Science.gov

Sample records for a549 xenograft model

  1. In vivo evaluation of curcumin-loaded nanoparticles in a A549 xenograft mice model.

    PubMed

    Yin, Hai-Tao; Zhang, De-Geng; Wu, Xiao-Li; Huang, Xin-En; Chen, Gang

    2013-01-01

    Curcumin (Cum) has been reported to have potential chemo-preventive and chemotherapeutic activity through influencing various processes, inducing cell cycle arrest, differentiation and apoptosis in a series of cancers. However, the poor solubility of Cum limits its further applications in the treatment of cancer. We have previously reported Cum-loaded nanoparticles (Cum-NPs) prepared with amphilic methoxy poly(ethylene glycol)-polycaprolactone (mPEG-PCL) block copolymers. The current study demonstrated superior antitumor efficacy of Cum-NPs over free Cum in the treatment of lung cancer. In vivo evaluation further demonstrated superior anticancer effects of Cum-NPs by delaying tumor growth compared to free Cum in an established A549 transplanted mice model. Moreover, Cum-NPs showed little toxicity to normal tissues including bone marrow, liver and kidney at a therapeutic dose. These results suggest that Cum-NPs are effective to inhibit the growth of human lung cancer with little toxicity to normal tissues, and could provide a clinically useful therapeutic regimen. They thus merit more research to evaluate the feasibility of clinical application.

  2. Irradiation-Dependent Effects on Tumor Perfusion and Endogenous and Exogenous Hypoxia Markers in an A549 Xenograft Model

    SciTech Connect

    Fokas, Emmanouil; Haenze, Joerg; Kamlah, Florentine; Eul, Bastian G.; Lang, Nico; Keil, Boris; Heverhagen, Johannes T.; Engenhart-Cabillic, Rita; An Hanxiang; Rose, Frank

    2010-08-01

    Purpose: Hypoxia is a major determinant of tumor radiosensitivity, and microenvironmental changes in response to ionizing radiation (IR) are often heterogenous. We analyzed IR-dependent changes in hypoxia and perfusion in A549 human lung adenocarcinoma xenografts. Materials and Methods: Immunohistological analysis of two exogenously added chemical hypoxic markers, pimonidazole and CCI-103F, and of the endogenous marker Glut-1 was performed time dependently after IR. Tumor vessels and apoptosis were analyzed using CD31 and caspase-3 antibodies. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and fluorescent beads (Hoechst 33342) were used to monitor vascular perfusion. Results: CCI-103F signals measuring the fraction of hypoxic areas after IR were significantly decreased by approximately 50% when compared with pimonidazole signals, representing the fraction of hypoxic areas from the same tumors before IR. Interestingly, Glut-1 signals were significantly decreased at early time point (6.5 h) after IR returning to the initial levels at 30.5 h. Vascular density showed no difference between irradiated and control groups, whereas apoptosis was significantly induced at 10.5 h post-IR. DCE-MRI indicated increased perfusion 1 h post-IR. Conclusions: The discrepancy between the hypoxic fractions of CCI-103F and Glut-1 forces us to consider the possibility that both markers reflect different metabolic alterations of tumor microenvironment. The reliability of endogenous markers such as Glut-1 to measure reoxygenation in irradiated tumors needs further consideration. Monitoring tumor microvascular response to IR by DCE-MRI and measuring tumor volume alterations should be encouraged.

  3. Tumor growth affects the metabonomic phenotypes of multiple mouse non-involved organs in an A549 lung cancer xenograft model

    PubMed Central

    Xu, Shan; Tian, Yuan; Hu, Yili; Zhang, Nijia; Hu, Sheng; Song, Dandan; Wu, Zhengshun; Wang, Yulan; Cui, Yanfang; Tang, Huiru

    2016-01-01

    The effects of tumorigenesis and tumor growth on the non-involved organs remain poorly understood although many research efforts have already been made for understanding the metabolic phenotypes of various tumors. To better the situation, we systematically analyzed the metabolic phenotypes of multiple non-involved mouse organ tissues (heart, liver, spleen, lung and kidney) in an A549 lung cancer xenograft model at two different tumor-growth stages using the NMR-based metabonomics approaches. We found that tumor growth caused significant metabonomic changes in multiple non-involved organ tissues involving numerous metabolic pathways, including glycolysis, TCA cycle and metabolisms of amino acids, fatty acids, choline and nucleic acids. Amongst these, the common effects are enhanced glycolysis and nucleoside/nucleotide metabolisms. These findings provided essential biochemistry information about the effects of tumor growth on the non-involved organs. PMID:27329570

  4. Inhibitory effect of radiotherapy combined with weekly recombinant human endostatin on the human pulmonary adenocarcinoma A549 xenografts in nude mice.

    PubMed

    Jiang, Xiao-dong; Dai, Peng; Wu, Jin; Song, Da-an; Yu, Jin-ming

    2011-05-01

    The aim of this study was to investigate the inhibitory effect of radiotherapy combined with weekly recombinant human endostatin (RHES) on the human pulmonary adenocarcinoma A549 xenografts in nude mice. The 40 A549 xenograft nude mice models were randomly divided into 4 groups (each group with 10 nude mice). Single radiotherapy group (group 1) was given a single external irradiation (6MV-X ray, 10 Gy) and peritumoral subcutaneous injection of 0.2 ml normal saline every day for 7 days. Single RHES group (group 2) was given peritumoral subcutaneous injection of 0.2 ml RHES (0.75 mg/ml) for 7 days. Combination therapy group (group 3) was given radiotherapy as the same as group 1 and RHES as the same as group 2. Control group was given normal saline as the same as group 1. The tumor volume was smaller in group 3 than in control group from the 8th day after treatment (P<0.05) and tumor regression occurred from the second week after treatment in group 3. On the 15th day after treatment, the inhibitory rates of tumor volume were 69.65%, 92.64% and 116.4% in groups 2, 1 and 3, respectively; MVD number was lower in group 3 than in group 1 (P<0.05); there was no statistical significance in VEGF expression between group 2 and control group as well as between group 3 and group 1 (P>0.05). Apoptosis was marked in group 3. Radiotherapy combined with weekly RHES can significantly inhibit tumor growth and earlier induce tumor regression, which may be related to the improvement of tumor hypoxia and the inhibition of radiation-induced tumor angiogenesis. Short-term application (1 week) of RHES is beneficial to clinical practice.

  5. Antitumor activity of EGFR targeted pH-sensitive immunoliposomes encapsulating gemcitabine in A549 xenograft nude mice.

    PubMed

    Kim, In-Young; Kang, Young-Sook; Lee, Doo Sung; Park, Heon-Joo; Choi, Eun-Kyung; Oh, Yu-Kyoung; Son, Hye-Jung; Kim, Jin-Seok

    2009-11-16

    Immunoliposomes directed by monoclonal antibodies are promising vehicles for tumor targeted drug delivery. Development of a long-circulating formulation of pH-sensitive liposomes (PSLs) with epidermal growth factor receptor (EGFR) antibody attached was designed and tested using A549 cells and BALB/c-nu/nu mouse tumor model. PSL formulation was prepared using small unilamellar vesicles of DOPE and CHEMS (6:4 molar ratio) by REV method. The average size and zeta-potential of the formulation measured by dynamic laser-light scattering were approximately 146+/-43.9 nm (PDI=0.09+/-0.02) and -1.77+/-0.03 mV, respectively. A549 cells were xenotransplanted into BALB/c-nu/nu mice and various formulations of gemcitabine (gem), such as in its free form, PSLs or Ab-PSLs, were injected intravenously via a tail vein. The rate of tumor volume increment in Ab-PSLs with gem-treated group was remarkably slower than that of other drug-treated group. The tumor from Ab-PSLs with gem 160 mg/kg-injected group exhibited a markedly lowest account of PCNA labeled cells and had highest TUNEL-positive cells among tested. This suggests that treatment of Ab-PSLs with gem resulted in an increased apoptosis of tumor cells, leading to tumor growth inhibition. These results demonstrate that PSLs provide an efficient and targeted delivery of gemcitabine and may represent a useful new treatment approach for tumors which overexpress the EGFR.

  6. Antitumor efficacy of the cytotoxic RNase, ranpirnase, on A549 human lung cancer xenografts of nude mice.

    PubMed

    Lee, Intae; Kalota, Anna; Gewirtz, Alan M; Shogen, Kuslima

    2007-01-01

    The cytotoxic RNase, ranpirnase (ONCONASE, ONC), may have promising therapeutic implication as an alternative for cisplatin for the treatment of lung cancer, due to inhibition of protein synthesis by t-RNA cleavage. A549 and NCI-H1975 human NSCLC cell lines were cultured in the presence and absence of ONC. Cytotoxicity was monitored using a clonogenic assay. Using an inverted phase and fluorescence microscope, we studied whether apoptosis was induced by ONC in gefitinib-induced apoptosis-resistant A549 tumor cells. The therapeutic effectiveness of ONC was studied via single and multiple administrations on A549 human non-small cell lung cancer (NSCLC), including tumors previously untreatable by cisplatin. ONC-induced changes in ATP levels were also monitored by non-localized phosphorus MR spectroscopy. ONC significantly inhibited the cell growth of A549 tumors. Apoptosis was significantly induced by ONC in a dose-dependent manner. In animal studies, multiple small doses of ONC were more effective than one large single dose for the inhibition of tumor growth with reduced side-effects, probably due to the normalization of leaky tumor vessels. ONC in combination with cisplatin significantly reduced tumor growth of A549 tumors. In large tumors, including those unsuccessfully treated with cisplatin, ONC showed inhibition of tumor growth, while a second treatment of cisplatin did not. During monitoring by non-localized phosphorus MR spectroscopy, ATP levels decreased, likely due to ONC-induced inhibition of oxygen consumption (QO2). ONC significantly inhibited tumor growth of A549 NSCLC cells in both in vitro and in vivo studies. This investigation suggests important potential clinical uses of ONC for the treatment of NSCLC cancer patients.

  7. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells

    SciTech Connect

    Yu, Zhenhai; Huang, Liangqian; Qiao, Pengyun; Jiang, Aifang; Wang, Li; Yang, Tingting; Tang, Shengjian; Zhang, Wei; Ren, Chune

    2016-05-13

    Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. These findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer.

  8. Study on Inhibitory Effect of MaiMenDong Decoction and WeiJing Decoction Combination with Cisplatin on NCI-A549 Xenograft in Nude Mice and Its Mechanism

    PubMed Central

    Xiong, Fei; Jiang, Miao; Chen, Meijuan; Wang, Xiaoxia; Zhang, Shiping; Zhou, Jing; Li, Ke; Sheng, Yan; Yin, Lian; Tang, Yuping; Ye, Lihong; Wu, Mianhua; Fu, Haian; Zhang, Xu

    2017-01-01

    MaiMenDong Decoction and WeiJing Decoction (Jin formula) is a traditional Chinese medication that consists of 8 medicinal plants, which recorded in the classical TCM literature Jin Kui Yao Lue and has been utilized in the treatment of lung diseases for hundreds of years in China. The present study aimed to determine the anti-tumor activity and the underlying mechanisms of Jin formula combined with cisplatin in the treatment of non-small cell lung cancer (NSCLC). Xenograft model of NCI-A549 was established in Balb/c nude mice. Five groups, including normal, MOCK, Jin, cisplatin (DDP), and Jin+DDP were included in the study. We found that Jin formula ameliorated the body weight loss caused by DDP 15 days after drug administration. Moreover, the combination of Jin with DDP enhanced the anti-tumor function of DDP. Microarray analysis showed that Jin suppressed gene expression of certain pathways which regulating cell cycle and apoptosis. Furthermore, DDP mainly decreased the gene expression level of angiogenesis associated factors, such as VEGFA, TGF-β and MMP-1. Moreover, co-treatment with Jin and DDP not only down-regulated Bcl-2 and E2F1, but also decreased the expression of MYC, MET, and MCAM. In addition, co-formula decreased the levels of p-AKT (thr308) and p-PTEN, increased Bax/Bcl-2 value, and resulted in apoptosis of tumor cells. Taken together, Jin+DDP significantly inhibited the growth of A549 cell transplanted solid tumor with slight side effect compared to the treatment by DDP only, and had a better effect than the Jin group. The mechanisms may be mainly associated with inactivation of PI3K/AKT pathway and apoptosis induction. PMID:28900482

  9. A549 cells as a model to study endogenous LPA1 receptor signaling and regulation.

    PubMed

    Carmona-Rosas, Gabriel; Alfonzo-Méndez, Marco A; Hernández-Espinosa, David A; Romero-Ávila, M Teresa; García-Sáinz, J Adolfo

    2017-09-21

    Lysophosphatidic acid (LPA) modulates the function of many organs, including the lung. A549 is a lung carcinoma-derived cell line, frequently used as a model for type II pneumocytes. Here we show that these cells expressed messenger RNA coding for LPA1-3 receptors with the following order of abundance: LPA1 > LPA2 > LPA3 and that LPA was able to increase intracellular calcium, extracellular signal-regulated kinases 1/2 phosphorylation, and cell contraction. These effects were blocked by Ki16425, an antagonist selective for LPA1 and LPA3 receptors, and by the LPA1-selective antagonist, AM095. Activation of protein kinase C inhibited LPA-induced intracellular calcium increase. This action was blocked by protein kinase C inhibitors and enzyme down-regulation. Phorbol myristate acetate and AM095, but not Ki16425, decreased the baseline intracellular calcium concentration. Ki16425 blocked the effect of AM095 but not that of phorbol myristate acetate. The data indicate that LPA1 receptors exhibit constitutive activity and that AM095 behaves as an inverse agonist, whereas Ki16425 appears to be a classic antagonist. Furthermore, the LPA agonist, 1-oleoyl-2-O-methyl-rac-glycerophosphothionate, OMPT, induced a weak increase in intracellular calcium, but was able to induce full ERK 1/2 phosphorylation and cell contraction. These effects were blocked by AM095. These data suggest that OMPT is a biased LPA1 agonist. A549 cells express functional LPA1 receptors and seem to be a suitable model to study their signaling and regulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Vitamin D Analogs Potentiate the Antitumor Effect of Imatinib Mesylate in a Human A549 Lung Tumor Model

    PubMed Central

    Maj, Ewa; Filip-Psurska, Beata; Świtalska, Marta; Kutner, Andrzej; Wietrzyk, Joanna

    2015-01-01

    In previous papers, we presented data on studies on the anticancer activity of the vitamin D3 analogs, named PRI-2191 and PRI-2205, in different cancer models. In this study, we showed the improved antiproliferative activity of a combination of imatinib mesylate (Gleevec, GV) and cytostatic agents in in vitro studies, when used with a third compound, namely PRI-2191, in an A549 human lung cancer model. Furthermore, we analyzed the influence of both PRI-2191, as well as PRI-2205 on the anticancer activity of GV in mice bearing A549 tumors. The route of PRI-2191 analog administration showed a significant impact on the outcome of GV treatment: subcutaneous injection was more efficient and less toxic than oral gavage. Moreover, both vitamin D compounds increased the anticancer activity of GV; however, they might also potentiate some adverse effects. We also evaluated in tumor tissue the expression of VEGF, PDGF-BB, vitamin D receptor, CYP27B1, CYP24, p53 and Bcl-2, as well as PDGF receptors: α and β. We observed the upregulation of p53 expression and the downregulation of Bcl-2, as well as VEGF in A549 tumors as a result of the tested treatment. However, vitamin D analogs did not significantly influence the expression of these proteins. PMID:26580599

  11. Gene expression profile of A549 cells from tissue of 4D model predicts poor prognosis in lung cancer patients.

    PubMed

    Mishra, Dhruva K; Creighton, Chad J; Zhang, Yiqun; Gibbons, Don L; Kurie, Jonathan M; Kim, Min P

    2014-02-15

    The tumor microenvironment plays an important role in regulating cell growth and metastasis. Recently, we developed an ex vivo lung cancer model (four dimensional, 4D) that forms perfusable tumor nodules on a lung matrix that mimics human lung cancer histopathology and protease secretion pattern. We compared the gene expression profile (Human OneArray v5 chip) of A549 cells, a human lung cancer cell line, grown in a petri dish (two-dimensional, 2D), and of the same cells grown in the matrix of our ex vivo model (4D). Furthermore, we obtained gene expression data of A549 cells grown in a petri dish (2D) and matrigel (three-dimensional, 3D) from a previous study and compared the 3D expression profile with that of 4D. Expression array analysis showed 2,954 genes differentially expressed between 2D and 4D. Gene ontology (GO) analysis showed upregulation of several genes associated with extracellular matrix, polarity and cell fate and development. Moreover, expression array analysis of 2D vs. 3D showed 1,006 genes that were most differentially expressed, with only 36 genes (4%) having similar expression patterns as observed between 2D and 4D. Finally, the differential gene expression signature of 4D cells (vs. 2D) correlated significantly with poor survival in patients with lung cancer (n = 1,492), while the expression signature of 3D vs. 2D correlated with better survival in lung cancer patients with lung cancer. As patients with larger tumors have a worse rate of survival, the ex vivo 4D model may be a good mimic of natural progression of tumor growth in lung cancer patients.

  12. Cathepsin L upregulation-induced EMT phenotype is associated with the acquisition of cisplatin or paclitaxel resistance in A549 cells.

    PubMed

    Han, Mei-Ling; Zhao, Yi-Fan; Tan, Cai-Hong; Xiong, Ya-Jie; Wang, Wen-Juan; Wu, Feng; Fei, Yao; Wang, Long; Liang, Zhong-Qin

    2016-12-01

    Cathepsin L (CTSL), a lysosomal acid cysteine protease, is known to play important roles in tumor metastasis and chemotherapy resistance. In this study we investigated the molecular mechanisms underlying the regulation of chemoresistance by CTSL in human lung cancer cells. Human lung cancer A549 cells, A549/PTX (paclitaxel-resistant) cells and A549/DDP (cisplatin-resistant) cells were tested. The resistance to cisplatin or paclitaxel was detected using MTT and the colony-formation assays. Actin remodeling was observed with FITC-Phalloidin fluorescent staining or immunofluorescence. A wound-healing assay or Transwell assay was used to assess the migration or invasion ability. The expression of CTSL and epithelial and mesenchymal markers was analyzed with Western blotting and immunofluorescence. The expression of EMT-associated transcription factors was measured with Western blotting or q-PCR. BALB/c nude mice were implanted subcutaneously with A549 cells overexpressing CTSL, and the mice were administered paclitaxel (10, 15 mg/kg, ip) every 3 d for 5 times. Cisplatin or paclitaxel treatment (10-80 ng/mL) induced CTSL expression in A549 cells. CTSL levels were much higher in A549/PTX and A549/DDP cells than in A549 cells. Silencing of CTSL reversed the chemoresistance in A549/DDP and A549/TAX cells, whereas overexpression of CTSL attenuated the sensitivity of A549 cells to cisplatin or paclitaxel. Furthermore, A549/DDP and A549/TAX cells underwent morphological and cytoskeletal changes with increased cell invasion and migration abilities, accompanied by decreased expression of epithelial markers (E-cadherin and cytokeratin-18) and increased expression of mesenchymal markers (N-cadherin and vimentin), as well as upregulation of EMT-associated transcription factors Snail, Slug, ZEB1 and ZEB2. Silencing of CTSL reversed EMT in A549/DDP and A549/TAX cells; In contrast, overexpression of CTSL induced EMT in A549 cells. In xenograft nude mouse model, the mice implanted

  13. Cathepsin L upregulation-induced EMT phenotype is associated with the acquisition of cisplatin or paclitaxel resistance in A549 cells

    PubMed Central

    Han, Mei-ling; Zhao, Yi-fan; Tan, Cai-hong; Xiong, Ya-jie; Wang, Wen-juan; Wu, Feng; Fei, Yao; Wang, Long; Liang, Zhong-qin

    2016-01-01

    Aim: Cathepsin L (CTSL), a lysosomal acid cysteine protease, is known to play important roles in tumor metastasis and chemotherapy resistance. In this study we investigated the molecular mechanisms underlying the regulation of chemoresistance by CTSL in human lung cancer cells. Methods: Human lung cancer A549 cells, A549/PTX (paclitaxel-resistant) cells and A549/DDP (cisplatin-resistant) cells were tested. The resistance to cisplatin or paclitaxel was detected using MTT and the colony-formation assays. Actin remodeling was observed with FITC-Phalloidin fluorescent staining or immunofluorescence. A wound-healing assay or Transwell assay was used to assess the migration or invasion ability. The expression of CTSL and epithelial and mesenchymal markers was analyzed with Western blotting and immunofluorescence. The expression of EMT-associated transcription factors was measured with Western blotting or q-PCR. BALB/c nude mice were implanted subcutaneously with A549 cells overexpressing CTSL, and the mice were administered paclitaxel (10, 15 mg/kg, ip) every 3 d for 5 times. Results: Cisplatin or paclitaxel treatment (10–80 ng/mL) induced CTSL expression in A549 cells. CTSL levels were much higher in A549/PTX and A549/DDP cells than in A549 cells. Silencing of CTSL reversed the chemoresistance in A549/DDP and A549/TAX cells, whereas overexpression of CTSL attenuated the sensitivity of A549 cells to cisplatin or paclitaxel. Furthermore, A549/DDP and A549/TAX cells underwent morphological and cytoskeletal changes with increased cell invasion and migration abilities, accompanied by decreased expression of epithelial markers (E-cadherin and cytokeratin-18) and increased expression of mesenchymal markers (N-cadherin and vimentin), as well as upregulation of EMT-associated transcription factors Snail, Slug, ZEB1 and ZEB2. Silencing of CTSL reversed EMT in A549/DDP and A549/TAX cells; In contrast, overexpression of CTSL induced EMT in A549 cells. In xenograft nude mouse

  14. In vivo bioluminescence imaging using orthotopic xenografts towards patient's derived-xenograft Medulloblastoma models.

    PubMed

    Asadzadeh, Fatemeh; Ferrucci, Veronica; DE Antonellis, Pasqualino; Zollo, Massimo

    2017-03-01

    Medulloblastoma is a cerebellar neoplasia of the central nervous system. Four molecular subgrups have been identified (MBWNT, MBSHH, MBgroup3 and MBgroup4) with distinct genetics and clinical outcome. Among these, MBgroup3-4 are highly metastatic with the worst prognosis. The current standard therapy includes surgery, radiation and chemotherapy. Thus, specific treatments adapted to cure those different molecular subgroups are needed. The use of orthotopic xenograft models, together with the non-invasive in vivo biolumiscence imaging (BLI) technology, is emerging during preclinical studies to test novel therapeutics for medulloblastoma treatment. Orthotopic MB xenografts were performed by injection of Daoy-luc cells, that had been previously infected with lentiviral particles to stably express luciferase gene, into the fourth right ventricle of the cerebellum of ten nude mice. For the implantation, specific stereotactic coordinates were used. Seven days after the implantation the mice were imaged by acquisitions of bioluminescence imaging (BLI) using IVIS 3D Illumina Imaging System (Xenogen). Tumor growth was evaluated by quantifying the bioluminescence signals using the integrated fluxes of photons within each area of interest using the Living Images Software Package 3.2 (Xenogen-Perkin Elmer). Finally, histological analysis using hematoxylin-eosin staining was performed to confirm the presence of tumorigenic cells into the cerebellum of the mice. We describe a method to use the in vivo bioluminescent imaging (BLI) showing the potential to be used to investigate the potential antitumorigenic effects of a drug for in vivo medulloblastoma treatment. We also discuss other studies in which this technology has been applied to obtain a more comprehensive knowledge of medulloblastoma using orthotopic xenograft mouse models. There is a need to develop patient's derived-xenograft (PDX) model systems to test novel drugs for medulloblastoma treatment within each molecular sub

  15. [Quantitatively evaluating the evolution of the tumor perfusion in A549 lung adenocarcinoma transplantation model induced by antiangiogenic treatment].

    PubMed

    Xiong, Zeng; Deng, Pengbo; Hu, Chengping; Liu, Jinkang; Yang, Huaping; Zhou, Jianhua; Wang, Ying; Zhou, Hui; Zhu, Zhiming

    2016-01-26

    To quantitatively evaluate the evolution of the tumor perfusion in A549 lung adenocarcinoma transplantation model induced by antiangiogenic treatment. To establish the preclinical transplantation model of lung adenocarcinoma, 60 BALB/c nu/nu mice was inoculated with A549 cell lines via axilla. Sixty mice were randomly divided into 2 groups. The treatment group was treated with intravenous Bevacizumab (10 mg/kg weight, in a single injection), and the control group received saline only in the same dose. Five times of volume perfusion CT (VPCT) scan was performed before treatment, and on the second, forth, sixth and tenth days of treatment, respectively. The values of blood flow (BF) in the A549 tumors were measured after scanning. The microvessel density (MVD), vessel maturity index (VMI) in the tumors were determined using multiplexed QDs-based immunohistochemical staining. Comparing the values of BF, VMI and MVD between the two groups on the same day before treatment, the values of BF, VMI and MVD of the treatment group were (13.5±1.5) ml·(100 ml)(-1)·min(-1,) 0.14±0.04, (45.7±16.5)/HPF, respectively, and those in the control group were (13.4±1.6) ml·(100 ml)(-1)·min(-1) , 0.14±0.05, (48.0±7.0) /HPF , respectively. There was no significant difference between the two groups (all P>0.05). And on the second, forth, sixth, tenth days of treatment, the values of BF of the treatment group were (17.9±7.3), (32.2±6.9), (18.5±2.4) and (13.8±1.8) ml·(100 ml)(-1)·min(-1,) respectively, and those in the control group were (10.5±0.6), (9.6±0.8), (5.7±1.2) and (1.9±1.0) ml·(100 ml)(-1)·min(-1,) respectively. The values of VMI of the treatment group were 1.17±0.22, 3.25±0.23, 2.94±0.31 and 1.07±0.18, respectively, and those in the control group were 0.12±0.03, 0.13±0.03, 0.15±0.03, and 0.13±0.03, respectively. The values of MVD of the treatment group were (38.0±6.3), (24.3±5.4), (15.2±3.4) and (13.5±4.7)/HPF, respectively, and those in the

  16. Nur77 attenuates endothelin-1 expression via downregulation of NF-κB and p38 MAPK in A549 cells and in an ARDS rat model.

    PubMed

    Jiang, Yujie; Zeng, Yi; Huang, Xia; Qin, Yueqiu; Luo, Weigui; Xiang, Shulin; Sooranna, Suren R; Pinhu, Liao

    2016-12-01

    Acute respiratory distress syndrome (ARDS) is characterized by inflammatory injury to the alveolar and capillary barriers that results in impaired gas exchange and severe acute respiratory failure. Nuclear orphan receptor Nur77 has emerged as a regulator of gene expression in inflammation, and its role in the pathogenesis of ARDS is not clear. The objective of this study is to investigate the potential role of Nur77 and its underlying mechanism in the regulation of endothelin-1 (ET-1) expression in lipopolysaccharide (LPS)-induced A549 cells and an ARDS rat model. We demonstrate that LPS induced Nur77 expression and nuclear export in A549 cells. Overexpression of Nur77 markedly decreased basal and LPS-induced ET-1 expression in A549 cells, whereas knockdown of Nur77 increased the ET-1 expression. LPS-induced phosphorylation and nuclear translocation of NF-κB and p38 MAPK were blocked by Nur77 overexpression and augmented by Nur77 knockdown in A549 cells. In vivo, LPS induced Nur77 expression in lung in ARDS rats. Pharmacological activation of Nur77 by cytosporone B (CsnB) inhibited ET-1 expression in ARDS rats, decreased LPS-induced phosphorylation of NF-κB and p38 MAPK, and relieved lung, liver, and kidney injury. Pharmacological deactivation of Nur77 by 1,1-bis-(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH, C-DIM8) had no effect on ET-1 expression and lung injury. These results indicated that Nur77 decreases ET-1 expression by suppressing NF-κB and p38 MAPK in LPS-stimulated A549 cells in vitro, and, in an LPS-induced ARDS rat model, CsnB reduced ET-1 expression and lung injury in ARDS rats.

  17. Nur77 attenuates endothelin-1 expression via downregulation of NF-κB and p38 MAPK in A549 cells and in an ARDS rat model

    PubMed Central

    Jiang, Yujie; Zeng, Yi; Huang, Xia; Qin, Yueqiu; Luo, Weigui; Xiang, Shulin; Sooranna, Suren R.

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is characterized by inflammatory injury to the alveolar and capillary barriers that results in impaired gas exchange and severe acute respiratory failure. Nuclear orphan receptor Nur77 has emerged as a regulator of gene expression in inflammation, and its role in the pathogenesis of ARDS is not clear. The objective of this study is to investigate the potential role of Nur77 and its underlying mechanism in the regulation of endothelin-1 (ET-1) expression in lipopolysaccharide (LPS)-induced A549 cells and an ARDS rat model. We demonstrate that LPS induced Nur77 expression and nuclear export in A549 cells. Overexpression of Nur77 markedly decreased basal and LPS-induced ET-1 expression in A549 cells, whereas knockdown of Nur77 increased the ET-1 expression. LPS-induced phosphorylation and nuclear translocation of NF-κB and p38 MAPK were blocked by Nur77 overexpression and augmented by Nur77 knockdown in A549 cells. In vivo, LPS induced Nur77 expression in lung in ARDS rats. Pharmacological activation of Nur77 by cytosporone B (CsnB) inhibited ET-1 expression in ARDS rats, decreased LPS-induced phosphorylation of NF-κB and p38 MAPK, and relieved lung, liver, and kidney injury. Pharmacological deactivation of Nur77 by 1,1-bis-(3′-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH, C-DIM8) had no effect on ET-1 expression and lung injury. These results indicated that Nur77 decreases ET-1 expression by suppressing NF-κB and p38 MAPK in LPS-stimulated A549 cells in vitro, and, in an LPS-induced ARDS rat model, CsnB reduced ET-1 expression and lung injury in ARDS rats. PMID:27765761

  18. Xenograft model for therapeutic drug testing in recurrent respiratory papillomatosis.

    PubMed

    Ahn, Julie; Bishop, Justin A; Akpeng, Belinda; Pai, Sara I; Best, Simon R A

    2015-02-01

    Identifying effective treatment for papillomatosis is limited by a lack of animal models, and there is currently no preclinical model for testing potential therapeutic agents. We hypothesized that xenografting of papilloma may facilitate in vivo drug testing to identify novel treatment options. A biopsy of fresh tracheal papilloma was xenografted into a NOD-scid-IL2Rgamma(null) (NSG) mouse. The xenograft began growing after 5 weeks and was serially passaged over multiple generations. Each generation showed a consistent log-growth pattern, and in all xenografts, the presence of the human papillomavirus (HPV) genome was confirmed by polymerase chain reaction (PCR). Histopathologic analysis demonstrated that the squamous architecture of the original papilloma was maintained in each generation. In vivo drug testing with bevacizumab (5 mg/kg i.p. twice weekly for 3 weeks) showed a dramatic therapeutic response compared to saline control. We report here the first successful case of serial xenografting of a tracheal papilloma in vivo with a therapeutic response observed with drug testing. In severely immunocompromised mice, the HPV genome and squamous differentiation of the papilloma can be maintained for multiple generations. This is a feasible approach to identify therapeutic agents in the treatment of recurrent respiratory papillomatosis. © The Author(s) 2014.

  19. A xenograft animal model of human arteriovenous malformations

    PubMed Central

    2013-01-01

    Background Arteriovenous malformations (AVMs) are a type of high-flow vascular malformations that most commonly occurs in the head and neck. They are present at birth but are usually clinically asymptomatic until later in life. The pathogenesis of AVMs remains unclear and therapeutic approaches to AVMs are unsatisfied. In order to provide a tool for studying the pathogenesis and therapies of this disease, we established and studied a xenograft animal model of human AVMs. Methods Fresh human AVMs specimens harvested from 4 patients were sectioned (5x5x5 mm) and xenografted subcutaneously in 5 immunologically naïve nude mice (Athymic Nude-Foxn1nu). Each mouse had four pieces specimens in four quadrants along the back. The grafts were observed weekly for volume, color and texture. The grafts were harvested at every 30 days intervals for histologic examination. All grafts (n = 20) were sectioned and stained for hematoxylin and eosin (H&E). Comparative pathologic evaluation of the grafts and native AVMs were performed by two blinded pathologists. Immunohistochemical examination of human-specific nuclear antigen, vascular endothelial growth factor receptor-2 (VEGFR-2) and Ki-67 was performed. Results Clinical characteristics and pathologic diagnosis of native human derived AVMs were confirmed. 85% (n = 17) of AVM xenografts survived although the sizes decreased after implantation. Histological examination demonstrated numerous small and medium-size vessels and revealed structural characteristics matching the native AVMs tissue.76.5% (n = 13) of the surviving xenografts were positive for Ki-67 and human-specific nuclear antigen suggesting survival of the human derived tissue, 52.9% (n = 9) were positive for VEGFR-2. Conclusions This preliminary xenograft animal model suggests that AVMs can survive in the nude mouse. The presence of human-specific nuclear antigen, VEGFR-2, and Ki-67 demonstrates the stability of native tissue qualities within the

  20. Next generation patient-derived prostate cancer xenograft models

    PubMed Central

    Lin, Dong; Xue, Hui; Wang, Yuwei; Wu, Rebecca; Watahiki, Akira; Dong, Xin; Cheng, Hongwei; Wyatt, Alexander W; Collins, Colin C; Gout, Peter W; Wang, Yuzhuo

    2014-01-01

    There is a critical need for more effective therapeutic approaches for prostate cancer. Research in this area, however, has been seriously hampered by a lack of clinically relevant, experimental in vivo models of the disease. This review particularly focuses on the development of prostate cancer xenograft models based on subrenal capsule grafting of patients’ tumor tissue into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. This technique allows successful development of transplantable, patient-derived cancer tissue xenograft lines not only from aggressive metastatic, but also from localized prostate cancer tissues. The xenografts have been found to retain key biological properties of the original malignancies, including histopathological and molecular characteristics, tumor heterogeneity, response to androgen ablation and metastatic ability. As such, they are highly clinically relevant and provide valuable tools for studies of prostate cancer progression at cellular and molecular levels, drug screening for personalized cancer therapy and preclinical drug efficacy testing; especially when a panel of models is used to cover a broader spectrum of the disease. These xenograft models could therefore be viewed as next-generation models of prostate cancer. PMID:24589467

  1. 184AA3: a xenograft model of ER+ breast adenocarcinoma

    SciTech Connect

    Hines, William C.; Kuhn, Irene; Thi, Kate; Chu, Berbie; Stanford-Moore, Gaelen; Sampayo, Rocío; Garbe, James C.; Stampfer, Martha; Borowsky, Alexander D.; Bissell, Mina J.

