Science.gov

Sample records for a549 non-small cell

  1. Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 non-small cell lung cancer cells

    PubMed Central

    Yong, Wai Kuan; Ho, Yen Fong; Malek, Sri Nurestri Abd

    2015-01-01

    Background: Xanthohumol, a major prenylated chalcone found in female hop plant, Humulus lupulus, was reported to have various chemopreventive and anti-cancer properties. However, its apoptotic effect on human alveolar adenocarcinoma cell line (A549) of non-small cell lung cancer (NSCLC) was unknown. Objective: This study aimed to investigate the effects of xanthohumol on apoptosis in A549 human NSCLC cells. Materials and Methods: A549 cell proliferation was determined by sulforhodamine B assay. Morphological changes of the cells were studied via phase contrast and fluorescent microscopy. Induction of apoptosis was assessed by Annexin-V fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining, DNA fragmentation (TUNEL) assay mitochondrial membrane potential assay, cell cycle analysis, and caspase activity studies. Results: Xanthohumol was found to decrease cell proliferation in A549 cells but had relatively low cytotoxicity on normal human lung fibroblast cell line (MRC-5). Typical cellular and nuclear apoptotic features were also observed in A549 cells treated with xanthohumol. Onset of apoptosis in A549 cells was further confirmed by externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells after treatment. Xanthohumol induced accumulation of cells in sub G1 and S phase based on cell cycle analysis and also increased the activities of caspase-3, -8, and -9. Conclusion: This work suggests that xanthohumol as an apoptosis inducer, may be a potent therapeutic compound for NSCLC. PMID:26664015

  2. Effects of autocrine vascular endothelial growth factor (VEGF) in non-small cell lung cancer cell line A549.

    PubMed

    Wang, Ying; Huang, Lu; Yang, Yunmei; Xu, Liqian; Yang, Ji; Wu, Yue

    2013-04-01

    It is reported that the autocrine loop of the vascular endothelial growth factor (VEGF) is crucial for the survival and proliferation of non-small cell lung cancer (NSCLC) tumors. In this study we aimed to systematically investigate the role of autocrine vascular VEGF in NSCLC cell line A549 through inhibition of endogenous VEGF. A549 cells were transfected with florescence-labeled VEGF oligodeoxynucleotide with lipofectamine. For the experimental group, cells were transfected with VEGF anti-sense oligodeoxynucleotide (ASODN), sense oligodeoxynucleotide (SODN) and mutant oligodeoxynuleotide (MODN) respectively. For the control group cells were mock transfected with lipofectamine or culture medium. At indicated time point after transfection, the expression levels of VEGF mRNA and protein in A549 cells were analyzed by RT-PCR and ELISA respectively. Cell viability was measured by the MTT assay. Cell cycle distribution was detected by flow cytometry. As revealed by RT-PCR assay, the mRNA level of VEGF in cells transfected with ASDON was significantly lower than the other four groups (P < 0.05) at 24 and 48 h after transfection. ELISA assay yielded similar result with significantly decreased level of VEGF protein expression (P < 0.05). The survival fraction of A549 cells transfected with ASDON was significantly lower than the other four groups (P < 0.05) at 24 h after transfection. Also the percentage of G2 phase cells of ASODN group was significantly lower than other four groups. Our data indicate that VEGF expression is efficiently inhibited in A549 cells by ASODN transfection and this inhibition leads to inhibited cell growth and impaired cell cycle distribution. PMID:23459872

  3. Knockdown of Aurora-B inhibits the growth of non-small cell lung cancer A549 cells

    PubMed Central

    YU, JING JING; ZHOU, LONG DIAN; ZHAO, TIAN TIAN; BAI, WEI; ZHOU, JING; ZHANG, WEI

    2015-01-01

    Elevated expression of Aurora-B affects cell apoptosis and proliferation in a variety of solid tumors. However, the role of Aurora-B has been poorly evaluated in non-small cell lung cancer (NSCLC). In the present study, it was found that Aurora-B was overexpressed in tissue specimens obtained from 174 patients with lung cancer. It was also demonstrated that knockdown of Aurora-B induces apoptosis and inhibits the growth of lung cancer A549 cells in vitro and in vivo. Furthermore, it was found that silencing Aurora-B decreased the activity of the phosphoinositide 3-kinase (PI3K)/AKT pathway. Therefore, it was concluded that knockdown of Aurora-B induces apoptosis and inhibits growth in NSCLC A549 cells, in addition to inhibiting the activity of the PI3K/AKT signaling pathway. Targeting Aurora-B may provide a novel target for lung cancer therapy. PMID:26622725

  4. Lysyl oxidase mediates hypoxia-induced radioresistance in non-small cell lung cancer A549 cells.

    PubMed

    Gong, Chongwen; Gu, Runxia; Jin, Honglin; Sun, Yao; Li, Zhenyu; Chen, Jing; Wu, Gang

    2016-02-01

    Hypoxia-induced radioresistance has been well known as the main obstacle in cancer radiotherapy. Lysyl oxidase (LOX) was previously demonstrated to play an important role in hypoxia-induced biological behaviors, such as metastasis and angiogenesis, through hypoxia-inducible factor-1α (HIF-1α), which is an important contributing factor to radioresistance in tumor cells. However, how LOX plays a role in hypoxia-induced radioresistance has yet to be determined. Here, we found that LOX expression was in accordance with HIF-1α expression, and LOX expression at the mRNA and protein level, and enzymatic activity were remarkably upregulated in the hypoxic A549 cells, compared with normoxic A549 cells. Inhibition of LOX resulted in the reduction of the ability to repair double-stranded breaks (DSBs), promotion of apoptosis, relief of G2/M cycle arrest, and eventually reduction of hypoxia-induced radioresistance in the hypoxic A549 cells. This suggests that LOX may play an important role in hypoxia-induced radioresistance. Together, our results might suggest a novel potential therapeutic target in the management of non-small cell lung cancer (NSCLC). PMID:26515140

  5. H9 induces apoptosis via the intrinsic pathway in non-small-cell lung cancer A549 cells.

    PubMed

    Kwon, Sae-Bom; Kim, Min-Je; Ham, Sun Young; Park, Ga Wan; Choi, Kang-Duk; Jung, Seung Hyun; Yoon, Do-Young

    2015-03-01

    H9 is an ethanol extract prepared from nine traditional/medicinal herbs. This study was focused on the anticancer effect of H9 in non-small-cell lung cancer cells. The effects of H9 on cell viability, apoptosis, mitochondrial membrane potential (MMP; Δφm), and apoptosis-related protein expression were investigated in A549 human lung cancer cells. In this study, H9-induced apoptosis was confirmed by propidium iodide staining, expression levels of mRNA were determined by reverse transcriptase polymerase chain reaction, protein expression levels were checked by western blot analysis, and MMP (Δφm) was measured by JC- 1 staining. Our results indicated that H9 decreased the viability of A549 cells and induced cell morphological changes in a dose-dependent manner. H9 also altered expression levels of molecules involved in the intrinsic signaling pathway. H9 inhibited Bcl-xL expression, whereas Bax expression was enhanced and cytochrome C was released. Furthermore, H9 treatment led to the activation of caspase-3/caspase-9 and proteolytic cleavage of poly(ADPribose) polymerase; the MMP was collapsed by H9. However, the expression levels of extrinsic pathway molecules such as Fas/FasL, TRAIL/TRAIL-R, DR5, and Fas-associated death receptor were downregulated by H9. These results indicated that H9 inhibited proliferation and induced apoptosis by activating intrinsic pathways but not extrinsic pathways in human lung cancer cells. Our results suggest that H9 can be used as an alternative remedy for human non-small-cell lung cancer. PMID:25563417

  6. Rhizoma Paridis Saponins Induces Cell Cycle Arrest and Apoptosis in Non-Small Cell Lung Carcinoma A549 Cells

    PubMed Central

    Zhang, Jue; Yang, Yixi; Lei, Lei; Tian, Mengliang

    2015-01-01

    Background As a traditional Chinese medicine herb, Chonglou (Paris polyphylla var. chinensis) has been used as anticancer medicine in China in recent decades, as it can induce cell cycle arrest and apoptosis in numerous cancer cells. The saponins extract from the rhizoma of Chonglou [Rhizoma Paridis saponins (RPS)] is known as the main active component for anticancer treatment. However, the molecular mechanism of the anticancer effect of RPS is unknown. Material/Methods The present study evaluated the effect of RPS in non-small-cell lung cancer (NSCLC) A549 cells using the 3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyl tetrazolium bromide (MTT) assay and flow cytometry. Subsequently, the expression of several genes associated with cell cycle and apoptosis were detected by reverse transcription-quantitative polymerase chain reaction (qRT-PCR) and Western blotting. Results RPS was revealed to inhibit cell growth, causing a number of cells to accumulate in the G 1 phase of the cell cycle, leading to apoptosis. In addition, the effect was dose-dependent. Moreover, the results of qRT-PCR and Western blotting showed that p53 and cyclin-dependent kinase 2 (CDK2) were significantly downregulated, and that BCL2, BAX, and p21 were upregulated, by RPS treatment. Conclusions We speculated that the RPS could act on a pathway, including p53, p21, BCL2, BAX, and CDK2, and results in G1 cell cycle arrest and apoptosis in NSCLC cells. PMID:26311066

  7. Study of the radiotherapy sensitization effects and mechanism of capecitabine (Xeloda) against non-small-cell lung cancer cell line A549.

    PubMed

    Zhu, J J; Shan, J J; Sun, L B; Qiu, W S

    2015-01-01

    The purpose of this study was to explore the radiotherapy sensitization effects and the mechanism of capecitabine (Xeloda) against the non-small-cell lung cancer cell line, A549. γ-[(60)Co] radiation was used as the intervention method. Proliferative inhibition of capecitabine on A549 cells was determined by the CCK-8 method. The effects of capecitabine on the apoptosis rate and cell cycle distribution of A549 were detected with the flow cytometric method. We found that capecitabine inhibited the proliferation of A549 in a dose-dependent manner, notably increased the cell apoptosis rate and blocked the cellular G0/G1 phase after radiotherapy by γ-[(60)Co]. Therefore, capecitabine can significantly increase the radiosensitivity of A549; its mechanism may be related to cell cycle arrest and induction of apoptosis. PMID:26662434

  8. Curcumin inhibits interferon-{alpha} induced NF-{kappa}B and COX-2 in human A549 non-small cell lung cancer cells

    SciTech Connect

    Lee, Jeeyun |; Im, Young-Hyuck | E-mail: imyh@smc.samsung.co.kr; Jung, Hae Hyun; Kim, Joo Hyun; Park, Joon Oh |; Kim, Kihyun |; Kim, Won Seog |; Ahn, Jin Seok

    2005-08-26

    The A549 cells, non-small cell lung cancer cell line from human, were resistant to interferon (IFN)-{alpha} treatment. The IFN-{alpha}-treated A549 cells showed increase in protein expression levels of NF-{kappa}B and COX-2. IFN-{alpha} induced NF-{kappa}B binding activity within 30 min and this increased binding activity was markedly suppressed with inclusion of curcumin. Curcumin also inhibited IFN-{alpha}-induced COX-2 expression in A549 cells. Within 10 min, IFN-{alpha} rapidly induced the binding activity of a {gamma}-{sup 32}P-labeled consensus GAS oligonucleotide probe, which was profoundly reversed by curcumin. Taken together, IFN-{alpha}-induced activations of NF-{kappa}B and COX-2 were inhibited by the addition of curcumin in A549 cells.

  9. In vitro effects of mitomycin C on the proliferation of the non-small-cell lung cancer line A549.

    PubMed

    An, Qi; Han, Chao; Zhou, Yubing; Li, Feng; Li, Duolu; Zhang, Xiaojian; Yu, Zujiang; Duan, Zhenfeng; Kan, Quancheng

    2015-01-01

    Non-small-cell lung cancer (NSCLC) is the leading cause of death from cancer in the United States. Chemotherapy prolongs survival among patients with advanced disease, but at the cost of clinically significant adverse effects. As a novel promising oncotherapy method, induced differentiation by mitomycin C has been applied for NSCLC therapy at recent year. In this study, the molecular mechanism of differentiation interruption by mitomycin C in the NSCLC line A549 was investigated. High dosage of mitomycin C (300 µM) could significantly inhibit cell proliferation (P < 0.05) by 48.39 ± 3.32% (P < 0.05), under which cell shrinkage and disruption were observed. Flow cytometry assay showed that the proportion of G1/G0 cells significantly increased, while that of S and G2/M cells significantly decreased after treatment of mitomycin C (10 or 300 µM) for 24 h. These results indicated that cell arrest by mitomycin C appeared. Additionally, up-regulation of retinoblastoma (Rb) gene by low concentration of mitomycin C (10 µM) was detected using immunohistochemistry (IHC) and Western blot assay, indicating a role in the regulation of cell cycle inhibition of this cell line. PMID:26884968

  10. In vitro effects of mitomycin C on the proliferation of the non-small-cell lung cancer line A549

    PubMed Central

    An, Qi; Han, Chao; Zhou, Yubing; Li, Feng; Li, Duolu; Zhang, Xiaojian; Yu, Zujiang; Duan, Zhenfeng; Kan, Quancheng

    2015-01-01

    Non-small-cell lung cancer (NSCLC) is the leading cause of death from cancer in the United States. Chemotherapy prolongs survival among patients with advanced disease, but at the cost of clinically significant adverse effects. As a novel promising oncotherapy method, induced differentiation by mitomycin C has been applied for NSCLC therapy at recent year. In this study, the molecular mechanism of differentiation interruption by mitomycin C in the NSCLC line A549 was investigated. High dosage of mitomycin C (300 µM) could significantly inhibit cell proliferation (P < 0.05) by 48.39 ± 3.32% (P < 0.05), under which cell shrinkage and disruption were observed. Flow cytometry assay showed that the proportion of G1/G0 cells significantly increased, while that of S and G2/M cells significantly decreased after treatment of mitomycin C (10 or 300 µM) for 24 h. These results indicated that cell arrest by mitomycin C appeared. Additionally, up-regulation of retinoblastoma (Rb) gene by low concentration of mitomycin C (10 µM) was detected using immunohistochemistry (IHC) and Western blot assay, indicating a role in the regulation of cell cycle inhibition of this cell line. PMID:26884968

  11. Green tea catechin, epigallocatechin-3-gallate, attenuates the cell viability of human non-small-cell lung cancer A549 cells via reducing Bcl-xL expression

    PubMed Central

    SONODA, JUN-ICHIRO; IKEDA, RYUJI; BABA, YASUTAKA; NARUMI, KEIKO; KAWACHI, AKIO; TOMISHIGE, ERISA; NISHIHARA, KAZUYA; TAKEDA, YASUO; YAMADA, KATSUSHI; SATO, KEIZO; MOTOYA, TOSHIRO

    2014-01-01

    Clinical and epidemiological studies have indicated that the consumption of green tea has a number of beneficial effects on health. Epigallocatechin-3-gallate (EGCg), the major polyphenolic compound present in green tea, has received much attention as an active ingredient. Among the numerous promising profiles of EGCg, the present study focused on the anticancer effects. Apoptosis induced by EGCg and subsequent cell growth suppression have been demonstrated in a number of cell culture studies. However, the underlying mechanism of apoptotic cell death remains unclear. Thus, the aim of the present study was to identify the major molecule that mediates proapoptotic cell death by EGCg. The effect of EGCg on cell proliferation and the induction of mRNA that modulates apoptotic cell death was evaluated in the A549 human non-small-cell lung cancer cell line. In addition, morphological changes were assessed by microscopy in A549 cells that had been treated with 100 μM EGCg for 24 h. The MTT assay revealed that cell proliferation was significantly reduced by EGCg in a dose-dependent manner (3–100 μM). The mRNA expression level of B-cell lymphoma-extra large (Bcl-xL) was decreased in A549 cells following 24 h incubation with 100 μM EGCg. Therefore, the results indicated that the inhibition of cell proliferation by EGCg may be achieved via suppressing the expression of the cell death-inhibiting gene, Bcl-xL. PMID:24944597

  12. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways

    PubMed Central

    MIN, JIE; LI, XU; HUANG, KENAN; TANG, HUA; DING, XINYU; QI, CHEN; QIN, XIONG; XU, ZHIFEI

    2015-01-01

    Phloretin (Ph) existing in apples, pears and various vegetables is known to have antitumor activities in several cancer cell lines. However, little is known about its effect on human lung cancer cells. The aim of the present study was to see whether Ph could induce apoptosis of non-small cell lung cancer (NSCLC) cells, and explore the possible underlying mechanism of action. We found that Ph markedly induced cell apoptosis of NSCLC cell line A549, and inhibited the migration of A549 cells in a dose-dependent manner. The expression level of BAX, cleaved caspase-3 and -9, and degraded form of PARP was increased and Bcl-2 was decreased after Ph treatment. In addition, the phosphorylation of P38 MAPK, ERK1/2 and JNK1/2 was increased in a dose-dependent manner in parallel with Ph treatment. Inhibition of P38 MAPK and JNK1/2 by specific inhibitors significantly abolished the Ph-induced activation of the caspase-3 and -9. In vivo tumor-suppression assay further indicated that Ph (20 mg/kg) displayed a more significant inhibitory effect on A549 xenografts in tumor growth. All these findings indicate that Ph is able to inhibit NSCLC A549 cell growth by inducing apoptosis through P38 MAPK and JNK1/2 pathways, and therefore may prove to be an adjuvant to the treatment of NSCLC. PMID:26503828

  13. Small interfering RNA targeting S100A4 sensitizes non-small-cell lung cancer cells (A549) to radiation treatment

    PubMed Central

    Qi, Ruixue; Qiao, Tiankui; Zhuang, Xibing

    2016-01-01

    Objective This study aimed to investigate the impact of S100A4-small interfering RNA (S100A4-siRNA) on apoptosis and enhanced radiosensitivity in non-small-cell lung cancer (A549) cells. We also explored the mechanisms of radiosensitization and identified a new target to enhance radiosensitivity and gene therapy for non-small-cell lung cancer. Methods RNA interference is a powerful tool for gene silencing. In this study, we constructed an effective siRNA to knock down S100A4. A549 cells were randomly divided into three groups: blank, negative control, and S100A4-siRNA. To investigate the effect of S100A4-siRNA, the expression of S100A4, E-cadherin, and p53 proteins and their messenger RNA (mRNA) was detected by Western blot and quantitative real-time polymerase chain reaction. Transwell chambers were used to assess cell invasion. Cell cycle and apoptosis were analyzed by flow cytometry. Radiosensitivity was determined by colony formation ability. Results Our results demonstrate that S100A4-siRNA effectively silenced the S100A4 gene. When siRNA against S100A4 was used, S100A4 protein expression was downregulated, whereas the expressions of E-cadherin and p53 were upregulated. In addition, a clear reduction in S100A4 mRNA levels was noted compared with the blank and negative control groups, whereas E-cadherin and p53 mRNA levels increased. Transfection with S100A4-siRNA significantly reduced the invasiveness of A549 cells. S100A4 silencing induced immediate G2/M arrest in cell cycle studies and increased apoptosis rates in A549 cells. In clonogenic assays, we used a multitarget, single-hit model to detect radiosensitivity after S100A4 knockdown. All parameters (D0, Dq, α, β) indicated that the downregulation of S100A4 enhanced radiosensitivity in A549 cells. Furthermore, S100A4-siRNA upregulated p53 expression, suggesting that S100A4 may promote A549 cell proliferation, invasion, and metastasis by regulating the expression of other proteins. Therefore, si

  14. Inhibition of microRNA-196a might reverse cisplatin resistance of A549/DDP non-small-cell lung cancer cell line.

    PubMed

    Li, Jian-Huang; Luo, Ning; Zhong, Mei-Zuo; Xiao, Zhi-Qiang; Wang, Jian-Xin; Yao, Xiao-Yi; Peng, Yun; Cao, Jun

    2016-02-01

    We aimed to explore the possible mechanism of microRNA-196a (miR-196a) inhibition and reversion of drug resistance to cisplatin (DDP) of the A549/DDP non-small-cell lung cancer (NSCLC) cell line. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect expression differences of miR-196a in the drug-resistant A549/DDP NLCLC cell line and the parental A549 cell line, and expressions of miR-196a in the A549/DDP NLCLC cell line transfected with miR-196a inhibitor (anti-miR-196a group) and the miR-196a negative control (miR-NC) group and blank group (without transfection). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was applied in examining the cell viability of A549/DDP cell line before and after transfection. Clonogenic assay was used to detect cell proliferation ability. Flow cytometry was applied in detecting apoptosis rate of assayed tumor cell and rhodamine-123 changes in cells. Western blot was applied in detecting proteins of drug-resistant related gene in A549/DDP cell line. Significantly higher expression of miR-196a was detected in the drug-resistant A549/DDP cell line than that in the parental A549 cell line (P < 0.05). However, miR-196a expression in the anti-miR-196a group decreased obviously compared to that in the blank group and the miR-NC group (both P < 0.05); The value of IC50 in the anti-miR-196a group showed remarkably lower than that in the blank group and the miR-NC group (both P < 0.05); Rh-123 absorbing ability in the anti-miR-196a group increased 2.51 times and 2.49 times respectively compared to that in the blank group and the miR-NC group (both P < 0.05). No statistical differences in the apoptosis rate of A549/DDP cell line in the early stage were found among the three groups (all P > 0.05), but the late-stage apoptosis rate in the anti-miR-196a group was significantly higher than that in the blank group and the miR-NC group (both P < 0.05); The expressions of human

  15. The combination of antitumor drugs, exemestane and erlotinib, induced resistance mechanism in H358 and A549 non-small cell lung cancer (NSCLC) cell lines.

    PubMed

    Kritikou, Ismini; Giannopoulou, Efstathia; Koutras, Angelos K; Labropoulou, Vassiliki T; Kalofonos, Haralabos P

    2013-11-01

    Abstract Context: Estrogens in non-small-cell lung cancer (NSCLC) are important, and their interaction with epidermal growth factor receptor (EGFR) might be crucial. Objective: This study investigates the effect of exemestane, an aromatase inhibitor, and erlotinib, an EGFR inhibitor, on human NSCLC cell lines; H23, H358 and A549. Materials and methods: A cell proliferation assay was used for measuring cell number, apoptosis assay for detecting apoptosis and necrosis and immunoblotting for beclin-1 and Bcl-2 proteins detection. An immunofluorescence assay was used for EGFR localization. A migration assay and zymography were used for cell motility and metalloproteinases (MMPs) expression, respectively. Results: Exemestane, erlotinib or their combination decreased cell proliferation and increased apoptosis. Exemestane's half maximal inhibitory concentration (IC50) was 50 μM for H23 and H358 cells and 20 μM for A549. The IC50 of erlotinib was 25 μM for all cell lines. Apoptosis increase induced by exemestane was 58.0 (H23), 186.3 (H358) and 34.7% (A549) and by erlotinib was 16.7 (H23), 65.3 (H358) and 66.3% (A549). A synergy effect was observed only in H23 cells. Noteworthy, the combination of exemestane and erlotinib decreased beclin-1 protein levels (32.3 ± 19.2%), an indicator of autophagy, in H23 cells. The combination of exemestane and erlotinib partially reversed the EGFR translocation to mitochondria and decreased MMP levels and migration. Discussion and conclusions: The benefit from a dual targeting of aromatase and EGFR seems to be regulated by NSCLC cell content. The diverse responses of cells to agents might be influenced by the dominance of certain molecular pathways. PMID:24192333

  16. miR-107 regulates cisplatin chemosensitivity of A549 non small cell lung cancer cell line by targeting cyclin dependent kinase 8.

    PubMed

    Zhang, Zhe; Zhang, Lu; Yin, Zhi-Yi; Fan, Xing-Long; Hu, Bo; Wang, Lun-Qing; Zhang, Di

    2014-01-01

    Previous studies demonstrated that the acquired drug resistance of non-small cell lung cancer (NSCLC) was related to deregulation of miRNAs. However, the effects of miR-107 and the mechanism through which miR-107 affects the cisplatin chemoresistance in NSCLC have not been reported. TaqMan RT-PCR or Western blot assay was performed to detect the expression of mature miR-107 and cyclin dependent kinase 8 (CDK8) protein. The viabilities of treated cells were analyzed using MTT assay. We found that the expression level of miR-107 in A549 cells was significantly lower than that in normal human bronchial epithelial cells (0.45 ± 0.26 vs. 1.00 ± 0.29, P = 0.032). The MTT assay showed that the A549 cells transfected with miR-107 mimics were significantly more sensitive to the therapy of cisplatin than control cells. A549 cells transfected with miR-107 mimics showed a decreased CDK8 protein expression. Downregulation of CDK8 expression by siRNAs, A549 cells became more sensitive to the therapy of cisplatin. In addition, the enhanced growth-inhibitory effect by the miR-107 mimic transfection was enhanced after the addition of CDK8 siRNA. In conclusion, the present study provides the first evidence that miR-107 plays a key role in cisplatin resistance by targeting the CDK8 protein in NSCLC cell lines, suggesting that miR-107 can be used to predict a patient's response to chemotherapy as well as serve as a novel potential maker for NSCLC therapy. PMID:25400821

  17. MicroRNA-7 Inhibits the Growth of Human Non-Small Cell Lung Cancer A549 Cells through Targeting BCL-2

    PubMed Central

    Xiong, Shudao; Zheng, Yijie; Jiang, Pei; Liu, Ronghua; Liu, Xiaoming; Chu, Yiwei

    2011-01-01

    MicroRNAs(miRNAs) are emerging as important regulators in tumorigenesis. Increasing evidences have indicated microRNA-7(miR-7) to be a potential tumor suppressor in several human cancers. However, only a limited number of target genes have been identified so far and its biological function in Non-Small Cell Lung Cancer (NSCLC) remains to be further elucidated. In the present study, we observed a reduction of miR-7 level in NSCLC cell lines. Overexpression of miR-7 not only suppressed NSCLC A549 cells proliferation, induced cell apoptosis and inhibited cell migration in vitro, but also reduced tumorigenicity in vivo. Bioinformatics predictions revealed a potential binding site of miR-7 on 3'UTR of BCL-2 and it was further confirmed by luciferase assay. Moreover, subsequent experiments showed that BCL-2 was downregulated by miR-7 at both transcriptional and translational levels. These results suggest that miR-7 regulates the expression of BCL-2 through direct 3'UTR interactions. Therefore, we postulate BCL-2 to be a novel target possibly involved in miR-7-mediated growth suppression and apoptosis of A549 cells. These findings may provide a basic rationale for the use of miR-7 in the treatment of NSCLC. PMID:21750649

  18. Molecular Switch Role of Akt in Polygonatum odoratum Lectin-Induced Apoptosis and Autophagy in Human Non-Small Cell Lung Cancer A549 Cells

    PubMed Central

    Shi, Zheng; Wang, Hailian; Zhang, Bin; Zhao, Kailiang; Qi, Wei; Bao, Jinku; Wang, Yi

    2014-01-01

    Polygonatum odoratum lectin (POL), isolated from traditional Chinese medicine herb (Mill.) Druce, has drawn rising attention due to its wide biological activities. In the present study, anti-tumor effects, including apoptosis- and autophagy-inducing properties of POL, were determined by a series of cell biology methods such as MTT, cellular morphology observation, flow cytometry, immunoblotting. Herein, we found that POL could simultaneously induce apoptosis and autophagy in human non-small cell lung cancer A549 cells. POL initiated apoptosis through inhibiting Akt-NF-κB pathway, while POL triggered autophagy via suppressing Akt-mTOR pathway, suggesting the molecular switch role of Akt in regulating between POL-induced apoptosis and autophagy. Moreover, ROS was involved in POL-induced inhibition of Akt expression, and might therefore mediate both apoptosis and autophagy in A549 cells. In addition, POL displayed no significant cytotoxicity toward normal human embryonic lung fibroblast HELF cells. Due to the anti-tumor activities, POL might become a potent anti-cancer drug in future therapy, which might pave the way for exploring GNA-related lectins into effective drugs in cancer treatment. PMID:24992302

  19. Andrographolide down-regulates hypoxia-inducible factor-1{alpha} in human non-small cell lung cancer A549 cells

    SciTech Connect

    Lin, Hui-Hsuan; Tsai, Chia-Wen; Chou, Fen-Pi; Wang, Chau-Jong; Hsuan, Shu-Wen; Wang, Cheng-Kun; Chen, Jing-Hsien

    2011-02-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) in A549 cells. HIF-1{alpha} plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1{alpha} was correlated with a rapid ubiquitin-dependent degradation of HIF-1{alpha}, and was accompanied by increased expressions of hydroxyl-HIF-1{alpha} and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1{alpha} inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGF{beta}1/PHD2/HIF-1{alpha} pathway, as demonstrated by the transfection of TGF{beta}1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1{alpha} transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  20. MiR-92b regulates the cell growth, cisplatin chemosensitivity of A549 non small cell lung cancer cell line and target PTEN.

    PubMed

    Li, Yan; Li, Li; Guan, Yan; Liu, Xiuju; Meng, Qingyong; Guo, Qisen

    2013-11-01

    MicroRNAs (miRNAs) have emerged to play important roles in tumorigenesis and drug resistance of human cancer. Fewer studies were explored the roles of miR-92b on human lung cancer cell growth and resistance to cisplatin (CDDP). In this paper, we utilized real-time PCR to verify miR-92b was significantly up-regulated in non-small cell lung cancer (NSCLC) tissues compared to matched adjacent normal tissues. In vitro assay demonstrated that knock-down of miR-92b inhabits cell growth and sensitized the A549/CDDP cells to CDDP. Furthermore, we found miR-92b could directly target PTEN, a unique tumor suppressor gene, which was downregulated in lung cancer tissues compared to the matched adjacent normal tissues. These data indicate that the miR-92b play an oncogene roles by regulates cell growth, cisplatin chemosensitivity phenotype, and could serve as a novel potential maker for NSCLC therapy. PMID:24099768

  1. Studies on cytotoxic constituents from the leaves of Elaeagnus oldhamii Maxim. in non-small cell lung cancer A549 cells.

    PubMed

    Liao, Chi-Ren; Kuo, Yueh-Hsiung; Ho, Yu-Ling; Wang, Ching-Ying; Yang, Chang-Syun; Lin, Cheng-Wen; Chang, Yuan-Shiun

    2014-01-01

    Elaeagnus oldhamii Maxim. is a commonly used traditional herbal medicine. In Taiwan the leaves of E. oldhamii Maxim. are mainly used for treating lung disorders. Twenty five compounds were isolated from the leaves of E. oldhamii Maxim. in the present study. These included oleanolic acid (1), 3-O-(Z)-coumaroyl oleanolic acid (2), 3-O-(E)-coumaroyl oleanolic acid (3), 3-O-caffeoyl oleanolic acid (4), ursolic acid (5), 3-O-(Z)-coumaroyl ursolic acid (6), 3-O-(E)-coumaroyl ursolic acid (7), 3-O-caffeoyl ursolic acid (8), 3β, 13β-dihydroxyolean-11-en-28-oic acid (9), 3β, 13β-dihydroxyurs-11-en-28-oic acid (10), uvaol (11), betulin (12), lupeol (13), kaempferol (14), aromadendrin (15), epigallocatechin (16), cis-tiliroside (17), trans-tiliroside (18), isoamericanol B (19), trans-p-coumaric acid (20), protocatechuic acid (21), salicylic acid (22), trans-ferulic acid (23), syringic acid (24) and 3-O-methylgallic acid (25). Of the 25 isolated compounds, 21 compounds were identified for the first time in E. oldhamii Maxim. These included compounds 1, 4, 5 and 8-25. These 25 compounds were evaluated for their inhibitory activity against the growth of non-small cell lung cancer A549 cells by the MTT assay, and the corresponding structure-activity relationships were discussed. Among these 25 compounds, compound 6 displayed the best activity against the A549 cell line in vitro (CC50=8.56±0.57 μg/mL, at 48 h of MTT asssay). Furthermore, compound 2, 4, 8 and 18 exhibited in vitro cytotoxicity against the A549 cell line with the CC50 values of less than 20 μg/mL at 48 h of MTT asssay. These five compounds 2, 4, 6, 8 and 18 exhibited better cytotoxic activity compared with cisplatin (positive control, CC50 value of 14.87±1.94 μg/mL, at 48 h of MTT asssay). The result suggested that the five compounds might be responsible for its clinical anti-lung cancer effect. PMID:25000464

  2. Suberoylanilide Hydroxamic Acid Treatment Reveals Crosstalks among Proteome, Ubiquitylome and Acetylome in Non-Small Cell Lung Cancer A549 Cell Line

    PubMed Central

    Wu, Quan; Cheng, Zhongyi; Zhu, Jun; Xu, Weiqing; Peng, Xiaojun; Chen, Chuangbin; Li, Wenting; Wang, Fengsong; Cao, Lejie; Yi, Xingling; Wu, Zhiwei; Li, Jing; Fan, Pingsheng

    2015-01-01

    Suberoylanilide hydroxamic acid (SAHA) is a well-known histone deacetylase (HDAC) inhibitor and has been used as practical therapy for breast cancer and non-small cell lung cancer (NSCLC). It is previously demonstrated that SAHA treatment could extensively change the profile of acetylome and proteome in cancer cells. However, little is known about the impact of SAHA on other protein modifications and the crosstalks among different modifications and proteome, hindering the deep understanding of SAHA-mediated cancer therapy. In this work, by using SILAC technique, antibody-based affinity enrichment and high-resolution LC-MS/MS analysis, we investigated quantitative proteome, acetylome and ubiquitylome as well as crosstalks among the three datasets in A549 cells toward SAHA treatment. In total, 2968 proteins, 1099 acetylation sites and 1012 ubiquitination sites were quantified in response to SAHA treatment, respectively. With the aid of intensive bioinformatics, we revealed that the proteome and ubiquitylome were negatively related upon SAHA treatment. Moreover, the impact of SAHA on acetylome resulted in 258 up-regulated and 99 down-regulated acetylation sites at the threshold of 1.5 folds. Finally, we identified 55 common sites with both acetylation and ubiquitination, among which ubiquitination level in 43 sites (78.2%) was positive related to acetylation level. PMID:25825284

  3. Suberoylanilide hydroxamic acid treatment reveals crosstalks among proteome, ubiquitylome and acetylome in non-small cell lung cancer A549 cell line.

    PubMed

    Wu, Quan; Cheng, Zhongyi; Zhu, Jun; Xu, Weiqing; Peng, Xiaojun; Chen, Chuangbin; Li, Wenting; Wang, Fengsong; Cao, Lejie; Yi, Xingling; Wu, Zhiwei; Li, Jing; Fan, Pingsheng

    2015-01-01

    Suberoylanilide hydroxamic acid (SAHA) is a well-known histone deacetylase (HDAC) inhibitor and has been used as practical therapy for breast cancer and non-small cell lung cancer (NSCLC). It is previously demonstrated that SAHA treatment could extensively change the profile of acetylome and proteome in cancer cells. However, little is known about the impact of SAHA on other protein modifications and the crosstalks among different modifications and proteome, hindering the deep understanding of SAHA-mediated cancer therapy. In this work, by using SILAC technique, antibody-based affinity enrichment and high-resolution LC-MS/MS analysis, we investigated quantitative proteome, acetylome and ubiquitylome as well as crosstalks among the three datasets in A549 cells toward SAHA treatment. In total, 2968 proteins, 1099 acetylation sites and 1012 ubiquitination sites were quantified in response to SAHA treatment, respectively. With the aid of intensive bioinformatics, we revealed that the proteome and ubiquitylome were negatively related upon SAHA treatment. Moreover, the impact of SAHA on acetylome resulted in 258 up-regulated and 99 down-regulated acetylation sites at the threshold of 1.5 folds. Finally, we identified 55 common sites with both acetylation and ubiquitination, among which ubiquitination level in 43 sites (78.2%) was positive related to acetylation level. PMID:25825284

  4. Zerumbone Suppresses Osteopontin-Induced Cell Invasion Through Inhibiting the FAK/AKT/ROCK Pathway in Human Non-Small Cell Lung Cancer A549 Cells.

    PubMed

    Kang, Chi Gu; Lee, Hyo-Jeong; Kim, Sung-Hoon; Lee, Eun-Ok

    2016-01-22

    Lung cancer is the most frequently diagnosed cancer and the leading cause of cancer deaths in the United States and Korea. We have previously demonstrated that osteopontin (OPN) induces cell invasion through inactivating cofilin. Inactivation of cofilin is mediated by the FAK/AKT/Rho-associated kinase (ROCK) pathway in human nonsmall cell lung cancer (NSCLC) cells. Zerumbone (1) has been shown to exert anticancer activities. In this study, whether and how 1 affects OPN-induced cell invasion was determined in NSCLC A549 cells. Results from Boyden chamber assays suggested that OPN induced invasion of A549 cells and that 1 strongly suppressed this activity without affecting cell viability. Compound 1 effectively inhibited OPN-induced protein expression of ROCK1, the phosphorylation of LIM kinase 1 and 2 (LIMK1/2), and cofilin. In addition, immunofluorescence staining showed that OPN caused a significant increase in lamellipodia formation at the leading edge of cells. However, 1 dramatically decreased OPN-induced lamellipodia formation. Compound 1 impaired OPN-induced phosphorylation of FAK and AKT, as determined by Western blot analysis. Taken together, these results suggest that 1 causes considerable suppression of OPN-induced cell invasion through inhibiting the FAK/AKT/ROCK pathway in NSCLC A549 cells. PMID:26681550

  5. Encapsulated paclitaxel nanoparticles exhibit enhanced anti-tumor efficacy in A549 non-small lung cancer cells.

    PubMed

    Huang, Guojin; Zang, Bao; Wang, Xiaowei; Liu, Gang; Zhao, Jianqiang

    2015-12-01

    In the present study, paclitaxel (PTX) were encapsulated with polyethylene glycol (PEG)-polylactide (PLA)/D-α tocopheryl polyethylene glycol 1000 succinate (TPGS) (PEG-PLA/TPGS) and the enhanced anti-tumor activity of this PTX mixed micelles (PTX-MM) was evaluated in lung cancer cells. The PTX-MM prepared by a solvent evaporation method was demonstrated to have high drug-loading efficiency (23.2%), high encapsulation efficiency (76.4%), and small size (59 nm). In vitro release assay showed the slow release behavior of PTX-MM, suggesting the good stability of the PTX-MM essential for long circulation time. In vitro kinetics assay demonstrated that PTX-MM could promote absorption and increase relative bioavailability. The anti-cancer efficiency of PTX-MM was also examined by both in vitro and in vivo studies. PTX-MM exhibits obvious cytotoxicity against lung cancer cells with much lower IC50 value when compared with commercial formulated PTX or PTX + TPGS. The xenograft tumor model studies on nude mice indicated that PTX-MM inhibits tumor growth more effectively than other formulations. It was also found that most of mixed micelles were integral in tumor site to exhibit anti-cancer activity. Our results suggested that the use of PTX-MM as an anti-cancer drug may be an effective approach to treat lung cancer. PMID:26525950

  6. A polysaccharide fraction of adlay seed (Coixlachryma-jobi L.) induces apoptosis in human non-small cell lung cancer A549 cells

    SciTech Connect

    Lu, Xiangyi; Liu, Wei; Wu, Junhua; Li, Mengxian; Wang, Juncheng; Wu, Jihui; Luo, Cheng

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer A polysaccharide from adlay seed, its molecular mass, optical rotation and sugars was determined. Black-Right-Pointing-Pointer We demonstrated that a polysaccharide from adlay can induce apoptosis in cancer cells. Black-Right-Pointing-Pointer The polysaccharide inhibited the metabolism and proliferation of NSCLC A549 cells. Black-Right-Pointing-Pointer The polysaccharide may trigger apoptosis via the mitochondria-dependent pathway. -- Abstract: Different seed extracts from Coix lachryma-jobi (adlay seed) have been used for the treatment of various cancers in China, and clinical data support the use of these extracts for cancer therapy; however, their underlying molecular mechanisms have not been well defined. A polysaccharide fraction, designated as CP-1, was extracted from the C.lachryma-jobi L. var. using the ethanol subsiding method. CP-1 induced apoptosis in A549 cells in a dose-dependent manner, as determined by MTT assay. Apoptotic bodies were observed in the cells by scanning electronic microscopy. Apoptosis and DNA accumulation during S-phase of the cell cycle were determined by annexin V-FITC and PI staining, respectively, and measured by flow cytometry. CP-1 also extended the comet tail length on single cell gel electrophoresis, and disrupted the mitochondrial membrane potential. Further analysis by western blotting showed that the expression of caspase-3 and caspase-9 proteins was increased. Taken together, our results demonstrate that CP-1 is capable of inhibiting A549 cell proliferation and inducing apoptosis via a mechanism primarily involving the activation of the intrinsic mitochondrial pathway. The assay data suggest that in addition to its nutritional properties, CP-1 is a very promising candidate polysaccharide for the development of anti-cancer medicines.

  7. Migration-stimulating factor (MSF) is over-expressed in non-small cell lung cancer and promotes cell migration and invasion in A549 cells over-expressing MSF

    SciTech Connect

    Deng, Xuefeng; Ma, Qunfeng; Zhang, Bo; Jiang, Hong; Zhang, Zhipei; Wang, Yunjie

    2013-10-15

    Migration-stimulating factor (MSF), an oncofetal truncated isoform of fibronectin, is a potent stimulator of cell invasion. However, its distribution and motogenic role in non-small cell lung cancer (NSCLC) have never been identified. In this study, real-time PCR and immunohistochemical staining (IHC) were performed to detect MSF mRNA and protein levels in tumor tissues and matched adjacent tumor-free tissues. Furthermore, to examine the effect of MSF on invasiveness, MSF was upregulated in A549 cells. The invasiveness and viability of A549 cells were then determined using a transwell migration assay and the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assays, respectively. The expression level of MSF in NSCLC tissue was markedly higher than in matched adjacent tumor-free tissue. Additionally, the level of MSF protein expression in stage III and IV NSCLC samples was higher than in stage I and II NSCLC samples. More importantly, we also demonstrated that migration and invasion of A549 cells increased substantially after upregulating MSF, although proliferation remained unchanged. Meanwhile, we found no correlation between increasing motility and invasiveness of MSF-overexpressing cells and expression levels and activities of matrix metalloprotease MMP-2 and MMP-9. Our current study shows that MSF plays a role in migration and invasion of A549 cells and suggests that MSF may be a potential biomarker of NSCLC progression. - Highlights: • MSF expression was upregulated in NSCLC and correlated with TNM stages. • MSF may be a new biomarker for NSCLC progression. • MSF promoted migration and invasion in A549 cells, independent of MMP-2/MMP-9 expression.

  8. Gene Expression Profile of the A549 Human Non-Small Cell Lung Carcinoma Cell Line following Treatment with the Seeds of Descurainia sophia, a Potential Anticancer Drug

    PubMed Central

    Park, Sung Joon; Bang, Ok-Sun

    2013-01-01

    Descurainia sophia has been traditionally used in Korean medicine for treatment of diverse diseases and their symptoms, such as cough, asthma, and edema. Our previous results showed that ethanol extract of the seeds of D. sophia (EEDS) has a potent cytotoxic effect on human cancer cells. In this study, we reveal the molecular events that are induced by EEDS treatment in A549 human lung cancer cells. The dose-dependent effect of EEDS on gene expression was measured via a microarray analysis. Gene ontology and pathway analyses were performed to identify functional involvement of genes regulated by EEDS. From gene expression analyses, two major dose-dependent patterns were observed after EEDS treatment. One pattern consisted of 1,680 downregulated genes primarily involved in metabolic processes (FDR < 0.01). The second pattern consisted of 1,673 upregulated genes primarily involved in signaling processes (FDR < 0.01). Pathway activity analyses revealed that the metabolism-related pathways and signaling-related pathways were regulated by the EEDS in dose-dependent and reciprocal manners. In conclusion, the identified biphasic regulatory mechanism involving activation of signaling pathways may provide molecular evidence to explain the inhibitory effect of EEDS on A549 cell growth. PMID:23935669

  9. Inhibitory Effects of Salinomycin on Cell Survival, Colony Growth, Migration, and Invasion of Human Non-Small Cell Lung Cancer A549 and LNM35: Involvement of NAG-1

    PubMed Central

    Arafat, Kholoud; Iratni, Rabah; Takahashi, Takashi; Parekh, Khatija; Al Dhaheri, Yusra; Adrian, Thomas E.; Attoub, Samir

    2013-01-01

    A major challenge for oncologists and pharmacologists is to develop more potent and less toxic drugs that will decrease the tumor growth and improve the survival of lung cancer patients. Salinomycin is a polyether antibiotic used to kill gram-positive bacteria including mycobacteria, protozoans such as plasmodium falciparum, and the parasites responsible for the poultry disease coccidiosis. This old agent is now a serious anti-cancer drug candidate that selectively inhibits the growth of cancer stem cells. We investigated the impact of salinomycin on survival, colony growth, migration and invasion of the differentiated human non-small cell lung cancer lines LNM35 and A549. Salinomycin caused concentration- and time-dependent reduction in viability of LNM35 and A549 cells through a caspase 3/7-associated cell death pathway. Similarly, salinomycin (2.5–5 µM for 7 days) significantly decreased the growth of LNM35 and A549 colonies in soft agar. Metastasis is the main cause of death related to lung cancer. In this context, salinomycin induced a time- and concentration-dependent inhibition of cell migration and invasion. We also demonstrated for the first time that salinomycin induced a marked increase in the expression of the pro-apoptotic protein NAG-1 leading to the inhibition of lung cancer cell invasion but not cell survival. These findings identify salinomycin as a promising novel therapeutic agent for lung cancer. PMID:23805285

  10. Molecular Mode of Action and Role of TP53 in the Sensitivity to the Novel Epothilone Sagopilone (ZK-EPO) in A549 Non-Small Cell Lung Cancer Cells

    PubMed Central

    Winsel, Sebastian; Sommer, Anette; Eschenbrenner, Julia; Mittelstaedt, Kevin; Klar, Ulrich; Hammer, Stefanie; Hoffmann, Jens

    2011-01-01

    Sagopilone, an optimized fully synthetic epothilone, is a microtubule-stabilizing compound that has shown high in vitro and in vivo activity against a broad range of human tumor models. We analyzed the differential mechanism of action of sagopilone in non-small cell lung cancer cell lines in vitro. Sagopilone inhibited proliferation of non-small cell lung cancer cell lines at lower nanomolar concentration. The treatment with sagopilone caused strong disturbances of cellular cytoskeletal organization. Two concentration-dependent phenotypes were observed. At 2.5 nM sagopilone or 4 nM paclitaxel an aneuploid phenotype occur whereas a mitotic arrest phenotype was induced by 40 nM sagopilone or paclitaxel. Interestingly, treatment with 2.5 nM of sagopilone effectively inhibited cell proliferation, but - compared to high concentrations (40 nM) - only marginally induced apoptosis. Treatment with a high versus a low concentration of sagopilone or paclitaxel regulates a non-overlapping set of genes, indicating that both phenotypes substantially differ from each other. Genes involved in G2/M phase transition and the spindle assembly checkpoint, like Cyclin B1 and BUBR1 were upregulated by treatment with 40 nM sagopilone. Unexpectedly, also genes involved in DNA damage response were upregulated under that treatment. In contrast, treatment of A549 cells with a low concentration of sagopilone revealed an upregulation of direct transcriptional target genes of TP53, like CDKN1A, MDM2, GADD45A, FAS. Knockdown of TP53, which inhibited the transcriptional induction of TP53 target genes, led to a significant increase in apoptosis induction in A549 cells when treated with a low concentration of sagopilone. The results indicate that activation of TP53 and its downstream effectors like CDKN1A by low concentrations of sagopilone is responsible for the relative apoptosis resistance of A549 cells and might represent a mechanism of resistance to sagopilone. PMID:21559393

  11. Cedrol induces autophagy and apoptotic cell death in A549 non-small cell lung carcinoma cells through the P13K/Akt signaling pathway, the loss of mitochondrial transmembrane potential and the generation of ROS.

    PubMed

    Zhang, Shi-Yi; Li, Xue-Bo; Hou, Sheng-Guang; Sun, Yao; Shi, Yi-Ran; Lin, Song-Sen

    2016-07-01

    The objective of the present study was to determine the anticancer effects of cedrol in A549 human non-small cell lung cancer cells by examining the effects of cedrol on apoptosis induction, the phosphatidylinositol 3'-kinase (PI3K)/Akt signaling pathway, autophagy, reactive oxygen species (ROS) generation and mitochondrial transmembrane potential (MTP). The anticancer effects of cedrol were examined using A549 human lung carcinoma cells as an in vitro model. Cell viability was determined using MTT and lactate dehydrogenase (LDH) assays, and an inverted phase contrast microscope was used to examine the morphological changes in these cells. Cedrol‑triggered autophagy was confirmed by transmission electron microscopy (TEM) analysis of the cells, as well as by western blot analysis of microtubule-associated protein light-chain 3 (LC3)B expression. Intracellular ROS generation was measured by flow cytometry using 5-(6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate (CM-DCFH2-DA) staining and MTP was measured using flow cytometry. The results demonstrated that cedrol reduced cell viability and induced cell apoptosis in a dose-dependent manner. Mechanistic evaluations indicated that cedrol induced apoptosis by reducing the MTP and by decreasing the levels of phosphorylated (p-)PI3K and p-Akt. Cedrol induced autophagy, which was confirmed by TEM analysis, by increasing intracellular ROS formation in a concentration-dependent manner, which was almost completely reversed by N-acetyl-L-cysteine (NAC) and tocopherol. Taken together, these findings reveal that cedrol inhibits cell proliferation and induces apoptosis in A549 cells through mitochondrial and PI3K/Akt signaling pathways. Our findings also reveal that cedrol induced pro-death autophagy by increasing intracellular ROS production. PMID:27177023

  12. The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line

    PubMed Central

    Xie, Jun; Liu, Jiahui; Liu, Heng; Liang, Shihui; Lin, Meigui; Gu, Yueyu; Liu, Taoli; Wang, Dongmei; Ge, Hui; Mo, Sui-lin

    2015-01-01

    The effects of tanshinone IIA on the proliferation of the human non-small cell lung cancer cell line A549 and its possible mechanism on the VEGF/VEGFR signal pathway were investigated. The exploration of the interaction between tanshinone IIA and its target proteins provides a feasible platform for studying the anticancer mechanism of active components of herbs. The CCK-8 assay was used to evaluate the proliferative activity of A549 cells treated with tanshinone IIA (2.5−80 μmol/L) for 24, 48 and 72 h, respectively. Flow cytometry was used for the detection of cell apoptosis and cell cycle perturbation. VEGF and VEGFR2 expression were studied by Western blotting. The binding mode of tanshinone IIA within the crystal structure of the VEGFR2 protein was evaluated with molecular docking analysis by use of the CDOCKER algorithm in Discovery Studio 2.1. The CCK-8 results showed that tanshinone IIA can significantly inhibit A549 cell proliferation in a dose- and time-dependent manner. Flow cytometry results showed that the apoptosis rate of tested group was higher than the vehicle control, and tanshinone IIA-treated cells accumulated at the S phase, which was higher than the vehicle control. Furthermore, the expression of VEGF and VEGFR2 was decreased in Western blot. Finally, molecular docking analysis revealed that tanshinone IIA could be stably docked into the kinase domain of VEGFR2 protein with its unique modes to form H-bonds with Cys917 and π–π stacking interactions with Val848. In conclusion, tanshinone IIA may suppress A549 proliferation, induce apoptosis and cell cycle arrest at the S phase. This drug may suppress angiogenesis by targeting the protein kinase domains of VEGF/VEGFR2. PMID:26713270

  13. Anti-proliferative and anti-angiogenic effects of CB2R agonist (JWH-133) in non-small lung cancer cells (A549) and human umbilical vein endothelial cells: an in vitro investigation.

    PubMed

    Vidinský, B; Gál, P; Pilátová, M; Vidová, Z; Solár, P; Varinská, L; Ivanová, L; Mojžíš, J

    2012-01-01

    Non-small cell lung cancer has one of the highest mortality rates among cancer-suffering patients. It is well known that the unwanted psychotropic effects of cannabinoids (CBs) are mediated via the CB(1) receptor (R), and selective targeting of the CB(2)R would thus avoid side effects in cancer treatment. Therefore, the aim of our study was to evaluate the effect of selective CB(2)R agonist, JWH-133, on A549 cells (non-small lung cancer) and human umbilical vein endothelial cells (HUVECs). Cytotoxicity assay and DNA fragmentation assay were employed to evaluate the influence of JWH-133 (3-(1,1-dimethylbutyl)- 1-deoxy-Δ8-tetrahydrocannabinol) on investigated cancer cells. In addition, migration assay and gelatinase zymography were performed in HUVECs to asses JWH-133 anti-angiogenic activity. Our study showed that JWH-133 exerted cytotoxic effect only at the highest concentration used (10(-4) mol/l), while inhibition of colony formation was also detected at the non-toxic concentrations (10(-5)-10(-8) mol/l). JWH-133 was also found to be able to induce weak DNA fragmentation in A549 cells. Furthermore, JWH-133 at non-toxic concentrations inhibited some steps in the process of angiogenesis. It significantly inhibited endothelial cell migration after 17 h of incubation at concentrations of 10(-4)-10(-6) mol/l. In addition, JWH-133 inhibited MMP-2 secretion as assessed by gelatinase zymography. The present study demonstrates the in vitro anti-proliferative and anti-angiogenic potential of CB(2)R agonist, JWH-133, in nonsmall lung cancer cells and HUVECs. Our results generate a rationale for further in vivo efficacy studies with this compound in preclinical cancer models. PMID:22578958

  14. Stellettin B Induces G1 Arrest, Apoptosis and Autophagy in Human Non-small Cell Lung Cancer A549 Cells via Blocking PI3K/Akt/mTOR Pathway

    PubMed Central

    Wang, Ran; Zhang, Qian; Peng, Xin; Zhou, Chang; Zhong, Yuxu; Chen, Xi; Qiu, Yuling; Jin, Meihua; Gong, Min; Kong, Dexin

    2016-01-01

    Until now, there is not yet antitumor drug with dramatically improved efficacy on non-small cell lung cancer (NSCLC). Marine organisms are rich source of novel compounds with various activities. We isolated stellettin B (Stel B) from marine sponge Jaspis stellifera, and demonstrated that it induced G1 arrest, apoptosis and autophagy at low concentrations in human NSCLC A549 cells. G1 arrest by Stel B might be attributed to the reduction of cyclin D1 and enhancement of p27 expression. The apoptosis induction might be related to the cleavage of PARP and increase of ROS generation. Moreover, we demonstrated that Stel B induced autophagy in A549 cells by use of various assays including monodansylcadaverine (MDC) staining, transmission electron microscopy (TEM), tandem mRFP-GFP-LC3 fluorescence microscopy, and western blot detection of the autophagy markers of LC3B, p62 and Atg5. Meanwhile, Stel B inhibited the expression of PI3K-p110, and the phosphorylation of PDK1, Akt, mTOR, p70S6K as well as GSK-3β, suggesting the correlation of blocking PI3K/Akt/mTOR pathway with the above antitumor activities. Together, our findings indicate the antitumor potential of Stel B for NSCLC by targeting PI3K/Akt/mTOR pathway. PMID:27243769

  15. The effect of sulforaphane on the cell cycle, apoptosis and expression of cyclin D1 and p21 in the A549 non-small cell lung cancer cell line.

    PubMed

    Żuryń, Agnieszka; Litwiniec, Anna; Safiejko-Mroczka, Barbara; Klimaszewska-Wiśniewska, Anna; Gagat, Maciej; Krajewski, Adrian; Gackowska, Lidia; Grzanka, Dariusz

    2016-06-01

    Sulforaphane (SFN) is present in plants belonging to Cruciferae family and was first isolated from broccoli sprouts. Chemotherapeutic and anticarcinogenic properties of sulforaphane were demonstrated, however, the underlying mechanisms are not fully understood. In this study we evaluated the expression of cyclin D1 and p21 protein in SFN-treated A549 cells and correlated these results with the extent of cell death and/or cell cycle alterations, as well as determined a potential contribution of cyclin D1 to cell death. A549 cells were treated with increasing concentrations of SFN (30, 60 and 90 µM) for 24 h. Morphological and ultrastructural changes were observed using light, transmission electron microscope and videomicroscopy. Image-based cytometry was applied to evaluate the effect of SFN on apoptosis and the cell cycle. Cyclin D1 and p21 expression was determined by flow cytometry, RT-qPCR and immunofluorescence. siRNA was used to evaluate the role of cyclin D1 in the process of suforaphane-induced cell death. We found that the percentage of cyclin D1-positive cells decreased after the treatment with SFN, but at the same time mean fluorescence intensity reflecting cyclin D1 content was increased at 30 µM SFN and decreased at 60 and 90 µM SFN. Percentage of p21-positive cells increased following the treatment, with the highest increase at 60 µM SFN, at which concentration mean fluorescence intensity of this protein was also significantly increased. The 30-µM dose of SFN induced an increased G2/M phase population along with a decreased polyploid fraction of cells, which implies a functional G2/M arrest. The major mode of cell death induced by SFN was necrosis and, to a lower degree apoptosis. Transfection with cyclin D1-siRNA resulted in significantly compromised fraction of apoptotic and necrotic cells, which suggests that cyclin D1 is an important determinant of the therapeutic efficiency of SFN in the A549 cells. PMID:27035641

  16. Timosaponin AIII inhibits migration and invasion of A549 human non-small-cell lung cancer cells via attenuations of MMP-2 and MMP-9 by inhibitions of ERK1/2, Src/FAK and β-catenin signaling pathways.

    PubMed

    Jung, Okkeun; Lee, Jongsung; Lee, Yu Jin; Yun, Jung-Mi; Son, Young-Jin; Cho, Jae Youl; Ryou, Chongsuk; Lee, Sang Yeol

    2016-08-15

    Timosaponin AIII (TAIII) is a type of steroidal saponins isolated from Anemarrhena asphodeloides. It was known to improve learning and memory deficits through anti-inflammatory effects. TAIII was also reported to induce autophagy preceding mitochondria-mediated apoptosis in HeLa cancer cells and inhibit the growth of human colorectal cancer cells, thus regarded as a potential candidate for anti-cancer agent. In this study, we verified apoptosis-inducing and cell-cycle-arresting effects of TAIII in A549 human non-small-cell lung cancer (NSCLC) cells. Then, we report that TAIII suppresses migration and invasion of A549 human NSCLC cells. We propose that two matrix metalloproteinases (MMPs), MMP-2 and MMP-9, which are well known to be involved in cancer-metastasis, are attenuated by the treatment of TAIII. TAIII exerts its suppressive effects on MMP-2 and MMP-9 via inhibitions of ERK1/2, Src/FAK and β-catenin signalings which are closely related with the regulations of MMP-2 and MMP-9. PMID:27422337

  17. Nucleolin regulates c-Jun/Sp1-dependent transcriptional activation of cPLA2alpha in phorbol ester-treated non-small cell lung cancer A549 cells.

    PubMed

    Tsou, Jen-Hui; Chang, Kwang-Yu; Wang, Wei-Chiao; Tseng, Joseph T; Su, Wu-Chou; Hung, Liang-Yi; Chang, Wen-Chang; Chen, Ben-Kuen

    2008-01-01

    The expression of cPLA2 is critical for transformed growth of non-small cell lung cancer (NSCLC). It is known that phorbol 12-myristate 13-acetate (PMA)-activated signal transduction pathway is thought to be involved in the oncogene action in NSCLC and enzymatic activation of cPLA2. However, the transcriptional regulation of cPLA2alpha in PMA-activated NSCLC is not clear. In this study, we found that PMA induced the mRNA level and protein expression of cPLA2alpha. In addition, two Sp1-binding sites of cPLA2alpha promoter were required for response to PMA and c-Jun overexpression. Small interfering RNA (siRNA) of c-Jun and nucleolin inhibited PMA induced the promoter activity and protein expression of cPLA2alpha. Furthermore, PMA stimulated the formation of c-Jun/Sp1 and c-Jun/nucleolin complexes as well as the binding of these transcription factor complexes to the cPLA2alpha promoter. Although Sp1-binding sites were required for the bindings of Sp1 and nucleolin to the promoter, the binding of nucleolin or Sp1 to the promoter was independent of each other. Our results revealed that c-Jun/nucleolin and c-Jun/Sp1 complexes play an important role in PMA-regulated cPLA2alpha gene expression. It is likely that nucleolin binding at place of Sp1 on gene promoter could also mediate the regulation of c-Jun/Sp1-activated genes. PMID:18025046

  18. Lung cancer - non-small cell

    MedlinePlus

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk depends on the number of cigarettes ...

  19. An important role for peroxiredoxin II in survival of A549 lung cancer cells resistant to gefitinib

    PubMed Central

    Kwon, Taeho; Kyung Rho, Jin; Cheol Lee, Jae; Park, Young-Ho; Shin, Hye-Jun; Cho, Sunwha; Kang, Yong-Kook; Kim, Bo-Yeon; Yoon, Do-Young; Yu, Dae-Yeul

    2015-01-01

    Redox adaptation is an important concept that explains the mechanisms by which cancer cells survive under persistent endogenous oxidative stress and become resistant to certain anticancer agents. To investigate this concept, we determined the expression levels of peroxiredoxins (Prxs), antioxidant enzymes in drug-resistant non-small cell lung carcinoma cells. Prx II was remarkably increased only in A549/GR (gefitinib-resistant) cells compared with A549 cells, consistent with methylation/demethylation. Prx II was highly methylated in the A549 cells but was demethylated in the A549/GR cells. The elevated expression of Prx II resulted in the downregulation of reactive oxygen species (ROS) and cell death and upregulation of cell cycle progression in the A549/GR cells. When Prx II mRNA in the A549/GR cells was knocked down, the levels of ROS and apoptosis were significantly recovered to the levels of the controls. In addition, signaling molecules involved in apoptosis were increased in the A549/GR-shPrx II cells. There was no difference in the expression of MAPK/ERK between the A549/GR cells and A549/GR-shPrx II cells, but the phosphorylation of JNK was increased in the A549/GR cells and was markedly decreased in the A549/GR-shPrx II cells. Colony number and tumor growth were significantly decreased in the A549/GR-shPrx II cells compared with the A549/GR cells. Our findings suggest that Prx II has an important role in cancer cell survival via the modulation of signaling molecules involved in apoptosis and the phosphorylation of JNK by the downregulation of ROS levels in A549/GR cells. PMID:26021759

  20. Lung cancer - non-small cell

    MedlinePlus

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk ... day and for how long you have smoked. Being around the smoke ...

  1. Hyperoside induces both autophagy and apoptosis in non-small cell lung cancer cells in vitro

    PubMed Central

    Fu, Ting; Wang, Ling; Jin, Xiang-nan; Sui, Hai-juan; Liu, Zhou; Jin, Ying

    2016-01-01

    Aim: Hyperoside (quercetin-3-O-β-D-galactopyranoside) is a flavonol glycoside found in plants of the genera Hypericum and Crataegus, which exhibits anticancer, anti-oxidant, and anti-inflammatory activities. In this study we investigated whether autophagy was involved in the anticancer mechanisms of hyperoside in human non-small cell lung cancer cells in vitro. Methods: Human non-small cell lung cancer cell line A549 was tested, and human bronchial epithelial cell line BEAS-2B was used for comparison. The expression of LC3-II, apoptotic and signaling proteins was measured using Western blotting. Autophagosomes were observed with MDC staining, LC3 immunocytochemistry, and GFP-LC3 fusion protein techniques. Cell viability was assessed using MTT assay. Results: Hyperoside (0.5, 1, 2 mmol/L) dose-dependently increased the expression of LC3-II and autophagosome numbers in A549 cells, but had no such effects in BEAS-2B cells. Moreover, hyperoside dose-dependently inhibited the phosphorylation of Akt, mTOR, p70S6K and 4E-BP1, but increased the phosphorylation of ERK1/2 in A549 cells. Insulin (200 nmol/L) markedly enhanced the phosphorylation of Akt and decreased LC3-II expression in A549 cells, which were reversed by pretreatment with hyperoside, whereas the MEK1/2 inhibitor U0126 (20 μmol/L) did not blocked hyperoside-induced LC3-II expression. Finally, hyperoside dose-dependently suppressed the cell viability and induced apoptosis in A549 cells, which were significantly attenuated by pretreatment with the autophagy inhibitor 3-methyladenine (2.5 mmol/L). Conclusion: Hyperoside induces both autophagy and apoptosis in human non-small cell lung cancer cells in vitro. The autophagy is induced through inhibiting the Akt/mTOR/p70S6K signal pathways, which contributes to anticancer actions of hyperoside. PMID:26948085

  2. Artesunate induces AIF-dependent apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Zhou, Chen-juan; Chen, Tong-Sheng

    2012-03-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  3. Chloroquine rescues A549 cells from paraquat-induced death.

    PubMed

    Xu, Lingjie; Wang, Zhong

    2016-04-01

    Paraquat (PQ) is a widely used herbicide associated with a high mortality rate, yet, there are no effective treatments for PQ poisoning. PQ may damage alveolar type II cells leading to moderate to severe acute respiratory distress syndrome (ARDS). The present study was undertaken to show that PQ causes alveolar type II (A549) cell death and to evaluate whether chloroquine (CQ) can protect A549 cells against PQ-induced cell death. The results showed that high concentrations of PQ resulted in toxicity, as indicated by a decrease in cell viability. More importantly, for the first time, CQ was found to improve cell viability of PQ treated A549 cells. Moreover, our data demonstrated that CQ increased lysosome-associated membrane protein-1, lysosome-associated membrane protein-2 and light chain-3 expressions, suggesting that the mechanism by which CQ rescues PQ-induced cytotoxicity may be through protection of the lysosomal membrane or up-regulation of autophagy. In conclusion, our study indicates that CQ may be used as a potential drug to rescue PQ-induced ARDS. PMID:26154125

  4. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    PubMed Central

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.

    2012-01-01

    Purpose Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of KrasG12D-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radio-sensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. PMID:23182391

  5. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    SciTech Connect

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.

