhibitory activity of dexamethasone on both growth and prostaglandin E2 synthesis. The generation of prostaglandin E2 by A549 cells seems to be an important regulator of cell proliferation in vitro and the dexamethasone-induced suppression of proliferation in this model is attributable to eicosanoid inhibition caused by lipocortin 1. Images PMID:1533045

  18. COPD promotes migration of A549 lung cancer cells: the role of chemokine CCL21

    PubMed Central

    Kuźnar-Kamińska, Barbara; Mikuła-Pietrasik, Justyna; Sosińska, Patrycja; Książek, Krzysztof; Batura-Gabryel, Halina

    2016-01-01

    Patients with COPD develop lung cancer more frequently than healthy smokers. At the same time, molecular mediators promoting various aspects of cancer cell progression are still elusive. In this report, we examined whether COPD can be coupled with increased migration of non-small-cell lung cancer cells A549 and, if so, whether this effect may be related to altered production and activity of chemokines CCL21, CXCL5, and CXCL12. The study showed that the migration of A549 cells through the polycarbonate membrane and basement membrane extract toward a chemotactic gradient elicited by serum from patients with COPD was markedly higher as compared with serum from healthy donors. The concentration of CCL21 and CXCL12, but not CXCL5, in serum from patients with COPD was also increased. Experiments in which CCL21- and CXCL12-dependent signaling was blocked revealed that increased migration of the cancer cells upon treatment with serum from patients with COPD was mediated exclusively by CCL21. Collectively, our results indicate that COPD may contribute to the progression of lung cancer via CCL21-dependent intensification of cancer cell migration. PMID:27307721

  19. COPD promotes migration of A549 lung cancer cells: the role of chemokine CCL21.

    PubMed

    Kuźnar-Kamińska, Barbara; Mikuła-Pietrasik, Justyna; Sosińska, Patrycja; Książek, Krzysztof; Batura-Gabryel, Halina

    2016-01-01

    Patients with COPD develop lung cancer more frequently than healthy smokers. At the same time, molecular mediators promoting various aspects of cancer cell progression are still elusive. In this report, we examined whether COPD can be coupled with increased migration of non-small-cell lung cancer cells A549 and, if so, whether this effect may be related to altered production and activity of chemokines CCL21, CXCL5, and CXCL12. The study showed that the migration of A549 cells through the polycarbonate membrane and basement membrane extract toward a chemotactic gradient elicited by serum from patients with COPD was markedly higher as compared with serum from healthy donors. The concentration of CCL21 and CXCL12, but not CXCL5, in serum from patients with COPD was also increased. Experiments in which CCL21- and CXCL12-dependent signaling was blocked revealed that increased migration of the cancer cells upon treatment with serum from patients with COPD was mediated exclusively by CCL21. Collectively, our results indicate that COPD may contribute to the progression of lung cancer via CCL21-dependent intensification of cancer cell migration. PMID:27307721

  20. COPD promotes migration of A549 lung cancer cells: the role of chemokine CCL21.

    PubMed

    Kuźnar-Kamińska, Barbara; Mikuła-Pietrasik, Justyna; Sosińska, Patrycja; Książek, Krzysztof; Batura-Gabryel, Halina

    2016-01-01

    Patients with COPD develop lung cancer more frequently than healthy smokers. At the same time, molecular mediators promoting various aspects of cancer cell progression are still elusive. In this report, we examined whether COPD can be coupled with increased migration of non-small-cell lung cancer cells A549 and, if so, whether this effect may be related to altered production and activity of chemokines CCL21, CXCL5, and CXCL12. The study showed that the migration of A549 cells through the polycarbonate membrane and basement membrane extract toward a chemotactic gradient elicited by serum from patients with COPD was markedly higher as compared with serum from healthy donors. The concentration of CCL21 and CXCL12, but not CXCL5, in serum from patients with COPD was also increased. Experiments in which CCL21- and CXCL12-dependent signaling was blocked revealed that increased migration of the cancer cells upon treatment with serum from patients with COPD was mediated exclusively by CCL21. Collectively, our results indicate that COPD may contribute to the progression of lung cancer via CCL21-dependent intensification of cancer cell migration.

  1. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways.

    PubMed

    Min, Jie; Huang, Kenan; Tang, Hua; Ding, Xinyu; Qi, Chen; Qin, Xiong; Xu, Zhifei

    2015-12-01

    Phloretin (Ph) existing in apples, pears and various vegetables is known to have antitumor activities in several cancer cell lines. However, little is known about its effect on human lung cancer cells. The aim of the present study was to see whether Ph could induce apoptosis of non-small cell lung cancer (NSCLC) cells, and explore the possible underlying mechanism of action. We found that Ph markedly induced cell apoptosis of NSCLC cell line A549, and inhibited the migration of A549 cells in a dose-dependent manner. The expression level of BAX, cleaved caspase-3 and -9, and degraded form of PARP was increased and Bcl-2 was decreased after Ph treatment. In addition, the phosphorylation of P38 MAPK, ERK1/2 and JNK1/2 was increased in a dose‑dependent manner in parallel with Ph treatment. Inhibition of P38 MAPK and JNK1/2 by specific inhibitors significantly abolished the Ph-induced activation of the caspase-3 and -9. In vivo tumor-suppression assay further indicated that Ph (20 mg/kg) displayed a more significant inhibitory effect on A549 xenografts in tumor growth. All these findings indicate that Ph is able to inhibit NSCLC A549 cell growth by inducing apoptosis through P38 MAPK and JNK1/2 pathways, and therefore may prove to be an adjuvant to the treatment of NSCLC.

  2. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways.

    PubMed

    Min, Jie; Huang, Kenan; Tang, Hua; Ding, Xinyu; Qi, Chen; Qin, Xiong; Xu, Zhifei

    2015-12-01

    Phloretin (Ph) existing in apples, pears and various vegetables is known to have antitumor activities in several cancer cell lines. However, little is known about its effect on human lung cancer cells. The aim of the present study was to see whether Ph could induce apoptosis of non-small cell lung cancer (NSCLC) cells, and explore the possible underlying mechanism of action. We found that Ph markedly induced cell apoptosis of NSCLC cell line A549, and inhibited the migration of A549 cells in a dose-dependent manner. The expression level of BAX, cleaved caspase-3 and -9, and degraded form of PARP was increased and Bcl-2 was decreased after Ph treatment. In addition, the phosphorylation of P38 MAPK, ERK1/2 and JNK1/2 was increased in a dose‑dependent manner in parallel with Ph treatment. Inhibition of P38 MAPK and JNK1/2 by specific inhibitors significantly abolished the Ph-induced activation of the caspase-3 and -9. In vivo tumor-suppression assay further indicated that Ph (20 mg/kg) displayed a more significant inhibitory effect on A549 xenografts in tumor growth. All these findings indicate that Ph is able to inhibit NSCLC A549 cell growth by inducing apoptosis through P38 MAPK and JNK1/2 pathways, and therefore may prove to be an adjuvant to the treatment of NSCLC. PMID:26503828

  3. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways

    PubMed Central

    MIN, JIE; LI, XU; HUANG, KENAN; TANG, HUA; DING, XINYU; QI, CHEN; QIN, XIONG; XU, ZHIFEI

    2015-01-01

    Phloretin (Ph) existing in apples, pears and various vegetables is known to have antitumor activities in several cancer cell lines. However, little is known about its effect on human lung cancer cells. The aim of the present study was to see whether Ph could induce apoptosis of non-small cell lung cancer (NSCLC) cells, and explore the possible underlying mechanism of action. We found that Ph markedly induced cell apoptosis of NSCLC cell line A549, and inhibited the migration of A549 cells in a dose-dependent manner. The expression level of BAX, cleaved caspase-3 and -9, and degraded form of PARP was increased and Bcl-2 was decreased after Ph treatment. In addition, the phosphorylation of P38 MAPK, ERK1/2 and JNK1/2 was increased in a dose-dependent manner in parallel with Ph treatment. Inhibition of P38 MAPK and JNK1/2 by specific inhibitors significantly abolished the Ph-induced activation of the caspase-3 and -9. In vivo tumor-suppression assay further indicated that Ph (20 mg/kg) displayed a more significant inhibitory effect on A549 xenografts in tumor growth. All these findings indicate that Ph is able to inhibit NSCLC A549 cell growth by inducing apoptosis through P38 MAPK and JNK1/2 pathways, and therefore may prove to be an adjuvant to the treatment of NSCLC. PMID:26503828

  4. Induction of G2/M phase arrest and apoptosis by ZGDHU-1 in A549 and RERF-LC-MA lung cancer cells

    PubMed Central

    Shen, Xinfeng; Wu, Zhen; Chen, Sufeng; Chen, Yu; Xia, Jun; Lv, Yaping; Zhou, Yonglie

    2016-01-01

    Lung cancer is a major public health issue worldwide and is associated with high mortality and poor prognosis. Chemotherapy has the potential to reduce tumor size, increase operability and eradicate micrometastases; therefore, novel chemicals to treat lung cancer are urgently required. In the present study, the effects of N, N′-di-(m-methylphenyi)-3,6-dimethyl-1,4-dihydro-1,2,4, 5-tetrazine-1,4-dicarboamide (ZGDHu-1), a novel tetrazine derivative, were investigated in A549 and RERF-LC-MA lung cancer cells, and the underlying molecular mechanism of ZGDHu in treating lung cancer was determined. Following incubation with different concentrations of ZGDHu-1, flow cytometry analysis results indicated that ZGDHu-1 could induce G2/mitotic (M) cell cycle arrest and apoptosis in A549 and RERF-LC-MA cells in a dose-dependent manner. Furthermore, western blot analysis demonstrated that the expression levels of G2/M regulatory molecules, including cyclin B1, Cdc2 and cell division cycle 25c, decreased following treatment with ZGDHu-1, whilst p53 expression increased. In addition, A549 and RERF-LC-MA cell apoptosis was induced by cell cycle arrest at the G2/M phase and through the downregulation of nuclear factor-κB. These results suggest that ZGDHu-1 may induce G2/M phase arrest and apoptosis of lung cancer cells, and may serve as a potential therapeutic drug for the treatment of lung cancer. PMID:27446382

  5. PVM/MA-shelled selol nanocapsules promote cell cycle arrest in A549 lung adenocarcinoma cells

    PubMed Central

    2014-01-01

    Background Selol is an oily mixture of selenitetriacylglycerides that was obtained as a semi-synthetic compound containing selenite. Selol is effective against cancerous cells and less toxic to normal cells compared with inorganic forms of selenite. However, Selol’s hydrophobicity hinders its administration in vivo. Therefore, the present study aimed to produce a formulation of Selol nanocapsules (SPN) and to test its effectiveness against pulmonary adenocarcinoma cells (A549). Results Nanocapsules were produced through an interfacial nanoprecipitation method. The polymer shell was composed of poly(methyl vinyl ether-co-maleic anhydride) (PVM/MA) copolymer. The obtained nanocapsules were monodisperse and stable. Both free Selol (S) and SPN reduced the viability of A549 cells, whereas S induced a greater reduction in non-tumor cell viability than SPN. The suppressor effect of SPN was primarily associated to the G2/M arrest of the cell cycle, as was corroborated by the down-regulations of the CCNB1 and CDC25C genes. Apoptosis and necrosis were induced by Selol in a discrete percentage of A549 cells. SPN also increased the production of reactive oxygen species, leading to oxidative cellular damage and to the overexpression of the GPX1, CYP1A1, BAX and BCL2 genes. Conclusions This study presents a stable formulation of PVM/MA-shelled Selol nanocapsules and provides the first demonstration that Selol promotes G2/M arrest in cancerous cells. PMID:25149827

  6. Moringa oleifera Gold Nanoparticles Modulate Oncogenes, Tumor Suppressor Genes, and Caspase-9 Splice Variants in A549 Cells.

    PubMed

    Tiloke, Charlette; Phulukdaree, Alisa; Anand, Krishnan; Gengan, Robert M; Chuturgoon, Anil A

    2016-10-01

    Gold nanoparticles (AuNP's) facilitate cancer cell recognition and can be manufactured by green synthesis using nutrient rich medicinal plants such as Moringa oleifera (MO). Targeting dysregulated oncogenes and tumor suppressor genes is crucial for cancer therapeutics. We investigated the antiproliferative effects of AuNP synthesized from MO aqueous leaf extracts (MLAuNP ) in A549 lung and SNO oesophageal cancer cells. A one-pot green synthesis technique was used to synthesise MLAuNP . A549, SNO cancer cells and normal peripheral blood mononuclear cells (PBMCs) were exposed to MLAuNP and CAuNP to evaluate cytotoxicity (MTT assay); apoptosis was measured by phosphatidylserine (PS) externalization, mitochondrial depolarization (ΔΨm) (flow cytometry), caspase-3/7, -9 activity, and ATP levels (luminometry). The mRNA expression of c-myc, p53, Skp2, Fbw7α, and caspase-9 splice variants was determined using qPCR, while relative protein expression of c-myc, p53, SRp30a, Bax, Bcl-2, Smac/DIABLO, Hsp70, and PARP-1 were determined by Western blotting. MLAuNP and CAuNP were not cytotoxic to PBMCs, whilst its pro-apoptotic properties were confirmed in A549 and SNO cells. MLAuNP significantly increased caspase activity in SNO cells while MLAuNP significantly increased PS externalization, ΔΨm, caspase-9, caspase-3/7 activities, and decreased ATP levels in A549 cells. Also, p53 mRNA and protein levels, SRp30a (P = 0.428), Bax, Smac/DIABLO and PARP-1 24 kDa fragment levels were significantly increased. Conversely, MLAuNP significantly decreased Bcl-2, Hsp70, Skp2, Fbw7α, c-myc mRNA, and protein levels and activated alternate splicing with caspase-9a splice variant being significantly increased. MLAuNP possesses antiproliferative properties and induced apoptosis in A549 cells by activating alternate splicing of caspase-9. J. Cell. Biochem. 117: 2302-2314, 2016. © 2016 Wiley Periodicals, Inc. PMID:26923760

  7. Moringa oleifera Gold Nanoparticles Modulate Oncogenes, Tumor Suppressor Genes, and Caspase-9 Splice Variants in A549 Cells.

    PubMed

    Tiloke, Charlette; Phulukdaree, Alisa; Anand, Krishnan; Gengan, Robert M; Chuturgoon, Anil A

    2016-10-01

    Gold nanoparticles (AuNP's) facilitate cancer cell recognition and can be manufactured by green synthesis using nutrient rich medicinal plants such as Moringa oleifera (MO). Targeting dysregulated oncogenes and tumor suppressor genes is crucial for cancer therapeutics. We investigated the antiproliferative effects of AuNP synthesized from MO aqueous leaf extracts (MLAuNP ) in A549 lung and SNO oesophageal cancer cells. A one-pot green synthesis technique was used to synthesise MLAuNP . A549, SNO cancer cells and normal peripheral blood mononuclear cells (PBMCs) were exposed to MLAuNP and CAuNP to evaluate cytotoxicity (MTT assay); apoptosis was measured by phosphatidylserine (PS) externalization, mitochondrial depolarization (ΔΨm) (flow cytometry), caspase-3/7, -9 activity, and ATP levels (luminometry). The mRNA expression of c-myc, p53, Skp2, Fbw7α, and caspase-9 splice variants was determined using qPCR, while relative protein expression of c-myc, p53, SRp30a, Bax, Bcl-2, Smac/DIABLO, Hsp70, and PARP-1 were determined by Western blotting. MLAuNP and CAuNP were not cytotoxic to PBMCs, whilst its pro-apoptotic properties were confirmed in A549 and SNO cells. MLAuNP significantly increased caspase activity in SNO cells while MLAuNP significantly increased PS externalization, ΔΨm, caspase-9, caspase-3/7 activities, and decreased ATP levels in A549 cells. Also, p53 mRNA and protein levels, SRp30a (P = 0.428), Bax, Smac/DIABLO and PARP-1 24 kDa fragment levels were significantly increased. Conversely, MLAuNP significantly decreased Bcl-2, Hsp70, Skp2, Fbw7α, c-myc mRNA, and protein levels and activated alternate splicing with caspase-9a splice variant being significantly increased. MLAuNP possesses antiproliferative properties and induced apoptosis in A549 cells by activating alternate splicing of caspase-9. J. Cell. Biochem. 117: 2302-2314, 2016. © 2016 Wiley Periodicals, Inc.

  8. Telomere shortening and cell senescence induced by perylene derivatives in A549 human lung cancer cells.

    PubMed

    Taka, Thanachai; Huang, Liming; Wongnoppavich, Ariyaphong; Tam-Chang, Suk-Wah; Lee, T Randall; Tuntiwechapikul, Wirote

    2013-02-15

    Cancer cells evade replicative senescence by re-expressing telomerase, which maintains telomere length and hence chromosomal integrity. Telomerase inhibition would lead cancer cells to senesce and therefore prevent cancer cells from growing indefinitely. G-quadruplex ligands can attenuate telomerase activity by inducing G-quadruplex formation at the 3'-overhang of telomere and at the human telomerase reverse transcriptase (hTERT) promoter; the former prevents telomerase from accessing the telomere, and the latter acts as a transcriptional silencer. The present investigation found that perylene derivatives PM2 and PIPER induced G-quadruplex formation from both telomeric DNA and the hTERT promoter region in vitro. Further, TRAP assay showed that these compounds inhibited telomerase in a dose-dependent manner. When A549 human lung cancer cells were treated with these compounds, hTERT expression was down-regulated. Moreover, the crude protein extract from these treated cells exhibited less telomerase activity. In the long-term treatment of A549 lung cancer cells with sub-cytotoxic dose of these perylenes, telomere shortening, reduction of cell proliferation and tumorigenicity, and cell senescence were observed. The results of this study indicate that perylene derivatives warrant further consideration as effective agents for cancer therapy.

  9. Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer.

    PubMed

    Khan, Merajuddin; Khan, Mujeeb; Al-Marri, Abdulhadi H; Al-Warthan, Abdulrahman; Alkhathlan, Hamad Z; Siddiqui, Mohammed Rafiq H; Nayak, Vadithe Lakshma; Kamal, Ahmed; Adil, Syed F

    2016-01-01

    Recently, graphene and graphene-based materials have been increasingly used for various biological applications due to their extraordinary physicochemical properties. Here, we demonstrate the anticancer properties and apoptosis-inducing ability of silver doped highly reduced graphene oxide nanocomposites synthesized by employing green approach. These nano composites (PGE-HRG-Ag) were synthesized by using Pulicaria glutinosa extract (PGE) as a reducing agent and were evaluated for their anticancer properties against various human cancer cell lines with tamoxifen as the reference drug. A correlation between the amount of Ag nanoparticles on the surface of highly reduced graphene oxide (HRG) and the anticancer activity of nanocomposite was observed, wherein an increase in the concentration of Ag nanoparticles on the surface of HRG led to the enhanced anticancer activity of the nanocomposite. The nanocomposite PGE-HRG-Ag-2 exhibited more potent cytotoxicity than standard drug in A549 cells, a human lung cancer cell line. A detailed investigation was undertaken and Fluorescence activated cell sorting (FACS) analysis demonstrated that the nanocomposite PGE-HRG-Ag-2 showed G0/G1 phase cell cycle arrest and induced apoptosis in A549 cells. Studies such as, measurement of mitochondrial membrane potential, generation of reactive oxygen species (ROS) and Annexin V-FITC staining assay suggested that this compound induced apoptosis in human lung cancer cells. PMID:27022256

  10. Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer

    PubMed Central

    Khan, Merajuddin; Khan, Mujeeb; Al-Marri, Abdulhadi H; Al-Warthan, Abdulrahman; Alkhathlan, Hamad Z; Siddiqui, Mohammed Rafiq H; Nayak, Vadithe Lakshma; Kamal, Ahmed; Adil, Syed F

    2016-01-01

    Recently, graphene and graphene-based materials have been increasingly used for various biological applications due to their extraordinary physicochemical properties. Here, we demonstrate the anticancer properties and apoptosis-inducing ability of silver doped highly reduced graphene oxide nanocomposites synthesized by employing green approach. These nano composites (PGE-HRG-Ag) were synthesized by using Pulicaria glutinosa extract (PGE) as a reducing agent and were evaluated for their anticancer properties against various human cancer cell lines with tamoxifen as the reference drug. A correlation between the amount of Ag nanoparticles on the surface of highly reduced graphene oxide (HRG) and the anticancer activity of nanocomposite was observed, wherein an increase in the concentration of Ag nanoparticles on the surface of HRG led to the enhanced anticancer activity of the nanocomposite. The nanocomposite PGE-HRG-Ag-2 exhibited more potent cytotoxicity than standard drug in A549 cells, a human lung cancer cell line. A detailed investigation was undertaken and Fluorescence activated cell sorting (FACS) analysis demonstrated that the nanocomposite PGE-HRG-Ag-2 showed G0/G1 phase cell cycle arrest and induced apoptosis in A549 cells. Studies such as, measurement of mitochondrial membrane potential, generation of reactive oxygen species (ROS) and Annexin V-FITC staining assay suggested that this compound induced apoptosis in human lung cancer cells. PMID:27022256

  11. Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer.

    PubMed

    Khan, Merajuddin; Khan, Mujeeb; Al-Marri, Abdulhadi H; Al-Warthan, Abdulrahman; Alkhathlan, Hamad Z; Siddiqui, Mohammed Rafiq H; Nayak, Vadithe Lakshma; Kamal, Ahmed; Adil, Syed F

    2016-01-01

    Recently, graphene and graphene-based materials have been increasingly used for various biological applications due to their extraordinary physicochemical properties. Here, we demonstrate the anticancer properties and apoptosis-inducing ability of silver doped highly reduced graphene oxide nanocomposites synthesized by employing green approach. These nano composites (PGE-HRG-Ag) were synthesized by using Pulicaria glutinosa extract (PGE) as a reducing agent and were evaluated for their anticancer properties against various human cancer cell lines with tamoxifen as the reference drug. A correlation between the amount of Ag nanoparticles on the surface of highly reduced graphene oxide (HRG) and the anticancer activity of nanocomposite was observed, wherein an increase in the concentration of Ag nanoparticles on the surface of HRG led to the enhanced anticancer activity of the nanocomposite. The nanocomposite PGE-HRG-Ag-2 exhibited more potent cytotoxicity than standard drug in A549 cells, a human lung cancer cell line. A detailed investigation was undertaken and Fluorescence activated cell sorting (FACS) analysis demonstrated that the nanocomposite PGE-HRG-Ag-2 showed G0/G1 phase cell cycle arrest and induced apoptosis in A549 cells. Studies such as, measurement of mitochondrial membrane potential, generation of reactive oxygen species (ROS) and Annexin V-FITC staining assay suggested that this compound induced apoptosis in human lung cancer cells.

  12. Cytotoxic Effect of a Novel Synthesized Carbazole Compound on A549 Lung Cancer Cell Line

    PubMed Central

    Molatlhegi, Refilwe P.; Phulukdaree, Alisa; Anand, Krishnan; Gengan, Robert M.; Tiloke, Charlette; Chuturgoon, Anil A.

    2015-01-01

    Increased death rates due to lung cancer have necessitated the search for potential novel anticancer compounds such as carbazole derivatives. Carbazoles are aromatic heterocyclic compounds with anticancer, antibacterial and anti-inflammatory activity. The study investigated the ability of the novel carbazole compound (Z)-4-[9-ethyl-9aH-carbazol-3-yl) amino] pent-3-en-2-one (ECAP) to induce cytotoxicity of lung cancer cells and its mechanism of action. ECAP was synthesized as a yellow powder with melting point of 240-247 °C. The 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), lipid peroxidation and comet assays were used to assess the cytotoxic effect of the compound on A549 lung cancer cells. Protein expression was determined using western blots, apoptosis was measured by luminometry (caspase-3/7, -8 and -9) assay and flow cytometry was used to measure phosphatidylserine (PS) externalisation. ECAP induced a p53 mediated apoptosis of lung cancer cells due to a significant reduction in the expression of antioxidant defence proteins (Nrf2 and SOD), Hsp70 (p < 0.02) and Bcl-2 (p < 0.0006), thereby up-regulating reactive oxygen species (ROS) production. This resulted in DNA damage (p < 0.0001), up-regulation of Bax expression and caspase activity and induction of apoptosis in lung cancer cells. The results show the anticancer potential of ECAP on lung cancer. PMID:26134408

  13. 4-Nitroquinoline-1-oxide effects human lung adenocarcinoma A549 cells by regulating the expression of POLD4

    PubMed Central

    HUANG, QIN-MIAO; ZENG, YI-MING; ZHANG, HUA-PING; LV, LIANG-CHAO; YANG, DONG-YONG; LIN, HUI-HUANG

    2016-01-01

    The aim of the present study was to explore the expression of POLD4 in human lung adenocarcinoma A549 cells under 4-nitroquinoline-1-oxide (4NQO) stimulation to investigate the role of POLD4 in smoking-induced lung cancer. The lung cancer A549 cell line was treated with 4NQO, with or without MG132 (an inhibitor of proteasome activity), and subsequently the POLD4 level was determined by western blot analysis. Secondly, the cell sensitivity to 4NQO and Taxol was determined when the POLD4 expression level was downregulated by siRNA. The POLD4 protein levels in the A549 cells decreased following treatment with 4NQO; however, MG132 could reverse this phenotype. Downregulation of the POLD4 expression by siRNA enhanced A549 cell sensitivity to 4NQO, but not to Taxol. In conclusion, 4NQO affects human lung adenocarcinoma A549 cells by regulating the expression of POLD4. PMID:26998273

  14. Proteomic analysis of selective cytotoxic anticancer properties of flavonoids isolated from Citrus platymamma on A549 human lung cancer cells.

    PubMed

    Nagappan, Arulkumar; Venkatarame Gowda Saralamma, Venu; Hong, Gyeong Eun; Lee, Ho Jeong; Shin, Sung Chul; Kim, Eun Hee; Lee, Won Sup; Kim, Gon Sup

    2016-10-01

    Citrus platymamma Hort. ex Tanaka (Byungkyul in Korean) has been used in Korean folk medicine for the treatment of inflammatory disorders and cancer. However, the molecular mechanism underlying the anticancer properties of flavonoids isolated from C. platymamma (FCP) remains to be elucidated. Therefore, the present study attempted to identify the key proteins, which may be important in the anticancer effects of FCP on A549 cells using a proteomic approach. FCP showed a potent cytotoxic effect on the A549 human lung cancer cells, however, it had no effect on WI‑38 human fetal lung fibroblasts at the same concentrations. Furthermore, 15 differentially expressed protein spots (spot intensities ≥2‑fold change; P<0.05) were obtained from comparative proteome analysis of two‑dimensional gel electrophoresis maps of the control (untreated) and FCP‑treated A549 cells. Finally, eight differentially expressed proteins, one of which was upregulated and seven of which were downregulated, were successfully identified using matrix‑assisted laser desorption/ionization time‑of‑flight/time‑of‑flight tandem mass spectrometry and peptide mass fingerprinting analysis. Specifically, proteins involved in signal transduction were significantly downregulated, including annexin A1 (ANXA1) and ANXA4, whereas 14‑3‑3ε was upregulated. Cytoskeletal proteins, including cofilin‑1 (CFL1), cytokeratin 8 (KRT8) and KRT79, and molecular chaperones/heat shock proteins, including endoplasmin, were downregulated. Proteins involved in protein metabolism, namely elongation factor Ts were also downregulated. Consistent with results of the proteome analysis, the immunoblotting results showed that 14‑3‑3ε was upregulated, whereas CFL1, ANXA4 and KRT8 were downregulated in the FCP‑treated A549 cells. The majority of the proteins were involved in tumor growth, cell cycle, apoptosis, migration and signal transduction. These findings provide novel insights into the molecular

  15. Genistein inhibits A549 human lung cancer cell proliferation via miR-27a and MET signaling

    PubMed Central

    Yang, Yang; Zang, Aimin; Jia, Youchao; Shang, Yanhong; Zhang, Zhuoqi; Ge, Kun; Zhang, Jinchao; Fan, Wufang; Wang, Bei

    2016-01-01

    Genistein is a soybean isoflavone; in its aglycone it has various biological activities. Animal experiments, clinical studies and epidemiological investigations suggest that genistein has preventative and curative functions for a number of diseases, particularly in cancer. The present study explored the potential anti-cancer effect of genistein by observing its role in inhibiting A549 human lung cancer cell proliferation and investigating the possible mechanism. A549 cells were exposed to various concentrations of genistein (0, 10, 25, 50, 100 and 200 µM; dissolved in physiological saline) for 1, 2 and 3 days. Subsequently, the viability of A549 cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell apoptosis was examined using a flow cytometer, caspase 3/9 activity was measured using commercial kits, reverse transcription quantitative polymerase chain reaction was used to analyze the miR-27a expression and western blotting was used to investigate MET protein expression. The results suggested a significant inhibition of A549 cell growth following treatment with genistein in a time- and dose-dependent manner. The current study also indicated that treatment with genistein significantly induces cell apoptosis and promotes caspase-3/9 activation of A549 cells in a dose-dependent manner. Further functional assays revealed that the anti-cancer effect of genistein activated microRNA-27a (miR-27a) expression levels and reduced MET protein expression in A549 cells. In conclusion, the present study demonstrates that genistein inhibits A549 human lung cancer cell proliferation. Furthermore, this study reports, for the first time, a correlation between the anti-cancer effect of genistein and miR-27a-mediated MET signaling.

  16. Genistein inhibits A549 human lung cancer cell proliferation via miR-27a and MET signaling

    PubMed Central

    Yang, Yang; Zang, Aimin; Jia, Youchao; Shang, Yanhong; Zhang, Zhuoqi; Ge, Kun; Zhang, Jinchao; Fan, Wufang; Wang, Bei

    2016-01-01

    Genistein is a soybean isoflavone; in its aglycone it has various biological activities. Animal experiments, clinical studies and epidemiological investigations suggest that genistein has preventative and curative functions for a number of diseases, particularly in cancer. The present study explored the potential anti-cancer effect of genistein by observing its role in inhibiting A549 human lung cancer cell proliferation and investigating the possible mechanism. A549 cells were exposed to various concentrations of genistein (0, 10, 25, 50, 100 and 200 µM; dissolved in physiological saline) for 1, 2 and 3 days. Subsequently, the viability of A549 cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell apoptosis was examined using a flow cytometer, caspase 3/9 activity was measured using commercial kits, reverse transcription quantitative polymerase chain reaction was used to analyze the miR-27a expression and western blotting was used to investigate MET protein expression. The results suggested a significant inhibition of A549 cell growth following treatment with genistein in a time- and dose-dependent manner. The current study also indicated that treatment with genistein significantly induces cell apoptosis and promotes caspase-3/9 activation of A549 cells in a dose-dependent manner. Further functional assays revealed that the anti-cancer effect of genistein activated microRNA-27a (miR-27a) expression levels and reduced MET protein expression in A549 cells. In conclusion, the present study demonstrates that genistein inhibits A549 human lung cancer cell proliferation. Furthermore, this study reports, for the first time, a correlation between the anti-cancer effect of genistein and miR-27a-mediated MET signaling. PMID:27602162

  17. Irradiation-Dependent Effects on Tumor Perfusion and Endogenous and Exogenous Hypoxia Markers in an A549 Xenograft Model

    SciTech Connect

    Fokas, Emmanouil; Haenze, Joerg; Kamlah, Florentine; Eul, Bastian G.; Lang, Nico; Keil, Boris; Heverhagen, Johannes T.; Engenhart-Cabillic, Rita; An Hanxiang; Rose, Frank

    2010-08-01

    Purpose: Hypoxia is a major determinant of tumor radiosensitivity, and microenvironmental changes in response to ionizing radiation (IR) are often heterogenous. We analyzed IR-dependent changes in hypoxia and perfusion in A549 human lung adenocarcinoma xenografts. Materials and Methods: Immunohistological analysis of two exogenously added chemical hypoxic markers, pimonidazole and CCI-103F, and of the endogenous marker Glut-1 was performed time dependently after IR. Tumor vessels and apoptosis were analyzed using CD31 and caspase-3 antibodies. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and fluorescent beads (Hoechst 33342) were used to monitor vascular perfusion. Results: CCI-103F signals measuring the fraction of hypoxic areas after IR were significantly decreased by approximately 50% when compared with pimonidazole signals, representing the fraction of hypoxic areas from the same tumors before IR. Interestingly, Glut-1 signals were significantly decreased at early time point (6.5 h) after IR returning to the initial levels at 30.5 h. Vascular density showed no difference between irradiated and control groups, whereas apoptosis was significantly induced at 10.5 h post-IR. DCE-MRI indicated increased perfusion 1 h post-IR. Conclusions: The discrepancy between the hypoxic fractions of CCI-103F and Glut-1 forces us to consider the possibility that both markers reflect different metabolic alterations of tumor microenvironment. The reliability of endogenous markers such as Glut-1 to measure reoxygenation in irradiated tumors needs further consideration. Monitoring tumor microvascular response to IR by DCE-MRI and measuring tumor volume alterations should be encouraged.

  18. Portulaca oleracea Seed Oil Exerts Cytotoxic Effects on Human Liver Cancer (HepG2) and Human Lung Cancer (A-549) Cell Lines.

    PubMed

    Al-Sheddi, Ebtesam Saad; Farshori, Nida Nayyar; Al-Oqail, Mai Mohammad; Musarrat, Javed; Al-Khedhairy, Abdulaziz Ali; Siddiqui, Maqsood Ahmed

    2015-01-01

    Portulaca oleracea (Family: Portulacaceae), is well known for its anti-inflammatory, antioxidative, anti- bacterial, and anti-tumor activities. However, cytotoxic effects of seed oil of Portulaca oleracea against human liver cancer (HepG2) and human lung cancer (A-549) cell lines have not been studied previously. Therefore, the present study was designed to investigate the cytotoxic effects of Portulaca oleracea seed oil on HepG2 and A-549 cell lines. Both cell lines were exposed to various concentrations of Portulaca oleracea seed oil for 24h. After the exposure, percentage cell viability was studied by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT), neutral red uptake (NRU) assays, and cellular morphology by phase contrast inverted microscopy. The results showed a concentration-dependent significant reduction in the percentage cell viability and an alteration in the cellular morphology of HepG2 and A-549 cells. The percentage cell viability was recorded as 73%, 63%, and 54% by MTT assay and 76%, 61%, and 50% by NRU assay at 250, 500, and 1000 μg/ml, respectively in HepG2 cells. Percentage cell viability was recorded as 82%, 72%, and 64% by MTT assay and 83%, 68%, and 56% by NRU assay at 250, 500, and 1000 μg/ml, respectively in A-549 cells. The 100 μg/ml and lower concentrations were found to be non cytotoxic to A-549 cells, whereas decrease of 14% and 12% were recorded by MTT and NRU assay, respectively in HepG2 cells. Both HepG2 and A-549 cell lines exposed to 250, 500, and 1000 μg/ ml of Portulaca oleracea seed oil lost their normal morphology, cell adhesion capacity, become rounded, and appeared smaller in size. The data from this study showed that exposure to seed oil of Portulaca oleracea resulted in significant cytotoxicity and inhibition of growth of the human liver cancer (HepG2) and human lung cancer (A-549) cell lines. PMID:25921149

  19. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling

    NASA Astrophysics Data System (ADS)

    Cheng, C.-Y.; Perevedentseva, E.; Tu, J.-S.; Chung, P.-H.; Cheng, C.-L.; Liu, K.-K.; Chao, J.-I.; Chen, P.-H.; Chang, C.-C.

    2007-04-01

    This letter presents direct observation of growth hormone receptor in one single cancer cell using nanodiamond-growth hormone complex as a specific probe. The interaction of surface growth hormone receptor of A549 human lung epithelial cells with growth hormone was observed using nanodiamond's unique spectroscopic signal via confocal Raman mapping. The growth hormone molecules were covalent conjugated to 100nm diameter carboxylated nanodiamonds, which can be recognized specifically by the growth hormone receptors of A549 cell. The Raman spectroscopic signal of diamond provides direct and in vitro observation of growth hormone receptors in physiology condition in a single cell level.

  20. Safrole oxide induces apoptosis by activating caspase-3, -8, and -9 in A549 human lung cancer cells.

    PubMed

    Du, Aiying; Zhao, Baoxiang; Yin, Deling; Zhang, Shangli; Miao, Junying

    2006-01-01

    Previously we found that 3,4-(methylenedioxy)-1-(2',3'-epoxypropyl)-benzene (safrole oxide) induced a typical apoptosis in A549 human lung cancer cells. In this study, we further investigated which caspases were activated by safrole oxide during the apoptosis. The data showed that the activity of caspase-3, -8, and -9 was significantly enhanced by the compound, which suggested that safrole oxide might be used as a caspase promoter to initiate lung cancer cell apoptosis.

  1. Antimetastatic Effects of Phyllanthus on Human Lung (A549) and Breast (MCF-7) Cancer Cell Lines

    PubMed Central

    Lee, Sau Har; Jaganath, Indu Bala; Wang, Seok Mui; Sekaran, Shamala Devi

    2011-01-01

    Background Current chemotherapeutic drugs kill cancer cells mainly by inducing apoptosis. However, they become ineffective once cancer cell has the ability to metastasize, hence the poor prognosis and high mortality rate. Therefore, the purpose of this study was to evaluate the antimetastatic potential of Phyllanthus (P. niruri, P. urinaria, P. watsonii, and P. amarus) on lung and breast carcinoma cells. Methodology/Principal Findings Cytotoxicity of Phyllanthus plant extracts were first screened using the MTS reduction assay. They were shown to inhibit MCF-7 (breast carcinoma) and A549 (lung carcinoma) cells growth with IC50 values ranging from 50–180 µg/ml and 65–470 µg/ml for methanolic and aqueous extracts respectively. In comparison, they have lower toxicity on normal cells with the cell viability percentage remaining above 50% when treated up to 1000 µg/ml for both extracts. After determining the non-toxic effective dose, several antimetastasis assays were carried out and Phyllanthus extracts were shown to effectively reduce invasion, migration, and adhesion of both MCF-7 and A549 cells in a dose-dependent manner, at concentrations ranging from 20–200 µg/ml for methanolic extracts and 50–500 µg/ml for aqueous extracts. This was followed by an evaluation of the possible modes of cell death that occurred along with the antimetastatic activity. Phyllanthus was shown to be capable of inducing apoptosis in conjunction with its antimetastastic action, with more than three fold increase of caspases-3 and -7, the presence of DNA-fragmentation and TUNEL-positive cells. The ability of Phyllanthus to exert antimetastatic activities is mostly associated to the presence of polyphenol compounds in its extracts. Conclusions/Significance The presence of polyphenol compounds in the Phyllanthus plant is critically important in the inhibition of the invasion, migration, and adhesion of cancer cells, along with the involvement of apoptosis induction. Hence

  2. Copper(II) complexes with naringenin and hesperetin: cytotoxic activity against A 549 human lung adenocarcinoma cells and investigation on the mode of action.

    PubMed

    Tamayo, Lenka V; Gouvea, Ligiane R; Sousa, Anna C; Albuquerque, Ronniel M; Teixeira, Sarah Fernandes; de Azevedo, Ricardo Alexandre; Louro, Sonia R W; Ferreira, Adilson Kleber; Beraldo, Heloisa

    2016-02-01

    Copper(II) complexes [Cu(H2O)2 (L1)(phen)](ClO4) (1) and [Cu(H2O)(L2)(phen)](ClO4) (2) (HL1 = naringenin; HL2 = hesperetin) were obtained, in which an anionic flavonoid ligand is attached to the metal center along with 1,10-phenanthroline (phen) as co-ligand. Complexes (1) and (2) were assayed for their cytotoxic activity against A549 lung carcinoma and against normal lung fibroblasts (LL-24) and human umbilical vein endothelial cells (HUVEC). We found IC50 = 16.42 µM (1) and IC50 = 5.82 µM (2) against A549 tumor cells. Complexes (1) and (2) exhibited slight specificity, being more cytotoxic against malignant than against non-malignant cells. 1 and 2 induced apoptosis on A549 cells in a mitochondria-independent pathway, and showed antioxidant activity. The antioxidant effect of the complexes could possibly improve their apoptotic action, most likely by a PI3K-independent reduction of autophagy. Complexes (1) and (2) interact in vitro with calf thymus DNA by an intercalative binding mode. EPR data indicated that 1 and 2 interact with human serum albumin (HSA) forming mixed ligand species.

  3. Synthesis and cytotoxicity evaluation of 4-amino-4-dehydroxylarctigenin derivatives in glucose-starved A549 tumor cells.

    PubMed

    Lei, Min; Gan, Xianwen; Zhao, Kun; Yu, Qiang; Hu, Lihong

    2015-02-01

    The natural product arctigenin (ATG) demonstrated preferential cytotoxicity to cancer cells under glucose starvation. A series of 4-amino-4-dehydroxylarctigenin derivatives based on lead compound ATG were designed and synthesized by bioisosteric modifications. Their cytotoxicities were evaluated in glucose-starved A549 tumor cells and the results indicated that the 4-amino-4-dehydroxylarctigenin showed more potent cytotoxicity than arctigenin, and the further substituent group on 4-amino would result in the cytotoxicities decreased significantly. 4-Substituted-arctigenin could selectively target on glucose-starved A549 tumor cells which provide an alternative strategy for anticancer drug development with minimal normal tissue toxicity.

  4. Synthesis and cytotoxicity evaluation of 4-amino-4-dehydroxylarctigenin derivatives in glucose-starved A549 tumor cells.

    PubMed

    Lei, Min; Gan, Xianwen; Zhao, Kun; Yu, Qiang; Hu, Lihong

    2015-02-01

    The natural product arctigenin (ATG) demonstrated preferential cytotoxicity to cancer cells under glucose starvation. A series of 4-amino-4-dehydroxylarctigenin derivatives based on lead compound ATG were designed and synthesized by bioisosteric modifications. Their cytotoxicities were evaluated in glucose-starved A549 tumor cells and the results indicated that the 4-amino-4-dehydroxylarctigenin showed more potent cytotoxicity than arctigenin, and the further substituent group on 4-amino would result in the cytotoxicities decreased significantly. 4-Substituted-arctigenin could selectively target on glucose-starved A549 tumor cells which provide an alternative strategy for anticancer drug development with minimal normal tissue toxicity. PMID:25571795

  5. Study of gaseous benzene effects upon A549 lung epithelial cells using a novel exposure system.

    PubMed

    Mascelloni, Massimiliano; Delgado-Saborit, Juana Maria; Hodges, Nikolas J; Harrison, Roy M

    2015-08-19

    Volatile organic compounds (VOCs) are ubiquitous pollutants known to be present in both indoor and outdoor air arising from various sources. Indoor exposure has increasingly become a major cause of concern due to the effects that such pollutants can have on health. Benzene, along with toluene, is one of the main components of the VOC mixture and is a known carcinogen due to its genotoxic effects. The aim of this study was to test the feasibility of an in vitro model to study the short-term effects of exposure of lung cells to airborne benzene. We studied the effects of exposure on DNA and the production of reactive oxygen species (ROS) in A549 cells, exposed to various concentrations of benzene (0.03; 0.1; 0.3 ppm) in gaseous form using a custom designed cell exposure chamber. Results showed a concentration-dependent increase of DNA breaks and an increase of ROS production, confirming the feasibility of the experimental procedure and validating the model for further in vitro studies of exposure to other VOCs.

  6. MicroRNA-490-3p inhibits proliferation of A549 lung cancer cells by targeting CCND1

    SciTech Connect

    Gu, Haihua; Yang, Tao; Fu, Shaozi; Chen, Xiaofan; Guo, Lei; Ni, Yiming

    2014-01-31

    Highlights: • We examined the level of miR-490-3p in A549 lung cancer cells compared with normal bronchial epithelial cell line. • We are the first to show the function of miR-490-3p in A549 lung cancer cells. • We demonstrate CCND1 may be one of the targets of miR-490-3p. - Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate the translation of messenger RNAs by binding their 3′-untranslated region (3′UTR). In this study, we found that miR-490-3p is significantly down-regulated in A549 lung cancer cells compared with the normal bronchial epithelial cell line. To better characterize the role of miR-490-3p in A549 cells, we performed a gain-of-function analysis by transfecting the A549 cells with chemically synthesized miR-490-3P mimics. Overexpression of miR-490-3P evidently inhibits cell proliferation via G1-phase arrest. We also found that forced expression of miR-490-3P decreased both mRNA and protein levels of CCND1, which plays a key role in G1/S phase transition. In addition, the dual-luciferase reporter assays indicated that miR-490-3P directly targets CCND1 through binding its 3′UTR. These findings indicated miR-490-3P could be a potential suppressor of cellular proliferation.

  7. Lung Carcinoid Tumor: Surgery

    MedlinePlus

    ... for lung carcinoid tumor symptoms Surgery to treat lung carcinoid tumors Surgery is the main treatment for ... often be cured by surgery alone. Types of lung surgery Different operations can be used to treat ( ...

  8. Feroniellin A-induced autophagy causes apoptosis in multidrug-resistant human A549 lung cancer cells.

    PubMed

    Kaewpiboon, Chutima; Surapinit, Serm; Malilas, Waraporn; Moon, Jeong; Phuwapraisirisan, Preecha; Tip-Pyang, Santi; Johnston, Randal N; Koh, Sang Seok; Assavalapsakul, Wanchai; Chung, Young-Hwa

    2014-04-01

    During the screening of natural chemicals that can reverse multidrug resistance in human A549 lung cancer cells resistant to etoposide (A549RT-eto), we discovered that Feroniellin A (FERO), a novel furanocoumarin, shows toxicity toward A549RT-eto cells in a dose- and time-dependent manner. FERO reduced the expression of NF-κB, leading to downregulation of P-glycoprotein (P-gp), encoded by MDR1, which eventually sensitized A549RT-eto cells to apoptosis. FERO specifically diminished transcription and promoter activity of MDR1 but did not inhibit the expression of other multidrug resistance genes MRP2 and BCRP. Moreover, co-administration of FERO with Bay11-7802, an inhibitor of NF-κB, accelerated apoptosis of A549RT-eto cells through decreased expression of P-gp, indicating that NF-κB is involved in multidrug resistance. Conversely, addition of Z-VAD, a pan-caspase inhibitor, blocked FERO-induced apoptosis in A549RT-eto cells but did not block downregulation of P-gp, indicating that a decrease in P-gp expression is necessary but not sufficient for FERO-induced apoptosis. Interestingly, we found that FERO also induces autophagy, which is characterized by the conversion of LC3 I to LC3 II, induction of GFP-LC3 puncta, enhanced expression of Beclin-1 and ATG5, and inactivation of mTOR. Furthermore, suppression of Beclin-1 by siRNA reduced FERO-induced apoptosis in A549RT-eto cells and activation of autophagy by rapamycin accelerated FERO-induced apoptosis, suggesting that autophagy plays an active role in FERO-induced apoptosis. Herein, we report that FERO reverses multidrug resistance in A549RT-eto cells and exerts its cytotoxic effect by induction of both autophagy and apoptosis, which suggests that FERO can be a useful anticancer drug for multidrug-resistant lung cancer. PMID:24535083

  9. Feroniellin A-induced autophagy causes apoptosis in multidrug-resistant human A549 lung cancer cells.

    PubMed

    Kaewpiboon, Chutima; Surapinit, Serm; Malilas, Waraporn; Moon, Jeong; Phuwapraisirisan, Preecha; Tip-Pyang, Santi; Johnston, Randal N; Koh, Sang Seok; Assavalapsakul, Wanchai; Chung, Young-Hwa

    2014-04-01

    During the screening of natural chemicals that can reverse multidrug resistance in human A549 lung cancer cells resistant to etoposide (A549RT-eto), we discovered that Feroniellin A (FERO), a novel furanocoumarin, shows toxicity toward A549RT-eto cells in a dose- and time-dependent manner. FERO reduced the expression of NF-κB, leading to downregulation of P-glycoprotein (P-gp), encoded by MDR1, which eventually sensitized A549RT-eto cells to apoptosis. FERO specifically diminished transcription and promoter activity of MDR1 but did not inhibit the expression of other multidrug resistance genes MRP2 and BCRP. Moreover, co-administration of FERO with Bay11-7802, an inhibitor of NF-κB, accelerated apoptosis of A549RT-eto cells through decreased expression of P-gp, indicating that NF-κB is involved in multidrug resistance. Conversely, addition of Z-VAD, a pan-caspase inhibitor, blocked FERO-induced apoptosis in A549RT-eto cells but did not block downregulation of P-gp, indicating that a decrease in P-gp expression is necessary but not sufficient for FERO-induced apoptosis. Interestingly, we found that FERO also induces autophagy, which is characterized by the conversion of LC3 I to LC3 II, induction of GFP-LC3 puncta, enhanced expression of Beclin-1 and ATG5, and inactivation of mTOR. Furthermore, suppression of Beclin-1 by siRNA reduced FERO-induced apoptosis in A549RT-eto cells and activation of autophagy by rapamycin accelerated FERO-induced apoptosis, suggesting that autophagy plays an active role in FERO-induced apoptosis. Herein, we report that FERO reverses multidrug resistance in A549RT-eto cells and exerts its cytotoxic effect by induction of both autophagy and apoptosis, which suggests that FERO can be a useful anticancer drug for multidrug-resistant lung cancer.

  10. Umbelliprenin is cytotoxic against QU-DB large cell lung cancer cell line but anti-proliferative against A549 adenocarcinoma cells

    PubMed Central

    2012-01-01

    Background Umbelliprenin is a natural compound, belonging to the class of sesquiterpene coumarins. Recently, umbelliprenin has attracted the researchers' attention for its antitumor activities against skin tumors. Its effect on lung cancer is largely unknown. The aim of our study was to investigate the effects of this natural compound, which is expected to have low adverse effects, on lung cancer. Methods The QU-DB large cell and A549 adenocarcinoma lung cancer cell lines were treated with umbelliprenin. IC50 values were estimated using methyl thiazolely diphenyl-tetrazolium bromide (MTT) assay, in which a decrease in MTT reduction can occur as a result of cell death or cell proliferation inhibition. To quantify the rate of cell death at IC50 values, flow cytometry using Annexin V-FITC (for apoptotic cells), and propidium iodide (for necrotic cells) dyes were employed. Results Data from three independent MTT experiments in triplicate revealed that IC50 values for QU-DB and A549 were 47 ± 5.3 μM and 52 ± 1.97 μM, respectively. Annexin V/PI staining demonstrated that umbelliprenin treatment at IC50 induced 50% cell death in QU-DB cells, but produced no significant death in A549 cells until increasing the umbelliprenin concentration to IC80. The pattern of cell death was predominantly apoptosis in both cell lines. When peripheral blood mononuclear cells were treated with 50 μM and less concentrations of umbelliprenin, no suppressive effect was observed. Conclusions We found cytotoxic/anti-proliferative effects of umbelliprenin against two different types of lung cancer cell lines. PMID:23351548

  11. Capsaicin-induced genotoxic stress does not promote apoptosis in A549 human lung and DU145 prostate cancer cells.

    PubMed

    Lewinska, Anna; Jarosz, Paulina; Czech, Joanna; Rzeszutek, Iwona; Bielak-Zmijewska, Anna; Grabowska, Wioleta; Wnuk, Maciej

    2015-02-01

    Capsaicin is the major pungent component of the hot chili peppers of the genus Capsicum, which are consumed worldwide as a food additive. More recently, the selective action of capsaicin against cancer cells has been reported. Capsaicin was found to induce apoptosis and inhibit proliferation of a wide range of cancer cells in vitro, whereas being inactive against normal cells. As data on capsaicin-induced genotoxicity are limited and the effects of capsaicin against human lung A549 and DU145 prostate cancer cells were not explored in detail, we were interested in determining whether capsaicin-associated genotoxicity may also provoke A549 and DU145 cell death. Capsaicin-induced decrease in metabolic activity and cell proliferation, and changes in the cell cycle were limited to high concentrations used (≥ 100 μM), whereas, at lower concentrations, capsaicin stimulated both DNA double strand breaks and micronuclei production. Capsaicin was unable to provoke apoptotic cell death when used up to 250 μM concentrations. Capsaicin induced oxidative stress, but was ineffective in provoking the dissipation of the mitochondrial inner transmembrane potential. A different magnitude of p53 binding protein 1 (53BP1) recruitment contributed to diverse capsaicin-induced genotoxic effects in DU145 and A549 cells. Capsaicin was also found to be a DNA hypermethylating agent in A549 cells. In summary, we have shown that genotoxic effects of capsaicin may contribute to limited susceptibility of DU145 and A549 cancer cells to apoptosis in vitro, which may question the usefulness of capsaicin-based anticancer therapy, at least in a case of lung and prostate cancer. PMID:25813723

  12. Capsaicin-induced genotoxic stress does not promote apoptosis in A549 human lung and DU145 prostate cancer cells.

    PubMed

    Lewinska, Anna; Jarosz, Paulina; Czech, Joanna; Rzeszutek, Iwona; Bielak-Zmijewska, Anna; Grabowska, Wioleta; Wnuk, Maciej

    2015-02-01

    Capsaicin is the major pungent component of the hot chili peppers of the genus Capsicum, which are consumed worldwide as a food additive. More recently, the selective action of capsaicin against cancer cells has been reported. Capsaicin was found to induce apoptosis and inhibit proliferation of a wide range of cancer cells in vitro, whereas being inactive against normal cells. As data on capsaicin-induced genotoxicity are limited and the effects of capsaicin against human lung A549 and DU145 prostate cancer cells were not explored in detail, we were interested in determining whether capsaicin-associated genotoxicity may also provoke A549 and DU145 cell death. Capsaicin-induced decrease in metabolic activity and cell proliferation, and changes in the cell cycle were limited to high concentrations used (≥ 100 μM), whereas, at lower concentrations, capsaicin stimulated both DNA double strand breaks and micronuclei production. Capsaicin was unable to provoke apoptotic cell death when used up to 250 μM concentrations. Capsaicin induced oxidative stress, but was ineffective in provoking the dissipation of the mitochondrial inner transmembrane potential. A different magnitude of p53 binding protein 1 (53BP1) recruitment contributed to diverse capsaicin-induced genotoxic effects in DU145 and A549 cells. Capsaicin was also found to be a DNA hypermethylating agent in A549 cells. In summary, we have shown that genotoxic effects of capsaicin may contribute to limited susceptibility of DU145 and A549 cancer cells to apoptosis in vitro, which may question the usefulness of capsaicin-based anticancer therapy, at least in a case of lung and prostate cancer.

  13. CDK-associated Cullin 1 promotes cell proliferation with activation of ERK1/2 in human lung cancer A549 cells

    SciTech Connect

    Chen, Tian Jun; Gao, Fei; Yang, Tian; Thakur, Asmitanand; Ren, Hui; Li, Yang; Zhang, Shuo; Wang, Ting; Chen, Ming Wei

    2013-07-19

    Highlights: •CDK-associated Cullin 1 (CAC1) expression increases in human lung carcinoma. •CAC1 promotes the proliferation of lung cancer A549 cells. •CAC1 promotes human lung cancer A549 cell proliferation with activation of ERK1/2. -- Abstract: Lung cancer is one of the most common causes of cancer-related death in the world, but the mechanisms remain unknown. In this study, we investigated the expression of CDK-associated Cullin 1 (CAC1) in lung cancer, the effect of CAC1 on the proliferation of human lung cancer A549 cells, and the activation of signaling pathways of mitogen-activated protein kinases (MAPKs). Results showed that CAC1 expression was higher levels in human lung carcinoma than normal lung tissue, and CAC1 siRNA reduced the proliferation of lung cancer A549 cells by decreasing cell activity and cell division in vitro. The proportion of cells treated with CAC1 siRNA increased in the G1 phase and decreased in the S and G2/M phase, indicative of G1 cell cycle arrest. Furthermore, the proportions of early/late apoptosis in lung cancer A549 cells were enhanced with CAC1 siRNA treatment. It was also found that activation of extracellular signal-regulated protein kinase (ERK) and p38 signaling pathways were involved in the proliferation of A549 cells. After CAC1 siRNA treatment, p-ERK1/2 levels decreased, and meanwhile p-p38 level increased, A549 cell proliferation increased when ERK1/2 signaling is activated by PMA. Our findings demonstrated that CAC1 promoted the proliferation of human lung cancer A549 cells with activation of ERK1/2 signaling pathways, suggesting a potential cure target for treatment of human lung cancer.

  14. Apoptosis of human lung adenocarcinoma A549 cells induced by prodigiosin analogue obtained from an entomopathogenic bacterium Serratia marcescens.

    PubMed

    Zhou, Wei; Jin, Zhi-Xiong; Wan, Yong-Ji

    2010-12-01

    An entomopathogenic bacterial strain SCQ1 was isolated from silkworm (Bombyx mori) and identified as Serratia marcescens via 16S rRNA gene analysis. This strain produces a red pigment that causes acute septicemia of silkworm. The red pigment of strain SCQ1 was identified as prodigiosin analogue (PGA) with various reported biological activities. In this study, we found that low concentration of PGA showed significant anticancer activity in human lung adenocarcinoma A549 cells, but has little effect in human bone marrow stem cells, in vitro. By exposure to different concentrations of PGA for 24 h, morphological changes and the MTT assay showed that A549 cell line was very sensitive to PGA, with IC(50) value about 2.2 mg/L. Early stage of apoptosis was detected by flow cytometry while A549 cells were treated with PGA for 4 and 12 h, respectively. The proportion of dead cells was increased with treatment time or the concentrations of PGA, but it was inversely proportional to that of apoptotic cells. These results indicate that PGA obtained from strain SCQ1 induces apoptosis in A549 cells, but the molecular mechanisms of cell death are complicated, and the S. marcescens strain SCQ1 may serve as a source of the anticancer compound, PGA.

  15. Molecular Switch Role of Akt in Polygonatum odoratum Lectin-Induced Apoptosis and Autophagy in Human Non-Small Cell Lung Cancer A549 Cells

    PubMed Central

    Shi, Zheng; Wang, Hailian; Zhang, Bin; Zhao, Kailiang; Qi, Wei; Bao, Jinku; Wang, Yi

    2014-01-01

    Polygonatum odoratum lectin (POL), isolated from traditional Chinese medicine herb (Mill.) Druce, has drawn rising attention due to its wide biological activities. In the present study, anti-tumor effects, including apoptosis- and autophagy-inducing properties of POL, were determined by a series of cell biology methods such as MTT, cellular morphology observation, flow cytometry, immunoblotting. Herein, we found that POL could simultaneously induce apoptosis and autophagy in human non-small cell lung cancer A549 cells. POL initiated apoptosis through inhibiting Akt-NF-κB pathway, while POL triggered autophagy via suppressing Akt-mTOR pathway, suggesting the molecular switch role of Akt in regulating between POL-induced apoptosis and autophagy. Moreover, ROS was involved in POL-induced inhibition of Akt expression, and might therefore mediate both apoptosis and autophagy in A549 cells. In addition, POL displayed no significant cytotoxicity toward normal human embryonic lung fibroblast HELF cells. Due to the anti-tumor activities, POL might become a potent anti-cancer drug in future therapy, which might pave the way for exploring GNA-related lectins into effective drugs in cancer treatment. PMID:24992302

  16. Monitoring microRNAs using a molecular beacon in CD133+/ CD338+ human lung adenocarcinoma-initiating A549 cells.

    PubMed

    Yao, Quan; Sun, Jian-Guo; Ma, Hu; Zhang, An-Mei; Lin, Sheng; Zhu, Cong-Hui; Zhang, Tao; Chen, Zheng-Tang

    2014-01-01

    Lung cancer is the most common causes of cancer-related deaths worldwide, and a lack of effective methods for early diagnosis has greatly impacted the prognosis and survival rates of the affected patients. Tumor-initiating cells (TICs) are considered to be largely responsible for tumor genesis, resistance to tumor therapy, metastasis, and recurrence. In addition to representing a good potential treatment target, TICs can provide clues for the early diagnosis of cancer. MicroRNA (miRNA) alterations are known to be involved in the initiation and progression of human cancer, and the detection of related miRNAs in TICs is an important strategy for lung cancer early diagnosis. As Hsa-miR-155 (miR-155) can be used as a diagnostic marker for non-small cell lung cancer (NSCLC), a smart molecular beacon of miR-155 was designed to image the expression of miR-155 in NSCLC cases. TICs expressing CD133 and CD338 were obtained from A549 cells by applying an immune magnetic bead isolation system, and miR-155 was detected using laser-scanning confocal microscopy. We found that intracellular miR- 155 could be successfully detected using smart miR-155 molecular beacons. Expression was higher in TICs than in A549 cells, indicating that miR-155 may play an important role in regulating bio-behavior of TICs. As a non-invasive approach, molecular beacons could be implemented with molecular imaging to diagnose lung cancer at early stages.

  17. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus.

    PubMed

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.

  18. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus

    PubMed Central

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells. PMID:26345201

  19. Caveolin-1 regulates cell apoptosis and invasion ability in paclitaxel-induced multidrug-resistant A549 lung cancer cells

    PubMed Central

    Han, Fei; Zhang, Long; Zhou, Yongxin; Yi, Xianghua

    2015-01-01

    The aim of the study was to investigate the effect and potential mechanism of caveolin-1 (Cav1) knockdown in paclitaxel-resistant lung cancer A549/Taxol cells. The human paclitaxel-resistant lung cancer cell line A549/Taxol was transfected with a Cav1 shRNA lentiviral vector. Interference efficiency for Cav1 was detected by real-time PCR and Western blotting. A MTT assay was used to determine cell proliferation, and flow cytometry was used to detect the cell cycle stage and apoptosis. Cell migration and invasion capability were detected by a transwell assay. Protein levels of related signaling molecules were detected by Western blotting. We successfully constructed a stable A549/Taxol cell line expressing low levels of Cav1. Cav1 knockdown significantly inhibited cell proliferation and induced G0/G1 arrest and cell apoptosis in vitro and in vivo. In addition, these effects correlated significantly with a reduction in cyclin D1 expression and activation of the Bcl-2/Bax-mediated mitochondrial apoptosis pathway. Furthermore, knockdown of Cav1 inhibited cell migration and invasion, and this may be related to the inhibition of AKT and the subsequent decreased protein expression of MMP2, MMP7 and MMP9. PMID:26464635

  20. In vitro evaluation of the cellular effect of indium tin oxide nanoparticles using the human lung adenocarcinoma A549 cells.

    PubMed

    Tabei, Yosuke; Sonoda, Akinari; Nakajima, Yoshihiro; Biju, Vasudevanpillai; Makita, Yoji; Yoshida, Yasukazu; Horie, Masanori

    2015-05-01

    Indium tin oxide (ITO) is widely used in liquid crystal displays (LCDs) or plasma and mobile phone displays. Elevated production and usage of ITO in such displays have led to increased concerns over the safety of industrial workers exposed to particulate aerosols produced during cutting, grinding and polishing of these materials. However, the cellular effects of ITO nanoparticles (NPs) are still unclear, although it has been reported that micro-scale ITO particles induce cytotoxicity. The aim of this study was to examine the potential of ITO NPs to induce cytotoxicity, oxidative stress, and DNA damage using human lung adenocarcinoma A549 cells. Here, stable dispersions of a medium containing ITO NPs were obtained using pre-adsorption and centrifugal fractionation methods, and the A549 cells were incubated in this medium. The ITO NPs showed low cytotoxic effects as shown by the WST-1 and LDH assays. Transmission electron microscopy observations showed the cellular uptake of ITO NPs. The ITO NPs increased the intracellular level of reactive oxygen species and the expression of the heme oxygenase 1 gene. Further, the results of alkaline comet assays showed that ITO NPs induced DNA damage. Thus, these results suggest that ITO NPs possess a genotoxic potential on human lung adenocarcinoma A549 cells.

  1. TGF-β and Hypoxia/Reoxygenation Promote Radioresistance of A549 Lung Cancer Cells through Activation of Nrf2 and EGFR

    PubMed Central

    Lee, Sae-lo-oom; Ryu, Hwani; Son, A-rang; Seo, Bitna; Kim, Jooyoung; Jung, Seung-Youn; Song, Jie-Young; Hwang, Sang-Gu; Ahn, Jiyeon

    2016-01-01

    Although many studies have examined the roles of hypoxia and transforming growth factor- (TGF-) β separately in the tumor microenvironment, the effects of simultaneous treatment with hypoxia/reoxygenation and TGF-β on tumor malignancy are unclear. Here, we investigated the effects of redox signaling and oncogenes on cell proliferation and radioresistance in A549 human lung cancer cells in the presence of TGF-β under hypoxia/reoxygenation conditions. Combined treatment with TGF-β and hypoxia activated epidermal growth factor receptor (EGFR) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a redox-sensitive transcription factor. Interestingly, Nrf2 knockdown suppressed the effects of combined treatment on EGFR phosphorylation. In addition, blockade of EGFR signaling also suppressed induction of Nrf2 following combined treatment with hypoxia and TGF-β, indicating that the combined treatment induced positive crosstalk between Nrf2 and EGFR. TGF-β and hypoxia/reoxygenation increased the accumulation of reactive oxygen species (ROS), while treatment with N-acetyl-l-cysteine abolished the activation of Nrf2 and EGFR. Treatment with TGF-β under hypoxic conditions increased the proliferation of A549 cells compared with that after vehicle treatment. Moreover, cells treated with the combined treatment exhibited resistance to ionizing radiation (IR), and knockdown of Nrf2 increased IR-induced cell death under these conditions. Thus, taken together, our findings suggested that TGF-β and hypoxia/reoxygenation promoted tumor progression and radioresistance of A549 cells through ROS-mediated activation of Nrf2 and EGFR. PMID:26904167

  2. The fruit juice of Morinda citrifolia (noni) downregulates HIF-1α protein expression through inhibition of PKB, ERK-1/2, JNK-1 and S6 in manganese-stimulated A549 human lung cancer cells.

    PubMed

    Jang, Byeong-Churl

    2012-03-01

    High exposure of manganese is suggested to be a risk factor for many lung diseases. Evidence suggests anticancerous and antiangiogenic effects by products derived from Morinda citrifolia (noni) fruit. In this study, we investigated the effect of noni fruit juice (NFJ) on the expression of HIF-1α, a tumor angiogenic transcription factor in manganese-chloride (manganese)-stimulated A549 human lung carcinoma cells. Treatment with manganese largely induced expression of HIF-1α protein but did not affect HIF-1α mRNA expression in A549 cells, suggesting the metal-mediated co- and/or post-translational HIF-1α upregulation. Manganese treatment also led to increased phosphorylation of extracellular-regulated protein kinase-1/2 (ERK-1/2), c-Jun N-terminal kinase-1 (JNK-1), protein kinase B (PKB), S6 and eukaryotic translation initiation factor-2α (eIF-2α) in A549 cells. Of note, the exposure of NFJ inhibited the manganese-induced HIF-1α protein upregulation in a concentration-dependent manner. Importantly, as assessed by results of pharmacological inhibition and siRNA transfection studies, the effect of NFJ on HIF-1α protein downregulation seemed to be largely associated with the ability of NFJ to interfere with the metal's signaling to activate PKB, ERK-1/2, JNK-1 and S6 in A549 cells. It was further shown that NFJ could repress the induction of HIF-1α protein by desferoxamine or interleukin-1β (IL-1β), another HIF-1α inducer in A549 cells. Thus, the present study provides the first evidence that NFJ has the ability to strongly downregulate manganese-induced HIF-1α protein expression in A549 human lung cancer cells, which may suggest the NFJ-mediated beneficial effects on lung pathologies in which manganese and HIF-1α overexpression play pathogenic roles.

  3. Induction of COX-2 protein expression by vanadate in A549 human lung carcinoma cell line through EGF receptor and p38 MAPK-mediated pathway

    SciTech Connect

    Chien, P.-S.; Mak, O.-T.; Huang, H.-J. . E-mail: haojen@mail.ncku.edu.tw

    2006-01-13

    Vanadate is a transition metal widely distributed in the environment. It has been reported that vanadate associated with air pollution particles can modify DNA synthesis, causing cell growth arrest, and apoptosis. Moreover, vanadium exposure was also found to cause the synthesis of inflammatory cytokines, such as interleukin-1, tumor necrosis factor-{alpha}, and prostaglandin E{sub 2}. Here, we found that exposure of A549 human lung carcinoma cells to vanadate led to extracellular signal-regulated kinase, c-Jun NH{sub 2}-terminal protein kinases (JNKs), p38 mitogen-activated protein kinase (p38) activation, and COX-2 protein expression in a dose-dependent manner. SB203580, a p38 MAPK inhibitor, but not PD098059 and SP600125, specific inhibitor of MKK1 and selective inhibitor of JNK, respectively, suppressed COX-2 expression. Furthermore, the epithelial growth factor (EGF) receptor specific inhibitor (PD153035) reduced vanadate-induced COX-2 expression. However, scavenging of vanadate-induced reactive oxygen species by catalase, a specific H{sub 2}O{sub 2} inhibitor, or DPI, an NADPH oxidase inhibitor, resulted in no inhibition on COX-2 expression. Together, we suggested that EGF receptor and p38 MAPK signaling pathway may be involved in vanadate-induced COX-2 protein expression in A549 human lung carcinoma cell line.

  4. Human Noxin is an anti-apoptotic protein in response to DNA damage of A549 non-small cell lung carcinoma.

    PubMed

    Won, Kyoung-Jae; Im, Joo-Young; Yun, Chae-Ok; Chung, Kyung-Sook; Kim, Young Joo; Lee, Jung-Sun; Jung, Young-Jin; Kim, Bo-Kyung; Song, Kyung Bin; Kim, Young-Ho; Chun, Ho-Kyung; Jung, Kyeong Eun; Kim, Moon-Hee; Won, Misun

    2014-06-01

    Human Noxin (hNoxin, C11Orf82), a homolog of mouse noxin, is highly expressed in colorectal and lung cancer tissues. hNoxin contains a DNA-binding C-domain in RPA1, which mediates DNA metabolic processes, such as DNA replication and DNA repair. Expression of hNoxin is associated with S phase in cancer cells and in normal cells. Expression of hNoxin was induced by ultraviolet (UV) irradiation. Knockdown of hNoxin caused growth inhibition of colorectal and lung cancer cells. The comet assay and western blot analysis revealed that hNoxin knockdown induced apoptosis through activation of p38 mitogen-activated protein kinase (MAPK)/p53 in non-small cell lung carcinoma A549 cells. Furthermore, simultaneous hNoxin knockdown and treatment with DNA-damaging agents, such as camptothecin (CPT) and UV irradiation, enhanced apoptosis, whereas Trichostatin A (TSA) did not. However, transient overexpression of hNoxin rescued cells from DNA damage-induced apoptosis but did not block apoptosis in the absence of DNA damage. These results suggest that hNoxin may be associated with inhibition of apoptosis in response to DNA damage. An adenovirus expressing a short hairpin RNA against hNoxin transcripts significantly suppressed the growth of A549 tumor xenografts, indicating that hNoxin knockdown has in vivo anti-tumor efficacy. Thus, hNoxin is a DNA damage-induced anti-apoptotic protein and potential therapeutic target in cancer.

  5. Chemosensitization and radiosensitization of a lung cancer cell line A549 induced by a composite polymer micelle.

    PubMed

    Xu, Jing; Zhang, Bi-Cheng; Li, Xiang-Long; Xu, Wen-Hong; Zhou, Juan; Shen, Li; Wei, Qi-Chun

    2016-08-01

    Multidrug resistance (MDR) to Doxorubicin (DOX) remains a major obstacle to successful cancer treatment. The present study sought to overcome the MDR of lung cancer cells and achieve radiosensitization by developing a composite DOX-loaded micelle (M-DOX). M-DOX containing PEG-PCL/Pluronic P105 was prepared by the solvent evaporation method. Lung cancer cell line A549 was adopted in this study. In vitro cytotoxicity, cellular uptake behavior, subcellular distribution, and radiosensitivity were evaluated by the treatment with M-DOX, and free DOX was used as a control. A549 cells treated with M-DOX as opposed to free DOX showed greater cellular uptake as well as greater cytotoxicity. Furthermore, M-DOX reached the mitochondria and lysosome effectively after cellular uptake, and fluorescence used to track M-DOX was found to be surrounding the nucleus. Finally, colony-forming assays demonstrated that M-DOX treatment improved radiosensitization when compared to free DOX. Based on the increased cytotoxicity and radiosensitization, M-DOX could be considered as a promising drug delivery system to overcome MDR in lung cancer therapy. PMID:27585226

  6. Andrographolide down-regulates hypoxia-inducible factor-1{alpha} in human non-small cell lung cancer A549 cells

    SciTech Connect

    Lin, Hui-Hsuan; Tsai, Chia-Wen; Chou, Fen-Pi; Wang, Chau-Jong; Hsuan, Shu-Wen; Wang, Cheng-Kun; Chen, Jing-Hsien

    2011-02-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) in A549 cells. HIF-1{alpha} plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1{alpha} was correlated with a rapid ubiquitin-dependent degradation of HIF-1{alpha}, and was accompanied by increased expressions of hydroxyl-HIF-1{alpha} and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1{alpha} inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGF{beta}1/PHD2/HIF-1{alpha} pathway, as demonstrated by the transfection of TGF{beta}1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1{alpha} transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  7. Sensitivity of A-549 human lung cancer cells to nanoporous zinc oxide conjugated with Photofrin.