    2015-12-12

    Despite the prevalence and significant morbidity resulting from estrogen receptor positive (ER+) breast adenocarcinomas, there are only a few models of this cancer subtype available for drug development and arguably none for studying etiology. Those models that do exist have questionable clinical relevance. Given our goal of developing luminal models, we focused on six cell lines derived by minimal mutagenesis from normal human breast cells, and asked if any could generate clinically relevant xenografts, which we then extensively characterized. Xenografts of one cell line, 184AA3, consistently formed ER+ adenocarcinomas that had a high proliferative rate and other features consistent with “luminal B” intrinsic subtype. Squamous and spindle cell/mesenchymal differentiation was absent, in stark contrast to other cell lines that we examined or others have reported. We explored intratumoral heterogeneity produced by 184AA3 by immunophenotyping xenograft tumors and cultured cells, and characterized marker expression by immunofluorescence and flow cytometry. A CD44High subpopulation was discovered, yet their tumor forming ability was far less than CD44Low cells. Single cell cloning revealed the phenotypic plasticity of 184AA3, consistent with the intratumoral heterogeneity observed in xenografts. Characterization of ER expression in cultures revealed ER protein and signaling is intact, yet when estrogen was depleted in culture, and in vivo, it did not impact cell or tumor growth, analogous to therapeutically resistant ER+ cancers. This model is appropriate for studies of the etiology of ovarian hormone independent adenocarcinomas, for identification of therapeutic targets, predictive testing, and drug development.

  2. Xenograft Model for Identifying Chemotherapeutic Agents against Papillomaviruses

    PubMed Central

    Pawellek, A.; Hewlett, G.; Kreuter, J.; Rübsamen-Waigmann, H.; Weber, O.

    2001-01-01

    The report describes the establishment and characterization of a mouse xenograft transplantation model for the study of papillomavirus infection of bovine skin. Calf scrotal skin was inoculated with bovine papillomavirus type 2 before grafting it to the dorsum of severe combined immunodeficient mice. The grafted skin contained epidermis, dermis, and a thin layer of fat. After 5 months the induced warts not only showed histological features of papillomavirus infections but also tested positive for viral DNA and papillomavirus capsid antigen. The formation of infectious virions was demonstrated by inoculation of new transplants with crude extract from the induced warts as well as in a cell culture focus assay. Topical application of bromovinyl-2′-deoxyuridine led to a reduction in viral DNA content in the developing wart. This small-animal xenograft model should be useful for characterizing antiviral compounds and providing an understanding of the regulation of papillomavirus infections. PMID:11257010

  3. 184AA3: a xenograft model of ER+ breast adenocarcinoma

    DOE PAGES

    Hines, William C.; Kuhn, Irene; Thi, Kate; ...

    2015-12-12

    Despite the prevalence and significant morbidity resulting from estrogen receptor positive (ER+) breast adenocarcinomas, there are only a few models of this cancer subtype available for drug development and arguably none for studying etiology. Those models that do exist have questionable clinical relevance. Given our goal of developing luminal models, we focused on six cell lines derived by minimal mutagenesis from normal human breast cells, and asked if any could generate clinically relevant xenografts, which we then extensively characterized. Xenografts of one cell line, 184AA3, consistently formed ER+ adenocarcinomas that had a high proliferative rate and other features consistent withmore » “luminal B” intrinsic subtype. Squamous and spindle cell/mesenchymal differentiation was absent, in stark contrast to other cell lines that we examined or others have reported. We explored intratumoral heterogeneity produced by 184AA3 by immunophenotyping xenograft tumors and cultured cells, and characterized marker expression by immunofluorescence and flow cytometry. A CD44High subpopulation was discovered, yet their tumor forming ability was far less than CD44Low cells. Single cell cloning revealed the phenotypic plasticity of 184AA3, consistent with the intratumoral heterogeneity observed in xenografts. Characterization of ER expression in cultures revealed ER protein and signaling is intact, yet when estrogen was depleted in culture, and in vivo, it did not impact cell or tumor growth, analogous to therapeutically resistant ER+ cancers. This model is appropriate for studies of the etiology of ovarian hormone independent adenocarcinomas, for identification of therapeutic targets, predictive testing, and drug development.« less

  4. 184AA3: A Xenograft Model of ER+ Breast Adenocarcinoma

    PubMed Central

    Hines, William C.; Kuhn, Irene; Thi, Kate; Chu, Berbie; Stanford-Moore, Gaelen; Sampayo, Rocío; Garbe, James C.; Stampfer, Martha; Borowsky, Alexander D.; Bissell, Mina

    2015-01-01

    Purpose Despite the prevalence and significant morbidity resulting from estrogen receptor positive (ER+) breast adenocarcinomas, there are only a few models of this cancer subtype available for drug development, and arguably none for studying etiology. Those models that do exist have questionable clinical relevance. Methods Given our goal of developing luminal models, we focused on six cell lines derived by minimal mutagenesis from normal human breast cells, and asked if any could generate clinically relevant xenografts, which we then extensively characterized. Results Xenografts of one cell line, 184AA3, consistently formed ER+ adenocarcinomas that had a high proliferative rate and other features consistent with “luminal B” intrinsic subtype. Squamous and spindle cell/mesenchymal differentiation was absent, in stark contrast to other cell lines that we examined or others have reported. We explored intratumoral heterogeneity produced by 184AA3 by immunophenotyping xenograft tumors and cultured cells, and characterized marker expression by immunofluorescence and flow cytometry. A CD44High subpopulation was discovered, yet their tumor forming ability was far less than CD44Low cells. Single cell cloning revealed the phenotypic plasticity of 184AA3, consistent with the intratumoral heterogeneity observed in xenografts. Characterization of ER expression in cultures revealed ER protein and signaling is intact, yet when estrogen was depleted in culture, and in vivo, it did not impact cell or tumor growth, analogous to therapeutically resistant ER+ cancers. Conclusions This model is appropriate for studies of the etiology of ovarian hormone independent adenocarcinomas, for identification of therapeutic targets, predictive testing and drug development. PMID:26661596

  5. Establishment of Patient-Derived Keloid Xenograft Model.

    PubMed

    Park, Tae Hwan; Rah, Dong Kyun; Chang, Choong Hyun; Kim, Sung Young

    2016-10-01

    Recent advances on preclinical model based on patient-derived tumor xenografts have new insight into many clinical fields. According to our literature review, many authors believe that immunodeficient animals such as athymic rats and mice should be used to prevent tissue loss caused by acute rejection to establish patient-derived tumor xenografts models.However, recent advances showed that the microenvironment has gained attention as an important factor responsible for disease progression. Additionally, researchers attempt to come up with novel findings in chemotherapy drugs and immune modulator to control development of keloid. For these reasons, establishment of reliable animal model of keloids is very important.In this new model using an immunocompetent animal as a humanized-xenografts model, human keloid scar has been maintained for as long as 4 months. Results of migration assay have demonstrated that typical morphology of keloid fibroblast was preserved based on multiple time point observations despite its aging change. Quantitative real time polymerase chain reaction findings suggested that after implantation, there has been significant increase of vascular endothelial growth factor, CD34, and transforming growth factor beta 1 expression despite insignificant changes of hypoxia inducible factor 1 an matrix metallopeptidase 1, and matrix metallopeptidase 9 gene expression. These findings suggested that implantation of keloids within the immunocompetent animals yields is very useful experimental model in terms of fibrosis.In summary, the authors have successfully established and propagated patient-derived keloid model using the immunocompetent animals. This model could be used to test novel materials as well as combination therapies and is superior to the conventional cell line experiment models. In addition, the biology of the keloids can easily be assessed to identify predictive markers for responses to treatment regimens that are currently actively under

  6. Patient-derived xenografts as preclinical neuroblastoma models.

    PubMed

    Braekeveldt, Noémie; Bexell, Daniel

    2017-09-19

    The prognosis for children with high-risk neuroblastoma is often poor and survivors can suffer from severe side effects. Predictive preclinical models and novel therapeutic strategies for high-risk disease are therefore a clinical imperative. However, conventional cancer cell line-derived xenografts can deviate substantially from patient tumors in terms of their molecular and phenotypic features. Patient-derived xenografts (PDXs) recapitulate many biologically and clinically relevant features of human cancers. Importantly, PDXs can closely parallel clinical features and outcome and serve as excellent models for biomarker and preclinical drug development. Here, we review progress in and applications of neuroblastoma PDX models. Neuroblastoma orthotopic PDXs share the molecular characteristics, neuroblastoma markers, invasive properties and tumor stroma of aggressive patient tumors and retain spontaneous metastatic capacity to distant organs including bone marrow. The recent identification of genomic changes in relapsed neuroblastomas opens up opportunities to target treatment-resistant tumors in well-characterized neuroblastoma PDXs. We highlight and discuss the features and various sources of neuroblastoma PDXs, methodological considerations when establishing neuroblastoma PDXs, in vitro 3D models, current limitations of PDX models and their application to preclinical drug testing.

  7. Biological behaviors and proteomics analysis of hybrid cell line EAhy926 and its parent cell line A549.

    PubMed

    Lu, Ze Jun; Ren, Ya Qiong; Wang, Guo Ping; Song, Qi; Li, Mei; Jiang, Sa Sa; Ning, Tao; Guan, Yong Song; Yang, Jin Liang; Luo, Feng

    2009-02-13

    It is well established that cancer cells can fuse with endothelial cells to form hybrid cells spontaneously, which facilitates cancer cells traversing the endothelial barrier to form metastases. However, up to now, little is known about the biologic characteristics of hybrid cells. Therefore, we investigate the malignant biologic behaviors and proteins expression of the hybrid cell line EAhy926 with its parent cell line A549. Cell counting and flow cytometry assay were carried out to assess cell proliferation. The number of cells attached to the extracellular matrix (Matrigel) was measured by MTT assay for the adhesion ability of cells. Transwell chambers were established for detecting the ability of cell migration and invasion. Tumor xenograft test was carried out to observe tumorigenesis of the cell lines. In addition, two-dimensional electrophoresis (2-DE) and mass spectrometry were utilized to identify differentially expressed proteins between in Eahy926 cells and in A549 cells. The doubling time of EAhy926 cell and A549 cell proliferation was 25.32 h and 27.29 h, respectively (P > 0.1). Comparing the phase distribution of cell cycle of EAhy926 cells with that of A549 cells, the percentage of cells in G0/G1 phase, in S phase and in G2/M phase was (63.7% +/- 2.65%) VS (60.0% +/- 3.17%), (15.4% +/- 1.52%) VS (13.8% +/- 1.32%), and (20.9% +/- 3.40%) VS (26.3% +/- 3.17%), respectively (P > 0.05). For the ability of cell adhesion of EAhy926 cells and A549 cells, the value of OD in Eahy926 cells was significantly higher than that in A549 cells (0.3236 +/- 0.0514 VS 0.2434 +/- 0.0390, P < 0.004). We also found that the migration ability of Eahy926 cells was stronger than that of A549 cells (28.00 +/- 2.65 VS 18.00 +/- 1.00, P < 0.01), and that the invasion ability of Eahy926 cells was significantly weak than that of A549 cells (15.33 +/- 0.58 VS 26.67 +/- 2.52, P < 0.01). In the xenograft tumor model, expansive masses of classic tumor were found in the A549 cells

  8. Exploring the aneugenic and clastogenic potential in the nanosize range: A549 human lung carcinoma cells and amorphous monodisperse silica nanoparticles as models.

    PubMed

    Gonzalez, Laetitia; Thomassen, Leen C J; Plas, Gina; Rabolli, Virginie; Napierska, Dorota; Decordier, Ilse; Roelants, Mathieu; Hoet, Peter H; Kirschhock, Christine E A; Martens, Johan A; Lison, Dominique; Kirsch-Volders, Micheline

    2010-12-01

    We explored how to assess the genotoxic potential of nanosize particles with a well validated assay, the in vitro cytochalasin-B micronucleus assay, detecting both clastogens and aneugens. Monodisperse Stöber amorphous silica nanoparticles (SNPs) of three different sizes (16, 60 and 104 nm) and A549 lung carcinoma cells were selected as models. Cellular uptake of silica was monitored by ICP-MS. At non-cytotoxic doses the smallest particles showed a slightly higher fold induction of micronuclei (MNBN). When considering the three SNPs together, particle number and total surface area appeared to account for MNBN induction as they both correlated significantly with the amplitude of the effect. Using nominal or cellular dose did not show statistically significant differences. Likewise, alkaline comet assay and FISH-centromeric probing of MNBN indicated a weak and not statistically significant induction of oxidative DNA damage, chromosome breakage and chromosome loss. This line of investigation will contribute to adequately design and interpret nanogenotoxicity assays.

  9. Evaluation of Synergetic Anticancer Activity of Berberine and Curcumin on Different Models of A549, Hep-G2, MCF-7, Jurkat, and K562 Cell Lines

    PubMed Central

    Balakrishna, Acharya; Kumar, M. Hemanth

    2015-01-01

    Ayurvedic system of medicine is using Berberis aristata and Curcuma longa herbs to treat different diseases including cancer. The study was performed to evaluate the synergetic anticancer activity of Berberine and Curcumin by estimating the inhibition of the cell proliferation by cytotoxicity assay using MTT method on specified human cell lines (A549, Hep-G2, MCF-7, Jurkat, and K562). All the cells were harvested from the culture and seeded in the 96-well assay plates at seeding density of 2.0 × 104 cells/well and were incubated for 24 hours. Test items Berberine with Curcumin (1 : 1), Curcumin 95% pure, and Berberine 95% pure were exposed at the concentrations of 1.25, 0.001, and 0.5 mg/mL, respectively, and incubated for a period of 48 hours followed by dispensing MTT solution (5 mg/mL). The cells were incubated at 37 ± 1°C for 4 hours followed by addition of DMSO for dissolving the formazan crystals and absorbance was read at 570 nm. Separate wells were prepared for positive control, controls (only medium with cells), and blank (only medium). The results had proven the synergetic anticancer activity of Berberine with Curcumin inducing cell death greater percentage of >77% when compared to pure curcumin with <54% and pure Berberine with <45% on average on all cell line models. PMID:26247019

  10. Anticancer effect and apoptosis induction by quercetin in the human lung cancer cell line A-549.

    PubMed

    Zheng, Shi-Ying; Li, Yin; Jiang, Dong; Zhao, Jun; Ge, Jin-Feng

    2012-03-01

    The aim of the present study was to investigate the anticancer effect of quercetin (QC) in the human lung cancer cell line A-549 and further study the mechanism of apoptosis induction by QC. Low differentiation potential A-549 human lung cancer cells were treated with QC at different doses and for different times, and the growth inhibitory rates were detected by MTT assay. Apoptosis induced by QC in A-549 cells was observed by Annexin V/PI double staining and flow cytometric assay. The relative tumor growth ratio of the treated/control tumors (T/C) (%) was chosen to represent the tumor growth inhibition of A-549 cell nude mouse xenografts by QC. Apoptosis of the nude mouse xenografts was observed by Annexin V/PI double staining and flow cytometric assay and DNA fragmentation assay. To further determine the molecular mechanism of apoptosis induced by QC, changes in the expression of bcl-2 and bax genes were detected by RT-PCR. Following incubation with QC, the cell growth of the low differentiation potential A-549 human lung cancer cells was dramatically inhibited in a dose-dependent manner. After the cells were exposed to QC for 24, 48 and 72 h, the IC50 value was 1.02 ± 0.05, 1.41 ± 0.20 and 1.14 ± 0.19 µmol/l, respectively. Apoptosis in the A-549 cells induced by QC was noted. The apoptotic subpopulation of A-549 cells was approximately 12.96 and 24.58%, respectively, when cells were incubated with 1.2 µmol/l QC for 48 and 72 h. T/C (%) of A-549 nude mouse xenografts was 44.3, when the nude mice were treated with QC (8 mg/kg). Meanwhile, apoptosis induced by QC was observed in the A-549 nude mouse xenografts. Increased expression of the bax gene and decreased expression of the bc1-2 gene were noted using RT-PCR. Our results provide further evidence of the growth inhibition of the A-549 human lung adenocarcinoma cancer cell line by QC. This effect is associated with the induction of apoptosis in A-549 cells and the molecular mechanism may be related to the

  11. Optimization of Glioblastoma Mouse Orthotopic Xenograft Models for Translational Research.

    PubMed

    Irtenkauf, Susan M; Sobiechowski, Susan; Hasselbach, Laura A; Nelson, Kevin K; Transou, Andrea D; Carlton, Enoch T; Mikkelsen, Tom; deCarvalho, Ana C

    2017-08-01

    Glioblastoma is an aggressive primary brain tumor predominantly localized to the cerebral cortex. We developed a panel of patient-derived mouse orthotopic xenografts (PDOX) for preclinical drug studies by implanting cancer stem cells (CSC) cultured from fresh surgical specimens intracranially into 8-wk-old female athymic nude mice. Here we optimize the glioblastoma PDOX model by assessing the effect of implantation location on tumor growth, survival, and histologic characteristics. To trace the distribution of intracranial injections, toluidine blue dye was injected at 4 locations with defined mediolateral, anterioposterior, and dorsoventral coordinates within the cerebral cortex. Glioblastoma CSC from 4 patients and a glioblastoma nonstem-cell line were then implanted by using the same coordinates for evaluation of tumor location, growth rate, and morphologic and histologic features. Dye injections into one of the defined locations resulted in dye dissemination throughout the ventricles, whereas tumor cell implantation at the same location resulted in a much higher percentage of small multifocal ventricular tumors than did the other 3 locations tested. Ventricular tumors were associated with a lower tumor growth rate, as measured by in vivo bioluminescence imaging, and decreased survival in 4 of 5 cell lines. In addition, tissue oxygenation, vasculature, and the expression of astrocytic markers were altered in ventricular tumors compared with nonventricular tumors. Based on this information, we identified an optimal implantation location that avoided the ventricles and favored cortical tumor growth. To assess the effects of stress from oral drug administration, mice that underwent daily gavage were compared with stress-positive and -negative control groups. Oral gavage procedures did not significantly affect the survival of the implanted mice or physiologic measurements of stress. Our findings document the importance of optimization of the implantation site for

  12. Effect of gemcitabine on the uptake of (18)F-fluorodeoxyglucose and (18)F-fluorothymidine in lung adenocarcinoma A549 cells and the animal tumor model.

    PubMed

    Zhang, Bin; Deng, Sheng-Ming; Guo, Ling-Chuan; Dong, Jia-Jia; Zhu, Yan-Bo; Gao, Yuan; Wang, Zhen-Xin; Cho, William C

    2016-01-01

    Gemcitabine is the first-line drug for nonsmall cell lung cancer, and 18F-fluorodeoxyglucose. (18F-FDG) and 18F-fluorothymidine. (18F-FLT) are positron emission tomography. (PET) imaging agents. The aim of this study was to explore the effect of gemcitabine on the uptake of 18F-FDG and 18F-FLT in A549 cells and the animal tumor model. The inhibitory effects of gemcitabine on cell growth were determined by tetrazolium blue method, and uptake rates of 18F-FDG and 18F-FLT were determined under the same conditions. The adenocarcinoma-bearing nude mice before and after gemcitabine treatments were performed microPET imaging with 18F-FDG and 18F-FLT. Hematoxylin and eosin staining and immunohistochemical analysis of tumor specimens were conducted. After the administration of gemcitabine, positive correlations were observed between inhibition of 18F-FDG or 18F.FLT uptake and cell growth. (r = 0.957 or 0.981, P < 0.01). SUVmax values by 18F-FDG in the tumor, before and after administration of gemcitabine at the dose of 60 mmol/L, revealed an increase by. (35.83 ± 10.58) %. After administration of 120 mmol/L gemcitabine, the SUVmax values decreased by (12.37 ± 7.33) %. The SUVmax values by 18F-FLT at the dose of 60 mmol/L gemcitabine revealed a decrease by (56.47 ± 10.83) %. Pathological staining showed obvious vasodilation and invasion of lymphocytes and plasma cells at the dose of 60 mmol/L, and the expression of glucose transporter protein-1, Ki-67 and proliferating cell nuclear antigen in tumor cells were inhibited. 18F-FLT imaging can assess the proliferation of tumor cells and 18F-FDG imaging can reflect the changes of the tumor microenvironment after administration of gemcitabine.

  13. Sp1 inhibition-mediated upregulation of VEGF 165 b induced by rh-endostatin enhances antiangiogenic and anticancer effect of rh-endostatin in A549.

    PubMed

    Li, Zhen-yu; Zhu, Fang; Hu, Jian-li; Peng, Gang; Chen, Jing; Zhang, Sheng; Chen, Xu; Zhang, Rui-guang; Chen, Ling-juan; Liu, Pian; Luo, Ming; Sun, Zhi-hua; Ren, Jing-hua; Huang, Li-li; Wu, Gang

    2011-08-01

    Recombinant human endostatin (rh-endostatin), a potential antiangiogenic agent, is used in non-small cell lung carcinoma treatment and represses vascular endothelial cell growth factor (VEGF) levels in tumor cell. However, precise affection of rh-endostatin on the proangiogenic VEGF isoforms (VEGF(165)) or antiangiogenic VEGF isoforms (VEGF(165)b) is not clear. We therefore tested the hypothesis that rh-endostatin could alter expression of these isoforms to regulate tumor growth. A549 cells were exposed to rh-endostatin, and the expression of VEGF(165) and VEGF(165)b was detected. The role of SP1 as a regulator of isoform expression was investigated. We then examined the anticancer and antiangiogenic efficacy of rh-endostatin in combination with exogenous VEGF(165)b against A549 cells, EA.HY 926 cells and xenograft model of human lung cancer. rh-Endostatin reduced VEGF(165) and induced VEGF(165)b as well as inhibited SP1 in A549 cells. SP1 inhibitor (betulinic acid) also developed those changes. VEGF(165)b-rh-endostatin combination was highly synergistic and inhibited growth, survival, and migration of A549 cells, VEGF-mediated VEGFR2 phosphorylation in EA.HY 926 cells, and tumor growth in xenograft model of human lung cancer. rh-Endostatin downregulates proangiogenic vascular endothelial growth factor A (VEGFA) isoform and upregulates antiangiogenic VEGFA isoform, possibly through inhibition of SP1. Furthermore, VEGF(165)b sensitizes A549 to rh-endostatin treatment and enhances the anticancer effect of rh-endostatin.

  14. Modeling of Chronic Myeloid Leukemia: An Overview of In Vivo Murine and Human Xenograft Models

    PubMed Central

    Vellenga, Edo

    2016-01-01

    Over the past years, a wide variety of in vivo mouse models have been generated in order to unravel the molecular pathology of Chronic Myeloid Leukemia (CML) and to develop and improve therapeutic approaches. These models range from (conditional) transgenic models, knock-in models, and murine bone marrow retroviral transduction models followed by transplantation. With the advancement of immunodeficient xenograft models, it has become possible to use human stem/progenitor cells for in vivo studies as well as cells directly derived from CML patients. These models not only mimic CML but also have been instrumental in uncovering various fundamental mechanisms of CML disease progression and tyrosine kinase inhibitor (TKI) resistance. With the availability of iPSC technology, it has become feasible to derive, maintain, and expand CML subclones that are at least genetically identical to those in patients. The following review provides an overview of all murine as well as human xenograft models for CML established till date. PMID:27642303

  15. Paracrine control of differentiation in the alveolar carcinoma, A549, by human foetal lung fibroblasts.

    PubMed

    Speirs, V; Ray, K P; Freshney, R I

    1991-10-01

    Synthesis of pulmonary surfactant (PS) is necessary for normal functioning of the lungs and its production is indicative of normal differentiated lung. The human alveolar carcinoma, A549, has been found to synthesis and secrete PS in vitro. The purpose of this study was to optimise the culture conditions for PS synthesis by A549 as well as to determine the potential role of foetal lung fibroblasts in the induction of PS by glucocorticoids. A549 cells growing in filter wells produced higher levels of PS in response to steroid, a 5-fold increase on the filter well compared to only a 1.5-fold increase when the cells were cultured on a conventional plastic substrate. A549 cells grown in filter wells responded to coculture with fibroblasts whether in direct contact or separated co-culture. A 20-fold increase in PS over control values was observed in separated steroid-treated co-cultures, suggesting the presence of a diffusible factor. A partially purified factor was isolated from fibroblast conditioned medium which was capable of inducing differentiation and other phenotypic changes in A549, namely induction of PS, reduction of plasminogen activator activity and reduction in the in vivo growth of A549 xenografts in nude mice. These results suggest that, under the correct conditions, A549 cells, although transformed, still retain the capacity to respond to differentiation-inducing signals from normal fibroblasts.

  16. Paracrine control of differentiation in the alveolar carcinoma, A549, by human foetal lung fibroblasts.

    PubMed Central

    Speirs, V.; Ray, K. P.; Freshney, R. I.

    1991-01-01

    Synthesis of pulmonary surfactant (PS) is necessary for normal functioning of the lungs and its production is indicative of normal differentiated lung. The human alveolar carcinoma, A549, has been found to synthesis and secrete PS in vitro. The purpose of this study was to optimise the culture conditions for PS synthesis by A549 as well as to determine the potential role of foetal lung fibroblasts in the induction of PS by glucocorticoids. A549 cells growing in filter wells produced higher levels of PS in response to steroid, a 5-fold increase on the filter well compared to only a 1.5-fold increase when the cells were cultured on a conventional plastic substrate. A549 cells grown in filter wells responded to coculture with fibroblasts whether in direct contact or separated co-culture. A 20-fold increase in PS over control values was observed in separated steroid-treated co-cultures, suggesting the presence of a diffusible factor. A partially purified factor was isolated from fibroblast conditioned medium which was capable of inducing differentiation and other phenotypic changes in A549, namely induction of PS, reduction of plasminogen activator activity and reduction in the in vivo growth of A549 xenografts in nude mice. These results suggest that, under the correct conditions, A549 cells, although transformed, still retain the capacity to respond to differentiation-inducing signals from normal fibroblasts. Images Figure 5 PMID:1654985

  17. Establishment of a human B-CLL xenograft model: utility as a preclinical therapeutic model.

    PubMed

    Mohammad, R M; Mohamed, A N; Hamdan, M Y; Vo, T; Chen, B; Katato, K; Abubakr, Y A; Dugan, M C; al-Katib, A

    1996-01-01

    Chronic lymphocytic leukemia (CLL), a proliferative disease of mature looking B lymphocytes, is the commonest leukemia in western countries. It remains incurable by available treatment modalities. We report on the establishment of a permanent, EBV-negative, B-CLL line (WSU-CLL) from the peripheral blood of a patient with CLL. The cells grow as suspension in liquid culture, express IgG lambda and other B cell markers and show lg heavy and light gene rearrangements. Karyotypic analysis shows 45,X,del(3)(p14;p24),t(4;12;12) (q31;q22;p13), t(5;12) (q31;p13), add(16)(q24)X2, t(18;21) (q12;p12). WSU-CLL forms colonies when grown on soft agar. A xenograft model was established by injecting the WSU-CLL cells subcutaneously (s.c.) in severe combined immune deficient (SCID) mice. When the s.c. tumor was transplanted in vivo to other SCID mice, the success rate was 100% with a doubling time of 7.3 days. The CLL-SCID xenograft model was used to test the efficacy of selected standard chemotherapy drugs and new therapeutic agents against WSU-CLL. The cell line and the xenograft described can be used as a model to facilitate the development of new therapeutic agents against CLL in man.

  18. Adenovirus-Mediated Expression of the p14 Fusion-Associated Small Transmembrane Protein Promotes Cancer Cell Fusion and Apoptosis In Vitro but Does Not Provide Therapeutic Efficacy in a Xenograft Mouse Model of Cancer

    PubMed Central

    Wong, Carmen M.; Poulin, Kathy L.; Tong, Grace; Christou, Carin; Kennedy, Michael A.; Falls, Theresa; Bell, John C.; Parks, Robin J.

    2016-01-01

    Adenoviruses (Ads) are used in numerous preclinical and clinical studies for delivery of anti-cancer therapeutic genes. Unfortunately, Ad has a poor ability to distribute throughout a tumor mass after intratumoral injection, and infects cells primarily within the immediate area of the injection tract. Thus, Ad-encoded transgene expression is typically limited to only a small percentage of cells within the tumor. One method to increase the proportion of the tumor impacted by Ad is through expression of fusogenic proteins. Infection of a single cell with an Ad vector encoding a fusogenic protein should lead to syncytium formation with adjacent cells, effectively spreading the effect of Ad and Ad-encoded therapeutic transgenes to a greater percentage of the tumor mass. Moreover, syncytium formation can be cytotoxic, suggesting that such proteins may be effective sole therapeutics. We show that an early region 1 (E1)-deleted Ad expressing reptilian reovirus p14 fusion-associated small transmembrane (FAST) protein caused extensive cell fusion in the replication-permissive 293 cell line and at high multiplicity of infection in non-permissive human lung adenocarcinoma A549 cells in vitro. FAST protein expression in the A549 cancer cell line led to a loss of cellular metabolic activity and membrane integrity, which correlated with induction of apoptosis. However, in an A549 xenograft CD-1 nude mouse cancer model, Ad-mediated FAST gene delivery did not induce detectable cell fusion, reduce tumor burden nor enhance mouse survival compared to controls. Taken together, our results show that, although AdFAST can enhance cancer cell killing in vitro, it is not effective as a sole therapeutic in the A549 tumor model in vivo. PMID:26986751

  19. Anticancer effect of silibinin on the xenograft model using MDA-MB-468 breast cancer cells.

    PubMed

    Kil, Won Ho; Kim, Sang Min; Lee, Jeong Eon; Park, Kyoung Sik; Nam, Seok Jin

    2014-10-01

    The aim of this study is to know whether silibinin has an anticancer effect on triple negative breast cancer xenograft model using MDA-MB-468 cells. To establish the xenograft model, we injected the MDA-MB-468 cells into female Balb/c-nude mice. After establishing a xenograft model, oral silibinin was administered to the tested mice in the way of 200 mg/kg for 45 days. The difference of mean tumor volume between silibinin fed mice and control mice was analyzed. The epidermal growth factor receptor (EGFR) phosphorylation in MDA-MB-468 cells was analyzed by Western blotting. The expression of VEGF, COX-2, and MMP-9 genes in tumor tissue was analyzed by real-time polymerase chain reaction (PCR). In the xenograft model using MDA-MB-468 cells, we found that oral administration of silibinin significantly suppressed the tumor volume (silibinin treated mice vs. control mice; 230.3 ± 61.6 mm(3) vs. 435.7 ± 93.5 mm(3), P < 0.001). The phosphorylation of EGFR in MDA-MB-468 cells was inhibited by treatment with 50 µg/mL of silibinin. In real time-PCR analysis of tumor tissue obtained from sacrificed mice, the gene expression of MMP-9, VEGF, and COX-2 was 51.8%-80% smaller in silibinin group than that of control group and we can also verify the similar result using Western blotting analysis. We verified that silibinin had anticancer effect on xenograft model of MDA-MB-468 cells in the way of preventing the phosphorylation of EGFR and eventually suppressed the production of COX-2, VEGF, and MMP-9 expression. Finally, the tumor volume of xenograft models was decreased after administration of Silibinin.