  6. Sinomenine inhibits A549 human lung cancer cell invasion by mediating the STAT3 signaling pathway

    PubMed Central

    Jiang, Shulong; Gao, Yebo; Hou, Wei; Liu, Rui; Qi, Xin; Xu, Xia; Li, Jie; Bao, Yanju; Zheng, Honggang; Hua, Baojin

    2016-01-01

    Increasing evidence suggests that the failure of lung cancer treatment may occur as a result of tumor invasion and metastasis. Signal transducer and activator of transcription 3 (STAT3), an epithelial-mesenchymal transition-inducing transcription factor, is a key signaling molecule involved in the proliferation, apoptosis, invasion and metastasis of tumor cells. Sinomenine is an alkaloid compound with an antineoplastic potential against a variety of cancer cells. The aim of the present study was to assess the antitumor mechanisms of sinomenine in the A549 human lung cancer cell line. The results demonstrated that sinomenine manifested dose-dependent cytotoxicity and induced apoptosis in A549 cells. The protein expression of Janus kinase 2, STAT3, phosphorylated-STAT3, Snail, N-cadherin and vimentin decreased in sinomenine-treated cells, while E-cadherin protein expression increased. The regulation of STAT3, N-cadherin and E-cadherin by sinomenine was further confirmed by reverse transcription-quantitative polymerase chain reaction and immunofluorescent staining. It was demonstrated that sinomenine exerts inhibitory effects on A549 human lung cancer cell invasion, possibly through the inhibition of STAT3 signaling. These results provide a novel insight into the role of sinomenine in the treatment of non-small cell lung cancer. PMID:27446441

  7. Effect of taxol from Pestalotiopsis mangiferae on A549 cells-In vitro study.

    PubMed

    Kathiravan, Govindarajan; Sureban, Sripathi M

    2009-12-01

    Pestalotiopsis mangiferae Coelomycete fungi were used to examine the production of taxol. The taxol isolated from this fungus is biologically active against cancer cell lines were investigated for its antiproliferative activity in human Non Small Cell Lung Cancer A549 cells. The results showed that the methylene chloride extraction of Pestalotiopsis mangiferae inhibited the proliferation of A 549 cells as measured by MTT and Trypan blue assay. Flow cytometric analysis showed that methylene chloride extraction of Pestalotiopsis mangiferae blocked cell cycle progression in G0/G1 phase. In addition fungal taxol induced A549 cell apoptosis as determined by propidium iodide staining. Further the percentage of LDH release was increased at increasing concentrations which is a measure of cell death. The levels of sialic acid levels and DNA, RNA and protein levels were decreased after treatment with methylene chloride extraction of Pestalotiopsis mangiferae. We suggests that methylene chloride extraction of Pestalotiopsis mangiferae might be considered for future therapeutic application with further studies against lung cancer. PMID:25206246

  8. MiR-122 Induces Radiosensitization in Non-Small Cell Lung Cancer Cell Line

    PubMed Central

    Ma, Debin; Jia, Hui; Qin, Mengmeng; Dai, Wenjie; Wang, Tao; Liang, Erguang; Dong, Guofu; Wang, Zuojun; Zhang, Zhiyuan; Feng, Fan

    2015-01-01

    MiR-122 is a novel tumor suppresser and its expression induces cell cycle arrest, or apoptosis, and inhibits cell proliferation in multiple cancer cells, including non-small cell lung cancer (NSCLC) cells. Radioresistance of cancer cell leads to the major drawback of radiotherapy for NSCLC and the induction of radiosensitization could be a useful strategy to fix this problem. The present work investigates the function of miR-122 in inducing radiosensitization in A549 cell, a type of NSCLC cells. MiR-122 induces the radiosensitization of A549 cells. MiR-122 also boosts the inhibitory activity of ionizing radiation (IR) on cancer cell anchor-independent growth and invasion. Moreover, miR-122 reduced the expression of its targeted genes related to tumor-survival or cellular stress response. These results indicate that miR-122 would be a novel strategy for NSCLC radiation-therapy. PMID:26389880

  9. MiR-122 Induces Radiosensitization in Non-Small Cell Lung Cancer Cell Line.

    PubMed

    Ma, Debin; Jia, Hui; Qin, Mengmeng; Dai, Wenjie; Wang, Tao; Liang, Erguang; Dong, Guofu; Wang, Zuojun; Zhang, Zhiyuan; Feng, Fan

    2015-01-01

    MiR-122 is a novel tumor suppresser and its expression induces cell cycle arrest, or apoptosis, and inhibits cell proliferation in multiple cancer cells, including non-small cell lung cancer (NSCLC) cells. Radioresistance of cancer cell leads to the major drawback of radiotherapy for NSCLC and the induction of radiosensitization could be a useful strategy to fix this problem. The present work investigates the function of miR-122 in inducing radiosensitization in A549 cell, a type of NSCLC cells. MiR-122 induces the radiosensitization of A549 cells. MiR-122 also boosts the inhibitory activity of ionizing radiation (IR) on cancer cell anchor-independent growth and invasion. Moreover, miR-122 reduced the expression of its targeted genes related to tumor-survival or cellular stress response. These results indicate that miR-122 would be a novel strategy for NSCLC radiation-therapy. PMID:26389880

  10. Cytotoxic effects of natural and semisynthetic cucurbitacins on lung cancer cell line A549.

    PubMed

    Silva, Izabella Thaís; Geller, Fabiana Cristina; Persich, Lara; Dudek, Sabine Eva; Lang, Karen Luise; Caro, Miguel Soriano Balparda; Durán, Fernando Javier; Schenkel, Eloir Paulo; Ludwig, Stephan; Simões, Cláudia Maria Oliveira

    2016-04-01

    Cucurbitacins and their derivatives are triterpenoids that are found in various plant families, and are known for their pharmacological and biological activities, including anti-cancer effects. Lung cancer represents a major public health problem, with non-small-cell lung cancer (NSCLC) being the most frequent and aggressive type of lung cancer. The objective of this work was to evaluate four cucurbitacins (CUCs) for their cytotoxic activity, effects on apoptosis induction, cell cycle progression, anti-migratory, and anti-invasive effects on the human NSCLC cell line (A549 cells). Our findings showed that these CUCs could suppress human NSCLC cell growth in vitro through their effects on the PI3Kinase and MAPK pathways, which lead to programmed cell death induction, as well as inhibition of cell migration and cell invasion. Additionally, these effects culminate in apoptosis induction and G2/M cell cycle arrest by modulating cyclin B1 expression, and in the mitigation of strategic steps of lung cancer metastasis, including migration and invasion of A549 cells. These results suggest that two natural (DDCB and CB) and two novel semisynthetic derivatives of cucurbitacin B (ACB and DBCB) could be considered as promising compounds with antitumor potential. PMID:26780083

  11. COPD promotes migration of A549 lung cancer cells: the role of chemokine CCL21.

    PubMed

    Kuźnar-Kamińska, Barbara; Mikuła-Pietrasik, Justyna; Sosińska, Patrycja; Książek, Krzysztof; Batura-Gabryel, Halina

    2016-01-01

    Patients with COPD develop lung cancer more frequently than healthy smokers. At the same time, molecular mediators promoting various aspects of cancer cell progression are still elusive. In this report, we examined whether COPD can be coupled with increased migration of non-small-cell lung cancer cells A549 and, if so, whether this effect may be related to altered production and activity of chemokines CCL21, CXCL5, and CXCL12. The study showed that the migration of A549 cells through the polycarbonate membrane and basement membrane extract toward a chemotactic gradient elicited by serum from patients with COPD was markedly higher as compared with serum from healthy donors. The concentration of CCL21 and CXCL12, but not CXCL5, in serum from patients with COPD was also increased. Experiments in which CCL21- and CXCL12-dependent signaling was blocked revealed that increased migration of the cancer cells upon treatment with serum from patients with COPD was mediated exclusively by CCL21. Collectively, our results indicate that COPD may contribute to the progression of lung cancer via CCL21-dependent intensification of cancer cell migration. PMID:27307721

  12. Dihydroartemisinin inhibits cell proliferation via AKT/GSK3β/cyclinD1 pathway and induces apoptosis in A549 lung cancer cells

    PubMed Central

    Liao, Kui; Li, Juan; Wang, Zhiling

    2014-01-01

    Lung cancer is the most common cause of cancer-related death in the world. The main types of lung cancer are small cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC); non small cell lung carcinoma (NSCLC) includes squamous cell carcinoma (SCC), adenocarcinoma and large cell carcinoma, Non small cell lung carcinoma accounts for about 80% of the total lung cancer cases. Dihydroartemisinin (DHA) inhibits cell proliferation and induces apoptosis in several cancer cell lines. The effects of DHA on cell growth and proliferation in lung cancer cells remain to be elucidated. Here, we demonstrate that DHA inhibited cell proliferation in the A549 lung cancer cell line through suppression of the AKT/Gsk-3β/cyclin D1 signaling pathway. DHA significantly inhibited cell proliferation of A549 cells in a concentration and time dependent manner as determined by MTS assay. Flow cytometry analysis demonstrated that DHA treatment of A549 cells resulted in cell cycle arrest at the G1 phase, which correlated with apparent downregulation of both mRNA and protein levels of both PCNA and cyclin D1. These results suggest that DHA is a potential natural product for the treatment of lung cancer. PMID:25674233

  13. Silence of fibronectin 1 increases cisplatin sensitivity of non-small cell lung cancer cell line.

    PubMed

    Gao, Weiwei; Liu, Ying; Qin, Ruiling; Liu, Daijian; Feng, Qingqing

    2016-07-15

    Fibronectin 1 (FN1) is a member of the glycoprotein family which is widely expressed by multiple cell types and involved in cellular adhesion and migration processes. Recent studies have reported that FN1 might have a role in regulating chemoresistance in tumors. However, the regulation of FN1 on cisplatin resistance in non-small cell lung cancer (NSCLC) has not been investigated. The present study aims to illustrate the effect of FN1 on cisplatin resistance in NSCLC and explore potential mechanisms. In the present study, the mRNA and protein expression levels of FN1 were investigated by RT-PCR and Western blot analysis, respectively, and the 50% inhibitory concentration (IC50) value of cisplatin was measured by MTT assay. Apoptotic ratio and migration were determined using an annexin V-FITC/PI detection kit and a Transwell assay, respectively. The interaction between FN1 and integrin-β1 was evaluated by co-immunoprecipitation assay. The protein expression of β-catenin, cyclin D1 and c-myc were tested using Western blot analysis. The results showed that FN1 was more highly expressed in A549/DDP than in A549 cells, and significantly upregulated by cisplatin treatment in H1299 cells. Knockdown of FN1 reduced the IC50 value of cisplatin, inhibited cell migration and promoted apoptosis. FN1 and integrin-β1 protein directly interacted with each other both in A549 and A549/DDP cells. FN1 silencing suppressed the Wnt/β-catenin signaling pathway, and this effect was dampened by integrin-β1-blocking antibody. Taken together, our findings first suggest that FN1 plays a role in the development of cisplatin resistance in NSCLC, possibly by modulation of β-catenin signaling through interaction with integrin-β1 in NSCLC. PMID:27207836

  14. Ophiopogonin B induces apoptosis, mitotic catastrophe and autophagy in A549 cells.

    PubMed

    Chen, Meijuan; Guo, Yuanyuan; Zhao, Ruolin; Wang, Xiaoxia; Jiang, Miao; Fu, Haian; Zhang, Xu

    2016-07-01

    Ophiopogonin B (OP-B), a saponin compound isolated from Radix Ophiopogon japonicus, was verified to inhibit cell proliferation in numerous non-small cell lung cancer (NSCLC) cells in our previous study. However, the precise mechanisms of action have remained unclear. In the present study, we mainly investigated the effects of OP-B on adenocarcinoma A549 cells to further elaborate the underlying mechanisms of OP-B in different NSCLC cell lines. Detection by high content screening (HCS) and TUNEL assay verified that OP-B induced apoptosis in this cell line, while detection of Caspase-3, Bcl-2 and Bax showed that OP-B induced cell death was caspase and mitochondrial independent. Further experiments showed that OP-B induced cell cycle arrest in the S and G2/M phases by inhibiting the expression of Myt1 and phosphorylation of Histone H3 (Ser10), which resulted in mitotic catastrophe in the cells. Transmission electron microscopy (TEM) observation of cell micro-morphology combined with detection of Atgs by western blot analysis showed that OP-B induced autophagy in this cell line. Autophagy inhibition by the lysosome inhibitor CQ or Beclin1-siRNA knockdown both attenuated cell viability, demonstrated that autophagy also being the vital reason resulted in cell death. More importantly, the xenograft model using A549 cells provided further evidence of the inhibition of OP-B on tumor proliferation. Immunohistochemistry detection of LC3 and Tunel assay both verified that high dose of OP-B (75 mg/kg) induced autophagy and apoptosis in vivo, and western blot detection of p-Histone H3 (Ser10), Survivin and XIAP further indicated the molecular mechanism of OP-B in vivo. As our findings revealed, multiple types of cell death overlapped in OP-B treated A549 cells, it displayed multitarget characteristics of the compounds extracted from the Chinese herbal, which may be used as candidate anticancer medicine in clinic. PMID:27175570

  15. IL-6 promotes growth and epithelial-mesenchymal transition of CD133+ cells of non-small cell lung cancer

    PubMed Central

    Lee, Soo Ok; Yang, Xiaodong; Duan, Shanzhou; Tsai, Ying; Strojny, Laura R.; Keng, Peter; Chen, Yuhchyau

    2016-01-01

    We examined IL-6 effects on growth, epithelial-mesenchymal transition (EMT) process, and metastatic ability of CD133+ and CD133– cell subpopulations isolated from three non-small cell lung cancer (NSCLC) cell lines: A549, H157, and H1299. We developed IL-6 knocked-down and scramble (sc) control cells of A549 and H157 cell lines by lentiviral infection system, isolated CD133+ and CD133– sub-populations, and investigated the IL-6 role in self-renewal/growth of these cells. IL-6 showed either an inhibitory or lack of effect in modulating growth of CD133– cells depending on intracellular IL-6 levels, but there was higher self-renewal ability of IL-6 expressing CD133+ cells than IL-6 knocked down cells, confirming the promoter role of IL-6 in CD133+ cells growth. We then examined tumor growth of xenografts developed from CD133+ cells of A549IL-6si vs. A549sc cell lines. Consistently, there was retarded growth of tumors developed from A549IL-6si, CD133+ cells compared to tumors originating from A549sc, CD133+ cells. The effect of IL-6 in promoting CD133+ self-renewal was due to hedgehog (Hhg) and Erk signaling pathway activation and higher Bcl-2/Bcl-xL expression. We also investigated whether IL-6 regulates the EMT process of CD133− and CD133+ cells differently. Expression of the EMT/metastasis-associated molecules in IL-6 expressing cells was higher than in IL-6 knocked down cells. Together, we demonstrated dual roles of IL-6 in regulating growth of CD133– and CD133+ subpopulations of lung cancer cells and significant regulation of IL-6 on EMT/metastasis increase in CD133+ cells, not in CD133– cells. PMID:26675547

  16. Lentivirus-mediated gene silencing of NOB1 suppresses non-small cell lung cancer cell proliferation.

    PubMed

    Huang, Weiyi; Zhong, Weiqing; Xu, Jun; Su, Benhua; Huang, Guanghui; Du, Jiajun; Liu, Qi

    2015-09-01

    NIN/RPN12 binding protein 1 (NOB1p) encoded by NOB1 has been found to be an essential factor in 26S proteasome biogenesis which participates in protein degradation. However, the functions of NOB1 in non-small cell lung cancer cells are largely unknown. In the present study, lentivirus-mediated NOB1 shRNA transfection in two non-small cell lung cancer cell lines (A549 and H1299) was accomplished, as determined by fluorescence imaging. Downregulation of NOB1 expression was confirmed by real-time PCR and western blotting. NOB1 silencing resulted in a significant decline in the proliferation and colony formation capability of non-small cell lung cancer cells. Moreover, flow cytometry showed that A549 cells were arrested in the G0/G1 phase of the cell cycle after NOB1 suppression. Furthermore, depletion of NOB1 resulted in a significant decrease in CDK4 and cyclin D1 expression. These results suggest that NOB1 may act as an important regulator in non-small cell lung cancer growth and could be a therapeutic target of non‑small cell lung cancer. PMID:26178254

  17. ABCC4 is required for cell proliferation and tumorigenesis in non-small cell lung cancer

    PubMed Central

    Zhao, Xiaoting; Guo, Yinan; Yue, Wentao; Zhang, Lina; Gu, Meng; Wang, Yue

    2014-01-01

    Background Multidrug resistance protein 4 (MRP4), also known as ATP-cassette binding protein 4 (ABCC4), is a member of the MRP/ABCC subfamily of ATP-binding cassette transporters, which are capable of pumping a wide variety of drugs out of the cell. However, little is known about the function of ABCC4 in the proliferation of lung cancer cells. Methods ABCC4 mRNA and protein levels in lung cancer cell lines were measured by real-time polymerase chain reaction and Western blot, respectively. A lentivirus-mediated RNA interference technique was used to inhibit ABCC4 mRNA expression in A549 and 801D cells. The function of ABCC4 in cell growth was investigated by MTS and colony formation assays. The role of ABCC4 in cell cycle progression was evaluated by flow cytometry and Western blot analysis. ABCC4 mRNA levels in 30 pairs of tumors and corresponding matched adjacent normal tissues from non-small cell lung cancer patients were detected by real-time polymerase chain reaction. Results ABCC4 was highly expressed in lung cancer cell lines. ABCC4 expression was markedly downregulated in A549 and 801D cells using the RNA interference technique. Suppression of ABCC4 expression inhibited cell growth. The percentage of cells in G1 phase was increased when ABCC4 expression was suppressed. Phosphorylation of retinoblastoma protein was weakened, originating in the downregulation of ABCC4. ABCC4 mRNA was highly expressed in lung cancer tissue and lung cancer cell lines. Conclusion ABCC4 may play an important role in the control of A549 and 801D cell growth. ABCC4 is a potential target for lung cancer therapy. PMID:24591841

  18. Mast cells and histamine enhance the proliferation of non-small cell lung cancer cells.

    PubMed

    Stoyanov, Evgeniy; Uddin, Mohib; Mankuta, David; Dubinett, Steven M; Levi-Schaffer, Francesca

    2012-01-01

    Non-small cell lung cancer (NSCLC) is the most common form of lung cancer with an extremely low survival rate. It is characterized by a chronic inflammatory process with intense mast cell infiltrate that is associated with reduced survival. The aim of this study was to test the hypothesis that mast cells have an enhancing effect on NSCLC proliferation. To assess the tumor-promoting potential of mast cells, we used the human alveolar basal adenocarcinoma (A549) and the mouse Lewis lung carcinoma (LLC) cell lines, umbilical cord blood-derived mast cells (CBMC) and the mast cell-deficient mouse Sash model. The proliferation rate of A549/LLC cells was markedly increased by mast cells and histamine. Histamine proliferating activity was mediated via H(1), H(2) and H(4) receptors and caused ERK phosphorylation. LLC induced in Sash mice or in wild-type mice treated with the mast cell stabilizer nedocromil sodium displayed an accelerated growth (number of metastic colonies in the lungs, total lung area and lung/total mice weight ratio). In summary, we have shown a significant effect of mast cells and histamine in enhancing NSCLC/LLCX growth in vitro, while in a mouse LLC model in vivo we have found that mast cells are important negative regulators of cancer development. Therefore our results would indicate a pro-tumorogenic effect of the mast cells in vitro on established lung tumor cell lines, and anti-tumorogenic effect in mice at lung cancer induction. In conclusion, mast cell/anti-histamine targeted therapies should carefully consider this dual effect. PMID:21733595

  19. Differential response to ablative ionizing radiation in genetically distinct non-small cell lung cancer cells.

    PubMed

    Oweida, Ayman; Sharifi, Zeinab; Halabi, Hani; Xu, Yaoxian; Sabri, Siham; Abdulkarim, Bassam

    2016-04-01

    Stereotactic ablative radiotherapy (SABR) has emerged as a highly promising treatment for medically inoperable early-stage non-small cell lung cancer patients. Treatment outcomes after SABR have been excellent compared to conventional fractionated radiotherapy (CFRT). However, the biological determinants of the response to ablative doses of radiation remain poorly characterized. Furthermore, there's little data on the cellular and molecular response of genetically distinct NSCLC subtypes to radiation. We assessed the response of 3 genetically distinct lung adenocarcinoma cell lines to ablative and fractionated ionizing radiation (AIR and FIR). We studied clonogenic survival, cell proliferation, migration, invasion, apoptosis and senescence. We also investigated the effect of AIR and FIR on the expression of pro-invasive proteins, epithelial-to-mesenchymal transition (EMT), extracellular signal-regulated kinases (ERK1/2) and the transmembrane receptor cMET. Our findings reveal that AIR significantly reduced cell proliferation and clonogenic survival compared to FIR in A549 cells only. This differential response was not observed in HCC827 or H1975 cells. AIR significantly enhanced the invasiveness of A549 cells, but not HCC827 or H1975 cells compared to FIR. Molecular analysis of pathways involved in cell proliferation and invasion revealed that AIR significantly reduced phosphorylation of ERK1/2 and upregulated cMET expression in A549 cells. Our results show a differential proliferative and invasive response to AIR that is dependent on genetic subtype and independent of intrinsic radioresistance. Further examination of these findings in a larger panel of NSCLC cell lines and in pre-clinical models is warranted for identification of biomarkers of tumor response to AIR. PMID:27096542

  20. Carbon-Ion Beam Irradiation Effectively Suppresses Migration and Invasion of Human Non-Small-Cell Lung Cancer Cells

    SciTech Connect

    Akino, Yuichi; Teshima, Teruki Kihara, Ayaka; Kodera-Suzumoto, Yuko; Inaoka, Miho; Higashiyama, Shigeki; Furusawa, Yoshiya; Matsuura, Nariaki

    2009-10-01

    Purpose: Control of cancer metastasis is one of the most important issues in cancer treatment. We previously demonstrated that carbon particle irradiation suppresses the metastatic potential of cancer cells, and many studies have reported that photon irradiation promotes it. The purpose of this study was to investigate the effect of carbon beam on non-small-cell lung cancer (NSCLC) cell aggressiveness and gene expression. Methods and Materials: A549 (lung adenocarcinoma) and EBC-1 (lung squamous cell carcinoma) cells were treated with 290 MeV/nucleon carbon ion beam at the Heavy Ion Medical Accelerator in Chiba or with 4-MV X-ray at Osaka University. We tested proliferative, migratory, and invasive activities by cell proliferation assay, Boyden chamber assay, and Matrigel chemoinvasion assay, respectively. cDNA microarray and reverse transcription polymerase chain reaction were also performed to assess mRNA expression alteration. Results: X-irradiation increased cell proliferation of A549 cells at 0.5 Gy, whereas high-dose X-ray reduced migration and invasion of A549 cells. By contrast, carbon beam irradiation did not enhance proliferation, and it reduced the migration and invasion capabilities of both A549 and EBC-1 cells more effectively than did X-irradiation. Carbon beam irradiation induced alteration of various gene expression profiles differently from X-ray irradiation. mRNA expression of ANLN, a homologue of anillin, was suppressed to 60% levels of basal expression in carbon beam-irradiated A549 cells after 12 h. Conclusion: Carbon beam effectively suppresses the metastatic potential of A549 and EBC-1 cells. Carbon beam also has different effects on gene expressions, and downregulation of ANLN was induced only by carbon beam irradiation.

  1. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    PubMed

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells. PMID:25650339

  2. Irradiated human endothelial progenitor cells induce bystander killing in human non-small cell lung and pancreatic cancer cells.

    PubMed

    Turchan, William T; Shapiro, Ronald H; Sevigny, Garrett V; Chin-Sinex, Helen; Pruden, Benjamin; Mendonca, Marc S

    2016-08-01

    Purpose To investigate whether irradiated human endothelial progenitor cells (hEPC) could induce bystander killing in the A549 non-small cell lung cancer (NSCLC) cells and help explain the improved radiation-induced tumor cures observed in A549 tumor xenografts co-injected with hEPC. Materials and methods We investigated whether co-injection of CBM3 hEPC with A549 NSCLC cells would alter tumor xenograft growth rate or tumor cure after a single dose of 0 or 5 Gy of X-rays. We then utilized dual chamber Transwell dishes, to test whether medium from irradiated CBM3 and CBM4 hEPC would induce bystander cell killing in A549 cells, and as an additional control, in human pancreatic cancer MIA PaCa-2 cells. The CBM3 and CBM4 hEPC were plated into the upper Transwell chamber and the A549 or MIA PaCa-2 cells were plated in the lower Transwell chamber. The top inserts with the CBM3 or CBM4 hEPC cells were subsequently removed, irradiated, and then placed back into the Transwell dish for 3 h to allow for diffusion of any potential bystander factors from the irradiated hEPC in the upper chamber through the permeable membrane to the unirradiated cancer cells in the lower chamber. After the 3 h incubation, the cancer cells were re-plated for clonogenic survival. Results We found that co-injection of CBM3 hEPC with A549 NSCLC cells significantly increased the tumor growth rate compared to A549 cells alone, but paradoxically also increased A549 tumor cure after a single dose of 5 Gy of X-rays (p < 0.05). We hypothesized that irradiated hEPC may be inducing bystander killing in the A549 NSCLC cells in tumor xenografts, thus improving tumor cure. Bystander studies clearly showed that exposure to the medium from irradiated CBM3 and CBM4 hEPC induced significant bystander killing and decreased the surviving fraction of A549 and MIA PaCa-2 cells to 0.46 (46%) ± 0.22 and 0.74 ± 0.07 (74%) respectively (p < 0.005, p < 0.0001). In addition, antibody depletion

  3. Magnolol induces apoptosis via caspase-independent pathways in non-small cell lung cancer cells.

    PubMed

    Tsai, Jong-Rung; Chong, Inn-Wen; Chen, Yung-Hsiang; Hwang, Jhi-Jhu; Yin, Wei-Hsian; Chen, Hsiu-Lin; Chou, Shah-Hwa; Chiu, Chien-Chih; Liu, Po-Len

    2014-04-01

    Magnolol, a hydroxylated biphenyl agent isolated from herbal planet Magnolia officinalis, is a component of traditional Asian herbal teas. It has been reported to have anti-microbial, anti-inflammatory, and anti-cancer activity. Non-small cell lung cancer (NSCLC) cell lines (A549, H441 and H520) and normal human bronchial epithelial cells (HBECs) were used to evaluate the cytotoxic effect of magnolol. We show that magnolol inhibited cellular proliferation, increased DNA fragmentation, and decreased mitochondrial membrane potential in all NSCLC cells, but had no cytotoxic effect on HBECs. Magnolol triggered the release of pro-apoptotic proteins: Bid, Bax and cytochrome c from mitochondria, but did not activate the caspase-3, -8, and -9, suggesting that magnolol induces apoptosis of NSCLC cell lines via a caspase-independent pathway. The caspase-independent pathway is mediated through the activation of nuclear translocation of apoptosis-inducing factor, endonuclease G and cleaved poly(ADP-ribose) polymerase, which played important roles in mediating cell death. Furthermore, magnolol inhibited PI3K/AKT and ERK1/2 activity, but up-regulated p38 and JNK activity in A549 cell lines. The results of this study provided a basis for understanding and developing magnolol as a novel treatment of NSCLC. PMID:23943503

  4. [Grape seed proanthocyanidins inhibits the invasion and migration of A549 lung cancer cells].

    PubMed

    Zhou, Yehan; Ye, Xiufeng; Shi, Yao; Wang, Ke; Wan, Dan

    2016-02-01

    Objective To explore the effect of grape seed proanthocyanidins (GSPs) on the invasion and migration of A549 lung cancer cells and the underlying mechanism. Methods Trypan blue dye exclusion assay was used to determine the cytotoxic effect of varying doses of GSPs on the BEAS-2B normal human pulmonary epithelial cells. After treated with 0, 10, 20, 40, 80 μg/mL GSP, the proliferation of A549 cells was detected by MTT assay; the invasion and migration of A549 cells were determined by Transwell(TM) assay and scratch wound assay, respectively. The levels of epithelial growth factor receptor (EGFR), E-cadherin, N-cadherin in A549 cells treated with GSPs were detected by Western blotting. Results (0-40) μg/mL GSPs had no significant toxic effect on BEAS-2B cells, while 80 μg/mL GSPs had significant cytotoxicity to BEAS-2B cells. The proliferation of A549 cells was significantly inhibited within limited dosage in a dose-dependent manner, and the abilities of invasion and migration of A549 cells were also inhibited. Western blotting showed that the expression of EGFR and N-cadherin decreased, while E-cadherin increased after GSPs treatment. Conclusion GSPs could inhibit the abilities of proliferation, invasion and migration of A549 cells, which might be related to the dow-regulation of EGFR and N-cadherin and the up-regulation of E-cadherin. PMID:26927375

  5. Enrichment and characterization of cancer stem cells from a human non-small cell lung cancer cell line.

    PubMed

    Zhao, Changhong; Setrerrahmane, Sarra; Xu, Hanmei

    2015-10-01

    Tumor cells from the same origin comprise different cell populations. Among them, cancer stem cells (CSCs) have higher tumorigenicity. It is necessary to enrich CSCs to determine an effective way to suppress and eliminate them. In the present study, using the non-adhesive culture system, tumor spheres were successfully generated from human A549 non-small cell lung cancer (NSCLC) cell line within 2 weeks. Compared to A549 adherent cells, sphere cells had a higher self-renewal ability and increased resistance to cytotoxic drugs. Sphere cells were more invasive and expressed stem cell markers including octamer‑binding transcription factor 4 (Oct4) and sex-determining region Y-box 2 (Sox2) at high levels. CD133, a disputed marker of lung CSCs, was also upregulated. Tumor sphere cells showed higher tumorigenic ability in vivo, indicating that more CSCs were enriched in the sphere cells. More blood vessels were formed in the tumor generated by sphere cells suggesting the interaction between CSCs and blood vessel. A reliable model of enriching CSCs from the human A549 NSCLC cell line was established that was simple and cost-effective compared to other methods. PMID:26239272

  6. Overexpression of SAMD9 suppresses tumorigenesis and progression during non small cell lung cancer

    SciTech Connect

    Ma, Qing; Yu, Tao; Ren, Yao-Yao; Gong, Ting; Zhong, Dian-Sheng

    2014-11-07

    Highlights: • SAMD9 is down-regulated in human non-small cell lung cancer (NSCLC). • Knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro. • Overexpression of SAMD9 suppressed proliferation and invasion in A549 cells in vitro. • Depletion of SAMD9 increases tumor formation in vivo. - Abstract: The Sterile Alpha Motif Domain-containing 9 (SAMD9) gene has been recently emphasized during the discovery that it is expressed at a lower level in aggressive fibromatosis and some cases of breast and colon cancer, however, the underlying mechanisms are poorly understood. Here, we found that SAMD9 is down-regulated in human non-small cell lung cancer (NSCLC). Furthermore, knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro and overexpression of SAMD9 suppressed proliferation and invasion in A549 cells. Finally, depletion of SAMD9 increases tumor formation in vivo. Our results may provide a strategy for blocking NSCLC tumorigenesis and progression.

  7. Polymeric Nanoparticles Containing Taxanes Enhance Chemoradiotherapeutic Efficacy in Non-small Cell Lung Cancer

    SciTech Connect

    Jung, Joohee; Park, Sung-Jin; Chung, Hye Kyung; Kang, Hye-Won; Lee, Sa-Won; Seo, Min Hyo; Park, Heon Joo; Song, Si Yeol; Jeong, Seong-Yun; Choi, Eun Kyung

    2012-09-01

    Purpose: To reduce the side effects and improve the efficacy of chemoradiation therapy, taxanes were incorporated into polymeric nanoparticles (PNP), and their synergic effect on radiation therapy in non-small cell lung cancer was evaluated. Methods and Materials: The properties of PNP-taxanes were characterized by transmission electron microscopy and dynamic light scattering. The chemoradiotherapeutic efficacy of PNP-taxanes was determined by clonogenic assay, cellular morphology, and flow cytometry in A549 cells. In mice bearing A549-derived tumors, the tumor growth delay was examined after the treatment of PNP-taxanes and/or ionizing radiation (IR). Results: The PNP-taxanes were found to be approximately 45 nm in average diameter and to have high solubility in water. They showed the properties of active internalization into cells and preserved the anticancer effect of free taxanes. The survival fraction of A549 cells by clonogenic assay was significantly reduced in the group receiving combined treatment of PNP-taxanes and IR. In addition, in vivo radiotherapeutic efficacy was markedly enhanced by the intravenous injection of PNP-taxanes into the xenograft mice. Conclusions: We have demonstrated the feasibility of PNP-taxanes to enhance the efficacy of chemoradiation therapy. These results suggest PNP-taxanes can hold an invaluable and promising position in treating human cancers as a novel and effective chemoradiation therapy agent.

  8. Copper oxide nanoparticles induce autophagic cell death in A549 cells.

    PubMed

    Sun, Tingting; Yan, Yiwu; Zhao, Yan; Guo, Feng; Jiang, Chengyu

    2012-01-01

    Metal oxide nanoparticles (NPs) are among the most highly produced nanomaterials, and have many diverse functions in catalysis, environmental remediation, as sensors, and in the production of personal care products. In this study, the toxicity of several widely used metal oxide NPs such as copper oxide, silica, titanium oxide and ferric oxide NPs, were evaluated In vitro. We exposed A549, H1650 and CNE-2Z cell lines to metal oxide NPs, and found CuO NPs to be the most toxic, SiO2 mild toxic, while the other metal oxide NPs had little effect on cell viability. Furthermore, the autophagic biomarker LC3-II significantly increased in A549 cells treated with CuO NPs, and the use of the autophagy inhibitors wortmannin and 3-methyladenin significantly improved cell survival. These results indicate that the cytoxicity of CuO NPs may involve the autophagic pathway in A549 cells. PMID:22916263

  9. A novel small molecule, Rosline, inhibits growth and induces caspase-dependent apoptosis in human lung cancer cells A549 through a reactive oxygen species-dependent mechanism.

    PubMed

    Zhao, Ting; Feng, Yang; Jin, Wenling; Pan, Hui; Li, Haizhou; Zhao, Yang

    2016-06-01

    Chemical screening using synthetic small molecule libraries has provided a huge amount of novel active molecules. It generates lead compound for drug development and brings focus on molecules for mechanistic investigations on many otherwise intangible biological processes. In this study, using non-small cell lung cancer cell A549 to screen against a structurally novel and diverse synthetic small molecule library of 2,400 compounds, we identified a molecule named rosline that has strong anti-proliferation activity on A549 cells with a 50% cell growth inhibitory concentration (IC50 ) of 2.87 ± 0.39 µM. We showed that rosline treatment increased the number of Annexin V-positive staining cell, as well as G2/M arrest in their cell cycle progression. Further, we have demonstrated that rosline induces a decrease of mitochondrial membrane potential (Δφm ) and an increase of caspases 3/7 and 9 activities in A549 cells, although having no effect on the activity of caspase 8. Moreover, we found that rosline could induce the production of reactive oxygen species (ROS) and inhibit the phosphorylation of signaling molecule Akt in A549 cells. Alternatively, an antioxidant N-acetyl-L-cysteine (NAC) significantly attenuated rosline's effects on the mitochondrial membrane potential, caspases 3/7 and 9 activities, cell viabilities and the phosphorylation of Akt. Our results demonstrated that ROS played an important role in the apoptosis of A549 cells induced by rosline. PMID:27006094

  10. Integrin alpha 11 regulates IGF2 expression in fibroblasts to enhance tumorigenicity of human non-small-cell lung cancer cells.

    PubMed

    Zhu, Chang-Qi; Popova, Svetlana N; Brown, Ewan R S; Barsyte-Lovejoy, Dalia; Navab, Roya; Shih, Warren; Li, Ming; Lu, Ming; Jurisica, Igor; Penn, Linda Z; Gullberg, Donald; Tsao, Ming-Sound

    2007-07-10

    Integrin alpha11 (ITGA11/alpha11) is localized to stromal fibroblasts and commonly overexpressed in non-small-cell lung carcinoma (NSCLC). We hypothesized that stromal alpha11 could be important for the tumorigenicity of NSCLC cells. SV40 immortalized mouse embryonic fibroblasts established from wild-type (WT) and Itga11-deficient [knockout (KO)] mice were tested for their tumorigenicity in immune-deficient mice when implanted alone or coimplanted with the A549 human lung adenocarcinoma cells. A549 coimplanted with the fibroblasts showed a markedly enhanced tumor growth rate compared with A549, WT, or KO, which alone formed only small tumors. Importantly, the growth was significantly greater for A549+WT compared with A549+KO tumors. Reexpression of human alpha11 cDNA in KO cells rescued a tumor growth rate to that comparable with the A549+WT tumors. These findings were validated in two other NSCLC cell lines, NCI-H460 and NCI-H520. Gene expression profiling indicated that IGF2 mRNA expression level was >200 times lower in A549+KO compared with A549+WT tumors. Stable short-hairpin RNA (shRNA) down-regulation of IGF2 in WT (WT(shIGF2)) fibroblasts resulted in a decreased growth rate of A549+WT(shIGF2), compared with A549+WT tumors. The results indicate that alpha11 is an important stromal factor in NSCLC and propose a paradigm for carcinoma-stromal interaction indirectly through interaction between the matrix collagen and stromal fibroblasts to stimulate cancer cell growth. PMID:17600088

  11. Ocimum gratissimum Aqueous Extract Induces Apoptotic Signalling in Lung Adenocarcinoma Cell A549

    PubMed Central

    Chen, Han-Min; Lee, Mu-Jang; Kuo, Cheng-Yi; Tsai, Pei-Lin; Liu, Jer-Yuh; Kao, Shao-Hsuan

    2011-01-01

    Ocimum gratissimum (OG) is widely used as a traditional herb for its antibacterial activity in Taiwan. Recently, antitumor effect of OG on breast cancer cell is also reported; however, the effects of OG on human pulmonary adenocarcinoma cell A549 remain unclear. Therefore, we aimed to investigate whether aqueous OG extract (OGE) affects viability of A549 cells and the signals induced by OGE in A549 cells. Cell viability assays revealed that OGE significantly and dose-dependently decreased the viability of A549 cell but not that of BEAS-2B cell. Morphological examination and DAPI staining indicated that OGE induced cell shrinkage and DNA condensation for A549 cells. Further investigation showed that OGE enhanced activation of caspase-3, caspase-9 and caspase-8 and increased protein level of Apaf-1 and Bak, but diminished the level of Bcl-2. Additionally, OGE inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) yet enhanced the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAP kinase (p38). In conclusion, our findings indicate that OGE suppressed the cell viability of A549 cells, which may result from the activation of apoptotic signaling and the inhibition of anti-apoptotic signaling, suggesting that OGE might be beneficial to lung carcinoma treatment. PMID:20953389

  12. β-Elemonic acid inhibits the cell proliferation of human lung adenocarcinoma A549 cells: The role of MAPK, ROS activation and glutathione depletion.

    PubMed

    Wu, Tsu-Tuan; Lu, Chien-Lin; Lin, Hen-I; Chen, Bing-Fang; Jow, Guey-Mei

    2016-01-01

    β-elemonic acid, a known triterpene, exhibits anti-inflammatory effects, yet research on the pharmacological effects of β-elemonic acid is rare. We investigated the anticancer effects and the related molecular mechanisms of β-elemonic acid on human non-small cell lung cancer (NSCLC) A549 cells. The effects of β-elemonic acid on the growth of A549 cells were studied using a 3-(4,5)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected using Annexin V staining. The effect of β-elemonic acid on the cell cycle of A549 cells was assessed using the propidium iodide method. The change in reactive oxygen species (ROS) was detected using a dichlorodihydrofluorescein diacetate (DCFH-DA) assay with microscopic examination. The expression levels of Bcl-2 family proteins, mitogen-activated protein kinase (MAPK) family proteins and cyclooxygenase 2 (COX-2) were detected using western blot analysis. Our data revealed that β-elemonic acid strongly induced human A549 lung cancer cell death in a dose- and time-dependent manner as determined by the MTT assay. β-elemonic acid-induced cell death was considered to be apoptotic when the phosphatidylserine exposure was observed using Annexin V staining. The death of human A549 lung cancer cells was caused by apoptosis induced by activation of ROS activity, increase in the sub-G1 proportion, downregulation of Bcl-2 expression, upregulation of Bax expression and inhibition of the MAPK signaling pathways. These results clearly demonstrated that β-elemonic acid inhibits proliferation by inducing hypoploid cells and cell apoptosis. Moreover, the anticancer effects of β-elemonic acid were related to the MAPK signaling pathway, ROS activation and glutathione depletion in human A549 lung cancer cells. PMID:26530631

  13. General Information about Non-Small Cell Lung Cancer

    MedlinePlus

    ... most patients with non-small cell lung cancer, current treatments do not cure the cancer. If lung ... professional versions have detailed information written in technical language. The patient versions are written in easy-to- ...

  14. Dichloroacetate alters Warburg metabolism, inhibits cell growth, and increases the X-ray sensitivity of human A549 and H1299 NSC lung cancer cells.

    PubMed

    Allen, Kah Tan; Chin-Sinex, Helen; DeLuca, Thomas; Pomerening, Joseph R; Sherer, Jeremy; Watkins, John B; Foley, John; Jesseph, Jerry M; Mendonca, Marc S

    2015-12-01

    We investigated whether altering Warburg metabolism (aerobic glycolysis) by treatment with the metabolic agent dichloroacetate (DCA) could increase the X-ray-induced cell killing of the radiation-resistant human non-small-cell lung cancer (NSCLC) cell lines A549 and H1299. Treatment with 50mM DCA decreased lactate production and glucose consumption in both A549 and H1299, clear indications of attenuated aerobic glycolysis. In addition, we found that DCA treatment also slowed cell growth, increased population-doubling time, and altered cell cycle distribution. Furthermore, we report that treatment with 50mM DCA significantly increased single and fractionated X-ray-induced cell killing of A549 and H1299 cells. Assay of DNA double-strand break repair by neutral comet assays demonstrated that DCA inhibited both the fast and the slow kinetics of X-ray-induced DSB repair in both A549 and H1299 NSCL cancer cells. Taken together the data suggest a correlation between an attenuated aerobic glycolysis and enhanced cytotoxicity and radiation-induced cell killing in radiation-resistant NSCLC cells. PMID:26393423

  15. Radiation-Induced Bystander Effects in A549 Cells Exposed to 6 MV X-rays.

    PubMed

    Yang, Shuning; Xu, Jing; Shao, Weixian; Geng, Chong; Li, Jia; Guo, Feng; Miao, Hui; Shen, Wenbin; Ye, Tao; Liu, Yazhou; Xu, Haiting; Zhang, Xuguang

    2015-07-01

    The aim of the study is to explore the bystander effects in A549 cells that have been exposed to 6MV X-ray. Control group, irradiated group, irradiated conditioned medium (ICM)-received group, and fresh medium group were designed in this study. A549 cells in the logarithmic growth phase were irradiated with 6MV X-ray at 0, 0.5, 1, 1.5, and 2. In ICM-received group, post-irradiation A549 cells were cultured for 3 h and were transferred into non-irradiated A549 cells for further cultivation. Clone forming test was applied to detect the survival fraction of cells. Annexin V-FITC/PI double-staining assay was used to detect the apoptosis of A549 cells 24, 48, 72, and 96 h after 2-Gy 6MV X-ray irradiation, and the curves of apoptosis were drawn. The changes in the cell cycles 4, 48, 72, and 96 h after 2-Gy 6MV X-ray irradiation were detected using PI staining flow cytometry. With the increase of irradiation dose, the survival fraction of A549 cells after the application of 0.5 Gy irradiation was decreasing continuously. In comparison to the control group, the apoptosis rate of the ICM-received group was increased in a time-dependent pattern, with the highest apoptosis rate observed at 72 h (p < 0.05). Cell count in G2/M stages was obviously increased compared with that of the control group (p < 0.05), with the highest count observed at 72 h, after which G2/M stage arrest was diminished. ICM can cause apparent A549 cell damage, indicating that 6MV X-ray irradiation can induce bystander effect on A549 cells, which reaches a peak at 72 h. PMID:25686868

  16. Pazopanib diminishes non-small cell lung cancer (NSCLC) growth and metastases in vivo

    PubMed Central

    Zhao, Honglin; Yang, Fan; Shen, Wang; Wang, Yuli; Li, Xuebing; You, Jiacong; Zhou, Qinghua

    2015-01-01

    Background Anti-angiogenesis has been demonstrated to have a critical role in lung cancer pathogenesis. Here, we characterized the effect of the small-molecule angiogenesis inhibitor pazopanib on non-small cell lung cancer (NSCLC) cells. Methods NSCLC cells were tested for viability and migration after incubation with varying concentrations of pazopanib. Further, the phosphorylation status of extracellular signal-regulated kinase, protein kinase B, and MEK were assessed in vitro. For in vivo testing, mice grafted with NSCLC cell lines L9981 and A549 were treated orally with pazopanib. Results Pazopanib inhibits signaling pathways in tumor cells, thus blocking NSCLC cell growth and migration in vitro and inducing tumor cell arrest at G0/G1 phase. We show that pazopanib could inhibit tumor cell growth, decrease metastases, and prolong survival in two mouse xenograft models of human NSCLC. Conclusion These preclinical studies of pazopanib show the possibility of clinical application and, ultimately, improvement in patient outcome. PMID:26273349

  17. Gene expression profiling of cancer stem cell in human lung adenocarcinoma A549 cells

    PubMed Central

    Seo, Dong-Cheol; Sung, Ji-Min; Cho, Hee-Jung; Yi, Hee; Seo, Kun-Ho; Choi, In-Soo; Kim, Dong-Ku; Kim, Jin-Suk; El-Aty AM, Abd; Shin, Ho-Chul

    2007-01-01

    Background The studies on cancer-stem-cells (CSCs) have attracted so much attention in recent years as possible therapeutic implications. This study was carried out to investigate the gene expression profile of CSCs in human lung adenocarcinoma A549 cells. Results We isolated CSCs from A549 cell line of which side population (SP) phenotype revealed several stem cell properties. After staining the cell line with Hoechst 33342 dye, the SP and non-side population (non-SP) cells were sorted using flow cytometric analysis. The mRNA expression profiles were measured using an Affymetrix GeneChip® oligonucleotide array. Among the sixty one differentially expressed genes, the twelve genes inclusive three poor prognostic genes; Aldo-keto reductase family 1, member C1/C2 (AKR1C1/C2), Transmembrane 4 L six family member 1 nuclear receptor (TM4SF1), and Nuclear receptor subfamily 0, group B, member 1 (NR0B1) were significantly up-regulated in SP compared to non-SP cells. Conclusion This is the first report indicating the differences of gene expression pattern between SP and non-SP cells in A549 cells. We suggest that the up-regulations of the genes AKR1C1/C2, TM4SF1 and NR0B1 in SP of human adenocarcinoma A549 cells could be a target of poor prognosis in anti-cancer therapy. PMID:18034892

  18. Isolinderalactone inhibits proliferation of A549 human non‑small cell lung cancer cells by arresting the cell cycle at the G0/G1 phase and inducing a Fas receptor and soluble Fas ligand-mediated apoptotic pathway.

    PubMed

    Chang, Wei-An; Lin, En-Shyh; Tsai, Ming-Ju; Huang, Ming-Shyan; Kuo, Po-Lin

    2014-05-01

    Lung cancer is currently the leading cause of cancer-related mortality worldwide. In Taiwan, lung cancer is also the type of malignancy that is the major cause of cancer-mortality. Investigating the mechanism of apoptosis of lung cancer cells is important in the treatment of lung cancer. In the present study, isolinderalactone was demonstrated to exhibit anticancer effects in A549 human non-small cell lung cancer cells. The effect of isolinderalactone on apoptosis, cell cycle distribution p21 levels and the Fas receptor and soluble Fas ligand (sFasL) were assayed in order to determine the mechanism underlying the anticancer effect of isolinderalactone. It was demonstrated that isolinderalactone may induce p21 expression and then cause the cell cycle arrest of A549 cells. The data of the present study also revealed that the Fas/sFasL apoptotic system is significant in the mechanism of isolinderalactone‑induced apoptosis of A549 cells. These novel findings demonstrated that isolinderalactone may cause the cell cycle arrest of A549 cells by induction of p21, and induce apoptosis of A549 human non-small-cell lung carcinoma cells through the Fas/sFasL apoptotic system. PMID:24604009

  19. Negative regulation of mTOR activity by LKB1-AMPK signaling in non-small cell lung cancer cells

    PubMed Central

    Dong, Li-xia; Sun, Lin-lin; Zhang, Xia; Pan, Li; Lian, Lin-juan; Chen, Zhe; Zhong, Dian-sheng

    2013-01-01

    Aim: To investigate the role of LKB1 in regulation of mTOR signaling in non-small cell lung cancer (NSCLC) cells. Methods: LKB1 protein expression and phosphorylation of AMPK, 4E-BP1 and S6K in the cells were assessed using Western blotting in various NSCLC cell lines (A549, H460, H1792, Calu-1 and H1299). Energy stress was mimicked by treating the cells with 2-deoxyglucose (2-DG). Compound C was used to inhibit AMPK activity. Cell growth was measured using the MTS assay. Results: LKB1 protein was expressed in LKB1 wild-type Calu-1, H1299 and H1792 cells, but it was undetected in LKB1 mutant A549 and H460 cells. Treatment of the LKB1 wild-type cells with 2-DG (5, 10 and 25 mmol/L) augmented the phosphorylation of AMPK in dose- and time-dependent manners. In the LKB1 wild-type cells, 2-DG dramatically suppressed the phosphorylation of two mTOR targets, 4E-BP1 and S6K, whereas the LKB1 mutant A549 and H460 cells were highly resistant to 2-DG-induced inhibition on mTOR activity. In addition, stable knockdown of LKB1 in H1299 cells impaired 2-DG-induced inhibition on mTOR activity. Pretreatment of H1299 and H1792 cells with the AMPK inhibitor compound C (10 μmol/L) blocked 2-DG-induced inhibition on mTOR activity. 2-DG inhibited the growth of H1299 cells more effectively than that of H460 cells; stable knockdown of LKB1 in H1299 cells attenuated the growth inhibition caused by 2-DG. Conclusion: In non-small cell lung cancer cells, LKB1/AMPK signaling negatively regulates mTOR activity and contributes to cell growth inhibition in response to energy stress. PMID:23178462

  20. FOXD3 suppresses tumor growth and angiogenesis in non-small cell lung cancer.

    PubMed

    Yan, Jun-Hai; Zhao, Chun-Liu; Ding, Lan-Bao; Zhou, Xi

    2015-10-01

    The transcription factor forkhead box D3 (FOXD3), widely studied as a transcriptional repressor in embryogenesis, participates in the carcinogenesis of many cancers. However, the expression pattern and role of FOXD3 in non-small cell lung cancer (NSCLC) have not been well characterized. We report that FOXD3 is significantly downregulated in NSCLC cell lines and clinical tissues. FOXD3 overexpression significantly inhibits cell growth and results in G1 cell cycle arrest in NSCLC A549 and H1299 cells. In a xenograft tumor model, FOXD3 overexpression inhibits tumor growth and angiogenesis. Remarkably, expression of vascular endothelial growth factor (VEGF) was reduced in FOXD3 overexpression models both in vitro and in vivo. These findings suggest that FOXD3 plays a potential tumor suppressor role in NSCLC progression and represents a promising clinical prognostic marker and therapeutic target for this disease. PMID:26341266

  1. Curcumin-ER Prolonged Subcutaneous Delivery for the Treatment of Non-Small Cell Lung Cancer.

    PubMed

    Ranjan, Amalendu P; Mukerjee, Anindita; Gdowski, Andrew; Helson, Lawrence; Bouchard, Annie; Majeed, Muhammed; Vishwanatha, Jamboor K

    2016-04-01

    Non-small-cell lung cancer therapy is a challenge due to poor prognosis and low survival rate. There is an acute need for advanced therapies having higher drug efficacy, low immunogenicity and fewer side effects which will markedly improve patient compliance and quality of life of cancer patients. The purpose of this study was to develop a novel hybrid curcumin nanoformulation (Curcumin-ER) and evaluate the therapeutic efficacy of this formulation on a non-small cell lung cancer xenograft model. Use of curcumin, a natural anticancer agent, is majorly limited due to its poor aqueous solubility and hence it's low systemic bioavailability. In this paper, we carried out the nanoformulation of Curcumin-ER, optimized the formulation process and determined the anticancer effects of Curcumin-ER against human A549 non-small cell lung cancer using in vitro and in vivo studies. Xenograft tumors in nude mice were treated with 20 mg/kg subcutaneous injection of Curcumin-ER and liposomal curcumin (Lipocurc) twice a week for seven weeks. Results showed that tumor growth was suppressed by 52.1% by Curcumin-ER treatment and only 32.2% by Lipocurc compared to controls. Tumor sections were isolated from murine xenografts and histology and immunohistochemistry was performed. A decrease in expression of NFκB-p65 subunit and proliferation marker, Ki-67 was observed in treated tumors. In addition, a potent anti-angiogenic effect, characterized by reduced expression of annexin A2 protein, was observed in treated tumors. These results establish the effectiveness of Curcumin-ER in regressing human non-small cell lung cancer growth in the xenograft model using subcutaneous route of administration. The therapeutic efficacy of Curcumin-ER highlights the potential of this hybrid nanoformulation in treating patients with non-small cell lung cancer. PMID:27301194

  2. X-Radiation Induces Non-Small-Cell Lung Cancer Apoptosis by Upregulation of Axin Expression

    SciTech Connect

    Han Yang; Wang Yan; Xu Hongtao; Yang Lianhe; Wei Qiang; Liu Yang; Zhang Yong; Zhao Yue; Dai Shundong; Miao Yuan; Yu Juanhan; Zhang Junyi; Li, Guang; Yuan Ximing; Wang Enhua

    2009-10-01

    Purpose: Axis inhibition (Axin) is an important negative regulator of the Wnt pathway. This study investigated the relationship between Axin expression and sensitivity to X-rays in non-small-cell lung cancer (NSCLC) to find a useful indicator of radiosensitivity. Methods and Materials: Tissue from NSCLC patients, A549 cells, and BE1 cells expressing Axin were exposed to 1-Gy of X-radiation. Axin and p53 expression levels were detected by immunohistochemistry and reverse transcription-PCR. Apoptosis was determined by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) assay and FACS (fluorescence-activate cell sorter) analysis. Caspase-3 activity was determined by Western blotting. Phospho-JNK expression was determined by immunofluorescence. Results: The expression of Axin was significantly lower in NSCLC tissues than in normal lung tissues (p < 0.05). Axin expression correlates with differentiation, TNM staging, and lymph node metastasis of NSCLC (p < 0.05). Its expression negatively correlates with the expression of p53(mt) (p=0.000) and positively correlates with apoptosis (p=0.002). The prognosis of patients with high expression of Axin was better than those with low expression. X-radiation increases Axin expression in NSCLC tissue, and caspase-3 is significantly higher in samples in which Axin is increased (p < 0.05). Both X-radiation and Axin induce apoptosis of A549 and BE1 cells; however, the combination of the two enhances the apoptotic effect (p < 0.05). In A549 cells, inhibition of p53 blocks Axin-induced apoptosis, whereas in BE1 cells, the JNK pathway is required. Conclusions: Axin induces the p53 apoptotic pathway in cells where this pathway is intact; however, in cells expressing p53(mt), Axin induces apoptosis via the JNK pathway. Elevated Axin expression following X-ray exposure is a reliable indicator for determining the radiosensitivity of NSCLC.

  3. Induction of the endoplasmic reticulum stress and autophagy in human lung carcinoma A549 cells by anacardic acid.

    PubMed

    Seong, Yeong-Ae; Shin, Pyung-Gyun; Yoon, Jin-Soo; Yadunandam, Anandam Kasin; Kim, Gun-Do

    2014-03-01

    Anacardic acid (AA, 2-hydroxy-6-pentadecylbenzoic acid), a constituent of the cashew-nut shell, has a variety of beneficial effects on the treatment of cancer and tumors. However, the fact that AA induces ER stress and autophagy in cancer cell is not known. We investigated the effect of AA on ER-stress and autophagy-induced cell death in cancer cells. Because of our interest in lung cancer, we used the non-small cell lung adenocarcinoma A549 cells treated with 3.0 μg/ml of AA for this research. In this research we found that AA induces intracellular Ca(2+) mobilization and ER stress. AA induced the ER stress-inducing factors, especially IRE1α, and the hallmarks of UPR, Grp78/Bip and GADD153/CHOP. AA inhibited the expression of p-PERK and its downstream substrate, p-elF2α. We also demonstrated that AA induces autophagy. Up-regulation of autophagy-related genes and the appearance of autophagosome in transfected cells with green fluorescent protein (GFP)-LC3 and GFP-Beclin1 plasmids showed the induction of autophagy in AA-treated A549 cells. The morphological analysis of intracellular organelles by TEM also showed the evidence that AA induces ER stress and autophagy. For the first time, our research showed that AA induces ER stress and autophagy in cancer cells. PMID:23955513

  4. TASK-1 Regulates Apoptosis and Proliferation in a Subset of Non-Small Cell Lung Cancers.

    PubMed

    Leithner, Katharina; Hirschmugl, Birgit; Li, Yingji; Tang, Bi; Papp, Rita; Nagaraj, Chandran; Stacher, Elvira; Stiegler, Philipp; Lindenmann, Jörg; Olschewski, Andrea; Olschewski, Horst; Hrzenjak, Andelko

    2016-01-01

    Lung cancer is the leading cause of cancer deaths worldwide; survival times are poor despite therapy. The role of the two-pore domain K+ (K2P) channel TASK-1 (KCNK3) in lung cancer is at present unknown. We found that TASK-1 is expressed in non-small cell lung cancer (NSCLC) cell lines at variable levels. In a highly TASK-1 expressing NSCLC cell line, A549, a characteristic pH- and hypoxia-sensitive non-inactivating K+ current was measured, indicating the presence of functional TASK-1 channels. Inhibition of TASK-1 led to significant depolarization in these cells. Knockdown of TASK-1 by siRNA significantly enhanced apoptosis and reduced proliferation in A549 cells, but not in weakly TASK-1 expressing NCI-H358 cells. Na+-coupled nutrient transport across the cell membrane is functionally coupled to the efflux of K+ via K+ channels, thus TASK-1 may potentially influence Na+-coupled nutrient transport. In contrast to TASK-1, which was not differentially expressed in lung cancer vs. normal lung tissue, we found the Na+-coupled nutrient transporters, SLC5A3, SLC5A6, and SLC38A1, transporters for myo-inositol, biotin and glutamine, respectively, to be significantly overexpressed in lung adenocarcinomas. In summary, we show for the first time that the TASK-1 channel regulates apoptosis and proliferation in a subset of NSCLC. PMID:27294516

  5. TASK-1 Regulates Apoptosis and Proliferation in a Subset of Non-Small Cell Lung Cancers

    PubMed Central

    Leithner, Katharina; Hirschmugl, Birgit; Li, Yingji; Tang, Bi; Papp, Rita; Nagaraj, Chandran; Stacher, Elvira; Stiegler, Philipp; Lindenmann, Jörg; Olschewski, Andrea; Olschewski, Horst; Hrzenjak, Andelko

    2016-01-01

    Lung cancer is the leading cause of cancer deaths worldwide; survival times are poor despite therapy. The role of the two-pore domain K+ (K2P) channel TASK-1 (KCNK3) in lung cancer is at present unknown. We found that TASK-1 is expressed in non-small cell lung cancer (NSCLC) cell lines at variable levels. In a highly TASK-1 expressing NSCLC cell line, A549, a characteristic pH- and hypoxia-sensitive non-inactivating K+ current was measured, indicating the presence of functional TASK-1 channels. Inhibition of TASK-1 led to significant depolarization in these cells. Knockdown of TASK-1 by siRNA significantly enhanced apoptosis and reduced proliferation in A549 cells, but not in weakly TASK-1 expressing NCI-H358 cells. Na+-coupled nutrient transport across the cell membrane is functionally coupled to the efflux of K+ via K+ channels, thus TASK-1 may potentially influence Na+-coupled nutrient transport. In contrast to TASK-1, which was not differentially expressed in lung cancer vs. normal lung tissue, we found the Na+-coupled nutrient transporters, SLC5A3, SLC5A6, and SLC38A1, transporters for myo-inositol, biotin and glutamine, respectively, to be significantly overexpressed in lung adenocarcinomas. In summary, we show for the first time that the TASK-1 channel regulates apoptosis and proliferation in a subset of NSCLC. PMID:27294516

  6. Radix Tetrastigma hemsleyani flavone inhibits proliferation, migration, and invasion of human lung carcinoma A549 cells

    PubMed Central

    Zhong, Liangrui; Zheng, Junxian; Sun, Qianqian; Wei, Kemin; Hu, Yijuan

    2016-01-01

    Radix Tetrastigma hemsleyani flavone (RTHF) is widely used as a traditional herb and has detoxification and anti-inflammatory effects. In this study, we investigated the potential effects of RTHF on the growth and metastasis of human lung adenocarcinoma A549 cells and evaluated its mechanisms. A549 cells were treated with RTHF at various concentrations for different periods. In vitro Cell Counting Kit-8 assay and colony formation methods showed that RTHF had dose- and time-dependent antiproliferation effects on A549 cells. A cell adhesion assay showed that RTHF decreased A549 cell adhesion in a dose-dependent manner. Cell invasion and migration were investigated using the Transwell assay and observed using an inverted microscope; the results showed that cell metastasis was significantly lower in the treatment group than that in the control group (P<0.01). Expression of metastasis-related matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) was detected by real-time polymerase chain reaction and Western blotting. The results showed that the expression of MMP-2, MMP-9, and TIMP-1 decreased, while that of TIMP-2 increased significantly in the RTHF group when compared with the results of the control group. These results show that RTHF exhibits antigrowth and antimetastasis activity in lung cancer A549 cells by decreasing the expression of MMP-2/-9 and TIMP-1 and increasing that of TIMP-2. PMID:26893573

  7. Role of Rad52 in fractionated irradiation induced signaling in A549 lung adenocarcinoma cells.

    PubMed

    Ghosh, Somnath; Krishna, Malini

    2012-01-01

    The effect of fractionated doses of γ-irradiation (2Gy per fraction over 5 days), as delivered in cancer radiotherapy, was compared with acute doses of 10 and 2Gy, in A549 cells. A549 cells were found to be relatively more radioresistant if the 10Gy dose was delivered as a fractionated regimen. Microarray analysis showed upregulation of DNA repair and cell cycle arrest genes in the cells exposed to fractionated irradiation. There was intense activation of DNA repair pathway-associated genes (DNA-PK, ATM, Rad52, MLH1 and BRCA1), efficient DNA repair and phospho-p53 was found to be translocated to the nucleus of A549 cells exposed to fractionated irradiation. MCF-7 cells responded differently in fractionated regimen. Silencing of the Rad52 gene in fractionated group of A549 cells made the cells radiosensitive. The above result indicated increased radioresistance in A549 cells due to the activation of Rad52 gene. PMID:22001234

  8. Regulation of MAPKs Signaling Contributes to the Growth Inhibition of 1,7-Dihydroxy-3,4-dimethoxyxanthone on Multidrug Resistance A549/Taxol Cells.

    PubMed

    Zuo, Jian; Jiang, Hui; Zhu, Yan-Hong; Wang, Ya-Qin; Zhang, Wen; Luan, Jia-Jie

    2016-01-01

    1,7-Dihydroxy-3,4-dimethoxyxanthone (XAN) is a bioactive compound isolated from Securidaca inappendiculata Hassk. and validated with antiproliferative activities on a panel of cancer cell lines. This study was designed to investigate its growth inhibitory effects on multidrug resistance (MDR) non-small cell lung carcinoma (NSCLC) cell line A549/Taxol and explore the possible linkage between modulation of MAPKs and the bioactivities. Its growth inhibitory potency on the cells was estimated by MTT assay, and flow cytometric analysis was employed to investigate its potential cell cycle arrest and proapoptosis effects. Expressions of hallmark proteins were assessed by Western-Blot method. The results showed A549/Taxol cells were sensitive to XAN. XAN inhibited the proliferation of A549/Taxol cells in the time and concentration dependent manners. It acted as a potent inducer of apoptosis and cell cycle arrest in the cells. Western-Blot investigation validated the proapoptosis and cell cycle arrest activities of XAN and the potential of MDR reversion. Upregulation of p38 by XAN, which accounted for the cell cycle arrest at G2 phase, and the downregulation of ERK associated with the proapoptosis activity were also revealed. Further analysis found p53 may be the central role mediated the bioactivities of MAPKs in A549/Taxol cells. Based on these evidences, a conclusion has been deduced that XAN could be a potential agent for MDR NSCLC therapy targeting specifically MAPKs. PMID:27403196

  9. Regulation of MAPKs Signaling Contributes to the Growth Inhibition of 1,7-Dihydroxy-3,4-dimethoxyxanthone on Multidrug Resistance A549/Taxol Cells

    PubMed Central

    Zuo, Jian; Jiang, Hui; Zhu, Yan-Hong; Wang, Ya-Qin; Zhang, Wen

    2016-01-01

    1,7-Dihydroxy-3,4-dimethoxyxanthone (XAN) is a bioactive compound isolated from Securidaca inappendiculata Hassk. and validated with antiproliferative activities on a panel of cancer cell lines. This study was designed to investigate its growth inhibitory effects on multidrug resistance (MDR) non-small cell lung carcinoma (NSCLC) cell line A549/Taxol and explore the possible linkage between modulation of MAPKs and the bioactivities. Its growth inhibitory potency on the cells was estimated by MTT assay, and flow cytometric analysis was employed to investigate its potential cell cycle arrest and proapoptosis effects. Expressions of hallmark proteins were assessed by Western-Blot method. The results showed A549/Taxol cells were sensitive to XAN. XAN inhibited the proliferation of A549/Taxol cells in the time and concentration dependent manners. It acted as a potent inducer of apoptosis and cell cycle arrest in the cells. Western-Blot investigation validated the proapoptosis and cell cycle arrest activities of XAN and the potential of MDR reversion. Upregulation of p38 by XAN, which accounted for the cell cycle arrest at G2 phase, and the downregulation of ERK associated with the proapoptosis activity were also revealed. Further analysis found p53 may be the central role mediated the bioactivities of MAPKs in A549/Taxol cells. Based on these evidences, a conclusion has been deduced that XAN could be a potential agent for MDR NSCLC therapy targeting specifically MAPKs. PMID:27403196

  10. Combined tamoxifen and gefitinib in non-small cell lung cancer shows antiproliferative effects.

    PubMed

    Shen, Hua; Yuan, Yuan; Sun, Jing; Gao, Wen; Shu, Yong-Qian

    2010-02-01

    Gefitinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, is approved for clinical use in the treatment of non-small cell lung cancer (NSCLC). According to statistics, NSCLC patients who are female, have adenocarcinoma, or never smoked have a higher response rate to gefitinib treatment. This phenomenon could be due to the interaction between the estrogen receptor (ER) and EGFR. To test whether inhibition of the EGFR signaling pathway affects the antitumour effect of gefitinib, NSCLC cell lines were treated with gefitinib and tamoxifen, an ER antagonist. Cotreatment with gefitinib plus tamoxifen decreased the proliferation and increased the apoptosis of A549 and H1650 adencarcinoma cell lines, when compared with either drug alone. However, there was no effect on H520 cells (squamous cell carcinoma). Rapid activation of the EGFR pathway by both EGF and beta-E2 was observed in A549 cells. Additionally, EGFR and ERbeta expression was down-regulated in response to estrogen and EGF, respectively, but up-regulated in response to tamoxifen and genfitib, respectively. These results suggest that there is a functional cross-signaling between the EGFR and the ER pathways in NSCLC, possibly providing a rationale to combine gefitinib with anti-estrogen therapy for lung cancer treatment. PMID:20005069

  11. miR-126 inhibits non-small cell lung cancer cells proliferation by targeting EGFL7

    SciTech Connect

    Sun, Yanqin; Bai, Yifeng; Zhang, Fan; Wang, Yu; Guo, Ying; Guo, Linlang

    2010-01-15

    MicroRNAs (miRNAs) represent an abundant group of small non-coding RNAs that regulate gene expression, and have been demonstrated to play roles as tumor suppressor genes (oncogenes), and affect homeostatic processes such as development, cell proliferation, and cell death. Subsequently, epidermal growth factor-like domain 7 (EGFL7), which is confirmed to be involved in cellular responses such as cell migration and blood vessel formation, is identified as a potential miR-126 target by bioinformatics. However, there is still no evidence showing EGFL7's relationship with miR-126 and the proliferation of lung cancer cells. The aim of this work is to investigate whether miR-126, together with EGFL7, have an effect on non-small cell lung cancer (NSCLC) cells' proliferation. Therefore, we constructed overexpressed miR-126 plasmid to target EGFL7 and transfected them into NSCLC cell line A549 cells. Then, we used methods like quantitative RT-PCR, Western blot, flow cytometry assay, and immunohistochemistry staining to confirm our findings. The result was that overexpression of miR-126 in A549 cells could increase EGFL7 expression. Furthermore, the most notable finding by cell proliferation related assays is that miR-126 can inhibit A549 cells proliferation in vitro and inhibit tumor growth in vivo by targeting EGFL7. As a result, our study demonstrates that miR-126 can inhibit proliferation of non-small cell lung cancer cells through one of its targets, EGFL7.

  12. Thoracoscopic Lobectomy for Non-small Cell Lung Cancer.

    PubMed

    Gaudet, Matthew A; D'Amico, Thomas A

    2016-07-01

    Lobectomy is the gold standard treatment in operable patients with surgically resectable non-small cell lung cancer. Thoracoscopic lobectomy has emerged as an option for surgeons facile with the technique. Video-assisted thoracoscopic surgery (VATS) is used for a variety of indications, but its efficacy as a reliable oncologic procedure makes it appealing in the treatment of non-small cell lung cancer. Fewer postoperative complications and decreased postoperative pain associated with VATS procedures can lead to shorter lengths of stay and lower overall costs. Thoracoscopic surgery continues to evolve, and uniportal, robot-assisted, and awake thoracoscopic procedures have all shown promising results. PMID:27261912

  13. Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53

    SciTech Connect

    Wang, Jing-Ping; Lin, Kai-Han; Liu, Chun-Yen; Yu, Ya-Chu; Wu, Pei-Tsun; Chiu, Chien-Chih; Su, Chun-Li; Chen, Kwun-Min; Fang, Kang

    2013-11-15

    In this work, we demonstrated that the growth of human non-small-cell-lung-cancer cells H460 and A549 cells can be inhibited by low concentrations of an epoxide derivative, teroxirone, in both in vitro and in vivo models. The cytotoxicity was mediated by apoptotic cell death through DNA damage. The onset of ultimate apoptosis is dependent on the status of p53. Teroxirone caused transient elevation of p53 that activates downstream p21 and procaspase-3 cleavage. The presence of caspase-3 inhibitor reverted apoptotic phenotype. Furthermore, we showed the cytotoxicity of teroxirone in H1299 cells with stable ectopic expression of p53, but not those of mutant p53. A siRNA-mediated knockdown of p53 expression attenuated drug sensitivity. The in vivo experiments demonstrated that teroxirone suppressed growth of xenograft tumors in nude mice. Being a potential therapeutic agent by restraining cell growth through apoptotic death at low concentrations, teroxirone provides a feasible perspective in reversing tumorigenic phenotype of human lung cancer cells. - Highlights: • Teroxirone repressed tumor cell growth in nude mice of human lung cancer cells. • The apoptotic cell death reverted by caspase-3 inhibitor is related to p53 status. • Teroxirone provides a good candidate for lung cancer treatment.

  14. PVM/MA-shelled selol nanocapsules promote cell cycle arrest in A549 lung adenocarcinoma cells

    PubMed Central

    2014-01-01

    Background Selol is an oily mixture of selenitetriacylglycerides that was obtained as a semi-synthetic compound containing selenite. Selol is effective against cancerous cells and less toxic to normal cells compared with inorganic forms of selenite. However, Selol’s hydrophobicity hinders its administration in vivo. Therefore, the present study aimed to produce a formulation of Selol nanocapsules (SPN) and to test its effectiveness against pulmonary adenocarcinoma cells (A549). Results Nanocapsules were produced through an interfacial nanoprecipitation method. The polymer shell was composed of poly(methyl vinyl ether-co-maleic anhydride) (PVM/MA) copolymer. The obtained nanocapsules were monodisperse and stable. Both free Selol (S) and SPN reduced the viability of A549 cells, whereas S induced a greater reduction in non-tumor cell viability than SPN. The suppressor effect of SPN was primarily associated to the G2/M arrest of the cell cycle, as was corroborated by the down-regulations of the CCNB1 and CDC25C genes. Apoptosis and necrosis were induced by Selol in a discrete percentage of A549 cells. SPN also increased the production of reactive oxygen species, leading to oxidative cellular damage and to the overexpression of the GPX1, CYP1A1, BAX and BCL2 genes. Conclusions This study presents a stable formulation of PVM/MA-shelled Selol nanocapsules and provides the first demonstration that Selol promotes G2/M arrest in cancerous cells. PMID:25149827

  15. Wnt/{beta}-catenin signaling regulates cancer stem cells in lung cancer A549 cells

    SciTech Connect

    Teng, Ying; Wang, Xiuwen; Wang, Yawei; Ma, Daoxin

    2010-02-12

    Wnt/{beta}-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that {beta}-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of {beta}-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of {beta}-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/{beta}-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.

  16. The inhibition of aromatase alters the mechanical and rheological properties of non-small-cell lung cancer cell lines affecting cell migration.

    PubMed

    Giannopoulou, E; Siatis, K E; Metsiou, D; Kritikou, I; Papachristou, D J; Kalofonou, M; Koutras, A; Athanassiou, G; Kalofonos, H P

    2015-02-01

    Tumor invasion and metastasis are key aspects of non-small cell lung cancer (NSCLC). During migration, cells undergo mechanical alterations. The mechanical phenotype of breast cancer cells is correlated with aromatase gene expression. We have previously shown that targeting aromatase is a promising strategy for NSCLC. The aim of this study was to examine morphological and mechanical changes of NSCLC cells, upon treatment with aromatase inhibitor and correlate their ability to migrate and invade. In vitro experiments were performed using H23 and A549 NSCLC cell lines and exemestane was used for aromatase inhibition. We demonstrated that exemestane reduced H23 cell migration and invasion and caused changes in cell morphology including increased vacuolar structures and greater pleomorphism. In addition, exemestane changed the distribution of α-tubulin in H23 and A549 cells in a way that might destabilize microtubules polymerization. These effects were associated with increased cell viscosity and decreased elastic shear modulus. Although exemestane caused similar effects in A549 cells regarding viscosity and elastic shear modulus, it did not affect A549 cell migration and caused an increase in invasion. The increased invasion was in line with vimentin perinuclear localization. Our data show that the treatment of NSCLC cells with an aromatase inhibitor not only affects cell migration and invasion but also alters the mechanical properties of the cells. It suggests that the different origin of cancer cells is associated with different morphological characteristics and mechanical behavior. PMID:25450981

  17. Curcumin Inhibits Non-Small Cell Lung Cancer Cells Metastasis through the Adiponectin/NF-κb/MMPs Signaling Pathway

    PubMed Central

    Tsai, Jong-Rung; Liu, Po-Len; Chen, Yung-Hsiang; Chou, Shah-Hwa; Cheng, Yu-Jen; Hwang, Jhi-Jhu; Chong, Inn-Wen

    2015-01-01

    Adipose tissue is now considered as an endocrine organ involved in metabolic and inflammatory reactions. Adiponectin, a 244–amino acid peptide hormone, is associated with insulin resistance and carcinogenesis. Curcumin (diferuloylmethane) is the principal curcuminoid of the popular Indian spice, turmeric. Curcumin possesses antitumor effects, including the inhibition of neovascularization and regulation of cell cycle and apoptosis. However, the effects of adiponectin and curcumin on non-small cell lung cancer (NSCLC) remain unclear. In this study, we evaluated the expression of adiponectin in paired tumors and normal lung tissues from 77 patients with NSCLC using real-time polymerase chain reaction, western blotting, and immunohistochemistry. Kaplan–Meier survival analysis showed that patients with low adiponectin expression ratio (<1) had significantly longer survival time than those with high expression ratio (>1) (p = 0.015). Curcumin inhibited the migratory and invasive ability of A549 cells via the inhibition of adiponectin expression by blocking the adiponectin receptor 1. Curcumin treatment also inhibited the in vivo tumor growth of A549 cells and adiponectin expression. These results suggest that adiponectin can be a prognostic indicator of NSCLC. The effect of curcumin in decreasing the migratory and invasive ability of A549 cells by inhibiting adiponectin expression is probably mediated through NF-κB/MMP pathways. Curcumin could be an important potential adjuvant therapeutic agent for lung cancer in the future. PMID:26656720

  18. Curcumin Inhibits Non-Small Cell Lung Cancer Cells Metastasis through the Adiponectin/NF-κb/MMPs Signaling Pathway.

    PubMed

    Tsai, Jong-Rung; Liu, Po-Len; Chen, Yung-Hsiang; Chou, Shah-Hwa; Cheng, Yu-Jen; Hwang, Jhi-Jhu; Chong, Inn-Wen

    2015-01-01

    Adipose tissue is now considered as an endocrine organ involved in metabolic and inflammatory reactions. Adiponectin, a 244-amino acid peptide hormone, is associated with insulin resistance and carcinogenesis. Curcumin (diferuloylmethane) is the principal curcuminoid of the popular Indian spice, turmeric. Curcumin possesses antitumor effects, including the inhibition of neovascularization and regulation of cell cycle and apoptosis. However, the effects of adiponectin and curcumin on non-small cell lung cancer (NSCLC) remain unclear. In this study, we evaluated the expression of adiponectin in paired tumors and normal lung tissues from 77 patients with NSCLC using real-time polymerase chain reaction, western blotting, and immunohistochemistry. Kaplan-Meier survival analysis showed that patients with low adiponectin expression ratio (<1) had significantly longer survival time than those with high expression ratio (>1) (p = 0.015). Curcumin inhibited the migratory and invasive ability of A549 cells via the inhibition of adiponectin expression by blocking the adiponectin receptor 1. Curcumin treatment also inhibited the in vivo tumor growth of A549 cells and adiponectin expression. These results suggest that adiponectin can be a prognostic indicator of NSCLC. The effect of curcumin in decreasing the migratory and invasive ability of A549 cells by inhibiting adiponectin expression is probably mediated through NF-κB/MMP pathways. Curcumin could be an important potential adjuvant therapeutic agent for lung cancer in the future. PMID:26656720

  19. Induction of p53-independent growth inhibition in lung carcinoma cell A549 by gypenosides.

    PubMed

    Liu, Jung-Sen; Chiang, Tzu-Hsuan; Wang, Jinn-Shyan; Lin, Li-Ju; Chao, Wei-Chih; Inbaraj, Baskaran Stephen; Lu, Jyh-Feng; Chen, Bing-Huei

    2015-07-01

    The objectives of this study are to investigate antiproliferative effect and mechanisms of bioactive compounds from Gynostemma pentaphyllum (G. pentaphyllum) on lung carcinoma cell A549. Saponins, carotenoids and chlorophylls were extracted and fractionated by column chromatography, and were subjected to high-performance liquid chromatography-mass spectrometry analyses. The saponin fraction, which consisted mainly of gypenoside (Gyp) XXII and XXIII, rather than the carotenoid and chlorophyll ones, was effective in inhibiting A549 cell growth in a concentration- and a time-dependent manner as evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The estimated half maximal inhibitory concentration (IC50 ) of Gyp on A549 cells was 30.6 μg/ml. Gyp was further demonstrated to induce an apparent arrest of the A549 cell cycle at both the S phase and the G2/M phase, accompanied by a concentration- and a time-dependent increase in the proportions of both the early and late apoptotic cells. Furthermore, Gyp down-regulated cellular expression of cyclin A and B as well as BCL-2, while up-regulated the expression of BAX, DNA degradation factor 35 KD, poly [ADP-ribose] polymerase 1, p53, p21 and caspase-3. Nevertheless, both the treatment of a p53 inhibitor, pifithrin-α, and the small hairpin RNA-mediated p53 knockdown in the A549 cells did not alter the growth inhibition effect induced by Gyp. As a result, the cell cycle arrest and apoptosis of A549 cells induced by Gyp would most likely proceed through p53-independent pathway(s). PMID:25781909

  20. Induction of p53-independent growth inhibition in lung carcinoma cell A549 by gypenosides

    PubMed Central

    Liu, Jung-Sen; Chiang, Tzu-Hsuan; Wang, Jinn-Shyan; Lin, Li-Ju; Chao, Wei-Chih; Inbaraj, Baskaran Stephen; Lu, Jyh-Feng; Chen, Bing-Huei

    2015-01-01

    The objectives of this study are to investigate antiproliferative effect and mechanisms of bioactive compounds from Gynostemma pentaphyllum (G. pentaphyllum) on lung carcinoma cell A549. Saponins, carotenoids and chlorophylls were extracted and fractionated by column chromatography, and were subjected to high-performance liquid chromatography-mass spectrometry analyses. The saponin fraction, which consisted mainly of gypenoside (Gyp) XXII and XXIII, rather than the carotenoid and chlorophyll ones, was effective in inhibiting A549 cell growth in a concentration- and a time-dependent manner as evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The estimated half maximal inhibitory concentration (IC50) of Gyp on A549 cells was 30.6 μg/ml. Gyp was further demonstrated to induce an apparent arrest of the A549 cell cycle at both the S phase and the G2/M phase, accompanied by a concentration- and a time-dependent increase in the proportions of both the early and late apoptotic cells. Furthermore, Gyp down-regulated cellular expression of cyclin A and B as well as BCL-2, while up-regulated the expression of BAX, DNA degradation factor 35 KD, poly [ADP-ribose] polymerase 1, p53, p21 and caspase-3. Nevertheless, both the treatment of a p53 inhibitor, pifithrin-α, and the small hairpin RNA-mediated p53 knockdown in the A549 cells did not alter the growth inhibition effect induced by Gyp. As a result, the cell cycle arrest and apoptosis of A549 cells induced by Gyp would most likely proceed through p53-independent pathway(s). PMID:25781909

  1. Cell-cycle changes and oxidative stress response to magnetite in A549 human lung cells.

    PubMed

    Könczöl, Mathias; Weiss, Adilka; Stangenberg, Evi; Gminski, Richard; Garcia-Käufer, Manuel; Gieré, Reto; Merfort, Irmgard; Mersch-Sundermann, Volker

    2013-05-20

    In a recent study, magnetite was investigated for its potential to induce toxic effects and influence signaling pathways. It was clearly demonstrated that ROS formation leads to mitochondrial damage and genotoxic effects in A549 cells. On the basis of these findings, we wanted to elucidate the origin of magnetite-mediated ROS formation and its influence on the cell cycle of A549 and H1299 human lung epithelial cells. Concentration- and size-dependent superoxide formation, measured by electron paramagnetic resonance (EPR), was observed. Furthermore, we could show that the GSH level decreased significantly after exposure to magnetite particles, while catalase (CAT) activity was increased. These effects were also dependent on particle size, albeit less pronounced than those observed with EPR. We were able to show that incubation of A549 cells prior to particle treatment with diphenyleneiodonium (DPI), a NADPH-oxidase (NOX) inhibitor, leads to decreased ROS formation, but this effect was not observed for the NOX inhibitor apocynin. Soluble iron does not contribute considerably to ROS production. Analysis of cell-cycle distribution revealed a pronounced sub-G1 peak, which cannot be linked to increased cell death. Western blot analysis did not show activation of p53 but upregulation of p21 in A549. Here, we were unexpectedly able to demonstrate that exposure to magnetite leads to p21-mediated G1-like arrest. This has been reported previously only for low concentrations of microtubule stabilization drugs. Importantly, the arrested sub-G1 cells were viable and showed no caspase 3/7 activation. PMID:23607891

  2. Selenium-containing thioredoxin reductase inhibitor ethaselen sensitizes non-small cell lung cancer to radiotherapy.

    PubMed

    Wang, Lei; Fu, Jia-Ning; Wang, Jing-Yu; Jin, Cun-Jing; Ren, Xiao-Yuan; Tan, Qiang; Li, Jing; Yin, Han-Wei; Xiong, Kun; Wang, Tian-Yu; Liu, Xin-Min; Zeng, Hui-Hui

    2011-09-01

    It has been proposed that thioredoxin reductase (TR) is a mediator that allows non-small cell lung cancer (NSCLC) to develop resistance to irradiation; however, little is known regarding the detailed mechanisms of action. Thus, ethaselen {1, 2-[bis (1,2-benzisoselenazolone-3 (2H)-ketone)] ethane, BBSKE}, a novel organoselenium TR inhibitor, is currently being investigated in a phase I clinical trial in China. However, its radiosensitizing effect remains unexplored. In this study, we found that the activity of TR increased dramatically in both A549 and H1299 cells after radiation, and moreover, could be inhibited by pretreatment with BBSKE (5 μmol/l). As a TR inhibitor, BBSKE enhanced the efficacy of radiation therapy both in vivo and in vitro without observable toxicity. BBSKE was found to suppress irradiation-induced NF-κB activation dramatically when using A549 cells stably transfected with NF-κB luciferase reporter. These results show the critical role of TR in the radioresistance of NSCLC and suggest that BBSKE is a potentially promising agent for the treatment of patients with NSCLC clinically. PMID:21562407

  3. Perillyl alcohol and perillic acid induced cell cycle arrest and apoptosis in non small cell lung cancer cells.

    PubMed

    Yeruva, Laxmi; Pierre, Keon J; Elegbede, Abiodun; Wang, Robert C; Carper, Stephen W

    2007-11-18

    Plant products such as perillyl alcohol have been reported to possess anti-tumor activities against a number of human cancers though the mechanism of action has not yet been elucidated. The effects of perillyl alcohol (POH) and its metabolite perillic acid (PA) on the proliferation of non small cell lung cancer (NSCLC, A549, and H520) cells were investigated. Both POH and PA elicited dose-dependent cytotoxicity, induced cell cycle arrest and apoptosis with increasing expression of bax, p21 and caspase-3 activity in both the cell lines. Combination studies revealed that exposing the cells to an IC50 concentration of POH or PA sensitized the cells to cisplatin and radiation in a dose-dependent manner. These results indicate that POH and PA in combination therapy may have chemotherapeutic value against NSCLC. PMID:17888568

  4. Effect of fucoidan from Turbinaria conoides on human lung adenocarcinoma epithelial (A549) cells.

    PubMed

    Alwarsamy, Madhavarani; Gooneratne, Ravi; Ravichandran, Ramanibai

    2016-11-01

    Fucoidan was purified from seaweed, Turbinaria conoides. Isolated fragments were characterized with NMR ((13)C, (1)H), Gas Chromatography-Mass Spectronomy (GC-MS) and HPLC analysis. The autohydrolysate of fucoidans consisted of sulfated fuco-oligosaccharides having the backbone of α-(1, 3)-linked fuco-pyranose derivatives and minor components of galactose, glucose, mannose and xylose sugars. Fucoidan induced a dose-dependent reduction in cell survival of lung cancer A549 cells by MTT assay (GI50, 75μg/mL). However, it was not cytotoxic to a non-tumorigenic human keratinocyte cell line of skin tissue (HaCaT) (GI50>1.0mg/mL). The apoptotic cells in fucoidan-treated A549 cells were visualized by laser confocal microscopy and cell cycle analysis showed induction of G0/G1 phase arrest of the cell progression cycle. Further, CFSE labeling and flow cytometry highlighted that fucoidan significantly (P<0.05) inhibited the proliferation rate of A549 cells by up to 2-fold compared with the control cells. It is concluded that fucoidan has the potential to act as an anti-proliferative agent on lung carcinoma (A549) cells. PMID:27516266

  5. Ac-SDKP suppresses epithelial-mesenchymal transition in A549 cells via HSP27 signaling.

    PubMed

    Deng, Haijing; Yang, Fang; Xu, Hong; Sun, Yue; Xue, Xinxin; Du, Shipu; Wang, Xiaojun; Li, Shifeng; Liu, Yan; Wang, Ruimin

    2014-08-01

    The synthetic tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) has been shown to be a modulator of molecular aspects of the fibrosis pathway. This study reveals that Ac-SDKP exerts an anti-fibrotic effect on human type II alveolar epithelial cells (A549), which are a source of myofibroblasts once exposed to TGF-β1, by decreasing the expression of heat shock protein 27 (HSP27). We used A549 cells in vitro to detect morphological evidence of epithelial-mesenchymal transition (EMT) by phase-contrast microscopy. Immunocytochemical and western blot analysis determined the distributions of cytokeratin 8 (CK8), α-smooth muscle actin (α-SMA), and SNAI1. Confocal laser scanning microscopy revealed a colocalization of HSP27 and SNAI1 on TGF-β1-induced A549 cells. These results also demonstrated that A549 cells became spindle-like when exposed to TGF-β1. Coincident with these morphological changes, expression levels of CK8 and E-cad decreased, while those of vimentin and α-SMA increased. This process was accompanied by increases in levels of HSP27, SNAI1, and type I and type III collagen. In vitro transfection experiments demonstrated that the inhibition of HSP27 in cultured A549 cells could decrease the expression of SNAI1 and α-SMA while increasing the expression of E-cad. A noticeable reduction in collagen types I and III was also evident. Our results found that Ac-SDKP inhibited the transition of cultured A549 cells to myofibroblasts and attenuated collagen synthesis through modulating the expression of HSP27. PMID:24998956

  6. [Immune Checkpoint Therapy for Non-Small-Cell Lung Cancer].