    PubMed

    Fakhar-e-Alam, Muhammad; Ali, Syed Muhammad Usman; Ibupoto, Zafar Hussain; Kimleang, Khun; Atif, M; Kashif, Muhammad; Loong, Foo Kai; Hashim, Uda; Willander, Magnus

    2012-05-01

    In the present study, we demonstrated the use of nanoporous zinc oxide (ZnO NPs) in photodynamic therapy. The ZnO NPs structure possesses a high surface to volume ratio due to its porosity and ZnO NPs can be used as an efficient photosensitizer carrier system. We were able to grow ZnO NPs on the tip of borosilicate glass capillaries (0.5 μm diameter) and conjugated this with Photofrin for efficient intracellular drug delivery. The ZnO NPs on the capillary tip could be excited intracellularly with 240 nm UV light, and the resultant 625 nm red light emitted in the presence of Photofrin activated a chemical reaction that produced reactive oxygen species (ROS). The procedure was tested in A-549 cells and led to cell death within a few minutes. The morphological changes in necrosed cells were examined by microscopy. The viability of control and treated A-549 cells with the optimum dose of UV/visible light was assessed using the MTT assay, and ROS were detected using a fluorescence microscopy procedure.

  8. Cytotoxic and apoptotic effects of Ebenus boissieri Barbey on human lung cancer cell line A549

    PubMed Central

    Aydemir, Esra Arslan; Simsek, Ece; Imir, Nilüfer; Göktürk, Ramazan Süleyman; Yesilada, Erdem; Fiskin, Kayahan

    2015-01-01

    Background: Fabaceae family members are known to possess preventive and therapeutic potentials against various types of cancers. Objective: The aim of this study was to investigate the cytotoxic and apoptotic effects of hydroalcoholic extracts from the aerial parts and roots of an endemic Ebenus species; Ebenus boissieri Barbey in human lung cancer cell line. Materials and Methods: After treatment with hydroalcoholic extracts cytotoxic activities of both extracts were measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay, whereas caspase-3 activity, tumor necrosis factor-a lpha (TNF-α) and interferon gamma (IFN-γ) releasewere measured by enzyme linked immunosorbent assay. Results: According to in vitro assay results, the increase in all caspases activity suggested that extracts induce cells to undergo apoptosis. Especially, induction in caspase-3 activity was the most remarkable result of this study. Both aerial part and root extracts induced apoptosis by increasing caspase-3 activity, TNF-α and IFN-γ release. When compared to their relative controls, the concentrations of both TNF-α and IFN-γ in extract-treated groups were significantly and dose dependently exalted. Conclusion: Taken together, our results indicate that the hydroalcoholic extracts of E. boissieri can be considered as a source of new anti-apoptotic and therefore anti-carcinogenic agent. PMID:26109772

  9. Methyl methanesulfonate induces necroptosis in human lung adenoma A549 cells through the PIG-3-reactive oxygen species pathway.

    PubMed

    Jiang, Ying; Shan, Shigang; Chi, Linfeng; Zhang, Guanglin; Gao, Xiangjing; Li, Hongjuan; Zhu, Xinqiang; Yang, Jun

    2016-03-01

    Methyl methanesulfonate (MMS) is an alkylating agent that can induce cell death through apoptosis and necroptosis. The molecular mechanisms underlying MMS-induced apoptosis have been studied extensively; however, little is known about the mechanism for MMS-induced necroptosis. Therefore, we first established MMS-induced necroptosis model using human lung carcinoma A549 cells. It was found that, within a 24-h period, although MMS at concentrations of 50, 100, 200, 400, and 800 μM can induce DNA damage, only at higher concentrations (400 and 800 μM) MMS treatment lead to necroptosis in A549 cells, as it could be inhibited by the specific necroptotic inhibitor necrostatin-1, but not the specific apoptotic inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-fmk). MMS-induced necroptosis was further confirmed by the induction of the necroptosis biomarkers including the depletion of cellular NADH and ATP and leakage of LDH. This necroptotic cell death was also concurrent with the increased expression of p53, p53-induced gene 3 (PIG-3), high mobility group box-1 protein (HMGB1), and receptor interaction protein kinase (RIP) but not the apoptosis-associated caspase-3 and caspase-9 proteins. Elevated reactive oxygen species (ROS) level was also involved in this process as the specific ROS inhibitor (4-amino-2,4-pyrrolidine-dicarboxylic acid (APDC)) can inhibit the necroptotic cell death. Interestingly, knockdown of PIG-3 expression by small interfering RNA (siRNA) treatment can inhibit the generation of ROS. Taken together, these results suggest that MMS can induce necroptosis in A549 cells, probably through the PIG-3-ROS pathway.

  10. Mitochondria-mediated apoptosis in human lung cancer A549 cells by 4-methylsulfinyl-3-butenyl isothiocyanate from radish seeds.

    PubMed

    Wang, Nan; Wang, Wei; Huo, Po; Liu, Cai-Qin; Jin, Jian-Chang; Shen, Lian-Qing

    2014-01-01

    4-Methylsulfinyl-3-butenyl isothiocyanate (MTBITC) found in the radish (Raphanus sativus L.), is a well- known anticancer agent. In this study, the mechanisms of the MTBITC induction of cell apoptosis in human A549 lung cancer cells were investigated. Our PI staining results showed that MTBITC treatment significantly increased the apoptotic sub-G1 fraction in a dose-dependent manner. The mechanism of apoptosis induced by MTBITC was investigated by testing the change of mitochondrial membrane potential (Δψm), the expression of mRNAs of apoptosis-related genes by RT-PCR, and the activities of caspase-3 and -9 by caspase colorimetric assay. MTBITC treatment decreased mitochondrial membrane potential by down-regulating the rate of Bcl-2/ Bax and Bcl-xL/Bax, and activation of caspase-3 and -9. Therefore, mitochondrial pathway and Bcl-2 gene family could be involved in the mechanisms of A549 cell apoptosis induced by MTBITC. PMID:24716946

  11. Streptococcus pneumoniae ClpL Modulates Adherence to A549 Human Lung Cells through Rap1/Rac1 Activation

    PubMed Central

    Nguyen, Cuong Thach; Le, Nhat-Tu; Tran, Thao Dang-Hien; Kim, Eun-Hye; Park, Sang-Sang; Luong, Truc Thanh; Chung, Kyung-Tae; Pyo, Suhkneung

    2014-01-01

    Caseinolytic protease L (ClpL) is a member of the HSP100/Clp chaperone family, which is found mainly in Gram-positive bacteria. ClpL is highly expressed during infection for refolding of stress-induced denatured proteins, some of which are important for adherence. However, the role of ClpL in modulating pneumococcal virulence is poorly understood. Here, we show that ClpL impairs pneumococcal adherence to A549 lung cells by inducing and activating Rap1 and Rac1, thus increasing phosphorylation of cofilin (inactive form). Moreover, infection with a clpL mutant (ΔclpL) causes a greater degree of filopodium formation than D39 wild-type (WT) infection. Inhibition of Rap1 and Rac1 impairs filopodium formation and pneumococcal adherence. Therefore, ClpL can reduce pneumococcal adherence to A549 cells, likely via modulation of Rap1- and Rac1-mediated filopodium formation. These results demonstrate a potential role for ClpL in pneumococcal resistance to host cell adherence during infection. This study provides insight into further understanding the interactions between hosts and pathogens. PMID:24980975

  12. Anticancer property of gallic acid in A549, a human lung adenocarcinoma cell line, and possible mechanisms

    PubMed Central

    Maurya, Dharmendra K.; Nandakumar, Nivedita; Devasagayam, Thomas Paul Asir

    2011-01-01

    Gallic acid is widely distributed in plants, fruits and foods with a range of biological activities. In the present study the possible mechanisms of gallic acid anticancer properties were explored in A549, a human lung adenocarcinoma cell line. Our study shows that it inhibited the A549 cell growth and decreased cell viability monitored at 24 h. It also inhibited cell proliferation in dose- and time-dependent manner as measured by 3-[4,5-methylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide assay at 24 and 48 h. Morphological examination of the cells after gallic acid treatment showed the typical feature of cell death such as cell shrinkage and rounding up of the cells. Clonogenic assay indicated that gallic acid treatments inhibited the colony formation. DNA fragmentation assay indicated the disappearance of the genomic DNA in dose-dependent manner. To find out possible mechanisms, mitochondrial potential and intracellular reactive oxygen species were measured. It was observed that gallic acid treatment decreased mitochondrial membrane potential and increased intracellular reactive oxygen species. Further caspases activity was measured and it was found that gallic acid activated the caspase-3 but not caspase-8 indicating the involvement of intrinsic pathway of cell apoptosis. PMID:21297918

  13. Curcumin inhibits interferon-{alpha} induced NF-{kappa}B and COX-2 in human A549 non-small cell lung cancer cells

    SciTech Connect

    Lee, Jeeyun |; Im, Young-Hyuck | E-mail: imyh@smc.samsung.co.kr; Jung, Hae Hyun; Kim, Joo Hyun; Park, Joon Oh |; Kim, Kihyun |; Kim, Won Seog |; Ahn, Jin Seok

    2005-08-26

    The A549 cells, non-small cell lung cancer cell line from human, were resistant to interferon (IFN)-{alpha} treatment. The IFN-{alpha}-treated A549 cells showed increase in protein expression levels of NF-{kappa}B and COX-2. IFN-{alpha} induced NF-{kappa}B binding activity within 30 min and this increased binding activity was markedly suppressed with inclusion of curcumin. Curcumin also inhibited IFN-{alpha}-induced COX-2 expression in A549 cells. Within 10 min, IFN-{alpha} rapidly induced the binding activity of a {gamma}-{sup 32}P-labeled consensus GAS oligonucleotide probe, which was profoundly reversed by curcumin. Taken together, IFN-{alpha}-induced activations of NF-{kappa}B and COX-2 were inhibited by the addition of curcumin in A549 cells.

  14. A Series of α-Amino Acid Ester Prodrugs of Camptothecin: In vitro Hydrolysis and A549 Human Lung Carcinoma Cell Cytotoxicity

    PubMed Central

    Deshmukh, Manjeet; Chao, Piyun; Kutscher, Hilliard L.; Gao, Dayuan; Sinko, Patrick J.

    2013-01-01

    The objective of the present study was to identify a camptothecin (CPT) prodrug with optimal release and cytotoxicity properties for immobilization on a passively targeted microparticle delivery system. A series of α-amino acid ester prodrugs of CPT were synthesized, characterized and evaluated. Four CPT prodrugs were synthesized with increasing aliphatic chain length (glycine (Gly) (2a), alanine (Ala) (2b), aminobutyric acid (Abu) (2c) and norvaline (Nva) (2d)). Prodrug reconversion was studied at pH 6.6, 7.0 and 7.4 corresponding to tumor, lung and extracellular/physiological pH, respectively. Cytotoxicity was evaluated in A549 human lung carcinoma cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The hydrolytic reconversion rate to parent CPT increased with decreasing side chain length as well as increasing pH. The Hill slope of 2d was significantly less than CPT and the other prodrugs tested, indicating a higher cell death rate at lower concentrations. These results suggest that 2d is the best candidate for a passively targeted sustained release lung delivery system. PMID:20063889

  15. Dihydroartemisinin inhibits cell proliferation via AKT/GSK3β/cyclinD1 pathway and induces apoptosis in A549 lung cancer cells

    PubMed Central

    Liao, Kui; Li, Juan; Wang, Zhiling

    2014-01-01

    Lung cancer is the most common cause of cancer-related death in the world. The main types of lung cancer are small cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC); non small cell lung carcinoma (NSCLC) includes squamous cell carcinoma (SCC), adenocarcinoma and large cell carcinoma, Non small cell lung carcinoma accounts for about 80% of the total lung cancer cases. Dihydroartemisinin (DHA) inhibits cell proliferation and induces apoptosis in several cancer cell lines. The effects of DHA on cell growth and proliferation in lung cancer cells remain to be elucidated. Here, we demonstrate that DHA inhibited cell proliferation in the A549 lung cancer cell line through suppression of the AKT/Gsk-3β/cyclin D1 signaling pathway. DHA significantly inhibited cell proliferation of A549 cells in a concentration and time dependent manner as determined by MTS assay. Flow cytometry analysis demonstrated that DHA treatment of A549 cells resulted in cell cycle arrest at the G1 phase, which correlated with apparent downregulation of both mRNA and protein levels of both PCNA and cyclin D1. These results suggest that DHA is a potential natural product for the treatment of lung cancer. PMID:25674233

  16. Migration-stimulating factor (MSF) is over-expressed in non-small cell lung cancer and promotes cell migration and invasion in A549 cells over-expressing MSF

    SciTech Connect

    Deng, Xuefeng; Ma, Qunfeng; Zhang, Bo; Jiang, Hong; Zhang, Zhipei; Wang, Yunjie

    2013-10-15

    Migration-stimulating factor (MSF), an oncofetal truncated isoform of fibronectin, is a potent stimulator of cell invasion. However, its distribution and motogenic role in non-small cell lung cancer (NSCLC) have never been identified. In this study, real-time PCR and immunohistochemical staining (IHC) were performed to detect MSF mRNA and protein levels in tumor tissues and matched adjacent tumor-free tissues. Furthermore, to examine the effect of MSF on invasiveness, MSF was upregulated in A549 cells. The invasiveness and viability of A549 cells were then determined using a transwell migration assay and the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assays, respectively. The expression level of MSF in NSCLC tissue was markedly higher than in matched adjacent tumor-free tissue. Additionally, the level of MSF protein expression in stage III and IV NSCLC samples was higher than in stage I and II NSCLC samples. More importantly, we also demonstrated that migration and invasion of A549 cells increased substantially after upregulating MSF, although proliferation remained unchanged. Meanwhile, we found no correlation between increasing motility and invasiveness of MSF-overexpressing cells and expression levels and activities of matrix metalloprotease MMP-2 and MMP-9. Our current study shows that MSF plays a role in migration and invasion of A549 cells and suggests that MSF may be a potential biomarker of NSCLC progression. - Highlights: • MSF expression was upregulated in NSCLC and correlated with TNM stages. • MSF may be a new biomarker for NSCLC progression. • MSF promoted migration and invasion in A549 cells, independent of MMP-2/MMP-9 expression.

  17. Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549

    NASA Astrophysics Data System (ADS)

    Syaefudin; Juniarti, A.; Rosiyana, L.; Setyani, A.; Khodijah, S.

    2016-01-01

    The aim of the present study is to evaluate cytotoxicity effect of nanoparticles of Selaginella doederleinii (S. doederleinii) leaves extract. S. doederleinii was extracted by maceration method using 70%(v/v) ethanol as solvent. Phytochemical content was analyzed qualitatively by using Harborne and Thin Layer Chromatography (TLC) methods. Nanoparticle extract was prepared by ionic gelation using chitosan as encapsulant agent. Anticancer activity was performed by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results showed that S. doederleinii contains of flavonoids. Nanoparticle of S. doederleinii leaves extract greatly inhibited A549 cells growth (cancer cells), with IC50 of 3% or 1020 μg/ml. These nanoparticles extract also inhibited the growth of Chang cells (normal cells), with IC50 of 4% or 1442 μg/ml. The effective concentration of nanoparticles extract which inhibits cancer cells without harming the normal cells is 0.5% or 167 μg/ml. Further studies are needed to obtain the concentration of nanoparticles extract which can selectively suppress cancer cells.

  18. MicroRNA-137 inhibits tumor growth and sensitizes chemosensitivity to paclitaxel and cisplatin in lung cancer

    PubMed Central

    Ge, Xin; Jiang, Cheng-Fei; Shi, Zhu-Mei; Li, Dong-Mei; Liu, Wei-Tao; Yu, Xiaobo; Shu, Yong-Qian

    2016-01-01

    Chemotherapy resistance frequently drives tumour progression. However, the underlying molecular mechanisms are poorly characterized. In this study, we explored miR-137's role in the chemosensitivity of lung cancer. We found that the expression level of miR-137 is down-regulated in the human lung cancer tissues and the resistant cells strains: A549/paclitaxel(A549/PTX) and A549/cisplatin (A549/CDDP) when compared with lung cancer A549 cells. Moreover, we found that overe-expression of miR-137 inhibited cell proliferation, migration, cell survival and arrest the cell cycle in G1 phase in A549/PTX and A549/CDDP. Furthermore, Repression of miR-137 significantly promoted cell growth, migration, cell survival and cell cycle G1/S transition in A549 cells. We further demonstrated that the tumor suppressive role of miR-137 was mediated by negatively regulating Nuclear casein kinase and cyclin-dependent kinase substrate1(NUCKS1) protein expression. Importantly, miR-137 inhibits A549/PTX, A549/CDDP growth and angiogenesis in vivo. Our study is the first to identify the tumor suppressive role of over-expressed miR-137 in chemosensitivity. Identification of a novel miRNA-mediated pathway that regulates chemosensitivity in lung cancer will facilitate the development of novel therapeutic strategies in the future. PMID:26989074

  19. In vitro and in vivo studies on the inhibitory effects of myocardial cell culture medium on growth of a human lung adenocarcinoma cell line, A549

    PubMed Central

    Zheng, Y.; Zhou, J.; Fu, S.Z.; Fan, J.; Wu, J.B.

    2016-01-01

    Background Although the heart is one of the body’s vital organs, with an abundant blood supply, metastasis to the heart is considered rare. In a previous study, we found that the myocardial microenvironment might contain a low molecular weight natural tumour suppressor. The present study was designed to investigate the inhibitory effect of cardiac myocyte–conditioned medium (cmcm) on the growth of A549 human lung adenocarcinoma cells in vitro and in vivo. Methods An mtt assay was used to detect the inhibition ratio with respect to A549 proliferation. Human lung adenocarcinoma cells (A549 cell strain) were transplanted subcutaneously into nude mice to produce tumours. The xenograft tumour growth in mice was observed after selected drug administration. Results After treatment with cmcm and cisplatin (Cis), A549 cell viability significantly declined (p < 0.001). The cell viability in the cmcm and Cis groups were 53.42% ± 3.45% and 58.45% ± 6.39% respectively. Growth of implanted tumour cells in vivo was significantly inhibited in the cmcm group, the group treated with recombinant human adenovirus–p53, and the Cis-treated group compared with a control group. The inhibition rates were 41.44% in the cmcm group, 41.34% in the p53 group, and 64.50% in the Cis group. Lung metastasis capacity was significantly reduced in the presence of cmcm (p < 0.05). Lung metastasis inhibition rates in mice were 56.52% in the cmcm group, 47.83% in the p53 group, and 82.61% in the Cis group. With cmcm, the lives of A549-tumour-bearing mice could be significantly prolonged without any effect on weight loss. Conclusions Use of cmcm has the effect of reducing A549 cell viability, tumour volume, and lung metastasis rate, while prolonging survival duration without severe toxicity. PMID:26966411

  20. β-Elemonic acid inhibits the cell proliferation of human lung adenocarcinoma A549 cells: The role of MAPK, ROS activation and glutathione depletion.

    PubMed

    Wu, Tsu-Tuan; Lu, Chien-Lin; Lin, Hen-I; Chen, Bing-Fang; Jow, Guey-Mei

    2016-01-01

    β-elemonic acid, a known triterpene, exhibits anti-inflammatory effects, yet research on the pharmacological effects of β-elemonic acid is rare. We investigated the anticancer effects and the related molecular mechanisms of β-elemonic acid on human non-small cell lung cancer (NSCLC) A549 cells. The effects of β-elemonic acid on the growth of A549 cells were studied using a 3-(4,5)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected using Annexin V staining. The effect of β-elemonic acid on the cell cycle of A549 cells was assessed using the propidium iodide method. The change in reactive oxygen species (ROS) was detected using a dichlorodihydrofluorescein diacetate (DCFH-DA) assay with microscopic examination. The expression levels of Bcl-2 family proteins, mitogen-activated protein kinase (MAPK) family proteins and cyclooxygenase 2 (COX-2) were detected using western blot analysis. Our data revealed that β-elemonic acid strongly induced human A549 lung cancer cell death in a dose- and time-dependent manner as determined by the MTT assay. β-elemonic acid-induced cell death was considered to be apoptotic when the phosphatidylserine exposure was observed using Annexin V staining. The death of human A549 lung cancer cells was caused by apoptosis induced by activation of ROS activity, increase in the sub-G1 proportion, downregulation of Bcl-2 expression, upregulation of Bax expression and inhibition of the MAPK signaling pathways. These results clearly demonstrated that β-elemonic acid inhibits proliferation by inducing hypoploid cells and cell apoptosis. Moreover, the anticancer effects of β-elemonic acid were related to the MAPK signaling pathway, ROS activation and glutathione depletion in human A549 lung cancer cells.

  1. Extract of Bryophyllum laetivirens reverses etoposide resistance in human lung A549 cancer cells by downregulation of NF-κB.

    PubMed

    Kaewpiboon, Chutima; Srisuttee, Ratakorn; Malilas, Waraporn; Moon, Jeong; Kaowinn, Sirichat; Cho, Il-Rae; Johnston, Randal N; Assavalapsakul, Wanchai; Chung, Young-Hwa

    2014-01-01

    Since multidrug resistance (MDR) is one of the main reasons for failure in cancer treatment, its suppression may increase the efficacy of cancer therapy. In the present study we attempted to identify a new and effective anticancer drug against MDR cancer cells. We first found that lung cancer A549 cells resistant to etoposide (A549RT-eto) exhibit upregulation of NF-κB and SIRT1 in comparison to A549 parental cells. During a search for anticancer drug candidates from medicinal plant sources, we found that an extract fraction (F14) of Bryophyllum laetivirens leaves downregulated expression of NF-κB and SIRT1, sensitizing the levels of A549RT-eto cells to apoptosis through downregulation of P-glycoprotein (P-gp), which is encoded by the MDR1 gene. To address whether NF-κB is involved in resistance to etoposide through P-gp, we treated A549RT-eto cells with Bay11-7802, an inhibitor of NF-κB. We then observed that Bay11-7802 treatment reduced P-gp expression levels, and furthermore combined treatment with the F14 extract and Bay11-7802 accelerated apoptosis through a decrease in P-gp levels, suggesting that NF-κB is involved in MDR. To address whether upregulation of SIRT1 is involved in resistance to etoposide through P-gp, we treated A549RT-eto cells with SIRT1 siRNA or nicotinamide (NAM), an inhibitor of SIRT1. we found that suppression of SIRT1 did not reduce P-gp levels. furthermore, the combined treatment with the F14 extract, and SIRT1 siRNA or NAM did not accelerate apoptosis, indicating that SIRT1 is not involved in the regulation of P-gp levels in A549RT-eto cells. Taken together, we suggest that upregulation of NF-κB determines etoposide resistance through P-gp expression in human A549 lung cancer cells. We herein demonstrated that B. laetivirens extract reverses etoposide resistance in human A549 lung cancer cells through downregulation of NF-κB. PMID:24220725

  2. Extract of Bryophyllum laetivirens reverses etoposide resistance in human lung A549 cancer cells by downregulation of NF-κB.

    PubMed

    Kaewpiboon, Chutima; Srisuttee, Ratakorn; Malilas, Waraporn; Moon, Jeong; Kaowinn, Sirichat; Cho, Il-Rae; Johnston, Randal N; Assavalapsakul, Wanchai; Chung, Young-Hwa

    2014-01-01

    Since multidrug resistance (MDR) is one of the main reasons for failure in cancer treatment, its suppression may increase the efficacy of cancer therapy. In the present study we attempted to identify a new and effective anticancer drug against MDR cancer cells. We first found that lung cancer A549 cells resistant to etoposide (A549RT-eto) exhibit upregulation of NF-κB and SIRT1 in comparison to A549 parental cells. During a search for anticancer drug candidates from medicinal plant sources, we found that an extract fraction (F14) of Bryophyllum laetivirens leaves downregulated expression of NF-κB and SIRT1, sensitizing the levels of A549RT-eto cells to apoptosis through downregulation of P-glycoprotein (P-gp), which is encoded by the MDR1 gene. To address whether NF-κB is involved in resistance to etoposide through P-gp, we treated A549RT-eto cells with Bay11-7802, an inhibitor of NF-κB. We then observed that Bay11-7802 treatment reduced P-gp expression levels, and furthermore combined treatment with the F14 extract and Bay11-7802 accelerated apoptosis through a decrease in P-gp levels, suggesting that NF-κB is involved in MDR. To address whether upregulation of SIRT1 is involved in resistance to etoposide through P-gp, we treated A549RT-eto cells with SIRT1 siRNA or nicotinamide (NAM), an inhibitor of SIRT1. we found that suppression of SIRT1 did not reduce P-gp levels. furthermore, the combined treatment with the F14 extract, and SIRT1 siRNA or NAM did not accelerate apoptosis, indicating that SIRT1 is not involved in the regulation of P-gp levels in A549RT-eto cells. Taken together, we suggest that upregulation of NF-κB determines etoposide resistance through P-gp expression in human A549 lung cancer cells. We herein demonstrated that B. laetivirens extract reverses etoposide resistance in human A549 lung cancer cells through downregulation of NF-κB.

  3. Oxidative Stress Facilitates IFN-γ-Induced Mimic Extracellular Trap Cell Death in A549 Lung Epithelial Cancer Cells.

    PubMed

    Lin, Chiou-Feng; Chen, Chia-Ling; Chien, Shun-Yi; Tseng, Po-Chun; Wang, Yu-Chih; Tsai, Tsung-Ting

    2016-01-01

    We previously demonstrated that IFN-γ induces an autophagy-regulated mimic extracellular trap cell death (ETosis) in A549 human lung cancer cells. Regarding reactive oxygen species (ROS) are involved in ETosis, this study investigated the role of oxidative stress. After IFN-γ stimulation, a necrosis-like cell death mimic ETosis occurred accompanied by the inhibition of cell growth, aberrant nuclear staining, and nucleosome release. ROS were generated in a time-dependent manner with an increase in NADPH oxidase component protein expression. STAT1-mediated IFN regulatory factor-1 activation was essential for upregulating ROS production. By genetically silencing p47phox, IFN-γ-induced ROS and mimic ETosis were significantly attenuated. This mechanistic study indicated that ROS may mediate DNA damage followed by histone H3 citrullination. Furthermore, ROS promoted IFN-γ-induced mimic ETosis in cooperation with autophagy. These findings further demonstrate that ROS regulates IFN-γ-induced mimic ETosis in lung epithelial malignancy. PMID:27575372

  4. Acrolein activates cell survival and apoptotic death responses involving the endoplasmic reticulum in A549 lung cells.

    PubMed

    Tanel, André; Pallepati, Pragathi; Bettaieb, Ahmed; Morin, Patrick; Averill-Bates, Diana A

    2014-05-01

    Acrolein, a highly reactive α,β-unsaturated aldehyde, is a product of endogenous lipid peroxidation. It is a ubiquitous environmental pollutant that is generated mainly by smoke, overheated cooking oil and vehicle exhaust. Acrolein damages cellular proteins, which could lead to accumulation of aberrantly-folded proteins in the endoplasmic reticulum (ER). This study determines the mechanisms involved in acrolein-induced apoptosis mediated by the ER and possible links with the ER stress response in human A549 lung cells. The exposure of cells to acrolein (15-50μM) for shorter times of 15 to 30min activated several ER stress markers. These included the ER chaperone protein BiP and the three ER sensors: (i) the survival/rescue molecules protein kinase RNA (PKR)-like ER kinase (PERK) and eukaryotic initiation factor 2 alpha (eIF2α) were phosphorylated; (ii) cleavage of activating transcription factor 6 (ATF6) occurred, and (iii) inositol-requiring protein-1 alpha (IRE1α) was phosphorylated. Acrolein (25-50μM) caused apoptotic cell death mediated by the ER after 2h, which was characterised by the induction of CHOP and activation of ER proteases calpain and caspase-4. Calpain and caspase-7 were the initiating factors for caspase-4 activation in acrolein-induced apoptosis. These results increase our knowledge about cellular responses to acrolein in lung cells, which have implications for human health.

  5. Oxidative Stress Facilitates IFN-γ-Induced Mimic Extracellular Trap Cell Death in A549 Lung Epithelial Cancer Cells

    PubMed Central

    Lin, Chiou-Feng; Chen, Chia-Ling; Chien, Shun-Yi; Tseng, Po-Chun; Wang, Yu-Chih; Tsai, Tsung-Ting

    2016-01-01

    We previously demonstrated that IFN-γ induces an autophagy-regulated mimic extracellular trap cell death (ETosis) in A549 human lung cancer cells. Regarding reactive oxygen species (ROS) are involved in ETosis, this study investigated the role of oxidative stress. After IFN-γ stimulation, a necrosis-like cell death mimic ETosis occurred accompanied by the inhibition of cell growth, aberrant nuclear staining, and nucleosome release. ROS were generated in a time-dependent manner with an increase in NADPH oxidase component protein expression. STAT1-mediated IFN regulatory factor-1 activation was essential for upregulating ROS production. By genetically silencing p47phox, IFN-γ-induced ROS and mimic ETosis were significantly attenuated. This mechanistic study indicated that ROS may mediate DNA damage followed by histone H3 citrullination. Furthermore, ROS promoted IFN-γ-induced mimic ETosis in cooperation with autophagy. These findings further demonstrate that ROS regulates IFN-γ-induced mimic ETosis in lung epithelial malignancy. PMID:27575372

  6. Effects of fatty acids on benzo[a]pyrene uptake and metabolism in human lung adenocarcinoma A549 cells.

    PubMed

    Barhoumi, Rola; Mouneimne, Youssef; Chapkin, Robert S; Burghardt, Robert C

    2014-01-01

    Dietary supplementation with natural chemoprotective agents is receiving considerable attention because of health benefits and lack of toxicity. In recent in vivo and in vitro experimental studies, diets rich in n-3 polyunsaturated fatty acids have been shown to provide significant anti-tumor action. In this investigation, the effects of control fatty acids (oleic acid (OA), linoleic acid (LA)) and n-3 PUFA, e.g., docosahexaenoic acid (DHA) on the uptake and metabolism of the carcinogenic polycyclic aromatic hydrocarbon, benzo[a]pyrene (BaP) was investigated in A549 cells, a human adenocarcinoma alveolar basal epithelial cell line. A549 cells activate BaP through the cytochrome P450 enzyme system to form reactive metabolites, a few of which covalently bind to DNA and proteins. Therefore, multiphoton microscopy spectral analysis combined with linear unmixing was used to identify the parent compound and BaP metabolites formed in cells, in the presence and absence of fatty acids. The relative abundance of select metabolites was associated with altered P450 activity as determined using ethoxyresorufin-O-deethylase activity in cells cultured in the presence of BSA-conjugated fatty acids. In addition, the parent compound within cellular membranes increases significantly in the presence of each of the fatty acids, with the greatest accumulation observed following DHA treatment. DHA treated cells exhibit significantly lower pyrene-like metabolites indicative of lower adducts including DNA adducts compared to control BSA, OA or LA treated cells. Further, DHA reduced the abundance of the proximate carcinogen BaP 7,8-dihydrodiol and the 3-hydroxybenzo[a]pyrene metabolites compared to other treatments. The significant changes in BaP metabolites in DHA treated cells may be mediated by the effects on the physicochemical properties of the membrane known to affect enzyme activity related to phase I and phase II metabolism. In summary, DHA is a highly bioactive chemo

  7. Efficacy of an AC sinusoidal electric field for apoptosis induction in lung carcinoma cells (A549)

    NASA Astrophysics Data System (ADS)

    Park, Hyoun-Hyang; Lee, Seung S.; Hoon Lee, Dae

    2012-08-01

    An AC sinusoidal electric field was applied to lung carcinoma cells for the induction of apoptosis. The occurrence of apoptosis was determined by analysis of Annexin V/PI and DNA fragmentation. Additional evidence of apoptosis was confirmed by caspase-3 cleavage and disruption of mitochondrial membrane potential. These results demonstrated that the expression of apoptosis can be controlled by varying the magnitude and the duration of the field, and that the application of an AC electric field can stimulate the apoptosis via mitochondria-mediated pathway.

  8. [Effects of component formula of Salviae Miltiorrhizae Radix et Rhizoma and Ginseng Radix et Rhizoma on cell proliferation, apoptosis and skeleton in lung cancer A549 cells].

    PubMed

    Yan, Xiao-jing; Yang, Ye; Bi, Lei; Chen, Shan-shan; Zhu, Jing-jing; Chen, Wei-ping

    2014-11-01

    This study aims to optimize the most effective component formula of Salviae Miltiorrhizae Radix et Rhizoma and Ginseng Radix et Rhizoma on lung cancer A549 using the orthogonal design method, and to investigate its effects of the component formula on cell proliferation, apoptosis and cytoskeleton in lung cancer A549 cells. The orthogonal design method was introduced to optimize the most effective component formula of Salviae Miltiorrhizae Radix et Rhizoma and Ginseng Radix et Rhizoma on lung cancer A549 cells. CCK-8 assay and Real-time cell analysis were adapted to analyze the effect of component formula of Salviae Miltiorrhizae Radix et Rhizoma and Ginseng Radix et Rhizoma on A549 cells viability at different time and dose. Cell apoptosis was measured by Annexin V- FITC/PI double staining and flow cytometry. Cell skeleton protein F-actin was detected by high content screening (HCS). The optimizing component formula of Salviae Miltiorrhizae Radix et Rhizoma and Ginseng Radix et Rhizoma for total salvianolic acid, total saponins of panax ginseng and ginseng polysaccharide doses were 5, 10, 5 mg L(-1). CCK-8 assay and real-time cell analysis demonstrated that the component formula of Salviae Miltiorrhizae Radix et Rhizoma and Ginseng Radix et Rhizoma treatment could significantly decrease the A549 cell viability in both dose- and time-dependent manner compared with control group (P < 0.01). Moreover, the increase of cell apoptosis was detected by Annexin V-FITC/PI double staining and flow cytometry when cells treated with the component formula, which indicating that the component formula of Salviae Miltiorrhizae Radix et Rhizoma and Ginseng Radix et Rhizoma could induce A549 cell apoptosis in a time-dependent manner compared with control group (P < 0.01). Furthermore, compared with control group, a significant decrease in A549 cell skeleton area was found in the component formula-exposed cells in the dose-dependent manner (P < 0.01). In summary, the component formula

  9. Synergistic Antiproliferative Effects of a New Cucurbitacin B Derivative and Chemotherapy Drugs on Lung Cancer Cell Line A549.

    PubMed

    Marostica, Lucas Lourenço; Silva, Izabella Thaís; Kratz, Jadel Müller; Persich, Lara; Geller, Fabiana Cristina; Lang, Karen Luise; Caro, Miguel Soriano Balparda; Durán, Fernando Javier; Schenkel, Eloir Paulo; Simões, Cláudia Maria Oliveira

    2015-10-19

    Nonsmall cell lung cancer (NSCLC) represents an important cause of mortality worldwide due to its aggressiveness and growing resistance to currently available therapy. Cucurbitacins have emerged as novel potential anticancer agents showing strong antiproliferative effects and can be promising candidates for combined treatments with clinically used anticancer agents. This study investigates the synergistic antiproliferative effects of a new semisynthetic derivative of cucurbitacin B (DACE) with three chemotherapy drugs: cisplatin (CIS), irinotecan (IRI), and paclitaxel (PAC) on A549 cells. The most effective combinations were selected for studies of the mechanism of action. Using an in silico tool, DACE seems to act by a different mechanism of action when compared with that of different classes of drugs already used in clinical settings. DACE also showed potent synergic effects with drugs, and the most potent combinations induced G2/M cell cycle arrest by modulating survivin and p53 expression, disruption of F-actin cytoskeleton, and cell death by apoptosis. These treatments completely inhibited the clonogenic potential and did not reduce the proliferation of nontumoral lung cells (MRC-5). DACE also showed relevant antimigratory and anti-invasive effects, and combined treatments modulated cell migration signaling pathways evolved with metastasis progression. The effects of DACE associated with drugs was potentiated by the oxidant agent l-buthionine-sulfoximine (BSO), and attenuated by N-acetilcysteine (NAC), an antioxidant agent. The antiproliferative effects induced by combined treatments were attenuated by a pan-caspase inhibitor, indicating that the effects of these treatments are dependent on caspase activity. Our data highlight the therapeutic potential of DACE used in combination with known chemotherapy drugs and offer important insights for the development of more effective and selective therapies against lung cancer.

  10. A novel small molecule, Rosline, inhibits growth and induces caspase-dependent apoptosis in human lung cancer cells A549 through a reactive oxygen species-dependent mechanism.

    PubMed

    Zhao, Ting; Feng, Yang; Jin, Wenling; Pan, Hui; Li, Haizhou; Zhao, Yang

    2016-06-01

    Chemical screening using synthetic small molecule libraries has provided a huge amount of novel active molecules. It generates lead compound for drug development and brings focus on molecules for mechanistic investigations on many otherwise intangible biological processes. In this study, using non-small cell lung cancer cell A549 to screen against a structurally novel and diverse synthetic small molecule library of 2,400 compounds, we identified a molecule named rosline that has strong anti-proliferation activity on A549 cells with a 50% cell growth inhibitory concentration (IC50 ) of 2.87 ± 0.39 µM. We showed that rosline treatment increased the number of Annexin V-positive staining cell, as well as G2/M arrest in their cell cycle progression. Further, we have demonstrated that rosline induces a decrease of mitochondrial membrane potential (Δφm ) and an increase of caspases 3/7 and 9 activities in A549 cells, although having no effect on the activity of caspase 8. Moreover, we found that rosline could induce the production of reactive oxygen species (ROS) and inhibit the phosphorylation of signaling molecule Akt in A549 cells. Alternatively, an antioxidant N-acetyl-L-cysteine (NAC) significantly attenuated rosline's effects on the mitochondrial membrane potential, caspases 3/7 and 9 activities, cell viabilities and the phosphorylation of Akt. Our results demonstrated that ROS played an important role in the apoptosis of A549 cells induced by rosline. PMID:27006094

  11. Acrolein induces apoptosis through the death receptor pathway in A549 lung cells: role of p53.

    PubMed

    Roy, Julie; Pallepati, Pragathi; Bettaieb, Ahmed; Averill-Bates, Diana A

    2010-03-01

    Acrolein, a highly reactive alpha,beta-unsaturated aldehyde, is an omnipresent environmental pollutant. Chronic and acute human exposures occur through exogenous and endogenous sources, including food, vapors of overheated cooking oil, house and forest fires, cigarette smoke, and automobile exhaust. Acrolein is a toxic byproduct of lipid peroxidation, which has been implicated in pulmonary, cardiac, and neurodegenerative diseases. This study shows that p53 is an initiating factor in acrolein-induced death receptor activation during apoptosis in A549 human lung cells. Exposure of cells to acrolein (0-50 micromol/L) mainly caused apoptosis, which was manifested by execution phase events such as condensation of nuclear chromatin, phosphatidylserine externalization, and poly(ADP-ribose) polymerase (PARP) cleavage. Levels of necrosis (approximately 5%) were low. Acrolein triggered the death receptor pathway of apoptosis, causing elevation of Fas ligand (FasL) and translocation of adaptor protein Fas-associated death domain to the plasma membrane. Acrolein caused activation of caspase-8, caspase-2, caspase-7, and the cross-talk pathway mediated by Bid cleavage. Activation of p53 and increased expression of p53-upregulated modulator of apoptosis (PUMA) occurred in response to acrolein. FasL upregulation and caspase-8 activation were decreased by p53 inhibitor pifithrin-alpha and antioxidant polyethylene glycol catalase. These findings increase our knowledge about the induction of cell death pathways by acrolein, which has important implications for human health.

  12. In vitro effects of mitomycin C on the proliferation of the non-small-cell lung cancer line A549

    PubMed Central

    An, Qi; Han, Chao; Zhou, Yubing; Li, Feng; Li, Duolu; Zhang, Xiaojian; Yu, Zujiang; Duan, Zhenfeng; Kan, Quancheng

    2015-01-01

    Non-small-cell lung cancer (NSCLC) is the leading cause of death from cancer in the United States. Chemotherapy prolongs survival among patients with advanced disease, but at the cost of clinically significant adverse effects. As a novel promising oncotherapy method, induced differentiation by mitomycin C has been applied for NSCLC therapy at recent year. In this study, the molecular mechanism of differentiation interruption by mitomycin C in the NSCLC line A549 was investigated. High dosage of mitomycin C (300 µM) could significantly inhibit cell proliferation (P < 0.05) by 48.39 ± 3.32% (P < 0.05), under which cell shrinkage and disruption were observed. Flow cytometry assay showed that the proportion of G1/G0 cells significantly increased, while that of S and G2/M cells significantly decreased after treatment of mitomycin C (10 or 300 µM) for 24 h. These results indicated that cell arrest by mitomycin C appeared. Additionally, up-regulation of retinoblastoma (Rb) gene by low concentration of mitomycin C (10 µM) was detected using immunohistochemistry (IHC) and Western blot assay, indicating a role in the regulation of cell cycle inhibition of this cell line. PMID:26884968

  13. Ginger extract inhibits human telomerase reverse transcriptase and c-Myc expression in A549 lung cancer cells.

    PubMed

    Tuntiwechapikul, Wirote; Taka, Thanachai; Songsomboon, Chonnipa; Kaewtunjai, Navakoon; Imsumran, Arisa; Makonkawkeyoon, Luksana; Pompimon, Wilart; Lee, T Randall

    2010-12-01

    The rhizome of ginger (Zingiber officinale Roscoe) has been reputed to have many curative properties in traditional medicine, and recent publications have also shown that many agents in ginger possess anticancer properties. Here we show that the ethyl acetate fraction of ginger extract can inhibit the expression of the two prominent molecular targets of cancer, the human telomerase reverse transcriptase (hTERT) and c-Myc, in A549 lung cancer cells in a time- and concentration-dependent manner. The treated cells exhibited diminished telomerase activity because of reduced protein production rather than direct inhibition of telomerase. The reduction of hTERT expression coincided with the reduction of c-Myc expression, which is one of the hTERT transcription factors; thus, the reduction in hTERT expression might be due in part to the decrease of c-Myc. As both telomerase inhibition and Myc inhibition are cancer-specific targets for cancer therapy, ginger extract might prove to be beneficial as a complementary agent in cancer prevention and maintenance therapy. PMID:21091248

  14. Safrole oxide induces apoptosis by up-regulating Fas and FasL instead of integrin beta4 in A549 human lung cancer cells.

    PubMed

    Du, AiYing; Zhao, BaoXiang; Miao, JunYing; Yin, DeLing; Zhang, ShangLi

    2006-04-01

    Previously, we found that 3,4-(methylenedioxy)-1-(2',3'-epoxypropyl)-benzene (safrole oxide) induced a typical apoptosis in A549 human lung cancer cells by activating caspase-3, -8, and -9. In this study, we further investigated which upstream pathways were activated by safrole oxide during the apoptosis. Immunofluorescence assay combined with laser scanning confocal microscopy revealed that both Fas and Fas ligand (FasL) were up-regulated by the small molecule. In addition, Fas protein distribution was altered, showing a clustering distribution instead of a homogeneous one. Subsequently, Western blot analysis confirmed the up-regulations of Fas and its membrane-binding form of FasL (m-FasL), as well as P53 protein. Conversely, safrole oxide hardly affected integrin beta4 subunit expression or distribution, which was reflected from the data obtained by immunofluorescence assay combined with laser scanning confocal microscopy. The results suggested that Fas/FasL pathway might be involved in safrole oxide-induced apoptosis of A549 cells, while integrin beta4 might be irrelevant to the apoptosis. Nevertheless, we first found the strong expression of integrin beta4 in A549 cells. The study first suggested that safrole oxide might be used as a small molecular promoter of Fas/FasL pathway to elicit apoptosis in A549 cells, which would lay the foundation for us to insight into the new strategies for lung cancer therapy.

  15. Curcumin reverses cis-platin resistance and promotes human lung adenocarcinoma A549/DDP cell apoptosis through HIF-1α and caspase-3 mechanisms.

    PubMed

    Ye, Ming-Xiang; Zhao, Yi-Lin; Li, Yan; Miao, Qing; Li, Zhi-Kui; Ren, Xin-Ling; Song, Li-Qiang; Yin, Hong; Zhang, Jian

    2012-06-15

    Curcumin, a yellow pigment derived from Curcuma longa Linn, has been favored by the Eastern as dietary ingredients for centuries. During the past decade, extensive investigations have revealed curcumin sensitized various chemotherapeutic agents in human breast, colon, pancreas, gastric, liver, brain and hematological malignant disorders in vivo and in vitro. Several pathways and specific targets including NF-κB, STAT3, COX-2, Akt and multidrug resistant protein have been identified to facilitate curcumin as a chemosensitizer. Recent studies suggest HIF-1α participated in the development of drug resistance in cancer cells and targeting HIF-1α either by RNAi or siRNA successfully overcame chemotherapeutic resistance. To investigate the mechanism basis of curcumin as a chemosensitizer in lung cancer, we examined curcumin's effects on HIF-1α in cis-platin (DDP) sensitive A549 and resistant A549/DDP cell lines by RT-PCR and Western blot. HIF-1α in A549/DDP cells was found to be overexpressed at both mRNA and protein levels together with a poor response to DDP. Results from transient transfection and flow cytometry showed the HIF-1α abnormality contributed to DDP resistance in A549/DDP lung cancer cells. Combined curcumin and DDP treatment markedly inhibited A549/DDP cells proliferation, reversed DDP resistance and triggered apoptotic death by promoting HIF-1α degradation and activating caspase-3, respectively. Expression of HIF-1α-dependent P-gp also seemed to decrease as response to curcumin in a dose-dependent manner. Our findings shed light on drug resistant reversing effect of curcumin in lung cancer cells by inhibiting HIF-1α expression and activating caspase-3. PMID:22483553

  16. Inhibition of Raf-MEK-ERK and Hypoxia pathways by Phyllanthus prevents metastasis in human lung (A549) cancer cell line

    PubMed Central

    2013-01-01

    Background Lung cancer constitutes one of the malignancies with the greatest incidence and mortality rates with 1.6 million new cases and 1.4 million deaths each year. Prognosis remains poor due to deleterious development of multidrug resistance resulting in less than 15% lung cancer patients reaching five years survival. We have previously shown that Phyllanthus induced apoptosis in conjunction with its antimetastastic action. In the current study, we aimed to determine the signaling pathways utilized by Phyllanthus to exert its antimetastatic activities. Methods Cancer 10-pathway reporter array was performed to screen the pathways affected by Phyllanthus in lung carcinoma cell line (A549) to exert its antimetastatic effects. Results from this array were then confirmed with western blotting, cell cycle analysis, zymography technique, and cell based ELISA assay for human total iNOS. Two-dimensional gel electrophoresis was subsequently carried out to study the differential protein expressions in A549 after treatment with Phyllanthus. Results Phyllanthus was observed to cause antimetastatic activities by inhibiting ERK1/2 pathway via suppression of Raf protein. Inhibition of this pathway resulted in the suppression of MMP2, MMP7, and MMP9 expression to stop A549 metastasis. Phyllanthus also inhibits hypoxia pathway via inhibition of HIF-1α that led to reduced VEGF and iNOS expressions. Proteomic analysis revealed a number of proteins downregulated by Phyllanthus that were involved in metastatic processes, including invasion and mobility proteins (cytoskeletal proteins), transcriptional proteins (proliferating cell nuclear antigen; zinc finger protein), antiapoptotic protein (Bcl2) and various glycolytic enzymes. Among the four Phyllanthus species tested, P. urinaria showed the greatest antimetastatic activity. Conclusions Phyllanthus inhibits A549 metastasis by suppressing ERK1/2 and hypoxia pathways that led to suppression of various critical proteins for A549

  17. Synergism through combination of chemotherapy and oxidative stress-induced autophagy in A549 lung cancer cells using redox-responsive nanohybrids: a new strategy for cancer therapy.

    PubMed

    Lu, Hsin-Yi; Chang, Ya-Ju; Fan, Nien-Chu; Wang, Li-Sheng; Lai, Nien-Chu; Yang, Chia-Min; Wu, Li-Chen; Ho, Ja-an Annie

    2015-02-01

    A combination of various therapeutic approaches has emerged as a promising strategy for cancer treatment. A safe and competent nano-delivery system is thus in urgent demand to facilitate the simultaneous transport of various therapeutic agents to cancer cells and a tumor region to achieve synergistic effect. Gold nanoparticles (GNPs) and mesoporous silica nanoparticle (MSNs) were fabricated herein as potential candidates for drug delivery. Serving as gatekeepers, GNPs (5 nm in diameter) were attached onto the amino-functionalized MSNs (denoted as NMSNs) via a relatively weak gold-nitrogen bonding. The resulting nanohybrids (denoted as GCMSNs) were uptaken by cells, and the detachment of GNPs and subsequent intracellular drug release from NMSNs were achieved by competitive binding of intracellular glutathione to GNPs. In addition to the function of gatekeeping, GNPs also play another role as the oxidative stress elicitor. Our in vitro studies revealed that GCMSNs induced higher oxidative stress in lung cancer cells (A549) than in normal cells (3T3-L1). This growth inhibitory effect found in the cancer cells was likely induced by mitochondria dysfunction originated from the GCMSN-induced, oxidative stress-triggered mitochondria-mediated autophagy. The redox-responsive nanohybrids were further loaded with camptothecin and the intensified synergistic therapeutic effects were observed associated with combined chemotherapy and oxidative stress strategy. The results clearly demonstrate that such unique nanohybrids hold great promise for selective and effective cancer treatments.

  18. Exosome cargo reflects TGF-β1-mediated epithelial-to-mesenchymal transition (EMT) status in A549 human lung adenocarcinoma cells.

    PubMed

    Kim, Jiyeon; Kim, Tae Yeon; Lee, Myung Shin; Mun, Ji Young; Ihm, Chunhwa; Kim, Soon Ae

    2016-09-16

    It has been suggested that tumor cells secrete exosomes to modify the local microenvironment, which then promotes intercellular communication and metastasis. Although exosomes derived from cancer cells may contribute to the epithelial-mesenchymal transition (EMT) in untransformed cells, few studies have defined exosome cargo upon induction of EMT. In this study, we investigated the changes in exosomal cargo from the epithelial to mesenchymal cell phenotype by inducing EMT with transforming growth factor (TGF)-β1 in A549 human lung adenocarcinoma cells. The protein content of the exosomes reflects the change in the cell phenotype. In addition, miR-23a was significantly enriched in the exosomes after mesenchymal transition. Following treatment of exosomes from mesenchymal cells via EMT induction with TGF-β1 to the epithelial cell type, phenotypic changes in protein expression level and cell morphology were observed. Autologous treatment of exosomes enhanced the transcriptional activity and abundance of β-catenin. Our results suggest that the exosomal protein and miRNA content reflects the physiological condition of its source and that exosomes induce phenotypic changes via autocrine signaling. PMID:27492069

  19. Integrin αv promotes proliferation by activating ERK 1/2 in the human lung cancer cell line A549.

    PubMed

    Fu, Shijie; Fan, Limin; Pan, Xufeng; Sun, Yifeng; Zhao, Heng

    2015-02-01

    Lung cancer is a leading cause of cancer-related death worldwide, and non-small cell lung cancer (NSCLC) constitutes ~85% of lung cancers. However, the mechanisms underlying the progression of NSCLC remain unclear. In this study, we found the mRNA and protein expression levels of integrin αv are both increased in NSCLC tissues compared to healthy ones, which indicates that integrin αv may play an important role in NSCLC progression. To further investigate the roles of integrin αv in NSCLC, we overexpressed the integrin αv gene in the NSCLC cell line A549, and found that the cell proliferative ability increased. The apoptosis of A549 cells was inhibited with overexpression of integrin αv. To elucidate the molecular mechanism underlying the role of integrin αv in promoting NSCLC progression, we studied the expression of proteins from a number of important pathways associated with tumorigenesis, and found that the extracellular signal regulated protein kinase (ERK)1/2 signaling pathway may be involved in the mediation of the observed integrin αv effects. component of an important pathway for tumorigenesis, the ERK 1/2. Following inhibition of ERK 1/2 signaling, the proliferation of A549 cells induced by integrin αv was reduced, while the inhibition of apoptosis was attenuated. Our findings demonstrate that integrin αv promotes the proliferation of the human lung cancer cell line A549 by activating the ERK 1/2 signaling pathway, which suggests that this pathway may be a promising target for the treatment of human lung cancer.

  20. Flavonoids isolated from Citrus platymamma induced G2/M cell cycle arrest and apoptosis in A549 human lung cancer cells

    PubMed Central

    Nagappan, Arulkumar; Lee, Ho Jeong; Saralamma, Venu Venkatarame Gowda; Park, Hyeon Soo; Hong, Gyeong Eun; Yumnam, Silvia; Raha, Suchismita; Charles, Shobana Nancy; Shin, Sung Chul; Kim, Eun Hee; Lee, Won Sup; Kim, Gon Sup

    2016-01-01

    Citrus platymamma hort. ex Tanaka belongs to the Rutaceae family and is widely used in folk medicines in Korea due to its anti-proliferative, anti-cancer, anti-oxidant, anti-inflammatory and anti-diabetic activities. However, the molecular mechanism of its anti-cancer effect is not well understood. The present study was conducted to elucidate the anti-cancer effect and molecular mechanism of flavonoids from Citrus platymamma (FCP) on A549 cells. FCP displayed concentration-dependent inhibition on A549 cells proliferation. Further, flow cytometry revealed that FCP significantly increased the sub-G1 (apoptotic cell population) and G2/M phase population, and the total number of apoptotic cells, in a dose-dependent manner. Nuclear condensation and fragmentation were also observed upon staining with Hoechst 33342 in FCP-treated A549 cells. Immunoblotting demonstrated a dose-dependent downregulation of cyclin B1, cyclin-dependent kinase 1, cell division cycle 25c, pro-caspases −3, −6, −8 and −9, and poly (adenosine diphosphate-ribose) polymerase (PARP) in FCP-treated A549 cells. In addition, FCP induced caspase-3 activation and subsequent PARP cleavage, and increased the B-cell lymphoma (Bcl)-2-associated X protein/Bcl-extra large ratio in A549 cells. These findings suggest that FCP induced G2/M arrest and apoptosis of A549 cells. The present study provides evidence that FCP may be useful in the treatment of human lung cancer. PMID:27446443

  1. Investigation of Radiation-induced Transcriptome Profile of Radioresistant Non-small Cell Lung Cancer A549 Cells Using RNA-seq

    PubMed Central

    Yang, Hee Jung; Kim, Namshin; Seong, Ki Moon; Youn, HyeSook; Youn, BuHyun

    2013-01-01

    Radioresistance is a main impediment to effective radiotherapy for non-small cell lung cancer (NSCLC). Despite several experimental and clinical studies of resistance to radiation, the precise mechanism of radioresistance in NSCLC cells and tissues still remains unclear. This result could be explained by limitation of previous researches such as a partial understanding of the cellular radioresistance mechanism at a single molecule level. In this study, we aimed to investigate extensive radiation responses in radioresistant NSCLC cells and to identify radioresistance-associating factors. For the first time, using RNA-seq, a massive sequencing-based approach, we examined whole-transcriptome alteration in radioresistant NSCLC A549 cells under irradiation, and verified significant radiation-altered genes and their chromosome distribution patterns. Also, bioinformatic approaches (GO analysis and IPA) were performed to characterize the radiation responses in radioresistant A549 cells. We found that epithelial–mesenchymal transition (EMT), migration and inflammatory processes could be meaningfully related to regulation of radiation responses in radioresistant A549 cells. Based on the results of bioinformatic analysis for the radiation-induced transcriptome alteration, we selected seven significant radiation-altered genes (SESN2, FN1, TRAF4, CDKN1A, COX-2, DDB2 and FDXR) and then compared radiation effects in two types of NSCLC cells with different radiosensitivity (radioresistant A549 cells and radiosensitive NCI-H460 cells). Interestingly, under irradiation, COX-2 showed the most significant difference in mRNA and protein expression between A549 and NCI-H460 cells. IR-induced increase of COX-2 expression was appeared only in radioresistant A549 cells. Collectively, we suggest that COX-2 (also known as prostaglandin-endoperoxide synthase 2 (PTGS2)) could have possibility as a putative biomarker for radioresistance in NSCLC cells. PMID:23533613

  2. Discovery of a novel small molecule, 1-ethoxy-3-(3,4-methylenedioxyphenyl)-2-propanol, that induces apoptosis in A549 human lung cancer cells.

    PubMed

    Du, Ai-Ying; Zhao, Bao-Xiang; Yin, De-Ling; Zhang, Shang-Li; Miao, Jun-Ying

    2005-07-01

    A novel small molecule, 1-ethoxy-3-(3,4-methylenedioxyphenyl)-2-propanol (EOD), was synthesized in our laboratory. Previously, we reported pharmacological properties of EOD, triggering apoptosis in Human umbilical vein endothelial cells (HUVECs). Here, we further investigated the effects of EOD on the growth of A549 human lung cancer cells. EOD treatment induced apoptosis in A549 cells via up-regulating the expression of P53 protein, blocking cell cycle partly at G1 phase, and ultimately activating caspase-3. In contrast, caspase-8 might be irrelevant to EOD-triggered apoptosis. This study indicated that EOD might be a potential chemopreventive agent for lung cancer. The work would encourage us to add more novel compounds to our 'library' of small molecules derived through modern synthetic organic chemistry, and would drive us to determine the proteins that the compounds target.

  3. Comparison of oxycodone and morphine on the proliferation, apoptosis and expression of related molecules in the A549 human lung adenocarcinoma cell line

    PubMed Central

    Tian, Mi; Jin, Li; Li, Renqi; Zhu, Sihai; Ji, Muhuo; Li, Weiyan

    2016-01-01

    The present study aimed to compare the effects of oxycodone and morphine hydrochloride on the proliferation, apoptosis and migration of A549 lung cancer cells. A549 human lung cancer cells were cultured in vitro and treated with oxycodone or morphine at various concentrations (10, 20 and 40 µg/ml). Cell migration was determined using a wound healing assay, whereas apoptosis was detected using flow cytometry. Reverse transcription quantitative-polymerase chain reaction was performed in order to assess the apoptosis-related gene expression levels, including p53, B-cell lymphoma (Bcl)-2 and Bcl-2-associated X protein (Bax). The levels of vascular endothelial growth factor (VEGF) and urokinase-type plasminogen activator (uPA) were detected using enzyme-linked immunosorbent assays. The expression levels of intercellular cell adhesion molecule (ICAM)-1 were determined by immunofluorescence. In the present study, oxycodone and morphine induced apoptosis in A549 lung cancer cells with similar potency; however, >20 µg/ml oxycodone was more effective at inhibiting cell proliferation (P<0.05) and migration (P<0.05), as compared with morphine at the same concentration. Oxycodone induced a dose-dependent increase in the expression levels of p53 and Bax apoptosis-related genes, whereas it decreased the gene expression levels of Bcl-2. Furthermore, oxycodone decreased, whereas morphine increased, the expression levels of ICAM-1 in a concentration-dependent manner. In addition, at 40 µg/ml, the expression levels of VEGF and uPA in the morphine group were significantly higher than those demonstrated in the oxycodone group (P<0.05). In conclusion, oxycodone was more effective in inhibiting the proliferation and migration of A549 lung cancer cells, as compared with morphine. PMID:27446244

  4. TLR2 ligation induces corticosteroid insensitivity in A549 lung epithelial cells: Anti-inflammatory impact of PP2A activators.

    PubMed

    Rahman, Md Mostafizur; Prabhala, Pavan; Rumzhum, Nowshin N; Patel, Brijeshkumar S; Wickop, Thomas; Hansbro, Philip M; Verrills, Nicole M; Ammit, Alaina J

    2016-09-01

    Corticosteroids are effective anti-inflammatory therapies widely utilized in chronic respiratory diseases. But these medicines can lose their efficacy during respiratory infection resulting in disease exacerbation. Further in vitro research is required to understand how infection worsens lung function control in order to advance therapeutic options to treat infectious exacerbation in the future. In this study, we utilize a cellular model of bacterial exacerbation where we pretreat A549 lung epithelial cells with the synthetic bacterial lipoprotein Pam3CSK4 (a TLR2 ligand) to mimic bacterial infection and tumor necrosis factor α (TNFα) to simulate inflammation. Under these conditions, Pam3CSK4 induces corticosteroid insensitivity; demonstrated by substantially reduced ability of the corticosteroid dexamethasone to repress TNFα-induced interleukin 6 secretion. We then explored the molecular mechanism responsible and found that corticosteroid insensitivity induced by bacterial mimics was not due to altered translocation of the glucocorticoid receptor into the nucleus, nor an impact on the NF-κB pathway. Moreover, Pam3CSK4 did not affect corticosteroid-induced upregulation of anti-inflammatory MAPK deactivating phosphatase-MKP-1. However, Pam3CSK4 can induce oxidative stress and we show that a proportion of the MKP-1 produced in response to corticosteroid in the context of TLR2 ligation was rendered inactive by oxidation. Thus to combat inflammation in the context of bacterial exacerbation we sought to discover effective strategies that bypassed this road-block. We show for the first time that known (FTY720) and novel (theophylline) activators of the phosphatase PP2A can serve as non-steroidal anti-inflammatory alternatives and/or corticosteroid-sparing approaches in respiratory inflammation where corticosteroid insensitivity exists. PMID:27477309

  5. Apoptosis-Inducing Activity of Marine Sponge Haliclona sp. Extracts Collected from Kosrae in Nonsmall Cell Lung Cancer A549 Cells.

    PubMed

    Bae, Woori; Lim, Hyun Kyung; Kim, Kyoung Mee; Cho, Hyosun; Lee, Sun Yi; Jeong, Choon-Sik; Lee, Hyi-Seung; Jung, Joohee

    2015-01-01

    Although various anticancer drugs have been developed for the treatment of nonsmall cell lung cancer, chemotherapeutic efficacy is still limited. Natural products such as phytochemicals have been screened as novel alternative materials, but alternative funds such as marine bioresources remain largely untapped. Of these resources, marine sponges have undergone the most scrutiny for their biological activities, including antiinflammatory, antiviral, and anticancer properties. However, the biological mechanisms of the activities of these marine sponges are still unclear. We investigated the anticancer activity of marine sponges collected from Kosrae in Micronesia and examined their mechanisms of action using nonsmall cell lung cancer A549 cells as a model system. Of 20 specimens, the Haliclona sp. (KO1304-328) showed both dose- and time-dependent cytotoxicity. Further, methanol extracts of Haliclona sp. significantly inhibited cell proliferation and cell viability. A549 cells treated with Haliclona sp. demonstrated induced expression of c-Jun N-terminal kinase (JNK), p53, p21, caspase-8, and caspase-3. The percentage of apoptotic cells significantly increased in A549 cultures treated with Haliclona sp. These results indicate that Haliclona sp. induces apoptosis via the JNK-p53 pathway and caspase-8, suggesting that this marine sponge is a good resource for the development of drugs for treatment of nonsmall cell lung cancer. PMID:26236382

  6. Alpha-chaconine-reduced metastasis involves a PI3K/Akt signaling pathway with downregulation of NF-kappaB in human lung adenocarcinoma A549 cells.

    PubMed

    Shih, Yuan-Wei; Chen, Pin-Shern; Wu, Cheng-Hsun; Jeng, Ya-Fang; Wang, Chau-Jong

    2007-12-26

    Alpha-chaconine, isolated from Solanum tuberosum Linn., is a naturally occurring steroidal glycoalkaloid in potato sprouts. Some reports demonstrated that alpha-chaconine had various anticarcinogenic properties. The aim of this study is to investigate the inhibitory effect of alpha-chaconine on lung adenocarcinoma cell metastasis in vitro. We chose the highly metastatic A549 cells, which were treated with various concentrations of alpha-chaconine to clarify the potential of inhibiting A549 cells invasion and migration. Data showed that alpha-chaconine inhibited A549 cell invasion/migration according to wound healing assay and Boyden chamber assay. Our results also showed that alpha-chaconine could inhibit phosphorylation of c-Jun N-terminal kinase (JNK) and Akt, whereas it did not affected phosphorylation of extracellular signal regulating kinase (ERK) and p38. In addition, alpha-chaconine significantly decreased the nuclear level of nuclear factor kappa B (NF-kappaB) and the binding ability of NF-kappaB. These results suggested that alpha-chaconine inhibited A549 cell metastasis by a reduction of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) activities involving suppression of phosphoinositide 3-kinase/Akt/NF-kappaB (PI3K/Akt/NF-kappaB) signaling pathway. Inhibiting metastasis by alpha-chaconine might offer a pivotal mechanism for its effective chemotherapeutic action.

  7. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Han, Jae Woong; Zhang, Xi-Feng; Park, Jung Hyun; Kim, Jin-Hoi

    2015-02-01

    Silver nanoparticles (AgNPs) are prominent group of nanomaterials and are recognized for their diverse applications in various health sectors. This study aimed to synthesize the AgNPs using the leaf extract of Artemisia princeps as a bio-reductant. Furthermore, we evaluated the multidimensional effect of the biologically synthesized AgNPs in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma (A549) cells. UV-visible (UV-vis) spectroscopy confirmed the synthesis of AgNPs. X-ray diffraction (XRD) indicated that the AgNPs are specifically indexed to a crystal structure. The results from Fourier transform infrared spectroscopy (FTIR) indicate that biomolecules are involved in the synthesis and stabilization of AgNPs. Dynamic light scattering (DLS) studies showed the average size distribution of the particle between 10 and 40 nm, and transmission electron microscopy (TEM) confirmed that the AgNPs were significantly well separated and spherical with an average size of 20 nm. AgNPs caused dose-dependent decrease in cell viability and biofilm formation and increase in reactive oxygen species (ROS) generation and DNA fragmentation in H. pylori and H. felis. Furthermore, AgNPs induced mitochondrial-mediated apoptosis in A549 cells; conversely, AgNPs had no significant effects on L132 cells. The results from this study suggest that AgNPs could cause cell-specific apoptosis in mammalian cells. Our findings demonstrate that this environmentally friendly method for the synthesis of AgNPs and that the prepared AgNPs have multidimensional effects such as anti-bacterial and anti-biofilm activity against H. pylori and H. felis and also cytotoxic effects against human cancer cells. This report describes comprehensively the effects of AgNPs on bacteria and mammalian cells. We believe that biologically synthesized AgNPs will open a new avenue towards various biotechnological and biomedical applications in the near future.

  8. Proteomic response to 5,6-dimethylxanthenone 4-acetic acid (DMXAA, vadimezan) in human non-small cell lung cancer A549 cells determined by the stable-isotope labeling by amino acids in cell culture (SILAC) approach.

    PubMed

    Pan, Shu-Ting; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Yang, Yin-Xue; Wang, Dong; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    5,6-Dimethylxanthenone 4-acetic acid (DMXAA), also known as ASA404 and vadimezan, is a potent tumor blood vessel-disrupting agent and cytokine inducer used alone or in combination with other cytotoxic agents for the treatment of non-small cell lung cancer (NSCLC) and other cancers. However, the latest Phase III clinical trial has shown frustrating outcomes in the treatment of NSCLC, since the therapeutic targets and underlying mechanism for the anticancer effect of DMXAA are not yet fully understood. This study aimed to examine the proteomic response to DMXAA and unveil the global molecular targets and possible mechanisms for the anticancer effect of DMXAA in NSCLC A549 cells using a stable-isotope labeling by amino acids in cell culture (SILAC) approach. The proteomic data showed that treatment with DMXAA modulated the expression of 588 protein molecules in A549 cells, with 281 protein molecules being up regulated and 306 protein molecules being downregulated. Ingenuity pathway analysis (IPA) identified 256 signaling pathways and 184 cellular functional proteins that were regulated by DMXAA in A549 cells. These targeted molecules and signaling pathways were mostly involved in cell proliferation and survival, redox homeostasis, sugar, amino acid and nucleic acid metabolism, cell migration, and invasion and programed cell death. Subsequently, the effects of DMXAA on cell cycle distribution, apoptosis, autophagy, and reactive oxygen species (ROS) generation were experimentally verified. Flow cytometric analysis showed that DMXAA significantly induced G1 phase arrest in A549 cells. Western blotting assays demonstrated that DMXAA induced apoptosis via a mitochondria-dependent pathway and promoted autophagy, as indicated by the increased level of cytosolic cytochrome c, activation of caspase 3, and enhanced expression of beclin 1 and microtubule-associated protein 1A/1B-light chain 3 (LC3-II) in A549 cells. Moreover, DMXAA significantly promoted intracellular ROS

  9. Okadaic acid inhibits cell multiplication and induces apoptosis in a549 cells, a human lung adenocarcinoma cell line

    PubMed Central

    Wang, Renjun; Lv, Lili; Zhao, Yunfeng; Yang, Nana

    2014-01-01

    This essay aims to research the effect of okadaic acid (OA) on A549 cell multiplication, and cell apoptosis induced by OA was observed by cell morphology. MTT assay, trypan blue exclusion test (TBET), Giemsa staining method and acridine orange (AO) fluorescence staining assay were applied. The results of cell survival evaluated by TBET and colorimetric assay with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) showed: The number of A549 cells was decreased in a dose-dependent manner. Cytomorphology observation of okadaic acid-treated cells showed that cells became shrinkage and turned round, some cells floated in the nutrient medium with nucleus agglutination broken, resulting in apoptotic bodies. Above-mentioned results indicated that OA exerted significantly inhibitory effect on A549 cell multiplication due to the apoptosis induced by OA. PMID:25232383

  10. Treatment with a Small Synthetic Compound, KMU-193, induces Apoptosis in A549 Human Lung Carcinoma Cells through p53 Up-Regulation.

    PubMed

    Choi, Eun Young; Shin, Kyeong-Cheol; Lee, Jinho; Kwon, Taeg Kyu; Kim, Shin; Park, Jong-Wook

    2015-01-01

    Despite recent advances in therapeutic strategies for lung cancer, mortality still is increasing. In the present study, we investigated the anti-cancer effects of KMU-193, 2-(4-Ethoxy-phenyl)-N-{5-[2-fluoro-4-(4-methyl- piperazine-1-carbonyl)-phenylamino]-1H-indazol-3-yl}-acetamide in a human non-small cell lung cancer cell line A549. KMU-193 strongly inhibited the proliferation of A549 cells, but it did not have anti-proliferative effect in other types of cancer cell lines. KMU-193 further induced apoptosis in association with activation of caspase-3 and cleavage of PLC-γ1. However, KMU-193 had no apoptotic effect in untransformed cells such as TMCK-1 and BEAS-2B. Interestingly, pretreatment with z-VAD-fmk, a pan-caspase inhibitor, strongly abrogated KMU- 193-induced apoptosis. KMU-193 treatment enhanced the expression levels of p53 and PUMA. Importantly, p53 siRNA transfection attenuated KMU-193-induced apoptosis. Collectively, these results for the first time demonstrate that KMU-193 has strong apoptotic effects on A549 cells and these are largely mediated through caspase-3- and p53-dependent pathways. PMID:26320467

  11. Human Lung Cancer Cells Grown on Acellular Rat Lung Matrix Create Perfusable Tumor Nodules

    PubMed Central

    Mishra, Dhruva K.; Thrall, Michael J.; Baird, Brandi N.; Ott, Harald C.; Blackmon, Shanda H.; Kurie, Jonathan M.; Kim, Min P.

    2015-01-01

    Background Extracellular matrix allows lung cancer to form its shape and grow. Recent studies on organ reengineering for orthotopic transplantation have provided a new avenue for isolating purified native matrix to use for growing cells. Whether human lung cancer cells grown in a decellularized rat lung matrix would create perfusable human lung cancer nodules was tested. Methods Rat lungs were harvested and native cells were removed using sodium dodecyl sulfate and Triton X-100 in a decellularization chamber to create a decellularized rat lung matrix. Human A549, H460, or H1299 lung cancer cells were placed into the decellularized rat lung matrix and grown in a customized bioreactor with perfusion of oxygenated media for 7 to 14 days. Results Decellularized rat lung matrix showed preservation of matrix architecture devoid of all rat cells. All three human lung cancer cell lines grown in the bioreactor developed tumor nodules with intact vasculature. Moreover, the lung cancer cells developed a pattern of growth similar to the original human lung cancer. Conclusions Overall, this study shows that human lung cancer cells form perfusable tumor nodules in a customized bioreactor on a decellularized rat lung matrix created by a customized decellularization chamber. The lung cancer cells grown in the matrix had features similar to the original human lung cancer. This ex vivo model can be used potentially to gain a deeper understanding of the biologic processes involved in human lung cancer. PMID:22385822

  12. Geraniin inhibits TGF-β1-induced epithelial-mesenchymal transition and suppresses A549 lung cancer migration, invasion and anoikis resistance.

    PubMed

    Ko, Hyeonseok

    2015-09-01

    The epithelial-mesenchymal transition (EMT) is an important cellular process during which epithelial polarized cells become motile mesenchymal-appeared cells, which, in turn, induces the metastatic of cancer. Geraniin is a polyphenolic component isolated from Phyllanthus amarus, which exhibits a wide range of pharmacological and physiological activities, such as antitumor, anti-hyperglycemic, anti-hypertensive, antimicrobial, and antiviral activities. However, the possible role of geraniin in the EMT is unclear. We investigated the effect of geraniin on the EMT. Transforming growth factor-beta 1 (TGF-β1) induces the EMT to promote lung adenocarcinoma migration, invasion, and anoikis resistance. To understand the suppressive role of geraniin in lung cancer migration, invasion, and anoikis resistance, we investigated the use of geraniin as inhibitors of TGF-β1-induced EMT in A549 lung cancer cells in vitro. Here, we show that geraniin remarkably increased expression of the epithelial marker E-cadherin and repressed Snail upregulation and expression of the mesenchymal marker N-cadherin and vimentin during the TGF-β1-induced EMT. Geraniin also inhibited the TGF-β1-induced increase in cell migration, invasion, and anoikis resistance of A549 lung cancer cells. Additionally, geraniin markedly inhibited TGF-β1-regulated activation of Smad2. Taken together, our findings provide new evidence that geraniin suppresses lung cancer migration, invasion, and anoikis resistance in vitro by inhibiting the TGF-β1-induced EMT.