  20. Anticancer effect of silibinin on the xenograft model using MDA-MB-468 breast cancer cells

    PubMed Central

    Kim, Sang Min; Lee, Jeong Eon; Park, Kyoung Sik; Nam, Seok Jin

    2014-01-01

    Purpose The aim of this study is to know whether silibinin has an anticancer effect on triple negative breast cancer xenograft model using MDA-MB-468 cells. Methods To establish the xenograft model, we injected the MDA-MB-468 cells into female Balb/c-nude mice. After establishing a xenograft model, oral silibinin was administered to the tested mice in the way of 200 mg/kg for 45 days. The difference of mean tumor volume between silibinin fed mice and control mice was analyzed. The epidermal growth factor receptor (EGFR) phosphorylation in MDA-MB-468 cells was analyzed by Western blotting. The expression of VEGF, COX-2, and MMP-9 genes in tumor tissue was analyzed by real-time polymerase chain reaction (PCR). Results In the xenograft model using MDA-MB-468 cells, we found that oral administration of silibinin significantly suppressed the tumor volume (silibinin treated mice vs. control mice; 230.3 ± 61.6 mm3 vs. 435.7 ± 93.5 mm3, P < 0.001). The phosphorylation of EGFR in MDA-MB-468 cells was inhibited by treatment with 50 µg/mL of silibinin. In real time-PCR analysis of tumor tissue obtained from sacrificed mice, the gene expression of MMP-9, VEGF, and COX-2 was 51.8%-80% smaller in silibinin group than that of control group and we can also verify the similar result using Western blotting analysis. Conclusion We verified that silibinin had anticancer effect on xenograft model of MDA-MB-468 cells in the way of preventing the phosphorylation of EGFR and eventually suppressed the production of COX-2, VEGF, and MMP-9 expression. Finally, the tumor volume of xenograft models was decreased after administration of Silibinin. PMID:25317410

  1. Anti-tumor effect of bevacizumab on a xenograft model of feline mammary carcinoma

    PubMed Central

    MICHISHITA, Masaki; OHTSUKA, Aya; NAKAHIRA, Rei; TAJIMA, Tsuyoshi; NAKAGAWA, Takayuki; SASAKI, Nobuo; ARAI, Toshiro; TAKAHASHI, Kimimasa

    2015-01-01

    Feline mammary carcinomas are characterized by rapid progression and metastases. Vascular endothelial growth factor (VEGF) is a key regulator of tumor angiogenesis, proliferation and metastasis. The present study aimed to investigate the effects of a single drug therapy of bevacizumab on a xenograft model of feline mammary carcinoma expressing VEGF protein. Bevacizumab treatment suppressed tumor growth by inhibiting angiogenesis and enhancing apoptosis; however, it did not affect the tumor proliferation index. Thus, bevacizumab had anti-tumor effects on a xenograft model, and this may be useful for the treatment of feline mammary carcinoma. PMID:26616000

  2. Phospho-sulindac (OXT-328) Inhibits the Growth of Human Lung Cancer Xenografts in Mice: Enhanced Efficacy and Mitochondria Targeting by Its Formulation in Solid Lipid Nanoparticles

    PubMed Central

    Zhu, Rongrong; Cheng, Ka-Wing; Mackenzie, Gerardo; Huang, Liqun; Sun, Yu; Xie, Gang; Vrankova, Kveta; Rigas, Basil; Constantinides, Panayiotis P.

    2013-01-01

    Purpose To evaluate the antitumor efficacy of solid lipid nanoparticle–encapsulated phospho-sulindac (SLN-PS) in human lung cancer. Methods PS was incorporated into SLNs using the emulsion evaporation technique. We determined the antitumor activity of SLN-PS in cultured lung cancer cells. The performance of SLN-PS was further evaluated by pharmacokinetic studies in mice and in a model of human lung cancer xenografts in nude mice. Results SLN-PS was >4-fold more potent than PS in inhibiting the growth of A549 and H510 cells in vitro. SLN-PS enhanced cellular uptake and facilitated PS accumulation in mitochondria, leading to oxidative stress and apoptosis via the mitochondrial-apoptosis pathway. SLN-PS was highly effective in suppressing the growth of A549 xenografts (78% inhibition compared to control, p < 0.01); while PS had no significant effect. Formulation of PS in SLNs resulted in improved pharmacokinetics in mice and an enhanced (~14-fold) accumulation of PS and its metabolites in A549 xenografts. Finally, SLN-PS enhanced urinary F2-isoprostane uniquely in mice bearing A549 xenografts compared to untreated controls, suggesting that SLN-PS specifically induced oxidative stress in tumors. Conclusions Our results show that SLN-PS is efficacious in suppressing the growth of lung cancer and merits further evaluation. PMID:22723123

  3. Phospho-sulindac (OXT-328) inhibits the growth of human lung cancer xenografts in mice: enhanced efficacy and mitochondria targeting by its formulation in solid lipid nanoparticles.

    PubMed

    Zhu, Rongrong; Cheng, Ka-Wing; Mackenzie, Gerardo; Huang, Liqun; Sun, Yu; Xie, Gang; Vrankova, Kveta; Constantinides, Panayiotis P; Rigas, Basil

    2012-11-01

    To evaluate the antitumor efficacy of solid lipid nanoparticle-encapsulated phospho-sulindac (SLN-PS) in human lung cancer. PS was incorporated into SLNs using the emulsion evaporation technique. We determined the antitumor activity of SLN-PS in cultured lung cancer cells. The performance of SLN-PS was further evaluated by pharmacokinetic studies in mice and in a model of human lung cancer xenografts in nude mice. SLN-PS was >4-fold more potent than PS in inhibiting the growth of A549 and H510 cells in vitro. SLN-PS enhanced cellular uptake and facilitated PS accumulation in mitochondria, leading to oxidative stress and apoptosis via the mitochondrial-apoptosis pathway. SLN-PS was highly effective in suppressing the growth of A549 xenografts (78% inhibition compared to control, p < 0.01); while PS had no significant effect. Formulation of PS in SLNs resulted in improved pharmacokinetics in mice and an enhanced (≈ 14-fold) accumulation of PS and its metabolites in A549 xenografts. Finally, SLN-PS enhanced urinary F2-isoprostane uniquely in mice bearing A549 xenografts compared to untreated controls, suggesting that SLN-PS specifically induced oxidative stress in tumors. Our results show that SLN-PS is efficacious in suppressing the growth of lung cancer and merits further evaluation.

  4. The HSP90 inhibitor 17-AAG exhibits potent antitumor activity for pheochromocytoma in a xenograft model.

    PubMed

    Xu, Yunze; Zhu, Qi; Chen, Dongning; Shen, Zhoujun; Wang, Weiqing; Ning, Guang; Zhu, Yu

    2015-07-01

    This study aims to investigate the effect of heat shock protein 90 (HSP90) inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) in the malignant pheochromocytoma using a xenograft mouse model. Treatment with 17-AAG induced a marked reduction in the volume and weight of PC12 pheochromocytoma cell tumor xenografts in mice. Furthermore, 17-AAG also significantly inhibited the expression of HSP90 and its client proteins. Our results validated HSP90 as an important target in pheochromocytoma and provided rationale for the testing of HSP90 inhibitors as a promising therapeutic agent in the antitumor therapy of pheochromocytoma.

  5. Assessment of antitumor activity for tumor xenograft studies using exponential growth models.

    PubMed

    Wu, Jianrong

    2011-05-01

    In preclinical tumor xenograft experiments, the antitumor activity of the tested agents is often assessed by endpoints such as tumor doubling time, tumor growth delay (TGD), and log10 cell kill (LCK). In tumor xenograft literature, the values of these endpoints are presented without any statistical inference, which ignores the noise in the experimental data. However, using exponential growth models, these endpoints can be quantified by their growth curve parameters, thus allowing parametric inference, such as an interval estimate, to be used to assess the antitumor activity of the treatment.

  6. A Real-Time Non-invasive Auto-bioluminescent Urinary Bladder Cancer Xenograft Model.

    PubMed

    John, Bincy Anu; Xu, Tingting; Ripp, Steven; Wang, Hwa-Chain Robert

    2017-02-01

    The study was to develop an auto-bioluminescent urinary bladder cancer (UBC) xenograft animal model for pre-clinical research. The study used a humanized, bacteria-originated lux reporter system consisting of six (luxCDABEfrp) genes to express components required for producing bioluminescent signals in human UBC J82, J82-Ras, and SW780 cells without exogenous substrates. Immune-deficient nude mice were inoculated with Lux-expressing UBC cells to develop auto-bioluminescent xenograft tumors that were monitored by imaging and physical examination. Lux-expressing auto-bioluminescent J82-Lux, J82-Ras-Lux, and SW780-Lux cell lines were established. Xenograft tumors derived from tumorigenic Lux-expressing auto-bioluminescent J82-Ras-Lux cells allowed a serial, non-invasive, real-time monitoring by imaging of tumor development prior to the presence of palpable tumors in animals. Using Lux-expressing auto-bioluminescent tumorigenic cells enabled us to monitor the entire course of xenograft tumor development through tumor cell implantation, adaptation, and growth to visible/palpable tumors in animals.

  7. Human skeletal muscle xenograft as a new preclinical model for muscle disorders

    PubMed Central

    Zhang, Yuanfan; King, Oliver D.; Rahimov, Fedik; Jones, Takako I.; Ward, Christopher W.; Kerr, Jaclyn P.; Liu, Naili; Emerson, Charles P.; Kunkel, Louis M.; Partridge, Terence A.; Wagner, Kathryn R.

    2014-01-01

    Development of novel therapeutics requires good animal models of disease. Disorders for which good animal models do not exist have very few drugs in development or clinical trial. Even where there are accepted, albeit imperfect models, the leap from promising preclinical drug results to positive clinical trials commonly fails, including in disorders of skeletal muscle. The main alternative model for early drug development, tissue culture, lacks both the architecture and, usually, the metabolic fidelity of the normal tissue in vivo. Herein, we demonstrate the feasibility and validity of human to mouse xenografts as a preclinical model of myopathy. Human skeletal muscle biopsies transplanted into the anterior tibial compartment of the hindlimbs of NOD-Rag1null IL2rγnull immunodeficient host mice regenerate new vascularized and innervated myofibers from human myogenic precursor cells. The grafts exhibit contractile and calcium release behavior, characteristic of functional muscle tissue. The validity of the human graft as a model of facioscapulohumeral muscular dystrophy is demonstrated in disease biomarker studies, showing that gene expression profiles of xenografts mirror those of the fresh donor biopsies. These findings illustrate the value of a new experimental model of muscle disease, the human muscle xenograft in mice, as a feasible and valid preclinical tool to better investigate the pathogenesis of human genetic myopathies and to more accurately predict their response to novel therapeutics. PMID:24452336

  8. Biological Analysis of Human CML Stem Cells; Xenograft Model of Chronic Phase Human Chronic Myeloid Leukemia.

    PubMed

    Abraham, Sheela A

    2016-01-01

    Xenograft mouse models have been instrumental in expanding our knowledge of hematopoiesis and can provide a functional description of stem cells that possess engrafting potential. Here we describe methodology outlining one way of analyzing human malignant cells that are able to engraft immune compromised mice. Using models such as these will allow researchers to gain valuable insight into the primitive leukemic subtypes that evade current therapy regimes and are critical to understand, in order to eradicate malignancy.

  9. Mouse Xenograft Model for Mesothelioma | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

  10. Garcinol from Garcinia indica Downregulates Cancer Stem-like Cell Biomarker ALDH1A1 in Nonsmall Cell Lung Cancer A549 Cells through DDIT3 Activation.

    PubMed

    Wang, Jinhan; Wang, Liwen; Ho, Chi-Tang; Zhang, Kunsheng; Liu, Qiang; Zhao, Hui

    2017-05-10

    Nonsmall cell lung cancer (NSCLC) is the predominant type of lung cancer. Patients with NSCLC show high mortality rates because of failure to clean up cancer stem cells (CSCs). The anticancer activity of phytochemical garcinol has been identified in various cancer cell models. However, the effect of garcinol on NSCLC cell lines is still lacking. Of the NSCLC cell lines we tested, A549 cells were the most sensitive to garcinol. Interestingly, Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) was preferentially expressed in A549 cells and downregulated by the addition of garcinol. We also found that garcinol enriched DNA damage-inducible transcript 3 (DDIT3) and then altered DDIT3-CCAAT-enhancer-binding proteins beta (C/EBPβ) interaction resulting in a decreased binding of C/EBPβ to the endogenous ALDH1A1 promoter. Furthermore, garcinol's inhibition of ALDH1A1 was identified in a xenograft mice model. Garcinol repressed ALDH1A1 transcription in A549 cells through alterations in the interaction between DDIT3 and C/EBPβ. Garcinol could be a potential dietary phytochemical candidate for NSCLCs patients whose tumors harbored high ALDH1A1 expression.

  11. Pulmonary metastases of the A549-derived lung adenocarcinoma tumors growing in nude mice. A multiple case study.

    PubMed

    Jakubowska, Monika; Sniegocka, Martyna; Podgórska, Ewa; Michalczyk-Wetula, Dominika; Urbanska, Krystyna; Susz, Anna; Fiedor, Leszek; Pyka, Janusz; Płonka, Przemysław M

    2013-01-01

    Lung adenocarcinoma is a leading human malignancy with fatal prognosis. Ninety percent of the deaths, however, are caused by metastases. The model of subcutaneous tumor xenograft in nude mice was adopted to study the growth of control and photodynamically treated tumors derived from the human A549 lung adenocarcinoma cell line. As a side-result of the primary studies, observations on the metastasis of these tumors to the murine lungs were collected, and reported in the present paper. The metastasizing primary tumors were drained by a prominent number of lymphatic vessels. The metastatic tissue revealed the morphology of well-differentiated or trans-differentiated adenocarcinoma. Further histological and histochemical analyses demonstrated the presence of golden-brown granules in the metastatic tissue, similar to these found in the tumor tissue. In contrast to the primary tumors, the electron paramagnetic resonance spectroscopy revealed no nitric oxide - hemoglobin complexes (a source of intense paramagnetic signals), in the metastases. No metastases were found in other murine organs; however, white infarctions were identified in a single liver. Taken together, the A549-derived tumors growing subcutaneously in nude mice can metastasize and grow on site in the pulmonary tissue. Thus, they can represent an alternative for the model of induced metastatic nodule formation, following intravenous administration of the cancerous cells.

  12. Transplantation of Tissue-Engineered Cartilage in an Animal Model (Xenograft and Autograft): Construct Validation.

    PubMed

    Nemoto, Hitoshi; Watson, Deborah; Masuda, Koichi

    2015-01-01

    Tissue engineering holds great promise for cartilage repair with minimal donor-site morbidity. The in vivo maturation of a tissue-engineered construct can be tested in the subcutaneous tissues of the same species for autografts or of immunocompromised animals for allografts or xenografts. This section describes detailed protocols for the surgical transplantation of a tissue-engineered construct into an animal model to assess construct validity.

  13. First In-Mouse Development and Application of a Surgically Relevant Xenograft Model of Ovarian Carcinoma

    PubMed Central

    Helland, Øystein; Popa, Mihaela; Vintermyr, Olav K.; Molven, Anders; Gjertsen, Bjørn Tore; Bjørge, Line; McCormack, Emmet

    2014-01-01

    Purpose Preclinical models of epithelial ovarian cancer have not been exploited to evaluate the clinical standard combination therapy of surgical debulking with follow-up chemotherapy. As surgery is critical to patient survival, here we establish a combined surgical/chemotherapy xenograft model of epithelial ovarian cancer and demonstrate its translational relevance. Experimental Design SKOV-3luc+ ovary cancer cells were injected topically into the ovaries of immunodeficient mice. Disease development and effect of clinical standard treatment including hysterectomy, bilateral salpingoophorectomy and removal of metastasis with follow up chemotherapy (carboplatin 12 mg/kg + paclitaxel 15 mg/kg) was evaluated by clinical parameters. Tumor burden was quantified by bioluminescence imaging (BLI). Results The xenograft ovarian tumors developed were poorly differentiated and multicystic and the disease disseminated into the peritoneal cavity. When compared to the controls with a mean survival time of 4.9 weeks, mice treated with surgery and chemotherapy, surgery or chemotherapy demonstrated significantly improved mean survival of 16.1 weeks (p = 0.0008), 12.7 weeks (p = 0.0008), or 10.4 weeks (p = 0.008), respectively. Conclusion Combined surgical intervention and adjuvant chemotherapy was demonstrated for the first time in an orthotopic xenograft model of ovarian cancer. Similar to observation in human studies the combined approach resulted in the longest medial survival time, advocating application of this strategy in future preclinical therapeutic development for this disease. PMID:24594904

  14. Suppression of tumor growth in lung cancer xenograft model mice by poly(sorbitol-co-PEI)-mediated delivery of osteopontin siRNA.

    PubMed

    Cho, Won-Young; Hong, Seong-Ho; Singh, Bijay; Islam, Mohammad Ariful; Lee, Somin; Lee, Ah Young; Gankhuyag, Nomundelger; Kim, Ji-Eun; Yu, Kyeong-Nam; Kim, Kwang-Ho; Park, Young-Chan; Cho, Chong-Su; Cho, Myung-Haing

    2015-08-01

    Small interfering RNA (siRNA)-mediated gene silencing represents a promising strategy for treating diseases such as cancer; however, specific gene silencing requires an effective delivery system to overcome the instability and low transfection efficiency of siRNAs. To address this issue, a polysorbitol-based transporter (PSOT) was prepared by low molecular weight branched polyethylenimine (bPEI) crosslinked with sorbitol diacrylate (SDA). Osteopontin (OPN) gene, which is highly associated with non-small cell lung cancer (NSCLC) was targeted by siRNA therapy using siRNA targeting OPN (siOPN). Characterization study confirmed that PSOT formed compact complexes with siOPN and protected siOPN against degradation by RNase. PSOT/siOPN complexes demonstrated low cytotoxicity and enhanced transfection efficiency in vitro, suggesting that this carrier may be suitable for gene silencing. In the A549 and H460 lung cancer cell lines, PSOT/siOPN complexes demonstrated significant silencing efficiency at both RNA and protein levels. To study in vivo tumor growth suppression, two lung cancer cell-xenograft mouse models were prepared and PSOT/siOPN complexes were delivered into the mice through intravenous injection. The siOPN-treated groups demonstrated significantly reduced OPN expression at both the RNA and protein levels as well as suppression of tumor volume and weight. Taken together, siOPN delivery using PSOT may present an effective and novel therapeutic system for lung cancer treatment.

  15. Primary esophageal and gastro-esophageal junction cancer xenograft models: clinicopathological features and engraftment.

    PubMed

    Dodbiba, Lorin; Teichman, Jennifer; Fleet, Andrew; Thai, Henry; Sun, Bin; Panchal, Devang; Patel, Devalben; Tse, Alvina; Chen, Zhuo; Faluyi, Olusola O; Renouf, Daniel J; Girgis, Hala; Bandarchi, Bizhan; Schwock, Joerg; Xu, Wei; Bristow, Robert G; Tsao, Ming-Sound; Darling, Gail E; Ailles, Laurie E; El-Zimaity, Hala; Liu, Geoffrey

    2013-04-01

    There are very few xenograft models available for the study of esophageal (E) and gastro-esophageal junction (GEJ) cancer. Using a NOD/SCID model, we implanted 90 primary E and GEJ tumors resected from patients and six endoscopic biopsy specimens. Of 69 resected tumors with histologically confirmed viable adenocarcinoma or squamous cell carcinoma, 22 (32%) was engrafted. One of 11 tumors, considered to have had a complete pathological response to neo-adjuvant chemo-radiation, also engrafted. Of the 23 patients whose tumors were engrafted, 65% were male; 30% were early stage while 70% were late stage; 22% received neo-adjuvant chemo-radiation; 61% were GEJ cancers. Engraftment occurred in 18/54 (33%) adenocarcinomas and 5/16 (31%) squamous cell carcinomas. Small endoscopic biopsy tissue had a 50% (3/6) engraftment rate. Of the factors analyzed, pretreatment with chemo-radiation and well/moderate differentiation showed significantly lower correlation with engraftment (P<0.05). In the subset of patients who did not receive neo-adjuvant chemo-radiation, 18/41 (44%) engrafted compared with those with pretreatment where 5/29 (17%, P=0.02) engrafted. Primary xenograft lines may be continued through 4-12 passages. Xenografts maintained similar histology and morphological characteristics with only minor variations even after multiple passaging in most instances.

  16. Preclinical transgenic and patient-derived xenograft models recapitulate the radiological features of human adamantinomatous craniopharyngioma.

    PubMed

    Boult, Jessica K R; Apps, John R; Hölsken, Annett; Hutchinson, J Ciaran; Carreno, Gabriela; Danielson, Laura S; Smith, Laura M; Bäuerle, Tobias; Buslei, Rolf; Buchfelder, Michael; Virasami, Alex K; Koers, Alexander; Arthurs, Owen J; Jacques, Thomas S; Chesler, Louis; Martinez-Barbera, Juan Pedro; Robinson, Simon P

    2017-05-08

    To assess the clinical relevance of transgenic and patient-derived xenograft models of adamantinomatous craniopharyngioma (ACP) using serial magnetic resonance imaging (MRI) and high resolution post-mortem microcomputed tomography (μ-CT), with correlation with histology and human ACP imaging. The growth patterns and radiological features of tumors arising in Hesx1(Cre/+) ;Ctnnb1(lox(ex3)/+) transgenic mice, and of patient-derived ACP xenografts implanted in the cerebral cortex, were monitored longitudinally in vivo with anatomical and functional MRI, and by ex vivo μ-CT at study end. Pathological correlates with hematoxylin and eosin stained sections were investigated. Early enlargement and heterogeneity of Hesx1(Cre/+) ;Ctnnb1(lox(ex3)/+) mouse pituitaries was evident at initial imaging at 8 weeks, which was followed by enlargement of a solid tumor, and development of cysts and hemorrhage. Tumors demonstrated MRI features that recapitulated those of human ACP, specifically, T1 -weighted signal enhancement in the solid tumor component following Gd-DTPA administration, and in some animals, hyperintense cysts on FLAIR and T1 -weighted images. Ex vivo μ-CT correlated with MRI findings and identified smaller cysts, which were confirmed by histology. Characteristic histological features, including wet keratin and calcification, were visible on μ-CT and verified by histological sections of patient-derived ACP xenografts. The Hesx1(Cre/+) ;Ctnnb1(lox(ex3)/+) transgenic mouse model and cerebral patient-derived ACP xenografts recapitulate a number of the key radiological features of the human disease and provide promising foundations for in vivo trials of novel therapeutics for the treatment of these tumors. © 2017 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  17. Patient Derived Xenograft Models: An Emerging Platform for Translational Cancer Research

    PubMed Central

    Hidalgo, Manuel; Amant, Frederic; Biankin, Andrew V.; Budinská, Eva; Byrne, Annette T.; Caldas, Carlos; Clarke, Robert B.; de Jong, Steven; Jonkers, Jos; Mælandsmo, Gunhild Mari; Roman-Roman, Sergio; Seoane, Joan; Trusolino, Livio; Villanueva, Alberto

    2014-01-01

    Recently, there has been increasing interest in the development and characterization of patient derived tumor xenograft (PDX) models for cancer research. PDX models mostly retain the principal histological and genetic characteristics of their donor tumor and remain stable across passages. These models have been shown to be predictive of clinical outcomes and are being used for preclinical drug evaluation, biomarker identification, biological studies, and personalized medicine strategies. This paper summarizes the current state of the art in this field including methodological issues, available collections, practical applications, challenges and shortcoming, and future directions, and introduces a European consortium of PDX models. PMID:25185190

  18. Efficiency and Safety of CRAC Inhibitors in Human Rheumatoid Arthritis Xenograft Models.

    PubMed

    Liu, Shuang; Hasegawa, Hitoshi; Takemasa, Erika; Suzuki, Yasuyuki; Oka, Keizou; Kiyoi, Takeshi; Takeda, Hiroyuki; Ogasawara, Tomio; Sawasaki, Tatsuya; Yasukawa, Masaki; Maeyama, Kazutaka

    2017-09-01

    Store-operated Ca(2+) release-activated Ca(2+) (CRAC) channels are involved in the pathogenesis of rheumatoid arthritis (RA) and have been studied as therapeutic targets in the management of RA. We investigated the efficacy and safety of CRAC inhibitors, including a neutralizing Ab (hCRACM1-IgG) and YM-58483, in the treatment of RA. Patient-derived T cell and B cell activity was suppressed by hCRACM1-IgG as well as YM-58483. Systemically constant, s.c. infused CRAC inhibitors showed anti-inflammatory activity in a human-NOD/SCID xenograft RA model as well as protective effects against the destruction of cartilage and bone. hCRACM1-IgG appeared to be safe for systemic application, whereas YM-58483 showed hepatic and renal toxicity in xenograft mice. Treatment with both CRAC inhibitors also caused hyperglycemia in xenograft mice. These results indicate the potential of hCRACM1-IgG and YM-58483 as anti-immunological agents for the treatment of RA. However, some safety issues should be addressed and application methods should be optimized prior to their clinical use. Copyright © 2017 by The American Association of Immunologists, Inc.

  19. Patient-derived xenograft models of squamous cell carcinoma of the uterine cervix.

    PubMed

    Rofstad, Einar K; Simonsen, Trude G; Huang, Ruixia; Andersen, Lise Mari K; Galappathi, Kanthi; Ellingsen, Christine; Wegner, Catherine S; Hauge, Anette; Gaustad, Jon-Vidar

    2016-04-10

    Patient-derived xenograft (PDX) models of cancer are considered to reflect the biology and treatment response of human tumors to a larger extent than xenograft models initiated from established cell lines. The characterization of a panel of four novel PDX models of cervical carcinoma of the uterine cervix is described in this communication. The outcome of treatment differed substantially among the donor patients, and the PDX models were found to mirror the histology, aggressiveness, and metastatic propensity of the donor patients' tumors. Two of the models (BK-12 and LA-19) were highly metastatic, one model (ED-15) was poorly metastatic, and one model (HL-16) was non-metastatic. The primary tumors of the two highly metastatic models showed high density of intratumoral lymphatics, whereas the other two models did not develop intratumoral lymphatics. The potential of the models to metastasize to lymph nodes was associated with high expression of both angiogenesis-related genes and cancer stem cell-related genes. The models may be highly valuable for studying mechanisms linking lymph node metastasis to lymphangiogenesis, hemangiogenesis, and the presence of cancer stem cells.

  20. Transforming growth factor-β signalling controls human breast cancer metastasis in a zebrafish xenograft model.

    PubMed

    Drabsch, Yvette; He, Shuning; Zhang, Long; Snaar-Jagalska, B Ewa; ten Dijke, Peter

    2013-11-07

    The transforming growth factor beta (TGF-β) signalling pathway is known to control human breast cancer invasion and metastasis. We demonstrate that the zebrafish xenograft assay is a robust and dependable animal model for examining the role of pharmacological modulators and genetic perturbation of TGF-β signalling in human breast tumour cells. We injected cancer cells into the embryonic circulation (duct of cuvier) and examined their invasion and metastasis into the avascular collagenous tail. Various aspects of the TGF-β signalling pathway were blocked by chemical inhibition, small interfering RNA (siRNA), or small hairpin RNA (shRNA). Analysis was conducted using fluorescent microscopy. Breast cancer cells with different levels of malignancy, according to in vitro and in vivo mouse studies, demonstrated invasive and metastatic properties within the embryonic zebrafish model that nicely correlated with their differential tumourigenicity in mouse models. Interestingly, MCF10A M2 and M4 cells invaded into the caudal hematopoietic tissue and were visible as a cluster of cells, whereas MDA MB 231 cells invaded into the tail fin and were visible as individual cells. Pharmacological inhibition with TGF-β receptor kinase inhibitors or tumour specific Smad4 knockdown disturbed invasion and metastasis in the zebrafish xenograft model and closely mimicked the results we obtained with these cells in a mouse metastasis model. Inhibition of matrix metallo proteinases, which are induced by TGF-β in breast cancer cells, blocked invasion and metastasis of breast cancer cells. The zebrafish-embryonic breast cancer xenograft model is applicable for the mechanistic understanding, screening and development of anti-TGF-β drugs for the treatment of metastatic breast cancer in a timely and cost-effective manner.

  1. A Renewable Tissue Resource of Phenotypically Stable, Biologically and Ethnically Diverse, Patient-derived Human Breast Cancer Xenograft (PDX) Models

    PubMed Central

    Zhang, Xiaomei; Claerhout, Sofie; Pratt, Aleix; Dobrolecki, Lacey E.; Petrovic, Ivana; Lai, Qing; Landis, Melissa D.; Wiechmann, Lisa; Schiff, Rachel; Giuliano, Mario; Wong, Helen; Fuqua, Suzanne W.; Contreras, Alejandro; Gutierrez, Carolina; Huang, Jian; Mao, Sufeng; Pavlick, Anne C.; Froehlich, Amber M.; Wu, Meng-Fen; Tsimelzon, Anna; Hilsenbeck, Susan G.; Chen, Edward S.; Zuloaga, Pavel; Shaw, Chad A.; Rimawi, Mothaffar F.; Perou, Charles M.; Mills, Gordon B.; Chang, Jenny C.; Lewis, Michael T.

    2013-01-01

    Breast cancer research is hampered by difficulties in obtaining and studying primary human breast tissue, and by the lack of in vivo preclinical models that reflect patient tumor biology accurately. To overcome these limitations, we propagated a cohort of human breast tumors grown in the epithelium-free mammary fat pad of SCID/Beige and NOD/SCID/IL2γ-receptor null (NSG) mice, under a series of transplant conditions. Both models yielded stably transplantable xenografts at comparably high rates (~21% and ~19%, respectively). Of the conditions tested, xenograft take rate was highest in the presence of a low-dose estradiol pellet. Overall, 32 stably transplantable xenograft lines were established, representing 25 unique patients. Most tumors yielding xenografts were “triple-negative” (ER-PR-HER2+) (n=19). However, we established lines from three ER-PR-HER2+ tumors, one ER+PR-HER2−, one ER+PR+HER2− and one “triple-positive” (ER+PR+HER2+) tumor. Serially passaged xenografts show biological consistency with the tumor of origin, are phenotypically stable across multiple transplant generations at the histologic, transcriptomic, proteomic, and genomic levels, and show comparable treatment responses as those observed clinically. Xenografts representing 12 patients, including two ER+ lines, showed metastasis to the mouse lung. These models thus serve as a renewable, quality-controlled tissue resource for preclinical studies investigating treatment response and metastasis. PMID:23737486

  2. The In Ovo Chick Chorioallantoic Membrane (CAM) Assay as an Efficient Xenograft Model of Hepatocellular Carcinoma.

    PubMed

    Li, Michael; Pathak, Ravi R; Lopez-Rivera, Esther; Friedman, Scott L; Aguirre-Ghiso, Julio A; Sikora, Andrew G

    2015-10-09

    The chick chorioallantoic membrane (CAM) begins to develop by day 7 after fertilization and matures by day 12. The CAM is naturally immunodeficient and highly vascularized, making it an ideal system for tumor implantation. Furthermore, the CAM contains extracellular matrix proteins such as fibronectin, laminin, collagen, integrin alpha(v)beta3, and MMP-2, making it an attractive model to study tumor invasion and metastasis. Scientists have long taken advantage of the physiology of the CAM by using it as a model of angiogenesis. More recently, the CAM assay has been modified to work as an in vivo xenograft model system for various cancers that bridges the gap between basic in vitro work and more complex animal cancer models. The CAM assay allows for the study of tumor growth, anti-tumor therapies, and pro-tumor molecular pathways in a biologically relevant system that is both cost- and time-effective. Here, we describe the development of CAM xenograft model of hepatocellular carcinoma (HCC) with embryonic survival rates of up to 93% and reliable tumor take leading to growth of three-dimensional, vascularized tumors.