    PubMed

    Miyauchi, Eisaku; Inoue, Akira

    2016-06-01

    Nivolumab is an anti-PD-1 antibody that has recently been approved in Japan, and has shown high response rates and more favorable safety profiles in 2 phase III clinical trials. Accordingly, immune checkpoint therapy has now been included as a new standard treatment for non-small-cell lung cancer. These immune checkpoints are receptors expressed on T cells that regulate the immune response. The PD-1/PD-L1 signal inhibits cytotoxic T lymphocyte proliferation and survival, induces apoptosis of infiltrative T cells, and increases the amount of regulatory T cells in the tumor microenvironment. Therefore, severe immune-related adverse event(irAE)have been observed, including enterocolitis, neuropathies, and endocrinopathies. There are different management approaches to irAEs with conventional cytotoxic drugs. This article reviews the available data regarding immune checkpoint therapy for patients with non-small-cell lung cancer. PMID:27306803

  7. Dependence on the MUC1-C Oncoprotein in Non-Small Cell Lung Cancer Cells

    PubMed Central

    Raina, Deepak; Kosugi, Michio; Ahmad, Rehan; Panchamoorthy, Govind; Rajabi, Hasan; Alam, Maroof; Shimamura, Takeshi; Shapiro, Geoffrey I.; Supko, Jeffrey; Kharbanda, Surender; Kufe, Donald

    2011-01-01

    Non-small cell lung cancer (NSCLC) cells are often associated with constitutive activation of the phosphatidylinositol 3-kinase (PI3K)->Akt->mTOR pathway. The mucin 1 (MUC1) heterodimeric glycoprotein is aberrantly overexpressed in NSCLC and induces gene signatures that are associated with poor survival of NSCLC patients. The present results demonstrate that the MUC1 C-terminal subunit (MUC1-C) cytoplasmic domain associates with PI3K p85 in NSCLC cells. We show that inhibition of MUC1-C with cell-penetrating peptides blocks this interaction with PI3K p85 and suppresses constitutive phosphorylation of Akt and its downstream effector, mTOR. In concert with these results, treatment of NSCLC cells with the MUC1-C peptide inhibitor, GO-203, was associated with downregulation of PI3K->Akt signaling and inhibition of growth. GO-203 treatment was also associated with increases in reactive oxygen species (ROS) and induction of necrosis by a ROS-dependent mechanism. Moreover, GO-203 treatment of H1975 (EGFR L858R/T790M) and A549 (K-Ras G12S) xenografts growing in nude mice resulted in tumor regressions. These findings indicate that NSCLC cells are dependent on MUC1-C for activation of the PI3K->Akt pathway and for survival. PMID:21421804

  8. Low-Dose Acetylsalicylic Acid in Treating Patients With Stage I-III Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2016-06-28

    Adenocarcinoma of the Lung; Recurrent Non-small Cell Lung Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  9. DNA Repair Genes ERCC1 and BRCA1 Expression in Non-Small Cell Lung Cancer Chemotherapy Drug Resistance

    PubMed Central

    Wang, Shuai; Liu, Feng; Zhu, Jingyan; Chen, Peng; Liu, Hongxing; Liu, Qi; Han, Junqing

    2016-01-01

    Background Surgery combined with chemotherapy is an important therapy for non-small cell lung cancer (NSCLC). However, chemotherapy drug resistance seriously hinders the curative effect. Studies show that DNA repair genes ERCC1 and BRCA1 are associated with NSCLC chemotherapy, but their expression and mechanism in NSCLC chemotherapy drug-resistant cells has not been elucidated. Material/Methods NSCLC cell line A549 and drug resistance cell line A549/DDP were cultured. Real-time PCR and Western blot analyses were used to detect ERCC1 and BRCA1 mRNA expression. A549/DDP cells were randomly divided into 3 groups: the control group; the siRNA-negative control group (scramble group); and the siRNA ERCC1 and BRCA1siRNA transfection group. Real-time PCR and Western blot analyses were used to determine ERCC1 and BRCA1 mRNA and protein expression. MTT was used to detect cell proliferation activity. Caspase 3 activity was tested by use of a kit. Western blot analysis was performed to detect PI3K, AKT, phosphorylated PI3K, and phosphorylated AKT protein expression. Results ERCC1 and BRCA1 were overexpressed in A549/DDP compared with A549 (P<0.05). ERCC1 and BRCA1siRNA transfection can significantly reduce ERCC1 and BRCA1 mRNA and protein expression (P<0.05). Downregulating ERCC1 and BRCA1 expression obviously inhibited cell proliferation and increased caspase 3 activity (P<0.05). Downregulating ERCC1 and BRCA1 significantly decreased PI3K and AKT phosphorylation levels (P<0.05). Conclusions ERCC1 and BRCA1 were overexpressed in NSCLC drug-resistant cells, and they regulated lung cancer occurrence and development through the phosphorylating PI3K/AKT signaling pathway. PMID:27289442

  10. DNA Repair Genes ERCC1 and BRCA1 Expression in Non-Small Cell Lung Cancer Chemotherapy Drug Resistance.

    PubMed

    Wang, Shuai; Liu, Feng; Zhu, Jingyan; Chen, Peng; Liu, Hongxing; Liu, Qi; Han, Junqing

    2016-01-01

    BACKGROUND Surgery combined with chemotherapy is an important therapy for non-small cell lung cancer (NSCLC). However, chemotherapy drug resistance seriously hinders the curative effect. Studies show that DNA repair genes ERCC1 and BRCA1 are associated with NSCLC chemotherapy, but their expression and mechanism in NSCLC chemotherapy drug-resistant cells has not been elucidated. MATERIAL AND METHODS NSCLC cell line A549 and drug resistance cell line A549/DDP were cultured. Real-time PCR and Western blot analyses were used to detect ERCC1 and BRCA1 mRNA expression. A549/DDP cells were randomly divided into 3 groups: the control group; the siRNA-negative control group (scramble group); and the siRNA ERCC1 and BRCA1siRNA transfection group. Real-time PCR and Western blot analyses were used to determine ERCC1 and BRCA1 mRNA and protein expression. MTT was used to detect cell proliferation activity. Caspase 3 activity was tested by use of a kit. Western blot analysis was performed to detect PI3K, AKT, phosphorylated PI3K, and phosphorylated AKT protein expression. RESULTS ERCC1 and BRCA1 were overexpressed in A549/DDP compared with A549 (P<0.05). ERCC1 and BRCA1siRNA transfection can significantly reduce ERCC1 and BRCA1 mRNA and protein expression (P<0.05). Downregulating ERCC1 and BRCA1 expression obviously inhibited cell proliferation and increased caspase 3 activity (P<0.05). Downregulating ERCC1 and BRCA1 significantly decreased PI3K and AKT phosphorylation levels (P<0.05). CONCLUSIONS ERCC1 and BRCA1 were overexpressed in NSCLC drug-resistant cells, and they regulated lung cancer occurrence and development through the phosphorylating PI3K/AKT signaling pathway. PMID:27289442

  11. Oxidative and endoplasmic reticulum stress signaling are involved in dehydrocostuslactone-mediated apoptosis in human non-small cell lung cancer cells.

    PubMed

    Hung, Jen-Yu; Hsu, Ya-Ling; Ni, Wen-Chiu; Tsai, Ying-Ming; Yang, Chih-Jen; Kuo, Po-Lin; Huang, Ming-Shyan

    2010-06-01

    This study investigates the anticancer effect of dehydrocostuslactone (DHE), a medicinal plant-derived sesquiterpene lactone, on human non-small cell lung cancer cell lines, A549, NCI-H460 and NCI-H520. Our results show that DHE inhibits the proliferation of A549, NCI-H460 and NCI-H520 cells. DHE-induced apoptosis in both A549 and NCI-H460 cells. DHE triggered endoplasmic reticulum (ER) stress, as indicated by changes in cytosol-calcium levels, PKR-like ER kinase (PERK) phosphorylation, inositol requiring protein 1 (IRE1) and CHOP/GADD153 upregulation, X-box transcription factor-1 (XBP-1) mRNA splicing, and caspase-4 activation. The release of calcium triggered the production of ROS, which further enhances calcium overloading and subsequently activates p38, JNK and ERK1/2. Both IRE1 miRNA transfection and BAPTA-AM pretreatment inhibit DHE-mediated apoptosis, supporting the hypothesis that DHE induces cell death through ER stress. Importantly, a novel anticancer agent for the treatment of non-small cell lung cancer, and is supported by animal studies which have shown a dramatic 50% reduction in tumor size after 28 days of treatment. This study demonstrates that DHE may be a novel anticancer agent for the treatment of non-small cell lung cancer. PMID:19700217

  12. Rapamycin‐induced autophagy sensitizes A549 cells to radiation associated with DNA damage repair inhibition

    PubMed Central

    Li, Yong; Liu, Fen; Wang, Yong; Li, Donghai; Guo, Fei; Xu, Liyao; Zeng, Zhengguo; Zhong, Xiaojun

    2016-01-01

    Abstract Background Autophagy has been reported to increase in cancer cells after radiation. However, it remains unknown whether increased autophagy as a result of radiation affects DNA damage repair and sensitizes cancer cells. In this study, the radiosensitization effect of rapamycin, a mammalian target of rapamycin inhibitor that induces autophagy, on human lung adenocarcinoma A549 cells was investigated. Methods A549 cells were treated with different concentrations of rapamycin. Cell viability was evaluated by methyl‐thiazolyl‐tetrazolium assay. Survival fraction values of A549 cells after radiotherapy were detected by colony formation assay. Autophagosome was observed by a transmission electron microscope. Furthermore, Western blot was employed to examine alterations in autophagy protein LC3 and p62, DNA damage protein γ–H2AX, and DNA damage repair proteins Rad51, Ku70, and Ku80. Rad51, Ku70, and Ku80 messenger ribonucleic acid (mRNA) expression levels were examined by real‐time polymerase chain reaction. Results Rapamycin suppressed A549 cell proliferation in dose and time‐dependent manners. An inhibitory concentration (IC) 10 dose of rapamycin could induce autophagy in A549 cells. Rapamycin combined with radiation significantly decreased the colony forming ability of cells, compared with rapamycin or radiation alone. Rapamycin and radiation combined increased γ–H2AX expression levels and decreased Rad51 and Ku80 expression levels, compared with single regimens. However, rapamycin treatment did not induce any change in Rad51, Ku70, and Ku80 mRNA levels, regardless of radiation. Conclusions These findings indicate that increasing autophagy sensitizes lung cancer cells to radiation. PMID:27385978

  13. Human lung epithelial cell A549 proteome data after treatment with titanium dioxide and carbon black.

    PubMed

    Vuong, Ngoc Q; Goegan, Patrick; Mohottalage, Susantha; Breznan, Dalibor; Ariganello, Marianne; Williams, Andrew; Elisma, Fred; Karthikeyan, Subramanian; Vincent, Renaud; Kumarathasan, Premkumari

    2016-09-01

    Here, we have described the dataset relevant to the A549 cellular proteome changes after exposure to either titanium dioxide or carbon black particles as compared to the non-exposed controls, "Proteomic changes in human lung epithelial cells (A549) in response to carbon black and titanium dioxide exposures" (Vuong et al., 2016) [1]. Detailed methodologies on the separation of cellular proteins by 2D-GE and the subsequent mass spectrometry analyses using MALDI-TOF-TOF-MS are documented. Particle exposure-specific protein expression changes were measured via 2D-GE spot volume analysis. Protein identification was done by querying mass spectrometry data against SwissProt and RefSeq protein databases using Mascot search engine. Two-way ANOVA analysis data provided information on statistically significant A549 protein expression changes associated with particle exposures. PMID:27508218

  14. Maackia amurensis agglutinin enhances paclitaxel induced cytotoxicity in cultured non-small cell lung cancer cells.

    PubMed

    Chhetra Lalli, Rakhee; Kaur, Kiranjeet; Dadsena, Shashank; Chakraborti, Anuradha; Srinivasan, Radhika; Ghosh, Sujata

    2015-08-01

    Maackia amurensis agglutinin (MAA) is gaining recognition as the potential diagnostic agent for cancer. Previous studies from our laboratory have demonstrated that this lectin could interact specifically with the cells and biopsy samples of non-small cell lung cancer (NSCLC) origin but not with normal lung fibroblast cells. Moreover, this lectin was also found to induce apoptosis in NSCLC cells. Further, the biological activity of this lectin was shown to survive gastrointestinal proteolysis and inhibit malignant cell growth and tumorigenesis in mice model of melanoma thereby indicating the therapeutic potential of this lectin. Paclitaxel is one of the widely used traditional chemotherapeutic drugs for treatment of NSCLC but it exerts side-effects on normal healthy cells too. Studies have revealed that lectins have potential to act as an adjuvant chemotherapeutic agent in cancer of different origin. Thus, in the present study, an attempt was made to assess the chemo-adjuvant role of MAA in three types of NSCLC cell lines [adenocarcinoma cell line (A549), squamous cell carcinoma cell line (NCI-H520) and large cell carcinoma cell line (NCI-H460)]. We have observed that the non-cytotoxic concentration of this lectin was able to enhance the cytotoxic activity of Paclitaxel even at low dose by inducing apoptosis through intrinsic/mitochondrial pathway in all the three types of NSCLC cell lines, although the involvement of extrinsic pathway of apoptosis in case of NCI-H460 cell line could not be ruled out. Further, this lectin was also found to augment the chemo-preventive activity of this drug by arresting cells in G2-M phase of the cell cycle. Collectively, our results have suggested that Maackia amurensis agglutinin may have the potential to be used as adjuvant chemotherapeutic agent in case of NSCLC. PMID:25978938

  15. Inhibition of metabotropic glutamate receptor 1 suppresses tumor growth and angiogenesis in experimental non-small cell lung cancer.

    PubMed

    Xia, Hui; Zhao, Ying-Nan; Yu, Chang-Hai; Zhao, Yun-Long; Liu, Yang

    2016-07-15

    Metabotropic glutamate receptor 1 (mGlu1 receptor) is expressed in many cancer cell types as compared to normal counterparts underscoring its potential role in tumor behavior. The aim of present study was to test the role of mGlu1 receptor in experimental non-small cell lung cancer (NSCLC). First, protein expression of mGlu1 receptor was higher in human NSCLC cell lines, including both adenocarcinoma and squamous carcinoma subtypes, when compared to normal bronchial epithelial cells. Inhibition of mGlu1 receptor by BAY36-7620 (an mGlu1 receptor-specific inhibitor) inhibited tumor growth and prolonged survival of mice with tumors of A549 or H1299. Treatment with BAY36-7620 suppressed AKT phosphorylation in A549 tumors and pre-treatment with BAY36-7620 blocked the L-quisqualate (a potent mGlu1 receptor agonist)-induced AKT phosphorylation in A549 cells. Treatment with BAY36-7620 reduced cellular proliferation of A549 cells. Treatment with BAY36-7620 enhanced cleaved PARP levels and reduced protein expression of bcl-2, HIF-1α, and VEGF. In contrast, treatment with L-quisqualate reduced cleaved PARP levels and enhanced protein expression of bcl-2, HIF-1α, VEGF, and IL-8, which was reversed by co-incubation with MK2206 (an AKT inhibitor). Pre-treatment with BAY36-7620 blocked the VEGF-induced AKT phosphorylation in HUVECs. Treatment of HUVECs with L-quisqualate resulted in enhancement of capillary tube formation, which was reversed by co-incubation with MK2206. Furthermore, mGlu1 receptor knockdown suppressed tumor growth and prolonged survival of mice with tumors of A549 or H1299. Collectively, inhibition of mGlu1 receptor suppressed tumor growth and angiogenesis in experimental NSCLC. PMID:27132814

  16. PARTICULATE MATTER (PM) INHIBITS NEUROTROPHIN RELEASE FROM A549 CELLS

    EPA Science Inventory

    Several investigations have linked PM exposure to the exacerbation of allergic lung diseases. Many PM effects are mediated by cells within the lung including the airway epithelium, eosinophils, and lymphocytes. These cells also produce neurotophins such as NGF and/or express neur...

  17. Edaravone Decreases Paraquat Toxicity in A549 Cells and Lung Isolated Mitochondria

    PubMed Central

    Shokrzadeh, Mohammad; Shaki, Fatemeh; Mohammadi, Ebrahim; Rezagholizadeh, Neda; Ebrahimi, Fatemeh

    2014-01-01

    Edaravone, an antioxidant and radical scavenger, showed protective effects against oxidative stress-like condition. Paraquat (PQ) is toxic herbicide considerable evidence suggests that oxidative stress and mitochondrial dysfunction contribute to PQ toxicity. In this study, protective effect of edaravone against PQ induced toxicity and reactive oxygen species (ROS) generation in A549 cells and lung isolated mitochondria were evaluated. A549 cells and lung isolated mitochondria were divided into control group, PQ group, edaravone group and PQ plus edaravone-pretreated group. Cellular and mitochondrial viability assayed using MTT test and ROS generations in both cellular and mitochondrial fraction were determined by fluorometry using DCFH-DA as indicator. Our results showed that edaravone (5–100 µM) prevented PQ (500 µM) induced cytotoxicity in A549 cells that the best protective effect was observed at concentration of 50 µM of edaravone. In addition, PQ-induced ROS generation in A549 cells significantly inhibited by edaravone. Moreover, PQ decreased mitochondria viability and also increased ROS generation in lung isolated mitochondria that edaravone (25–400 µM) markedly inhibited these toxic effects. In overall, the results of this study suggest that lung mitochondria maintenance is essential for maintaining PQt cytotoxicity and Edaravone is a protective drug against PQ toxicity in-vitro. PMID:25237364

  18. Methotrexate influx via folate transporters into alveolar epithelial cell line A549.

    PubMed

    Kawami, Masashi; Miyamoto, Mioka; Yumoto, Ryoko; Takano, Mikihisa

    2015-08-01

    Methotrexate (MTX), a drug used for the treatment of certain cancers as well as rheumatoid arthritis, sometimes induces serious interstitial lung injury. Although lung toxicity of MTX is related to its accumulation, the information concerning MTX transport in the lungs is lacking. In this study, we investigated the mechanisms underlying MTX influx into human alveolar epithelial cell line A549. MTX influx into A549 cells was time-, pH-, and temperature-dependent and showed saturation kinetics. The influx was inhibited by folic acid with IC50 values of 256.1 μM at pH 7.4 and 1.6 μM at pH 5.5, indicating that the mechanisms underlying MTX influx would be different at these pHs. We then examined the role of two folate transporters in MTX influx, reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT). The expression of RFC and PCFT mRNAs in A549 cells was confirmed by reverse transcription polymerase chain reaction. In addition, MTX influx was inhibited by thiamine monophosphate, an RFC inhibitor, at pH 7.4, and by sulfasalazine, a PCFT inhibitor, at pH 5.5. These results indicated that RFC and PCFT are predominantly involved in MTX influx into A549 cells at pH 7.4 and pH 5.5, respectively. PMID:26190800

  19. Effect of recombinant Newcastle disease virus transfection on lung adenocarcinoma A549 cells in vivo

    PubMed Central

    YAN, YULAN; JIA, LIJUAN; ZHANG, JIN; LIU, YANG; BU, XUEFENG

    2014-01-01

    Newcastle disease virus (NDV) has been reported to selectively duplicate in and then destroy tumor cells, whilst sparing normal cells. However, the effect of NDV on lung cancer has yet to be elucidated. In the present study, recombinant NDV (rl-RVG) was applied to lung adenocarcinoma A549 cell tumor-bearing mice to explore its effect on the proliferation of the cells and the immune response of the mice. Following rl-RVG transfection, RVG and NDV gene expression, decreased tumor growth, subcutaneous tumor necrosis, tumor apoptosis and an increased number of cluster of differentiation (CD)3−/CD49+ natural killer cells were more evident in the rl-RVG group. The present study demonstrated that rl-RVG transfection effectively restrained lung adenocarcinoma A549 cell growth in vivo, which may have been accomplish by inducing tumor cell apoptosis and regulating the cell immune response. PMID:25364430

  20. miR-122 inhibits metastasis and epithelial–mesenchymal transition of non-small-cell lung cancer cells

    PubMed Central

    Qin, Haifeng; Sha, Jiping; Jiang, Caixia; Gao, Xuemei; Qu, Lili; Yan, Haiying; Xu, Tianjiao; Jiang, Qiyu; Gao, Hongjun

    2015-01-01

    miR-122 may function as a novel tumor suppressor. Expression of miR-122 could suppress the proliferation of multi-kinds of human cancer cell lines. In this work, expression of miR-122 via adenoviral vector in non-small-cell lung cancer (NSCLC) cells reduces the number of invasion and migration cells. miR-122 attenuates the epithelial–mesenchymal transition process, which mediates cancer cells metastasis in NSCLC cells A549 and H460. The mechanisms data reveals that miR-122 would disrupt the epithelial–mesenchymal transition process by downregulating PI3K/AKT activation via reducing endogenous expression of insulin-like growth factor 1 receptor. These data highlight the detailed roles and potential application of miR-122 in NSCLC cells. PMID:26604787

  1. IARS2 silencing induces non-small cell lung cancer cells proliferation inhibition, cell cycle arrest and promotes cell apoptosis.

    PubMed

    Yin, J; Liu, W; Li, R; Liu, J; Zhang, Y; Tang, W; Wang, K

    2016-01-01

    The purpose of this study was to investigate the potential role of Ileucyl-tRNA synthetase (IARS2) silencing in non-small cell lung cancer (NSCLC). The silencing of IARS2 in H1299 cells and A549 cells were performed by lentivirus encoding shRNAs. The efficiency of IARS2 silencing was detected by quantitative real time PCR and western blot. The effects of IARS2 silencing on cell growth, cell apoptosis, cell cycle and cell colony formation ability were assessed by cells counting, MTT assay, flow cytometer analysis and soft agar colony formation assay, respectively. Compared with negative control group, IARS2 was significantly knockdown by transfection with lentivirus encoding shRNA of IARS2. The IARS2 silencing significantly inhibited the cells proliferation and cells colony formation ability, induced cell cycle arrest at G1/S phase and promoted cell apoptosis. IARS2 silencing induced NSCLC cells growth inhibition, cell cycle arrest and promoted cell apoptosis. These results suggest that IARS2 may be a novel target for the treatment of NSCLC. PMID:26639235

  2. Different effects of LDH-A inhibition by oxamate in non-small cell lung cancer cells

    PubMed Central

    Yang, Yang; Su, Dan; Zhao, Lin; Zhang, Dan; Xu, Jiaying; Wan, Jianmei; Fan, Saijun; Chen, Ming

    2014-01-01

    Higher rate of glycolysis has been long observed in cancer cells, as a vital enzyme in glycolysis, lactate dehydrogenase A (LDH-A) has been shown with great potential as an anti-cancer target. Accumulating evidence indicates that inhibition of LDH-A induces apoptosis mediated by oxidative stress in cancer cells. To date, it's still unclear that whether autophagy can be induced by LDH-A inhibition. Here, we investigated the effects of oxamate, one classic inhibitor of LDH-A in non-small cell lung cancer (NSCLC) cells as well as normal lung epithelial cells. The results showed that oxamate significantly suppressed the proliferation of NSCLC cells, while it exerted a much lower toxicity in normal cells. As previous studies reported, LDH-A inhibition resulted in ATP reduction and ROS (reactive oxygen species) burst in cancer cells, which lead to apoptosis and G2/M arrest in H1395 cells. However, when being exposed to oxamate, A549 cells underwent autophagy as a protective mechanism against apoptosis. Furthermore, we found evidence that LDH-A inhibition induced G0/G1 arrest dependent on the activation of GSK-3β in A549 cells. Taken together, our results provide useful clues for targeting LDH-A in NSCLC treatment and shed light on the discovery of molecular predictors for the sensitivity of LDH-A inhibitors. PMID:25361010

  3. Sp1 transcriptionally regulates BRK1 expression in non-small cell lung cancer cells.

    PubMed

    Li, Meng; Ling, Bing; Xiao, Ting; Tan, Jinjing; An, Ning; Han, Naijun; Guo, Suping; Cheng, Shujun; Zhang, Kaitai

    2014-06-01

    Following a previous study reporting that BRK1 is upregulated in non-small cell lung cancer (NSCLC), the present study sought to clarify the role of specificity protein 1 (Sp1) in the transcriptional regulation of the BRK1 gene. Therefore, a construct, named F8, consisting of the -1341 to -1 nt sequence upstream of the start codon of the BRK1 gene inserted into pGL4.26 was made. A series of truncated fragments was then constructed based on F8. Segment S831, which contained the -84 to -1 nt region, displayed the highest transcriptional activity in the A549, H1299 and H520 NSCLC cell lines. Bioinformatic analysis showed a potential Sp1-binding element at -73 to -64 nt, and a mutation in this region suppressed the transcriptional activity of S831. Then the RNAi assays of Sp1 and its coworkers Sp3 and Sp4 were performed, and suppression of Sp1 by siRNA inhibited the mRNA expression of BRK1. Both an electrophoretic mobility shift assay (EMSA) and a chromatin immunoprecipitation (ChIP) assay demonstrated that Sp1 bound to the promoter area of the BRK1 gene. Our data identified a functional and positive Sp1 regulatory element from -73 to -64 nt in the BRK1 promoter, which may likely explain the overexpression of BRK1 in NSCLC. PMID:24680773

  4. The biophysical property of A549 cells transferred by VEGF-D.

    PubMed

    Wang, Zhen; Wu, Xiu-Li; Wang, Xu; Tian, Hong-Xia; Chen, Zhi-Hong; Li, Yang-Qiu

    2014-01-01

    Vascular endothelial growth factor-D (VEGF-D) together with VEGF-C is considered to be associated with lymphangiogenesis and angiogenesis and involve in tumorization. This study aims to investigate the influence of exogenous VEGF-D gene on the biophysical property of cell surface of lung adenocarcinoma cell line. A panel of lung adenocarcinoma cell lines were examined the expression of VEGF-D and VEGF-C by real-time PCR. The VEGF-D recombinant plasmid containing enhanced green fluorescence protein (EGFP) was constructed and transfected to the cell line with no expression of VEGF-D and confirmed by real-time PCR and Western blot analysis. Topographic images of cells were obtained by using atomic force microscope (AFM) in contact mode. Unlike VEGF-C, VEGF-D was found to have a very low expression or undetectable expression in lung adenocarcinoma cell lines. The VEGF-D recombinant plasmid had been constructed successfully and was transferred into the human lung adenocarcinoma cell line A549 cells which had no endogenous expression of VEGF-D, and exogenous VEGF-D could be detected in mRNA and protein expression levels in the gene modified cells, while the VEGF-C gene expression had no change after VEGF-D transfection. After transfection, the irregular microspikes or nano clusters could observe on the surface of A549 cells, and VEGF-D transfected A549 cells became more rigid. The exogenous VEGF-D gene might cause the remarkable biophysical architectural changes in the A549 cells, which might as a novel biomarker for evaluation of its biological function. PMID:23526563

  5. Pulmonary Rehabilitation in Improving Lung Function in Patients With Locally Advanced Non-Small Cell Lung Cancer Undergoing Chemoradiation

    ClinicalTrials.gov

    2015-03-17

    Cachexia; Fatigue; Pulmonary Complications; Radiation Toxicity; Recurrent Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  6. Downregulated TIPE2 is associated with poor prognosis and promotes cell proliferation in non-small cell lung cancer

    SciTech Connect

    Li, Yuexia; Li, Xiaohui; Liu, Gang; Sun, Rongqing; Wang, Lirui; Wang, Jing; Wang, Hongmin

    2015-01-30

    Highlights: • TIPE2 is down-regulated in NSCLC tissues. • TIPE2 inhibits NSCLC cell proliferation, colony formation and invasion. • TIPE2 reduces the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. - Abstract: The present study aims to investigate the expression pattern of TIPE2 protein and its clinical significance in human non-small cell lung cancer (NSCLC). We investigated the expression levels of TIPE2 in 96 NSCLC tumor samples by immunohistochemistry and then analyzed its clinical significance. Furthermore, the role of TIPE2 on the biological properties of the NSCLC cell line H1299 and A549 was experimentally tested in vitro and in vivo. We found that the expression level of TIPE2 was significantly higher in normal lung tissues compared with NSCLC tissues (P < 0.001), and TIPE2 downregulation was significantly correlated with advanced TNM stage (P = 0.006). TIPE2 expression was lower in lung cancer cell lines than normal bronchial cell line HBE. Transfection of TIPE2 plasmid was performed in H1299 and A549 cells. TIPE2 overexpression inhibited lung cancer cell proliferation, colony formation and cell invasive in vitro, and prevented lung tumor growth in vivo. In addition, TIPE2 transfection reduced the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. Taken together, our results demonstrate that TIPE2 might serve as a tumor suppressor in NSCLC progression.

  7. Toward chelerythrine optimization: Analogues designed by molecular simplification exhibit selective growth inhibition in non-small-cell lung cancer cells.

    PubMed

    Yang, Rosania; Tavares, Maurício T; Teixeira, Sarah F; Azevedo, Ricardo A; C Pietro, Diego; Fernandes, Thais B; Ferreira, Adilson K; Trossini, Gustavo H G; Barbuto, José A M; Parise-Filho, Roberto

    2016-10-01

    A series of novel chelerythrine analogues was designed and synthesized. Antitumor activity was evaluated against A549, NCI-H1299, NCI-H292, and NCI-H460 non-small-cell lung cancer (NSCLC) cell lines in vitro. The selectivity of the most active analogues and chelerythrine was also evaluated, and we compared their cytotoxicity in NSCLC cells and non-tumorigenic cell lines, including human umbilical vein endothelial cells (HUVECs) and LL24 human lung fibroblasts. In silico studies were performed to establish structure-activity relationships between chelerythrine and the analogues. The results showed that analogue compound 3f induced significant dose-dependent G0/G1 cell cycle arrest in A549 and NCI-H1299 cells. Theoretical studies indicated that the molecular arrangement and electron characteristics of compound 3f were closely related to the profile of chelerythrine, supporting its activity. The present study presents a new and simplified chelerythrinoid scaffold with enhanced selectivity against NSCLC tumor cells for further optimization. PMID:27561984

  8. Anacardic acid induces mitochondrial-mediated apoptosis in the A549 human lung adenocarcinoma cells.

    PubMed

    Seong, Yeong-Ae; Shin, Pyung-Gyun; Kim, Gun-Do

    2013-03-01

    Anacardic acid (AA) is a constituent of the cashew nut shell and is known as an inhibitor of nuclear factor-κB (NF-κB). We investigated the cytotoxicity of AA on cancer cells and more experiments to reveal the cell death mechanism focused on A549 lung adenocarcinoma cells for our interest in lung cancer. To examine the molecular mechanism of cell death in AA treated A549 cells, we performed experiments such as transmission electron microscopy (TEM), western blot analysis, fluorescence-activated cell sorting (FACS), genomic DNA extraction and staining with 4',6-diamidino-2-phenylindole (DAPI). For the first time we revealed that AA induces caspase-independent apoptosis with no inhibition of cytotoxicity by pan-caspase inhibitor, Z-VAD-fmk, in A549 cells. Our results showed the possibility of mitochondrial-mediated apoptosis through the activation of apoptosis-inducing factor (AIF) and an intrinsic pathway executioner such as cytochrome c. This study will be helpful in revealing the cell death mechanisms and in developing potential drugs for lung cancer using AA. PMID:23314312

  9. Deactivation of A549 cancer cells in vitro by a dielectric barrier discharge plasma needle

    SciTech Connect

    Huang Jun; Chen Wei; Li Hui; Wang Xingquan; Lv Guohua; Wang Pengye; Khohsa, M. Latif; Guo Ming; Feng Kecheng; Yang Size

    2011-03-01

    An inactivation mechanism study on A549 cancer cells by means of a dielectric barrier discharge plasma needle is presented. The neutral red uptake assay provides a quantitative estimation of cell viability after plasma treatment. Experimental results show that the efficiency of argon plasma for the inactivation process is very dependent on power and treatment time. A 27 W power and 120 s treatment time along with 900 standard cubic centimeter per minute Ar flow and a nozzle-to-sample separation of 3 mm are the best parameters of the process. According to the argon emission spectra of the plasma jet and the optical microscope images of the A549 cells after plasma treatment, it is concluded that the reactive species (for example, OH and O) in the argon plasma play a major role in the cell deactivation.

  10. Downregulated TIPE2 is associated with poor prognosis and promotes cell proliferation in non-small cell lung cancer.

    PubMed

    Li, Yuexia; Li, Xiaohui; Liu, Gang; Sun, Rongqing; Wang, Lirui; Wang, Jing; Wang, Hongmin

    2015-01-30

    The present study aims to investigate the expression pattern of TIPE2 protein and its clinical significance in human non-small cell lung cancer (NSCLC). We investigated the expression levels of TIPE2 in 96 NSCLC tumor samples by immunohistochemistry and then analyzed its clinical significance. Furthermore, the role of TIPE2 on the biological properties of the NSCLC cell line H1299 and A549 was experimentally tested in vitro and in vivo. We found that the expression level of TIPE2 was significantly higher in normal lung tissues compared with NSCLC tissues (P<0.001), and TIPE2 downregulation was significantly correlated with advanced TNM stage (P=0.006). TIPE2 expression was lower in lung cancer cell lines than normal bronchial cell line HBE. Transfection of TIPE2 plasmid was performed in H1299 and A549 cells. TIPE2 overexpression inhibited lung cancer cell proliferation, colony formation and cell invasive in vitro, and prevented lung tumor growth in vivo. In addition, TIPE2 transfection reduced the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. Taken together, our results demonstrate that TIPE2 might serve as a tumor suppressor in NSCLC progression. PMID:25542151

  11. Effect of evodiamine on the proliferation and apoptosis of A549 human lung cancer cells.

    PubMed

    Lin, Li; Ren, Li; Wen, Liujing; Wang, Yu; Qi, Jin

    2016-09-01

    Evodia rutaecarpa is a plant, which has antitumor activity. Evodiamine is an alkaloid with antitumor activity present in E. rutaecarpa and has potential to be developed into a therapeutic antitumor agent. The present study investigated the effect of evodiamine on the proliferation of A549 human lung cancer cells and the mechanism underlying these effects. The results indicated that evodiamine significantly inhibited proliferation, induced apoptosis and the expression of reactive oxygen species, arrested the cell cycle, regulated the expression of Survivin, Bcl-2 and Cyclin B1, regulated the activity of caspase-3/8 and glutathione in tumor cells, and decreased the activity of AKT/nuclear factor‑κB (NF‑κB) and Sonic hedgehog/GLI family zinc finger 1 (SHH/GLI1) signaling pathways in A549 cells. In conclusion, the evodiamine-induced inhibition of the proliferation of A549 lung cancer cells may be attributable to its ability to promote oxidative injury in the cells, induce apoptosis, arrest the cell cycle and regulate the AKT/NF‑κB and SHH/GLI1 signaling pathways, subsequently controlling the expression of tumor‑associated genes. PMID:27485202

  12. Brusatol Enhances the Radiosensitivity of A549 Cells by Promoting ROS Production and Enhancing DNA Damage.

    PubMed

    Sun, Xiaohui; Wang, Qin; Wang, Yan; Du, Liqing; Xu, Chang; Liu, Qiang

    2016-01-01

    NF-E2-related factor 2 (Nrf2) has been identified as a master regulatory factor in the protection of cells from oxidative and electrophilic stress. However, overexpression of Nrf2 in lung cancer may cause chemoresistance, as well as radioresistance. In this study, we examined the relationship between radioresistance and Nrf2 protein levels in H1299, A549, and H460 cells, and finally chose the A549 cell line to continue with due to its strong radioresistance and high Nrf2 protein levels. We found that the Nrf2 inhibitor, brusatol, could prevent the increase and accumulation of Nrf2 after exposure to irradiation. Additionally, following treatment with 80 nM brusatol, A549 cells became sensitive to irradiation, suffering severe DNA damage. Combination treatment with brusatol and ionizing radiation (IR) can distinctly increase the level of reactive oxygen species in A549 cells, causing a 1.8-fold increase compared with the control, and a 1.4-fold increase compared with IR alone. In fact, in the treatment with both brusatol and IR, lung cancer cell proliferation is halted, gradually leading to cell death. Because Nrf2 is closely linked to DNA damage repair, inhibiting the function of Nrf2, as in brusatol treatment, may increase the DNA damage caused by radiotherapy or chemotherapy, possibly enhancing the efficacy of chemotherapeutic drugs. Our study is the first to demonstrate brusatol's ability to enhance the responsiveness of lung cancer cells to irradiation, and its potential application as a natural sensitizer in radiotherapy. PMID:27347930

  13. Brusatol Enhances the Radiosensitivity of A549 Cells by Promoting ROS Production and Enhancing DNA Damage

    PubMed Central

    Sun, Xiaohui; Wang, Qin; Wang, Yan; Du, Liqing; Xu, Chang; Liu, Qiang

    2016-01-01

    NF-E2-related factor 2 (Nrf2) has been identified as a master regulatory factor in the protection of cells from oxidative and electrophilic stress. However, overexpression of Nrf2 in lung cancer may cause chemoresistance, as well as radioresistance. In this study, we examined the relationship between radioresistance and Nrf2 protein levels in H1299, A549, and H460 cells, and finally chose the A549 cell line to continue with due to its strong radioresistance and high Nrf2 protein levels. We found that the Nrf2 inhibitor, brusatol, could prevent the increase and accumulation of Nrf2 after exposure to irradiation. Additionally, following treatment with 80 nM brusatol, A549 cells became sensitive to irradiation, suffering severe DNA damage. Combination treatment with brusatol and ionizing radiation (IR) can distinctly increase the level of reactive oxygen species in A549 cells, causing a 1.8-fold increase compared with the control, and a 1.4-fold increase compared with IR alone. In fact, in the treatment with both brusatol and IR, lung cancer cell proliferation is halted, gradually leading to cell death. Because Nrf2 is closely linked to DNA damage repair, inhibiting the function of Nrf2, as in brusatol treatment, may increase the DNA damage caused by radiotherapy or chemotherapy, possibly enhancing the efficacy of chemotherapeutic drugs. Our study is the first to demonstrate brusatol’s ability to enhance the responsiveness of lung cancer cells to irradiation, and its potential application as a natural sensitizer in radiotherapy. PMID:27347930

  14. Manipulations in HIWI level exerts influence on the proliferation of human non-small cell lung cancer cells

    PubMed Central

    WANG, YUGUANG; LIU, JIA; WU, GUANGYAO; YANG, FANG

    2016-01-01

    Lung cancer is the leading cause of cancer-associated mortality worldwide, although molecular imaging techniques, including fludeoxyglucose positron emission tomography, have markedly improved the diagnosis of lung cancer. HIWI is a member of the human piwi family, members of which are known for their roles in RNA silencing. HIWI has been shown to serve a crucial function in stem cell self-renewal, and previous studies have reported HIWI overexpression in lung cancers. Furthermore, HIWI has been proposed to regulate the maintenance of cancer stem cell populations in lung cancers. The present study investigated the mRNA and protein expression levels of HIWI in non-small cell lung cancer (NSCLC) specimens harvested from 57 patients, using reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Subsequently, the HIWI expression level was manipulated using gain-of-function and loss-of-function strategies, and the role of HIWI in the proliferation of human A549 NSCLC cells was investigated using Cell Counting Kit-8 and colony formation assays. The mRNA and protein expression levels of HIWI were significantly upregulated in the intratumor NSCLC specimens, as compared with the peritumor specimens. Furthermore, the mRNA and protein expression levels of HIWI in A549 cells were successfully manipulated using the two strategies. Overexpression and knockout of HIWI were associated with the promotion and inhibition of A549 cell proliferation, respectively. The results of the present study suggested that HIWI is overexpressed in NSCLC tissues and demonstrated that upregulation of HIWI may promote the growth of lung cancer cells; thus suggesting that HIWI may have an oncogenic role in lung cancer. PMID:27168836

  15. Everolimus exhibits efficacy as a radiosensitizer in a model of non-small cell lung cancer.

    PubMed

    Mauceri, Helena J; Sutton, Harold G; Darga, Thomas E; Kocherginsky, Masha; Kochanski, Joel; Weichselbaum, Ralph R; Vokes, Everett E

    2012-05-01

    Signaling pathways that activate mTOR (mammalian target of rapamycin) are altered in many human cancers and these alterations are associated with prognosis and treatment response. mTOR inhibition can restore sensitivity to DNA damaging agents such as cisplatin. The rapamycin derivative everolimus exhibits antitumor activity and is approved for patients with renal cell cancer. Clinically, everolimus has also been evaluated in patients with advanced non-small cell lung cancer (NSCLC) that were refractory to chemotherapy and epidermal growth factor receptor tyrosine kinase inhibitors. We tested the effects of combined treatment with everolimus (RAD001) and fractionated radiation using a xenograft model of human NSCLC (A549 cells). In growth studies, mean tumor volume was reduced in the everolimus plus 30 Gy cohort with significant tumor growth suppression compared to 30 Gy alone (p=0015), or everolimus alone (p<0.001, ANOVA). everolimus (20 nM) significantly reduced protein levels of the mTOR downstream effector p70-S6K compared with radiation and vehicle (p=0.05, ANOVA) and significantly suppressed phospho-p70-S6K levels compared with all other treatments (p<0.001, ANOVA). We also evaluated everolimus and radiation effects on gene expression in A549 cells. Everolimus ± 5 Gy suppressed endothelin 1 and lactate dehydrogenase expression and increased VEGFA, p21, hypoxia-inducible factor-1α and SLC2A1 (facilitated glucose transporter 1). mTOR mRNA levels were unaffected while TNF-α levels were increased with everolimus + 5 Gy compared to either treatment alone. These findings suggest that everolimus increases the antitumor activity of radiation. Clinical trials combining everolimus with fractionated radiation in patients with NSCLC are warranted. PMID:22294050

  16. Dexamethasone suppresses the growth of human non-small cell lung cancer via inducing estrogen sulfotransferase and inactivating estrogen

    PubMed Central

    Wang, Li-jie; Li, Jian; Hao, Fang-ran; Yuan, Yin; Li, Jing-yun; Lu, Wei; Zhou, Tian-yan

    2016-01-01

    Aim: Dexamethasone (DEX) is a widely used synthetic glucocorticoid, which has shown anti-cancer efficacy and anti-estrogenic activity. In this study we explored the possibility that DEX might be used as an endocrine therapeutic agent to treat human non-small cell lung cancer (NSCLC). Methods: The viability and proliferation of human NSCLC cell lines A549 and H1299 were assessed in vitro. Anti-tumor action was also evaluated in A549 xenograft nude mice treated with DEX (2 or 4 mg·kg−1·d−1, ig) or the positive control tamoxifen (50 mg·kg−1·d−1, ig) for 32 d. The expression of estrogen sulfotransferase (EST) in tumor cells and tissues was examined. The intratumoral estrogen levels and uterine estrogen responses were measured. Results: DEX displayed mild cytotoxicity to the NSCLC cells (IC50 >500 μmol/L) compared to tamoxifen (IC50 <50 μmol/L), but it was able to inhibit the cell proliferation at low micromolar ranges. Furthermore, DEX (0.1–10 μmol/L) dose-dependently up-regulated EST expression in the cells, and inhibited the cell migration in vitro. Triclosan, a sulfation inhibitor, was able to diminish DEX-caused inhibition on the cell viability. In A549 xenograft nude mice, DEX or tamoxifen administration remarkably suppressed the tumor growth. Moreover, DEX administration dose-dependently increased EST expression in tumor tissues, and reduced intratumoral estrogen levels as well as the volumes and weights of uterine. Conclusion: DEX suppresses the growth of A549 xenograft tumors via inducing EST and decreasing estradiol levels in tumor tissues, suggesting that DEX may be used as anti-estrogenic agent for the treatment of NSCLC. PMID:27133297

  17. EF5 in Measuring Tumor Hypoxia in Patients With Stage I-III Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2015-04-10

    Stage IA Non-Small Cell Lung Carcinoma; Stage IB Non-Small Cell Lung Carcinoma; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer

  18. Selective killing effect of oxytetracycline, propafenone and metamizole on A549 or Hela cells

    PubMed Central

    Feng, Guihua

    2013-01-01

    Objective To determine the selective killing effect of oxytetracycline, propafenone and metamizole on A549 or Hela cells. Methods Proliferation assay, lactate dehydrogenase (LDH) assay, apoptosis detecting, flow cytometry and western blot were performed. Results It was found that treatment with propafenone at the concentration of 0.014 g/L or higher for 48 h could induce apoptosis in Hela cells greatly, while it was not observed in oxytetracycline and metamizole at the concentration of 0.20 g/L for 48 h. Oxytetracycline, propafenone and metamizole all displayed evident inhibitory effects on the proliferation of A549 cells. The results of LDH assay demonstrated that the drugs at the test range of concentration did not cause necrosis in the cells. Propafenone could elevate the protein level of P53 effectively (P<0.01). Conclusions Oxytetracycline, propafenone and metamizol (dipyrone) all displayed evident inhibitory effects on the proliferation of A549 cells. Propafenone also displayed evident inhibitory effects on the proliferation of Hela cells. PMID:24385693

  19. Ghrelin ameliorates the human alveolar epithelial A549 cell apoptosis induced by lipopolysaccharide.

    PubMed

    Huang, Chunrong; Zheng, Haichong; He, Wanmei; Lu, Guifang; Li, Xia; Deng, Yubin; Zeng, Mian

    2016-05-20

    Ghrelin is a gastric acyl-peptide that plays an inhibitory role in cell apoptosis. Herein we investigate the protective effects of ghrelin in LPS-induced apoptosis of human alveolar epithelial A549 cells, along with the possible molecular mechanisms. LPS exposure impaired cell viability and increased apoptosis of A549 cells significantly in concentration- and time-dependent manners embodied in increased Bax and cleaved caspase-3 production, coupled with decreased Bcl-2 levels. Simultaneously, LPS remarkably decreased the expression of phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinas (ERK) in A549 cells. However, ghrelin'pretreatment ameliorated LPS-caused alterations in the ratio of Bax/Bcl-2 and cleaved caspase-3 expression, whereas activated the PI3K/Akt and ERK signaling. These results demonstrate that ghrelin lightens LPS-induced apoptosis of human alveolar epithelial cells partly through activating the PI3K/Akt and ERK pathway and thereby might benefit alleviating septic ALI. PMID:27103436

  20. Neoadjuvant Therapy in Non-Small Cell Lung Cancer.

    PubMed

    Zheng, Yifan; Jaklitsch, Michael T; Bueno, Raphael

    2016-07-01

    Locally advanced (stage IIIA) non-small cell lung cancer (NSCLC) is confined to the chest, but requires more than surgery to maximize cure. Therapy given preoperatively is termed neoadjuvant, whereas postoperative therapy is termed adjuvant. Trimodality therapy (chemotherapy, radiation, and surgery) has become the standard treatment regimen for resectable, locally advanced NSCLC. During the past 2 decades, several prospective, randomized, and nonrandomized studies have explored various regimens for preoperative treatment of NSCLC. The evaluation of potential candidates with NSCLC for neoadjuvant therapy as well as the currently available therapeutic regimens are reviewed. PMID:27261916

  1. Treatment with a Small Synthetic Compound, KMU-193, induces Apoptosis in A549 Human Lung Carcinoma Cells through p53 Up-Regulation.

    PubMed

    Choi, Eun Young; Shin, Kyeong-Cheol; Lee, Jinho; Kwon, Taeg Kyu; Kim, Shin; Park, Jong-Wook

    2015-01-01

    Despite recent advances in therapeutic strategies for lung cancer, mortality still is increasing. In the present study, we investigated the anti-cancer effects of KMU-193, 2-(4-Ethoxy-phenyl)-N-{5-[2-fluoro-4-(4-methyl- piperazine-1-carbonyl)-phenylamino]-1H-indazol-3-yl}-acetamide in a human non-small cell lung cancer cell line A549. KMU-193 strongly inhibited the proliferation of A549 cells, but it did not have anti-proliferative effect in other types of cancer cell lines. KMU-193 further induced apoptosis in association with activation of caspase-3 and cleavage of PLC-γ1. However, KMU-193 had no apoptotic effect in untransformed cells such as TMCK-1 and BEAS-2B. Interestingly, pretreatment with z-VAD-fmk, a pan-caspase inhibitor, strongly abrogated KMU- 193-induced apoptosis. KMU-193 treatment enhanced the expression levels of p53 and PUMA. Importantly, p53 siRNA transfection attenuated KMU-193-induced apoptosis. Collectively, these results for the first time demonstrate that KMU-193 has strong apoptotic effects on A549 cells and these are largely mediated through caspase-3- and p53-dependent pathways. PMID:26320467

  2. P42 Ebp1 functions as a tumor suppressor in non-small cell lung cancer

    PubMed Central

    Ko, Hyo Rim; Nguyen, Truong LX; Kim, Chung Kwon; Park, Youngbin; Lee, Kyung-Hoon; Ahn, Jee-Yin

    2015-01-01

    Although the short isoform of ErbB3-binding protein 1 (Ebp1), p42 has been considered to be a potent tumor suppressor in a number of human cancers, whether p42 suppresses tumorigenesis of lung cancer cells has never been clarified. In the current study we investigated the tumor suppressor role of p42 in non-small cell lung cancer cells. Our data suggest that the expression level of p42 is inversely correlated with the cancerous properties of NSCLC cells and that ectopic expression of p42 is sufficient to inhibit cell proliferation, anchorage-independent growth, and invasion as well as tumor growth in vivo. Interestingly, p42 suppresses Akt activation and overexpression of a constitutively active form of Akt restores the tumorigenic activity of A549 cells that is ablated by exogenous p42 expression. Thus, we propose that p42 Ebp1 functions as a potent tumor suppressor of NSCLC through interruption of Akt signaling. [BMB Reports 2015; 48(3): 159-165] PMID:24998263

  3. Survivorship Care Planning in Patients With Colorectal or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-12-16

    Stage I Colon Cancer; Stage I Rectal Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Colon Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIA Rectal Cancer; Stage IIB Colon Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIB Rectal Cancer; Stage IIC Colon Cancer; Stage IIC Rectal Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer

  4. MicroRNA-1228(*) inhibit apoptosis in A549 cells exposed to fine particulate matter.

    PubMed

    Li, Xiaobo; Ding, Zhen; Zhang, Chengcheng; Zhang, Xin; Meng, Qingtao; Wu, Shenshen; Wang, Shizhi; Yin, Lihong; Pu, Yuepu; Chen, Rui

    2016-05-01

    Studies have reported associations between fine particulate matter (PM2.5) and respiratory disorders; however, the underlying mechanism is not completely clear owing to the complex components of PM2.5. microRNAs (miRNAs) demonstrate tremendous regulation to target genes, which are sensitive to exogenous stimulation, and facilitate the integrative understood of biological responses. Here, significantly modulated miRNA were profiled by miRNA microarray, coupled with bioinformatic analysis; the potential biological function of modulated miRNA were predicted and subsequently validated by cell-based assays. Downregulation of miR-1228-5p (miR-1228(*)) expression in human A549 cells were associated with PM2.5-induced cellular apoptosis through a mitochondria-dependent pathway. Further, overexpression of miR-1228(*) rescued the cellular damages induced by PM2.5. Thus, our results demonstrate that PM2.5-induced A549 apoptosis is initiated by mitochondrial dysfunction and miR-1228(*) could protect A549 cells against apoptosis. The involved pathways and target genes might be used for future mechanistic studies. PMID:26867688

  5. Dielectric barrier discharge plasma in Ar/O{sub 2} promoting apoptosis behavior in A549 cancer cells

    SciTech Connect

    Huang Jun; Li Hui; Chen Wei; Lv Guohua; Wang Xingquan; Zhang Guoping; Wang Pengye; Ostrikov, Kostya; Yang Size

    2011-12-19

    The Ar/O{sub 2} plasma needle in the induction of A549 cancer cells apoptosis process is studied by means of real-time observation. The entire process of programmed cell death is observed. The typical morphological changes of A549 apoptosis are detected by 4', 6-diamidino-2-phenylindole staining, for example, chromatin condensation and nuclear fragmentation. Cell viability is determined and quantified by neutral red uptake assay, and the survival rate of A549 from Ar/O{sub 2} plasmas is presented. Further spectral analysis indicates the reactive species, including O and OH play crucial roles in the cell inactivation.

  6. [Effects of paclitaxel loaded-drug micelles on cell proliferation and apoptosis of human lung cancer A549 cells].

    PubMed

    Wang, Lin; Yu, Rui-shuang; Yang, Wen-liang; Luan, Shu-juan; Qin, Ben-kai; Pang, Xiao-bin; Du, Guan-hua

    2015-10-01

    This study was conducted to investigate the paclitaxel loaded by hydrazone bonds in poly(ethylene glycol)-poly(caprolactone) micelles (mPEG-PCL-PTX) on proliferation and apoptosis of human lung cancer A549 cells and its possible mechanisms of anti-tumor activity. The cell proliferation was measured with MTT assay. Flow cytometry were used to analyze the cell cycle. The cell apoptosis was analyzed using Hoechst/P staining. The expression levels of apoptotic genes expression in the mitochondrial apoptosis pathway were detected by RT-PCR and Western blotting, respectively. The mPEG-PCL-PTX could inhibit the proliferation of A549 cells and promote the apoptosis. The Bax, caspase-3 protein expression were increased while Bcl-2 protein expression was decreased in A549 cells. Results showed that the polymer containing hydrazone bond is non-toxic in vitro, the mPEG-PCL-PTX micelles can inhibit the proliferation and induce the apoptosis of A549 cells. Key words: paclitaxel; micelle; A549 cell; proliferation; cell cycle; apoptosis PMID:26837168

  7. In vitro synergistic anticancer activity of the combination of T-type calcium channel blocker and chemotherapeutic agent in A549 cells.

    PubMed

    Byun, Joon Seok; Sohn, Joo Mi; Leem, Dong Gyu; Park, Byeongyeon; Nam, Ji Hye; Shin, Dong Hyun; Shin, Ji Sun; Kim, Hyoung Ja; Lee, Kyung-Tae; Lee, Jae Yeol

    2016-02-01

    As a result of our continuous research, new 3,4-dihydroquinazoline derivative containing ureido group, KCP10043F was synthesized and evaluated for T-type Ca(2+) channel (Cav3.1) blockade, cytotoxicity, and cell cycle arrest against human non-small cell lung (A549) cells. KCP10043F showed both weaker T-type Ca(2+) channel blocking activity and less cytotoxicity against A549 cells than parent compound KYS05090S [4-(benzylcarbamoylmethyl)-3-(4-biphenylyl)-2-(N,N',N'-trimethyl-1,5-pentanediamino)-3,4-dihydroquinazoline 2 hydrochloride], but it exhibited more potent G1-phase arrest than KYS05090S in A549 cells. This was found to be accompanied by the downregulations of cyclin-dependent kinase (CDK) 2, CDK4, CDK6, cyclin D2, cyclin D3, and cyclin E at the protein levels. However, p27(KIP1) as a CDK inhibitor was gradually upregulated at the protein levels and increased recruitment to CDK2, CDK4 and CDK6 after KCP10043F treatment. Based on the strong G1-phase cell cycle arrest of KCP10043F in A549 cells, the combination of KCP10043F with etoposide (or cisplatin) resulted in a synergistic cell death (combination index=0.2-0.8) via the induction of apoptosis compared with either agent alone. Taken together with these overall results and the favorable in vitro ADME (absorption, distribution, metabolism, and excretion) profiles of KCP10043F, therefore, it could be used as a potential agent for the combination therapy on human lung cancer. PMID:26739776

  8. White tea extract induces apoptosis in non-small cell lung cancer cells: the role of peroxisome proliferator-activated receptor-{gamma} and 15-lipoxygenases.

    PubMed

    Mao, Jenny T; Nie, Wen-Xian; Tsu, I-Hsien; Jin, Yu-Sheng; Rao, Jian Yu; Lu, Qing-Yi; Zhang, Zuo-Feng; Go, Vay Liang W; Serio, Kenneth J

    2010-09-01

    Emerging preclinical data suggests that tea possess anticarcinogenic and antimutagenic properties. We therefore hypothesize that white tea extract (WTE) is capable of favorably modulating apoptosis, a mechanism associated with lung tumorigenesis. We examined the effects of physiologically relevant doses of WTE on the induction of apoptosis in non-small cell lung cancer cell lines A549 (adenocarcinoma) and H520 (squamous cell carcinoma) cells. We further characterized the molecular mechanisms responsible for WTE-induced apoptosis, including the induction of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and the 15-lipoxygenase (15-LOX) signaling pathways. We found that WTE was effective in inducing apoptosis in both A549 and H520 cells, and inhibition of PPAR-gamma with GW9662 partially reversed WTE-induced apoptosis. We further show that WTE increased PPAR-gamma activation and mRNA expression, concomitantly increased 15(S)-hydroxy-eicosatetraenoic acid release, and upregulated 15-LOX-1 and 15-LOX-2 mRNA expression by A549 cells. Inhibition of 15-LOX with nordihydroguaiaretic acid (NGDA), as well as caffeic acid, abrogated WTE-induced PPAR-gamma activation and upregulation of PPAR-gamma mRNA expression in A549 cells. WTE also induced cyclin-dependent kinase inhibitor 1A mRNA expression and activated caspase-3. Inhibition of caspase-3 abrogated WTE-induced apoptosis. Our findings indicate that WTE is capable of inducing apoptosis in non-small cell lung cancer cell lines. The induction of apoptosis seems to be mediated, in part, through the upregulation of the PPAR-gamma and 15-LOX signaling pathways, with enhanced activation of caspase-3. Our findings support the future investigation of WTE as an antineoplastic and chemopreventive agent for lung cancer. PMID:20668019

  9. Epigallocatechin-3-gallate inhibits nicotine-induced migration and invasion by the suppression of angiogenesis and epithelial-mesenchymal transition in non-small cell lung cancer cells.

    PubMed

    Shi, Jingli; Liu, Fei; Zhang, Wenzhang; Liu, Xin; Lin, Bihua; Tang, Xudong

    2015-06-01

    Epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green tea extract, has been found to have anticancer activities in various types of cancer. However, the underlying mechanisms are not completely clear. In the present study, the effects of EGCG on migration, invasion, angiogenesis and epithelial-mesenchymal transition (EMT) induced by nicotine in A549 non-small cell lung cancer (NSCLC) cells were investigated, and the underlying molecular mechanisms were preliminarily examined. The results showed that different concentrations of EGCG significantly inhibited nicotine-induced migration and invasion. Moreover, EGCG reversed the upregulation of HIF-1α, vascular endothelial growth factor (VEGF), COX-2, p-Akt, p-ERK and vimentin protein levels and the downregulation of p53 and β-catenin protein levels mediated by nicotine in A549 cells, but had no significant effect on their mRNA levels. Furthermore, EGCG markedly inhibited HIF-1α-dependent angiogenesis induced by nicotine in vitro and in vivo, and suppressed HIF-1α and VEGF protein expression induced by nicotine in A549 xenografts of nude mice. Taken together, the results indicated that EGCG inhibited nicotine-induced angiogenesis and EMT, leading to migration and invasion in A549 cells. The results of the present study suggested that EGCG can be developed into a potential agent for the prevention and treatment of smoking-associated NSCLC. PMID:25845434

  10. Application of proteomics in non-small-cell lung cancer.

    PubMed

    Cho, William C S

    2016-01-01

    Non-small-cell lung cancer (NSCLC) is a heterogeneous disease with diverse pathological features. Clinical proteomics allows the discovery of molecular markers and new therapeutic targets for this most prevalent type of lung cancer. Some of them may be used to detect early lung cancer, while others may serve as predictive markers of resistance to different therapies. Therapeutic targets and prognostic markers in NSCLC have also been discovered. These proteomics biomarkers may help to pair the individual NSCLC patient with the best treatment option. Despite the fact that implementation of these biomarkers in the clinic appears to be scarce, the recently launched Precision Medicine Initiative may encourage their translation into clinical practice. PMID:26577456

  11. [Therapy of Metastatic Non-small Cell Lung Cancer].

    PubMed

    Reinmuth, N; Gröschel, A; Schumann, C; Sebastian, M; Wiewrodt, R; Reck, M

    2016-09-01

    Lung cancer accounts for the leading cause of cancer deaths in Germany and is characterized by early metastasis formation. The majority of patients with non-small cell lung cancer (NSCLC) will receive systemic therapy for treatment of their disease. Importantly together with the identification of targetable oncogenic alterations, systemic treatment of NSCLC has dramatically changed in recent years with the implementation of various new agents such as tyrosine kinase inhibitors, anti angiogenic agents, and immune modulating drugs. However, these new therapeutic options also challenge the treating physician since molecular, histologic, and clinical factors need to be considered for the clinical decision-making. Moreover, supportive therapy including bronchoscopic therapy has evolved. The following therapy recommendations will summarize the up-to date treatment strategies for metastatic NSCLC. PMID:27603945

  12. [Maintenance therapy for advanced non-small-cell lung cancer].

    PubMed

    Saruwatari, Koichi; Yoh, Kiyotaka

    2014-08-01

    Maintenance therapy is a new treatment strategy for advanced non-small-cell lung cancer(NSCLC), and it consists of switch maintenance and continuation maintenance.Switch maintenance is the introduction of a different drug, not included as part of the induction therapy, immediately after completion of 4 cycles of first-line platinum-based chemotherapy.Continuation maintenance is a continuation of at least one of the drugs used in the induction therapy in the absence of disease progression.Several phase III trials have reported survival benefits with continuation maintenance of pemetrexed and switch maintenance of pemetrexed or erlotinib.Therefore, maintenance therapy has become a part of the standard first-line treatment for advanced NSCLC.However, further research is needed to elucidate the selection criteria of patients who may benefit the most from maintenance therapy. PMID:25132023

  13. Iron stimulates plasma-activated medium-induced A549 cell injury

    PubMed Central

    Adachi, Tetsuo; Nonomura, Saho; Horiba, Minori; Hirayama, Tasuku; Kamiya, Tetsuro; Nagasawa, Hideko; Hara, Hirokazu

    2016-01-01

    Non-thermal atmospheric pressure plasma is applicable to living cells and has emerged as a novel technology for cancer therapy. Plasma has recently been shown to affect cells not only by direct irradiation, but also by indirect treatments with previously prepared plasma-activated medium (PAM). Iron is an indispensable element but is also potentially toxic because it generates the hydroxyl radical (•OH) in the presence of hydrogen peroxide (H2O2) via the Fenton reaction. The aim of the present study was to demonstrate the contribution of iron to PAM-induced A549 adenocarcinoma cell apoptosis. We detected the generation of •OH and elevation of intracellular ferrous ions in PAM-treated cells and found that they were inhibited by iron chelator. The elevations observed in ferrous ions may have been due to their release from the intracellular iron store, ferritin. Hydroxyl radical-induced DNA injury was followed by the activation of poly(ADP-ribose) polymerase-1, depletion of NAD+ and ATP, and elevations in intracellular Ca2+. The sensitivities of normal cells such as smooth muscle cells and keratinocytes to PAM were less than that of A549 cells. These results demonstrated that H2O2 in PAM and/or •OH generated in the presence of iron ions disturbed the mitochondrial-nuclear network in cancer cells. PMID:26865334

  14. Iron stimulates plasma-activated medium-induced A549 cell injury.

    PubMed

    Adachi, Tetsuo; Nonomura, Saho; Horiba, Minori; Hirayama, Tasuku; Kamiya, Tetsuro; Nagasawa, Hideko; Hara, Hirokazu

    2016-01-01

    Non-thermal atmospheric pressure plasma is applicable to living cells and has emerged as a novel technology for cancer therapy. Plasma has recently been shown to affect cells not only by direct irradiation, but also by indirect treatments with previously prepared plasma-activated medium (PAM). Iron is an indispensable element but is also potentially toxic because it generates the hydroxyl radical (•OH) in the presence of hydrogen peroxide (H2O2) via the Fenton reaction. The aim of the present study was to demonstrate the contribution of iron to PAM-induced A549 adenocarcinoma cell apoptosis. We detected the generation of •OH and elevation of intracellular ferrous ions in PAM-treated cells and found that they were inhibited by iron chelator. The elevations observed in ferrous ions may have been due to their release from the intracellular iron store, ferritin. Hydroxyl radical-induced DNA injury was followed by the activation of poly(ADP-ribose) polymerase-1, depletion of NAD(+) and ATP, and elevations in intracellular Ca(2+). The sensitivities of normal cells such as smooth muscle cells and keratinocytes to PAM were less than that of A549 cells. These results demonstrated that H2O2 in PAM and/or •OH generated in the presence of iron ions disturbed the mitochondrial-nuclear network in cancer cells. PMID:26865334

  15. Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins.

    PubMed

    Zuchowska, Agnieszka; Kwiatkowski, Piotr; Jastrzebska, Elzbieta; Chudy, Michal; Dybko, Artur; Brzozka, Zbigniew

    2016-02-01

    PDMS is a very popular material used for fabrication of Lab-on-a-Chip systems for biological applications. Although PDMS has numerous advantages, it is a highly hydrophobic material, which inhibits adhesion and proliferation of the cells. PDMS surface modifications are used to enrich growth of the cells. However, due to the fact that each cell type has specific adhesion, it is necessary to optimize the parameters of these modifications. In this paper, we present an investigation of normal (MRC-5) and carcinoma (A549) human lung cell adhesion and proliferation on modified PDMS surfaces. We have chosen these cell types because often they are used as models for basic cancer research. To the best of our knowledge, this is the first presentation of this type of investigation. The combination of a gas-phase processing (oxygen plasma or ultraviolet irradiation) and wet chemical methods based on proteins' adsorption was used in our experiments. Different proteins such as poly-l-lysine, fibronectin, laminin, gelatin, and collagen were incubated with the activated PDMS samples. To compare with other works, here, we also examined how ratio of prepolymer to curing agent (5:1, 10:1, and 20:1) influences PDMS hydrophilicity during further modifications. The highest adhesion of the tested cells was observed for the usage of collagen, regardless of PDMS ratio. However, the MRC-5 cell line demonstrated better adhesion than A549 cells. This is probably due to the difference in their morphology and type (normal/cancer). PMID:26311334

  16. [Astaxanthin inhibits proliferation and promotes apoptosis of A549 lung cancer cells via blocking JAK1/STAT3 pathway].

    PubMed

    Wu, Chuntao; Zhang, Jinji; Liu, Tienan; Jiao, Guimei; Li, Changzai; Hu, Baoshan

    2016-06-01

    Objective To investigate the anti-tumor effects of astaxanthin on A549 lung cancer cells and the related mechanisms. Methods A549 cells were cultured with various concentrations of astaxanthin (20, 40, 60, 80, 100 μmol/L), and DMSO at the same concentrations served as vehicle controls. The viability of A549 cells was detected by CCK-8 assay; cell cycle and apoptosis were observed by flow cytometry; and the expressions of B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), signal transducers and activators of transcription 3 (STAT3), and Janus kinase 1 (JAK1) were evaluated by Western blotting. Results CCK-8 assay showed that astaxanthin decreased the proliferation of A549 cells in a dose-dependent manner. Flow cytometry showed that astaxanthin increased the number of cells in the G0/G1 phase and induced apoptosis in A549 cells. Western blotting showed that astaxanthin up-regulated the expression of Bax and down-regulated the expressions of Bcl-2, STAT3 and JAK1. Conclusion Astaxanthin functions as a potent inhibitor of A549 lung cancer cell growth by targeting JAK1/STAT3 signaling pathway. PMID:27371847

  17. Measuring Attachment and Internalization of Influenza A Virus in A549 Cells by Flow Cytometry.

    PubMed

    Pohl, Marie O; Stertz, Silke

    2015-01-01

    Attachment to target cells followed by internalization are the very first steps of the life cycle of influenza A virus (IAV). We provide here a detailed protocol for measuring relative changes in the amount of viral particles that attach to A549 cells, a human lung epithelial cell line, as well as in the amount of particles that are internalized into the cell. We use biotinylated virus which can be easily detected following staining with Cy3-labeled streptavidin (STV-Cy3). We describe the growth, purification and biotinylation of A/WSN/33, a widely used IAV laboratory strain. Cold-bound biotinylated IAV particles on A549 cells are stained with STV-Cy3 and measured using flow cytometry. To investigate uptake of viral particles, cold-bound virus is allowed to internalize at 37 °C. In order to differentiate between external and internalized viral particles, a blocking step is applied: Free binding spots on the biotin of attached virus on the cell surface are bound by unlabeled streptavidin (STV). Subsequent cell permeabilization and staining with STV-Cy3 then enables detection of internalized viral particles. We present a calculation to determine the relative amount of internalized virus. This assay is suitable to measure effects of drug-treatments or other manipulations on attachment or internalization of IAV. PMID:26575457

  18. Genetically Modified T Cells in Treating Patients With Stage III-IV Non-small Cell Lung Cancer or Mesothelioma

    ClinicalTrials.gov

    2016-05-02

    Advanced Pleural Malignant Mesothelioma; HLA-A*0201 Positive Cells Present; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Pleural Malignant Mesothelioma; Stage III Pleural Mesothelioma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IV Pleural Mesothelioma

  19. MicroRNA-182 modulates chemosensitivity of human non-small cell lung cancer to cisplatin by targeting PDCD4

    PubMed Central

    2014-01-01

    Abstract Background Overexpression of microRNA-182 (miR-182) is found in various human cancers, including non-small cell lung cancer (NSCLC). Our aim is to investigate the association of miR-182 expression with the sensitivity of NSCLC to cisplatin. Methods TaqMan RT-PCR or Western blot assay was performed to detect the expression of mature miR-182 and programmed cell death 4 (PDCD4) protein. miR-182 and (or) PDCD4 depleted cell lines were generated using miR-182 inhibitor and (or) siRNA. The viabilities of treated cells were analyzed using MTT assay. Results The expression level of miR-182 in A549 cell line was significantly higher than that in NHBE cell line (p < 0.01). Transfection of miR-182 inhibitor induced sensitivity of A549 cells to cisplatin. A549 cells transfected with PDCD4 siRNA became more resistant to cisplatin therapy. We found an increase PDCD4 protein level following the transfection of miR-182 inhibitor using Western blot analysis. In addition, the enhanced growth-inhibitory effect by miR-182 inhibitor was weakened after the addition of PDCD4 siRNA. Conclusions The results of the present study demonstrated that overexpression of miR-182 may involve in chemoresistance of NSCLC cells to cisplatin by down-regulating PDCD4. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1793467320130186 PMID:25012722

  20. Immunotherapy for non-small cell lung cancer

    PubMed Central

    Kelly, Ronan J.; Gulley, James L.; Giaccone, Giuseppe

    2012-01-01

    Developing effective immunotherapy for lung cancer is a daunting but hugely attractive challenge. Until recently, non-small cell lung cancer was thought of as a non-immunogenic tumor, but there is now evidence highlighting the integral role played by both inflammatory and immunological responses in lung carcinogenesis. Despite recent encouraging preclinical and phase I/II data, there is a paucity of phase III trials showing a clear clinical benefit for vaccines in lung cancer. There are many difficulties to overcome prior to the development of a successful therapy. Perhaps a measurable immune response may not translate into a clinically meaningful or radiological response. Patient selection may also be a problem for ongoing clinical studies. The majority of trials for lung cancer vaccines are focused on patients with advanced-stage disease, while the ideal candidates may be patients with a lower tumor burden stage I or II disease. Selecting the exact antigens to target is also difficult. It will likely require multiple epitopes of a diverse set of genes restricted to multiple haplotypes to generate a truly effective vaccine that is able to overcome the various immunologic escape mechanisms that tumors employ. This review discusses active immunotherapy employing protein/peptide vaccines, whole cell vaccines, and dendritic cell vaccines and examines the current data on some novel immunomodulating agents. PMID:20630824

  1. Advances in immunotherapy for non-small cell lung cancer.

    PubMed

    Reckamp, Karen L

    2015-12-01

    In most patients, lung cancer presents as advanced disease with metastases to lymph nodes and/or distant organs, and survival is poor. Lung cancer is also a highly immune-suppressing malignancy with numerous methods to evade antitumor immune responses, including deficiencies in antigen processing and presentation, release of immunomodulatory cytokines, and inhibition of T-cell activation. Advances in understanding the complex interactions of the immune system and cancer have led to novel therapies that promote T-cell activation at the tumor site, resulting in prolonged clinical benefit. Immune checkpoint inhibitors, specifically programmed death receptor 1 pathway antibodies, have demonstrated impressively durable responses and improved survival in patients with non-small cell lung cancer. This article will review the recent progress made in immunotherapy for lung cancer with data from trials evaluating programmed death receptor 1 and cytotoxic T-lymphocyte-associated protein 4 monoclonal antibodies in addition to cancer vaccines. The review will focus on studies that have been published and the latest randomized trials exploring immune therapy in lung cancer. These results form the framework for a new direction in the treatment of lung cancer toward immunotherapy. PMID:27058851

  2. Burkholderia pseudomallei Biofilm Promotes Adhesion, Internalization and Stimulates Proinflammatory Cytokines in Human Epithelial A549 Cells

    PubMed Central

    Kunyanee, Chanikarn; Kamjumphol, Watcharaporn; Taweechaisupapong, Suwimol; Kanthawong, Sakawrat; Wongwajana, Suwin; Wongratanacheewin, Surasak; Hahnvajanawong, Chariya

    2016-01-01

    Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis. Inhalational exposure leading to pulmonary melioidosis is the most common clinical manifestation with significant mortality. However, the role of B. pseudomallei biofilm phenotype during bacterial-host interaction remains unclear. We hypothesize that biofilm phenotype may play a role in such interactions. In this study, B. pseudomallei H777 (biofilm wild type), B. pseudomallei M10 (biofilm mutant) and B. pseudomallei C17 (biofilm-complemented) strains were used to assess the contribution of biofilm to adhesion to human lung epithelial cells (A549), intracellular interactions, apoptosis/necrosis and impact on proinflammatory responses. Confocal laser scanning microscopy demonstrated that B. pseudomallei H777 and C17 produced biofilm, whereas M10 did not. To determine the role of biofilm in host interaction, we assessed the ability of each of the three strains to interact with the A549 cells at MOI 10. Strain H777 exhibited higher levels of attachment and invasion compared to strain M10 (p < 0.05). In addition, the biofilm-complemented strain, C17 exhibited restored bacterial invasion ability. Flow cytometry combined with a double-staining assay using annexin V and propidium iodide revealed significantly higher numbers of early apoptotic and late apoptotic A549 cells when these were infected with strain H777 (1.52%) and C17 (1.43%) compared to strain M10 (0.85%) (p < 0.05). Strains H777 and C17 were able to stimulate significant secretion of IL-6 and IL-8 compared with the biofilm mutant (p < 0.05). Together, these findings demonstrated the role of biofilm-associated phenotypes of B. pseudomallei in cellular pathogenesis of human lung epithelial cells with respect to initial attachment and invasion, apoptosis and proinflammatory responses. PMID:27529172

  3. αTAT1 downregulation induces mitotic catastrophe in HeLa and A549 cells

    PubMed Central

    Chien, J-Y; Tsen, S-D; Chien, C-C; Liu, H-W; Tung, C-Y; Lin, C-H

    2016-01-01

    α-Tubulin acetyltransferase 1 (αTAT1) controls reversible acetylation on Lys40 of α-tubulin and modulates multiple cellular functions. αTAT1 depletion induced morphological defects of touch receptor neurons in Caenorhabditis elegans and impaired cell adhesion and contact inhibition in mouse embryonic fibroblasts, however, no morphological or proliferation defects in human RPE-hTERT cells were found after αTAT1-specific siRNA treatment. Here, we compared the effect of three αTAT1-specific shRNAs on proliferation and morphology in two human cell lines, HeLa and A549. The more efficient two shRNAs induced mitotic catastrophe in both cell lines and the most efficient one also decreased F-actin and focal adhesions. Further analysis revealed that αTAT1 downregulation increased γ-H2AX, but not other DNA damage markers p-CHK1 and p-CHK2, along with marginal change in microtubule outgrowth speed and inter-kinetochore distance. Overexpression of αTAT1 could not precisely mimic the distribution and concentration of endogenous acetylated α-tubulin (Ac-Tu), although no overt phenotype change was observed, meanwhile, this could not completely prevent αTAT1 downregulation-induced deficiencies. We therefore conclude that efficient αTAT1 downregulation could impair actin architecture and induce mitotic catastrophe in HeLa and A549 cells through mechanisms partly independent of Ac-Tu. PMID:27551500

  4. High-Throughput Quantitative Proteomic Analysis of Dengue Virus Type 2 Infected A549 Cells

    PubMed Central

    Chiu, Han-Chen; Hannemann, Holger; Heesom, Kate J.; Matthews, David A.; Davidson, Andrew D.