  13. Monitoring of TGF-β 1-Induced Human Lung Adenocarcinoma A549 Cells Epithelial-Mesenchymal Transformation Process by Measuring Cell Adhesion Force with a Microfluidic Device.

    PubMed

    Li, Yuan; Gao, AnXiu; Yu, Ling

    2016-01-01

    The epithelial-mesenchymal transition (EMT) is a process in which epithelial cells lose their cell polarity and cell-cell adhesion, and gain migratory and invasive properties. It is believed that EMT is associated with initiation and completion of the invasion-metastasis cascade. In this study, an economic approach was developed to fabricate a microfluidic device with less instrumentation requirement for the investigation of EMT by quantifying cell adhesion force. Fluid shear force was precisely controlled by a homemade microfluidic perfusion apparatus and interface. The adhesion capability of the human lung adenocarcinoma cell line A549 on different types of extracellular matrix protein was studied. In addition, effects of transforming growth factor-β (TGF-β) on EMT in A549 cells were investigated by characterizing the adhesion force changes and on-chip fluorescent staining. The results demonstrate that the microfluidic device is a potential tool to characterize the epithelial-mesenchymal transition process by measuring cell adhesion force.

  14. Influence of serum on in situ proliferation and genotoxicity in A549 human lung cells exposed to nanomaterials.

    PubMed

    Corradi, Sara; Gonzalez, Laetitia; Thomassen, Leen C J; Bilaničová, Dagmar; Birkedal, Renie K; Pojana, Giulio; Marcomini, Antonio; Jensen, Keld A; Leyns, Luc; Kirsch-Volders, Micheline

    2012-06-14

    In this work in situ proliferation of A549 human lung epithelial carcinoma cells exposed to nanomaterials (NMs) was investigated in the presence or absence of 10% serum. NMs were selected based on chemical composition, size, charge and shape (Lys-SiO(2), TiO(2), ZnO, and multi walled carbon nanotubes, MWCNTs). Cells were treated with NMs and 4h later, cytochalasin-B was added. 36 h later, cell morphology was analyzed under a light microscope. Nuclearity was scored to determine the cytokinesis-block proliferation index (CBPI). CBPI, based on percentage of mono-, bi- and multi-nucleated cells, reflects cell toxicity and cell cycle delay. For some conditions depending on NM type (TiO(2) and MWCNT) and serum concentration (0%) scoring of CBPI was impossible due to overload of agglomerated NMs. Moreover, where heavy agglomeration occurs, micronuclei (MN) detection and scoring under microscope was prevented. A statistically significant decrease of CBPI was found for ZnO NM suspended in medium in the absence or presence of 10% serum at 25 μg/ml and 50 μg/ml, respectively and for Lys-SiO(2) NM at 3.5 μg/ml in 0% serum. Increase in MN frequency was observed in cells treated in 10% serum with 50 μg/ml ZnO. In 0% serum, the concentrations tested led to high toxicity. No genotoxic effects were induced by Lys-SiO(2) both in the absence or presence of serum up to 5 μg/ml. No toxicity was detected for TiO(2) and MWCNTs in both 10% and 0% serum, up to the dose of 250 μg/ml. Restoration of CBPI comparable to untreated control was shown for cells cultured without serum and treated with 5 μg/ml of Lys-SiO(2) NM pre-incubated in 100% serum. This observation confirms the protective effect of serum on Lys-SiO(2) NM cell toxicity. In conclusion in situ CBPI is proposed as a simple preliminary assay to assess both NMs induced cell toxicity and feasibility of MN scoring under microscope.

  15. A Novel Bufalin Derivative Exhibited Stronger Apoptosis-Inducing Effect than Bufalin in A549 Lung Cancer Cells and Lower Acute Toxicity in Mice

    PubMed Central

    Liu, Miao; Feng, Li-Xing; Sun, Peng; Liu, Wang; Wu, Wan-Ying; Jiang, Bao-Hong; Yang, Min; Hu, Li-Hong; Guo, De-An; Liu, Xuan

    2016-01-01

    BF211 is a synthetic molecule derived from bufalin (BF). The apoptosis-inducing effect of BF211 was stronger than that of BF while the acute toxicity of BF211 was much lower than that of BF. BF211 exhibited promising concentration-dependent anti-cancer effects in nude mice inoculated with A549 cells in vivo. The growth of A549 tumor xenografts was almost totally blocked by treatment with BF211 at 6 mg/kg. Notably, BF and BF211 exhibited differences in their binding affinity and kinetics to recombinant proteins of the α subunits of Na+/K+-ATPase. Furthermore, there was a difference in the effects of BF or BF211 on inhibiting the activity of porcine cortex Na+/K+-ATPase and in their time-dependent effects on intracellular Ca2+ levels in A549 cells. The time-dependent effects of BF or BF211 on the activation of Src, which was mediated by the Na+/K+-ATPase signalosome, in A549 cells were also different. Both BF and BF211 could induce apoptosis-related cascades, such as activation of caspase-3 and the cleavage of PARP (poly ADP-ribose polymerase) in A549 cells, in a concentration-dependent manner; however, the effects of BF211 on apoptosis-related cascades was stronger than that of BF. The results of the present study supported the importance of binding to the Na+/K+-ATPase α subunits in the mechanism of cardiac steroids and also suggested the possibility of developing new cardiac steroids with a stronger anti-cancer activity and lower toxicity as new anti-cancer agents. PMID:27459387

  16. Biological effects of (125)i seeds radiation on A549 lung cancer cells: G2/M arrest and enhanced cell death.

    PubMed

    Qu, Ang; Wang, Hao; Li, Jinna; Wang, Junjie; Liu, Jingjia; Hou, Yuzhu; Huang, Li; Zhao, Yong

    2014-07-01

    External beam radiation (EBRT) and (125)I seeds continuous low dose rate radiation (CLDR) were used to treat patients with lung cancer. We herein investigated the biological effects of EBRT and CLDR on lung cancer cells. A549 human lung cancer cell line was thus exposed to different doses of EBRT and CLDR. CLDR was more efficient to inhibit cell growth than EBRT. CLDR induced increased DNA damage as evidenced by long-lasting p-H2AX activity. The enhanced inhibitory effects of CLDR on lung cancer cell growth may be, at least in part, due to the increased Bax/Bcl2 ratio and cyclin B1-mediated G2/M arrest.

  17. Synergistic Effect of Sulindac and Simvastatin on Apoptosis in Lung Cancer A549 Cells through AKT-Dependent Downregulation of Survivin

    PubMed Central

    Kim, Young-Suk; Seol, Chang-Hwan; Jung, Jae-Wan; Oh, Su-Jin; Hwang, Ki-Eun; Kim, Hwi-Jung; Jeong, Eun-Taik; Kim, Hak-Ryul

    2015-01-01

    Purpose Non-steroidal anti-inflammatory drugs (NSAIDs) and statins are potential chemopreventive or chemotherapeutic agents. The mechanism underlying the deregulation of survivin by NSAIDs and statins in human non-small cell lung cancer cells has not been elucidated. In this study, we investigated the synergistic interaction of sulindac and simvastatin in lung cancer A549 cells. Materials and Methods Cell viability was measured by an MTT assay, while the expression of apoptotic markers, AKT, and survivin in response to sulindac and simvastatin was examined by Western blotting. DNA fragmentation by apoptosis was analyzed by flow cytometry in A549 cells. Reactive oxygen species (ROS) generation was measured by flow cytometry using H2DCFDA and MitoSOX Red, and the effects of pretreatment with N-acetylcysteine were tested. The effects of AKT on survivin expression in sulindac- and simvastatin-treated cells were assessed. Survivin was knocked down or overexpressed to determine its role in apoptosis induced by sulindac and simvastatin. Results Sulindac and simvastatin synergistically augmented apoptotic activity and intracellular ROS production in A549 cells. Inhibition of AKT by siRNA or LY294002 inhibited survivin, while AKT overexpression markedly increased survivin expression, even in the presence of sulindac and simvastatin. Moreover, survivin siRNA enhanced sulindac- and simvastatininduced apoptosis. In contrast, survivin upregulation protected against sulindac- and simvastatin-induced apoptosis. Conclusion Combined treatment with sulindac and simvastatin augmented their apoptotic potential in lung cancer cells through AKT signaling-dependent downregulation of survivin. These results indicate that sulindac and simvastatin may be clinically promising therapies for the prevention of lung cancer. PMID:25520153

  18. Selective modulation of MHC class II chaperons by a novel IFN-γ-inducible class II transactivator variant in lung adenocarcinoma A549 cells.

    PubMed

    Chiu, Bau-Lin; Li, Chia-Hsuan; Chang, Chien-Chung

    2013-10-11

    Class II transactivator (CIITA) plays a critical role in controlling major histocompatibility complex (MHC) class II gene expression. In this study, two novel alternatively spliced variants of human interferon (IFN)-γ-inducible CIITA, one missing exon 7 (CIITAΔE7), the other with TAG inserted at exon 4/5 junction (CIITA-TAG), were identified and characterized. Both variants are naturally occurring since they are present in primary cells. Unlike CIITA-TAG, CIITAΔE7 is expressed more abundantly in lung adenocarcinoma A549 cells than in the non-transformed counterpart BEAS-2B cells following IFN-γ stimulation. Transfection experiments showed that CIITAΔE7 induced a markedly lower level of surface HLA-DR, -DP, -DQ expression than CIITA-TAG in A549 cells but not in BEAS-2B cells, although both variants elicited similar amounts of total DR, DP, and DQ proteins. This differential effect was correlated with, in A549 cells, decreased expression of Ii and HLA-DM genes, along with increased expression of HLA-DO genes. Ii and HLA-DM are chaperons assisting in HLA class II assembly, while HLA-DO functions to inhibit endosomal peptide loading and HLA class II membrane transport. These findings raise the possibility that CIITAΔE7 interacts with unknown cancer-associated factors to selectively modulate genes involved in the assembly and transport of HLA class II molecules.

  19. Low-dose carbon-based nanoparticle-induced effects in A549 lung cells determined by biospectroscopy are associated with increases in genomic methylation

    NASA Astrophysics Data System (ADS)

    Li, Junyi; Tian, Meiping; Cui, Li; Dwyer, John; Fullwood, Nigel J.; Shen, Heqing; Martin, Francis L.

    2016-02-01

    Nanotechnology has introduced many manufactured carbon-based nanoparticles (CNPs) into our environment, generating a debate into their risks and benefits. Numerous nanotoxicology investigations have been carried, and nanoparticle-induced toxic effects have been reported. However, there remain gaps in our knowledge, primarily regarding mechanism. Herein, we assessed the global alterations induced by CNPs in A549 lung cells using biospectroscopy techniques, including attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and surface-enhanced Raman spectroscopy (SERS). A549 cells were treated with fullerene (C60), long or short multi-walled carbon nanotubes, or single-walled carbon nanotubes at concentrations of 0.1 mg/L, 0.01 mg/L and 0.001 mg/L. Exposed cells were then analysed by ATR-FTIR spectroscopy and SERS. Spectra were pre-processed via computational analysis, and information on biochemical alterations in exposed cells were identified. Additionally, global DNA methylation levels in cells exposed to CNPs at 0.1 mg/L were determined using HPLC-MS and genetic regulators (for DNA methylation) were checked by quantitative real-time RT-PCR. It was found that CNPs exert marked effects in A549 cells and also contribute to increases in global DNA methylation. For the first time, this study highlights that real-world levels of nanoparticles can alter the methylome of exposed cells; this could have enormous implications for their regulatory assessment.

  20. Low-dose carbon-based nanoparticle-induced effects in A549 lung cells determined by biospectroscopy are associated with increases in genomic methylation

    PubMed Central

    Li, Junyi; Tian, Meiping; Cui, Li; Dwyer, John; Fullwood, Nigel J.; Shen, Heqing; Martin, Francis L.

    2016-01-01

    Nanotechnology has introduced many manufactured carbon-based nanoparticles (CNPs) into our environment, generating a debate into their risks and benefits. Numerous nanotoxicology investigations have been carried, and nanoparticle-induced toxic effects have been reported. However, there remain gaps in our knowledge, primarily regarding mechanism. Herein, we assessed the global alterations induced by CNPs in A549 lung cells using biospectroscopy techniques, including attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and surface-enhanced Raman spectroscopy (SERS). A549 cells were treated with fullerene (C60), long or short multi-walled carbon nanotubes, or single-walled carbon nanotubes at concentrations of 0.1 mg/L, 0.01 mg/L and 0.001 mg/L. Exposed cells were then analysed by ATR-FTIR spectroscopy and SERS. Spectra were pre-processed via computational analysis, and information on biochemical alterations in exposed cells were identified. Additionally, global DNA methylation levels in cells exposed to CNPs at 0.1 mg/L were determined using HPLC-MS and genetic regulators (for DNA methylation) were checked by quantitative real-time RT-PCR. It was found that CNPs exert marked effects in A549 cells and also contribute to increases in global DNA methylation. For the first time, this study highlights that real-world levels of nanoparticles can alter the methylome of exposed cells; this could have enormous implications for their regulatory assessment. PMID:26831369

  1. Study of the Effects of Betaine and/or C-Phycocyanin on the Growth of Lung Cancer A549 Cells In Vitro and In Vivo

    PubMed Central

    Pichon, Chantal; Pigeon, Lucie

    2016-01-01

    We investigated the effects of betaine, C-phycocyanin (C-PC), and their combined use on the growth of A549 lung cancer both in vitro and in vivo. When cells were coincubated with betaine and C-PC, an up to 60% decrease in viability was observed which is significant compared to betaine (50%) or C-PC treatment alone (no decrease). Combined treatment reduced the stimulation of NF-κB expression by TNF-α and increased the amount of the proapoptotic p38 MAPK. Interestingly, combined treatment induced a cell cycle arrest in G2/M phase for ~60% of cells. In vivo studies were performed in pathogen-free male nude rats injected with A549 cells in their right flank. Their daily food was supplemented with either betaine, C-PC, both, or neither. Compared to the control group, tumour weights and volumes were significantly reduced in either betaine- or C-PC-treated groups and no additional decrease was obtained with the combined treatment. This data indicates that C-PC and betaine alone may efficiently inhibit tumour growth in rats. The synergistic activity of betaine and C-PC on A549 cells growth observed in vitro remains to be further confirmed in vivo. The reason behind the nature of their interaction is yet to be sought.

  2. Study of the Effects of Betaine and/or C-Phycocyanin on the Growth of Lung Cancer A549 Cells In Vitro and In Vivo.

    PubMed

    Bingula, Rea; Dupuis, Carmen; Pichon, Chantal; Berthon, Jean-Yves; Filaire, Marc; Pigeon, Lucie; Filaire, Edith

    2016-01-01

    We investigated the effects of betaine, C-phycocyanin (C-PC), and their combined use on the growth of A549 lung cancer both in vitro and in vivo. When cells were coincubated with betaine and C-PC, an up to 60% decrease in viability was observed which is significant compared to betaine (50%) or C-PC treatment alone (no decrease). Combined treatment reduced the stimulation of NF-κB expression by TNF-α and increased the amount of the proapoptotic p38 MAPK. Interestingly, combined treatment induced a cell cycle arrest in G2/M phase for ~60% of cells. In vivo studies were performed in pathogen-free male nude rats injected with A549 cells in their right flank. Their daily food was supplemented with either betaine, C-PC, both, or neither. Compared to the control group, tumour weights and volumes were significantly reduced in either betaine- or C-PC-treated groups and no additional decrease was obtained with the combined treatment. This data indicates that C-PC and betaine alone may efficiently inhibit tumour growth in rats. The synergistic activity of betaine and C-PC on A549 cells growth observed in vitro remains to be further confirmed in vivo. The reason behind the nature of their interaction is yet to be sought. PMID:27635139

  3. Study of the Effects of Betaine and/or C-Phycocyanin on the Growth of Lung Cancer A549 Cells In Vitro and In Vivo

    PubMed Central

    Pichon, Chantal; Pigeon, Lucie

    2016-01-01

    We investigated the effects of betaine, C-phycocyanin (C-PC), and their combined use on the growth of A549 lung cancer both in vitro and in vivo. When cells were coincubated with betaine and C-PC, an up to 60% decrease in viability was observed which is significant compared to betaine (50%) or C-PC treatment alone (no decrease). Combined treatment reduced the stimulation of NF-κB expression by TNF-α and increased the amount of the proapoptotic p38 MAPK. Interestingly, combined treatment induced a cell cycle arrest in G2/M phase for ~60% of cells. In vivo studies were performed in pathogen-free male nude rats injected with A549 cells in their right flank. Their daily food was supplemented with either betaine, C-PC, both, or neither. Compared to the control group, tumour weights and volumes were significantly reduced in either betaine- or C-PC-treated groups and no additional decrease was obtained with the combined treatment. This data indicates that C-PC and betaine alone may efficiently inhibit tumour growth in rats. The synergistic activity of betaine and C-PC on A549 cells growth observed in vitro remains to be further confirmed in vivo. The reason behind the nature of their interaction is yet to be sought. PMID:27635139

  4. Determination of in vitro free radical scavenging and antiproliferative effect of Pennisetum alopecuroides on cultured A549 human lung cancer cells

    PubMed Central

    Mathew, Githa Elizabeth; Mathew, Bijo; Gokul, S.; Krishna, Rahul; Farisa, M. P.

    2015-01-01

    Context: Pennisetum alopecuroides (Poaceae) is a grass predominantly distributed in tropics and sub tropics. It is used as a cattle feed in many regions. Aim: The objective of the present study was to investigate the in vitro free radical scavenging and antiproliferative activity of ethanol extract of P. alopecuroides (EEPA) on cultured A549 human lung cancer cell lines. Settings and Design: The anti-oxidant activity of ethanol extract was evaluated at dose level 12.5, 25, 50, 100, and 200 μg/ml. The in vitro antiproliferative activity was measured at doses of 10, 50, and 100 μg/ml. Materials and Methods: The free radical scavenging activity of the EEPA was determined by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) method and in vitro antiproliferative activity on A549 human lung cancer cells was conducted by using MTT assay method. Results: The phytochemical screening revealed that the P. alopecuroides contained alkaloids, tannins, saponins, and flavonoids as the major secondary metabolites. The IC50 value of DPPH scavenging activity was found to be 44.41 μg/ml and 31.02 μg/ml  for a mixture of EEPA and standard ascorbic acid, respectively. In vitro MTT assay showed that EEPA had anti-proliferation effects on A549 cells in a dose dependent manner. Conclusions: This is the 1st time a pharmacological exploration of P. alopecuroides grasses has been conducted. We have shown that P. alopecuroides exhibits good free radical scavenging and strong in vitro cytotoxic activities against human lung cancer cell lines. PMID:26120234

  5. New geranylated flavanones from the fruits of Paulownia catalpifolia Gong Tong with their anti-proliferative activity on lung cancer cells A549.

    PubMed

    Gao, Tian-yang; Jin, Xing; Tang, Wen-zhao; Wang, Xiao-jing; Zhao, Yun-xue

    2015-09-01

    Three new geranylated flavanones, named as paucatalinone A (1), B (2), and isopaucatalinone B (3), were isolated from the fruits of Paulownia catalpifolia Gong Tong (Scrophulariaceae). Their structures were well determined by means of IR, MS, 1D and 2D NMR, and CD techniques. Paucatalinone A (1) is the first sample as a dimeric geranylated flavanone derivative isolated from natural products. Paucatalinone A (1) displayed good antiproliferative effects on human lung cancer cells A549 and resulted in a clear increase of the percentage of cells in G1 phase and a decrease in the percentage of cells in S and G2/M phases in comparison with control cells. PMID:26115572

  6. The synergistic antitumor effects of all-trans retinoic acid and C-phycocyanin on the lung cancer A549 cells in vitro and in vivo.

    PubMed

    Li, Bing; Gao, Mei-Hua; Chu, Xian-Ming; Teng, Lei; Lv, Cong-Yi; Yang, Peng; Yin, Qi-Feng

    2015-02-15

    The anticancer effects and mechanism of all-trans retinoic acid (ATRA), C-phycocyanin (C-PC) or ATRA+C-PC on the growth of A549 cells were studied in in vitro and in vivo experiments. The effects of C-PC and ATRA on the growth of A549 cells were determined. The expression of CDK-4 and caspase-3, and the cellular apoptosis levels were detected. The tumor model was established by subcutaneous injection of A549 cells to the left axilla of the NU/NU mice. The weights of tumor and the spleen were tested. The viabilities of T-cells and spleen cells, TNF levels, the expression of Bcl-2 protein and Cyclin D1 gene were examined. Results showed both C-PC and ATRA could inhibit the growth of tumor cells in vivo and in vitro. ATRA+C-PC cooperatively showed a higher antitumor activity. The dosage of ATRA was reduced when it was administered with C-PC together, and the toxicity was reduced as well. ATRA+C-PC could decrease CDK-4 but increase caspase-3 protein expression level and induce cell apoptosis. ATRA alone could lower the activities of T lymphocytes and spleen weights, but the combination with C-PC could effectively promote viability of T cells and spleen. C-PC+ATRA could up-regulate TNF, and down-regulate Bcl-2 and Cyclin D1 gene. The combination might inhibit tumor growth by inhibiting the progress of cell cycle, inducing cell apoptosis and enhancing the body immunity. PMID:25617793

  7. [XAF1 inhibits cell proliferation and induces apoptosis in human lung adenocarcinoma cell line A549 in vitro].

    PubMed

    Chen, Donglai; Zhang, Fuquan; Sang, Yonghua; Zhu, Rongying; Zhang, Hongtao; Chen, Yongbing

    2014-12-01

    背景与目的 XAF1是重要的肿瘤细胞生长抑制因子,其低表达与多种肿瘤细胞有关。研究肿瘤抑制基因XAF1对人肺腺癌细胞株A549的作用及机制。方法 利用重组腺病毒Ad5/F35-XAF1和对照腺病毒Ad5/F35-NULL瞬时转染A549细胞,用逆转录聚合酶链式反应(reverse transcriptase polymerase chain reaction, RT-PCR)和Western blot方法检测A549细胞株中XAF1 mRNA和蛋白质的表达;MTT检测细胞增殖率、流式细胞仪检测细胞凋亡率,并用Western blot法检测凋亡相关蛋白的表达。结果 腺病毒介导的XAF1瞬时转染肺腺癌A549细胞后,XAF1 mRNA及蛋白表达水平明显提高,并能明显抑制该细胞增殖和促进细胞凋亡,蛋白质印记法显示凋亡相关蛋白PARP、Caspase-3、Caspase-8的裂解条带。结论 恢复XAF1基因在人肺腺癌A549细胞中表达后,能明显抑制该肿瘤细胞增殖并促进其凋亡,其机制可能与XAF1激活肺癌细胞相关凋亡途径有关。

  8. Schedule-dependent synergism of edatrexate and cisplatin in combination in the A549 lung-cancer cell line as assessed by median-effect analysis.

    PubMed

    Perez, E A; Hack, F M; Webber, L M; Chou, T C

    1993-01-01

    The methotrexate analog edatrexate has been shown to have greater antitumor activity and an improved therapeutic index as compared with its parent compound in preclinical systems. These studies suggest that edatrexate may have a broad role in the treatment of solid tumors. Information regarding edatrexate in combination with other chemotherapeutic agents is limited. We evaluated the interaction of edatrexate with cisplatin in vitro as assessed by median-effect analysis in the A549 human lung-cancer cell line. The effects of dose, exposure time, and schedule dependence were assessed. Cytotoxicity was evaluated using the tetrazolium-based colorimetric (MTT) assay. The inhibitory concentration producing 50% absorbance (IC50 for edatrexate with 1 h exposure was 1.4 microM. For all combination experiments, the edatrexate dose was fixed at 0.2 microM (IC10) whereas cisplatin (CDDP) concentrations were varied for 1-, 3-, and 24-h exposures either before or after edatrexate treatment. Drug interactions were assessed using the combination-index method as defined by median-effect analysis. A synergistic interaction was documented in experiments when edatrexate was applied prior to CDDP (combination index, < 1). The combination studies in which edatrexate was used prior to CDDP resulted in significant reduction of all three CDDP IC50 values: 1-h IC50, from 30.0 to 3.9 microM; 3-h IC50, from 21.3 to 1.4 microM; and 24-h IC50, from 1.7 to 0.03 microM. In contrast, synergism was not observed in experiments in which edatrexate treatment occurred after cisplatin exposure. Median-effect analysis is a useful method of determining drug interactions. In the present study, the combination of edatrexate and CDDP demonstrated schedule-dependent synergism, with the synergism being observed only in the setting of edatrexate treatment before CDDP exposure. Due to the potential broad spectrum of activity of edatrexate plus CDDP, further studies are warranted to determine the mechanism

  9. Quercetin metabolites inhibit MMP-2 expression in A549 lung cancer cells by PPAR-γ associated mechanisms.

    PubMed

    Chuang, Cheng-Hung; Yeh, Chiao-Lin; Yeh, Shu-Lan; Lin, En-Shyh; Wang, Li-Yu; Wang, Ying-Hsuna

    2016-07-01

    Our previous study demonstrated that quercetin-metabolite-enriched plasma (QP) but not quercetin itself upregulates peroxisome proliferator-activated receptor gamma (PPAR-γ) expression to induce G2/M arrest in A549 cells. In the present study, we incubated A549 cells with QP as well as quercetin-3-glucuronide (Q3G) and quercetin-3'-sulfate (Q3'S), two major metabolites of quercetin, to investigate the effects of quercetin metabolites on cell invasion and migration, the possible mechanisms and the role of PPAR-γ. We also compared the effects of QP with those of quercetin and troglitazone (TGZ), a PPAR-γ ligand. The results showed that QP significantly suppressed cell invasion and migration, as well as matrix metalloproteinases (MMPs)-2 activity and expression in a dose-dependent manner. The effects of 10% QP on those parameters were similar to those of 10μM quercetin and 20μM TGZ. However, QP and TGZ rather than quercetin itself increased the expressions of nm23-H1 and tissue inhibitor of metalloproteinase (TIMP-2). Furthermore, we demonstrated that Q3G and Q3'S also inhibited the protein expression of MMP-2. GW9662, a PPAR-γ antagonist, significantly diminished such an effect of Q3G and Q3'S. Silencing PPAR-γ expression in A549 cells also significantly diminished the suppression effect of Q3G and Q3'S on MMP-2 expression. Taken together, our study demonstrated that QP inhibited cell invasion and migration through nm23-H1/TIMP-2/MMP-2 associated mechanisms. The upregulation of PPAR-γ by quercetin metabolites such as Q3G and Q3'S could play an important role in the effects of QP. PMID:27260467

  10. Isolinderalactone inhibits proliferation of A549 human non‑small cell lung cancer cells by arresting the cell cycle at the G0/G1 phase and inducing a Fas receptor and soluble Fas ligand-mediated apoptotic pathway.

    PubMed

    Chang, Wei-An; Lin, En-Shyh; Tsai, Ming-Ju; Huang, Ming-Shyan; Kuo, Po-Lin

    2014-05-01

    Lung cancer is currently the leading cause of cancer-related mortality worldwide. In Taiwan, lung cancer is also the type of malignancy that is the major cause of cancer-mortality. Investigating the mechanism of apoptosis of lung cancer cells is important in the treatment of lung cancer. In the present study, isolinderalactone was demonstrated to exhibit anticancer effects in A549 human non-small cell lung cancer cells. The effect of isolinderalactone on apoptosis, cell cycle distribution p21 levels and the Fas receptor and soluble Fas ligand (sFasL) were assayed in order to determine the mechanism underlying the anticancer effect of isolinderalactone. It was demonstrated that isolinderalactone may induce p21 expression and then cause the cell cycle arrest of A549 cells. The data of the present study also revealed that the Fas/sFasL apoptotic system is significant in the mechanism of isolinderalactone‑induced apoptosis of A549 cells. These novel findings demonstrated that isolinderalactone may cause the cell cycle arrest of A549 cells by induction of p21, and induce apoptosis of A549 human non-small-cell lung carcinoma cells through the Fas/sFasL apoptotic system. PMID:24604009

  11. Induction of apoptotic effects of antiproliferative protein from the seeds of Borreria hispida on lung cancer (A549) and cervical cancer (HeLa) cell lines.

    PubMed

    Rupachandra, S; Sarada, D V L

    2014-01-01

    A 35 KDa protein referred to as F3 was purified from the seeds of Borreria hispida by precipitation with 80% ammonium sulphate and gel filtration on Sephadex G-100 column. RP-HPLC analysis of protein fraction (F3) on an analytical C-18 column produced a single peak, detected at 220 nm. F3 showed an apparent molecular weight of 35 KDa by SDS PAGE and MALDI-TOF-MS analyses. Peptide mass fingerprinting analysis of F3 showed the closest homology with the sequence of 1-aminocyclopropane-1-carboxylate deaminase of Pyrococcus horikoshii. The protein (F3) exhibited significant cytotoxic activity against lung (A549) and cervical (HeLa) cancer cells in a dose-dependent manner at concentrations ranging from 10 µg to 1000 µg/mL, as revealed by the MTT assay. Cell cycle analysis revealed the increased growth of sub-G0 population in both cell lines exposed to a concentration of 1000 µg/mL of protein fraction F3 as examined from flow cytometry. This is the first report of a protein from the seeds of Borreria hispida with antiproliferative and apoptotic activity in lung (A549) and cervical (HeLa) cancer cells. PMID:24605320

  12. Three-dimensional quantitative structure-activity relationship study on anti-cancer activity of 3,4-dihydroquinazoline derivatives against human lung cancer A549 cells

    NASA Astrophysics Data System (ADS)

    Cho, Sehyeon; Choi, Min Ji; Kim, Minju; Lee, Sunhoe; Lee, Jinsung; Lee, Seok Joon; Cho, Haelim; Lee, Kyung-Tae; Lee, Jae Yeol

    2015-03-01

    A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human lung cancer A549 cells were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, 1 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields (q2 = 0.720, r2 = 0.897). This model was validated by an external test set of 6 compounds giving satisfactory predictive r2 value of 0.923 as well as the scrambling stability test. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human lung cancer.

  13. Identification of Preferentially Expressed Antigen of Melanoma as a Potential Tumor Suppressor in Lung Adenocarcinoma

    PubMed Central

    Huang, Quan; Li, Lin; Lin, Zaijun; Xu, Wei; Han, Shuai; Zhao, Chenglong; Li, Lei; Cao, Wenjiao; Yang, Xinghai; Wei, Haifeng; Xiao, Jianru

    2016-01-01

    Background Preferentially expressed antigen of melanoma (PRAME) is known as a tumor-associated antigen that is altered in a variety of malignancies, including lung cancer. However, the role of PRAME in lung cancer remains unclear. Material/Methods We analyzed the expression of PRAME in human lung adenocarcinomas and studied the function of PRAME using small interfering RNA (siRNA)-induced gene knockdown in lung cancer cell lines PC9 and A549. Results We found that PRAME expression is down-regulated in lung adenocarcinomas. Knockdown of PRAME promoted proliferation and suppressed apoptosis of PC9 and A549 cells. Conclusions In line with its roles in controlling cell growth, RPAME regulates multiple critical cell-growth related genes, including IGF1R oncogene. IGF1R up-regulation contributes to increase of cell growth upon the knockdown of PRAME. Taken together, our results suggest that PRAME has inhibitory roles in lung cancer. PMID:27241212

  14. ROS/Autophagy/Nrf2 Pathway Mediated Low-Dose Radiation Induced Radio-Resistance in Human Lung Adenocarcinoma A549 Cell.

    PubMed

    Chen, Ni; Wu, Lijun; Yuan, Hang; Wang, Jun

    2015-01-01

    Low-dose ionizing radiation (LDIR) can induce radio-resistance to following high dose radiation in various mammalian cells. The protective role of LDIR has been thought to be associated with the overall outcomes of cancer radiotherapy. NF-E2 related factor 2 (Nrf2) is a transcription factor that plays pivotal roles in maintaining cellular oxidative equilibrium. Since oxidative stress has been indicated to be a mediator of LDIR induced radio-resistance, the role of Nrf2 in this process was investigated in this research. Our results showed that in human lung adenocarcinoma A549 cell, 5cGy alpha particle induced radio-resistance to following 75cGy alpha particle radiation. The expression level of Nrf2 and its target Heme Oxygenase-1(HO-1) increased after 5cGy radiation. Both the shRNA of Nrf2 and the chemical inhibitor of HO-1 suppressed the induced radio-resistance, indicating the involvement of Nrf2 antioxidant pathway in this process. Further, we found 5cGy radiation stimulated autophagy process in A549. Inhibition of the autophagy process resulted in suppression of the radio-resistance and the induced expression of Nrf2 and HO-1. ROS scavenger N-acetyl-L-cysteine (NAC) blocked the autophagy process induced by 5cGy alpha particle, the upregulation of Nrf2 and HO-1, as well as the induced radio-resistance. In conclusion, ROS elevation caused by LDIR promoted Autophagy/Nrf2-HO-1 and conferred radio-resistance in A549.

  15. Carcinogenic chromium(VI) induces cross-linking of vitamin C to DNA in vitro and in human lung A549 cells.

    PubMed

    Quievryn, George; Messer, Joseph; Zhitkovich, Anatoly

    2002-03-01

    Reductive activation of carcinogenic Cr(VI) is required for the induction of DNA damage and mutations. Here, we examined the formation of Cr-DNA adducts in the reactions of Cr(VI) with its dominant biological reducer, vitamin C (ascorbate). Reductive conversion of Cr(VI) to Cr(III) by ascorbate produced stable Cr-DNA adducts, of which approximately 25% constituted ascorbate-Cr(III)-DNA cross-links. No evidence was found for the involvement of Cr(V) or Cr(IV) intermediates in the formation of either binary or ternary adducts. The cross-linking reaction was consistent with the attack of DNA by transient Cr(III)-ascorbate complexes. The yield of Cr(III)-DNA adducts was similar on dsDNA and AGT, ACT, or CT oligonucleotides and was strongly inhibited by Mg(2+), suggesting predominant coordination of Cr(III) to DNA phosphate oxygens. We also detected cross-linking of ascorbate to DNA in Cr(VI)-exposed human lung A549 cells that were preincubated with dehydroascorbic acid to create normal levels of intracellular ascorbate. Ascorbate-Cr-DNA cross-links accounted for approximately 6% of the total Cr-DNA adducts in A549 cells. Shuttle-vector experiments showed that ascorbate-Cr-DNA cross-links were mutagenic in human cells. Our results demonstrate that in addition to reduction of Cr(VI) to DNA-reactive Cr(III), vitamin C contributes to the genotoxicity of Cr(VI) via a direct chemical modification of DNA. The absence of Asc in A549 and other human cultured cells indicates that cells maintained under the usual in vitro conditions lack the most important reducing agent for Cr(VI) and would primarily display slow thiol-dependent activation of Cr(VI).

  16. Cytotoxic and pro-apoptotic activities of leaf extract of Croton bonplandianus Baill. against lung cancer cell line A549.

    PubMed

    Bhavana, J; Kalaivani, M K; Sumathy, A

    2016-06-01

    The acetone extract (AcE) of the Croton bonplandianus Baill., an exotic weed of the Euphorbiaceae family was studied for cytotoxicity, apoptosis, cell cycle arrest in A549 cell line and antioxidant capacities using MTT assay, acridine orange/ethidium bromide (AO/EB staining), cell cycle analysis and DPPH radical scavenging assay respectively. Based on the cytotoxic activity, the extract was tested for the apoptotic effect using AO/EB and Hoechst 33258 staining. The apoptosis was characterized by chromatin condensation and DNA fragmentation. Further, to determine the stage of cell death, cell cycle analysis was performed by flow cytometry and AcE was found to arrest G2/M phase in a dose dependent manner. The number of cells in G2/M phase increases with concurrent accumulation of cells in sub G₀/G₁phase indicates the induction of apoptosis at G2M phase. The free radical scavenging activity of the AcE against DPPH was considerably significant. The cytotoxic, apoptotic and antioxidant effect of the AcE could be well correlated with the presence of potent free radical scavenging secondary metabolites such as phenols (43 ± 0.05 µg/mL), flavonoids (3.5 ± 0.07 µg/mL) and tannin (0.36 ± 0.1 µg/mL). Our study has shown that A549 cells were more sensitive to AcE with an IC₅₀ of 15.68 ± 0.006 µg/mL compared to the standard drug 2.20 ± 0.008 µg/mL (cisplatin). The results suggest that Croton bonplandianus could serve as a potential source of alternative therapeutic agent for treating cancer. Further research is required to isolate the active principle compound and determination of its anticancer property.

  17. Cytotoxic and pro-apoptotic activities of leaf extract of Croton bonplandianus Baill. against lung cancer cell line A549.

    PubMed

    Bhavana, J; Kalaivani, M K; Sumathy, A

    2016-06-01

    The acetone extract (AcE) of the Croton bonplandianus Baill., an exotic weed of the Euphorbiaceae family was studied for cytotoxicity, apoptosis, cell cycle arrest in A549 cell line and antioxidant capacities using MTT assay, acridine orange/ethidium bromide (AO/EB staining), cell cycle analysis and DPPH radical scavenging assay respectively. Based on the cytotoxic activity, the extract was tested for the apoptotic effect using AO/EB and Hoechst 33258 staining. The apoptosis was characterized by chromatin condensation and DNA fragmentation. Further, to determine the stage of cell death, cell cycle analysis was performed by flow cytometry and AcE was found to arrest G2/M phase in a dose dependent manner. The number of cells in G2/M phase increases with concurrent accumulation of cells in sub G₀/G₁phase indicates the induction of apoptosis at G2M phase. The free radical scavenging activity of the AcE against DPPH was considerably significant. The cytotoxic, apoptotic and antioxidant effect of the AcE could be well correlated with the presence of potent free radical scavenging secondary metabolites such as phenols (43 ± 0.05 µg/mL), flavonoids (3.5 ± 0.07 µg/mL) and tannin (0.36 ± 0.1 µg/mL). Our study has shown that A549 cells were more sensitive to AcE with an IC₅₀ of 15.68 ± 0.006 µg/mL compared to the standard drug 2.20 ± 0.008 µg/mL (cisplatin). The results suggest that Croton bonplandianus could serve as a potential source of alternative therapeutic agent for treating cancer. Further research is required to isolate the active principle compound and determination of its anticancer property. PMID:27468464

  18. Sanguiin H6 suppresses TGF-β induction of the epithelial-mesenchymal transition and inhibits migration and invasion in A549 lung cancer.

    PubMed

    Ko, Hyeonseok; Jeon, Hyelin; Lee, Dahae; Choi, Hyo-Kyoung; Kang, Ki Sung; Choi, Kyung-Chul

    2015-12-01

    In the epithelial-mesenchymal transition (EMT), an important cellular process, epithelial cells become mesenchymal cells. This process is also critically involved in cancer metastasis. Sanguiin H6 is a compound derived from ellagitannin, which is found in berries. Sanguiin H6 shows various pharmacological properties, including anti-angiogenic activity. Because the possible role of sanguiin H6 in the EMT and the underlying molecular mechanisms are unclear, we investigated the effect of sanguiin H6 on the EMT. Transforming growth factor-beta 1 (TGF-β1) induces the EMT and promotes lung adenocarcinoma migration and invasion through the Smad2/3 signaling pathway. Thus, to understand the inhibitory effects of sanguiin H6 on lung cancer migration and invasion, we investigated the ability of sanguiin H6 to inhibit TGF-β1-induced EMT in the A549 cell line. We found that sanguiin H6 significantly prevented the activation of Smad2/3 signaling pathway by TGF-β1. Additionally, sanguiin H6 increased the expression of the epithelial marker E-cadherin and repressed the expression of Snail and the mesenchymal marker N-cadherin during TGF-β1-induced EMT. Moreover, sanguiin H6 regulated the expression of EMT-dependent genes induced by TGF-β1. Finally, sanguiin H6 inhibited the migration and invasion of TGF-β1-stimulated A549 cells. Taken together, our findings provide new evidence that sanguiin H6 suppresses lung cancer migration and invasion in vitro by inhibiting TGF-β1 induction of the EMT.

  19. The mechanisms and significance of up-regulation of RhoB expression by hypoxia and glucocorticoid in rat lung and A549 cells.

    PubMed

    Huang, Gao-Xiang; Pan, Xiao-Yu; Jin, Yi-Duo; Wang, Yan; Song, Xiao-Lian; Wang, Chang-Hui; Li, Yi-Dong; Lu, Jian

    2016-07-01

    Small guanosine triphosphate (GTP)-binding protein RhoB is an important stress sensor and contributes to the regulation of cytoskeletal organization, cell proliferation and survival. However, whether RhoB is involved in the hypoxic response and action of glucocorticoid (GC) is largely unknown. In this study, we investigated the effects of hypoxia or/and GC on the expression and activition of RhoB in the lung of rats and human A549 lung carcinoma cells, and further studied its mechanism and significance. We found that hypoxia and dexamethasone (Dex), a synethic GC, not only significantly increased the expression and activation of RhoB independently but also coregulated the expresion of RhoB in vitro and in vivo. Up-regulation of RhoB by hypoxia was in part through stabilizing the RhoB mRNA and protein. Inhibiting hypoxia-activated hypoxia-inducible transcription factor-1α (HIF-1α), c-Jun N-terminal kinase (JNK) or extracellular signal-regulated kinase (ERK) with their specific inhibitors significantly decreased hypoxia-induced RhoB expression, indicating that HIF-1α, JNK and ERK are involved in the up-regulation of RhoB in hypoxia. Furthermore, we found that knockdown of RhoB expression by RhoB siRNA not only significantly reduced hypoxia-enhanced cell migration and cell survival in hypoxia but also increased the sensitivity of cell to paclitaxel (PTX), a chemotherapeutic agent, and reduced Dex-enhanced resistance to PTX-chemotherapy in A549 cells. Taken together, the novel data revealed that hypoxia and Dex increased the expression and activation of RhoB, which is important for hypoxic adaptation and hypoxia-accelerated progression of lung cancer cells. RhoB also enhanced the resistance of cell to PTX-chemotherapy and mediated the pro-survival effect of Dex.

  20. Mucoepidermoid tumors of the lung.

    PubMed

    Yousem, S A; Hochholzer, L

    1987-09-15

    Mucoepidermoid tumors of lung (MET) are rare tumors derived from the minor salivary gland tissue of the proximal tracheobronchial tree. The authors studied 58 cases of MET confined to the lung and used criteria derived from similar tumors of the salivary glands to separate them into low-grade and high-grade variants. The overwhelming majority of low-grade tumors behaved in a benign fashion, whereas 23% of high-grade tumors resulted in patient death. Prognostic factors which appeared to predict future aggressive behavior included high-grade classification, advanced stage at presentation, and perhaps lymph node metastases.

  1. Growth arrest of lung carcinoma cells (A549) by polyacrylate-anchored peroxovanadate by activating Rac1-NADPH oxidase signalling axis.

    PubMed

    Chatterjee, Nirupama; Anwar, Tarique; Islam, Nashreen S; Ramasarma, T; Ramakrishna, Gayatri

    2016-09-01

    Hydrogen peroxide is often required in sublethal, millimolar concentrations to show its oxidant effects on cells in culture as it is easily destroyed by cellular catalase. Previously, we had shown that diperoxovanadate, a physiologically stable peroxovanadium compound, can substitute H2O2 effectively in peroxidation reactions. We report here that peroxovanadate when anchored to polyacrylic acid (PAPV) becomes a highly potent inhibitor of growth of lung carcinoma cells (A549). The early events associated with PAPV treatment included cytoskeletal modifications, increase in GTPase activity of Rac1, accumulation of the reactive oxygen species, and also increase in phosphorylation of H2AX (γH2AX), a marker of DNA damage. These effects persisted even at 24 h after removal of the compound and culminated in increased levels of p53 and p21 together with growth arrest. The PAPV-mediated growth arrest was significantly abrogated in cells pre-treated with the N-acetylcysteine, Rac1 knocked down by siRNA and DPI an inhibitor of NADPH oxidase. In conclusion, our results show that polyacrylate derivative of peroxovanadate efficiently arrests growth of A549 cancerous cells by activating the axis of Rac1-NADPH oxidase leading to oxidative stress and DNA damage. PMID:27435854

  2. Intracellular dynamics and fate of polystyrene nanoparticles in A549 Lung epithelial cells monitored by image (cross-) correlation spectroscopy and single particle tracking.

    PubMed

    Deville, Sarah; Penjweini, Rozhin; Smisdom, Nick; Notelaers, Kristof; Nelissen, Inge; Hooyberghs, Jef; Ameloot, Marcel

    2015-10-01

    Novel insights in nanoparticle (NP) uptake routes of cells, their intracellular trafficking and subcellular targeting can be obtained through the investigation of their temporal and spatial behavior. In this work, we present the application of image (cross-) correlation spectroscopy (IC(C)S) and single particle tracking (SPT) to monitor the intracellular dynamics of polystyrene (PS) NPs in the human lung carcinoma A549 cell line. The ensemble kinetic behavior of NPs inside the cell was characterized by temporal and spatiotemporal image correlation spectroscopy (TICS and STICS). Moreover, a more direct interpretation of the diffusion and flow detected in the NP motion was obtained by SPT by monitoring individual NPs. Both techniques demonstrate that the PS NP transport in A549 cells is mainly dependent on microtubule-assisted transport. By applying spatiotemporal image cross-correlation spectroscopy (STICCS), the correlated motions of NPs with the early endosomes, late endosomes and lysosomes are identified. PS NPs were equally distributed among the endolysosomal compartment during the time interval of the experiments. The cotransport of the NPs with the lysosomes is significantly larger compared to the other cell organelles. In the present study we show that the complementarity of ICS-based techniques and SPT enables a consistent elaborate model of the complex behavior of NPs inside biological systems.

  3. Studies on cytotoxic constituents from the leaves of Elaeagnus oldhamii Maxim. in non-small cell lung cancer A549 cells.

    PubMed

    Liao, Chi-Ren; Kuo, Yueh-Hsiung; Ho, Yu-Ling; Wang, Ching-Ying; Yang, Chang-Syun; Lin, Cheng-Wen; Chang, Yuan-Shiun

    2014-07-04

    Elaeagnus oldhamii Maxim. is a commonly used traditional herbal medicine. In Taiwan the leaves of E. oldhamii Maxim. are mainly used for treating lung disorders. Twenty five compounds were isolated from the leaves of E. oldhamii Maxim. in the present study. These included oleanolic acid (1), 3-O-(Z)-coumaroyl oleanolic acid (2), 3-O-(E)-coumaroyl oleanolic acid (3), 3-O-caffeoyl oleanolic acid (4), ursolic acid (5), 3-O-(Z)-coumaroyl ursolic acid (6), 3-O-(E)-coumaroyl ursolic acid (7), 3-O-caffeoyl ursolic acid (8), 3β, 13β-dihydroxyolean-11-en-28-oic acid (9), 3β, 13β-dihydroxyurs-11-en-28-oic acid (10), uvaol (11), betulin (12), lupeol (13), kaempferol (14), aromadendrin (15), epigallocatechin (16), cis-tiliroside (17), trans-tiliroside (18), isoamericanol B (19), trans-p-coumaric acid (20), protocatechuic acid (21), salicylic acid (22), trans-ferulic acid (23), syringic acid (24) and 3-O-methylgallic acid (25). Of the 25 isolated compounds, 21 compounds were identified for the first time in E. oldhamii Maxim. These included compounds 1, 4, 5 and 8-25. These 25 compounds were evaluated for their inhibitory activity against the growth of non-small cell lung cancer A549 cells by the MTT assay, and the corresponding structure-activity relationships were discussed. Among these 25 compounds, compound 6 displayed the best activity against the A549 cell line in vitro (CC50=8.56±0.57 μg/mL, at 48 h of MTT asssay). Furthermore, compound 2, 4, 8 and 18 exhibited in vitro cytotoxicity against the A549 cell line with the CC50 values of less than 20 μg/mL at 48 h of MTT asssay. These five compounds 2, 4, 6, 8 and 18 exhibited better cytotoxic activity compared with cisplatin (positive control, CC50 value of 14.87±1.94 μg/mL, at 48 h of MTT asssay). The result suggested that the five compounds might be responsible for its clinical anti-lung cancer effect.

  4. Resveratrol reduces IL-6 and VEGF secretion from co-cultured A549 lung cancer cells and adipose-derived mesenchymal stem cells.

    PubMed

    Sahin, Erhan; Baycu, Cengiz; Koparal, Ayse Tansu; Burukoglu Donmez, Dilek; Bektur, Ezgi

    2016-06-01

    Stem cell therapies are important treatment methodologies used in many areas of experimental or clinical medicine. In recent studies of cancer models, Mesenchymal stem cells (MSCs) suppressed the growth of cancer cells. However, also in some studies, stem cell treatments have been shown to induce cancer formation, increase tumor volume, induce the formation of new vessels, and lead to cancer invasion. The presence of MSC-secreted cytokines and their effects on cancer cells limits the reliability of MSC-based treatments. Resveratrol (trans-3,5,4'-trihydroxystilbene), an antioxidant found in red wine, has been shown to have therapeutic effects against several cancers. The aim of this study was to co-culture MSCs with A549 cancer cells to suppress the release of cancer-promoting cytokines from MSCs and to increase the applicability and reliability of stem cell therapies with resveratrol. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and neutral red cell viability assays were used to find safety dose of resveratrol. The MSCs secreted the cytokines IL-6 and VEGF, and the effect of resveratrol on these cytokines was analyzed by ELISA and western blot analysis of conditioned medium. One μM of resveratrol was found to be the safety dose for the A549 cancer cells and MSCs. We observed the highest release of IL-6 and VEGF from the co-cultured A549 cells and MSCs, and resveratrol was found to significantly decrease the release of these cytokines. Our study suggests that resveratrol exerts a positive effect on the release of cytokines. The safety dose of resveratrol can be administered together with stem cells during stem cell treatment.

  5. Claudin-18 inhibits cell proliferation and motility mediated by inhibition of phosphorylation of PDK1 and Akt in human lung adenocarcinoma A549 cells.

    PubMed

    Shimobaba, Shun; Taga, Saeko; Akizuki, Risa; Hichino, Asami; Endo, Satoshi; Matsunaga, Toshiyuki; Watanabe, Ryo; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Sugatani, Junko; Ikari, Akira

    2016-06-01

    Abnormal expression of claudin subtypes has been reported in various cancers. However, the pathological role of each claudin has not been clarified in detail. Claudin-18 was absent in human non-small cell and small cell lung cancers, although it is expressed in normal lung tissues. Here, we examined the effect of claudin-18 expression on the expression of junctional proteins, cell proliferation, and cell motility using human lung adenocarcinoma A549 cells. Real-time PCR and western blotting showed that exogenous expression of claudin-18 had no effect on the expression of junctional proteins including claudin-1, zonula occludens-1 (ZO-1), occludin, and E-cadherin. Claudin-18 was mainly distributed in cell-cell contact areas concomitant with ZO-1. Cell proliferation was significantly decreased at 48 and 72h after seeding of claudin 18-expressing cells. Claudin-18 suppressed cell motility, whereas it increased cell death in anoikis. Claudin-18 decreased phosphorylated (p)-3-phosphoinositide-dependent protein kinase-1 (PDK1) and p-Akt levels without affecting p-epidermal growth factor receptor and p-phosphatidylinositol-3 kinase (PI3K) levels. Furthermore, claudin-18 was bound with PDK1 and suppressed the nuclear localization of PDK1. We suggest that claudin-18 suppresses the abnormal proliferation and motility of lung epithelial cells mediated by inhibition of the PI3K/PDK1/Akt signaling pathway.

  6. Cancer Associated Fibroblast-Derived Hepatocyte Growth Factor Inhibits the Paclitaxel-Induced Apoptosis of Lung Cancer A549 Cells by Up-Regulating the PI3K/Akt and GRP78 Signaling on a Microfluidic Platform.

    PubMed

    Ying, Li; Zhu, Ziwei; Xu, Zhiyun; He, Tianrui; Li, Encheng; Guo, Zhe; Liu, Fen; Jiang, Chunmeng; Wang, Qi

    2015-01-01

    Tumor stroma and growth factors provide a survival environment to tumor cells and can modulate their chemoresistance by dysregulating several signal pathways. In this study, we fabricated a three-dimensional (3D) microfluidic chip using polydimethylsiloxane (PDMS) to investigate the impact of hepatocyte growth factor (HGF) from cancer-associated fibroblasts (CAF) on the Met/PI3K/AKT activation, glucose regulatory protein (GRP78) expression and the paclitaxel-induced A549 cell apoptosis. With a concentration gradient generator, the assembled chip was able to reconstruct a tumor microenvironment in vitro. We found high levels of HGF in the supernatants of CAF and the CAF matrix from the supernatants of activated HFL1 fibroblasts or HGF enhanced the levels of Met, PI3K and AKT phosphorylation and GRP78 expression in A549 cells cultured in a 3D cell chamber, which was abrogated by anti-HGF. Inhibition of Met attenuated the CAF matrix-enhanced PI3K/AKT phosphorylation and GRP78 expression while inhibition of PI3K reduced GRP78 expression, but not Met phosphorylation in A549 cells. Inhibition of GRP78 failed to modulate the CAF matrix-enhanced Met/PI3K/AKT phosphorylation in A549 cells. Furthermore, inhibition of PI3K or GRP78 enhanced spontaneous and paclitaxel-induced A549 cell apoptosis. Moreover, treatment with the CAF matrix inhibited spontaneous and medium or high dose of paclitaxel-induced A549 cell apoptosis. Inhibition of PI3K or GRP78 attenuated the CAF matrix-mediated inhibition on paclitaxel-induced A549 cell apoptosis. Our data indicated that HGF in the CAF matrix activated the Met/PI3K/AKT and up-regulated GRP78 expression, promoting chemoresistance to paclitaxel-mediated apoptosis in A549 cells. Our findings suggest that the microfluidic system may represent an ideal platform for signaling research and drug screening. PMID:26115510

  7. Cancer Associated Fibroblast-Derived Hepatocyte Growth Factor Inhibits the Paclitaxel-Induced Apoptosis of Lung Cancer A549 Cells by Up-Regulating the PI3K/Akt and GRP78 Signaling on a Microfluidic Platform

    PubMed Central

    Xu, Zhiyun; He, Tianrui; Li, Encheng; Guo, Zhe; Liu, Fen; Jiang, Chunmeng; Wang, Qi

    2015-01-01

    Tumor stroma and growth factors provide a survival environment to tumor cells and can modulate their chemoresistance by dysregulating several signal pathways. In this study, we fabricated a three-dimensional (3D) microfluidic chip using polydimethylsiloxane (PDMS) to investigate the impact of hepatocyte growth factor (HGF) from cancer-associated fibroblasts (CAF) on the Met/PI3K/AKT activation, glucose regulatory protein (GRP78) expression and the paclitaxel-induced A549 cell apoptosis. With a concentration gradient generator, the assembled chip was able to reconstruct a tumor microenvironment in vitro. We found high levels of HGF in the supernatants of CAF and the CAF matrix from the supernatants of activated HFL1 fibroblasts or HGF enhanced the levels of Met, PI3K and AKT phosphorylation and GRP78 expression in A549 cells cultured in a 3D cell chamber, which was abrogated by anti-HGF. Inhibition of Met attenuated the CAF matrix-enhanced PI3K/AKT phosphorylation and GRP78 expression while inhibition of PI3K reduced GRP78 expression, but not Met phosphorylation in A549 cells. Inhibition of GRP78 failed to modulate the CAF matrix-enhanced Met/PI3K/AKT phosphorylation in A549 cells. Furthermore, inhibition of PI3K or GRP78 enhanced spontaneous and paclitaxel-induced A549 cell apoptosis. Moreover, treatment with the CAF matrix inhibited spontaneous and medium or high dose of paclitaxel-induced A549 cell apoptosis. Inhibition of PI3K or GRP78 attenuated the CAF matrix-mediated inhibition on paclitaxel-induced A549 cell apoptosis. Our data indicated that HGF in the CAF matrix activated the Met/PI3K/AKT and up-regulated GRP78 expression, promoting chemoresistance to paclitaxel-mediated apoptosis in A549 cells. Our findings suggest that the microfluidic system may represent an ideal platform for signaling research and drug screening. PMID:26115510

  8. Cytotoxicity and genotoxicity of size-fractionated iron oxide (magnetite) in A549 human lung epithelial cells: role of ROS, JNK, and NF-κB.

    PubMed

    Könczöl, Mathias; Ebeling, Sandra; Goldenberg, Ella; Treude, Fabian; Gminski, Richard; Gieré, Reto; Grobéty, Bernard; Rothen-Rutishauser, Barbara; Merfort, Irmgard; Mersch-Sundermann, Volker

    2011-09-19

    Airborne particulate matter (PM) of varying size and composition is known to cause health problems in humans. The iron oxide Fe(3)O(4) (magnetite) may be a major anthropogenic component in ambient PM and is derived mainly from industrial sources. In the present study, we have investigated the effects of four different size fractions of magnetite on signaling pathways, free radical generation, cytotoxicity, and genotoxicity in human alveolar epithelial-like type-II cells (A549). The magnetite particles used in the exposure experiments were characterized by mineralogical and chemical techniques. Four size fractions were investigated: bulk magnetite (0.2-10 μm), respirable fraction (2-3 μm), alveolar fraction (0.5-1.0 μm), and nanoparticles (20-60 nm). After 24 h of exposure, the A549 cells were investigated by transmission electron microscopy (TEM) to study particle uptake. TEM images showed an incorporation of magnetite particles in A549 cells by endocytosis. Particles were found as agglomerates in cytoplasm-bound vesicles, and few particles were detected in the cytoplasm but none in the nucleus. Increased production of reactive oxygen species (ROS), as determined by the 2',7'-dichlorfluorescein-diacetate assay (DCFH-DA), as well as genotoxic effects, as measured by the cytokinesis block-micronucleus test and the Comet assay, were observed for all of the studied fractions after 24 h of exposure. Moreover, activation of c-Jun N-terminal kinases (JNK) without increased nuclear factor kappa-B (NF-κB)-binding activity but delayed IκB-degradation was observed. Interestingly, pretreatment of cells with magnetite and subsequent stimulation with the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) led to a reduction of NF-κB DNA binding compared to that in stimulation with TNFα alone. Altogether, these experiments suggest that ROS formation may play an important role in the genotoxicity of magnetite in A549 cells but that activation of JNK seems to be

  9. Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles.

    PubMed

    Bhattacharya, Kunal; Naha, Pratap C; Naydenova, Izabela; Mintova, Svetlana; Byrne, Hugh J

    2012-12-17

    Increasing utilization of engineered nanoparticles in the field of electronics and biomedical applications demands an assessment of risk associated with deliberate or accidental exposure. Metal based nanoparticles are potentially most important of all the nanoparticles in terms of health risks. Microporous alumino-silicates and pure silicates named as zeolites and zeo-type materials with variety of structures, chemical compositions, particle sizes and morphologies have a significant number of industrial uses such as in catalysis, sorption and ion-exchange processes. In particular, the nanosized particles due to their unique properties are used in hybrid organic-inorganic materials for photography, photonics, electronics, labeling, imaging, and sensing. The aim of the current study is to investigate pure silica MFI-type zeolites nanoparticles with sizes of 50nm and 100nm (samples MFI-50 and MFI-100) under suspended conditions and their toxicological effects on human lung alveolar (A549) cells under in vitro conditions. Live cell imaging showed that the nanoparticles precipitated from the colloidal suspension of cell culture media as large agglomerates, coming in contact with the cell surface through sedimentation. A cellular proliferative capacity test showed the zeolite nanoparticles to exhibit no significant cytotoxicity below a concentration of 100μg/ml. However, both the MFI-50 and MFI-100 nanoparticles induced high intracellular reactive oxygen species (ROS) generation and elevated mitochondrial membrane potential in the A549 cells over the measured time period of 12h and at concentrations up to ≤50μg/ml. DNA fragmentation analysis using the comet assay showed that the MFI-50 and MFI-100 nanoparticles cause genotoxicity in a concentration dependent manner. Furthermore, the rate at which maximum genomic damage was caused by MFI-100 nanoparticles in the A549 cells was found to be high as compared to the MFI-50 nanoparticles. However, the damage caused by the

  10. Subtoxic and toxic concentrations of benzene and toluene induce Nrf2-mediated antioxidative stress response and affect the central carbon metabolism in lung epithelial cells A549.

    PubMed

    Murugesan, Kalaimathi; Baumann, Sven; Wissenbach, Dirk K; Kliemt, Stefanie; Kalkhof, Stefan; Otto, Wolfgang; Mögel, Iljana; Kohajda, Tibor; von Bergen, Martin; Tomm, Janina M

    2013-11-01

    Since people in industrialized countries spend most of their time indoors, the effects of indoor contaminants such as volatile organic compounds become more and more relevant. Benzene and toluene are among the most abundant compounds in the highly heterogeneous group of indoor volatile organic compounds. In order to understand their effects on lung epithelial cells (A549) representing lung's first line of defense, we chose a global proteome and a targeted metabolome approach in order to detect adverse outcome pathways caused by exposure to benzene and toluene. Using a DIGE approach, 93 of 469 detected protein spots were found to be differentially expressed after exposure to benzene, and 79 of these spots were identified by MS. Pathway analysis revealed an enrichment of proteins involved in Nrf2-mediated and oxidative stress response glycolysis/gluconeogenesis. The occurrence of oxidative stress at nonacute toxic concentrations of benzene and toluene was confirmed by the upregulation of the stress related proteins NQO1 and SOD1. The changes in metabolism were validated by ion chromatography MS/MS analysis revealing significant changes of glucose-6-phosphate, fructose-6-phosphate, 3-phosphoglycerate, and NADPH. The molecular alterations identified as a result of benzene and toluene exposure demonstrate the detrimental effect of nonacute toxic concentrations on lung epithelial cells. The data provided here will allow for a targeted validation in in vivo models.

  11. Role of {alpha}{sub v}{beta}{sub 5} integrin receptor in endocytosis of crocidolite and its effect on intracellular glutathione levels in human lung epithelial (A549) cells

    SciTech Connect

    Pande, Priyadarshini; Mosleh, Tariq A.; Aust, Ann E. . E-mail: aaust@cc.usu.edu

    2006-01-15

    Crocidolite, containing 27% iron by weight, is the most carcinogenic form of asbestos. Crocidolite fibers are endocytized by {alpha}{sub v}{beta}{sub 5} integrin receptors in rabbit pleural mesothelial cells. We show here that crocidolite fibers are endocytized in human lung epithelial (A549) cells and in primary small airway epithelial (SAEC) cells. Presence of the integrin {alpha}{sub v}{beta}{sub 5} blocking antibody, P1F6, significantly reduced the uptake of crocidolite fibers in A549 cells. Thus, the integrin {alpha}{sub v}{beta}{sub 5} receptor is involved in endocytosis of crocidolite fibers in A549 cells as well. Previously, it has been observed that asbestos fibers lead to changes in the intracellular redox environment, i.e. a marked decrease in intracellular glutathione concentrations and an increase in the extracellular glutathione in A549 cells. In addition, the decrease in intracellular glutathione was found to be largely independent of iron present on the surface of the fiber. A549 cells were treated with crocidolite in the presence of endocytosis inhibitor cytochalasin D. Our data indicate that, upon preventing endocytosis, we were able to reverse the decrease in total intracellular glutathione. The decrease in total intracellular glutathione could also be prevented in the presence of the monoclonal antibody P1F6. Thus, we observed that endocytosis of crocidolite fibers via integrin {alpha}{sub v}{beta}{sub 5} receptor is linked to the marked decrease in total intracellular glutathione in A549 cells.

  12. Novel complementation cell lines derived from human lung carcinoma A549 cells support the growth of E1-deleted adenovirus vectors.

    PubMed

    Imler, J L; Chartier, C; Dreyer, D; Dieterle, A; Sainte-Marie, M; Faure, T; Pavirani, A; Mehtali, M

    1996-01-01

    Replication-defective E1-deleted adenoviruses are attractive vectors for gene therapy or live vaccines. However, manufacturing methods required for their pharmaceutical development are not optimized. For example, the generation of E1-deleted adenovirus vectors relies on the complementation functions present in 293 cells. However, 293 cells are prone to the generation of replication competent particles as a result of recombination events between the viral DNA and the integrated adenovirus sequences present in the cell line. We report here that human lung A549 cells transformed with constitutive or inducible E1-expression vectors support the replication of E1-deficient adenoviruses. E1A transcription was elevated in most of the cell lines, and E1A proteins were expressed at levels similar to those of 293 cells. However, the levels of expression of E1A did not correlate with the efficiencies of complementation of E1-deleted viruses in A549 clones, since some clones complemented replication in the absence of induction of E1A expression. In addition, complementation of E1-deficient adenoviruses did not require expression of the E1B 55-kDa protein. Although these cell lines contain the coding and cis-acting regulatory sequences of the structural protein IX gene, they are not able to complement viruses in which this gene has been deleted. In contrast to 293 cells, such new complementation cell lines do not contain the left end of the adenoviral genome and thus represent a significant improvement over the currently used 293 cells, in which a single recombination event is sufficient to yield replication competent adenovirus. PMID:8929914

  13. Radio-sensitization effect of an mTOR inhibitor, temsirolimus, on lung adenocarcinoma A549 cells under normoxic and hypoxic conditions

    PubMed Central

    Ushijima, Hiroki; Suzuki, Yoshiyuki; Oike, Takahiro; Komachi, Mayumi; Yoshimoto, Yuya; Ando, Ken; Okonogi, Noriyuki; Sato, Hiro; Noda, Shin-ei; Saito, Jun-ichi; Nakano, Takashi

    2015-01-01

    The mammalian target of rapamycin (mTOR) correlates with cell survival under hypoxia and regulates hypoxia-inducible factor-1α (HIF-1α), a key protein in hypoxia-related events. However, the role of mTOR in radio-resistance has not been fully investigated. Therefore, the effect of mTOR on the radio-resistance of cancer cells under hypoxia was evaluated using the mTOR inhibitor temsirolimus. Clonogenic survival was examined in the A549 human lung adenocarcinoma cell line under normoxia or hypoxia, with or without temsirolimus. An oxygen enhancement ratio (OER) was calculated using the D10 values, the doses giving 10% survival. Western blotting was performed to investigate the effect of temsirolimus on mTOR and the HIF-1α pathway under normoxia and hypoxia. A549 cells showed a radio-resistance of 5.1 and 14.2 Gy, as indicated by D10 values under normoxia and hypoxia, respectively; the OER was 2.8. The cell survival rates under hypoxia and with temsirolimus remarkably decreased compared with those under normoxia. The D10 values of the cells under normoxia and hypoxia were 4.8 and 5.4 Gy, respectively (OER = 1.1). mTOR expression was suppressed by temsirolimus under both normoxia and hypoxia. HIF-1α expression decreased under hypoxia in the presence of temsirolimus. These results suggest that temsirolimus can overcome the radio-resistance induced by hypoxia. When the fact that mTOR acts upstream of HIF-1α is considered, our data suggest that the restoration of radiation sensitivity by temsirolimus under hypoxia may be associated with the suppression of the HIF-1α pathway. Temsirolimus could therefore be used as a hypoxic cell radio-sensitizer. PMID:25887043

  14. Cytosolic PhospholipaseA2 Inhibition with PLA-695 Radiosensitizes Tumors in Lung Cancer Animal Models

    PubMed Central

    Ferraro, Daniel J.; Kotipatruni, Rama P.; Bhave, Sandeep R.; Jaboin, Jerry J.; Hallahan, Dennis E.

    2013-01-01

    Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2) is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC) cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549) co-cultured with endothelial cells (bEND3 and HUVEC) and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR) significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3) and induced cell death and attenuated invasion by tumor cells (LLC &A549). In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted. PMID:23894523

  15. Cytosolic phospholipaseA2 inhibition with PLA-695 radiosensitizes tumors in lung cancer animal models.

    PubMed

    Thotala, Dinesh; Craft, Jeffrey M; Ferraro, Daniel J; Kotipatruni, Rama P; Bhave, Sandeep R; Jaboin, Jerry J; Hallahan, Dennis E

    2013-01-01

    Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2) is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC) cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549) co-cultured with endothelial cells (bEND3 and HUVEC) and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR) significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3) and induced cell death and attenuated invasion by tumor cells (LLC &A549). In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted.

  16. Cytosolic phospholipaseA2 inhibition with PLA-695 radiosensitizes tumors in lung cancer animal models.

    PubMed

    Thotala, Dinesh; Craft, Jeffrey M; Ferraro, Daniel J; Kotipatruni, Rama P; Bhave, Sandeep R; Jaboin, Jerry J; Hallahan, Dennis E

    2013-01-01

    Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2) is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC) cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549) co-cultured with endothelial cells (bEND3 and HUVEC) and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR) significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3) and induced cell death and attenuated invasion by tumor cells (LLC &A549). In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted. PMID:23894523

  17. Inhibition of Tumor Growth and Angiogenesis by a Lysophosphatidic Acid Antagonist in a Engineered Three-dimensional Lung Cancer Xenograft Model

    PubMed Central

    Xu, Xiaoyu; Prestwich, Glenn D

    2009-01-01

    BACKGROUND We developed an engineered three-dimensional (3-D) tumor xenograft model of non-small cell lung cancer (NSCLC) in nude mice, and used this model to evaluate a dual-activity inhibitor of lysophosphatidic acid (LPA) biosynthesis and receptor activation. METHODS First, BrP-LPA, a pan-antagonist for four LPA receptors and inhibitor of the lyosphospholipase D activity of autotaxin, was examined for inhibition of cell migration and cell invasion by human NSCLC A549 cells. Second, A549 cells were encapsulated in 3-D in three semi-synthetic ECMs based on chemically-modified glycosaminoglycans, and injected subcutaneously in nude mice. Tumor volume and vascularity were deteremined as a function of sECM composition. Third, engineered NSCLC xenografts were formed from A549 cells in either Extracel-HP or Matrigel, and mice were treated with four intraperitoneal injections of 3 mg/kg of BrP-LPA. RESULTS First, BrP-LPA inhibited cell migration and invasiveness of A549 cells in vitro. Second, tumor growth and microvessel formation for 3-D encapsulated A549 cells in vivo in nude mice increased in the order: buffer only < Extracel < Extracel-HP < Extracel-HP containing growth factors plus laminin. Third, tumor volumes increased rapidly in both Matrigel and Extracel-HP encapsulated A549 cells, and tumor growth was markedly inhibited by BrP-LPA treatment. Finally, tumor vascularization was dramatically reduced in the A549 tumors treated with BrP-LPA. CONCLUSIONS Engineered A549 lung tumors can be created by 3-D encapsulation in an ECM substitute with user controlled composition. The engineered tumors regress and lose vascularity in response to a dual activity inhibitor of the LPA signaling pathway. PMID:20143443

  18. Human Lung Cancer Cell Line A-549 ATCC Is Differentially Affected by Supranutritional Organic and Inorganic Selenium

    PubMed Central

    Flores Villavicencio, Lérida Liss; Cruz-Jiménez, Gustavo; Barbosa-Sabanero, Gloria; Kornhauser-Araujo, Carlos; Mendoza-Garrido, M. Eugenia; de la Rosa, Guadalupe; Sabanero-López, Myrna

    2014-01-01

    The effects of organic and inorganic forms of selenium (Se) on human cells have been extensively studied for nutritional concentrations; however, to date, little is known about the potential toxicity at supranutritional levels. In the present study we determined the effects of sodium selenite (SSe) and selenomethionine (SeMet) on cell growth and intracellular structures in lung cancer cells exposed at Se concentrations between 0 and 3 mM. Our results showed that SSe affected cell growth more rapidly than SeMet (24 h and 48 h, resp.). After 24 h of cells exposure to 0.5, 1.5, and 3 mM SSe, cell growth was reduced by 10, 50, and 60%, as compared to controls. After 48 h, nuclear fragmentation was evident in cells exposed to SSe, suggesting an induction to cell death. In contrast, SeMet did not affect cell proliferation, and the cells were phenotypically similar to controls. Microtubules and microfilaments structures were also affected by both Se compounds, again SSe being more toxic than SeMet. To our knowledge, this is the first report on the differential effects of organic and inorganic Se in supranutritional levels in lung cancer cells. PMID:25477771

  19. Mimulone-induced autophagy through p53-mediated AMPK/mTOR pathway increases caspase-mediated apoptotic cell death in A549 human lung cancer cells.