  3. Dose-biomarker-response modeling of the anticancer effect of ethaselen in a human non-small cell lung cancer xenograft mouse model

    PubMed Central

    Ye, Suo-fu; Li, Jian; Ji, Shuang-min; Zeng, Hui-hui; Lu, Wei

    2017-01-01

    Thioredoxin reductase (TrxR) is a component of several redox-sensitive signaling cascades that mediate important biological processes such as cell survival, maturation, growth, migration and inhibition of apoptosis. The expression levels of TrxR1 in some human carcinoma cell lines are nearly 10 times higher than those in normal cells. Ethaselen is a novel antitumor candidate that exerts potent inhibition on non-small cell lung cancer (NSCLC) by targeting TrxR. In this study we explored the relationship between the ethaselen dose and TrxR activity level and the relationship between TrxR degradation and tumor apoptosis in a human lung carcinoma A549 xenograft model. BALB/c nude mice implanted with human NSCLC cell line A54 were administered ethaselen (36, 72, 108 mg·kg−1·d−1, ig) or vehicle for 10 d. The tumor size and TrxR activity levels in tumor tissues were daily recorded and detected. Based on the experimental data, NONMEM 7.2 was used to develop an integrated dose-biomarker-response model for describing the quantitative relationship between ethaselen dose and tumor eradication effects. The time course of TrxR activity levels was modeled using an indirect response model (IDR model), in which the influence of the tumor growth rates on Kin with the linear correction factor γ1 (0.021 d/mm). The drug binding-inhibition effects on Kout was described using a sigmoidal Emax model with Smax (5.95), SC50 (136 mg/kg) and Hill's coefficient γ2 (2.29). The influence of TrxR activity inhibition on tumor eradication was characterized by an Emax model with an Emax (130 mm3/d) and EC50 (0.0676). This model was further validated using a visual predictive check (VPC) and was used to predict the efficacy of different doses. In conclusion, the properties and characteristics of ethaselen acting on TrxR degradation and subsequently resulting in tumor apoptosis are characterized by the IDR model and integrated dose-biomarker-response model with high goodness-of-fit and great

  4. The effects of a picosecond pulsed electric field on angiogenesis in the cervical cancer xenograft models.

    PubMed

    Wu, Limei; Yao, Chenguo; Xiong, Zhengai; Zhang, Ruizhe; Wang, Zhiliang; Wu, Yutong; Qin, Qin; Hua, Yuanyuan

    2016-04-01

    The application of picosecond pulsed electric field (psPEF) is a new biomedical engineering technique used in cancer therapy. However, its effects on cervical cancer angiogenesis are not clear. Therefore, the aim of the present study is to investigate the effects of psPEF on angiogenesis in cervical cancer xenograft models. Xenograft tumors were created by subcutaneously inoculating nude mice (athymic BALB/c nu/nu mice) with HeLa cells, then were placed closely between tweezer-type plate electrodes and subjected to psPEF with a gradually increased electric field intensity (0kV/cm, 50kV/cm, 60kV/cm, 70kV/cm). The direct effect on tumor tissue was observed by hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM). The changes of blood vessels and oxygen saturation (sO2) of tumors were monitored in vivo by photoacoustic tomography (PAT). The microvessel density (MVD), vascular endothelial growth factor (VEGF) and hypoxia-inducible transcription factors (HIF-1α and HIF-2α) were detected by immunohistochemical technique (IHC). Their protein expressions and gene transcription levels were evaluated using western blot (WB) and quantitative reverse transcription and polymerase chain reaction (RT-PCR). PsPEF induced obvious necrosis of cervical cancer tissue; with the increasing of electric field intensity, the MVD, vascular PA signal and sO2 values declined significantly. The protein expression and gene transcription levels of VEGF, HIF1α and HIF2α were significantly decreased at the same time. PsPEF exhibited dramatic anti-tumor and anti-angiogenesis effects in cervical cancer xenograft models by exerting direct effect on cancer cells and vascular endothelial cells and indirect effect on tumor angiogenesis-related factors. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. In vivo-in vitro comparison of acute respiratory tract toxicity using human 3D airway epithelial models and human A549 and murine 3T3 monolayer cell systems.

    PubMed

    Sauer, Ursula G; Vogel, Sandra; Hess, Annemarie; Kolle, Susanne N; Ma-Hock, Lan; van Ravenzwaay, Bennard; Landsiedel, Robert

    2013-02-01

    The usefulness of in vitro systems to predict acute inhalation toxicity was investigated. Nineteen substances were tested in three-dimensional human airway epithelial models, EpiAirway™ and MucilAir™, and in A549 and 3T3 monolayer cell cultures. IC(50) values were compared to rat four-hour LC(50) values classified according to EPA and GHS hazard categories. Best results were achieved with a prediction model distinguishing toxic from non-toxic substances, with satisfactory specificities and sensitivities. Using a self-made four-level prediction model to classify substances into four in vitro hazard categories, in vivo-in vitro concordance was mediocre, but could be improved by excluding substances causing pulmonary edema and emphysema in vivo. None of the test systems was outstanding, and there was no evidence that tissue or monolayer systems using respiratory tract cells provide an added value. However, the test systems only reflected bronchiole epithelia and alveolar cells and investigated cytotoxicity. Effects occurring in other cells by other mechanisms could not be recognised. Further work should optimise test protocols and expand the set of substances tested to define applicability domains. In vivo respiratory toxicity data for in vitro comparisons should distinguish different modes of action, and their relevance for human health effects should be ensured.

  6. Development and rescue of human familial hypercholesterolaemia in a xenograft mouse model

    PubMed Central

    Bissig-Choisat, Beatrice; Wang, Lili; Legras, Xavier; Saha, Pradip K.; Chen, Leon; Bell, Peter; Pankowicz, Francis P.; Hill, Matthew C.; Barzi, Mercedes; Leyton, Claudia Kettlun; Leung, Hon-Chiu Eastwood; Kruse, Robert L.; Himes, Ryan W.; Goss, John A.; Wilson, James M.; Chan, Lawrence; Lagor, William R.; Bissig, Karl-Dimiter

    2015-01-01

    Diseases of lipid metabolism are a major cause of human morbidity, but no animal model entirely recapitulates human lipoprotein metabolism. Here we develop a xenograft mouse model using hepatocytes from a patient with familial hypercholesterolaemia caused by loss-of-function mutations in the low-density lipoprotein receptor (LDLR). Like familial hypercholesterolaemia patients, our familial hypercholesterolaemia liver chimeric mice develop hypercholesterolaemia and a 'humanized‘ serum profile, including expression of the emerging drug targets cholesteryl ester transfer protein and apolipoprotein (a), for which no genes exist in mice. We go on to replace the missing LDLR in familial hypercholesterolaemia liver chimeric mice using an adeno-associated virus 9-based gene therapy and restore normal lipoprotein profiles after administration of a single dose. Our study marks the first time a human metabolic disease is induced in an experimental animal model by human hepatocyte transplantation and treated by gene therapy. Such xenograft platforms offer the ability to validate human experimental therapies and may foster their rapid translation into the clinic. PMID:26081744

  7. Monitoring Serial Changes in Circulating Human Breast Cancer Cells in Mruine Xenograft Models

    PubMed Central

    Eliane, Jean-Pierre; Repollet, Madeline; Luker, Kathryn E.; Brown, Martha; Rae, James M.; Dontu, Gabriela; Schott, Anne F.; Wicha, Max; Doyle, Gerald V.; Hayes, Daniel F.; Luker, Gary D.

    2009-01-01

    Circulating tumor cells (CTC) are emerging as a powerful prognostic and predictive biomarker in several types of cancer, including breast, colon, and prostate. Studies of CTC in metastasis and further development of CTC as a biomarker in cancer have been limited by the inability to repetitively monitor CTC in mouse models of cancer. We have validated a method to enumerate CTC in blood samples obtained from living mice using a modified version of an in vitro diagnostic system for quantifying CTC in patients. Different routes of blood collection were tested to identify a method to reproducibly recover CTC from tumor-bearing mice without interference from contaminating normal murine epithelial cells. CTC are present in blood samples from mice bearing orthotopic xenografts of several different breast cancer cell lines and primary breast cancer cells from patient biopsies. We also show that this technology can be used for serial monitoring of CTC in mouse xenograft models of human breast cancer. These results establish a new method for studying CTC in mouse models of epithelial cancer, providing the foundation for studies of molecular regulation of CTC in cancer and CTC as biomarker for therapeutic efficacy. PMID:18632603

  8. Statistical evaluation and experimental design of a psoriasis xenograft transplantation model treated with cyclosporin A.

    PubMed

    Stenderup, Karin; Rosada, Cecilia; Alifrangis, Lene; Andersen, Søren; Dam, Tomas Norman

    2011-05-01

    Psoriasis xenograft transplantation models where human skin is transplanted onto immune-deficient mice are generally accepted in psoriasis research. Over the last decade, they have been widely employed to screen for new therapeutics with a potential anti-psoriatic effect. However, experimental designs differ in several parameters. Especially, the number of donors and grafts per experimental design varies greatly; numbers that are directly related to the probability of detecting statistically significant drug effects. In this study, we performed a statistical evaluation of the effect of cyclosporine A, a recognized anti-psoriatic drug, to generate a statistical model employable to simulate different scenarios of experimental designs and to calculate the associated statistical study power, defined as the probability of detecting a statistically significant anti-psoriatic drug treatment effect. Results showed that to achieve a study power of 0.8, at least 20 grafts per treatment group and a minimum of five donors should be included in the chosen experimental setting. To our knowledge, this is the first time that study power calculations have been performed to evaluate treatment effects in a psoriasis xenograft transplantation model. This study was based on a defined experimental protocol, thus other parameters such as drug potency, treatment protocol, mouse strain and graft size should, also, be taken into account when designing an experiment. We propose that the results obtained in this study may lend a more quantitative support to the validity of results obtained when exploring new potential anti-psoriatic drug effects.

  9. Decomplementation with cobra venom factor prolongs survival of xenografted islets in a rat to mouse model

    PubMed Central

    OBERHOLZER, J; YU, D; TRIPONEZ, F; CRETIN, N; ANDEREGGEN, E; MENTHA, G; WHITE, D; BUEHLER, L; MOREL, P; LOU, J

    1999-01-01

    Although the involvement of complement in hyperacute rejection of xenotransplants is well recognized, its role in rejection of devascularized xenografts, such as pancreatic islets, is not completely understood. In this study, we investigated whether complement participates in the immunopathology of xeno-islet transplantation in a concordant rat to mouse model. Rat pancreatic islets were implanted under the kidney capsule of normal and cobra venom factor (CVF)-decomplementized diabetic C57BL/6 mice. Graft survival was monitored by blood glucose levels. Deposition of IgM and C3 on grafted islets in vivo or on isolated islets in vitro (after incubation with normal and decomplementized mouse serum), as well as CD4- and CD8-positive leucocyte infiltration of grafts, was checked by immunohistochemistry. In addition, complement-mediated cytotoxicity on rat islet cells was evaluated by a 3-(4,5-dimethythiazolyl)-2.5-diphenyl-2H-tetrazolium-bromide (MTT) assay. A significant C3 deposition was found on grafted islets from the first day after transplantation in vivo, as well as on isolated islets after incubation with mouse serum in vitro. By MTT assay, complement-mediated cytotoxicity for islet cells was found. Decomplementation by CVF decreased C3 deposition on either isolated or grafted islets, delayed CD4- and CD8-positive leucocyte infiltration, led to significant inhibition of complement-mediated cytotoxicity for islet cells, and prolonged graft survival (mean survival time 21·3 versus 8·5 days; P <0·01). Our results indicate that decomplementation can prolong the survival time of devascularized xenografts across concordant species. The deposition of complement on transplanted islets may contribute to xenograft rejection by direct cytotoxicity and by promoting leucocyte infiltration. PMID:10447729

  10. New model of in-situ xenograft lymphangiogenesis by a human colonic adenocarcinoma cell line in nude mice.

    PubMed

    Sun, Jian-Jun; Jing, Wei; Ni, Yan-Yan; Yuan, Xiao-Jian; Zhou, Hai-Hua; Fan, Yue-Zu

    2012-01-01

    To explore a new model of in-situ xenograft lymphangiogenesis of human colonic adenocarcinomas in nude mice. On the basis of establishing subcutaneous xenograft lymphangiogenesis model of human colonic adenocarcinoms, in-situ xenografts were established through the in situ growth of the HT-29 human colonic adenocarcinoma cell line in nude mice. The numbers of lymphangiogenic microvessels, the expression of lymphatic endothelial cell markers lymphatic vessel endothelial hyaloronic acid receptor-1 (LYVE-1), D2-40 and the lymphatic endothelial growth factors vascular endothelial growth factor-C (VEGF-C), -D (VEGF-D) and receptor-3 (VEGFR-3) were compared by immunohistochemical staining, Western bolt and quantitative RT-PCR in xenograft in-situ models. Some microlymphatics with thin walls, large and irregular or collapsed cavities and increased LMVD, with strong positive of LYVE-1, D2-40 in immunohistochemistry, were observed, identical with the morphological characteristics of lymphatic vessels and capillaries. Expression of LYVE-1 and D2-40 proteins and mRNAs were significantly higher in xenografts in-situ than in the negative control group (both P<0.01). Moreover, the expression of VEGF-C, VEGF-D and VEGFR-3 proteins and mRNAs were significantly higher in xenografts in-situ (both P<0.01), in conformity with the signal regulation of the VEGF-C,-D/VEGFR-3 axis of tumor lymphangiogenesis. In-situ xenografts of a human colonic adenocarcinoma cell line demonstrate tumor lymphangiogenesis. This novel in-situ animal model should be useful for further studying mechanisms of lymph node metastasis, drug intervention and anti-metastasis therapy in colorectal cancer.

  11. Establishment and characterization of a canine soft tissue sarcoma patient-derived xenograft model.

    PubMed

    Frazier, J P; Beirne, E; Ditzler, S H; Tretyak, I; Casalini, J R; Thirstrup, D J; Knoblaugh, S; Ward, J G; Tripp, C D; Klinghoffer, R A

    2017-09-01

    Spontaneously occurring soft tissue sarcoma (STS) is relatively common in canine cancer patients. Because of the similarities to human disease, canine STSs are a valuable and readily available resource for the study of new therapeutics. In this study, a canine patient-derived xenograft (PDX) model, CDX-STS2, was established. The CDX-STS2 model was engrafted and expanded for systemic administration studies with chemotherapeutic agents commonly used to treat STS, including doxorubicin, docetaxel and gemcitabine. Immunohistochemistry for drug-specific biomarkers and tumour growth measurement revealed tumour sensitivity to doxorubicin and docetaxel, whereas gemcitabine had no effect on tumour growth. Although many human PDX tumour models have been established, relatively few canine PDX models have been reported to date. CDX-STS2 represents a new STS PDX research model of canine origin that will be useful in bridging preclinical research with clinical studies of STS in pet dogs. © 2016 John Wiley & Sons Ltd.

  12. mtDNA depletion confers specific gene expression profiles in human cells grown in culture and in xenograft

    PubMed Central

    Magda, Darren; Lecane, Philip; Prescott, Julia; Thiemann, Patricia; Ma, Xuan; Dranchak, Patricia K; Toleno, Donna M; Ramaswamy, Krishna; Siegmund, Kimberly D; Hacia, Joseph G

    2008-01-01

    Background Interactions between the gene products encoded by the mitochondrial and nuclear genomes play critical roles in eukaryotic cellular function. However, the effects mitochondrial DNA (mtDNA) levels have on the nuclear transcriptome have not been defined under physiological conditions. In order to address this issue, we characterized the gene expression profiles of A549 lung cancer cells and their mtDNA-depleted ρ0 counterparts grown in culture and as tumor xenografts in immune-deficient mice. Results Cultured A549 ρ0 cells were respiration-deficient and showed enhanced levels of transcripts relevant to metal homeostasis, initiation of the epithelial-mesenchymal transition, and glucuronidation pathways. Several well-established HIF-regulated transcripts showed increased or decreased abundance relative to the parental cell line. Furthermore, growth in culture versus xenograft has a significantly greater influence on expression profiles, including transcripts involved in mitochondrial structure and both aerobic and anaerobic energy metabolism. However, both in vitro and in vivo, mtDNA levels explained the majority of the variance observed in the expression of transcripts in glucuronidation, tRNA synthetase, and immune surveillance related pathways. mtDNA levels in A549 xenografts also affected the expression of genes, such as AMACR and PHYH, involved in peroxisomal lipid metabolic pathways. Conclusion We have identified mtDNA-dependent gene expression profiles that are shared in cultured cells and in xenografts. These profiles indicate that mtDNA-depleted cells could provide informative model systems for the testing the efficacy of select classes of therapeutics, such as anti-angiogenesis agents. Furthermore, mtDNA-depleted cells grown culture and in xenografts provide a powerful means to investigate possible relationships between mitochondrial activity and gene expression profiles in normal and pathological cells. PMID:18980691

  13. Small-sample inference for incomplete longitudinal data with truncation and censoring in tumor xenograft models.

    PubMed

    Tan, Ming; Fang, Hong-Bin; Tian, Guo-Liang; Houghton, Peter J

    2002-09-01

    In cancer drug development, demonstrating activity in xenograft models, where mice are grafted with human cancer cells, is an important step in bringing a promising compound to humans. A key outcome variable is the tumor volume measured in a given period of time for groups of mice given different doses of a single or combination anticancer regimen. However, a mouse may die before the end of a study or may be sacrificed when its tumor volume quadruples, and its tumor may be suppressed for some time and then grow back. Thus, incomplete repeated measurements arise. The incompleteness or missingness is also caused by drastic tumor shrinkage (<0.01 cm3) or random truncation. Because of the small sample sizes in these models, asymptotic inferences are usually not appropriate. We propose two parametric test procedures based on the EM algorithm and the Bayesian method to compare treatment effects among different groups while accounting for informative censoring. A real xenograft study on a new antitumor agent, temozolomide, combined with irinotecan is analyzed using the proposed methods.

  14. A zebrafish xenograft model for studying human cancer stem cells in distant metastasis and therapy response.

    PubMed

    Chen, L; Groenewoud, A; Tulotta, C; Zoni, E; Kruithof-de Julio, M; van der Horst, G; van der Pluijm, G; Ewa Snaar-Jagalska, B

    2017-01-01

    Lethal and incurable bone metastasis is one of the main causes of death in multiple types of cancer. A small subpopulation of cancer stem/progenitor-like cells (CSCs), also known as tumor-initiating cells from heterogenetic cancer is considered to mediate bone metastasis. Although over the past decades numerous studies have been performed in different types of cancer, it is still difficult to track small numbers of CSCs during the onset of metastasis. With use of noninvasive high-resolution imaging, transparent zebrafish embryos can be employed to dynamically visualize cancer progression and reciprocal interaction with stroma in a living organism. Recently we established a zebrafish CSC-xenograft model to visually and functionally analyze the role of CSCs and their interactions with the microenvironment at the onset of metastasis. Given the highly conserved human and zebrafish genome, transplanted human cancer cells are able to respond to zebrafish cytokines, modulate the zebrafish microenvironment, and take advantage of the zebrafish stroma during cancer progression. This chapter delineates the zebrafish CSC-xenograft model as a useful tool for both CSC biological study and anticancer drug screening. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. In vitro and in vivo characteristics of biogenic high surface silica nanoparticles in A549 lung cancer cell lines and Danio rerio model systems for inorganic biomaterials development.

    PubMed

    Rangaraj, Suriyaprabha; Venkatachalam, Rajendran

    2017-08-24

    Silica based organic-inorganic hybrids are turned over the most necessitate biomaterial due to their exotic biomedical properties. Colloidal silica nanoparticles (SNPs) of high surface area are synthesized from the bamboo wastes (leave biomass) as a viable and promising alternative to synthetic silica sol through alkaline extraction process. Physico-chemical properties of the prepared silica powders are examined employing extensive characterization tools. The characteristic results of the silica sol demonstrate amorphous particles (average size: 25 nm) with relatively high surface area (428 m(2) g(-1)) and spherical morphology. The teratogenicity of the surface and size dependant SNPs is evaluated using an alternative animal model, zebrafish (Danio rerio) in comparison with micron sized particles. LDH based cytotoxicity assay reveals non-significant cell damage in all the tested silica particles. Less mortality, uptake and dysfunctionalities of the organs during the developmental stages of zebrafish treated with bulk and nanoparticles confirm their biocompatibility. The least DNA strand breakage during genotoxic assay and teratogenic parameters are found to exhibit desirable bioactivity of SNPs for clinical applications even at higher concentrations. For the first time, bamboo derived silica sol induced genotoxicity is assessed at molecular level to understand the interaction mechanism with the fish genome.

  16. Patient-derived xenograft models of colorectal cancer in pre-clinical research: a systematic review

    PubMed Central

    Brown, Kai M.; Xue, Aiqun; Mittal, Anubhav; Samra, Jaswinder S.; Smith, Ross; Hugh, Thomas J.

    2016-01-01

    AIMS We sought to objectively assess the internal and external validity of patient-derived xenograft (PDX) models as a platform in pre-clinical research into colorectal cancer (CRC). Metastatic disease is the most common cause of death from CRC, and despite significant research, the results of current combination chemotherapy and targeted therapies have been underwhelming for most of this patient group. One of the key factors limiting the success of translational CRC research is the biologically inaccurate models in which new therapies are developed. METHODS We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) checklist and SYRCLE (Systematic Review Centre for Laboratory animal Experimentation) guidelines to search Ovid MEDLINE and Embase databases up to July 2015 to identify studies involving PDX models of CRC where the model had been validated across multiple parameters. Data was extracted including host mouse strain, engraftment rate, site of engraftment, donor tumour source and development of metastases in the model. RESULTS Thirteen articles satisfied the inclusion criteria. There was significant heterogeneity amongst the included studies, but overall the median engraftment rate was high (70%) and PDX models faithfully recapitulated the characteristics of their patient tumours on the microscopic, genetic and functional levels. CONCLUSIONS PDX models of CRC have a reasonable internal validity and a high external validity. Developments in xenografting technology are broadening the applications of the PDX platform. However, the included studies could be improved by standardising reporting standards and closed following the ARRIVE (Animals in Research: Reporting In Vivo Experiments) guidelines. PMID:27517155

  17. Prolonged exposure to acetaminophen reduces testosterone production by the human fetal testis in a xenograft model

    PubMed Central

    Anderson, Richard A.; Johnston, Zoe C.; Chetty, Tarini; Smith, Lee B.; Mckinnell, Chris; Dean, Afshan; Homer, Natalie Z.; Jorgensen, Anne; Camacho-Moll, Maria-Elena; Sharpe, Richard M.; Mitchell, Rod T.

    2016-01-01

    Most common male reproductive disorders are linked to lower testosterone exposure in fetal life, although the factors responsible for suppressing fetal testosterone remain largely unknown. Protracted use of acetaminophen during pregnancy is associated with increased risk of cryptorchidism in sons, but effects on fetal testosterone production have not been demonstrated. We used a validated xenograft model to expose human fetal testes to clinically relevant doses and regimens of acetaminophen. Exposure to a therapeutic dose of acetaminophen for 7 days significantly reduced plasma testosterone (45% reduction; p=0.025) and seminal vesicle weight (a biomarker of androgen exposure; 18% reduction; p=0.005) in castrate host mice bearing human fetal testis xenografts, whereas acetaminophen exposure for just 1 day did not alter either parameter. Plasma acetaminophen concentrations (at 1 hour after the final dose) in exposed host mice were substantially below those reported in humans after a therapeutic oral dose. Subsequent in utero exposure studies in rats indicated that the acetaminophen-induced reduction in testosterone likely results from reduced expression of key steroidogenic enzymes (Cyp11a1, Cyp17a1). Our results suggest that protracted use of acetaminophen (1 week) may suppress fetal testosterone production, which could have adverse consequences. Further studies are required to establish the dose-response and treatment-duration relationships to delineate the maximum dose and treatment period without this adverse effect. PMID:25995226

  18. Angiogenesis in a human neuroblastoma xenograft model: mechanisms and inhibition by tumour-derived interferon-γ

    PubMed Central

    Ribatti, D; Nico, B; Pezzolo, A; Vacca, A; Meazza, R; Cinti, R; Carlini, B; Parodi, F; Pistoia, V; Corrias, M V

    2006-01-01

    Tumour progression in neuroblastoma (NB) patients correlates with high vascular index. We have previously shown that the ACN NB cell line is tumorigenic and angiogenic in immunodeficient mice, and that interferon-γ (IFN-γ) gene transfer dampens ACN tumorigenicity. As IFN-γ represses lymphocyte-induced tumour angiogenesis in various murine models and inhibits proliferation and migration of human endothelial cells, we have investigated the antiangiogenic activity of tumour-derived IFN-γ and the underlying mechanism(s). In addition, we characterised the tumour vasculature of the ACN xenografts, using the chick embryo chorioallantoic membrane assay. We show that the ACN/IFN-γ xenografts had a lower microvessel density and less in vivo angiogenic potential than the vector-transfected ACN/neo. The vascular channels of both xenografts were formed by a mixed endothelial cell population of murine and human origin, as assessed by the FICTION (fluorescence immunophenotyping and interphase cytogenetics) technique. With respect to ACN/neo, the ACN/IFN-γ xenografts showed more terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling-positive human and murine endothelial cells, suggesting that inhibition of angiogenesis by IFN-γ was dependent on the induction of apoptosis, likely mediated by nitric oxide. Once the dual origin of tumour vasculature is confirmed in NB patients, the xenograft model described here will prove useful in testing the efficacy of different antiangiogenic compounds. PMID:16721359

  19. Proteomic identification of the lactate dehydrogenase A in a radioresistant prostate cancer xenograft mouse model for improving radiotherapy

    PubMed Central

    Hao, Jingli; Graham, Peter; Chang, Lei; Ni, Jie; Wasinger, Valerie; Beretov, Julia; Deng, Junli; Duan, Wei; Bucci, Joseph; Malouf, David; Gillatt, David; Li, Yong

    2016-01-01

    Radioresistance is a major challenge for prostate cancer (CaP) metastasis and recurrence after radiotherapy. This study aimed to identify potential protein markers and signaling pathways associated with radioresistance using a PC-3 radioresistant (RR) subcutaneous xenograft mouse model and verify the radiosensitization effect from a selected potential candidate. PC-3RR and PC-3 xenograft tumors were established and differential protein expression profiles from two groups of xenografts were analyzed using liquid chromatography tandem-mass spectrometry. One selected glycolysis marker, lactate dehydrogenase A (LDHA) was validated, and further investigated for its role in CaP radioresistance. We found that 378 proteins and 51 pathways were significantly differentially expressed between PC-3RR and PC-3 xenograft tumors, and that the glycolysis pathway is closely linked with CaP radioresistance. In addition, we also demonstrated that knock down of LDHA with siRNA or inhibition of LDHA activity with a LDHA specific inhibitor (FX-11), could sensitize PC-3RR cells to radiotherapy with reduced epithelial-mesenchymal transition, hypoxia, DNA repair ability and autophagy, as well as increased DNA double strand breaks and apoptosis. In summary, we identified a list of potential RR protein markers and important signaling pathways from a PC-3RR xenograft mouse model, and demonstrate that targeting LDHA combined with radiotherapy could increase radiosensitivity in RR CaP cells, suggesting that LDHA is an ideal therapeutic target to develop combination therapy for overcoming CaP radioresistance. PMID:27708237

  20. Patient-Derived Xenografts as a Model System for Radiation Research

    PubMed Central

    Willey, Christopher D.; Gilbert, Ashley; Anderson, Joshua C.; Gillespie, G. Yancey

    2015-01-01

    The cancer literature is filled with promising preclinical studies demonstrating impressive efficacy for new therapeutics, yet translation of these approaches into clinical successes has been rare, indicating that current methods used to predict efficacy are sub-optimal. The most likely reason for the limitation of these studies is the disconnect between preclinical models and cancers treated in the clinic. Specifically, most preclinical models are poor representations of human disease. Immortalized cancer cell lines that dominate the cancer literature may be, in a sense, “paper tigers” that have been selected by decades of culture to be artificially driven by highly targetable proteins. Thus, although effective in treating these cell lines either in vitro or as artificial tumors transplanted from culture into experimental animals as xenografts, the identified therapies will likely underperform in a clinical setting. This inherent limitation not only applies to drug testing, but also to experiments with radiation therapy. Indeed, traditional radiobiology methods rely on monolayer culture systems, with emphasis on colony formation and DNA damage assessment that may have limited clinical translation. As such, there has been keen interest in developing tumor explant systems in which patient tumors are directly transplanted into, and solely maintained in vivo, using immunocompromised mice. These so-called Patient-Derived Xenografts (PDX) represent a robust model system that has been garnering support in academia and industry as a superior preclinical approach to drug testing. Likewise, PDX models have the potential to improve radiation research. In this review, we describe how PDX models are currently being used for both drug and radiation testing and how they can be incorporated into a translational research program. PMID:26384275

  1. A novel intraperitoneal metastatic xenograft mouse model for survival outcome assessment of esophageal adenocarcinoma

    PubMed Central

    Awasthi, Niranjan; Li, Jun; Schwarz, Margaret A.; Schwarz, Roderich E.; von Holzen, Urs

    2017-01-01

    Esophageal adenocarcinoma (EAC) has become the dominant type of esophageal cancer in United States. The 5-year survival rate of EAC is below 20% and most patients present with locally advanced or widespread metastatic disease, where current treatment is largely ineffective. Therefore, new therapeutic approaches are urgently needed. Improvement of EAC patient outcome requires well-characterized animal models in which to evaluate novel therapeutics. In this study we aimed to establish a peritoneal dissemination xenograft mouse model of EAC that would support survival outcome analyses. To find the best candidate cell line from 7 human EAC cell lines of different origin named ESO26, OE33, ESO51, SK-GT-2, OE19, OACM5.1C and Flo-1 were injected intraperitoneally/subcutaneously into SCID mice. The peritoneal/xenograft tumor formation and mouse survival were compared among different groups. All cell lines injected subcutaneously formed tumors within 3 months at variable rates. All cell lines except OACM5.1C formed intraperitoneal tumors within 3 months at variable rates. Median animal survival with peritoneal dissemination was 108 days for ESO26 cells (5X106), 65 days for OE33 cells (5X106), 88 days for ESO51 cells (5X106), 76 days for SK-GT-2 cells (5X106), 55 days for OE19 cells (5X106), 45 days for OE19 cells (10X106) and 82 days for Flo-1 cells (5X106). Interestingly, only in the OE19 model all mice (7/7 for 5X106 and 5/5 for10X106) developed bloody ascites with liver metastasis after intraperitoneal injection. The median survival time of these animals was the shortest (45 days for 10X106 cells). In addition, median survival was significantly increased after paclitaxel treatment compared with the control group (57 days versus 45 days, p = 0.0034) along with a significant decrease of the relative subcutaneous tumor volume (p = 0.00011). Thus peritoneal dissemination mouse xenograft model for survival outcome assessment after intraperitoneal injection of OE19 cells will

  2. Overexpression of Bcl-2–Associated Death Inhibits A549 Cell Growth In Vitro and In Vivo

    PubMed Central

    Huang, Na; Zhu, Jing; Liu, Dan; Li, Ya-Lun; Chen, Bo-Jiang; He, Yan-Qi; Liu, Kun; Mo, Xian-Ming

    2012-01-01

    Abstract The importance of apoptosis during the process of inhibiting tumorigenesis has been recognized. The role of BH3-only proapoptotic protein Bcl-2–associated death (BAD) in tumor growth remains controversial. The aim of this study was to explore the role of BAD in lung cancer cells. Our study showed that expression of BAD was upregulated in A549 cells by a recombinant lentivirus overexpressing BAD. In vitro, BAD overexpression significantly inhibited A549 cell proliferation and induced apoptosis in cell proliferation and apoptosis assays, respectively. The effect of BAD on A549 cells was studied in tumor xenograft of nude mice and the results showed that the tumor volume in the experimental group was smaller than the control groups. Further, immunohistochemical technique was used to determine the cell proliferation and apoptosis status of the lung tumor xenograft cells. This demonstrated that the in vivo and in vitro results were consistent. Taken together, our results indicate that overexpression of BAD inhibits the growth of A549 cells in vitro and in vivo, through inhibiting cell proliferation and inducing apoptosis. Thus, BAD could be a potential therapeutic target. PMID:22011203

  3. Molecular mechanisms underlying mangiferin-induced apoptosis and cell cycle arrest in A549 human lung carcinoma cells

    PubMed Central

    SHI, WEI; DENG, JIAGANG; TONG, RONGSHENG; YANG, YONG; HE, XIA; LV, JIANZHEN; WANG, HAILIAN; DENG, SHAOPING; QI, PING; ZHANG, DINGDING; WANG, YI

    2016-01-01

    Mangiferin, which is a C-glucosylxanthone (1,3,6,7-tetrahydroxyxanthone-C2-β-D-glucoside) purified from plant sources, has recently gained attention due to its various biological activities. The present study aimed to determine the apoptotic effects of mangiferin on A549 human lung adenocarcinoma cells. In vitro studies demonstrated that mangiferin exerted growth-inhibitory and apoptosis-inducing effects against A549 cells. In addition, mangiferin exhibited anti-tumor properties in A549 xenograft mice in vivo. Mangiferin triggered G2/M phase cell cycle arrest via down-regulating the cyclin-dependent kinase 1-cyclin B1 signaling pathway, and induced apoptotic cell death by inhibiting the protein kinase C-nuclear factor-κB pathway. In addition, mangiferin was able to enhance the antiproliferative effects of cisplatin on A549 cells, thus indicating the potential for a combined therapy. Notably, mangiferin exerted anticancer effects in vivo, where it was able to markedly decrease the volume and weight of subcutaneous tumor mass, and expand the lifespan of xenograft mice. The present study clarified the molecular mechanisms underlying mangiferin-induced antitumor activities, and suggested that mangiferin may be considered a potential antineoplastic drug for the future treatment of cancer. PMID:26935347

  4. Antitumor effectiveness of a combined therapy with a new cucurbitacin B derivative and paclitaxel on a human lung cancer xenograft model.

    PubMed

    Marostica, Lucas Lourenço; de Barros, André Luís Branco; Oliveira, Juliana; Salgado, Breno Souza; Cassali, Geovanni Dantas; Leite, Elaine Amaral; Cardoso, Valbert Nascimento; Lang, Karen Luise; Caro, Miguel Soriano Balparda; Durán, Fernando Javier; Schenkel, Eloir Paulo; de Oliveira, Mônica Cristina; Simões, Cláudia Maria Oliveira

    2017-08-15

    Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors, with a high mortality rate due to the elevated risk of resistance. Natural cucurbitacins and their derivatives are recognized as promising antitumor compounds for several types of cancer, including NSCLC. In a recent study published by our research group, DACE (2-deoxy-2-amine-cucurbitacin E), which is a semisynthetic derivative of cucurbitacin B, showed potential in vitro synergistic antiproliferative effects combined with paclitaxel (PTX) in A549 cells. In sequence, the purpose of this study was to evaluate the in vivo antitumor efficacy of this combined therapy as well as with these drugs individually, using a human NSCLC xenograft model. Some indicators of sub chronic toxicity that could be affected by treatments were also assessed. The results obtained in vivo with the combined treatment (1mg/kg+PTX 10mg/kg) showed the most effective reduction of the relative tumor volume and the highest inhibition of tumor growth and proliferation, when compared with those of the single treatments. Furthermore, scintigraphic images, obtained before and after the treatments, showed that the most effective protocol able to reduce the residual viable tumor mass was the combined treatment. All treatment regimens were well tolerated without significant changes in body weight and no histological and functional damage to liver and kidney tissues. These results corroborate our previous in vitro synergistic effects published. Taken together, these insights are novel and highlight the therapeutic potential of DACE and PTX combination scheme for NSCLC. Copyright © 2017. Published by Elsevier Inc.