    2014-01-01

    Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC) in combination with high-throughput mass spectrometry (MS). Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection. PMID:24671231

  5. αTAT1 downregulation induces mitotic catastrophe in HeLa and A549 cells.

    PubMed

    Chien, J-Y; Tsen, S-D; Chien, C-C; Liu, H-W; Tung, C-Y; Lin, C-H

    2016-01-01

    α-Tubulin acetyltransferase 1 (αTAT1) controls reversible acetylation on Lys40 of α-tubulin and modulates multiple cellular functions. αTAT1 depletion induced morphological defects of touch receptor neurons in Caenorhabditis elegans and impaired cell adhesion and contact inhibition in mouse embryonic fibroblasts, however, no morphological or proliferation defects in human RPE-hTERT cells were found after αTAT1-specific siRNA treatment. Here, we compared the effect of three αTAT1-specific shRNAs on proliferation and morphology in two human cell lines, HeLa and A549. The more efficient two shRNAs induced mitotic catastrophe in both cell lines and the most efficient one also decreased F-actin and focal adhesions. Further analysis revealed that αTAT1 downregulation increased γ-H2AX, but not other DNA damage markers p-CHK1 and p-CHK2, along with marginal change in microtubule outgrowth speed and inter-kinetochore distance. Overexpression of αTAT1 could not precisely mimic the distribution and concentration of endogenous acetylated α-tubulin (Ac-Tu), although no overt phenotype change was observed, meanwhile, this could not completely prevent αTAT1 downregulation-induced deficiencies. We therefore conclude that efficient αTAT1 downregulation could impair actin architecture and induce mitotic catastrophe in HeLa and A549 cells through mechanisms partly independent of Ac-Tu. PMID:27551500

  6. High-throughput quantitative proteomic analysis of dengue virus type 2 infected A549 cells.

    PubMed

    Chiu, Han-Chen; Hannemann, Holger; Heesom, Kate J; Matthews, David A; Davidson, Andrew D

    2014-01-01

    Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC) in combination with high-throughput mass spectrometry (MS). Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection. PMID:24671231

  7. Autophagy in non-small cell lung carcinogenesis

    PubMed Central

    Rao, Shuan; Yang, Heng; Penninger, Josef M; Kroemer, Guido

    2014-01-01

    In a mouse model of non-small cell lung carcinogenesis, we recently found that the inactivation of the essential autophagy gene Atg5 causes an acceleration of the early phases of oncogenesis. Thus, hyperplastic lesions and adenomas are more frequent at early stages after adenoviral delivery of Cre recombinase via inhalation, when Cre—in addition to activating the KRasG12D oncogene—inactivates both alleles of the Atg5 gene. The accelerated oncogenesis of autophagy-deficient tumors developing in KRas;Atg5fl/fl mice (as compared with autophagy-competent KRas;Atg5fl/+ control tumors) correlates with an increased infiltration by FOXP3+ regulatory T cells (Tregs). Depletion of such Tregs by means of specific monoclonal antibodies inhibits the accelerated oncogenesis of autophagy-deficient tumors down to the level observed in autophagy-competent controls. Subsequent analyses revealed that the combination of KRas activation and Atg5 inactivation favors the expression of ENTPD1/CD39, an ecto-ATPase that initiates the conversion of extracellular ATP, which is immunostimulatory, into adenosine, which is immunosuppressive. Pharmacological inhibition of ENTPD1 or blockade of adenosinergic receptors reduces the infiltration of KRas;Atg5fl/fl tumors by Tregs and reverses accelerated oncogenesis. Altogether these data favor a model according to which autophagy deficiency favors oncogenesis via changes in the tumor microenvironment that ultimately entail the Treg-mediated inhibition of anticancer immunosurveillance. PMID:24413089

  8. 18β-Glycyrrhetinic acid suppresses cell proliferation through inhibiting thromboxane synthase in non-small cell lung cancer.

    PubMed

    Huang, Run-Yue; Chu, Yong-Liang; Huang, Qing-Chun; Chen, Xiu-Min; Jiang, Ze-Bo; Zhang, Xian; Zeng, Xing

    2014-01-01

    18β-Glycyrrhetinic acid (18β-GA) is a bioactive component of licorice. The anti-cancer activity of 18β-GA has been studied in many cancer types, whereas its effects in lung cancer remain largely unknown. We first showed that 18β-GA effectively suppressed cell proliferation and inhibited expression as well as activity of thromboxane synthase (TxAS) in non-small cell lung cancer (NSCLC) cells A549 and NCI-H460. In addition, the administration of 18β-GA did not have any additional inhibitory effect on the decrease of cell proliferation induced by transfection with TxAS small interference RNA (siRNA). Moreover, 18β-GA failed to inhibit cell proliferation in the immortalized human bronchial epithelial cells 16HBE-T and another NSCLC cell line NCI-H23, both of which expressed minimal level of TxAS as compared to A549 and NCI-H460. However, 18β-GA abolished the enhancement of cell proliferation induced by transfection of NCI-H23 with pCMV6-TxAS plasmid. Further study found that the activation of both extracellular signal-regulated kinase (ERK)1/2 and cyclic adenosine monophosphate response element binding protein (CREB) induced by TxAS cDNA transfection could be totally blocked by 18β-GA. Altogether, we have delineated that, through inhibiting TxAS and its initiated ERK/CREB signaling, 18β-GA suppresses NSCLC cell proliferation. Our study has highlighted the significance of 18β-GA with respect to prevention and treatment of NSCLC. PMID:24695790

  9. Neuropilin 1 expression correlates with the Radio-resistance of human non-small-cell lung cancer cells.

    PubMed

    Dong, Juan Cong; Gao, Hui; Zuo, Si Yao; Zhang, Hai Qin; Zhao, Gang; Sun, Shi Long; Han, Hai Ling; Jin, Lin Lin; Shao, Li Hong; Wei, Wei; Jin, Shun Zi

    2015-09-01

    The purpose of this study was to determine the correlation between over-expression of the neuropilin 1 (NRP1) gene and growth, survival, and radio-sensitivity of non-small cell lung carcinoma (NSCLC) cells. 3-[4,5-dimethylthylthiazol-2-yl]-2,5 diphenyltetrazolium broide (MTT) and colony assays were then performed to determine the effect of NRP1 inhibition on the in vitro growth of NSCLC cells. The Annexin V-Fluorescein Isothiocyanate (FITC) apoptosis detection assay was performed to analyse the effect of NRP1 enhancement on apoptosis of NSCLC cells. Transwell invasion and migration assays were employed to examine the metastatic ability of A549 cells post X-ray irradiation. In addition, Western blot assays were carried out to detect the protein level of VEGFR2, PI3K and NF-κB. Finally, to examine the effect of shNRP1 on proliferation and radio-sensitivity in vivo, a subcutaneous tumour formation assay in nude mice was performed. Microvessel density in tumour tissues was assessed by immunohistochemistry. The stable transfected cell line (shNRP1-A549) showed a significant reduction in colony-forming ability and proliferation not only in vitro, but also in vivo. Moreover, shRNA-mediated NRP1 inhibition also significantly enhanced the radio-sensitivity of NSCLC cells both in vitro and in vivo. The over-expression of NRP1 was correlated with growth, survival and radio-resistance of NSCLC cells via the VEGF-PI3K- NF-κB pathway, and NRP1 may be a molecular therapeutic target for gene therapy or radio-sensitization of NSCLC. PMID:26147006

  10. Wnt signaling pathway in non-small cell lung cancer.

    PubMed

    Stewart, David J

    2014-01-01

    Wnt/β-catenin alterations are prominent in human malignancies. In non-small cell lung cancer (NSCLC), β-catenin and APC mutations are uncommon, but Wnt signaling is important in NSCLC cell lines, and Wnt inhibition reduces proliferation. Overexpression of Wnt-1, -2, -3, and -5a and of Wnt-pathway components Frizzled-8, Dishevelled, Porcupine, and TCF-4 is common in resected NSCLC and is associated with poor prognosis. Conversely, noncanonical Wnt-7a suppresses NSCLC development and is often downregulated. Although β-catenin is often expressed in NSCLCs, it was paradoxically associated with improved prognosis in some series, possibly because of E-cadherin interactions. Downregulation of Wnt inhibitors (eg, by hypermethylation) is common in NSCLC tumor cell lines and resected samples; may be associated with high stage, dedifferentiation, and poor prognosis; and has been reported for AXIN, sFRPs 1-5, WIF-1, Dkk-1, Dkk-3, HDPR1, RUNX3, APC, CDX2, DACT2, TMEM88, Chibby, NKD1, EMX2, ING4, and miR-487b. AXIN is also destabilized by tankyrases, and GSK3β may be inactivated through phosphorylation by EGFR. Preclinically, restoration of Wnt inhibitor function is associated with reduced Wnt signaling, decreased cell proliferation, and increased apoptosis. Wnt signaling may also augment resistance to cisplatin, docetaxel, and radiotherapy, and Wnt inhibitors may restore sensitivity. Overall, available data indicate that Wnt signaling substantially impacts NSCLC tumorigenesis, prognosis, and resistance to therapy, with loss of Wnt signaling inhibitors by promoter hypermethylation or other mechanisms appearing to be particularly important. Wnt pathway antagonists warrant exploration clinically in NSCLC. Agents blocking selected specific β-catenin interactions and approaches to increase expression of downregulated Wnt inhibitors may be of particular interest. PMID:24309006

  11. Personalized Therapy of Non-small Cell Lung Cancer (NSCLC).

    PubMed

    Gadgeel, Shirish M

    2016-01-01

    Lung cancer remains the most common cause of cancer related deaths in both men and women in the United States and non-small cell lung cancer (NSCLC) accounts for over 85 % of all lung cancers. Survival of these patients has not significantly altered in over 30 years. This chapter initially discusses the clinical presentation of lung cancer patients. Most patients diagnosed with lung cancer due to symptoms have advanced stage cancer. Once diagnosed, lung cancer patients need imaging studies to assess the stage of the disease before decisions regarding therapy are finalized. The most important prognostic factors are stage of the disease and performance status and these factors also determine therapy. The chapter subsequently discusses management of each stage of the disease and the impact of several pathologic, clinical factors in personalizing therapy for each individual patient. Transition from chemotherapy for every patient to a more personalized approach based on histology and molecular markers has occurred in the management of advanced stage NSCLC. It is expected that such a personalized approach will extend to all stages of NSCLC and will likely improve the outcomes of all NSCLC patients. PMID:26703806

  12. Telomerase activity in non-small cell lung cancer

    PubMed Central

    Dobija-Kubica, Katarzyna; Bruliński, Krzysztof; Rogoziński, Paweł; Wiczkowski, Andrzej; Gawrychowska, Agata; Gawrychowski, Jacek

    2016-01-01

    Introduction High telomerase activity has been detected in the majority of malignant neoplasms including lung cancer. The purpose of the study was to attempt to use telomerase activity as a prognostic factor in patients with non-small cell lung cancer (NSCLC). Material and methods Telomerase activity was analyzed in 47 tissue specimens taken from patients with NSCLC. The control group consisted of 30 specimens of non-cancerous lung parenchyma. Telomerase activity was measured by means of the telomeric repeat amplification protocol (TRAP). Results Telomerase activity in the neoplastic tissue was significantly higher than in the lung parenchyma that was free from neoplastic infiltration. There was no significant association between telomerase activity and age, gender, tobacco smoking, histological type of the tumor, or staging (pTNM). No association was found between the level of telomerase activity in NSCLC specimens and the two-year survival rate of patients (p = 0.326). A higher level of telomerase activity in poorly differentiated tumors (G3) as compared to moderately differentiated tumors (G2) was detected (p = 0.008). A positive association was identified between telomerase activity in pulmonary parenchyma free from tumor infiltration and the presence of leukocyte infiltration (p = 0.0001). Conclusions No association was found between the level of telomerase activity in NSCLC specimens and the two-year survival rate of patients. The study has revealed a positive association between telomerase activity and the grade of differentiation (G) in NSCLC. PMID:27212973

  13. Therapeutic vaccines in non-small cell lung cancer

    PubMed Central

    Socola, Francisco; Scherfenberg, Naomi; Raez, Luis E

    2013-01-01

    Non-small cell lung cancer (NSCLC) unfortunately carries a very poor prognosis. Patients usually do not become symptomatic, and therefore do not seek treatment, until the cancer is advanced and it is too late to employ curative treatment options. New therapeutic options are urgently needed for NSCLC, because even current targeted therapies cure very few patients. Active immunotherapy is an option that is gaining more attention. A delicate and complex interplay exists between the tumor and the immune system. Solid tumors utilize a variety of mechanisms to evade immune detection. However, if the immune system can be stimulated to recognize the tumor as foreign, tumor cells can be specifically eliminated with little systemic toxicity. A number of vaccines designed to boost immunity against NSCLC are currently undergoing investigation in phase III clinical trials. Belagenpumatucel-L, an allogeneic cell vaccine that decreases transforming growth factor (TGF-β) in the tumor microenvironment, releases the immune suppression caused by the tumor and it has shown efficacy in a wide array of patients with advanced NSCLC. Melanoma-associated antigen A3 (MAGE-A3), an antigen-based vaccine, has shown promising results in MAGE-A3+ NSCLC patients who have undergone complete surgical resection. L-BLP25 and TG4010 are both antigenic vaccines that target the Mucin-1 protein (MUC-1), a proto-oncogene that is commonly mutated in solid tumors. CIMAVax is a recombinant human epidermal growth factor (EGF) vaccine that induces anti-EGF antibody production and prevents EGF from binding to its receptor. These vaccines may significantly improve survival and quality of life for patients with an otherwise dismal NSCLC prognosis. This review is intended to give an overview of the current data and the most promising studies of active immunotherapy for NSCLC.

  14. Genistein inhibits A549 human lung cancer cell proliferation via miR-27a and MET signaling

    PubMed Central

    Yang, Yang; Zang, Aimin; Jia, Youchao; Shang, Yanhong; Zhang, Zhuoqi; Ge, Kun; Zhang, Jinchao; Fan, Wufang; Wang, Bei

    2016-01-01

    Genistein is a soybean isoflavone; in its aglycone it has various biological activities. Animal experiments, clinical studies and epidemiological investigations suggest that genistein has preventative and curative functions for a number of diseases, particularly in cancer. The present study explored the potential anti-cancer effect of genistein by observing its role in inhibiting A549 human lung cancer cell proliferation and investigating the possible mechanism. A549 cells were exposed to various concentrations of genistein (0, 10, 25, 50, 100 and 200 µM; dissolved in physiological saline) for 1, 2 and 3 days. Subsequently, the viability of A549 cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell apoptosis was examined using a flow cytometer, caspase 3/9 activity was measured using commercial kits, reverse transcription quantitative polymerase chain reaction was used to analyze the miR-27a expression and western blotting was used to investigate MET protein expression. The results suggested a significant inhibition of A549 cell growth following treatment with genistein in a time- and dose-dependent manner. The current study also indicated that treatment with genistein significantly induces cell apoptosis and promotes caspase-3/9 activation of A549 cells in a dose-dependent manner. Further functional assays revealed that the anti-cancer effect of genistein activated microRNA-27a (miR-27a) expression levels and reduced MET protein expression in A549 cells. In conclusion, the present study demonstrates that genistein inhibits A549 human lung cancer cell proliferation. Furthermore, this study reports, for the first time, a correlation between the anti-cancer effect of genistein and miR-27a-mediated MET signaling. PMID:27602162

  15. Overexpression of the hydatidiform mole-related gene F10 inhibits apoptosis in A549 cells through downregulation of BCL2-associated X protein and caspase-3.

    PubMed

    Song, Yali; Zhang, Gong; Zhu, Xiulan; Pang, Zhanjun; Xing, Fuqi; Quan, Song

    2012-09-01

    The aim of this study was to investigate how the overexpression of the hydatidiform mole-related gene F10 affects apoptosis in human lung cancer A549 cells. A549 cells were transfected with pEGFP-N1-F10 (A549-F10) or pEGFP-N1 empty vector (A549-empty). Untransfected A549, A549-F10 or A549-empty cells were examined using the MTT cell proliferation assay and the TUNEL-FITC/Hoechst 33258 apoptosis assay. Western blotting was used to examine the expression levels of the pro-apoptotic genes, BCL2-associated X protein (BAX) and caspase-3. F10 was stably expressed in A549 cells. From 12 h, A549-F10 cells proliferated markedly faster than the untransfected and A549-empty cells. F10 overexpression also significantly inhibited apoptosis, as shown by the reduced number of TUNEL and Hoechst 33258 double-positive cells. This inhibition was likely due to an F10-induced reduction in the BAX and caspase-3 levels. The results of this study indicate that F10 overexpression inhibits apoptosis in A549 cells through the downregulation of the pro-apoptotic genes BAX and caspase-3. PMID:23741243

  16. Molecular mechanisms underlying mangiferin-induced apoptosis and cell cycle arrest in A549 human lung carcinoma cells

    PubMed Central

    SHI, WEI; DENG, JIAGANG; TONG, RONGSHENG; YANG, YONG; HE, XIA; LV, JIANZHEN; WANG, HAILIAN; DENG, SHAOPING; QI, PING; ZHANG, DINGDING; WANG, YI

    2016-01-01

    Mangiferin, which is a C-glucosylxanthone (1,3,6,7-tetrahydroxyxanthone-C2-β-D-glucoside) purified from plant sources, has recently gained attention due to its various biological activities. The present study aimed to determine the apoptotic effects of mangiferin on A549 human lung adenocarcinoma cells. In vitro studies demonstrated that mangiferin exerted growth-inhibitory and apoptosis-inducing effects against A549 cells. In addition, mangiferin exhibited anti-tumor properties in A549 xenograft mice in vivo. Mangiferin triggered G2/M phase cell cycle arrest via down-regulating the cyclin-dependent kinase 1-cyclin B1 signaling pathway, and induced apoptotic cell death by inhibiting the protein kinase C-nuclear factor-κB pathway. In addition, mangiferin was able to enhance the antiproliferative effects of cisplatin on A549 cells, thus indicating the potential for a combined therapy. Notably, mangiferin exerted anticancer effects in vivo, where it was able to markedly decrease the volume and weight of subcutaneous tumor mass, and expand the lifespan of xenograft mice. The present study clarified the molecular mechanisms underlying mangiferin-induced antitumor activities, and suggested that mangiferin may be considered a potential antineoplastic drug for the future treatment of cancer. PMID:26935347

  17. Hyponatremia of non-small cell lung cancer: Indian experience

    PubMed Central

    Bose, Chinmoy K.; Dey, Subhashis; Mukhopadhyay, Ashis

    2011-01-01

    Background: Hyponatremia is a hazardous complication of lung cancer and its treatment. It is seen at presentation in approximately 15% of patients with small-cell lung cancer (SCLC) and 1% of patients with non-small cell lung cancer (NSCLC). Platinum compounds used as first-line agents along with taxols frequently cause hyponatremia. Till date there is no data on its prevalence in patients with advanced lung cancer in the Indian subcontinent. Aim: This study was undertaken to find out its incidence before and after institution of chemotherapy and to observe the results of treatment of hyponatremia in a group of lung cancer patient. Materials and Methods: Forty patients with advanced lung cancer (25 patients with stage III disease and 15 with stage IV disease) were included in the study. Variables looked at included, but were not limited to, serum sodium, serum albumin, serum alkaline phosphatase, serum lactate dehydrogenase, and hemoglobin. These variables were measured as per the standard clinical laboratory procedure. No ethics approval was required as these parameters are routinely measured in such patients. Results: In the chemo-naïve state, one out of five cases with SCLC (20%) had hyponatremia at presentation; among the 35 cases of NSCLC, 7 patients (20%) had hyponatremia at presentation, which is in sharp contrast to earlier reports of 1% prevalence of hyponatremia in this group. Among the 27 cases who died within 6 months, 11 had hyponatremia; this finding was statistically highly significant. Conclusion: In India, NSCLC patients are at high risk of having hyponatremia at presentation and this is significantly associated with a worse outcome. PMID:22557779

  18. Targeting Angiogenesis in Squamous Non-small Cell Lung Cancer

    PubMed Central

    Merla, Amartej; Perez-Soler, Roman

    2014-01-01

    Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, and can be further classified as nonsquamous carcinoma (including adenocarcinoma, which accounts for 50% of NSCLCs) and squamous NSCLC, which makes up 30% of NSCLC cases. The emergence of inhibitors of epidermal growth factor receptors, anaplastic lymphoma kinase, and vascular endothelial growth factors (VEGF) in the last decade has resulted in steady improvement in clinical outcome for patients with advanced lung adenocarcinoma. However, improvements in the survival of patients with squamous NSCLC have remained elusive, presenting an urgent need for understanding and investigating therapeutically relevant molecular targets specifically in squamous NSCLC. Although anti-VEGF therapy has been studied in squamous NSCLC, progress has been slow, in part due to issues related to pulmonary hemorrhage. In addition to these safety concerns, several phase III trials that initially included patients with squamous NSCLC failed to demonstrate improved overall survival (primary endpoint) with the addition of antiangiogenic therapy to chemotherapy compared with chemotherapy alone. Angiogenesis is an established hallmark of tumor progression and metastasis, and the role of VEGF signaling in angiogenesis is well established. However, some studies suggest that while inhibiting VEGF signaling may be beneficial, prolonged exposure to VEGF/VEGF receptor (VEGFR) inhibitors may allow tumor cells to utilize alternative angiogenic mechanisms and become resistant. As a result, agents that target multiple angiogenic pathways simultaneously are also under evaluation. This review focuses on current and investigational antiangiogenic targets in squamous NSCLC, including VEGF/VEGFRs, fibroblast growth factor receptors, platelet-derived growth factor receptors, and angiopoietin. Additionally, clinical trials investigating VEGF- and multi-targeted antiangiogenic therapies are discussed. PMID:24578213

  19. In vitro and in vivo evaluation of therapy targeting epithelial-cell adhesion-molecule aptamers for non-small cell lung cancer.

    PubMed

    Alibolandi, Mona; Ramezani, Mohammad; Abnous, Khalil; Sadeghi, Fatemeh; Atyabi, Fatemeh; Asouri, Mohsen; Ahmadi, Ali Asghar; Hadizadeh, Farzin

    2015-07-10

    Targeted, disease-specific delivery of therapeutic nanoparticles shows wonderful promise for transmitting highly cytotoxic anti-cancer agents. Using the reaction of non-small cell lung cancer (SK-MES-1 and A549 cell lines) as representative of other cancer types', the present study examines the effects of EpCAM-fluoropyrimidine RNA aptamer-decorated, DOX-loaded, PLGA-b-PEG nanopolymersomes that bond specifically to the extracellular domain of epithelial-cell adhesion molecules. Results demonstrate that EpCAM aptamer-conjugated DOX-NPs (Apt-DOX-NP) significantly enhance cellular nanoparticle uptake in SK-MES-1 and A549 cell lines and increase the cytotoxicity of the DOX payload as compared with non-targeted DOX-NP (P<0.05). Additionally, Apt-DOX-NP exhibits greater tumor inhibition in nude mice bearing SK-MES-1 non-small cell lung-cancer xenografts and reduces toxicity, as determined by loss of body weight, cardiac histopathology and animal survival rate in vivo. After a single intravenous injection of Apt-DOX-NP and DOX-NPs, tumor volume decreased 60.9% and 31.4%, respectively, in SK-MES-1-xenograft nude mice compared with members of a saline-injected control group. This study proves the potential utility of Apt-DOX-NP for therapeutic application in non-small cell lung cancer. In the future, EpCAM-targeted therapies might play a key role in treating non-small cell lung cancer, the most common type of lung cancer. PMID:25912964

  20. Integrated molecular portrait of non-small cell lung cancers

    PubMed Central

    2013-01-01

    Background Non-small cell lung cancer (NSCLC), a leading cause of cancer deaths, represents a heterogeneous group of neoplasms, mostly comprising squamous cell carcinoma (SCC), adenocarcinoma (AC) and large-cell carcinoma (LCC). The objectives of this study were to utilize integrated genomic data including copy-number alteration, mRNA, microRNA expression and candidate-gene full sequencing data to characterize the molecular distinctions between AC and SCC. Methods Comparative genomic hybridization followed by mutational analysis, gene expression and miRNA microarray profiling were performed on 123 paired tumor and non-tumor tissue samples from patients with NSCLC. Results At DNA, mRNA and miRNA levels we could identify molecular markers that discriminated significantly between the various histopathological entities of NSCLC. We identified 34 genomic clusters using aCGH data; several genes exhibited a different profile of aberrations between AC and SCC, including PIK3CA, SOX2, THPO, TP63, PDGFB genes. Gene expression profiling analysis identified SPP1, CTHRC1and GREM1 as potential biomarkers for early diagnosis of the cancer, and SPINK1 and BMP7 to distinguish between AC and SCC in small biopsies or in blood samples. Using integrated genomics approach we found in recurrently altered regions a list of three potential driver genes, MRPS22, NDRG1 and RNF7, which were consistently over-expressed in amplified regions, had wide-spread correlation with an average of ~800 genes throughout the genome and highly associated with histological types. Using a network enrichment analysis, the targets of these potential drivers were seen to be involved in DNA replication, cell cycle, mismatch repair, p53 signalling pathway and other lung cancer related signalling pathways, and many immunological pathways. Furthermore, we also identified one potential driver miRNA hsa-miR-944. Conclusions Integrated molecular characterization of AC and SCC helped identify clinically relevant markers

  1. Anthropometric measurements in non-small-cell lung cancer.

    PubMed

    Ferrigno, D; Buccheri, G

    2001-10-01

    There is evidence that malnutrition is an important cause of morbidity and mortality in lung cancer patients and may have an impact on the clinical course of disease. The simplest way to assess nutritional status at the patient's bedside remains recourse to anthropometric measurements. This study was carried out in order to assess the clinical and prognostic significance of triceps skinfold thickness (TST), arm circumference (AC), and wrist circumference (WC) in lung cancer. The patient population was a consecutive series of 388 patients seen for a newly diagnosed primary non-small-cell lung cancer during the last 4 years. A set of 22 anthropometric, clinical, physical, laboratory, radiological, and pathological variables was prospectively recorded for all patients. Patients were carefully followed up, and their subsequent clinical course was recorded. The median values of TST, WC and AC were 8 mm (range 2-25 mm), 18 cm (range 10-27 cm), and 25 cm (range 15-35 cm), respectively. In 107 patients (27.6% of the total) TST values were below the reference value, and 37 of these patients also had a pathologically low small circumference. In all, AC was below the normality range in 60 of the 388 subjects (15.5%). Among the three variables, the strongest relationships were those between AC and WC (r(s)=0.541), and between TST and AC (r(s)=0.521). Univariate analyses of survival showed that TST was strongly predictive of a better prognosis (P<0.001), while WC was unrelated to outcome (P=0.101). Patients with higher values of AC had significantly longer survival than patients with lower values (P<0.018). The multivariate model, in contrast, did not confirm the prognostic capability of any of the anthropometric measures. These data indicate that the anthropometric measures may be significant predictors of survival, although not independently of the other prognostic factors. PMID:11680832

  2. Spotlight on gefitinib in non-small-cell lung cancer.

    PubMed

    Frampton, James E; Easthope, Stephanie E

    2005-01-01

    Gefitinib (Iressa), the first commercially available epidermal growth factor receptor-tyrosine kinase (EGFR-TK) inhibitor, is indicated in the management of patients with locally advanced or metastatic non-small-cell lung cancer (NSCLC). However, approved uses differ between countries; in most markets, gefitinib is approved for third-line use only (e.g. the US, Canada and Switzerland), although in some it is approved for both second- and third-line use (e.g. Japan and Australia) and, additionally, in patients considered unsuitable for chemotherapy (e.g. Indonesia and the Philippines). Few third-line treatment options exist for patients with inoperable advanced NSCLC who have failed both docetaxel and platinum-based chemotherapy regimens. Gefitinib represents a significant advance in the treatment of this population; a once-daily oral dosage of 250 mg/day was well tolerated, produced objective tumour responses and disease stabilization, and improved disease-related symptoms and quality of life. It also produced overall survival outcomes that compared favorably with historical outcomes in a similar group of patients treated with three or four different chemotherapy regimens. These findings have been supported by observations from a global compassionate-use program. Ongoing or planned clinical trials are designed to confirm and/or further define the role of the drug in the above and other clinical settings. Preliminary data demonstrate the presence of activating mutations in EGFR-TK among patients whose disease was highly responsive to treatment with gefitinib, although such mutations have not been correlated to all patients who benefit from the drug. Further studies are needed to fully elucidate the clinical implications of EGFR mutations and to identify patients likely to benefit from EGFR-targeted therapy. PMID:15813676

  3. Protein signature for non-small cell lung cancer prognosis

    PubMed Central

    Liu, Wei; Wu, Yong; Wang, Libo; Gao, Ling; Wang, Yingping; Liu, Xiaoliang; Zhang, Kai; Song, Jena; Wang, Hongxia; Bayer, Thomas A; Glaser, Laurel; Sun, Yezhou; Zhang, Weijia; Cutaia, Michael; Zhang, David Y; Ye, Fei

    2014-01-01

    Background: Current histopathological classification and TNM staging have limited accuracy in predicting survival and stratifying patients for appropriate treatment. The goal of the study is to determine whether the expression pattern of functionally important regulatory proteins can add additional values for more accurate classification and prognostication of non-small lung cancer (NSCLC). Methods: The expression of 108 proteins and phosphoproteins in 30 paired NSCLC samples were assessed using Protein Pathway Array (PPA). The differentially expressed proteins were further confirmed using a tissue microarray (TMA) containing 94 NSCLC samples and were correlated with clinical data and survival. Results: Twelve of 108 proteins (p-CREB(Ser133), p-ERK1/2(Thr202/Tyr204), Cyclin B1, p-PDK1(Ser241), CDK4, CDK2, HSP90, CDC2p34, β-catenin, EGFR, XIAP and PCNA) were selected to build the predictor to classify normal and tumor samples with 97% accuracy. Five proteins (CDC2p34, HSP90, XIAP, CDK4 and CREB) were confirmed to be differentially expressed between NSCLC (n=94) and benign lung tumor (n=19). Over-expression of CDK4 and HSP90 in tumors correlated with a favorable overall survival in all NSCLC patients and the over-expression of p-CREB(Ser133) and CREB in NSCLC correlated with a favorable survival in smokers and those with squamous cell carcinoma, respectively. Finally, the four proteins (CDK4, HSP90, p-CREB and CREB) were used to calculate the risk score of each individual patient with NSCLC to predict survival. Conclusion: In summary, our data demonstrated a broad disturbance of functionally important regulatory proteins in NSCLC and some of these can be selected as clinically useful biomarkers for diagnosis, classification and prognosis. PMID:24959380

  4. Proteasome inhibition improves fractionated radiation treatment against non-small cell lung cancer: an antioxidant connection.

    PubMed

    Grimes, Kristopher Ray; Daosukho, Chotiros; Zhao, Yunfeng; Meigooni, Ali; St Clair, William

    2005-10-01

    Non-small cell lung cancer frequently presents as a locally advanced disease. In this setting, radiation has a prominent role in cancer therapy. However, tumor adaptation to oxidative stress may lessen the efficacy of radiation therapy. Recent studies demonstrate that proteasome inhibitors increase the efficacy of radiation against a range of tumors. Although proteasome inhibition impacts on NF-kappaB translocation, the precise mechanism through which proteasome inhibitors induce tumor cell death and promote radiation efficacy remains unclear. The purpose of this study is to evaluate the potential of the proteasome inhibitor, MG-132, to improve the efficacy of radiation therapy and to determine whether its effect is linked to the suppression of the antioxidant enzyme, manganese superoxide dismutase (MnSOD). Human NSCLC (A549) cells were utilized both in vivo and in vitro to evaluate proteasome inhibition on radiation response. In vivo, mice that received combined treatments of 2.5 microg/g body weight MG-132 and 30 Gy demonstrated a delay in tumor regrowth in comparison to the 30 Gy control group. In vitro, clonegenic survival assays confirmed a dose-dependent enhancement of radiation sensitivity in combination with MG-132 and a significant interaction between the two. The levels of IkappaB-alpha, a NF-kappaB target gene and also an inhibitor of NF-kappaB nuclear translocation, decreased in a time-dependent manner following administration of MG-132 confirming the inhibition of the 26S proteasome. The MnSOD protein level was increased consistent with lower levels of IkappaB-alpha, confirming a NF-kappaB-mediated effect. Cells treated with radiation demonstrated an induction of MnSOD; however, the administration of MG-132 suppressed this induction These results support the hypothesis that proteasome inhibitors such as MG-132 can increase the efficacy of radiation therapy, in part, by suppression of cytoprotective NF-kappaB-mediated MnSOD expression. PMID:16142322

  5. NADPH:cytochrome c (P450) reductase activates tirapazamine (SR4233) to restore hypoxic and oxic cytotoxicity in an aerobic resistant derivative of the A549 lung cancer cell line

    PubMed Central

    Saunders, M P; Patterson, A V; Chinje, E C; Harris, A L; Stratford, I J

    2000-01-01

    Tirapazamine (TPZ, SR4233, WIN 59075) is a bioreductive drug that is activated in regions of low oxygen tension to a cytotoxic radical intermediate. This labile metabolite shows high selective toxicity towards hypoxic cells, such as those found in solid tumours. Under aerobic conditions, redox cycling occurs with subsequent generation of superoxide radicals, which are also cytotoxic. NADPH:cytochrome c (P450) reductase (P450R) is a one-electron reducing enzyme that efficiently activates TPZ. Recently a derivative of the A549 non-small cell lung cancer cell line (A549c50) was generated that showed substantially reduced P450R activity compared to its parental line (Elwell et al (1997) Biochem Pharmacol54: 249–257). Here, it is demonstrated that the A549c50 cells are markedly more resistant to TPZ under both aerobic and hypoxic conditions. In addition, these cells have a dramatically impaired ability to metabolize TPZ to its two-electron reduction product, SR4317, under hypoxic conditions when compared to wild-type cells. P450R activity in the A549c50 cells was reintroduced to similar levels as that seen in the parental A549 cells by transfection of the full-length cDNA for human P450R. These P450R over-expressing cells exhibit restored sensitivity to TPZ under both aerobic and hypoxic conditions, comparable to that found in the original parental A549 cells. Further, the ability of the transfected cells to metabolize TPZ to SR4317 under hypoxic conditions is also shown to be restored. This provides further evidence that P450R can play an important role in the activation, metabolism and toxicity of this lead bioreductive drug. © 2000 Cancer Research Campaign PMID:10682679

  6. Different mechanisms for metal-induced adaptation to cadmium in the human lung cell lines A549 and H441.

    PubMed

    Sauvageau, Josée-Anne; Jumarie, Catherine

    2013-06-01

    Sensitivity to Cd and Zn as well as the capacity to develop tolerance were characterized in human lung cells A549 and H441. In the A549 cells, a 2-fold lower LC(50) was obtained for Cd compared to Zn, whereas H441 cells were similarly sensitive to both metals. H441 cells were twice as resistant to Cd as the A549 cells. Higher HSP70, but not metallothionein (MT) or glutathione (GSH) levels, could contribute to this better resistance. A 1.5- and 2-fold increase in the LC(50) for Cd was obtained in the A549 cells pre-exposed to non-cytotoxic concentrations of Cd (20 μM) or Zn (40 μM) for 24 h. On the other hand, only Zn increased H441 cells' resistance to Cd. Maximum Zn- and Cd-induced tolerances were reached as early as 3 and 12 h, respectively. Increases in MT-IIa and HSP70 messenger RNA levels were higher in A549 cells, but cycloheximide eliminated the induction of tolerance only in the H441 cells. Protein synthesis is a prerequisite for metal-induced tolerance to Cd in the H441 cells but not the A549 cells. Results obtained with L-buthionine sulfoximine revealed that GSH synthesis is not responsible for the acquired tolerance in both cell lines. However, GSH plays a critical role against Cd toxicity, and pro-oxidant conditions sensitized cells to Cd with different impacts on the metal-induced mechanisms of acquired tolerance. GSH and catalase both provide antioxidative protection, but only the stress related to low GSH content, not that resulting from catalase inhibition, may be alleviated with Zn. PMID:23584637

  7. Formononetin suppresses the proliferation of human non-small cell lung cancer through induction of cell cycle arrest and apoptosis.

    PubMed

    Yang, Yi; Zhao, Yi; Ai, Xinghao; Cheng, Baijun; Lu, Shun

    2014-01-01

    Formononetin is a novel herbal isoflavonoid isolated from Astragalus membranaceus and possesses antitumorigenic properties. In the present study, we investigated the anti-proliferative effects of formononetin on human non-small cell lung cancer (NSCLC), and further elucidated the molecular mechanism underlying the anti-tumor property. MTT assay showed that formononetin treatment significantly inhibited the proliferation of two NSCLC cell lines including A549 and NCI-H23 in a time- and dose-dependent manner. Flow cytometric analysis demonstrated that formononetin induced G1-phase cell cycle arrest and promoted cell apoptosis in NSCLC cells. On the molecular level, we observed that exposure to formononetin altered the expression levels of cell cycle arrest-associated proteins p21, cyclin A and cyclin D1. Meanwhile, the apoptosis-related proteins cleaved caspase-3, bax and bcl-2 were also changed following treatment with formononetin. In addition, the expression level of p53 was dose-dependently upregulated after administration with formononetin. We also found that formononetin treatment increased the phosphorylation of p53 at Ser15 and Ser20 and enhances its transcriptional activity in a dose-dependent manner. Collectively, these results demonstrated that formononetin might be a potential chemopreventive drug for lung cancer therapy through induction of cell cycle arrest and apoptosis in NSCLC cells. PMID:25674209

  8. 4-Nitroquinoline-1-oxide effects human lung adenocarcinoma A549 cells by regulating the expression of POLD4

    PubMed Central

    HUANG, QIN-MIAO; ZENG, YI-MING; ZHANG, HUA-PING; LV, LIANG-CHAO; YANG, DONG-YONG; LIN, HUI-HUANG

    2016-01-01

    The aim of the present study was to explore the expression of POLD4 in human lung adenocarcinoma A549 cells under 4-nitroquinoline-1-oxide (4NQO) stimulation to investigate the role of POLD4 in smoking-induced lung cancer. The lung cancer A549 cell line was treated with 4NQO, with or without MG132 (an inhibitor of proteasome activity), and subsequently the POLD4 level was determined by western blot analysis. Secondly, the cell sensitivity to 4NQO and Taxol was determined when the POLD4 expression level was downregulated by siRNA. The POLD4 protein levels in the A549 cells decreased following treatment with 4NQO; however, MG132 could reverse this phenotype. Downregulation of the POLD4 expression by siRNA enhanced A549 cell sensitivity to 4NQO, but not to Taxol. In conclusion, 4NQO affects human lung adenocarcinoma A549 cells by regulating the expression of POLD4. PMID:26998273

  9. Synthesis, characterization and anticancer activity studies of ruthenium(II) polypyridyl complexes on A549 cells.

    PubMed

    Zeng, Chuan-Chuan; Jiang, Guang-Bin; Lai, Shang-Hai; Zhang, Cheng; Yin, Hui; Tang, Bing; Wan, Dan; Liu, Yun-Jun

    2016-08-01

    Four new ruthenium(II) polypyridyl complexes [Ru(N-N)2(bddp)](ClO4)21-4 (N-N=dmb: 4,4'-dimethyl-2,2'-bipyridine 1, bpy: 2,2'-bipyridine 2, phen: 1,10-phenanthroline 3 and dmp: 2,9-dimethyl-1,10-phenanthroline 4, bddp=benzilo[2,3-b]-1,4-diazabenzo[i]dipyrido[3,2-a:2',3'-c]phenazine) were synthesized and characterized by elemental analysis, ESI-MS and (1)H NMR. The cytotoxicity in vitro of the complexes against BEL-7402, HeLa, MG-63 and A549 cell lines was investigated by MTT method. The complexes show high cytotoxic activity toward the selected cell lines with an IC50 value ranging from 5.3±0.6 to 15.7±3.6μM. The apoptosis was studied with acridine orange (AO)/ethdium bromide (EB) and Hoechst 33258 staining methods. The cellular uptake was investigated with DAPI staining method. The reactive oxygen species (ROS) and mitochondrial membrane potential were performed under fluorescent microscope and flow cytometry. The complexes can induce an increase in the ROS levels and a decrease in the mitochondrial membrane potential. The comet assay was studied with fluorescent microscope. The percentage in apoptotic and necrotic cells and cell cycle arrest were assayed by flow cytometry. The effects of the complexes on the expression of caspases and Bcl-2 family proteins were studied by western blot analysis. The results show that the complexes induce apoptosis in A549 cells through an ROS-mediated mitochondrial dysfunction pathway, which was accompanied by regulating the expression of Bcl-2 family proteins. PMID:27288660

  10. In Vitro Evaluation of 3-Arylcoumarin Derivatives in A549 Cell Line

    PubMed Central

    MUSA, MUSILIYU A.; JOSEPH, MOISE Y.; LATINWO, LEKAN M.; BADISA, VEERA; COOPERWOOD, JOHN S.

    2016-01-01

    Coumarins are naturally-occurring compounds with diverse and interesting biological activities. In the present study, we evaluated the in vitro cytotoxic effect of 8-(acetyloxy)-3-[4-(acetyloxy)phenyl]-2-oxo-2H-chromen-7-yl acetate (6); 8-(acetyloxy)-3-(4-methanesulfonyl phenyl)-2-oxo-2H-chromen-7-yl acetate (7); 4-(2-oxo-2H-chromen-3-yl)phenyl acetate (8); 3-(4-methanesulfonylphenyl)-2H-chromen-2-one (9); 4-(4-methyl-2-oxo-2H-chromen-3-yl)phenyl acetate (10); 3-(4-methanesulfonylphenyl)-4-methyl-2H-chromen-2-one (11); 8-(acetyloxy)-3-[4-(acetyloxy)phenyl]-4-methyl-2-oxo-2H-chromen-7-yl acetate (12); and 5-(acetyloxy)-3-[4-(acetyloxy) phenyl]-2-oxo-2H-chromen-7-yl acetate (13) in human lung (A549) cancer and normal lung (MRC-9) cell lines at different concentrations for 48 h using crystal violet dye binding assay. The cytotoxic effect of these coumarin derivatives were compared to the standard drug, docetaxel. Furthermore, the effect of the most active compound on the cell-cycle using propidium iodide, mitochondrial membrane potential (MMP) using tetramethyl rhodamine methyl ester (rhodamine-123) and reactive oxygen species (ROS) production using 2′,7′-dichlorofluorescin diacetate (PCFDA) were also evaluated. Results Compound 7 had the greatest cytotoxic effect (cytotoxic concentration, CC50=24 μM) and selectivity (MRC-9; CC50 >100 μM; inactive) in the A549 cell line, and caused cells to arrest in the S phase of the cell cycle, loss of MMP and increased ROS production in a concentration-dependent manner. Conclusion These findings suggest that compound 7 could serve as a new lead for the development of novel synthetic compounds with enhanced anticancer activity. PMID:25667442

  11. Regulatory Role of KEAP1 and NRF2 in PPARγ Expression and Chemoresistance in Human Non-small Cell Lung Carcinoma Cells

    PubMed Central

    Zhan, Lijuan; Zhang, Hao; Zhang, Qiang; Woods, Courtney G.; Chen, Yanyan; Xue, Peng; Dong, Jian; Tokar, Erik J.; Xu, Yuanyuan; Hou, Yongyong; Fu, Jingqi; Yarborough, Kathy; Wang, Aiping; Qu, Weidong; Waalkes, Michael P.; Andersen, Melvin E.; Pi, Jingbo

    2012-01-01

    The nuclear factor-E2-related factor 2 (NRF2) serves as a master regulator in cellular defense against oxidative stress and chemical detoxification. However, persistent activation of NRF2 resulting from mutations of NRF2 and/or downregulation or mutations of its suppressor Kelch-like ECH-associated protein 1 (KEAP1) are associated with tumorigenicity and chemoresistance of non-small-cell lung carcinomas (NSCLCs). Thus, inhibiting NRF2-mediated adaptive antioxidant response is widely considered a promising strategy to prevent tumor growth and reverse chemoresistance in NSCLCs. Unexpectedly, stable knockdown of KEAP1 by lentiviral shRNA sensitized three independent NSCLC cell lines (A549, HTB-178 and HTB-182) to multiple chemotherapeutic agents, including arsenic trioxide (As2O3), etoposide and doxorubicin, despite moderately increased NRF2 levels. In lung adenocarcinoma epithelial A549 cells, silencing of KEAP1 augmented the expression of peroxisome proliferator-activated receptor γ (PPARγ) and genes associated with cell differentiation, including E-Cadherin and Gelsolin. In addition, KEAP1-knockdown A549 cells displayed attenuated expression of proto-oncogene Cyclin D1 and markers for cancer stem cells (CSCs), and reduced non-adherent sphere formation. Moreover, deficiency of KEAP1 led to elevated induction of PPARγ in response to As2O3. Pretreatment of A549 cells with PPARγ agonists activated PPARγ and augmented the cytotoxicity of As2O3. A mathematical model was formulated to advance a hypothesis that differential regulation of PPARγ and detoxification enzymes by KEAP1 and NRF2 may underpin the observed landscape changes in chemo-sensitivity. Collectively, suppression of KEAP1 expression in human NSCLC cells resulted in sensitization to chemotherapeutic agents, which may be attributed to activation of PPARγ and subsequent alterations in cell differentiation and CSC abundance. PMID:22684020

  12. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling

    NASA Astrophysics Data System (ADS)

    Cheng, C.-Y.; Perevedentseva, E.; Tu, J.-S.; Chung, P.-H.; Cheng, C.-L.; Liu, K.-K.; Chao, J.-I.; Chen, P.-H.; Chang, C.-C.

    2007-04-01

    This letter presents direct observation of growth hormone receptor in one single cancer cell using nanodiamond-growth hormone complex as a specific probe. The interaction of surface growth hormone receptor of A549 human lung epithelial cells with growth hormone was observed using nanodiamond's unique spectroscopic signal via confocal Raman mapping. The growth hormone molecules were covalent conjugated to 100nm diameter carboxylated nanodiamonds, which can be recognized specifically by the growth hormone receptors of A549 cell. The Raman spectroscopic signal of diamond provides direct and in vitro observation of growth hormone receptors in physiology condition in a single cell level.

  13. Inonotus obliquus-derived polysaccharide inhibits the migration and invasion of human non-small cell lung carcinoma cells via suppression of MMP-2 and MMP-9.

    PubMed

    Lee, Ki Rim; Lee, Jong Seok; Song, Jeong Eun; Ha, Suk Jin; Hong, Eock Kee

    2014-12-01

    Polysaccharides isolated from the fruiting body of Inonotus obliquus (PFIO) are known to possess various pharmacological properties including antitumor activity. However, the anti-metastatic effect and its underlying mechanistic signaling pathway involved these polysaccharides in human non-small cell lung carcinoma remain unknown. The present study therefore aimed to determine the anti-metastatic potential and signaling pathways of PFIO in the highly metastatic A549 cells. We found that PFIO suppressed the migration and invasive ability of A549 cells while decreasing the expression levels and activity of matrix metalloproteinase (MMP)-2 and MMP-9. Furthermore, PFIO decreased the phosphorylation levels of mitogen-activated protein kinases (MAPKs) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) as well as the expression level of COX-2, and inhibited the nuclear translocation of nuclear factor κB (NF-κB) in A549 cells. These results suggested that PFIO could suppress the invasion and migration of human lung carcinoma by reducing the expression levels and activity of MMP-2 and MMP-9 via suppression of MAPKs, PI3K/AKT, and NF-κB signaling pathways. PMID:25270791

  14. RNA interference-mediated knockdown of Aurora-B alters the metastatic behavior of A549 cells via modulation of the phosphoinositide 3-kinase/Akt signaling pathway

    PubMed Central

    ZHOU, LONG DIAN; XIONG, XU; LONG, XIN HUA; LIU, ZHI LI; HUANG, SHAN HU; ZHANG, WEI

    2014-01-01

    Accumulating evidence has revealed that an elevated expression level of Aurora-B is associated with metastasis in various types of malignant tumor. However, it is currently unclear whether this molecule is involved in non-small lung cancer (NSCLC) metastasis, and the molecular mechanisms associated with Aurora-B and metastasis remain unknown. In the present study, in order to investigate whether Aurora-B is involved in the development and metastasis of NSCLC, the Aurora-B protein expression in NSCLC tissues was detected by immunohistochemistry and its association with metastasis was analyzed. The results revealed that the expression levels of the Aurora-B protein in tissues obtained from NSCLC patients with lymph node metastasis were significantly higher than those without metastatic disease. Furthermore, the effect of Aurora-B inhibition on A549 cell migration and invasion, as well as the activity of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway was evaluated. Aurora-B was inhibited in the A549 cells using short hairpin RNA, and the cell migration and invasion rates were investigated using wound healing and Transwell invasion assays. In addition, the expression of the main proteins in the PI3K/Akt/nuclear factor-κB (NF-κB) signaling pathway, and matrix metalloproteinase (MMP)-2 and -9 were measured by western blot analysis. The results demonstrated that cell migration and invasion were decreased as a result of silencing Aurora-B. Furthermore, the activity of the PI3K/Akt/NF-κB signaling pathway and the expression of MMP-2 and -9 protein were suppressed by silencing Aurora-B. The results of the present study indicate that the knockdown of Aurora-B suppresses A549 cell invasion and migration via the inhibition of the PI3K/Akt signaling pathway in vitro and thus, targeting Aurora-B may present a potential treatment strategy for NSCLC. PMID:25295091

  15. Caveolin-1 regulates cell apoptosis and invasion ability in paclitaxel-induced multidrug-resistant A549 lung cancer cells

    PubMed Central

    Han, Fei; Zhang, Long; Zhou, Yongxin; Yi, Xianghua

    2015-01-01

    The aim of the study was to investigate the effect and potential mechanism of caveolin-1 (Cav1) knockdown in paclitaxel-resistant lung cancer A549/Taxol cells. The human paclitaxel-resistant lung cancer cell line A549/Taxol was transfected with a Cav1 shRNA lentiviral vector. Interference efficiency for Cav1 was detected by real-time PCR and Western blotting. A MTT assay was used to determine cell proliferation, and flow cytometry was used to detect the cell cycle stage and apoptosis. Cell migration and invasion capability were detected by a transwell assay. Protein levels of related signaling molecules were detected by Western blotting. We successfully constructed a stable A549/Taxol cell line expressing low levels of Cav1. Cav1 knockdown significantly inhibited cell proliferation and induced G0/G1 arrest and cell apoptosis in vitro and in vivo. In addition, these effects correlated significantly with a reduction in cyclin D1 expression and activation of the Bcl-2/Bax-mediated mitochondrial apoptosis pathway. Furthermore, knockdown of Cav1 inhibited cell migration and invasion, and this may be related to the inhibition of AKT and the subsequent decreased protein expression of MMP2, MMP7 and MMP9. PMID:26464635

  16. Claudin-18 inhibits cell proliferation and motility mediated by inhibition of phosphorylation of PDK1 and Akt in human lung adenocarcinoma A549 cells.

    PubMed

    Shimobaba, Shun; Taga, Saeko; Akizuki, Risa; Hichino, Asami; Endo, Satoshi; Matsunaga, Toshiyuki; Watanabe, Ryo; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Sugatani, Junko; Ikari, Akira

    2016-06-01

    Abnormal expression of claudin subtypes has been reported in various cancers. However, the pathological role of each claudin has not been clarified in detail. Claudin-18 was absent in human non-small cell and small cell lung cancers, although it is expressed in normal lung tissues. Here, we examined the effect of claudin-18 expression on the expression of junctional proteins, cell proliferation, and cell motility using human lung adenocarcinoma A549 cells. Real-time PCR and western blotting showed that exogenous expression of claudin-18 had no effect on the expression of junctional proteins including claudin-1, zonula occludens-1 (ZO-1), occludin, and E-cadherin. Claudin-18 was mainly distributed in cell-cell contact areas concomitant with ZO-1. Cell proliferation was significantly decreased at 48 and 72h after seeding of claudin 18-expressing cells. Claudin-18 suppressed cell motility, whereas it increased cell death in anoikis. Claudin-18 decreased phosphorylated (p)-3-phosphoinositide-dependent protein kinase-1 (PDK1) and p-Akt levels without affecting p-epidermal growth factor receptor and p-phosphatidylinositol-3 kinase (PI3K) levels. Furthermore, claudin-18 was bound with PDK1 and suppressed the nuclear localization of PDK1. We suggest that claudin-18 suppresses the abnormal proliferation and motility of lung epithelial cells mediated by inhibition of the PI3K/PDK1/Akt signaling pathway. PMID:26919807

  17. Synthesis and cytotoxicity evaluation of 4-amino-4-dehydroxylarctigenin derivatives in glucose-starved A549 tumor cells.

    PubMed

    Lei, Min; Gan, Xianwen; Zhao, Kun; Yu, Qiang; Hu, Lihong

    2015-02-01

    The natural product arctigenin (ATG) demonstrated preferential cytotoxicity to cancer cells under glucose starvation. A series of 4-amino-4-dehydroxylarctigenin derivatives based on lead compound ATG were designed and synthesized by bioisosteric modifications. Their cytotoxicities were evaluated in glucose-starved A549 tumor cells and the results indicated that the 4-amino-4-dehydroxylarctigenin showed more potent cytotoxicity than arctigenin, and the further substituent group on 4-amino would result in the cytotoxicities decreased significantly. 4-Substituted-arctigenin could selectively target on glucose-starved A549 tumor cells which provide an alternative strategy for anticancer drug development with minimal normal tissue toxicity. PMID:25571795

  18. Punica granatum (pomegranate) leaves extract induces apoptosis through mitochondrial intrinsic pathway and inhibits migration and invasion in non-small cell lung cancer in vitro.

    PubMed

    Li, Yali; Yang, Fangfang; Zheng, Weidong; Hu, Mingxing; Wang, Juanxiu; Ma, Sisi; Deng, Yuanle; Luo, Yi; Ye, Tinghong; Yin, Wenya

    2016-05-01

    Most conventional treatments on non-small cell lung carcinoma always accompany with awful side effects, and the incidence and mortality rates of this cancer are increasing rapidly worldwide. The objective of this study was to examine the anticancer effects of extract of Punica granatum (pomegranate) leaves extract (PLE) on the non-small cell lung carcinoma cell line A549, H1299 and mouse Lewis lung carcinoma cell line LL/2 in vitro, and explore its mechanisms of action. Our results have shown that PLE inhibited cell proliferation in non-small cell lung carcinoma cell line in a concentration- and time-dependent manner. Flow cytometry (FCM) assay showed that PLE affected H1299 cell survival by arresting cell cycle progression in G2/M phase in a dose-dependent manner and inducing apoptosis. Moreover, PLE could also decrease the reactive oxygen species (ROS) and the mitochondrial membrane potential (ΔYm), indicating that PLE may induce apoptosis via mitochondria-mediated apoptotic pathway. Furthermore, PLE blocked H1299 cell migration and invasion, and the reduction of matrix metalloproteinase (MMP) MMP-2 and MMP-9 expression were also observed in vitro. These results suggested that PLE could be an effective and safe chemotherapeutic agent in non-small cell lung carcinoma treatment by inhibiting proliferation, inducing apoptosis, cell cycle arrest and impairing cell migration and invasion. PMID:27133061

  19. Role of cytoskeleton network in anisosmotic volume changes of intact and permeabilized A549 cells.

    PubMed

    Platonova, Alexandra; Ponomarchuk, Olga; Boudreault, Francis; Kapilevich, Leonid V; Maksimov, Georgy V; Grygorczyk, Ryszard; Orlov, Sergei N

    2015-10-01

    Recently we found that cytoplasm of permeabilized mammalian cells behaves as a hydrogel displaying intrinsic osmosensitivity. This study examined the role of microfilaments and microtubules in the regulation of hydrogel osmosensitivity, volume-sensitive ion transporters, and their contribution to volume modulation of intact cells. We found that intact and digitonin-permeabilized A549 cells displayed similar rate of shrinkage triggered by hyperosmotic medium. It was significantly slowed-down in both cell preparations after disruption of actin microfilaments by cytochalasin B, suggesting that rapid water release by intact cytoplasmic hydrogel contributes to hyperosmotic shrinkage. In hyposmotic swelling experiments, disruption of microtubules by vinblastine attenuated the maximal amplitude of swelling in intact cells and completely abolished it in permeabilized cells. The swelling of intact cells also triggered ~10-fold elevation of furosemide-resistant (86)Rb+ (K+) permeability and the regulatory volume decrease (RVD), both of which were abolished by Ba2+. Interestingly, RVD and K+ permeability remained unaffected in cytocholasin/vinblastine treated cells demonstrating that cytoskeleton disruption has no direct impact on Ba2+-sensitive K+-channels involved in RVD. Our results show, for the first time, that the cytoskeleton network contributes directly to passive cell volume adjustments in anisosmotic media via the modulation of the water retained by the cytoplasmic hydrogel. PMID:26171817

  20. c-Jun N-terminal Kinase-Dependent Endoplasmic Reticulum Stress Pathway is Critically Involved in Arjunic Acid Induced Apoptosis in Non-Small Cell Lung Cancer Cells.

    PubMed

    Joo, HyeEun; Lee, Hyun Joo; Shin, Eun Ah; Kim, Hangil; Seo, Kyeong-Hwa; Baek, Nam-In; Kim, Bonglee; Kim, Sung-Hoon

    2016-04-01

    Though arjunic acid, a triterpene isolated from Terminalia arjuna, was known to have antioxidant, antiinflammatory, and cytotoxic effects, its underlying antitumor mechanism still remains unclear so far. Thus, in the present study, the molecular antitumor mechanism of arjunic acid was examined in A549 and H460 non-small cell lung cancer (NSCLC) cells. Arjunic acid exerted cytotoxicity by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT) assay and significantly increased sub-G1 population in A549 and H460 cells by cell cycle analysis. Consistently, arjunic acid cleaved poly (ADP-ribose) polymerase (PARP), activated Bax, and phosphorylation of c-Jun N-terminal kinases (JNK), and also attenuated the expression of pro-caspase-3 and Bcl-2 in A549 and H460 cells. Furthermore, arjunic acid upregulated the expression of endoplasmic reticulum (ER) stress proteins such as IRE1 α, ATF4, p-eIF2α, and C/EBP homologous protein (CHOP) in A549 and H460 cells. Conversely, CHOP depletion attenuated the increase of sub-G1 population by arjunic acid, and also JNK inhibitor SP600125 blocked the cytotoxicity and upregulation of IRE1 α and CHOP induced by arjunic acid in A549 and H460 cells. Overall, our findings suggest that arjunic acid induces apoptosis in NSCLC cells via JNK mediated ER stress pathway as a potent chemotherapeutic agent for NSCLC. PMID:26787261

  1. Triptolide inhibits COX-2 expression by regulating mRNA stability in TNF-{alpha}-treated A549 cells

    SciTech Connect

    Sun, Lixin; Zhang, Shuang; Jiang, Zhenzhou; Huang, Xin; Wang, Tao; Huang, Xiao; Li, Han; Zhang, Luyong

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Triptolide inhibited COX-2 expression and the half-life of COX-2 mRNA is decreased. Black-Right-Pointing-Pointer The HuR protein shuttling from nucleus to cytoplasm is inhibited by triptolide. Black-Right-Pointing-Pointer Triptolide inhibited 3 Prime -UTR fluorescence reporter gene activity. Black-Right-Pointing-Pointer COX-2 mRNA binding to HuR is decreased by triptolide in pull-down experiments. -- Abstract: Cyclooxygenase-2 (COX-2) over-expression is frequently associated with human non-small-cell lung cancer (NSCLC) and involved in tumor proliferation, invasion, angiogenesis and resistance to apoptosis. In the present study, the effects of triptolide on COX-2 expression in A549 cells were investigated and triptolide was found to inhibit TNF-{alpha}-induced COX-2 expression. In our further studies, it was found that triptolide decreased the half-life of COX-2 mRNA dramatically and that it inhibited 3 Prime -untranslated region (3 Prime -UTR) fluorescence reporter gene activity. Meanwhile, triptolide inhibited the HuR shuttling from nucleus to cytoplasm. After triptolide treatment, decreased COX-2 mRNA in pull-down experiments with anti-HuR antibodies was observed, indicating that the decreased cytoplasmic HuR is responsible for the decreased COX-2 mRNA. Taken together, our results provided evidence for the first time that triptolide inhibited COX-2 expression by COX-2 mRNA stability modulation and post-transcriptional regulation. These results provide a novel mechanism of action for triptolide which may be important in the treatment of lung cancer.

  2. Reactive oxygen species involved in apoptosis induction of human respiratory epithelial (A549) cells by Streptococcus agalactiae.

    PubMed

    da Costa, Andréia Ferreira Eduardo; Moraes, João Alfredo; de Oliveira, Jessica Silva Santos; dos Santos, Michelle Hanthequeste Bittencourt; Santos, Gabriela da Silva; Barja-Fidalgo, Christina; Mattos-Guaraldi, Ana Luiza; Nagao, Prescilla Emy

    2016-01-01

    Streptococcus agalactiae (Group B Streptococcus; GBS) is an important pathogen and is associated with pneumonia, sepsis and meningitis in neonates and adults. GBS infections induce cytotoxicity of respiratory epithelial cells (A549) with generation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential (ψm). The apoptosis of A549 cells by GBS was dependent on the activation of caspase-3 and caspase-9 with increased pro-apoptotic Bim and Bax molecules and decreased Bcl-2 pro-survival protein. Treatment of infected A549 cells with ROS inhibitors (diphenyleniodonium chloride or apocynin) prevented intracellular ROS production and apoptosis. Consequently, oxidative stress is included among the cellular events leading to apoptosis during GBS human invasive infections. PMID:26490153

  3. Sirolimus and Gold Sodium Thiomalate in Treating Patients With Advanced Squamous Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2012-12-13

    Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  4. Ginkgo biloba Extract Decreases Non-Small Cell Lung Cancer Cell Migration by Downregulating Metastasis-Associated Factor Heat-Shock Protein 27

    PubMed Central

    Tsai, Jong-Rung; Liu, Po-Len; Chen, Yung-Hsiang; Chou, Shah-Hwa; Yang, Ming-Chan; Cheng, Yu-Jen; Hwang, Jhi-Jhu; Yin, Wei-Hsian; Chong, Inn-Wen

    2014-01-01

    Heat-shock proteins (HSPs) are molecular chaperones that protect proteins from damage. HSP27 expression is associated with cancer transformation and invasion. Ginkgo biloba extract (EGb761), the most widely sold herbal supplement, has antiangiogenic effects and induces tumor apoptosis. Data regarding the effect of EGb761 on HSP expression is limited, particularly in cancer. HSP27 expression in paired tumors and normal lung tissues of 64 patients with non-small cell lung cancer (NSCLC) were detected by real-time PCR, western blotting, and immunohistochemistry. NSCLC cell lines (A549/H441) were used to examine the migratory abilities in vitro. NSCLC tissue showed higher HSP27 expression than normal lung tissue. Kaplan–Meier survival analysis showed that NSCLC patients with low HSP27 expression ratio (<1) had significantly longer survival time than those with a high expression ratio (>1) (p = 0.04). EGb761 inhibited HSP27 expression and migratory ability of A549/H441 cells, which is the same as HSP27-siRNA transfection effect. Moreover, EGb761 treatment activated the AKT and p38 pathways and did not affect the expression of PI3K, ERK, and JNK pathways. HSP27 is a poor prognostic indicator of NSCLC. EGb761 can decrease the migration ability of A549/H441 by inhibiting HSP27 expression most likely through AKT and p38 MAPK pathways activation. PMID:24618684

  5. Antimetastatic Effects of Phyllanthus on Human Lung (A549) and Breast (MCF-7) Cancer Cell Lines

    PubMed Central

    Lee, Sau Har; Jaganath, Indu Bala; Wang, Seok Mui; Sekaran, Shamala Devi

    2011-01-01

    Background Current chemotherapeutic drugs kill cancer cells mainly by inducing apoptosis. However, they become ineffective once cancer cell has the ability to metastasize, hence the poor prognosis and high mortality rate. Therefore, the purpose of this study was to evaluate the antimetastatic potential of Phyllanthus (P. niruri, P. urinaria, P. watsonii, and P. amarus) on lung and breast carcinoma cells. Methodology/Principal Findings Cytotoxicity of Phyllanthus plant extracts were first screened using the MTS reduction assay. They were shown to inhibit MCF-7 (breast carcinoma) and A549 (lung carcinoma) cells growth with IC50 values ranging from 50–180 µg/ml and 65–470 µg/ml for methanolic and aqueous extracts respectively. In comparison, they have lower toxicity on normal cells with the cell viability percentage remaining above 50% when treated up to 1000 µg/ml for both extracts. After determining the non-toxic effective dose, several antimetastasis assays were carried out and Phyllanthus extracts were shown to effectively reduce invasion, migration, and adhesion of both MCF-7 and A549 cells in a dose-dependent manner, at concentrations ranging from 20–200 µg/ml for methanolic extracts and 50–500 µg/ml for aqueous extracts. This was followed by an evaluation of the possible modes of cell death that occurred along with the antimetastatic activity. Phyllanthus was shown to be capable of inducing apoptosis in conjunction with its antimetastastic action, with more than three fold increase of caspases-3 and -7, the presence of DNA-fragmentation and TUNEL-positive cells. The ability of Phyllanthus to exert antimetastatic activities is mostly associated to the presence of polyphenol compounds in its extracts. Conclusions/Significance The presence of polyphenol compounds in the Phyllanthus plant is critically important in the inhibition of the invasion, migration, and adhesion of cancer cells, along with the involvement of apoptosis induction. Hence

  6. MicroRNA-1290 promotes asiatic acid‑induced apoptosis by decreasing BCL2 protein level in A549 non‑small cell lung carcinoma cells.

    PubMed

    Kim, Ki Bbeum; Kim, Karam; Bae, Seunghee; Choi, Yeonghmin; Cha, Hwa Jun; Kim, Soo Yeon; Lee, Jae Ho; Jeon, So Hyeon; Jung, Ho Jung; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan

    2014-09-01

    Asiatic acid, a triterpenoid derived from Centella asiatica, is a putative anticancer agent in several types of cancer cells. Investigations of its biological role in negative regulation of cell growth have focused on the extent of induction of apoptosis in a cell-type-specific manner. In this study, we identified an important regulator of asiatic acid-induced cell death, microRNA (miR)-1290, which sensitizes cells to asiatic acid-induced cytotoxicity and negatively regulates BCL2 expression. Asiatic acid significantly upregulated miR-1290, and asiatic acid-induced cell death was shown to be dependent on miR-1290 activity. Molecular assays demonstrated that BCL2 mRNA is a direct target of miR-1290-mediated RNA interference. The results of functional studies suggest that miR-1290 suppresses cell viability and cell cycle progression. These data provide insight into miR-1290-mediated cellular mechanisms in asiatic acid-treated A549 non-small cell lung carcinoma cells. PMID:25016979

  7. Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549

    NASA Astrophysics Data System (ADS)

    Syaefudin; Juniarti, A.; Rosiyana, L.; Setyani, A.; Khodijah, S.

    2016-01-01

    The aim of the present study is to evaluate cytotoxicity effect of nanoparticles of Selaginella doederleinii (S. doederleinii) leaves extract. S. doederleinii was extracted by maceration method using 70%(v/v) ethanol as solvent. Phytochemical content was analyzed qualitatively by using Harborne and Thin Layer Chromatography (TLC) methods. Nanoparticle extract was prepared by ionic gelation using chitosan as encapsulant agent. Anticancer activity was performed by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results showed that S. doederleinii contains of flavonoids. Nanoparticle of S. doederleinii leaves extract greatly inhibited A549 cells growth (cancer cells), with IC50 of 3% or 1020 μg/ml. These nanoparticles extract also inhibited the growth of Chang cells (normal cells), with IC50 of 4% or 1442 μg/ml. The effective concentration of nanoparticles extract which inhibits cancer cells without harming the normal cells is 0.5% or 167 μg/ml. Further studies are needed to obtain the concentration of nanoparticles extract which can selectively suppress cancer cells.

  8. Taxol-induced paraptosis-like A549 cell death is not senescence

    NASA Astrophysics Data System (ADS)

    Wang, Chao-yang; Chen, Tong-Sheng

    2011-03-01

    Our previous studies have shown that taxol, a potent anticancer agent, induces caspase-independent cell death and cytoplasmic vacuolization in human lung cancer cells. However, the mechanisms of taxol-induced cytoplasmic vacuolization are poorly understood. Cytoplasmic vacuolization have been reported to be a characteristic of cell senescence. Here, we employed confocal fluorescence microscopy imaging to study the reversibility of taxol-induced cytoplasmic vacuolization and whether taxol triggers senescence in A549 cells. We found that taxol-induced cytoplasmic vacuolization at 6 or 9 h after treatment with taxol did not decrease but increase at 24 h or 72 h after refreshing the culture medium without taxol, indicating taxol-induced cytoplasmic vacuolization is irreversible. We used SA-β-Gal (senescence-associated β-galactosidase) to assess whether taxol-induced cell death in cytoplasmic vacuolization fashion is senescence, and found that hydrogen peroxide (H2O2)-treated, but not taxol-treated cells is significantly stained by the SA-β-Gal, a senescence testing kit, indicating that the form of taxol-induced cell death is not senescence.

  9. Feroniellin A-induced autophagy causes apoptosis in multidrug-resistant human A549 lung cancer cells.

    PubMed

    Kaewpiboon, Chutima; Surapinit, Serm; Malilas, Waraporn; Moon, Jeong; Phuwapraisirisan, Preecha; Tip-Pyang, Santi; Johnston, Randal N; Koh, Sang Seok; Assavalapsakul, Wanchai; Chung, Young-Hwa

    2014-04-01

    During the screening of natural chemicals that can reverse multidrug resistance in human A549 lung cancer cells resistant to etoposide (A549RT-eto), we discovered that Feroniellin A (FERO), a novel furanocoumarin, shows toxicity toward A549RT-eto cells in a dose- and time-dependent manner. FERO reduced the expression of NF-κB, leading to downregulation of P-glycoprotein (P-gp), encoded by MDR1, which eventually sensitized A549RT-eto cells to apoptosis. FERO specifically diminished transcription and promoter activity of MDR1 but did not inhibit the expression of other multidrug resistance genes MRP2 and BCRP. Moreover, co-administration of FERO with Bay11-7802, an inhibitor of NF-κB, accelerated apoptosis of A549RT-eto cells through decreased expression of P-gp, indicating that NF-κB is involved in multidrug resistance. Conversely, addition of Z-VAD, a pan-caspase inhibitor, blocked FERO-induced apoptosis in A549RT-eto cells but did not block downregulation of P-gp, indicating that a decrease in P-gp expression is necessary but not sufficient for FERO-induced apoptosis. Interestingly, we found that FERO also induces autophagy, which is characterized by the conversion of LC3 I to LC3 II, induction of GFP-LC3 puncta, enhanced expression of Beclin-1 and ATG5, and inactivation of mTOR. Furthermore, suppression of Beclin-1 by siRNA reduced FERO-induced apoptosis in A549RT-eto cells and activation of autophagy by rapamycin accelerated FERO-induced apoptosis, suggesting that autophagy plays an active role in FERO-induced apoptosis. Herein, we report that FERO reverses multidrug resistance in A549RT-eto cells and exerts its cytotoxic effect by induction of both autophagy and apoptosis, which suggests that FERO can be a useful anticancer drug for multidrug-resistant lung cancer. PMID:24535083

  10. miR-200/ZEB axis regulates sensitivity to nintedanib in non-small cell lung cancer cells

    PubMed Central

    NISHIJIMA, NOBUHIKO; SEIKE, MASAHIRO; SOENO, CHIE; CHIBA, MIKA; MIYANAGA, AKIHIKO; NORO, RINTARO; SUGANO, TEPPEI; MATSUMOTO, MASARU; KUBOTA, KAORU; GEMMA, AKIHIKO

    2016-01-01

    Nintedanib (BIBF1120) is a multi-targeted angiokinase inhibitor and has been evaluated in idiopathic pulmonary fibrosis and advanced non-small cell lung cancer (NSCLC) patients in clinical studies. In the present study, we evaluated the antitumor effects of nintedanib in 16 NSCLC cell lines and tried to identify microRNA (miRNA) associated with sensitivity to nintedanib. No correlations between FGFR, PDGFR and VEGFR family activation and sensitivity to nintedanib were found. The difference in miRNA expression profiles between 5 nintedanib-sensitive and 5 nintedanib-resistant cell lines was evaluated by miRNA array and quantitative RT-PCR analysis (qRT-PCR). Expression of miR-200b, miR-200a and miR-141 belonging to the miR-200 family which contributes to epithelial-mesenchymal transition (EMT), was significantly lower in 5 nintedanib-resistant than in 5 nintedanib-sensitive cell lines. We examined the protein expression of EMT markers in these 10 NSCLC cell lines. E-cadherin expression was lower, and vimentin and ZEB1 expression were higher in 5 nintedanib-resistant cell lines. PC-1 was the most sensitive of the NSCLC cell lines to nintedanib. We established nintedanib-resistant PC-1 cells (PC-1R) by the stepwise method. PC-1R cells also showed decreased expression of miR-200b, miR-141 and miR-429 and increased expression of ZEB1 and ZEB2. We confirmed that induction of miR-200b or miR-141 enhanced sensitivity to nintedanib in nintedanib-resistant A549 and PC1-R cells. In addition, we evaluated the response to gefitinib in combination with nintedanib after TGF-β1 exposure of A549 cells. Nintedanib was able to reverse TGF-β1-induced EMT and resistance to gefitinib caused by miR-200b and miR-141 upregulation and ZEB1 downregulation. These results suggested that the miR-200/ZEB axis might be predictive biomarkers for sensitivity to nintedanib in NSCLC cells. Furthermore, nintedanib combined with gefitinib might be a novel therapeutic strategy for NSCLC cells with EMT

  11. Combination Chemotherapy, Radiation Therapy, and Gefitinib in Treating Patients With Stage III Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-06-04

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  12. Imaging and characterization of stretch-induced ATP release from alveolar A549 cells

    PubMed Central

    Grygorczyk, Ryszard; Furuya, Kishio; Sokabe, Masahiro

    2013-01-01

    Mechano-transduction at cellular and tissue levels often involves ATP release and activation of the purinergic signalling cascade. In the lungs, stretch is an important physical stimulus but its impact on ATP release, the underlying release mechanisms and transduction pathways are poorly understood. Here, we investigated the effect of unidirectional stretch on ATP release from human alveolar A549 cells by real-time luciferin–luciferase bioluminescence imaging coupled with simultaneous infrared imaging, to monitor the extent of cell stretch and to identify ATP releasing cells. In subconfluent (<90%) cell cultures, single 1 s stretch (10–40%)-induced transient ATP release from a small fraction (≤1.5%) of cells that grew in number dose-dependently with increasing extent of stretch. ATP concentration in the proximity (≤150 μm) of releasing cells often exceeded 10 μm, sufficient for autocrine/paracrine purinoreceptor stimulation of neighbouring cells. ATP release responses were insensitive to the putative ATP channel blockers carbenoxolone and 5-nitro-2-(3-phenylpropyl-amino) benzoic acid, but were inhibited by N-ethylmaleimide and bafilomycin. In confluent cell cultures, the maximal fraction of responding cells dropped to <0.2%, but was enhanced several-fold in the wound/scratch area after it was repopulated by new cells during the healing process. Fluo8 fluorescence experiments revealed two types of stretch-induced intracellular Ca2+ responses, rapid sustained Ca2+ elevations in a limited number of cells and delayed secondary responses in neighbouring cells, seen as Ca2+ waves whose propagation was consistent with extracellular diffusion of released ATP. Our experiments revealed that a single >10% stretch was sufficient to initiate intercellular purinergic signalling in alveolar cells, which may contribute to the regulation of surfactant secretion and wound healing. PMID:23247110

  13. Biosynthesis of gold nanoparticles and related cytotoxicity evaluation using A549 cells.

    PubMed

    Sathishkumar, M; Pavagadhi, S; Mahadevan, A; Balasubramanian, R

    2015-04-01

    Biosynthesis of gold nanoparticles (AuNPs) has become an attractive area of research as it is environmentally benign. The toxicity of AuNPs synthesized by chemical routes has been widely studied. However, little is known about the toxicity associated with the biological synthesis of AuNPs. The present study was carried out to synthesize AuNPs using star anise (Illicium verum; a commercially available spice in abundance)and evaluate its toxicity using human epithelial lung cells (A549) in comparison with AuNPs synthesized by the traditional chemical methods (using sodium citrate and sodium borohydride). Apart from cell viability, markers of oxidative stress (reduced glutathione) and cell death (caspases) were also evaluated to understand the mechanisms of toxicity. Cell viability was observed to be 65.7 percent and 72.3 percent in cells exposed to chemically synthesized AuNPs at the highest dose (200nM) as compared to 80.2 percent for biologically synthesized AuNPs. Protective coating/capping of AuNPs by various polyphenolic compounds present in star anise extract appears to be a major contributor to lower toxicity observed in biologically synthesized AuNPs. PMID:24835429

  14. In vitro anticancer activity of fucoidan from Turbinaria conoides against A549 cell lines.

    PubMed

    Marudhupandi, Thangapandi; Ajith Kumar, Thipramalai Thankappan; Lakshmanasenthil, Shanmugaasokan; Suja, Gunasekaran; Vinothkumar, Thirumalairaj

    2015-01-01

    The present study was conducted to evaluate the anticancer activity of fucoidan isolated from brown seaweed Turbinaria conoides. Extracted fucoidan contained 53 ± 0.69% of fucose and 38 ± 0.42% of sulphate, respectively. Functional groups and structural characteristics of the fucoidan were analyzed by FT-IR and NMR. In vitro anticancer effect was studied on A549 cell line. Fucoidan inhibited the growth of cancer cells in a dose-dependent manner and potent anticancer activities were 24.9-73.5% in the concentrations of 31.25-500 μg/ml. The CTC50 value against the cancer cell was found to be 45 μg/ml and the CTC50 value of normal Vero cell line is 325 μg/ml. This study suggests that the fucoidan from T. conoides could be significantly improved if the active component is further purified and tested for further investigation in various cancer cell lines. PMID:25451746

  15. In vitro photodynamic effect by phthalocyanine in A549 cell line

    NASA Astrophysics Data System (ADS)

    Nevrelova, Pavla; Kolarova, Hana; Bajgar, Robert; Strnad, Miroslav

    2007-03-01

    Photodynamic therapy (PDT) utilizes a combination of sensitizer, visible light and molecular oxygen to generate singlet oxygen and reactive oxygen species (ROS) such as hydrogen peroxide, hydroxyl radical and superoxid anion. Photochemical reactions lead to damage and destruction of cancer cells. The most suitable and effective source of radiation used in PDT is a laser. For this study, a semiconductor laser with output power of 50 mW and 675 nm was selected. In this paper we report a generation of ROS using chloroaluminium disulphonated phthalocyanine (ClAlPcS II) in A549 bronchogenic carcinoma cell line after PDT in vitro. Phthalocyanines, belonging to a new generation of substances for PDT, exhibit effective tissue penetration because of their proper light absorption region, chemical stability and photodynamic stability. The fluorescence measurement with molecular probes, CM-H IIDCFDA and Amplex Red, was performed for detection of ROS generation and hydrogen peroxide release from cells. Our results demonstrated, that irradiation of cells by laser dose of 10 J.cm -2 induces higher rates of fluorescence in cells loaded with phthalocyanine compared to 20 J.cm -2. Furthermore, the production of ROS increases up to sensitizer concentration of 10 μM. The highest ROS generation was observed at laser dose of 10 J.cm -2 and 10 μM ClAlPcS II. The rates of fluorescence for hydrogen peroxid measurements were almost identical with all chosen concentrations at laser doses of 10 and 20 J.cm -2.