    PubMed

    An, Hyun-Kyu; Kim, Kyoung-Sook; Lee, Ji-Won; Park, Mi-Hyun; Moon, Hyung-In; Park, Shin-Ji; Baik, Ji-Sue; Kim, Cheorl-Ho; Lee, Young-Choon

    2014-01-01

    Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3) puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC) staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA), pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ) suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α) and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy. PMID:25490748

  20. Mimulone-Induced Autophagy through p53-Mediated AMPK/mTOR Pathway Increases Caspase-Mediated Apoptotic Cell Death in A549 Human Lung Cancer Cells

    PubMed Central

    Lee, Ji-Won; Park, Mi-Hyun; Moon, Hyung-In; Park, Shin-Ji; Baik, Ji-Sue; Kim, Cheorl-Ho; Lee, Young-Choon

    2014-01-01

    Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3) puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC) staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA), pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ) suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α) and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy. PMID:25490748

  1. Suberoylanilide Hydroxamic Acid Treatment Reveals Crosstalks among Proteome, Ubiquitylome and Acetylome in Non-Small Cell Lung Cancer A549 Cell Line

    PubMed Central

    Wu, Quan; Cheng, Zhongyi; Zhu, Jun; Xu, Weiqing; Peng, Xiaojun; Chen, Chuangbin; Li, Wenting; Wang, Fengsong; Cao, Lejie; Yi, Xingling; Wu, Zhiwei; Li, Jing; Fan, Pingsheng

    2015-01-01

    Suberoylanilide hydroxamic acid (SAHA) is a well-known histone deacetylase (HDAC) inhibitor and has been used as practical therapy for breast cancer and non-small cell lung cancer (NSCLC). It is previously demonstrated that SAHA treatment could extensively change the profile of acetylome and proteome in cancer cells. However, little is known about the impact of SAHA on other protein modifications and the crosstalks among different modifications and proteome, hindering the deep understanding of SAHA-mediated cancer therapy. In this work, by using SILAC technique, antibody-based affinity enrichment and high-resolution LC-MS/MS analysis, we investigated quantitative proteome, acetylome and ubiquitylome as well as crosstalks among the three datasets in A549 cells toward SAHA treatment. In total, 2968 proteins, 1099 acetylation sites and 1012 ubiquitination sites were quantified in response to SAHA treatment, respectively. With the aid of intensive bioinformatics, we revealed that the proteome and ubiquitylome were negatively related upon SAHA treatment. Moreover, the impact of SAHA on acetylome resulted in 258 up-regulated and 99 down-regulated acetylation sites at the threshold of 1.5 folds. Finally, we identified 55 common sites with both acetylation and ubiquitination, among which ubiquitination level in 43 sites (78.2%) was positive related to acetylation level. PMID:25825284

  2. Baicalein Induces Caspase-dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 Cells.

    PubMed

    Kim, Hong Jae; Park, Cheol; Han, Min-Ho; Hong, Su-Hyun; Kim, Gi-Young; Hong, Sang Hoon; Kim, Nam Deuk; Choi, Yung Hyun

    2016-03-01

    Baicalein is one of the main bioactive flavonoids found in the roots of Scutellaria baicalensis Georgi. Here, we report that baicalein-induced growth inhibition was associated with the induction of apoptosis in human lung carcinoma A549 cells. Baicalein stimulated the expression of DR5, FasL, and FADD, and activated caspase-8 by reducing the levels of FLIPs (FLICE-inhibitory proteins). The apoptotic cell death was also connected with an activation of caspase-9 and -3, and cleavage of poly(ADP-ribose) polymerase; however, a blockage of caspase activation abolished baicalein-induced apoptotic potentials. Additionally, baicalein caused a mitochondrial membrane potential (MMP), the truncation of Bid, and the translocation of pro-apoptotic Bax to the mitochondria, thereby inducing the release of cytochrome c into the cytosol. In turn, baicalein increased the generation of reactive oxygen species (ROS); however, an ROS scavenger, N-acetylcysteine, notably attenuated baicalein-mediated loss of MMP and activation of caspases. Furthermore, baicalein activated the AMP-activated protein kinase (AMPK) signaling pathway. Consequently, baicalein-triggered cell death was attenuated by an AMPK inhibitor, but increased by an AMPK activator, compound C. Overall, the results suggest that the apoptotic activity of baicalein may be associated with caspase-dependent cascade through the activation of both intrinsic and extrinsic signaling pathways connected with ROS generation and AMPK activation.

  3. Baicalein Induces Caspase-dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 Cells.

    PubMed

    Kim, Hong Jae; Park, Cheol; Han, Min-Ho; Hong, Su-Hyun; Kim, Gi-Young; Hong, Sang Hoon; Kim, Nam Deuk; Choi, Yung Hyun

    2016-03-01

    Baicalein is one of the main bioactive flavonoids found in the roots of Scutellaria baicalensis Georgi. Here, we report that baicalein-induced growth inhibition was associated with the induction of apoptosis in human lung carcinoma A549 cells. Baicalein stimulated the expression of DR5, FasL, and FADD, and activated caspase-8 by reducing the levels of FLIPs (FLICE-inhibitory proteins). The apoptotic cell death was also connected with an activation of caspase-9 and -3, and cleavage of poly(ADP-ribose) polymerase; however, a blockage of caspase activation abolished baicalein-induced apoptotic potentials. Additionally, baicalein caused a mitochondrial membrane potential (MMP), the truncation of Bid, and the translocation of pro-apoptotic Bax to the mitochondria, thereby inducing the release of cytochrome c into the cytosol. In turn, baicalein increased the generation of reactive oxygen species (ROS); however, an ROS scavenger, N-acetylcysteine, notably attenuated baicalein-mediated loss of MMP and activation of caspases. Furthermore, baicalein activated the AMP-activated protein kinase (AMPK) signaling pathway. Consequently, baicalein-triggered cell death was attenuated by an AMPK inhibitor, but increased by an AMPK activator, compound C. Overall, the results suggest that the apoptotic activity of baicalein may be associated with caspase-dependent cascade through the activation of both intrinsic and extrinsic signaling pathways connected with ROS generation and AMPK activation. PMID:26971531

  4. Effect of functionalized and non-functionalized nanodiamond on the morphology and activities of antioxidant enzymes of lung epithelial cells (A549).

    PubMed

    Solarska-Ściuk, Katarzyna; Gajewska, Agnieszka; Glińska, Sława; Michlewska, Sylwia; Balcerzak, Łucja; Jamrozik, Agnieszka; Skolimowski, Janusz; Burda, Květoslava; Bartosz, Grzegorz

    2014-10-01

    The development of nanotechnology opens up new ways for biomedical applications of unmodified and modified diamond nanoparticles which are one of the most popular nanomaterials used in biology, biotechnology, medicine, cosmetics and engineering. They have been applied as diagnostic and therapeutic agents because they can be targeted to and localized in cells causing apoptosis and necrosis. The problem of biocompatibility of nanodiamonds at higher concentrations is thus of primary importance. The first step in the modification of DNPs is usually the introduction of hydrogen groups, which can bind other functional groups. The basic method to introduce -OH groups onto nanoparticles is the Fenton reaction. The aim of this study was to compare the effect of unmodified nanodiamond particles and nanoparticles modified by introduction of -OH groups and etoposide onto their surface reaction on human non-small lung cancer cells. A549 cells were incubated with 2-100μg/ml nanopowders and at 0.6-24μg/ml etoposide in the DMEM medium. We observed a decrease of cells viability and generation of reactive oxygen/ nitrogen species in the cells after incubation, estimated by oxidation of H2DCF-DA and DAF-FM-DA. Modified detonation nanoparticles affected also the cellular content of glutathione and activities of main antioxidant enzymes (glutathione peroxidase, glutathione reductase, glutathione S-transferase, superoxide dismutase and catalase). The results of TEM microscopy show changes in cell morphology. These data demonstrate that modified nanoparticles induce oxidative stress in the target cells. PMID:25451571

  5. Protein C inhibits endocytosis of thrombin-thrombomodulin complexes in A549 lung cancer cells and human umbilical vein endothelial cells

    SciTech Connect

    Maruyama, I.; Majerus, P.W.

    1987-05-01

    We investigated the effect of protein C on the endocytosis of thrombin-thrombomodulin complexes. We previously showed that exposure of umbilical vein endothelial cells to thrombin stimulated the internalization and degradation of thrombin. A similar internalization was stimulated by a monoclonal antithrombomodulin antibody. We have repeated these studies in the presence of protein C and found that endocytosis of /sup 125/I-thrombin-thrombomodulin complexes, but not /sup 125/I-antithrombomodulin-thrombomodulin complexes, is inhibited. Activated protein C did not inhibit endocytosis of thrombin-thrombomodulin complexes. Protein C inhibited both internalization and degradation of /sup 125/I-thrombin and diisopropylphosphoryl (DIP) /sup 125/I-thrombin in human lung cancer cells (A549). These effects were observed at protein C concentrations found in human plasma. Protein S had no effect on the inhibition of endocytosis of thrombin-thrombomodulin complexes by protein C. We propose that protein C may regulate the rate of endocytosis of thrombin-thrombomodulin complexes in vivo and thereby control the capacity for endothelium to activate protein C.

  6. Inhibition of the formation of benzo[a]pyrene adducts to DNA in A549 lung cells exposed to mixtures of polycyclic aromatic hydrocarbons.

    PubMed

    Genies, Camille; Jullien, Amandine; Lefebvre, Emmanuel; Revol, Morgane; Maitre, Anne; Douki, Thierry

    2016-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants, which exhibit carcinogenic properties especially in lungs. In the present work, we studied the effect of mixtures of 12 PAHs on the A549 alveolar cells. We first assess the ability of each PAH at inducing gene expression of phase I metabolization enzymes and at generating DNA adducts. A good correlation was found between these two endpoints. We then exposed cells to either binary mixtures of the highly genotoxic benzo[a]pyrene (B[a]P) with each PAH or complex mixtures of all studied PAHs mimicking by real emissions including combustion of wood, cigarette smoke, and atmospheres of garage, silicon factory and urban environments. Compared to pure B[a]P, both types of mixtures led to reduced CYP450 activity measured by the EROD test. A similar trend was observed for the formation of DNA adducts. Surprisingly, the complex mixtures were more potent than B[a]P used at the same concentration for the induction of genes coding for CYP. Our results stress the lack of additivity of the genotoxic properties of PAH in mixtures. Interestingly, an opposite synergy in the formation of B[a]P adducts were observed previously in hepatocytes. Our data also show that measurement of the metabolic activity rather than quantification of gene expression reflects the actual bioactivation of PAHs into DNA damaging species. PMID:27196671

  7. Gracilaria edulis exhibit antiproliferative activity against human lung adenocarcinoma cell line A549 without causing adverse toxic effect in vitro and in vivo.

    PubMed

    Sakthivel, Ravi; Muniasamy, Samuthirapandi; Archunan, Govindaraju; Devi, Kasi Pandima

    2016-02-01

    In the present study, the antiproliferative potential of various solvent extracts of Gracilaria edulis (GE) was tested against various cancer cell lines. In the A549 lung cancer cell line model, GE ethyl acetate extract (GEEA) (100 μg mL(-1)) treated group showed the maximum and significant (P < 0.05) growth inhibition at 48 h. The IC50 value was found to be 24.5 ± 19.1 μg mL(-1) at 48 h. Moreover, a low level of LDH release was observed at 48 h at various concentrations of (40, 60, 80 and 100 μg mL(-1)) GEEA extract-treated group compared to a control group. Changes in the cell morphology and echinoid spikes formation were observed at 48 h. Safety evaluation of GEEA in a non-cancerous liver cell line, PBMC and in Wistar rats positively revealed that the extract did not show any adverse toxic effects. The GEEA extract was partially purified by column chromatography and the active fraction was characterized through LC-MS analysis. Furthermore, HPLC and FT-IR analysis of the active fractions confirmed the presence of phytol, a diterpene compound with potent antiproliferative activity, which positively suggests that the red alga G. edulis contains a potent anticancer active principle.

  8. Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cells line.

    PubMed

    Palaniappan, P; Sathishkumar, G; Sankar, R

    2015-03-01

    The present study reports, green synthesis of bioactive silver nanoparticles (AgNPs) under different temperature (60°C, room temperature and 4° refrigerator) using the aqueous extract of sea grass Cymodocea serrulata as a potential bioreductant. Increased temperature fabricates more AgNPs compare to room temperature and refrigerator condition. At first the reduction of Ag(+) ions were confirmed through color change which produces an absorbance spectra at 420nm in UV-Visible spectrophotometer. Additionally various exclusive instrumentations such as X-ray diffraction (XRD), Dynamic light scattering (DLS), scanning electron microscope (SEM) analysis and Transmission electron microscope (TEM) were authorizes the biosynthesis and physio-chemical characterization of AgNPs. From Fourier transform infrared spectroscopy (FTIR) analysis, it was identified that the water soluble fractions of the sea grass mainly responsible for reduction of ionic silver (Ag(+)) into (Ag(0)) nano-ranged particles and also they act as stabilizing agent to sustain the durability of NPs for long period of time. Further, synthesized AgNPs shows potential cytotoxicity against human lung cancer A549 cells (LD50-100μg/ml). The overall results suggest that C. serrulata is a valuable bioresource to generate rapid and eco-friendly bioactive AgNPs towards cancer therapy.

  9. MicroRNA-1290 promotes asiatic acid‑induced apoptosis by decreasing BCL2 protein level in A549 non‑small cell lung carcinoma cells.

    PubMed

    Kim, Ki Bbeum; Kim, Karam; Bae, Seunghee; Choi, Yeonghmin; Cha, Hwa Jun; Kim, Soo Yeon; Lee, Jae Ho; Jeon, So Hyeon; Jung, Ho Jung; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan

    2014-09-01

    Asiatic acid, a triterpenoid derived from Centella asiatica, is a putative anticancer agent in several types of cancer cells. Investigations of its biological role in negative regulation of cell growth have focused on the extent of induction of apoptosis in a cell-type-specific manner. In this study, we identified an important regulator of asiatic acid-induced cell death, microRNA (miR)-1290, which sensitizes cells to asiatic acid-induced cytotoxicity and negatively regulates BCL2 expression. Asiatic acid significantly upregulated miR-1290, and asiatic acid-induced cell death was shown to be dependent on miR-1290 activity. Molecular assays demonstrated that BCL2 mRNA is a direct target of miR-1290-mediated RNA interference. The results of functional studies suggest that miR-1290 suppresses cell viability and cell cycle progression. These data provide insight into miR-1290-mediated cellular mechanisms in asiatic acid-treated A549 non-small cell lung carcinoma cells. PMID:25016979

  10. Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cells line.

    PubMed

    Palaniappan, P; Sathishkumar, G; Sankar, R

    2015-03-01

    The present study reports, green synthesis of bioactive silver nanoparticles (AgNPs) under different temperature (60°C, room temperature and 4° refrigerator) using the aqueous extract of sea grass Cymodocea serrulata as a potential bioreductant. Increased temperature fabricates more AgNPs compare to room temperature and refrigerator condition. At first the reduction of Ag(+) ions were confirmed through color change which produces an absorbance spectra at 420nm in UV-Visible spectrophotometer. Additionally various exclusive instrumentations such as X-ray diffraction (XRD), Dynamic light scattering (DLS), scanning electron microscope (SEM) analysis and Transmission electron microscope (TEM) were authorizes the biosynthesis and physio-chemical characterization of AgNPs. From Fourier transform infrared spectroscopy (FTIR) analysis, it was identified that the water soluble fractions of the sea grass mainly responsible for reduction of ionic silver (Ag(+)) into (Ag(0)) nano-ranged particles and also they act as stabilizing agent to sustain the durability of NPs for long period of time. Further, synthesized AgNPs shows potential cytotoxicity against human lung cancer A549 cells (LD50-100μg/ml). The overall results suggest that C. serrulata is a valuable bioresource to generate rapid and eco-friendly bioactive AgNPs towards cancer therapy. PMID:25467657

  11. Suberoylanilide hydroxamic acid treatment reveals crosstalks among proteome, ubiquitylome and acetylome in non-small cell lung cancer A549 cell line.

    PubMed

    Wu, Quan; Cheng, Zhongyi; Zhu, Jun; Xu, Weiqing; Peng, Xiaojun; Chen, Chuangbin; Li, Wenting; Wang, Fengsong; Cao, Lejie; Yi, Xingling; Wu, Zhiwei; Li, Jing; Fan, Pingsheng

    2015-01-01

    Suberoylanilide hydroxamic acid (SAHA) is a well-known histone deacetylase (HDAC) inhibitor and has been used as practical therapy for breast cancer and non-small cell lung cancer (NSCLC). It is previously demonstrated that SAHA treatment could extensively change the profile of acetylome and proteome in cancer cells. However, little is known about the impact of SAHA on other protein modifications and the crosstalks among different modifications and proteome, hindering the deep understanding of SAHA-mediated cancer therapy. In this work, by using SILAC technique, antibody-based affinity enrichment and high-resolution LC-MS/MS analysis, we investigated quantitative proteome, acetylome and ubiquitylome as well as crosstalks among the three datasets in A549 cells toward SAHA treatment. In total, 2968 proteins, 1099 acetylation sites and 1012 ubiquitination sites were quantified in response to SAHA treatment, respectively. With the aid of intensive bioinformatics, we revealed that the proteome and ubiquitylome were negatively related upon SAHA treatment. Moreover, the impact of SAHA on acetylome resulted in 258 up-regulated and 99 down-regulated acetylation sites at the threshold of 1.5 folds. Finally, we identified 55 common sites with both acetylation and ubiquitination, among which ubiquitination level in 43 sites (78.2%) was positive related to acetylation level. PMID:25825284

  12. Inhibition of the formation of benzo[a]pyrene adducts to DNA in A549 lung cells exposed to mixtures of polycyclic aromatic hydrocarbons.

    PubMed

    Genies, Camille; Jullien, Amandine; Lefebvre, Emmanuel; Revol, Morgane; Maitre, Anne; Douki, Thierry

    2016-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants, which exhibit carcinogenic properties especially in lungs. In the present work, we studied the effect of mixtures of 12 PAHs on the A549 alveolar cells. We first assess the ability of each PAH at inducing gene expression of phase I metabolization enzymes and at generating DNA adducts. A good correlation was found between these two endpoints. We then exposed cells to either binary mixtures of the highly genotoxic benzo[a]pyrene (B[a]P) with each PAH or complex mixtures of all studied PAHs mimicking by real emissions including combustion of wood, cigarette smoke, and atmospheres of garage, silicon factory and urban environments. Compared to pure B[a]P, both types of mixtures led to reduced CYP450 activity measured by the EROD test. A similar trend was observed for the formation of DNA adducts. Surprisingly, the complex mixtures were more potent than B[a]P used at the same concentration for the induction of genes coding for CYP. Our results stress the lack of additivity of the genotoxic properties of PAH in mixtures. Interestingly, an opposite synergy in the formation of B[a]P adducts were observed previously in hepatocytes. Our data also show that measurement of the metabolic activity rather than quantification of gene expression reflects the actual bioactivation of PAHs into DNA damaging species.

  13. Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cells line

    NASA Astrophysics Data System (ADS)

    Palaniappan, P.; Sathishkumar, G.; Sankar, R.

    2015-03-01

    The present study reports, green synthesis of bioactive silver nanoparticles (AgNPs) under different temperature (60 °C, room temperature and 4° refrigerator) using the aqueous extract of sea grass Cymodocea serrulata as a potential bioreductant. Increased temperature fabricates more AgNPs compare to room temperature and refrigerator condition. At first the reduction of Ag+ ions were confirmed through color change which produces an absorbance spectra at 420 nm in UV-Visible spectrophotometer. Additionally various exclusive instrumentations such as X-ray diffraction (XRD), Dynamic light scattering (DLS), scanning electron microscope (SEM) analysis and Transmission electron microscope (TEM) were authorizes the biosynthesis and physio-chemical characterization of AgNPs. From Fourier transform infrared spectroscopy (FTIR) analysis, it was identified that the water soluble fractions of the sea grass mainly responsible for reduction of ionic silver (Ag+) into (Ag0) nano-ranged particles and also they act as stabilizing agent to sustain the durability of NPs for long period of time. Further, synthesized AgNPs shows potential cytotoxicity against human lung cancer A549 cells (LD50-100 μg/ml). The overall results suggest that C. serrulata is a valuable bioresource to generate rapid and eco-friendly bioactive AgNPs towards cancer therapy.

  14. How Are Lung Carcinoid Tumors Diagnosed?

    MedlinePlus

    ... Research Get Involved Find Local ACS Learn About Cancer » Lung Carcinoid Tumor » Detailed Guide » How are lung carcinoid tumors diagnosed? Share this Page Close Push escape to close share window. Print ...

  15. Potent organometallic osmium compounds induce mitochondria-mediated apoptosis and S-phase cell cycle arrest in A549 non-small cell lung cancer cells.

    PubMed

    van Rijt, Sabine H; Romero-Canelón, Isolda; Fu, Ying; Shnyder, Steve D; Sadler, Peter J

    2014-05-01

    The problems of acquired resistance associated with platinum drugs may be addressed by chemotherapeutics based on other transition metals as they offer the possibility of novel mechanisms of action. In this study, the cellular uptake and induction of apoptosis in A549 human non-small cell lung cancer cells of three promising osmium(II) arene complexes containing azopyridine ligands, [Os(η(6)-arene)(p-R-phenylazopyridine)X]PF6, where arene is p-cymene or biphenyl, R is OH or NMe2, and X is Cl or I, were investigated. These complexes showed time-dependent (4–48 h) potent anticancer activity with highest potency after 24 h (IC50 values ranging from 0.1 to 3.6 μM). Cellular uptake of the three compounds as quantified by ICP-MS, was independent of their logP values (hydrophobicity). Furthermore, maximum cell uptake was observed after 24 h, with evident cell efflux of the osmium after 48 and 72 h of exposure, which correlated with the corresponding IC50 values. The most active compound 2, [Os(η(6)-p-cymene)(NMe2-phenylazopyridine)I]PF6, was taken up by lung cancer cells predominately in a temperature-dependent manner indicating that energy-dependent mechanisms are important in the uptake of 2. Cell fractionation studies showed that all three compounds accumulated mainly in cellular membranes. Furthermore, compound 2 induced apoptosis and caused accumulation in the S-phase of the cell cycle. In addition, 2 induced cytochrome c release and alterations in mitochondrial membrane potential even after short exposure times, indicating that mitochondrial apoptotic pathways are involved. This study represents the first steps towards understanding the mode of action of this promising class of new osmium-based chemotherapeutics.

  16. The environmental carcinogen 3-nitrobenzanthrone and its main metabolite 3-aminobenzanthrone enhance formation of reactive oxygen intermediates in human A549 lung epithelial cells

    SciTech Connect

    Hansen, Tanja . E-mail: tanja.hansen@item.fraunhofer.de; Seidel, Albrecht; Borlak, Juergen

    2007-06-01

    The environmental contaminant 3-nitrobenzanthrone (3-NBA) is highly mutagenic and a suspected human carcinogen. We aimed to evaluate whether 3-NBA is able to deregulate critical steps in cell cycle control and apoptosis in human lung epithelial A549 cells. Increased intracellular Ca{sup 2+} and caspase activities were detected upon 3-NBA exposure. As shown by cell cycle analysis, an increased number of S-phase cells was observed after 24 h of treatment with 3-NBA. Furthermore, 3-NBA was shown to inhibit cell proliferation when added to subconfluent cell cultures. The main metabolite of 3-NBA, 3-ABA, induced statistically significant increases in tail moment as judged by alkaline comet assay. The potential of 3-NBA and 3-ABA to enhance the production of reactive oxygen species (ROS) was demonstrated by flow cytometry using 2',7'-dichlorofluorescein-diacetate (DCFH-DA). The enzyme inhibitors allopurinol, dicumarol, resveratrol and SKF525A were used to assess the impact of metabolic conversion on 3-NBA-mediated ROS production. Resveratrol decreased dichlorofluorescein (DCF) fluorescence by 50%, suggesting a role for CYP1A1 in 3-NBA-mediated ROS production. Mitochondrial ROS production was significantly attenuated (20% reduction) by addition of rotenone (complex I inhibition) and thenoyltrifluoroacetone (TTFA, complex II inhibition). Taken together, the results of the present study provide evidence for a genotoxic potential of 3-ABA in human epithelial lung cells. Moreover, both compounds lead to increased intracellular ROS and create an environment favorable to DNA damage and the promotion of cancer.

  17. Ambient particulate matter (PM2.5): physicochemical characterization and metabolic activation of the organic fraction in human lung epithelial cells (A549).

    PubMed

    Billet, Sylvain; Garçon, Guillaume; Dagher, Zeina; Verdin, Anthony; Ledoux, Frédéric; Cazier, Fabrice; Courcot, Dominique; Aboukais, Antoine; Shirali, Pirouz

    2007-10-01

    To contribute to complete the knowledge of the underlying mechanisms of action involved in air pollution particulate matter (PM)-induced cytotoxicity, an aerosol was collected in Dunkerque, a French seaside City heavily industrialized. In this work, we focused our attention on its physical and chemical characteristics, its cytotoxicity, and its role in the induction of the volatile organic compound (VOC) and/or polycyclic aromatic hydrocarbon (PAH)-metabolizing enzymes in human lung epithelial cells (A549). Size distribution showed that 92.15% of the collected PM were PM2.5 and the specific surface area was 1 m2/g. Inorganic (i.e. Fe, Al, Ca, Na, K, Mg, Pb, etc.) and organic (i.e. VOC, PAH, etc.) chemicals were found in collected PM, revealing that much of them derived from wind-borne dust from the industrial complex and the heavy motor vehicle traffic. The thermal desorption study indicated that organic chemicals were not only adsorbed onto the surface but also highly incrusted in the structure of PM. The lethal concentrations at 10% and 50% of collected PM were 23.72 microg/mL (or 6.33microg/cm2) and 118.60 microg/mL (or 31.63 microg/cm2), respectively. The VOC and/or PAH-coated onto PM induced significant increases in mRNA expressions of cytochrome P450 (cyp) 1a1, cyp2e1, cyp2f1, nadph quinone oxydo-reductase-1, and glutathione s-transferase-pi 1, versus controls. Hence, we concluded that the metabolic activation of the very low doses of VOC and/or PAH-coated onto the inorganic condensation nuclei from Dunkerque City's PM is one of the underlying mechanisms of action closely involved in its cytotoxicity in human lung epithelial cells.

  18. NADPH:cytochrome c (P450) reductase activates tirapazamine (SR4233) to restore hypoxic and oxic cytotoxicity in an aerobic resistant derivative of the A549 lung cancer cell line

    PubMed Central

    Saunders, M P; Patterson, A V; Chinje, E C; Harris, A L; Stratford, I J

    2000-01-01

    Tirapazamine (TPZ, SR4233, WIN 59075) is a bioreductive drug that is activated in regions of low oxygen tension to a cytotoxic radical intermediate. This labile metabolite shows high selective toxicity towards hypoxic cells, such as those found in solid tumours. Under aerobic conditions, redox cycling occurs with subsequent generation of superoxide radicals, which are also cytotoxic. NADPH:cytochrome c (P450) reductase (P450R) is a one-electron reducing enzyme that efficiently activates TPZ. Recently a derivative of the A549 non-small cell lung cancer cell line (A549c50) was generated that showed substantially reduced P450R activity compared to its parental line (Elwell et al (1997) Biochem Pharmacol54: 249–257). Here, it is demonstrated that the A549c50 cells are markedly more resistant to TPZ under both aerobic and hypoxic conditions. In addition, these cells have a dramatically impaired ability to metabolize TPZ to its two-electron reduction product, SR4317, under hypoxic conditions when compared to wild-type cells. P450R activity in the A549c50 cells was reintroduced to similar levels as that seen in the parental A549 cells by transfection of the full-length cDNA for human P450R. These P450R over-expressing cells exhibit restored sensitivity to TPZ under both aerobic and hypoxic conditions, comparable to that found in the original parental A549 cells. Further, the ability of the transfected cells to metabolize TPZ to SR4317 under hypoxic conditions is also shown to be restored. This provides further evidence that P450R can play an important role in the activation, metabolism and toxicity of this lead bioreductive drug. © 2000 Cancer Research Campaign PMID:10682679

  19. Modulation of intrinsic in vitro resistance to carboplatin by edatrexate in the A549 human nonsmall cell lung cancer cell line.

    PubMed

    Perez, E A; Hack, F M; Fletcher, T S; Chou, T C

    1994-01-01

    Edatrexate (10-ethyl-deazaaminopterin) is a methotrexate analog that has been shown to have greater antitumor activity and improved therapeutic index compared to its parent compound in preclinical systems. We have evaluated the ability of edatrexate to modulate the intrinsic resistance of the lung adenocarcinoma A549 cell line to carboplatin. Concentration effects, exposure time and schedule dependence were assessed. Modulation of resistance was observed with edatrexate treatment (0.2 microM for 1 h) prior to carboplatin. The concentrations of carboplatin to achieve IC50 at the 1-, 3-, and 24-h IC50 were decreased by a mean of 16.8 times (12.2-22.2) with edatrexate preexposure. In contrast, there was little modulation observed of carboplatin resistance when carboplatin was administered prior to edatrexate. In addition, schedule dependency experiments were performed using the method described by Chou and Talalay, in which the ratio of carboplatin to edatrexate was constant or nonconstant, and both the potency of effects and the shapes of the concentration-effect curves were taken into account in a computerized analysis. These experiments also demonstrated schedule dependency. Although both treatments resulted in a reduced IC50 vs. carboplatin alone, the reduction was much greater when edatrexate was added first (12.59 vs. 2.59 times). We conclude that the combination of edatrexate and carboplatin demonstrates schedule-dependent modulation of intrinsic carboplatin resistance in this in vitro model at clinically achievable edatrexate plasma levels (0.01 to 10 microM). The greatest modulatory synergism was observed in the setting of edatrexate treatment before carboplatin. Our findings suggest a potentially useful schedule when combining edatrexate and carboplatin for the treatment of malignant disease.

  20. Biochemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line.

    PubMed

    Majeed, Shahnaz; Abdullah, Mohd Syafiq Bin; Dash, Gouri Kumar; Ansari, Mohammed Tahir; Nanda, Anima

    2016-08-01

    Biosynthesis of silver and other metallic nanoparticles is one of the emerging research area in the field of science and technology due to their potentiality, especially in the field of nano-biotechnology and biomedical sciences in order to develop nanomedicine. In our present study, Penicillium decumbens (MTCC-2494) was brought from Institute of Microbial Technology (IMTECH) Chandigarh and employed for extracellular biological synthesis of silver nanoparticles. Ag-NPs formation was appeared with a dark brown color inside the conical flask. Characterization of Ag-NPs were done by UV-Spectrophotometric analysis which showed absorption peak at 430 nm determines the presence of nanoparticles, Fourier transform infrared (FT-IR) spectroscopic analysis, showed amines and amides are the possible proteins involved in the stabilization of nanoparticles as capping agent. Atomic force Microscopy (AFM) confirmed the particle are spherical, size was around 30 to 60 nm and also the roughness of nanoparticles. Field emission scanning electron microscopy (FE-SEM) showed the topology of the nanoparticles and were spherical in shape. The biosynthesis process was found fast, ecofriendly and cost effective. Nano-silver particle was found to have a broad antimicrobial activity and also it showed good enhancement of antimicrobial activity of Carbenicillin, Piperacillin, Cefixime, Amoxicillin, Ofloxacin and Sparfloxacin in a synergistic mode. These Ag-NPs showed good anti-cancer activity at 80 μg·mL(-1)upon 24 hours of incubation and toxicity increases upon 48 hours of incubation against A-549 human lung cancer cell line and the synergistic formulation of the antibiotic with the synthesized nanoparticles was found more effective against the pathogenic bacteria studied.

  1. DNA damage and cytotoxicity in type II lung epithelial (A549) cell cultures after exposure to diesel exhaust and urban street particles

    PubMed Central

    Danielsen, Pernille Høgh; Loft, Steffen; Møller, Peter

    2008-01-01

    Background Exposure to air pollution particles has been acknowledged to be associated with excess generation of oxidative damage to DNA in experimental model systems and humans. The use of standard reference material (SRM), such as SRM1650 and SRM2975, is advantageous because experiments can be reproduced independently, but exposure to such samples may not mimic the effects observed after exposure to authentic air pollution particles. This study was designed to compare the DNA oxidizing effects of authentic street particles with SRM1650 and SRM2975. The authentic street particles were collected at a traffic intensive road in Copenhagen, Denmark. Results All of the particles generated strand breaks and oxidized purines in A549 lung epithelial cells in a dose-dependent manner and there were no overt differences in their potency. The exposures also yielded dose-dependent increase of cytotoxicity (as lactate dehydrogenase release) and reduced colony forming ability with slightly stronger cytotoxicity of SRM1650 than of the other particles. In contrast, only the authentic street particles were able to generate 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in calf thymus DNA, which might be due to the much higher level of transition metals. Conclusion Authentic street particles and SRMs differ in their ability to oxidize DNA in a cell-free environment, whereas cell culture experiments indicate that the particle preparations elicit a similar alteration of the level of DNA damage and small differences in cytotoxicity. Although it cannot be ruled out that SRMs and authentic street particles might elicit different effects in animal experimental models, this study indicates that on the cellular level, SRM1650 and SRM2975 are suitable surrogate samples for the study of authentic street particles. PMID:18397523

  2. Biochemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line.

    PubMed

    Majeed, Shahnaz; Abdullah, Mohd Syafiq Bin; Dash, Gouri Kumar; Ansari, Mohammed Tahir; Nanda, Anima

    2016-08-01

    Biosynthesis of silver and other metallic nanoparticles is one of the emerging research area in the field of science and technology due to their potentiality, especially in the field of nano-biotechnology and biomedical sciences in order to develop nanomedicine. In our present study, Penicillium decumbens (MTCC-2494) was brought from Institute of Microbial Technology (IMTECH) Chandigarh and employed for extracellular biological synthesis of silver nanoparticles. Ag-NPs formation was appeared with a dark brown color inside the conical flask. Characterization of Ag-NPs were done by UV-Spectrophotometric analysis which showed absorption peak at 430 nm determines the presence of nanoparticles, Fourier transform infrared (FT-IR) spectroscopic analysis, showed amines and amides are the possible proteins involved in the stabilization of nanoparticles as capping agent. Atomic force Microscopy (AFM) confirmed the particle are spherical, size was around 30 to 60 nm and also the roughness of nanoparticles. Field emission scanning electron microscopy (FE-SEM) showed the topology of the nanoparticles and were spherical in shape. The biosynthesis process was found fast, ecofriendly and cost effective. Nano-silver particle was found to have a broad antimicrobial activity and also it showed good enhancement of antimicrobial activity of Carbenicillin, Piperacillin, Cefixime, Amoxicillin, Ofloxacin and Sparfloxacin in a synergistic mode. These Ag-NPs showed good anti-cancer activity at 80 μg·mL(-1)upon 24 hours of incubation and toxicity increases upon 48 hours of incubation against A-549 human lung cancer cell line and the synergistic formulation of the antibiotic with the synthesized nanoparticles was found more effective against the pathogenic bacteria studied. PMID:27608951

  3. Investigations on cytotoxic and genotoxic effects of laser printer emissions in human epithelial A549 lung cells using an air/liquid exposure system.

    PubMed

    Tang, Tao; Gminski, Richard; Könczöl, Mathias; Modest, Christoph; Armbruster, Benedikt; Mersch-Sundermann, Volker

    2012-03-01

    Exposure to emissions from laser printers during the printing process is commonplace worldwide, both in the home and workplace environment. In the present study, cytotoxic and genotoxic effects of the emission from five low to medium-throughput laser printers were investigated with respect to the release of ozone (O(3) ), volatile organic compounds (VOC), particulate matter (PM), and submicrometer particles (SMP) during standby and operation. Experiments were conducted in a 1 m(3) emission chamber connected to a Vitrocell® exposure system. Cytotoxicity was determined by the WST-1 assay and genotoxicity by the micronucleus test in human A549 lung cells. The five laser printers emitted varying but generally small amounts of O(3) , VOC, and PM. VOC emissions included 13 compounds with total VOC concentrations ranging from 95 to 280 μg/m(3) (e.g., 2-butanone, hexanal, m,p-xylene, and o-xylene). Mean PM concentrations were below 2.4 μg/m(3). SMP number concentration levels during standby ranged from 9 to 26 particles/cm(3). However, three of the printers generated a 90 to 16 × 10(3) -fold increase of SMP during the printing process (maximum 294,460 particles/cm(3)). Whereas none of the printer emissions were found to cause cytotoxicity, emissions from two printers induced formation of micronuclei (P < 0.001), thus providing evidence for genotoxicity. As yet, differences in biological activity cannot be explained on the basis of the specific emission characteristics of the different printers. Because laser printing technology is widely used, studies with additional cytogenetic endpoints are necessary to confirm the DNA-damaging potency and to identify emission components responsible for genotoxicity.

  4. Autophagy sensitivity of neuroendocrine lung tumor cells.

    PubMed

    Hong, Seung-Keun; Kim, Jin-Hwan; Starenki, Dmytro; Park, Jong-In

    2013-12-01

    Neuroendocrine (NE) phenotypes characterize a spectrum of lung tumors, including low-grade typical and intermediate-grade atypical carcinoid, high-grade large-cell NE carcinoma and small cell lung carcinoma. Currently, no effective treatments are available to cure NE lung tumors, demanding identification of biological features specific to these tumors. Here, we report that autophagy has an important role for NE lung tumor cell proliferation and survival. We found that the expression levels of the autophagy marker LC3 are relatively high in a panel of lung tumor cell lines expressing high levels of neuron-specific enolase (NSE), a key NE marker in lung tumors. In response to bafilomycin A1 and chloroquine, NE lung tumor cells exhibited cytotoxicity whereas non-NE lung tumor cells exhibited cytostasis, indicating a distinct role of autophagy for NE lung tumor cell survival. Intriguingly, in certain NE lung tumor cell lines, the levels of processed LC3 (LC3-II) were inversely correlated with AKT activity. When AKT activity was inhibited using AKTi or MK2206, the levels of LC3-II and SQSTM1/p62 were increased. In contrast, torin 1, rapamycin or mTOR knockdown increased p62 levels, suggesting that these two pathways have opposing effects on autophagy in certain NE lung tumors. Moreover, inhibition of one pathway resulted in reduced activity of the other, suggesting that these two pathways crosstalk in the tumors. These results suggest that NE lung tumor cells share a common feature of autophagy and are more sensitive to autophagy inhibition than non-NE lung tumor cells. PMID:24126619

  5. In vitro and in vivo antitumour activities of puerarin 6″-O-xyloside on human lung carcinoma A549 cell line via the induction of the mitochondria-mediated apoptosis pathway.

    PubMed

    Chen, Ti; Chen, Hui; Wang, Ying; Zhang, Jian

    2016-09-01

    Context Pueraria lobata (Leguminoseae) shows cytotoxic effects against cancer cells; however, its active components remain unclear. Objective This study investigated the antitumour activity of puerarin 6″-O-xyloside (POS) on the human lung carcinoma A549 cell line. Materials and methods The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the cytotoxicity of POS (at 10, 20 and 40 μM) in vitro, and xenograft nude mice were established to evaluate the antitumour effect of POS (at 40 mg/kg/d) in vivo by 15 days intraperitoneal injection (ip). To explore its mechanism of action, flow cytometry was performed to determine the pro-apoptotic effect of POS (at 10, 20 and 40 μM). Subsequently, the expression of caspase-3, caspase-7, caspase-9, Bcl-2 and Bax in A549 cells were determined. Results POS showed significant cytotoxicity toward A549 cells (p < 0.05) by inducing apoptosis. Treatment with POS significantly upregulated the levels of caspase-3 (p < 0.01), caspase-7 (p < 0.01), caspase-9 (p < 0.01) and Bax (p < 0.01) in A549 cells, and Bcl-2 was downregulated (p < 0.01). Additionally, the in vivo animal study showed that POS significantly inhibited tumour growth in A549 cells (p < 0.01). Conclusion Our study demonstrated the POS has significant antitumour activities. The mechanisms are related to increased levels of caspase-3, caspase-7, caspase-9 and Bax, and reduced levels Bcl-2. PMID:26730946

  6. How Are Lung Carcinoid Tumors Staged?

    MedlinePlus

    ... from the abdomen (diaphragm), the membranes surrounding the space between the lungs (mediastinal pleura), or membranes of ... tumor of any size has grown into the space between the lungs (mediastinum), the heart, the large ...

  7. SchA-p85-FAK complex dictates isoform-specific activation of Akt2 and subsequent PCBP1-mediated post-transcriptional regulation of TGFβ-mediated epithelial to mesenchymal transition in human lung cancer cell line A549.

    PubMed

    Xue, Xinying; Wang, Xin; Liu, Yuxia; Teng, Guigen; Wang, Yong; Zang, Xuefeng; Wang, Kaifei; Zhang, Jinghui; Xu, Yali; Wang, Jianxin; Pan, Lei

    2014-08-01

    A post-transcriptional pathway by which TGF-β modulates expression of specific proteins, Disabled-2 (Dab2) and Interleukin-like EMT Inducer (ILEI), inherent to epithelial to mesenchymal transition (EMT) in murine epithelial cells through Akt2-mediated phosphorylation of poly r(C) binding protein (PCBP1), has been previously elucidated. The aims of the current study were to determine if the same mechanism is operative in the non-small cell lung cancer (NSCLC) cell line, A549, and to delineate the underlying mechanism. Steady-state transcript and protein expression levels of Dab2 and ILEI were examined in A549 cells treated with TGF-β for up to 48 h. Induction of translational de-repression in this model was quantified by polysomal fractionation followed by qRT-PCR. The underlying mechanism of isoform-specific activation of Akt2 was elucidated through a combination of co-immunoprecipitation studies. TGF-β induced EMT in A549 cells concomitant with translational upregulation of Dab2 and ILEI proteins through isoform-specific activation of Akt2 followed by phosphorylation of PCBP1 at serine-43. Our experiments further elucidated that the adaptor protein SchA is phosphorylated at tyrosine residues following TGF-β treatment, which initiated a signaling cascade resulting in the sequential recruitment of p85 subunit of PI3K and focal adhesion kinase (FAK). The SchA-FAK-p85 complex subsequently selectively recruited and activated Akt2, not Akt1. Inhibition of the p85 subunit through phosphorylated 1257 peptide completely attenuated EMT in these cells. We have defined the underlying mechanism responsible for isoform-specific recruitment and activation of Akt2, not Akt1, during TGF-β-mediated EMT in A549 cells. Inhibition of the formation of this complex thus represents an important and novel therapeutic target in metastatic lung carcinoma. PMID:24819169

  8. The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line.

    PubMed

    Xie, Jun; Liu, Jiahui; Liu, Heng; Liang, Shihui; Lin, Meigui; Gu, Yueyu; Liu, Taoli; Wang, Dongmei; Ge, Hui; Mo, Sui-Lin

    2015-11-01

    The effects of tanshinone IIA on the proliferation of the human non-small cell lung cancer cell line A549 and its possible mechanism on the VEGF/VEGFR signal pathway were investigated. The exploration of the interaction between tanshinone IIA and its target proteins provides a feasible platform for studying the anticancer mechanism of active components of herbs. The CCK-8 assay was used to evaluate the proliferative activity of A549 cells treated with tanshinone IIA (2.5-80 μmol/L) for 24, 48 and 72 h, respectively. Flow cytometry was used for the detection of cell apoptosis and cell cycle perturbation. VEGF and VEGFR2 expression were studied by Western blotting. The binding mode of tanshinone IIA within the crystal structure of the VEGFR2 protein was evaluated with molecular docking analysis by use of the CDOCKER algorithm in Discovery Studio 2.1. The CCK-8 results showed that tanshinone IIA can significantly inhibit A549 cell proliferation in a dose- and time-dependent manner. Flow cytometry results showed that the apoptosis rate of tested group was higher than the vehicle control, and tanshinone IIA-treated cells accumulated at the S phase, which was higher than the vehicle control. Furthermore, the expression of VEGF and VEGFR2 was decreased in Western blot. Finally, molecular docking analysis revealed that tanshinone IIA could be stably docked into the kinase domain of VEGFR2 protein with its unique modes to form H-bonds with Cys917 and π-π stacking interactions with Val848. In conclusion, tanshinone IIA may suppress A549 proliferation, induce apoptosis and cell cycle arrest at the S phase. This drug may suppress angiogenesis by targeting the protein kinase domains of VEGF/VEGFR2. PMID:26713270

  9. Bcl-xL Silencing Induces Alterations in hsa-miR-608 Expression and Subsequent Cell Death in A549 and SK-LU1 Human Lung Adenocarcinoma Cells

    PubMed Central

    Othman, Norahayu; In, Lionel L. A.; Harikrishna, Jennifer A.; Hasima, Noor

    2013-01-01

    Bcl-xL is an anti-apoptotic protein that is frequently found to be overexpressed in non-small cell lung cancer leading to an inhibition of apoptosis and poor prognosis. Recently, the role of miRNAs in regulating apoptosis and cell survival during tumorigenesis has become evident, with cancer cells showing perturbed expression of various miRNAs. In this study, we utilized miRNA microarrays to determine if miRNA dysregulation in bcl-xL silenced lung adenocarcinoma cells could be involved in regulating cell death. Short interfering RNA-based transfection of A549 and SK-LU1 lung adenocarcinoma cells was successful in inducing a reduction in bcl-xL expression levels, resulting in a decrease in cell viability. A total of 10 miRNAs were found to be significantly differentially expressed when compared between siRNA-transfected and non-transfected cells including hsa-miR-181a, hsa-miR-769-5p, hsa-miR-361-5p, hsa-miR-1304 and hsa-miR-608. When overexpression studies on hsa-miR-608 was performed via transfection of miRNA mimics, cell death was found to be induced in A549 and SK-LU1 cells in comparison to untreated cells. This effect was reversed when knockdown studies involving anti-sense inhibitors were introduced. Combination of siRNA based silencing of bcl-xL (siBcl-xL) followed by anti-sense inhibitor transfection led to a decrease in the apoptotic population of A549 and SK-LU1 cells in comparison to cells only treated with siBcl-xL, illustrating the connection between bcl-xL, hsa-miR-608 and cell death. Gene target prediction analysis implicated the PI3K/AKT, WNT, TGF-β, and ERK signaling pathways as targets of bcl-xL induced miRNA alterations. We have demonstrated that bcl-xL silencing in A549 and SK-LU1 cells leads to the occurrence of cell death through the dysregulation of specific miRNAs. This study also provides a platform for anti-sense gene therapy whereby miRNA expression can be exploited to increase the apoptotic properties in lung adenocarcinoma cells. PMID

  10. Inhibition of lung tumor growth and augmentation of radiosensitivity by decreasing peroxiredoxin I expression

    SciTech Connect

    Chen, M.-F.; Keng, Peter C.; Shau Hungyi; Wu, C.-T.; Hu, Y.-C.; Liao, S.-K.; Chen, W.-C. . E-mail: miaofen@adm.cgmh.org.tw

    2006-02-01

    Purpose: In this study, we examined the role of peroxiredoxin I (Prx I) in lung cancer cell growth in vitro and in vivo and its influence on these tumor cells' sensitivity to radiotherapy. Methods and materials: We established stable transfectants of A549 (p53+) and H1299 (p53-) lung carcinoma cell lines with Prx I antisense to downregulate their Prx I protein. We then examined their in vitro biologic changes and used nude mice xenografts of these cell lines to compare tumor invasion, spontaneous metastatic capacity, and sensitivity to radiotherapy. Results: The Prx I antisense transfectants of both cell lines showed a significant reduction in Prx I protein production. Prx I antisense transfectants grew more slowly than did the wild type. As xenografts in mice, A549 Prx I antisense transfectants showed a threefold delay in the generation of palpable tumors. The incidence of spontaneous metastasis of Prx I antisense transfectants was significantly less than that of the wild-type cells. Furthermore, irradiation of Prx I antisense transfectants caused more than twice the growth delay compared with the wild type. Conclusion: The results of these studies suggest that inactivation of Prx I may be a promising approach to improve the treatment outcome of patients with lung cancer.

  11. Cedrol induces autophagy and apoptotic cell death in A549 non-small cell lung carcinoma cells through the P13K/Akt signaling pathway, the loss of mitochondrial transmembrane potential and the generation of ROS.

    PubMed

    Zhang, Shi-Yi; Li, Xue-Bo; Hou, Sheng-Guang; Sun, Yao; Shi, Yi-Ran; Lin, Song-Sen

    2016-07-01

    The objective of the present study was to determine the anticancer effects of cedrol in A549 human non-small cell lung cancer cells by examining the effects of cedrol on apoptosis induction, the phosphatidylinositol 3'-kinase (PI3K)/Akt signaling pathway, autophagy, reactive oxygen species (ROS) generation and mitochondrial transmembrane potential (MTP). The anticancer effects of cedrol were examined using A549 human lung carcinoma cells as an in vitro model. Cell viability was determined using MTT and lactate dehydrogenase (LDH) assays, and an inverted phase contrast microscope was used to examine the morphological changes in these cells. Cedrol‑triggered autophagy was confirmed by transmission electron microscopy (TEM) analysis of the cells, as well as by western blot analysis of microtubule-associated protein light-chain 3 (LC3)B expression. Intracellular ROS generation was measured by flow cytometry using 5-(6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate (CM-DCFH2-DA) staining and MTP was measured using flow cytometry. The results demonstrated that cedrol reduced cell viability and induced cell apoptosis in a dose-dependent manner. Mechanistic evaluations indicated that cedrol induced apoptosis by reducing the MTP and by decreasing the levels of phosphorylated (p-)PI3K and p-Akt. Cedrol induced autophagy, which was confirmed by TEM analysis, by increasing intracellular ROS formation in a concentration-dependent manner, which was almost completely reversed by N-acetyl-L-cysteine (NAC) and tocopherol. Taken together, these findings reveal that cedrol inhibits cell proliferation and induces apoptosis in A549 cells through mitochondrial and PI3K/Akt signaling pathways. Our findings also reveal that cedrol induced pro-death autophagy by increasing intracellular ROS production.

  12. Combination treatment with triptolide and hydroxycamptothecin synergistically enhances apoptosis in A549 lung adenocarcinoma cells through PP2A-regulated ERK, p38 MAPKs and Akt signaling pathways

    PubMed Central

    MENG, GUANMIN; WANG, WEI; CHAI, KEQUN; YANG, SUWEN; LI, FANGQIONG; JIANG, KAI

    2015-01-01

    Lung cancer is the leading cause of cancer death worldwide. Recently, two plant-derived drugs triptolide (TP) and hydroxycamptothecin (HCPT) both have shown broad-spectrum anticancer activities. Our previous study documented that combination treatment with these two drugs acted more effectively than mono-therapy, however, the molecular basis underlying the synergistic cytotoxicity remains poorly understood. In this study, we aimed to clarify the molecular mechanism of TP/HCPT anticancer effect in A549 lung adenocarcinoma cells, by investigating the involvement of phosphatase 2A (PP2A) and PP2A-regulated mitogen-activated protein kinases (MAPKs) and Akt signaling pathways. The results showed that TP and HCPT synergistically exerted cytotoxicity in the growth of A549 cells. Combinatorial TP/HCPT treatment significantly enhanced the activation of caspase-3 and -9, Bax/Bcl-2 ratio, release of cytochrome c from mitochondrial and subsequent apoptosis. While the Akt survival pathway was inhibited, ERK and p38 MAPKs were dramatically activated. Furthermore, the activity of PP2A was significantly augmented. Regulation of p38, ERK and Akt by PP2A was demonstrated, by using a specific PP2A inhibitor okadaic acid (OA). Finally, pharmacological inhibitors OA, SB203580, SP600125 and PD98059 confirm the role of PP2A and its substrates ERK, p38 MAPK and Akt in mediating TP/HCPT-induced apoptosis. Taken together, this study provides the first evidence for a synergistic TP/HCPT anti-cancer activity in A549 cells and also supports a critical role of PP2A and PP2A-regulated signaling pathways, providing new insight into the mode of action of TP/HCPT in cancer therapy. PMID:25573072

  13. In vitro effects induced by diesel exhaust at an air-liquid interface in a human lung alveolar carcinoma cell line A549.

    PubMed

    Okubo, Tomoko; Hosaka, Mitsugu; Nakae, Dai

    2015-01-01

    The present study examined the effects induced in vitro in human adenocarcinoma-derived alveolar basal epithelial A549 cells by diesel particulate matter (DPM) administered into the culture medium or by diesel exhaust administered at an air-liquid interface. When A549 cells were exposed to DPM in the culture medium, cell proliferation was inhibited at doses of 10-100 μg/mL; generation of interleukin (IL)-8 and the antioxidant enzyme, heme oxygenase-1 (HO-1), were inhibited at a dose of 100 μg/mL, and hydroxyl radicals were produced, but could be inhibited by catalase or superoxide dismutase. In contrast, when A549 cells were exposed to diesel exhaust, cell proliferation was inhibited in the absence, but not in the presence, of a diesel particulate filter (DPF); in the absence of a DPF IL-8 was produced in the same amount as in the control cells but was suppressed in the presence of a DPF; HO-1 mRNA was transiently over-expressed in the presence of a DPF, and it was also increased slightly produced in the absence of a DPF but statistically not significant in the presence of a DPF, and it was also increased slightly produced in the absence of a DPF but statistically not significant; HO-1 was transiently produced independent of the absence or the presence of a DPF; and hydroxyl radicals were weakly produced, even in the presence of a DPF but could be inhibited by catalase or superoxide dismutase. It is thus suggested that oxidative stress may be induced by exposure to DPM or diesel exhaust and thereby exerts cytotoxic effect. The introduction of a DPF is effective to protect cells from the toxicity of diesel exhaust presumably by suppression of an oxidative stress.

  14. A polysaccharide fraction of adlay seed (Coixlachryma-jobi L.) induces apoptosis in human non-small cell lung cancer A549 cells

    SciTech Connect

    Lu, Xiangyi; Liu, Wei; Wu, Junhua; Li, Mengxian; Wang, Juncheng; Wu, Jihui; Luo, Cheng

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer A polysaccharide from adlay seed, its molecular mass, optical rotation and sugars was determined. Black-Right-Pointing-Pointer We demonstrated that a polysaccharide from adlay can induce apoptosis in cancer cells. Black-Right-Pointing-Pointer The polysaccharide inhibited the metabolism and proliferation of NSCLC A549 cells. Black-Right-Pointing-Pointer The polysaccharide may trigger apoptosis via the mitochondria-dependent pathway. -- Abstract: Different seed extracts from Coix lachryma-jobi (adlay seed) have been used for the treatment of various cancers in China, and clinical data support the use of these extracts for cancer therapy; however, their underlying molecular mechanisms have not been well defined. A polysaccharide fraction, designated as CP-1, was extracted from the C.lachryma-jobi L. var. using the ethanol subsiding method. CP-1 induced apoptosis in A549 cells in a dose-dependent manner, as determined by MTT assay. Apoptotic bodies were observed in the cells by scanning electronic microscopy. Apoptosis and DNA accumulation during S-phase of the cell cycle were determined by annexin V-FITC and PI staining, respectively, and measured by flow cytometry. CP-1 also extended the comet tail length on single cell gel electrophoresis, and disrupted the mitochondrial membrane potential. Further analysis by western blotting showed that the expression of caspase-3 and caspase-9 proteins was increased. Taken together, our results demonstrate that CP-1 is capable of inhibiting A549 cell proliferation and inducing apoptosis via a mechanism primarily involving the activation of the intrinsic mitochondrial pathway. The assay data suggest that in addition to its nutritional properties, CP-1 is a very promising candidate polysaccharide for the development of anti-cancer medicines.

  15. In vitro effects induced by diesel exhaust at an air-liquid interface in a human lung alveolar carcinoma cell line A549.

    PubMed

    Okubo, Tomoko; Hosaka, Mitsugu; Nakae, Dai

    2015-01-01

    The present study examined the effects induced in vitro in human adenocarcinoma-derived alveolar basal epithelial A549 cells by diesel particulate matter (DPM) administered into the culture medium or by diesel exhaust administered at an air-liquid interface. When A549 cells were exposed to DPM in the culture medium, cell proliferation was inhibited at doses of 10-100 μg/mL; generation of interleukin (IL)-8 and the antioxidant enzyme, heme oxygenase-1 (HO-1), were inhibited at a dose of 100 μg/mL, and hydroxyl radicals were produced, but could be inhibited by catalase or superoxide dismutase. In contrast, when A549 cells were exposed to diesel exhaust, cell proliferation was inhibited in the absence, but not in the presence, of a diesel particulate filter (DPF); in the absence of a DPF IL-8 was produced in the same amount as in the control cells but was suppressed in the presence of a DPF; HO-1 mRNA was transiently over-expressed in the presence of a DPF, and it was also increased slightly produced in the absence of a DPF but statistically not significant in the presence of a DPF, and it was also increased slightly produced in the absence of a DPF but statistically not significant; HO-1 was transiently produced independent of the absence or the presence of a DPF; and hydroxyl radicals were weakly produced, even in the presence of a DPF but could be inhibited by catalase or superoxide dismutase. It is thus suggested that oxidative stress may be induced by exposure to DPM or diesel exhaust and thereby exerts cytotoxic effect. The introduction of a DPF is effective to protect cells from the toxicity of diesel exhaust presumably by suppression of an oxidative stress. PMID:25983017

  16. Biosynthesized Platinum Nanoparticles Inhibit the Proliferation of Human Lung-Cancer Cells in vitro and Delay the Growth of a Human Lung-Tumor Xenograft in vivo

    PubMed Central

    Yogesh, Bendale; Vineeta, Bendale; Rammesh, Natu; Saili, Paul

    2016-01-01

    Objectives: Lung cancer remains a deadly disease with unsatisfactory overall survival. Cisplatin, a standard platinum (Pt)-based chemotherapeutic agent, has the potential to inhibit the growth of lung cancer. Its use, however, is occasionally limited by severe organ toxicity. However, until now, no systematic study has been conducted to verify its efficacy with proper experimental support in vivo. Therefore, we examined whether biosynthesized Pt nanoparticles (NPs) inhibited human lung cancer in vitro and in vivo to validate their use in alternative and complementary medicine. Methods: We evaluated the in vitro and the in vivo anticancer efficiencies of biosynthesized Pt NPs in a subcutaneous xenograft model with A549 cells. Severe combined immune deficient mice (SCID) were divided into four groups: group 1 being the vehicle control group and groups 2, 3 and 4 being the experimental groups. Once the tumor volume had reached 70 ─ 75 mm3, the progression profile of the tumor growth kinetics and the body weights of the mice were measured every week for 6 weeks after oral administration of Pt NPs. Doses of Pt NPs of 500, 1,000 and 2,000 mg/kg of body weight were administered to the experimental groups and a dose of honey was administered to the vehicle control group. The efficacy was quantified by using the delay in tumor growth following the administration of Pt NPs of A549 human-lung-cancer xenografts growing in SCID mice. Results: The in vitro cytotoxicity evaluation indicated that Pt NPs, in a dose-dependent manner, inhibited the growth of A549 cells, and the in vivo evaluation showed that Pt NPs at the mid and high doses effectively inhibited and delayed the growth of lung cancer in SCID mice. Conclusion: These findings confirm the antitumor properties of biosynthesized Pt NPs and suggest that they may be a cost-effective alternative for the treatment of patients with lung cancer. PMID:27386144

  17. Tumor-targeted and pH-controlled delivery of doxorubicin using gold nanorods for lung cancer therapy

    PubMed Central

    Amreddy, Narsireddy; Muralidharan, Ranganayaki; Babu, Anish; Mehta, Meghna; Johnson, Elyse V; Zhao, Yan D; Munshi, Anupama; Ramesh, Rajagopal

    2015-01-01

    Background In lung cancer, the efficacy of conventional chemotherapy is limited due to poor drug accumulation in tumors and nonspecific cytotoxicity. Resolving these issues will increase therapeutic efficacy. Methods GNR-Dox-Tf-NPs (gold nanorod-doxorubicin-transferrin-nanoparticles) were prepared by different chemical approaches. The efficacy of these nanoparticles was carried out by cell viability in lung cancer and primary coronary artery smooth muscle cells. The receptor-mediated endocytosis studies were done with human transferrin and desferrioxamine preincubation. The GNR-Dox-Tf nanoparticles induced apoptosis, and DNA damage studies were done by Western blot, H2AX foci, and comet assay. Results We developed and tested a gold nanorod-based multifunctional nanoparticle system (GNR-Dox-Tf-NP) that carries Dox conjugated to a pH-sensitive linker and is targeted to the transferrin receptor overexpressed in human lung cancer (A549, HCC827) cells. GNR-Dox-Tf-NP underwent physicochemical characterization, specificity assays, tumor uptake studies, and hyperspectral imaging. Biological studies demonstrated that transferrin receptor-mediated uptake of the GNR-Dox-Tf-NP by A549 and HCC827 cells produced increased DNA damage, apoptosis, and cell killing compared with nontargeted GNR-Dox-NP. GNR-Dox-Tf-NP-mediated cytotoxicity was greater (48% A549, 46% HCC827) than GNR-Dox-NP-mediated cytotoxicity (36% A549, 39% HCC827). Further, GNR-Dox-Tf-NP markedly reduced cytotoxicity in normal human coronary artery smooth muscle cells compared with free Dox. Conclusion Thus, GNR-Dox-Tf nanoparticles can selectively target and deliver Dox to lung tumor cells and alleviate free Dox-mediated toxicity to normal cells. PMID:26604751

  18. A cytoplasmic C-terminal fragment of syndecan-1 is generated by sequential proteolysis and antagonizes syndecan-1 dependent lung tumor cell migration

    PubMed Central

    Pasqualon, Tobias; Pruessmeyer, Jessica; Jankowski, Vera; Babendreyer, Aaron; Groth, Esther; Schumacher, Julian; Koenen, Andrea; Weidenfeld, Sarah; Schwarz, Nicole; Denecke, Bernd; Jahr, Holger; Dreymueller, Daniela; Jankowski, Joachim; Ludwig, Andreas

    2015-01-01

    Syndecan-1 is a surface expressed heparan sulphate proteoglycan, which is upregulated by several tumor types and involved in tumor cell migration and metastasis. Syndecan-1 is shed from the cell surface and the remaining transmembrane fragment undergoes intramembrane proteolysis by γ-secretase. We here show that this generates a cytoplasmic C-terminal fragment (cCTF). In epithelial lung tumor A549 cells the endogenously produced cCTF accumulated when its proteasomal degradation was blocked with bortezomib and this accumulation was prevented by γ-secretase inhibition. Overexpression of the cCTF suppressed migration and invasion of A549 cells. This inhibitory effect was only seen when endogenous syndecan-1 was present, but not in syndecan-1 deficient cells. Further, overexpression of syndecan-1 cCTF increased the basal activation of Src kinase, focal adhesion kinase (FAK) and Rho GTPase. This was associated with increased adhesion to fibronectin and collagen G and an increased recruitment of paxillin to focal adhesions. Moreover, lung tumor formation of A549 cells in mice was reduced by overexpression of syndecan-1 cCTF. Finally, delivery of a synthetic peptide corresponding to the syndecan-1 cCTF suppressed A549 cell migration and increased basal phosphorylation of Src and FAK. Our data indicate that the syndecan-1 cCTF antagonizes syndecan-1 dependent tumor cell migration in vitro and in vivo by dysregulating proadhesive signaling pathways and suggest that the cCTF can be used as an inhibitory peptide. PMID:26378057

  19. Promotion of lung tumors in mice

    SciTech Connect

    Witschi, H.P.

    1981-01-01

    Several elements of two-stage carcinogenesis apply to the development of lung tumors in mice. At least three agents, identified as promoters, will also enhance tumor formation in lung: phorbol, saccharin, and butylated hydroxytoluene (BHT). The antioxidant BHT is effective only if animals are treated after exposure to an initiating agent. Administration can be delayed up to 5 months after urethan treatment and still enhance tumor formation. BHT enhances lung tumor formation regardless of its route of administration. The lowest dose required to produce an effect has not yet been determined. In at least one mouse strain, BHT also enhances tumor formation in animals initiated with 3-methylcholanthren or diethylnitrosaine. No evidence is available yet to show that BHT would enhance tumor development in animals treated with subcarcinogenic doses of an initiating compound. Nor has it been possible to produce more tumors with BHT in mouse strains which have a low spontaneous tumor incidence and respond poorly to urethan. Neveretheless, the data collected on the effects of BHT on mouse lung tumor development have broadened the concept of two-stage carcinogenesis and complement the evidence for initiation-promotion available for other epithelial tissues. (ERB)

  20. Hyaluronic acid-fabricated nanogold delivery of the inhibitor of apoptosis protein-2 siRNAs inhibits benzo[a]pyrene-induced oncogenic properties of lung cancer A549 cells

    NASA Astrophysics Data System (ADS)

    Lin, Chung-Ming; Kao, Wei-Chien; Yeh, Chun-An; Chen, Hui-Jye; Lin, Shinn-Zong; Hsieh, Hsien-Hsu; Sun, Wei-Shen; Chang, Chih-Hsuan; Hung, Huey-Shan

    2015-03-01

    Benzo[a]pyrene (BaP), a component of cooking oil fumes (COF), promotes lung cancer cell proliferation and survival via the induction of inhibitor of apoptosis protein-2 (IAP-2) proteins. Thus knockdown of IAP-2 would be a promising way to battle against lung cancer caused by COF. Functionalized gold nanoparticle (AuNP) is an effective delivery system for bio-active materials. Here, biocompatible hyaluronic acid (HA) was fabricated into nanoparticles to increase the target specificity by binding to CD44-over-expressed cancer cells. IAP-2-specific small-interfering RNA (siRNAs) or fluorescein isothiocyanate (FITC) were then incorporated into AuNP-HA. Conjugation of IAP-2 siRNA into AuNPs-HA was verified by the UV-vis spectrometer and Fourier transform infrared spectrometer. Further studies showed that AuNP-HA/FITC were effectively taken up by A549 cells through CD44-mediated endocytosis. Incubation of BaP-challenged cells with AuNP-HA-IAP-2 siRNAs silenced the expression of IAP-2, decreased cell proliferation and triggered pronounced cell apoptosis by the decrease in Bcl-2 protein and the increase in Bax protein as well as the active form of caspases-3. The BaP-elicited cell migration and enzymatic activity of the secreted matrix metalloproteinase-2 were also substantially suppressed by treatment with AuNP-HA-IAP-2 siRNAs. These results indicated that IAP-2 siRNAs can be efficiently delivered into A549 cells by functionalized AuNP-HA to repress the IAP-2 expression and BaP-induced oncogenic events, suggesting the potential therapeutic application of IAP-2 siRNA or other siRNA-conjugated AuNP-HA composites to COF-induced lung cancer and other gene-caused diseases in the future.

  1. Hyaluronic acid-fabricated nanogold delivery of the inhibitor of apoptosis protein-2 siRNAs inhibits benzo[a]pyrene-induced oncogenic properties of lung cancer A549 cells.

    PubMed

    Lin, Chung-Ming; Kao, Wei-Chien; Yeh, Chun-An; Chen, Hui-Jye; Lin, Shinn-Zong; Hsieh, Hsien-Hsu; Sun, Wei-Shen; Chang, Chih-Hsuan; Hung, Huey-Shan

    2015-03-13

    Benzo[a]pyrene (BaP), a component of cooking oil fumes (COF), promotes lung cancer cell proliferation and survival via the induction of inhibitor of apoptosis protein-2 (IAP-2) proteins. Thus knockdown of IAP-2 would be a promising way to battle against lung cancer caused by COF. Functionalized gold nanoparticle (AuNP) is an effective delivery system for bio-active materials. Here, biocompatible hyaluronic acid (HA) was fabricated into nanoparticles to increase the target specificity by binding to CD44-over-expressed cancer cells. IAP-2-specific small-interfering RNA (siRNAs) or fluorescein isothiocyanate (FITC) were then incorporated into AuNP-HA. Conjugation of IAP-2 siRNA into AuNPs-HA was verified by the UV-vis spectrometer and Fourier transform infrared spectrometer. Further studies showed that AuNP-HA/FITC were effectively taken up by A549 cells through CD44-mediated endocytosis. Incubation of BaP-challenged cells with AuNP-HA-IAP-2 siRNAs silenced the expression of IAP-2, decreased cell proliferation and triggered pronounced cell apoptosis by the decrease in Bcl-2 protein and the increase in Bax protein as well as the active form of caspases-3. The BaP-elicited cell migration and enzymatic activity of the secreted matrix metalloproteinase-2 were also substantially suppressed by treatment with AuNP-HA-IAP-2 siRNAs. These results indicated that IAP-2 siRNAs can be efficiently delivered into A549 cells by functionalized AuNP-HA to repress the IAP-2 expression and BaP-induced oncogenic events, suggesting the potential therapeutic application of IAP-2 siRNA or other siRNA-conjugated AuNP-HA composites to COF-induced lung cancer and other gene-caused diseases in the future.

  2. Cinnamomum verum Component 2-Methoxycinnamaldehyde: A Novel Anticancer Agent with Both Anti-Topoisomerase I and II Activities in Human Lung Adenocarcinoma A549 Cells In Vitro and In Vivo.

    PubMed

    Wong, Ho-Yiu; Tsai, Kuen-daw; Liu, Yi-Heng; Yang, Shu-mei; Chen, Ta-Wei; Cherng, Jonathan; Chou, Kuo-Shen; Chang, Chen-Mei; Yao, Belen T; Cherng, Jaw-Ming

    2016-02-01

    Cinnamomum verum is used to make the spice cinnamon and has been used as a traditional Chinese herbal medicine. We evaluated the anticancer effect of 2-methoxycinnamaldehyde (2-MCA), a constituent of the bark of the plant, and its underlying molecular biomarkers associated with carcinogenesis in human lung adenocarcinoma A549 cells. The results show that 2-MCA suppressed proliferation and induced apoptosis as indicated by an upregulation of pro-apoptotic Bax and Bak genes and downregulation of anti-apoptotic Bcl-2 and Bcl-XL genes, mitochondrial membrane potential loss, cytochrome c release, activation of caspase-3 and -9, and morphological characteristics of apoptosis, including plasma membrane blebbing and long comet tail. In addition, 2-MCA also induced lysosomal vacuolation with increased volume of acidic compartment (VAC) and suppressions of nuclear transcription factors nuclear factor-κB (NF-κB) and both topoisomerase I and II activities. Further study reveals that the growth-inhibitory effect of 2-MCA was also evident in a nude mice model. Taken together, the data suggest that the growth-inhibitory effect of 2-MCA against A549 cells is accompanied by downregulations of NF-κB binding activity and proliferative control involving apoptosis and both topoisomerase I and II activities, together with an upregulation of lysosomal vacuolation and VAC. Our data suggest that 2-MCA could be a potential agent for anticancer therapy.

  3. Stellettin B Induces G1 Arrest, Apoptosis and Autophagy in Human Non-small Cell Lung Cancer A549 Cells via Blocking PI3K/Akt/mTOR Pathway

    PubMed Central

    Wang, Ran; Zhang, Qian; Peng, Xin; Zhou, Chang; Zhong, Yuxu; Chen, Xi; Qiu, Yuling; Jin, Meihua; Gong, Min; Kong, Dexin

    2016-01-01

    Until now, there is not yet antitumor drug with dramatically improved efficacy on non-small cell lung cancer (NSCLC). Marine organisms are rich source of novel compounds with various activities. We isolated stellettin B (Stel B) from marine sponge Jaspis stellifera, and demonstrated that it induced G1 arrest, apoptosis and autophagy at low concentrations in human NSCLC A549 cells. G1 arrest by Stel B might be attributed to the reduction of cyclin D1 and enhancement of p27 expression. The apoptosis induction might be related to the cleavage of PARP and increase of ROS generation. Moreover, we demonstrated that Stel B induced autophagy in A549 cells by use of various assays including monodansylcadaverine (MDC) staining, transmission electron microscopy (TEM), tandem mRFP-GFP-LC3 fluorescence microscopy, and western blot detection of the autophagy markers of LC3B, p62 and Atg5. Meanwhile, Stel B inhibited the expression of PI3K-p110, and the phosphorylation of PDK1, Akt, mTOR, p70S6K as well as GSK-3β, suggesting the correlation of blocking PI3K/Akt/mTOR pathway with the above antitumor activities. Together, our findings indicate the antitumor potential of Stel B for NSCLC by targeting PI3K/Akt/mTOR pathway. PMID:27243769

  4. MiR-630 inhibits proliferation by targeting CDC7 kinase, but maintains the apoptotic balance by targeting multiple modulators in human lung cancer A549 cells

    PubMed Central

    Cao, J-X; Lu, Y; Qi, J-J; An, G-S; Mao, Z-B; Jia, H-T; Li, S-Y; Ni, J-H

    2014-01-01

    MicroRNAome analyses have shown microRNA-630 (miR-630) to be involved in the regulation of apoptosis. However, its apoptotic role is still debated and its participation in DNA replication is unknown. Here, we demonstrate that miR-630 inhibits cell proliferation by targeting cell-cycle kinase 7 (CDC7) kinase, but maintains the apoptotic balance by targeting multiple activators of apoptosis under genotoxic stress. We identified a novel regulatory mechanism of CDC7 gene expression, in which miR-630 downregulated CDC7 expression by recognizing and binding to four binding sites in CDC7 3'-UTR. We found that miR-630 was highly expressed in A549 and NIH3T3 cells where CDC7 was downregulated, but lower in H1299, MCF7, MDA-MB-231, HeLa and 2BS cells where CDC7 was upregulated. Furthermore, the induction of miR-630 occurred commonly in a variety of human cancer and immortalized cells in response to genotoxic agents. Importantly, downregulation of CDC7 by miR-630 was associated with cisplatin (CIS)-induced inhibitory proliferation in A549 cells. Mechanistically, miR-630 exerted its inhibitory proliferation by blocking CDC7-mediated initiation of DNA synthesis and by inducing G1 arrest, but maintains apoptotic balance under CIS exposure. On the one hand, miR-630 promoted apoptosis by downregulation of CDC7; on the other hand, it reduced apoptosis by downregulating several apoptotic modulators such as PARP3, DDIT4, EP300 and EP300 downstream effector p53, thereby maintaining the apoptotic balance. Our data indicate that miR-630 has a bimodal role in the regulation of apoptosis in response to DNA damage. Our data also support the notion that a certain mRNA can be targeted by several miRNAs, and in particular an miRNA may target a set of mRNAs. These data afford a comprehensive view of microRNA-dependent control of gene expression in the regulation of apoptosis under genotoxic stress. PMID:25255219

  5. A novel system enhancing the endosomal escapes of peptides promotes Bak BH3 peptide inducing apoptosis in lung cancer A549 cells.