  5. A longitudinal MRI study on lymph nodes histiocytosis of a xenograft cancer model

    PubMed Central

    Jiménez-González, María; Plaza-García, Sandra; Arizeta, Janire; Bianchessi, Silvia; Trigueros, César; Reese, Torsten

    2017-01-01

    Background Efforts are continuously made to detect and investigate the pivotal processes and interplay between the response of sentinel lymph node and malignant cells from a primary tumor. Conversely, some frequently used tumor animal models, such as human cancer xenografts, rarely feature metastasis. Therefore, lymph node alterations are seldom assessed. We consider that studying lymph node response could contribute to the understanding of host reaction to cancer. In the present study, we explored the presence of regional lymph node alterations in parallel with tumor growth using a pancreatic tumor xenograft model which does not develop metastasis. Methods and findings We established an animal cancer model by the subcutaneous inoculation of PANC-1 (a metastatic human pancreatic cancer cell line) in the left upper flank of athymic nude mice. Tumor animals, along with controls (n = 7 / group) were subjected to Magnetic Resonance Imaging (MRI) in order to follow tumor growth and brachial and axillary lymph nodes alterations over several weeks. Further histological analyses were performed at the end of the study. The individual average of the different lymph nodes sizes was 15–40% larger in the tumor animals compared to control animals at week 8 to week 20. The tumor size and lymph node size were not correlated. Histological analysis of the lymph nodes showed paracortical histiocytosis. No metastasis to lymph nodes could be detected by histology. In tumor bearing animals, histiocytosis was associated with isolated apoptotic bodies and migration of human tumoral cells was confirmed by specific immunostaining of human origin markers. Conclusions The lack of metastasis as well as the pathological manifestation of the lymph node alteration in this pre-clinical model established here parallels findings in patients with sinus histiocytosis that is correlated with improved survival. PMID:28704462

  6. Xenografting of sheep testis tissue and isolated cells as a model for preservation of genetic material from endangered ungulates.

    PubMed

    Arregui, Lucía; Rathi, Rahul; Megee, Susan O; Honaramooz, Ali; Gomendio, Montserrat; Roldan, Eduardo R S; Dobrinski, Ina

    2008-07-01

    Recovery of germ cells could be an option for preservation of the genetic pool of endangered animals. In immature males, xenografting of testis tissue provides the opportunity to recover sperm from these animals. In adult animals, xenografting has been less successful, but de novo morphogenesis of functional testis tissue from dissociated testis cells could be an alternative. To assess the potential use of these techniques in endangered bovid species, the domestic sheep was used as a model. Testes from 2-week-old lambs were grafted as tissue fragments or cell suspensions into nude mice. Grafts were recovered at 4, 8, 12 and 16 weeks post grafting. For isolated cells, two additional time points at 35 and 40 weeks after grafting were added. In addition, to analyse the possible effect of social stress among mice within a group on the development of the grafts, testis tissue grafts were recovered 13 weeks post grafting from mice housed individually and in groups. Complete spermatogenesis occurred in sheep testis xenografts at 12 weeks, similar to the situation in situ. Isolated sheep testis cells were able to reorganize and form functional testicular tissue de novo. Housing mice individually or in groups did not have any effect on the development of xenografts. Xenografting of testis tissue might be useful to obtain sperm from immature endangered ungulates that die prematurely. Testis tissue de novo morphogenesis from isolated cells could open interesting options to recover germ cells from mature males with impaired spermatogenesis.

  7. Assessment of Tumor Stiffness With Shear Wave Elastography in a Human Prostate Cancer Xenograft Implantation Model.

    PubMed

    Wang, Yiru; Yao, Binwei; Li, Hongfei; Zhang, Yan; Gao, Hanjing; Gao, Yabin; Peng, Ruiyun; Tang, Jie

    2017-05-01

    To investigate the stiffness of human prostate cancer in a xenograft implantation model using shear wave elastography and compare the pathologic features of tumors with varying elasticity. Human prostate cancer DU-145 cells were injected into 24 nude male mice. The mice were divided into 3 groups according to the time of transplantation (6, 8, and 10 weeks). The volume, elasticity, and Young modulus of tumors were recorded by 2-dimensional sonography and shear wave elastography. The tumors were collected for pathologic analyses: hematoxylin-eosin staining, Ponceau S, and aniline staining were used to stain collagen and elastic fibers, and picric acid-sirius red staining was used to indicate type I and III collagen. The area ratios of collagen I/III were calculated. The correlation between the Young modulus of the tumor and area ratio of collagen I/III were evaluated. Immunohistochemistry of vimentin and α-smooth muscle actin was performed. Nineteen tumors in 3 groups were collected. The volume and mean Young modulus increased with the time of transplantation. There were more collagen fibers in the stiff tumors, and there were significant differences in the area ratios of collagen I/III between groups 1 (mean ± SD, 0.50 ± 0.17) and 3 (1.97 ± 0.56; P < .01). The Young modulus of the tumors showed a very significant correlation with the area ratios of collagen I/III (r = 0.968; P < .05). The expression level of α-smooth muscle actin protein was higher in group 3 than in the other groups, but differences in vimentin expression were barely seen. Shear wave elastography is a novel useful technology for showing the elasticity of human prostate cancer xenograft implantation tumors. Collagen fibers, especially collagen type I, play a crucial role in the elasticity in the human prostate cancer xenograft implantation model. © 2017 by the American Institute of Ultrasound in Medicine.

  8. Genomic characterization of a large panel of patient-derived hepatocellular carcinoma xenograft tumor models for preclinical development

    PubMed Central

    Sun, Hongye; Xu, Qiang; Tan, Yexiong; Wang, Guan; Luo, Qin; Xu, Weiguo; Yang, Shuqun; Li, Jian; Fu, Jing; Chen, Lei; Yuan, Shengxian; Liang, Guibai; Ji, Qunsheng; Chen, Shu-Hui; Chan, Chi-Chung; Zhou, Weiping; Xu, Xiaowei; Wang, Hongyang; Fang, Douglas D.

    2015-01-01

    Lack of clinically relevant tumor models dramatically hampers development of effective therapies for hepatocellular carcinoma (HCC). Establishment of patient-derived xenograft (PDX) models that faithfully recapitulate the genetic and phenotypic features of HCC becomes important. In this study, we first established a cohort of 65 stable PDX models of HCC from corresponding Chinese patients. Then we showed that the histology and gene expression patterns of PDX models were highly consistent between xenografts and case-matched original tumors. Genetic alterations, including mutations and DNA copy number alterations (CNAs), of the xenografts correlated well with the published data of HCC patient specimens. Furthermore, differential responses to sorafenib, the standard-of-care agent, in randomly chosen xenografts were unveiled. Finally, in the models expressing high levels of FGFR1 gene according to the genomic data, FGFR1 inhibitor lenvatinib showed greater efficacy than sorafenib. Taken together, our data indicate that PDX models resemble histopathological and genomic characteristics of clinical HCC tumors, as well as recapitulate the differential responses of HCC patients to the standard-of-care treatment. Overall, this large collection of PDX models becomes a clinically relevant platform for drug screening, biomarker discovery and translational research in preclinical setting. PMID:26062443

  9. Genomic characterization of a large panel of patient-derived hepatocellular carcinoma xenograft tumor models for preclinical development.

    PubMed

    Gu, Qingyang; Zhang, Bin; Sun, Hongye; Xu, Qiang; Tan, Yexiong; Wang, Guan; Luo, Qin; Xu, Weiguo; Yang, Shuqun; Li, Jian; Fu, Jing; Chen, Lei; Yuan, Shengxian; Liang, Guibai; Ji, Qunsheng; Chen, Shu-Hui; Chan, Chi-Chung; Zhou, Weiping; Xu, Xiaowei; Wang, Hongyang; Fang, Douglas D

    2015-08-21

    Lack of clinically relevant tumor models dramatically hampers development of effective therapies for hepatocellular carcinoma (HCC). Establishment of patient-derived xenograft (PDX) models that faithfully recapitulate the genetic and phenotypic features of HCC becomes important. In this study, we first established a cohort of 65 stable PDX models of HCC from corresponding Chinese patients. Then we showed that the histology and gene expression patterns of PDX models were highly consistent between xenografts and case-matched original tumors. Genetic alterations, including mutations and DNA copy number alterations (CNAs), of the xenografts correlated well with the published data of HCC patient specimens. Furthermore, differential responses to sorafenib, the standard-of-care agent, in randomly chosen xenografts were unveiled. Finally, in the models expressing high levels of FGFR1 gene according to the genomic data, FGFR1 inhibitor lenvatinib showed greater efficacy than sorafenib. Taken together, our data indicate that PDX models resemble histopathological and genomic characteristics of clinical HCC tumors, as well as recapitulate the differential responses of HCC patients to the standard-of-care treatment. Overall, this large collection of PDX models becomes a clinically relevant platform for drug screening, biomarker discovery and translational research in preclinical setting.

  10. Inflammation precedes the development of human malignant mesotheliomas in a SCID mouse xenograft model

    PubMed Central

    Hillegass, Jedd M.; Shukla, Arti; Lathrop, Sherrill A.; MacPherson, Maximilian B.; Beuschel, Stacie L.; Butnor, Kelly J.; Testa, Joseph R.; Pass, Harvey I.; Carbone, Michele; Steele, Chad; Mossman, Brooke T.

    2010-01-01

    Asbestos fibers cause chronic inflammation that may be critical to the development of malignant mesothelioma (MM). Two human MM cell lines (Hmeso, PPM Mill) were used in a SCID mouse xenograft model to assess time-dependent patterns of inflammation and tumor formation. After intraperitoneal (IP) injection of MM cells, mice were euthanized at 7, 14, and 30 days, and peritoneal lavage fluid (PLF) was examined for immune cell profiles and human and mouse cytokines. Increases in human MM-derived IL-6, IL-8, bFGF, and VEGF were observed in mice at 7 days postinjection of either MM line, and a striking neutrophilia was observed at all time points. Free-floating tumor spheroids developed in mice at 14 days, and both spheroids and adherent MM tumor masses occurred in all mice at 30 days. Results suggest that inflammation and cytokine production precede and may be critical to the development of MMs. PMID:20716277

  11. Human polyethylene granuloma tissues inhibit bone healing in a novel xenograft animal model.

    PubMed

    Esposito, Christina I; Oliver, Rema A; Campbell, Patricia A; Yu, Yan; Walter, William L; Walter, William K; Walsh, William R

    2014-06-01

    During revision of a conventional polyethylene joint replacement, surgeons usually remove the source of osteolysis (polyethylene) but cannot always remove all of the polyethylene granuloma tissues. We developed a human/rat xenograft model to investigate the effects of polyethylene granuloma tissues on bone healing. Human osteoarthritic and periprosthetic tissues collected during primary and revision hip arthroplasty surgeries were transplanted into the distal femora of athymic nude rats. After 3 weeks in vivo, there was a significant difference in the bone volume fraction (Vf ) between empty, primary, and revision defects (p = 0.02), with a lower Vf in defects with revision granuloma tissues compared to defects with primary osteoarthritic tissues. Polyethylene granuloma tissues in trabecular bone defects inhibited bone healing. Therefore, debridement around a metal-on-polyethylene hip replacement may shorten the time it takes to achieve secondary stability around a revision hip replacement. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Effect of grape procyanidins on tumor angiogenesis in liver cancer xenograft models.

    PubMed

    Feng, Li-Li; Liu, Bing-Xia; Zhong, Jin-Yi; Sun, Li-Bin; Yu, Hong-Sheng

    2014-01-01

    In recent years a wide variety of flavonoids or polyphenolic substances have been reported to possess substantial anti-carcinogenic and antimutagenic activities. Grape proanthocyanidins (GPC) are considered as good examples for which there is evidence of potential roles as anti-carcinogenic agents. A xenograft model was established using H22 cells subcutaneously injected into mice and used to assess different concentrations of grape proanthocyanidins (GPC) and Endostar. Treatments were maintained for 10 days, then levels of vascular endothelial growth factor (VEGF) and microvessel density (MVD) were examined by immunohistochemistry, while VEGF mRNA was determined by real-time PCR in tumor tissue. The expression of MVD and VEGF decreased gradually as the concentration of GPC increased.There was a significant positive correlation between MVD and VEGF. These results suggest that GPC restrains the growth of tumor, possibly by inhibiting tumour angiogenesis.

  13. Utility of a human-mouse xenograft model and in vivo near-infrared fluorescent imaging for studying wound healing

    PubMed Central

    Shanmugam, Victoria K.; Tassi, Elena; Schmidt, Marcel O.; McNish, Sean; Baker, Stephen; Attinger, Christopher; Wang, Hong; Shara, Nawar; Wellstein, Anton

    2014-01-01

    To study the complex cellular interactions involved in wound healing, it is essential to have an animal model that adequately mimics the human wound microenvironment. Currently available murine models are limited because wound contraction introduces bias into wound surface area measurements. The purpose of this study was to demonstrate utility of a human-mouse xenograft model for studying human wound healing. Methods Normal human skin was harvested from elective abdominoplasty surgery, xenografted onto athymic nude (nu/nu) mice, and allowed to engraft for 3 months. The graft was then wounded using a 2mm punch biopsy. Wounds were harvested on sequential days to allow tissue based markers of wound healing to be followed sequentially. On the day of wound harvest mice were injected with XenoLight RediJect COX-2 probe and imaged according to package instructions. Results Immunohistochemistry confirms that this human-mouse xenograft model provides an effective model for studying human wound healing in vivo. Additionally, in vivo fluorescent imaging for inducible COX-2 demonstrated upregulation from baseline to day 4 (P=0.03) with return to baseline levels by day 10 paralleling the re-epithelialization of the wound. Conclusions This human-mouse xenograft model, combined with in vivo fluorescent imaging provides a useful mechanism for studying molecular pathways of human wound healing. PMID:24373153

  14. SKI-606, a Src/Abl inhibitor with in vivo activity in colon tumor xenograft models.

    PubMed

    Golas, Jennifer M; Lucas, Judy; Etienne, Carlo; Golas, Jonathan; Discafani, Carolyn; Sridharan, Latha; Boghaert, Erwin; Arndt, Kim; Ye, Fei; Boschelli, Diane H; Li, Fangbiao; Titsch, Craig; Huselton, Christine; Chaudhary, Inder; Boschelli, Frank

    2005-06-15

    Src up-regulation is a common event in human cancers. In colorectal cancer, increased Src levels are an indicator of poor prognosis, and progression to metastatic disease is associated with substantial increases in Src activity. Therefore, we examined the activity of SKI-606, a potent inhibitor of Src and Abl kinases, against colon tumor lines in vitro and in s.c. tumor xenograft models. SKI-606 inhibited Src autophosphorylation with an IC(50) of approximately 0.25 micromol/L in HT29 cells. Phosphorylation of Tyr(925) of focal adhesion kinase, a Src substrate, was reduced by similar concentrations of inhibitor. Antiproliferative activity on plastic did not correlate with Src inhibition in either HT29 or Colo205 cells (IC(50)s, 1.5 and 2.5 micromol/L, respectively), although submicromolar concentrations of SKI-606 inhibited HT29 cell colony formation in soft agar. SKI-606 also caused loosely aggregated Colo205 spheroids to condense into compact spheroids. On oral administration to nude mice at the lowest efficacious dose, peak plasma concentrations of approximately 3 micromol/L, an oral bioavailability of 18%, and a t(1/2) of 8.6 hours were observed. SKI-606 was orally active in s.c. colon tumor xenograft models and caused substantial reductions in Src autophosphorylation on Tyr(418) in HT29 and Colo205 tumors. SKI-606 inhibited HT29 tumor growth on once daily administration, whereas twice daily administration was necessary to inhibit Colo205, HCT116, and DLD1 tumor growth. These results support development of SKI-606 as a therapeutic agent for treatment of colorectal cancer.

  15. CysLT(1)R antagonists inhibit tumor growth in a xenograft model of colon cancer.

    PubMed

    Savari, Sayeh; Liu, Minghui; Zhang, Yuan; Sime, Wondossen; Sjölander, Anita

    2013-01-01

    The expression of the inflammatory G-protein coupled receptor CysLT1R has been shown to be upregulated in colon cancer patients and associated with poor prognosis. The present study investigated the correlation between CysLT1R and colon cancer development in vivo using CysLT1R antagonists (ZM198,615 or Montelukast) and the nude mouse xenograft model. Two drug administration regimens were established. The first regimen was established to investigate the importance of CysLT1R in tumor initiation. Nude mice were inoculated with 50 µM CysLT1R antagonist-pretreated HCT-116 colon cancer cells and received continued treatment (5 mg/kg/day, intraperitoneally). The second regimen aimed to address the role of CysLT1R in tumor progression. Nude mice were inoculated with non-pretreated HCT-116 cells and did not receive CysLT1R antagonist treatment until recordable tumor appearance. Both regimens resulted in significantly reduced tumor size, attributed to changes in proliferation and apoptosis as determined by reduced Ki-67 levels and increased levels of p21(WAF/Cip1) (P<0.01), cleaved caspase 3, and the caspase-cleaved product of cytokeratin 18. Decreased levels of VEGF (P<0.01) and reduced vessel size (P<0.05) were also observed, the latter only in the ZM198,615-pretreatment group. Furthermore, we performed a series of in vitro studies using the colon cancer cell line HCT-116 and CysLT1R antagonists. In addition to significant reductions in cell proliferation, adhesion and colony formation, we observed induction of cell cycle arrest and apoptosis in a dose-dependent manner. The ability of Montelukast to inhibit growth of human colon cancer xenograft was further validated by using two additional colon cancer cell lines, SW-480 and HT-29. Our results demonstrate that CysLT1R antagonists inhibit growth of colon cancer xenografts primarily by reducing proliferation and inducing apoptosis of the tumor cells.

  16. CysLT1R Antagonists Inhibit Tumor Growth in a Xenograft Model of Colon Cancer

    PubMed Central

    Savari, Sayeh; Liu, Minghui; Zhang, Yuan; Sime, Wondossen; Sjölander, Anita

    2013-01-01

    The expression of the inflammatory G-protein coupled receptor CysLT1R has been shown to be upregulated in colon cancer patients and associated with poor prognosis. The present study investigated the correlation between CysLT1R and colon cancer development in vivo using CysLT1R antagonists (ZM198,615 or Montelukast) and the nude mouse xenograft model. Two drug administration regimens were established. The first regimen was established to investigate the importance of CysLT1R in tumor initiation. Nude mice were inoculated with 50 µM CysLT1R antagonist-pretreated HCT-116 colon cancer cells and received continued treatment (5 mg/kg/day, intraperitoneally). The second regimen aimed to address the role of CysLT1R in tumor progression. Nude mice were inoculated with non-pretreated HCT-116 cells and did not receive CysLT1R antagonist treatment until recordable tumor appearance. Both regimens resulted in significantly reduced tumor size, attributed to changes in proliferation and apoptosis as determined by reduced Ki-67 levels and increased levels of p21WAF/Cip1 (P<0.01), cleaved caspase 3, and the caspase-cleaved product of cytokeratin 18. Decreased levels of VEGF (P<0.01) and reduced vessel size (P<0.05) were also observed, the latter only in the ZM198,615-pretreatment group. Furthermore, we performed a series of in vitro studies using the colon cancer cell line HCT-116 and CysLT1R antagonists. In addition to significant reductions in cell proliferation, adhesion and colony formation, we observed induction of cell cycle arrest and apoptosis in a dose-dependent manner. The ability of Montelukast to inhibit growth of human colon cancer xenograft was further validated by using two additional colon cancer cell lines, SW-480 and HT-29. Our results demonstrate that CysLT1R antagonists inhibit growth of colon cancer xenografts primarily by reducing proliferation and inducing apoptosis of the tumor cells. PMID:24039952

  17. Retrospective growth kinetics and radiosensitivity analysis of various human xenograft models

    PubMed Central

    Lee, Ji Young; Kim, Eun Ho; Chung, Namhyun

    2016-01-01

    The purpose of this study was to delineate the various factors that affect the growth characteristics of human cancer xenografts in nude mice and to reveal the relationship between the growth characteristics and radiosensitivity. We retrospectively analyzed 390 xenografts comprising nine different human cancer lines grown in nude mice used in our institute between 2009 and 2015. Tumor growth rate (TGR) was calculated using exponential growth equations. The relationship between the TGR of xenografts and the proliferation of the cells in vitro was examined. Additionally, we examined the correlations between the surviving fractions of cells after 2 Gy irradiation in vitro and the response of the xenograft to radiation. The TGR of xenografts was positively related to the proliferation of the cells in vitro (rP=0.9714, p<0.0001), whereas it was independent of the histological type of the xenografts. Radiation-induced suppression of the growth rate (T/C%) of xenografts was positively related to the radiosensitivity of the cells in vitro (SF2; rP=0.8684, p=0.0284) and TGR (rP=0.7623, p=0.0780). The proliferation of human cancer cells in vitro and the growth rate of xenografts were positively related. The radiosensitivity of cancer cells, as judged from the SF2 values in vitro, and the radiation-induced suppression of xenograft growth were positively related. In conclusion, the growth rate of human xenografts was independent of histological type and origin of the cancer cells, and was positively related to the proliferation of the cancer cells in vitro. PMID:28053611

  18. Utility of a human-mouse xenograft model and in vivo near-infrared fluorescent imaging for studying wound healing.

    PubMed

    Shanmugam, Victoria K; Tassi, Elena; Schmidt, Marcel O; McNish, Sean; Baker, Stephen; Attinger, Christopher; Wang, Hong; Shara, Nawar; Wellstein, Anton

    2015-12-01

    To study the complex cellular interactions involved in wound healing, it is essential to have an animal model that adequately mimics the human wound microenvironment. Currently available murine models are limited because wound contraction introduces bias into wound surface area measurements. The purpose of this study was to demonstrate utility of a human-mouse xenograft model for studying human wound healing. Normal human skin was harvested from elective abdominoplasty surgery, xenografted onto athymic nude (nu/nu) mice, and allowed to engraft for 3 months. The graft was then wounded using a 2-mm punch biopsy. Wounds were harvested on sequential days to allow tissue-based markers of wound healing to be followed sequentially. On the day of wound harvest, mice were injected with XenoLight RediJect cyclooxygenase-2 (COX-2) probe and imaged according to package instructions. Immunohistochemistry confirms that this human-mouse xenograft model is effective for studying human wound healing in vivo. Additionally, in vivo fluorescent imaging for inducible COX-2 demonstrated upregulation from baseline to day 4 (P = 0·03) with return to baseline levels by day 10, paralleling the reepithelialisation of the wound. This human-mouse xenograft model, combined with in vivo fluorescent imaging provides a useful mechanism for studying molecular pathways of human wound healing.

  19. New mouse xenograft model modulated by tumor-associated fibroblasts for human multi-drug resistance in cancer

    PubMed Central

    MA, YAN; LIN, ZHIQIANG; FALLON, JOHN K.; ZHAO, QIANG; LIU, DAN; WANG, YONGJUN; LIU, FENG

    2015-01-01

    We developed an MDR tumor model that is modulated by tumor-associated fibroblasts. Studies on proliferation of tumor cell lines including paclitaxel-sensitive and resistant cell lines were performed. The expressions of P-gp and α-smooth muscle actin (α-SMA) antigen were evaluated by immunohistochemistry and western blot analysis. Quantitative P-gp analyses of different cell lines were accomplished by nanoUPLC-MS/MS. Tumor cell colony formation assay and established xenograft model was used to investigate the relationship between P-gp expression, fibroblast levels and tumorigenesis. The mouse xenograft model was developed after co-inoculation with MDR tumor cells and NIH/3T3 fibroblast cells. There was no correlation between tumorigenesis in vivo and the growth rate of cells in vitro. The proliferation among different cell lines had no significant differences, but the P-gp expression and tumor growth in the xenograft model were fairly different. P-gp determination and α-SMA immunofluorescence staining clarified the relationship between P-gp expression, fibroblast levels and tumorigenesis. It was more difficult for tumor cells with higher P-gp levels to recruit fibroblasts in vivo, resulting in lower tumorigenesis due to the lack of structural and chemical support during tumor progression. In the established paclitaxel-resistant mouse xenograft model, no obvious antitumor effect was observed after Taxol treatment, but a significant decrease in tumor size for the group treated with gemcitabine sensitive to the model. The results show that the added fibroblasts do not disturb the applicability of the model in MDR. Therefore, this mouse xenograft MDR model could serve as an effective tool for MDR research. PMID:26352907

  20. Combining fisetin and ionizing radiation suppresses the growth of mammalian colorectal cancers in xenograft tumor models.

    PubMed

    Leu, Jyh-Der; Wang, Bo-Shen; Chiu, Shu-Jun; Chang, Chun-Yuan; Chen, Chien-Chih; Chen, Fu-Du; Avirmed, Shiirevnyamba; Lee, Yi-Jang

    2016-12-01

    Fisetin (3,7,3',4'-tetrahydroxyflavone), which belongs to the flavonoid group of polyphenols and is found in a wide range of plants, has been reported to exhibit a number of biological activities in human cancer cells, including antioxidant, anti-inflammatory, antiangiogenic, anti-invasive and antiproliferative effects. Although previous in vitro studies have shown that fisetin treatment increases the apoptotic rate and enhances the radiosensitivity of human colorectal cancer cells, the in vivo effects of fisetin on tumor growth remain unclear. In the present study a murine xenograft tumor model was employed to investigate the therapeutic effects of fisetin in combination with radiation on CT-26 colon cancer cells and human HCT116 colorectal cancer cells. This revealed that intratumoral injection of fisetin significantly suppressed the growth of CT-26 tumors compared with the untreated control group, but had little effect on the growth of HCT116 tumors. However, fisetin in combination with 2-Gy radiation enhanced tumor suppressor activity in murine colon and human colorectal xenograft tumors, as compared with 2-Gy fractionated radiation administered alone for 5 days and fisetin alone. Interestingly, fisetin downregulated the expression of the oncoprotein securin in a p53-independent manner. However, securin-null HCT116 tumors showed only moderate sensitivity to fisetin treatment, and the combination of fisetin and radiation did not significantly suppress securin-null HCT116 tumor growth compared with normal HCT116 tumors. Therefore, the role of securin in mediating the effect of fisetin on colorectal cancer growth warrants further investigation. In conclusion, the results of the current study provide important preclinical data for evaluating the efficacy of fisetin and radiation combination treatment as an adjuvant chemoradiotherapy for human colorectal cancers.

  1. The Anti-Proliferative Effect of Boron Neutron Capture Therapy in a Prostate Cancer Xenograft Model

    PubMed Central

    Yoshikawa, Yuki; Takai, Tomoaki; Ibuki, Naokazu; Hirano, Hajime; Nomi, Hayahito; Kawabata, Shinji; Kiyama, Satoshi; Miyatake, Shin-Ichi; Kuroiwa, Toshihiko; Suzuki, Minoru; Kirihata, Mitsunori; Azuma, Haruhito

    2015-01-01

    Purpose Boron neutron capture therapy (BNCT) is a selective radiation treatment for tumors that preferentially accumulate drugs carrying the stable boron isotope, 10B. BNCT has been evaluated clinically as an alternative to conventional radiation therapy for the treatment of brain tumors, and more recently, recurrent advanced head and neck cancer. Here we investigated the effect of BNCT on prostate cancer (PCa) using an in vivo mouse xenograft model that we have developed. Materials and Methods Mice bearing the xenotransplanted androgen-independent human PCa cell line, PC3, were divided into four groups: Group 1: untreated controls; Group 2: Boronophenylalanine (BPA); Group 3: neutron; Group 4: BPA-mediated BNCT. We compared xenograft growth among these groups, and the body weight and any motility disturbance were recorded. Immunohistochemical (IHC) studies of the proliferation marker, Ki-67, and TUNEL staining were performed 9 weeks after treatment. Results The in vivo studies demonstrated that BPA-mediated BNCT significantly delayed tumor growth in comparison with the other groups, without any severe adverse events. There was a significant difference in the rate of freedom from gait abnormalities between the BPA-mediated BNCT group and the other groups. The IHC studies revealed that BNCT treatment significantly reduced the number of Ki-67-positive cells in comparison with the controls (mean±SD 6.9±1.5 vs 12.7±4.0, p<0.05), while there was no difference in the number of apoptotic cells, suggesting that BPA-mediated BNCT reduced PCa progression without affecting apoptosis at 9 weeks post-treatment. Conclusions This study has provided the first preclinical proof-of-principle data to indicate that BPA-mediated BNCT reduces the in vivo growth of PCa. Although further studies will be necessary, BNCT might be a novel potential treatment for PCa. PMID:26325195

  2. The Anti-Proliferative Effect of Boron Neutron Capture Therapy in a Prostate Cancer Xenograft Model.

    PubMed

    Takahara, Kiyoshi; Inamoto, Teruo; Minami, Koichiro; Yoshikawa, Yuki; Takai, Tomoaki; Ibuki, Naokazu; Hirano, Hajime; Nomi, Hayahito; Kawabata, Shinji; Kiyama, Satoshi; Miyatake, Shin-Ichi; Kuroiwa, Toshihiko; Suzuki, Minoru; Kirihata, Mitsunori; Azuma, Haruhito

    2015-01-01

    Boron neutron capture therapy (BNCT) is a selective radiation treatment for tumors that preferentially accumulate drugs carrying the stable boron isotope, 10B. BNCT has been evaluated clinically as an alternative to conventional radiation therapy for the treatment of brain tumors, and more recently, recurrent advanced head and neck cancer. Here we investigated the effect of BNCT on prostate cancer (PCa) using an in vivo mouse xenograft model that we have developed. Mice bearing the xenotransplanted androgen-independent human PCa cell line, PC3, were divided into four groups: Group 1: untreated controls; Group 2: Boronophenylalanine (BPA); Group 3: neutron; Group 4: BPA-mediated BNCT. We compared xenograft growth among these groups, and the body weight and any motility disturbance were recorded. Immunohistochemical (IHC) studies of the proliferation marker, Ki-67, and TUNEL staining were performed 9 weeks after treatment. The in vivo studies demonstrated that BPA-mediated BNCT significantly delayed tumor growth in comparison with the other groups, without any severe adverse events. There was a significant difference in the rate of freedom from gait abnormalities between the BPA-mediated BNCT group and the other groups. The IHC studies revealed that BNCT treatment significantly reduced the number of Ki-67-positive cells in comparison with the controls (mean ± SD 6.9 ± 1.5 vs 12.7 ± 4.0, p<0.05), while there was no difference in the number of apoptotic cells, suggesting that BPA-mediated BNCT reduced PCa progression without affecting apoptosis at 9 weeks post-treatment. This study has provided the first preclinical proof-of-principle data to indicate that BPA-mediated BNCT reduces the in vivo growth of PCa. Although further studies will be necessary, BNCT might be a novel potential treatment for PCa.

  3. Survivin Antisense Oligonucleotides Effectively Radiosensitize Colorectal Cancer Cells in Both Tissue Culture and Murine Xenograft Models

    SciTech Connect

    Roedel, Franz; Capalbo, Gianni; Weiss, Christian; Roedel, Claus

    2008-05-01

    Purpose: Survivin shows a radiation resistance factor in colorectal cancer. In the present study, we determined whether survivin messenger RNA levels in patients with rectal cancer predict tumor response after neoadjuvant radiochemotherapy and whether inhibition of survivin by the use of antisense oligonucleotides (ASOs) enhances radiation responses. Methods and Materials: SW480 colorectal carcinoma cells were transfected with survivin ASO (LY2181308) and irradiated with doses ranging from 0-8 Gy. Survivin expression, cell-cycle distribution, {gamma}H2AX fluorescence, and induction of apoptosis were monitored by means of immunoblotting, flow cytometry, and caspase 3/7 activity. Clonogenic survival was determined by using a colony-forming assay. An SW480 xenograft model was used to investigate the effect of survivin attenuation and irradiation on tumor growth. Furthermore, survivin messenger RNA levels were studied in patient biopsy specimens by using Affymetrix microarray analysis. Results: In the translational study of 20 patients with rectal cancer, increased survivin levels were associated with significantly greater risk of local tumor recurrence (p = 0.009). Treatment of SW480 cells with survivin ASOs and irradiation resulted in an increased percentage of apoptotic cells, caspase 3/7 activity, fraction of cells in the G{sub 2}/M phase, and H2AX phosphorylation. Clonogenic survival decreased compared with control-treated cells. Furthermore, treatment of SW480 xenografts with survivin ASOs and irradiation resulted in a significant delay in tumor growth. Conclusion: Survivin appears to be a molecular biomarker in patients with rectal cancer. Furthermore, in vitro and in vivo data suggest a potential role of survivin as a molecular target to improve treatment response to radiotherapy in patients with rectal cancer.