  16. Capsaicin-induced genotoxic stress does not promote apoptosis in A549 human lung and DU145 prostate cancer cells.

    PubMed

    Lewinska, Anna; Jarosz, Paulina; Czech, Joanna; Rzeszutek, Iwona; Bielak-Zmijewska, Anna; Grabowska, Wioleta; Wnuk, Maciej

    2015-02-01

    Capsaicin is the major pungent component of the hot chili peppers of the genus Capsicum, which are consumed worldwide as a food additive. More recently, the selective action of capsaicin against cancer cells has been reported. Capsaicin was found to induce apoptosis and inhibit proliferation of a wide range of cancer cells in vitro, whereas being inactive against normal cells. As data on capsaicin-induced genotoxicity are limited and the effects of capsaicin against human lung A549 and DU145 prostate cancer cells were not explored in detail, we were interested in determining whether capsaicin-associated genotoxicity may also provoke A549 and DU145 cell death. Capsaicin-induced decrease in metabolic activity and cell proliferation, and changes in the cell cycle were limited to high concentrations used (≥ 100 μM), whereas, at lower concentrations, capsaicin stimulated both DNA double strand breaks and micronuclei production. Capsaicin was unable to provoke apoptotic cell death when used up to 250 μM concentrations. Capsaicin induced oxidative stress, but was ineffective in provoking the dissipation of the mitochondrial inner transmembrane potential. A different magnitude of p53 binding protein 1 (53BP1) recruitment contributed to diverse capsaicin-induced genotoxic effects in DU145 and A549 cells. Capsaicin was also found to be a DNA hypermethylating agent in A549 cells. In summary, we have shown that genotoxic effects of capsaicin may contribute to limited susceptibility of DU145 and A549 cancer cells to apoptosis in vitro, which may question the usefulness of capsaicin-based anticancer therapy, at least in a case of lung and prostate cancer. PMID:25813723

  17. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus

    PubMed Central

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells. PMID:26345201

  18. Eupolyphaga sinensis Walker demonstrates angiogenic activity and inhibits A549 cell growth by targeting the KDR signaling pathway.

    PubMed

    Dai, Bingling; Qi, Junpeng; Liu, Rui; Zhang, Yanmin

    2014-09-01

    Eupolyphaga sinensis Walker has been reported to have anticoagulation, antithrombotic, liver protective and antitumor effects. In the present study, the inhibitory effects on proliferation of A549 human non‑small cell lung cancer cells and the underlying mechanisms were examined. Firstly, three solvents, 70% ethanol, distilled water and 95% ethanol, were used to extract Eupolyphaga sinensis Walker. The MTT assay results demonstrated that the 70% ethanol extract more potently reduced the growth of A549 cells and it was therefore adopted in the subsequent experiments. Eupolyphaga sinensis Walker 70% ethanol extract significantly inhibited A549 cell migration in a time‑ and dose‑dependent manner and inhibited human umbilical vein endothelial cell proliferation, migration and tube formation. Furthermore, Eupolyphaga sinensis Walker 70% ethanol extract effectively inhibited blood vessel formation in the established tissue model for angiogenesis. In addition, Eupolyphaga sinensis Walker 70% ethanol extract was demonstrated to inhibit the autophosphorylation of KDR, and downregulate the subsequent activation of AKT and extracellular signal regulated kinase (ERK)1/2 in A549 cells. In conclusion, these findings demonstrated that the antitumor mechanism of Eupolyphaga sinensis Walker 70% ethanol extract was through inhibiting angiogenesis. It functioned by interrupting the autophosphorylation of KDR and subsequently, AKT and ERK1/2. PMID:25059654

  19. The synergistic effect of resveratrol in combination with cisplatin on apoptosis via modulating autophagy in A549 cells.

    PubMed

    Hu, Song; Li, Xiaolin; Xu, Rongrong; Ye, Lingyun; Kong, Hui; Zeng, Xiaoning; Wang, Hong; Xie, Weiping

    2016-06-01

    Several studies have shown that combination treatment with natural products and chemotherapy agents can improve the sensitivity and cytotoxicity of chemotherapy agents. Resveratrol, a natural product, has many biological effects including antitumor and antiviral activities, as well as vascular protective effect. The aim of this study is to investigate the synergistic anticancer effect of resveratrol in combination with cisplatin and the potential anticancer mechanisms involved in A549 cells. The results obtained from Cell Counting Kit-8 and isobolographic analysis demonstrated that combination of resveratrol and cisplatin resulted in synergistic cytotoxic effects in A549 cells. Results from Hoechst staining, flow cytometry and western blot analysis suggested that resveratrol enhanced cisplatin-mediated apoptosis. Meanwhile, the changes of LC3-II and P62 levels and formation of autophagosome suggested that resveratrol in combination with cisplatin triggered autophagy. More importantly, inhibiting autophagy by 3-methyladenine markedly attenuated the apoptosis caused by combination of resveratrol and cisplatin in A549 cells. Taken together, our study provides the first evidence that resveratrol combined with cisplatin synergistically induce apoptosis via modulating autophagic cell death in A549 cells. These findings also help us to understand the role of natural products in combination with chemotherapy agents in lung cancer. PMID:27084520

  20. Knockdown of TC-1 enhances radiosensitivity of non-small cell lung cancer via the Wnt/β-catenin pathway

    PubMed Central

    Wu, Dapeng; Li, Lei; Yan, Wei

    2016-01-01

    ABSTRACT Thyroid cancer 1 (TC-1, C8ofr4) is widely expressed in vertebrates and associated with many kinds of tumors. Previous studies indicated that TC-1 functions as a positive regulator in the Wnt/β-catenin signaling pathway in non-small cell lung cancer (NSCLC). However, its exact role and regulation mechanism in radiosensitivity of NSCLC are still unclear. The expression level of TC-1 was measured by qRT-PCR and western blot in NSCLC cell lines. Proliferation and apoptosis of NSCLC cells in response to TC-1 knockdown or/and radiation were determined by MTT assay and flow cytometry, respectively. The activation of the Wnt/β-catenin signaling pathway was further examined by western blot in vitro and in vivo. Compared to TC-1 siRNA or radiotherapy alone, TC-1 silencing combined with radiation inhibited cell proliferation and induced apoptosis in NSCLC cell lines by inactivating of the Wnt/β-catenin signaling pathway. Furthermore, inhibition of the Wnt/β-catenin signaling pathway by XAV939, a Wnt/β-catenin signaling inhibitor, contributed to proliferation inhibition and apoptosis induction in NSCLC A549 cells. Combinative treatment of A549 xenografts with TC-1 siRNA and radiation caused significant tumor regression and inactivation of the Wnt/β-catenin signaling pathway relative to TC-1 siRNA or radiotherapy alone. The results from in vitro and in vivo studies indicated that TC-1 silencing sensitized NSCLC cell lines to radiotherapy through the Wnt/β-catenin signaling pathway. PMID:27029901

  1. Knockdown of TC-1 enhances radiosensitivity of non-small cell lung cancer via the Wnt/β-catenin pathway.

    PubMed

    Wu, Dapeng; Li, Lei; Yan, Wei

    2016-01-01

    Thyroid cancer 1 (TC-1, C8ofr4) is widely expressed in vertebrates and associated with many kinds of tumors. Previous studies indicated that TC-1 functions as a positive regulator in the Wnt/β-catenin signaling pathway in non-small cell lung cancer (NSCLC). However, its exact role and regulation mechanism in radiosensitivity of NSCLC are still unclear. The expression level of TC-1 was measured by qRT-PCR and western blot in NSCLC cell lines. Proliferation and apoptosis of NSCLC cells in response to TC-1 knockdown or/and radiation were determined by MTT assay and flow cytometry, respectively. The activation of the Wnt/β-catenin signaling pathway was further examined by western blotin vitroandin vivo Compared to TC-1 siRNA or radiotherapy alone, TC-1 silencing combined with radiation inhibited cell proliferation and induced apoptosis in NSCLC cell lines by inactivating of the Wnt/β-catenin signaling pathway. Furthermore, inhibition of the Wnt/β-catenin signaling pathway by XAV939, a Wnt/β-catenin signaling inhibitor, contributed to proliferation inhibition and apoptosis induction in NSCLC A549 cells. Combinative treatment of A549 xenografts with TC-1 siRNA and radiation caused significant tumor regression and inactivation of the Wnt/β-catenin signaling pathway relative to TC-1 siRNA or radiotherapy alone. The results fromin vitroandin vivostudies indicated that TC-1 silencing sensitized NSCLC cell lines to radiotherapy through the Wnt/β-catenin signaling pathway. PMID:27029901

  2. Cytotoxic Effect of a Novel Synthesized Carbazole Compound on A549 Lung Cancer Cell Line

    PubMed Central

    Molatlhegi, Refilwe P.; Phulukdaree, Alisa; Anand, Krishnan; Gengan, Robert M.; Tiloke, Charlette; Chuturgoon, Anil A.

    2015-01-01

    Increased death rates due to lung cancer have necessitated the search for potential novel anticancer compounds such as carbazole derivatives. Carbazoles are aromatic heterocyclic compounds with anticancer, antibacterial and anti-inflammatory activity. The study investigated the ability of the novel carbazole compound (Z)-4-[9-ethyl-9aH-carbazol-3-yl) amino] pent-3-en-2-one (ECAP) to induce cytotoxicity of lung cancer cells and its mechanism of action. ECAP was synthesized as a yellow powder with melting point of 240-247 °C. The 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), lipid peroxidation and comet assays were used to assess the cytotoxic effect of the compound on A549 lung cancer cells. Protein expression was determined using western blots, apoptosis was measured by luminometry (caspase-3/7, -8 and -9) assay and flow cytometry was used to measure phosphatidylserine (PS) externalisation. ECAP induced a p53 mediated apoptosis of lung cancer cells due to a significant reduction in the expression of antioxidant defence proteins (Nrf2 and SOD), Hsp70 (p < 0.02) and Bcl-2 (p < 0.0006), thereby up-regulating reactive oxygen species (ROS) production. This resulted in DNA damage (p < 0.0001), up-regulation of Bax expression and caspase activity and induction of apoptosis in lung cancer cells. The results show the anticancer potential of ECAP on lung cancer. PMID:26134408

  3. Mig-6 overcomes gefitinib resistance by inhibiting EGFR/ERK pathway in non-small cell lung cancer cell lines.

    PubMed

    Li, Zi-Xuan; Qu, Lian-Yue; Wen, Hi; Zhong, Hong-Shan; Xu, Ke; Qiu, Xue-Shan; Wang, En-Hua

    2014-01-01

    Non small cell lung cancer (NSCLC) accounts for 85% of all lung cancers and is the most common cause of lung cancer death. Currently, the epidermal growth factor receptor inhibitor gefitinib is widely used for patients with advanced NSCLC. However, drug resistance is a major obstacle. Mig-6 is a feedback inhibitor of EGFR and its down-stream pathway; it has been shown to play a role in gefitinib sensitivity. There is neither systematical research on the relationship between Mig-6 expression and gefitinib sensitivity, nor has the contribution of up-regulated Mig-6 on the gefitinib-resistant cell lines. In the present work, four NSCLC cell lines (H1299, A549, PC-9, and PC-9/AB11) with different sensitivities to gefitinib were subjected to analysis of the expression of Mig-6. We found that Mig-6 is over-expressed in gefitinib-sensitive NSCLC cell lines, but is low in gefitinib-resistant NSCLC cell lines. Further analysis revealed that over-expression of Mig-6 increased cell apoptosis and inhibited proliferation of gefitinib-resistant NSCLC cells treated with gefitinib, whereas lowering the expression of Mig-6 decreased cell apoptosis and promoted cell proliferation after treatment with gefitinib in gefitinib-sensitive NSCLC cell lines. These results suggest that Mig-6 is involved in mediating the response to gefitinib in NSCLC cell lines. Additionally we demonstrated that Mig-6 could reverse gefitinib resistance through inhibition of EGFR/ERK pathway in NSCLC cells. Our work uncovered that Mig-6 may be an effective therapeutic target in gefitinib-resistant lung cancer patients. PMID:25400829

  4. Up- regulation of miR-328-3p sensitizes non-small cell lung cancer to radiotherapy.

    PubMed

    Ma, Wei; Ma, Chao-Nan; Zhou, Nan-Nan; Li, Xian-Dong; Zhang, Yi-Jie

    2016-01-01

    MicroRNAs (miRNAs) are believed to be resistant against radiotherapy in certain types of cancers. The aim of our study was to determine the clinical application of miRNAs in non-small cell lung cancer (NSCLC). Sixty NSCLC tissue samples and adjacent histologically normal tissues were obtained for miRNAs microarray analysis and validated by RT-qPCR. Correlation between miRNA expression level and clinicopathological features was evaluated. Our study examined the influence of changed miRNA expression on the damaged DNA and its associated radio sensitivity. Luciferase assay was performed to determine potential effects on the targeted gene. Our study identified fifteen altered miRNAs in which miR-328-3p was down regulated in NSCLC tumour tissue as compared to normal tissues. Down-expression of miR-328-3p was positively associated with an enhanced lymph node metastasis, advanced clinical stage and a shortened survival rate. miR-328-3p expression was decreased in A549 cells compared to other NSCLC cell lines. Up-regulation of miR-328-3p demonstrated a survival inhibition effect in A549 and restored NSCLC cells' sensitivity to radio therapy. An increased miR-328-3p expression promoted irradiation-induced DNA damage in cells. γ-H2AX was identified as the direct target of miR-328-3p. Over-expressed miR-328-3p can improve the radiosensitvity of cells by altering the DNA damage/repair signalling pathways in NSCLC. PMID:27530148

  5. MicroRNA-490-3p inhibits proliferation of A549 lung cancer cells by targeting CCND1

    SciTech Connect

    Gu, Haihua; Yang, Tao; Fu, Shaozi; Chen, Xiaofan; Guo, Lei; Ni, Yiming

    2014-01-31

    Highlights: • We examined the level of miR-490-3p in A549 lung cancer cells compared with normal bronchial epithelial cell line. • We are the first to show the function of miR-490-3p in A549 lung cancer cells. • We demonstrate CCND1 may be one of the targets of miR-490-3p. - Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate the translation of messenger RNAs by binding their 3′-untranslated region (3′UTR). In this study, we found that miR-490-3p is significantly down-regulated in A549 lung cancer cells compared with the normal bronchial epithelial cell line. To better characterize the role of miR-490-3p in A549 cells, we performed a gain-of-function analysis by transfecting the A549 cells with chemically synthesized miR-490-3P mimics. Overexpression of miR-490-3P evidently inhibits cell proliferation via G1-phase arrest. We also found that forced expression of miR-490-3P decreased both mRNA and protein levels of CCND1, which plays a key role in G1/S phase transition. In addition, the dual-luciferase reporter assays indicated that miR-490-3P directly targets CCND1 through binding its 3′UTR. These findings indicated miR-490-3P could be a potential suppressor of cellular proliferation.

  6. Suitable parameter choice on quantitative morphology of A549 cell in epithelial–mesenchymal transition

    PubMed Central

    Ren, Zhou-Xin; Yu, Hai-Bin; Li, Jian-Sheng; Shen, Jun-Ling; Du, Wen-Sen

    2015-01-01

    Evaluation of morphological changes in cells is an integral part of study on epithelial to mesenchymal transition (EMT), however, only a few papers reported the changes in quantitative parameters and no article compared different parameters for demanding better parameters. In the study, the purpose was to investigate suitable parameters for quantitative evaluation of EMT morphological changes. A549 human lung adenocarcinoma cell line was selected for the study. Some cells were stimulated by transforming growth factor-β1 (TGF-β1) for EMT, and other cells were as control without TGF-β1 stimulation. Subsequently, cells were placed in phase contrast microscope and three arbitrary fields were captured and saved with a personal computer. Using the tools of Photoshop software, some cells in an image were selected, segmented out and exchanged into unique hue, and other part in the image was shifted into another unique hue. The cells were calculated with 29 morphological parameters by Image Pro Plus software. A parameter between cells with or without TGF-β1 stimulation was compared statistically and nine parameters were significantly different between them. Receiver operating characteristic curve (ROC curve) of a parameter was described with SPSS software and F-test was used to compare two areas under the curves (AUCs) in Excel. Among them, roundness and radius ratio were the most AUCs and were significant higher than the other parameters. The results provided a new method with quantitative assessment of cell morphology during EMT, and found out two parameters, roundness and radius ratio, as suitable for quantification. PMID:26182364

  7. Ubiquitin-proteasome-mediated degradation of keratin intermediate filaments in mechanically stimulated A549 cells.

    PubMed

    Jaitovich, Ariel; Mehta, Semil; Na, Ni; Ciechanover, Aaron; Goldman, Robert D; Ridge, Karen M

    2008-09-12

    We previously reported that shear stress induces phosphorylation and disassembly of keratin intermediate filaments (IFs). Shear stress also induces a time- and strain-dependent degradation of keratin IFs, and the current study examines the mechanisms involved in degradation of keratin proteins in human A549 cells exposed to 0-24 h of shear stress (7.5-30 dynes/cm(2)). Ubiquitin was found to be covalently associated with keratin proteins immunoprecipitated from shear-stressed cells, and pretreatment with the proteasomal inhibitor MG132 prevented the degradation of the keratin IF network. Importantly, phosphorylation of K8 Ser-73 is required for the shear stress-mediated ubiquitination, disassembly, and degradation of the keratin IF network. Immunofluorescence microscopy revealed that shear stress caused the thin array of keratin fibrils observed in control cells to be reorganized into a perinuclear aggregate, known as an aggresome, and that ubiquitin was also associated with this structure. Finally, the E2 enzymes, UbcH5b, -c, and Ubc3, but not E2-25K are required for the shear stress-mediated ubiquitin-proteasomal degradation of keratin proteins. These data suggest that shear stress promotes the disassembly and degradation of the keratin IF network via phosphorylation and the ubiquitin-proteasome pathway. PMID:18617517

  8. The omega-hydroxy palmitic acid induced apoptosis in human lung carcinoma cell lines H596 and A549.

    PubMed

    Abe, Akihisa; Yamane, Mototeru; Yamada, Hiroyuki; Sugawara, Isamu

    2002-02-01

    We have found that omega-hydroxy palmitic acid (16-hydroxy palmitic acid, omega-HPA) has both cell growth inhibiting and cell death inducing actions on human lung adenosquamous carcinoma cell line H596 and adenocarcinoma cell line A549. Further, these effects were dose- and time-dependent in both cell lines. However, in squamous carcinoma cell line H226, omega-HPA had no cytotoxic effect. On the other hand, in the human small cell lung carcinoma (SCLC) cell line H128, this compound showed weak cytotoxicity. The sensitivity toward omega-HPA was higher in H596 cells than in A549 cells. In both H596 and A549 cells, cell growth was inhibited to 24.4 and 9.4%, respectively, by treatment with 100 microM omega-HPA for 12 h. In the 24 h treatment cells, growth inhibition was increased to 100 and 38.1%, respectively. In cytotoxicity experiments, the number of dead cells increased with incubation times in the presence of omega-HPA: on three days incubation with 100 microM omega-HPA, viability was 0 and 13.5%, respectively, in H596 and A549 cells. Further, the fragmentation of DNA to oligonucleosomal-sized ladder fragments, which is an index of apoptosis, was observed in both cell lines on treatment with omega-HPA. Therefore, it is assumed that these cell deaths induced by omega-HPA, were apoptosis in these cell lines. Since the number of dead cells following treatment with omega-HPA decreased by treatment with omega-HPA in combination with Z-VAD-fmk, a caspase family inhibitor, it is thought that apoptotic cell death was related to caspase activity. PMID:12186781

  9. Growth inhibition of non-small cell lung cancer cells by AP-1 blockade using a cJun dominant-negative mutant.

    PubMed

    Shimizu, Y; Kinoshita, I; Kikuchi, J; Yamazaki, K; Nishimura, M; Birrer, M J; Dosaka-Akita, H

    2008-03-11

    cJun, a major constituent of AP-1 transcription factor transducing multiple mitogen growth signals, is frequently overexpressed in non-small cell lung cancers (NSCLCs). The purpose of this study is to determine the effects of AP-1 blockade on the growth of NSCLC cells using a cJun dominant-negative mutant, TAM67. Transiently transfected TAM67 inhibited AP-1 transcriptional activity in NSCLC cell lines, NCI-H1299 (H1299), A549 and NCI-H520 (H520). The colony-forming efficiency of H1299 and A549 was reduced by TAM67, while that of H520 was not. To elucidate the effects of TAM67 on the growth of H1299, we established H1299 clone cells that expressed TAM67 under the control of a doxycycline-inducible promoter. In the H1299 clone cells, the induced TAM67 inhibited anchorage-dependent growth by promoting G1 cell-cycle block, but not by apoptosis. The induced TAM67 decreased the expression of a cell-cycle regulatory protein, cyclin A. TAM67 also inhibited anchorage-independent growth of these cells. Furthermore, TAM67 reduced growth of established xenograft tumours from these cells in nude mice. These results suggest that AP-1 plays an essential role in the growth of at least some of NSCLC cells. PMID:18283312

  10. CD133-Positive Cells from Non-Small Cell Lung Cancer Show Distinct Sensitivity to Cisplatin and Afatinib.

    PubMed

    Alama, Angela; Gangemi, Rosaria; Ferrini, Silvano; Barisione, Gaia; Orengo, Anna Maria; Truini, Mauro; Bello, Maria Giovanna Dal; Grossi, Francesco

    2015-06-01

    The standard of care for advanced non-small cell lung cancer (NSCLC) consists in cisplatin-combination chemotherapy. In patients bearing tumors with activating mutations of the epidermal growth factor receptor (EGFR), the inhibition of the EGFR intracellular tyrosine kinase can induce up to 80 % response rates. However, both therapeutic strategies will eventually lead to recurrent disease due to the development of drug resistance. The identification of rare cancer stem-like cells able to repopulate the tumor, after failure to standard treatment modalities, has led to characterize these cells as potential therapeutic targets. This article will address the role of the CD133/EpCAM stem cell-related markers and explore cell sensitivity to cisplatin and to the EGFR-tyrosine kinase inhibitor, afatinib. Three human NSCLC cell lines, one wild-type (A549) and two harboring EGFR mutations (H1650 and H1975), as well as 20 NSCLC primary cultures, were grown in non-differentiating culture conditions for stem cell enrichment. Flow-cytometry analyses of CD133 and EpCAM and cell sensitivity to cisplatin and afatinib were performed. Moreover, the expression of activated EGFR was assessed by Western blot. The cell lines and primary cultures grown in non-differentiating culture conditions were enriched with CD133/EpCAM-positive cells and were significantly more resistant to cisplatin and more sensitive to afatinib as compared to the differentiated counterpart. In addition, increased EGFR-phosphorylation in non-differentiated cultures was observed. The present findings suggest that afatinib might be beneficial for patients bearing tumors with constitutively activated EGFR, to target chemo-resistant CD133/EpCAM-positive cancer stem cells. PMID:25678473

  11. β-elemene reverses the drug resistance of lung cancer A549/DDP cells via the mitochondrial apoptosis pathway.

    PubMed

    Yao, Cheng-Cai; Tu, Yuan-Rong; Jiang, Jie; Ye, Sheng-Fang; Du, Hao-Xin; Zhang, Yi

    2014-05-01

    β-elemene (β-ELE) is a new anticancer drug extracted from Curcuma zedoaria Roscoe and has been widely used to treat malignant tumors. Recent studies have demonstrated that β-ELE reverses the drug resistance of tumor cells. To explore the possible mechanisms of action of β-ELE, we investigated its effects on cisplatin-resistant human lung adenocarcinoma A549/DDP cells. The effects of β-ELE on the growth of A549/DDP cells in vitro were determined by MTT assay. Apoptosis was assessed by fluorescence microscopy with Hoechst 33258 staining and flow cytometry with Annexin V-FITC/PI double staining. Mitochondrial membrane potential was assessed using JC-1 fluorescence probe and laser confocal scanning microscopy, and intracellular reactive oxygen species levels were measured by 2',7'-dichlorofluorescein-diacetate staining and flow cytometry. Cytosolic glutathione content was determined using GSH kits. The expression of cytochrome c, caspase-3, procaspase-3 and the Bcl-2 family proteins was assessed by western blotting. The results demonstrated that β-ELE inhibited the proliferation of A549/DDP cells in a time- and dose-dependent manner. Furthermore, β-ELE enhanced the sensitivity of A549/DDP cells to cisplatin and reversed the drug resistance of A549/DDP cells. Consistent with a role in activating apoptosis, β-ELE decreased mitochondrial membrane potential, increased intracellular reactive oxygen species concentration and decreased the cytoplasmic glutathione levels in a time- and dose-dependent manner. The combination of β-ELE and cisplatin enhanced the protein expression of cytochrome c, caspase-3 and Bad, and reduced protein levels of Bcl-2 and procaspase-3 in the A549/DDP lung cancer cells. These results define a pathway of procaspase‑3-β-ELE function that involves decreased mitochondrial membrane potential, leading to apoptosis triggered by the release of cytochrome c into the cytoplasm and the modulation of apoptosis-related genes. The reversal of drug

  12. Phase 3 Study of Bavituximab Plus Docetaxel Versus Docetaxel Alone in Patients With Late-stage Non-squamous Non-small-cell Lung Cancer

    ClinicalTrials.gov

    2016-02-01

    Non-Small-Cell Lung Cancer Stage IIIB; Non-Small-Cell Lung Cancer Stage IV; Non-Small-Cell Lung Cancer Metastatic; Carcinoma, Non-Small-Cell Lung; Non-Small Cell Lung Cancer; Non-Small-Cell Lung Carcinoma; Nonsmall Cell Lung Cancer

  13. Up- regulation of miR-328-3p sensitizes non-small cell lung cancer to radiotherapy

    PubMed Central

    Ma, Wei; Ma, Chao-nan; Zhou, Nan-nan; Li, Xian-dong; Zhang, Yi-jie

    2016-01-01

    MicroRNAs (miRNAs) are believed to be resistant against radiotherapy in certain types of cancers. The aim of our study was to determine the clinical application of miRNAs in non-small cell lung cancer (NSCLC). Sixty NSCLC tissue samples and adjacent histologically normal tissues were obtained for miRNAs microarray analysis and validated by RT-qPCR. Correlation between miRNA expression level and clinicopathological features was evaluated. Our study examined the influence of changed miRNA expression on the damaged DNA and its associated radio sensitivity. Luciferase assay was performed to determine potential effects on the targeted gene. Our study identified fifteen altered miRNAs in which miR-328-3p was down regulated in NSCLC tumour tissue as compared to normal tissues. Down-expression of miR-328-3p was positively associated with an enhanced lymph node metastasis, advanced clinical stage and a shortened survival rate. miR-328-3p expression was decreased in A549 cells compared to other NSCLC cell lines. Up-regulation of miR-328-3p demonstrated a survival inhibition effect in A549 and restored NSCLC cells’ sensitivity to radio therapy. An increased miR-328-3p expression promoted irradiation-induced DNA damage in cells. γ-H2AX was identified as the direct target of miR-328-3p. Over-expressed miR-328-3p can improve the radiosensitvity of cells by altering the DNA damage/repair signalling pathways in NSCLC. PMID:27530148

  14. Downregulation of AATK mediates microRNA-558-induced resistance of A549 cells to radiotherapy.

    PubMed

    Zhu, Rui-Xia; Song, Chun-Hui; Yang, Jin-Shan; Yi, Qing-Ting; Li, Bao-Jian; Liu, Si-Hai

    2016-09-01

    The deregulation of microRNAs (miRNAs) is often implicated in the control of sensitivity to radiotherapy. The objective of the present study was to identify the association between miR‑558 and apoptosis‑associated tyrosine kinase (AATK), and their importance in regulating the development of resistance to radiotherapy. The current study demonstrated that AATK, a radiosensitization-associated gene, is a target of miR‑558 in lung cancer cells, using in silico analysis and a luciferase reporter system. Furthermore, it was determined that transfection of 30 or 50 nM miR‑558 mimics and AATK specific siRNA markedly suppressed the mRNA and protein expression of AATK. To determine whether miR‑558 was required for lung cancer cell radioresistance, A549 cells were treated with different doses of ionizing radiation, from 0 to 10 Gy, following transfection with miR‑558 mimics or AATK specific siRNA. It was determined that the administration of miR‑558 mimics or AATK specific siRNA alone did not significantly alter the survival rate of the cells. By contrast, in the cells exposed to 4, 6 or 8 Gy, the administration of miR‑558 mimics or AATK specific siRNA significantly promoted cell survival rate and overexpression of AATK reversed this effect. In conclusion, these data demonstrate that the miR‑558/AATK cascade is important for the radiosensitization of lung cancer cells and may be a potential radiotherapy target. PMID:27485693

  15. TRAIL-coated lipid-nanoparticles overcome resistance to soluble recombinant TRAIL in non-small cell lung cancer cells

    NASA Astrophysics Data System (ADS)

    De Miguel, Diego; Gallego-Lleyda, Ana; María Ayuso, José; Erviti-Ardanaz, Sandra; Pazo-Cid, Roberto; del Agua, Celia; José Fernández, Luis; Ochoa, Ignacio; Anel, Alberto; Martinez-Lostao, Luis

    2016-05-01

    Purpose. Non-small cell lung cancer (NSCLC) is one the types of cancer with higher prevalence and mortality. Apo2-Ligand/TRAIL is a TNF family member able to induce apoptosis in tumor cells but not in normal cells. It has been tested in clinical trials against different types of human cancer including NSCLC. However, results of clinical trials have shown a limited efficacy of TRAIL-based therapies. Recently we have demonstrated that artificial lipid nanoparticles coated with bioactive Apo2L/TRAIL (LUV-TRAIL) greatly improved TRAIL cytotoxic ability being capable of killing chemoresistant hematological cancer cells. In the present work we have extended the study to NSCLC. Methods/patients. LUV-TRAIL-induced cytotoxicity was assessed on different NSCLC cell lines with different sensitivity to soluble TRAIL and on primary human tumor cells from three patients suffering from NSCLC cancer. We also tested LUV-TRAIL-cytotoxic ability in combination with several anti-tumor agents. Results. LUV-TRAIL exhibited a greater cytotoxic effect compared to soluble TRAIL both in A549 cells and primary human NSCLC cells. LUV-TRAIL-induced cell death was dependent on caspase-8 and caspase-3 activation. Moreover, combination of LUV-TRAIL with other anti-tumor agents such as flavopiridol, and SNS-032 clearly enhanced LUV-TRAIL-induced cytotoxicity against NSCLC cancer cells. Conclusion. The novel formulation of TRAIL based on displaying it on the surface of lipid nanoparticles greatly increases its anti-tumor activity and has clinical potential in cancer treatment.

  16. Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes

    PubMed Central

    2013-01-01

    Ionizing radiation (IR) is used for patients diagnosed with unresectable non small cell lung cancer (NSCLC), however radiotherapy remains largely palliative due to radioresistance. Cancer stem cells (CSCs), as well as epithelial-mesenchymal transition (EMT), may contribute to drug and radiation resistance mechanisms in solid tumors. Here we investigated the molecular phenotype of A549 and H460 NSCLC cells that survived treatment with IR (5Gy) and are growing as floating tumor spheres and cells that are maintained in a monolayer after irradiation. Non-irradiated and irradiated cells were collected after one week, seeded onto ultra low attachment plates and propagated as tumor spheres. Bulk NSCLC cells which survived radiation and grew in spheres express cancer stem cell surface and embryonic stem cell markers and are able to self-renew, and generate differentiated progeny. These cells also have a mesenchymal phenotype. Particularly, the radiation survived sphere cells express significantly higher levels of CSC markers (CD24 and CD44), nuclear β-catenin and EMT markers (Snail1, Vimentin, and N-cadherin) than non-irradiated lung tumor sphere cells. Upregulated levels of Oct-4, Sox2 and beta-catenin were detected in H460 cells maintained in a monolayer after irradiation, but not in radiation survived adherent A459 cells. PDGFR-beta was upregulated in radiation survived sphere cells and in radiation survived adherent cells in both A549 and H460 cell lines. Combining IR treatment with axitinib or dasatinib, inhibitors with anti-PDFGR activity, potentiates the efficacy of NSCLC radiotherapy in vitro. Our findings suggest that radiation survived cells have a complex phenotype combining the properties of CSCs and EMT. CD44, SNAIL and PDGFR-beta are dramatically upregulated in radiation survived cells and might be considered as markers of radiotherapy response in NSCLC. PMID:23947765

  17. Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes.

    PubMed

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha; Ganesh, Nandita; Bailey, Lisa; Basse, Per; Gibson, Michael; Epperly, Michael; Levina, Vera

    2013-01-01

    Ionizing radiation (IR) is used for patients diagnosed with unresectable non small cell lung cancer (NSCLC), however radiotherapy remains largely palliative due to radioresistance. Cancer stem cells (CSCs), as well as epithelial-mesenchymal transition (EMT), may contribute to drug and radiation resistance mechanisms in solid tumors. Here we investigated the molecular phenotype of A549 and H460 NSCLC cells that survived treatment with IR (5Gy) and are growing as floating tumor spheres and cells that are maintained in a monolayer after irradiation.Non-irradiated and irradiated cells were collected after one week, seeded onto ultra low attachment plates and propagated as tumor spheres. Bulk NSCLC cells which survived radiation and grew in spheres express cancer stem cell surface and embryonic stem cell markers and are able to self-renew, and generate differentiated progeny. These cells also have a mesenchymal phenotype. Particularly, the radiation survived sphere cells express significantly higher levels of CSC markers (CD24 and CD44), nuclear β-catenin and EMT markers (Snail1, Vimentin, and N-cadherin) than non-irradiated lung tumor sphere cells. Upregulated levels of Oct-4, Sox2 and beta-catenin were detected in H460 cells maintained in a monolayer after irradiation, but not in radiation survived adherent A459 cells.PDGFR-beta was upregulated in radiation survived sphere cells and in radiation survived adherent cells in both A549 and H460 cell lines. Combining IR treatment with axitinib or dasatinib, inhibitors with anti-PDFGR activity, potentiates the efficacy of NSCLC radiotherapy in vitro.Our findings suggest that radiation survived cells have a complex phenotype combining the properties of CSCs and EMT. CD44, SNAIL and PDGFR-beta are dramatically upregulated in radiation survived cells and might be considered as markers of radiotherapy response in NSCLC. PMID:23947765

  18. Interaction between gemcitabine and topotecan in human non-small-cell lung cancer cells: effects on cell survival, cell cycle and pharmacogenetic profile

    PubMed Central

    Giovannetti, E; Mey, V; Danesi, R; Basolo, F; Barachini, S; Deri, M; Del Tacca, M

    2005-01-01

    The pyrimidine analogue gemcitabine is an established effective agent in the treatment of non-small-cell lung cancer (NSCLC). The present study investigates whether gemcitabine would be synergistic with the topoisomerase I inhibitor topotecan against the NSCLC A549 and Calu-6 cells. Cells were treated with gemcitabine and topotecan for 1 h and the type of drug interaction was assessed using the combination index (CI). Cell cycle alterations were analysed by flow cytometry, while apoptosis was examined by the occurrence of DNA internucleosomal fragmentation, nuclear condensation and caspase-3 activation. Moreover, the possible involvement of the PI3K-Akt signalling pathway was investigated by the measurement of Akt phosphorylation. Finally, quantitative, real-time PCR (QRT-PCR) was used to study modulation of the gemcitabine-activating enzyme deoxycytidine kinase (dCK) and the cellular target enzyme ribonucleotide reductase (RR). In results, it was found that simultaneous and sequential topotecan → gemcitabine treatments were synergistic, while the reverse sequence was antagonistic in both cell lines. DNA fragmentation, nuclear condensation and enhanced caspase-3 activity demonstrated that the drug combination markedly increased apoptosis in comparison with either single agent, while cell cycle analysis showed that topotecan increased cells in S phase. Furthermore, topotecan treatment significantly decreased the amount of the activated form of Akt, and enhanced the expression of dCK (+155.0 and +115.3% in A549 and Calu-6 cells, respectively), potentially facilitating gemcitabine activity. In conclusion, these results indicate that the combination of gemcitabine and topotecan displays schedule-dependent activity in vitro against NSCLC cells. The gemcitabine → topotecan sequence is antagonistic while drug synergism is obtained with the simultaneous and the sequential topotecan → gemcitabine combinations, which are associated with induction of decreased Akt

  19. Radiation Therapy, Chemotherapy, and Soy Isoflavones in Treating Patients With Stage IIIA-IIIB Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2016-02-08

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  20. Predictive efficacy of (11)C-PD153035 PET imaging for EGFR-tyrosine kinase inhibitor sensitivity in non-small cell lung cancer patients.

    PubMed

    Dai, Dong; Li, Xiao-Feng; Wang, Jian; Liu, Jian-Jing; Zhu, Yan-Jia; Zhang, Ying; Wang, Qi; Xu, Wen-Gui

    2016-02-15

    To determine the correlation of (11)C-PD153035 uptake with epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) sensitivity and phosphorylated EGFR (pEGFR) expression in non-small cell lung cancer (NSCLC) cell lines with different EGFR-TKI sensitivities and in their corresponding xenografts. Four human NSCLC cell lines (HCC827, PC9, A549, and H1975) in the logarithmic phase were co-incubated with (11)C-PD153035 to analyze the correlation of (11)C-PD153035 uptake with EGFR-TKI sensitivity, and EGFR/pEGFR expression. Nude mice xenograft models bearing the four NSCLCs were prepared. (11)C-PD153035 positron-emission tomography (PET)-computed tomography (CT) was used to image the xenografts and observe radioactive uptakes. Correlation of the in vivo uptakes with EGFR-TKI sensitivity, and EGFR/pEGFR expression was analyzed. HCC827 and PC9 cells, which were highly sensitive to EGFR-TKIs, exhibited higher (11)C-PD153035 uptakes than the other cells. A549 cells, which were moderately sensitive to EGFR-TKIs, showed higher uptake than the EGFR-TKI-resistant H1975 cells, which showed little or no uptake. Radioactive uptakes were positively correlated with pEGFR expression in all cells. PET-CT showed that radioactivity was highest in HCC827 xenografts. The radioactivity in PC9 xenografts was higher than that in A549 and H1975 xenografts. Tumor vs. non-tumor tissue ratio values were positively correlated with pEGFR expression in HCC827 and PC9 xenografts, but not in A549 and H1975 xenografts. In conclusion, (11)C-PD153035 can serve as an EGFR imaging agent in vitro and in vivo, and predicts sensitivity to EGFR-TKIs. This will provide an experimental basis for clinical applications of (11)C-PD153035 and individualized NSCLC therapy. PMID:26334931

  1. PET-Adjusted Intensity Modulated Radiation Therapy and Combination Chemotherapy in Treating Patients With Stage II-IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2016-01-10

    Metastatic Malignant Neoplasm in the Brain; Recurrent Non-Small Cell Lung Carcinoma; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  2. Palliative Care Intervention in Improving Symptom Control and Quality of Life in Patients With Stage II-IV Non-small Cell Lung Cancer and Their Family Caregivers

    ClinicalTrials.gov

    2016-04-06

    Caregiver; Psychological Impact of Cancer and Its Treatment; Recurrent Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  3. Honokiol inhibits non-small cell lung cancer cell migration by targeting PGE₂-mediated activation of β-catenin signaling.

    PubMed

    Singh, Tripti; Katiyar, Santosh K

    2013-01-01

    Lung cancer remains a leading cause of death due to its metastasis to distant organs. We have examined the effect of honokiol, a bioactive constituent from the Magnolia plant, on human non-small cell lung cancer (NSCLC) cell migration and the molecular mechanisms underlying this effect. Using an in vitro cell migration assay, we found that treatment of A549, H1299, H460 and H226 NSCLC cells with honokiol resulted in inhibition of migration of these cells in a dose-dependent manner, which was associated with a reduction in the levels of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). Celecoxib, a COX-2 inhibitor, also inhibited cell migration. Honokiol inhibited PGE2-enhanced migration of NSCLC cells, inhibited the activation of NF-κB/p65, an upstream regulator of COX-2, in A549 and H1299 cells, and treatment of cells with caffeic acid phenethyl ester, an inhibitor of NF-κB, also inhibited migration of NSCLC cells. PGE2 has been shown to activate β-catenin signaling, which contributes to cancer cell migration. Therefore, we checked the effect of honokiol on β-catenin signaling. It was observed that treatment of NSCLC cells with honokiol degraded cytosolic β-catenin, reduced nuclear accumulation of β-catenin and down-regulated matrix metalloproteinase (MMP)-2 and MMP-9, which are the down-stream targets of β-catenin and play a crucial role in cancer cell metastasis. Honokiol enhanced: (i) the levels of casein kinase-1α, glycogen synthase kinase-3β, and (ii) phosphorylation of β-catenin on critical residues Ser(45), Ser(33/37) and Thr(41). These events play important roles in degradation or inactivation of β-catenin. Treatment of celecoxib also reduced nuclear accumulation of β-catenin in NSCLC cells. FH535, an inhibitor of Wnt/β-catenin pathway, inhibited PGE2-enhanced cell migration of A549 and H1299 cells. These results indicate that honokiol inhibits non-small cell lung cancer cells migration by targeting PGE2-mediated activation of

  4. PET/CT in the Staging of the Non-Small-Cell Lung Cancer

    PubMed Central

    Chao, Fangfang; Zhang, Hong

    2012-01-01

    Lung cancer is a common disease and the leading cause of cancer-related death in many countries. Precise staging of patients with non-small-cell lung cancer plays an important role in determining treatment strategy and prognosis. Positron emission tomography/computed tomography (PET/CT), combining anatomic information of CT and metabolic information of PET, is emerging as a potential diagnosis and staging test in patients with non-small-cell lung cancer (NSCLC). The purpose of this paper is to discuss the value of integrated PET/CT in the staging of the non-small-cell lung cancer and its health economics. PMID:22577296

  5. Cucurbitacin B inhibits proliferation and induces apoptosis via STAT3 pathway inhibition in A549 lung cancer cells

    PubMed Central

    ZHANG, MENG; BIAN, ZHI-GANG; ZHANG, YI; WANG, JIA-HE; KAN, LIANG; WANG, XIN; NIU, HUI-YAN; HE, PING

    2014-01-01

    Natural products are a great source of cancer chemotherapeutic agents. The present study was conducted to investigate whether cucurbitacin B (CuB), one of the most potent and widely used cucurbitacins, inhibits proliferation and induces apoptosis in the A549 lung cancer cell line. Furthermore, CuB induced apoptosis of A549 cells in a concentration-dependent manner, as determined by fluorescence microscopy, flow cytometry and transmission electron microscopy. The present study also demonstrated that CuB dose-dependently inhibited lung cancer cell proliferation, with cell cycle inhibition and cyclin B1 downregulation. Apoptosis induced by CuB was shown to be associated with cytochrome c release, B-cell lymphoma 2 downregulation and signal transducer and activator of transcription 3 pathway inhibition. CuB may prove to be a useful approach for the chemotherapy of lung cancer. PMID:25242136

  6. Cucurbitacin B inhibits proliferation and induces apoptosis via STAT3 pathway inhibition in A549 lung cancer cells.

    PubMed

    Zhang, Meng; Bian, Zhi-Gang; Zhang, Yi; Wang, Jia-He; Kan, Liang; Wang, Xin; Niu, Hui-Yan; He, Ping

    2014-12-01

    Natural products are a great source of cancer chemotherapeutic agents. The present study was conducted to investigate whether cucurbitacin B (CuB), one of the most potent and widely used cucurbitacins, inhibits proliferation and induces apoptosis in the A549 lung cancer cell line. Furthermore, CuB induced apoptosis of A549 cells in a -concentration-dependent manner, as determined by fluorescence microscopy, flow cytometry and transmission electron microscopy. The present study also demonstrated that CuB dose-dependently inhibited lung cancer cell proliferation, with cell cycle inhibition and cyclin B1 downregulation. Apoptosis induced by CuB was shown to be associated with cytochrome c release, B-cell lymphoma 2 downregulation and signal transducer and activator of transcription 3 pathway inhibition. CuB may prove to be a useful approach for the chemotherapy of lung cancer. PMID:25242136

  7. BRMS1 regulates apoptosis in non-small cell lung cancer cells.

    PubMed

    You, Jijun; He, Xuejun; Ding, Haibing; Zhang, Tingrong

    2015-01-01

    Breast cancer metastasis suppressor 1 (BRMS1) was originally identified as a metastasis suppressor gene in human breast cancer. Previous studies have reported that loss of BRMS1 expression correlates with tumor progression, and poor prognosis in NSCLC. However, the role of BRMS1 in NSCLC is not fully understood. In this study, we found that expression of BRMS1 in A549 cells did not affect cell growth under normal culture conditions but sensitized cells to apoptosis induced by serum deprivation. Consistently, knockdown of endogenous BRMS1 expression in H1299 cells suppressed cell apoptosis. We identified that BRMS1 regulate apoptosis in NSCLC cells by modulating Stat3 activation. Taken together, our results show that BRMS1 sensitizes NSCLC cells to apoptosis through Stat3 signaling pathway, suggesting a potential role of BRMS1 in regulating NSCLC apoptosis and metastasis. PMID:25182004

  8. 5-Caffeoylquinic acid inhibits invasion of non-small cell lung cancer cells through the inactivation of p70S6K and Akt activity: Involvement of p53 in differential regulation of signaling pathways.

    PubMed

    In, Jae-Kyung; Kim, Jin-Kyu; Oh, Joa Sub; Seo, Dong-Wan

    2016-05-01

    In the present study, we investigated the effects and molecular mechanism of 5-caffeoylquinic acid (5-CQA), a natural phenolic compound isolated from Ligularia fischeri, on cell invasion, proliferation and adhesion in p53 wild-type A549 and p53-deficient H1299 non-small cell lung cancer (NSCLC) cells. 5-CQA abrogated mitogen-stimulated invasion, but not proliferation, in both A549 and H1299 cells. In addition, 5-CQA inhibited mitogen-stimulated adhesion in A549 cells only. Anti-invasive activity of 5-CQA in A549 cells was mediated by the inactivation of p70S6K-dependent signaling pathway. In contrast, in H1299 cells the inactivation of Akt was found to be involved in 5-CQA-mediated inhibition of cell invasion. Collectively, these findings demonstrate the pharmacological roles and molecular targets of 5-CQA in regulating NSCLC cell fate, and suggest further evaluation and development of 5-CQA as a potential therapeutic agent for the treatment and prevention of lung cancer. PMID:26984670

  9. Immunotherapy for non-small cell lung cancer: current concepts and clinical trials.

    PubMed

    Mayor, Marissa; Yang, Neng; Sterman, Daniel; Jones, David R; Adusumilli, Prasad S

    2016-05-01

    Recent successes in immunotherapeutic strategies are being investigated to combat cancers that have less than ideal responses to standard of care treatment, such as non-small-cell lung cancer. In this paper, we summarize concepts and the current status of immunotherapy for non-small cell lung cancer, including salient features of the major categories of immunotherapy-monoclonal antibody therapy, immune checkpoint blockade, immunotoxins, anticancer vaccines, and adoptive cell therapy. PMID:26516195

  10. CDK-associated Cullin 1 promotes cell proliferation with activation of ERK1/2 in human lung cancer A549 cells

    SciTech Connect

    Chen, Tian Jun; Gao, Fei; Yang, Tian; Thakur, Asmitanand; Ren, Hui; Li, Yang; Zhang, Shuo; Wang, Ting; Chen, Ming Wei

    2013-07-19

    Highlights: •CDK-associated Cullin 1 (CAC1) expression increases in human lung carcinoma. •CAC1 promotes the proliferation of lung cancer A549 cells. •CAC1 promotes human lung cancer A549 cell proliferation with activation of ERK1/2. -- Abstract: Lung cancer is one of the most common causes of cancer-related death in the world, but the mechanisms remain unknown. In this study, we investigated the expression of CDK-associated Cullin 1 (CAC1) in lung cancer, the effect of CAC1 on the proliferation of human lung cancer A549 cells, and the activation of signaling pathways of mitogen-activated protein kinases (MAPKs). Results showed that CAC1 expression was higher levels in human lung carcinoma than normal lung tissue, and CAC1 siRNA reduced the proliferation of lung cancer A549 cells by decreasing cell activity and cell division in vitro. The proportion of cells treated with CAC1 siRNA increased in the G1 phase and decreased in the S and G2/M phase, indicative of G1 cell cycle arrest. Furthermore, the proportions of early/late apoptosis in lung cancer A549 cells were enhanced with CAC1 siRNA treatment. It was also found that activation of extracellular signal-regulated protein kinase (ERK) and p38 signaling pathways were involved in the proliferation of A549 cells. After CAC1 siRNA treatment, p-ERK1/2 levels decreased, and meanwhile p-p38 level increased, A549 cell proliferation increased when ERK1/2 signaling is activated by PMA. Our findings demonstrated that CAC1 promoted the proliferation of human lung cancer A549 cells with activation of ERK1/2 signaling pathways, suggesting a potential cure target for treatment of human lung cancer.

  11. Characterization of indoor dust from Brazil and evaluation of the cytotoxicity in A549 lung cells.

    PubMed

    Deschamps, E; Weidler, P G; Friedrich, F; Weiss, C; Diabaté, S

    2014-04-01

    Over the past decade, ambient air particulate matter (PM) has been clearly associated with adverse health effects. In Brazil, small and poor communities are exposed to indoor dust derived from both natural sources, identified as blowing soil dust, and anthropogenic particles from mining activities. This study investigates the physicochemical and mineralogical composition of indoor PM10 dust samples collected in Minas Gerais, Brazil, and evaluates its cytotoxicity and inflammatory potential. The mean PM10 mass concentration was 206 μg/m(3). The high dust concentration in the interior of the residences is strongly related to blowing soil dust. The chemical and mineralogical compositions were determined by ICP-OES and XRD, and the most prominent minerals were clays, Fe-oxide, quartz, feldspars, Al(hydr)oxides, zeolites, and anatase, containing the transition metals Fe, Cr, V, Ni, Cu, Zn, Ti, and Mn as well as the metalloid As. The indoor dust samples presented a low water solubility of about 6 %. In vitro experiments were carried out with human lung alveolar carcinoma cells (A549) to study the toxicological effects. The influence of the PM10 dust samples on cell viability, intracellular formation of reactive oxygen species (ROS), and release of the pro-inflammatory cytokine IL-8 was analysed. The indoor dust showed little effects on alamarBlue reduction indicating unaltered mitochondrial activity. However, significant cell membrane damage, ROS production, and IL-8 release were detected in dependence of dose and time. This study will support the implementation of mitigation actions in the investigated area in Brazil. PMID:23990125

  12. Efficient telomerase inhibition in human non-small cell lung cancer cells by liposomal delivery of 2'-O-methyl-RNA.

    PubMed

    Beisner, Julia; Dong, Meng; Taetz, Sebastian; Piotrowska, Kamilla; Kleideiter, Elke; Friedel, Godehard; Schaefer, Ulrich; Lehr, Claus-Michael; Klotz, Ulrich; Mürdter, Thomas E

    2009-05-01

    The antisense oligonucleotide 2'-O-methyl-RNA is a selective telomerase inhibitor targeting the telomerase RNA component and represents a potential candidate for anticancer therapy. The poor cellular uptake of 2'-O-methyl-RNA is a limiting factor that may contribute to the lack of functional efficacy. To improve delivery of 2'-O-methyl-RNA and consequently antitumoral efficiency in human lung cancer cells, we have investigated several transfection reagents. The transfection reagents DOTAP, MegaFectin 60, SuperFect, FuGENE 6 and MATra-A were tested for intracellular delivery. A FAM-labeled 2'-O-methyl-RNA was used to assess the intracellular distribution by confocal laser scanning microscopy in A549 human non-small cell lung cancer cells. Telomerase activity was measured using the telomeric repeat amplification protocol. Cell viability after transfection was quantified by the MTT assay. All transfection reagents enhanced 2'-O-methyl-RNA uptake in A549 cells but the cationic lipid reagents DOTAP and MegaFectin 60 were most efficient in the delivery of 2'-O-methyl-RNA resulting in telomerase inhibition. Among both DOTAP exhibited the lowest cytotoxicity. Our experiments show that DOTAP is the most suitable transfection reagent for the delivery of 2'-O-methyl-RNA in human lung cancer cells according to its relatively low cytotoxicity and its ability to promote efficient uptake leading to the inhibition of telomerase. PMID:18803262

  13. Indomethacin induces cellular morphological change and migration via epithelial-mesenchymal transition in A549 human lung cancer cells: a novel cyclooxygenase-inhibition-independent effect.

    PubMed

    Kato, Tomoko; Fujino, Hiromichi; Oyama, Satomi; Kawashima, Tatsuo; Murayama, Toshihiko

    2011-12-01

    Levels of cyclooxygenase (COX)-2 and its metabolite prostaglandin E(2) (PGE(2)) are frequently increased in colon cancer and other cancers including lung cancer. Non-steroidal anti-inflammatory drugs are considered to have chemo-preventive effects on these diseases by reducing the biosynthesis of PGE(2) via their inhibition of COX-2. Although the COX-2/PGE(2) pathway may directly impact on lung carcinogenesis, some population-based cohort studies of NSAIDs showed no significant protective effects. In this study, using human non-small-cell lung cancer A549 cells, we examined the effects of indomethacin, a potent NSAID, on the growth and motility of lung cancer cells. Besides inhibiting PGE(2) production and cellular growth, indomethacin caused drastic morphological changes with a loss of stress fibers in a time- and dose-dependent manner. Interestingly, the change in cellular shape caused by indomethacin was not seen when the cells were treated with aspirin or diclofenac, two other NSAIDs, despite the concentrations used being sufficient to inhibit PGE(2) production. The indomethacin-induced morphological changes in A549 cells were accompanied by a reduction in levels of the adhesion molecule E-cadherin and a component of basal lamina, collagen IV, as well as an increase in the activity of a collagenase, matrix metalloprotease-9. Furthermore, indomethacin-induced shape changes resulted in enhanced motility via regulation of peroxisome proliferator-activated receptor γ. The dual effects of indomethacin, inhibition of cellular growth and enhancement of migration, would explain, to some extent, the difficulty in using this NSAID for lung cancer therapy. PMID:21840302

  14. Excision repair cross complementation group 1 is a chemotherapy-tolerating gene in cisplatin-based treatment for non-small cell lung cancer.

    PubMed

    Wang, Shoufeng; Pan, Hong; Liu, Desen; Mao, Naiquan; Zuo, Chuantian; Li, Li; Xie, Tong; Huang, Dingming; Huang, Yaoyuan; Pan, Qi; Yang, Li; Wu, Junwei

    2015-02-01

    This study aimed to evaluate the biological functions of excision repair cross complementation goup 1 (ERCC1) in cell proliferation, cell cycle, invasion and cisplatin response of non-small cell lung cancer (NSCLC) cells. Firstly, ERCC1 gene was successfully transfected into H1299 cells by gene cloning and transfection techniques. Then, cell proliferation was determined with the cell growth curve and colony-forming assays. Flow cytometry (FCM) was employed to investigate the cell cycle distribution. The ability of cell invasion was estimated by means of Matrigel invasion assays. Response of NSCLC cells to cisplatin was detected utilizing MTT assays, and the intracellular drug concentrations were determined by the high performance liquid chromatography (HPLC) analysis. Expression of the two cell membrane proteins, P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP), was also evaluated utilizing FCM technique. By contrast, ERCC1 expression in the NSCLC A549 cells was silenced by small interfering RNA (siRNA) through RNAi technique. In addition, the cytotoxic effect of cisplatin on A549 cells was detected by MTT assays. In the present study, the results demonstrated that ERCC1 had no effect on cell proliferation, cell cycle and the ability of invasion, but showed significant impact on cisplatin response of the NSCLC H1299 cells. Furthermore, siRNA-induced suppression of ERCC1 evidently enhanced sensitivity to cisplatin of NSCLC A549 cells. Therefore, it is confirmed that ERCC1 is a chemotherapy-tolerating gene and a promising predictor in tailoring chemotherapy of NSCLC. PMID:25434755

  15. miR-204 suppresses non-small-cell lung carcinoma (NSCLC) invasion and migration by targeting JAK2.

    PubMed

    Wang, P; Lv, H Y; Zhou, D M; Zhang, E N

    2016-01-01

    Aberrant expression of microRNA is associated with the development and progression of cancers. MicroRNA-204 (miR-204) down-regulation has been previously demonstrated in non-small-cell lung carcinoma (NSCLC); however, the underlying mechanism by which miR-204 suppresses tumorigenesis in NSCLC remains elusive. In this study, miR-204 expression was found to be down-regulated, and that of Janus kinase 2 (JAK2) was found to be up-regulated in four NSCLC cell lines (A549, H1299, H1650, and H358) compared to the normal lung cell line. The overexpression of miR-204 suppressed the invasive and migratory capacities of H1299 cells. A luciferase assay confirmed that the binding of miR-124 to the -untranslated region of JAK2 inhibited the expression of JAK2 proteins in H1299 cells. JAK-2 overexpression effectively reversed miR-204-repressed NSCLC metastasis. Taken together, our findings revealed that miR-204 functions as a tumor suppressor in NSCLC by targeting JAK2, and that miR-204 may therefore serve as a biomarker for the diagnosis and treatment of NSCLC. PMID:27323056

  16. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein.

    PubMed

    Tomono, Takumi; Kajita, Masahiro; Yano, Kentaro; Ogihara, Takuo

    2016-08-01

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNA expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. PMID:27286705

  17. Genetic polymorphisms and non-small-cell lung cancer: future paradigms

    PubMed Central

    de Mello, Ramon Andrade Bezerra

    2014-01-01

    This article addresses some current issues about genetic polymorphisms studied in the non-small-cell lung cancer translational field. Furthermore, it discusses about new potential biomarkers regarding lung cancer risk and prognosis. PMID:25628210

  18. SET antagonist enhances the chemosensitivity of non-small cell lung cancer cells by reactivating protein phosphatase 2A

    PubMed Central

    Hung, Man-Hsin; Wang, Cheng-Yi; Chen, Yen-Lin; Chu, Pei-Yi; Hsiao, Yung-Jen; Tai, Wei-Tien; Chao, Ting-Ting; Yu, Hui-Chuan; Shiau, Chung-Wai; Chen, Kuen-Feng

    2016-01-01

    SET is known as a potent PP2A inhibitor, however, its oncogenic role including its tumorigenic potential and involvement in the development of chemoresistance in non-small cell lung cancer (NSCLC) has not yet been fully discussed. In present study, we investigated the oncogenic role of SET by SET-knockdown and showed that SET silencing impaired cell growth rate, colony formation and tumor sphere formation in A549 cells. Notably, silencing SET enhanced the pro-apoptotic effects of paclitaxel, while ectopic expression of SET diminished the sensitivity of NSCLC cells to paclitaxel. Since the SET protein was shown to affect chemosensitivity, we next examined whether combining a novel SET antagonist, EMQA, sensitized NSCLC cells to paclitaxel. Both the in vitro and in vivo experiments suggested that EMQA and paclitaxel combination treatment was synergistic. Importantly, we found that downregulating p-Akt by inhibiting SET-mediated protein phosphatase 2A (PP2A) inactivation determined the pro-apoptotic effects of EMQA and paclitaxel combination treatment. To dissect the critical site for EMQA functioning, we generated several truncated SET proteins. By analysis of the effects of EMQA on the binding affinities of different truncated SET proteins to PP2A-catalytic subunits, we revealed that the 227–277 amino-acid sequence is critical for EMQA-induced SET inhibition. Our findings demonstrate the critical role of SET in NSCLC, particularly in the development of chemoresistance. The synergistic effects of paclitaxel and the SET antagonist shown in current study encourage further validation of the clinical potential of this combination. PMID:26575017

  19. A novel polysaccharide from Sargassum integerrimum induces apoptosis in A549 cells and prevents angiogensis in vitro and in vivo

    PubMed Central

    Liu, Ge; Kuang, Shan; Wu, Shimei; Jin, Weihua; Sun, Chaomin

    2016-01-01

    Many polysaccharides isolated from plants have exhibited promising antitumor activities. The aim of this study is to investigate the antitumor activity of the novel polysaccharide named SPS from Sargassum integerrimum, elucidate the underlying anticancer mechanism in a human lung cancer cell line A549, and evaluate its anti-angiogenic activity both in vitro and in vivo. The results show that SPS significantly reduces A549 cells viability in a dose- and time-dependent manner via MTT method. Flow cytometry analysis indicates that SPS could induce cell apoptosis, the loss of mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS) and G2/M phase cell cycle arrest of A549 cells. Up-regulation of the expressions of P53 and Bax, down-regulation of the expression of Bcl-2, and activation of cleaved caspase-3, caspase-9 and PARP are also detected by western blotting after the treatment of SPS. In addition, SPS inhibits the proliferation, migration and cord formation of human umbilical vein endothelial cells (HUVECs) in vitro, and prevents the vascular development of zebrafish embryos in vivo. Altogether, our data prove the anticancer and anti-angiogenesis properties of SPS, and provide further insights into the potential pharmacological application of SPS as antitumor and anti-angiogenic agent against lung cancer. PMID:27216943

  20. A novel polysaccharide from Sargassum integerrimum induces apoptosis in A549 cells and prevents angiogensis in vitro and in vivo.

    PubMed

    Liu, Ge; Kuang, Shan; Wu, Shimei; Jin, Weihua; Sun, Chaomin

    2016-01-01

    Many polysaccharides isolated from plants have exhibited promising antitumor activities. The aim of this study is to investigate the antitumor activity of the novel polysaccharide named SPS from Sargassum integerrimum, elucidate the underlying anticancer mechanism in a human lung cancer cell line A549, and evaluate its anti-angiogenic activity both in vitro and in vivo. The results show that SPS significantly reduces A549 cells viability in a dose- and time-dependent manner via MTT method. Flow cytometry analysis indicates that SPS could induce cell apoptosis, the loss of mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS) and G2/M phase cell cycle arrest of A549 cells. Up-regulation of the expressions of P53 and Bax, down-regulation of the expression of Bcl-2, and activation of cleaved caspase-3, caspase-9 and PARP are also detected by western blotting after the treatment of SPS. In addition, SPS inhibits the proliferation, migration and cord formation of human umbilical vein endothelial cells (HUVECs) in vitro, and prevents the vascular development of zebrafish embryos in vivo. Altogether, our data prove the anticancer and anti-angiogenesis properties of SPS, and provide further insights into the potential pharmacological application of SPS as antitumor and anti-angiogenic agent against lung cancer. PMID:27216943

  1. The effects of disodium cromoglycate on enhanced adherence of Haemophilus influenzae to A549 cells infected with respiratory syncytial virus.

    PubMed

    Fukasawa, Chie; Ishiwada, Naruhiko; Ogita, Junko; Hishiki, Haruka; Kohno, Yoichi

    2009-08-01

    Nontypeable Haemophilus influenzae (NTHi) secondary infection often complicates respiratory syncytial virus (RSV) infections. Previous studies have revealed that RSV infections enhance NTHi adherence to airway epithelial cells. In this study, we investigated the effects of disodium cromoglycate (DSCG) and corticosteroids, which are frequently used for the treatment of wheezing often related to RSV infections, on the adherence of NTHi to RSV-infected A549 cells. DSCG inhibited enhanced adherence of NTHi to RSV-infected A549 cells, whereas dexamethasone (Dex) and fluticasone propionate (Fp) did not. DSCG suppressed the expression of ICAM-1, which is one of the NTHi receptors. Furthermore, DSCG exhibited an inhibitory effect on RSV infections. It is suggested that DSCG exerts an anti-RSV effect, and consequently attenuates the expression of NTHi receptors. PMID:19390482

  2. Gefitinib and Erlotinib Lead to Phosphorylation of Eukaryotic Initiation Factor 2 Alpha Independent of Epidermal Growth Factor Receptor in A549 Cells

    PubMed Central

    Koyama, Satoshi; Omura, Tomohiro; Yonezawa, Atsushi; Imai, Satoshi; Nakagawa, Shunsaku; Nakagawa, Takayuki; Yano, Ikuko; Matsubara, Kazuo

    2015-01-01

    Gefitinib and erlotinib are anticancer agents, which inhibit epidermal growth factor receptor (EGFR) tyrosine kinase. Interstitial lung disease (ILD) occurs in patients with non-small cell lung cancer receiving EGFR inhibitors. In the present study, we examined whether gefitinib- and erlotinib-induced lung injury related to ILD through endoplasmic reticulum (ER) stress, which is a causative intracellular mechanism in cytotoxicity caused by various chemicals in adenocarcinomic human alveolar basal epithelial cells. These two EGFR inhibitors increased Parkinson juvenile disease protein 2 and C/EBP homologous protein mRNA expressions, and activated the eukaryotic initiation factor (eIF) 2α/activating transcription factor 4 pathway without protein kinase R-like ER kinase activation in A549 cells. Gefitinib and erlotinib caused neither ER stress nor cell death; however, these agents inhibited cell growth via the reduction of cyclin-D1 expression. Tauroursodeoxycholic acid, which is known to suppress eIF2α phosphorylation, cancelled the effects of EGFR inhibitors on cyclin-D1 expression and cell proliferation in a concentration-dependent manner. The results of an EGFR-silencing study using siRNA showed that gefitinib and erlotinib affected eIF2α phosphorylation and cyclin-D1 expression independent of EGFR inhibition. Therefore, the inhibition of cell growth by these EGFR inhibitors might equate to impairment of the alveolar epithelial cell repair system via eIF2α phosphorylation and reduced cyclin-D1 expression. PMID:26288223

  3. Gefitinib and Erlotinib Lead to Phosphorylation of Eukaryotic Initiation Factor 2 Alpha Independent of Epidermal Growth Factor Receptor in A549 Cells.

    PubMed

    Koyama, Satoshi; Omura, Tomohiro; Yonezawa, Atsushi; Imai, Satoshi; Nakagawa, Shunsaku; Nakagawa, Takayuki; Yano, Ikuko; Matsubara, Kazuo

    2015-01-01

    Gefitinib and erlotinib are anticancer agents, which inhibit epidermal growth factor receptor (EGFR) tyrosine kinase. Interstitial lung disease (ILD) occurs in patients with non-small cell lung cancer receiving EGFR inhibitors. In the present study, we examined whether gefitinib- and erlotinib-induced lung injury related to ILD through endoplasmic reticulum (ER) stress, which is a causative intracellular mechanism in cytotoxicity caused by various chemicals in adenocarcinomic human alveolar basal epithelial cells. These two EGFR inhibitors increased Parkinson juvenile disease protein 2 and C/EBP homologous protein mRNA expressions, and activated the eukaryotic initiation factor (eIF) 2α/activating transcription factor 4 pathway without protein kinase R-like ER kinase activation in A549 cells. Gefitinib and erlotinib caused neither ER stress nor cell death; however, these agents inhibited cell growth via the reduction of cyclin-D1 expression. Tauroursodeoxycholic acid, which is known to suppress eIF2α phosphorylation, cancelled the effects of EGFR inhibitors on cyclin-D1 expression and cell proliferation in a concentration-dependent manner. The results of an EGFR-silencing study using siRNA showed that gefitinib and erlotinib affected eIF2α phosphorylation and cyclin-D1 expression independent of EGFR inhibition. Therefore, the inhibition of cell growth by these EGFR inhibitors might equate to impairment of the alveolar epithelial cell repair system via eIF2α phosphorylation and reduced cyclin-D1 expression. PMID:26288223

  4. Dendrotoxin-κ suppresses tumor growth induced by human lung adenocarcinoma A549 cells in nude mice

    PubMed Central

    Jang, Soo Hwa; Ryu, Pan Dong

    2011-01-01

    Voltage-gated K+ (Kv) channels have been considered to be a regulator of membrane potential and neuronal excitability. Recently, accumulated evidence has indicated that several Kv channel subtypes contribute to the control of cell proliferation in various types of cells and are worth noting as potential emerging molecular targets of cancer therapy. In the present study, we investigated the effects of the Kv1.1-specific blocker, dendrotoxin-κ (DTX-κ), on tumor formation induced by the human lung adenocarcinoma cell line A549 in a xenograft model. Kv1.1 mRNA and protein was expressed in A549 cells and the blockade of Kv1.1 by DTX-κ, reduced tumor formation in nude mice. Furthermore, treatment with DTX-κ significantly increased protein expression of p21Waf1/Cip1, p27Kip1, and p15INK4B and significantly decreased protein expression of cyclin D3 in tumor tissues compared to the control. These results suggest that DTX-κ has anti-tumor effects in A549 cells through the pathway governing G1-S transition. PMID:21368561

  5. 7,8-Dihydroxycoumarin inhibits A549 human lung adenocarcinoma cell proliferation by inducing apoptosis via suppression of Akt/NF-κB signaling

    PubMed Central

    WANG, YUE; LI, CHANG-FENG; PAN, LI-MING; GAO, ZHONG-LI

    2013-01-01

    The Akt/NF-κB pathways are involved in numerous anti-apoptotic and drug-resistance events that occur in non-small cell lung cancer (NSCLC). In the present study, the role of 7,8-dihydroxycoumarin in the regulation of the anti-apoptotic Akt and NF-κBp65 signaling pathways was explored. A549 human lung adenocarcinoma cells were exposed to 7,8-dihydroxycoumarin with a final concentration of 25, 50 and 100 μmol/l for 48 h. Quantitative polymerase chain reaction (PCR) and western blotting were performed to detect mRNA and protein expression, respectively. The MTT assay was performed to detect cell proliferation. The results demonstrated that anti-apoptotic phospho-Akt1 (pAkt1), phospho-IκBα (pIκBα), NF-κBp65 and Bcl-2 were inhibited and pro-apoptotic caspase-3 was upregulated in a concentration-dependent manner. At a concentration of 100 μmol/l, the anti-apoptotic NF-κBp65 and Bcl-2 mRNA expression levels decreased 0.12 (5.82/48.5, treated/control)-fold and 0.17 (6.7/39.4, treated/control)-fold, respectively. The pro-apoptotic caspase-3 mRNA was upregulated 4.43 (39.4/8.9, treated/control)-fold. The anti-apoptotic pAkt1, pIκBα, NF-κBp65 and Bcl-2 proteins were downregulated, with blot grayscale values of 7.3 (vs. 52.4 control), 4.3 (vs. 42.2 control), 5.08 (vs. 44.5 control) and 5.92 (vs. 38.5 control), respectively. The proapoptotic caspase-3 was upregulated to a blot grayscale value of 27.8 (vs. 5.8 control). The proliferative activity of A549 cells was reduced significantly compared with that of the control cells (83.7, 27.2 and 9.5 vs. 100%, respectively; P<0.05 for each). 7,8-Dihydroxycoumarin plays an important role in the induction of apoptosis via suppression of Akt/NF-κB signaling in A549 human lung adenocarcinoma cells in a concentration-dependent manner. 7,8-Dihydroxycoumarin may be a candidate naturally-occurring drug for the treatment and prevention of lung adenocarcinoma. PMID:23837071

  6. Effect of functionalized and non-functionalized nanodiamond on the morphology and activities of antioxidant enzymes of lung epithelial cells (A549).

    PubMed

    Solarska-Ściuk, Katarzyna; Gajewska, Agnieszka; Glińska, Sława; Michlewska, Sylwia; Balcerzak, Łucja; Jamrozik, Agnieszka; Skolimowski, Janusz; Burda, Květoslava; Bartosz, Grzegorz

    2014-10-01

    The development of nanotechnology opens up new ways for biomedical applications of unmodified and modified diamond nanoparticles which are one of the most popular nanomaterials used in biology, biotechnology, medicine, cosmetics and engineering. They have been applied as diagnostic and therapeutic agents because they can be targeted to and localized in cells causing apoptosis and necrosis. The problem of biocompatibility of nanodiamonds at higher concentrations is thus of primary importance. The first step in the modification of DNPs is usually the introduction of hydrogen groups, which can bind other functional groups. The basic method to introduce -OH groups onto nanoparticles is the Fenton reaction. The aim of this study was to compare the effect of unmodified nanodiamond particles and nanoparticles modified by introduction of -OH groups and etoposide onto their surface reaction on human non-small lung cancer cells. A549 cells were incubated with 2-100μg/ml nanopowders and at 0.6-24μg/ml etoposide in the DMEM medium. We observed a decrease of cells viability and generation of reactive oxygen/ nitrogen species in the cells after incubation, estimated by oxidation of H2DCF-DA and DAF-FM-DA. Modified detonation nanoparticles affected also the cellular content of glutathione and activities of main antioxidant enzymes (glutathione peroxidase, glutathione reductase, glutathione S-transferase, superoxide dismutase and catalase). The results of TEM microscopy show changes in cell morphology. These data demonstrate that modified nanoparticles induce oxidative stress in the target cells. PMID:25451571

  7. BAI, a novel cyclin-dependent kinase inhibitor induces apoptosis in A549 cells through activation of caspases and inactivation of Akt.