    PubMed

    Lin, Nanjing; Zheng, Wenyun; Li, Linfeng; Liu, Hui; Wang, Tianwen; Wang, Ping; Ma, Xingyuan

    2014-06-01

    Therapeutic peptides have been proven useful for treating various diseases. However, it is difficult for therapeutic peptides to reach their target sites with an effective concentration due to inefficient intracellular delivery. Although Tat transduction peptide is a promising tool to deliver therapeutic peptides into cells, the entrapment within endosomes and the nuclear localization of Tat transduction peptide severely limited the biological effects of Tat-linked cargos. In this study, we designed a novel peptide delivering system, Tat-INF7-ubiquitin (TIU), which consisted of Tat transduction peptide, endosomal escape enhancer peptide INF7, and ubiquitin protein. We found that the TIU system was able to efficiently deliver the mCherry fluorescent proteins and the apoptosis-inducing Bak BH3 peptide into the cytosol. The Bak BH3 peptide transported into the cells by the TIU system increased the apoptotic rate to 46.15 ± 4.86% (p < 0.001) in A549 cells, while Tat-BH3 could result in only 20.45 ± 2.89%. These results demonstrated that the TIU system could enhance the effects of therapeutic peptides by facilitating the transmembrane delivery of peptides into the cells and the escape of target proteins from the endosome efficiently.

  6. Unraveling tumor grading and genomic landscape in lung neuroendocrine tumors.

    PubMed

    Pelosi, Giuseppe; Papotti, Mauro; Rindi, Guido; Scarpa, Aldo

    2014-06-01

    Currently, grading in lung neuroendocrine tumors (NETs) is inherently defined by the histological classification based on cell features, mitosis count, and necrosis, for which typical carcinoids (TC) are low-grade malignant tumors with long life expectation, atypical carcinoids (AC) intermediate-grade malignant tumors with more aggressive clinical behavior, and large cell NE carcinomas (LCNEC) and small cell lung carcinomas (SCLC) high-grade malignant tumors with dismal prognosis. While Ki-67 antigen labeling index, highlighting the proportion of proliferating tumor cells, has largely been used in digestive NETs for assessing prognosis and assisting therapy decisions, the same marker does not play an established role in the diagnosis, grading, and prognosis of lung NETs. Next generation sequencing techniques (NGS), thanks to their astonishing ability to process in a shorter timeframe up to billions of DNA strands, are radically revolutionizing our approach to diagnosis and therapy of tumors, including lung cancer. When applied to single genes, panels of genes, exome, or the whole genome by using either frozen or paraffin tissues, NGS techniques increase our understanding of cancer, thus realizing the bases of precision medicine. Data are emerging that TC and AC are mainly altered in chromatin remodeling genes, whereas LCNEC and SCLC are also mutated in cell cycle checkpoint and cell differentiation regulators. A common denominator to all lung NETs is a deregulation of cell proliferation, which represents a biological rationale for morphologic (mitoses and necrosis) and molecular (Ki-67 antigen) parameters to successfully serve as predictors of tumor behavior (i.e., identification of pathological entities with clinical correlation). It is envisaged that a novel grading system in lung NETs based on the combined assessment of mitoses, necrosis, and Ki-67 LI may offer a better stratification of prognostic classes, realizing a bridge between molecular alterations

  7. Human neural stem cells expressing carboxyl esterase target and inhibit tumor growth of lung cancer brain metastases.

    PubMed

    Hong, S H; Lee, H J; An, J; Lim, I; Borlongan, C; Aboody, K S; Kim, S U

    2013-12-01

    Neural stem cells (NSCs) led to the development of a novel strategy for delivering therapeutic genes to brain tumors. Human NSCs expressing rabbit carboxyl esterase (F3.CE), which activates CPT-11, significantly inhibit the growth of A549 human non-small cell lung adenocarcinoma cells in the presence of CPT-11 in vitro and in vivo. F3.CE cells migrated selectively into the brain metastases located in the opposite hemisphere. The treatment also significantly decreased tumor volume in immune-deficient mice bearing lung cancer when F3.CE cells were transplanted into the contralateral hemisphere. The survival of tumor-bearing animals was significantly prolonged by the treatment with F3.CE and CPT-11. This strategy could be considered as an effective treatment regimen for lung cancer brain metastases.

  8. All-Trans Retinoic Acid Induces Proliferation, Survival, and Migration in A549 Lung Cancer Cells by Activating the ERK Signaling Pathway through a Transcription-Independent Mechanism

    PubMed Central

    Quintero Barceinas, Reyna Sara; García-Regalado, Alejandro; Aréchaga-Ocampo, Elena; Villegas-Sepúlveda, Nicolás; González-De la Rosa, Claudia Haydée

    2015-01-01

    All-trans retinoic acid (ATRA) has been used as an antineoplastic because of its ability to promote proliferation, inhibition, and differentiation, primarily in leukemia; however, in other types of cancer, such as lung cancer, treatment with ATRA is restricted because not all the patients experience the same results. The ERK signaling pathway is dysregulated in cancer cells, including lung cancer, and this dysregulation promotes proliferation and cell invasion. In this study, we demonstrate that treatment with ATRA can activate the ERK signaling pathway by a transcription-independent mechanism through a signaling cascade that involves RARα and PI3K, promoting growth, survival, and migration in lung cancer cells. Until now, this mechanism was unknown in lung cancer cells. The inhibition of the ERK signaling pathway restores the beneficial effects of ATRA, reduces proliferation, increases apoptosis, and blocks the cell migration process in lung cancer cells. In conclusion, our results suggest that the combination of ATRA with ERK inhibitor in clinical trials for lung cancer is warranted. PMID:26557664

  9. High Potency VEGFRs/MET/FMS Triple Blockade by TAS-115 Concomitantly Suppresses Tumor Progression and Bone Destruction in Tumor-Induced Bone Disease Model with Lung Carcinoma Cells

    PubMed Central

    Fujioka, Yayoi; Kataoka, Yuki; Tanaka, Kenji; Hashimoto, Akihiro; Suzuki, Takamasa; Ito, Kenjiro; Haruma, Tomonori; Yamamoto-Yokoi, Hiromi; Harada, Naomoto; Sakuragi, Motomu; Oda, Nobuyuki; Matsuo, Kenichi; Inada, Masaki; Yonekura, Kazuhiko

    2016-01-01

    Approximately 25–40% of patients with lung cancer show bone metastasis. Bone modifying agents reduce skeletal-related events (SREs), but they do not significantly improve overall survival. Therefore, novel therapeutic approaches are urgently required. In this study, we investigated the anti-tumor effect of TAS-115, a VEGFRs and HGF receptor (MET)-targeted kinase inhibitor, in a tumor-induced bone disease model. A549-Luc-BM1 cells, an osteo-tropic clone of luciferase-transfected A549 human lung adenocarcinoma cells (A549-Luc), produced aggressive bone destruction associated with tumor progression after intra-tibial (IT) implantation into mice. TAS-115 significantly reduced IT tumor growth and bone destruction. Histopathological analysis showed a decrease in tumor vessels after TAS-115 treatment, which might be mediated through VEGFRs inhibition. Furthermore, the number of osteoclasts surrounding the tumor was decreased after TAS-115 treatment. In vitro studies demonstrated that TAS-115 inhibited HGF-, VEGF-, and macrophage-colony stimulating factor (M-CSF)-induced signaling pathways in osteoclasts. Moreover, TAS-115 inhibited Feline McDonough Sarcoma oncogene (FMS) kinase, as well as M-CSF and receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation. Thus, VEGFRs/MET/FMS-triple inhibition in osteoclasts might contribute to the potent efficacy of TAS-115. The fact that concomitant dosing of sunitinib (VEGFRs/FMS inhibition) with crizotinib (MET inhibition) exerted comparable inhibitory efficacy for bone destruction to TAS-115 also supports this notion. In conclusion, TAS-115 inhibited tumor growth via VEGFR-kinase blockade, and also suppressed bone destruction possibly through VEGFRs/MET/FMS-kinase inhibition, which resulted in potent efficacy of TAS-115 in an A549-Luc-BM1 bone disease model. Thus, TAS-115 shows promise as a novel therapy for lung cancer patients with bone metastasis. PMID:27736957

  10. Alterations of tumor microenvironment by carbon monoxide impedes lung cancer growth

    PubMed Central

    Nemeth, Zsuzsanna; Csizmadia, Eva; Vikstrom, Lisa; Li, Mailin; Bisht, Kavita; Feizi, Alborz; Otterbein, Sherrie; Zuckerbraun, Brian; Costa, Daniel B.; Pandolfi, Pier Paolo; Fillinger, Janos; Döme, Balazs; Otterbein, Leo E.; Wegiel, Barbara

    2016-01-01

    We hypothesized that tumor-associated macrophages (TAMs) are controlled by the diffusible gas carbon monoxide (CO). We demonstrate that induction of apoptosis in lung tumors treated with low doses of CO is associated with increased CD86 expression and activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinases (Erk) 1/2 pathway in tumor microenvironment. Presence of CD86-positive cells was required for the anti-tumoral effects of CO in established A549 xenografts. We show that the effects of CO on tumor stroma and reprogramming of macrophages towards the anti-tumoral phenotype is mediated by reactive oxygen species (ROS)-dependent activation of MAPK/Erk1/2-c-myc pathway as well as Notch 1-dependent negative feedback on the metabolic enzyme heme oxygenase-1 (HO-1). We find a similar negative correlation between HO-1 and active MAPK-Erk1/2 levels in human lung cancer specimens. In summary, we describe novel non-cell autonomous mechanisms by which the diffusible gas CO dictates changes in the tumor microenvironment through the modulation of macrophages. PMID:26993595

  11. What Are the Key Statistics for Lung Carcinoid Tumors?

    MedlinePlus

    ... Research Get Involved Find Local ACS Learn About Cancer » Lung Carcinoid Tumor » Detailed Guide » What are the key statistics about lung carcinoid tumors? Share this Page Close Push escape to close share window. Print ...

  12. What Are the Risk Factors for Lung Carcinoid Tumors?

    MedlinePlus

    ... Research Get Involved Find Local ACS Learn About Cancer » Lung Carcinoid Tumor » Detailed Guide » What are the risk factors for lung carcinoid tumors? Share this Page Close Push escape to close share window. Print ...

  13. What Should You Ask Your Doctor about Lung Carcinoid Tumors?

    MedlinePlus

    ... Research Get Involved Find Local ACS Learn About Cancer » Lung Carcinoid Tumor » Detailed Guide » What should you ask your doctor about lung carcinoid tumors? Share this Page Close Push escape to close share window. Print ...

  14. What Happens after Treatment for Lung Carcinoid Tumors?

    MedlinePlus

    ... Research Get Involved Find Local ACS Learn About Cancer » Lung Carcinoid Tumor » Detailed Guide » What happens after treatment for lung carcinoid tumors? Share this Page Close Push escape to close share window. Print ...

  15. What's New in Lung Carcinoid Tumor Research and Treatment?

    MedlinePlus

    ... Topic Additional resources for lung carcinoid tumors What’s new in lung carcinoid tumor research and treatment? Many ... controlling when our cells grow and divide into new cells. Certain genes that cause cells to grow, ...

  16. Phenazine-1-carboxamide (PCN) from Pseudomonas sp. strain PUP6 selectively induced apoptosis in lung (A549) and breast (MDA MB-231) cancer cells by inhibition of antiapoptotic Bcl-2 family proteins.

    PubMed

    Kennedy, R Kamaraj; Veena, V; Naik, P Ravindra; Lakshmi, Pragna; Krishna, R; Sudharani, S; Sakthivel, N

    2015-06-01

    Phenazine-1-carboxamide (PCN), a naturally occurring simple phenazine derivative isolated from Pseudomonas sp. strain PUP6, exhibited selective cytotoxic activity against lung (A549) and breast (MDA-MB-231) cancer cell lines in differential and dose-dependent manner compared to normal peripheral blood mononuclear cells. PCN-treated cancer cells showed the induction of apoptosis as evidenced by the release of low level of LDH, morphological characteristics, production of reactive oxygen species, loss of mitochondrial membrane potential (ΔΨm) and induction of caspase-3. At molecular level, PCN instigates apoptosis by mitochondrial intrinsic apoptotic pathway via the overexpression of p53, Bax, cytochrome C release and activation of caspase-3 with the inhibition of oncogenic anti-apoptotic proteins such as PARP and Bcl-2 family proteins (Bcl-2, Bcl-w and Bcl-xL). The in silico docking studies of PCN targeted against the anti-apoptotic members of Bcl-2 family proteins revealed the interaction of PCN with the BH3 domain, which might lead to the induction of apoptosis due to the inhibition of antiapoptotic proteins. Due to its innate inhibition potential of antiapoptotic Bcl-2 family proteins, PCN may be used as potent anticancer agent against both lung and breast cancer.

  17. Knockdown of malic enzyme 2 suppresses lung tumor growth, induces differentiation and impacts PI3K/AKT signaling.

    PubMed

    Ren, Jian-Guo; Seth, Pankaj; Clish, Clary B; Lorkiewicz, Pawel K; Higashi, Richard M; Lane, Andrew N; Fan, Teresa W-M; Sukhatme, Vikas P

    2014-01-01

    Mitochondrial malic enzyme 2 (ME2) catalyzes the oxidative decarboxylation of malate to yield CO2 and pyruvate, with concomitant reduction of dinucleotide cofactor NAD(+) or NADP(+). We find that ME2 is highly expressed in many solid tumors. In the A549 non-small cell lung cancer (NSCLC) cell line, ME2 depletion inhibits cell proliferation and induces cell death and differentiation, accompanied by increased reactive oxygen species (ROS) and NADP(+)/NADPH ratio, a drop in ATP, and increased sensitivity to cisplatin. ME2 knockdown impacts phosphoinositide-dependent protein kinase 1 (PDK1) and phosphatase and tensin homolog (PTEN) expression, leading to AKT inhibition. Depletion of ME2 leads to malate accumulation and pyruvate decrease, and exogenous cell permeable dimethyl-malate (DMM) mimics the ME2 knockdown phenotype. Both ME2 knockdown and DMM treatment reduce A549 cell growth in vivo. Collectively, our data suggest that ME2 is a potential target for cancer therapy. PMID:24957098

  18. In vitro toxicity of cationic micelles and liposomes in cultured human hepatocyte (HepG2) and lung epithelial (A549) cell lines.

    PubMed

    Roursgaard, Martin; Knudsen, Kristina Bram; Northeved, Helle; Persson, Mikael; Christensen, Tina; Kumar, Pramod E K; Permin, Anders; Andresen, Thomas L; Gjetting, Torben; Lykkesfeldt, Jens; Vesterdal, Lise K; Loft, Steffen; Møller, Peter

    2016-10-01

    The aim of this study was to compare the effects of cationic micelle and liposome drug delivery systems on liver and lung cells in a toxicological in vitro screening model, with observations on cytotoxicity and genotoxicity. A screening battery was established for assessment of a broad range of parameters related to adverse effects. Clear concentration response effects were observed related to impairment of mitochondrial function, membrane integrity and oxidative stress markers, but no effect was observed on genotoxicity. The adverse effects were highest for the liposomes. The High Content Screening seems optimal for initial screening of adverse effects, and combined with standard cytotoxicity measurements initial screening can be performed for predictive toxicological screening.

  19. Efficient down-regulation of PKC-α gene expression in A549 lung cancer cells mediated by antisense oligodeoxynucleotides in dendrosomes.

    PubMed

    Movassaghian, Sara; Moghimi, Hamid R; Shirazi, Farshad H; Koshkaryev, Alexander; Trivedi, Malav S; Torchilin, Vladimir P

    2013-01-30

    The completion of human genome project has increased our knowledge of the molecular mechanisms of many diseases, including cancer, thus providing new opportunities for gene therapy. Antisense oligodeoxynucleotides (AsODN) possess great potential as sequence-specific therapeutic agents, which in contrast to classic treatments provide more efficient and target-specific approach to modulate disease-related genes. To be therapeutically effective, sufficient concentrations of intact AsODN must bypass membrane barriers and access the site of action. In this study, a dendrosome delivery strategy was designed to improve the encapsulation of AsODN in non-cationic liposomes to target PKC-α in lung cancer cells in vitro. Subcellular trafficking of fluorescently labeled AsODN was visualized using confocal microscopy. Uptake and expression of mRNA and target protein after AsODN delivery was measured by flow cytometry, qRT-PCR and Western blot analysis, respectively. Dendrosomes showed favorable physicochemical parameters: high encapsulation efficiency and uptake in serum-containing medium with no apparent cytotoxicity. AsODN encapsulated in dendrosome efficiently and specifically suppress the target gene at both mRNA and protein levels. Additional in vivo studies on the application of dendrosome as a delivery system for nucleic acid molecules may lead to improvement of this technology and facilitate the development of therapeutic antisense techniques. PMID:23262426

  20. Comparative Cytotoxicity of Glycyrrhiza glabra Roots from Different Geographical Origins Against Immortal Human Keratinocyte (HaCaT), Lung Adenocarcinoma (A549) and Liver Carcinoma (HepG2) Cells.

    PubMed

    Basar, Norazah; Oridupa, Olayinka Ayotunde; Ritchie, Kenneth J; Nahar, Lutfun; Osman, Nashwa Mostafa M; Stafford, Angela; Kushiev, Habibjon; Kan, Asuman; Sarker, Satyajit D

    2015-06-01

    Glycyrrhiza glabra L. (Fabaceae), commonly known as 'liquorice', is a well-known medicinal plant. Roots of this plant have long been used as a sweetening and flavouring agent in food and pharmaceutical products, and also as a traditional remedy for cough, upper and lower respiratory ailments, kidney stones, hepatitis C, skin disorder, cardiovascular diseases, diabetes, gastrointestinal ulcers and stomach ache. Previous pharmacological and clinical studies have revealed its antitussive, antiinflammatory, antiviral, antimicrobial, antioxidant, immunomodulatory, hepatoprotective and cardioprotective properties. While glycyrrhizin, a sweet-tasting triterpene saponin, is the principal bioactive compound, several bioactive flavonoids and isoflavonoids are also present in the roots of this plant. In the present study, the cytotoxicity of the methanol extracts of nine samples of the roots of G. glabra, collected from various geographical origins, was assessed against immortal human keratinocyte (HaCaT), lung adenocarcinoma (A549) and liver carcinoma (HepG2) cell lines using the in vitro 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide cell toxicity/viability assay. Considerable variations in levels of cytotoxicity were observed among various samples of G. glabra.

  1. Synergistic effects of particulate matter (PM10) and SO2 on human non-small cell lung cancer A549 via ROS-mediated NF-κB activation.

    PubMed

    Yun, Yang; Gao, Rui; Yue, Huifeng; Li, Guangke; Zhu, Na; Sang, Nan

    2015-05-01

    Since a real atmospheric scenario usually represents a system involving multiple pollutants, air pollution studies typically focused on describing adverse effects associated with exposure to individual pollutants cannot reflect actual health risk. Particulate matter (PM10) and sulfur dioxide (SO2) are two major pollutants derived from coal combustion processes and co-existing in coal-smoke air pollution, but their potentially synergistic toxicity remains elusive thus far. In this study, we investigated the cytotoxic responses of PM10 and SO2, singly and in binary mixtures, using human non-small cell lung cancer A549 cells, followed by clarifying the possible mechanisms for their interaction. The results indicated that the concomitant treatment of PM10 and SO2 at low concentrations led to synergistic injury in terms of cell survival and apoptosis occurrence, while PM10 and SO2 alone at the same concentrations did not cause damage to the cells. Also, radical oxygen species (ROS) production followed by nuclear factor kappa B (NF-κB) activation was involved in the above synergistic cytotoxicity, which was confirmed by the repression of the actions by an ROS inhibitor (NAC). This implies that assessment of health risk should consider the interactions between ambient PM and gaseous copollutants.

  2. Comparative Cytotoxicity of Glycyrrhiza glabra Roots from Different Geographical Origins Against Immortal Human Keratinocyte (HaCaT), Lung Adenocarcinoma (A549) and Liver Carcinoma (HepG2) Cells.

    PubMed

    Basar, Norazah; Oridupa, Olayinka Ayotunde; Ritchie, Kenneth J; Nahar, Lutfun; Osman, Nashwa Mostafa M; Stafford, Angela; Kushiev, Habibjon; Kan, Asuman; Sarker, Satyajit D

    2015-06-01

    Glycyrrhiza glabra L. (Fabaceae), commonly known as 'liquorice', is a well-known medicinal plant. Roots of this plant have long been used as a sweetening and flavouring agent in food and pharmaceutical products, and also as a traditional remedy for cough, upper and lower respiratory ailments, kidney stones, hepatitis C, skin disorder, cardiovascular diseases, diabetes, gastrointestinal ulcers and stomach ache. Previous pharmacological and clinical studies have revealed its antitussive, antiinflammatory, antiviral, antimicrobial, antioxidant, immunomodulatory, hepatoprotective and cardioprotective properties. While glycyrrhizin, a sweet-tasting triterpene saponin, is the principal bioactive compound, several bioactive flavonoids and isoflavonoids are also present in the roots of this plant. In the present study, the cytotoxicity of the methanol extracts of nine samples of the roots of G. glabra, collected from various geographical origins, was assessed against immortal human keratinocyte (HaCaT), lung adenocarcinoma (A549) and liver carcinoma (HepG2) cell lines using the in vitro 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide cell toxicity/viability assay. Considerable variations in levels of cytotoxicity were observed among various samples of G. glabra. PMID:25779384

  3. Lycium europaeum fruit extract: antiproliferative activity on A549 human lung carcinoma cells and PC12 rat adrenal medulla cancer cells and assessment of its cytotoxicity on cerebellum granule cells.

    PubMed

    Ghali, Wafa; Vaudry, David; Jouenne, Thierry; Marzouki, Mohamed Nejib

    2015-01-01

    Cancer is a major worldwide health problem and one of the leading causes of death either in developed or developing countries. Plant extracts and derivatives have always been used for various disease treatments and many anticancer agents issued from plants and vegetables are clinically recognized and used all over the world. Lycium europaeum (Solanaceae) also called "wolfberry" was known since ancient times in the Mediterranean area as a medicinal plant and used in several traditional remedies. The Lycium species capacity of reducing the incidence of cancer and also of halting or reserving the growth of cancer was reported by traditional healers. In this study, the antiproliferative capacity, protective properties, and antioxidant activity of the hydro-alcoholic fruit extract of Lycium europaeum were investigated. Results showed that Lycium extract exhibits the ability to reduce cancer cell viability, inhibits proliferation, and induces apoptosis in A549 human lung cancer cells and PC12 rat adrenal medulla cancer cells, in a concentration- and time-dependent manner. Cytotoxic effect on normal rat cerebellum granule cells was assessed to be nonsignificant. Results also showed that Lycium fruit extract protected lipids, proteins, and DNA against oxidative stress damages induced by H2O2 via scavenging reactive oxygen species.

  4. Diagnosis and treatment of neuroendocrine lung tumors.

    PubMed

    Sánchez de Cos Escuín, Julio

    2014-09-01

    Pulmonary neuroendocrine tumors (PNT) encompass a broad spectrum of tumors including typical carcinoid (TC) and atypical (AC) tumors, large-cell neuroendocrine carcinoma (LCNEC) and small-cell lung cancer (SCLC). Although no variety can be considered benign, AC and TC have a much lower metastatic potential, are usually diagnosed in early stages, and most are candidates for surgical treatment. Several chemotherapy (CT) regimens are available in the case of recurrence or in advanced stages, although scientific evidence is insufficient. LCNEC, which is currently classified alongside large-cell carcinomas, have molecular features, biological behavior and CT sensitivity profile closely resembling SCLC. Pathological diagnosis is often difficult, despite the availability of immunohistochemical techniques, and surgical specimens may be necessary. The diagnostic tests used are similar to those used in other lung tumors, with some differences in the optimal tracer in positron emission tomography. The new TNM classification is useful for staging these tumors. Carcinoid syndrome, very rare in PNT, may cause symptoms that are difficult to control and requires special therapy with somatostatin analogs and other drugs. Overall, with the exception of SCLC, new trials are needed to provide a response to the many questions arising with regard to the best treatment in each lineage and each stage.

  5. Diagnosis and treatment of neuroendocrine lung tumors.

    PubMed

    Sánchez de Cos Escuín, Julio

    2014-09-01

    Pulmonary neuroendocrine tumors (PNT) encompass a broad spectrum of tumors including typical carcinoid (TC) and atypical (AC) tumors, large-cell neuroendocrine carcinoma (LCNEC) and small-cell lung cancer (SCLC). Although no variety can be considered benign, AC and TC have a much lower metastatic potential, are usually diagnosed in early stages, and most are candidates for surgical treatment. Several chemotherapy (CT) regimens are available in the case of recurrence or in advanced stages, although scientific evidence is insufficient. LCNEC, which is currently classified alongside large-cell carcinomas, have molecular features, biological behavior and CT sensitivity profile closely resembling SCLC. Pathological diagnosis is often difficult, despite the availability of immunohistochemical techniques, and surgical specimens may be necessary. The diagnostic tests used are similar to those used in other lung tumors, with some differences in the optimal tracer in positron emission tomography. The new TNM classification is useful for staging these tumors. Carcinoid syndrome, very rare in PNT, may cause symptoms that are difficult to control and requires special therapy with somatostatin analogs and other drugs. Overall, with the exception of SCLC, new trials are needed to provide a response to the many questions arising with regard to the best treatment in each lineage and each stage. PMID:24685201

  6. Fibrous lung tumor: a peculiar case.

    PubMed

    Barrettara, Barbara; Napoli, Gaetano; Lacitignola, Angelo; Sardelli, Paolo

    2013-08-01

    Solitary fibrous tumor (SFT) of the pleura and the lung is an uncommon spindle cell neoplasm arising from the visceral pleura in the majority of the cases. However there are some extrapleural sites including the lung. Current considerations were raised by a peculiar recent case: an 81-year-old female, no smoker, presented with undefined left thoracic pain. Radiographic findings of a large solid lung mass (10 cm × 9 cm). Computed tomography (CT) confirmed the thoracic mass showing characteristics of a well defined mass with capsule, the position of the mass in proximity of the postero-basal and lateral-basal wall. No secondary lesions were found. Through a left inferior lobectomy and ilo-mediastinal lymph node sampling, the entire mass was resected. Histopathological examination revealed a SFT. In conclusion STF is a rare lesion and this case showed a peculiar extremely large lesion never described before in literature. PMID:23991334

  7. Fibrous lung tumor: a peculiar case.

    PubMed

    Barrettara, Barbara; Napoli, Gaetano; Lacitignola, Angelo; Sardelli, Paolo

    2013-08-01

    Solitary fibrous tumor (SFT) of the pleura and the lung is an uncommon spindle cell neoplasm arising from the visceral pleura in the majority of the cases. However there are some extrapleural sites including the lung. Current considerations were raised by a peculiar recent case: an 81-year-old female, no smoker, presented with undefined left thoracic pain. Radiographic findings of a large solid lung mass (10 cm × 9 cm). Computed tomography (CT) confirmed the thoracic mass showing characteristics of a well defined mass with capsule, the position of the mass in proximity of the postero-basal and lateral-basal wall. No secondary lesions were found. Through a left inferior lobectomy and ilo-mediastinal lymph node sampling, the entire mass was resected. Histopathological examination revealed a SFT. In conclusion STF is a rare lesion and this case showed a peculiar extremely large lesion never described before in literature.

  8. Enhancement of lung tumor formation in mice

    SciTech Connect

    Witschi, H.P.

    1984-01-01

    There is now a great deal of data available to show that butylated hydroxytoluene (BHT) enhances the development of lung tumors in mice. In many ways BHT functions like a promoting agent. Interestingly, it also has tumor enhancing or promoting properties in organs other than mouse lung such as rat liver, rat bladder, possibly rat GI tract and in in vitro systems. The development of lung tumors by BHT may be influenced by comparatively low exposure regimens; the minimum dose found so far to be effective are 6 intraperitoneal injections of 50 mg/kg or a diet containing 500 ppM of BHT for 2 weeks. While these findings seem to require that the continued use of BHT as a food additive needs to be reevaluated it should be mentioned that other considerations have lead to the conclusion that BHT probably has a large margin of safety. This makes it important to establish the mechanism of action of BHT which remains unknown. 41 references, 1 figure, 3 tables.

  9. Sp1 inhibition-mediated upregulation of VEGF 165 b induced by rh-endostatin enhances antiangiogenic and anticancer effect of rh-endostatin in A549.

    PubMed

    Li, Zhen-yu; Zhu, Fang; Hu, Jian-li; Peng, Gang; Chen, Jing; Zhang, Sheng; Chen, Xu; Zhang, Rui-guang; Chen, Ling-juan; Liu, Pian; Luo, Ming; Sun, Zhi-hua; Ren, Jing-hua; Huang, Li-li; Wu, Gang

    2011-08-01

    Recombinant human endostatin (rh-endostatin), a potential antiangiogenic agent, is used in non-small cell lung carcinoma treatment and represses vascular endothelial cell growth factor (VEGF) levels in tumor cell. However, precise affection of rh-endostatin on the proangiogenic VEGF isoforms (VEGF(165)) or antiangiogenic VEGF isoforms (VEGF(165)b) is not clear. We therefore tested the hypothesis that rh-endostatin could alter expression of these isoforms to regulate tumor growth. A549 cells were exposed to rh-endostatin, and the expression of VEGF(165) and VEGF(165)b was detected. The role of SP1 as a regulator of isoform expression was investigated. We then examined the anticancer and antiangiogenic efficacy of rh-endostatin in combination with exogenous VEGF(165)b against A549 cells, EA.HY 926 cells and xenograft model of human lung cancer. rh-Endostatin reduced VEGF(165) and induced VEGF(165)b as well as inhibited SP1 in A549 cells. SP1 inhibitor (betulinic acid) also developed those changes. VEGF(165)b-rh-endostatin combination was highly synergistic and inhibited growth, survival, and migration of A549 cells, VEGF-mediated VEGFR2 phosphorylation in EA.HY 926 cells, and tumor growth in xenograft model of human lung cancer. rh-Endostatin downregulates proangiogenic vascular endothelial growth factor A (VEGFA) isoform and upregulates antiangiogenic VEGFA isoform, possibly through inhibition of SP1. Furthermore, VEGF(165)b sensitizes A549 to rh-endostatin treatment and enhances the anticancer effect of rh-endostatin.

  10. Silencing BMP-2 expression inhibits A549 and H460 cell proliferation and migration

    PubMed Central

    2014-01-01

    Abstract Background Bone morphogenetic protein 2 (BMP-2) is a member of the TGF-β superfamily that is closely correlated with many malignancies, particularly lung cancer. However, the effects of silenced BMP-2 on lung cancer cell proliferation and migration are not clear. Methods Using quantitative real-time RT-PCR, BMP-2 mRNA expression was detected in 61 non-small cell lung cancer (NSCLC) samples. Survival curves were generated using follow-up data. Relationships between clinical or pathological characteristics and prognosis were analyzed. Cell viability assays and transwell migration assays were used to evaluate the effects of BMP-2 silencing on cell proliferation and migration of A549 and H460 cells. Results BMP-2 mRNA expression was higher in NSCLC tissues compared to matched adjacent normal tissues (P < 0.01). High BMP-2 expression levels were significantly associated with the occurrence of lymph node metastases and tumor stage (P < 0.05). There were significant differences in survival curves between groups with metastatic lymph nodes and non-metastatic lymph nodes, as well as between groups with low BMP-2 expression and groups with high BMP-2 expression. In addition, we observed decreased proliferation and migration rates of the NSCLC-derived cell lines A549 and H460 that were transfected with siBMP-2 (P < 0.05). Conclusion BMP-2 mRNA is overexpressed in NSCLC samples and is a risk factor for survival in patients with NSCLC. BMP-2 silencing can significantly inhibit A549 and H460 cell proliferation and migration. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/4263254471298866 PMID:24946687

  11. SUSD2 is frequently downregulated and functions as a tumor suppressor in RCC and lung cancer.

    PubMed

    Cheng, Yingying; Wang, Xiaolin; Wang, Pingzhang; Li, Ting; Hu, Fengzhan; Liu, Qiang; Yang, Fan; Wang, Jun; Xu, Tao; Han, Wenling

    2016-07-01

    Sushi domain containing 2 (SUSD2) is type I membrane protein containing domains inherent to adhesion molecules. There have been few reported studies on SUSD2, and they have mainly focused on breast cancer, colon cancer, and HeLa cells. However, the expression and function of SUSD2 in other cancers remain unclear. In the present study, we conducted an integrated bioinformatics analysis based on the array data from the GEO database and found a significant downregulation of SUSD2 in renal cell carcinoma (RCC) and lung cancer. Western blotting and quantitative RT-PCR (qRT-PCR) confirmed that SUSD2 was frequently decreased in RCC and lung cancer tissues compared with the corresponding levels in normal adjacent tissues. The restoration of SUSD2 expression inhibited the proliferation and clonogenicity of RCC and lung cancer cells, whereas the knockdown of SUSD2 promoted A549 cell growth. Our findings suggested that SUSD2 functions as a tumor suppressor gene (TSG) in RCC and lung cancer. PMID:26815503

  12. [Single-cell detection of EGFR gene mutation in circulating tumor cells in lung cancer].

    PubMed

    Shuai, Sun; Yuliang, Deng

    2015-12-01

    Circulating tumor cells (CTCs) are cells that shed from a primary tumor and enter the peripheral blood circulation. The CTCs are closely associated with tumor development and metastasis because of its high heterogeneity. However, there are still no effective methods to detect single-cell heterogeneity of the CTCs. To this end, we developed a method to detect gene mutation in CTCs at the single-cell level and applied it to the detection of EGFR gene mutation in single lung cancer CTC. Specifically, the rare CTCs were captured from blood using an integrated microfluidic system, and then were released into a microchip with thousands of nanoliter wells to isolate single CTC. The single CTC was then transferred into a PCR tube under the microscope for single-cell genome amplification and detection of EGFR gene mutation. We firstly modified chip and capillary and optimized PCR conditions (annealing temperature, number of cycles) using non-small-cell lung cancer (NSCLC) cell lines A549, NCI-H1650 and NCI-H1975 as samples, which showed maximal amplification after 30 cycles with an annealing temperature at 59℃. We then successfully detected blood samples from NSCLC patients using this method. 5 CTCs were obtained from 2 mL patient's blood and the sequencing of EGFR exons 18, 19, 20 and 21 showed no mutations. Our results demonstrated that this method is sensitive enough to detect gene mutation in single CTC and has guiding significance in clinic research. PMID:26704950

  13. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT

    PubMed Central

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-01-01

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway. PMID:26177797

  14. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT

    NASA Astrophysics Data System (ADS)

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-07-01

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway.

  15. Circulating tumor cells in lung cancer.

    PubMed

    Young, Rachel; Pailler, Emma; Billiot, Fanny; Drusch, Françoise; Barthelemy, Amélie; Oulhen, Marianne; Besse, Benjamin; Soria, Jean-Charles; Farace, Françoise; Vielh, Philippe

    2012-01-01

    Circulating tumor cells (CTCs) have emerged as potential biomarkers in several cancers such as colon, prostate, and breast carcinomas, with a correlation between CTC number and patient prognosis being established by independent research groups. The detection and enumeration of CTCs, however, is still a developing field, with no universal method of detection suitable for all types of cancer. CTC detection in lung cancer in particular has proven difficult to perform, as CTCs in this type of cancer often present with nonepithelial characteristics. Moreover, as many detection methods rely on the use of epithelial markers to identify CTCs, the loss of these markers during epithelial-to-mesenchymal transition in certain metastatic cancers can render these methods ineffective. The development of personalized medicine has led to an increase in the advancement of molecular characterization of CTCs. The application of techniques such as FISH and RT-PCR to detect EGFR, HER2, and KRAS abnormalities in lung, breast, and colon cancer, for example, could be used to characterize CTCs in real time. The use of CTCs as a 'liquid biopsy' is therefore an exciting possibility providing information on patient prognosis and treatment efficacy. This review summarizes the state of CTC detection today, with particular emphasis on lung cancer, and discusses the future applications of CTCs in helping the clinician to develop new strategies in patient treatment. PMID:23207444

  16. 13-Methyl-palmatrubine induces apoptosis and cell cycle arrest in A549 cells in vitro and in vivo

    PubMed Central

    Chen, Jingxian; Lu, Xingang; Lu, Chenghua; Wang, Chunying; Xu, Haizhu; Xu, Xiaoli; Gou, Haixin; Zhu, Bing; Du, Wangchun

    2016-01-01

    Corydalis yanhusuo, a well-known herbaceous plant, is commonly used in the treatment of inflammation, injury and pain. One natural agent isolated from Corydalis yanhusuo, 13-methyl-palmatrubine, was found to have a cytotoxic effect on cancer cells as reported in published studies. In the present study, we synthesized a potential anti-lung tumor agent, 13-methyl-palmatrubine and analyzed its activity. 13-Methyl-palmatrubine exhibited a cytotoxic effect on a panel of cancer cell lines in a time- and concentration-dependent manner. Among all the tested cancer cell lines, lung cancer A549 cells were most sensitive to 13-methyl-palmatrubine treatment. Meanwhile 13-methyl-palmatrubine showed less cytotoxicity in human normal cells. Our investigation revealed that 13-methyl-palmatrubine induced apoptosis and cell cycle arrest in A549 cells in a dose-dependent manner. Furthermore, 13-methyl-palmatrubine treatment caused activation of P38 and JNK pathways and blocked the EGFR pathway. In conclusion, our findings demonstrated that 13-methyl-palmatrubine inhibited the growth of A549 cells mediated by blocking of the EGFR signaling pathway and activation of the MAPK signaling pathway and provides a better understanding of the molecular mechanisms of 13-methyl-palmatrubine. PMID:27633656

  17. Dynamic modeling of lung tumor motion during respiration

    NASA Astrophysics Data System (ADS)

    Kyriakou, E.; McKenzie, D. R.

    2011-05-01

    A dynamic finite element model of the lung that incorporates a simplified geometry with realistic lung material properties has been developed. Observations of lung motion from respiratory-gated computed tomography were used to provide a database against which the predictions of the model are assessed. Data from six patients presenting with lung tumors were processed to give sagittal sections of the lung containing the tumor as a function of the breathing phase. Statistical shape modeling was used to outline the diaphragm, the tumor volume and the thoracic wall at each breathing phase. The motion of the tumor in the superior-inferior direction was plotted against the diaphragm displacement. The finite element model employed a simplified geometry in which the lung material fills a rectangular volume enabling two-dimensional coordinates to be used. The diaphragm is represented as a piston, driving the motion. Plots of lung displacement against diaphragm displacement form hysteresis loops that are a sensitive indicator of the characteristics of the motion. The key parameters of lung material that determine the motion are the density and elastic properties of lung material and the airway permeability. The model predictions of the hysteresis behavior agreed well with observation only when lung material is modeled as viscoelastic. The key material parameters are suggested for use as prognostic indicators of the progression of disease and of changes arising from the response of the lung to radiation treatment.

  18. Frondoside A Suppressive Effects on Lung Cancer Survival, Tumor Growth, Angiogenesis, Invasion, and Metastasis

    PubMed Central

    Attoub, Samir; Arafat, Kholoud; Gélaude, An; Al Sultan, Mahmood Ahmed; Bracke, Marc; Collin, Peter; Takahashi, Takashi; Adrian, Thomas E.; De Wever, Olivier

    2013-01-01

    A major challenge for oncologists and pharmacologists is to develop less toxic drugs that will improve the survival of lung cancer patients. Frondoside A is a triterpenoid glycoside isolated from the sea cucumber, Cucumaria frondosa and was shown to be a highly safe compound. We investigated the impact of Frondoside A on survival, migration and invasion in vitro, and on tumor growth, metastasis and angiogenesis in vivo alone and in combination with cisplatin. Frondoside A caused concentration-dependent reduction in viability of LNM35, A549, NCI-H460-Luc2, MDA-MB-435, MCF-7, and HepG2 over 24 hours through a caspase 3/7-dependent cell death pathway. The IC50 concentrations (producing half-maximal inhibition) at 24 h were between 1.7 and 2.5 µM of Frondoside A. In addition, Frondoside A induced a time- and concentration-dependent inhibition of cell migration, invasion and angiogenesis in vitro. Frondoside A (0.01 and 1 mg/kg/day i.p. for 25 days) significantly decreased the growth, the angiogenesis and lymph node metastasis of LNM35 tumor xenografts in athymic mice, without obvious toxic side-effects. Frondoside A (0.1–0.5 µM) also significantly prevented basal and bFGF induced angiogenesis in the CAM angiogenesis assay. Moreover, Frondoside A enhanced the inhibition of lung tumor growth induced by the chemotherapeutic agent cisplatin. These findings identify Frondoside A as a promising novel therapeutic agent for lung cancer. PMID:23308143

  19. Inhibition of lung tumor growth by targeting EGFR/VEGFR-Akt/NF-κB pathways with novel theanine derivatives

    PubMed Central

    Zhang, Guoying; Ye, Xinshan; Wu, Erxi; Wang, Fengfei; Wu, Fei; Tian, Huihui; Liu, Xin; Chen, Linlin; Liu, Kun; Wang, Yishan; Liu, Hanchen; Zhang, Wenhua; Guan, Yukun; Wang, Qinwen; Zhao, Xiaohang; Wan, Xiaochun

    2014-01-01

    The molecularly targeted agents, including anti-VEGF or anti-EGFR monoclonal antibody and some inhibitors of EGFR tyrosine kinase, are effective in the treatment of non-small-cell lung cancer (NSCLC) to a certain extent, but the benefit for a proportion of patients is still limited. Hence, it is necessary and urgent to develop more selective and effective molecular targeted agents against lung cancer. Here, we have synthesized novel theanine derivatives, methyl coumarin-3-carboxylyl L-theanine (TMC), ethyl coumarin-3-carboxylyl L-theanine (TEC), ethyl 6-fluorocoumarin- 3-carboxylyl L-theanine (TFC), and ethyl 6-nitrocoumarin-3-carboxylyl L-theanine (TNC), which are fluorescent small molecules, based on their parental compound theanine and studied their anticancer activities in vitro, ex vivo and in vivo models of human and mouse cancers. Our results show that the four theanine derivatives significantly inhibit the lung cancer cell migration and the growth of lung cancer and leukemia cell lines. TFC and TNC display enhanced effects with anticancer drugs cytarabine, vincristine, and methotrexate on inhibition of lung cancer cell growth and no toxicity to the normal human embryonic lung fibroblast and peripheral blood lymphocytes. TFC and TNC exhibit strong suppression of the highly metastatic Lewis lung cancer (LLC) and A549 tumor growth in tumor-bearing mice without toxicity to mice. TFC and TNC can effectively suppress the growth of lung cancer cells in vitro, ex vivo and in vivo by targeting EGFR/VEGFR-Akt/NF-κB pathways. Our study has suggested that TFC and TNC may have the therapeutic and/or adjuvant therapeutic applications in the treatment of lung cancers and other cancer. PMID:25138052

  20. TSPYL5 is involved in cell growth and the resistance to radiation in A549 cells via the regulation of p21{sup WAF1/Cip1} and PTEN/AKT pathway

    SciTech Connect

    Kim, Eun Jin; Lee, So Yong; Kim, Tae Rim; Choi, Soo Im; Cho, Eun Wie; Kim, Kug Chan; Kim, In Gyu

    2010-02-12

    TSPYL5, encoding testis-specific Y-like protein, has been postulated to be a tumor suppressor gene, and its hypermethylation is often associated with human disease, especially cancer. In this study, we report that the TSPYL5 gene was less methylated (30%) in A549 lung adenocarcinoma cells, which are relatively resistant to {gamma}-radiation, than in H460 lung cancer cells, in which the TSPYL5 gene was hypermethylated (95%); thus, the expression level of TSPYL5 is much higher in A549 cells than in H460 cells. We showed that TSPYL5 suppression with silencing RNA in A549 cells up-regulated cellular PTEN, followed by down-regulation of AKT activation. Therefore, blockage of TSPYL5 sensitized A549 cells to cytotoxic agents such as {gamma}-radiation. In addition, TSPYL5 suppression also showed an increased level of p21{sup WAF1/Cip1} and subsequently induced inhibition of cell growth in A549 cells. The overexpression of TSPYL5 in H460 cells showed the opposite effects. This study provides the first demonstration that TSPYL5 modulates cell growth and sensitization of cells to the detrimental effects of damaging agents via regulation of p21{sup WAF1/Cip1} and PTEN/AKT pathway.

  1. Applicability of Pulmonary Lobectomy in Treating Metastatic Lung Tumors

    PubMed Central

    Kitahara, Hirokazu; Shimamatsu, Shinichiro; Morodomi, Yosuke; Tagawa, Tetsuzo; Maehara, Yoshihiko

    2015-01-01

    Purpose: Although metastases to the lung from other organs are usually removed with limited lung resections (e.g., wedge resections or segmentectomies), pulmonary lobectomies are often required to remove whole pulmonary tumors. This study investigated the clinical applicability of pulmonary lobectomies to treat metastatic lung tumors. Methods: We retrospectively reviewed clinical records of 143 consecutive patients with metastatic tumors in the lung who underwent surgery in our department, including data sets for 100 patients treated for their first metastatic lung tumors. Results: Of the 100 patients, 23 received pulmonary lobectomies, 69 received wedge resections and eight received segmentectomies. Patients in the lobectomy group were more likely to be younger, have larger and/or multiple tumors, and to have tumors of musculoskeletal origin (sarcomas) than those who underwent segmentectomies or wedge resections (the limited resection group). The two groups did not significantly differ in survival (3-year survival rate; lobectomy vs limited resection: 75.2% vs 80.4%, P = 0.15), or post-operative morbidity, although the only post-operative morbidity was associated with post-operative prognosis in the lobectomy group. Conclusions: Pulmonary lobectomy is a safe and applicable surgical procedure for metastatic lung tumors when long survival is expected after the tumor resection. PMID:25641034

  2. Artesunate induces AIF-dependent apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Zhou, Chen-juan; Chen, Tong-Sheng

    2012-03-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  3. Estimation of lung tissue incompressibility variation throughout respiration for tumor targeting in lung radiotherapy

    NASA Astrophysics Data System (ADS)

    Shirzadi, Zahra; Samani, Abbas

    2013-03-01

    A novel technique is proposed to characterize lung tissue incompressibility variation during respiration. Lung tissue incompressibility variation stems from significant air content variation in the tissue throughout respiration. Estimating lung tissue incompressibility and its variation is critical for computer assisted tumor motion tracking. Continuous tumor motion during respiration is a major challenge in lung cancer treatment by external beam radiotherapy. If not accounted for, this motion leads to areas of radiation over dosage for the lung normal tissues. Since no effective imaging modality is available for real-time lung tumor tracking, computer based modeling which has the capability for accurate tissue deformation estimation can be a good alternative. Lung tissue deformation estimation can be made using the lung Finite Element (FE) model where its accuracy depends on input tissue biomechanical properties including incompressibility parameter. In this research, an optimization algorithm is proposed to estimate the incompressibility parameter function in terms of respiration cycle time. In this algorithm, the incompressibility parameter and lung pressure values are varied systematically until optimal values, which result in maximum similarity between acquired and simulated 4D CT images of the lung, are achieved for each respiration time point. The simulated images are constructed using a reference image in conjunction with the deformation field obtained from the lung's FE model in each respiration time increment. We demonstrated that utilizing the calculated function along with respiratory system FE modeling leads to accurate tumor targeting, hence potentially improving lung radiotherapy outcome.

  4. p53 status is a major determinant of effects of decreasing peroxiredoxin I expression on tumor growth and response of lung cancer cells to treatment

    SciTech Connect

    Chen, M.-F. . E-mail: miaofen@adm.cgmh.org.tw; Chen, W.-C.; Wu, C.-T.; Lin, P.-Y.; Shau Hungyi; Liao, S.-K.; Yang, C.-T.; Lee, K.-D.

    2006-12-01

    Purpose: The potential roles of peroxiredoxin (Prx) I in carcinogenesis and treatment have been explored. Our previous study revealed differences between A549 (functional p53) and H1299 (null p53) Prx I antisense transfectants. The discrepancy might have resulted from the p53 status. In this study, we further investigated the role of Prx I and p53 on lung cancer growth and the response to treatment in vitro and in vivo. Methods: We established stable A549 and H1299 transfectants with Prx I antisense and p53, respectively. We then examined their characteristics in vitro and used nude mice xenografts of these cell lines to compare their capacity for tumor invasion and spontaneous metastasis and their sensitivity to radiotherapy. Results: Increased reactive oxygen species caused by lower Prx I activity induced p53 expression. In lethal stress, the augmentation of reactive oxygen species was partially reversed by blocking p53 in A549 with Prx I antisense. We demonstrated the potential contribution of p53-dependent mechanisms to inhibit lung tumor growth and increase radiosensitization using H1299 transfected with p53 in vitro and in vivo. An increased p53 level attenuated the capacity of the cells for metastasis by decreasing vascular endothelial growth factor and induced radiosensitization by increased apoptosis and cell senescence and by regulating intracellular reactive oxygen species. Conclusion: These results suggest that p53 status has an important role in the tumor-inhibiting and radiosensitizing effects of decreasing Prx I. Both Prx I and p53 may be powerful prognosticators for lung cancer.

  5. Expression of Sonic Hedgehog (SHH) in human lung cancer and the impact of YangZheng XiaoJi on SHH-mediated biological function of lung cancer cells and tumor growth.

    PubMed

    Jiang, Wen G; Ye, Lin; Ruge, Fiona; Sun, Ping-Hui; Sanders, Andrew J; Ji, Ki; Lane, Jane; Zhang, Lijian; Satherley, Lucy; Weeks, Hoi P; Zhi, Xiuyi; Gao, Yong; Wei, Cong; Wu, Yiling; Mason, Malcolm D

    2015-03-01

    Sonic Hedgehog (SHH) is a protein that is aberrantly expressed in various human tumors. SHH and its signaling molecules have been indicated as potential therapeutic targets. In the present study, we evaluated the expression of SHH transcript in human non-small cell lung cancer (NSCLC) tissues and investigated the impact of inhibiting SHH together with a traditional Chinese medicine formula, YangZheng XiaoJi (YZXJ), on the function and growth of lung cancer cells. Human NSCLC tissues had significantly higher levels of the SHH transcript compared matched normal lung tissues (n=83). TNM2 tumors and tumors with pleural invasion had higher levels than TNM1 and non-invasive tumors. High SHH levels were associated with a shorter overall survival (OS) of the patients. A SHH inhibitor, cyclopamine, and YZXJ alone or in combination had a marked inhibitory effect on cellular invasion and cellular migration of human lung cancer cells, A549 and SKMES1. YangZheng XiaoJi and its combination with cyclopamine also significantly reduced the growth of lung tumors in vivo together with a reduction of SHH and smoothened (Smo) proteins in the lung tumors. The present study provides evidence that blocking SHH by way of small inhibitor and by YangZheng XiaoJi has a profound influence on lung cancer cells as seen by in vitro invasion and cell migration and in vivo tumor growth. Together with the aberrant expression of SHH in NSCLC tumors in the patients, it is suggested that SHH is a potential target for therapies for NSCLC. PMID:25750281

  6. Marsdenia tenacissima extract suppresses A549 cell migration through regulation of CCR5-CCL5 axis, Rho C, and phosphorylated FAK.

    PubMed

    Lin, Sen-Sen; Li, Fang-Fang; Sun, Li; Fan, Wei; Gu, Ming; Zhang, Lu-Yong; Qin, Song; Yuan, Sheng-Tao

    2016-03-01

    Marsdenia tenacissima, a traditional Chinese medicine, is long been used to treat various diseases including asthma, cancer, trachitis, tonsillitis, pharyngitis, cystitis, and pneumonia. Although Marsdenia tenacissima has been demonstrated to have strong anti-tumor effects against primary tumors, its effect on cancer metastasis remains to be defined, and the molecular mechanism underlying the anti-metastatic effect is unknown. In the present study, we investigated the effects of XAP (an extract of Marsdenia tenacissima) on A549 lung cancer cell migration and explored the role of CCR5-CCL5 axis in the anti-metastatic effects of XAP. Our resutls showed that XAP inhibited A549 lung cancer cell migration and invasion in a dose-dependent manner. The protein levels of CCR5, but not CCR9 and CXCR4, were decreased by XAP. The secretion of CCL5, the ligand of CCR5, was reduced by XAP. XAP down-regulated Rho C expression and FAK phosphorylation. In conclusion, XAP inhibited A549 cell migration and invasion through down-regulation of CCR5-CCL5 axis, Rho C, and FAK. PMID:27025367

  7. Marsdenia tenacissima extract suppresses A549 cell migration through regulation of CCR5-CCL5 axis, Rho C, and phosphorylated FAK.

    PubMed

    Lin, Sen-Sen; Li, Fang-Fang; Sun, Li; Fan, Wei; Gu, Ming; Zhang, Lu-Yong; Qin, Song; Yuan, Sheng-Tao

    2016-03-01

    Marsdenia tenacissima, a traditional Chinese medicine, is long been used to treat various diseases including asthma, cancer, trachitis, tonsillitis, pharyngitis, cystitis, and pneumonia. Although Marsdenia tenacissima has been demonstrated to have strong anti-tumor effects against primary tumors, its effect on cancer metastasis remains to be defined, and the molecular mechanism underlying the anti-metastatic effect is unknown. In the present study, we investigated the effects of XAP (an extract of Marsdenia tenacissima) on A549 lung cancer cell migration and explored the role of CCR5-CCL5 axis in the anti-metastatic effects of XAP. Our resutls showed that XAP inhibited A549 lung cancer cell migration and invasion in a dose-dependent manner. The protein levels of CCR5, but not CCR9 and CXCR4, were decreased by XAP. The secretion of CCL5, the ligand of CCR5, was reduced by XAP. XAP down-regulated Rho C expression and FAK phosphorylation. In conclusion, XAP inhibited A549 cell migration and invasion through down-regulation of CCR5-CCL5 axis, Rho C, and FAK.

  8. Knockdown of PKM2 Suppresses Tumor Growth and Invasion in Lung Adenocarcinoma.

    PubMed

    Sun, Hong; Zhu, Anyou; Zhang, Lunjun; Zhang, Jie; Zhong, Zhengrong; Wang, Fengchao

    2015-01-01

    Accumulating evidence shows that activity of the pyruvate kinase M2 (PKM2) isoform is closely related to tumorigenesis. In this study, we investigated the relationship between PKM2 expression, tumor invasion, and the prognosis of patients with lung adenocarcinoma. We retrospectively analyzed 65 cases of patients with lung adenocarcinoma who were divided into low and a high expression groups based on PKM2 immunohistochemical staining. High PKM2 expression was significantly associated with reduced patient survival. We used small interfering RNA (siRNA) technology to investigate the effect of targeted PKM2-knockout on tumor growth at the cellular level. In vitro, siRNA-mediated PKM2-knockdown significantly inhibited the proliferation, glucose uptake (25%), ATP generation (20%) and fatty acid synthesis of A549 cells, while the mitochondrial respiratory capacity of the cells increased (13%).Western blotting analysis showed that PKM2-knockout significantly inhibited the expression of the glucose transporter GLUT1 and ATP citrate lyase, which is critical for fatty acid synthesis. Further Western blotting analysis showed that PKM2-knockdown inhibited the expression of matrix metalloproteinase 2 (MMP-2) and vascular endothelial growth factor (VEGF), which are important in degradation of the extracellular matrix and angiogenesis, respectively. These observations show that PKM2 activates both glycolysis and lipid synthesis, thereby regulating cell proliferation and invasion. This information is important in elucidating the mechanisms by which PKM2 influences the growth and metastasis of lung adenocarcinoma at the cellular and molecular level, thereby providing the basic data required for the development of PKM2-targeted gene therapy.

  9. Fluoroscopic tumor tracking for image-guided lung cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Lin, Tong; Cerviño, Laura I.; Tang, Xiaoli; Vasconcelos, Nuno; Jiang, Steve B.

    2009-02-01

    Accurate lung tumor tracking in real time is a keystone to image-guided radiotherapy of lung cancers. Existing lung tumor tracking approaches can be roughly grouped into three categories: (1) deriving tumor position from external surrogates; (2) tracking implanted fiducial markers fluoroscopically or electromagnetically; (3) fluoroscopically tracking lung tumor without implanted fiducial markers. The first approach suffers from insufficient accuracy, while the second may not be widely accepted due to the risk of pneumothorax. Previous studies in fluoroscopic markerless tracking are mainly based on template matching methods, which may fail when the tumor boundary is unclear in fluoroscopic images. In this paper we propose a novel markerless tumor tracking algorithm, which employs the correlation between the tumor position and surrogate anatomic features in the image. The positions of the surrogate features are not directly tracked; instead, we use principal component analysis of regions of interest containing them to obtain parametric representations of their motion patterns. Then, the tumor position can be predicted from the parametric representations of surrogates through regression. Four regression methods were tested in this study: linear and two-degree polynomial regression, artificial neural network (ANN) and support vector machine (SVM). The experimental results based on fluoroscopic sequences of ten lung cancer patients demonstrate a mean tracking error of 2.1 pixels and a maximum error at a 95% confidence level of 4.6 pixels (pixel size is about 0.5 mm) for the proposed tracking algorithm.

  10. Myricanol induces apoptotic cell death and anti-tumor activity in non-small cell lung carcinoma in vivo.

    PubMed

    Dai, Guanhai; Tong, Yeling; Chen, Xuan; Ren, Zeming; Ying, Xuhua; Yang, Feng; Chai, Kequn

    2015-01-01

    This study explored the inhibiting effect and mechanism of myricanol on lung adenocarcinoma A549 xenografts in nude mice. Forty nude mice with subcutaneous A549 xenografts were randomly divided into five groups: high-dose myricanol (40 mg/kg body weight) group; middle-dose myricanol (20 mg/kg body weight) group; low-dose myricanol (10 mg/kg body weight) group; polyethylene glycol 400 vehicle group (1 mL/kg); and tumor model group. Nude mice were sacrificed after 14 days of treatment and the tumor inhibition rate (TIR, %) was then calculated. The relative mRNA expression levels of Bax, Bcl-2, VEGF, HIF-1α, and survivin in the tumor tissues were determined by real-time PCR. TUNEL assay was applied to determine cellular apoptosis, while IHC test was performed to detect the protein expression levels of Bax, Bcl-2, VEGF, HIF-1α, and survivin. The TIR of the three myricanol-treated groups ranged from 14.9% to 38.5%. The IHC results showed that the protein expression of Bcl-2, VEGF, HIF-1α, and survivin were consistently downregulated, whereas that of Bax was upregulated after myricanol treatment. Myricanol also significantly upregulated the mRNA expression of Bax and downregulated that of Bcl-2, VEGF, HIF-1α, and survivin in a dose-dependent manner (p < 0.05 to 0.001). These results are consistent with those of IHC. The TUNEL assay results indicated that apoptotic-positive cells significantly increased in the myricanol-treated tumor tissues compared with the cells of the vehicle control group (p < 0.01 to 0.001). These data suggest that myricanol could significantly decelerate tumor growth in vivo by inducing apoptosis. PMID:25629230

  11. Tumor homing cell penetrating peptide decorated nanoparticles used for enhancing tumor targeting delivery and therapy.

    PubMed

    Gao, Huile; Zhang, Qianyu; Yang, Yuting; Jiang, Xinguo; He, Qin

    2015-01-15

    Specific targeting ability and good tissue penetration are two critical requirements for tumor targeted delivery systems. Systematical selected peptides from a library may meet these two requirements. RLW was such a cell penetrating peptide that could specifically target to non-small cell lung cancer cells (A549). In this study, RLW was linked onto nanoparticles (RNPs) and then the RNPs were used for lung cancer targeting delivery. A traditional cell penetrating peptide, R8 (RRRRRRRR), was used as control. In vitro cellular uptake study demonstrated that modification with RLW specifically enhanced the uptake by A549 cells rather than human umbilical vein endothelial cells, while modification with R8 increased the uptake by both cells. Furthermore, the modification with RLW specifically elevated the penetration into A549 tumor spheroids rather than glioma cell (U87, used as in vivo control) spheroids. And the in vivo imaging further demonstrated RNPs could target to A549 xenografts rather than U87 xenografts. Importantly, the distribution of RNPs in normal organs was approximately the same as that of unmodified nanoparticles. However, R8 modified nanoparticles elevated the distribution in almost all the tissues. These results demonstrated that RLW was superior in A549 tumor targeted delivery. After loaded with docetaxel, an anti-microtube agent, different formulations could effectively induce the A549 cell apoptosis, and inhibit the growth of A549 spheroids in vitro. While in vivo, RNPs displayed the best antitumor effect. The tumor volume was significantly lower than other groups, which was only 33.3% as that of saline group. In conclusion, in vitro RLW could specifically target to A549 cells and enhance the cytotoxicity of docetaxel. In vivo, RLW could significantly enhance the A549 xenografts targeting delivery and led to improved antitumor effect.

  12. Isolation and (111)In-Oxine Labeling of Murine NK Cells for Assessment of Cell Trafficking in Orthotopic Lung Tumor Model.

    PubMed

    Malviya, Gaurav; Nayak, Tapan; Gerdes, Christian; Dierckx, Rudi A J O; Signore, Alberto; de Vries, Erik F J

    2016-04-01

    A noninvasive in vivo imaging method for NK cell trafficking is essential to gain further understanding of the pathogenesis of NK cell mediated immune response to the novel cancer treatment strategies, and to discover the homing sites and physiological distribution of NK cells. Although human NK cells can be labeled for in vivo imaging, little is known about the murine NK cell labeling and its application in animal models. This study describes the isolation and ex vivo radiolabeling of murine NK cells for the evaluation of cell trafficking in an orthotopic model of human lung cancer in mice. Scid-Tg(FCGR3A)Blt transgenic SCID mice were used to isolate NK cells from mouse splenocytes using the CD49b (DX5) MicroBeads positive selection method. The purity and viability of the isolated NK cells were confirmed by FACS analysis. Different labeling buffers and incubation times were evaluated to optimize (111)In-oxine labeling conditions. Functionality of the radiolabeled NK cell was assessed by (51)Cr-release assay. We evaluated physiological distribution of (111)In-oxine labeled murine NK cells in normal SCID mice and biodistribution in irradiated and nonirradiated SCID mice with orthotopic A549 human lung tumor lesions. Imaging findings were confirmed by histology. Results showed that incubation with 0.011 MBq of (111)In-oxine per million murine NK cells in PBS (pH 7.4) for 20 min is the best condition that provides optimum labeling efficiency without affecting cell viability and functionality. Physiological distribution in normal SCID mice demonstrated NK cells homing mainly in the spleen, while (111)In released from NK cells was excreted via kidneys into urine. Biodistribution studies demonstrated a higher lung uptake in orthotopic lung tumor-bearing mice than control mice. In irradiated mice, lung tumor uptake of radiolabeled murine NK cells decreased between 24 h and 72 h postinjection (p.i.), which was accompanied by tumor regression, while in nonirradiated mice

  13. Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling

    PubMed Central

    Zheng, Hongming; Zheng, Liang; Liu, Wenqin; Wu, Jinjun; Ou, Rilan; Zhang, Guiyu; Li, Fangyuan; Hu, Ming; Liu, Zhongqiu; Lu, Linlin

    2016-01-01

    Non-small-cell lung cancer (NSCLC) is the most prevalent malignancy worldwide given its high incidence, considerable mortality, and poor prognosis. The anti-malaria compounds artemisinin (ART), dihydroartemisinin (DHA), and artesunate (ARTS) reportedly have anti-cancer potential, although the underlying mechanisms remain unclear. In this work, we used flow cytometry to show that ART, DHA, and ARTS could inhibit the proliferation of A549 and H1299 cells by arresting cell cycle in G1 phase. Meanwhile, tumor malignancy including migration, invasion, cancer stem cells, and epithelial–mesenchymal transition were also significantly suppressed by these compounds. Furthermore, ART, DHA, and ARTS remarkably decreased tumor growth in vivo. By using IWP-2, the inhibitor of Wnt/β-catenin pathway, and Wnt5a siRNA, we found that ART, DHA, and ARTS could render tumor inhibition partially dependent on Wnt/β-catenin inactivation. These compounds could strikingly decrease the protein level of Wnt5-a/b and simultaneously increase those of NKD2 and Axin2, ultimately resulting in β-catenin downregulation. In summary, our findings revealed that ART, DHA, and ARTS could suppress lung-tumor progression by inhibiting Wnt/β-catenin pathway, thereby suggesting a novel target for ART, DHA, and ARTS in cancer treatment. PMID:27119499

  14. Interfractional Variations of Tumor Centroid Position and Tumor Regression during Stereotactic Body Radiotherapy for Lung Tumor

    PubMed Central

    Sun, Yanan; Lu, Yufei; Cheng, Siguo; Guo, Wei; Ye, Ke; Zhao, Huiyun; Zheng, Xiaoli; Li, Dingjie; Wang, Shujuan; Yang, Chengliang; Ge, Hong

    2014-01-01

    Purpose. To determine interfractional changes of lung tumor centroid position and tumor regression during stereotactic body radiation therapy (SBRT). Methods and Materials. 34 patients were treated by SBRT in 4-5 fractions to a median dose of 50 Gy. The CT scans acquired for verification were registered with simulation CT scans. The gross target volume (GTV) was contoured on all verification CT scans and compared to the initial GTV in treatment plan system. Results. The mean (±standard deviation, SD) three-dimension vector shift was 5.2 ± 3.1 mm. The mean (±SD) interfractional variations of tumor centroid position were −0.7 ± 4.5 mm in anterior-posterior (AP) direction, 0.2 ± 3.1 mm in superior-inferior (SI) direction, and 0.4 ± 2.4 mm in right-left (RL) direction. Large interfractional variations (≥5 mm) were observed in 5 fractions (3.3%) in RL direction, 16 fractions (10.5%) in SI direction, and 36 fractions (23.5%) in AP direction. Tumor volume did not decrease significantly during lung SBRT. Conclusions. Small but insignificant tumor volume regression was observed during lung SBRT. While the mean interfractional variations of tumor centroid position were minimal in three directions, variations more than 5 mm account for approximately a third of all, indicating additional margin for PTV, especially in AP direction. PMID:25548770

  15. Tumor suppressor gene RBM5 delivered by attenuated Salmonella inhibits lung adenocarcinoma through diverse apoptotic signaling pathways

    PubMed Central

    2013-01-01

    Background RBM5 (RNA-binding motif protein 5, also named H37/LUCA-15) gene from chromosome 3p21.3 has been demonstrated to be a tumor suppressor. Current researches in vitro confirm that RBM5 can suppress the growth of lung adenocarcinoma cells by inducing apoptosis. There is still no effective model in vivo, however, that thoroughly investigates the effect and molecular mechanism of RBM5 on lung adenocarcinoma. Method We established the transplanted tumor model on BALB/c nude mice using the A549 cell line. The mice were treated with the recombinant plasmids carried by attenuated Salmonella to induce the overexpression of RBM5 in tumor tissues. RBM5 overexpression was confirmed by immunohistochemistry staining. H&E staining was performed to observe the histological performance on plasmids-treated A549 xenografts. Apoptosis was assessed by TUNEL staining with a TUNEL detection kit. Apoptosis-regulated genes were detected by Western blot. Results We successful established the lung adenocarcinoma animal model in vivo. The growth of tumor xenografts was significantly retarded on the mice treated with pcDNA3.1-RBM5 carried by attenuated Salmonella compared to that on mice treated with pcDNA3.1. Overexpression of RBM5 enhanced the apoptosis in tumor xenografts. Furthermore, the expression of Bcl-2 protein was decreased significantly, while the expression of BAX, TNF-α, cleaved caspase-3, cleaved caspase-8, cleaved caspase-9 and cleaved PARP proteins was significantly increased in the pcDNA3.1-RBM5-treated mice as compared to that in the control mice. Conclusions In this study, we established a novel animal model to determine RBM5 function in vivo, and concluded that RBM5 inhibited tumor growth in mice by inducing apoptosis. The study suggests that although RBM5’s involvement in the death receptor-mediated apoptotic pathway is still to be investigated, RBM5-mediated growth suppression, at least in part, employs regulation of the mitochondrial apoptotic pathways. PMID

  16. Molecular features in arsenic-induced lung tumors

    PubMed Central

    2013-01-01

    Arsenic is a well-known human carcinogen, which potentially affects ~160 million people worldwide via exposure to unsafe levels in drinking water. Lungs are one of the main target organs for arsenic-related carcinogenesis. These tumors exhibit particular features, such as squamous cell-type specificity and high incidence among never smokers. Arsenic-induced malignant transformation is mainly related to the biotransformation process intended for the metabolic clearing of the carcinogen, which results in specific genetic and epigenetic alterations that ultimately affect key pathways in lung carcinogenesis. Based on this, lung tumors induced by arsenic exposure could be considered an additional subtype of lung cancer, especially in the case of never-smokers, where arsenic is a known etiological agent. In this article, we review the current knowledge on the various mechanisms of arsenic carcinogenicity and the specific roles of this metalloid in signaling pathways leading to lung cancer. PMID:23510327

  17. Tumor Acquisition for Biomarker Research in Lung Cancer

    PubMed Central

    Stevenson, Marvaretta; Christensen, Jared; Shoemaker, Debra; Foster, Traci; Barry, William T.; Tong, Betty C.; Wahidi, Momen; Shofer, Scott; Datto, Michael; Ginsburg, Geoffrey; Crawford, Jeffrey; D’Amico, Thomas; Ready, Neal

    2015-01-01

    The biopsy collection data from two lung cancer trials that required fresh tumor samples be obtained for microarray analysis were reviewed. In the trial for advanced disease, microarray data were obtained on 50 patient samples, giving an overall success rate of 60.2%. The majority of the specimens were obtained through CT-guided lung biopsies (N=30). In the trial for early-stage patients, 28 tissue specimens were collected from excess tumor after surgical resection with a success rate of 85.7%. This tissue procurement program documents the feasibility in obtaining fresh tumor specimens prospectively that could be used for molecular testing. PMID:24810245

  18. Protective effect of curcumin against formaldehyde-induced genotoxicity in A549 Cell Lines.

    PubMed

    Zhang, Ben-Yan; Shi, Yu-Qin; Chen, Xin; Dai, Juan; Jiang, Zhong-Fa; Li, Ning; Zhang, Zhi-Bing

    2013-12-01

    Formaldehyde is ubiquitous in the environment. It is known to be a genotoxic substance. We hypothesized that reactive oxygen species (ROS) and lipid peroxidation are involved in formaldehyde-induced genotoxicity in human lung cancer cell lines A549. To test this hypothesis, we investigated the effects of antioxidant on formaldehyde-induced genotoxicity in A549 Cell Lines. Formaldehyde exposure caused induction of DNA-protein cross-links (DPCs). Curcumin is an important antioxidant. Formaldehyde significantly increased malondialdehyde (MDA) levels, and decreased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity. In addition, the activation of NF-κB and AP-1 were induced by formaldehyde treatment. Pretreatment with curcumin counteracted formaldehyde-induced oxidative stress, ameliorated DPCs and attenuated activation of NF-κB and AP-1 in A549 Cell Lines. These results, taken together, suggest that formaldehyde induced genotoxicity through its ROS and lipid peroxidase activity and caused DPCs effects in A549 cells.

  19. Research results on biomagnetic imaging of the lung tumors

    NASA Astrophysics Data System (ADS)

    Sillerud, Laurel O.; Popa, Sorin G.; Coutsias, Evangelos A.; Sheltraw, Daniel; Kuethe, Dean; Adolphi, Natalie

    2005-04-01

    Recent results on the development and implementation of a novel technology for lung tumor detection and imaging is presented. This technology offers high-sensitivity imaging of magnetic nanoparticles to provide specific diagnostic images of early lung tumors and potential distant metastases. Recent developments in giant magnetostrictive (GMS) or magnetic shape memory (MSM) materials have led to the possibility of developing small, low-cost, room-temperature, portable, high-sensitivity, fiber-optic sensors capable of robustly detecting magnetic nanoparticles, without direct contact with the skin. Magnetic nanoparticles are conjugated with antibodies, which target them to lung tumors. A prototype fiber-optic biomagnetic sensor, based on giant magnetostrictive or magnetic shape memory materials, with the requisite sensitivity to image the magnetic signals generated by antibody-labeled magnetic nanoparticles in lung tumors has been built and calibrated. The uniqueness of the biomagnetic sensor lies in the fact that it offers high sensitivity at room temperature, and is not a SQUID-based system. The results obtained during the process of choosing the right magnetostrictive materials are presented. Then, for the construction of an accurate image of the lung tumor, the optimum spatial distribution of one-channel sensors and nanoparticle polarization has been analyzed.

  20. Direct electric current treatment modifies mitochondrial function and lipid body content in the A549 cancer cell line.

    PubMed

    Holandino, Carla; Teixeira, Cesar Augusto Antunes; de Oliveira, Felipe Alves Gomes; Barbosa, Gleyce Moreno; Siqueira, Camila Monteiro; Messeder, Douglas Jardim; de Aguiar, Fernanda Silva; da Veiga, Venicio Feo; Girard-Dias, Wendell; Miranda, Kildare; Galina, Antonio; Capella, Marcia Alves Marques; Morales, Marcelo Marcos

    2016-10-01

    Electrochemical therapy (EChT) entails treatment of solid tumors with direct electric current (DC). This work evaluated the specific effects of anodic flow generated by DC on biochemical and metabolic features of the A549 human lung cancer cell line. Apoptosis was evaluated on the basis of caspase-3 activity and mitochondrial transmembrane potential dissipation. Cell morphology was analyzed using transmission electron microscopy, and lipid droplets were studied through morphometric analysis and X-ray qualitative elemental microanalysis. High-resolution respirometry was used to assess mitochondrial respiratory parameters. Results indicated A549 viability decreased in a dose-dependent manner with a prominent drop between 18 and 24h after treatment (p<0.001), together with a two-fold increase in caspase-3 activity. AF-treatment induced a significantly increase (p<0.01) in the cell number with disrupted mitochondrial transmembrane potential. Furthermore, treated cells demonstrated important ultrastructural mitochondria damage and a three-fold increase in the cytoplasmic lipid bodies' number, quantified by morphometrical analyses. Conversely, 24h after treatment, the cells presented a two-fold increase of residual oxygen consumption, accounting for 45.3% of basal oxygen consumption. These results show remarkable alterations promoted by anodic flow on human lung cancer cells which are possibly involved with the antitumoral effects of EChT. PMID:27243447

  1. Direct electric current treatment modifies mitochondrial function and lipid body content in the A549 cancer cell line.