  4. Growth hormone receptor antagonism suppresses tumour regrowth after radiotherapy in an endometrial cancer xenograft model.

    PubMed

    Evans, Angharad; Jamieson, Stephen M F; Liu, Dong-Xu; Wilson, William R; Perry, Jo K

    2016-08-28

    Human GH expression is associated with poor survival outcomes for endometrial cancer patients, enhanced oncogenicity of endometrial cancer cells and reduced sensitivity to ionising radiation in vitro, suggesting that GH is a potential target for anticancer therapy. However, whether GH receptor inhibition sensitises to radiotherapy in vivo has not been tested. In the current study, we evaluated whether the GH receptor antagonist, pegvisomant (Pfizer), sensitises to radiotherapy in vivo in an endometrial tumour xenograft model. Subcutaneous administration of pegvisomant (20 or 100 mg/kg/day, s.c.) reduced serum IGF1 levels by 23% and 68%, respectively, compared to vehicle treated controls. RL95-2 xenografts grown in immunodeficient NIH-III mice were treated with vehicle or pegvisomant (100 mg/kg/day), with or without fractionated gamma radiation (10 × 2.5 Gy over 5 days). When combined with radiation, pegvisomant significantly increased the median time tumours took to reach 3× the pre-radiation treatment volume (49 days versus 72 days; p = 0.001). Immunohistochemistry studies demonstrated that 100 mg/kg pegvisomant every second day was sufficient to abrogate MAP Kinase signalling throughout the tumour. In addition, treatment with pegvisomant increased hypoxic regions in irradiated tumours, as determined by immunohistochemical detection of pimonidazole adducts, and decreased the area of CD31 labelling in unirradiated tumours, suggesting an anti-vascular effect. Pegvisomant did not affect intratumoral staining for HIF1α, VEGF-A, CD11b, or phospho-EGFR. Our results suggest that blockade of the human GH receptor may improve the response of GH and/or IGF1-responsive endometrial tumours to radiation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Combining fisetin and ionizing radiation suppresses the growth of mammalian colorectal cancers in xenograft tumor models

    PubMed Central

    Leu, Jyh-Der; Wang, Bo-Shen; Chiu, Shu-Jun; Chang, Chun-Yuan; Chen, Chien-Chih; Chen, Fu-Du; Avirmed, Shiirevnyamba; Lee, Yi-Jang

    2016-01-01

    Fisetin (3,7,3′,4′-tetrahydroxyflavone), which belongs to the flavonoid group of polyphenols and is found in a wide range of plants, has been reported to exhibit a number of biological activities in human cancer cells, including antioxidant, anti-inflammatory, antiangiogenic, anti-invasive and antiproliferative effects. Although previous in vitro studies have shown that fisetin treatment increases the apoptotic rate and enhances the radiosensitivity of human colorectal cancer cells, the in vivo effects of fisetin on tumor growth remain unclear. In the present study a murine xenograft tumor model was employed to investigate the therapeutic effects of fisetin in combination with radiation on CT-26 colon cancer cells and human HCT116 colorectal cancer cells. This revealed that intratumoral injection of fisetin significantly suppressed the growth of CT-26 tumors compared with the untreated control group, but had little effect on the growth of HCT116 tumors. However, fisetin in combination with 2-Gy radiation enhanced tumor suppressor activity in murine colon and human colorectal xenograft tumors, as compared with 2-Gy fractionated radiation administered alone for 5 days and fisetin alone. Interestingly, fisetin downregulated the expression of the oncoprotein securin in a p53-independent manner. However, securin-null HCT116 tumors showed only moderate sensitivity to fisetin treatment, and the combination of fisetin and radiation did not significantly suppress securin-null HCT116 tumor growth compared with normal HCT116 tumors. Therefore, the role of securin in mediating the effect of fisetin on colorectal cancer growth warrants further investigation. In conclusion, the results of the current study provide important preclinical data for evaluating the efficacy of fisetin and radiation combination treatment as an adjuvant chemoradiotherapy for human colorectal cancers. PMID:28105204

  6. Comparison of the Gene Expression Profiles of Human Hematopoietic Stem Cells between Humans and a Humanized Xenograft Model.

    PubMed

    Matsuzawa, Hideyuki; Matsushita, Hiromichi; Yahata, Takashi; Tanaka, Masayuki; Ando, Kiyoshi

    2017-04-20

    The aim of this study is to evaluate the feasibility of NOD/Shi-scid-IL2Rγ(null)(NOG) mice transplanted with human CD34(+)/CD38(-)/Lin(-/low) hematopoietic cells from cord blood (CB) as an experimental model of the gene expression in human hematopoiesis. We compared the gene expressions of human CD34(+)/CD38(-)/Lin(-/low) cells from human bone marrow (BM) and in xenograft models. The microarray data revealed that 25 KEGG pathways were extracted from the comparison of human CD34(+)/CD38(-)/Lin(-/low) HSCs between CB and BM, and that 17 of them--which were mostly related to cellular survival, RNA metabolism and lymphoid development--were shared with the xenograft model. When the probes that were commonly altered in CD34(+)/CD38(-)/Lin(-/low) cells from both human and xenograft BM were analyzed, most of them, including the genes related hypoxia, hematopoietic differentiation, epigenetic modification, translation initiation, and RNA degradation, were downregulated. These alterations of gene expression suggest a reduced differentiation capacity and likely include key alterations of gene expression for settlement of CB CD34(+)/CD38(-)/Lin(-/low) cells in BM. Our findings demonstrate that the xenograft model of human CB CD34(+)/CD38(-)/Lin(-/low) cells using NOG mice was useful, at least in part, for the evaluation of the gene expression profile of human hematopoietic stem cells.

  7. Establishment and characterisation of patient-derived xenografts as paraclinical models for gastric cancer

    PubMed Central

    Choi, Yoon Young; Lee, Jae Eun; Kim, Hyunki; Sim, Moon Hee; Kim, Ka-Kyung; Lee, Gunho; Kim, Hyoung-Il; An, Ji Yeong; Hyung, Woo Jin; Kim, Choong-Bai; Noh, Sung Hoon; Kim, Sangwoo; Cheong, Jae-Ho

    2016-01-01

    The patient-derived xenograft (PDX) model is emerging as a promising translational platform to duplicate the characteristics of tumours. However, few studies have reported detailed histological and genomic analyses for model fidelity and for factors affecting successful model establishment of gastric cancer. Here, we generated PDX tumours surgically-derived from 62 gastric cancer patients. Fifteen PDX models were successfully established (24.2%, 15/62) and passaged to maintain tumours in immune-compromised mice. Diffuse type and low tumour cell percentage were negatively correlated with success rates (p = 0.005 and p = 0.025, respectively), while reducing ex vivo and overall procedure times were positively correlated with success rates (p = 0.003 and p = 0.01, respectively). The histology and genetic characteristics of PDX tumour models were stable over subsequent passages. Lymphoma transformation occurred in five cases (33.3%, 5/15), and all were in the NOG mouse, with none in the nude mouse. Together, the present study identified Lauren classification, tumour cell percentages, and ex vivo times along with overall procedure times, as key determinants for successful PDX engraftment. Furthermore, genetic and histological characteristics were highly consistent between primary and PDX tumours, which provide realistic paraclinical models, enabling personalised development of treatment options for gastric cancer. PMID:26926953

  8. Patient-derived xenograft (PDX) models in basic and translational breast cancer research.

    PubMed

    Dobrolecki, Lacey E; Airhart, Susie D; Alferez, Denis G; Aparicio, Samuel; Behbod, Fariba; Bentires-Alj, Mohamed; Brisken, Cathrin; Bult, Carol J; Cai, Shirong; Clarke, Robert B; Dowst, Heidi; Ellis, Matthew J; Gonzalez-Suarez, Eva; Iggo, Richard D; Kabos, Peter; Li, Shunqiang; Lindeman, Geoffrey J; Marangoni, Elisabetta; McCoy, Aaron; Meric-Bernstam, Funda; Piwnica-Worms, Helen; Poupon, Marie-France; Reis-Filho, Jorge; Sartorius, Carol A; Scabia, Valentina; Sflomos, George; Tu, Yizheng; Vaillant, François; Visvader, Jane E; Welm, Alana; Wicha, Max S; Lewis, Michael T

    2016-12-01

    Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research.

  9. Antitumor Activity of VB-111, a Novel Antiangiogenic Virotherapeutic, in Thyroid Cancer Xenograft Mouse Models

    PubMed Central

    Reddi, H. V.; Madde, P.; Cohen, Y. C.; Bangio, L.; Breitbart, E.; Harats, D.; Bible, K. C.

    2011-01-01

    VB-111 is an engineered antiangiogenic adenovirus that expresses Fas-c in angiogenic blood vessels and has previously been shown to have significant antitumor activity in vitro and in vivo in Lewis lung carcinoma, melanoma, and glioblastoma models. To evaluate the efficacy of VB-111 in thyroid cancer, we conducted in vivo xenograft nude mouse studies using multiple thyroid cancer-derived cell lines models. VB-111 treatment resulted in 26.6% (P = 0.0596), 34.4% (P = 0.0046), and 37.6% (P = 0.0249) inhibition of tumor growth in follicular, papillary and anaplastic thyroid cancer models, respectively. No toxicity was observed in any model. All tumor types showed a consistent and significant reduction of CD-31 staining (P < 0.05), reflecting a reduction of angiogenic activity in the tumors, consistent with the intended targeting of the virus. A phase 2 clinical trial of VB-111 in patients with advanced differentiated thyroid cancer is ongoing. PMID:22701765

  10. Development of Patient Derived Xenograft Models of Overt Spontaneous Breast Cancer Metastasis: A Cautionary Note

    PubMed Central

    Paez-Ribes, Marta; Man, Shan; Xu, Ping; Kerbel, Robert S.

    2016-01-01

    Several approaches are being evaluated to improve the historically limited value of studying transplanted primary tumors derived by injection of cells from established cell lines for predicting subsequent cancer therapy outcomes in patients and clinical trials. These approaches include use of genetically engineered mouse models (GEMMs) of spontaneous tumors, or patient tumor tissue derived xenografts (PDXs). Almost all such therapy studies utilizing such models involve treatment of established primary tumors. An alternative approach we have developed involves transplanted human tumor xenografts derived from established cell lines to treat mice with overt visceral metastases after primary tumor resection. The rationale is to mimic the more challenging circumstance of treating patients with late stage metastatic disease. These metastatic models entail prior in vivo selection of heritable, phenotypically stable variants with increased aggressiveness for spontaneous metastasis; they were derived by orthotopic injection of tumor cells followed by primary tumor resection and serial selection of distant spontaneous metastases, from which variant cell lines having a more aggressive heritable metastatic phenotype were established. We attempted to adopt this strategy for breast cancer PDXs. We studied five breast cancer PDXs, with the emphasis on two, called HCI-001 and HCI-002, both derived from triple negative breast cancer patients. However significant technical obstacles were encountered. These include the inherent slow growth rates of PDXs, the rarity of overt spontaneous metastases (detected in only 3 of 144 mice), very high rates of tumor regrowths at the primary tumor resection site, the failure of the few human PDX metastases isolated to manifest a more aggressive metastatic phenotype upon re-transplantation into new hosts, and the formation of metastases which were derived from de novo mouse thymomas arising in aged SCID mice that we used for the experiments. We

  11. Pharmacokinetic modeling of an induction regimen for in vivo combined testing of novel drugs against pediatric acute lymphoblastic leukemia xenografts.

    PubMed

    Szymanska, Barbara; Wilczynska-Kalak, Urszula; Kang, Min H; Liem, Natalia L M; Carol, Hernan; Boehm, Ingrid; Groepper, Daniel; Reynolds, C Patrick; Stewart, Clinton F; Lock, Richard B

    2012-01-01

    Current regimens for induction therapy of pediatric acute lymphoblastic leukemia (ALL), or for re-induction post relapse, use a combination of vincristine (VCR), a glucocorticoid, and L-asparaginase (ASP) with or without an anthracycline. With cure rates now approximately 80%, robust pre-clinical models are necessary to prioritize active new drugs for clinical trials in relapsed/refractory patients, and the ability of these models to predict synergy/antagonism with established therapy is an essential attribute. In this study, we report optimization of an induction-type regimen by combining VCR, dexamethasone (DEX) and ASP (VXL) against ALL xenograft models established from patient biopsies in immune-deficient mice. We demonstrate that the VXL combination was synergistic in vitro against leukemia cell lines as well as in vivo against ALL xenografts. In vivo, VXL treatment caused delays in progression of individual xenografts ranging from 22 to >146 days. The median progression delay of xenografts derived from long-term surviving patients was 2-fold greater than that of xenografts derived from patients who died of their disease. Pharmacokinetic analysis revealed that systemic DEX exposure in mice increased 2-fold when administered in combination with VCR and ASP, consistent with clinical findings, which may contribute to the observed synergy between the 3 drugs. Finally, as proof-of-principle we tested the in vivo efficacy of combining VXL with either the Bcl-2/Bcl-xL/Bcl-w inhibitor, ABT-737, or arsenic trioxide to provide evidence of a robust in vivo platform to prioritize new drugs for clinical trials in children with relapsed/refractory ALL.

  12. Histone modifications patterns in tissues and tumours from acute promyelocytic leukemia xenograft model in response to combined epigenetic therapy.

    PubMed

    Valiulienė, Giedrė; Treigytė, Gražina; Savickienė, Jūratė; Matuzevičius, Dalius; Alksnė, Milda; Jarašienė-Burinskaja, Rasa; Bukelskienė, Virginija; Navakauskas, Dalius; Navakauskienė, Rūta

    2016-04-01

    Xenograft models are suitable for in vivo study of leukemia's pathogenesis and the preclinical development of anti-leukemia agents but understanding of epigenetic regulatory mechanisms linking to adult cell functions in pathological conditions during different in vivo treatments is yet unknown. In this study, for the first time epigenetic chromatin modifications were characterized in tissues and tumours from murine xenograft model generated using the human acute promyelocytic leukemia (APL) NB4 cells engrafted in immunodeficient NOG mice. Xenografts were subjected to combined epigenetic treatment by histone deacetylase inhibitor Belinostat, histone methyltransferase inhibitor 3-DZNeaplanocin A and all-trans-retinoic acid based on in vitro model, where such combination inhibited NB4 cell growth and enhanced retinoic acid-induced differentiation to granulocytes. Xenotransplantation was assessed by peripheral blood cells counts, the analysis of cell surface markers (CD15, CD33, CD45) and the expression of certain genes (PML-RAR alpha, CSF3, G-CSFR, WT1). The combined treatment prolonged APL xenograft mice survival and prevented tumour formation. The analysis of the expression of histone marks such as acetylation of H4, trimethylation of H3K4, H3K9 and H3K27 in APL xenograft mice tumours and tissues demonstrated tissue-specific changes in the level of histone modifications and the APL prognostic mark, WT1 protein. In summary, the effects of epigenetic agents used in this study were positive for leukemia prevention and linked to a modulation of the chromatin epigenetic environment in adult tissues of malignant organism.

  13. Radiation Dose Uncertainty and Correction for a Mouse Orthotopic and Xenograft Irradiation Model

    PubMed Central

    Gan, Gregory N.; Altunbas, Cem; Morton, John J.; Eagles, Justin; Backus, Jennifer; Dzingle, Wayne; Raben, David; Jimeno, Antonio

    2016-01-01

    Purpose In animal irradiation models, reported dose can vary significantly from the actual doses delivered. We describe an effective method for in vivo dose verification. Materials and Methods Mice bearing commercially-available cell line or patient-derived tumor cell orthotopic or flank xenografts were irradiated using a 160 kVp, 25 mA X-ray source. Entrance dose was evaluated using optically-stimulated luminescence dosimeters (OSLD) and exit dose was assessed using radiochromic film dosimetry. Results Tumor position within the irradiation field was validated using external fiducial markers. The average entrance dose in orthotopic tumors from 10 OSLDs placed on 2 different animal irradiation days was 514±37 cGy (range: 437–545). Exit dose measurements taken from 7 radiochromic films on two separate days were 341±21 cGy (a 34% attenuation). Flank tumor irradiation doses measured by OSLD were 368±9 cGy compared to exit doses of 330 cGy measured by radiochromic film. Conclusion Variations related to the irradiation model can lead to significant under or over- dosing in vivo which can affect tumor control and/or biologic endpoints that are dose dependent. We recommend that dose measurements be determined empirically based on the mouse model and irradiator used and dose compensation adjustments performed to ensure correct and appropriate doses. PMID:26689828

  14. Patient-Derived Xenograft Models to Improve Targeted Therapy in Epithelial Ovarian Cancer Treatment

    PubMed Central

    Scott, Clare L.; Becker, Marc A.; Haluska, Paul; Samimi, Goli

    2013-01-01

    Despite increasing evidence that precision therapy targeted to the molecular drivers of a cancer has the potential to improve clinical outcomes, high-grade epithelial ovarian cancer (OC) patients are currently treated without consideration of molecular phenotype, and predictive biomarkers that could better inform treatment remain unknown. Delivery of precision therapy requires improved integration of laboratory-based models and cutting-edge clinical research, with pre-clinical models predicting patient subsets that will benefit from a particular targeted therapeutic. Patient-derived xenografts (PDXs) are renewable tumor models engrafted in mice, generated from fresh human tumors without prior in vitro exposure. PDX models allow an invaluable assessment of tumor evolution and adaptive response to therapy. PDX models have been applied to pre-clinical drug testing and biomarker identification in a number of cancers including ovarian, pancreatic, breast, and prostate cancers. These models have been shown to be biologically stable and accurately reflect the patient tumor with regards to histopathology, gene expression, genetic mutations, and therapeutic response. However, pre-clinical analyses of molecularly annotated PDX models derived from high-grade serous ovarian cancer (HG-SOC) remain limited. In vivo response to conventional and/or targeted therapeutics has only been described for very small numbers of individual HG-SOC PDX in conjunction with sparse molecular annotation and patient outcome data. Recently, two consecutive panels of epithelial OC PDX correlate in vivo platinum response with molecular aberrations and source patient clinical outcomes. These studies underpin the value of PDX models to better direct chemotherapy and predict response to targeted therapy. Tumor heterogeneity, before and following treatment, as well as the importance of multiple molecular aberrations per individual tumor underscore some of the important issues addressed in PDX models

  15. Human Xenografts Are Not Rejected in a Naturally Occurring Immunodeficient Porcine Line: A Human Tumor Model in Pigs

    PubMed Central

    Basel, Matthew T.; Balivada, Sivasai; Beck, Amanda P.; Kerrigan, Maureen A.; Pyle, Marla M.; Dekkers, Jack C.M.; Wyatt, Carol R.; Rowland, Robert R.R.; Anderson, David E.; Bossmann, Stefan H.

    2012-01-01

    Abstract Animal models for cancer therapy are invaluable for preclinical testing of potential cancer treatments; however, therapies tested in such models often fail to translate into clinical settings. Therefore, a better preclinical model for cancer treatment testing is needed. Here we demonstrate that an immunodeficient line of pigs can host and support the growth of xenografted human tumors and has the potential to be an effective animal model for cancer therapy. Wild-type and immunodeficient pigs were injected subcutaneously in the left ear with human melanoma cells (A375SM cells) and in the right ear with human pancreatic carcinoma cells (PANC-1). All immunodeficient pigs developed tumors that were verified by histology and immunohistochemistry. Nonaffected littermates did not develop tumors. Immunodeficient pigs, which do not reject xenografted human tumors, have the potential to become an extremely useful animal model for cancer therapy because of their similarity in size, anatomy, and physiology to humans. PMID:23514746

  16. In vitro cytotoxicity of gold nanorods in A549 cells.

    PubMed

    Tang, Ying; Shen, Yafeng; Huang, Libin; Lv, Gaojian; Lei, Changhai; Fan, Xiaoyan; Lin, Fangxing; Zhang, Yuxia; Wu, Lihui; Yang, Yongji

    2015-03-01

    Gold nanoparticles, which have unique physicochemical characteristics, are being used for an increasingly wide range of applications in biomedical research. In this study, gold nanorods (width of 25 nm, length of 52 nm) were found to be internalized by A549 cells and were primarily localized in the lysosomes and membranous vesicles. The integrity of the membranes of A549 cells exposed to gold nanorods for 4h was damaged, as indicated by laser scanning confocal microscopy (LSCM). Increased lactate dehydrogenase (LDH) leakage and decreased cell viability further indicated the concentration-dependent cytotoxicity of the gold nanorods to the A549 cells. Reactive oxygen species (ROS) production was induced in the A549 cells by the gold nanorods, and this effect was positively correlated with the concentration of the gold nanorods. The results of this study indicated that exposure to gold nanorods caused dose-dependent cytotoxicity in A549 cells and that oxidative stress may be the main factor causing cytotoxicity.

  17. Immunological characterization of human vaginal xenografts in immunocompromised mice: development of a small animal model for the study of human immunodeficiency virus-1 infection.

    PubMed

    Kish, T M; Budgeon, L R; Welsh, P A; Howett, M K

    2001-12-01

    A small animal model for the in vivo study of human immunodeficiency virus-1 and other fastidious infectious agents in human host target tissues is critical for the advancement of therapeutic and preventative strategies. Our laboratory has developed a human vaginal xenograft model that histologically recapitulates features of the human vaginal epithelial barrier. Vaginal xenografts were surgically implanted into C.B.-Igh-1(b)/IcrTac-Prkdc(scid) (SCID) and NOD/LtSz-scid/scid (NOD/SCID) mice, with and without human peripheral blood mononuclear cell reconstitution. Immunohistochemical staining of vaginal xenografts demonstrated that in the SCID strain healed vaginal xenografts did not retain intrinsic human immune cells at baseline levels, whereas the NOD/SCID strain supported retention of intrinsic human immune cell populations within the xenografts for at least 2 months after engraftment. In peripheral blood mononuclear cell-reconstituted NOD/SCID mice with vaginal xenografts, flow cytometric analyses detected human immune cell populations in the peripheral blood and immunohistochemical methods detected infiltration of human CD45+ cells in the mouse spleens and vaginal xenografts for at least 2 months after reconstitution. This optimized NOD/SCID human vaginal xenograft model may provide a unique small animal in vivo system for the study of human immunodeficiency virus-1 transmission and infection.

  18. Antitumor activity of celastrol nanoparticles in a xenograft retinoblastoma tumor model

    PubMed Central

    Li, Zhanrong; Wu, Xianghua; Li, Jingguo; Yao, Lin; Sun, Limei; Shi, Yingying; Zhang, Wenxin; Lin, Jianxian; Liang, Dan; Li, Yongping

    2012-01-01

    Background Celastrol, a Chinese herbal medicine, has shown antitumor activity against various tumor cell lines. However, the effect of celastrol on retinoblastoma has not yet been analyzed. Additionally, the poor water solubility of celastrol restricts further therapeutic applications. The goal of this study was to evaluate the effect of celastrol nanoparticles (CNPs) on retinoblastoma and to investigate the potential mechanisms involved. Methods Celastrol-loaded poly(ethylene glycol)-block-poly(ɛ-caprolactone) nanopolymeric micelles were developed to improve the hydrophilicity of celastrol. The 2-(2-methoxy-4- nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulf-ophenyl)-2H tetrazolium monosodium salt (WST-8) assay was used to determine the inhibitory effect of CNPs on SO-Rb 50 cell proliferation in vitro. Immunofluorescence was used to evaluate the apoptotic effect of CNPs on nuclear morphology, and flow cytometry was used to quantify cellular apoptosis. The expression of Bcl-2, Bax, NF-κB p65, and phospo-NF-κB p65 proteins was assessed by Western blotting. A human retinoblastoma xenograft model was used to evaluate the inhibitory effects of CNPs on retinoblastoma in NOD-SCID mice. Hematoxylin and eosin staining was used to assess the apoptotic effects of CNPs on retinoblastoma. Results CNPs inhibit the proliferation of SO-Rb 50 cells in a dose- and time-dependent manner with an IC50 of 17.733 μg/mL (celastrol-loading content: 7.36%) after exposure to CNPs for 48 hours. CNPs induce apoptosis in SO-Rb 50 cells in a dose-dependent manner. The expression of Bcl-2, NF-κB p65, and phospo-NF-κB p65 proteins decreased after exposure to CNPs 54.4 μg/mL for 48 hours. Additionally, the Bax/Bcl-2 ratio increased, whereas the expression of Bax itself was not significantly altered. CNPs inhibit the growth of retinoblastoma and induce apoptosis in retinoblastoma cells in mice. Conclusion CNPs inhibit the growth of retinoblastoma in mouse xenograft model by inducing apoptosis in

  19. Antitumor activity of celastrol nanoparticles in a xenograft retinoblastoma tumor model.

    PubMed

    Li, Zhanrong; Wu, Xianghua; Li, Jingguo; Yao, Lin; Sun, Limei; Shi, Yingying; Zhang, Wenxin; Lin, Jianxian; Liang, Dan; Li, Yongping

    2012-01-01

    Celastrol, a Chinese herbal medicine, has shown antitumor activity against various tumor cell lines. However, the effect of celastrol on retinoblastoma has not yet been analyzed. Additionally, the poor water solubility of celastrol restricts further therapeutic applications. The goal of this study was to evaluate the effect of celastrol nanoparticles (CNPs) on retinoblastoma and to investigate the potential mechanisms involved. Celastrol-loaded poly(ethylene glycol)-block-poly(ɛ-caprolactone) nanopolymeric micelles were developed to improve the hydrophilicity of celastrol. The 2-(2-methoxy-4- nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulf-ophenyl)-2H tetrazolium monosodium salt (WST-8) assay was used to determine the inhibitory effect of CNPs on SO-Rb 50 cell proliferation in vitro. Immunofluorescence was used to evaluate the apoptotic effect of CNPs on nuclear morphology, and flow cytometry was used to quantify cellular apoptosis. The expression of Bcl-2, Bax, NF-κB p65, and phospo-NF-κB p65 proteins was assessed by Western blotting. A human retinoblastoma xenograft model was used to evaluate the inhibitory effects of CNPs on retinoblastoma in NOD-SCID mice. Hematoxylin and eosin staining was used to assess the apoptotic effects of CNPs on retinoblastoma. CNPs inhibit the proliferation of SO-Rb 50 cells in a dose- and time-dependent manner with an IC(50) of 17.733 μg/mL (celastrol-loading content: 7.36%) after exposure to CNPs for 48 hours. CNPs induce apoptosis in SO-Rb 50 cells in a dose-dependent manner. The expression of Bcl-2, NF-κB p65, and phospo-NF-κB p65 proteins decreased after exposure to CNPs 54.4 μg/mL for 48 hours. Additionally, the Bax/Bcl-2 ratio increased, whereas the expression of Bax itself was not significantly altered. CNPs inhibit the growth of retinoblastoma and induce apoptosis in retinoblastoma cells in mice. CNPs inhibit the growth of retinoblastoma in mouse xenograft model by inducing apoptosis in SO-Rb 50 cells, which may be

  20. Mouse xenograft modeling of human adult acute lymphoblastic leukemia provides mechanistic insights into adult LIC biology

    PubMed Central

    Dey, Aditi; Castleton, Anna Z.; Schwab, Claire; Samuel, Edward; Sivakumaran, Janani; Beaton, Brendan; Zareian, Nahid; Zhang, Christie Yu; Rai, Lena; Enver, Tariq; Moorman, Anthony V.; Fielding, Adele K.

    2014-01-01

    The distinct nature of acute lymphoblastic leukemia (ALL) in adults, evidenced by inferior treatment outcome and different genetic landscape, mandates specific studies of disease-initiating mechanisms. In this study, we used NOD/LtSz-scid IL2Rγ nullc (NSG) mouse xenotransplantation approaches to elucidate leukemia-initiating cell (LIC) biology in primary adult precursor B (pre-B) ALL to optimize disease modeling. In contrast with xenografting studies of pediatric ALL, we found that modification of the NSG host environment using preconditioning total body irradiation (TBI) was indispensable for efficient engraftment of adult non-t(4;11) pre-B ALL, whereas t(4;11) pre-B ALL was successfully reconstituted without this adaptation. Furthermore, TBI-based xenotransplantation of non-t(4;11) pre-B ALL enabled detection of a high frequency of LICs (<1:6900) and permitted frank leukemic engraftment from a remission sample containing drug-resistant minimal residual disease. Investigation of TBI-sensitive stromal-derived factor-1/chemokine receptor type 4 signaling revealed greater functional dependence of non-t(4;11) pre-B ALL on this niche-based interaction, providing a possible basis for the differential engraftment behavior. Thus, our studies establish the optimal conditions for experimental modeling of human adult pre-B ALL and demonstrate the critical protumorogenic role of microenvironment-derived SDF-1 in regulating adult pre-B LIC activity that may present a therapeutic opportunity. PMID:24825861

  1. Tryptophan PET Imaging of the Kynurenine Pathway in Patient-Derived Xenograft Models of Glioblastoma

    PubMed Central

    Guastella, Anthony R.; Michelhaugh, Sharon K.; Klinger, Neil V.; Kupsky, William J.; Polin, Lisa A.; Muzik, Otto; Juhász, Csaba

    2016-01-01

    Increasing evidence demonstrates the immunosuppressive kynurenine pathway’s (KP) role in the pathophysiology of human gliomas. To study the KP in vivo, we used the noninvasive molecular imaging tracer α-[11C]-methyl-l-tryptophan (AMT). The AMT-positron emission tomography (PET) has shown high uptake in high-grade gliomas and predicted survival in patients with recurrent glioblastoma (GBM). We generated patient-derived xenograft (PDX) models from dissociated cells, or tumor fragments, from 5 patients with GBM. Mice bearing subcutaneous tumors were imaged with AMT-PET, and tumors were analyzed to detect the KP enzymes indoleamine 2,3-dioxygenase (IDO) 1, IDO2, tryptophan 2,3-dioxygenase, kynureninase, and kynurenine 3-monooxygenase. Overall, PET imaging showed robust tumoral AMT uptake in PDX mice with prolonged tracer accumulation over 60 minutes, consistent with AMT trapping seen in humans. Immunostained tumor tissues demonstrated positive detection of multiple KP enzymes. Furthermore, intracranial implantation of GBM cells was performed with imaging at both 9 and 14 days postimplant, with a marked increase in AMT uptake at 14 days and a corresponding high level of tissue immunostaining for KP enzymes. These results indicate that our PDX mouse models recapitulate human GBM, including aberrant tryptophan metabolism, and offer an in vivo system for development of targeted therapeutics for patients with GBM. PMID:27151136

  2. Safety and efficacy of quadrapeutics versus chemoradiation in head and neck carcinoma xenograft model

    PubMed Central

    Lukianova-Hleb, Ekaterina Y; Kim, Yoo-Shin; Aryasomayajula, Bhawani; Boulikas, Teni; Phan, Jack; Hung, Mien-Chie; Torchilin, Vladimir P; O’Neill, Brian E; Lapotko, Dmitri O

    2015-01-01

    Chemoradiation is the strongest anti-tumor therapy but in resistant unresectable cancers it often lacks safety and efficacy. We compared our recently developed cell-level combination approach, quadrapeutics, to chemoradiation therapy to establish pre-clinical data for its biodistribution, safety and efficacy in head and neck squamous cell carcinoma (HNSCC), as a clinically challenging aggressive and resistant cancer. In vitro and in vivo models of four carcinomas were treated with standard chemoradiation and quadrapeutics using identical drug and radiation doses. We applied liposomal cisplatin or doxorubicin, colloidal gold, near-infrared laser pulses and radiation, all at low safe doses. The final evaluation used a xenograft model of HNSCC. Quadrapeutics enhanced standard chemoradiation in vitro by reducing head and neck cancer cell proliferation by 1000-fold, inhibiting tumor growth in vivo by 34-fold and improving animal survival by 5-fold, and reducing the side effects to a negligible level. In quadrapeutics, we observed an “inversion” of the drug efficacy of two standard drugs: doxorubicin, a low efficacy drug for the cancers studied, was two times more efficient than cisplatin, the first choice drug in clinic for HNSCC. The radical therapeutic gain of quadrapeutics resulted from the intracellular synergy of the four components employed which we administered in a specific sequence, while the reduction in the toxicity was due to the low doses of all four components. The biodistribution, safety and efficacy data for quadrapeutics in HNSCC ensure its high translational potential and justify the possibility of clinical trials. PMID:26885444

  3. Physeal Bystander Effects in Rhabdomyosarcoma Radiotherapy: Experiments in a New Xenograft Model

    PubMed Central

    Horton, Jason A.; Strauss, Judith A.; Allen, Matthew J.; Damron, Timothy A.