    PubMed

    Kim, Shin; Lee, Jinho; Jang, Byeong-Churl; Kwon, Taeg Kyu; Park, Jong-Wook

    2013-02-01

    Previously, we have synthesized a novel cyclin-dependent kinase (CDK) inhibitor, 2-[1,1'biphenyl]-4-yl-N-[5-(1,1-dioxo-1λ(6) -isothiazolidin-2-yl)-1H-indazol-3-yl]acetamide (BAI) and reported its anti-cancer activity in head and neck cancer cells. In this study, we further evaluated the effect of BAI on growth of various human cancer cell lines, including A549 (nonsmall cell lung cancer), HCT116 (colon), and Caki (kidney). Profoundly, results of XTT and clonogenic assays demonstrated that BAI at nanomolar concentrations (20-60 nM) inhibited growth of A549, HCT116, and Caki cells, suggesting the anti-cancer potency. We show that BAI induced a dose-dependent apoptotic cell death in these human cancer cells, as measured by fluorescence-activated cell sorting (FACS). Interestingly, further biochemical analysis showed that treatment with BAI at 20 nM induced apoptosis in A549 cells in association with activation of caspases, cleavage of phospholipase C-γ1 (PLC-γ1), and inhibition of Akt in A549 cells. Importantly, pharmacological inhibition study revealed that pretreatment with z-VAD-fmk, a pan caspase inhibitor strongly blocked the BAI-induced apoptosis in A549 cells. Transfection analysis with Akt cDNA encoding constitutively active Akt further addressed the significance of Akt inhibition in the BAI-induced apoptosis in A549 cells. Notably, disruption of the PI3K/Akt pathway by LY294002, a PI3K/Akt inhibitor potentiated apoptosis in A549 cells by BAI at a subcytotoxic concentration. These findings collectively suggest that BAI potently inhibits growth of A549, HCT116, and Caki cells, and that the BAI-induced apoptosis in A549 cells is associated with activation of caspases, and inhibition of Akt. PMID:22887215

  8. Stereotactic Body Radiation Therapy in Treating Patients With Metastatic Breast Cancer, Non-small Cell Lung Cancer, or Prostate Cancer

    ClinicalTrials.gov

    2016-06-17

    Male Breast Carcinoma; Prostate Adenocarcinoma; Recurrent Breast Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Prostate Carcinoma; Stage IV Breast Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IV Prostate Cancer

  9. Inhibitory effect of ursolic acid and oleanolic acid from Eriobotrya fragrans on A549 cell viability in vivo.

    PubMed

    Gao, Y S; Yuan, Y; Song, G; Lin, S Q

    2016-01-01

    Loquat [Eriobotrya japonica (Lindl.)] is a traditional Chinese medicine, which has been used as an anti-inflammatory and for curing chronic bronchitis among other potential applications. Extracted ursolic acid (UA) and oleanolic acid (OA) from wild loquat were previously found capable of suppressing the proliferation of A549 cells in vitro. In the current study, nude mice were used to determine the inhibitory effect of UA and OA on tumor formation in vivo. The results demonstrate that UA and OA reduced the proliferation of A549 cells in nude mice, and increased the expression of Bid while decreasing the protein levels of MMP-2, Ki-67, and CD34. In this study, we identified potential antitumor activity in a wild loquat extract containing UA and OA, which demonstrates that traditional Chinese medicine may have a role in treating certain types of cancer. PMID:27323036

  10. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    PubMed Central

    Kondo, Hiroshi; Miyoshi, Keiko; Sakiyama, Shoji; Tangoku, Akira; Noma, Takafumi

    2015-01-01

    Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII) cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12) were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC), an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5), an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1) expression levels were enhanced. After treatment with dexamethasone (DEX), 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP), 3-isobutyl-1-methylxanthine (IBMX), and keratinocyte growth factor (KGF), surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation. PMID:26167183

  11. Effects of water soluble PM2.5 extracts exposure on human lung epithelial cells (A549): A proteomic study.

    PubMed

    Huang, Qingyu; Zhang, Jie; Peng, Siyuan; Tian, Meiping; Chen, Jinsheng; Shen, Heqing

    2014-06-01

    Exposure to airborne particulate matter (PM)2.5, a PM with aerodynamic diameter of less than 2.5 µm, is known to be associated with a variety of adverse health effects. However, the molecular mechanisms involved in fine PM toxicity are still not well characterized. The present study aims to provide new insights into the cytotoxicity of PM2.5 on human lung epithelial cells (A549) at the proteomic level. Two-dimensional difference gel electrophoresis revealed a total of 27 protein spots, whose abundance were significantly altered in A549 cells exposed to water-soluble PM2.5 extracts (WSPE). Among these, 12 spots were upregulated while 15 were downregulated. Twenty-two proteins were further identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass/mass spectrometry and database search. The results revealed that oxidative stress, metabolic disturbance, dysregulation of signal transduction, aberrant protein synthesis and degradation, as well as cytoskeleton disorganization are major factors contributing to WSPE-mediated toxicity in human lung cells. It is further proposed that induction of apoptosis through p53, c-Myc and p21 pathways may be one of the key toxicological events occurred in A549 cells under WSPE stress. The data obtained here will aid our understanding of the toxic mechanisms related to PM2.5, and develop useful biomarkers indicative of inhalable PM2.5 exposure. PMID:23943255

  12. Moringa oleifera Gold Nanoparticles Modulate Oncogenes, Tumor Suppressor Genes, and Caspase-9 Splice Variants in A549 Cells.

    PubMed

    Tiloke, Charlette; Phulukdaree, Alisa; Anand, Krishnan; Gengan, Robert M; Chuturgoon, Anil A

    2016-10-01

    Gold nanoparticles (AuNP's) facilitate cancer cell recognition and can be manufactured by green synthesis using nutrient rich medicinal plants such as Moringa oleifera (MO). Targeting dysregulated oncogenes and tumor suppressor genes is crucial for cancer therapeutics. We investigated the antiproliferative effects of AuNP synthesized from MO aqueous leaf extracts (MLAuNP ) in A549 lung and SNO oesophageal cancer cells. A one-pot green synthesis technique was used to synthesise MLAuNP . A549, SNO cancer cells and normal peripheral blood mononuclear cells (PBMCs) were exposed to MLAuNP and CAuNP to evaluate cytotoxicity (MTT assay); apoptosis was measured by phosphatidylserine (PS) externalization, mitochondrial depolarization (ΔΨm) (flow cytometry), caspase-3/7, -9 activity, and ATP levels (luminometry). The mRNA expression of c-myc, p53, Skp2, Fbw7α, and caspase-9 splice variants was determined using qPCR, while relative protein expression of c-myc, p53, SRp30a, Bax, Bcl-2, Smac/DIABLO, Hsp70, and PARP-1 were determined by Western blotting. MLAuNP and CAuNP were not cytotoxic to PBMCs, whilst its pro-apoptotic properties were confirmed in A549 and SNO cells. MLAuNP significantly increased caspase activity in SNO cells while MLAuNP significantly increased PS externalization, ΔΨm, caspase-9, caspase-3/7 activities, and decreased ATP levels in A549 cells. Also, p53 mRNA and protein levels, SRp30a (P = 0.428), Bax, Smac/DIABLO and PARP-1 24 kDa fragment levels were significantly increased. Conversely, MLAuNP significantly decreased Bcl-2, Hsp70, Skp2, Fbw7α, c-myc mRNA, and protein levels and activated alternate splicing with caspase-9a splice variant being significantly increased. MLAuNP possesses antiproliferative properties and induced apoptosis in A549 cells by activating alternate splicing of caspase-9. J. Cell. Biochem. 117: 2302-2314, 2016. © 2016 Wiley Periodicals, Inc. PMID:26923760

  13. Detection of EGFR mutations with mutation-specific antibodies in stage IV non-small-cell lung cancer

    PubMed Central

    2010-01-01

    Background Immunohistochemistry (IHC) with mutation-specific antibodies may be an ancillary method of detecting EGFR mutations in lung cancer patients. Methods EGFR mutation status was analyzed by DNA assays, and compared with IHC results in five non-small-cell lung cancer (NSCLC) cell lines and tumor samples from 78 stage IV NSCLC patients. Results IHC correctly identified del 19 in the H1650 and PC9 cell lines, L858R in H1975, and wild-type EGFR in H460 and A549, as well as wild-type EGFR in tumor samples from 22 patients. IHC with the mAb against EGFR with del 19 was highly positive for the protein in all 17 patients with a 15-bp (ELREA) deletion in exon 19, whereas in patients with other deletions, IHC was weakly positive in 3 cases and negative in 9 cases. IHC with the mAb against the L858R mutation showed high positivity for the protein in 25/27 (93%) patients with exon 21 EGFR mutations (all with L858R) but did not identify the L861Q mutation in the remaining two patients. Conclusions IHC with mutation-specific mAbs against EGFR is a promising method for detecting EGFR mutations in NSCLC patients. However these mAbs should be validated with additional studies to clarify their possible role in routine clinical practice for screening EGFR mutations in NSCLC patients. PMID:21167064

  14. The HSP90 inhibitor NVP-AUY922 potently inhibits non-small cell lung cancer growth

    PubMed Central

    Garon, Edward B.; Finn, Richard S.; Hamidi, Habib; Dering, Judy; Pitts, Sharon; Kamranpour, Naeimeh; Desai, Amrita J.; Hosmer, Wylie; Ide, Susan; Avsar, Emin; Jensen, Michael Rugaard; Quadt, Cornelia; Liu, Manway; Dubinett, Steven M.; Slamon, Dennis J.

    2013-01-01

    Heat shock protein 90 (HSP90) is involved in protein folding and functions as a chaperone for numerous client proteins, many of which are important in non-small cell lung cancer (NSCLC) pathogenesis. We sought to define preclinical effects of the HSP90 inhibitor NVP-AUY922 and identify predictors of response. We assessed in vitro effects of NVP-AUY922 on proliferation and protein expression in NSCLC cell lines. We evaluated gene expression changes induced by NVP-AUY922 exposure. Xenograft models were evaluated for tumor control and biological effects. NVP-AUY922 potently inhibited in vitro growth in all 41 NSCLC cell lines evaluated with IC50 < 100 nM. IC100 (complete inhibition of proliferation) < 40 nM was seen in 36 of 41 lines. Consistent gene expression changes after NVP-AUY922 exposure involved a wide range of cellular functions, including consistently decreased dihydrofolate reductase (DHFR) after exposure. NVP-AUY922 slowed growth of A549 (KRAS mutant) xenografts, and achieved tumor stability and decreased epidermal growth factor receptor (EGFR) protein expression in H1975 xenografts, a model harboring a sensitizing and a resistance mutation for EGFR tyrosine kinase inhibitors in the EGFR gene. This data will help inform the evaluation of correlative data from a recently completed phase II NSCLC trial and a planned phase IB trial of NVP-AUY922 in combination with pemetrexed in NSCLC. PMID:23493311

  15. Inflammatory response and genotoxicity of seven wood dusts in the human epithelial cell line A549.

    PubMed

    Bornholdt, Jette; Saber, Anne T; Sharma, Anoop K; Savolainen, Kai; Vogel, Ulla; Wallin, Håkan

    2007-08-15

    Exposure to wood dust is common in many workplaces. Epidemiological studies indicate that occupational exposure to hardwood dusts is more harmful than to softwood dusts. In this study, human epithelial cell line A549 was incubated with well-characterized dusts from six commonly used wood species and from medium density fibreboard (MDF), at concentrations between 10 and 300microg/ml. After 3 and 6h of incubation, genotoxicity was assessed by measurement of DNA damage with the single-cell gel electrophoresis (comet) assay and inflammation was measured by the expression of IL-6 and IL-8 mRNA and by the amount of IL-8 protein. There was a 1.2-1.4-fold increase in DNA strand breaks after incubation with beech, teak, pine and MDF dusts compared with the levels in untreated cells, but after 6h only the increase induced by the MDF dust remained. Increased expression of cellular IL-6 and IL-8 mRNA was induced by all of the wood dusts at both times. Similar to IL-8 mRNA expression, the amounts of secreted IL-8 protein were elevated, except after incubation with oak dust, where a marginal reduction was seen. On the basis of the effects on IL-8 mRNA expression, the wood dusts could be divided into three groups, with teak dust being the most potent, MDF, birch, spruce and pine being intermediate, and beech and oak being the least potent. The induction of DNA strand breaks did not correlate well with the interleukin response. In conclusion, all wood dusts induced cytokine responses, and some dusts induced detectable DNA damage. The inflammatory potency seemed intermediate for dusts from the typical softwoods spruce and pine, whereas the dusts from species linked to cancer, beech and oak, were the least inflammatory. The variation of the effects induced by different wood dusts over time indicates that the DNA damage was not secondary to the cytokine response. Although hardwoods are often considered more harmful than softwoods by regulatory agencies, the current experiments do not

  16. MicroRNA-429 induces tumorigenesis of human non-small cell lung cancer cells and targets multiple tumor suppressor genes

    SciTech Connect

    Lang, Yaoguo; Xu, Shidong; Ma, Jianqun; Wu, Jun; Jin, Shi; Cao, Shoubo; Yu, Yan

    2014-07-18

    Highlights: • MiR-429 expression is upregulated in non-small cell lung cancer (NSCLC). • MiR-429 inhibits PTEN, RASSF8 and TIMP2 expression. • MiR-429 promotes metastasis and proliferation. • We report important regulatory mechanisms involved in NSCLC progression. • MiR-429 is a potential therapeutic target and diagnostic marker. - Abstract: Lung cancer is the major cause of cancer death globally. MicroRNAs are evolutionally conserved small noncoding RNAs that are critical for the regulation of gene expression. Aberrant expression of microRNA (miRNA) has been implicated in cancer initiation and progression. In this study, we demonstrated that the expression of miR-429 are often upregulated in non-small cell lung cancer (NSCLC) compared with normal lung tissues, and its expression level is also increased in NSCLC cell lines compared with normal lung cells. Overexpression of miR-429 in A549 NSCLC cells significantly promoted cell proliferation, migration and invasion, whereas inhibition of miR-429 inhibits these effects. Furthermore, we demonstrated that miR-429 down-regulates PTEN, RASSF8 and TIMP2 expression by directly targeting the 3′-untranslated region of these target genes. Taken together, our results suggest that miR-429 plays an important role in promoting the proliferation and metastasis of NSCLC cells and is a potential target for NSCLC therapy.

  17. Cisplatin treatment increases stemness through upregulation of hypoxia-inducible factors by interleukin-6 in non-small cell lung cancer.

    PubMed

    Zhang, Fuquan; Duan, Shanzhou; Tsai, Ying; Keng, Peter C; Chen, Yongbing; Lee, Soo Ok; Chen, Yuhchyau

    2016-06-01

    Cisplatin-resistant A549 and H157 (A549CisR and H157CisR) non-small cell lung cancer cells show increased stemness of cancer stem cells (CSCs) compared to their parental cells. We investigated whether interleukin-6 (IL-6) signaling contributes to this increased stemness in cisplatin-resistant cells. When A549CisR and H157CisR cells were treated with neutralizing IL-6 antibody, decreased cisplatin resistance was observed, whereas IL-6 treatment of parental cells resulted in increased cisplatin resistance. Expression of the CSC markers was significantly upregulated in IL-6-expressing scramble cells (in vitro) and scramble cell-derived tumor tissues (in vivo) after cisplatin treatment, but not in IL-6 knocked down (IL-6si) (in vitro) cells and in IL-6si cell-derived tumor tissues (in vivo), suggesting the importance of IL-6 signaling in triggering increased stemness during cisplatin resistance development. Hypoxia inducible factors (HIFs) were upregulated by IL-6 and responsible for the increased CSC stemness on cisplatin treatment. Mechanism dissection studies found that upregulation of HIFs by IL-6 was through transcriptional control and inhibition of HIF degradation. Treatment of HIF inhibitor (FM19G11) abolished the upregulation of CSC markers and increased sphere formations in IL-6 expressing cells on cisplatin treatment. In all, IL-6-mediated HIF upregulation is important in increasing stemness during cisplatin resistance development, and we suggest that the strategies of inhibiting IL-6 signaling or its downstream HIF molecules can be used as future therapeutic approaches to target CSCs after cisplatin treatment for lung cancer. PMID:27009878

  18. Proteomics biomarkers for non-small cell lung cancer.

    PubMed

    Kisluk, Joanna; Ciborowski, Michal; Niemira, Magdalena; Kretowski, Adam; Niklinski, Jacek

    2014-12-01

    In the last decade, proteomic analysis has become an integral tool for investigation of tumor biology, complementing the genetic analysis. The idea of proteomics is to characterize proteins by evaluation of their expressions, functions, and interactions. Proteomics may also provide information about post-translational modifications of proteins and evaluate their value as specific disease biomarkers. The major purpose of clinical proteomics studies is to improve diagnostic procedures including the precise evaluation of biological features of tumor cells and to understand the molecular pathogenesis of cancers to invent novel therapeutic strategies and targets. This review briefly describes the latest reports in proteomic studies of NSCLC. It contains a summary of the methods used to detect proteomic markers in different types of biological material and their clinical application as diagnostic, prognostic, and predictive biomarkers compiled on the basis of the most recent literature and our own experience. PMID:25175018

  19. Focal Adhesion Kinase Inhibitors in Combination with Erlotinib Demonstrate Enhanced Anti-Tumor Activity in Non-Small Cell Lung Cancer

    PubMed Central

    Howe, Grant A.; Xiao, Bin; Zhao, Huijun; Al-Zahrani, Khalid N.; Hasim, Mohamed S.; Villeneuve, James; Sekhon, Harmanjatinder S.; Goss, Glenwood D.; Sabourin, Luc A.; Dimitroulakos, Jim; Addison, Christina L.

    2016-01-01

    Blockade of epidermal growth factor receptor (EGFR) activity has been a primary therapeutic target for non-small cell lung cancers (NSCLC). As patients with wild-type EGFR have demonstrated only modest benefit from EGFR tyrosine kinase inhibitors (TKIs), there is a need for additional therapeutic approaches in patients with wild-type EGFR. As a key component of downstream integrin signalling and known receptor cross-talk with EGFR, we hypothesized that targeting focal adhesion kinase (FAK) activity, which has also been shown to correlate with aggressive stage in NSCLC, would lead to enhanced activity of EGFR TKIs. As such, EGFR TKI-resistant NSCLC cells (A549, H1299, H1975) were treated with the EGFR TKI erlotinib and FAK inhibitors (PF-573,228 or PF-562,271) both as single agents and in combination. We determined cell viability, apoptosis and 3-dimensional growth in vitro and assessed tumor growth in vivo. Treatment of EGFR TKI-resistant NSCLC cells with FAK inhibitor alone effectively inhibited cell viability in all cell lines tested; however, its use in combination with the EGFR TKI erlotinib was more effective at reducing cell viability than either treatment alone when tested in both 2- and 3-dimensional assays in vitro, with enhanced benefit seen in A549 cells. This increased efficacy may be due in part to the observed inhibition of Akt phosphorylation when the drugs were used in combination, where again A549 cells demonstrated the most inhibition following treatment with the drug combination. Combining erlotinib with FAK inhibitor was also potent in vivo as evidenced by reduced tumor growth in the A549 mouse xenograft model. We further ascertained that the enhanced sensitivity was irrespective of the LKB1 mutational status. In summary, we demonstrate the effectiveness of combining erlotinib and FAK inhibitors for use in known EGFR wild-type, EGFR TKI resistant cells, with the potential that a subset of cell types, which includes A549, could be particularly

  20. In vitro evaluation of the cellular effect of indium tin oxide nanoparticles using the human lung adenocarcinoma A549 cells.

    PubMed

    Tabei, Yosuke; Sonoda, Akinari; Nakajima, Yoshihiro; Biju, Vasudevanpillai; Makita, Yoji; Yoshida, Yasukazu; Horie, Masanori

    2015-05-01

    Indium tin oxide (ITO) is widely used in liquid crystal displays (LCDs) or plasma and mobile phone displays. Elevated production and usage of ITO in such displays have led to increased concerns over the safety of industrial workers exposed to particulate aerosols produced during cutting, grinding and polishing of these materials. However, the cellular effects of ITO nanoparticles (NPs) are still unclear, although it has been reported that micro-scale ITO particles induce cytotoxicity. The aim of this study was to examine the potential of ITO NPs to induce cytotoxicity, oxidative stress, and DNA damage using human lung adenocarcinoma A549 cells. Here, stable dispersions of a medium containing ITO NPs were obtained using pre-adsorption and centrifugal fractionation methods, and the A549 cells were incubated in this medium. The ITO NPs showed low cytotoxic effects as shown by the WST-1 and LDH assays. Transmission electron microscopy observations showed the cellular uptake of ITO NPs. The ITO NPs increased the intracellular level of reactive oxygen species and the expression of the heme oxygenase 1 gene. Further, the results of alkaline comet assays showed that ITO NPs induced DNA damage. Thus, these results suggest that ITO NPs possess a genotoxic potential on human lung adenocarcinoma A549 cells. PMID:25781390

  1. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    SciTech Connect

    Zhang, Jian; Zhang, Tao; Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling; Yin, Hong

    2010-08-13

    Research highlights: {yields} Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells {yields} Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway {yields} Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* {yields} miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  2. SchA-p85-FAK complex dictates isoform-specific activation of Akt2 and subsequent PCBP1-mediated post-transcriptional regulation of TGFβ-mediated epithelial to mesenchymal transition in human lung cancer cell line A549.

    PubMed

    Xue, Xinying; Wang, Xin; Liu, Yuxia; Teng, Guigen; Wang, Yong; Zang, Xuefeng; Wang, Kaifei; Zhang, Jinghui; Xu, Yali; Wang, Jianxin; Pan, Lei

    2014-08-01

    A post-transcriptional pathway by which TGF-β modulates expression of specific proteins, Disabled-2 (Dab2) and Interleukin-like EMT Inducer (ILEI), inherent to epithelial to mesenchymal transition (EMT) in murine epithelial cells through Akt2-mediated phosphorylation of poly r(C) binding protein (PCBP1), has been previously elucidated. The aims of the current study were to determine if the same mechanism is operative in the non-small cell lung cancer (NSCLC) cell line, A549, and to delineate the underlying mechanism. Steady-state transcript and protein expression levels of Dab2 and ILEI were examined in A549 cells treated with TGF-β for up to 48 h. Induction of translational de-repression in this model was quantified by polysomal fractionation followed by qRT-PCR. The underlying mechanism of isoform-specific activation of Akt2 was elucidated through a combination of co-immunoprecipitation studies. TGF-β induced EMT in A549 cells concomitant with translational upregulation of Dab2 and ILEI proteins through isoform-specific activation of Akt2 followed by phosphorylation of PCBP1 at serine-43. Our experiments further elucidated that the adaptor protein SchA is phosphorylated at tyrosine residues following TGF-β treatment, which initiated a signaling cascade resulting in the sequential recruitment of p85 subunit of PI3K and focal adhesion kinase (FAK). The SchA-FAK-p85 complex subsequently selectively recruited and activated Akt2, not Akt1. Inhibition of the p85 subunit through phosphorylated 1257 peptide completely attenuated EMT in these cells. We have defined the underlying mechanism responsible for isoform-specific recruitment and activation of Akt2, not Akt1, during TGF-β-mediated EMT in A549 cells. Inhibition of the formation of this complex thus represents an important and novel therapeutic target in metastatic lung carcinoma. PMID:24819169

  3. Atorvastatin partially inhibits the epithelial-mesenchymal transition in A549 cells induced by TGF-β1 by attenuating the upregulation of SphK1.

    PubMed

    Fan, Zhiqiang; Jiang, Handong; Wang, Zili; Qu, Jieming

    2016-08-01

    Statins are the most effective drugs used in the reduction of intracellular synthesis of cholesterol. Numerous studies have confirmed that statins reduce the risk of multiple types of cancers. Statin use in cancer patients is associated with reduced cancer-related mortality. Epithelial-to-mesenchymal transition (EMT), a complicated process programmed by multiple genes, is an important mechanism of cancer metastasis. We explored the effect and mechanism of atorvastatin on the EMT process in A549 cells by establishing an EMT model in vitro induced by TGF-β1, and evaluated the effects of atorvastatin on the lower signaling pathway of TGF-β1 stimulation. Our results showed that atorvastatin partially inhibited the EMT process, and inhibited cell migration and actin filament remodeling. Transcriptional upregulation of ZEB1 and protein sphingosine kinase 1 (SphK1) induced by TGF-β1 was also suppressed. SphK1 plasmid transient transfection strengthened the EMT process induced by TGF-β1 in the presence of atorvastatin. Our experiments confirmed that atorvastatin can partially inhibit the EMT process of non-small cell lung cancer cells induced by TGF-β1 by attenuating the upregulation of SphK1. PMID:27349500

  4. Platinum(II) phenanthroimidazole G-quadruplex ligand induces selective telomere shortening in A549 cancer cells.

    PubMed

    Mancini, Johanna; Rousseau, Philippe; Castor, Katherine J; Sleiman, Hanadi F; Autexier, Chantal

    2016-02-01

    Telomere maintenance, achieved by the binding of protective shelterin capping proteins to telomeres and by either telomerase or a recombination-based alternative lengthening of telomere (ALT) mechanism, is critical for cell proliferation and survival. Extensive telomere shortening or loss of telomere integrity activates DNA damage checkpoints, leading to cell senescence or death. Although telomerase upregulation is an attractive target for anti-cancer therapy, the lag associated with telomere shortening and the potential activation of ALT pose a challenge. An alternative approach is to modify telomere interactions with binding proteins (telomere uncapping). G-quadruplex ligands stabilize structures generated from single-stranded G-rich 3'-telomere end (G-quadruplex) folding, which in principle, cannot be elongated by telomerase, thus leading to telomere shortening. Ligands can also mediate rapid anti-proliferative effects by telomere uncapping. We previously reported that the G-quadruplex ligand, phenylphenanthroimidazole ethylenediamine platinum(II) (PIP), inhibits telomerase activity in vitro[47]. In the current study, a long-term seeding assay showed that PIP significantly inhibited the seeding capacity of A549 lung cancer cells and to a lesser extent primary MRC5 fibroblast cells. Importantly, treatment with PIP caused a significant dose- and time-dependent decrease in average telomere length of A549 but not MRC5 cells. Moreover, cell cycle analysis revealed a significant increase in G1 arrest upon treatment of A549 cells, but not MRC5 cells. Both apoptosis and cellular senescence may contribute to the anti-proliferative effects of PIP. Our studies validate the development of novel and specific therapeutic ligands targeting telomeric G-quadruplex structures in cancer cells. PMID:26724375

  5. The cytotoxicity of organophosphate flame retardants on HepG2, A549 and Caco-2 cells.

    PubMed

    An, Jing; Hu, Jingwen; Shang, Yu; Zhong, Yufang; Zhang, Xinyu; Yu, Zhiqiang

    2016-09-18

    In order to elucidate the cytotoxicity of organophosphate flame retardants (OPFRs), three human in vitro models, namely the HepG2 hepatoma cells, the A549 lung cancer cells and the Caco-2 colon cancer cells, were chosen to investigate the toxicity of triphenyl phosphate (TPP), tributylphosphate (TBP), tris(2-butoxyexthyl) phosphate (TBEP) and tris (2-chloroisopropyl) phosphate (TCPP). Cytotoxicity was assayed in terms of cell viability, DNA damage status, reactive oxygen species (ROS) level and lactate dehydrogenase (LDH) leakage. The results showed that all these four OPFRs could inhibit cell viability, overproduce ROS level, induce DNA lesions and increase the LDH leakage. In addition, the toxic effects of OPFRs in Caco-2 cells were relatively severer than those in HepG2 and A549 cells, which might result from some possible mechanisms apart from oxidative stress pathway. In conclusion, TBP, TPP, TBEP and TCPP could induce cell toxicity in various cell lines at relatively high concentrations as evidenced by suppression of cell viability, overproduction of ROS, induction of DNA lesions and increase of LDH leakage. Different cell types seemed to have different sensitivities and responses to OPFRs exposure, as well as the underlying potential molecular mechanisms. PMID:27336727

  6. Radiosensitization of Non-Small Cell Lung Cancer Cells by Inhibition of TGF-β1 Signaling With SB431542 Is Dependent on p53 Status.

    PubMed

    Zhao, Yifan; Wang, Longxiao; Huang, Qianyi; Jiang, Youqin; Wang, Jingdong; Zhang, Liyuan; Tian, Ye; Yang, Hongying

    2016-01-01

    Although medically inoperable patients with stage I non-small cell lung cancer cells (NSCLC) are often treated with stereotactic body radiation therapy, its efficacy can be compromised due to poor radiosensitivity of cancer cells. Inhibition of transforming growth factor-β1 (TGF-β1) using LY364947 and LY2109761 has been demonstrated to radiosensitize cancer cells such as breast cancer, glioblastoma, and lung cancer. Our previous results have demonstrated that another potent and selective inhibitor of TGF-β1 receptor kinases, SB431542, could radiosensitize H460 cells both in vitro and in vivo. In the present study, we investigated whether SB431542 could radiosensitize other NSCLC cell lines, trying to explore the potential implication of this TGF-β1 inhibitor in radiotherapy for NSCLC patients. The results showed that A549 cells were significantly radiosensitized by SB431542, whereas no radiosensitizing effect was observed in H1299 cells. Interestingly, both H460 and A549 cells have wild-type p53, while H1299 cells have deficient p53. To study whether the radiosensitizing effect of SB431542 was associated with p53 status of cancer cells, the p53 of H460 cells was silenced using shRNA transfection. Then it was found that the radiosensitizing effect of SB431542 on H460 cells was not observed in H460 cells with silenced p53. Moreover, X-irradiation caused rapid Smad2 activation in H460 and A549 cells but not in H1299 and H460 cells with silenced p53. The Smad2 activation postirradiation could be abolished by SB431542. This may explain the lack of radiosensitizing effect of SB431542 in H1299 and H460 cells with silenced p53. Thus, we concluded that the radiosensitizing effect of inhibition of TGF-β1 signaling in NSCLC cells by SB431542 was p53 dependent, suggesting that using TGF-β1 inhibitor in radiotherapy may be more complicated than previously thought and may need further investigation. PMID:27178816

  7. Predicting the clonogenic survival of A549 cells after modulated x-ray irradiation using the linear quadratic model

    NASA Astrophysics Data System (ADS)

    Bromley, Regina; Oliver, Lyn; Davey, Ross; Harvie, Rozelle; Baldock, Clive

    2009-01-01

    In this study we present two prediction methods, mean dose and summed dose, for predicting the number of A549 cells that will survive after modulated x-ray irradiation. The prediction methods incorporate the dose profile from the modulated x-ray fluence map applied across the cell sample and the linear quadratic (LQ) model. We investigated the clonogenic survival of A549 cells when irradiated using two different modulated x-ray fluence maps. Differences between the measured and predicted surviving fraction were observed for modulated x-ray irradiation. When the x-ray fluence map produced a steep dose gradient across the sample, fewer cells survived in the unirradiated region than expected. When the x-ray fluence map produced a less steep dose gradient across the sample, more cells survived in the unirradiated region than expected. Regardless of the steepness of the dose gradient, more cells survived in the irradiated region than expected for the reference dose range of 1-10 Gy. The change in the cell survival for the unirradiated regions of the two different dose gradients may be an important factor to consider when predicting the number of cells that will survive at the edge of modulated x-ray fields. This investigation provides an improved method of predicting cell survival for modulated x-ray radiation treatment. It highlights the limitations of the LQ model, particularly in its ability to describe the biological response of cells irradiated under these conditions.

  8. Cancer-associated fibroblasts promote non-small cell lung cancer cell invasion by upregulation of glucose-regulated protein 78 (GRP78) expression in an integrated bionic microfluidic device.

    PubMed

    Yu, Ting; Guo, Zhe; Fan, Hui; Song, Jing; Liu, Yuanbin; Gao, Zhancheng; Wang, Qi

    2016-05-01

    The tumor microenvironment is comprised of cancer cells and various stromal cells and their respective cellular components. Cancer-associated fibroblasts (CAFs), a major part of the stromal cells, are a key determinant in tumor progression, while glucose-regulated protein (GRP)78 is overexpressed in many human cancers and is involved in tumor invasion and metastasis. This study developed a microfluidic-based three dimension (3D) co-culture device to mimic an in vitro tumor microenvironment in order to investigate tumor cell invasion in real-time. This bionic chip provided significant information regarding the role of GRP78, which may be stimulated by CAFs, to promote non-small cell lung cancer cell invasion in vitro. The data showed that CAF induced migration of NSCLC A549 and SPCA-1 cells in this three-dimensional invasion microdevice, which is confirmed by using the traditional Transwell system. Furthermore, CAF induced GRP78 expression in A549 and SPCA-1 cells to facilitate NSCLC cell migration and invasion, whereas knockdown of GRP78 expression blocked A549 and SPCA-1 cell migration and invasion capacity. In conclusion, these data indicated that CAFs might promote NSCLC cell invasion by up-regulation of GRP78 expression and this bionic chip microdevice is a robust platform to assess the interaction of cancer and stromal cells in tumor environment study. PMID:27016417

  9. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells.

    PubMed

    Ko, Jen-Chung; Chen, Jyh-Cheng; Wang, Tai-Jing; Zheng, Hao-Yu; Chen, Wen-Ching; Chang, Po-Yuan; Lin, Yun-Wei

    2016-04-01

    Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects, including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination, and studies show that chemo-resistant carcinomas exhibit high levels of Rad51 expression. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Astaxanthin treatment (2.5-20 μM) decreased Rad51 expression and phospho-AKT(Ser473) protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector rescued the decreased Rad51 mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 or wortmannin) further decreased the Rad51 expression in astaxanthin-exposed A549 and H1703 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA or cotreatment with LY294002 further enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Additionally, mitomycin C (MMC) as an anti-tumor antibiotic is widely used in clinical NSCLC chemotherapy. Combination of MMC and astaxanthin synergistically resulted in cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced phospho-AKT(Ser473) level and Rad51 expression. Overexpression of AKT-CA or Flag-tagged Rad51 reversed the astaxanthin and MMC-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in astaxanthin and MMC co-treated cells. In conclusion, astaxanthin enhances MMC-induced cytotoxicity by decreasing Rad51 expression and AKT activation. These findings may provide rationale to combine astaxanthin with MMC for the treatment of NSCLC. PMID:26921637

  10. Identification of a long non-coding RNA gene, growth hormone secretagogue receptor opposite strand, which stimulates cell migration in non-small cell lung cancer cell lines.

    PubMed

    Whiteside, Eliza J; Seim, Inge; Pauli, Jana P; O'Keeffe, Angela J; Thomas, Patrick B; Carter, Shea L; Walpole, Carina M; Fung, Jenny N T; Josh, Peter; Herington, Adrian C; Chopin, Lisa K

    2013-08-01

    The molecular mechanisms involved in non‑small cell lung cancer tumourigenesis are largely unknown; however, recent studies have suggested that long non-coding RNAs (lncRNAs) are likely to play a role. In this study, we used public databases to identify an mRNA-like, candidate long non-coding RNA, GHSROS (GHSR opposite strand), transcribed from the antisense strand of the ghrelin receptor gene, growth hormone secretagogue receptor (GHSR). Quantitative real-time RT-PCR revealed higher expression of GHSROS in lung cancer tissue compared to adjacent, non-tumour lung tissue. In common with many long non-coding RNAs, GHSROS is 5' capped and 3' polyadenylated (mRNA-like), lacks an extensive open reading frame and harbours a transposable element. Engineered overexpression of GHSROS stimulated cell migration in the A549 and NCI-H1299 non-small cell lung cancer cell lines, but suppressed cell migration in the Beas-2B normal lung-derived bronchoepithelial cell line. This suggests that GHSROS function may be dependent on the oncogenic context. The identification of GHSROS, which is expressed in lung cancer and stimulates cell migration in lung cancer cell lines, contributes to the growing number of non-coding RNAs that play a role in the regulation of tumourigenesis and metastatic cancer progression. PMID:23722988

  11. Quercetin metabolites inhibit MMP-2 expression in A549 lung cancer cells by PPAR-γ associated mechanisms.

    PubMed

    Chuang, Cheng-Hung; Yeh, Chiao-Lin; Yeh, Shu-Lan; Lin, En-Shyh; Wang, Li-Yu; Wang, Ying-Hsuna

    2016-07-01

    Our previous study demonstrated that quercetin-metabolite-enriched plasma (QP) but not quercetin itself upregulates peroxisome proliferator-activated receptor gamma (PPAR-γ) expression to induce G2/M arrest in A549 cells. In the present study, we incubated A549 cells with QP as well as quercetin-3-glucuronide (Q3G) and quercetin-3'-sulfate (Q3'S), two major metabolites of quercetin, to investigate the effects of quercetin metabolites on cell invasion and migration, the possible mechanisms and the role of PPAR-γ. We also compared the effects of QP with those of quercetin and troglitazone (TGZ), a PPAR-γ ligand. The results showed that QP significantly suppressed cell invasion and migration, as well as matrix metalloproteinases (MMPs)-2 activity and expression in a dose-dependent manner. The effects of 10% QP on those parameters were similar to those of 10μM quercetin and 20μM TGZ. However, QP and TGZ rather than quercetin itself increased the expressions of nm23-H1 and tissue inhibitor of metalloproteinase (TIMP-2). Furthermore, we demonstrated that Q3G and Q3'S also inhibited the protein expression of MMP-2. GW9662, a PPAR-γ antagonist, significantly diminished such an effect of Q3G and Q3'S. Silencing PPAR-γ expression in A549 cells also significantly diminished the suppression effect of Q3G and Q3'S on MMP-2 expression. Taken together, our study demonstrated that QP inhibited cell invasion and migration through nm23-H1/TIMP-2/MMP-2 associated mechanisms. The upregulation of PPAR-γ by quercetin metabolites such as Q3G and Q3'S could play an important role in the effects of QP. PMID:27260467

  12. Methyl methanesulfonate induces necroptosis in human lung adenoma A549 cells through the PIG-3-reactive oxygen species pathway.

    PubMed

    Jiang, Ying; Shan, Shigang; Chi, Linfeng; Zhang, Guanglin; Gao, Xiangjing; Li, Hongjuan; Zhu, Xinqiang; Yang, Jun

    2016-03-01

    Methyl methanesulfonate (MMS) is an alkylating agent that can induce cell death through apoptosis and necroptosis. The molecular mechanisms underlying MMS-induced apoptosis have been studied extensively; however, little is known about the mechanism for MMS-induced necroptosis. Therefore, we first established MMS-induced necroptosis model using human lung carcinoma A549 cells. It was found that, within a 24-h period, although MMS at concentrations of 50, 100, 200, 400, and 800 μM can induce DNA damage, only at higher concentrations (400 and 800 μM) MMS treatment lead to necroptosis in A549 cells, as it could be inhibited by the specific necroptotic inhibitor necrostatin-1, but not the specific apoptotic inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-fmk). MMS-induced necroptosis was further confirmed by the induction of the necroptosis biomarkers including the depletion of cellular NADH and ATP and leakage of LDH. This necroptotic cell death was also concurrent with the increased expression of p53, p53-induced gene 3 (PIG-3), high mobility group box-1 protein (HMGB1), and receptor interaction protein kinase (RIP) but not the apoptosis-associated caspase-3 and caspase-9 proteins. Elevated reactive oxygen species (ROS) level was also involved in this process as the specific ROS inhibitor (4-amino-2,4-pyrrolidine-dicarboxylic acid (APDC)) can inhibit the necroptotic cell death. Interestingly, knockdown of PIG-3 expression by small interfering RNA (siRNA) treatment can inhibit the generation of ROS. Taken together, these results suggest that MMS can induce necroptosis in A549 cells, probably through the PIG-3-ROS pathway. PMID:26472723

  13. Epithelial-mesenchymal transition of A549 cells is enhanced by co-cultured with THP-1 macrophages under hypoxic conditions.

    PubMed

    Sueki, Akane; Matsuda, Kazuyuki; Iwashita, Chinami; Taira, Chiaki; Ishimine, Nau; Shigeto, Shohei; Kawasaki, Kenji; Sugano, Mitsutoshi; Yamamoto, Hiroshi; Honda, Takayuki

    2014-10-31

    Epithelial-mesenchymal transition (EMT) is associated with pulmonary fibrosis, including idiopathic pulmonary fibrosis (IPF). In this study, we investigated EMT of human pulmonary epithelial-derived cells (A549). A549 cells was either cultured by itself or co-cultured with THP-1 macrophages under normoxic (21% O2) and hypoxic (2% O2) conditions. We evaluated the presence of EMT by determining the expression of EMT markers, E-cadherin, vimentin, and fibronectin. To determine the role of TGF-β1 and IL-1β in EMT of the A549 cells, we analyzed the effects of blocking their activity with TGF-β1 inhibitor or IL-1β neutralizing antibody respectively. The A549 cells presented EMT when they were co-cultured with THP-1 macrophages. The EMT of the A549 cells co-cultured with THP-1 macrophages was exacerbated under hypoxia. In addition, the EMT were prevented by the addition of TGF-β1 type I receptor kinase inhibitor. The hypoxic condition increased the mRNA levels of TGF-β1 in A549 cells and THP-1 macrophages and that of IL-1β in THP-1 macrophages when each cells were co-cultured. Anti-IL-1β neutralizing antibody attenuated TGF-β1 secretion in co-culture media under hypoxic conditions. Thus, the IL-1β from THP-1 macrophages up-regulated the TGF-β1 from A549 cells and THP-1 macrophages, and then the TGF-β1 from both cells induced and promoted the EMT of A549 cells when they were co-cultured under hypoxia. Together, these results demonstrate that the interaction between type II pneumocytes and macrophages under hypoxia is necessary for the development of pulmonary fibrosis. PMID:25445593

  14. High-throughput screening identifies aclacinomycin as a radiosensitizer of EGFR-mutant non-small cell lung cancer.

    PubMed

    Bennett, Daniel C; Charest, Jonathan; Sebolt, Katrina; Lehrman, Mark; Rehemtulla, Alnawaz; Contessa, Joseph N

    2013-06-01

    The endoplasmic reticulum (ER) provides a specialized environment for the folding and modification of trans-membrane proteins, including receptor tyrosine kinases (RTKs), which are vital for the growth and survival of malignancies. To identify compounds which disrupt the function of the ER and thus could potentially impair cancer cell survival signaling, we adapted a set of glycosylation-sensitive luciferase reporters for the development and optimization of a cell-based high-throughput screen (HTS). Secondary screens for false-positive luciferase activation and tertiary lectin-based and biochemical analyses were also devised for compound triage. Through a pilot screen of 2802 compounds from the National Cancer Institute (NCI) chemical libraries, we identified aclacinomycin (Acm) as a compound that preferentially affects ER function. We report that Acm reduces plasma membrane expression of glycoproteins including epidermal growth factor receptor (EGFR) and Met but does not inhibit N-linked glycosylation or generalized protein translation. Fluorescence microscopy co-localization experiments were also performed and demonstrated Acm accumulation in the ER in further support of the overall HTS design. The consequences of Acm treatment on cell survival were analyzed through clonogenic survival analysis. Consistent with the reduction of EGFR levels, pretreatment with Acm sensitizes the EGFR-mutant non-small cell lung cancer (NSCLC) cell lines HCC827 and HCC2935 to ionizing radiation and did not affect the sensitivity of the RTK-independent and KRAS-mutant A549 NSCLC cell line. Thus, Acm and similar compounds targeting the ER may represent a novel approach for radiosensitizing tumor cells dependent on RTK function. PMID:23730419

  15. Cancer stem cells and cisplatin-resistant cells isolated from non-small-lung cancer cell lines constitute related cell populations

    PubMed Central

    Lopez-Ayllon, Blanca D; Moncho-Amor, Veronica; Abarrategi, Ander; de Cáceres, Inmaculada Ibañez; Castro-Carpeño, Javier; Belda-Iniesta, Cristobal; Perona, Rosario; Sastre, Leandro

    2014-01-01

    Lung cancer is the top cause of cancer-related deceases. One of the reasons is the development of resistance to the chemotherapy treatment. In particular, cancer stem cells (CSCs), can escape treatment and regenerate the bulk of the tumor. In this article, we describe a comparison between cancer cells resistant to cisplatin and CSCs, both derived from the non-small-cell lung cancer cell lines H460 and A549. Cisplatin-resistant cells were obtained after a single treatment with the drug. CSCs were isolated by culture in defined media, under nonadherent conditions. The isolated CSCs were clonogenic, could be differentiated into adherent cells and were less sensitive to cisplatin than the original cells. Cisplatin resistant and CSCs were able to generate primary tumors and to metastasize when injected into immunodeficient Nu/Nu mice, although they formed smaller tumors with a larger latency than untreated cells. Notably, under appropriated proportions, CSCs synergized with differentiated cells to form larger tumors. CSCs also showed increased capacity to induce angiogenesis in Nu/Nu mice. Conversely, H460 cisplatin-resistant cells showed increased tendency to develop bone metastasis. Gene expression analysis showed that several genes involved in tumor development and metastasis (EGR1, COX2, MALAT1, AKAP12, ADM) were similarly induced in CSC and cisplatin-resistant H460 cells, in agreement with a close similarity between these two cell populations. Cells with the characteristic growth properties of CSCs were also isolated from surgical samples of 18 out of 44 lung cancer patients. A significant correlation (P = 0.028) was found between the absence of CSCs and cisplatin sensitivity. PMID:24961511

  16. Cancer stem cells and cisplatin-resistant cells isolated from non-small-lung cancer cell lines constitute related cell populations.

    PubMed

    Lopez-Ayllon, Blanca D; Moncho-Amor, Veronica; Abarrategi, Ander; Ibañez de Cáceres, Inmaculada; Castro-Carpeño, Javier; Belda-Iniesta, Cristobal; Perona, Rosario; Sastre, Leandro

    2014-10-01

    Lung cancer is the top cause of cancer-related deceases. One of the reasons is the development of resistance to the chemotherapy treatment. In particular, cancer stem cells (CSCs), can escape treatment and regenerate the bulk of the tumor. In this article, we describe a comparison between cancer cells resistant to cisplatin and CSCs, both derived from the non-small-cell lung cancer cell lines H460 and A549. Cisplatin-resistant cells were obtained after a single treatment with the drug. CSCs were isolated by culture in defined media, under nonadherent conditions. The isolated CSCs were clonogenic, could be differentiated into adherent cells and were less sensitive to cisplatin than the original cells. Cisplatin resistant and CSCs were able to generate primary tumors and to metastasize when injected into immunodeficient Nu/Nu mice, although they formed smaller tumors with a larger latency than untreated cells. Notably, under appropriated proportions, CSCs synergized with differentiated cells to form larger tumors. CSCs also showed increased capacity to induce angiogenesis in Nu/Nu mice. Conversely, H460 cisplatin-resistant cells showed increased tendency to develop bone metastasis. Gene expression analysis showed that several genes involved in tumor development and metastasis (EGR1, COX2, MALAT1, AKAP12, ADM) were similarly induced in CSC and cisplatin-resistant H460 cells, in agreement with a close similarity between these two cell populations. Cells with the characteristic growth properties of CSCs were also isolated from surgical samples of 18 out of 44 lung cancer patients. A significant correlation (P = 0.028) was found between the absence of CSCs and cisplatin sensitivity. PMID:24961511

  17. Coenzyme Q0 from Antrodia cinnamomea in Submerged Cultures Induces Reactive Oxygen Species-Mediated Apoptosis in A549 Human Lung Cancer Cells

    PubMed Central

    Chung, Cheng-Han; Lee, Kung-Ta

    2014-01-01

    We investigated the anticancer effects of Antrodia cinnamomea, a medicinal mushroom from Taiwan, on A549 human lung cancer cells using the ethyl acetate extract from submerged culture filtrates. Our results showed that 2,3-dimethoxy-5-methyl-1,4-benzoquinone (coenzyme Q0; CoQ0) derived from A. cinnamomea submerged culture filtrates has anticancer activity. CoQ0 treatment reduced the viability of A549, HepG2, and SW480 cancer cell lines. Furthermore, CoQ0 induced reactive oxygen species (ROS) generation and apoptosis in A549 cells, which was inhibited by the antioxidant ascorbic acid. To our knowledge, these data demonstrate for the first time that CoQ0 derived from A. cinnamomea submerged culture filtrates exerts its anticancer effect through the induction of ROS-mediated apoptosis in A549 human lung cancer cells. PMID:25431605

  18. Monocyte to macrophage differentiation-associated (MMD) targeted by miR-140-5p regulates tumor growth in non-small cell lung cancer

    SciTech Connect

    Li, Weina; He, Fei

    2014-07-18

    Highlights: • Expression of MMD is increased in lung cancer tissues. • Knockdown of MMD inhibits growth of A549 and LLC cells in vitro and in vivo. • MMD is a direct functional target of miR-140-5p. • MiR-140-5p/MMD axis regulates Erk1/2 signaling. - Abstract: Monocyte to macrophage differentiation-associated (MMD) is identified in macrophages as a gene associated with the differentiation from monocytes to macrophages. Recent microarray analysis for non-small cell lung cancer (NSCLC) suggests that MMD is an important signature associated with relapse and survival among patients with NSCLC. Therefore, we speculate that MMD likely plays a role in lung cancer. In this study, we found that the protein level of MMD was increased in lung cancer compared to benign lung tissues, and knockdown of MMD inhibited the growth of A549 and Lewis lung cancer cells (LLC) in vitro and in vivo. Integrated analysis demonstrated that MMD was a direct functional target of miR-140-5p. Furthermore, we found that miR-140-5p/MMD axis could affect the cell proliferation of lung cancer cells by regulating Erk signaling. Together, our results highlight the significance of miR-140-5p/MMD axis in lung cancer, and miR-140-5p/MMD axis could serve as new molecular targets for the therapy against lung cancer.

  19. EGFR-independent autophagy induction with gefitinib and enhancement of its cytotoxic effect by targeting autophagy with clarithromycin in non-small cell lung cancer cells.

    PubMed

    Sugita, Shohei; Ito, Kentaro; Yamashiro, Yutaro; Moriya, Shota; Che, Xiao-Fang; Yokoyama, Tomohisa; Hiramoto, Masaki; Miyazawa, Keisuke

    2015-05-22

    Gefitinib (GEF), an inhibitor for EGFR tyrosine kinase, potently induces autophagy in non-small cell lung cancer (NSCLC) cell lines such as PC-9 cells expressing constitutively activated EGFR kinase by EGFR gene mutation as well as A549 and H226 cells with wild-type EGFR. Unexpectedly, GEF-induced autophagy was also observed in non-NSCLC cells such as murine embryonic fibroblasts (MEF) and leukemia cell lines K562 and HL-60 without EGFR expression. Knockout of EGFR gene in A549 cells by CRISPR/Cas9 system still exhibited autophagy induction after treatment with GEF, indicating that the autophagy induction by GEF is not mediated through inhibiting EGFR kinase activity. Combined treatment with GEF and clarithromycin (CAM), a macrolide antibiotic having the effect of inhibiting autophagy flux, enhances the cytotoxic effect in NSCLC cell lines, although treatment with CAM alone exhibits no cytotoxicity. GEF treatment induced up-regulation of endoplasmic reticulum (ER)-stress related genes such as CHOP/GADD153 and GRP78. Knockdown of CHOP in PC-9 cells and Chop-knockout MEF both exhibited less sensitivity to GEF than controls. Addition of CAM in culture medium resulted in further pronounced GEF-induced ER stress loading, while CAM alone exhibited no effect. These data suggest that GEF-induced autophagy functions as cytoprotective and indicates the potential therapeutic possibility of using CAM for GEF therapy. Furthermore, it is suggested that the intracellular signaling for autophagy initiation in response to GEF can be completely dissociated from EGFR, but unknown target molecule(s) of GEF for autophagy induction might exist. PMID:25858318

  20. Synergistic effect of ERK inhibition on tetrandrine-induced apoptosis in A549 human lung carcinoma cells.

    PubMed

    Cho, Hyun Sun; Chang, Seung Hee; Chung, Youn Sun; Shin, Ji Young; Park, Sung Jin; Lee, Eun Sun; Hwang, Soon Kyung; Kwon, Jung Taek; Tehrani, Arash Minai; Woo, Minah; Noh, Mi Sook; Hanifah, Huda; Jin, Hua; Xu, Cheng Xiong; Cho, Myung Haing

    2009-03-01

    Tetrandrine (TET), a bis-benzylisoquinoline alkaloid from the root of Stephania tetrandra, is known to have anti-tumor activity in various malignant neoplasms. However, the precise mechanism by which TET inhibits tumor cell growth remains to be elucidated. The present studies were performed to characterize the potential effects of TET on phosphoinositide 3-kinase/Akt and extracellular signal-regulated kinase (ERK) pathways since these signaling pathways are known to be responsible for cell growth and survival. TET suppressed cell proliferation and induced apoptosis in A549 human lung carcinoma cells. TET treatment resulted in a down-regulation of Akt and ERK phosphorylation in both time-/concentration-dependent manners. The inhibition of ERK using PD98059 synergistically enhanced the TET-induced apoptosis of A549 cells whereas the inhibition of Akt using LY294002 had a less significant effect. Taken together, our results suggest that TET: i) selectively inhibits the proliferation of lung cancer cells by blocking Akt activation and ii) increases apoptosis by inhibiting ERK. The treatment of lung cancers with TET may enhance the efficacy of chemotherapy and radiotherapy and increase the apoptotic potential of lung cancer cells. PMID:19255520

  1. Flavonoids isolated from Citrus platymamma induced G2/M cell cycle arrest and apoptosis in A549 human lung cancer cells

    PubMed Central

    Nagappan, Arulkumar; Lee, Ho Jeong; Saralamma, Venu Venkatarame Gowda; Park, Hyeon Soo; Hong, Gyeong Eun; Yumnam, Silvia; Raha, Suchismita; Charles, Shobana Nancy; Shin, Sung Chul; Kim, Eun Hee; Lee, Won Sup; Kim, Gon Sup

    2016-01-01

    Citrus platymamma hort. ex Tanaka belongs to the Rutaceae family and is widely used in folk medicines in Korea due to its anti-proliferative, anti-cancer, anti-oxidant, anti-inflammatory and anti-diabetic activities. However, the molecular mechanism of its anti-cancer effect is not well understood. The present study was conducted to elucidate the anti-cancer effect and molecular mechanism of flavonoids from Citrus platymamma (FCP) on A549 cells. FCP displayed concentration-dependent inhibition on A549 cells proliferation. Further, flow cytometry revealed that FCP significantly increased the sub-G1 (apoptotic cell population) and G2/M phase population, and the total number of apoptotic cells, in a dose-dependent manner. Nuclear condensation and fragmentation were also observed upon staining with Hoechst 33342 in FCP-treated A549 cells. Immunoblotting demonstrated a dose-dependent downregulation of cyclin B1, cyclin-dependent kinase 1, cell division cycle 25c, pro-caspases −3, −6, −8 and −9, and poly (adenosine diphosphate-ribose) polymerase (PARP) in FCP-treated A549 cells. In addition, FCP induced caspase-3 activation and subsequent PARP cleavage, and increased the B-cell lymphoma (Bcl)-2-associated X protein/Bcl-extra large ratio in A549 cells. These findings suggest that FCP induced G2/M arrest and apoptosis of A549 cells. The present study provides evidence that FCP may be useful in the treatment of human lung cancer. PMID:27446443

  2. L1CAM protein expression is associated with poor prognosis in non-small cell lung cancer

    PubMed Central

    2011-01-01

    Background The L1 cell adhesion molecule (L1CAM) is potentially involved in epithelial-mesenchymal transition (EMT). EMT marker expression is of prognostic significance in non-small cell lung cancer (NSCLC). The relevance of L1CAM for NSCLC is unclear. We investigated the protein expression of L1CAM in a cohort of NSCLC patients. L1CAM protein expression was correlated with clinico-pathological parameters including survival and markers of epithelial-mesenchymal transition. Results L1CAM protein expression was found in 25% of squamous cell carcinomas and 24% of adenocarcinomas and correlated with blood vessel invasion and metastasis (p < 0.05). L1CAM was an independent predictor of survival in a multivariate analysis including pT, pN, and pM category, and tumor differentiation grade. L1CAM expression positively correlated with vimentin, beta-catenin, and slug, but inversely with E-cadherin (all p-values < 0.05). E-cadherin expression was higher in the tumor center than in the tumor periphery, whereas L1CAM and vimentin were expressed at the tumor-stroma interface. In L1CAM-negative A549 cells the L1CAM expression was upregulated and matrigel invasion was increased after stimulation with TGF-beta1. In L1CAM-positive SK-LU-1 and SK-LC-LL cells matrigel invasion was decreased after L1CAM siRNA knockdown. Conclusions A subset of NSCLCs with vessel tropism and increased metastasis aberrantly expresses L1CAM. L1CAM is a novel prognostic marker for NSCLCs that is upregulated by EMT induction and appears to be instrumental for enhanced cell invasion. PMID:21985405

  3. Cytotoxicity, oxidative stress and genotoxicity induced by glass fibers on human alveolar epithelial cell line A549.

    PubMed

    Rapisarda, Venerando; Loreto, Carla; Ledda, Caterina; Musumeci, Giuseppe; Bracci, Massimo; Santarelli, Lory; Renis, Marcella; Ferrante, Margherita; Cardile, Venera

    2015-04-01

    Man-made vitreous fibers have been widely used as insulation material as asbestos substitutes; however their morphology and composition raises concerns. In 1988 the International Agency for Research on Cancer classified fiberglass, rock wool, slag wool, and ceramic fibers as Group 2B, i.e. possibly carcinogenic to humans. In 2002 it reassigned fiberglass, rock and slag wool, and continuous glass filaments to Group 3, not classifiable as carcinogenic to humans. The aim of this study was to verify the cytotoxic and genotoxic effects and oxidative stress production induced by in vitro exposure of human alveolar epithelial cells A549 to glass fibers with a predominant diameter <3 μm (97%) and length >5 μm (93%). A549 cells were incubated with 5, 50, or 100 μg/ml (2.1, 21, and 42 μg/cm(2), respectively) of glass fibers for 72 h. Cytotoxicity and DNA damage were tested by the MTT and the Comet assay, respectively. Oxidative stress was determined by measuring inducible nitric oxide synthase (iNOS) expression by Western blotting, production of nitric oxide (NO) with Griess reagent, and concentration of reactive oxygen species by fluorescent quantitative analysis with 2',7'-dichlorofluorescein-diacetate (DCFH-DA). The results showed that glass fiber exposure significantly reduced cell viability and increased DNA damage and oxidative stress production in a concentration-dependent manner, demonstrating that glass fibers exert cytotoxic and genotoxic effects related to increased oxidative stress on the human alveolar cell line A549. PMID:25620604

  4. Direct electric current treatment modifies mitochondrial function and lipid body content in the A549 cancer cell line.

    PubMed

    Holandino, Carla; Teixeira, Cesar Augusto Antunes; de Oliveira, Felipe Alves Gomes; Barbosa, Gleyce Moreno; Siqueira, Camila Monteiro; Messeder, Douglas Jardim; de Aguiar, Fernanda Silva; da Veiga, Venicio Feo; Girard-Dias, Wendell; Miranda, Kildare; Galina, Antonio; Capella, Marcia Alves Marques; Morales, Marcelo Marcos

    2016-10-01

    Electrochemical therapy (EChT) entails treatment of solid tumors with direct electric current (DC). This work evaluated the specific effects of anodic flow generated by DC on biochemical and metabolic features of the A549 human lung cancer cell line. Apoptosis was evaluated on the basis of caspase-3 activity and mitochondrial transmembrane potential dissipation. Cell morphology was analyzed using transmission electron microscopy, and lipid droplets were studied through morphometric analysis and X-ray qualitative elemental microanalysis. High-resolution respirometry was used to assess mitochondrial respiratory parameters. Results indicated A549 viability decreased in a dose-dependent manner with a prominent drop between 18 and 24h after treatment (p<0.001), together with a two-fold increase in caspase-3 activity. AF-treatment induced a significantly increase (p<0.01) in the cell number with disrupted mitochondrial transmembrane potential. Furthermore, treated cells demonstrated important ultrastructural mitochondria damage and a three-fold increase in the cytoplasmic lipid bodies' number, quantified by morphometrical analyses. Conversely, 24h after treatment, the cells presented a two-fold increase of residual oxygen consumption, accounting for 45.3% of basal oxygen consumption. These results show remarkable alterations promoted by anodic flow on human lung cancer cells which are possibly involved with the antitumoral effects of EChT. PMID:27243447

  5. Polyurethane dispersion containing quaternized ammonium groups: An efficient nanosize gene delivery carrier for A549 cancer cell line transfection.

    PubMed

    Yousefpour Marzbali, Mahsa; Yari Khosroushahi, Ahmad; Movassaghpour, AliAkbar; Yeganeh, Hamid

    2016-01-25

    A novel polyurethane containing cationic ammonium groups (QPU) was synthesized and used as vector for gene therapy and cancer gene targeting. The synthesized QPU was characterized by Fourier transform infrared and nuclear magnetic resonance spectroscopy methods. An agarose gel retardation electrophoresis assay was conducted to verify the complete complex formation between QPU and pDNA. The particles size and zeta potential of neat polymers, plasmid DNA, polymers/DNA polyplexes were determined by the dynamic light scattering technique. The polyplexes cytotoxicity was determined using [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and its transfection efficiency was examined qualitatively by fluorescent microscopy and quantitatively by flow cytometery methods. The gel retardation assay, particle size and zeta potential measurements were confirmed that the synthesized cationic polymer could condense DNA efficiently in the physiologic condition. QPU polyplexes showed a significantly lower cytotoxicity compared to Polyfect polyplexes in the examined human cancerous (A549) or normal cells (KDR). Based on our findings, the transfection efficiency by QPU was 2.2 fold higher than Polyfect in the A549 cells whereas in the KDR cells, the cell transfection by Polyfect was 18.1 fold higher than QPU. Due to low cytotoxicity for normal cells and high transfection efficiency in cancer cells, the potential applicability of designed QPU as a non-viral gene carrier for targeting of cancer gene therapy was confirmed. PMID:26658031

  6. Phosphorylation of p53 at serine 15 in A549 pulmonary epithelial cells exposed to vanadate: Involvement of ATM pathway

    SciTech Connect

    Suzuki, Katsura; Inageda, Kiyoshi; Nishitai, Gen; Matsuoka, Masato . E-mail: matsuoka@research.twmu.ac.jp

    2007-04-01

    When A549 cells were exposed to sodium metavanadate (NaVO{sub 3}), the pentavalent species of vanadium (vanadate), phosphorylation of p53 protein at Ser15 was found in a time (8-48 h)- and dose (10-200 {mu}M)-dependent manner. After the incubation with 50 or 100 {mu}M NaVO{sub 3} for 48 h, accumulation of p53 protein was accompanied with Ser15 phosphorylation. Among serines in p53 protein immunoprecipitated from A549 cells treated with 100 {mu}M NaVO{sub 3} for 48 h, only Ser15 was markedly phosphorylated. Treatment with other vanadate compounds, sodium orthovanadate (Na{sub 3}VO{sub 4}) and ammonium metavanadate (NH{sub 4}VO{sub 3}), also induced Ser15 phosphorylation and accumulation of p53 protein. While phosphorylation of extracellular signal-regulated protein kinase (ERK) was found in cells treated with NaVO{sub 3}, treatment with U0126 did not suppress Ser15 phosphorylation. On the other hand, treatment with wortmannin or caffeine, the inhibitors to phosphatidylinositol 3-kinase related kinases (PIKKs), suppressed both NaVO{sub 3}-induced Ser15 phosphorylation and accumulation of p53 protein. The silencing of ataxia telangiectasia mutated (ATM) expression using short-interference RNA resulted in the marked suppression of Ser15 phosphorylation in A549 cells exposed to NaVO{sub 3}. However, treatment with antioxidants such as catalase and N-acetylcysteine did not suppress NaVO{sub 3}-induced Ser15 phosphorylation. Transcriptional activation of p53 and DNA fragmentation in A549 cells treated with NaVO{sub 3} were suppressed only slightly by S15A mutation, suggesting that Ser15 phosphorylation is not essential for these responses. The present results showed that vanadate induces the phosphorylation of p53 at Ser15 depending on ATM, one of the members of PIKK family, in this human pulmonary epithelial cell line.

  7. E-Cadherin repression increases amount of cancer stem cells in human A549 lung adenocarcinoma and stimulates tumor growth.

    PubMed

    Farmakovskaya, M; Khromova, N; Rybko, V; Dugina, V; Kopnin, B; Kopnin, P

    2016-04-17

    Here we show that cancer stem cells amount in human lung adenocarcinoma cell line A549 depends on E-cadherin expression. In fact, downregulation of E-cadherin expression enhanced expression of pluripotent genes (c-MYC, NESTIN, OCT3/4 and SOX2) and enriched cell population with the cells possessing the properties of so-called 'cancer stem cells' via activation of Wnt/β-catenin signaling. Repression of E-cadherin also stimulated cell proliferation and migration in vitro, decreased cell amount essential for xenografts formation in nude mice, increased tumors vascularization and growth. On the other hand, E-cadherin upregulation caused opposite effects i.e. diminished the number of cancer stem cells, decreased xenograft vascularization and decelerated tumor growth. Therefore, agents restoring E-cadherin expression may be useful in anticancer therapy. PMID:26940223

  8. Isodeoxyelephantopin from Elephantopus scaber (Didancao) induces cell cycle arrest and caspase-3-mediated apoptosis in breast carcinoma T47D cells and lung carcinoma A549 cells

    PubMed Central

    2014-01-01

    Background Isodeoxyelephantopin (IDOE) isolated from Elephantopus scaber L. (Didancao) is used in Chinese medicine for the treatment of some types of cancer. The anti-cancer mechanism of IDOE remains unclear. This study aims to investigate the antiproliferative activity of IDOE on breast carcinoma T47D cells and lung carcinoma A549 cells. Methods The growth inhibitory effects of IDOE on breast carcinoma T47D cells, lung carcinoma A549 cells, and normal lymphocytes were evaluated by the MTT assay. Morphological analysis of apoptosis induction was performed by acridine orange/ethidium bromide dual-staining and Hoechst 33342 nuclear staining. The cell cycle profile, caspase-3 expression, and annexin V staining were evaluated by flow cytometry. Results IDOE inhibited the growth of A549 and T47D cells in a dose- and time-dependent manner with IC50 values of 10.46 and 1.3 μg/mL, respectively. IDOE was not significantly toxic to normal lymphocytes. The cells became detached from the monolayer and rounded up, had fragmented nuclei and condensed chromatin, and the numbers of apoptotic cells increased (P = 0.0003). IDOE-induced cell death was associated with activated caspase-3 expression followed by cell cycle arrest at G2/M phase. Conclusions IDOE inhibited the proliferation of breast cancer cells and lung carcinoma cells and induced caspase-3-mediated apoptosis and cell cycle arrest in the treated cells. PMID:24742378

  9. Inflammation-induced radioresistance is mediated by ROS-dependent inactivation of protein phosphatase 1 in non-small cell lung cancer cells.

    PubMed

    Kim, Wanyeon; Youn, HyeSook; Kang, ChulHee; Youn, BuHyun

    2015-09-01

    Inflammation plays a pivotal role in modulating the radiation responsiveness of tumors. We determined that an inflammation response prior to irradiation contributes to radiotherapy resistance in non-small cell lung cancer (NSCLC) cells. In the clonogenic survival assay, activation of the inflammation response by lipopolysaccharide (LPS) decreased the degree of radiosensitivity in NCI-H460 cells (relatively radiosensitive cells), but had no effect in A549 cells (relatively radioresistant cells). LPS-induced radioresistance of NCI-H460 cells was also confirmed with a xenograft mouse model. The radioresistant effect observed in NCI-H460 cells was correlated with inhibition of apoptotic cell death due to reduced Caspase 3/7 activity. Moreover, we found that the levels of reactive oxygen species (ROS) were synergistically elevated in NCI-H460 cells by treatment with LPS and radiation. Increased ROS generation negatively affected the activity of protein phosphatase 1 (PP1). Decreased PP1 activity did not lead to Bad dephosphorylation, consequently resulting in the inhibition of irradiation-induced mitochondrial membrane potential loss and apoptosis. We confirmed that pre-treatment with a PP1 activator and LPS sensitized NCI-H460 cells to radiation. Taken together, our findings provided evidence that PP1 activity is critical for radiosensitization in NSCLC cells and PP1 activators can serve as promising radiosensitizers to improve therapeutic efficacy. PMID:26033480

  10. Cyclooxygenase-2 inhibitor, nimesulide, improves radiation treatment against non-small cell lung cancer both in vitro and in vivo.

    PubMed

    Grimes, Kristopher R; Warren, Graham W; Fang, Fang; Xu, Yong; St Clair, William H

    2006-10-01

    Lung cancer is the leading cause of cancer-related deaths in the United States. Despite improvements in radiation, surgery and chemotherapy the 5 year survival statistics of non-small cell lung cancer (NSCLC) have improved little over the past two decades. It has been proposed that NF-kappaB is a participant in the cytoprotection against several redox-mediated therapeutic agents including ionizing radiation. Cyclooxygenase-2 (COX-2) inhibition has become an attractive target for enhancing the efficacy of radiation and chemotherapy. Numerous mechanistic pathways have been proposed as the means through which COX-2 inhibition enhances the efficacy of radiation. We hypothesize that the COX-2 inhibitor, nimesulide, will improve the efficacy of radiation therapy (RT), at least in part, via the suppression of NF-kappaB mediated cytoprotective pathways. In this study we used the COX-2 inhibitor nimesulide to improve the efficacy of RT when measured by tumor regrowth assays in vivo and clonegenic survival in vitro. For the in vivo assay, A549 tumor cells representing NSCLC were subcutaneously injected into the right flanks of female athymic nude mice (n=10/group). Mice were given nimesulide via drinking water at a concentration of 5 microg/g body weight (b.w.) and the water was replenished daily. Tumors were treated with 30 Gy fractionated radiation and measured bi-weekly. For our in vitro study, clonogenic survival assays were evaluated to determine the effect of nimesulide, radiation, and the combination. The NF-kappaB mediated mechanism of nimesulide was measured by Western blot analysis of NF-kappaB target genes, MnSOD and survivin. In vivo, mice that received combined treatments of 5 microg/g b.w. nimesulide and 30 Gy radiation (3 Gy/fraction, 10 daily fractions) had significant reduction in tumor size in comparison to the 30 Gy radiation control group (p<0.05). In vitro, nimesulide alone produced a significant decrease in clonogenic survival at doses from 0-300 micro

  11. In vitro and in vivo studies on radiobiological effects of prolonged fraction delivery time in A549 cells

    PubMed Central

    Jiang, Ling; Xiong, Xiao-Peng; Hu, Chao-Su; Ou, Zhou-Luo; Zhu, Guo-Pei; Ying,, Hong-Mei

    2013-01-01

    Intensity-modulated radiation therapy, when used in the clinic, prolongs fraction delivery time. Here we investigated both the in vivoand in vitroradiobiological effects on the A549 cell line, including the effect of different delivery times with the same dose on A549 tumor growth in nude mice. The in vitroeffects were studied with clonogenic assays, using linear-quadratic and incomplete repair models to fit the dose-survival curves. Fractionated irradiation of different doses was given at one fraction per day, simulating a clinical dose-time-fractionation pattern. The longer the interval between the exposures, the more cells survived. To investigate the in vivoeffect, we used sixty-four nude mice implanted with A549 cells in the back legs, randomly assigned into eight groups. A 15 Gy radiation dose was divided into different subfractions. The maximum and minimum tumor diameters were recorded to determine tumor growth. Tumor growth was delayed for groups with prolonged delivery time (40 min) compared to the group receiving a single dose of 15 Gy (P< 0.05), and tumors with a 20 min delivery time had delayed growth compared to those with a 40 min delivery time [20′ (7.5 Gy × 2 F) vs 40′ (7.5 Gy × 2 F), P= 0.035; 20′ (3 Gy × 5 F) vs 40′ (3 Gy × 5 F); P= 0.054; 20′ (1.67 Gy × 9 F) vs 40′ (1.67 Gy × 9 F), P= 0.028]. A prolonged delivery time decreased the radiobiological effects, so we strongly recommend keeping the delivery time as short as possible. PMID:23090953

  12. In vitro and in vivo studies on radiobiological effects of prolonged fraction delivery time in A549 cells.

    PubMed

    Jiang, Ling; Xiong, Xiao-Peng; Hu, Chao-Su; Ou, Zhou-Luo; Zhu, Guo-Pei; Ying, Hong-Mei

    2013-03-01

    Intensity-modulated radiation therapy, when used in the clinic, prolongs fraction delivery time. Here we investigated both the in vivoand in vitroradiobiological effects on the A549 cell line, including the effect of different delivery times with the same dose on A549 tumor growth in nude mice. The in vitroeffects were studied with clonogenic assays, using linear-quadratic and incomplete repair models to fit the dose-survival curves. Fractionated irradiation of different doses was given at one fraction per day, simulating a clinical dose-time-fractionation pattern. The longer the interval between the exposures, the more cells survived. To investigate the in vivoeffect, we used sixty-four nude mice implanted with A549 cells in the back legs, randomly assigned into eight groups. A 15 Gy radiation dose was divided into different subfractions. The maximum and minimum tumor diameters were recorded to determine tumor growth. Tumor growth was delayed for groups with prolonged delivery time (40 min) compared to the group receiving a single dose of 15 Gy (P< 0.05), and tumors with a 20 min delivery time had delayed growth compared to those with a 40 min delivery time [20' (7.5 Gy × 2 F) vs 40' (7.5 Gy × 2 F), P= 0.035; 20' (3 Gy × 5 F) vs 40' (3 Gy × 5 F); P= 0.054; 20' (1.67 Gy × 9 F) vs 40' (1.67 Gy × 9 F), P= 0.028]. A prolonged delivery time decreased the radiobiological effects, so we strongly recommend keeping the delivery time as short as possible. PMID:23090953

  13. Combination of TRAIL and actinomycin D liposomes enhances antitumor effect in non-small cell lung cancer

    PubMed Central

    Guo, Liangran; Fan, Li; Ren, Jinfeng; Pang, Zhiqing; Ren, Yulong; Li, Jingwei; Wen, Ziyi; Qian, Yong; Zhang, Lin; Ma, Hang; Jiang, Xinguo

    2012-01-01

    The intractability of non-small cell lung cancer (NSCLC) to multimodality treatments plays a large part in its extremely poor prognosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cytokine for selective induction of apoptosis in cancer cells; however, many NSCLC cell lines are resistant to TRAIL-induced apoptosis. The therapeutic effect can be restored by treatments combining TRAIL with chemotherapeutic agents. Actinomycin D (ActD) can sensitize NSCLC cells to TRAIL-induced apoptosis by upregulation of death receptor 4 (DR4) or 5 (DR5). However, the use of ActD has significant drawbacks due to the side effects that result from its nonspecific biodistribution in vivo. In addition, the short half-life of TRAIL in serum also limits the antitumor effect of treatments combining TRAIL and ActD. In this study, we designed a combination treatment of long-circulating TRAIL liposomes and ActD liposomes with the aim of resolving these problems. The combination of TRAIL liposomes and ActD liposomes had a synergistic cytotoxic effect against A-549 cells. The mechanism behind this combination treatment includes both increased expression of DR5 and caspase activation. Moreover, systemic administration of the combination of TRAIL liposomes and ActD liposomes suppressed both tumor formation and growth of established subcutaneous NSCLC xenografts in nude mice, inducing apoptosis without causing significant general toxicity. These results provide preclinical proof-of-principle for a novel therapeutic strategy in which TRAIL liposomes are safely combined with ActD liposomes. PMID:22619505

  14. In vitro and in vivo studies on the inhibitory effects of myocardial cell culture medium on growth of a human lung adenocarcinoma cell line, A549

    PubMed Central

    Zheng, Y.; Zhou, J.; Fu, S.Z.; Fan, J.; Wu, J.B.

    2016-01-01

    Background Although the heart is one of the body’s vital organs, with an abundant blood supply, metastasis to the heart is considered rare. In a previous study, we found that the myocardial microenvironment might contain a low molecular weight natural tumour suppressor. The present study was designed to investigate the inhibitory effect of cardiac myocyte–conditioned medium (cmcm) on the growth of A549 human lung adenocarcinoma cells in vitro and in vivo. Methods An mtt assay was used to detect the inhibition ratio with respect to A549 proliferation. Human lung adenocarcinoma cells (A549 cell strain) were transplanted subcutaneously into nude mice to produce tumours. The xenograft tumour growth in mice was observed after selected drug administration. Results After treatment with cmcm and cisplatin (Cis), A549 cell viability significantly declined (p < 0.001). The cell viability in the cmcm and Cis groups were 53.42% ± 3.45% and 58.45% ± 6.39% respectively. Growth of implanted tumour cells in vivo was significantly inhibited in the cmcm group, the group treated with recombinant human adenovirus–p53, and the Cis-treated group compared with a control group. The inhibition rates were 41.44% in the cmcm group, 41.34% in the p53 group, and 64.50% in the Cis group. Lung metastasis capacity was significantly reduced in the presence of cmcm (p < 0.05). Lung metastasis inhibition rates in mice were 56.52% in the cmcm group, 47.83% in the p53 group, and 82.61% in the Cis group. With cmcm, the lives of A549-tumour-bearing mice could be significantly prolonged without any effect on weight loss. Conclusions Use of cmcm has the effect of reducing A549 cell viability, tumour volume, and lung metastasis rate, while prolonging survival duration without severe toxicity. PMID:26966411

  15. Podophyllotoxin acetate triggers anticancer effects against non-small cell lung cancer cells by promoting cell death via cell cycle arrest, ER stress and autophagy

    PubMed Central

    CHOI, JAE YEON; HONG, WAN GI; CHO, JEONG HYUN; KIM, EUN MI; KIM, JONGDOO; JUNG, CHAN-HUN; HWANG, SANG-GU; UM, HONG-DUCK; PARK, JONG KUK

    2015-01-01

    We previously reported that podophyllotoxin acetate (PA) radiosensitizes NCI-H460 cells. Here, we confirmed that PA treatment also induces cell death among two other non-small cell lung cancer (NSCLC) cell lines: NCI-H1299 and A549 cells (IC50 values = 7.6 and 16.1 nM, respectively). Our experiments further showed that PA treatment was able to induce cell death via various mechanisms. First, PA dose-dependently induced cell cycle arrest at G2/M phase, as shown by accumulation of the mitosis-related proteins, p21, survivin and Aurora B. This G2/M phase arrest was due to the PA-induced inhibition of microtubule polymerization. Together, the decreased microtubule polymerization and increased cell cycle arrest induced DNA damage (reflected by accumulation of γ-H2AX) and triggered the induction of intrinsic and extrinsic apoptotic pathways, as shown by the time-dependent activations of caspase-3, -8 and -9. Second, PA time-dependently activated the pro-apoptotic ER stress pathway, as evidenced by increased expression levels of BiP, CHOP, IRE1-α, phospho-PERK, and phospho-JNK. Third, PA activated autophagy, as reflected by time-dependent increases in the expression levels of beclin-1, Atg3, Atg5 and Atg7, and the cleavage of LC3. Collectively, these results suggest a model wherein PA decreases microtubule polymerization and increases cell cycle arrest, thereby inducing apoptotic cell death via the activation of DNA damage, ER stress and autophagy. PMID:26314270

  16. Antiproliferative activity against human non-small cell lung cancer of two O-alkyl-diglycosylglycerols from the marine sponges Myrmekioderma dendyi and Trikentrion laeve.