    PubMed

    Holandino, Carla; Teixeira, Cesar Augusto Antunes; de Oliveira, Felipe Alves Gomes; Barbosa, Gleyce Moreno; Siqueira, Camila Monteiro; Messeder, Douglas Jardim; de Aguiar, Fernanda Silva; da Veiga, Venicio Feo; Girard-Dias, Wendell; Miranda, Kildare; Galina, Antonio; Capella, Marcia Alves Marques; Morales, Marcelo Marcos

    2016-10-01

    Electrochemical therapy (EChT) entails treatment of solid tumors with direct electric current (DC). This work evaluated the specific effects of anodic flow generated by DC on biochemical and metabolic features of the A549 human lung cancer cell line. Apoptosis was evaluated on the basis of caspase-3 activity and mitochondrial transmembrane potential dissipation. Cell morphology was analyzed using transmission electron microscopy, and lipid droplets were studied through morphometric analysis and X-ray qualitative elemental microanalysis. High-resolution respirometry was used to assess mitochondrial respiratory parameters. Results indicated A549 viability decreased in a dose-dependent manner with a prominent drop between 18 and 24h after treatment (p<0.001), together with a two-fold increase in caspase-3 activity. AF-treatment induced a significantly increase (p<0.01) in the cell number with disrupted mitochondrial transmembrane potential. Furthermore, treated cells demonstrated important ultrastructural mitochondria damage and a three-fold increase in the cytoplasmic lipid bodies' number, quantified by morphometrical analyses. Conversely, 24h after treatment, the cells presented a two-fold increase of residual oxygen consumption, accounting for 45.3% of basal oxygen consumption. These results show remarkable alterations promoted by anodic flow on human lung cancer cells which are possibly involved with the antitumoral effects of EChT.

  2. Runx3 Expression Inhibits Proliferation and Distinctly Alters mRNA Expression of Bax in AGS and A549 Cancer Cells

    PubMed Central

    Torshabi, Maryam; Faramarzi, Mohammad Ali; Tabatabaei Yazdi, Mojtaba; Ostad, Seyyed Naser; Gharemani, Mohammad Hosein

    2011-01-01

    Runx3, a member of Runt-related transcription factor (Runx) proteins with tumor suppressor effect, is a tissue–restricted and cancer related transcription factor that regulate cell proliferation and growth, as well as differentiation. In the present study, exogenous Run3 was transiently expressed in AGS (human gastric adenocarcinoma), with undetectable Runx3 protein and in A549 (human lung carcinoma) with low levels of endogenous Runx3 protein. The GFP tagged Runx3 was transfected into AGS and A549 cells using fugene6 and PolyFect and Runx3 expression was confirmed by fluorescent microscopy and RT-PCR. The effect of Runx3 transfection on cell proliferation was determined by MTT assay and the results were confirmed by the trypan blue dye exclusion method. The effect of Runx3 expression on mRNA expression of BCL2-associated X protein (Bax) was evaluated using RT-PCR. In AGS and A549 cells, Runx3 expression inhibited cell proliferation (p < 0.01). The growth inhibition was less in A549 cells. We show that Runx3 expression increases Bax mRNA expression in AGS cells when compared with control (p < 0.05), but no significant differences in mRNA expression was observed in both examined cells. Runx3 expression has antiproliferative effect in AGS cell perhaps via increase in expression of Bax. The effect of Runx3 on A549 cells’ viability which has endogenous level of Runx3 is not related to Bax. These findings implicate a complex regulation by Runx3 in inhibition of cell proliferation utilizing Bax. PMID:24250365

  3. Isolation, Purification and Characterization of a Novel Steroidal Saponin Cholestanol Glucoside from Lasiodiplodia theobromae that Induces Apoptosis in A549 Cells.

    PubMed

    Valayil, Jinu Mathew; Kuriakose, Gini C; Jayabaskaran, C

    2016-01-01

    Search for novel anticancer lead molecules continues to be a major focus of cancer research due to the limitations of existing drugs such as lack of tumor selectivity, narrow therapeutic index and multidrug resistance of cancer types. Natural molecules often possess better pharmacokinetic traits compared to synthetic molecules as they continually evolve by natural selection process to interact with biological macromolecules. Microbial metabolites constitute nearly half of the pharmaceuticals in market today. Endophytic fungi, owing to its rich chemical diversity, are viewed as attractive sources of novel bioactive compounds. In the present study, we report the purification and characterization of a novel steroidal saponin, cholestanol glucoside (CG) from Saraca asoca endophytic fungus Lasiodiplodia theobromae. The compound was assessed for its cytotoxic potentialities in six human cancer cell lines, A549, PC3, HepG2, U251, MCF7 and OVCAR3. CG exhibited significant cytotoxicities towards A549, PC3 and HepG2 among which A549 cells were most vulnerable to CG treatment. However, CG treatment exhibited negligible cytotoxicity in non malignant human lung fibroblast cell line (WI-38). Induction of cell death by CG treatment in A549 cells was further investigated. CG induced the generation of reactive oxygen species (ROS) and mitochondrial membrane permeability loss followed by apoptotic cell death. Mitochondrial membrane depolarization and apoptotic cell death in CG treated A549 cells were completely blocked in presence of an antioxidant, N-acetyl cysteine (NAC). Hence it could be concluded that CG initiates apoptosis in cancer cells by augmenting the basal oxidative stress and that the generation of intracellular ROS is crucial for the induction of apoptosis. PMID:26338072

  4. Inhibition Effect of a Custom Peptide on Lung Tumors

    PubMed Central

    Huang, Chih-Yu; Huang, Hsuan-Yu; Forrest, Michael D.; Pan, Yun-Ru; Wu, Wei-Jen; Chen, Hueih-Min

    2014-01-01

    Cecropin B is a natural antimicrobial peptide and CB1a is a custom, engineered modification of it. In vitro, CB1a can kill lung cancer cells at concentrations that do not kill normal lung cells. Furthermore, in vitro, CB1a can disrupt cancer cells from adhering together to form tumor-like spheroids. Mice were xenografted with human lung cancer cells; CB1a could significantly inhibit the growth of tumors in this in vivo model. Docetaxel is a drug in present clinical use against lung cancers; it can have serious side effects because its toxicity is not sufficiently limited to cancer cells. In our studies in mice: CB1a is more toxic to cancer cells than docetaxel, but dramatically less toxic to healthy cells. PMID:25310698

  5. Timosaponin AIII inhibits migration and invasion of A549 human non-small-cell lung cancer cells via attenuations of MMP-2 and MMP-9 by inhibitions of ERK1/2, Src/FAK and β-catenin signaling pathways.

    PubMed

    Jung, Okkeun; Lee, Jongsung; Lee, Yu Jin; Yun, Jung-Mi; Son, Young-Jin; Cho, Jae Youl; Ryou, Chongsuk; Lee, Sang Yeol

    2016-08-15

    Timosaponin AIII (TAIII) is a type of steroidal saponins isolated from Anemarrhena asphodeloides. It was known to improve learning and memory deficits through anti-inflammatory effects. TAIII was also reported to induce autophagy preceding mitochondria-mediated apoptosis in HeLa cancer cells and inhibit the growth of human colorectal cancer cells, thus regarded as a potential candidate for anti-cancer agent. In this study, we verified apoptosis-inducing and cell-cycle-arresting effects of TAIII in A549 human non-small-cell lung cancer (NSCLC) cells. Then, we report that TAIII suppresses migration and invasion of A549 human NSCLC cells. We propose that two matrix metalloproteinases (MMPs), MMP-2 and MMP-9, which are well known to be involved in cancer-metastasis, are attenuated by the treatment of TAIII. TAIII exerts its suppressive effects on MMP-2 and MMP-9 via inhibitions of ERK1/2, Src/FAK and β-catenin signalings which are closely related with the regulations of MMP-2 and MMP-9. PMID:27422337

  6. Tumor Volume-Adapted Dosing in Stereotactic Ablative Radiotherapy of Lung Tumors

    SciTech Connect

    Trakul, Nicholas; Chang, Christine N.; Harris, Jeremy; Chapman, Christopher; Rao, Aarti; Shen, John; Quinlan-Davidson, Sean; Filion, Edith J.; Wakelee, Heather A.; Colevas, A. Dimitrios; Whyte, Richard I.; and others

    2012-09-01

    Purpose: Current stereotactic ablative radiotherapy (SABR) protocols for lung tumors prescribe a uniform dose regimen irrespective of tumor size. We report the outcomes of a lung tumor volume-adapted SABR dosing strategy. Methods and Materials: We retrospectively reviewed the outcomes in 111 patients with a total of 138 primary or metastatic lung tumors treated by SABR, including local control, regional control, distant metastasis, overall survival, and treatment toxicity. We also performed subset analysis on 83 patients with 97 tumors treated with a volume-adapted dosing strategy in which small tumors (gross tumor volume <12 mL) received single-fraction regimens with biologically effective doses (BED) <100 Gy (total dose, 18-25 Gy) (Group 1), and larger tumors (gross tumor volume {>=}12 mL) received multifraction regimens with BED {>=}100 Gy (total dose, 50-60 Gy in three to four fractions) (Group 2). Results: The median follow-up time was 13.5 months. Local control for Groups 1 and 2 was 91.4% and 92.5%, respectively (p = 0.24) at 12 months. For primary lung tumors only (excluding metastases), local control was 92.6% and 91.7%, respectively (p = 0.58). Regional control, freedom from distant metastasis, and overall survival did not differ significantly between Groups 1 and 2. Rates of radiation pneumonitis, chest wall toxicity, and esophagitis were low in both groups, but all Grade 3 toxicities developed in Group 2 (p = 0.02). Conclusion: A volume-adapted dosing approach for SABR of lung tumors seems to provide excellent local control for both small- and large-volume tumors and may reduce toxicity.

  7. Dimethylarginine dimethylaminohydrolase 2 promotes tumor angiogenesis in lung adenocarcinoma.

    PubMed

    Shiozawa, Toshihiro; Iyama, Shinji; Toshima, Shotaro; Sakata, Akiko; Usui, Shingo; Minami, Yuko; Sato, Yukio; Hizawa, Nobuyuki; Noguchi, Masayuki

    2016-02-01

    Although embryonal proteins have been used as tumor marker, most are not useful for detection of early malignancy. In the present study, we developed mouse monoclonal antibodies against fetal lung of miniature swine, and screened them to find an embryonal protein that is produced at the early stage of malignancy, focusing on lung adenocarcinoma. We found an antibody clone that specifically stained stroma of lung adenocarcinoma. LC-MS/MS identified the protein recognized by this clone as dimethylarginine dimethylaminohydrolase 2 (DDAH2), an enzyme known for antiatherosclerotic activity. DDAH2 was found to be expressed in fibroblasts of stroma of malignancies, with higher expression in minimally invasive adenocarcinoma (MIA) and invasive adenocarcinoma than in adenocarcinoma in situ (AIS). Moreover, tumors with high stromal expression of DDAH2 had a poorer prognosis than those without. In vitro analysis showed that DDAH2 increases expression of endothelial nitric oxide synthase (eNOS), inducing proliferation and capillary-like tube formation of vascular endothelial cells. In resected human tissues, eNOS also showed higher expression in invasive adenocarcinoma than in AIS and normal lung, similarly to DDAH2. Our data indicate that expression of DDAH2 is associated with invasiveness of lung adenocarcinoma via tumor angiogenesis. DDAH2 expression might be a prognostic factor in lung adenocarcinoma.

  8. Pulmonary Artery Pseudoaneurysm Related to Radiofrequency Ablation of Lung Tumor

    SciTech Connect

    Sakurai, Jun Mimura, Hidefumi; Gobara, Hideo; Hiraki, Takao; Kanazawa, Susumu

    2010-04-15

    We describe a case of pulmonary artery (PA) pseudoaneurysm related to radiofrequency ablation (RFA) of lung tumor. We performed RFA for a pulmonary epithelioid hemangioendothelioma directly adjacent to a branch of the PA. Seventeen days later, the patient complained of hemoptysis. A chest CT image revealed PA pseudoaneurysm. Transcatheter coil embolization was performed 59 days after RFA. Although PA pseudoaneurysm is rare, with an incidence of 0.2% (1/538 sessions) at our institution, it should be recognized as a risk when treating lung tumors adjacent to a branch of the PA.

  9. Opposite Effects of M1 and M2 Macrophage Subtypes on Lung Cancer Progression

    PubMed Central

    Yuan, Ang; Hsiao, Yi-Jing; Chen, Hsuan-Yu; Chen, Huei-Wen; Ho, Chao-Chi; Chen, Yu-Yun; Liu, Yi-Chia; Hong, Tsai-Hsia; Yu, Sung-Liang; Chen, Jeremy J.W.; Yang, Pan-Chyr

    2015-01-01

    Macrophages in a tumor microenvironment have been characterized as M1- and M2-polarized subtypes. Here, we discovered the different macrophages’ impacts on lung cancer cell A549. The M2a/M2c subtypes promoted A549 invasion and xenograft tumor growth. The M1 subtype suppressed angiogenesis. M1 enhanced the sensitivity of A549 to cisplatin and decreased the tube formation activity and cell viability of A549 cells by inducing apoptosis and senescence. Different macrophage subtypes regulated genes involved in the immune response, cytoskeletal remodeling, coagulation, cell adhesion, and apoptosis pathways in A549 cells, which was a pattern that correlated with the altered behaviors of the A549 cells. Furthermore, we found that the identified M1/M2 gene signatures were significantly correlated with the extended overall survival of lung cancer patients. These results suggest that M1/M2 gene expression signature may be used as a prognostic indicator for lung cancer patients, and M1/M2 polarization may be a target of investigation of immune-modulating therapies for lung cancer in the future. PMID:26399191

  10. Lung Tumor Radiofrequency Ablation: Where Do We Stand?

    SciTech Connect

    Baere, Thierry de

    2011-04-15

    Today, radiofrequency ablation (RFA) of primary and metastatic lung tumor is increasingly used. Because RFA is most often used with curative intent, preablation workup must be a preoperative workup. General anesthesia provides higher feasibility than conscious sedation. The electrode positioning must be performed under computed tomography for sake of accuracy. The delivery of RFA must be adapted to tumor location, with different impedances used when treating tumors with or without pleural contact. The estimated rate of incomplete local treatment at 18 months was 7% (95% confidence interval, 3-14) per tumor, with incomplete treatment depicted at 4 months (n = 1), 6 months (n = 2), 9 months (n = 2), and 12 months (n = 2). Overall survival and lung disease-free survival at 18 months were, respectively, 71 and 34%. Size is a key point for tumor selection because large size is predictive of incomplete local treatment and poor survival. The ratio of ablation volume relative to tumor volume is predictive of complete ablation. Follow-up computed tomography that relies on the size of the ablation zone demonstrates the presence of incomplete ablation. Positron emission tomography might be an interesting option. Chest tube placement for pneumothorax is reported in 8 to 12%. Alveolar hemorrhage and postprocedure hemoptysis occurred in approximately 10% of procedures and rarely required specific treatment. Death was mostly related to single-lung patients and hilar tumors. No modification of forced expiratory volume in the first second between pre- and post-RFA at 2 months was found. RFA in the lung provides a high local efficacy rate. The use of RFA as a palliative tool in combination with chemotherapy remains to be explored.

  11. Capnocytophaga Lung Abscess in a Patient with Metastatic Neuroendocrine Tumor

    PubMed Central

    Thirumala, Raghu; Babady, N. Esther; Kamboj, Mini; Chawla, Mohit

    2012-01-01

    Capnocytophaga species are known commensals of the oral cavity of humans and animals (mainly dogs and cats) and are a rare cause of respiratory tract infections. We report a case of cavitary lung abscess caused by a Capnocytophaga species in a patient with a metastatic neuroendocrine tumor. PMID:22075586

  12. Capnocytophaga lung abscess in a patient with metastatic neuroendocrine tumor.

    PubMed

    Thirumala, Raghu; Rappo, Urania; Babady, N Esther; Kamboj, Mini; Chawla, Mohit

    2012-01-01

    Capnocytophaga species are known commensals of the oral cavity of humans and animals (mainly dogs and cats) and are a rare cause of respiratory tract infections. We report a case of cavitary lung abscess caused by a Capnocytophaga species in a patient with a metastatic neuroendocrine tumor. PMID:22075586

  13. Focal Adhesion Kinase Inhibitors in Combination with Erlotinib Demonstrate Enhanced Anti-Tumor Activity in Non-Small Cell Lung Cancer

    PubMed Central

    Howe, Grant A.; Xiao, Bin; Zhao, Huijun; Al-Zahrani, Khalid N.; Hasim, Mohamed S.; Villeneuve, James; Sekhon, Harmanjatinder S.; Goss, Glenwood D.; Sabourin, Luc A.; Dimitroulakos, Jim; Addison, Christina L.

    2016-01-01

    Blockade of epidermal growth factor receptor (EGFR) activity has been a primary therapeutic target for non-small cell lung cancers (NSCLC). As patients with wild-type EGFR have demonstrated only modest benefit from EGFR tyrosine kinase inhibitors (TKIs), there is a need for additional therapeutic approaches in patients with wild-type EGFR. As a key component of downstream integrin signalling and known receptor cross-talk with EGFR, we hypothesized that targeting focal adhesion kinase (FAK) activity, which has also been shown to correlate with aggressive stage in NSCLC, would lead to enhanced activity of EGFR TKIs. As such, EGFR TKI-resistant NSCLC cells (A549, H1299, H1975) were treated with the EGFR TKI erlotinib and FAK inhibitors (PF-573,228 or PF-562,271) both as single agents and in combination. We determined cell viability, apoptosis and 3-dimensional growth in vitro and assessed tumor growth in vivo. Treatment of EGFR TKI-resistant NSCLC cells with FAK inhibitor alone effectively inhibited cell viability in all cell lines tested; however, its use in combination with the EGFR TKI erlotinib was more effective at reducing cell viability than either treatment alone when tested in both 2- and 3-dimensional assays in vitro, with enhanced benefit seen in A549 cells. This increased efficacy may be due in part to the observed inhibition of Akt phosphorylation when the drugs were used in combination, where again A549 cells demonstrated the most inhibition following treatment with the drug combination. Combining erlotinib with FAK inhibitor was also potent in vivo as evidenced by reduced tumor growth in the A549 mouse xenograft model. We further ascertained that the enhanced sensitivity was irrespective of the LKB1 mutational status. In summary, we demonstrate the effectiveness of combining erlotinib and FAK inhibitors for use in known EGFR wild-type, EGFR TKI resistant cells, with the potential that a subset of cell types, which includes A549, could be particularly

  14. Promoter methylation status of tumor suppressor genes and inhibition of expression of DNA methyltransferase 1 in non-small cell lung cancer.

    PubMed

    Liu, Bangqing; Song, Jianfei; Luan, Jiaqiang; Sun, Xiaolin; Bai, Jian; Wang, Haiyong; Li, Angui; Zhang, Lifei; Feng, Xiaoyan; Du, Zhenzong

    2016-08-01

    DNA methylation is an epigenetic DNA modification catalyzed by DNA methyltransferase 1 (DNMT1). The purpose of this study was to investigate DNMT1 gene and protein expression and the effects of methylation status on tumor suppressor genes in human non-small cell lung cancer (NSCLC) cell lines grown in vitro and in vivo Human lung adenocarcinoma cell lines, A549 and H838, were grown in vitro and inoculated subcutaneously into nude mice to form tumors and were then treated with the DNA methylation inhibitor, 5-aza-2'-deoxycytidine, with and without treatment with the benzamide histone deacetylase inhibitor, entinostat (MS-275). DNMT1 protein expression was quantified by Western blot. Promoter methylation status of tumor suppressor genes (RASSF1A, ASC, APC, MGMT, CDH13, DAPK, ECAD, P16, and GATA4) was evaluated by methylation-specific polymerase chain reaction. Methylation status of the tumor suppressor genes was regulated by the DNMT1 gene, with the decrease of DNMT1 expression following DNA methylation treatment. Demethylation of tumor suppressor genes (APC, ASC, and RASSF1A) restored tumor growth in nude mice. The results of this study support a role for methylation of DNA as a potential epigenetic clinical biomarker of prognosis or response to therapy and for DNMT1 as a potential therapeutic target in NSCLC. PMID:27190263

  15. Epidermal growth factor receptor expression in radiation-induced dog lung tumors by immunocytochemical localization

    SciTech Connect

    Leung, F.L.; Park, J.F.; Dagle, G.E.

    1993-06-01

    In studies to determine the role of growth factors in radiation-induced lung cancer, epidermal growth factor (EGFR) expression was examined by immunocytochemistry in 51 lung tumors from beagle dogs exposed to inhaled plutonium; 21 of 51 (41%) tumors were positive for EGFR. The traction of tumors positive for EGFR and the histological type of EGFR-positive tumors in the plutonium-exposed dogs were not different from spontaneous dog lung tumors, In which 36% were positive for EGFR. EGFR involvement in Pu-induced lung tumors appeared to be similar to that in spontaneous lung tumors. However, EGFR-positive staining was observed in only 1 of 16 tumors at the three lowest Pu exposure levels, compared to 20 of 35 tumors staining positive at the two highest Pu exposure levels. The results in dogs were in good agreement with the expression of EGFR reported in human non-small cell carcinoma of the lung, suggesting that Pu-induced lung tumors in the dog may be a suitable animal model to investigate the role of EGFR expression in lung carcinogenesis. In humans, EGFR expression in lung tumors has been primarily related to histological tumor types. In individual dogs with multiple primary lung tumors, the tumors were either all EGFR positive or EGFR negative, suggesting that EGFR expression may be related to the response of the individual dog as well as to the histological type of tumor.

  16. Theranostic tumor homing nanocarriers for the treatment of lung cancer

    PubMed Central

    Patel, Apurva R; Chougule, Mahavir B.; Lim, Ed; Francis, Kevin P; Safe, Stephen; Singh, Mandip

    2014-01-01

    The drugs/strategies to selectively inhibit tumor blood supply has generated interest in recent years for enhancement of cancer therapeutics. The objective of this study was to formulate tumor homing PEGylated CREKA peptide conjugated theranostic nanoparticles of DIM-C-pPhC6H5 (DIM-P) and investigate in vivo antitumor activity as well as evaluate the targeted efficiency to lung tumors using imaging techniques. DIM-P loaded Nanoparticles (NCs-D) were prepared using lipids, and DOGS-NTA-Ni and the surface of NCs-D was modified with PEGylated CREKA peptide (PCNCs-D). PCNCs-D showed 3 fold higher binding to clotted plasma proteins in tumor vasculature compared to NCs-D. PCNCs-D showed 26±4% and 22±5% increase in tumor reduction compare to NCs-D in metastatic and orthotopic models respectively. In-vivo imaging studies showed ~40 folds higher migration of PCNCs-Di in tumor vasculature than NCs-Di. Our studies demonstrate the role of PCNCs-D as theranostic tumor homing drug delivery and imaging systems for lung cancer diagnosis and treatment. PMID:24355163

  17. Extraosseous Benign Notochordal Cell Tumor Originating in the Lung

    PubMed Central

    Takahashi, Yusuke; Motoi, Toru; Harada, Masahiko; Fukuda, Yumiko; Hishima, Tsunekazu; Horio, Hirotoshi

    2015-01-01

    Abstract Benign notochordal cell tumors (BNCTs) are tumors originating in the axial skeleton, where chordomas occur. Although very rare, some cases of extraosseous chordoma, such as in the soft tissue and lungs, have been reported. We report a case of a primary tumor showing the notochordal characteristics of BNCTs within the axial skeleton. An asymptomatic 57-year-old woman presented with an abnormal shadow on her chest radiograph; chest computed tomography revealed a well-defined round nodule. The resected sample tissue contained a jelly-like small nodule. Histologically, it was identified as a BNCT, based on minimal nuclear atypia, extremely low mitotic activity within the tumor cells lying in a sheet-like arrangement, and focal immunopositivity for brachyury. This is the third case report of BNCT originating in the lungs; BNCTs are considered asymptomatic tumors that are identified by using highly developed chest imaging technology; however, our findings also suggest that these notochordal tumors may potentially originate from extraosseous sites that lack ideal precursor cells. Our case suggests that notochordal tumors can arise from organs that are unrelated to known notochordal development. PMID:25569657

  18. Analysis of lung tumor risks in rats exposed to radon.

    PubMed

    Gilbert, E S; Cross, F T; Dagle, G E

    1996-03-01

    Using data on 3117 rats exposed by inhalation to radon, radon progeny and uranium ore dust, the hazard function (or age-specific risk) for lung tumor incidence was modeled as a function of exposure, exposure rate and other factors. The overall estimate of lifetime risk was 237 cases per 10(6) rats per WLM (237 per 10(6) WLM), reasonably comparable to estimates obtained from data for humans. The data below 1000 WLM (20-640 WLM) were consistent with linearity with positive excess risks at all levels; however, evidence of statistically significant excess risk was limited to exposures of 80 WLM or greater. Evidence for an inverse exposure-rate effect was limited primarily to cumulative exposures exceeding 1000 WLM (1280-10,240 WLM) and to comparison of results at 100 and 1000 WL. Even at these levels, the possibility that the effect might be explained by time since last exposure or by heterogeneity across experiments could not be entirely excluded. The inverse exposure-rate effect was strongest for epidermoid and adenosquamous tumors, and the only indication of such an effect at exposures below 1000 WLM was modest evidence (P=0.024) in analyses limited to these tumors. When all lung tumors, or all malignant lung tumors, were included, there was no evidence of such an effect below 1000 WLM. These data support the viewpoint that the inverse exposure-rate effect is primarily a high-dose phenomenon. PMID:8927704

  19. 1,1-Bis (3'-indolyl)-1-(p-substitutedphenyl)methane compounds inhibit lung cancer cell and tumor growth in a metastasis model.

    PubMed

    Andey, Terrick; Patel, Apurva; Jackson, Tanise; Safe, Stephen; Singh, Mandip

    2013-10-01

    1,1-Bis(3-indolyl)-1-(p-substitutedphenyl)methane (C-DIM) compounds exhibit remarkable antitumor activity with low toxicity in various cancer cells including lung tumors. Two C-DIM analogs, DIM-C-pPhOCH3 (C-DIM-5) and DIM-C-pPhOH (C-DIM-8) while acting differentially on the orphan nuclear receptor, TR3/Nur77 inhibited cell cycle progression from G0/G1 to S-phase and induced apoptosis in A549 cells. Combinations of docetaxel (doc) with C-DIM-5 or C-DIM-8 showed synergistic anticancer activity in vitro and these results were consistent with their enhanced antitumor activities invivo. Respirable aqueous formulations of C-DIM-5 (mass median aerodynamic diameter of 1.92±0.22μm and geometric standard deviation of 2.31±0.12) and C-DIM-8 (mass median aerodynamic diameter of 1.84±0.31μm and geometric standard deviation of 2.11±0.15) were successfully delivered by inhalation to athymic nude mice bearing A549 cells as metastatic tumors. This resulted in significant (p<0.05) lung tumor regression and an overall reduction in tumor burden. Analysis of lung tumors from mice treated with inhalational formulations of C-DIM-5 and C-DIM-8 showed decreased mRNA and protein expression of mediators of tumor initiation, metastasis, and angiogenesis including MMP2, MMP9, c-Myc, β-catenin, c-Met, c-Myc, and EGFR. Microvessel density assessment of lung tissue sections showed significant reduction (p<0.05) in angiogenesis and metastasis as evidenced by decreased distribution of immunohistochemical staining of VEGF, and CD31. Our studies demonstrate both C-DIM-5 and C-DIM-8 have similar anticancer profiles in treating metastatic lung cancer and possibly work as TR3 inactivators.

  20. Relevance of particle-induced rat lung tumors for assessing lung carcinogenic hazard and human lung cancer risk.

    PubMed Central

    Mauderly, J L

    1997-01-01

    Rats and other rodents are exposed by inhalation to identify agents that might present hazards for lung cancer in humans exposed by inhalation. In some cases, the results are used in attempts to develop quantitative estimates of human lung cancer risk. This report reviews evidence for the usefulness of the rat for evaluation of lung cancer hazards from inhaled particles. With the exception of nickel sulfate, particulate agents thought to be human lung carcinogens cause lung tumors in rats exposed by inhalation. The rat is more sensitive to carcinogenesis from nonfibrous particles than mice or Syrian hamsters, which have both produced false negatives. However, rats differ from mice and nonhuman primates in both the pattern of particle retention in the lung and alveolar epithelial hyperplastic responses to chronic particle exposure. Present evidence warrants caution in extrapolation from the lung tumor response of rats to inhaled particles to human lung cancer hazard, and there is considerable uncertainty in estimating unit risks for humans from rat data. It seems appropriate to continue using rats in inhalation carcinogenesis assays of inhaled particles, but the upper limit of exposure concentrations must be set carefully to avoid false-positive results. A positive finding in both rats and mice would give greater confidence that an agent presents a carcinogenic hazard to man, and both rats and mice should be used if the agent is a gas or vapor. There is little justification for including Syrian hamsters in assays of the intrapulmonary carcinogenicity of inhaled agents. PMID:9400748

  1. Ophiopogonin B induces apoptosis, mitotic catastrophe and autophagy in A549 cells.

    PubMed

    Chen, Meijuan; Guo, Yuanyuan; Zhao, Ruolin; Wang, Xiaoxia; Jiang, Miao; Fu, Haian; Zhang, Xu

    2016-07-01

    Ophiopogonin B (OP-B), a saponin compound isolated from Radix Ophiopogon japonicus, was verified to inhibit cell proliferation in numerous non-small cell lung cancer (NSCLC) cells in our previous study. However, the precise mechanisms of action have remained unclear. In the present study, we mainly investigated the effects of OP-B on adenocarcinoma A549 cells to further elaborate the underlying mechanisms of OP-B in different NSCLC cell lines. Detection by high content screening (HCS) and TUNEL assay verified that OP-B induced apoptosis in this cell line, while detection of Caspase-3, Bcl-2 and Bax showed that OP-B induced cell death was caspase and mitochondrial independent. Further experiments showed that OP-B induced cell cycle arrest in the S and G2/M phases by inhibiting the expression of Myt1 and phosphorylation of Histone H3 (Ser10), which resulted in mitotic catastrophe in the cells. Transmission electron microscopy (TEM) observation of cell micro-morphology combined with detection of Atgs by western blot analysis showed that OP-B induced autophagy in this cell line. Autophagy inhibition by the lysosome inhibitor CQ or Beclin1-siRNA knockdown both attenuated cell viability, demonstrated that autophagy also being the vital reason resulted in cell death. More importantly, the xenograft model using A549 cells provided further evidence of the inhibition of OP-B on tumor proliferation. Immunohistochemistry detection of LC3 and Tunel assay both verified that high dose of OP-B (75 mg/kg) induced autophagy and apoptosis in vivo, and western blot detection of p-Histone H3 (Ser10), Survivin and XIAP further indicated the molecular mechanism of OP-B in vivo. As our findings revealed, multiple types of cell death overlapped in OP-B treated A549 cells, it displayed multitarget characteristics of the compounds extracted from the Chinese herbal, which may be used as candidate anticancer medicine in clinic.

  2. A novel aminothiazole KY-05009 with potential to inhibit Traf2- and Nck-interacting kinase (TNIK) attenuates TGF-β1-mediated epithelial-to-mesenchymal transition in human lung adenocarcinoma A549 cells.

    PubMed

    Kim, Jiyeon; Moon, Seong-Hee; Kim, Bum Tae; Chae, Chong Hak; Lee, Joo Yun; Kim, Seong Hwan

    2014-01-01

    Transforming growth factor (TGF)-β triggers the epithelial-to-mesenchymal transition (EMT) of cancer cells via well-orchestrated crosstalk between Smad and non-Smad signaling pathways, including Wnt/β-catenin. Since EMT-induced motility and invasion play a critical role in cancer metastasis, EMT-related molecules are emerging as novel targets of anti-cancer therapies. Traf2- and Nck-interacting kinase (TNIK) has recently been considered as a first-in-class anti-cancer target molecule to regulate Wnt signaling pathway, but pharmacologic inhibition of its EMT activity has not yet been studied. Here, using 5-(4-methylbenzamido)-2-(phenylamino)thiazole-4-carboxamide (KY-05009) with TNIK-inhibitory activity, its efficacy to inhibit EMT in cancer cells was validated. The molecular docking/binding study revealed the binding of KY-05009 in the hinge region of TNIK, and the inhibitory activity of KY-05009 against TNIK was confirmed by an ATP competition assay (Ki, 100 nM). In A549 cells, KY-05009 significantly and strongly inhibited the TGF-β-activated EMT through the attenuation of Smad and non-Smad signaling pathways, including the Wnt, NF-κB, FAK-Src-paxillin-related focal adhesion, and MAP kinases (ERK and JNK) signaling pathways. Continuing efforts to identify and validate potential therapeutic targets associated with EMT, such as TNIK, provide new and improved therapies for treating and/or preventing EMT-based disorders, such as cancer metastasis and fibrosis. PMID:25337707

  3. Synergistic Tumor-Killing Effect of Radiation and Berberine Combined Treatment in Lung Cancer: The Contribution of Autophagic Cell Death

    SciTech Connect

    Peng Peiling; Kuo, W.-H.; Tseng, H.-C.; Chou, F.-P.

    2008-02-01

    Purpose: Radiotherapy is the most efficacious strategies for lung cancer. The radiation-enhancing effects and the underlying mechanisms of berberine were investigated both in vitro and in vivo. Methods and Materials: Clonogenic survival assays were used to evaluate the radio-sensitivity of berberine on non-small-cell lung cancer. Electron microscopic observation of the features of cell death, flow cytometry of acidic vascular organelles formation, mitochondria membrane potential and cell-cycle progression, and Western blotting of caspase 3, PARP, and LC3 were performed to identify the mechanisms underlying the enhancing effects. Lewis lung carcinoma model in mice was conducted to evaluate the possible application of berberine in synergistic treatment with irradiation. Results: Compared with radiation alone (SF2 = 0.423; D{sub 0} = 5.29 Gy), berberine at 5 and 10 {mu}M concentrations in combination with radiation showed significant enhancement on radiation-induced clonogenic inhibition (SF2 = 0.215: D{sub 0} = 2.70 Gy and SF2 = 0.099: D{sub 0} = 1.24 Gy) on A549 cells. The cellular ultrastructure showed the presence of autophagosome and an increased proportion of acridine orange stain-positive cells, demonstrating that berberine enhanced radiosensitivity via autophagy. The process involved LC3 modification and mitochondrial disruption. The animal model verified the synergistic cytotoxic effect of berberine and irradiation resulting in a substantial shrinkage of tumor volume. Conclusion: Supplement of berberine enhanced the cytotoxicity of radiation in both in vivo and in vitro models of lung cancer. The mechanisms underlying this synergistic effect involved the induction of autophagy. It suggests that berberine could be used as adjuvant therapy to treat lung cancer.

  4. Inflammatory myofibroblastic tumor of the lung in pregnancy mimicking carcinoid tumor.

    PubMed

    Maturu, Venkata Nagarjuna; Bal, Amanjit; Singh, Navneet

    2016-01-01

    Inflammatory myofibroblastic tumors (IMT) are uncommon neoplasms of the lung in adults. They constitute less than 1% of all lung neoplasms and usually present as parenchymal masses. Diagnosis requires a high index of suspicion. They are characterized by spindle-shaped tumor cells (fibroblasts/myofibroblasts) in a background of lymphoplasmacytic infiltrate. About 50% of the tumors harbor an ALK gene rearrangement. They have to be differentiated from inflammatory pseudotumors (IPT), which show increased number of IgG4 plasma cells on immunostaining and are negative for anaplastic lymphoma kinase (ALK) protein. Herein, we present a case of a 28-year old female who presented with hemoptysis and was diagnosed with an IMT of lung in the first trimester of pregnancy. We have not only reviewed the occurrence of IMT during pregnancy but also discuss the management options for IMT during pregnancy. PMID:26933315

  5. Tumor-Derived CXCL1 Promotes Lung Cancer Growth via Recruitment of Tumor-Associated Neutrophils

    PubMed Central

    Zhu, Ha; Xu, Junfang; Zheng, Yuanyuan; Cao, Xuetao

    2016-01-01

    Neutrophils have a traditional role in inflammatory process and act as the first line of defense against infections. Although their contribution to tumorigenesis and progression is still controversial, accumulating evidence recently has demonstrated that tumor-associated neutrophils (TANs) play a key role in multiple aspects of cancer biology. Here, we detected that chemokine CXCL1 was dramatically elevated in serum from 3LL tumor-bearing mice. In vitro, 3LL cells constitutively expressed and secreted higher level of CXCL1. Furthermore, knocking down CXCL1 expression in 3LL cells significantly hindered tumor growth by inhibiting recruitment of neutrophils from peripheral blood into tumor tissues. Additionally, tumor-infiltrated neutrophils expressed higher levels of MPO and Fas/FasL, which may be involved in TAN-mediated inhibition of CD4+ and CD8+ T cells. These results demonstrate that tumor-derived CXCL1 contributes to TANs infiltration in lung cancer which promotes tumor growth. PMID:27446967

  6. Restoration of BRG1 inhibits proliferation and metastasis of lung cancer by regulating tumor suppressor miR-148b

    PubMed Central

    Zhou, Zheng; Su, Yanhe; Fa, Xianen

    2015-01-01

    Background Brahma-related gene 1 (BRG1) has been implicated in a variety of biological processes, and it has been found to be mutated or silenced in numerous cancers, including lung cancer. Recent reports have proposed BRG1 as a tumor suppressor, but its roles in cell proliferation and metastasis remain unknown. miR-148b functions as a tumor suppressor in non-small-cell lung cancer. However, the mechanism responsible for the downregulation of miR-148b in lung cancer is still elusive. Methods The expression of BRG1 and miR-148b was evaluated in lung cancer tissues and cells using quantitative real-time polymerase chain reaction. The effect of BRG1 on proliferation of lung cancer cells was investigated using MTT assay. Transwell and Western blot assays were used to analyze the effect of BRG1 on invasion and epithelial–mesenchymal transition (EMT), respectively. The target of miR-148b was ascertained using luciferase reporter assay. Chromatin immunoprecipitation (ChIP) assay was performed to analyze the relation of BRG1 and the promoter region of miR-148b. Results Restoration of BRG1 was demonstrated to inhibit cell proliferation, metastasis, and EMT in lung cancer cell lines. Furthermore, we found that miR-148b was positively regulated by BRG1. Additionally, we suggested that miR-148b suppressed cell proliferation, metastasis, and EMT in lung cancer cells by directly binging to 3′-untranslated region of WNT1, blocking the WNT1/β-catenin signaling pathway. ChIP assay showed that BRG1 bound to the promoter of miR-148b in A549 cells. Conclusion BRG1 positively regulated the expression of miR-148b, leading to inhibition of cell proliferation, metastasis, restraint of EMT, and inactivation of the WNT/β-catenin signaling pathway, which highlights potential therapeutic possibilities for the treatment of lung cancer. PMID:26664144

  7. CD147 deficiency blocks IL-8 secretion and inhibits lung cancer-induced osteoclastogenesis

    SciTech Connect

    Wang, Hongkai; Zhuo, Yunyun; Hu, Xu; Shen, Weiwei; Zhang, Ying; Chu, Tongwei

    2015-03-06

    Bone is a frequent target of lung cancer metastasis, which is associated with significant morbidity and poor prognosis; however, the molecular basis of this process is still unknown. This study investigated the role of extracellular matrix metalloproteinase inducer (also known as cluster of differentiation (CD)147) in osteoclastogenesis resulting from bone metastasis, based on the enrichment of this glycoprotein on the surface of many malignant bone tumors. RNA interference was used to silence CD147 expression in A549 human lung cancer cells. Compared with conditioned medium (CM) from control cells (A549-CM), CM from CD147-deficient cells (A549-si-CM) suppressed receptor activator of nuclear factor κB ligand-stimulated osteoclastogenesis in RAW 264.7 cells and bone marrow-derived macrophages. The mRNA levels of osteoclast-specific genes such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K were also reduced in the presence of A549-si-CM. CD147 knockdown in A549 cells decreased interleukin (IL)-8mRNA and protein expression. IL-8 is present in large amounts in A549-CM and mimicked its inductive effect on osteoclastogenesis; this was reversed by depletion of IL-8 from the medium. Taken together, these results indicate that CD147 promotes lung cancer-induced osteoclastogenesis by modulating IL-8 secretion, and suggest that CD147 is a potential therapeutic target for cancer-associated bone resorption in lung cancer patients. - Highlights: • Bone loss frequently results from lung cancer metastasis. • Cluster of differentiation (CD)147 was depleted in A549 lung adenocarcinoma cells. • RAW 264.7 cell osteoclastogenesis was blocked by medium from CD147-deficient cells. • Interleukin (IL)-8 level was reduced in the conditioned medium. • Osteoclastogenesis induced by lung tumor cells requires CD147-mediated IL-8 release.

  8. Case Report: Metabolic Profiling Identifies Lung Tumor Responsiveness to Erlotinib

    PubMed Central

    Fan, Teresa W-M; Lane, Andrew N; Higashi, Richard M; Bousamra, Michael; Kloecker, Goetz; Miller, Donald M.

    2009-01-01

    A subtype of non-small cell lung cancer, bronchioalveolar adenocarcinoma (BAC), is more prevalent in Asian female non-smokers, and is more likely to respond to treatment with tyrosine kinase inhibitors such as erlotinib and gefitinib. Nuclear magnetic resonance and mass spectrometry-based metabolomic analysis of extracts from two different lung lesions and surrounding non-cancerous tissues of a BAC patient showed novel protein and phospholipid-associated metabolic differences that correlated with tumor development as well as PET and erlotinib sensitivity. PMID:19409891

  9. Metabolic profiling identifies lung tumor responsiveness to erlotinib.

    PubMed

    Fan, Teresa W-M; Lane, Andrew N; Higashi, Richard M; Bousamra, Michael; Kloecker, Goetz; Miller, Donald M

    2009-08-01

    A subtype of non-small cell lung cancer, bronchioalveolar adenocarcinoma (BAC), is more prevalent in Asian female non-smokers, and is more likely to respond to treatment with tyrosine kinase inhibitors such as erlotinib and gefitinib. Nuclear magnetic resonance and mass spectrometry-based metabolomic analysis of extracts from two different lung lesions and surrounding non-cancerous tissues of a BAC patient showed novel protein and phospholipid-associated metabolic differences that correlated with tumor development as well as PET and erlotinib sensitivity.

  10. Gefitinib induces lung cancer cell autophagy and apoptosis via blockade of the PI3K/AKT/mTOR pathway

    PubMed Central

    ZHAO, ZHONG-QUAN; YU, ZHONG-YANG; LI, JIE; OUYANG, XUE-NONG

    2016-01-01

    Gefitinib is a selective inhibitor of the tyrosine kinase epidermal growth factor receptor, which inhibits tumor pathogenesis, metastasis and angiogenesis, as well as promoting apoptosis. Therefore, gefitinib presents an effective drug for the targeted therapy of lung cancer. However, the underlying mechanisms by which gefitinib induces lung cancer cell death remain unclear. To investigate the effects of gefitinib on lung cancer cells and the mechanism of such, the present study analyzed the effect of gefitinib on the autophagy, apoptosis and proliferation of the A549 and A549-gefitinib-resistant (GR) cell lines GR. The regulation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) pathway was also investigated. Acridine orange staining revealed that gefitinib induced autophagy of A549 cells but not A549-GR cells. In addition, gefitinib promoted apoptosis and inhibited proliferation of A549 cells but not A549-GR cells. Furthermore, western blot analysis demonstrated that gefitinib treatment led to the downregulation of PI3K, AKT, pAKT, mTOR and phosphorylated-mTOR protein expression in A549 cells but not A549-GR cells. LY294002 blocked the PI3K/AKT/mTOR pathway and induced autophagy and apoptosis of A549 cells, however, no synergistic effect was observed following combined treatment with gefitinib and LY294002. In conclusion, the results of the present study indicate that gefitinib promotes autophagy and apoptosis of lung cancer cells via blockade of the PI3K/AKT/mTOR pathway, which leads to lung cancer cell death. PMID:27347100

  11. Suppression of tumor growth in lung cancer xenograft model mice by poly(sorbitol-co-PEI)-mediated delivery of osteopontin siRNA.

    PubMed

    Cho, Won-Young; Hong, Seong-Ho; Singh, Bijay; Islam, Mohammad Ariful; Lee, Somin; Lee, Ah Young; Gankhuyag, Nomundelger; Kim, Ji-Eun; Yu, Kyeong-Nam; Kim, Kwang-Ho; Park, Young-Chan; Cho, Chong-Su; Cho, Myung-Haing

    2015-08-01

    Small interfering RNA (siRNA)-mediated gene silencing represents a promising strategy for treating diseases such as cancer; however, specific gene silencing requires an effective delivery system to overcome the instability and low transfection efficiency of siRNAs. To address this issue, a polysorbitol-based transporter (PSOT) was prepared by low molecular weight branched polyethylenimine (bPEI) crosslinked with sorbitol diacrylate (SDA). Osteopontin (OPN) gene, which is highly associated with non-small cell lung cancer (NSCLC) was targeted by siRNA therapy using siRNA targeting OPN (siOPN). Characterization study confirmed that PSOT formed compact complexes with siOPN and protected siOPN against degradation by RNase. PSOT/siOPN complexes demonstrated low cytotoxicity and enhanced transfection efficiency in vitro, suggesting that this carrier may be suitable for gene silencing. In the A549 and H460 lung cancer cell lines, PSOT/siOPN complexes demonstrated significant silencing efficiency at both RNA and protein levels. To study in vivo tumor growth suppression, two lung cancer cell-xenograft mouse models were prepared and PSOT/siOPN complexes were delivered into the mice through intravenous injection. The siOPN-treated groups demonstrated significantly reduced OPN expression at both the RNA and protein levels as well as suppression of tumor volume and weight. Taken together, siOPN delivery using PSOT may present an effective and novel therapeutic system for lung cancer treatment.

  12. Analysis of volatile organic compounds released from human lung cancer cells and from the urine of tumor-bearing mice

    PubMed Central

    2012-01-01

    Backgrounds A potential strategy for the diagnosis of lung cancer is to exploit the distinct metabolic signature of this disease by way of biomarkers found in different sample types. In this study, we investigated whether specific volatile organic compounds (VOCs) could be detected in the culture medium of the lung cancer cell line A549 in addition to the urine of mice implanted with A549 cells. Results Several VOCs were found at significantly increased or decreased concentrations in the headspace of the A549 cell culture medium as compared with the culture medium of two normal lung cell lines. We also analyzed the urine of mice implanted with A549 cells and several VOCs were also found to be significantly increased or decreased relative to urine obtained from control mice. It was also revealed that seven VOCs were found at increased concentrations in both sample types. These compounds were found to be dimethyl succinate, 2-pentanone, phenol, 2-methylpyrazine, 2-hexanone, 2-butanone and acetophenone. Conclusions Both sample types produce distinct biomarker profiles, and VOCs have potential to distinguish between true- and false-positive screens for lung cancer. PMID:22364569

  13. Rho GTPases RhoA and Rac1 mediate effects of dietary folate on metastatic potential of A549 cancer cells through the control of cofilin phosphorylation.

    PubMed

    Oleinik, Natalia V; Helke, Kristi L; Kistner-Griffin, Emily; Krupenko, Natalia I; Krupenko, Sergey A

    2014-09-19

    Folate, an important nutrient in the human diet, has been implicated in cancer, but its role in metastasis is not established. We have shown previously that the withdrawal of medium folate leads to the inhibition of migration and invasion of A549 lung carcinoma cells. Here we have demonstrated that medium folate regulates the function of Rho GTPases by enabling their carboxyl methylation and translocation to plasma membrane. Conversely, the lack of folate leads to the retention of these proteins in endoplasmic reticulum. Folate also promoted the switch from inactive (GDP-bound) to active (GTP-bound) GTPases, resulting in the activation of downstream kinases p21-activated kinase and LIM kinase and phosphorylation of the actin-depolymerizing factor cofilin. We have further demonstrated that in A549 cells two GTPases, RhoA and Rac1, but not Cdc42, are immediate sensors of folate status: the siRNA silencing of RhoA or Rac1 blocked effects of folate on cofilin phosphorylation and cellular migration and invasion. The finding that folate modulates metastatic potential of cancer cells was confirmed in an animal model of lung cancer using tail vein injection of A549 cells in SCID mice. A folate-rich diet enhanced lung colonization and distant metastasis to lymph nodes and decreased overall survival (35 versus 63 days for mice on a folate-restricted diet). High folate also promoted epithelial-mesenchymal transition in cancer cells and experimental mouse tumors. Our study provides experimental evidence for a mechanism of metastasis promotion by dietary folate and highlights the interaction between nutrients and metastasis-related signaling.

  14. Pulmonar collision tumor: metastatic adenoid cystic carcinoma and lung adenocarcinoma.

    PubMed

    Blanco, M; García-Fontán, E; Ríos, J; Rivo, J E; Fernández-Martín, R; Cañizares, M A

    2012-01-01

    We report an extraordinary case of collision tumor consisting of a lung adenocarcinoma and a metastatic adenoid cystic carcinoma in a 56 year-old man. He was diagnosed with a pulmonary nodule 11 years after treatment of an adenoid cystic carcinoma of the right maxillary sinus. A non-small cell carcinoma was observed when a transbronchial biopsy was performed. The other component of the nodule was only diagnosed with pathological examination of the resection specimen. PMID:21802893

  15. Pulmonar collision tumor: metastatic adenoid cystic carcinoma and lung adenocarcinoma.

    PubMed

    Blanco, M; García-Fontán, E; Ríos, J; Rivo, J E; Fernández-Martín, R; Cañizares, M A

    2012-01-01

    We report an extraordinary case of collision tumor consisting of a lung adenocarcinoma and a metastatic adenoid cystic carcinoma in a 56 year-old man. He was diagnosed with a pulmonary nodule 11 years after treatment of an adenoid cystic carcinoma of the right maxillary sinus. A non-small cell carcinoma was observed when a transbronchial biopsy was performed. The other component of the nodule was only diagnosed with pathological examination of the resection specimen.

  16. Enhancement of antitumor activity of docetaxel by celecoxib in lung tumors

    PubMed Central

    Shaik, Madhu Sudhan; Chatterjee, Abhijit; Jackson, Tanise; Singh, Mandip

    2010-01-01

    Our study investigates the effect of a highly selective cyclooxygenase-2 (COX-2) inhibitor, celecoxib, on the cytotoxicity of docetaxel in nude mice bearing A549 tumor xenografts and elucidates the molecular mechanisms of the antitumor effect of this combination. Female nu/nu mice, xenografted with s.c. A549 tumors were treated with either celecoxib (150 mg/kg/day), docetaxel (10 mg/kg) or a combination of both. The tumor tissues were quantified for the induction of apoptosis, intratumor levels/expressions of prostaglandin E2 (PGE2), 15 deoxy prostaglandin J2 (15-d PGJ2), microsomal prostaglandin E synthase (mPGES) and cytoplasmic phospholipase A2 (cPLA2). The combination of celecoxib with docetaxel significantly inhibited the tumor growth (p < 0.03) as compared to celecoxib or docetaxel alone, decreased the levels of PGE2 by 10-fold and increased the 15-d PGJ2 levels by 4-fold as compared to control. The combination also enhanced the peroxisome proliferator-activated receptor (PPAR)-γ expression, decreased the expression of cPLA2, mPGES and vascular endothelial growth factor (VEGF), but had no effect on the expression of COX-1 or COX-2 in tumor tissues. TUNEL staining of the tumor tissues showed a marked increase in the apoptosis in the combination group as compared to the celecoxib- or docetaxel-treated groups and this was associated with an increase in the intratumor p53 expression. In conclusion, the combination of celecoxib with docetaxel produces a greater antitumor effect in s.c. A549 tumors as compared to celecoxib or docetaxel alone and this effect is associated with concomitant alterations in the intratumor levels of PGE2 and 15-d PGJ2. PMID:16052515

  17. Therapeutic effect of anti CEACAM6 monoclonal antibody against lung adenocarcinoma by enhancing anoikis sensitivity.

    PubMed

    Hong, Kwon Pyo; Shin, Mi Hyang; Yoon, SangSoon; Ji, Gil Yong; Moon, Yoo Ri; Lee, Ok-Jun; Choi, Song-Yi; Lee, Yong-Moon; Koo, Ji Hae; Lee, Ho-Chang; Lee, Geon Kook; Kim, Seung Ryul; Lee, Ki Hyeong; Han, Hye-Suk; Choe, Kang Hyeon; Lee, Ki Man; Hong, Jong-Myeon; Kim, Si-Wook; Yi, Jae Hyuk; Ji, Hyeong-Jin; Kim, Yun-Bae; Song, Hyung Geun

    2015-10-01

    Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) plays a crucial role in tumorigenesis of lung cancer. However, the therapeutic potential for anti CEACAM6 monoclonal antibody (mAb) has only been limitedly explored. Here, we evaluate the therapeutic potential of naked anti CEACAM6 mAb against lung adenocarcinoma. Clone 8F5, recognizing B domain of CEACAM6, is established by immunizing A549 cells and screening for clones double positive for A549 and CEACAM6-Fc recombinant protein. We found that 85.7% of 70 resected lung adenocarcinoma tissue sections were positive for CEACAM6, whereas all squamous cell carcinoma examined were negative. A549 cells with high levels of CEACAM6 demonstrated more aggressive growth nature and showed increased paclitaxel chemosensitivity upon 8F5 binding. Treatment with 8F5 to A549 decreased cellular CEACAM6 expression and reversed anoikis resistance. 8F5 also decreased cellular status of Akt phosphorylation and increased apoptosis via caspase activation. In a mouse model of lung adenocarcinoma with xenotransplanted A549 cells, 8F5 treatment alone demonstrated 40% tumor growth inhibition. When combined with paclitaxel treatment, 8F5 markedly enhanced tumor growth inhibition, up to 80%. In summary, we demonstrate that anti CEACAM6 mAb is an effective therapeutic treatment for lung adenocarcinoma whose effect is further enhanced by combined treatment with paclitaxel.

  18. Impact and mechanism of non-steroidal anti-inflammatory drugs combined with chemotherapeutic drugs on human lung cancer-nude mouse transplanted tumors

    PubMed Central

    SUN, WEIYI; CHEN, GANG

    2016-01-01

    The present study aimed to investigate the impact of indomethacin treatment combined with oxaliplatin treatment on the expression of cluster of differentiation 44 variant 6 (CD44v6), matrix metalloproteinase-2 (MMP-2) and survivin in human lung cancer-nude mouse transplanted tumors. The human lung adenocarcinoma (A549)-nude mouse transplanted tumor model was established, and the mice were divided into a control group, an indomethacin treatment group, an oxaliplatin treatment group and an indomethacin-oxaliplatin combination treatment group. The tumor inhibition rate was calculated following sacrificing of the mice. Immunohistochemical staining and fluorescence reverse transcription-quantitative polymerase chain reaction were utilized to detect the protein and messenger (m)RNA expression of CD44v6, MMP-2 and survivin. The tumor inhibition rates of the indomethacin group, the oxaliplatin group and the combination group were 26.67, 47.70 and 68.88%, respectively. The protein and mRNA expression levels of CD44v6, MMP-2 and survivin in the transplanted tumors of each treatment group were reduced compared with the control group (P<0.05), and those of the combination group were lower compared with the single-drug treatment groups (P<0.05). Survivin and MMP-2, MMP-2 and CD44v6, and MMP-2 and CD44v6 all exhibited linear positive correlation. The present study provides evidence that the administration of indomethacin alone, or in combination with oxaliplatin, may significantly inhibit the growth of lung cancer-nude mouse transplanted tumors and the expression of CD44v6, MMP-2 and survivin inside the tumor. The combination of non-steroidal anti-inflammatory drugs with chemotherapeutic drugs may improve the antitumor effects. PMID:27313765

  19. High expression of cellular retinol binding protein-1 in lung adenocarcinoma is associated with poor prognosis

    PubMed Central

    Doldo, Elena; Costanza, Gaetana; Ferlosio, Amedeo; Pompeo, Eugenio; Agostinelli, Sara; Bellezza, Guido; Mazzaglia, Donatella; Giunta, Alessandro; Sidoni, Angelo; Orlandi, Augusto

    2015-01-01

    Purpose Adenocarcinoma, the most common non-small cell lung cancer is a leading cause of death worldwide, with a low overall survival (OS) despite increasing attempts to achieve an early diagnosis and accomplish surgical and multimodality treatment strategies. Cellular retinol binding protein-1 (CRBP-1) regulates retinol bioavailability and cell differentiation, but its role in lung cancerogenesis remains uncertain. Experimental design CRBP-1 expression, clinical outcome and other prognostic factors were investigated in 167 lung adenocarcinoma patients. CRBP-1 expression was evaluated by immunohistochemistry of tissue microarray sections, gene copy number analysis and tumor methylation specific PCR. Effects of CRBP-1 expression on proliferation/apoptosis gene array, protein and transcripts were investigated in transfected A549 lung adenocarcinoma cells. Results CRBP-1High expression was observed in 62.3% of adenocarcinomas and correlated with increased tumor grade and reduced OS as an independent prognostic factor. CRBP-1 gene copy gain also associated with tumor CRBP-1High status and dedifferentiation. CRBP-1-transfected (CRBP-1+) A549 grew more than CRBP-1− A549 cells. At >1μM concentrations, all trans-retinoic acid and retinol reduced viability more in CRBP-1+ than in CRBP-1− A549 cells. CRBP-1+ A549 cells showed up-regulated RARα/ RXRα and proliferative and transcriptional genes including pAkt, pEGFR, pErk1/2, creb1 and c-jun, whereas RARβ and p53 were strongly down-regulated; pAkt/pErk/ pEGFR inhibitors counteracted proliferative advantage and increased RARα/RXRα, c-jun and CD44 expression in CRBP-1+ A549 cells. Conclusion CRBP-1High expression in lung adenocarcinoma correlated with increased tumor grade and reduced OS, likely through increased Akt/Erk/EGFR-mediated cell proliferation and differentiation. CRBP-1High expression can be considered an additional marker of poor prognosis in lung adenocarcinoma patients. PMID:26807202

  20. 4D Proton treatment planning strategy for mobile lung tumors

    SciTech Connect

    Kang Yixiu; Zhang Xiaodong; Chang, Joe Y.; Wang He; Wei Xiong; Liao Zhongxing; Komaki, Ritsuko; Cox, James D.; Balter, Peter A.; Liu, Helen; Zhu, X. Ronald; Mohan, Radhe; Dong Lei . E-mail: ldong@mdanderson.org

    2007-03-01

    Purpose: To investigate strategies for designing compensator-based 3D proton treatment plans for mobile lung tumors using four-dimensional computed tomography (4DCT) images. Methods and Materials: Four-dimensional CT sets for 10 lung cancer patients were used in this study. The internal gross tumor volume (IGTV) was obtained by combining the tumor volumes at different phases of the respiratory cycle. For each patient, we evaluated four planning strategies based on the following dose calculations: (1) the average (AVE) CT; (2) the free-breathing (FB) CT; (3) the maximum intensity projection (MIP) CT; and (4) the AVE CT in which the CT voxel values inside the IGTV were replaced by a constant density (AVE{sub R}IGTV). For each strategy, the resulting cumulative dose distribution in a respiratory cycle was determined using a deformable image registration method. Results: There were dosimetric differences between the apparent dose distribution, calculated on a single CT dataset, and the motion-corrected 4D dose distribution, calculated by combining dose distributions delivered to each phase of the 4DCT. The AVE{sub R}IGTV plan using a 1-cm smearing parameter had the best overall target coverage and critical structure sparing. The MIP plan approach resulted in an unnecessarily large treatment volume. The AVE and FB plans using 1-cm smearing did not provide adequate 4D target coverage in all patients. By using a larger smearing value, adequate 4D target coverage could be achieved; however, critical organ doses were increased. Conclusion: The AVE{sub R}IGTV approach is an effective strategy for designing proton treatment plans for mobile lung tumors.

  1. A Genomics-Based Classification of Human Lung Tumors

    PubMed Central

    2014-01-01

    We characterized genome alterations in 1255 clinically annotated lung tumors of all histological subgroups to identify genetically defined and clinically relevant subtypes. More than 55% of all cases had at least one oncogenic genome alteration potentially amenable to specific therapeutic intervention, including several personalized treatment approaches that are already in clinical evaluation. Marked differences in the pattern of genomic alterations existed between and within histological subtypes, thus challenging the original histomorphological diagnosis. Immunohistochemical studies confirmed many of these reassigned subtypes. The reassignment eliminated almost all cases of large cell carcinomas, some of which had therapeutically relevant alterations. Prospective testing of our genomics-based diagnostic algorithm in 5145 lung cancer patients enabled a genome-based diagnosis in 3863 (75%) patients, confirmed the feasibility of rational reassignments of large cell lung cancer, and led to improvement in overall survival in patients with EGFR-mutant or ALK-rearranged cancers. Thus, our findings provide support for broad implementation of genome-based diagnosis of lung cancer. PMID:24174329

  2. Four-dimensional proton treatment planning for lung tumors

    SciTech Connect

    Engelsman, Martijn . E-mail: martijn.engelsman@maastro.nl; Rietzel, Eike; Kooy, Hanne M.

    2006-04-01

    Purpose: In proton radiotherapy, respiration-induced variations in density lead to changes in radiologic path lengths and will possibly result in geometric misses. We compared different treatment planning strategies for lung tumors that compensate for respiratory motion. Methods and Materials: Particle-specific treatment planning margins were applied to standard helical computed tomography (CT) scans as well as to 'representative' CT scans. Margins were incorporated beam specific laterally by aperture widening and longitudinally by compensator smearing. Furthermore, treatment plans using full time-resolved 4D-computed tomography data were generated. Results: Four-dimensional treatment planning guaranteed target coverage throughout a respiratory cycle. Use of a standard helical CT data set resulted in underdosing the target volume to 36% of the prescribed dose. For CT data representing average target positions, coverage can be expected but not guaranteed. In comparison to this strategy, 4D planning decreased the mean lung dose by up to 16% and the lung volume receiving 20 Gy (prescribed target dose 72 Gy) by up to 15%. Conclusion: When the three planning strategies are compared, only 4D proton treatment planning guarantees delivery of the prescribed dose throughout a respiratory cycle. Furthermore, the 4D planning approach results in equal or reduced dose to critical structures; even the ipsilateral lung is spared.

  3. Circulating Tumor Cell and Cell-free Circulating Tumor DNA in Lung Cancer.

    PubMed

    Nurwidya, Fariz; Zaini, Jamal; Putra, Andika Chandra; Andarini, Sita; Hudoyo, Achmad; Syahruddin, Elisna; Yunus, Faisal

    2016-09-01

    Circulating tumor cells (CTCs) are tumor cells that are separated from the primary site or metastatic lesion and disseminate in blood circulation. CTCs are considered to be part of the long process of cancer metastasis. As a 'liquid biopsy', CTC molecular examination and investigation of single cancer cells create an important opportunity for providing an understanding of cancer biology and the process of metastasis. In the last decade, we have seen dramatic development in defining the role of CTCs in lung cancer in terms of diagnosis, genomic alteration determination, treatment response and, finally, prognosis prediction. The aims of this review are to understand the basic biology and to review methods of detection of CTCs that apply to the various types of solid tumor. Furthermore, we explored clinical applications, including treatment monitoring to anticipate therapy resistance as well as biomarker analysis, in the context of lung cancer. We also explored the potential use of cell-free circulating tumor DNA (ctDNA) in the genomic alteration analysis of lung cancer. PMID:27689025

  4. Circulating Tumor Cell and Cell-free Circulating Tumor DNA in Lung Cancer

    PubMed Central

    Zaini, Jamal; Putra, Andika Chandra; Andarini, Sita; Hudoyo, Achmad; Syahruddin, Elisna; Yunus, Faisal

    2016-01-01

    Circulating tumor cells (CTCs) are tumor cells that are separated from the primary site or metastatic lesion and disseminate in blood circulation. CTCs are considered to be part of the long process of cancer metastasis. As a 'liquid biopsy', CTC molecular examination and investigation of single cancer cells create an important opportunity for providing an understanding of cancer biology and the process of metastasis. In the last decade, we have seen dramatic development in defining the role of CTCs in lung cancer in terms of diagnosis, genomic alteration determination, treatment response and, finally, prognosis prediction. The aims of this review are to understand the basic biology and to review methods of detection of CTCs that apply to the various types of solid tumor. Furthermore, we explored clinical applications, including treatment monitoring to anticipate therapy resistance as well as biomarker analysis, in the context of lung cancer. We also explored the potential use of cell-free circulating tumor DNA (ctDNA) in the genomic alteration analysis of lung cancer. PMID:27689025

  5. Circulating Tumor Cell and Cell-free Circulating Tumor DNA in Lung Cancer

    PubMed Central

    Zaini, Jamal; Putra, Andika Chandra; Andarini, Sita; Hudoyo, Achmad; Syahruddin, Elisna; Yunus, Faisal

    2016-01-01

    Circulating tumor cells (CTCs) are tumor cells that are separated from the primary site or metastatic lesion and disseminate in blood circulation. CTCs are considered to be part of the long process of cancer metastasis. As a 'liquid biopsy', CTC molecular examination and investigation of single cancer cells create an important opportunity for providing an understanding of cancer biology and the process of metastasis. In the last decade, we have seen dramatic development in defining the role of CTCs in lung cancer in terms of diagnosis, genomic alteration determination, treatment response and, finally, prognosis prediction. The aims of this review are to understand the basic biology and to review methods of detection of CTCs that apply to the various types of solid tumor. Furthermore, we explored clinical applications, including treatment monitoring to anticipate therapy resistance as well as biomarker analysis, in the context of lung cancer. We also explored the potential use of cell-free circulating tumor DNA (ctDNA) in the genomic alteration analysis of lung cancer.

  6. Markerless tracking of small lung tumors for stereotactic radiotherapy

    SciTech Connect

    Sörnsen de Koste, John R. van Dahele, Max; Senan, Suresh; Slotman, Ben J.; Verbakel, Wilko F. A. R.; Mostafavi, Hassan; Sloutsky, Alex

    2015-04-15

    Purpose: (1) To validate retrospective markerless tracking software for small lung tumors by comparing tracked motion in 4-dimensional planning computed tomography (4DCT) derived kV projection images and known tumor motion in the same 4DCT. (2) To evaluate variability of tumor motion using kV projection images from cone-beam computed tomography (CBCT) scans acquired on different days. Methods: Nonclinical tumor tracking software (TTS) used a normalized cross correlation algorithm to track the tumor on enhanced kV projection images (e.g., from a CBCT scan). The reference dataset consisted of digitally reconstructed radiographs (DRRs) from one phase of a planning 4DCT. TTS matches two in-plane coordinates and obtains the out-of-plane coordinate by triangulating with match results from other projections. (1) To validate TTS, tracking results were compared with known 4DCT tumor motion for two patients (A and B). Projection images (1 image/1°) were digitally reconstructed for each 4DCT phase. From these, kV projection series were composed simulating full breathing cycles every 20° of gantry rotation [breathing period = 20°/(6°/s) = 3.33 s]. Reference templates were 360 “tumor enhanced” DRRs from the 4DCT expiration phase. TTS-derived tumor motion was compared to known tumor motion on 4DCT. (2) For five patients, TTS-assessed motion during clinical CBCT acquisition was compared with motion on the planning 4DCT, and the motion component in the Y (cranio–caudal)-direction was compared with the motion of an external marker box (RPM, real-time position management). Results: (1) Validation results: TTS for case A (tumor 6.2 cm{sup 3}, 32 mm axial diameter) over 360° showed mean motion X (medial–lateral) = 3.4, Y = 11.5, and Z (ventral–dorsal) = 4.9 mm (1 SD < 1.0 mm). Corresponding 4DCT motion was X = 3.1, Y = 11.3, and Z = 5.1 mm. Correlation coefficients between TTS tumor motion and displacement of the tumor’s center of mass (CoM) on 4DCT were 0.64, 0

  7. Integrated quantitative proteomic and transcriptomic analysis of lung tumor and control tissue: a lung cancer showcase

    PubMed Central

    Huwer, Hanno; Hildebrandt, Andreas; Lenhof, Hans-Peter; Wesse, Tanja; Franke, Andre; Keller, Andreas

    2016-01-01

    Proteomics analysis of paired cancer and control tissue can be applied to investigate pathological processes in tumors. Advancements in data-independent acquisition mass spectrometry allow for highly reproducible quantitative analysis of complex proteomic patterns. Optimized sample preparation workflows enable integrative multi-omics studies from the same tissue specimens. We performed ion mobility enhanced, data-independent acquisition MS to characterize the proteome of 21 lung tumor tissues including adenocarcinoma and squamous cell carcinoma (SCC) as compared to control lung tissues of the same patient each. Transcriptomic data were generated for the same specimens. The quantitative proteomic patterns and mRNA abundances were subsequently analyzed using systems biology approaches. We report a significantly (p = 0.0001) larger repertoire of proteins in cancer tissues. 12 proteins were higher in all tumor tissues as compared to matching control tissues. Three proteins, CAV1, CAV2, and RAGE, were vice versa higher in all controls. We also identified characteristic SCC and adenocarcinoma protein patterns. Principal Component Analysis provided evidence that not only cancer from control tissue but also tissue from adenocarcinoma and SCC can be differentiated. Transcriptomic levels of key proteins measured from the same matched tissue samples correlated with the observed protein patterns. The applied study set-up with paired lung tissue specimens of which different omics are measured, is generally suited for an integrated multi-omics analysis. PMID:26930711

  8. Synchronous solitary fibrous tumor of the pleura and lung cancer.

    PubMed

    Watanabe, Shun-Ichi; Nakamura, Yoshihiro; Sakasegawa, Koh-Ichi; Kariatsumari, Kota; Yotsumoto, Daisuke; Sakata, Ryuzo; Gezima, Kentaro

    2003-01-01

    We report herein on a 57-year-old woman with comorbid malignant solitary fibrous tumor (SFT) of the pleura and adenocarcinoma of the lung. To the best of our knowledge, this is the first report of a patient presenting with these two pathological entities simultaneously. The patient was treated successfully for both diseases via a one-stage operation through median sternotomy with good results. Although the incidence of multiple primary malignancy is rare, clinicians should be cautious not to discount the possibility of two coexisting primary malignancies.

  9. Human Organotypic Lung Tumor Models: Suitable For Preclinical 18F-FDG PET-Imaging.

    PubMed

    Fecher, David; Hofmann, Elisabeth; Buck, Andreas; Bundschuh, Ralph; Nietzer, Sarah; Dandekar, Gudrun; Walles, Thorsten; Walles, Heike; Lückerath, Katharina; Steinke, Maria

    2016-01-01

    Development of predictable in vitro tumor models is a challenging task due to the enormous complexity of tumors in vivo. The closer the resemblance of these models to human tumor characteristics, the more suitable they are for drug-development and -testing. In the present study, we generated a complex 3D lung tumor test system based on acellular rat lungs. A decellularization protocol was established preserving the architecture, important ECM components and the basement membrane of the lung. Human lung tumor cells cultured on the scaffold formed cluster and exhibited an up-regulation of the carcinoma-associated marker mucin1 as well as a reduced proliferation rate compared to respective 2D culture. Additionally, employing functional imaging with 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (FDG-PET) these tumor cell cluster could be detected and tracked over time. This approach allowed monitoring of a targeted tyrosine kinase inhibitor treatment in the in vitro lung tumor model non-destructively. Surprisingly, FDG-PET assessment of single tumor cell cluster on the same scaffold exhibited differences in their response to therapy, indicating heterogeneity in the lung tumor model. In conclusion, our complex lung tumor test system features important characteristics of tumors and its microenvironment and allows monitoring of tumor growth and -metabolism in combination with functional imaging. In longitudinal studies, new therapeutic approaches and their long-term effects can be evaluated to adapt treatment regimes in future. PMID:27501455

  10. Human Organotypic Lung Tumor Models: Suitable For Preclinical 18F-FDG PET-Imaging

    PubMed Central

    Fecher, David; Hofmann, Elisabeth; Buck, Andreas; Bundschuh, Ralph; Nietzer, Sarah; Dandekar, Gudrun; Walles, Thorsten; Walles, Heike; Lückerath, Katharina; Steinke, Maria

    2016-01-01

    Development of predictable in vitro tumor models is a challenging task due to the enormous complexity of tumors in vivo. The closer the resemblance of these models to human tumor characteristics, the more suitable they are for drug-development and –testing. In the present study, we generated a complex 3D lung tumor test system based on acellular rat lungs. A decellularization protocol was established preserving the architecture, important ECM components and the basement membrane of the lung. Human lung tumor cells cultured on the scaffold formed cluster and exhibited an up-regulation of the carcinoma-associated marker mucin1 as well as a reduced proliferation rate compared to respective 2D culture. Additionally, employing functional imaging with 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (FDG-PET) these tumor cell cluster could be detected and tracked over time. This approach allowed monitoring of a targeted tyrosine kinase inhibitor treatment in the in vitro lung tumor model non-destructively. Surprisingly, FDG-PET assessment of single tumor cell cluster on the same scaffold exhibited differences in their response to therapy, indicating heterogeneity in the lung tumor model. In conclusion, our complex lung tumor test system features important characteristics of tumors and its microenvironment and allows monitoring of tumor growth and -metabolism in combination with functional imaging. In longitudinal studies, new therapeutic approaches and their long-term effects can be evaluated to adapt treatment regimes in future. PMID:27501455

  11. Targeting the expression of integrin receptors in tumors

    NASA Astrophysics Data System (ADS)

    Bloch, Sharon; Liang, Kexian; Dorshow, Richard B.; Ye, Yunpeng; Achilefu, Samuel I.