    2011-01-01

    Radiotherapy used in the treatment of pediatric musculoskeletal sarcomas may result in crippling defects of skeletal growth. Several radioprotective strategies have shown potential for preserving function of the irradiated epiphysis but have not been evaluated in a tumor-bearing animal model. We developed two bioluminescent human rhabdomyosarcoma cell lines that were used to establish xenograft tumors in skeletally immature mice. Bioluminescence imaging and radiography allowed serial evaluation of tumor growth and tibial elongation following localized radiotherapy. High-dose (10 Gy) radiotherapy significantly reduced tumor growth velocity and prolonged the median survival of tumor-bearing mice but also resulted in a significant 3.3% shortening of the irradiated limb. Exposure to a lower, 2 Gy dose resulted in 4.1% decrease in limb length but did not extend survival. This new model provides a clinically relevant means to test the efficacy and safety of novel radioprotectant and radiorecovery strategies for use in this context. PMID:21559211

  4. A Patient-Derived Xenograft Model of Parameningeal Embryonal Rhabdomyosarcoma for Preclinical Studies

    PubMed Central

    Hooper, Jody E.; Cantor, Emma L.; Ehlen, Macgregor S.; Banerjee, Avirup; Malempati, Suman; Stenzel, Peter; Woltjer, Randy L.; Gandour-Edwards, Regina; Goodwin, Neal C.; Yang, Yan; Kaur, Pali; Bult, Carol J.; Airhart, Susan D.; Keller, Charles

    2015-01-01

    Embryonal rhabdomyosarcoma (eRMS) is one of the most common soft tissue sarcomas in children and adolescents. Parameningeal eRMS is a variant that is often more difficult to treat than eRMS occurring at other sites. A 14-year-old female with persistent headaches and rapid weight loss was diagnosed with parameningeal eRMS. She progressed and died despite chemotherapy with vincristine, actinomycin-D, and cyclophosphamide plus 50.4 Gy radiation therapy to the primary tumor site. Tumor specimens were acquired by rapid autopsy and tumor tissue was transplanted into immunodeficient mice to create a patient-derived xenograft (PDX) animal model. As autopsy specimens had an ALK R1181C mutation, PDX tumor bearing animals were treated with the pan-kinase inhibitor lestaurtinib but demonstrated no decrease in tumor growth, suggesting that single agent kinase inhibitor therapy may be insufficient in similar cases. This unique parameningeal eRMS PDX model is publicly available for preclinical study. PMID:26696773

  5. A Patient-Derived Xenograft Model of Parameningeal Embryonal Rhabdomyosarcoma for Preclinical Studies.

    PubMed

    Hooper, Jody E; Cantor, Emma L; Ehlen, Macgregor S; Banerjee, Avirup; Malempati, Suman; Stenzel, Peter; Woltjer, Randy L; Gandour-Edwards, Regina; Goodwin, Neal C; Yang, Yan; Kaur, Pali; Bult, Carol J; Airhart, Susan D; Keller, Charles

    2015-01-01

    Embryonal rhabdomyosarcoma (eRMS) is one of the most common soft tissue sarcomas in children and adolescents. Parameningeal eRMS is a variant that is often more difficult to treat than eRMS occurring at other sites. A 14-year-old female with persistent headaches and rapid weight loss was diagnosed with parameningeal eRMS. She progressed and died despite chemotherapy with vincristine, actinomycin-D, and cyclophosphamide plus 50.4 Gy radiation therapy to the primary tumor site. Tumor specimens were acquired by rapid autopsy and tumor tissue was transplanted into immunodeficient mice to create a patient-derived xenograft (PDX) animal model. As autopsy specimens had an ALK R1181C mutation, PDX tumor bearing animals were treated with the pan-kinase inhibitor lestaurtinib but demonstrated no decrease in tumor growth, suggesting that single agent kinase inhibitor therapy may be insufficient in similar cases. This unique parameningeal eRMS PDX model is publicly available for preclinical study.

  6. Imaging Tumor Variation in Response to Photodynamic Therapy in Pancreatic Cancer Xenograft Models

    SciTech Connect

    Samkoe, Kimberley S.; Chen, Alina; Rizvi, Imran; O'Hara, Julia A.; Hoopes, P. Jack; Pereira, Stephen P.; Hasan, Tayyaba; Pogue, Brian W.

    2010-01-15

    Purpose: A treatment monitoring study investigated the differential effects of orthotopic pancreatic cancer models in response to interstitial photodynamic therapy (PDT), and the validity of using magnetic resonance imaging as a surrogate measure of response was assessed. Methods and Materials: Different orthotopic pancreatic cancer xenograft models (AsPC-1 and Panc-1) were used to represent the range of pathophysiology observed in human beings. Identical dose escalation studies (10, 20, and 40J/cm) using interstitial verteporfin PDT were performed, and magnetic resonance imaging with T2-weighted and T1-weighted contrast were used to monitor the total tumor volume and the vascular perfusion volume, respectively. Results: There was a significant amount of necrosis in the slower-growing Panc-1 tumor using high light dose, although complete necrosis was not observed. Lower doses were required for the same level of tumor kill in the faster-growing AsPC-1 cell line. Conclusions: The tumor growth rate and vascular pattern of the tumor affect the optimal PDT treatment regimen, with faster-growing tumors being relatively easier to treat. This highlights the fact that therapy in human beings shows a heterogeneous range of outcomes, and suggests a need for careful individualized treatment outcomes assessment in clinical work.

  7. Characterization of novel genomic alterations and therapeutic approaches using acute megakaryoblastic leukemia xenograft models.

    PubMed

    Thiollier, Clarisse; Lopez, Cécile K; Gerby, Bastien; Ignacimouttou, Cathy; Poglio, Sandrine; Duffourd, Yannis; Guégan, Justine; Rivera-Munoz, Paola; Bluteau, Olivier; Mabialah, Vinciane; Diop, M'boyba; Wen, Qiang; Petit, Arnaud; Bauchet, Anne-Laure; Reinhardt, Dirk; Bornhauser, Beat; Gautheret, Daniel; Lecluse, Yann; Landman-Parker, Judith; Radford, Isabelle; Vainchenker, William; Dastugue, Nicole; de Botton, Stéphane; Dessen, Philippe; Bourquin, Jean-Pierre; Crispino, John D; Ballerini, Paola; Bernard, Olivier A; Pflumio, Françoise; Mercher, Thomas

    2012-10-22

    Acute megakaryoblastic leukemia (AMKL) is a heterogeneous disease generally associated with poor prognosis. Gene expression profiles indicate the existence of distinct molecular subgroups, and several genetic alterations have been characterized in the past years, including the t(1;22)(p13;q13) and the trisomy 21 associated with GATA1 mutations. However, the majority of patients do not present with known mutations, and the limited access to primary patient leukemic cells impedes the efficient development of novel therapeutic strategies. In this study, using a xenotransplantation approach, we have modeled human pediatric AMKL in immunodeficient mice. Analysis of high-throughput RNA sequencing identified recurrent fusion genes defining new molecular subgroups. One subgroup of patients presented with MLL or NUP98 fusion genes leading to up-regulation of the HOX A cluster genes. A novel CBFA2T3-GLIS2 fusion gene resulting from a cryptic inversion of chromosome 16 was identified in another subgroup of 31% of non-Down syndrome AMKL and strongly associated with a gene expression signature of Hedgehog pathway activation. These molecular data provide useful markers for the diagnosis and follow up of patients. Finally, we show that AMKL xenograft models constitute a relevant in vivo preclinical screening platform to validate the efficacy of novel therapies such as Aurora A kinase inhibitors.

  8. Characterization of novel genomic alterations and therapeutic approaches using acute megakaryoblastic leukemia xenograft models

    PubMed Central

    Thiollier, Clarisse; Lopez, Cécile K.; Gerby, Bastien; Ignacimouttou, Cathy; Poglio, Sandrine; Duffourd, Yannis; Guégan, Justine; Rivera-Munoz, Paola; Bluteau, Olivier; Mabialah, Vinciane; Diop, M’Boyba; Wen, Qiang; Petit, Arnaud; Bauchet, Anne-Laure; Reinhardt, Dirk; Bornhauser, Beat; Gautheret, Daniel; Lecluse, Yann; Landman-Parker, Judith; Radford, Isabelle; Vainchenker, William; Dastugue, Nicole; de Botton, Stéphane; Dessen, Philippe; Bourquin, Jean-Pierre; Crispino, John D.; Ballerini, Paola; Bernard, Olivier A.; Pflumio, Françoise

    2012-01-01

    Acute megakaryoblastic leukemia (AMKL) is a heterogeneous disease generally associated with poor prognosis. Gene expression profiles indicate the existence of distinct molecular subgroups, and several genetic alterations have been characterized in the past years, including the t(1;22)(p13;q13) and the trisomy 21 associated with GATA1 mutations. However, the majority of patients do not present with known mutations, and the limited access to primary patient leukemic cells impedes the efficient development of novel therapeutic strategies. In this study, using a xenotransplantation approach, we have modeled human pediatric AMKL in immunodeficient mice. Analysis of high-throughput RNA sequencing identified recurrent fusion genes defining new molecular subgroups. One subgroup of patients presented with MLL or NUP98 fusion genes leading to up-regulation of the HOX A cluster genes. A novel CBFA2T3-GLIS2 fusion gene resulting from a cryptic inversion of chromosome 16 was identified in another subgroup of 31% of non–Down syndrome AMKL and strongly associated with a gene expression signature of Hedgehog pathway activation. These molecular data provide useful markers for the diagnosis and follow up of patients. Finally, we show that AMKL xenograft models constitute a relevant in vivo preclinical screening platform to validate the efficacy of novel therapies such as Aurora A kinase inhibitors. PMID:23045605

  9. Amelioration of psoriasis by anti-TNF-alpha RNAi in the xenograft transplantation model.

    PubMed

    Jakobsen, Maria; Stenderup, Karin; Rosada, Cecilia; Moldt, Brian; Kamp, Søren; Dam, Tomas N; Jensen, Thomas G; Mikkelsen, Jacob Giehm

    2009-10-01

    Tumor necrosis factor-alpha (TNF-alpha) is upregulated in psoriatic skin and represents a prominent target in psoriasis treatment. The level of TNF-alpha-encoding mRNA, however, is not increased in psoriatic skin, and it remains unclear whether intervention strategies based on RNA interference (RNAi) are therapeutically relevant. To test this hypothesis the present study describes first the in vitro functional screening of a panel of short hairpin RNAs (shRNAs) targeting human TNF-alpha mRNA and, next, the transfer of the most potent TNF-alpha shRNA variant, as assessed in vitro, to human skin in the psoriasis xenograft transplantation model by the use of lentiviral vectors. TNF-alpha shRNA treatment leads to amelioration of the psoriasis phentotype in the model, as documented by reduced epidermal thickness, normalization of the skin morphology, and reduced levels of TNF-alpha mRNA as detected in skin biopsies 3 weeks after a single vector injection of lentiviral vectors encoding TNF-alpha shRNA. Our data show efficient lentiviral gene delivery to psoriatic skin and therapeutic applicability of anti-TNF-alpha shRNAs in human skin. These findings validate TNF-alpha mRNA as a target molecule for a potential persistent RNA-based treatment of psoriasis and establish the use of small RNA effectors as a novel platform for target validation in psoriasis and other skin disorders.

  10. Comprehensive analysis of leukocytes, vascularization and matrix metalloproteinases in human menstrual xenograft model.

    PubMed

    Guo, Yong; He, Bin; Xu, Xiangbo; Wang, Jiedong

    2011-02-17

    In our previous study, menstrual-like changes in mouse were provoked through the pharmacologic withdrawal of progesterone with mifepristone following induction of decidualization. However, mouse is not a natural menstruation animal, and the menstruation model using external stimuli may not truly reflect the occurrence and development of the human menstrual process. Therefore, we established a model of menstruation based on human endometrial xenotransplantation. In this model, human endometrial tissues were transplanted subcutaneously into SCID mice that were ovarectomized and supplemented with estrogen and progestogen by silastic implants with a scheme imitating the endocrinological milieu of human menstrual cycle. Morphology, hormone levels, and expression of vimentin and cytokeratin markers were evaluated to confirm the menstrual-like changes in this model. With 28 days of hormone treatment, transplanted human endometrium survived and underwent proliferation, differentiation and disintegration, similar to human endometrium in vivo. Human CD45+ cells showed a peak of increase 28 days post-transplantation. Three days after progesterone withdrawal, mouse CD45+ cells increased rapidly in number and were significantly greater than human CD45+ cell counts. Mouse CD31+ blood vascular-like structures were detected in both transplanted and host tissues. After progesterone withdrawal, the expression levels of matrix metalloproteinases (MMP) 1, 2, and 9 were increased. In summary, we successfully established a human endometrial xenotransplantation model in SCID mice, based on the results of menstrual-like changes in which MMP-1, 2 and 9 are involved. We showed that leukocytes are originated from in situ proliferation in human xenografts and involved in the occurrence of menstruation. This model will help to further understand the occurrence, growth, and differentiation of the endometrium and the underlying mechanisms of menstruation.

  11. Establishment, Maintenance and in vitro and in vivo Applications of Primary Human Glioblastoma Multiforme (GBM) Xenograft Models for Translational Biology Studies and Drug Discovery

    PubMed Central

    Carlson, Brett L.; Pokorny, Jenny L.; Schroeder, Mark A.; Sarkaria, Jann N.

    2011-01-01

    Development of clinically relevant tumor model systems for glioblastoma multiforme (GBM) is important for advancement of basic and translational biology. One model that has gained wide acceptance in the neuro-oncology community is the primary xenograft model. This model entails the engraftment of patient tumor specimens into the flank of nude mice and subsequent serial passage of these tumors in the flank of mice. These tumors then can be used to establish short-term explant cultures or intracranial xenografts. The focus of this manuscript is to review the procedures associated with the establishment, maintenance and utilization of a primary GBM xenograft panel. PMID:21743824

  12. Fine-tuning patient-derived xenograft models for precision medicine approaches in leukemia.

    PubMed

    Francis, Olivia L; Milford, Terry-Ann M; Beldiman, Cornelia; Payne, Kimberly J

    2016-03-01

    Many leukemias are characterized by well-known mutations that drive oncogenesis. Mice engineered with these mutations provide a foundation for understanding leukemogenesis and identifying therapies. However, data from whole genome studies provide evidence that malignancies are characterized by multiple genetic alterations that vary between patients, as well as inherited genetic variation that can also contribute to oncogenesis. Improved outcomes will require precision medicine approaches-targeted therapies tailored to malignancies in each patient. Preclinical models that reflect the range of mutations and the genetic background present in patient populations are required to develop and test the combinations of therapies that will be used to provide precision medicine therapeutic strategies. Patient-derived xenografts (PDX) produced by transplanting leukemia cells from patients into immune deficient mice provide preclinical models where disease mechanisms and therapeutic efficacy can be studied in vivo in context of the genetic variability present in patient tumors. PDX models are possible because many elements in the bone marrow microenvironment show cross-species activity between mice and humans. However, several cytokines likely to impact leukemia cells are species-specific with limited activity on transplanted human leukemia cells. In this review we discuss the importance of PDX models for developing precision medicine approaches to leukemia treatment. We illustrate how PDX models can be optimized to overcome a lack of cross-species cytokine activity by reviewing a recent strategy developed for use with a high-risk form of B-cell acute lymphoblastic leukemia (B-ALL) that is characterized by overexpression of CRLF2, a receptor component for the cytokine, TSLP.

  13. Endoglin: a novel target for therapeutic intervention in acute leukemias revealed in xenograft mouse models.

    PubMed

    Dourado, Keina M C; Baik, June; Oliveira, Vanessa K P; Beltrame, Miriam; Yamamoto, Ami; Theuer, Charles P; Figueiredo, Camila A V; Verneris, Michael R; Perlingeiro, Rita C R

    2017-05-04

    Endoglin (CD105), a receptor of the transforming growth factor-β superfamily, has been reported to identify functional long-term repopulating hematopoietic stem cells, and has been detected in certain subtypes of acute leukemias. Whether this receptor plays a functional role in leukemogenesis remains unknown. We identified endoglin expression on the majority of blasts from patients with acute myeloid leukemia (AML) and acute B-lymphoblastic leukemia (B-ALL). Using a xenograft model, we find that CD105(+) blasts are endowed with superior leukemogenic activity compared with the CD105(-) population. We test the effect of targeting this receptor using the monoclonal antibody TRC105, and find that in AML, TRC105 prevented the engraftment of primary AML blasts and inhibited leukemia progression following disease establishment, but in B-ALL, TRC105 alone was ineffective due to the shedding of soluble CD105. However, in both B-ALL and AML, TRC105 synergized with reduced intensity myeloablation to inhibit leukemogenesis, indicating that TRC105 may represent a novel therapeutic option for B-ALL and AML. © 2017 by The American Society of Hematology.

  14. Novel LIMK2 Inhibitor Blocks Panc-1 Tumor Growth in a mouse xenograft model

    PubMed Central

    Rak, Roni; Haklai, Roni; Elad-Tzfadia, Galit; Wolfson, Haim J.; Carmeli, Shmuel; Kloog, Yoel

    2014-01-01

    LIM kinases (LIMKs) are important cell cytoskeleton regulators that play a prominent role in cancer manifestation and neuronal diseases. The LIMK family consists of two homologues, LIMK1 and LIMK2, which differ from one another in expression profile, intercellular localization, and function. The main substrate of LIMK is cofilin, a member of the actin-depolymerizing factor (ADF) protein family. When phosphorylated by LIMK, cofilin is inactive. LIMKs play a contributory role in several neurodevelopmental disorders and in cancer growth and metastasis. We recently reported the development and validation of a novel LIMK inhibitor, referred to here as T56-LIMKi, using a combination of computational methods and classical biochemistry techniques. Here we report that T56-LIMKi inhibits LIMK2 with high specificity, and shows little or no cross-reactivity with LIMK1. We found that T56-LIMKi decreases phosphorylated cofilin (p-cofilin) levels and thus inhibits growth of several cancerous cell lines, including those of pancreatic cancer, glioma and schwannoma. Because the most promising in-vitro effect of T56-LIMKi was observed in the pancreatic cancer cell line Panc-1, we tested the inhibitor on a nude mouse Panc-1 xenograft model. T56-LIMKi reduced tumor size and p-cofilin levels in the Panc-1 tumors, leading us to propose T56-LIMKi as a candidate drug for cancer therapy. PMID:25593987

  15. Monitoring breast tumor progression by photoacoustic measurements: a xenograft mice model study

    NASA Astrophysics Data System (ADS)

    Priya, Mallika; Satish Rao, Bola Sadashiva; Chandra, Subhash; Datta, Anirbit; Nayak, Subramanya G.; Mahato, Krishna Kishore

    2015-10-01

    The current study reports the photoacoustic spectroscopy-based assessment of breast tumor progression in a nude mice xenograft model. The tumor was induced through subcutaneous injection of MCF-7 cells in female nude mice and was monitored for 20 days until the tumor volume reached 1000 mm3. The tumor tissues were extracted at three different time points (days 10, 15, and 20) after tumor inoculation and subjected to photoacoustic spectral recordings in time domain ex vivo at 281 nm pulsed laser excitations. The spectra were converted into the frequency domain using the fast Fourier transformed tools of MATLAB® algorithms and further utilized to extract seven statistical features (mean, median, area under the curve, variance and standard deviation, skewness and kurtosis) from each time point sample to assess the tumor growth with wavelet principal component analysis based logistic regression analysis performed on the data. The prediction accuracies of the analysis for day 10 versus day 15, day 15 versus day 20, and day 10 versus day 20 were found to be 92.31, 87.5, and 95.2%, respectively. Also, receiver operator characteristics area under the curve analysis for day 10 versus day 15, day 15 versus day 20, and day 10 versus day 20 were found to be 0.95, 0.85, and 0.93, respectively. The ability of photoacoustic measurements in the objective assessment of tumor progression has been clearly demonstrated, indicating its clinical potential.

  16. Resolution of psoriasis upon blockade of IL-15 biological activity in a xenograft mouse model.

    PubMed

    Villadsen, Louise S; Schuurman, Janine; Beurskens, Frank; Dam, Tomas N; Dagnaes-Hansen, Frederik; Skov, Lone; Rygaard, Jorgen; Voorhorst-Ogink, Marleen M; Gerritsen, Arnout F; van Dijk, Marc A; Parren, Paul W H I; Baadsgaard, Ole; van de Winkel, Jan G J

    2003-11-01

    Psoriasis is a chronic inflammatory disease of the skin characterized by epidermal hyperplasia, dermal angiogenesis, infiltration of activated T cells, and increased cytokine levels. One of these cytokines, IL-15, triggers inflammatory cell recruitment, angiogenesis, and production of other inflammatory cytokines, including IFN-gamma, TNF-alpha, and IL-17, which are all upregulated in psoriatic lesions. To investigate the role of IL-15 in psoriasis, we generated mAb's using human immunoglobulin-transgenic mice. One of the IL-15-specific antibodies we generated, 146B7, did not compete with IL-15 for binding to its receptor but potently interfered with the assembly of the IL-15 receptor alpha, beta, gamma complex. This antibody effectively blocked IL-15-induced T cell proliferation and monocyte TNF-alpha release in vitro. In a human psoriasis xenograft model, antibody 146B7 reduced the severity of psoriasis, as measured by epidermal thickness, grade of parakeratosis, and numbers of inflammatory cells and cycling keratinocytes. These results obtained with this IL-15-specific mAb support an important role for IL-15 in the pathogenesis of psoriasis.

  17. Anticancer Efficacy of Cordyceps militaris Ethanol Extract in a Xenografted Leukemia Model

    PubMed Central

    Park, Jae Gwang; Son, Young-Jin; Lee, Tae Ho; Baek, Nam Joon; Yoon, Deok Hyo; Kim, Tae Woong; Aravinthan, Adithan

    2017-01-01

    Cordyceps militaris is used widely as a traditional medicine in East Asia. Although a few studies have attempted to elucidate the anticancer activities of C. militaris, the precise mechanism of C. militaris therapeutic effects is not fully understood. We examined the anticancer activities of C. militaris ethanolic extract (Cm-EE) and its cellular and molecular mechanisms. For this purpose, a xenograft mouse model bearing murine T cell lymphoma (RMA) cell-derived cancers was established to investigate in vivo anticancer mechanisms. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, immunoblotting analysis, and flow cytometric assay were employed to check in vitro cytotoxicity, molecular targets, and proapoptotic action of Cm-EE. Interestingly, cancer sizes and mass were reduced in a C. militaris-administered group. Levels of the phosphorylated forms of p85 and AKT were clearly decreased in the group administered with Cm-EE. This result indicated that levels of phosphoglycogen synthase kinase 3β (p-GSK3β) and cleaved caspase-3 were increased with orally administered Cm-EE. In addition, Cm-EE directly inhibited the viability of cultured RMA cells and C6 glioma cells. The number of proapoptotic cells was significantly increased in a Cm-EE treated group compared with a control group. Our results suggested that C. militaris might be able to inhibit cancer growth through regulation of p85/AKT-dependent or GSK3β-related caspase-3-dependent apoptosis. PMID:28761499

  18. Anticancer Efficacy of Cordyceps militaris Ethanol Extract in a Xenografted Leukemia Model.

    PubMed

    Park, Jae Gwang; Son, Young-Jin; Lee, Tae Ho; Baek, Nam Joon; Yoon, Deok Hyo; Kim, Tae Woong; Aravinthan, Adithan; Hong, Sungyoul; Kim, Jong-Hoon; Sung, Gi-Ho; Cho, Jae Youl

    2017-01-01

    Cordyceps militaris is used widely as a traditional medicine in East Asia. Although a few studies have attempted to elucidate the anticancer activities of C. militaris, the precise mechanism of C. militaris therapeutic effects is not fully understood. We examined the anticancer activities of C. militaris ethanolic extract (Cm-EE) and its cellular and molecular mechanisms. For this purpose, a xenograft mouse model bearing murine T cell lymphoma (RMA) cell-derived cancers was established to investigate in vivo anticancer mechanisms. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, immunoblotting analysis, and flow cytometric assay were employed to check in vitro cytotoxicity, molecular targets, and proapoptotic action of Cm-EE. Interestingly, cancer sizes and mass were reduced in a C. militaris-administered group. Levels of the phosphorylated forms of p85 and AKT were clearly decreased in the group administered with Cm-EE. This result indicated that levels of phosphoglycogen synthase kinase 3β (p-GSK3β) and cleaved caspase-3 were increased with orally administered Cm-EE. In addition, Cm-EE directly inhibited the viability of cultured RMA cells and C6 glioma cells. The number of proapoptotic cells was significantly increased in a Cm-EE treated group compared with a control group. Our results suggested that C. militaris might be able to inhibit cancer growth through regulation of p85/AKT-dependent or GSK3β-related caspase-3-dependent apoptosis.

  19. Systematic Repurposing Screening in Xenograft Models Identifies Approved Drugs with Novel Anti-Cancer Activity

    PubMed Central

    Roix, Jeffrey J.; Harrison, S. D.; Rainbolt, Elizabeth A.; Meshaw, Kathryn R.; McMurry, Avery S.; Cheung, Peter; Saha, Saurabh

    2014-01-01

    Approved drugs target approximately 400 different mechanisms of action, of which as few as 60 are currently used as anti-cancer therapies. Given that on average it takes 10–15 years for a new cancer therapeutic to be approved, and the recent success of drug repurposing for agents such as thalidomide, we hypothesized that effective, safe cancer treatments may be found by testing approved drugs in new therapeutic settings. Here, we report in-vivo testing of a broad compound collection in cancer xenograft models. Using 182 compounds that target 125 unique target mechanisms, we identified 3 drugs that displayed reproducible activity in combination with the chemotherapeutic temozolomide. Candidate drugs appear effective at dose equivalents that exceed current prescription levels, suggesting that additional pre-clinical efforts will be needed before these drugs can be tested for efficacy in clinical trials. In total, we suggest drug repurposing is a relatively resource-intensive method that can identify approved medicines with a narrow margin of anti-cancer activity. PMID:25093583

  20. Mitochondrially targeted wild-type p53 induces apoptosis in a solid human tumor xenograft model

    PubMed Central

    Palacios, Gustavo; Crawford, Howard C.; Vaseva, Angelina; Moll, Ute M.

    2013-01-01

    Classic but also novel roles of p53 are becoming increasingly well characterized. We previously showed that ex vivo retroviral transfer of mitochondrially targeted wild type p53 (mitop53) in the Eμ-myc mouse lymphoma model efficiently induces tumor cell killing in vivo. In an effort to further explore the therapeutic potential of mitop53 for its pro-apoptotic effect in solid tumors, we generated replication-deficient recombinant human Adenovirus type 5 vectors. We show here that adenoviral delivery of mitop53 by intratumoral injection into HCT116 human colon carcinoma xenograft tumors in nude mice is surprisingly effective, resulting in tumor cell death of comparable potency to conventional p53. These apoptotic effects in vivo were confirmed by Ad5-mitop53 mediated cell death of HCT116 cells in culture. Together, these data provide encouragement to further explore the potential for novel mitop53 proteins in cancer therapy to execute the shortest known circuitry of p53 death signaling. PMID:18719383

  1. Diffusion kurtosis imaging evaluating epithelial-mesenchymal transition in colorectal carcinoma xenografts model: a preliminary study.

    PubMed

    Liu, Huanhuan; Shen, Wenbin; Zhang, Caiyuan; Cui, Yanfen; Li, Jinning; Zhang, Tingting; Chen, Weibo; Wang, Dengbin

    2017-09-12

    Epithelial-mesenchymal transition (EMT) plays an important role in aggravating invasiveness and metastatic behavior of colorectal cancer (CRC). Identification of EMT is important for structuring treatment strategy, but has not yet been studied by using noninvasive imaging modality. Diffusion kurtosis imaging (DKI) is an advanced diffusion weighted model that could reflect tissue microstructural changes in vivo. In this study, EMT was induced in CRC cells (HCT116) by overexpressing Snail1 gene. We aimed to investigate the value of DKI in identifying EMT in CRC and decipher the correlations between DKI-derived parameters and EMT biomarker E-cadherin and cell proliferative index Ki-67 expression. Our results revealed that HCT116/Snail1 cells presented changes consistent with EMT resulting in significant increase in migration and invasion capacities. DKI could identify CRC with EMT, in which the DKI-derived parameter diffusivity was significantly lower, and kurtosis was significantly higher than those in the CRC/Control. Diffusivity was negatively and kurtosis was positively correlated with Ki-67 expression, whereas diffusivity was positively and kurtosis was negatively correlated with E-cadherin expression. Therefore, our study concluded that DKI can identify EMT in CRC xenograft tumors. EMT-contained CRC tumors with high Ki-67 and low E-cadherin expression were vulnerable to have lower diffusivity and higher kurtosis coefficients.

  2. Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model

    PubMed Central

    He, Shuning; Lamers, Gerda EM; Beenakker, Jan-Willem M; Cui, Chao; Ghotra, Veerander PS; Danen, Erik HJ; Meijer, Annemarie H; Spaink, Herman P; Snaar-Jagalska, B Ewa

    2012-01-01

    Inhibition of VEGF signalling effectively suppresses localized tumour growth but accelerates tumour invasiveness and micrometastasis by unknown mechanisms. To study the dynamic and reciprocal interactions between tumour cells and their microenvironment during these processes, we established a xenograft model by injecting tumour cells into the blood circulation of transparent zebrafish embryos. This reproducibly results in rapid simultaneous formation of a localized tumour and experimental micrometastasis, allowing time-resolved imaging of both processes at single-cell resolution within 1 week. The tumour vasculature was initiated de novo by remodelling of primitive endothelial cells into a functional network. Roles of myeloid cells in critical tumourigenesis steps such as vascularization and invasion were revealed by genetic and pharmaceutical approaches. We discovered that the physiological migration of neutrophils controlled tumour invasion by conditioning the collagen matrix and forming the metastatic niche, as detected by two-photon confocal microscopy and second harmonic generation. Administration of VEGFR inhibitors blocked tumour vascularization and a localized tumour growth but enhanced migration of neutrophils, which in turn promoted tumour invasion and formation of micrometastasis. This demonstrates the in vivo cooperation between VEGF signalling and myeloid cells in metastasis and provides a new mechanism underlying the recent findings that VEGFR targeting can promote tumour invasiveness. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:22374800

  3. Flavonoids from Gynostemma pentaphyllum exhibit differential induction of cell cycle arrest in H460 and A549 cancer cells.

    PubMed

    Tsui, Ko-Chung; Chiang, Tzu-Hsuan; Wang, Jinn-Shyan; Lin, Li-Ju; Chao, Wei-Chih; Chen, Bing-Huei; Lu, Jyh-Feng

    2014-10-31

    Flavonoids, containing mainly kaempferol rhamnohexoside derivatives, were extracted from Gynostemma pentaphyllum (G. pentaphyllum) and their potential growth inhibition effects against H460 non-small cell lung cancer cells was explored and compared to that on A549 cells. The extracted flavonoids were found to exhibit antiproliferation effects against H460 cells (IC50 = 50.2 μg/mL), although the IC50 of H460 is 2.5-fold that of A549 cells (IC50 = 19.8 μg/mL). Further investigation revealed that H460 cells are more susceptible to kaempferol than A549, whereas A549 cell growth is better inhibited by kaempferol rhamnohexoside derivatives as compared with H460. In addition, flavonoids from G. pentaphyllum induced cell cycle arrest at both S and G2/M phases with concurrent modulated expression of the cellular proteins cyclin A, B, p53 and p21 in A549 cells, but not H460. On the contrary, apoptosis and concomitant alteration in balance of BCL-2 and BAX expression as well as activation of caspase-3 were equally affected between both cells by flavonoid treatment. These observations strongly suggest the growth inhibition discrepancy between H460 and A549 following flavonoid treatment can be attributed to the lack of cell cycle arrest in H460 cells and the differences between H460 and A549 cells may serve as contrasting models for further mechanistic investigations.

  4. Anti-metastatic effects of liposomal gemcitabine in a human orthotopic LNCaP prostate cancer xenograft model.

    PubMed

    Jantscheff, Peter; Ziroli, Vittorio; Esser, Norbert; Graeser, Ralph; Kluth, Jessica; Sukolinskaya, Alena; Taylor, Lenka A; Unger, Clemens; Massing, Ulrich

    2009-01-01

    Fatal outcomes of prostate carcinoma (PCa) mostly result from metastatic spread rather than from primary tumor burden. Here, we monitored growth and metastatic spread of an orthotopic luciferase/GFP-expressing LNCaP PCa xenograft model in SCID mice by in vivo imaging and in vitro luciferase assay of tissues homogenates. Although the metastatic spread generally shows a significant correlation to primary tumor volumes, the susceptibility of various tissues to metastatic invasion was different in the number of affected animals as well as in absolute metastatic burden in the individual tissues. Using this xenograft model we showed that treatment with liposomal gemcitabine (GemLip) inhibited growth of the primary tumors (83.9 +/- 6.4%; P = 0.009) as well as metastatic burden in lymph nodes (95.6 +/- 24.0%; P = 0.047), lung (86.5 +/- 10.5%; P = 0.015), kidney (88.4 +/- 9.2%; P = 0.045) and stomach (79.5 +/- 6.6%; P = 0.036) already at very low efficient concentrations (8 mg/kg) as compared to conventional gemcitabine (360 mg/kg). Our data show that this orthotopic LNCaP xenograft PCa model seems to reflect the clinical situation characterized by the fact that at time of diagnosis, prostate neoplasms are biologically heterogeneous and thus, it is a useful model to investigate new anti-metastatic therapies.

  5. P450 inhibitor ketoconazole increased the intratumor drug levels and antitumor activity of fenretinide in human neuroblastoma xenograft models.