    PubMed

    Farokhi, Fereshteh; Wielgosz-Collin, Gaëtane; Robic, Audrey; Debitus, Cécile; Malleter, Marine; Roussakis, Christos; Kornprobst, Jean-Michel; Barnathan, Gilles

    2012-03-01

    Glycolipids of Myrmekioderma sponges contain Myrmekiosides, a new family of glycolipids with a unique structure of mono-O-alkyl-diglycosylglycerols. This report deals with the identification and biological activity of the new Myrmekioside E from Myrmekioderma dendyi. Its structure has been elucidated from spectroscopic data and chemical degradation studies. It contained a glycerol backbone linked to xylose and N-acetylglucosamine, and an alkyl long-chain with a terminal alcohol group. A related glycolipid, Trikentroside, known in the sponge Trikentrion laeve, was subjected to a comparative biological evaluation. Both glycolipids inhibit proliferation of two human non-small cell lung cancer cell lines (NSCLC-N6 and A549). PMID:22309916

  17. Short-Course Treatment With Gefitinib Enhances Curative Potential of Radiation Therapy in a Mouse Model of Human Non-Small Cell Lung Cancer

    SciTech Connect

    Bokobza, Sivan M.; Jiang, Yanyan; Weber, Anika M.; Devery, Aoife M.; Ryan, Anderson J.

    2014-03-15

    Purpose: To evaluate the combination of radiation and an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) in preclinical models of human non-small cell lung cancer. Methods and Materials: Sensitivity to an EGFR TKI (gefitinib) or radiation was assessed using proliferation assays and clonogenic survival assays. Effects on receptor signal transduction pathways (pEGFR, pAKT, pMAPK) and apoptosis (percentage of cleaved PARP Poly (ADP-ribose) polymerase (PARP)) were assessed by Western blotting. Radiation-induced DNA damage was assessed by γH2AX immunofluorescence. Established (≥100 mm{sup 3}) EGFR-mutated (HCC287) or EGFR wild-type (A549) subcutaneous xenografts were treated with radiation (10 Gy, day 1) or gefitinib (50 mg/kg, orally, on days 1-3) or both. Results: In non-small cell lung cancer (NSCLC) cell lines with activating EGFR mutations (PC9 or HCC827), gefitinib treatment markedly reduced pEGFR, pAKT, and pMAPK levels and was associated with an increase in cleaved PARP but not in γH2AX foci. Radiation treatment increased the mean number of γH2AX foci per cell but did not significantly affect EGFR signaling. In contrast, NSCLC cell lines with EGFR T790M (H1975) or wild-type EGFR (A549) were insensitive to gefitinib treatment. The combination of gefitinib and radiation treatment in cell culture produced additive cell killing with no evidence of synergy. In xenograft models, a short course of gefitinib (3 days) did not significantly increase the activity of radiation treatment in wild-type EGFR (A549) tumors (P=.27), whereas this combination markedly increased the activity of radiation (P<.001) or gefitinib alone (P=.002) in EGFR-mutated HCC827 tumors, producing sustained tumor regressions. Conclusions: Gefitinib treatment increases clonogenic cell killing by radiation but only in cell lines sensitive to gefitinib alone. Our data suggest additive rather than synergistic interactions between gefitinib and radiation and that a

  18. Local Therapy Indications in the Management of Patients with Oligometastatic Non-Small Cell Lung Cancer.

    PubMed

    Miller, Douglas A; Krasna, Mark J

    2016-07-01

    Advances in surgical, radiation, and interventional radiology therapies carry a reduction in morbidity associated with therapy. Aggressive management of patients with oligometastatic non-small cell lung cancer offers the potential for improved disease-free survival and quality of life compared with traditional systemic therapy alone. PMID:27261919

  19. GE11-modified liposomes for non-small cell lung cancer targeting: preparation, ex vitro and in vivo evaluation.

    PubMed

    Cheng, Liang; Huang, Fa-Zhen; Cheng, Li-Fang; Zhu, Ya-Qin; Hu, Qing; Li, Ling; Wei, Lin; Chen, Da-Wei

    2014-01-01

    Non-small cell lung cancer (NSCLC) is a serious threat to human health, and 40%-80% of NSCLCs express high levels of epidermal growth factor receptor (EGFR). GE11 is a novel peptide and exhibits high affinity for EGFR binding. The aim of this study was to construct and evaluate GE11-modified liposomes for targeted drug delivery to EGFR-positive NSCLC. Doxorubicin, a broad-spectrum antitumor agent, was chosen as the payload. GE11 was conjugated to the distal end of DSPE-PEG2000-Mal by an addition reaction with a conjugation efficiency above 90%. Doxorubicin-loaded liposomes containing GE11 (GE11-LP/DOX) at densities ranging from 0% to 15% were prepared by combination of a thin film hydration method and a post insertion method. Irrespective of GE11 density, the physicochemical properties of these targeted liposomes, including particle size, zeta potential, and drug entrapment efficiency, were nearly identical. Interestingly, the cytotoxic effect of the liposomes on A549 tumor cells was closely related to GE11 density, and liposomes with 10% GE11 had the highest tumor cell killing activity and a 2.6-fold lower half maximal inhibitory concentration than that of the nontargeted counterpart (PEG-LP/DOX). Fluorescence microscopy and flow cytometry analysis revealed that GE11 significantly increased cellular uptake of the liposomes, which could be ascribed to specific EGFR-mediated endocytosis. It was found that multiple endocytic pathways were involved in entry of GE11-LP/DOX into cells, but GE11 assisted in cellular internalization mainly via the clathrin-mediated endocytosis pathway. Importantly, the GE11-modified liposomes showed enhanced accumulation and prolonged retention in tumor tissue, as evidenced by a 2.2-fold stronger mean fluorescence intensity in tumor tissue than the unmodified liposomes at 24 hours. In summary, GE11-modified liposomes may be a promising platform for targeted delivery of chemotherapeutic drugs in NSCLC. PMID:24611009

  20. Single-cell microinjection assay indicates that 7-hydroxycoumarin induces rapid activation of caspase-3 in A549 cancer cells

    PubMed Central

    SOTO-NUÑEZ, MARIBEL; DÍAZ-MORALES, KAREN AZUCENA; CUAUTLE-RODRÍGUEZ, PATRICIA; TORRES-FLORES, VÍCTOR; LÓPEZ-GONZÁLEZ, JOSÉ SULLIVAN; MANDOKI-WEITZNER, JUAN JOSÉ; MOLINA-GUARNEROS, JUAN ARCADIO

    2015-01-01

    Coumarins have attracted intense interest in recent years due to their apoptogenic effects. The aim of the present study was to determine whether 7-hydroxycoumarin (7-HC) induces changes in caspase-3 (C-3) activity in A549 human lung carcinoma cells. A range of analytical techniques, including colorimetric and fluorometric assays, western blotting, single-cell microinjection, fluorescence microscopy and image analysis were conducted to elucidate the effects of 7-HC. A 24-h exposure to 1.85 mM 7-HC induced a 65% increase in C-3 activity, and a notable conversion of procaspase-3 to C-3, in addition to poly(ADP-ribose)polymerase cleavage. Furthermore, morphological changes associated with apoptosis were observed. Exposure of the cells to 7-HC for 3 or 6 h increased calcium conductance by 27%. By performing the single-cell microinjection of a specific fluorescent substrate of C-3 into previously 7-HC-exposed cells, a typical enzymatic kinetic profile of C-3 activation was identified a number of hours prior to the morphological and biochemical changes associated with apoptosis being observed. These results suggest that the rapid in vivo activation of C-3 is induced by 7-HC, the most relevant biotransformation product of coumarin in humans. PMID:26640551

  1. Dynamic changes in protein interaction between AKAP95 and Cx43 during cell cycle progression of A549 cells

    PubMed Central

    Chen, Xiaoxuan; Kong, Xiangyu; Zhuang, Wenxin; Teng, Bogang; Yu, Xiuyi; Hua, Suhang; Wang, Su; Liang, Fengchao; Ma, Dan; Zhang, Suhui; Zou, Xuan; Dai, Yue; Yang, Wei; Zhang, Yongxing

    2016-01-01

    Here we show that A-kinase anchoring protein 95 (AKAP95) and connexin 43 (Cx43) dynamically interact during cell cycle progression of lung cancer A549 cells. Interaction between AKAP95 and Cx43 at different cell cycle phases was examined by tandem mass spectrometry(MS/MS), confocal immunofluorescence microscopy, Western blot, and co-immunoprecipitation(Co-IP). Over the course of a complete cell cycle, interaction between AKAP95 and Cx43 occurred in two stages: binding stage from late G1 to metaphase, and separating stage from anaphase to late G1. The binding stage was further subdivided into complex binding to DNA in interphase and complex separating from DNA in metaphase. In late G1, Cx43 translocated to the nucleus via AKAP95; in anaphase, Cx43 separated from AKAP95 and aggregated between two daughter nuclei. In telophase, Cx43 aggregated at the membrane of the cleavage furrow. After mitosis, Cx43 was absent from the furrow membrane and was located in the cytoplasm. Binding between AKAP95 and Cx43 was reduced by N-(2-[P-Bromocinnamylamino]-ethyl)-5-isoquinolinesulfonmide (H89) treatment and enhanced by Forskolin. dynamic interaction between AKAP95 and Cx43 varies with cell cycle progression to regulate multiple biological processes. PMID:26880274

  2. Comparison of Two Therapeutic Strategies in Patients With Non-squamous Non-small Cell Lung Cancer (NSCLC) With Asymptomatic Brain Metastases

    ClinicalTrials.gov

    2015-11-29

    Non-small Cell Lung Cancer Metastatic; Non Epidermoid; Non-small Cell Lung Cancer; Adenocarcinoma of Lung Metastatic to Brain; Cerebral Metastases; Cerebral Radiotherapy; Brain Radiotherapy; Bevacizumab

  3. Upregulation of Id3 inhibits cell proliferation and induces apoptosis in A549/DDP human lung cancer cells in vitro.

    PubMed

    Chen, Fangfang; Zhao, Qinfei; Wang, Shuxia; Wang, Haiyong; Li, Xiaojun

    2016-07-01

    Inhibitor of DNA binding (Id)3 is a member of the Id multigene family of dominant‑negative helix‑loop-helix transcription factors, which function as oncogenes or tumor suppressors in human cancers. Its upregulation was recently shown to have inhibitory effects on lung cancer, which is the leading cause of cancer‑associated mortality worldwide. As drug resistance represents a major bottleneck of cancer therapy, the present study assessed the ability of Id3 to inhibit cisplatin‑resistant A549 lung adenocarcinoma cells (A549/DDP). A549/DPP cells were transiently transfected with enhanced green fluorescence protein overexpression plasmid (pEGFP) or Id3 overexpression plasmid (Id3/pEGFP), which was confirmed by confocal fluorescence microscopy, PCR and western blot analysis. The effects of Id3 on the viability and apoptosis of A549/DDP were determined using an MTT assay, fluorescence microscopy with Hoechst 33258 staining and flow cytometry following Annexin V/propidium iodide double staining. The results revealed that overexpression of Id3 significantly inhibited the proliferation and viability of A549/DDP cells in a time‑dependent manner. Furthermore, overexpression of Id3 significantly increased the apoptotic rate of A549/DDP cells from 2.73 to 16.92%, confirming the implication of Id3 in the negative control of tumour growth. The results of the present study revealed that overexpression of Id3 may serve as a novel strategy for inhibiting cisplatin‑sensitive lung cancer. Further experiments will be performed to determine whether Id3 overexpression could enhance the sensitivity of lung cancer cells to DDP. PMID:27176047

  4. Proteomic Analysis of Cellular Response Induced by Multi-Walled Carbon Nanotubes Exposure in A549 Cells

    PubMed Central

    Zhang, Xing; Jia, Zhenyu; Gao, Xiangjing; Jiang, Ying; Yan, Chunlan; Duerksen-Hughes, Penelope J.; Chen, Fanqing Frank; Li, Hongjuan; Zhu, Xinqiang; Yang, Jun

    2014-01-01

    The wide application of multi-walled carbon nanotubes (MWCNT) has raised serious concerns about their safety on human health and the environment. However, the potential harmful effects of MWCNT remain unclear and contradictory. To clarify the potentially toxic effects of MWCNT and to elucidate the associated underlying mechanisms, the effects of MWCNT on human lung adenocarcinoma A549 cells were examined at both the cellular and the protein level. Cytotoxicity and genotoxicity were examined, followed by a proteomic analysis (2-DE coupled with LC-MS/MS) of the cellular response to MWCNT. Our results demonstrate that MWCNT induces cytotoxicity in A549 cells only at relatively high concentrations and longer exposure time. Within a relatively low dosage range (30 µg/ml) and short time period (24 h), MWCNT treatment does not induce significant cytotoxicity, cell cycle changes, apoptosis, or DNA damage. However, at these low doses and times, MWCNT treatment causes significant changes in protein expression. A total of 106 proteins show altered expression at various time points and dosages, and of these, 52 proteins were further identified by MS. Identified proteins are involved in several cellular processes including proliferation, stress, and cellular skeleton organization. In particular, MWCNT treatment causes increases in actin expression. This increase has the potential to contribute to increased migration capacity and may be mediated by reactive oxygen species (ROS). PMID:24454774

  5. N-acetylcysteine amide, a thiol antioxidant, prevents bleomycin-induced toxicity in human alveolar basal epithelial cells (A549).

    PubMed

    Tobwala, S; Fan, W; Stoeger, T; Ercal, N

    2013-09-01

    Bleomycin (BLM), a glycopeptide antibiotic from Streptomyces verticillus, is an effective antineoplastic drug. However, its clinical use is restricted due to the wide range of associated toxicities, especially pulmonary toxicity. Oxidative stress has been implicated as an important factor in the development of BLM-induced pulmonary toxicity. Previous studies have indicated disruption of thiol-redox status in lungs (lung epithelial cells) upon BLM treatment. Therefore, this study focused on (1) investigating the oxidative effects of BLM on lung epithelial cells (A549) and (2) elucidating whether a well-known thiol antioxidant, N-acetylcysteine amide (NACA), provides any protection against BLM-induced toxicity. Oxidative stress parameters, such as glutathione (GSH), malondialdehyde (MDA), and antioxidant enzyme activities were altered upon BLM treatment. Loss of mitochondrial membrane potential (ΔΨm), as assessed by fluorescence microscopy, indicated that cytotoxicity is possibly mediated through mitochondrial dysfunction. Pretreatment with NACA reversed the oxidative effects of BLM. NACA decreased the reactive oxygen species (ROS) and MDA levels and restored the intracellular GSH levels. Our data showed that BLM induced A549 cell death by a mechanism involving oxidative stress and mitochondrial dysfunction. NACA had a protective role against BLM-induced toxicity by inhibiting lipid peroxidation, scavenging ROS, and preserving intracellular GSH and ΔΨm. NACA can potentially be developed into a promising adjunctive therapeutic option for patients undergoing chemotherapy with BLM. PMID:23805793

  6. Chemosensitization and radiosensitization of a lung cancer cell line A549 induced by a composite polymer micelle.

    PubMed

    Xu, Jing; Zhang, Bi-Cheng; Li, Xiang-Long; Xu, Wen-Hong; Zhou, Juan; Shen, Li; Wei, Qi-Chun

    2016-08-01

    Multidrug resistance (MDR) to Doxorubicin (DOX) remains a major obstacle to successful cancer treatment. The present study sought to overcome the MDR of lung cancer cells and achieve radiosensitization by developing a composite DOX-loaded micelle (M-DOX). M-DOX containing PEG-PCL/Pluronic P105 was prepared by the solvent evaporation method. Lung cancer cell line A549 was adopted in this study. In vitro cytotoxicity, cellular uptake behavior, subcellular distribution, and radiosensitivity were evaluated by the treatment with M-DOX, and free DOX was used as a control. A549 cells treated with M-DOX as opposed to free DOX showed greater cellular uptake as well as greater cytotoxicity. Furthermore, M-DOX reached the mitochondria and lysosome effectively after cellular uptake, and fluorescence used to track M-DOX was found to be surrounding the nucleus. Finally, colony-forming assays demonstrated that M-DOX treatment improved radiosensitization when compared to free DOX. Based on the increased cytotoxicity and radiosensitization, M-DOX could be considered as a promising drug delivery system to overcome MDR in lung cancer therapy. PMID:27585226

  7. AZD5438, an Inhibitor of Cdk1, 2, and 9, Enhances the Radiosensitivity of Non-Small Cell Lung Carcinoma Cells

    SciTech Connect

    Raghavan, Pavithra; Tumati, Vasu; Yu Lan; Chan, Norman; Tomimatsu, Nozomi; Burma, Sandeep; Bristow, Robert G.; Saha, Debabrata

    2012-11-15

    Purpose: Radiation therapy (RT) is one of the primary modalities for treatment of non-small cell lung cancer (NSCLC). However, due to the intrinsic radiation resistance of these tumors, many patients experience RT failure, which leads to considerable tumor progression including regional lymph node and distant metastasis. This preclinical study evaluated the efficacy of a new-generation cyclin-dependent kinase (Cdk) inhibitor, AZD5438, as a radiosensitizer in several NSCLC models that are specifically resistant to conventional fractionated RT. Methods and Materials: The combined effect of ionizing radiation and AZD5438, a highly specific inhibitor of Cdk1, 2, and 9, was determined in vitro by surviving fraction, cell cycle distribution, apoptosis, DNA double-strand break (DSB) repair, and homologous recombination (HR) assays in 3 NSCLC cell lines (A549, H1299, and H460). For in vivo studies, human xenograft animal models in athymic nude mice were used. Results: Treatment of NSCLC cells with AZD5438 significantly augmented cellular radiosensitivity (dose enhancement ratio rangeing from 1.4 to 1.75). The degree of radiosensitization by AZD5438 was greater in radioresistant cell lines (A549 and H1299). Radiosensitivity was enhanced specifically through inhibition of Cdk1, prolonged G{sub 2}-M arrest, inhibition of HR, delayed DNA DSB repair, and increased apoptosis. Combined treatment with AZD5438 and irradiation also enhanced tumor growth delay, with an enhancement factor ranging from 1.2-1.7. Conclusions: This study supports the evaluation of newer generation Cdk inhibitors, such as AZD5438, as potent radiosensitizers in NSCLC models, especially in tumors that demonstrate variable intrinsic radiation responses.

  8. Oxidative Stress Facilitates IFN-γ-Induced Mimic Extracellular Trap Cell Death in A549 Lung Epithelial Cancer Cells.

    PubMed

    Lin, Chiou-Feng; Chen, Chia-Ling; Chien, Shun-Yi; Tseng, Po-Chun; Wang, Yu-Chih; Tsai, Tsung-Ting

    2016-01-01

    We previously demonstrated that IFN-γ induces an autophagy-regulated mimic extracellular trap cell death (ETosis) in A549 human lung cancer cells. Regarding reactive oxygen species (ROS) are involved in ETosis, this study investigated the role of oxidative stress. After IFN-γ stimulation, a necrosis-like cell death mimic ETosis occurred accompanied by the inhibition of cell growth, aberrant nuclear staining, and nucleosome release. ROS were generated in a time-dependent manner with an increase in NADPH oxidase component protein expression. STAT1-mediated IFN regulatory factor-1 activation was essential for upregulating ROS production. By genetically silencing p47phox, IFN-γ-induced ROS and mimic ETosis were significantly attenuated. This mechanistic study indicated that ROS may mediate DNA damage followed by histone H3 citrullination. Furthermore, ROS promoted IFN-γ-induced mimic ETosis in cooperation with autophagy. These findings further demonstrate that ROS regulates IFN-γ-induced mimic ETosis in lung epithelial malignancy. PMID:27575372

  9. Oxidative Stress Facilitates IFN-γ-Induced Mimic Extracellular Trap Cell Death in A549 Lung Epithelial Cancer Cells

    PubMed Central

    Lin, Chiou-Feng; Chen, Chia-Ling; Chien, Shun-Yi; Tseng, Po-Chun; Wang, Yu-Chih; Tsai, Tsung-Ting

    2016-01-01

    We previously demonstrated that IFN-γ induces an autophagy-regulated mimic extracellular trap cell death (ETosis) in A549 human lung cancer cells. Regarding reactive oxygen species (ROS) are involved in ETosis, this study investigated the role of oxidative stress. After IFN-γ stimulation, a necrosis-like cell death mimic ETosis occurred accompanied by the inhibition of cell growth, aberrant nuclear staining, and nucleosome release. ROS were generated in a time-dependent manner with an increase in NADPH oxidase component protein expression. STAT1-mediated IFN regulatory factor-1 activation was essential for upregulating ROS production. By genetically silencing p47phox, IFN-γ-induced ROS and mimic ETosis were significantly attenuated. This mechanistic study indicated that ROS may mediate DNA damage followed by histone H3 citrullination. Furthermore, ROS promoted IFN-γ-induced mimic ETosis in cooperation with autophagy. These findings further demonstrate that ROS regulates IFN-γ-induced mimic ETosis in lung epithelial malignancy. PMID:27575372

  10. MicroRNA-381 Negatively Regulates TLR4 Signaling in A549 Cells in Response to LPS Stimulation

    PubMed Central

    Xu, Zhihao; Dong, Dapeng; Chen, Xiaofei; Huang, Huaqiong; Wen, Shenglan

    2015-01-01

    It is widely reported that miR-381 is dysregulated in various tumors. However, the specific role of miR-381 in respiratory infections has not been reported. To probe this role, A549 cells were pretreated with 1 μg/mL LPS for 24 h. The level of miR-381 was detected using RT-qPCR. The expression of proinflammatory cytokines was determined using an ELISA kit and western blotting. Bioinformatics analysis was used to predict the target genes of miR-381, and a luciferase reporter assay was used to validate the expression of the target genes. miR-381 expression was increased in A549 cells treated with LPS, which is a ligand of TLRs. Further study revealed that the overexpression of miR-381 increased the activity of NF-κB signaling, thereby increasing the expression of IL-6, TNFα, and COX-2. Further study revealed that IκBα was a target gene of miR-381. The upregulation of miR-381 under LPS stimulation contributes to respiratory infections mainly by targeting IκBα. PMID:26688820

  11. Diallyl trisulfide inhibits naphthalene-induced oxidative injury and the production of inflammatory responses in A549 cells and mice.

    PubMed

    Zhang, Fang; Zhang, Yongchun; Wang, Kaiming; Zhu, Xiaosong; Lin, Guimei; Zhao, Zhongxi; Li, Shanzhong; Cai, Jianhua; Cao, Jimin

    2015-12-01

    Diallyl trisulfide (DATS) is a garlic organosulfide that may have a therapeutic potential in the treatment of some diseases. We sought to determine whether DATS could inhibit naphthalene-induced oxidative injury and the production of inflammatory responses in vitro and in vivo. A549 cells were either pre-treated (PreTx, prevention) or concurrently treated (CoTx, treatment) with 20μM naphthalene and either 5 or 10μM DATS. PreTx and CoTx showed the prevention and the treatment potential of DATS to inhibit the generation of naphthalene-induced reactive oxygen species (ROS) in the A549 cells. DATS showed antioxidative activity by elevating the SOD activities in the low dose groups. The mechanistic study showed that the DATS-mediated inhibition of naphthalene-induced oxidative injury and the production of inflammatory responses (i.e., TNF-α, IL-6, and IL-8) were attributed to inhibiting the activity of nuclear factor-kappa B (NF-κB). In addition, DATS inhibited the production of serum nitric oxide NO and myeloperoxidase (MPO) in the lungs of Kunming mice. The histological analysis results indicate that DATS inhibited the naphthalene-induced lung damage, which is consistent with the in vitro study results. The in vivo and in vitro results suggest that DATS may be an effective attenuator of naphthalene-induced lung damage. PMID:26548347

  12. Protective efficacy of IFN-ω AND IFN-λs against influenza viruses in induced A549 cells.

    PubMed

    Škorvanová, L; Švančarová, P; Svetlíková, D; Betáková, T

    2015-12-01

    The interferon system represents one of the components of the first line defence against influenza virus infection. Interferon omega (IFN-ω) is antigenetically different from IFN-α and IFN-β and can affect patients who are resistant to these IFNs. To improve the biological characterization of IFN-ω, we compared its activity with those of type I and type III IFNs in induced A549 cells. The antiviral effect on IFN-stimulated A549 cells was most apparent after infection with avian influenza virus. IFN-ω had statistically significant antiviral activity although less than IFN-β1a, IFN-λ1, or IFN-λ2. On the other hand, IFN-ω appeared more efficient than IFN-α2. Our results also indicate that IFN-λs were more suitable against human highly pathogenic virus. In this case, IFN-λ1 and IFN-λ2 were more potent than type I IFNs. PMID:26666190

  13. miR-15a/16 Enhances Radiation Sensitivity of Non-Small Cell Lung Cancer Cells by Targeting the TLR1/NF-κB Signaling Pathway

    SciTech Connect

    Lan, Fengming; Yue, Xiao; Ren, Gang; Li, Hongqi; Ping, Li; Wang, Yingjie; Xia, Tingyi

    2015-01-01

    Purpose: Many miRNAs have been identified as essential issues and core determining factors in tumor radiation. Recent reports have demonstrated that miRNAs and Toll-like receptors could exert reciprocal effects to control cancer development in various ways. However, a novel role of miR-15a/16 in enhancing radiation sensitivity by directly targeting TLR1 has not been reported, to our knowledge. Methods and Materials: Bioinformatic analyses, luciferase reporter assay, biochemical assays, and subcutaneous tumor establishment were used to characterize the signaling pathways of miRNA-15a/16 in response to radiation treatment. Results: First, an inverse correlation between the expression of miR-15a/16 and TLR1 protein was revealed in non-small cell lung cancer (NSCLC) and normal lung tissues. Next, we corroborated that miR-15a/16 specifically bound to TLR1 3′UTR and inhibited the expression of TLR1 in H358 and A549 cells. Furthermore, miR-15a/16 downregulated the activity of the NF-κB signaling pathway through TLR1. In addition, overexpression of miR-15a/16 inhibited survival capability and increased radiation-induced apoptosis, resulting in enhancement of radiosensitivity in H358 and A549 cells. Finally, subcutaneous tumor bearing NSCLC cells in a nude mice model was established, and the results showed that combined groups (miR-15a/16 + radiation) inhibited tumor growth more significantly than did radiation alone. Conclusions: We mainly elucidate that miRNA-15a/16 can enhance radiation sensitivity by regulating the TLR1/NF-κB signaling pathway and act as a potential therapeutic approach to overcome radioresistance for lung cancer treatment.

  14. Chemotherapy and Radiation Therapy With or Without Metformin Hydrochloride in Treating Patients With Stage III Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2016-06-17

    Adenosquamous Lung Carcinoma; Bronchioloalveolar Carcinoma; Large Cell Lung Carcinoma; Lung Adenocarcinoma; Non-Small Cell Lung Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer

  15. Latcripin-13 domain induces apoptosis and cell cycle arrest at the G1 phase in human lung carcinoma A549 cells.

    PubMed

    Wang, Jia; Wan, Xianyao; Gao, Yifan; Zhong, Mintao; Sha, Li; Liu, Ben; Zhang, Wei; Tian, Li; Ruan, Wenjing; Cao, Shuyun; Huang, Min

    2016-07-01

    Latcripin-13 domain, isolated from the transcriptome of Lentinula edodes C91-3, contains a regulator of chromosome condensation (RCC1) domain/β-lactamase-inhibitor protein II (BLIP-II) and a plant homeodomain (PHD). Latcripin-13 domain has been shown to have antitumor effects. However, the underlying molecular pharmacology is largely unknown. We report here that Latcripin-13 domain induced cell cycle arrest in the G1 phase and caused the apoptosis of human lung carcinoma A549 cells via the GSK3β-cyclin D1 and caspase-8/NF-κB signaling pathways. Western blot analysis showed that Latcripin-13 domain decreased cyclin D1 and cyclin-dependent kinase 4 (CDK4), while it increased the ratio of GSK3β/phosphorylated GSK3β. Importantly, Latcripin-13 domain induced nuclear fragmentation and chromatin condensation in the A549 cells. In addition, treatment of the A549 cells with Latcripin-13 domain resulted in the loss of mitochondrial membrane potential, accompanied by an increase in the Bax/Bcl-2 ratio and activation of caspase-3, -8, and -9. Intriguingly, western blot analysis revealed that NF-κB was significantly downregulated by Latcripin-13 domain. These results demonstrated that Latcripin-13 domain induced apoptosis and cell cycle arrest at G1 phase in the A549 cells, providing a mechanism for the antitumor effects of Latcripin-13 domain. PMID:27221765

  16. A Comparison of the Biological Effects of 125I Seeds Continuous Low-Dose-Rate Radiation and 60Co High-Dose-Rate Gamma Radiation on Non-Small Cell Lung Cancer Cells

    PubMed Central

    Chen, Zhijin; Mao, Aiwu; Teng, Gaojun; Liu, Fenju

    2015-01-01

    Objectives To compare the biological effects of 125I seeds continuous low-dose-rate (CLDR) radiation and 60Co γ-ray high-dose-rate (HDR) radiation on non-small cell lung cancer (NSCLC) cells. Materials and Methods A549, H1299 and BEAS-2B cells were exposed to 125I seeds CLDR radiation or 60Co γ-ray HDR radiation. The survival fraction was determined using a colony-forming assay. The cell cycle progression and apoptosis were detected by flow cytometry (FCM). The expression of the apoptosis-related proteins caspase-3, cleaved-caspase-3, PARP, cleaved-PARP, BAX and Bcl-2 were detected by western blot assay. Results After irradiation with 125I seeds CLDR radiation, there was a lower survival fraction, more pronounced cell cycle arrest (G1 arrest and G2/M arrest in A549 and H1299 cells, respectively) and a higher apoptotic ratio for A549 and H1299 cells than after 60Co γ-ray HDR radiation. Moreover, western blot assays revealed that 125I seeds CLDR radiation remarkably up-regulated the expression of Bax, cleaved-caspase-3 and cleaved-PARP proteins and down-regulated the expression of Bcl-2 proteins in A549 and H1299 cells compared with 60Co γ-ray HDR radiation. However, there was little change in the apoptotic ratio and expression of apoptosis-related proteins in normal BEAS-2B cells receiving the same treatment. Conclusions 125I seeds CLDR radiation led to remarkable growth inhibition of A549 and H1299 cells compared with 60Co HDR γ-ray radiation; A549 cells were the most sensitive to radiation, followed by H1299 cells. In contrast, normal BEAS-2B cells were relatively radio-resistant. The imbalance of the Bcl-2/Bax ratio and the activation of caspase-3 and PARP proteins might play a key role in the anti-proliferative effects induced by 125I seeds CLDR radiation, although other possibilities have not been excluded and will be investigated in future studies. PMID:26266801

  17. Cytotoxic and pro-apoptotic activities of leaf extract of Croton bonplandianus Baill. against lung cancer cell line A549.

    PubMed

    Bhavana, J; Kalaivani, M K; Sumathy, A

    2016-06-01

    The acetone extract (AcE) of the Croton bonplandianus Baill., an exotic weed of the Euphorbiaceae family was studied for cytotoxicity, apoptosis, cell cycle arrest in A549 cell line and antioxidant capacities using MTT assay, acridine orange/ethidium bromide (AO/EB staining), cell cycle analysis and DPPH radical scavenging assay respectively. Based on the cytotoxic activity, the extract was tested for the apoptotic effect using AO/EB and Hoechst 33258 staining. The apoptosis was characterized by chromatin condensation and DNA fragmentation. Further, to determine the stage of cell death, cell cycle analysis was performed by flow cytometry and AcE was found to arrest G2/M phase in a dose dependent manner. The number of cells in G2/M phase increases with concurrent accumulation of cells in sub G₀/G₁phase indicates the induction of apoptosis at G2M phase. The free radical scavenging activity of the AcE against DPPH was considerably significant. The cytotoxic, apoptotic and antioxidant effect of the AcE could be well correlated with the presence of potent free radical scavenging secondary metabolites such as phenols (43 ± 0.05 µg/mL), flavonoids (3.5 ± 0.07 µg/mL) and tannin (0.36 ± 0.1 µg/mL). Our study has shown that A549 cells were more sensitive to AcE with an IC₅₀ of 15.68 ± 0.006 µg/mL compared to the standard drug 2.20 ± 0.008 µg/mL (cisplatin). The results suggest that Croton bonplandianus could serve as a potential source of alternative therapeutic agent for treating cancer. Further research is required to isolate the active principle compound and determination of its anticancer property. PMID:27468464

  18. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells

    SciTech Connect

    Duan, Lincan; Shen, Hongmei; Zhao, Guangqiang; Yang, Runxiang; Cai, Xinyi; Zhang, Lijuan; Jin, Congguo; Huang, Yunchao

    2014-04-18

    Highlights: • Disulfiram and copper synergistically inhibit lung cancer cell proliferation. • Lung cancer cell colony formation ability is inhibited by Disulfiram/copper. • Disulfiram/copper increases the sensitivity of cisplatin to lung cancer cells. • Lung cancer stem cells are specifically targeted by Disulfiram/copper complex. - Abstract: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition of cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients.

  19. Synergistic effects of pemetrexed and amrubicin in non-small cell lung cancer cell lines: Potential for combination therapy.

    PubMed

    Hatakeyama, Yukihisa; Kobayashi, Kazuyuki; Nagano, Tatsuya; Tamura, Daisuke; Yamamoto, Masatsugu; Tachihara, Motoko; Kotani, Yoshikazu; Nishimura, Yoshihiro

    2014-02-01

    The purpose is to examine the synergistic effect of pemetrexed (PEM) and amrubicin (AMR) on the proliferation of lung cancer cell lines. In vitro, dose-dependent synergistic effects of concurrent PEM and AMRol, which is an active metabolite of AMR were observed in A549 and H460 cells. In real-time RT-qPCR analysis and western blotting, expression of the target enzymes of PEM were suppressed in cells treated with amrubicinol alone. In vivo, AMR/PEM treatment also showed synergistic antitumor activity both in A549-bearing and H520-bearing mice. PEM and AMR work synergistically to inhibit the proliferation of several different lung cancer cell lines. PMID:24139969

  20. The proteasomal and apoptotic phenotype determine bortezomib sensitivity of non-small cell lung cancer cells

    PubMed Central

    Voortman, Jens; Chęcińska, Agnieszka; Giaccone, Giuseppe

    2007-01-01

    Bortezomib is a novel anti-cancer agent which has shown promising activity in non-small lung cancer (NSCLC) patients. However, only a subset of patients respond to this treatment. We show that NSCLC cell lines are differentially sensitive to bortezomib, IC50 values ranging from 5 to 83 nM. The apoptosis-inducing potential of bortezomib in NSCLC cells was found to be dependent not only on the apoptotic phenotype but also on the proteasomal phenotype of individual cell lines. Upon effective proteasome inhibition, H460 cells were more susceptible to apoptosis induction by bortezomib than SW1573 cells, indicating a different apoptotic phenotype. However, exposure to a low dose of bortezomib did only result in SW1573 cells, and not in H460 cells, in inhibition of proteasome activity and subsequent apoptosis. This suggests a different proteasomal phenotype as well. Additionally, overexpression of anti-apoptotic protein Bcl-2 in H460 cells did not affect the proteasomal phenotype of H460 cells but did result in decreased bortezomib-induced apoptosis. In conclusion, successful proteasome-inhibitor based treatment strategies in NSCLC face the challenge of having to overcome apoptosis resistance as well as proteasomal resistance of individual lung cancer cells. Further studies in NSCLC are warranted to elucidate underlying mechanisms. PMID:18021420

  1. Recombinant Interleukin-15 in Treating Patients With Advanced Melanoma, Kidney Cancer, Non-small Cell Lung Cancer, or Squamous Cell Head and Neck Cancer

    ClinicalTrials.gov

    2016-05-05

    Head and Neck Squamous Cell Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Skin Carcinoma; Stage III Renal Cell Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIA Skin Melanoma; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma; Stage IV Non-Small Cell Lung Cancer; Stage IV Renal Cell Cancer; Stage IV Skin Melanoma

  2. Long non-coding RNA PCAT-1 over-expression promotes proliferation and metastasis in non-small cell lung cancer cells.

    PubMed

    Zhao, Bing; Hou, Xiabao; Zhan, Hui

    2015-01-01

    Long non-coding RNAs (lncRNAs) have emerged as major players in governing fundamental biological processes, and play a functional role in tumorigenesis. Prostate cancer-associated transcript1 (PCAT-1) is a novel lncRNA that promotes cell proliferation in prostate cancer. However, the role of PCAT-1 on non-small cell lung cancer (NSCLC) remains unclear. In the present study, we firstly investigated PCAT-1 expression in NSCLC tissues and cell lines by using quantitative real-time PCR (QRT-PCR). Our results indicated that PCAT-1 was increased in NSCLC tissues and cell lines. PCAT-1 suppression using PCAT-1 small hairpin RNA (shRNA) with A549 cells inhibited cell proliferation, migration and invasion, while over-expression of PCAT-1 by synthetic plasmid vectors was shown to promote cell proliferation, migration and invasion. Our data suggested that PCAT-1 could play an oncogenic role in NSCLC progression. Silencing PCAT-1 is a potential novel therapeutic approach for lung cancer. PMID:26770456

  3. Long non-coding RNA PCAT-1 over-expression promotes proliferation and metastasis in non-small cell lung cancer cells

    PubMed Central

    Zhao, Bing; Hou, Xiabao; Zhan, Hui

    2015-01-01

    Long non-coding RNAs (lncRNAs) have emerged as major players in governing fundamental biological processes, and play a functional role in tumorigenesis. Prostate cancer-associated transcript1 (PCAT-1) is a novel lncRNA that promotes cell proliferation in prostate cancer. However, the role of PCAT-1 on non-small cell lung cancer (NSCLC) remains unclear. In the present study, we firstly investigated PCAT-1 expression in NSCLC tissues and cell lines by using quantitative real-time PCR (QRT-PCR). Our results indicated that PCAT-1 was increased in NSCLC tissues and cell lines. PCAT-1 suppression using PCAT-1 small hairpin RNA (shRNA) with A549 cells inhibited cell proliferation, migration and invasion, while over-expression of PCAT-1 by synthetic plasmid vectors was shown to promote cell proliferation, migration and invasion. Our data suggested that PCAT-1 could play an oncogenic role in NSCLC progression. Silencing PCAT-1 is a potential novel therapeutic approach for lung cancer. PMID:26770456

  4. Water-insoluble fraction of airborne particulate matter (PM10 ) induces oxidative stress in human lung epithelial A549 cells.

    PubMed

    Yi, Shuo; Zhang, Fang; Qu, Fang; Ding, Wenjun

    2014-02-01

    Exposure to ambient airborne particulate matter (PM) with an aerodynamic diameter less than 10 μm (PM10 ) links with public health hazards and increases risk for lung cancer and other diseases. Recent studies have suggested that oxidative stress is a key mechanism underlying the toxic effects of exposure to PM10 . Several components of water-soluble fraction of PM10 (sPM10 ) have been known to be capable of inducing oxidative stress in in vitro studies. In this study, we investigated if water-insoluble fraction of PM10 (iPM10 ) could be also capable of inducing oxidative stress and oxidative damage. Human lung epithelial A549 cells were exposed to 10 μg/mL of sPM10 , iPM10 or total PM10 (tPM10 ) preparation for 24 h. Here, we observed that all three PM10 preparations reduced cell viability and induced apoptotic cell death in A549 cells. We further found that, similar to the exposure to sPM10 and tPM10 , the intracellular level of hydrogen peroxide (H2 O2 ) in the iPM10 -exposed cells was increased significantly; meanwhile the activity of catalase was decreased significantly as compared with the unexposed control cells, resulting in significant DNA damage. Our data obtained from inductively coupled plasma-mass spectrometry (ICP-MS) assays showed that iron is the most abundant metal in all three PM10 preparations. Thus, we have demonstrated that, similar to sPM10 , iPM10 is also capable of inducing oxidative stress by probably inducing generation of H2 O2 and impairing enzymatic antioxidant defense, resulting in oxidative DNA damage and even apoptotic cell death through the iron-catalyzed Fenton reaction. PMID:22331617

  5. Enhanced expression levels of aquaporin-1 and aquaporin-4 in A549 cells exposed to silicon dioxide.

    PubMed

    Hao, Xiaohui; Wang, Hongli; Liu, Wei; Liu, Shupeng; Peng, Zihe; Sun, Yue; Zhao, Jinyuan; Jiang, Qiujie; Liu, Heliang

    2016-09-01

    Aquaporins (AQPs), water channel proteins in the cell membranes of mammals, have been reported to be important in maintaining the water balance of the respiratory system. However, little is known regarding the role of AQP in occupational pulmonary diseases such as silicosis. The present study investigated the expression of AQP1 and AQP4 in the human A549 alveolar epithelial cell line stimulated by silica (SiO2). A549 cells were cultured and divided into four groups: Control, SiO2‑stimulated, AQP1 inhibitor and AQP4 inhibitor. The cells of the SiO2‑stimulated group were stimulated with SiO2 dispersed suspension (50 mg/ml). The cells of the inhibitor group were pretreated with mercury (II) chloride (HgCl2; a specific channel inhibitor of AQP1) and 2‑(nicotinamide)‑1,3,4‑thiadiazole (TGN‑020; a specific channel inhibitor of AQP4) and stimulated with SiO2. The mRNA expression levels of AQP1 and AQP4 were detected by reverse transcription‑quantitative polymerase chain reaction, and the protein expression levels of AQP1 and AQP4 were detected by western blotting and immunocytochemistry. Compared with the control group, the expression levels of AQP1 and AQP4 mRNA and protein in SiO2‑stimulated groups increased and subsequently decreased (AQP1 peaked at 2 h and AQP4 at 1h; both P<0.001 compared with control group). In the inhibitor group, expression levels were increased compared with controls; however, they were significantly decreased compared with the SiO2‑stimulated group at 2 h (AQP1; P<0.001) and 1 h (AQP4; P<0.001). The expression of AQP1 and AQP4 increased when exposed to SiO2, and this was inhibited by HgCl2 and TGN‑020, suggesting that AQP1 and AQP4 may contribute to A549 cell damage induced by SiO2. AQP1 and AQP4 may thus be involved in the initiation and development of silicosis. PMID:27431275

  6. Rapid induction and persistence of paracrine-induced cellular antiviral states arrest viral infection spread in A549 cells.

    PubMed

    Voigt, Emily A; Swick, Adam; Yin, John

    2016-09-01

    The virus/host interaction is a complex interplay between pro- and anti-viral factors that ultimately determines the spread or halt of virus infections in tissues. This interplay develops over multiple rounds of infection. The purpose of this study was to determine how cellular-level processes combine to impact the spatial spread of infection. We measured the kinetics of virus replication (VSV), antiviral paracrine signal upregulation and secretion, spatial spread of virus and paracrine antiviral signaling, and inhibition of virus production in antiviral-exposed A549 human lung epithelial cells. We found that initially infected cells released antiviral signals 4-to-7h following production of virus. However, the subsequent rapid dissemination of signal and fast induction of a robust and persistent antiviral state ultimately led to a suppression of infection spread. This work shows how cellular responses to infection and activation of antiviral responses can integrate to ultimately control infection spread across host cell populations. PMID:27254596

  7. Down-regulation of protein kinase Ceta by antisense oligonucleotides sensitises A549 lung cancer cells to vincristine and paclitaxel.

    PubMed

    Sonnemann, Jürgen; Gekeler, Volker; Ahlbrecht, Katrin; Brischwein, Klaus; Liu, Chao; Bader, Peter; Müller, Cornelia; Niethammer, Dietrich; Beck, James F

    2004-06-25

    Previous studies point to protein kinase C (PKC) isozyme eta as a resistance factor in cancer cells. Therefore, we investigated whether down-regulation of PKCeta with second generation antisense oligonucleotides (ODNs) would sensitise A549 human lung carcinoma cells to cytostatics. The effects were compared to the outcome of Bcl-xL down-regulation. Upon treatment with antisense ODNs, PKCeta and Bcl-xL were both significantly reduced on mRNA and protein level. Down-regulation of either PKCeta or Bcl-xL in combination with vincristine or paclitaxel resulted in a significant increase in caspase-3 activity compared to that in the control oligonucleotide treated cells. In addition, PKCeta down-regulation augmented vincristine-induced dissipation of mitochondrial transmembrane potential. In conclusion, these results confirm that PKCeta might represent a considerable resistance factor and an interesting target to improve anticancer chemotherapy. PMID:15159020

  8. Curcumin lowers erlotinib resistance in non-small cell lung carcinoma cells with mutated EGF receptor.

    PubMed

    Li, Shanqun; Liu, Zilong; Zhu, Fen; Fan, Xiaohong; Wu, Xiaodan; Zhao, Heng; Jiang, Liyan

    2013-01-01

    Non-small cell lung cancer (NSCLC) patients with activating mutations in the epidermal growth factor receptor (EGFR) are responsive to erlotinib, an EGFR-tyrosine kinase inhibitor (EGFR-TKI). However, patients with secondary somatic EGFR mutations are resistant to EGFR-TKI treatment. In this study, we investigated the effect of curcumin on the tumor growth of erlotinib-resistant NSCLC cells. Cell proliferation was determined by MTT assay. Apoptosis was examined using TUNEL staining. Protein expression of genes was determined by Western blot. Tumor growth was assessed in a xenograft mouse model. Results showed that erlotinib had a stronger effect on the induction of apoptosis in erlotinib-sensitive PC-9 cells but showed a weaker effect on erlotinib-resistant H1975 and H1650 cells than cisplatin and curcumin. Furthermore, curcumin significantly increased the cytotoxicity of erlotinib to erlotinib-resistant NSCLC cells, enhanced erlotinib-induced apoptosis, downregulated the expressions of EGFR, p-EGFR, and survivin, and inhibited the NF-κB activation in erlotinib-resistant NSCLC cells. The combination of curcumin and erlotinib exhibited the same effects on apoptosis as the combination of curcumin and cisplatin in erlotinib-resistant NSCLC cells. Moreover, the combined treatment of curcumin and erlotinib significantly inhibited tumor growth of erlotinib-resistant NSCLC cells in vivo. Our results indicate that curcumin is a potential adjuvant for NSCLC patients during erlotinib treatment. PMID:24512728

  9. ROS and NF-{kappa}B are involved in upregulation of IL-8 in A549 cells exposed to multi-walled carbon nanotubes

    SciTech Connect

    Ye Shefang Wu Yihui; Hou Zhenqing; Zhang Qiqing

    2009-02-06

    Carbon nanotubes (CNTs) have potential applications in biosensors, tissue engineering, and biomedical devices because of their unique physico-chemical, electronic and mechanical properties. However, there is limited literature data available concerning the biological properties and toxicity of CNTs. This study aimed to assess the toxicity exhibited by multi-walled CNTs (MWCNTs) and to elucidate possible molecular mechanisms underlying the biological effects of MWCNTs in A549 cells. Exposing A549 cells to MWCNTs led to cell death, changes in cell size and complexity, reactive oxygen species (ROS) production, interleukin-8 (IL-8) gene expression and nuclear factor (NF)-{kappa}B activation. Treatment of A549 cells with antioxidants prior to adding MWCNTs decreased ROS production and abrogated expression of IL-8 mRNA. Pretreatment of A549 cells with NF-{kappa}B inhibitors suppressed MWCNTs-induced IL-8 mRNA expression. These results indicate that MWCNTs are able to induce expression of IL-8 in A549 cells, at least in part, mediated by oxidative stress and NF-{kappa}B activation.

  10. The potential diagnostic power of circulating tumor cell analysis for non-small-cell lung cancer.

    PubMed

    Ross, Kirsty; Pailler, Emma; Faugeroux, Vincent; Taylor, Melissa; Oulhen, Marianne; Auger, Nathalie; Planchard, David; Soria, Jean-Charles; Lindsay, Colin R; Besse, Benjamin; Vielh, Philippe; Farace, Françoise

    2015-01-01

    In non-small-cell lung cancer (NSCLC), genotyping tumor biopsies for targetable somatic alterations has become routine practice. However, serial biopsies have limitations: they may be technically difficult or impossible and could incur serious risks to patients. Circulating tumor cells (CTCs) offer an alternative source for tumor analysis that is easily accessible and presents the potential to identify predictive biomarkers to tailor therapies on a personalized basis. Examined here is our current knowledge of CTC detection and characterization in NSCLC and their potential role in EGFR-mutant, ALK-rearranged and ROS1-rearranged patients. This is followed by discussion of the ongoing issues such as the question of CTC partnership as diagnostic tools in NSCLC. PMID:26564313

  11. Itraconazole inhibits angiogenesis and tumor growth in non-small cell lung cancer

    PubMed Central

    Aftab, Blake T.; Dobromilskaya, Irina; Liu, Jun O.; Rudin, Charles M.

    2011-01-01

    The anti-angiogenic agent bevacizumab has been approved for the treatment of non-small cell lung cancer, although the survival benefit associated with this agent is marginal, and toxicities and cost are substantial. A recent screen for selective inhibitors of endothelial cell proliferation identified the oral anti-fungal drug itraconazole as a novel agent with potential anti-angiogenic activity. Here we define and characterize the anti-angiogenic and anti-cancer activities of itraconazole in relevant preclinical models of angiogenesis and lung cancer. Itraconazole consistently demonstrated potent, specific, and dose-dependent inhibition of endothelial cell proliferation, migration, and tube formation in response to both vascular endothelial growth factor (VEGF)- and basic fibroblast growth factor (bFGF)-mediated angiogenic stimulation. In vivo, using primary xenograft models of human non-small cell lung cancer, oral itraconazole showed single agent growth-inhibitory activity associated with induction of tumor HIF1α expression and marked inhibition of tumor vascularity. Itraconazole significantly enhanced the anti-tumor efficacy of the chemotherapeutic agent cisplatin in the same model systems. Taken together, these data suggest that itraconazole has potent and selective inhibitory activity against multiple key aspects of tumor-associated angiogenesis in vitro and in vivo, and strongly support clinical translation of its use. Based on these observations we have initiated a randomized phase II study comparing the efficacy of standard cytotoxic therapy with or without daily oral itraconazole in patients with recurrent metastatic non-small cell lung cancer. PMID:21896639

  12. Downregulation of ribosomal protein S6 inhibits the growth of non-small cell lung cancer by inducing cell cycle arrest, rather than apoptosis.

    PubMed

    Chen, Bojiang; Zhang, Wen; Gao, Jun; Chen, Hong; Jiang, Li; Liu, Dan; Cao, Yidan; Zhao, Shuang; Qiu, Zhixin; Zeng, Jing; Zhang, Shangfu; Li, Weimin

    2014-11-28

    Ribosomal protein S6 (rpS6), a component of the small 40S ribosomal subunit, has been found to be associated with multiple physiological and pathophysiological functions. However, its effects and mechanisms in non-small cell lung cancer (NSCLC) still remain unknown. Here, we showed that expressions of total rpS6 and phosphorylation rpS6 (p-rpS6) were both significantly overexpressed in NSCLC. Further survival analysis revealed the shortened overall survival (OS) and relapse-free survival (RFS) in p-rpS6 overexpressed patients and confirmed it as an independent adverse predictor. Stable downregulation of rpS6 in lung adenocarcinoma A549 and squamous cell carcinoma H520 cell lines was then achieved by two specific small hairpin RNA (shRNA) lentiviruses separately. Subsequent experiments showed that downregulation of rpS6 dramatically inhibited cell proliferation in vitro and tumorigenicity in vivo. Moreover, loss of rpS6 promoted cells arrested in G0-G1 phase and reduced in G2-M phase, along with the expression alterations of relative proteins. However, no notable change in apoptosis was observed. Collectively, these results suggested that rpS6 is overactivated in NSCLC and its downregulation suppresses the growth of NSCLC mainly by inducing G0-G1 cell cycle arrest rather than apoptosis. PMID:25199762

  13. MicroRNA-124 suppresses tumor cell proliferation and invasion by targeting CD164 signaling pathway in non-small cell lung cancer

    PubMed Central

    Lin, Jing; Xu, Kai; Wei, Jun; Heimberger, Amy B; Roth, Jack A.; Ji, Lin

    2016-01-01

    MicroRNAs play critical roles in regulating gene expression and various cellular processes in human cancer malignant progression. Down-regulated expression of miR-124 gene has been shown to be significantly associated with a poor prognosis in patients with non-small cell lung cancer (NSCLC) but its biological function and regulatory roles in lung cancer tumorigenesis are largely unknown. In this study, we aimed to determine effects of ectopic expression of miR-124 on tumor cell proliferation, invasion, and induction of apoptosis by DOTAP:Cholesterol nanoparticle-mediated gene transfer and identify its endogenous targets under physiological conditions in NSCLC cells. Overexpression of miR-124 significantly suppresses tumor cell proliferation, colony formation, migration, and induction of apoptosis in H322 and A549 cells. Two endogenous miR-124 targeting sites in the 3′UTR of CD164 mRNA are identified by a stem-loop-array reverse transcription PCR (SLA-RT-PCR) assay in H1299 cells under physiological condition. Ectopic expression of miR-124 induces CD164 mRNA cleavage and down-regulated its gene and protein expression. Our results suggest that miR-124 function as a tumor suppressor miRNA and suppress tumor proliferation and aggression by directly targeting oncogenic CD164 signaling pathway in NSCLC. PMID:27376157

  14. PKC 412 sensitizes U1810 non-small cell lung cancer cells to DNA damage

    SciTech Connect

    Hemstroem, Therese H.; Joseph, Bertrand; Schulte, Gunnar; Lewensohn, Rolf; Zhivotovsky, Boris . E-mail: Boris.Zhivotovsky@imm.ki.se

    2005-04-15

    Non-small cell lung carcinoma (NSCLC) is characterized by resistance to drug-induced apoptosis, which might explain the survival of lung cancer cells following treatment. Recently we have shown that the broad-range kinase inhibitor staurosporine (STS) reactivates the apoptotic machinery in U1810 NSCLC cells [Joseph et al., Oncogene 21 (2002) 65]. Lately, several STS analogs that are more specific in kinase inhibition have been suggested for tumor treatment. In this study the apoptosis-inducing ability of the STS analogs PKC 412 and Ro 31-8220 used alone or in combination with DNA-damaging agents in U1810 cells was investigated. In these cells Ro 31-8220 neither induced apoptosis when used alone, nor sensitized cells to etoposide treatment. PKC 412 as a single agent induced death of a small number of U1810 cells, whereas it efficiently triggered a dose- and time-dependent apoptosis in U1285 small cell lung carcinoma cells. In both cell types PKC 412 triggered release of mitochondrial proteins followed by caspase activation. However, concomitant activation of a caspase-independent pathway was essential to kill NSCLC cells. Importantly, PKC 412 was able to sensitize etoposide- and radiation-induced death of U1810 cells. The best sensitization was achieved when PKC 412 was administered 24 h after treatments. In U1810 cells, Ro 31-8220 decreased PMA-induced ERK phosphorylation as efficiently as PKC 412, indicating that the failure of Ro 31-8220 to induce apoptosis was not due to weaker inhibition of conventional and novel PKC isoforms. However, Ro 31-8220 increased the basal level of ERK and Akt phosphorylation in both cell lines, whereas Akt phosphorylation was suppressed in the U1810 cells, which might influence apoptosis. These results suggest that PKC 412 could be a useful tool in increasing the efficiency of therapy of NSCLC.

  15. In vitro cytotoxicity and morphological assessment of smoke from polymer combustion in human lung derived cells (A549).

    PubMed

    Lestari, F; Hayes, A J; Green, A R; Chattopadhyay, G

    2012-04-01

    The application of polymer and composites in building and modern transport interiors raises concerns of potential health hazards during combustion. Cytotoxicity and morphological assessment of smoke from polymer combustion in human lung derived cells (A549) has been investigated. A laboratory scale vertical tube furnace was used for the generation of combustion products. A range of materials used in the building and transport industry including high density-polyethylene (HDPE), polypropylene (PP), polycarbonate (PC), and polyvinyl chloride (PVC), fiberglass reinforced polymers (FRPs), and melamine faced plywood (MFP) were studied. The exposure of combustion toxicants to human lung cells (A549) at the air/liquid interface was acquired using a Harvard Navicyte Chamber. Cytotoxic effects on human cells were assessed based on cell viability using a selected in vitro cytotoxicity assays, including NRU (neutral red uptake) and ATP (adenosine triphosphate). Morphological assessment on the effects of combustion products in human lung cells from selected materials including PVC, FRP and MFP was assessed using scanning electron microscopy (SEM). The volatile organic compounds from thermal decomposition products were identified using ATD-GCMS (Automatic Thermal Desorption Gas Chromatography Mass Spectrometry). NOAEC (No Observable Adverse Effect Concentration), IC(10) (10% inhibitory concentration), IC(50) (50% inhibitory concentration), and TLC (Total Lethal Concentration) values (mg/l) were generated. The following toxicity ranking was observed from the most toxic material to the least toxic using the NRU assay: PVC>PP>HDPE>PC >FRP-10>MFP>FRP-16; and the ATP assay: PVC>HDPE>PP>FRP-10>FRP-16>MFP>PC. The method described here could potentially be an alternative to current fire toxicity standards. PMID:22227179

  16. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells.

    PubMed

    Zu, Yuangang; Yu, Huimin; Liang, Lu; Fu, Yujie; Efferth, Thomas; Liu, Xia; Wu, Nan

    2010-05-01

    Ten essential oils, namely, mint (Mentha spicata L., Lamiaceae), ginger (Zingiber officinale Rosc., Zingiberaceae), lemon (Citrus limon Burm.f., Rutaceae), grapefruit (Citrus paradisi Macf., Rutaceae), jasmine (Jasminum grandiflora L., Oleaceae), lavender (Mill., Lamiaceae), chamomile (Matricaria chamomilla L., Compositae), thyme (Thymus vulgaris L., Lamiaceae), rose (Rosa damascena Mill., Rosaceae) and cinnamon (Cinnamomum zeylanicum N. Lauraceae) were tested for their antibacterial activities towards Propionibacterium acnes and in vitro toxicology against three human cancer cell lines. Thyme, cinnamon and rose essential oils exhibited the best antibacterial activities towards P. acnes, with inhibition diameters of 40 +/- 1.2 mm, 33.5 +/- 1.5 mm and 16.5 +/- 0.7 mm, and minimal inhibitory concentrations of 0.016% (v/v), 0.016% (v/v) and 0.031% (v/v), respectively. Time-kill dynamic procedures showed that thyme, cinnamon, rose, and lavender essential oils exhibited the strongest bactericidal activities at a concentration of 0.25% (v/v), and P. acnes was completely killed after 5 min. The thyme essential oil exhibited the strongest cytotoxicity towards three human cancer cells. Its inhibition concentration 50% (IC(50)) values on PC-3, A549 and MCF-7 tumor cell lines were 0.010% (v/v), 0.011% (v/v) and 0.030% (v/v), respectively. The cytotoxicity of 10 essential oils on human prostate carcinoma cell (PC-3) was significantly stronger than on human lung carcinoma (A549) and human breast cancer (MCF-7) cell lines. PMID:20657472

  17. Extract of Bryophyllum laetivirens reverses etoposide resistance in human lung A549 cancer cells by downregulation of NF-κB.

    PubMed

    Kaewpiboon, Chutima; Srisuttee, Ratakorn; Malilas, Waraporn; Moon, Jeong; Kaowinn, Sirichat; Cho, Il-Rae; Johnston, Randal N; Assavalapsakul, Wanchai; Chung, Young-Hwa

    2014-01-01

    Since multidrug resistance (MDR) is one of the main reasons for failure in cancer treatment, its suppression may increase the efficacy of cancer therapy. In the present study we attempted to identify a new and effective anticancer drug against MDR cancer cells. We first found that lung cancer A549 cells resistant to etoposide (A549RT-eto) exhibit upregulation of NF-κB and SIRT1 in comparison to A549 parental cells. During a search for anticancer drug candidates from medicinal plant sources, we found that an extract fraction (F14) of Bryophyllum laetivirens leaves downregulated expression of NF-κB and SIRT1, sensitizing the levels of A549RT-eto cells to apoptosis through downregulation of P-glycoprotein (P-gp), which is encoded by the MDR1 gene. To address whether NF-κB is involved in resistance to etoposide through P-gp, we treated A549RT-eto cells with Bay11-7802, an inhibitor of NF-κB. We then observed that Bay11-7802 treatment reduced P-gp expression levels, and furthermore combined treatment with the F14 extract and Bay11-7802 accelerated apoptosis through a decrease in P-gp levels, suggesting that NF-κB is involved in MDR. To address whether upregulation of SIRT1 is involved in resistance to etoposide through P-gp, we treated A549RT-eto cells with SIRT1 siRNA or nicotinamide (NAM), an inhibitor of SIRT1. we found that suppression of SIRT1 did not reduce P-gp levels. furthermore, the combined treatment with the F14 extract, and SIRT1 siRNA or NAM did not accelerate apoptosis, indicating that SIRT1 is not involved in the regulation of P-gp levels in A549RT-eto cells. Taken together, we suggest that upregulation of NF-κB determines etoposide resistance through P-gp expression in human A549 lung cancer cells. We herein demonstrated that B. laetivirens extract reverses etoposide resistance in human A549 lung cancer cells through downregulation of NF-κB. PMID:24220725

  18. Costunolide induces lung adenocarcinoma cell line A549 cells apoptosis through ROS (reactive oxygen species)-mediated endoplasmic reticulum stress.

    PubMed

    Wang, Zhen; Zhao, Xin; Gong, Xingguo

    2016-03-01

    Costunolide is an active sesquiterpene lactone derived from many herbal medicines. It has a broad spectrum of bioactivities, including anti-inflammatory and potential anti-tumor effects. The aims of the present study were to evaluate the inhibitory effects of costunolide on A549 cell growth and to explore the underlying molecular mechanisms. Annexin V-FITC/PI flow cytometry analysis revealed that costunolide induced apoptosis. To study the mechanism, we found that costunolide exposure activated the unfolded protein response (UPR) signaling pathways, as shown by the up-regulation of GRP78 and IRE1α and the activation of ASK1 and JNK. Meanwhile, siRNA knockdown of IRE1α significantly attenuated costunolide-induced apoptosis and partly restored the mitochondrial membrane potential. ER stress-activated JNK phosphorylated Bcl-2 at Ser70, which changes the anti-apoptotic function of Bcl-2, resulting in mitochondrial dysfunction and leading to mitochondrial activation of apoptosis. Furthermore, costunolide induced ROS generation, while the antioxidant N-acetyl cysteine (NAC) effectively blocked ER stress and apoptosis activation, suggesting that ROS acts as an upstream signaling molecule in triggering ER stress and mitochondrial apoptotic pathways. Taken together, our research demonstrates that costunolide exhibits its anti-tumor activity though inducing apoptosis, which is mediated by ER stress. We further confirm that Bcl-2 is a key molecule connecting the ER stress and mitochondrial pathways. PMID:26609913

  19. Secondary osteosarcoma developing 10 years after chemoradiotherapy for non-small-cell lung cancer.

    PubMed

    Yagishita, Shigehiro; Horinouchi, Hidehito; Yorozu, Takashi; Kitazono, Satoru; Mizugaki, Hidenori; Kanda, Shintaro; Fujiwara, Yutaka; Nokihara, Hiroshi; Yamamoto, Noboru; Mori, Taisuke; Tsuta, Koji; Sumi, Minako; Tamura, Tomohide

    2014-02-01

    A 53-year-old female patient was admitted with pain and a progressively enlarging mass in the right upper chest. Chest computed tomography revealed a mass lesion in the region of the right upper ribs. Ten years prior to this admission, the patient had undergone right lobectomy for lung adenocarcinoma. One year after the surgery, follow-up computed tomography had revealed tumor recurrence in the mediastinal and supraclavicular lymph nodes, and the patient had been treated by chemoradiotherapy. Thereafter, regular follow-up had revealed no evidence of recurrence of the non-small-cell lung cancer. Histopathological findings revealed proliferation of spindle-shaped malignant tumor cells in a background of osteoid, consistent with the diagnosis of osteosarcoma. The location of the tumor was consistent with the radiation field. Based on the clinicopathological findings, the patient was diagnosed as having secondary osteosarcoma occurring as a result of the chemoradiotherapy administered previously for the recurrent non-small-cell lung cancer. Unfortunately, the patient died of rapid progression of the osteosarcoma within a week of admission to the hospital. The autopsy revealed contiguous invasion by the tumor of the heart, with massive thrombus formation. The peripheral pulmonary arteries were diffusely occluded by metastatic tumors. Our case serves to highlight the risk of development of secondary sarcoma as a life-threatening late complication after chemoradiotherapy for locally advanced non-small-cell lung cancer, even after complete cure of the primary tumor. PMID:24338556

  20. Depletion of hepatoma-derived growth factor-related protein-3 induces apoptotic sensitization of radioresistant A549 cells via reactive oxygen species-dependent p53 activation

    SciTech Connect

    Yun, Hong Shik; Hong, Eun-Hee; Lee, Su-Jae; Baek, Jeong-Hwa; Lee, Chang-Woo; Yim, Ji-Hye; Um, Hong-Duck; Hwang, Sang-Gu

    2013-09-27

    Highlights: •HRP-3 is a radiation- and anticancer drug-responsive protein in A549 cells. •Depletion of HRP-3 induces apoptosis of radio- and chemoresistant A549 cells. •Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. •Depletion of HRP-3 enhances ROS-dependent p53 activation and PUMA expression. -- Abstract: Biomarkers based on functional signaling have the potential to provide greater insight into the pathogenesis of cancer and may offer additional targets for anticancer therapeutics. Here, we identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistance-related gene and characterized the molecular mechanism by which its encoded protein regulates the radio- and chemoresistant phenotype of lung cancer-derived A549 cells. Knockdown of HRP-3 promoted apoptosis of A549 cells and potentiated the apoptosis-inducing action of radio- and chemotherapy. This increase in apoptosis was associated with a substantial generation of reactive oxygen species (ROS) that was attributable to inhibition of the Nrf2/HO-1 antioxidant pathway and resulted in enhanced ROS-dependent p53 activation and p53-dependent expression of PUMA (p53 upregulated modulator of apoptosis). Therefore, the HRP-3/Nrf2/HO-1/ROS/p53/PUMA cascade is an essential feature of the A549 cell phenotype and a potential radiotherapy target, extending the range of targets in multimodal therapies against lung cancer.

  1. Role of immunotherapy in the treatment of advanced non-small-cell lung cancer.

    PubMed

    Rijavec, Erika; Genova, Carlo; Alama, Angela; Barletta, Giulia; Sini, Claudio; Pronzato, Paolo; Coco, Simona; Dal Bello, Maria Giovanna; Savarino, Graziana; Truini, Anna; Boccardo, Francesco; Grossi, Francesco

    2014-01-01

    After several decades of modest results with nonspecific immune stimulants, immunotherapy has become an exciting approach in the treatment of cancer. Although non-small-cell lung cancer has not been considered an immunogenic disease for very long, a better understanding of tumor immunology and the identification of new targets have led to the development of many clinical trials of immune-based therapies for this neoplasm. Promising results from many clinical trials suggest that immunotherapy could be an effective strategy in the management of advanced non-small-cell lung cancer. Further studies are required to help clinicians in the selection of patients who are more likely to benefit from immunotherapy strategies by the identification of biomarkers and to understand when the combination of immunotherapy with other agents should be recommended. PMID:24328411

  2. Preoperative CT evaluation of adrenal glands in non-small cell bronchogenic carcinoma

    SciTech Connect

    Nielsen, M.E. Jr.; Heaston, D.K.; Dunnick, N.R.; Korobkin, M.

    1982-08-01

    Preoperative chest computed tomographic (CT) scans in 84 patients with biopsy-proven non-small cell bronchogenic carcinoma were reviewed. At least one adrenal gland was visualized in 70 of these. Evidence of a solid adrenal mass was present in 18 (14.5%) glands in 15 (21.4%) patients. Percutaneous needle aspiration under CT guidance confirmed metastatic malignancy in the four patients who were biopsied. Because the documented presence of adrenal metastases in non-small cell lung cancer makes surgical resection or local irradiation inappropriate, it is recommended that both adrenal glands in their entirety be specifically included whenever a staging chest CT examination is performed in patients with such tumors. Percutaneous needle biopsy for pathologic confirmation of the nature of solid adrenal masses discovered in this process is also useful.

  3. Non small-cell lung cancer with metastasis to thigh muscle and mandible: two case reports

    PubMed Central

    2013-01-01

    Introduction Lung cancer is the leading cause of cancer-related death in Europe and the US. Isolated metastases to skeletal muscle and the mandible are very uncommon. Case presentation This report presents two cases. Case 1 concerns a 45-year-old Caucasian woman affected by muscle metastasis of the right thigh from non-small-cell lung cancer. Case 2 concerns a 61-year-old Caucasian man affected by mandible metastasis from non-small-cell lung cancer. Both metastases were detected by diagnostic imaging studies. Both patients were treated with radiation therapy with palliative and antalgic intent. Conclusion Radiation therapy was effective and well tolerated in both cases. Both our patients are alive, with follow-up of 18 months and five months, respectively. PMID:23566415

  4. [A case of non-small cell lung cancer with hemodialysis which responded to docetaxel monotherapy].

    PubMed

    Abe, Yumiko; Tanaka, Kentaro; Matsumoto, Koichiro; Takayama, Koichi; Inoue, Hiroyuki; Izumi, Miiru; Inoue, Hiromasa; Nakanishi, Yoichi

    2010-10-01

    A 56-year-old man receiving hemodialysis treatment was hospitalized for examination of a mass in the right middle lobe. Chest computed tomography showed a right hilar mass shadow accompanied by pleural effusion. Non-small cell lung cancer (NSCLC) was diagnosed by cytological examination of the pleural effusion. No epidermal growth factor receptor (EGFR) mutation was found. He was treated with 6 courses of docetaxel as first-line chemotherapy. Docetaxel was administered on the same day as hemodialysis. Adverse events, including hematotoxicity, were managed safely and no delay in administration occurred. This chemotherapy resulted in a partial response. Because docetaxel is metabolized in the liver and does not affect renal function, it can be administered as a standard regimen. This suggests that docetaxel monotherapy is an efficient therapy for non-small cell lung cancer patients receiving hemodialysis. PMID:21066867

  5. Cytotoxicity of carbon nanotube variants: a comparative in vitro exposure study with A549 epithelial and J774 macrophage cells.

    PubMed

    Kumarathasan, Prem; Breznan, Dalibor; Das, Dharani; Salam, Mohamed A; Siddiqui, Yunus; MacKinnon-Roy, Christine; Guan, Jingwen; de Silva, Nimal; Simard, Benoit; Vincent, Renaud

    2015-03-01

    While production of engineered carbon nanotubes (CNTs) has escalated in recent years, knowledge of risk associated with exposure to these materials remains unclear. We report on the cytotoxicity of four CNT variants in human lung epithelial cells (A549) and murine macrophages (J774). Morphology, metal content, aggregation/agglomeration state, pore volume, surface area and modifications were determined for the pristine and oxidized single-walled (SW) and multi-walled (MW) CNTs. Cytotoxicity was evaluated by cellular ATP content, BrdU incorporation, lactate dehydrogenase (LDH) release, and CellTiter-Blue (CTB) reduction assays. All CNTs were more cytotoxic than respirable TiO2 and SiO2 reference particles. Oxidation of CNTs removed most metallic impurities but introduced surface polar functionalities. Although slopes of fold changes for cytotoxicity endpoints were steeper with J774 compared to A549 cells, CNT cytotoxicity ranking in both cell types was assay-dependent. Based on CTB reduction and BrdU incorporation, the cytotoxicity of the polar oxidized CNTs was higher compared to the pristine CNTs. In contrast, pristine CNTs were more cytotoxic than oxidized CNTs when assessed for cellular ATP and LDH. Correlation analyses between CNTs' physico-chemical properties and average relative potency revealed the impact of metal content and surface area on the potency values estimated using ATP and LDH assays, while surface polarity affected the potency values estimated from CTB and BrdU assays. We show that in order to reliably estimate the risk posed by these materials, in vitro toxicity assessment of CNTs should be conducted with well characterized materials, in multiple cellular models using several cytotoxicity assays that report on distinct cellular processes. PMID:24713075

  6. miR-194 inhibits the proliferation, invasion, migration, and enhances the chemosensitivity of non-small cell lung cancer cells by targeting forkhead box A1 protein

    PubMed Central

    Jia, Chengyou; Xie, Jing; Ma, Yushui; Fan, Suyun; Cai, Haidong; Luo, Qiong; Lv, Zhongwei; Fan, Lihong

    2016-01-01

    Recent studies have implied that miRNAs may play a crucial role in tumor progression and may be involved in the modulation of some drug resistance in cancer cells. Earlier studies have demonstrated that miR-194 was involved in tumor metastasis and drug resistance in non-small cell lung cancer (NSCLC), whereas their expression and roles on NSCLC still need further elucidation. In the current study, we found that miR-194 is decreased in NSCLC samples compared with adjacent non-cancerous lung samples, and low expression of miR-194 predicts poor patient survival. Both in vitro and in vivo experiments showed that ectopic stable expression miR-194 suppressed proliferation, migration, invasion and metastasis and induced apoptosis in NSCLC cells and that this suppression could be reversed by reintroducing forkhead box A1 (FOXA1), a functional target of miR-194. In addition, miR-194 was downregulated in in cisplatin-resisted human NSCLC cell line-A549/DDP and overexpression of miR-194 increases cisplatin sensitivity. These findings suggested that miR-194 inhibits proliferation and metastasis and reverses cisplatin-resistance of NSCLC cells and may be useful as a new potential therapeutic target for NSCLC. PMID:26909612

  7. Responses of genes involved in cell cycle control to diverse DNA damaging chemicals in human lung adenocarcinoma A549 cells

    PubMed Central

    Zhu, Huijun; Smith, Catherine; Ansah, Charles; Gooderham, Nigel J

    2005-01-01

    Background Many anticancer agents and carcinogens are DNA damaging chemicals and exposure to such chemicals results in the deregulation of cell cycle progression. The molecular mechanisms of DNA damage-induced cell cycle alteration are not well understood. We have studied the effects of etoposide (an anticancer agent), cryptolepine (CLP, a cytotoxic alkaloid), benzo [a]pyrene (BaP, a carcinogenic polycyclic aromatic hydrocarbon) and 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP, a cooked-meat derived carcinogen) on the expression of cell cycle regulatory genes to understand the molecular mechanisms of the cell cycle disturbance. Results A549 cells were treated with DMSO or chemicals for up to 72 h and periodically sampled for cell cycle analysis, mRNA and protein expression. DMSO treated cells showed a dominant G1 peak in cell cycle at all times examined. Etoposide and CLP both induced G2/M phase arrest yet the former altered the expression of genes functioning at multiple phases, whilst the latter was more effective in inhibiting the expression of genes in G2-M transition. Both etoposide and CLP induced an accumulation of p53 protein and upregulation of p53 transcriptional target genes. Neither BaP nor PhIP had substantial phase-specific cell cycle effect, however, they induced distinctive changes in gene expression. BaP upregulated the expression of CYP1B1 at 6–24 h and downregulated many cell cycle regulatory genes at 48–72 h. By contrast, PhIP increased the expression of many cell cycle regulatory genes. Changes in the expression of key mRNAs were confirmed at protein level. Conclusion Our experiments show that DNA damaging agents with different mechanisms of action induced distinctive changes in the expression pattern of a panel of cell cycle regulatory genes. We suggest that examining the genomic response to chemical exposure provides an exceptional opportunity to understand the molecular mechanism involved in cellular response to toxicants. PMID

  8. ROS1 rearranged non-small cell lung cancer brain metastases respond to low dose radiotherapy.

    PubMed

    Lukas, Rimas V; Hasan, Yasmin; Nicholas, Martin K; Salgia, Ravi

    2015-12-01

    We present a young woman with ROS1 gene rearranged non-small cell lung cancer (NSCLC) with brain metastases. ROS is a proto-oncogene tyrosine protein kinase. The patient received a partial course of whole brain radiation therapy and experienced a sustained partial response in the brain. We hypothesize that ROS1 rearranged NSCLC brain metastases may be particularly sensitive to radiation therapy. PMID:26159887

  9. Thermal ablation of stage I non-small cell lung carcinoma.

    PubMed

    Ridge, Carol A; Solomon, Stephen B; Thornton, Raymond H

    2014-06-01

    Ablation options for the treatment of localized non-small cell lung carcinoma (NSCLC) include radiofrequency ablation, microwave ablation, and cryotherapy. Irreversible electroporation is a novel ablation method with the potential of application to lung tumors in risky locations. This review article describes the established and novel ablation techniques used in the treatment of localized NSCLC, including mechanism of action, indications, potential complications, clinical outcomes, postablation surveillance, and use in combination with other therapies. PMID:25053863

  10. Epidermal growth factor receptor in non-small cell lung cancer

    PubMed Central

    2015-01-01

    Following the identification of a group of patients in the initial tyrosine kinase inhibitor (TKI) trials for lung cancer, there has been detailed focus on which patients may benefit from inhibitor therapy. This article reviews the background, genetics and prevalence of epidermal growth factor mutations in non-small cell lung cancer (NSCLC). Additionally, the prevalence in unselected patients is compared against various other reviews. PMID:25870793

  11. Hope and Disappointment: Covalent Inhibitors to Overcome Drug Resistance in Non-Small Cell Lung Cancer.

    PubMed

    Engel, Julian; Lategahn, Jonas; Rauh, Daniel

    2016-01-14

    In the last five years, the detailed understanding of how to overcome T790M drug resistance in non-small cell lung cancer (NSCLC) has culminated in the development of a third-generation of covalent EGFR inhibitors with excellent clinical outcomes. However, the emergence of a newly discovered acquired drug resistance challenges the concept of small molecule targeted cancer therapy in NSCLC. PMID:26819655

  12. EF5 and Motexafin Lutetium in Detecting Tumor Cells in Patients With Abdominal or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-15

    Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage

  13. The proangiogenic phenotype of natural killer cells in patients with non-small cell lung cancer.

    PubMed

    Bruno, Antonino; Focaccetti, Chiara; Pagani, Arianna; Imperatori, Andrea S; Spagnoletti, Marco; Rotolo, Nicola; Cantelmo, Anna Rita; Franzi, Francesca; Capella, Carlo; Ferlazzo, Guido; Mortara, Lorenzo; Albini, Adriana; Noonan, Douglas M

    2013-02-01

    The tumor microenvironment can polarize innate immune cells to a proangiogenic phenotype. Decidual natural killer (dNK) cells show an angiogenic phenotype, yet the role for NK innate lymphoid cells in tumor angiogenesis remains to be defined. We investigated NK cells from patients with surgically resected non-small cell lung cancer (NSCLC) and controls using flow cytometric and functional analyses. The CD56(+)CD16(-) NK subset in NSCLC patients, which represents the predominant NK subset in tumors and a minor subset in adjacent lung and peripheral blood, was associated with vascular endothelial growth factor (VEGF), placental growth factor (PIGF), and interleukin-8 (IL-8)/CXCL8 production. Peripheral blood CD56(+)CD16(-) NK cells from patients with the squamous cell carcinoma (SCC) subtype showed higher VEGF and PlGF production compared to those from patients with adenocarcinoma (AdC) and controls. Higher IL-8 production was found for both SCC and AdC compared to controls. Supernatants derived from NSCLC CD56(+)CD16(-) NK cells induced endothelial cell chemotaxis and formation of capillary-like structures in vitro, particularly evident in SCC patients and absent from controls. Finally, exposure to transforming growth factor-β(1) (TGFβ(1)), a cytokine associated with dNK polarization, upregulated VEGF and PlGF in peripheral blood CD56(+)CD16(-) NK cells from healthy subjects. Our data suggest that NK cells in NSCLC act as proangiogenic cells, particularly evident for SCC and in part mediated by TGFβ(1). PMID:23441128

  14. GTI-2040 and Docetaxel in Treating Patients With Recurrent, Metastatic, or Unresectable Locally Advanced Non-Small Cell Lung Cancer, Prostate Cancer, or Other Solid Tumors

    ClinicalTrials.gov

    2013-01-23

    Recurrent Non-small Cell Lung Cancer; Recurrent Prostate Cancer; Stage III Prostate Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Prostate Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  15. A rare case of non-small cell carcinoma of lung presenting as miliary mottling.