    2004-06-01

    Expression of integrin αvβ3 is upregulated in a number of cancers including colon, pancreas, lung and breast. Additionally, αvβ3 integrin expression has been linked to tumor metastasis and targeting this cell surface protein could provide a viable approach to image and evaluate the metastatic potential of tumors. Accordingly, we evaluated the selective retention of some near infrared (NIR) fluorescent probes in nude mice bearing A549 lung cancer xenograft that express αvβ3 integrin. Our preliminary results indicate that a novel NIR probe designed to target this integrin selectively accumulated in A549 tumor while other non-integrin specific probes were not retained in the tumor. Blocking studies show that tumor uptake of the probe is mediated by αvβ3 integrin receptor.

  12. MAGEA10 gene expression in non-small cell lung cancer and A549 cells, and the affinity of epitopes with the complex of HLA-A(∗)0201 alleles.

    PubMed

    Wang, Likui; Xu, Yuefang; Luo, Cheng; Sun, Jian; Zhang, Jinlu; Lee, Ming-Wei; Bai, Aiping; Chen, Guanhua; Frenz, Christopher M; Li, Zhengguo; Huang, Wenlin

    2015-09-01

    MAGEA10, a cancer/testis antigens expressed in tumors but not in normal tissues with the exception of testis and placenta, represents an attractive target for cancer immunotherapy. However, suppressive cytoenvironment and requirement of specific HLA-alleles presentation frequently led to immunotherapy failure. In this study MAGEA10 was scarcely expressed in cancer patients, but enhanced by viili polysaccharides, which indicates a possibility of increasing epitopes presentation. Furthermore the correlation of gene expression with methylation, indicated by R(2) value for MAGEA10 that was 3 times higher than the value for other MAGE genes tested, provides an explanation of why MAGEA10 was highly inhibited, this is also seen by Kaplan-Meier analysis because MAGEA10 did not change the patients' lifespan. By using Molecular-Docking method, 3 MAGEA10 peptides were found binding to the groove position of HLA-A(∗)0210 as same as MAGEA4 peptide co-crystallized with HLA-A(∗)0210, which indicates that they could be promising for HLA-A(∗)0201 presentation in immunotherapy. PMID:26058806

  13. Histopathological transformation to small-cell lung carcinoma in non-small cell lung carcinoma tumors

    PubMed Central

    Ruiz-Morales, José Manuel; Cano-García, Fernando

    2016-01-01

    Lung cancer is the principal cause of cancer-related death worldwide. The use of targeted therapies, especially tyrosine kinase inhibitors (TKIs), in specific groups of patients has dramatically improved the prognosis of this disease, although inevitably some patients will develop resistance to these drugs during active treatment. The most common cancer-associated acquired mutation is the epidermal growth factor receptor (EGFR) Thr790Met (T790M) mutation. During active treatment with targeted therapies, histopathological transformation to small-cell lung carcinoma (SCLC) can occur in 3–15% of patients with non-small-cell lung carcinoma (NSCLC) tumors. By definition, SCLC is a high-grade tumor with specific histological and genetic characteristics. In the majority of cases, a good-quality hematoxylin and eosin (H&E) stain is enough to establish a diagnosis. Immunohistochemistry (IHC) is used to confirm the diagnosis and exclude other neoplasia such as sarcomatoid carcinomas, large-cell carcinoma, basaloid squamous-cell carcinoma, chronic inflammation, malignant melanoma, metastatic carcinoma, sarcoma, and lymphoma. A loss of the tumor-suppressor protein retinoblastoma 1 (RB1) is found in 100% of human SCLC tumors; therefore, it has an essential role in tumorigenesis and tumor development. Other genetic pathways probably involved in the histopathological transformation include neurogenic locus notch homolog (NOTCH) and achaete-scute homolog 1 (ASCL1). Histological transformation to SCLC can be suspected in NSCLC patients who clinically deteriorate during active treatment. Biopsy of any new lesion in this clinical setting is highly recommended to rule out a SCLC transformation. New studies are trying to assess this histological transformation by noninvasive measures such as measuring the concentration of serum neuron-specific enolase. PMID:27652204

  14. Histopathological transformation to small-cell lung carcinoma in non-small cell lung carcinoma tumors.

    PubMed

    Dorantes-Heredia, Rita; Ruiz-Morales, José Manuel; Cano-García, Fernando

    2016-08-01

    Lung cancer is the principal cause of cancer-related death worldwide. The use of targeted therapies, especially tyrosine kinase inhibitors (TKIs), in specific groups of patients has dramatically improved the prognosis of this disease, although inevitably some patients will develop resistance to these drugs during active treatment. The most common cancer-associated acquired mutation is the epidermal growth factor receptor (EGFR) Thr790Met (T790M) mutation. During active treatment with targeted therapies, histopathological transformation to small-cell lung carcinoma (SCLC) can occur in 3-15% of patients with non-small-cell lung carcinoma (NSCLC) tumors. By definition, SCLC is a high-grade tumor with specific histological and genetic characteristics. In the majority of cases, a good-quality hematoxylin and eosin (H&E) stain is enough to establish a diagnosis. Immunohistochemistry (IHC) is used to confirm the diagnosis and exclude other neoplasia such as sarcomatoid carcinomas, large-cell carcinoma, basaloid squamous-cell carcinoma, chronic inflammation, malignant melanoma, metastatic carcinoma, sarcoma, and lymphoma. A loss of the tumor-suppressor protein retinoblastoma 1 (RB1) is found in 100% of human SCLC tumors; therefore, it has an essential role in tumorigenesis and tumor development. Other genetic pathways probably involved in the histopathological transformation include neurogenic locus notch homolog (NOTCH) and achaete-scute homolog 1 (ASCL1). Histological transformation to SCLC can be suspected in NSCLC patients who clinically deteriorate during active treatment. Biopsy of any new lesion in this clinical setting is highly recommended to rule out a SCLC transformation. New studies are trying to assess this histological transformation by noninvasive measures such as measuring the concentration of serum neuron-specific enolase. PMID:27652204

  15. Histopathological transformation to small-cell lung carcinoma in non-small cell lung carcinoma tumors.

    PubMed

    Dorantes-Heredia, Rita; Ruiz-Morales, José Manuel; Cano-García, Fernando

    2016-08-01

    Lung cancer is the principal cause of cancer-related death worldwide. The use of targeted therapies, especially tyrosine kinase inhibitors (TKIs), in specific groups of patients has dramatically improved the prognosis of this disease, although inevitably some patients will develop resistance to these drugs during active treatment. The most common cancer-associated acquired mutation is the epidermal growth factor receptor (EGFR) Thr790Met (T790M) mutation. During active treatment with targeted therapies, histopathological transformation to small-cell lung carcinoma (SCLC) can occur in 3-15% of patients with non-small-cell lung carcinoma (NSCLC) tumors. By definition, SCLC is a high-grade tumor with specific histological and genetic characteristics. In the majority of cases, a good-quality hematoxylin and eosin (H&E) stain is enough to establish a diagnosis. Immunohistochemistry (IHC) is used to confirm the diagnosis and exclude other neoplasia such as sarcomatoid carcinomas, large-cell carcinoma, basaloid squamous-cell carcinoma, chronic inflammation, malignant melanoma, metastatic carcinoma, sarcoma, and lymphoma. A loss of the tumor-suppressor protein retinoblastoma 1 (RB1) is found in 100% of human SCLC tumors; therefore, it has an essential role in tumorigenesis and tumor development. Other genetic pathways probably involved in the histopathological transformation include neurogenic locus notch homolog (NOTCH) and achaete-scute homolog 1 (ASCL1). Histological transformation to SCLC can be suspected in NSCLC patients who clinically deteriorate during active treatment. Biopsy of any new lesion in this clinical setting is highly recommended to rule out a SCLC transformation. New studies are trying to assess this histological transformation by noninvasive measures such as measuring the concentration of serum neuron-specific enolase.

  16. [Salivary gland-type lung tumor: An update].

    PubMed

    Gibault, Laure; Badoual, Cécile

    2016-01-01

    "Salivary gland-type" tumors arising from the bronchi and lung are rare but not exceptional entities. They are mostly represented by malignant entities such as cystic adenoid carcinoma, mucoepidermoid carcinoma and epithelial/myoepithelial carcinoma. Benign tumors are rare, mainly encompassing pleomorphic adenomas, which are to differentiate from mucous gland adenomas, another entity arising specifically from the peri-bronchial glands. These tumours develop in the proximal bronchi and are not associated with smoke abuse. Their main treatment is surgery. It is important to differentiate them from other broncho-pulmonary tumours as they do not share the same prognosis and therapeutic. This article will review the WHO 2015 classification of these tumours as well as recent updates from the literature to help define diagnosis criteria for these uncommon entities. PMID:26774826

  17. Expression of the p16{sup INK4a} tumor suppressor gene in rodent lung tumors

    SciTech Connect

    Swafford, D.S.; Tesfaigzi, J.; Belinsky, S.A.

    1995-12-01

    Aberrations on the short arm of chromosome 9 are among the earliest genetic changes in human cancer. p16{sup INK4a} is a candidate tumor suppressor gene that lies within human 9p21, a chromosome region associated with frequent loss of heterozygosity in human lung tumors. The p16{sup INK4a} protein functions as an inhibitor of cyclin D{sub 1}-dependent kinases that phosphorylate the retinoblastoma (Rb) tumor suppressor gene product enabling cell-cycle progression. Thus, overexpression of cyclin D{sub 1}, mutation of cyclin-dependent kinase genes, or loss of p16{sup INK4a} function, can all result in functional inactivation of Rb. Inactivation of Rb by mutation or deletion can result in an increase in p16{sup INK4a} transcription, suggesting that an increased p16{sup INK4a} expression in a tumor cell signals dysfunction of the pathway. The p16{sup (INK4a)} gene, unlike some tumor suppressor genes, is rarely inactivated by mutation. Instead, the expression of this gene is suppressed in some human cancers by hypermethylation of the CpG island within the first exon or by homozygous deletion: 686. Chromosome losses have been observed at 9p21 syntenic loci in tumors of the mouse and rat, two species often used as animal models for pulmonary carcinogenesis. Expression of p16{sup INK4a} is lost in some mouse tumor cell lines, often due to homozygous deletion. These observations indicate that p16{sup INK4a} dysfunction may play a role in the development of neoplasia in rodents as well as humans. The purpose of the current investigation was to define the extent to which p16{sup INK4a} dysfunction contributes to the development of rodent lung tumors and to determine the mechanism of inactivation of the gene. There is no evidence to suggest a loss of function of the p16{sup INK4a} tumor suppressor gene in these primary murine lung tumors by mutation, deletion, or methylation.

  18. A rare benign tumor of the lung: Inflammatory myofibroblastic tumor – Case report

    PubMed Central

    Demirhan, Ozkan; Ozkara, Selvinaz; Yaman, Mustafa; Kaynak, Kamil

    2013-01-01

    A fifty year old lady who was operated for thyroid cancer two years ago and completed adjuvant therapy, underwent a computer tomography (CT) of the chest during her follow up. The CT showed a mass lesion in the right lung, located to the lateral segment of the middle lobe. There were no intrabronchial lesions on bronchoscopy. Positron emission CT (PET CT) showed a dense hypermetabolic mass located in the right middle lobe lateral segment and having malignant characteristics. A videothorascopic wedge resection was performed and the specimen was sent for frozen section, which showed no evidence of malignancy. Pathology report revealed an inflammatory myofibroblastic tumor (IMT). Since IMT is a rare benign tumor of the lung, we herein report this patient along with a discussion of the relevant literature. PMID:26029612

  19. Curcumin inhibits lung cancer invasion and metastasis by attenuating GLUT1/MT1-MMP/MMP2 pathway

    PubMed Central

    Liao, Hehe; Wang, Zhouquan; Deng, Zhiping; Ren, Hong; Li, Xiaojun

    2015-01-01

    Glucose transporter (GLUT) 1 is found highly expressed in malignant tumors and considered a mediator inducing cancer metastasis. Curcumin is a natural product which exerts anti-invasion and metastasis effects in cancer. This study aimed at evaluating whether attenuating GLUT1 was involved in curcumin’s anti-invasion and metastasis effects. In the in vitro part, constricted pcDNA3.1-GLUT1 vector was transfected into A549 cells. MTT assay was used to assess the curcumin’s effects on proliferation in lung cancer A549 cells. Transwell assay was used to evaluate the anti-invasion effect of curcumin on A549 cells. Real-time PCR and Western-blotting were employed to examine the expression levels of GLUT1, membrane type 1-MMP (MT1-MMP) and matrix metalloproteinase (MMP) 2 in curcumin- incubated A549 cells. In the in vivo part, tumor weight and metastatic rate were assessed in nude mice bearing untransfected, empty vector transfected and pcDNA3.1-GLUT1 transfected A549 cells originated tumors. In this study, we found that curcumin began to show significant cytotoxicity against proliferation effect at 45 μmol/L. Curcumin inhibited invasion and expressions of GLUT1, MT1-MMP and MMP2 untransfected A549 cells in a concentration-dependent manner. pcDNA3.1-GLUT1 transfected A549 cells exhibited resistance to curcumin’s anti-invasion effect by up-regulating expressions of GLUT2, MT1-MMP and MMP2. Furthermore, curcumin failed to decrease the metastatic rate in nude mice bearing pcDNA3.1-GLUT1 transfected A549 cells originated tumors. These results suggested that curcumin inhibit lung cancer invasion and metastasis by attenuating GLUT1/MT1-MMP/MMP2 pathway. PMID:26309547

  20. Selenium pretreatment attenuates formaldehyde-induced genotoxicity in A549 cell lines.

    PubMed

    Shi, Yu-Qin; Chen, Xin; Dai, Juan; Jiang, Zhong-Fa; Li, Ning; Zhang, Ben-Yan; Zhang, Zhi-Bing

    2014-11-01

    Formaldehyde is a major industrial chemical and has been extensively used in the manufacture of synthetic resins and chemicals. Numerous studies indicate that formaldehyde can induce various genotoxic effects in vitro and in vivo. A recent study indicated that formaldehyde impaired antioxidant cellular defences and enhanced lipid peroxidation. Selenium is an important antioxidant. We hypothesized that reactive oxygen species (ROS) and lipid peroxidation are involved in formaldehyde-induced genotoxicity in human lung cancer cell line, A549 cell line. To test the hypothesis, we investigated the effects of selenium on formaldehyde-induced genotoxicity in A549 cell lines. The results indicated that exposure to formaldehyde showed the induction of DNA-protein cross-links (DPCs). Formaldehyde significantly increased the malondialdehyde levels and decreased the activities of superoxide dismutase and glutathione peroxidase. In addition, the activations of necrosis factor-κB (NF-κB) and activator protein 1 (AP-1) were induced by the formaldehyde treatment. The pretreatment with selenium counteracted the formaldehyde-induced oxidative stress, ameliorated DPCs and attenuated the activation of NF-κB and AP-1 in A549 cell lines. All the results suggested that the pretreatment with selenium attenuated the formaldehyde-induced genotoxicity through its ROS scavenging and anti-DPCs effects in A549 cell lines.

  1. Functional expression of nicotine influx transporter in A549 human alveolar epithelial cells.

    PubMed

    Tega, Yuma; Yuzurihara, Chihiro; Kubo, Yoshiyuki; Akanuma, Shin-ichi; Ehrhardt, Carsten; Hosoya, Ken-ichi

    2016-02-01

    Nicotine is a potent addictive alkaloid, and is rapidly absorbed through the alveoli of the lung. However, the transport mechanism of nicotine at the human alveolar epithelial barrier has not been investigated in great detail. In the present study, the transport mechanism of nicotine across alveolar epithelium was investigated in vitro using A549 cells, a human adenocarcinoma-derived cell line with an alveolar epithelial cell like phenotype. Nicotine uptake by A549 cells exhibited time-, temperature-, and concentration-dependence with a Km of 50.4 μM. These results suggest that a carrier-mediated transport process is involved in nicotine transport in human alveolar epithelial cells. Nicotine uptake by A549 cells was insensitive to change in extracellular pH. Moreover, nicotine uptake by A549 cells could be inhibited by organic cations such as verapamil and pyrilamine, but not typical substrates of organic cation transporters and β2-agonist. These results suggest that a novel, not yet molecularly identified, organic cation transporter plays a role in nicotine transport which is unlikely to interact with β2-agonist transport. This nicotine influx transporter in human alveolar epithelium might have implications for the rapid absorption of nicotine into the systemic circulation. PMID:26830082

  2. Clear Cell “Sugar” Tumor of the Lung: Benign or Malignant?

    PubMed Central

    Olivencia-Yurvati, Albert H.; Rodriguez, Abraham Elias

    2015-01-01

    Clear cell “sugar” tumors of the lung are rare pulmonary tumors. This case study illustrates a patient who was found to have a persistent nodule in the left-upper lobe of the lung. Positron emission tomographic scanning showed mild-moderate 18-fluorodeoxyglucose uptake. Based on these findings, a video-assisted resection of the tumor was undertaken. The mass was identified histologically, as a clear cell “sugar” tumor of the lung. This case report discusses the benign versus malignant nature of this rare tumor. PMID:26011217

  3. KLF4 regulates adult lung tumor-initiating cells and represses K-Ras-mediated lung cancer.

    PubMed

    Yu, T; Chen, X; Zhang, W; Liu, J; Avdiushko, R; Napier, D L; Liu, A X; Neltner, J M; Wang, C; Cohen, D; Liu, C

    2016-02-01

    Lung cancer is the leading cause of cancer-related mortality in both men and women worldwide. To identify novel factors that contribute to lung cancer pathogenesis, we analyzed a lung cancer database from The Cancer Genome Atlas and found that Krüppel-like Factor 4 (KLF4) expression is significantly lower in patients' lung cancer tissue than in normal lung tissue. In addition, we identified seven missense mutations in the KLF4 gene. KLF4 is a transcription factor that regulates cell proliferation and differentiation as well as the self-renewal of stem cells. To understand the role of KLF4 in the lung, we generated a tamoxifen-induced Klf4 knockout mouse model. We found that KLF4 inhibits lung cancer cell growth and that depletion of Klf4 altered the differentiation pattern in the developing lung. To understand how KLF4 functions during lung tumorigenesis, we generated the K-ras(LSL-G12D/+);Klf4(fl/fl) mouse model, and we used adenovirus-expressed Cre to induce K-ras activation and Klf4 depletion in the lung. Although Klf4 deletion alone or K-ras mutation alone can trigger lung tumor formation, Klf4 deletion combined with K-ras mutation significantly enhanced lung tumor formation. We also found that Klf4 deletion in conjunction with K-ras activation caused lung inflammation. To understand the mechanism whereby KLF4 is regulated during lung tumorigenesis, we analyzed KLF4 promoter methylation and the profiles of epigenetic factors. We found that Class I histone deacetylases (HDACs) are overexpressed in lung cancer and that HDAC inhibitors induced expression of KLF4 and inhibited proliferation of lung cancer cells, suggesting that KLF4 is probably repressed by histone acetylation and that HDACs are valuable drug targets for lung cancer treatment.

  4. Primitive neuroectodermal tumor originating from the lung: A case report

    PubMed Central

    Jin, Xin; Cao, Jianfeng; Liu, Yong; Bian, Fang; Zhao, Qingqing; Wang, Yan; Lv, Xu; Huang, Yayong

    2016-01-01

    Primitive neuroectodermal tumors (PNETs) are small, round cell tumors that may be classified as peripheral or central, based on their site of origin. PNETs often arise in the soft tissue or bone of young adults. Although not common, PNETs have been described in other organs, including the gonads, kidneys, myocardium and pancreas, but rarely in the lungs without chest wall or pleural involvement. The present study reports a rare case of peripheral PNET (pPNET), which originated in the lung. A 37-year-old female patient presented at Xuzhou Central Hospital (Xuzhou, China) with a history of a dry cough, mild dyspnea and slight pain in the left chest. Histopathological and immunohistochemical analyses permitted the diagnosis of a pPNET. The patient was treated with surgical resection, followed by chemotherapy (including cyclophosphamide, cisplatin and vincristine), radiotherapy and traditional Chinese medicine (including Kanglaite and Shenqi Fuzheng injections). At the time of writing, the patient was alive with no sign of recurrence and under regular follow-ups at the Outpatient Clinic of Xuzhou Central Hospital.

  5. In vitro cytotoxicity of gold nanorods in A549 cells.

    PubMed

    Tang, Ying; Shen, Yafeng; Huang, Libin; Lv, Gaojian; Lei, Changhai; Fan, Xiaoyan; Lin, Fangxing; Zhang, Yuxia; Wu, Lihui; Yang, Yongji

    2015-03-01

    Gold nanoparticles, which have unique physicochemical characteristics, are being used for an increasingly wide range of applications in biomedical research. In this study, gold nanorods (width of 25 nm, length of 52 nm) were found to be internalized by A549 cells and were primarily localized in the lysosomes and membranous vesicles. The integrity of the membranes of A549 cells exposed to gold nanorods for 4h was damaged, as indicated by laser scanning confocal microscopy (LSCM). Increased lactate dehydrogenase (LDH) leakage and decreased cell viability further indicated the concentration-dependent cytotoxicity of the gold nanorods to the A549 cells. Reactive oxygen species (ROS) production was induced in the A549 cells by the gold nanorods, and this effect was positively correlated with the concentration of the gold nanorods. The results of this study indicated that exposure to gold nanorods caused dose-dependent cytotoxicity in A549 cells and that oxidative stress may be the main factor causing cytotoxicity.

  6. Elevated expression of Fn14 in non-small cell lung cancer correlates with activated EGFR and promotes tumor cell migration and invasion.

    PubMed

    Whitsett, Timothy G; Cheng, Emily; Inge, Landon; Asrani, Kaushal; Jameson, Nathan M; Hostetter, Galen; Weiss, Glen J; Kingsley, Christopher B; Loftus, Joseph C; Bremner, Ross; Tran, Nhan L; Winkles, Jeffrey A

    2012-07-01

    Lung cancer is the leading cause of cancer deaths worldwide; approximately 85% of these cancers are non-small cell lung cancer (NSCLC). Patients with NSCLC frequently have tumors harboring somatic mutations in the epidermal growth factor receptor (EGFR) gene that cause constitutive receptor activation. These patients have the best clinical response to EGFR tyrosine kinase inhibitors (TKIs). Herein, we show that fibroblast growth factor-inducible 14 (Fn14; TNFRSF12A) is frequently overexpressed in NSCLC tumors, and Fn14 levels correlate with p-EGFR expression. We also report that NSCLC cell lines that contain EGFR-activating mutations show high levels of Fn14 protein expression. EGFR TKI treatment of EGFR-mutant HCC827 cells decreased Fn14 protein levels, whereas EGF stimulation of EGFR wild-type A549 cells transiently increased Fn14 expression. Furthermore, Fn14 is highly expressed in EGFR-mutant H1975 cells that also contain an EGFR TKI-resistance mutation, and high TKI doses are necessary to reduce Fn14 levels. Constructs encoding EGFRs with activating mutations induced Fn14 expression when expressed in rat lung epithelial cells. We also report that short hairpin RNA-mediated Fn14 knockdown reduced NSCLC cell migration and invasion in vitro. Finally, Fn14 overexpression enhanced NSCLC cell migration and invasion in vitro and increased experimental lung metastases in vivo. Thus, Fn14 may be a novel therapeutic target for patients with NSCLC, in particular for those with EGFR-driven tumors who have either primary or acquired resistance to EGFR TKIs. PMID:22634180

  7. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation

    SciTech Connect

    Wang, Jia-lei; Lu, Fan-zhen; Shen, Xiao-Yong; Wu, Yun; Zhao, Li-ting

    2014-12-12

    Highlights: • SAMHD1 expression level is down regulated in lung adenocarcinoma. • The promoter of SAMHD1 is methylated in lung adenocarcinoma. • Over expression of SAMHD1 inhibits the proliferation of lung cancer cells. - Abstract: The function of dNTP hydrolase SAMHD1 as a viral restriction factor to inhibit the replication of several viruses in human immune cells was well established. However, its regulation and function in lung cancer have been elusive. Here, we report that SAMHD1 is down regulated both on protein and mRNA levels in lung adenocarcinoma compared to adjacent normal tissue. We also found that SAMHD1 promoter is highly methylated in lung adenocarcinoma, which may inhibit its gene expression. Furthermore, over expression of the SAMHD1 reduces dNTP level and inhibits the proliferation of lung tumor cells. These results reveal the regulation and function of SAMHD1 in lung cancer, which is important for the proliferation of lung tumor cells.

  8. Brusatol Enhances the Radiosensitivity of A549 Cells by Promoting ROS Production and Enhancing DNA Damage

    PubMed Central

    Sun, Xiaohui; Wang, Qin; Wang, Yan; Du, Liqing; Xu, Chang; Liu, Qiang

    2016-01-01

    NF-E2-related factor 2 (Nrf2) has been identified as a master regulatory factor in the protection of cells from oxidative and electrophilic stress. However, overexpression of Nrf2 in lung cancer may cause chemoresistance, as well as radioresistance. In this study, we examined the relationship between radioresistance and Nrf2 protein levels in H1299, A549, and H460 cells, and finally chose the A549 cell line to continue with due to its strong radioresistance and high Nrf2 protein levels. We found that the Nrf2 inhibitor, brusatol, could prevent the increase and accumulation of Nrf2 after exposure to irradiation. Additionally, following treatment with 80 nM brusatol, A549 cells became sensitive to irradiation, suffering severe DNA damage. Combination treatment with brusatol and ionizing radiation (IR) can distinctly increase the level of reactive oxygen species in A549 cells, causing a 1.8-fold increase compared with the control, and a 1.4-fold increase compared with IR alone. In fact, in the treatment with both brusatol and IR, lung cancer cell proliferation is halted, gradually leading to cell death. Because Nrf2 is closely linked to DNA damage repair, inhibiting the function of Nrf2, as in brusatol treatment, may increase the DNA damage caused by radiotherapy or chemotherapy, possibly enhancing the efficacy of chemotherapeutic drugs. Our study is the first to demonstrate brusatol’s ability to enhance the responsiveness of lung cancer cells to irradiation, and its potential application as a natural sensitizer in radiotherapy. PMID:27347930

  9. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion

    NASA Astrophysics Data System (ADS)

    Min, Yugang; Santhanam, Anand; Neelakkantan, Harini; Ruddy, Bari H.; Meeks, Sanford L.; Kupelian, Patrick A.

    2010-09-01

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  10. Coagulation activation by MC28 fibrosarcoma cells facilitates lung tumor formation.

    PubMed

    Amirkhosravi, M; Francis, J L

    1995-01-01

    Tumor cells interact with the hemostatic system in various ways and may thus influence malignant growth and spread. MC28 fibrosarcoma cells possess a potent procoagulant activity (PCA) and form lung tumors following intravenous injection. The aim of this work was to study the relationship between PCA, intravascular coagulation and lung seeding in the MC28 model. MC28 cells were injected into control, warfarinized and heparinized hooded Lister rats. Coagulation changes were monitored by thromboelastography (TEG) and Sonoclot analysis (SA), lung fibrin formation by light and electron microscopy, tumor seeding by macroscopic counting and tumor cell and platelet deposition in the lungs by radiolabelling. PCA was measured by chromogenic assay. MC28 PCA was characterized as a tissue factor-factor VIIa complex that probably arose during cell culture or disaggregation of solid tumors. Injection of tumor cells caused marked coagulopathy and was rapidly (within 30 min) followed by fibrin deposition in the lungs and accumulation of radiolabelled platelets. Heparin and warfarin significantly reduced lung seeding (p < 0.001) and reduced retention of radiolabelled tumor cells in the pulmonary circulation (p < 0.01). Inhibition of cellular PCA by prior treatment with concanavalin A markedly reduced intravascular coagulation and lung seeding. We conclude that MC28 cells cause intravascular coagulation as a direct result of their procoagulant activity. The data suggest that tumor cells form complexes with platelets and fibrin which are retained in the lungs long enough for extravasation and seeding to occur.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Chemically-induced mouse lung tumors: applications to human health assessments [Poster 2014

    EPA Science Inventory

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to discuss issues related to the use of mouse lung tumor data in human health assessments. Naphthalene, styrene, and ethylbenzene were chosen for the anal...

  12. Chemically-induced Mouse Lung Tumors: Applications to Human Health Assessments

    EPA Science Inventory

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to better understand the mouse lung tumor data’s role in human health assessments. Three environmental chemicals - naphthalene, styrene, and ethylbe...

  13. Coagulation activation by MC28 fibrosarcoma cells facilitates lung tumor formation.

    PubMed

    Amirkhosravi, M; Francis, J L

    1995-01-01

    Tumor cells interact with the hemostatic system in various ways and may thus influence malignant growth and spread. MC28 fibrosarcoma cells possess a potent procoagulant activity (PCA) and form lung tumors following intravenous injection. The aim of this work was to study the relationship between PCA, intravascular coagulation and lung seeding in the MC28 model. MC28 cells were injected into control, warfarinized and heparinized hooded Lister rats. Coagulation changes were monitored by thromboelastography (TEG) and Sonoclot analysis (SA), lung fibrin formation by light and electron microscopy, tumor seeding by macroscopic counting and tumor cell and platelet deposition in the lungs by radiolabelling. PCA was measured by chromogenic assay. MC28 PCA was characterized as a tissue factor-factor VIIa complex that probably arose during cell culture or disaggregation of solid tumors. Injection of tumor cells caused marked coagulopathy and was rapidly (within 30 min) followed by fibrin deposition in the lungs and accumulation of radiolabelled platelets. Heparin and warfarin significantly reduced lung seeding (p < 0.001) and reduced retention of radiolabelled tumor cells in the pulmonary circulation (p < 0.01). Inhibition of cellular PCA by prior treatment with concanavalin A markedly reduced intravascular coagulation and lung seeding. We conclude that MC28 cells cause intravascular coagulation as a direct result of their procoagulant activity. The data suggest that tumor cells form complexes with platelets and fibrin which are retained in the lungs long enough for extravasation and seeding to occur.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7740497

  14. Lung Volume Reduction After Stereotactic Ablative Radiation Therapy of Lung Tumors: Potential Application to Emphysema

    SciTech Connect

    Binkley, Michael S.; Shrager, Joseph B.; Leung, Ann N.; Popat, Rita; Trakul, Nicholas; Atwood, Todd F.; Chaudhuri, Aadel; Maxim, Peter G.; Diehn, Maximilian; Loo, Billy W.

    2014-09-01

    Purpose: Lung volume reduction surgery (LVRS) improves dyspnea and other outcomes in selected patients with severe emphysema, but many have excessive surgical risk for LVRS. We analyzed the dose-volume relationship for lobar volume reduction after stereotactic ablative radiation therapy (SABR) of lung tumors, hypothesizing that SABR could achieve therapeutic volume reduction if applied in emphysema. Methods and Materials: We retrospectively identified patients treated from 2007 to 2011 who had SABR for 1 lung tumor, pre-SABR pulmonary function testing, and ≥6 months computed tomographic (CT) imaging follow-up. We contoured the treated lobe and untreated adjacent lobe(s) on CT before and after SABR and calculated their volume changes relative to the contoured total (bilateral) lung volume (TLV). We correlated lobar volume reduction with the volume receiving high biologically effective doses (BED, α/β = 3). Results: 27 patients met the inclusion criteria, with a median CT follow-up time of 14 months. There was no grade ≥3 toxicity. The median volume reduction of the treated lobe was 4.4% of TLV (range, −0.4%-10.8%); the median expansion of the untreated adjacent lobe was 2.6% of TLV (range, −3.9%-11.6%). The volume reduction of the treated lobe was positively correlated with the volume receiving BED ≥60 Gy (r{sup 2}=0.45, P=.0001). This persisted in subgroups determined by high versus low pre-SABR forced expiratory volume in 1 second, treated lobe CT emphysema score, number of fractions, follow-up CT time, central versus peripheral location, and upper versus lower lobe location, with no significant differences in effect size between subgroups. Volume expansion of the untreated adjacent lobe(s) was positively correlated with volume reduction of the treated lobe (r{sup 2}=0.47, P<.0001). Conclusions: We identified a dose-volume response for treated lobe volume reduction and adjacent lobe compensatory expansion after lung tumor SABR, consistent across

  15. Celecoxib Treatment Alters p53 and MDM2 Expression via COX-2 Crosstalk in A549 Cells.

    PubMed

    Gharghabi, Mehdi; Rezaei, Farhang; Mir Mohammadrezaei, Fereshteh; Ghahremani, Mohammad Hossein

    2016-01-01

    Cyclooxygenase-2 (COX-2) has a pivotal role in the pathogenesis of the lung cancer. It is known that COX-2 negatively regulates the activity of a number of tumor suppressors, including p53. Consequently, inhibition of COX-2 signaling is anticipated to be a promising approach to stabilize p53 functionality. In this regard, we investigated the effect of COX-2 signaling blockade on p53 and COX-2expression in A549 cells. Cell viability was assessed using MTT and protein expression was measured using Western Blot assay. Results revealed that Celecoxib dose-dependently induced growth inhibition within 24 h. However, prolonged exposure to the drug up to 48 h led to increase cell viability compared to the corresponding control. Western blot analysis demonstrated that Celecoxib could augment p53 expression within 24 h, independently of COX-2 inhibition. In contrast, Celecoxib treatment not only returned p53 to the control level, but also strikingly induced COX-2 expression within 48 h. Of further relevance, Celecoxib exposure could significantly result in MDM2 elevation at 48 h. These findings represent p53 as a molecular target being interconnected with COX-2 signaling axis upon Celecoxib treatment. Moreover, our data point toward the possibility that Celecoxib treatment may not be a proper therapeutic strategy in lung cancer cells owing to its potential role in the activation of oncogenes, including COX-2 and MDM2 which seemingly confers a chemoresistance circumstance to the cell. Consequently, these results underscore intensive preclinical assessment prior to applying COX-2 inhibitors in the treatment of lung tumors. PMID:27642319

  16. Lung Epithelial Cell-Specific Expression of Human Lysosomal Acid Lipase Ameliorates Lung Inflammation and Tumor Metastasis in Lipa(-/-) Mice.

    PubMed

    Zhao, Ting; Ding, Xinchun; Du, Hong; Yan, Cong

    2016-08-01

    Lysosomal acid lipase (LAL), a key enzyme in the metabolic pathway of neutral lipids, has a close connection with inflammation and tumor progression. One major manifestation in LAL-deficient (Lipa(-/-)) mice is an increase of tumor growth and metastasis associated with expansion of myeloid-derived suppressor cells. In the lung, LAL is highly expressed in alveolar type II epithelial cells. To assess how LAL in lung epithelial cells plays a role in this inflammation-related pathogenic process, lung alveolar type II epithelial cell-specific expression of human LAL (hLAL) in Lipa(-/-) mice was established by crossbreeding of CCSP-driven rtTA transgene and (TetO)7-CMV-hLAL transgene into Lipa(-/-) mice (CCSP-Tg/KO). hLAL expression in lung epithelial cells not only reduced tumor-promoting myeloid-derived suppressor cells in the lung, but also down-regulated the synthesis and secretion of tumor-promoting cytokines and chemokines into the bronchoalveolar lavage fluid of Lipa(-/-) mice. hLAL expression reduced the immunosuppressive functions of bronchoalveolar lavage fluid cells, inhibited bone marrow cell transendothelial migration, and inhibited endothelial cell proliferation and migration in Lipa(-/-) mice. As a result, hLAL expression in CCSP-Tg/KO mice corrected pulmonary damage, and inhibited tumor cell proliferation and migration in vitro, and tumor metastasis to the lung in vivo. These results support a concept that LAL is a critical metabolic enzyme in lung epithelial cells that regulates lung homeostasis, immune response, and tumor metastasis. PMID:27461363

  17. Intrathoracic Desmoid Tumor Presenting as Multiple Lung Nodules 13 Years after Previous Resection of Abdominal Wall Desmoid Tumor.

    PubMed

    Koo, Gun Woo; Chung, Sung Jun; Kwak, Joo Hee; Oh, Chang Kyo; Park, Dong Won; Kwak, Hyeon Jung; Moon, Ji-Yong; Kim, Sang-Heon; Sohn, Jang Won; Yoon, Ho Joo; Shin, Dong Ho; Park, Sung Soo; Oh, Young-Ha; Pyo, Ju Yeon; Kim, Tae-Hyung

    2015-07-01

    Desmoid tumors are rare soft tissue tumors considered to have locally infiltrative features without distant metastasis until now. Although they are most commonly intraabdominal, very few cases have extra-abdominal locations. The origin of intrathoracic desmoid tumors is predominantly the chest wall with occasional involvement of pleura. True intrathoracic primary desmoid tumors with no involvement of the chest wall or pleura are extremely rare. We recently experienced a case of true intrathoracic desmoid tumor presenting as multiple lung nodules at 13 years after resection of a previous intraabdominal desmoid tumor.

  18. Nontoxic concentration of DNA-PK inhibitor NU7441 radio-sensitizes lung tumor cells with little effect on double strand break repair.

    PubMed

    Sunada, Shigeaki; Kanai, Hideki; Lee, Younghyun; Yasuda, Takeshi; Hirakawa, Hirokazu; Liu, Cuihua; Fujimori, Akira; Uesaka, Mitsuru; Okayasu, Ryuichi

    2016-09-01

    High-linear energy transfer (LET) heavy ions have been increasingly employed as a useful alternative to conventional photon radiotherapy. As recent studies suggested that high LET radiation mainly affects the nonhomologous end-joining (NHEJ) pathway of DNA double strand break (DSB) repair, we further investigated this concept by evaluating the combined effect of an NHEJ inhibitor (NU7441) at a non-toxic concentration and carbon ions. NU7441-treated non-small cell lung cancer (NSCLC) A549 and H1299 cells were irradiated with X-rays and carbon ions (290 MeV/n, 50 keV/μm). Cell survival was measured by clonogenic assay. DNA DSB repair, cell cycle distribution, DNA fragmentation and cellular senescence induction were studied using a flow cytometer. Senescence-associated protein p21 was detected by western blotting. In the present study, 0.3 μM of NU7441, nontoxic to both normal and tumor cells, caused a significant radio-sensitization in tumor cells exposed to X-rays and carbon ions. This concentration did not seem to cause inhibition of DNA DSB repair but induced a significant G2/M arrest, which was particularly emphasized in p53-null H1299 cells treated with NU7441 and carbon ions. In addition, the combined treatment induced more DNA fragmentation and a higher degree of senescence in H1299 cells than in A549 cells, indicating that DNA-PK inhibitor contributes to various modes of cell death in a p53-dependent manner. In summary, NSCLC cells irradiated with carbon ions were radio-sensitized by a low concentration of DNA-PK inhibitor NU7441 through a strong G2/M cell cycle arrest. Our findings may contribute to further effective radiotherapy using heavy ions. PMID:27341700

  19. 5-(Bis(3-(2-hydroxyethyl)-1H-indol-2-yl)methyl)-2-hydroxybenzoic acid (BHIMHA): showing a strategy of designing drug to block lung metastasis of tumors.

    PubMed

    Gan, Taiping; Wang, Yuji; Zhao, Ming; Wu, Jianhui; Yang, Jian; Peng, Shiqi

    2016-01-01

    Early metastasis is still the most recalcitrant factor in the treatment of lung cancer patients. By analyzing the structures and comparing the docking scores of the known pharmacophores, the authors of this paper designed 5-(bis(3-(2-hydroxyethyl)-1H-indol-2-yl)methyl)-2-hydroxybenzoic acid (BHIMHA) as a promising lead compound to develop metastasis inhibitors. In vitro 5, 10, and 20 µM of BHIMHA concentration dependently inhibited the migration and invasion of A549 cells. In vivo 0.4, 2.0, and 8.9 µmol/kg of BHIMHA dose dependently inhibited the metastasis of LLC (Lewis Lung Carcinoma) toward lung. In vivo, 2 µmol/kg of BHIMHA showed additional actions of slowing the growth of the primary tumor of C57BL/6 mice and S180 mice as well as inhibiting xylene-induced ear edema of the mice. Therefore, BHIMHA simultaneously blocked tumor metastasis toward lung, slowed the primary tumor growth, and limited the inflammation. These pharmacological actions were correlated with the inhibition of PKCα and NF-κB expression.

  20. 5-(Bis(3-(2-hydroxyethyl)-1H-indol-2-yl)methyl)-2-hydroxybenzoic acid (BHIMHA): showing a strategy of designing drug to block lung metastasis of tumors

    PubMed Central

    Gan, Taiping; Wang, Yuji; Zhao, Ming; Wu, Jianhui; Yang, Jian; Peng, Shiqi

    2016-01-01

    Early metastasis is still the most recalcitrant factor in the treatment of lung cancer patients. By analyzing the structures and comparing the docking scores of the known pharmacophores, the authors of this paper designed 5-(bis(3-(2-hydroxyethyl)-1H-indol-2-yl)methyl)-2-hydroxybenzoic acid (BHIMHA) as a promising lead compound to develop metastasis inhibitors. In vitro 5, 10, and 20 µM of BHIMHA concentration dependently inhibited the migration and invasion of A549 cells. In vivo 0.4, 2.0, and 8.9 µmol/kg of BHIMHA dose dependently inhibited the metastasis of LLC (Lewis Lung Carcinoma) toward lung. In vivo, 2 µmol/kg of BHIMHA showed additional actions of slowing the growth of the primary tumor of C57BL/6 mice and S180 mice as well as inhibiting xylene-induced ear edema of the mice. Therefore, BHIMHA simultaneously blocked tumor metastasis toward lung, slowed the primary tumor growth, and limited the inflammation. These pharmacological actions were correlated with the inhibition of PKCα and NF-κB expression. PMID:26937173

  1. Micro FT-IR Characterization Of Human Lung Tumor Cells

    NASA Astrophysics Data System (ADS)

    Benedetti, Enzo; Teodori, L.; Vergamini, Piergiorgio; Trinca, M. L.; Mauro, F.; Salvati, F.; Spremolla, Giuliano

    1989-12-01

    FT-IR spectroscopy has opened up a new approach to the analytical study of cell transformation. Investigations carried out in normal and leukemic lymphocytes have evidenced an increase in DNA with respect to proteic components in neoplastic cells.(1) The evaluation of the ratio of the integrated areas(A) of the bands at 1080 cm-1 (mainly DNA) and at 1540 cm-1 (proteic components) has allowed us to establish a parameter which indicates, for values above 1.5, the neoplastic nature of cells. Recently, this approach has been applied to the study of human lung tumor cells. Several monocellular suspension procedures of the tissue fragment (mechanical and/or chemical) were tested to obtain reproducible and reliable spectra able to differentiate clearly between normal and patological cells. Chemical treatment (EDTA, Pepsin, Collagenase, etc.) produced additional bands in the spectra of the cells causing distortion of the profiles of some absorptions, and as a result, mechanical treatment was preferred. The normal and neoplastic cells homogeneously distributed by cytospin preparation on BaF2 windows were examined by means of FT-IR microscopy. An examination of several microareas of each sample yielded reproducible spectra, with values of the A 1080 cm-1 / A 1540 cm-1 parameter within a very narrow range for each sample, even if certain differences still remained among the different cases, in good agreement with the results obtained for leukemic cells.(1) The value of this parameter was found to be lower for cells isolated from the normal area of lung, than in the case of those corresponding to the tumoral area, meaning that an increase occurs in DNA with respect to the proteic components. These insights, which provide a basis to obtain indications at the molecular level, can open up new possibilities in clinical practice, in order to obtain diagnosis confirmation, to detect early stages of disease and to offer additional indications in cases of dubious interpretation.

  2. Upregulation of AQP3 and AQP5 induced by dexamethasone and ambroxol in A549 cells.

    PubMed

    Ben, Yong; Chen, Jie; Zhu, Rong; Gao, Lei; Bai, Chunxue

    2008-04-30

    Aquaporins (AQPs) are membrane channel proteins that play roles in the regulation of water permeability in many tissues. AQP1 and AQP5 expressed in lung provide the principal route for osmotically driven water transport. In the airways, AQP3 and AQP4 facilitate water transport. Dexamethasone and ambroxol are often used to treat patients with pulmonary diseases accompanied by airway hypersecretion. The role of AQPs in these effective treatments has not been addressed. In this study, we analyzed the expression of AQPs in a human airway epithelial cell line (A549 cells) and showed that AQP3 and 5, but not AQP1 and 4, were expressed in A549 cells. Both dexamethasone and ambroxol stimulated the expression of AQP3 and 5 at the mRNA and protein levels. The data suggest potential roles of AQP3 and 5 in the regulation of airway hypersecretion, perhaps ultimately providing a target for treating such diseases.

  3. RNA interference-mediated knockdown of Aurora-B alters the metastatic behavior of A549 cells via modulation of the phosphoinositide 3-kinase/Akt signaling pathway

    PubMed Central

    ZHOU, LONG DIAN; XIONG, XU; LONG, XIN HUA; LIU, ZHI LI; HUANG, SHAN HU; ZHANG, WEI

    2014-01-01

    Accumulating evidence has revealed that an elevated expression level of Aurora-B is associated with metastasis in various types of malignant tumor. However, it is currently unclear whether this molecule is involved in non-small lung cancer (NSCLC) metastasis, and the molecular mechanisms associated with Aurora-B and metastasis remain unknown. In the present study, in order to investigate whether Aurora-B is involved in the development and metastasis of NSCLC, the Aurora-B protein expression in NSCLC tissues was detected by immunohistochemistry and its association with metastasis was analyzed. The results revealed that the expression levels of the Aurora-B protein in tissues obtained from NSCLC patients with lymph node metastasis were significantly higher than those without metastatic disease. Furthermore, the effect of Aurora-B inhibition on A549 cell migration and invasion, as well as the activity of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway was evaluated. Aurora-B was inhibited in the A549 cells using short hairpin RNA, and the cell migration and invasion rates were investigated using wound healing and Transwell invasion assays. In addition, the expression of the main proteins in the PI3K/Akt/nuclear factor-κB (NF-κB) signaling pathway, and matrix metalloproteinase (MMP)-2 and -9 were measured by western blot analysis. The results demonstrated that cell migration and invasion were decreased as a result of silencing Aurora-B. Furthermore, the activity of the PI3K/Akt/NF-κB signaling pathway and the expression of MMP-2 and -9 protein were suppressed by silencing Aurora-B. The results of the present study indicate that the knockdown of Aurora-B suppresses A549 cell invasion and migration via the inhibition of the PI3K/Akt signaling pathway in vitro and thus, targeting Aurora-B may present a potential treatment strategy for NSCLC. PMID:25295091

  4. Solitary fibrous tumor of the lung: three rare cases of intraparenchymal nodules.

    PubMed

    Cardinale, L; Ardissone, F; Cataldi, A; Familiari, U; Solitro, F; Fava, C

    2009-05-01

    Solitary fibrous tumor (SFT) of the pleura usually presents as a peripheral mass, in contact with the surface of the pleura. However, on occasion, it can occur separately from the pleura, in the lung parenchyma. We describe the radiological and imaging features of three SFTs of the lung, diagnosed in our department, with relevant clinical data. The diagnosis of SFT of the lung, although rare, should be considered in a slow-growing solitary lung parenchymal nodule.

  5. The preparation of <100 particles per trial having the same mole fraction of 12 inorganic compounds at diameters of 6.8, 3.8, or 2.6 [mu]m followed by their deposition onto human lung cells (A549) with measurement of the relative downstream differential expression of ICAM-1

    NASA Astrophysics Data System (ADS)

    Eleghasim, Ndukauba M.; Haddrell, Allen E.; van Eeden, Stephen; Agnes, George R.

    2006-12-01

    The characterization of particulate matter suspended in the troposphere (PM10) based on size is an important basis for assessing the extent of their adverse effects on human health. The relevance of such assessments is anticipated to be significantly improved through the continued development of tools that can identify the chemical components within individual ambient particles, and the injury that they cause. We use recently reported methodology to create mimics of ambient particle types of known size and chemical composition that are levitated within an ac trap. The ac trap uses electric fields to levitate the particles that have a given mass and net elementary charge, and as such the ac trap is a mass-to-charge filter. The ac trap was used to levitate populations of particles where the size of particles in any given population could be altered. The levitated particles are delivered direct from the ac trap to human lung cells (A549), in vitro, with downstream measurement of differential expression of intercellular adhesion molecule (ICAM)-1 and counting of the number of particles actually delivered to the culture using an optical microscope. In this study, the chemical composition of the ambient particle mimics was restricted to inorganic compounds whose relative abundance was purposely designed to mimic the average abundance in Environmental Health Center-93 (EHC-93) particles. The sizes of the multilelement particle types prepared were 6.8 +/- 0.5, 3.8 +/- 0.3, 2.6 +/- 0.2 (mean +/- S.D.). Particles of either elemental carbon, or elemental carbon containing glycerol were used as control particle types. In any given experiment, a known number of particles, but always <100, of a given size, were deposited onto a small region of an A549 cell culture. Following an 18-h incubation period and anti-body labeling of ICAM-1, the fluorescence emission from a 1.07 mm2 area of the cell culture centered at the site of particle deposition was acquired. The relative

  6. Evaluation of the results of surgery treatment in patients with benign lung tumors

    PubMed Central

    Bagheri, Reza; Haghi, Seyed Ziaollah; Dalouee, Marziyeh Nouri; Nasiri, Zakiyeh; Rajabnejad, Ata’ollah

    2015-01-01

    Background: Lung tumors are among the common tumors and can be benign or malignant. Benign lung tumors are less common compared to the malignant types. Recognition of the clinical symptoms, types of tumors, paraclinical findings, and treatment approaches can bring better therapeutic results. The present study aims to evaluate the characteristics, diagnosis methods, and therapeutic approaches of different benign lung tumors. Materials and Methods: In this retrospective study, 32 patients with a diagnosis of benign lung tumor, who had been referred to the Mashhad University of Medical Sciences between 1981 and 2009, were studied. Some of the studied variables were symptoms, the pulmonary location involved, surgery technique, pathology findings, recurrence, and surgery complications. Data were analyzed by SPSS package version 16. Results: The average age of the patients was 51.69 ± 20.5 years. Prevalence of benign lung tumors was equal in both genders. The most common symptom was cough (31.2%); right lung involvement was more common (71.9%), and the most common sampling technique was transbronchial lung biopsy (TBLB) (62.5%); 53.1% of the patients were operated on by thoracotomy and the wedge resection technique. In 78.1% of the patients, no complications occurred after surgery. There was no recurrence. Most operations were performed in one month after the start of the symptoms (68.8%). Conclusions: Benign lung tumors are commonly diagnosed by routine radiography because most of them are asymptomatic. The most common finding in radiography is the presence of mass in the lungs. Transbronchial lung biopsy is a valuable technique to be used for diagnosis. We chose thoracotomy and wedge resection for the treatment of patients. We recommend this approach as a useful method. PMID:25624593

  7. SOX30, a novel epigenetic silenced tumor suppressor, promotes tumor cell apoptosis by transcriptional activating p53 in lung cancer.

    PubMed

    Han, F; Liu, W; Jiang, X; Shi, X; Yin, L; Ao, L; Cui, Z; Li, Y; Huang, C; Cao, J; Liu, J

    2015-08-13

    Although members of SOX family have been well documented for their essential roles in embryonic development, cell proliferation and disease, the functional role and molecular mechanism of SOX30 in cancer are largely unexplored. Here, we first identified SRY-box containing gene 30 (SOX30) as a novel preferentially methylated gene using genome-wide methylation screening. SOX30 hypermethylation was detected in 100% of lung cancer cell lines (9/9) and 70.83% (85/120) of primary lung tumor tissues compared with none (0/20) of normal and 8.0% (2/25) of peri-tumoral lung tissues (P<0.01). SOX30 was expressed in normal and peri-tumoral lung tissues in which SOX30 was unmethylated, but was silenced or downregulated in lung cancer cell lines and primary lung tumor tissues harboring a hypermethylated SOX30. De-methylation experiments further confirmed that silence of SOX30 was regulated by its hypermethylation. Ectopic expression of SOX30 induces cancer cell apoptosis with inhibiting proliferation in vitro and represses tumor formation in vivo, whereas knockdown of SOX30 demonstrates a reversed effect both in vitro and in vivo. At the molecular level, the antitumorigenic effect of SOX30 is mediated by directly binding to CACTTTG (+115 to +121) of p53 promoter region and activating p53 transcription, suggesting that SOX30 is a novel transcriptional activating factor of p53. Indeed, blockade of p53 attenuates the tumor inhibition of SOX30. Overall, these findings demonstrate that SOX30 is a novel epigenetic silenced tumor suppressor acting through direct regulation of p53 transcription and expression. This study provides novel insights on the mechanism of tumorigenesis in lung cancer. PMID:25435374

  8. Contrast Agents for Quantitative MicroCT of Lung Tumors in Mice

    PubMed Central

    Lalwani, Kush; Giddabasappa, Anand; Li, Danan; Olson, Peter; Simmons, Brett; Shojaei, Farbod; Arsdale, Todd Van; Christensen, James; Jackson-Fisher, Amy; Wong, Anthony; Lappin, Patrick B; Eswaraka, Jeetendra

    2013-01-01

    The identification and quantitative evaluation of lung tumors in mouse models is challenging and an unmet need in preclinical arena. In this study, we developed a noninvasive contrast-enhanced microCT (μCT) method to longitudinally evaluate and quantitate lung tumors in mice. Commercially available μCT contrast agents were compared to determine the optimal agent for visualization of thoracic blood vessels and lung tumors in naïve mice and in non-small-cell lung cancer models. Compared with the saline control, iopamidol and iodinated lipid agents provided only marginal increases in contrast resolution. The inorganic nanoparticulate agent provided the best contrast and visualization of thoracic vascular structures; the density contrast was highest at 15 min after injection and was stable for more than 4 h. Differential contrast of the tumors, vascular structures, and thoracic air space by the nanoparticulate agent enabled identification of tumor margins and accurate quantification. μCT data correlated closely with traditional histologic measurements (Pearson correlation coefficient, 0.995). Treatment of ELM4–ALK mice with crizotinib yielded 65% reduction in tumor size and thus demonstrated the utility of quantitative μCT in longitudinal preclinical trials. Overall and among the 3 agents we tested, the inorganic nanoparticulate product was the best commercially available contrast agent for visualization of thoracic blood vessels and lung tumors. Contrast-enhanced μCT imaging is an excellent noninvasive method for longitudinal evaluation during preclinical lung tumor studies. PMID:24326223

  9. Effect of Audio Coaching on Correlation of Abdominal Displacement With Lung Tumor Motion

    SciTech Connect

    Nakamura, Mitsuhiro Narita, Yuichiro; Matsuo, Yukinori; Narabayashi, Masaru; Nakata, Manabu; Sawada, Akira; Mizowaki, Takashi; Nagata, Yasushi; Hiraoka, Masahiro

    2009-10-01

    Purpose: To assess the effect of audio coaching on the time-dependent behavior of the correlation between abdominal motion and lung tumor motion and the corresponding lung tumor position mismatches. Methods and Materials: Six patients who had a lung tumor with a motion range >8 mm were enrolled in the present study. Breathing-synchronized fluoroscopy was performed initially without audio coaching, followed by fluoroscopy with recorded audio coaching for multiple days. Two different measurements, anteroposterior abdominal displacement using the real-time positioning management system and superoinferior (SI) lung tumor motion by X-ray fluoroscopy, were performed simultaneously. Their sequential images were recorded using one display system. The lung tumor position was automatically detected with a template matching technique. The relationship between the abdominal and lung tumor motion was analyzed with and without audio coaching. Results: The mean SI tumor displacement was 10.4 mm without audio coaching and increased to 23.0 mm with audio coaching (p < .01). The correlation coefficients ranged from 0.89 to 0.97 with free breathing. Applying audio coaching, the correlation coefficients improved significantly (range, 0.93-0.99; p < .01), and the SI lung tumor position mismatches became larger in 75% of all sessions. Conclusion: Audio coaching served to increase the degree of correlation and make it more reproducible. In addition, the phase shifts between tumor motion and abdominal displacement were improved; however, all patients breathed more deeply, and the SI lung tumor position mismatches became slightly larger with audio coaching than without audio coaching.

  10. Lung tumor promotion by chromium-containing welding particulate matter in a mouse model

    PubMed Central

    2013-01-01

    Background Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. Methods Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. Results MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. Conclusions GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk. PMID:24107379

  11. Tumor-specific targeting by Bavituximab, a phosphatidylserine-targeting monoclonal antibody with vascular targeting and immune modulating properties, in lung cancer xenografts.

    PubMed

    Gerber, David E; Hao, Guiyang; Watkins, Linda; Stafford, Jason H; Anderson, Jon; Holbein, Blair; Öz, Orhan K; Mathews, Dana; Thorpe, Philip E; Hassan, Gedaa; Kumar, Amit; Brekken, Rolf A; Sun, Xiankai

    2015-01-01

    Bavituximab is a chimeric monoclonal antibody with immune modulating and tumor-associated vascular disrupting properties demonstrated in models of non-small cell lung cancer (NSCLC). The molecular target of Bavituximab, phosphatidylserine (PS), is exposed on the outer leaflet of the membrane bi-layer of malignant vascular endothelial cells and tumor cells to a greater extent than on normal tissues. We evaluated the tumor-targeting properties of Bavituximab for imaging of NSCLC xenografts when radiolabeled with (111)In through conjugation with a bifunctional chelating agent, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). In vitro binding of (111)In-DOTA-Bavituximab to PS was determined by enzyme-linked immunosorbent assay (ELISA). Biodistribution of (111)In-DOTA-Bavituximab was conducted in normal rats, which provided data for dosimetry calculation. Single-photon emission computed tomography/computed tomography (SPECT/CT) imaging was performed in athymic nude rats bearing A549 NSCLC xenografts. At the molar conjugation ratio of 0.54 DOTA per Bavituximab, the PS binding affinity of (111)In-DOTA-Bavituximab was comparable to that of unmodified Bavituximab. Based on the quantitative SPECT/CT imaging data analysis, (111)In-DOTA-Bavituximab demonstrated tumor-specific uptake as measured by the tumor-tomuscle ratio, which peaked at 5.2 at 72 hr post-injection. In contrast, the control antibody only presented a contrast of 1.2 at the same time point.These findings may underlie the diagnostic efficacy and relative low rates of systemic vascular and immune-related toxicities of this immunoconjugate. Future applications of (111)In-DOTA-bavituximab may include prediction of efficacy, indication of tumor immunologic status, or characterization of radiographic findings. PMID:26550540

  12. Colony-stimulating factor 1 potentiates lung cancer bone metastasis.

    PubMed

    Hung, Jaclyn Y; Horn, Diane; Woodruff, Kathleen; Prihoda, Thomas; LeSaux, Claude; Peters, Jay; Tio, Fermin; Abboud-Werner, Sherry L

    2014-04-01

    Colony-stimulating factor 1 (CSF1) is essential for osteoclastogenesis that mediates osteolysis in metastatic tumors. Patients with lung cancer have increased CSF1 in serum and high levels are associated with poor survival. Adenocarcinomas metastasize rapidly and many patients suffer from bone metastasis. Lung cancer stem-like cells sustain tumor growth and potentiate metastasis. The purpose of this study was to determine the role of CSF1 in lung cancer bone metastasis and whether inhibition of CSF1 ameliorates the disease. Human lung adenocarcinoma A549 cells were examined in vitro for CSF1/CSF1R. A549-luc cells were injected intracardiac in NOD/SCID mice and metastasis was assessed. To determine the effect of CSF1 knockdown (KD) in A549 cells on bone metastasis, cells were stably transfected with a retroviral vector containing short-hairpin CSF1 (KD) or empty vector (CT). Results showed that A549 cells express CSF1/CSF1R; CSF1 increased their proliferation and invasion, whereas soluble CSF1R inhibited invasion. Mice injected with A549-luc cells showed osteolytic bone lesions 3.5 weeks after injection and lesions increased over 5 weeks. Tumors recapitulated adenocarcinoma morphology and showed osteoclasts along the tumor/bone interface, trabecular, and cortical bone loss. Analyses of KD cells showed decreased CSF1 protein levels, reduced colony formation in soft agar assay, and decreased fraction of stem-like cells. In CSF1KD mice, the incidence of tumor metastasis was similar to controls, although fewer CSF1KD mice had metastasis in both hind limbs. KD tumors showed reduced CSF1 expression, Ki-67+ cells, and osteoclasts. Importantly, there was a low incidence of large tumors >0.1 mm(2) in CSF1KD mice compared with control mice (10% vs 62.5%). This study established a lung osteolytic bone metastasis model that resembles human disease and suggests that CSF1 is a key determinant of cancer stem cell survival and tumor growth. Results may lead to novel strategies to

  13. Failure of ozone and nitrogen dioxide to enhance lung tumor development in hamsters

    SciTech Connect

    Witschi, H.; Breider, M.A.; Schuller, H.M. )

    1993-09-01

    We tested the hypothesis that the two common oxidant air pollutants, ozone and nitrogen dioxide, modulate the development of respiratory tract tumors in Syrian golden hamsters. The animals received subcutaneous injections of the carcinogen diethylnitrosamine (20 mg/kg) twice a week while being exposed continuously to an atmosphere of 0.8 parts per million (ppm)* of ozone or 15 ppm of nitrogen dioxide. Animals were killed 16 weeks or 24 to 32 weeks after the beginning of the treatment. Ozone delayed the appearance of tracheal tumors and reduced the incidence of tumors in the lung periphery. A suspected neuroendocrine differentiation of those lung tumors could not be established by immunocytochemistry due to overfixation of tissues. On the other hand, ozone seemed to mitigate development of hepatotoxic lesions mediated by diethylnitrosamine. In animals treated with diethylnitrosamine and exposed to nitrogen dioxide, fewer tracheal tumors and no lung tumors were found. Only a few lung tumors were produced in animals treated with diethylnitrosamine and kept in an atmosphere of 65% oxygen. The previously observed neuroendocrine nature of tumors induced by simultaneous exposure to diethylnitrosamine and hyperoxia could not be established because the long fixation of tissues precluded immunocytochemical stains. Animals treated with diethylnitrosamine and kept in filtered air while being housed in wire-mesh cages developed fewer lung tumors than animals given the same treatment and kept on conventional bedding in shoebox cages. Although all inhalants tested are known to produce substantial cell proliferation in the respiratory tract, it was not possible to document whether this would enhance lung tumor development. The role of the two common air pollutants, ozone and nitrogen dioxide, as possible additional risks in the pathogenesis of lung cancer in animals continues to remain uncertain.

  14. Regression of murine lung tumors by the let-7 microRNA

    PubMed Central

    Trang, Phong; Medina, Pedro P.; Wiggins, Jason F.; Ruffino, Lynnsie; Kelnar, Kevin; Omotola, Michael; Homer, Robert; Brown, David; Bader, Andreas G.; Weidhaas, Joanne B.; Slack, Frank J.

    2009-01-01

    MicroRNAs (miRNAs) have recently emerged as an important new class of cellular regulators that control various cellular processes and are implicated in human diseases, including cancer. Here, we show that loss of let-7 function enhances lung tumor formation in vivo, strongly supporting the hypothesis that let-7 is a tumor suppressor. Moreover, we report that exogenous delivery of let-7 to established tumors in mouse models of non-small cell lung cancer (NSCLC) significantly reduces tumor burden. These results demonstrate the therapeutic potential of let-7 in NSCLC and point to miRNA replacement therapy as a promising approach in cancer treatment. PMID:19966857

  15. Lung Adenocarcinomas and Lung Cancer Cell Lines Show Association of MMP-1 Expression With STAT3 Activation.

    PubMed

    Schütz, Alexander; Röser, Katrin; Klitzsch, Jana; Lieder, Franziska; Aberger, Fritz; Gruber, Wolfgang; Mueller, Kristina M; Pupyshev, Alexander; Moriggl, Richard; Friedrich, Karlheinz

    2015-04-01

    Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in the majority of lung cancer. This study aims at defining connections between STAT3 function and the malignant properties of non-small cell lung carcinoma (NSCLC) cells. To address possible mechanisms by which STAT3 influences invasiveness, the expression of matrix metalloproteinase-1 (MMP-1) was analyzed and correlated with the STAT3 activity status. Studies on both surgical biopsies and on lung cancer cell lines revealed a coincidence of STAT3 activation and strong expression of MMP-1. MMP-1 and tyrosine-phosphorylated activated STAT3 were found co-localized in cancer tissues, most pronounced in tumor fronts, and in particular in adenocarcinomas. STAT3 activity was constitutive, although to different degrees, in the lung cancer cell lines investigated. Three cell lines (BEN, KNS62, and A549) were identified in which STAT3 activitation was inducible by Interleukin-6 (IL-6). In A549 cells, STAT3 activity enhanced the level of MMP-1 mRNA and stimulated transcription from the MMP-1 promoter in IL-6-stimulated A549 cells. STAT3 specificity of this effect was confirmed by STAT3 knockdown through RNA interference. Our results link aberrant activity of STAT3 in lung cancer cells to malignant tumor progression through up-regulation of expression of invasiveness-associated MMPs.

  16. A biomechanical approach for in vivo lung tumor motion prediction during external beam radiation therapy

    NASA Astrophysics Data System (ADS)

    Karami, Elham; Gaede, Stewart; Lee, Ting-Yim; Samani, Abbas

    2015-03-01

    Lung Cancer is the leading cause of cancer death in both men and women. Among various treatment methods currently being used in the clinic, External Beam Radiation Therapy (EBRT) is used widely not only as the primary treatment method, but also in combination with chemotherapy and surgery. However, this method may lack desirable dosimetric accuracy because of respiration induced tumor motion. Recently, biomechanical modeling of the respiratory system has become a popular approach for tumor motion prediction and compensation. This approach requires reasonably accurate data pertaining to thoracic pressure variation, diaphragm position and biomechanical properties of the lung tissue in order to predict the lung tissue deformation and tumor motion. In this paper, we present preliminary results of an in vivo study obtained from a Finite Element Model (FEM) of the lung developed to predict tumor motion during respiration.

  17. Low-dose nicotine does not promote lung tumors in mouse models

    Cancer.gov

    Experiments in mice show that low levels of exposure to nicotine, equivalent to those in humans who use nicotine replacement therapy (NRT) to help them quit smoking, did not promote lung tumor growth.

  18. Intra-tumor Heterogeneity in Localized Lung Adenocarcinomas Delineated by Multi-region Sequencing

    PubMed Central

    Zhang, Jianjun; Fujimoto, Junya; Zhang, Jianhua; Wedge, David C.; Song, Xingzhi; Zhang, Jiexin; Seth, Sahil; Chow, Chi-Wan; Cao, Yu; Gumbs, Curtis; Gold, Kathryn A.; Kalhor, Neda; Little, Latasha; Mahadeshwar, Harshad; Moran, Cesar; Protopopov, Alexei; Sun, Huandong; Tang, Jiabin; Wu, Xifeng; Ye, Yuanqing; William, William N.; Lee, Jack J.; Heymach, John V.; Hong, Waun Ki; Swisher, Stephen; Wistuba, Ignacio I.; Futreal, P. Andrew

    2015-01-01

    Cancers are composed of populations of cells with distinct molecular and phenotypic features, a phenomenon termed intra-tumor heterogeneity (ITH). ITH in lung cancers has not been well studied. We applied multi-region whole exome sequencing (WES) on 11 localized lung adenocarcinomas. All tumors showed clear evidence of ITH. On average, 76% of all mutations and 20/21 known cancer gene mutations were identified in all regions of individual tumors suggesting single-region sequencing may be adequate to identify the majority of known cancer gene mutations in localized lung adenocarcinomas. With a median follow-up of 21 months post-surgery, 3 patients have relapsed and all 3 patients had significantly larger fractions of subclonal mutations in their primary tumors than patients without relapse. These data indicate larger subclonal mutation fraction may be associated with increased likelihood of postsurgical relapse in patients with localized lung adenocarcinomas. PMID:25301631

  19. Aquaporin-1 gene deletion reduces breast tumor growth and lung metastasis in tumor-producing MMTV-PyVT mice

    PubMed Central

    Esteva-Font, Cristina; Jin, Byung-Ju; Verkman, A. S.

    2014-01-01

    Aquaporin 1 (AQP1) is a plasma membrane water-transporting protein expressed strongly in tumor microvascular endothelia. We previously reported impaired angiogenesis in implanted tumors in AQP1-deficient mice and reduced migration of AQP1-deficient endothelial cells in vitro. Here, we investigated the consequences of AQP1 deficiency in mice that spontaneously develop well-differentiated, luminal-type breast adenomas with lung metastases [mouse mammary tumor virus-driven polyoma virus middle T oncogene (MMTV-PyVT)]. AQP1+/+ MMTV-PyVT mice developed large breast tumors with total tumor mass 3.5 ± 0.5 g and volume 265 ± 36 mm3 (se, 11 mice) at age 98 d. Tumor mass (1.6±0.2 g) and volume (131±15 mm3, 12 mice) were greatly reduced in AQP1−/− MMTV-PyVT mice (P<0.005). CD31 immunofluorescence showed abnormal microvascular anatomy in tumors of AQP1−/− MMTV-PyVT mice, with reduced vessel density. HIF-1α expression was increased in tumors in AQP1−/− MMTV-PyVT mice. The number of lung metastases (5±1/mouse) was much lower than in AQP1+/+ MMTV-PyVT mice (31±8/mouse, P<0.005). These results implicate AQP1 as an important determinant of tumor angiogenesis and, hence, as a potential drug target for adjuvant therapy of solid tumors.—Esteva-Font, C., Jin, B.-J., Verkman, A. S. Aquaporin-1 gene deletion reduces breast tumor growth and lung metastasis in tumor-producing MMTV-PyVT mice. PMID:24334548

  20. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters.

    PubMed

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-11-21

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation. PMID:26531324

  1. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters

    NASA Astrophysics Data System (ADS)

    Nasehi Tehrani, Joubin; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-11-01

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation.

  2. SB203580 enhances the RV-induced loss of mitochondrial membrane potential and apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Li, Hai-yang; Zhuang, Cai-ping; Wang, Xiao-ping; Chen, Tong-sheng

    2012-03-01

    Resveratrol (RV), a naturally occurring phytoalexin, is known to possess a wide spectrum of chemopreventive and chemotherapeutic effects in various stages of human tumors. p38, a member of the mitogen-activated protein kinase (MAPK) superfamily, is always activated by some extracellular stimulus to regulate many cellular signal transduction pathways, such as apoptosis, proliferation, and inflammation and so on. In this report, we assessed the effect of SB203580, a specific inhibitor of p38 MAPK signaling pathway, on the RV-induced apoptosis in human lung adenocarcinoma (A549) cells. CCK-8 assay showed that pretreatment with SB203580 significantly enhanced the cytotoxicity of RV, which was further verified by analyzing the phosphatidylserine externalization using flow cytometry. In order to further confirm whether SB203580 accelerated apoptosis via the intrinsic apoptosis pathway, we analyzed the dysfunction of mitochondrial membrane potential (Δψm) of cells stained with rhodamine 123 by using flow cytometry after treatment with RV in the absence and presence of SB203580. Our data for the first time reported that p38 inhibitor SB203580 enhanced the RV-induced apoptosis via a mitochondrial pathway.

  3. A deformable lung tumor tracking method in fluoroscopic video using active shape models: a feasibility study.

    PubMed

    Xu, Qianyi; Hamilton, Russell J; Schowengerdt, Robert A; Jiang, Steve B

    2007-09-01

    A dynamic multi-leaf collimator (DMLC) can be used to track a moving target during radiotherapy. One of the major benefits for DMLC tumor tracking is that, in addition to the compensation for tumor translational motion, DMLC can also change the aperture shape to conform to a deforming tumor projection in the beam's eye view. This paper presents a method that can track a deforming lung tumor in fluoroscopic video using active shape models (ASM) (Cootes et al 1995 Comput. Vis. Image Underst. 61 38-59). The method was evaluated by comparing tracking results against tumor projection contours manually edited by an expert observer. The evaluation shows the feasibility of using this method for precise tracking of lung tumors with deformation, which is important for DMLC-based real-time tumor tracking.

  4. Model-based risk assessment for motion effects in 3D radiotherapy of lung tumors

    NASA Astrophysics Data System (ADS)

    Werner, René; Ehrhardt, Jan; Schmidt-Richberg, Alexander; Handels, Heinz

    2012-02-01

    Although 4D CT imaging becomes available in an increasing number of radiotherapy facilities, 3D imaging and planning is still standard in current clinical practice. In particular for lung tumors, respiratory motion is a known source of uncertainty and should be accounted for during radiotherapy planning - which is difficult by using only a 3D planning CT. In this contribution, we propose applying a statistical lung motion model to predict patients' motion patterns and to estimate dosimetric motion effects in lung tumor radiotherapy if only 3D images are available. Being generated based on 4D CT images of patients with unimpaired lung motion, the model tends to overestimate lung tumor motion. It therefore promises conservative risk assessment regarding tumor dose coverage. This is exemplarily evaluated using treatment plans of lung tumor patients with different tumor motion patterns and for two treatment modalities (conventional 3D conformal radiotherapy and step-&- shoot intensity modulated radiotherapy). For the test cases, 4D CT images are available. Thus, also a standard registration-based 4D dose calculation is performed, which serves as reference to judge plausibility of the modelbased 4D dose calculation. It will be shown that, if combined with an additional simple patient-specific breathing surrogate measurement (here: spirometry), the model-based dose calculation provides reasonable risk assessment of respiratory motion effects.

  5. Ciliated muconodular papillary tumor of the lung: report of five cases.

    PubMed

    Ishikawa, Masashi; Sumitomo, Shinichi; Imamura, Naoto; Nishida, Tomoki; Mineura, Katsutaka; Ono, Kazuo

    2016-01-01

    We report five serial cases of ciliated muconodular papillary tumor (CMPT) of the lung. CMPT is characterized as a low-grade malignant tumor with ciliated columnar epithelial cells combined with goblet cells, typically presenting as peripheral lung tumor and often causing diagnostic or therapeutic problems. In the cases described here, all patients presented with abnormal chest shadow but no definitive symptoms. Although all tumors were peripheral, computed tomography (CT) revealed various radiographic findings including small lung nodules, ground-grass opacity or irregular-shaped consolidation. All patients underwent complete surgical resection, and no recurrence has been noted over follow-up. In all cases, pathological findings included columnar ciliated cells with mucus lakes, consistent with the immunohistochemical staining. As there are few reports on this tumor entity, which has not yet received a WHO classification, we believe our case series may be of interest. PMID:27562578

  6. Ciliated muconodular papillary tumor of the lung: report of five cases

    PubMed Central

    Ishikawa, Masashi; Sumitomo, Shinichi; Imamura, Naoto; Nishida, Tomoki; Mineura, Katsutaka; Ono, Kazuo

    2016-01-01

    We report five serial cases of ciliated muconodular papillary tumor (CMPT) of the lung. CMPT is characterized as a low-grade malignant tumor with ciliated columnar epithelial cells combined with goblet cells, typically presenting as peripheral lung tumor and often causing diagnostic or therapeutic problems. In the cases described here, all patients presented with abnormal chest shadow but no definitive symptoms. Although all tumors were peripheral, computed tomography (CT) revealed various radiographic findings including small lung nodules, ground-grass opacity or irregular-shaped consolidation. All patients underwent complete surgical resection, and no recurrence has been noted over follow-up. In all cases, pathological findings included columnar ciliated cells with mucus lakes, consistent with the immunohistochemical staining. As there are few reports on this tumor entity, which has not yet received a WHO classification, we believe our case series may be of interest. PMID:27562578

  7. In vivo selection for spine-derived highly metastatic lung cancer cells is associated with increased migration, inflammation and decreased adhesion

    PubMed Central

    Deng, Huayun; Zhang, Jishen; Li, Shichang; Wei, Haifeng; Yang, Cheng; Xu, Leqin; Jin, Rongrong; Li, Zhenxi; Zhou, Wang; Ding, JianDong; Chu, Jianjun; Jia, Lianshun; Jia, Qi; Tan, Chengjun; Liu, Mingyao; Xiao, Jianru

    2015-01-01

    We developed a murine spine metastasis model by screening five metastatic non-small cell lung cancer cell lines (PC-9, A549, NCI-H1299, NCI-H460, H2030). A549 cells displayed the highest tendency towards spine metastases. After three rounds of selection in vivo, we isolated a clone named A549L6, which induced spine metastasis in 80% of injected mice. The parameters of the A549L6 cell spinal metastatic mouse models were consistent with clinical spine metastasis features. All the spinal metastatic mice developed symptoms of nerve compression after 40 days. A549L6 cells had increased migration, invasiveness and decreased adhesion compared to the original A549L0 cells. In contrast, there was no significant differences in cell proliferation, apoptosis and sensitivity to chemotherapeutic agents such as cisplatin. Comparative transcriptomic analysis and Real-time PCR analysis showed that expression of signaling molecules regulating several tumor properties including migration (MYL9), metastasis (CEACAM6, VEGFC, CX3CL1, CST1, CCL5, S100A9, IGF1, NOTCH3), adhesion (FN1, CEACAM1) and inflammation (TRAF2, NFκB2 and RelB) were altered in A549L6 cells. We suggest that migration, adhesion and inflammation related genes contribute to spine metastatic capacity. PMID:26090868

  8. In vivo selection for spine-derived highly metastatic lung cancer cells is associated with increased migration, inflammation and decreased adhesion.

    PubMed

    Cai, Xiaopan; Luo, Jian; Yang, Xinghai; Deng, Huayun; Zhang, Jishen; Li, Shichang; Wei, Haifeng; Yang, Cheng; Xu, Leqin; Jin, Rongrong; Li, Zhenxi; Zhou, Wang; Ding, JianDong; Chu, Jianjun; Jia, Lianshun; Jia, Qi; Tan, Chengjun; Liu, Mingyao; Xiao, Jianru

    2015-09-01

    We developed a murine spine metastasis model by screening five metastatic non-small cell lung cancer cell lines (PC-9, A549, NCI-H1299, NCI-H460, H2030). A549 cells displayed the highest tendency towards spine metastases. After three rounds of selection in vivo, we isolated a clone named A549L6, which induced spine metastasis in 80% of injected mice. The parameters of the A549L6 cell spinal metastatic mouse models were consistent with clinical spine metastasis features. All the spinal metastatic mice developed symptoms of nerve compression after 40 days. A549L6 cells had increased migration, invasiveness and decreased adhesion compared to the original A549L0 cells. In contrast, there was no significant differences in cell proliferation, apoptosis and sensitivity to chemotherapeutic agents such as cisplatin. Comparative transcriptomic analysis and real-time PCR analysis showed that expression of signaling molecules regulating several tumor properties including migration (MYL9), metastasis (CEACAM6, VEGFC, CX3CL1, CST1, CCL5, S100A9, IGF1, NOTCH3), adhesion (FN1, CEACAM1) and inflammation (TRAF2, NFκB2 and RelB) were altered in A549L6 cells. We suggest that migration, adhesion and inflammation related genes contribute to spine metastatic capacity. PMID:26090868

  9. The enhancing effect of genistein on apoptosis induced by trichostatin A in lung cancer cells with wild type p53 genes is associated with upregulation of histone acetyltransferase.

    PubMed

    Wu, Tzu-Chin; Lin, Yi-Chin; Chen, Hsiao-Ling; Huang, Pei-Ru; Liu, Shang-Yu; Yeh, Shu-Lan

    2016-02-01

    Genistein has been shown to enhance the antitumor activity of trichostatin A (TSA) in human lung carcinoma A549 cells. However, whether the combined treatment exerts the same effect in other lung cancer cells is unclear. In the present study we first compared the enhancing effect of genistein on the antitumor effect of TSA in ABC-1, NCI-H460 (H460) and A549 cells. Second, we investigated whether the effects of genistein are associated with increased histone/non-histone protein acetylation. We found that the enhancing effect of genistein on cell-growth-arrest in ABC-1 cells (p53 mutant) was less than in A549 and H460 cells. Genistein enhanced TSA induced apoptosis in A549 and H460 cells rather than in ABC-1 cells. After silencing p53 expression in A549 and H460 cells, the enhancing effect of genistein was diminished. In addition, genistein increased TSA-induced histone H3/H4 acetylation in A549 and H460 cells. Genistein also increased p53 acetylation in H460 cells. The inhibitor of acetyltransferase, anacardic acid, diminished the enhancing effect of genistein on all TSA-induced histone/p53 acetylation and apoptosis. Genistein in combination with TSA increased the expression of p300 protein, an acetyltransferase, in A549 and NCI-H460 cells. Furthermore, we demonstrated that genistein also enhanced the antitumor effect of genistein in A549-tumor-bearing mice. Taken together, these results suggest that the enhancing effects of genistein on TSA-induced apoptosis in lung cancer cells were p53-dependent and were associated with histone/non-histone protein acetylation.

  10. Anti-tumor activity of CpG-ODN aerosol in mouse lung metastases.

    PubMed

    Sfondrini, Lucia; Sommariva, Michele; Tortoreto, Monica; Meini, Alessandra; Piconese, Silvia; Calvaruso, Marco; Van Rooijen, Nick; Bonecchi, Raffaella; Zaffaroni, Nadia; Colombo, Mario P; Tagliabue, Elda; Balsari, Andrea

    2013-07-15

    Studies in preclinical models have demonstrated the superior anti-tumor effect of CpG oligodeoxynucleotides (CpG-ODN) when administered at the tumor site rather than systemically. We evaluated the effect of aerosolized CpG-ODN on lung metastases in mice injected with immunogenic N202.1A mammary carcinoma cells or weakly immunogenic B16 melanoma cells. Upon reaching the bronchoalveolar space, aerosolized CpG-ODN activated a local immune response, as indicated by production of IL-12p40, IFN-γ and IL-1β and by recruitment and maturation of DC cells in bronchoalveolar lavage fluid of mice. Treatment with aerosolized CpG-ODN induced an expansion of CD4+ cells in lung and was more efficacious than systemic i.p. administration against experimental lung metastases of immunogenic N202.1A mammary carcinoma cells, whereas only i.p. delivery of CpG-ODN provided anti-tumor activity, which correlated with NK cell expansion in the lung, against lung metastases of the poorly immunogenic B16 melanoma. The inefficacy of aerosol therapy to induce NK expansion was related to the presence of immunosuppressive macrophages in B16 tumor-bearing lungs, as mice depleted of these cells by clodronate treatment responded to aerosol CpG-ODN through expansion of the NK cell population and significantly reduced numbers of lung metastases. Our results indicate that tumor immunogenicity and the tumor-induced immunosuppressive environment are critical factors to the success of CpG therapy in the lung, and point to the value of routine sampling of the lung immune environment in defining an optimal immunotherapeutic strategy. PMID:23319306

  11. Massive parallel DNA pyrosequencing analysis of the tumor suppressor BRG1/SMARCA4 in lung primary tumors.

    PubMed

    Rodriguez-Nieto, Salvador; Cañada, Andres; Pros, Eva; Pinto, Ana I; Torres-Lanzas, Juan; Lopez-Rios, Fernando; Sanchez-Verde, Lydia; Pisano, David G; Sanchez-Cespedes, Montse

    2011-02-01

    The tumor suppressor gene, SMARCA4 (or BRG1), which encodes the ATPase component of the chromatin remodeling complex SWI/SNF, is commonly inactivated by mutations and deletions in lung cancer cell lines. However, SMARCA4 alterations appear to be rare in lung primary tumors. Ultra-deep sequencing technologies provide a promising alternative to achieve a sensitivity superior to that of current sequencing strategies. Here we used ultra-deep pyrosequencing to screen for mutations over the entire SMARCA4 coding region in 12 lung tumors without detectable BRG1 protein. While automatic-fluorescence-based sequencing detected one somatic mutation (p.K586X), the pyrosequencing revealed additional variants, thus increasing the sensitivity. One of the variants, which affected a consensus splice site, was confirmed by individual cloning of PCR products, ruling out the possibility of PCR or pyrosequencing artifacts. This mutation, confirmed to be somatic, was present at a frequency of ten percent, suggesting normal cell contamination in the tumor. Our analysis also allowed us to determine the sensitivity and to identify some limitations of the technology. In conclusion, in addition to cell lines, SMARCA4 is biallelically inactivated in a significant proportion of lung primary tumors, thereby constituting one of the most important genes contributing to the development of this type of cancer. PMID:21280140

  12. Genistein mediates the selective radiosensitizing effect in NSCLC A549 cells via inhibiting methylation of the keap1 gene promoter region

    PubMed Central

    Liu, Xiongxiong; Sun, Chao; Liu, Bingtao; Jin, Xiaodong; Li, Ping; Zheng, Xiaogang; Zhao, Ting; Li, Feifei; Li, Qiang

    2016-01-01

    Non-small cell lung cancer (NSCLC) cells often possess a hypermethylated Keap1 promoter, which decreases Keap1 mRNA and protein expression levels, thus impairing the Nrf2-Keap1 pathway and thereby leading to chemo- or radio-resistance. In this study, we showed that genistein selectively exhibited a radiosensitizing effect on NSCLC A549 cells but not on normal lung fibroblast MRC-5 cells. Genistein caused oxidative stress in A549 cells rather than MRC-5 cells, as determined by the oxidation of the ROS-sensitive probe DCFH-DA and oxidative damage marked by MDA, PCO or 8-OHdG content. In A549 instead of MRC-5 cells, genistein reduced the level of methylation in the Keap1 promoter region, leading to an increased mRNA expression, thus effectively inhibited the transcription of Nrf2 to the nucleus, which suppressed the Nrf2-dependent antioxidant and resulted in the upregulation of ROS. Importantly, when combined with radiation, genistein further increased the ROS levels in A549 cells whereas decreasing the radiation-induced oxidative stress in MRC-5 cells, possibly via increasing the expression levels of Nrf2, GSH and HO-1. Moreover, radiation combined with genistein significantly increased cell apoptosis in A549 but not MRC-5 cells. Together, the results herein show that the intrinsic difference in the redox status of A549 and MRC-5 cells could be the target for genistein to selectively sensitize A549 cells to radiation, thereby leading to an increase in radiosensitivity for A549 cells. PMID:27029077

  13. Burkholderia pseudomallei Biofilm Promotes Adhesion, Internalization and Stimulates Proinflammatory Cytokines in Human Epithelial A549 Cells.

    PubMed

    Kunyanee, Chanikarn; Kamjumphol, Watcharaporn; Taweechaisupapong, Suwimol; Kanthawong, Sakawrat; Wongwajana, Suwin; Wongratanacheewin, Surasak; Hahnvajanawong, Chariya; Chareonsudjai, Sorujsiri

    2016-01-01

    Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis. Inhalational exposure leading to pulmonary melioidosis is the most common clinical manifestation with significant mortality. However, the role of B. pseudomallei biofilm phenotype during bacterial-host interaction remains unclear. We hypothesize that biofilm phenotype may play a role in such interactions. In this study, B. pseudomallei H777 (biofilm wild type), B. pseudomallei M10 (biofilm mutant) and B. pseudomallei C17 (biofilm-complemented) strains were used to assess the contribution of biofilm to adhesion to human lung epithelial cells (A549), intracellular interactions, apoptosis/necrosis and impact on proinflammatory responses. Confocal laser scanning microscopy demonstrated that B. pseudomallei H777 and C17 produced biofilm, whereas M10 did not. To determine the role of biofilm in host interaction, we assessed the ability of each of the three strains to interact with the A549 cells at MOI 10. Strain H777 exhibited higher levels of attachment and invasion compared to strain M10 (p < 0.05). In addition, the biofilm-complemented strain, C17 exhibited restored bacterial invasion ability. Flow cytometry combined with a double-staining assay using annexin V and propidium iodide revealed significantly higher numbers of early apoptotic and late apoptotic A549 cells when these were infected with strain H777 (1.52%) and C17 (1.43%) compared to strain M10 (0.85%) (p < 0.05). Strains H777 and C17 were able to stimulate significant secretion of IL-6 and IL-8 compared with the biofilm mutant (p < 0.05). Together, these findings demonstrated the role of biofilm-associated phenotypes of B. pseudomallei in cellular pathogenesis of human lung epithelial cells with respect to initial attachment and invasion, apoptosis and proinflammatory responses. PMID:27529172

  14. Burkholderia pseudomallei Biofilm Promotes Adhesion, Internalization and Stimulates Proinflammatory Cytokines in Human Epithelial A549 Cells

    PubMed Central

    Kunyanee, Chanikarn; Kamjumphol, Watcharaporn; Taweechaisupapong, Suwimol; Kanthawong, Sakawrat; Wongwajana, Suwin; Wongratanacheewin, Surasak; Hahnvajanawong, Chariya

    2016-01-01

    Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis. Inhalational exposure leading to pulmonary melioidosis is the most common clinical manifestation with significant mortality. However, the role of B. pseudomallei biofilm phenotype during bacterial-host interaction remains unclear. We hypothesize that biofilm phenotype may play a role in such interactions. In this study, B. pseudomallei H777 (biofilm wild type), B. pseudomallei M10 (biofilm mutant) and B. pseudomallei C17 (biofilm-complemented) strains were used to assess the contribution of biofilm to adhesion to human lung epithelial cells (A549), intracellular interactions, apoptosis/necrosis and impact on proinflammatory responses. Confocal laser scanning microscopy demonstrated that B. pseudomallei H777 and C17 produced biofilm, whereas M10 did not. To determine the role of biofilm in host interaction, we assessed the ability of each of the three strains to interact with the A549 cells at MOI 10. Strain H777 exhibited higher levels of attachment and invasion compared to strain M10 (p < 0.05). In addition, the biofilm-complemented strain, C17 exhibited restored bacterial invasion ability. Flow cytometry combined with a double-staining assay using annexin V and propidium iodide revealed significantly higher numbers of early apoptotic and late apoptotic A549 cells when these were infected with strain H777 (1.52%) and C17 (1.43%) compared to strain M10 (0.85%) (p < 0.05). Strains H777 and C17 were able to stimulate significant secretion of IL-6 and IL-8 compared with the biofilm mutant (p < 0.05). Together, these findings demonstrated the role of biofilm-associated phenotypes of B. pseudomallei in cellular pathogenesis of human lung epithelial cells with respect to initial attachment and invasion, apoptosis and proinflammatory responses. PMID:27529172

  15. Circulating Tumor Cells as an Indicator of Postoperative Lung Cancer: A Case Report.

    PubMed

    Kuwata, Taiji; Yoneda, Kazue; Kobayashi, Kenichi; Oyama, Rintarou; Matumiya, Hiroki; Shinohara, Shuichi; Takenaka, Masaru; Oka, Soichi; Chikaishi, Yasuhiro; Inanishi, Naoko; Kuroda, Koji; Tanaka, Fumihiro

    2016-01-01

    BACKGROUND Circulating tumor cells (CTCs) are tumor cells that are shed from primary tumors and circulate in the peripheral blood. CTCs, as a surrogate of micro-metastasis, can be a useful clinical marker, but their clinical significance remains unclear in lung cancer. We now report a case of lung cancer in which the count of CTCs was useful in monitoring postoperative recurrence. CASE REPORT A 50-year-old man had undergone right upper lobectomy for lung cancer (pT1bN2M0, stage IIIA adenocarcinoma), followed by cisplatin-based adjuvant chemotherapy. After the patient's operation, we initiated monitoring of CTCs using CellSearch, and documented the change in the CTC count along with the development of cancer recurrence and response or progression to chemotherapy given for recurrent disease. CONCLUSIONS The CTC count may be useful in monitoring blood of patients with lung cancer. PMID:27629545

  16. Butylated hydroxyanisole and lung tumor development in A/J mice

    SciTech Connect

    Witschi, H.R.; Doherty, D.G.

    1984-01-01

    A diet containing 0.75% butylated hydroxyanisole (BHA) did not enhance the development of lung tumors in A/J mice if fed for 8 weeks after administration of urethane, benzo(a)pyrene (B(a)P), or dimethylnitrosamine (DMN). Prefeeding animals with BHA partially protected animals against the tumorigenic effect of urethane and B(a)P. Partial protection was also seen in animals given B(a)P and then exposed to BHA in the diet. The two isomers of BHA 3-tert.-butyl-4-hydroxyanisole and 2-tert.-butyl-4-hydroxyanisole) were synthesized and injected ip. They failed to enhance lung tumor development. It is concluded that BHA is not a promoting agent as is butylated hydroxytoluene (BHT) for lung tumors in mice. One possible explanation is that BHA in the diet does not produce the extensive cell proliferation seen in the lungs of mice fed BHT. 19 references, 5 tables.

  17. Conditions for NIR fluorescence-guided tumor resectioning in preclinical lung cancer model (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Minji; Quan, Yuhua; Choi, Byeong Hyun; Choi, Yeonho; Kim, Hyun Koo; Kim, Beop-Min

    2016-03-01

    Pulmonary nodule could be identified by intraoperative fluorescence imaging system from systemic injection of indocyanine green (ICG) which achieves enhanced permeability and retention (EPR) effects. This study was performed to evaluate optimal injection time of ICG for detecting cancer during surgery in rabbit lung cancer model. VX2 carcinoma cell was injected in rabbit lung under fluoroscopic computed tomography-guidance. Solitary lung cancer was confirmed on positron emitting tomography with CT (PET/CT) 2 weeks after inoculation. ICG was administered intravenously and fluorescent intensity of lung tumor was measured using the custom-built intraoperative color and fluorescence merged imaging system (ICFIS) for 15 hours. Solitary lung cancer was resected through thoracoscopic version of ICFIS. ICG was observed in all animals. Because Lung has fast blood pulmonary circulation, Fluorescent signal showed maximum intensity earlier than previous studies in other organs. Fluorescent intensity showed maximum intensity within 6-9 hours in rabbit lung cancer. Overall, Fluorescent intensity decreased with increasing time, however, all tumors were detectable using fluorescent images until 12 hours. In conclusion, while there had been studies in other organs showed that optimal injection time was at least 24 hours before operation, this study showed shorter optimal injection time at lung cancer. Since fluorescent signal showed the maximum intensity within 6-9 hours, cancer resection could be performed during this time. This data informed us that optimal injection time of ICG should be evaluated in each different solid organ tumor for fluorescent image guided surgery.

  18. SU-E-J-185: Gated CBCT Imaging for Positioning Moving Lung Tumor in Lung SBRT Treatment

    SciTech Connect

    Li, X; Li, T; Zhang, Y; Burton, S; Karlovits, B; Clump, D; Heron, D; Huq, M

    2014-06-01

    Purpose: Lung stereo-tactic body radiotherapy(SBRT) treatment requires high accuracy of lung tumor positioning during treatment, which is usually accomplished by free breathing Cone-Beam computerized tomography (CBCT) scan. However, respiratory motion induced image artifacts in free breathing CBCT may degrade such positioning accuracy. The purpose of this study is to investigate the feasibility of gated CBCT imaging for lung SBRT treatment. Methods: Six Lung SBRT patients were selected for this study. The respiratory motion of the tumors ranged from 1.2cm to 3.5cm, and the gating windows for all patients were set between 35% and 65% of the respiratory phases. Each Lung SBRT patient underwent free-breathing CBCT scan using half-fan scan technique. The acquired projection images were transferred out for off-line analyses. An In-house semi-automatic algorithm was developed to trace the diaphragm movement from those projection images to acquire a patient's specific respiratory motion curve, which was used to correlate respiratory phases with each projection image. Afterwards, a filtered back-projection algorithm was utilized to reconstruct the gated CBCT images based on the projection images only within the gating window. Results: Target volumes determined by free breathing CBCT images were 71.9%±72% bigger than the volume shown in gated CBCT image. On the contrary, the target volume differences between gated CBCT and planning CT images at exhale stage were 5.8%±2.4%. The center to center distance of the targets shown in free breathing CBCT and gated CBCT images were 9.2±8.1mm. For one particular case, the superior boundary of the target was shifted 15mm between free breathing CBCT and gated CBCT. Conclusion: Gated CBCT imaging provides better representation of the moving lung tumor with less motion artifacts, and has the potential to improve the positioning accuracy in lung SBRT treatment.

  19. Cabazitaxel-induced autophagy via the PI3K/Akt/mTOR pathway contributes to A549 cell death.

    PubMed

    Huo, Ruichao; Wang, Lili; Liu, Peijuan; Zhao, Yong; Zhang, Caiqin; Bai, Bing; Liu, Xueying; Shi, Changhong; Wei, Sanhua; Zhang, Hai

    2016-10-01

    Cabazitaxel has been used to treat castration-resistant prostate cancer since its approval by the US Food and Drug Administration in 2010. However, whether cabazitaxel may inhibit the proliferation of other tissue‑derived cancer cells, and its underlying mechanism, remains unknown. In the present study, the A549 lung adenocarcinoma cancer cell line was exposed to cabazitaxel, in order to investigate its cytotoxic effect and determine the underlying mechanism. The results demonstrated that cabazitaxel was able to induce autophagy in A549 cells, as evidenced by the formation of autophagosomes, upregulated LC3‑II expression and increased LC3 puncta. Cabazitaxel‑induced autophagy had a cytotoxic effect on A549 cells, as evidenced by the induction of cell death and cell cycle arrest at G2/M phase, which was independent of the apoptotic pathway. Furthermore, transfection with Beclin1 small interfering RNA and treatment with the autophagy inhibitor 3‑methyladenine protected cells from cabazitaxel‑induced cell death, thus confirming that cabazitaxel‑induced autophagy contributed to A549 cell death. In addition, cabazitaxel targeted the phosphoinositide 3‑kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway to induce autophagy, as indicated by reduced phosphorylation of Akt and mTOR. In conclusion, the present study demonstrated that cabazitaxel exerts a cytotoxic effect on A549 cells by acting on the PI3K/Akt/mTOR pathway to promote autophagic cell death. This result supports the potential use of cabazitaxel as a chemotherapeutic agent for the treatment of lung cancer.

  20. Cabazitaxel-induced autophagy via the PI3K/Akt/mTOR pathway contributes to A549 cell death

    PubMed Central

    Huo, Ruichao; Wang, Lili; Liu, Peijuan; Zhao, Yong; Zhang, Caiqin; Bai, Bing; Liu, Xueying; Shi, Changhong; Wei, Sanhua; Zhang, Hai

    2016-01-01

    Cabazitaxel has been used to treat castration-resistant prostate cancer since its approval by the US Food and Drug Administration in 2010. However, whether cabazitaxel may inhibit the proliferation of other tissue-derived cancer cells, and its underlying mechanism, remains unknown. In the present study, the A549 lung adenocarcinoma cancer cell line was exposed to cabazitaxel, in order to investigate its cytotoxic effect and determine the underlying mechanism. The results demonstrated that cabazitaxel was able to induce autophagy in A549 cells, as evidenced by the formation of autophagosomes, upregulated LC3-II expression and increased LC3 puncta. Cabazitaxel-induced autophagy had a cytotoxic effect on A549 cells, as evidenced by the induction of cell death and cell cycle arrest at G2/M phase, which was independent of the apoptotic pathway. Furthermore, transfection with Beclin1 small interfering RNA and treatment with the autophagy inhibitor 3-methyladenine protected cells from cabazitaxel-induced cell death, thus confirming that cabazitaxel-induced autophagy contributed to A549 cell death. In addition, cabazitaxel targeted the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway to induce autophagy, as indicated by reduced phosphorylation of Akt and mTOR. In conclusion, the present study demonstrated that cabazitaxel exerts a cytotoxic effect on A549 cells by acting on the PI3K/Akt/mTOR pathway to promote autophagic cell death. This result supports the potential use of cabazitaxel as a chemotherapeutic agent for the treatment of lung cancer. PMID:27572899

  1. Loss of lysophosphatidic acid receptor-3 enhances cell migration in rat lung tumor cells

    SciTech Connect

    Hayashi, Mai; Okabe, Kyoko; Yamawaki, Yasuna; Teranishi, Miki; Honoki, Kanya; Mori, Toshio; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2011-02-18

    Research highlights: {yields} Loss of the Lpar3 expression due to aberrant DNA methylation occurred in rat lung tumor cells. {yields} The Lpar3 inhibited cell migration of rat lung tumor cells. {yields} The Lpar3 may act as a negative regulator of rat lung tumor cells. -- Abstract: Lysophosphatidic acid (LPA) indicates several biological effects, such as cell proliferation, differentiation and migration. LPA interacts with G protein-coupled transmembrane LPA receptors. In our previous report, we detected that loss of the LPA receptor-1 (Lpar1) expression is due to its aberrant DNA methylation in rat tumor cell lines. In this study, to assess an involvement of the other LPA receptor, Lpar3, in the pathogenesis of rat lung tumor cells, we measured the expression levels of the Lpar3 gene and its DNA methylation status by reverse transcription (RT)-polymerase chain reaction (PCR) and bisulfite sequencing analyses, respectively. RLCNR lung adenocarcinoma cells showed reduced expression of the Lpar3, compared with normal lung tissues. In the 5' upstream region of the Lpar3, normal lung tissues were unmethylated. By contrast, RLCNR cells were highly methylated, correlating with reduced expressions of the Lpar3. Based on these results, we generated the Lpar3-expressing RLCNR-a3 cells and measured the cell migration ability. Interestingly, the cell migration of RLCNR-a3 cells was significantly lower than that of RLCNR cells. This study suggests that loss of the Lpar3 due to aberrant DNA methylation may be involved in the progression of rat lung tumor cells.

  2. 15-Hydroxyprostaglandin Dehydrogenase (15-PGDH) and Lung Cancer

    PubMed Central

    Tai, Hsin-Hsiung; Tong, Min; Ding, Yunfei

    2007-01-01

    15-Hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes NAD+-linked oxidation of 15 (S)-hydroxyl group of prostaglandins and lipoxins and is the key enzyme responsible for the biological inactivation of these eicosanoids. The enzyme was found to be under-expressed as opposed to cyclooxygenase-2 (COX-2) being over-expressed in lung and other tumors. A549 human lung adenocarcinoma cells were used as a model system to study the role of 15-PGDH in lung tumorigenesis. Up-regulation of COX-2 expression by pro-inflammatory cytokines in A549 cells was accompanied by a down-regulation of 15-PGDH expression. Over-expression of COX-2 but not COX-1 by adenoviral-mediated approach also attenuated 15-PGDH expression. Similarly, over-expression of 15-PGDH by the same strategy inhibited IL-1β-induced COX-2 expression. It appears that the expression of COX-2 and 15-PGDH is regulated reciprocally. Adenoviral-mediated transient over-expression of 15-PGDH in A549 cells resulted in apoptosis. Xenograft studies in nude mice also showed tumor suppression with cells transiently over-expressing 15-PGDH. However, cells stably over-expressing 15-PGDH generated tumors faster than those control cells. Examination of different clones of A549 cells stably expressing different levels of 15-PGDH indicated that the levels of 15-PGDH expression correlated positively with those of mesenchymal markers, and negatively with those of epithelial markers. It appears that the stable expression of 15-PGDH induces epithelial-mesenchymal transition (EMT) which may account for the tumor promotion in xenograft studies. A number of anti-cancer agents, such as transforming growth factor-β1 (TGF-β1), glucocorticoids and some histone deacetylase inhibitors were found to induce 15-PGDH expression. These results suggest that tumor suppressive action of these agents may, in part, be related to their ability to induce 15-PGDH expression. PMID:17481556

  3. Gastrin-releasing peptide, a mammalian analog of bombesin, is present in human neuroendocrine lung tumors.

    PubMed Central

    Bostwick, D. G.; Roth, K. A.; Evans, C. J.; Barchas, J. D.; Bensch, K. G.

    1984-01-01

    Several reports have indicated that the amphibian peptide bombesin is present in oat-cell carcinoma of the human lung. The recent observation that gastrin-releasing peptide (GRP), a 27-amino acid peptide isolated from porcine intestine, may be the mammalian analog of bombesin led the authors to look for this peptide in human pulmonary tumors. Examination of 36 human lung tumors (8 carcinoids, 8 oat-cell carcinomas, and 20 non-oat-cell carcinomas) by immunohistochemistry and radioimmunoassay demonstrated the presence of high, although variable, levels of GRP in neuroendocrine tumors, and not in other histologic types. These findings indicate that bombesin immunoreactivity in human lung tumors should be attributed to GRP or GRP-like molecules and that GRP may be a useful marker of neuroendocrine differentiation. Images Figure 1 PMID:6093543

  4. Triptolide inhibits COX-2 expression by regulating mRNA stability in TNF-{alpha}-treated A549 cells

    SciTech Connect

    Sun, Lixin; Zhang, Shuang; Jiang, Zhenzhou; Huang, Xin; Wang, Tao; Huang, Xiao; Li, Han; Zhang, Luyong

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Triptolide inhibited COX-2 expression and the half-life of COX-2 mRNA is decreased. Black-Right-Pointing-Pointer The HuR protein shuttling from nucleus to cytoplasm is inhibited by triptolide. Black-Right-Pointing-Pointer Triptolide inhibited 3 Prime -UTR fluorescence reporter gene activity. Black-Right-Pointing-Pointer COX-2 mRNA binding to HuR is decreased by triptolide in pull-down experiments. -- Abstract: Cyclooxygenase-2 (COX-2) over-expression is frequently associated with human non-small-cell lung cancer (NSCLC) and involved in tumor proliferation, invasion, angiogenesis and resistance to apoptosis. In the present study, the effects of triptolide on COX-2 expression in A549 cells were investigated and triptolide was found to inhibit TNF-{alpha}-induced COX-2 expression. In our further studies, it was found that triptolide decreased the half-life of COX-2 mRNA dramatically and that it inhibited 3 Prime -untranslated region (3 Prime -UTR) fluorescence reporter gene activity. Meanwhile, triptolide inhibited the HuR shuttling from nucleus to cytoplasm. After triptolide treatment, decreased COX-2 mRNA in pull-down experiments with anti-HuR antibodies was observed, indicating that the decreased cytoplasmic HuR is responsible for the decreased COX-2 mRNA. Taken together, our results provided evidence for the first time that triptolide inhibited COX-2 expression by COX-2 mRNA stability modulation and post-transcriptional regulation. These results provide a novel mechanism of action for triptolide which may be important in the treatment of lung cancer.

  5. Toward in vivo lung's tissue incompressibility characterization for tumor motion modeling in radiation therapy

    SciTech Connect

    Shirzadi, Zahra; Sadeghi-Naini, Ali; Samani, Abbas

    2013-05-15

    Purpose: A novel technique is proposed to characterize lung tissue incompressibility variation during respiration. Estimating lung tissue incompressibility parameter variations resulting from air content variation throughout respiration is critical for computer assisted tumor motion tracking. Continuous tumor motion is a major challenge in lung cancer radiotherapy, especially with external beam radiotherapy. If not accounted for, this motion may lead to areas of radiation overdosage for normal tissue. Given the unavailability of imaging modality that can be used effectively for real-time lung tumor tracking, computer assisted approach based on tissue deformation estimation can be a good alternative. This approach involves lung biomechanical model where its fidelity depends on input tissue properties. This investigation shows that considering variable tissue incompressibility parameter is very important for predicting tumor motion accurately, hence improving the lung radiotherapy outcome. Methods: First, an in silico lung phantom study was conducted to demonstrate the importance of employing variable Poisson's ratio for tumor motion predication. After it was established that modeling this variability is critical for accurate tumor motion prediction, an optimization based technique was developed to estimate lung tissue Poisson's ratio as a function of respiration cycle time. In this technique, the Poisson's ratio and lung pressure value were varied systematically until optimal values were obtained, leading to maximum similarity between acquired and simulated 4D CT lung images. This technique was applied in an ex vivo porcine lung study where simulated images were constructed using the end exhale CT image and deformation fields obtained from the lung's FE modeling of each respiration time increment. To model the tissue, linear elastic and Marlow hyperelastic material models in conjunction with variable Poisson's ratio were used. Results: The phantom study showed that

  6. BRD7 Acts as a Tumor Suppressor Gene in Lung Adenocarcinoma.

    PubMed

    Gao, Yushun; Wang, Bing; Gao, Shugeng

    2016-01-01

    Lung cancer is one of the most malignant tumors and the leading cause of cancer-related deaths worldwide. Among lung cancers, 40% are diagnosed as adenocarcinoma. Bromodomain containing 7 (BRD7) is a member of bromodomain-containing protein family. It was proved to be downregulated in various cancers. However, the role of BRD7 in lung adenocarcinoma is still unknown. Western blot and qRT-PCR was performed to measure the BRD7 expression in lung adenocarcinoma tissues and cells. CCK8 and migration assay was done to detect the functional role of BRD7 in lung adenocarcinoma. In this study, we showed that the expression of BRD7 was downregulated in lung adenocarcinoma tissues and cells. The lower of BRD7 levels in patients with lung adenocarcinoma was associated with shortened disease-free survival. Furthermore, overexpression of BRD7 inhibited lung adenocarcinoma cell proliferation and migration. Inhibition of BRD7 expression promoted cell proliferation and migration by activating ERK phosphorylation. Overexpression of BRD7 inhibited cyclin D and myc expression. Our findings are consistent with a tumor suppressor role for BRD7 in lung adenocarcinoma tumorigenesis. PMID:27580131

  7. BRD7 Acts as a Tumor Suppressor Gene in Lung Adenocarcinoma

    PubMed Central

    Gao, Yushun; Wang, Bing; Gao, Shugeng

    2016-01-01

    Lung cancer is one of the most malignant tumors and the leading cause of cancer-related deaths worldwide. Among lung cancers, 40% are diagnosed as adenocarcinoma. Bromodomain containing 7 (BRD7) is a member of bromodomain-containing protein family. It was proved to be downregulated in various cancers. However, the role of BRD7 in lung adenocarcinoma is still unknown. Western blot and qRT-PCR was performed to measure the BRD7 expression in lung adenocarcinoma tissues and cells. CCK8 and migration assay was done to detect the functional role of BRD7 in lung adenocarcinoma. In this study, we showed that the expression of BRD7 was downregulated in lung adenocarcinoma tissues and cells. The lower of BRD7 levels in patients with lung adenocarcinoma was associated with shortened disease-free survival. Furthermore, overexpression of BRD7 inhibited lung adenocarcinoma cell proliferation and migration. Inhibition of BRD7 expression promoted cell proliferation and migration by activating ERK phosphorylation. Overexpression of BRD7 inhibited cyclin D and myc expression. Our findings are consistent with a tumor suppressor role for BRD7 in lung adenocarcinoma tumorigenesis. PMID:27580131

  8. Metformin inhibits growth of lung adenocarcinoma cells by inducing apoptosis via the mitochondria-mediated pathway

    PubMed Central

    WANG, JUNLING; GAO, QIULING; WANG, DECUI; WANG, ZHIQIANG; HU, CHUN

    2015-01-01

    Metformin is commonly used to treat type II diabetes, although it may also reduce the risk of cancer and improve the associated prognosis. However, its mode of action in cancer remains unclear. The present study evaluated the effects of metformin on lung adenocarcinoma A549 cells and identified molecular mechanisms of metformin activity. The A549 cells were treated with metformin at different concentrations and cell viability was assayed by using an MTT assay. The cell cycle and the apoptosis rate were assayed by flow cytometry. Nude mice were transplanted with A549 cells and the tumor growth inhibition rate was detected. Once the A549 cells had been treated with 20 mM metformin for 48 h, the cell cycle was arrested in the G0/Gl phase and the apoptosis rate was 20.57±3.16%. The expression of the B-cell lymphoma (Bcl)-2 and Bcl-extra large proteins was downregulated following metformin treatment, while Bax protein expression was significantly increased. Tumor size in the high-dose metformin and cisplatin plus metformin groups was significantly smaller, and the inhibition rates were 41.3 and 72.9%, respectively, compared with the control group. These results indicated that metformin displays anticancer activity against lung adenocarcinoma by causing G1 arrest of the cell cycle and subsequent cell apoptosis through the mitochondria-dependent pathway in A549 cells. Furthermore, it was found that metformin dramatically inhibited lung adenocarcinoma tumor growth in vivo. These data suggest that metformin may become a potential cytotoxic drug in the prevention and treatment of lung adenocarcinoma. PMID:26622674

  9. Automated tumor analysis for molecular profiling in lung cancer.

    PubMed

    Hamilton, Peter W; Wang, Yinhai; Boyd, Clinton; James, Jacqueline A; Loughrey, Maurice B; Hougton, Joseph P; Boyle, David P; Kelly, Paul; Maxwell, Perry; McCleary, David; Diamond, James; McArt, Darragh G; Tunstall, Jonathon; Bankhead, Peter; Salto-Tellez, Manuel

    2015-09-29

    The discovery and clinical application of molecular biomarkers in solid tumors, increasingly relies on nucleic acid extraction from FFPE tissue sections and subsequent molecular profiling. This in turn requires the pathological review of haematoxylin & eosin (H&E) stained slides, to ensure sample quality, tumor DNA sufficiency by visually estimating the percentage tumor nuclei and tumor annotation for manual macrodissection. In this study on NSCLC, we demonstrate considerable variation in tumor nuclei percentage between pathologists, potentially undermining the precision of NSCLC molecular evaluation and emphasising the need for quantitative tumor evaluation. We subsequently describe the development and validation of a system called TissueMark for automated tumor annotation and percentage tumor nuclei measurement in NSCLC using computerized image analysis. Evaluation of 245 NSCLC slides showed precise automated tumor annotation of cases using Tissuemark, strong concordance with manually drawn boundaries and identical EGFR mutational status, following manual macrodissection from the image analysis generated tumor boundaries. Automated analysis of cell counts for % tumor measurements by Tissuemark showed reduced variability and significant correlation (p < 0.001) with benchmark tumor cell counts. This study demonstrates a robust image analysis technology that can facilitate the automated quantitative analysis of tissue samples for molecular profiling in discovery and diagnostics.

  10. Automated tumor analysis for molecular profiling in lung cancer

    PubMed Central

    Boyd, Clinton; James, Jacqueline A.; Loughrey, Maurice B.; Hougton, Joseph P.; Boyle, David P.; Kelly, Paul; Maxwell, Perry; McCleary, David; Diamond, James; McArt, Darragh G.; Tunstall, Jonathon; Bankhead, Peter; Salto-Tellez, Manuel

    2015-01-01

    The discovery and clinical application of molecular biomarkers in solid tumors, increasingly relies on nucleic acid extraction from FFPE tissue sections and subsequent molecular profiling. This in turn requires the pathological review of haematoxylin & eosin (H&E) stained slides, to ensure sample quality, tumor DNA sufficiency by visually estimating the percentage tumor nuclei and tumor annotation for manual macrodissection. In this study on NSCLC, we demonstrate considerable variation in tumor nuclei percentage between pathologists, potentially undermining the precision of NSCLC molecular evaluation and emphasising the need for quantitative tumor evaluation. We subsequently describe the development and validation of a system called TissueMark for automated tumor annotation and percentage tumor nuclei measurement in NSCLC using computerized image analysis. Evaluation of 245 NSCLC slides showed precise automated tumor annotation of cases using Tissuemark, strong concordance with manually drawn boundaries and identical EGFR mutational status, following manual macrodissection from the image analysis generated tumor boundaries. Automated analysis of cell counts for % tumor measurements by Tissuemark showed reduced variability and significant correlation (p < 0.001) with benchmark tumor cell counts. This study demonstrates a robust image analysis technology that can facilitate the automated quantitative analysis of tissue samples for molecular profiling in discovery and diagnostics. PMID:26317646

  11. Differential Transcriptomic Analysis of Spontaneous Lung Tumors in B6C3F1 Mice: Comparison to Human Non–Small Cell Lung Cancer

    PubMed Central

    Pandiri, Arun R.; Sills, Robert C.; Ziglioli, Vincent; Ton, Thai-Vu T.; Hong, Hue–Hua L.; Lahousse, Stephanie A.; Gerrish, Kevin E.; Auerbach, Scott S.; Shockley, Keith R.; Bushel, Pierre R.; Peddada, Shyamal D.; Hoenerhoff, Mark J.

    2016-01-01

    Lung cancer is the leading cause of cancer-related death in people and is mainly due to environmental factors such as smoking and radon. The National Toxicology Program (NTP) tests various chemicals and mixtures for their carcinogenic hazard potential. In the NTP chronic bioassay using B6C3F1 mice, the incidence of lung tumors in treated and control animals is second only to the liver tumors. In order to study the molecular mechanisms of chemically induced lung tumors, an understanding of the genetic changes that occur in spontaneous lung (SL) tumors from untreated control animals is needed. The authors have evaluated the differential transcriptomic changes within SL tumors compared to normal lungs from untreated age-matched animals. Within SL tumors, several canonical pathways associated with cancer (eukaryotic initiation factor 2 signaling, RhoA signaling, PTEN signaling, and mammalian target of rapamycin signaling), metabolism (Inositol phosphate metabolism, mitochondrial dysfunction, and purine and pyramidine metabolism), and immune responses (FcγR-mediated phagocytosis, clathrin-mediated endocytosis, interleukin 8 signaling, and CXCR4 signaling) were altered. Meta-analysis of murine SL tumors and human non–small cell lung cancer transcriptomic data sets revealed a high concordance. These data provide important information on the differential transcriptomic changes in murine SL tumors that will be critical to our understanding of chemically induced lung tumors and will aid in hazard analysis in the NTP 2-year carcinogenicity bioassays. PMID:22688403

  12. The synergistic effect of resveratrol in combination with cisplatin on apoptosis via modulating autophagy in A549 cells.

    PubMed

    Hu, Song; Li, Xiaolin; Xu, Rongrong; Ye, Lingyun; Kong, Hui; Zeng, Xiaoning; Wang, Hong; Xie, Weiping

    2016-06-01

    Several studies have shown that combination treatment with natural products and chemotherapy agents can improve the sensitivity and cytotoxicity of chemotherapy agents. Resveratrol, a natural product, has many biological effects including antitumor and antiviral activities, as well as vascular protective effect. The aim of this study is to investigate the synergistic anticancer effect of resveratrol in combination with cisplatin and the potential anticancer mechanisms involved in A549 cells. The results obtained from Cell Counting Kit-8 and isobolographic analysis demonstrated that combination of resveratrol and cisplatin resulted in synergistic cytotoxic effects in A549 cells. Results from Hoechst staining, flow cytometry and western blot analysis suggested that resveratrol enhanced cisplatin-mediated apoptosis. Meanwhile, the changes of LC3-II and P62 levels and formation of autophagosome suggested that resveratrol in combination with cisplatin triggered autophagy. More importantly, inhibiting autophagy by 3-methyladenine markedly attenuated the apoptosis caused by combination of resveratrol and cisplatin in A549 cells. Taken together, our study provides the first evidence that resveratrol combined with cisplatin synergistically induce apoptosis via modulating autophagic cell death in A549 cells. These findings also help us to understand the role of natural products in combination with chemotherapy agents in lung cancer.

  13. Transposon Mutagenesis Screen Identifies Potential Lung Cancer Drivers and CUL3 as a Tumor Suppressor

    PubMed Central

    Dorr, Casey; Janik, Callie; Weg, Madison; Been, Raha A.; Bader, Justin; Kang, Ryan; Ng, Brandon; Foran, Lindsey; Landman, Sean R.; O’Sullivan, M. Gerard; Steinbach, Michael; Sarver, Aaron L.; Silverstein, Kevin A. T.; Largaespada, David A.

    2015-01-01

    Non-small cell lung cancers (NSCLCs) harbor thousands of passenger events that hide genetic drivers. Even highly recurrent events in NSCLC, such as mutations in PTEN, EGFR, KRAS, and ALK, are only detected in, at most, 30% of patients. Thus, many unidentified low-penetrant events are causing a significant portion of lung cancers. To detect low-penetrance drivers of NSCLC a forward genetic screen was performed in mice using the Sleeping Beauty (SB) DNA transposon as a random mutagen to generate lung tumors in a Pten deficient background. SB mutations coupled with Pten deficiency were sufficient to produce lung tumors in 29% of mice. Pten deficiency alone, without SB mutations, resulted in lung tumors in 11% of mice, while the rate in control mice was ~3%. In addition, thyroid cancer and other carcinomas as well as the presence of bronchiolar and alveolar epithelialization in mice deficient for Pten were also identified. Analysis of common transposon insertion sites identified 76 candidate cancer driver genes. These genes are frequently dysregulated in human lung cancers and implicate several signaling pathways. Cullin3 (Cul3), a member of an ubiquitin ligase complex that plays a role in the oxidative stress response pathway, was identified in the screen and evidence demonstrates that Cul3 functions as a tumor suppressor. PMID:25995385

  14. SU-E-J-267: Change in Mean CT Intensity of Lung Tumors During Radiation Treatment

    SciTech Connect

    Mahon, R; Tennyson, N; Weiss, E; Hugo, G

    2015-06-15

    Purpose: To evaluate CT intensity change of lung tumors during radiation therapy. Methods: Repeated 4D CT images were acquired on a CT simulator during the course of therapy for 27 lung cancer patients on IRB approved protocols. All subjects received definitive radiation treatment ± chemotherapy. CT scans were completed prior to treatment, and 2–7 times during the treatment course. Primary tumor was delineated by an experienced Radiation Oncologist. Contours were thresholded between −100 HU and 200 HU to remove airways and bone. Correlations between the change in the mean tumor intensity and initial tumor intensity, SUVmax, and tumor volume change rate were investigated. Reproducibility was assessed by evaluating the variation in mean intensity over all phases in 4DCT, for a subgroup of 19 subjects. Results: Reproducibility of tumor intensity between phases as characterized by the root mean square of standard deviation across 19 subjects was 1.8 HU. Subjects had a mean initial tumor intensity of 16.5 ± 11.6 HU and an overall reduction in HU by 10.3 ± 8.5 HU. Evaluation of the changes in tumor intensity during treatment showed a decrease of 0.3 ± 0.3 HU/day for all subjects, except three. No significant correlation was found between change in HU/day and initial HU intensity (p=0.53), initial PET SUVmax (p=0.69), or initial tumor volume (p=0.70). The rate of tumor volume change was weakly correlated (R{sup 2}=0.05) with HU change (p=0.01). Conclusion: Most lung cancer subjects showed a marked trend of decreasing mean tumor CT intensity throughout radiotherapy, including early in the treatment course. Change in HU/day is not correlated with other potential early predictors for response, such as SUV and tumor volume change. This Result supports future studies to evaluate change in tumor intensity on CT as an early predictor of response.

  15. Nitrilase 1 modulates lung tumor progression in vitro and in vivo

    PubMed Central

    Wang, Yong Antican; Sun, Yunguang; Le Blanc, Justin M.; Solomides, Charalambos; Zhan, Tingting; Lu, Bo

    2016-01-01

    Uncovering novel growth modulators for non-small cell lung cancer (NSCLC) may lead to new therapies for these patients. Previous studies suggest Nit1 suppresses chemically induced carcinogenesis of the foregut in a mouse model. In this study we aimed to determine the role of Nit1 in a transgenic mouse lung cancer model driven by a G12D Kras mutation. Nit1 knockout mice (Nit1−/−) were crossed with KrasG12D/+ mice to investigate whether a G12D Kras mutation and Nit1 inactivation interact to promote or inhibit the development of NSCLC. We found that lung tumorigenesis was suppressed in the Nit1-null background (Nit1−/−:KrasG12D/+). Micro-CT scans and gross tumor measurements demonstrated a 5-fold reduction in total tumor volumes compared to Nit1+/+KrasG12D/+ (p<0.01). Furthermore, we found that Nit1 is highly expressed in human lung cancer tissues and cell lines and use of siRNA against Nit1 decreased overall cell survival of lung cancer cells in culture. In addition, cisplatin response was enhanced in human lung cancer cells when Nit1 was knocked down and Nit1−/−:KrasG12D/+ tumors showed increased sensitivity to cisplatin in vivo. Together, our data indicate that Nit1 may play a supportive role in the modulation of lung tumorigenesis and represent a novel target for NSCLCs treatment. PMID:26967383

  16. CUEDC2 down-regulation is associated with tumor growth and poor prognosis in lung adenocarcinoma

    PubMed Central

    Wang, Ran; Liu, Yangli; Cai, Jinghuang; Guo, Yubiao; Zhu, Zhiwen; Xie, Canmao

    2015-01-01

    CUE domain-containing 2 (CUEDC2) is a multi-functional protein, which regulates cell cycle, growth factor signaling and inflammation. We found that CUEDC2 was low in lung adenocarcinoma cell lines and lung adenocarcinoma tissues at both mRNA and protein levels. Low levels of CUEDC2 were correlated with a shorter survival time in patients with lung adenocarcinoma (p = 0.004). CUEDC2 expression was correlated with tumor T classification (P = 0.001) at clinical stage (P = 0.001) and tumor size (P = 0.033). Multivariate analysis suggested that CUEDC2 expression is an independent prognostic indicator for patients with lung adenocarcinoma. Ectopic expression of CUEDC2 decreased cell proliferation in vitro and inhibited tumor growth in nude mice in vivo. Knockdown of endogenous CUEDC2 by short hairpin RNAs (shRNAs) increased tumor growth. Inhibition of proliferation by CUEDC2 was associated with inactivation of the PI3K/Akt pathway, induction of p21 and down-regulation of cyclin D1. Our results suggest that decreased expression of CUEDC2 contributes to tumor growth in lung adenocarcinoma, leading to a poor clinical outcome. PMID:26023733

  17. CUEDC2 down-regulation is associated with tumor growth and poor prognosis in lung adenocarcinoma.

    PubMed

    Sun, Longhua; Bai, Lihong; Lin, Gengpeng; Wang, Ran; Liu, Yangli; Cai, Jinghuang; Guo, Yubiao; Zhu, Zhiwen; Xie, Canmao

    2015-08-21

    CUE domain-containing 2 (CUEDC2) is a multi-functional protein, which regulates cell cycle, growth factor signaling and inflammation. We found that CUEDC2 was low in lung adenocarcinoma cell lines and lung adenocarcinoma tissues at both mRNA and protein levels. Low levels of CUEDC2 were correlated with a shorter survival time in patients with lung adenocarcinoma (p = 0.004). CUEDC2 expression was correlated with tumor T classification (P = 0.001) at clinical stage (P = 0.001) and tumor size (P = 0.033). Multivariate analysis suggested that CUEDC2 expression is an independent prognostic indicator for patients with lung adenocarcinoma. Ectopic expression of CUEDC2 decreased cell proliferation in vitro and inhibited tumor growth in nude mice in vivo. Knockdown of endogenous CUEDC2 by short hairpin RNAs (shRNAs) increased tumor growth. Inhibition of proliferation by CUEDC2 was associated with inactivation of the PI3K/Akt pathway, induction of p21 and down-regulation of cyclin D1. Our results suggest that decreased expression of CUEDC2 contributes to tumor growth in lung adenocarcinoma, leading to a poor clinical outcome.

  18. Monocyte to macrophage differentiation-associated (MMD) targeted by miR-140-5p regulates tumor growth in non-small cell lung cancer

    SciTech Connect

    Li, Weina; He, Fei

    2014-07-18

    Highlights: • Expression of MMD is increased in lung cancer tissues. • Knockdown of MMD inhibits growth of A549 and LLC cells in vitro and in vivo. • MMD is a direct functional target of miR-140-5p. • MiR-140-5p/MMD axis regulates Erk1/2 signaling. - Abstract: Monocyte to macrophage differentiation-associated (MMD) is identified in macrophages as a gene associated with the differentiation from monocytes to macrophages. Recent microarray analysis for non-small cell lung cancer (NSCLC) suggests that MMD is an important signature associated with relapse and survival among patients with NSCLC. Therefore, we speculate that MMD likely plays a role in lung cancer. In this study, we found that the protein level of MMD was increased in lung cancer compared to benign lung tissues, and knockdown of MMD inhibited the growth of A549 and Lewis lung cancer cells (LLC) in vitro and in vivo. Integrated analysis demonstrated that MMD was a direct functional target of miR-140-5p. Furthermore, we found that miR-140-5p/MMD axis could affect the cell proliferation of lung cancer cells by regulating Erk signaling. Together, our results highlight the significance of miR-140-5p/MMD axis in lung cancer, and miR-140-5p/MMD axis could serve as new molecular targets for the therapy against lung cancer.

  19. Blocking the NOTCH pathway can inhibit the growth of CD133-positive A549 cells and sensitize to chemotherapy

    SciTech Connect

    Liu, Juntao; Mao, Zhangfan; Huang, Jie; Xie, Songping; Liu, Tianshu; Mao, Zhifu

    2014-02-21

    Highlights: • Notch signaling pathway members are expressed lower levels in CD133+ cells. • CD133+ cells are not as sensitive as CD133− cells to chemotherapy. • GSI could inhibit the growth of both CD133+ and CD133− cells. • Blockade of Notch signaling pathway enhanced the effect of chemotherapy with CDDP. • DAPT/CDDP co-therapy caused G2/M arrest and elimination in CD133+ cells. - Abstract: Cancer stem cells (CSCs) are believed to play an important role in tumor growth and recurrence. These cells exhibit self-renewal and proliferation properties. CSCs also exhibit significant drug resistance compared with normal tumor cells. Finding new treatments that target CSCs could significantly enhance the effect of chemotherapy and improve patient survival. Notch signaling is known to regulate the development of the lungs by controlling the cell-fate determination of normal stem cells. In this study, we isolated CSCs from the human lung adenocarcinoma cell line A549. CD133 was used as a stem cell marker for fluorescence-activated cell sorting (FACS). We compared the expression of Notch signaling in both CD133+ and CD133− cells and blocked Notch signaling using the γ-secretase inhibitor DAPT (GSI-IX). The effect of combining GSI and cisplatin (CDDP) was also examined in these two types of cells. We observed that both CD133+ and CD133− cells proliferated at similar rates, but the cells exhibited distinctive differences in cell cycle progression. Few CD133+ cells were observed in the G{sub 2}/M phase, and there were half as many cells in S phase compared with the CD133− cells. Furthermore, CD133+ cells exhibited significant resistance to chemotherapy when treated with CDDP. The expression of Notch signaling pathway members, such as Notch1, Notch2 and Hes1, was lower in CD133+ cells. GSI slightly inhibited the proliferation of both cell types and exhibited little effect on the cell cycle. The inhibitory effects of DPP on these two types of cells were

  20. Automated lung tumor detection and quantification for respiratory gated PET/CT images

    NASA Astrophysics Data System (ADS)

    Wang, Jiali; del Valle, Misael; Franquiz, Juan; McGoron, Anthony

    2008-03-01

    Purpose: To develop and validate an automatic algorithm for the detection and functional assessment of lung tumors on three-dimensional respiratory gated PET/CT images. Method and Materials: First the algorithm will automatically segment lung regions in CT images, then identify and localize focal increases of activity in lung regions of PET images at each gated bin. Once the tumor voxels have been determined, an integration algorithm will include all the tumor counts collected at different bins within the respiratory cycle into one reference bin. Then the total activity (Bq), concentration (Bq/ml), functional volume (ml) and standard uptake values (SUV) are calculated for each tumor on PET images. Validation of the automatic algorithm was demonstrated by conducting experiments with the computerized 4D NCAT phantom and with a dynamic lung-chest phantom imaged using a GE PET/CT System at Baptist Hospital of Miami. Tumor variables to be controlled were: volume, total number of counts (activity), maximum and average number of counts. These values were the gold standard to which the results of the algorithm were compared. The tumor's motion was also controlled with different respiratory periods and amplitudes. Results: Validation, feasibility and robustness of the algorithm were demonstrated. With the algorithm, the best compromise between short PET scan time and reduced image noise can be achieved, while quantification and clinical analysis become faster and more precise.

  1. Lung tumors in strain A mice as a bioassay for carcinogenicity of environmental chemicals

    SciTech Connect

    Stoner, G.D. )

    1991-03-01

    This report describes the protocol for the strain A mouse lung tumor bioassay and summarizes results on selected chemicals that have been tested for carcinogenicity in the assay. The assay is of 6 months duration and can distinguish 2-fold differences in carcinogenic potential of compounds from several chemical classes. Specifically, the assay is sensitive to polycyclic hydrocarbons, nitrosamines and nitrosoureas, carbamates, aflatoxin, certain metals, hydrazines, and others, but is relatively insensitive to aromatic amines, aliphatic halides, and other compounds that are carcinogenic in the rodent liver and/or bladder. Recommendations are made for future studies on the: (1) distribution and metabolism of chemicals in strain A mouse lung tissue and in specific lung cell types; (2) ability of the lung tumor bioassay to detect inhibitors and promoters of carcinogenesis; and (3) use of the assay for testing mixtures of chemicals for carcinogenic activity.

  2. Potentiation of platinum antitumor effects in human lung tumor xenografts by the angiogenesis inhibitor squalamine: effects on tumor neovascularization.

    PubMed

    Schiller, J H; Bittner, G

    1999-12-01

    Squalamine is a novel anti-angiogenic aminosterol that is postulated to inhibit neovascularization by selectively inhibiting the sodium-hydrogen antiporter exchanger. To determine how to most effectively use this agent in patients with cancer, we examined the antitumor effects of squalamine with or without cytotoxic agents in human lung cancer xenografts and correlated these observations with the degree of tumor neovascularization. No direct cytotoxic effects of squalamine against tumor cells were observed in vitro with or without cisplatin. Squalamine was effective in inhibiting the establishment of H460 human tumors in BALBc nude mice but was ineffective in inhibiting the growth of H460, CALU-6, or NL20T-A human tumor xenografts when administered i.p. to mice bearing established tumors. However, when combined with cisplatin or carboplatin, squalamine increased tumor growth delay by > or =1.5-fold in the three human lung carcinoma cell lines compared with cisplatin or carboplatin alone. No enhancement of antitumor activity was observed when squalamine was combined with paclitaxel, vinorelbine, gemcitabine, or docetaxel. Repeated cycles of squalamine plus cisplatin administration delayed H460 tumor growth >8.6-fold. Squalamine plus cisplatin reduced CD31 vessel formation by 25% compared with controls, squalamine alone, or cisplatin alone; however, no inhibition in CD31 vessel formation was observed when squalamine was combined with vinorelbine. These data demonstrate that the combination of squalamine and a platinum analog has significant preclinical antitumor activity against human lung cancer that is related to the anti-angiogenic effects of squalamine. PMID:10632372

  3. Automated detection and delineation of lung tumors in PET-CT volumes using a lung atlas and iterative mean-SUV threshold

    NASA Astrophysics Data System (ADS)

    Ballangan, Cherry; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Feng, Dagan

    2009-02-01

    Automated segmentation for the delineation of lung tumors with PET-CT is a challenging task. In PET images, primary lung tumors can have varying degrees of tracer uptake, which sometimes does not differ markedly from normal adjacent structures such as the mediastinum, heart and liver. In addition, separation of tumor from adjacent soft tissues and bone in the chest wall is problematic due to limited resolution. For CT, the tumor soft tissue density can be similar to that in the blood vessels and the chest wall; and although CT provides better boundary definition, exact tumor delineation is also difficult when the tumor density is similar to adjacent structures. We propose an innovative automated adaptive method to delineate lung tumors in PET-CT images in conjunction with a lung atlas in which an iterative mean-SUV (Standardized Uptake Value) threshold is used to gradually define the tumor region in PET. Tumor delineation in the CT data is performed using region growing and seeds obtained autonomously from the PET tumor regions. We evaluated our approach in 13 patients with non-small cell lung cancer (NSCLC) and found it could delineate tumors of different size, shape and location, even when when the NSCLC involved the chest wall.

  4. Desmoplastic small round cell tumor of the lung: A case report and literature review.

    PubMed

    Ariza-Prota, Miguel Angel; Pando-Sandoval, Ana; Fole-Vázquez, David; Casan, Pere

    2015-01-01

    Desmoplastic small round cell tumor (DSRCT) is a rare, aggressive and malignant tumor that is characterized by nests of small tumor cells surrounded by a cellular and vascular collagenous stroma and predominantly affects young adolescent males. This tumor most commonly originates in the abdomen; however, in rare cases, DSRCT can originate in other body regions. The main manifestations of DSRCT are chest pain and respiratory symptoms, and patients' average survival after diagnosis is less than two years. In this report, we describe a case involving DSRCT of the lung that proved to be difficult to diagnose, and we conduct a literature review. PMID:26744673

  5. Enhanced tumor development by butylated hydroxytoluene (BHT) in liver, lung and gastrointestinal tract

    SciTech Connect

    Witschi, H.P.

    1986-04-03

    Continuous feeding of 0.5% or 0.05% of butylated hydroxytoluene (BHT) enhances the development of spontaneously occurring liver tumors in C3H mice, but not in BALB/c mice. In mouse lung, the tumor-enhancing effects of BHT vary with the carcinogen used and in the gastrointestinal tract of mice and rats BHT enhances development of dimethylhydrazine-induced tumors but is without effect on tumors produced by methylnitrosourea. Strain differences, effect upon various carcinogens, paradoxical dose-responses and mechanisms of action remain major questions in the toxicology of BHT. 14 refs., 2 tabs.

  6. Identification and Targeting of Long-Term Tumor-Propagating Cells in Small Cell Lung Cancer.

    PubMed

    Jahchan, Nadine S; Lim, Jing Shan; Bola, Becky; Morris, Karen; Seitz, Garrett; Tran, Kim Q; Xu, Lei; Trapani, Francesca; Morrow, Christopher J; Cristea, Sandra; Coles, Garry L; Yang, Dian; Vaka, Dedeepya; Kareta, Michael S; George, Julie; Mazur, Pawel K; Nguyen, Thuyen; Anderson, Wade C; Dylla, Scott J; Blackhall, Fiona; Peifer, Martin; Dive, Caroline; Sage, Julien

    2016-07-19

    Small cell lung cancer (SCLC) is a neuroendocrine lung cancer characterized by fast growth, early dissemination, and rapid resistance to chemotherapy. We identified a population of long-term tumor-propagating cells (TPCs) in a mouse model of SCLC. This population, marked by high levels of EpCAM and CD24, is also prevalent in human primary SCLC tumors. Murine SCLC TPCs are numerous and highly proliferative but not intrinsically chemoresistant, indicating that not all clinical features of SCLC are linked to TPCs. SCLC TPCs possess a distinct transcriptional profile compared to non-TPCs, including elevated MYC activity. Genetic and pharmacological inhibition of MYC in SCLC cells to non-TPC levels inhibits long-term propagation but not short-term growth. These studies identify a highly tumorigenic population of SCLC cells in mouse models, cell lines, and patient tumors and a means to target them in this most fatal form of lung cancer.

  7. Cyclin D expression in plutonium-induced lung tumors in F344 rats

    SciTech Connect

    Hahn, F.F.; Kelly, G.

    1995-12-01

    The genetic mechanisms responsible for {alpha}-radiation-induced lung cancer in rats following inhalation of {sup 239}Pu is an ongoing area of research in our laboratory. Previous studies have examined the status of the p53 gene by immunohistochemistry. Only two tumors (2/26 squamous cell carcinomas) exhibited detectable levels of p53 products. Both were the result of mutations in codons 280 and 283. More recent studies of X-ray-induced lung tumors in rats showed a similar lack of involvement of p53. In conclusion, we found that {alpha}-radiation-induced rat lung tumors have a high incidence (31 of 39) of cyclin D{sub 1} overexpression.

  8. Stereotactic body radiotherapy for small lung tumors in the University of Tokyo Hospital.

    PubMed

    Yamashita, Hideomi; Takahashi, Wataru; Haga, Akihiro; Kida, Satoshi; Saotome, Naoya; Nakagawa, Keiichi

    2014-01-01

    Our work on stereotactic body radiation therapy (SBRT) for primary and metastatic lung tumors will be described. The eligibility criteria for SBRT, our previous SBRT method, the definition of target volume, heterogeneity correction, the position adjustment using four-dimensional cone-beam computed tomography (4D CBCT) immediately before SBRT, volumetric modulated arc therapy (VMAT) method for SBRT, verifying of tumor position within internal target volume (ITV) using in-treatment 4D-CBCT during VMAT-SBRT, shortening of treatment time using flattening-filter-free (FFF) techniques, delivery of 4D dose calculation for lung-VMAT patients using in-treatment CBCT and LINAC log data with agility multileaf collimator, and SBRT method for centrally located lung tumors in our institution will be shown. In our institution, these efforts have been made with the goal of raising the local control rate and decreasing adverse effects after SBRT.

  9. Hsa-miR-623 suppresses tumor progression in human lung adenocarcinoma

    PubMed Central

    Wei, Shuang; Zhang, Zun-yi; Fu, Sheng-ling; Xie, Jun-gang; Liu, Xian-sheng; Xu, Yong-jian; Zhao, Jian-ping; Xiong, Wei-ning

    2016-01-01

    Our previous study revealed that Ku80 was overexpressed in lung cancer tissues and hsa-miR-623 regulated the Ku80 expression; however, the detailed function of hsa-miR-623 in lung cancer was unclear. We identified that hsa-miR-623 bound to the 3'-UTR of Ku80 mRNA, thus significantly decreasing Ku80 expression in lung adenocarcinoma cells. Hsa-miR-623 was downregulated in lung adenocarcinoma tissues compared with corresponding non-tumorous tissues, and its expression was inversely correlated with Ku80 upregulation. Downregulation of hsa-miR-623 was associated with poor clinical outcomes of lung adenocarcinoma patients. Hsa-miR-623 suppressed lung adenocarcinoma cell proliferation, clonogenicity, migration and invasion in vitro. Hsa-miR-623 inhibited xenografts growth and metastasis of lung adenocarcinoma in vivo. Ku80 knockdown in lung adenocarcinoma cells suppressed tumor properties in vitro and in vivo similar to hsa-miR-623 overexpression. Further, hsa-miR-623 overexpression decreased matrix metalloproteinase-2 (MMP-2) and MMP-9 expression levels, with decreased ERK/JNK phosphorylation. Inhibition of hsa-miR-623 or overexpression of Ku80 promoted lung adenocarcinoma cell invasion, activated ERK/JNK phosphorylation and increased MMP-2/9 expressions, which could be reversed by ERK kinase inhibitor or JNK kinase inhibitor. In summary, our results showed that hsa-miR-623 was downregulated in lung adenocarcinoma and suppressed the invasion and metastasis targeting Ku80 through ERK/JNK inactivation mediated downregulation of MMP-2/9. These findings reveal that hsa-miR-623 may serve as an important therapeutic target in lung cancer therapy. PMID:27685632

  10. Therapeutic effects of tyroservatide on metastasis of lung cancer and its mechanism affecting integrin–focal adhesion kinase signal transduction

    PubMed Central

    Huang, Yu-ting; Zhao, Lan; Fu, Zheng; Zhao, Meng; Song, Xiao-meng; Jia, Jing; Wang, Song; Li, Jin-ping; Zhu, Zhi-feng; Lin, Gang; Lu, Rong; Yao, Zhi

    2016-01-01

    Tyroservatide (YSV) can inhibit the growth and metastasis of mouse lung cancer significantly. This study investigated the therapeutic effects of tripeptide YSV on metastasis of human lung cancer cells and explored its possible mechanism that affects integrin–focal adhesion kinase (FAK) signal transduction in tumor cells. YSV significantly inhibited the adhesion and the invasion of highly metastatic human lung cancer cell lines 95D, A549, and NCI-H1299. In addition, YSV significantly inhibited phosphorylation of FAK Tyr397 and FAK Tyr576/577 in the 95D, A549, and NCI-H1299 human lung cancer cells in vitro. And the mRNA level and protein expression of FAK in these human lung cancer cells decreased at the same time. YSV also significantly inhibited mRNA and protein levels of integrin β1 and integrin β3 in the 95D, A549, and NCI-H1299 human lung cancer cells. Our research showed that YSV inhibited adhesion and invasion of human lung cancer cells and exhibited therapeutic effects on metastasis of lung cancer. PMID:27041993

  11. Therapeutic effects of tyroservatide on metastasis of lung cancer and its mechanism affecting integrin-focal adhesion kinase signal transduction.

    PubMed

    Huang, Yu-ting; Zhao, Lan; Fu, Zheng; Zhao, Meng; Song, Xiao-meng; Jia, Jing; Wang, Song; Li, Jin-ping; Zhu, Zhi-feng; Lin, Gang; Lu, Rong; Yao, Zhi

    2016-01-01

    Tyroservatide (YSV) can inhibit the growth and metastasis of mouse lung cancer significantly. This study investigated the therapeutic effects of tripeptide YSV on metastasis of human lung cancer cells and explored its possible mechanism that affects integrin-focal adhesion kinase (FAK) signal transduction in tumor cells. YSV significantly inhibited the adhesion and the invasion of highly metastatic human lung cancer cell lines 95D, A549, and NCI-H1299. In addition, YSV significantly inhibited phosphorylation of FAK Tyr397 and FAK Tyr576/577 in the 95D, A549, and NCI-H1299 human lung cancer cells in vitro. And the mRNA level and protein expression of FAK in these human lung cancer cells decreased at the same time. YSV also significantly inhibited mRNA and protein levels of integrin β1 and integrin β3 in the 95D, A549, and NCI-H1299 human lung cancer cells. Our research showed that YSV inhibited adhesion and invasion of human lung cancer cells and exhibited therapeutic effects on metastasis of lung cancer.

  12. MicroRNA-107 inhibits tumor growth and metastasis by targeting the BDNF-mediated PI3K/AKT pathway in human non-small lung cancer

    PubMed Central

    Xia, Huan; Li, Yang; Lv, Xiaohong

    2016-01-01

    Abnormal expression of microRNA-107 (miR-107) was found in non-small cell lung cancer (NSCLC). However, little is known about its role and molecular mechanism in NSCLC progression and metastasis. Therefore, the aims of this study were to clarify the potential role of miR-107 and molecular mechanism in NSCLC progression and metastasis. Quantitative real-time polymerase chain reaction assay showed that miR-107 expression levels were significantly decreased in NSCLC tissue and cell lines. Low miR-107 levels in tumor tissue correlated with advanced TNM stage and lymph node metastasis. Function assays showed that overexpression of miR-107 suppressed cell proliferation, migration and invasion in A549 cells in vitro, and inhibited NSCLC tumor growth in vivo. Further mechanism assays suggested the brain-derived neurotrophic factor (BDNF) was identified as a target gene of miR-107 in NSCLC cells. In addition, BDNF expression was upregulated, and inversely correlated with miR-107 in NSCLC tissues. Enforced overexpression of BDNF effectively reversed the tumor suppressive functions of miR-107 on NSCLC proliferation, migration and invasion. miR-107 overexpression or downregulation of BDNF was able to inhibit activation of PI3K/AKT signaling pathway. Taken together, our findings present the first evidence that miR-107 could suppress NSCLC metastasis by targeting BDNF and indirectly regulating PI3K/AKT signaling pathway, which might lead to a potential therapeutic strategy focusing on miR-107 and BDNF for human NSCLC. PMID:27498977

  13. Depletion of hepatoma-derived growth factor-related protein-3 induce