    PubMed

    Jayaram Subhashchandra, Ballaekere; Ismailkhan, Mohammed; Chikkaveeraiah Shashidhar, Kuppegala; Gopalakrishna Narahari, Moda

    2013-03-01

    Miliary mottling on chest radiography is seen in miliary tuberculosis, certain fungal infections, sarcoidosis, coal miner's pneumoconiosis, silicosis, hemosiderosis, fibrosing alveolitis, acute extrinsic allergic alveolitis, pulmonary eosinophilic syndrome, pulmonary alveolar proteinosis, and rarely in hematogenous metastases from the primary cancers of the thyroid, kidney, trophoblasts, and some sarcomas. Although very infrequent, miliary mottling can be seen in primary lung cancers. Herein, we report the case of a 28-year-old female with chest X-ray showing miliary mottling. Thoracic computed tomography (CT) features were suggestive of tuberculoma with miliary tuberculosis. CT-guided fine needle aspiration cytology confirmed the diagnosis as lower-lobe, left lung non-small cell carcinoma (adenocarcinoma). It is rare for the non-small cell carcinoma of the lung to present as miliary mottling. The rarity of our case lies in the fact that a young, non-smoking female with miliary mottling was diagnosed with non-small cell carcinoma of the lung. PMID:23645961

  16. Selection of chemotherapy for non-small cell lung cancer is facilitated by new therapeutic strategies

    PubMed Central

    Wang, Zhehai

    2014-01-01

    Nowadays, advanced non-small cell lung cancer is still an incurable disease. Recent researches have led to considerable progress in the treatment of non-small cell lung cancer. This article reviews the main studies on chemotherapy on non-small cell lung cancer and discusses the new therapeutic strategies available to date. Stable disease (SD) is necessary in chemotherapy for tumor. The proportion of population with responders or SD basically maintained similar regardless of regimens. The overall survival after chemotherapy for patients with SD was lower than patients with responders, and higher than patients with progressive disease. Greater benefits could be achieved in patients with effective induction chemotherapy using chemotherapeutic agents for maintenance therapy, whereas the benefits were relatively small for patients with SD. It has been found that epidermal growth factor receptor (EGFR) mutation status had certain correlation with the efficacy of chemotherapy. First-line chemotherapy has shown advantages in effective rate and progression free survival on EGFR mutant. EGFR mutation produced significant effects on the efficacy of postoperative adjuvant chemotherapy. Patients with EGFR mutation had a higher effective rate than wild-type EGFR patients, and patients with responders had a greater benefit in progression free survival from maintenance therapy. However, it is still necessary to carry out more careful and deeper studies and analyses on traditional cytotoxic chemotherapy, to further optimize cytotoxic chemotherapy and to use molecular targeted agents with different mechanisms. PMID:25550891

  17. Combination Chemotherapy, Radiation Therapy, and Bevacizumab in Treating Patients With Newly Diagnosed Stage III Non-Small Cell Lung Cancer That Cannot Be Removed By Surgery

    ClinicalTrials.gov

    2016-05-26

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  18. Benzopyrene promotes lung cancer A549 cell migration and invasion through up-regulating cytokine IL8 and chemokines CCL2 and CCL3 expression.

    PubMed

    Zhang, Jin; Chang, Li; Jin, Hanyu; Xia, Yaoxiong; Wang, Li; He, Wenjie; Li, Wenhui; Chen, Hong

    2016-08-01

    Tobacco-sourced carcinogen including benzopyrene (B[a]P) in lung cancer metastasis has not been fully reported. In this study, lung carcinoma A549 cell line was used to investigate the potential roles of tobacco-sourced B[a]P on cell metastasis and invasion and to assess its underlying mechanism. Effects of tobacco-sourced carcinogen on A549 cell proliferation, metastasis, and invasion were analyzed using MTT assay, Transwell assay, and scratch method, respectively. The effects of tobacco-sourced carcinogen on cytokines and chemokines secretion were detected using enzyme-linked immunosorbent assay. Moreover, correlation between inflammatory factor expression and cancer cell migration and invasion was assessed using siRNA-mediated gene silencing. Data showed that both B[a]P and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone either at high or low dose performed no significant difference on A549 cell proliferation with time increasing. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone performed no significant difference on A549 cell migration and invasion while B[a]P significantly increased A549 cell migration and invasion compared to the control group (P < 0.05). Consequently, except for IL-6, IL-8, CCL-2, and CCL-3, secretions were significantly increased by B[a]P treatment compared to the control (P < 0.05). Furthermore, when CCL-2 and CCL-3 were silenced, the migrated and invasive A549 cells were significantly decreased compared to the control, respectively (P < 0.05), while silenced IL-8 drastically decreased the migrated and invasive cells compared to the control (P < 0.01). Taken together, this study illustrated that there may be significant correlation between smoking and lung cancer metastasis. B[a]P maybe an excellent contributor for lung cancer metastasis through up-regulating IL-8, CCL-2, and CCL-3 expression. PMID:27075927

  19. Inhibition of class I histone deacetylases in non-small cell lung cancer by honokiol leads to suppression of cancer cell growth and induction of cell death in vitro and in vivo.

    PubMed

    Singh, Tripti; Prasad, Ram; Katiyar, Santosh K

    2013-01-01

    Non-small-cell lung cancer (NSCLC) represents approximately 80% of all types of lung cancer. Here, we report the chemotherapeutic effect of honokiol, a phytochemical from Magnolia grandiflora, on NSCLC cells and the molecular mechanisms underlying these effects using in vitro and in vivo models. Treatment of NSCLC cells (A549, H1299, H460 and H226) with honokiol (20, 40 and 60 µM) inhibited histone deacetylase (HDAC) activity, reduced the levels of class I HDAC proteins and enhanced histone acetyltransferase activity in a dose-dependent manner. These effects of honokiol were associated with a significant reduction in the viability of NSCLC cells. Concomitant treatment of cells with a proteasome inhibitor, MG132, prevented honokiol-induced degradation of class I HDACs, suggesting that honokiol reduced the levels of HDACs in NSCLC cells through proteasomal degradation. Valproic acid, an inhibitor of HDACs, exhibited a similar pattern of reduced viability and induction of death of NSCLC cells. Treatment of A549 and H1299 cells with honokiol resulted in an increase in G 1 phase arrest, and a decrease in the levels of cyclin D1, D2 and cyclin dependent kinases. Further, administration of honokiol by oral gavage significantly inhibited the growth of subcutaneous A549 and H1299 tumor xenografts in athymic nude mice, which was associated with the induction of apoptotic cell death and marked inhibition of class I HDACs proteins and HDAC activity in the tumor xenograft tissues. Together, our study provides new insights into the role of class I HDACs in the chemotherapeutic effects of honokiol on lung cancer cells. PMID:23221619

  20. Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells.

    PubMed

    Leclere, Lionel; Fransolet, Maude; Cote, Francois; Cambier, Pierre; Arnould, Thierry; Van Cutsem, Pierre; Michiels, Carine

    2015-01-01

    Cancer is still one of the leading causes of death worldwide, and finding new treatments remains a major challenge. Previous studies showed that modified forms of pectin, a complex polysaccharide present in the primary plant cell wall, possess anticancer properties. Nevertheless, the mechanism of action of modified pectin and the pathways involved are unclear. Here, we show that citrus pectin modified by heat treatment induced cell death in HepG2 and A549 cells. The induced cell death differs from classical apoptosis because no DNA cleavage was observed. In addition, Z-VAD-fmk, a pan-caspase inhibitor, did not influence the observed cell death in HepG2 cells but appeared to be partly protective in A549 cells, indicating that heat-modified citrus pectin might induce caspase-independent cell death. An increase in the abundance of the phosphatidylethanolamine-conjugated Light Chain 3 (LC3) protein and a decrease in p62 protein abundance were observed in both cell types when incubated in the presence of heat-modified citrus pectin. These results indicate the activation of autophagy. To our knowledge, this is the first time that autophagy has been revealed in cells incubated in the presence of a modified form of pectin. This autophagy activation appears to be protective, at least for A549 cells, because its inhibition with 3-methyladenine increased the observed modified pectin-induced cytotoxicity. This study confirms the potential of modified pectin to improve chemotherapeutic cancer treatments. PMID:25794149

  1. Heat-Modified Citrus Pectin Induces Apoptosis-Like Cell Death and Autophagy in HepG2 and A549 Cancer Cells

    PubMed Central

    Leclere, Lionel; Fransolet, Maude; Cote, Francois; Cambier, Pierre; Arnould, Thierry; Van Cutsem, Pierre; Michiels, Carine

    2015-01-01

    Cancer is still one of the leading causes of death worldwide, and finding new treatments remains a major challenge. Previous studies showed that modified forms of pectin, a complex polysaccharide present in the primary plant cell wall, possess anticancer properties. Nevertheless, the mechanism of action of modified pectin and the pathways involved are unclear. Here, we show that citrus pectin modified by heat treatment induced cell death in HepG2 and A549 cells. The induced cell death differs from classical apoptosis because no DNA cleavage was observed. In addition, Z-VAD-fmk, a pan-caspase inhibitor, did not influence the observed cell death in HepG2 cells but appeared to be partly protective in A549 cells, indicating that heat-modified citrus pectin might induce caspase-independent cell death. An increase in the abundance of the phosphatidylethanolamine-conjugated Light Chain 3 (LC3) protein and a decrease in p62 protein abundance were observed in both cell types when incubated in the presence of heat-modified citrus pectin. These results indicate the activation of autophagy. To our knowledge, this is the first time that autophagy has been revealed in cells incubated in the presence of a modified form of pectin. This autophagy activation appears to be protective, at least for A549 cells, because its inhibition with 3-methyladenine increased the observed modified pectin-induced cytotoxicity. This study confirms the potential of modified pectin to improve chemotherapeutic cancer treatments. PMID:25794149

  2. Inhibitor-Sensitive FGFR1 Amplification in Human Non-Small Cell Lung Cancer

    PubMed Central

    Dutt, Amit; Ramos, Alex H.; Hammerman, Peter S.; Mermel, Craig; Cho, Jeonghee; Sharifnia, Tanaz; Chande, Ajit; Tanaka, Kumiko Elisa; Stransky, Nicolas; Greulich, Heidi; Gray, Nathanael S.; Meyerson, Matthew

    2011-01-01

    Background Squamous cell lung carcinomas account for approximately 25% of new lung carcinoma cases and 40,000 deaths per year in the United States. Although there are multiple genomically targeted therapies for lung adenocarcinoma, none has yet been reported in squamous cell lung carcinoma. Methodology/Principal Findings Using SNP array analysis, we found that a region of chromosome segment 8p11-12 containing three genes–WHSC1L1, LETM2, and FGFR1–is amplified in 3% of lung adenocarcinomas and 21% of squamous cell lung carcinomas. Furthermore, we demonstrated that a non-small cell lung carcinoma cell line harboring focal amplification of FGFR1 is dependent on FGFR1 activity for cell growth, as treatment of this cell line either with FGFR1-specific shRNAs or with FGFR small molecule enzymatic inhibitors leads to cell growth inhibition. Conclusions/Significance These studies show that FGFR1 amplification is common in squamous cell lung cancer, and that FGFR1 may represent a promising therapeutic target in non-small cell lung cancer. PMID:21666749

  3. Marsdenia tenacissima extract restored gefitinib sensitivity in resistant non-small cell lung cancer cells.

    PubMed

    Han, Shu-Yan; Zhao, Ming-Bo; Zhuang, Gui-Bao; Li, Ping-Ping

    2012-01-01

    Most non-small cell lung cancer (NSCLC) patients responding to gefitinib harbor activating mutations in the epidermal growth factor receptor (EGFR). However, the responsive cases eventually develop the resistance to gefitinib. Besides, K-ras mutations were identified as the primary resistance to gefitinib. We investigated whether Marsdenia tenacissima extract (MTE, trade name: Xiao-Ai-Ping injection) combined with gefitinib could overcome the resistance of NSCLC cells to gefitinib. NSCLC cell lines with different sensitivities to gefitinib were studied. Cell growth and apoptosis were evaluated by MTT assay and flow cytometry, respectively. The EGFR-related signaling molecule phosphorylation was assessed by Western blotting. We found that MTE inhibited cell growth in gefitinib-sensitive and -resistant cells. In gefitinib-resistant cells, the MTE→MTE+gefitinib (M→M+G) treatment was most potent over the concurrent administration of MTE and gefitinib (M+G) or gefitinib→gefitinib+MTE (G→G+M) treatment in cell growth inhibition and apoptosis induction. The M→M+G treatment significantly reduced the phosphorylation of EGFR downstream signaling molecules PI3K/Akt/mTOR and ERK, on which MTE and gefitinib alone had no obvious effects on the resistant cells. The M→M+G treatment attenuated c-Met phosphorylation in H460 and H1975 as well. Thus, we found that the M→M+G treatment improved the sensitivity of resistant NSCLC cells carrying T790M or K-ras mutations to gefitinib, suggesting that the M→M+G treatment may be a promising therapeutic strategy to overcome gefitinib resistance in NSCLC. PMID:21757251

  4. β-Escin sodium inhibits inducible nitric oxide synthase expression via downregulation of the JAK/STAT pathway in A549 cells.

    PubMed

    Ji, Deng Bo; Xu, Bo; Liu, Jing Tao; Ran, Fu Xiang; Cui, Jing Rong

    2011-12-01

    β-escin, a triterpene saponin, is one of the major active compounds extracted from horse chestnut (Aesculus hippocastanum) seed. Previous work has found that β-escin sodium has antiinflammatory and antitumor effects. In the present study, we investigated its effect on cell proliferation and inducible nitric-oxide synthase (iNOS) expression in human lung carcinoma A549 cells. β-escin sodium (5-40 µg/mL) inhibited cytokine mixture (CM)-induced nitric oxide (NO) production in A549 cells by reducing the expression of iNOS. β-escin sodium suppressed phosphorylation and nuclear translocation of STAT1 (Tyr701) and STAT3 (Tyr705) induced by CM but did not affect the activation of c-Jun and NF-κB. β-escin sodium inhibited the activation of protein tyrosine kinase JAK2. Pervanadate treatment reversed the β-escin sodium-induced downregulation of STAT3 and STAT1. β-escin sodium treatment enhanced an activating phosphorylation of the phosphatase SHP2. Small interfering RNA-mediated knockdown of SHP2 inhibited β-escin sodium-induced phospho-STAT dephosphorylation. Moreover β-escin sodium reduced the activation of p38 MAPK. Finally, β-escin sodium inhibited the proliferation of A549 cells, did not change the cell membrane's permeability, nuclear morphology and size and the mitochondria's transmembrane potential of A549 cells. Taken together, these results demonstrate that β-escin sodium could downregulate iNOS expression through inhibiting JAK/STAT signaling and p38 MAPK activation in A549 cells. β-escin sodium has a marked antiproliferative effect on A549 cells at least in part by inhibiting the JAK/STAT signaling pathway, but not by a cytotoxic effect. β-escin sodium would be useful as a chemopreventive agent or a therapeutic against inflammatory-associated tumor. © 2011 Wiley Periodicals, Inc. PMID:21400616

  5. Deguelin inhibits the migration and invasion of lung cancer A549 and H460 cells via regulating actin cytoskeleton rearrangement.

    PubMed

    Zhao, Honggang; Jiao, Yan; Zhang, Zuncheng

    2015-01-01

    Deguelin, the main components from Mundulea sericea, was reported to suppress the growth of various cancer cells. However, the effect of Deguelin on tumor cell invasion and metastasis and its mechanism still unclear so far. In this study, we investigated the effects of Deguelin on the cell invasion in human lung cancer A549 and H460 cells. Our results demonstrate that Deguelin can significantly inhibited cell proliferation, cell migration and cell invasion. Moreover, Deguelin could also affected reorganization of the actin cytoskeleton and decreased filopodia and lamellipodia formation. Furthermore, deguelin-treated tumors showed decreased the tumor metastasis related genes such as CD44, MMP2 and MMP9 at protein and mRNA levels and the content of CEA, SCC, NSE, CYFAR21-1. In addition, Deguelin down-regulated protein expression of Rac1 and Rock1, which are impotent in actin cytoskeleton rearrangements and cell motility. Together, our results suggest that Deguelin inhibit tumor growth and metastasis of lung cancer cells and might be a candidate compound for curing lung cancer. PMID:26884827

  6. REV3L modulates cisplatin sensitivity of non-small cell lung cancer H1299 cells.

    PubMed

    Wang, Wenjie; Sheng, Wenjiong; Yu, Chenxiao; Cao, Jianping; Zhou, Jundong; Wu, Jinchang; Zhang, Huojun; Zhang, Shuyu

    2015-09-01

    Lung cancer remains the leading cause of cancer-related mortality worldwide and non-small cell lung cancer (NSCLC) accounts for approximately 80-85% of all cases of lung cancer. Cisplatin plays a significant role in the management of human lung cancer. Translesion DNA synthesis (TLS) is involved in DNA damage repair. DNA polymerase ζ (Pol ζ) is able to mediate the DNA replication bypass of DNA damage, which is suggested to be involved in chemoresistance. REV3L is the catalytic subunit of Pol ζ. Due to its critical role in translesion DNA synthesis, whether REV3L modulates cisplatin response in NSCLC cells remains unknown. In this study, REV3L overexpression and silencing H1299 cell lines were established. The reports showed that cisplatin induced the expression of REV3L by recruiting Sp1 to its promoter. Similar results were obtained when the ability of the cells to express luciferase from a platinated plasmid was measured. Co-transfection of the reporter with the REV3L overexpression vector or REV3L plus REV7L significantly enhanced the reporter activity. Nuclear condensation and fragmentation of shRNA-REV3L H1299 cells were more pronounced than shRNA-NC H1299 cells after cisplatin exposure, indicating that REV3L overexpression abolished cisplatin-induced DNA damage. Moreover, a forced expression of REV3L conferred the resistance of H1299 cells to cisplatin, whereas the knockdown of REV3L sensitized cisplatin efficacy in H1299 cells. Taken together, we demonstrated that inhibition of REV3L sensitized lung cancer H1299 cells to cisplatin treatment. Thus, REV3L may be a novel target for the chemotherapy of NSCLC. PMID:26165320

  7. Capturing the metabolomic diversity of KRAS mutants in non-small-cell lung cancer cells

    PubMed Central

    Marabese, Mirko; Broggini, Massimo; Pastorelli, Roberta

    2014-01-01

    In non-small-cell lung cancer (NSCLC), one-fifth of patients have KRAS mutations, which are considered a negative predictive factor to first-line therapy. Evidence is emerging that not all KRAS mutations have the same biological activities and possible remodeling of cell metabolism by KRAS activation might complicate the scenario. An open question is whether different KRAS mutations at codon-12 affect cellular metabolism differently with possible implications for different responses to cancer treatments. We applied an explorative mass spectrometry-based untargeted metabolomics strategy to characterize the largest possible number of metabolites that might distinguish isogenic NSCLC cells overexpressing mutated forms of KRAS at codon-12 (G12C, G12D, G12V) and the wild-type. The glutamine deprivation assay and real-time PCR were used to confirm the involvement of some of the metabolic pathways highlighted. Cell clones indicated distinct metabolomic profiles in KRAS wild-type and mutants. Clones harboring different KRAS mutations at codon-12 also had different metabolic remodeling, such as a different redox buffering system and different glutamine-dependency not driven by the transcriptional state of enzymes involved in glutaminolysis. These findings indicate that KRAS mutations at codon-12 are associated with different metabolomic profiles that might affect the responses to cancer treatments. PMID:24952473

  8. Veliparib, Cisplatin, and Gemcitabine Hydrochloride in Treating Patients With Advanced Biliary, Pancreatic, Urothelial, or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-07-01

    Advanced Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Regional Transitional Cell Cancer of the Renal Pelvis and Ureter; Stage III Bladder Cancer; Stage III Pancreatic Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Bladder Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Pancreatic Cancer; Transitional Cell Carcinoma of the Bladder; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer

  9. In vitro antiproliferative effect of trastuzumab (Herceptin(®)) combined with cetuximab (Erbitux(®)) in a model of human non-small cell lung cancer expressing EGFR and HER2.

    PubMed

    Privitera, G; Luca, T; Musso, N; Vancheri, C; Crimi, N; Barresi, V; Condorelli, D; Castorina, S

    2016-05-01

    Lung cancer is the leading cause of cancer death. For this reason, new therapies are needed for the treatment of this devastating disease. In this study, we investigated the effects of combining cetuximab and the trastuzumab on the growth of a model of human non-small cell lung carcinoma cell line (A549). The results were compared with those obtained from a human lung squamous carcinoma cell line (NCI-H226). Both cell lines were treated with cetuximab and trastuzumab, alone or in combination, at various concentrations, for 24, 48 and 72 h. Cell proliferation was measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. EGFR and HER-2 mRNA expression was detected by reverse transcription polymerase chain reaction, and the gene amplification status of receptors was evaluated by fluorescence in situ hybridisation. The colorimetric proliferation assay showed that trastuzumab combined with cetuximab significantly inhibited A549 cells at a dose of 40 μg/ml after 72 h of treatment (p < 0.05), while no time-dose dependent inhibition was observed in NCI-H226 cells. The combined treatment influenced both levels of EGFR and HER-2 mRNA in A549 cells and only EGFR mRNA levels in NCI-H226 cells. Fluorescence in situ hybridisation showed that both cell lines were aneuploid for the two genes with equally increased EGFR and CEN7 signals, as well as HER-2 and CEN17 signals, indicating a condition of polysomy without amplification. The preliminary results of this study encourage further investigations to elucidate the downstream events involved and to understand how these mechanisms influence non-small cell lung cancers growth. PMID:25716471

  10. Non-small cell lung cancer cell survival crucially depends on functional insulin receptors.

    PubMed

    Frisch, Carolin Maria; Zimmermann, Katrin; Zilleßen, Pia; Pfeifer, Alexander; Racké, Kurt; Mayer, Peter

    2015-08-01

    Insulin plays an important role as a growth factor and its contribution to tumor proliferation is intensely discussed. It acts via the cognate insulin receptor (IR) but can also activate the IGF1 receptor (IGF1R). Apart from increasing proliferation, insulin might have additional effects in lung cancer. Therefore, we investigated insulin action and effects of IR knockdown (KD) in three (NCI-H292, NCI-H226 and NCI-H460) independent non-small cell lung cancer (NSCLC) cell lines. All lung cancer lines studied were found to express IR, albeit with marked differences in the ratio of the two variants IR-A and IR-B. Insulin activated the classical signaling pathway with IR autophosphorylation and Akt phosphorylation. Moreover, activation of MAPK was observed in H292 cells, accompanied by enhanced proliferation. Lentiviral shRNA IR KD caused strong decrease in survival of all three lines, indicating that the effects of insulin in lung cancer go beyond enhancing proliferation. Unspecific effects were ruled out by employing further shRNAs and different insulin-responsive cells (human pre-adipocytes) for comparison. Caspase assays demonstrated that IR KD strongly induced apoptosis in these lung cancer cells, providing the physiological basis of the rapid cell loss. In search for the underlying mechanism, we analyzed alterations in the gene expression profile in response to IR KD. A strong induction of certain cytokines (e.g. IL20 and tumour necrosis factor) became obvious and it turned out that these cytokines trigger apoptosis in the NSCLC cells tested. This indicates a novel role of IR in tumor cell survival via suppression of pro-apoptotic cytokines. PMID:26113601

  11. Inhibition of RAC1-GEF DOCK3 by miR-512-3p contributes to suppression of metastasis in non-small cell lung cancer.

    PubMed

    Zhu, Xingli; Gao, Guanghui; Chu, Kaili; Yang, Xiufang; Ren, Shengxiang; Li, Yao; Wu, Hai; Huang, Yan; Zhou, Caicun

    2015-04-01

    MicroRNAs are a class of small non-coding RNAs regulating gene expression. In this study, we demonstrated that retinoic acid (RA) treatment increases the expression of miR-512-3p. Overexpression of miR-512-3p inhibited cell adhesion, migration, and invasion in non-small cell lung cancer (NSCLC) cell lines A549 and H1299. miR-512-3p inhibitor partially reversed these effects in H1299 cells stably expressing miR-512. We identified DOCK3, a RAC1-GEF (guanine nucleotide exchange factor), as a target gene of miR-512-3p. Overexpression of miR-512-3p led to the decrease of DOCK3 protein but not its mRNA. Knockdown of DOCK3 resulted in similar effects on adhesion, migration, and invasion as observed of miR-512-3p overexpression. Active RAC1 pull-down assay indicated that overexpression of miR-512-3p could decrease the activity of RAC1 with a higher efficiency than that of DOCK3 knockdown. Furthermore, expression of miR-512-3p was suppressed in most NSCLC patient tumor samples compared to its paired normal controls, suggesting that miR-512-3p might play a crucial role in lung cancer development. In conclusion, our results supported that miR-512-3p could inhibit tumor cell adhesion, migration, and invasion by regulating the RAC1 activity via DOCK3 in NSCLC A549 and H1299 cell lines. PMID:25687035

  12. MicroRNA-455 suppresses non-small cell lung cancer through targeting ZEB1.

    PubMed

    Li, Ying-Jie; Ping, Chen; Tang, Jian; Zhang, Wen

    2016-06-01

    MicroRNA-455 (miRNA-455), which is downregulated in human cancer, potently mediates the multiple steps of carcinogenesis. However, the role of miR-455 in non-small cell lung cancer (NSCLC) carcinogenesis remains unclear. In present study, we determined the mature miRNA-455 expression in NSCLC tissues and cells by real-time PCR. Follow-up studies examined the effects of a miR-455 mimic (gain of function) on cell proliferation, migration, and invasion. Our data indicate that miR-455 was significantly down-regulated in NSCLC cell lines and tissues. In functional assays, overexpression of miR-455 suppressed the proliferation, migration, and invasion of NSCLC cell lines. Data from reporter assays showed that miR-455 directly binds to 3'UTR of ZEB1 and suppresses the endogenous level of ZEB1 protein expression. Furthermore, overexpression of ZEB1 reverses miR-455-suppressed malignant phenotype of NSCLC cells. Moreover, we found that upregulation of ZEB1 expression is inversely associated with miR-455 expression in NSCLC tissues. Taken together, miR-455 as an anti-oncogene in non-small cell lung cancer through up-regulation of ZEB1 and serve as a potential therapeutic target in NSCLC. PMID:26801503

  13. SKA1 regulates the metastasis and cisplatin resistance of non-small cell lung cancer

    PubMed Central

    SHEN, LIHUA; YANG, MIN; LIN, QIONGHUA; ZHANG, ZHONGWEI; MIAO, CHANGHONG; ZHU, BIAO

    2016-01-01

    Currently, chemotherapy with platinum-based drugs including cisplatin is the most effective therapy for the treatment of non-small cell lung carcinoma (NSCLC). However, the efficacy of chemotherapy is limited due to commonly developed drug resistance. Spindle and kinetochore-associated complex subunit 1 (SKA1) is part of a complex essential for stabilizing the attachment of spindle microtubules to kinetochores and for maintaining the metaphase plate during mitosis. In the present study, we aimed to investigate the role of SKA1 in the process of metastasis and drug resistance of NSCLC. We completed a series of experiments to investigate the function of SKA1 in NSCLC metastasis and drug resistance including qRT-PCR, immunohistochemistry and western blotting, as well as MTT, BrdU, wounded healing, Transwell and gelatin zymography assays. We demonstrated that the expression levels of SKA1 were elevated in NSCLC and were correlated with cancer progression and malignancy. We also reported that SKA1 positively regulated the proliferation and metastatic ability of NSCLC cells. In addition, we determined that SKA1 contributed to cisplatin resistance in NSCLC cells by protecting these cells from cisplatin-induced cell apoptosis. SKA1 also appeared to regulate the ERK1/2 and the Akt-mediated signaling pathways in NSCLC cells. SKA1 is required for metastasis and cisplatin resistance of non-small cell lung cancer. PMID:26985856

  14. SKA1 regulates the metastasis and cisplatin resistance of non-small cell lung cancer.

    PubMed

    Shen, Lihua; Yang, Min; Lin, Qionghua; Zhang, Zhongwei; Miao, Changhong; Zhu, Biao

    2016-05-01

    Currently, chemotherapy with platinum-based drugs including cisplatin is the most effective therapy for the treatment of non-small cell lung carcinoma (NSCLC). However, the efficacy of chemotherapy is limited due to commonly developed drug resistance. Spindle and kinetochore-associated complex subunit 1 (SKA1) is part of a complex essential for stabilizing the attachment of spindle microtubules to kinetochores and for maintaining the metaphase plate during mitosis. In the present study, we aimed to investigate the role of SKA1 in the process of metastasis and drug resistance of NSCLC. We completed a series of experiments to investigate the function of SKA1 in NSCLC metastasis and drug resistance including qRT-PCR, immunohistochemistry and western blotting, as well as MTT, BrdU, wounded healing, Transwell and gelatin zymography assays. We demonstrated that the expression levels of SKA1 were elevated in NSCLC and were correlated with cancer progression and malignancy. We also reported that SKA1 positively regulated the proliferation and metastatic ability of NSCLC cells. In addition, we determined that SKA1 contributed to cisplatin resistance in NSCLC cells by protecting these cells from cisplatin-induced cell apoptosis. SKA1 also appeared to regulate the ERK1/2 and the Akt-mediated signaling pathways in NSCLC cells. SKA1 is required for metastasis and cisplatin resistance of non-small cell lung cancer. PMID:26985856

  15. Clinical Utility of Circulating Tumor Cells in ALK-Positive Non-Small-Cell Lung Cancer

    PubMed Central

    Faugeroux, Vincent; Pailler, Emma; Auger, Nathalie; Taylor, Melissa; Farace, Françoise

    2014-01-01

    The advent of rationally targeted therapies such as small-molecule tyrosine kinase inhibitors (TKIs) has considerably transformed the therapeutic management of a subset of patients with non-small-cell lung cancer (NSCLC) harboring defined molecular abnormalities. When such genetic molecular alterations are detected the use of specific TKI has demonstrated better results (overall response rate, progression free survival) compared to systemic therapy. However, the detection of such molecular abnormalities is complicated by the difficulty in obtaining sufficient tumor material, in terms of quantity and quality, from a biopsy. Here, we described how circulating tumor cells (CTCs) can have a clinical utility in anaplastic lymphoma kinase (ALK) positive NSCLC patients to diagnose ALK-EML4 gene rearrangement and to guide therapeutic management of these patients. The ability to detect genetic abnormalities such ALK rearrangement in CTCs shows that these cells could offer new perspectives both for the diagnosis and the monitoring of ALK-positive patients eligible for treatment with ALK inhibitors. PMID:25414829

  16. Clinical Utility of Circulating Tumor Cells in ALK-Positive Non-Small-Cell Lung Cancer.

    PubMed

    Faugeroux, Vincent; Pailler, Emma; Auger, Nathalie; Taylor, Melissa; Farace, Françoise

    2014-01-01

    The advent of rationally targeted therapies such as small-molecule tyrosine kinase inhibitors (TKIs) has considerably transformed the therapeutic management of a subset of patients with non-small-cell lung cancer (NSCLC) harboring defined molecular abnormalities. When such genetic molecular alterations are detected the use of specific TKI has demonstrated better results (overall response rate, progression free survival) compared to systemic therapy. However, the detection of such molecular abnormalities is complicated by the difficulty in obtaining sufficient tumor material, in terms of quantity and quality, from a biopsy. Here, we described how circulating tumor cells (CTCs) can have a clinical utility in anaplastic lymphoma kinase (ALK) positive NSCLC patients to diagnose ALK-EML4 gene rearrangement and to guide therapeutic management of these patients. The ability to detect genetic abnormalities such ALK rearrangement in CTCs shows that these cells could offer new perspectives both for the diagnosis and the monitoring of ALK-positive patients eligible for treatment with ALK inhibitors. PMID:25414829

  17. Aspirin-triggered lipoxins (15-epi-LX) are generated by the human lung adenocarcinoma cell line (A549)-neutrophil interactions and are potent inhibitors of cell proliferation.

    PubMed Central

    Clària, J.; Lee, M. H.; Serhan, C. N.

    1996-01-01

    BACKGROUND: The mechanism by which aspirin (ASA) acts to protect against human cancer is not yet known. We recently showed that ASA triggers the formation of a new series of potent bioactive eicosanoids, 15-epi-lipoxins (15-epi-LXs or ASA-triggered LX [ATL]), during interactions between prostaglandin endoperoxide synthase-2 (PGHS-2) in endothelial cells and 5-lipoxygenase (LO) in leukocytes. Here, we investigated the transcellular biosynthesis of these eicosanoids during costimulation of the human tumor A549 cell line (alveolar type II epithelial cells) and neutrophils, and evaluated their impact on cell proliferation. MATERIALS AND METHODS: A549 cells and isolated neutrophils were coincubated and mRNA expression levels of key enzymes in eicosanoid biosynthesis were measured. In addition, product formation was analysed by physical methods. The effect of LX on cell proliferation was determined by using a soluble microculture tetrazolium (MTT) assay and by measuring [3H]-thymidine incorporation. RESULTS: Interleukin-1 beta (IL-1 beta)-primed A549 cells showed selective elevation in the levels of PGHS-2 mRNA and generated 15-hydroxyeicosatetraenoic acid (15-HETE). ASA markedly increased 15-HETE formation by A549 cells, while treatment with an inhibitor of cytochrome P450 reduced by approximately 50%, implicating both PGHS-2- and cytochrome P450-initiated routes in 15-HETE biosynthesis in these cells. Maximal production of 15-HETE from endogenous sources occurred within 24 hr of cytokine (IL-1 beta) exposure and declined thereafter. Chiral analysis revealed that approximately 85% of ASA-triggered epithelial-derived 15-HETE carries its carbon 15 alcohol group in the R configuration. Costimulation of ASA-treated A549 cells and polymorphonuclear neutrophilic leukocytes (PMN) led to production of both LXA4 and LXB4, as well as 15-epi-LXA4 and 15-epi-LXB4 (9.5 +/- 0.5 ng LX/10(7) A549 cells). 15-epi-LXA4 accounted for approximately 88% of the total amount of LXA4 produced

  18. Pre-B cell colony enhancing factor induces Nampt-dependent translocation of the insulin receptor out of lipid microdomains in A549 lung epithelial cells.

    PubMed

    Peng, Qianyi; Jia, Song Hui; Parodo, Jean; Ai, Yuhang; Marshall, John C

    2015-02-15

    Pre-B cell colony-enhancing factor (PBEF) is a highly conserved pleiotropic protein reported to be an alternate ligand for the insulin receptor (IR). We sought to clarify the relationship between PBEF and insulin signaling by evaluating the effects of PBEF on the localization of the IRβ chain to lipid rafts in A549 epithelial cells. We isolated lipid rafts from A549 cells and detected the IR by immunoprecipitation from raft fractions or whole cell lysates. Cells were treated with rPBEF, its enzymatic product nicotinamide adenine dinucleotide (NAD), or the Nampt inhibitor daporinad to study the effect of PBEF on IRβ movement. We used coimmunoprecipitation studies in cells transfected with PBEF and IRβ constructs to detect interactions between PBEF, the IRβ, and caveolin-1 (Cav-1). PBEF was present in both lipid raft and nonraft fractions, whereas the IR was found only in lipid raft fractions of resting A549 cells. The IR-, PBEF-, and Cav-1-coimmunoprecipitated rPBEF treatment resulted in the movement of IRβ- and tyrosine-phosphorylated Cav-1 from lipid rafts to nonrafts, an effect that could be blocked by daporinad, suggesting that this effect was facilitated by the Nampt activity of PBEF. The addition of PBEF to insulin-treated cells resulted in reduced Akt phosphorylation of both Ser⁴⁷³ and Thr³⁰⁸. We conclude that PBEF can inhibit insulin signaling through the IR by Nampt-dependent promotion of IR translocation into the nonraft domains of A549 epithelial cells. PBEF-induced alterations in the spatial geometry of the IR provide a mechanistic explanation for insulin resistance in inflammatory states associated with upregulation of PBEF. PMID:25516545

  19. Effects of Fatty Acids on Benzo[a]pyrene Uptake and Metabolism in Human Lung Adenocarcinoma A549 Cells

    PubMed Central

    Barhoumi, Rola; Mouneimne, Youssef; Chapkin, Robert S.; Burghardt, Robert C.

    2014-01-01

    Dietary supplementation with natural chemoprotective agents is receiving considerable attention because of health benefits and lack of toxicity. In recent in vivo and in vitro experimental studies, diets rich in n-3 polyunsaturated fatty acids have been shown to provide significant anti-tumor action. In this investigation, the effects of control fatty acids (oleic acid (OA), linoleic acid (LA)) and n-3 PUFA, e.g., docosahexaenoic acid (DHA) on the uptake and metabolism of the carcinogenic polycyclic aromatic hydrocarbon, benzo[a]pyrene (BaP) was investigated in A549 cells, a human adenocarcinoma alveolar basal epithelial cell line. A549 cells activate BaP through the cytochrome P450 enzyme system to form reactive metabolites, a few of which covalently bind to DNA and proteins. Therefore, multiphoton microscopy spectral analysis combined with linear unmixing was used to identify the parent compound and BaP metabolites formed in cells, in the presence and absence of fatty acids. The relative abundance of select metabolites was associated with altered P450 activity as determined using ethoxyresorufin-O-deethylase activity in cells cultured in the presence of BSA-conjugated fatty acids. In addition, the parent compound within cellular membranes increases significantly in the presence of each of the fatty acids, with the greatest accumulation observed following DHA treatment. DHA treated cells exhibit significantly lower pyrene-like metabolites indicative of lower adducts including DNA adducts compared to control BSA, OA or LA treated cells. Further, DHA reduced the abundance of the proximate carcinogen BaP 7,8-dihydrodiol and the 3-hydroxybenzo[a]pyene metabolites compared to other treatments. The significant changes in BaP metabolites in DHA treated cells may be mediated by the effects on the physicochemical properties of the membrane known to affect enzyme activity related to phase I and phase II metabolism. In summary, DHA is a highly bioactive chemo

  20. New and emerging targeted treatments in advanced non-small-cell lung cancer.

    PubMed

    Hirsch, Fred R; Suda, Kenichi; Wiens, Jacinta; Bunn, Paul A

    2016-09-01

    Targeted therapies are substantially changing the management of lung cancers. These treatments include drugs that target driver mutations, those that target presumed important molecules in cancer cell proliferation and survival, and those that inhibit immune checkpoint molecules. This area of research progresses day by day, with novel target discoveries, novel drug development, and use of novel combination treatments. Researchers and clinicians have also extensively investigated the predictive biomarkers and the molecular mechanisms underlying inherent or acquired resistance to these targeted therapies. We review recent progress in the development of targeted treatments for patients with advanced non-small-cell lung cancer, especially focusing on data from published clinical trials. PMID:27598681

  1. Understanding the Rationale for Immunotherapy in Non-Small Cell Lung Cancer.

    PubMed

    Pennell, Nathan A

    2015-10-01

    Although immunotherapy has been used for decades in immunogenic tumor types, such as melanoma and renal cell carcinoma, historically immunotherapeutic approaches in other tumor types, including non-small cell lung cancer (NSCLC), have met with failure. Nonetheless, evidence exists supporting the role of the immune system in tumor suppression, even in tumor types believed to be non-immunogenic. In NSCLC, immune checkpoint molecules have recently proven to be successful targets, with nivolumab, the first immune checkpoint inhibitor indicated for NSCLC, approved by the US Food and Drug Administration in March 2015. Several other immune checkpoint inhibitors are currently in phase III development in NSCLC. PMID:26477472

  2. Opsoclonus-myoclonus syndrome associated with non-small cell lung cancer.

    PubMed

    Karasaki, Takahiro; Tanaka, Makoto

    2015-11-01

    A 68-year-old man developed progressive vertigo, saccadic eye movements, and tremors. Computed tomography showed multiple lung nodules. Surgery was performed and the pathological diagnosis was large cell neuroendocrine carcinoma in the left upper lobe with ipsilobar metastases, and adenocarcinoma in the left lower lobe. The neurological symptoms resolved dramatically after complete resection of the tumors. Opsoclonus-myoclonus syndrome associated with non-small-cell lung carcinoma is extremely rare. Surgery should not be delayed if a complete resection is expected. PMID:26038602

  3. Preclinical and Pilot Clinical Studies of Docetaxel Chemoradiation for Stage III Non-Small-Cell Lung Cancer

    SciTech Connect

    Chen Yuhchyau; Pandya, Kishan J.; Hyrien, Ollivier; Keng, Peter C.; Smudzin, Therese; Anderson, Joy; Qazi, Raman; Smith, Brian; Watson, Thomas J.; Feins, Richard H.; Johnstone, David W.

    2011-08-01

    Purpose: Local and distant failure rates remain high despite aggressive chemoradiation (CRT) treatment for Stage III non-small-cell lung cancer. We conducted preclinical studies of docetaxel's cytotoxic and radiosensitizing effects on lung cancer cell lines and designed a pilot study to target distant micrometastasis upfront with one-cycle induction chemotherapy, followed by low-dose radiosensitizing docetaxel CRT. Methods and Materials: A preclinical study was conducted in human lung cancer cell lines NCI 520 and A549. Cells were treated with two concentrations of docetaxel for 3 h and then irradiated immediately or after a 24-h delay. A clonogenic survival assay was conducted and analyzed for cytotoxic effects vs. radiosensitizing effects of docetaxel. A pilot clinical study was designed based on preclinical study findings. Twenty-two patients were enrolled with a median follow-up of 4 years. Induction chemotherapy consisted of 75 mg/m{sup 2} of docetaxel and 75 mg/m{sup 2} of cisplatin on Day 1 and 150 mg/m{sup 2} of recombinant human granulocyte colony-stimulating factor on Days 2 through 10. Concurrent CRT was started 3 to 6 weeks later with twice-weekly docetaxel at 10 to 12 mg/m{sup 2} and daily delayed radiation in 1.8-Gy fractions to 64.5 Gy for gross disease. Results: The preclinical study showed potent cytotoxic effects of docetaxel and subadditive radiosensitizing effects. Delaying radiation resulted in more cancer cell death. The pilot clinical study resulted in a median survival of 32.6 months for the entire cohort, with 3- and 5-year survival rates of 50% and 19%, respectively, and a distant metastasis-free survival rate of 61% for both 3 and 5 years. A pattern-of-failure analysis showed 75% chest failures and 36% all-distant failures. Therapy was well tolerated with Grade 3 esophagitis observed in 23% of patients. Conclusions: One-cycle full-dose docetaxel/cisplatin induction chemotherapy with recombinant human granulocyte colony-stimulating factor

  4. Cytochrome P450 ω-hydroxylase promotes angiogenesis and metastasis by upregulation of VEGF and MMP-9 in non-small cell lung cancer

    PubMed Central

    Yu, Wei; Chen, Li; Yang, Yu-Qing; Falck, John R.; Guo, Austin M.; Li, Ying

    2013-01-01

    Purpose Cytochrome P450 (CYP) ω-hydroxylase, mainly consisting of CYP4A and CYP4F, converts arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE) that induces angiogenic responses in vivo and in vitro. The present study examined the role of CYP ω-hydroxylase in angiogenesis and metastasis of human non-small cell lung cancer (NSCLC). Methods The effect of WIT003, a stable 20-HETE analog, on invasion was evaluated using a modified Boyden chamber in three NSCLC cell lines. A549 cells were transfected with CYP4A11 expression vector or exposed to CYP ω-hydroxylase inhibitor (HET0016) or 20-HETE antagonist (WIT002), and then ω-hydroxylation activity toward arachidonic acid and the levels of matrix metalloproteinases (MMPs) and VEGF were detected. The in vivo effects of CYP ω-hydroxylase were tested in established tumor xenografts and an experimental metastasis model in athymic mice. Results Addition of WIT003 or overexpression of CYP4A11 with an associated increase in 20-HETE production significantly induced invasion and expression of VEGF and MMP-9. Treatment of A549 cells with HET0016 or WIT002 inhibited invasion with reduction in VEGF and MMP-9. The PI3 K or ERK inhibitors also attenuated expression of VEGF and MMP-9. Compared with control, CYP4A11 transfection significantly increased tumor weight, microvessel density (MVD), and lung metastasis by 2.5-fold, 2-fold, and 3-fold, respectively. In contrast, WIT002 or HET0016 decreased tumor volume, MVD, and spontaneous pulmonary metastasis occurrences. Conclusion CYP ω-hydroxylase promotes tumor angiogenesis and metastasis by upregulation of VEGF and MMP-9 via PI3 K and ERK1/2 signaling in human NSCLC cells. PMID:21120482

  5. Synergistic Effects between mTOR Complex 1/2 and Glycolysis Inhibitors in Non-Small-Cell Lung Carcinoma Cells

    PubMed Central

    Wen, Ruiling; Xiao, Yingying; Tang, Jun

    2015-01-01

    Cancer metabolism has greatly interested researchers. Mammalian target of rapamycin (mTOR) is dysregulated in a variety of cancers and considered to be an appealing therapeutic target. It has been proven that growth factor signal, mediated by mTOR complex 1 (mTORC1), drives cancer metabolism by regulating key enzymes in metabolic pathways. However, the role of mTORC2 in cancer metabolism has not been thoroughly investigated. In this study, by employing automated spectrophotometry, we found the level of glucose uptake was decreased in non-small-cell lung carcinoma (NSCLC) A549, PC-9 and SK-MES-1 cells treated with rapamycin or siRNA against Raptor, indicating that the inhibition of mTORC1 attenuated glycolytic metabolism in NSCLC cells. Moreover, the inhibition of AKT reduced glucose uptake in the cells as well, suggesting the involvement of AKT pathway in mTORC1 mediated glycolytic metabolism. Furthermore, our results showed a significant decrease in glucose uptake in rictor down-regulated NSCLC cells, implying a critical role of mTORC2 in NSCLC cell glycolysis. In addition, the experiments for MTT, ATP, and clonogenic assays demonstrated a reduction in cell proliferation, cell viability, and colony forming ability in mTOR inhibiting NSCLC cells. Interestingly, the combined application of mTORC1/2 inhibitors and glycolysis inhibitor not only suppressed the cell proliferation and colony formation, but also induced cell apoptosis, and such an effect of the combined application was stronger than that caused by mTORC1/2 inhibitors alone. In conclusion, this study reports a novel effect of mTORC2 on NSCLC cell metabolism, and reveals the synergistic effects between mTOR complex 1/2 and glycolysis inhibitors, suggesting that the combined application of mTORC1/2 and glycolysis inhibitors may be a new promising approach to treat NSCLC. PMID:26176608

  6. PrtT-Regulated Proteins Secreted by Aspergillus fumigatus Activate MAPK Signaling in Exposed A549 Lung Cells Leading to Necrotic Cell Death

    PubMed Central

    Sharon, Haim; Amar, David; Levdansky, Emma; Mircus, Gabriel; Shadkchan, Yana; Shamir, Ron; Osherov, Nir

    2011-01-01

    Aspergillus fumigatus is the most commonly encountered mold pathogen of humans, predominantly infecting the respiratory system. Colonization and penetration of the lung alveolar epithelium is a key but poorly understood step in the infection process. This study focused on identifying the transcriptional and cell-signaling responses activated in A549 alveolar carcinoma cells incubated in the presence of A. fumigatus wild-type and ΔPrtT protease-deficient germinating conidia and culture filtrates (CF). Microarray analysis of exposed A549 cells identified distinct classes of genes whose expression is altered in the presence of germinating conidia and CF and suggested the involvement of both NFkB and MAPK signaling pathways in mediating the cellular response. Phosphoprotein analysis of A549 cells confirmed that JNK and ERK1/2 are phosphorylated in response to CF from wild-type A. fumigatus and not phosphorylated in response to CF from the ΔPrtT protease-deficient strain. Inhibition of JNK or ERK1/2 kinase activity substantially decreased CF-induced cell damage, including cell peeling, actin-cytoskeleton damage, and reduction in metabolic activity and necrotic death. These results suggest that inhibition of MAPK-mediated host responses to treatment with A. fumigatus CF decreases cellular damage, a finding with possible clinical implications. PMID:21412410

  7. N-myc downstream regulated gene 2 overexpression reduces matrix metalloproteinase-2 and -9 activities and cell invasion of A549 lung cancer cell line in vitro

    PubMed Central

    Faraji, Seyed Nooredin; Mojtahedi, Zahra; Ghalamfarsa, Ghasem; Takhshid, Mohammad Ali

    2015-01-01

    Objective(s): N-myc downstream regulated gene 2 (NDRG2) is a candidate gene for tumor suppression. The expression of NDRG2 is down-regulated in several tumors including lung cancer. The aim of this study was to explore the effect of NDRG2 overexpression on invasion, migration, and enzymatic activity of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) in human lung adenocarcinoma A549 cells. Materials and Methods: A recombinant plasmid encoding green fluorescent protein (GFP)-tagged NDRG2 (pCMV6-AC-NDRG2-GFP) was used to overexpress GFP-tagged NDRG2 in A549 cells. The cells in the experimental group and those in the control group were transfected with pCMV6-AC-NDRG2-GFP and a control plasmid without NDRG2 (pCMV6-AC-GFP), respectively. Fluorescent microscopy and flowcytometry analysis of GFP expression were used to evaluate the cellular expression of GFP-tagged NDRG2 and the efficiency of transfection. The effects of NDRG2 expression on cell invasion and migration were evaluated using transwell filter migration assay. The gelatinase activity of secreted MMP-2 and MMP-9 was measured by gelatin zymography. Results: Our results demonstrated the expression of GFP-tagged NDRG2 in the cytoplasm and nucleus of A549 cells. The findings of transwell assay showed that NDRG2 overexpression reduced migration and invasion of A549 cells compared to control cells. Gelatin zymography analyses revealed that NDRG2 overexpression decreased the gelatinase activity of secreted MMP-2 and MMP-9. Conclusion: These findings suggest that NDRG2 may be a new anti-invasion factor in lung cancer that inhibits MMPs activities. PMID:26557966

  8. Cell cycle inhibitory activity of Piper longum against A549 cell line and its protective effect against metal-induced toxicity in rats.

    PubMed

    Sharma, Amit Kumar; Kumar, Shashank; Chashoo, Gousia; Saxena, Ajit K; Pandey, Abhay K

    2014-10-01

    Anticancer potential of Piper longum fruit against human cancer cell lines (DU-145 prostate, A549 lung, THP-1 leukemia, IGR-OVI-1 ovary and MCF-7 breast) as well as its in vitro and in vivo biochemical efficacy in A1Cl3-induced hepatotoxicity were evaluated in the rats. Dried samples were extracted with several solvents using soxhlet apparatus. Flavonoid content in chloroform, benzene, ethyl alcohol and aqueous extracts of fruit was 19, 14, 12 and 11 μg quercetin equivalent/mg of sample, respectively. Hexane extracts exhibited 90-92% cytotoxicity against most of the test cell lines (A549, THP-1, IGR-OVI-1 and MCF-7), while benzene extract displayed 84-87% cytotoxicity against MCF-7, IGR-OV-1 and THP-1 cell lines. Among extracts, hexane, benzene and acetone extracts demonstrated considerable cytotoxicity (91-95%) against A549 (lung cancer) cell line in Sulforhodamine B dye (SRB) assay. Cell cycle analysis revealed that hexane, benzene and acetone extracts produced 41, 63 and 43% sub-G1 DNA fraction, demonstrating cell cycle inhibitory potential of these extracts against A549 cell line. Chloroform, ethyl alcohol and aqueous extracts displayed 71, 64 and 65% membrane protective activity, respectively in lipid peroxidation inhibition assay. P. longum fruit extracts also ameliorated A1Cl3-induced hepatotoxicity, as indicated by alterations observed in serum enzymes ALP, SGOT and SGPT activity, as well as creatinine and bilirubin contents. In conclusion, study established the cytotoxic and hepatoprotective activity in P. longum extracts. PMID:25630105

  9. Role of Chemokines in Non-Small Cell Lung Cancer: Angiogenesis and Inflammation

    PubMed Central

    Rivas-Fuentes, Selma; Salgado-Aguayo, Alfonso; Pertuz Belloso, Silvana; Gorocica Rosete, Patricia; Alvarado-Vásquez, Noé; Aquino-Jarquin, Guillermo

    2015-01-01

    Non-small cell lung cancer (NSCLC) is one of the most common types of aggressive cancer. The tumor tissue, which shows an active angiogenesis, is composed of neoplastic and stromal cells, and an abundant inflammatory infiltrate. Angiogenesis is important to support tumor growth, while infiltrating cells contribute to the tumor microenvironment through the secretion of growth factors, cytokines and chemokines, important molecules in the progression of the disease. Chemokines are important in development, activation of the immune response, and physiological angiogenesis. Chemokines have emerged as important regulators in the pathophysiology of cancer. These molecules are involved in the angiogenesis/angiostasis balance and in the recruitment of tumor infiltrating hematopoietic cells. In addition, chemokines promote tumor cell survival, as well as the directing and establishment of tumor cells to metastasis sites. The findings summarized here emphasize the central role of chemokines as modulators of tumor angiogenesis and their potential role as therapeutic targets in the inflammatory process of NSCLC angiogenesis. PMID:26316890

  10. High level of BRD4 promotes non-small cell lung cancer progression

    PubMed Central

    Zhu, Shu-Qiang; Jin, Chun; Xu, Jian-Jun; Ding, Jian-Yong

    2016-01-01

    Bromodomain containing protein 4 (BRD4), a member of the bromodomain and extra terminal domain (BET) protein family, has been shown to play important roles in tumor progression. However, its role in non-small cell lung cancer (NSCLC) is still largely unknown. Here, we found that BRD4 expression was significantly upregulated in NSCLC tissues and NSCLC cell lines with higher invasion and metastasis potentials. Suppression of BRD4 expression in NSCLC cell lines impaired cell invasion, inhibited cell proliferation, and accelerated cell apoptosis. Clinically, we observed that the BRD4 level was significantly related to histological type, lymph node metastasis, tumor stage and differentiation. More importantly, high level of BRD4 was closely correlated with the poor prognosis of NSCLC patients. Therefore, our study suggests that BRD4 is one of the major contributors to the invasion-prone phenotype of NSCLC, and a potential therapeutic target of NSCLC. PMID:26840017

  11. Stathmin1 increases radioresistance by enhancing autophagy in non-small-cell lung cancer cells

    PubMed Central

    Zhang, Xi; Ji, Jingfen; Yang, Yu; Zhang, Juan; Shen, Liangfang

    2016-01-01

    Radioresistance has been demonstrated to be involved in the poor prognosis of patients with non-small-cell lung cancer (NSCLC). However, the underlying mechanism remains largely unclear. Investigation on special therapeutic targets associated with radioresistance shows promises for the enhancement of clinical radiotherapy effect toward NSCLC. This study aimed to reveal the role of Stathmin1 (STMN1) in radioresistance in NSCLC as well as the underlying mechanism. Our data showed that the protein levels of STMN1 were significantly upregulated in NSCLC cells subjected to radiation, accompanied with the activation of autophagy. Knockdown of STMN1 expression enhanced the sensitivity of NSCLC cells to X-ray, and the radiation-induced autophagy was also inhibited. Molecular mechanism investigation showed that knockdown of STMN1 expression upregulated the activity of phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway in NSCLC cells. Moreover, the activation of PI3K/mTOR signaling showed an inhibitory effect on the autophagy and radioresistance induced by STMN1 in NSCLC cells. In addition, luciferase reporter assay data indicated that STMN1 was a direct target gene of miR-101, which had been reported to be an inhibitor of autophagy. Based on these data, we suggest that as a target gene of miR-101, STMN1 promotes the radioresistance by induction of autophagy through PI3K/mTOR signaling pathway in NSCLC. Therefore, STMN1 may become a potential therapeutic target for NSCLC radiotherapy. PMID:27199567

  12. 244-MPT overcomes gefitinib resistance in non-small cell lung cancer cells.

    PubMed

    Zhang, Yi; Yao, Ke; Shi, Chengcheng; Jiang, Yanan; Liu, Kangdong; Zhao, Song; Chen, Hanyong; Reddy, Kanamata; Zhang, Chengjuan; Chang, Xiaoyu; Ryu, Joohyun; Bode, Ann M; Dong, Ziming; Dong, Zigang

    2015-12-29

    The epidermal growth factor receptor (EGFR) is known to play a critical role in non-small cell lung cancer(NSCLC). Several EGFR tyrosine kinase inhibitors(TKIs), such as gefitinib, have been used as effective clinical therapies for patients with NSCLC. Unfortunately, acquired resistance to gefitinib commonly occurs after 6-12 months of treatment. The resistance is associated with the appearance of the L858R/T790M double mutation of the EGFR. In our present study, we discovered a compound,referred to as 244-MPT, which could suppress either gefitinib-sensitive or -resistant lung cancer cell growth and colony formation, and also suppressed the kinase activity of both wildtype and double mutant (L858R/T790M) EGFR. The underlying mechanism reveals that 244-MPT could interact with either the wildtype or double-mutant EGFR in an ATP-competitive manner and inhibit activity. Treatment with 244-MPT could substantially reduce the phosphorylation of EGFR and its downstream signaling pathways, including Akt and ERK1/2 in gefitinib-sensitive and -resistant cell lines. It was equally effective in suppressing EGFR phosphorylation and downstream signaling in NL20 cells transfected with wildtype, single-mutant (L858R) or mutant (L858R/T790M) EGFR. 244-MPT could also induce apoptosis in a gefitinib-resistant cell line and strongly suppress gefitinib-resistant NSCLC tumor growth in a xenograft mouse model. In addition, 244-MPT could effectively reduce the size of tumors in a gefitinib-resistant NSCLC patient-derived xenograft (PDX) SCID mouse model. Overall, 244-MPT could overcome gefitinib-resistance by directly targeting the EGFR. PMID:26517520

  13. 244-MPT overcomes gefitinib resistance in non-small cell lung cancer cells

    PubMed Central

    Liu, Kangdong; Zhao, Song; Chen, Hanyong; Reddy, Kanamata; Zhang, Chengjuan; Chang, Xiaoyu; Ryu, Joohyun; Bode, Ann M.; Dong, Ziming; Dong, Zigang

    2015-01-01

    The epidermal growth factor receptor (EGFR) is known to play a critical role in non-small cell lung cancer(NSCLC). Several EGFR tyrosine kinase inhibitors(TKIs), such as gefitinib, have been used as effective clinical therapies for patients with NSCLC. Unfortunately, acquired resistance to gefitinib commonly occurs after 6–12 months of treatment. The resistance is associated with the appearance of the L858R/T790M double mutation of the EGFR. In our present study, we discovered a compound,referred to as 244-MPT, which could suppress either gefitinib-sensitive or -resistant lung cancer cell growth and colony formation, and also suppressed the kinase activity of both wildtype and double mutant (L858R/T790M) EGFR. The underlying mechanism reveals that 244-MPT could interact with either the wildtype or double-mutant EGFR in an ATP-competitive manner and inhibit activity. Treatment with 244-MPT could substantially reduce the phosphorylation of EGFR and its downstream signaling pathways, including Akt and ERK1/2 in gefitinib-sensitive and -resistant cell lines. It was equally effective in suppressing EGFR phosphorylation and downstream signaling in NL20 cells transfected with wildtype, single-mutant (L858R) or mutant (L858R/T790M) EGFR. 244-MPT could also induce apoptosis in a gefitinib-resistant cell line and strongly suppress gefitinib-resistant NSCLC tumor growth in a xenograft mouse model. In addition, 244-MPT could effectively reduce the size of tumors in a gefitinib-resistant NSCLC patient-derived xenograft (PDX) SCID mouse model. Overall, 244-MPT could overcome gefitinib-resistance by directly targeting the EGFR. PMID:26517520

  14. Stathmin1 increases radioresistance by enhancing autophagy in non-small-cell lung cancer cells.

    PubMed

    Zhang, Xi; Ji, Jingfen; Yang, Yu; Zhang, Juan; Shen, Liangfang

    2016-01-01

    Radioresistance has been demonstrated to be involved in the poor prognosis of patients with non-small-cell lung cancer (NSCLC). However, the underlying mechanism remains largely unclear. Investigation on special therapeutic targets associated with radioresistance shows promises for the enhancement of clinical radiotherapy effect toward NSCLC. This study aimed to reveal the role of Stathmin1 (STMN1) in radioresistance in NSCLC as well as the underlying mechanism. Our data showed that the protein levels of STMN1 were significantly upregulated in NSCLC cells subjected to radiation, accompanied with the activation of autophagy. Knockdown of STMN1 expression enhanced the sensitivity of NSCLC cells to X-ray, and the radiation-induced autophagy was also inhibited. Molecular mechanism investigation showed that knockdown of STMN1 expression upregulated the activity of phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway in NSCLC cells. Moreover, the activation of PI3K/mTOR signaling showed an inhibitory effect on the autophagy and radioresistance induced by STMN1 in NSCLC cells. In addition, luciferase reporter assay data indicated that STMN1 was a direct target gene of miR-101, which had been reported to be an inhibitor of autophagy. Based on these data, we suggest that as a target gene of miR-101, STMN1 promotes the radioresistance by induction of autophagy through PI3K/mTOR signaling pathway in NSCLC. Therefore, STMN1 may become a potential therapeutic target for NSCLC radiotherapy. PMID:27199567

  15. Minocycline enhances mitomycin C-induced cytotoxicity through down-regulating ERK1/2-mediated Rad51 expression in human non-small cell lung cancer cells.

    PubMed

    Ko, Jen-Chung; Wang, Tai-Jing; Chang, Po-Yuan; Syu, Jhan-Jhang; Chen, Jyh-Cheng; Chen, Chien-Yu; Jian, Yun-Ting; Jian, Yi-Jun; Zheng, Hao-Yu; Chen, Wen-Ching; Lin, Yun-Wei

    2015-10-01

    Minocycline is a semisynthetic tetracycline derivative; it has anti-inflammatory and anti-cancer effects distinct from its antimicrobial function. However, the molecular mechanism of minocycline-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination and high levels of Rad51 expression are observed in chemo- or radioresistant carcinomas. Our previous studies have shown that the MKK1/2-ERK1/2 signal pathway maintains the expression of Rad51 in NSCLC cells. In this study, minocycline treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1975. Treatment with minocycline decreased Rad51 mRNA and protein levels through MKK1/2-ERK1/2 inactivation. Furthermore, expression of constitutively active MKK1 (MKK1-CA) vectors significantly rescued the decreased Rad51 protein and mRNA levels in minocycline-treated NSCLC cells. However, combined treatment with MKK1/2 inhibitor U0126 and minocycline further decreased the Rad51 expression and cell viability of NSCLC cells. Knocking down Rad51 expression by transfection with small interfering RNA of Rad51 enhanced the cytotoxicity and cell growth inhibition of minocycline. Mitomycin C (MMC) is typically used as a first or second line regimen to treat NSCLC. Compared to a single agent alone, MMC combined with minocycline resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells, accompanied with reduced activation of phospho-ERK1/2, and reduced Rad51 protein levels. Overexpression of MKK1-CA or Flag-tagged Rad51 could reverse the minocycline and MMC-induced synergistic cytotoxicity. These findings may have implications for the rational design of future drug regimens incorporating minocycline and MMC for the treatment of NSCLC. PMID:26212550

  16. Proanthocyanidins inhibit in vitro and in vivo growth of human non-small cell lung cancer cells by inhibiting the prostaglandin E(2) and prostaglandin E(2) receptors.

    PubMed

    Sharma, Som D; Meeran, Syed M; Katiyar, Santosh K

    2010-03-01

    Overexpression of cyclooxygenase-2 (COX-2) and prostaglandins (PG) is linked to a wide variety of human cancers. Here, we assessed whether the chemotherapeutic effect of grape seed proanthocyanidins (GSP) on non-small cell lung cancer (NSCLC) cells is mediated through the inhibition of COX-2 and PGE(2)/PGE(2) receptor expression. The effects of GSPs on human NSCLC cell lines in terms of proliferation, apoptosis, and expression of COX-2, PGE(2), and PGE(2) receptors were determined using Western blotting, fluorescence-activated cell sorting analysis, and reverse transcription-PCR. In vitro treatment of NSCLC cells (A549, H1299, H460, H226, and H157) with GSPs resulted in significant growth inhibition and induction of apoptosis, which were associated with the inhibitory effects of GSPs on the overexpression of COX-2, PGE(2), and PGE(2) receptors (EP1 and EP4) in these cells. Treatment of cells with indomethacin, a pan-COX inhibitor, or transient transfection of cells with COX-2 small interfering RNA, also inhibited cell growth and induced cell death. The effects of a GSP-supplemented AIN76A control diet fed to nude mice bearing tumor xenografts on the expression of COX-2, PGE(2), and PGE(2) receptors in the xenografts were also evaluated. The growth-inhibitory effect of dietary GSPs (0.5%, w/w) on the NSCLC xenograft tumors was associated with the inhibition of COX-2, PGE(2), and PGE(2) receptors (EP1, EP3, and EP4) in tumors. This preclinical study provides evidence that the chemotherapeutic effect of GSPs on lung cancer cells in vitro and in vivo is mediated, at least in part, through the inhibition of COX-2 expression and subsequently the inhibition of PGE(2) and PGE(2) receptors. PMID:20145019

  17. Blocking the NOTCH pathway can inhibit the growth of CD133-positive A549 cells and sensitize to chemotherapy

    SciTech Connect

    Liu, Juntao; Mao, Zhangfan; Huang, Jie; Xie, Songping; Liu, Tianshu; Mao, Zhifu

    2014-02-21

    Highlights: • Notch signaling pathway members are expressed lower levels in CD133+ cells. • CD133+ cells are not as sensitive as CD133− cells to chemotherapy. • GSI could inhibit the growth of both CD133+ and CD133− cells. • Blockade of Notch signaling pathway enhanced the effect of chemotherapy with CDDP. • DAPT/CDDP co-therapy caused G2/M arrest and elimination in CD133+ cells. - Abstract: Cancer stem cells (CSCs) are believed to play an important role in tumor growth and recurrence. These cells exhibit self-renewal and proliferation properties. CSCs also exhibit significant drug resistance compared with normal tumor cells. Finding new treatments that target CSCs could significantly enhance the effect of chemotherapy and improve patient survival. Notch signaling is known to regulate the development of the lungs by controlling the cell-fate determination of normal stem cells. In this study, we isolated CSCs from the human lung adenocarcinoma cell line A549. CD133 was used as a stem cell marker for fluorescence-activated cell sorting (FACS). We compared the expression of Notch signaling in both CD133+ and CD133− cells and blocked Notch signaling using the γ-secretase inhibitor DAPT (GSI-IX). The effect of combining GSI and cisplatin (CDDP) was also examined in these two types of cells. We observed that both CD133+ and CD133− cells proliferated at similar rates, but the cells exhibited distinctive differences in cell cycle progression. Few CD133+ cells were observed in the G{sub 2}/M phase, and there were half as many cells in S phase compared with the CD133− cells. Furthermore, CD133+ cells exhibited significant resistance to chemotherapy when treated with CDDP. The expression of Notch signaling pathway members, such as Notch1, Notch2 and Hes1, was lower in CD133+ cells. GSI slightly inhibited the proliferation of both cell types and exhibited little effect on the cell cycle. The inhibitory effects of DPP on these two types of cells were

  18. Veliparib With or Without Radiation Therapy, Carboplatin, and Paclitaxel in Patients With Stage III Non-small Cell Lung Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2016-08-31

    Bronchioloalveolar Carcinoma; Large Cell Lung Carcinoma; Lung Adenocarcinoma; Lung Adenocarcinoma, Mixed Subtype; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer

  19. Reversine Induced Multinucleated Cells, Cell Apoptosis and Autophagy in Human Non-Small Cell Lung Cancer Cells

    PubMed Central

    Lin, Ching-Yen; Chen, Yih-Yuan; Chen, Ping-Tzu; Tseng, Ya-Shih

    2016-01-01

    Reversine, an A3 adenosine receptor antagonist, has been shown to induce differentiated myogenic-lineage committed cells to become multipotent mesenchymal progenitor cells. We and others have reported that reversine has an effect on human tumor suppression. This study revealed anti-tumor effects of reversine on proliferation, apoptosis and autophagy induction in human non-small cell lung cancer cells. Treatment of these cells with reversine suppressed cell growth in a time- and dosage-dependent manner. Moreover, polyploidy occurred after reversine treatment. In addition, caspase-dependent apoptosis and activation of autophagy by reversine in a dosage-dependent manner were also observed. We demonstrated in this study that reversine contributes to growth inhibition, apoptosis and autophagy induction in human lung cancer cells. Therefore, reversine used as a potential therapeutic agent for human lung cancer is worthy of further investigation. PMID:27385117

  20. Tumourigenic non-small-cell lung cancer mesenchymal circulating tumour cells: a clinical case study

    PubMed Central

    Morrow, C. J.; Trapani, F.; Metcalf, R. L.; Bertolini, G.; Hodgkinson, C. L.; Khandelwal, G.; Kelly, P.; Galvin, M.; Carter, L.; Simpson, K. L.; Williamson, S.; Wirth, C.; Simms, N.; Frankliln, L.; Frese, K. K.; Rothwell, D. G.; Nonaka, D.; Miller, C. J.; Brady, G.; Blackhall, F. H.; Dive, C.

    2016-01-01

    Background Over the past decade, numerous reports describe the generation and increasing utility of non-small-cell lung cancer (NSCLC) patient-derived xenografts (PDX) from tissue biopsies. While PDX have proven useful for genetic profiling and preclinical drug testing, the requirement of a tissue biopsy limits the available patient population, particularly those with advanced oligometastatic disease. Conversely, ‘liquid biopsies’ such as circulating tumour cells (CTCs) are minimally invasive and easier to obtain. Here, we present a clinical case study of a NSCLC patient with advanced metastatic disease, a never smoker whose primary tumour was EGFR and ALK wild-type. We demonstrate for the first time, tumorigenicity of their CTCs to generate a patient CTC-derived eXplant (CDX). Patients and methods CTCs were enriched at diagnosis and again 2 months later during disease progression from 10 ml blood from a 48-year-old NSCLC patient and implanted into immunocompromised mice. Resultant tumours were morphologically, immunohistochemically, and genetically compared with the donor patient's diagnostic specimen. Mice were treated with cisplatin and pemetrexed to assess preclinical efficacy of the chemotherapy regimen given to the donor patient. Results The NSCLC CDX expressed lung lineage markers TTF1 and CK7 and was unresponsive to cisplatin and pemetrexed. Examination of blood samples matched to that used for CDX generation revealed absence of CTCs using the CellSearch EpCAM-dependent platform, whereas size-based CTC enrichment revealed abundant heterogeneous CTCs of which ∼80% were mesenchymal marker vimentin positive. Molecular analysis of the CDX, mesenchymal and epithelial CTCs revealed a common somatic mutation confirming tumour origin and showed CDX RNA and protein profiles consistent with the predominantly mesenchymal phenotype. Conclusions This study shows that the absence of NSCLC CTCs detected by CellSearch (EpCAM+) does not preclude CDX generation

  1. Runx3 Expression Inhibits Proliferation and Distinctly Alters mRNA Expression of Bax in AGS and A549 Cancer Cells

    PubMed Central

    Torshabi, Maryam; Faramarzi, Mohammad Ali; Tabatabaei Yazdi, Mojtaba; Ostad, Seyyed Naser; Gharemani, Mohammad Hosein

    2011-01-01

    Runx3, a member of Runt-related transcription factor (Runx) proteins with tumor suppressor effect, is a tissue–restricted and cancer related transcription factor that regulate cell proliferation and growth, as well as differentiation. In the present study, exogenous Run3 was transiently expressed in AGS (human gastric adenocarcinoma), with undetectable Runx3 protein and in A549 (human lung carcinoma) with low levels of endogenous Runx3 protein. The GFP tagged Runx3 was transfected into AGS and A549 cells using fugene6 and PolyFect and Runx3 expression was confirmed by fluorescent microscopy and RT-PCR. The effect of Runx3 transfection on cell proliferation was determined by MTT assay and the results were confirmed by the trypan blue dye exclusion method. The effect of Runx3 expression on mRNA expression of BCL2-associated X protein (Bax) was evaluated using RT-PCR. In AGS and A549 cells, Runx3 expression inhibited cell proliferation (p < 0.01). The growth inhibition was less in A549 cells. We show that Runx3 expression increases Bax mRNA expression in AGS cells when compared with control (p < 0.05), but no significant differences in mRNA expression was observed in both examined cells. Runx3 expression has antiproliferative effect in AGS cell perhaps via increase in expression of Bax. The effect of Runx3 on A549 cells’ viability which has endogenous level of Runx3 is not related to Bax. These findings implicate a complex regulation by Runx3 in inhibition of cell proliferation utilizing Bax. PMID:24250365

  2. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT

    NASA Astrophysics Data System (ADS)

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-07-01

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway.

  3. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT

    PubMed Central

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-01-01

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway. PMID:26177797

  4. Proton Beam Therapy of Stage II and III Non-Small-Cell Lung Cancer

    SciTech Connect

    Nakayama, Hidetsugu; Satoh, Hiroaki; Sugahara, Shinji; Kurishima, Koichi; Tsuboi, Koji; Sakurai, Hideyuki; Ishikawa, Shigemi; Tokuuye, Koichi

    2011-11-15

    Purpose: The present retrospective study assessed the role of proton beam therapy (PBT) in the treatment of patients with Stage II or III non-small-cell lung cancer who were inoperable or ineligible for chemotherapy because of co-existing disease or refusal. Patients and Methods: Between November 2001 and July 2008, PBT was given to 35 patients (5 patients with Stage II, 12 with Stage IIIA, and 18 with Stage IIIB) whose median age was 70.3 years (range, 47.4-85.4). The median proton dose given was 78.3 Gy (range, 67.1-91.3) (relative biologic effectiveness). Results: Local progression-free survival for Stage II-III patients was 93.3% at 1 year and 65.9% at 2 years during a median observation period of 16.9 months. Four patients (11.4%) developed local recurrence, 13 (37.1%) developed regional recurrence, and 7 (20.0%) developed distant metastases. The progression-free survival rate for Stage II-III patients was 59.6% at 1 year and 29.2% at 2 years. The overall survival rate of Stage II-III patients was 81.8% at 1 year and 58.9% at 2 years. Grade 3 or greater toxicity was not observed. A total of 15 patients (42.9%) developed Grade 1 and 6 (17.1%) Grade 2 toxicity. Conclusion: PBT for Stage II-III non