    PubMed

    Lopez-Barcons, Lluis; Maurer, Barry J; Kang, Min H; Reynolds, C Patrick

    2017-03-24

    We previously reported that concurrent ketoconazole, an oral anti-fungal agent and P450 enzyme inhibitor, increased plasma levels of the cytotoxic retinoid, fenretinide (4-HPR) in mice. We have now determined the effects of concurrent ketoconazole on 4-HPR cytotoxic dose-response in four neuroblastoma (NB) cell lines in vitro and on 4-HPR activity against two cell line-derived, subcutaneous NB xenografts (CDX) and three patient-derived NB xenografts (PDX). Cytotoxicity in vitro was assessed by DIMSCAN assay. Xenografted animals were treated with 4-HPR/LXS (240 mg/kg/day) + ketoconazole (38 mg/kg/day) in divided oral doses in cycles of five continuous days a week. In one model, intratumoral levels of 4-HPR and metabolites were assessed by HPLC assay, and in two models intratumoral apoptosis was assessed by TUNEL assay, on Day 5 of the first cycle. Antitumor activity was assessed by Kaplan-Meier event-free survival (EFS). The in vitro cytotoxicity of 4-HPR was not affected by ketoconazole (P ≥ 0.06). Ketoconazole increased intratumoral levels of 4-HPR (P = 0.02), of the active 4-oxo-4-HPR metabolite (P = 0.04), and intratumoral apoptosis (P ≤ 0.002), compared to 4-HPR/LXS-alone. Concurrent ketoconazole increased EFS in both CDX models compared to 4-HPR/LXS-alone (P ≤ 0.01). 4-HPR + ketoconazole also increased EFS in PDX models compared to controls (P ≤ 0.03). Thus, concurrent ketoconazole decreased 4-HPR metabolism with resultant increases of plasma and intratumoral drug levels and antitumor effects in neuroblastoma murine xenografts. These results support the clinical testing of concurrent ketoconazole and oral fenretinide in neuroblastoma. This article is protected by copyright. All rights reserved.

  6. Establishment of a neuroblastoma mouse model by subcutaneous xenograft transplantation and its use to study metastatic neuroblastoma.

    PubMed

    Gao, Q; Chen, C F; Dong, Q; Hou, L; Chen, X; Zhi, Y L; Li, X; Lu, H T; Zhang, H Y

    2015-12-08

    The aim of this study was to establish a metastatic human neuroblastoma (NB) mouse model by xenograft in order to study the metastatic mechanisms of NB. A human NB cell line was obtained from a 5-year-old patient and cultured in vitro. A suspension of these cells was subcutaneously inoculated into nude mice at the right flank next to the forelimb. The biological characteristics of the developed subcutaneous and metastatic tumors were analyzed by hematoxylin and eosin staining. The expression of the tumor marker neuron-specific enolase was determined by immunohistochemistry, and the invasive ability of metastatic tumors was examined by a Matrigel invasion assay. DNA microarray analyses were performed to examine the metastasis-related gene expression. Our results showed that tumors grew in 75% of the mice injected with NB cells and the rate of metastasis was 21%. The xenograft tumors retained the morphological and biological characteristics of the NB specimen from the pediatric patient. Neuron-specific enolase was highly expressed in both subcutaneous and metastatic tumors. The metastatic tumor cells possessed a higher invasive capability than the primary NB cells. The expression of 25 metastasis-related genes was found to be significantly altered in metastatic tumors compared to primary tumors, including RECK, MMP2, VEGF, MMP3, and CXCL12. In conclusion, we successfully established a human NB xenograft model with high tumor-bearing and metastatic rates in nude mice, providing an ideal animal model for the in vivo study of NB.

  7. Increased plasma colloid osmotic pressure facilitates the uptake of therapeutic macromolecules in a xenograft tumor model.

    PubMed

    Hofmann, Matthias; McCormack, Emmet; Mujić, Maja; Rossberg, Maila; Bernd, August; Bereiter-Hahn, Jürgen; Gjertsen, Bjørn Tore; Wiig, Helge; Kippenberger, Stefan

    2009-08-01

    Elevated tumor interstitial fluid pressure (TIFP) is a characteristic of most solid tumors. Clinically, TIFP may hamper the uptake of chemotherapeutic drugs into the tumor tissue reducing their therapeutic efficacy. In this study, a means of modulating TIFP to increase the flux of macromolecules into tumor tissue is presented, which is based on the rationale that elevated plasma colloid osmotic pressure (COP) pulls water from tumor interstitium lowering the TIFP. Concentrated human serum albumin (20% HSA), used as an agent to enhance COP, reduced the TIFP time-dependently from 8 to 2 mm Hg in human tumor xenograft models bearing A431 epidermoid vulva carcinomas. To evaluate whether this reduction facilitates the uptake of macromolecules, the intratumoral distribution of fluorescently conjugated dextrans (2.5 mg/ml) and cetuximab (2.0 mg/ml) was probed using novel time domain nearinfrared fluorescence imaging. This method permitted discrimination and semiquantification of tumor-accumulated conjugate from background and unspecific probe fluorescence. The coadministration of 20% HSA together with either dextrans or cetuximab was found to lower the TIFP significantly and increase the concentration of the substances within the tumor tissue in comparison to control tumors. Furthermore, combined administration of 20% HSA plus cetuximab reduced the tumor growth significantly in comparison to standard cetuximab treatment. These data demonstrate that increased COP lowers the TIFP within hours and increases the uptake of therapeutic macromolecules into the tumor interstitium leading to reduced tumor growth. This model represents a novel approach to facilitate the delivery of therapeutics into tumor tissue, particularly monoclonal antibodies.

  8. Combination of Vandetanib, Radiotherapy, and Irinotecan in the LoVo Human Colorectal Cancer Xenograft Model

    SciTech Connect

    Wachsberger, Phyllis; Burd, Randy; Ryan, Anderson; Daskalakis, Constantine; Dicker, Adam P.

    2009-11-01

    Purpose: The tumor growth kinetics of the human LoVo colorectal xenograft model was assessed in response to vandetanib, an orally available receptor tyrosine kinase inhibitor, radiotherapy (RT), or irinotecan (CPT-11), as single therapies and in combination. Methods and Materials: LoVo cells were injected subcutaneously into the right hind limb (5x10{sup 6} cells in 100muL phosphate-buffered saline) of athymic NCR NUM mice and tumors were grown to a volume of 200-300 mm{sup 3} before treatment. Vandetanib was administered at 50 mg/kg daily orally for 14 days starting on Day 1. RT was given as three fractions (3x3 Gy) on Days 1, 2, and 3. CPT-11 was given at 15 mg/kg intraperitoneally on Days 1 and 3. Tumor volumes were measured on a daily basis and calculated by measuring tumor diameters with digital calipers in two orthogonal dimensions. Results: All three single treatments (vandetanib, CPT-11, and radiation) significantly slowed LoVo colorectal tumor growth. Vandetanib significantly increased the antitumor effects of CPT-11 and radiation when given in combination with either of these treatments. These treatment combinations resulted in a slow tumor growth rate during the 2 weeks of vandetanib administration. The triple combination of vandetanib, CPT-11, and radiation produced the most marked improvement in response as observed by measurable shrinkage of tumors during the first week of treatment. Conclusions: The tumor growth delay kinetics observed in this study of the LoVo colorectal model suggest concurrent and sustained post-sequencing of vandetanib with cytotoxic therapy may be beneficial in tumors of this type.

  9. Cellular therapy in combination with cytokines improves survival in a xenograft mouse model of ovarian cancer.

    PubMed

    Ingersoll, Susan B; Ahmad, Sarfraz; McGann, Hasina C; Banks, Robert K; Stavitzski, Nicole M; Srivastava, Milan; Ali, Ghazanfar; Finkler, Neil J; Edwards, John R; Holloway, Robert W

    2015-09-01

    Studies have shown enhanced survival of ovarian cancer patients in which the tumors are infiltrated with tumor infiltrating lymphocytes and natural killer cells showing the importance of immune surveillance and recognition in ovarian cancer. Therefore, in this study, we tested cellular immunotherapy and varying combinations of cytokines (IL-2 and/or pegylated-IFNα-2b) in a xenograft mouse model of ovarian cancer. SKOV3-AF2 ovarian cancer cells were injected intra-peritoneally (IP) into athymic nude mice. On day 7 post-tumor cell injection, mice were injected IP with peripheral blood mononuclear cells (PBMC; 5 × 10(6) PBMC) and cytokine combinations [IL-2 ± pegylated-IFNα-2b (IFN)]. Cytokine injections were continued weekly for IFN (12,000 U/injection) and thrice weekly for IL-2 (4000 U/injection). Mice were euthanized when they became moribund due to tumor burden at which time tumor and ascitic fluid were measured and collected. Treatment efficacy was measured by improved survival at 8 weeks and overall survival by Kaplan-Meier analysis. We observed that the mice tolerated all treatment combinations without significant weight loss or other apparent illness. Mice receiving PBMC plus IL-2 showed improved median survival (7.3 weeks) compared to mice with no treatment (4.2 weeks), IL-2 (3.5 weeks), PBMC (4.0 weeks), or PBMC plus IL-2 and IFN (4.3 weeks), although PBMC plus IL-2 was not statistically different than PBMC plus IFN (5.5 weeks, p > 0.05). We demonstrate that cytokine-stimulated cellular immune therapy with PBMC and IL-2 was well tolerated and resulted in survival advantage compared to untreated controls and other cytokine combinations in the nude-mouse model.

  10. An orthotopic xenograft model of intraneural NF1 MPNST suggests a potential association between steroid hormones and tumor cell proliferation.

    PubMed

    Perrin, George Q; Li, Hua; Fishbein, Lauren; Thomson, Susanne A; Hwang, Min S; Scarborough, Mark T; Yachnis, Anthony T; Wallace, Margaret R; Mareci, Thomas H; Muir, David

    2007-11-01

    Malignant peripheral nerve sheath tumors (MPNST) are the most aggressive cancers associated with neurofibromatosis type 1 (NF1). Here we report a practical and reproducible model of intraneural NF1 MPNST, by orthotopic xenograft of an immortal human NF1 tumor-derived Schwann cell line into the sciatic nerves of female scid mice. Intraneural injection of the cell line sNF96.2 consistently produced MPNST-like tumors that were highly cellular and showed extensive intraneural growth. These xenografts had a high proliferative index, were angiogenic, had significant mast cell infiltration and rapidly dominated the host nerve. The histopathology of engrafted intraneural tumors was consistent with that of human NF1 MPNST. Xenograft tumors were readily examined by magnetic resonance imaging, which also was used to assess tumor vascularity. In addition, the intraneural proliferation of sNF96.2 cell tumors was decreased in ovariectomized mice, while replacement of estrogen or progesterone restored tumor cell proliferation. This suggests a potential role for steroid hormones in supporting tumor cell growth of this MPNST cell line in vivo. The controlled orthotopic implantation of sNF96.2 cells provides for the precise initiation of intraneural MPNST-like tumors in a model system suitable for therapeutic interventions, including inhibitors of angiogenesis and further study of steroid hormone effects on tumor cell growth.

  11. DMU-212 inhibits tumor growth in xenograft model of human ovarian cancer.

    PubMed

    Piotrowska, Hanna; Myszkowski, Krzysztof; Abraszek, Joanna; Kwiatkowska-Borowczyk, Eliza; Amarowicz, Ryszard; Murias, Marek; Wierzchowski, Marcin; Jodynis-Liebert, Jadwiga

    2014-05-01

    DMU-212 has been shown to evoke a mitochondrial apoptotic pathway in transformed fibroblasts and breast cancer. However, recently published data indicated the ability of DMU-212 to evoke apoptosis in both mitochondria- and receptor-mediated manner in two ovarian cancer cell lines, namely A-2780 and SKOV-3, which showed varied sensitivity to the compound tested. The pronounced cytotoxic effects of DMU-212 observed in A-2780 cells were related to the execution of extracellular apoptosis pathway and cell cycle arrest in G2/M phase. In view of the great anticancer potential of DMU-212 against A-2780 cell line, the aim of the current study was to assess antiproliferative activity of DMU-212 in xenograft model of ovarian cancer. To evaluate in vitro metabolic properties of cells that were to be injected into SCID mice, uptake and decline of DMU-212 in A-2780 ovarian cancer cell line was investigated. It was found that the concentration of the test compound in A-2780 cells was growing within first eight hours, and then the gradual decline was observed. A-2780 cells stably transfected with pcDNA3.1/Zeo(-)-Luc vector were subcutaneously inoculated into the right flanks of SCID mice. After seven days of the treatment with DMU-212 (50mg/kg b.w), tumor growth appeared to be suppressed in the animals treated with the compound tested. At day 14 of the experiment, tumor burden in mice treated with DMU-212 was significantly lower, as compared to untreated controls. Our findings suggest that DMU-212 might be considered as a potential anticancer agent used in ovarian cancer therapy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Mitotane effects in a H295R xenograft model of adjuvant treatment of adrenocortical cancer.

    PubMed

    Lindhe, O; Skogseid, B

    2010-09-01

    Adrenocortical cancer is one of the most aggressive endocrine malignancies. Growth through the capsule or accidental release of cancer cells during surgery frequently results in metastatic disease. We investigated the antitumoral effect of 2 adrenocorticolytic compounds, O, P'-DDD and MeSO2-DDE, in the adrenocortical cell line H295R both in vitro and as a xenograft model in vivo. H295R cells were injected s. c. in nude mice. O, P'-DDD, MeSO2-DDE, or oil (control) was administered i. p., either simultaneously with cell injection at day 0 (mimicking adjuvant treatment), or at day 48 (established tumors). Accumulation of PET tracers [ (11)C]methionine (MET), [ (11)C] metomidate (MTO), 2-deoxy-2-[ (18)F]fluoro-d-glucose (FDG), and [ (18)F]-l-tyrosine (FLT) in the aggregates were assessed +/- drug treatment in vitro. Tumor growth was significantly inhibited when O, P'-DDD was given at the same time as injection of tumor cells. No significant growth inhibition was observed after treatment with O, P'-DDD at day 48. A significant reduction in FLT uptake and an increased FDG uptake, compared to control, were observed following treatment with 15 microM O, P'-DDD (p<0.01) in vitro. MeSO2-DDE (15 microM) treatment gave rise to a reduced MET and an increased FLT uptake (p<0.01). Both compounds reduced the uptake of MTO compared to control (p<0.01). Treatment with O, P'-DDD simultaneously to inoculation of H295R cells in mice, imitating release of cells during surgery, gave a markedly better effect than treatment of established H295R tumors. We suggest that FLT may be a potential PET biomarker when assessing adrenocortical cancer treatment with O,P'-DDD. Further studies in humans are needed to investigate this.

  13. Endogenous retrovirus induces leukemia in a xenograft mouse model for primary myelofibrosis

    PubMed Central

    Triviai, Ioanna; Ziegler, Marion; Bergholz, Ulla; Oler, Andrew J.; Stübig, Thomas; Prassolov, Vladimir; Fehse, Boris; Kozak, Christine A.; Kröger, Nicolaus; Stocking, Carol

    2014-01-01

    The compound immunodeficiencies in nonobese diabetic (NOD) inbred mice homozygous for the Prkdcscid and Il2rgnull alleles (NSG mice) permit engraftment of a wide-range of primary human cells, enabling sophisticated modeling of human disease. In studies designed to define neoplastic stem cells of primary myelofibrosis (PMF), a myeloproliferative neoplasm characterized by profound disruption of the hematopoietic microenvironment, we observed a high frequency of acute myeloid leukemia (AML) in NSG mice. AML was of mouse origin, confined to PMF-xenografted mice, and contained multiple clonal integrations of ecotropic murine leukemia virus (E-MuLV). Significantly, MuLV replication was not only observed in diseased mice, but also in nontreated NSG controls. Furthermore, in addition to the single ecotropic endogenous retrovirus (eERV) located on chromosome 11 (Emv30) in the NOD genome, multiple de novo germ-line eERV integrations were observed in mice from each of four independent NSG mouse colonies. Analysis confirmed that E-MuLV originated from the Emv30 provirus and that recombination events were not necessary for virus replication or AML induction. Pathogenicity is thus likely attributable to PMF-mediated paracrine stimulation of mouse myeloid cells, which serve as targets for retroviral infection and transformation, as evidenced by integration into the Evi1 locus, a hotspot for retroviral-induced myeloid leukemia. This study thus corroborates a role of paracrine stimulation in PMF disease progression, underlines the importance of target cell type and numbers in MuLV-induced disease, and mandates awareness of replicating MuLV in NOD immunodeficient mice, which can significantly influence experimental results and their interpretation. PMID:24912157

  14. Carbohydrate restriction and lactate transporter inhibition in a mouse xenograft model of human prostate cancer

    PubMed Central

    Kim, Howard S.; Masko, Elizabeth M.; Poulton, Susan L.; Kennedy, Kelly M.; Pizzo, Salvatore V.; Dewhirst, Mark W.; Freedland, Stephen J.

    2012-01-01

    OBJECTIVES To determine if a no-carbohydrate ketogenic diet (NCKD) and lactate transporter inhibition can exert a synergistic effect on delaying prostate tumour growth in a xenograft mouse model of human prostate cancer. MATERIALS AND METHODS 120 nude athymic male mice (aged 6–8 weeks) were injected s.c. in the flank with 1.0 x 105 LAPC-4 prostate cancer cells. Mice were randomized to one of four treatment groups: Western diet (WD, 35% fat, 16% protein, 49% carbohydrate) and vehicle (Veh) treatment; WD and mono-carboxylate transporter-1 (MCT1) inhibition via α-cyano-4-hydroxycinnamate (CHC) delivered through a mini osmotic pump; NCKD (84% fat, 16% protein, 0% carbohydrate) plus Veh ; or NCKD and MCT1 inhibition. Mice were fed and weighed three times per week and feed was adjusted to maintain similar body weights. Tumour size was measured twice weekly and the combined effect of treatment was tested via Kruskal – Wallis analysis of all four groups. Independent effects of treatment (NCKD vs. WD and CHC vs. Veh) on tumour volume were tested using linear regression analysis. All mice were killed on Day 53 (conclusion of pump ejection), and serum and tumour sections were analysed for various markers. Again, combined and independent effects of treatment were tested using Kruskal – Wallis and linear regression analysis, respectively. RESULTS There were no significant differences in tumour volumes among the four groups (P=0.09). When testing the independent effects of treatment, NCKD was significantly associated with lower tumour volumes at the end of the experiment (P=0.026), while CHC administration was not (P=0.981). However, CHC was associated with increased necrotic fraction (P<0.001). CONCLUSIONS Differences in tumour volumes were observed only in comparisons between mice fed a NCKD and mice fed a WD. MCT1 inhibition did not have a significant effect on tumour volume, although it was associated with increased necrotic fraction. PMID:22394625

  15. Anti-Cancer Effect of Quercetin in Xenograft Models with EBV-Associated Human Gastric Carcinoma.

    PubMed

    Lee, Hwan Hee; Lee, Seulki; Shin, Yu Su; Cho, Miyeon; Kang, Hyojeung; Cho, Hyosun

    2016-09-26

    Licorice extracts have been widely used in herbal and folk medications. Glycyrrhiza contains diverse range of biological compounds including triterpenes (glycyrrhizin, glycyrrhizic acid) and flavonoids (quercetin, liquiritin, liquiritigenin, glabridin, licoricidin, isoliquiritigenin). The flavonoids in licorice are known to have strong anti-cancer activities. Quercetin, the most abundant flavonoid, has been shown to have anti-ulcer, anti-cancer, antioxidant, and anti-inflammatory properties. Latent Epstein-Barr virus (EBV) infection can lead to serious malignancies, such as, Burkitt's lymphoma, Hodgkin's disease and gastric carcinoma(GC), and (Epstein-Barr virus associated gastric carcinoma) EBVaGC is one of the most common EBV-associated cancers. In this study, the authors first examined the anti-cancer effects of quercetin and isoliquiritigenin in vivo xenograft animal models implanted with EBV(+) human gastric carcinoma (SNU719) or EBV(-) human gastric carcinoma (MKN74), and then explored the molecular mechanisms responsible for their anti-cancer activities. The results obtained showed that anti-cancer effect of quercetin was greater than isoliquiritigenin in mice injected with EBV(+) human gastric carcinoma (SNU719) cells. On the other hand, quercetin and isoliquiritigenin had similar anti-cancer effects in mice injected with EBV(-) human gastric carcinoma (MKN74) cells. Interestingly, quercetin inhibited EBV viral protein expressions, including EBNA-1 and LMP-2 proteins in tumor tissues from mice injected with EBV(+) human gastric carcinoma. Quercetin more effectively induced p53-dependent apoptosis than isoliquiritigenin in EBV(+) human gastric carcinoma, and this induction was correlated with increased expressions of the cleaved forms of caspase-3, -9, and Parp. In EBV(-)human gastric carcinoma (MKN74), both quercetin and isoliquiritigenin induced the expressions of p53, Bax, and Puma and the cleaved forms of caspase-3 and -9 and Parp at similar levels.

  16. Effects of aurothiomalate treatment on canine osteosarcoma in a murine xenograft model.

    PubMed

    Scharf, Valery F; Farese, James P; Siemann, Dietmar W; Abbott, Jeffrey R; Kiupel, Matti; Salute, Marc E; Milner, Rowan J

    2014-03-01

    Osteosarcoma is a highly fatal cancer, with most patients ultimately succumbing to metastatic disease. The purpose of this study was to evaluate the effects of the antirheumatoid drug aurothiomalate on canine and human osteosarcoma cells and on canine osteosarcoma growth and metastasis in a mouse xenograft model. We hypothesized that aurothiomalate would decrease osteosarcoma cell survival, tumor cellular proliferation, tumor growth, and metastasis. After performing clonogenic assays, aurothiomalate or a placebo was administered to 54 mice inoculated with canine osteosarcoma. Survival, tumor growth, embolization, metastasis, histopathology, cell proliferation marker Ki67, and apoptosis marker caspase-3 were compared between groups. Statistical analysis was carried out using the Kaplan-Meier method with the log-rank test and one-way analysis of variance with the Tukey's test or Dunn's method. Aurothiomalate caused dose-dependent inhibition of osteosarcoma cell survival (P<0.001) and decreased tumor growth (P<0.001). Pulmonary macrometastasis and Ki67 labeling were reduced with low-dose aurothiomalate (P=0.033 and 0.005, respectively), and tumor emboli and pulmonary micrometastases were decreased with high-dose aurothiomalate (P=0.010 and 0.011, respectively). There was no difference in survival, tumor development, ulceration, mitotic indices, tumor necrosis, nonpulmonary metastases, and caspase-3 labeling. Aurothiomalate treatment inhibited osteosarcoma cell survival and reduced tumor cell proliferation, growth, embolization, and pulmonary metastasis. Given aurothiomalate's established utility in canine and human medicine, our results suggest that this compound may hold promise as an adjunctive therapy for osteosarcoma. Further translational research is warranted to better characterize the dose response of canine and human osteosarcoma to aurothiomalate.

  17. Biodistribution of charged F(ab')2 photoimmunoconjugates in a xenograft model of ovarian cancer.

    PubMed

    Duska, L R; Hamblin, M R; Bamberg, M P; Hasan, T

    1997-01-01

    The effect of charge modification of photoimmunoconjugates (PICs) on their biodistribution in a xenograft model of ovarian cancer was investigated. Chlorin(e6)c(e6) was attached site specifically to the F(ab')2 fragment of the murine monoclonal antibody OC125, directed against human ovarian cancer cells, via poly-1-lysine linkers carrying cationic or anionic charges. Preservation of immunoreactivity was checked by enzyme-linked immunosorbent assay (ELISA). PICs were radiolabelled with 125I and compared with non-specific rabbit IgG PICs after intraperitoneal (i.p.) injection into nude mice. Samples were taken from normal organs and tumour at 3 h and 24 h. Tumour to normal 125I ratios showed that the cationic OC125F(ab')2 PIC had the highest tumour selectivity. Ratios for c(e6) were uniformly higher than for 125I, indicating that c(e6) became separated from 125I. OC125F(ab')2 gave highest tissue values of 125I, followed by cationic OC125F(ab')2 PIC; other species were much lower. The amounts of c(e6) delivered per gram of tumour were much higher for cationic OC125F(ab')2 PIC than for other species. The results indicate that cationic charge stimulates the endocytosis and lysosomal degradation of the OC125F(ab')2-pl-c(e6) that has bound to the i.p. tumour. Positively charged PICs may have applications in the i.p. photoimmunotherapy of minimal residual ovarian cancer.

  18. Generation of Pediatric Leukemia Xenograft Models in NSG-B2m Mice: Comparison with NOD/SCID Mice.

    PubMed

    Gopalakrishnapillai, Anilkumar; Kolb, E Anders; Dhanan, Priyanka; Bojja, Aruna Sri; Mason, Robert W; Corao, Diana; Barwe, Sonali P

    2016-01-01

    Generation of orthotopic xenograft mouse models of leukemia is important to understand the mechanisms of leukemogenesis, cancer progression, its cross talk with the bone marrow microenvironment, and for preclinical evaluation of drugs. In these models, following intravenous injection, leukemic cells home to the bone marrow and proliferate there before infiltrating other organs, such as spleen, liver, and the central nervous system. Moreover, such models have been shown to accurately recapitulate the human disease and correlate with patient response to therapy and prognosis. Thus, various immune-deficient mice strains have been used with or without recipient preconditioning to increase engraftment efficiency. Mice homozygous for the severe combined immune deficiency (SCID) mutation and with non-obese diabetic background (NOD/SCID) have been used in the majority of leukemia xenograft studies. Later, NOD/SCID mice deficient for interleukin 2 receptor gamma chain (IL2Rγ) gene called NSG mice became the model of choice for leukemia xenografts. However, engraftment of leukemia cells without irradiation preconditioning still remained a challenge. In this study, we used NSG mice with null alleles for major histocompatibility complex class I beta2-microglobulin (β2m) called NSG-B2m. This is a first report describing the 100% engraftment efficiency of pediatric leukemia cell lines and primary samples in NSG-B2m mice in the absence of host preconditioning by sublethal irradiation. We also show direct comparison of the engraftment efficiency and growth rate of pediatric acute leukemia cells in NSG-B2m and NOD/SCID mice, which showed 80-90% engraftment efficiency. Secondary and tertiary xenografts in NSG-B2m mice generated by injection of cells isolated from the spleens of leukemia-bearing mice also behaved similar to the primary patient sample. We have successfully engrafted 25 acute lymphoblastic leukemia (ALL) and 5 acute myeloid leukemia (AML) patient samples with

  19. Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia

    PubMed Central

    Maude, Shannon L.; Tasian, Sarah K.; Vincent, Tiffaney; Hall, Junior W.; Sheen, Cecilia; Roberts, Kathryn G.; Seif, Alix E.; Barrett, David M.; Chen, I-Ming; Collins, J. Racquel; Mullighan, Charles G.; Hunger, Stephen P.; Harvey, Richard C.; Willman, Cheryl L.; Fridman, Jordan S.; Loh, Mignon L.; Grupp, Stephan A.

    2012-01-01

    CRLF2 rearrangements, JAK1/2 point mutations, and JAK2 fusion genes have been identified in Philadelphia chromosome (Ph)–like acute lymphoblastic leukemia (ALL), a recently described subtype of pediatric high-risk B-precursor ALL (B-ALL) which exhibits a gene expression profile similar to Ph-positive ALL and has a poor prognosis. Hyperactive JAK/STAT and PI3K/mammalian target of rapamycin (mTOR) signaling is common in this high-risk subset. We, therefore, investigated the efficacy of the JAK inhibitor ruxolitinib and the mTOR inhibitor rapamycin in xenograft models of 8 pediatric B-ALL cases with and without CRLF2 and JAK genomic lesions. Ruxolitinib treatment yielded significantly lower peripheral blast counts compared with vehicle (P < .05) in 6 of 8 human leukemia xenografts and lower splenic blast counts (P < .05) in 8 of 8 samples. Enhanced responses to ruxolitinib were observed in samples harboring JAK-activating lesions and higher levels of STAT5 phosphorylation. Rapamycin controlled leukemia burden in all 8 B-ALL samples. Survival analysis of 2 representative B-ALL xenografts demonstrated prolonged survival with rapamycin treatment compared with vehicle (P < .01). These data demonstrate preclinical in vivo efficacy of ruxolitinib and rapamycin in this high-risk B-ALL subtype, for which novel treatments are urgently needed, and highlight the therapeutic potential of targeted kinase inhibition in Ph-like ALL. PMID:22955920

  20. Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia.

    PubMed

    Maude, Shannon L; Tasian, Sarah K; Vincent, Tiffaney; Hall, Junior W; Sheen, Cecilia; Roberts, Kathryn G; Seif, Alix E; Barrett, David M; Chen, I-Ming; Collins, J Racquel; Mullighan, Charles G; Hunger, Stephen P; Harvey, Richard C; Willman, Cheryl L; Fridman, Jordan S; Loh, Mignon L; Grupp, Stephan A; Teachey, David T

    2012-10-25

    CRLF2 rearrangements, JAK1/2 point mutations, and JAK2 fusion genes have been identified in Philadelphia chromosome (Ph)-like acute lymphoblastic leukemia (ALL), a recently described subtype of pediatric high-risk B-precursor ALL (B-ALL) which exhibits a gene expression profile similar to Ph-positive ALL and has a poor prognosis. Hyperactive JAK/STAT and PI3K/mammalian target of rapamycin (mTOR) signaling is common in this high-risk subset. We, therefore, investigated the efficacy of the JAK inhibitor ruxolitinib and the mTOR inhibitor rapamycin in xenograft models of 8 pediatric B-ALL cases with and without CRLF2 and JAK genomic lesions. Ruxolitinib treatment yielded significantly lower peripheral blast counts compared with vehicle (P < .05) in 6 of 8 human leukemia xenografts and lower splenic blast counts (P < .05) in 8 of 8 samples. Enhanced responses to ruxolitinib were observed in samples harboring JAK-activating lesions and higher levels of STAT5 phosphorylation. Rapamycin controlled leukemia burden in all 8 B-ALL samples. Survival analysis of 2 representative B-ALL xenografts demonstrated prolonged survival with rapamycin treatment compared with vehicle (P < .01). These data demonstrate preclinical in vivo efficacy of ruxolitinib and rapamycin in this high-risk B-ALL subtype, for which novel treatments are urgently needed, and highlight the therapeutic potential of targeted kinase inhibition in Ph-like ALL.

  1. Efficacy of liposomal curcumin in a human pancreatic tumor xenograft model: inhibition of tumor growth and angiogenesis.

    PubMed

    Ranjan, Amalendu P; Mukerjee, Anindita; Helson, Lawrence; Gupta, Rohan; Vishwanatha, Jamboor K

    2013-09-01

    Liposome-based drug delivery has been successful in the past decade, with some formulations being Food and Drug Administration (FDA)-approved and others in clinical trials around the world. The major disadvantage associated with curcumin, a potent anticancer agent, is its poor aqueous solubility and hence low systemic bioavailability. However, curcumin can be encapsulated into liposomes to improve systemic bioavailability. We determined the antitumor effects of a liposomal curcumin formulation against human MiaPaCa pancreatic cancer cells both in vitro and in xenograft studies. Histological sections were isolated from murine xenografts and immunohistochemistry was performed. The in vitro (IC50) liposomal curcumin proliferation-inhibiting concentration was 17.5 μM. In xenograft tumors in nude mice, liposomal curcumin at 20 mg/kg i.p. three-times a week for four weeks induced 42% suppression of tumor growth compared to untreated controls. A potent antiangiogenic effect characterized by a reduced number of blood vessels and reduced expression of vascular endothelial growth factor and annexin A2 proteins, as determined by immunohistochemistry was observed in treated tumors. These data clearly establish the efficacy of liposomal curcumin in reducing human pancreatic cancer growth in the examined model. The therapeutic curcumin-based effects, with no limiting side-effects, suggest that liposomal curcumin may be beneficial in patients with pancreatic cancer.

  2. Evaluation of 5-HT7 Receptor Trafficking on In Vivo and In Vitro Model of Lipopolysaccharide (LPS)-Induced Inflammatory Cell Injury in Rats and LPS-Treated A549 Cells.

    PubMed

    Ayaz, Gulsen; Halici, Zekai; Albayrak, Abdulmecit; Karakus, Emre; Cadirci, Elif

    2017-02-01

    This study aimed to investigate the effects of the 5-HT7 receptor agonist (LP44) and antagonist (SB269970) on LPS-induced in vivo tissue damage and cell culture by molecular methods. This study was conducted in two steps. For in vivo studies, 24 female rats were divided into four groups. Group I: healthy; II (2nd h): LPS 5 mg/kg administered intraperitoneally (i.p.); III (4th h): LPS 5 mg/kg administered i.p.; IV (8th h): LPS 5 mg/kg administered i.p. For in vitro studies, we used the A549 cell line. Groups: I control (healthy) (2-4 h); II LPS: 1 µg/ml E. Coli O55:B5 strain (2-4 h); III agonist (LP44) 10(-9) M (2-4 h); IV antagonist (SB269970) 10(-9) M (2-4 h); V LPS+agonist 10(-9) M (LP44 1 µg/ml) (2-4 h); VI LPS+antagonist 10(-9) M (2-4 h). In molecular analyses, we determined increased TNF-α, IL-1β, NF-κB, and 5-HT7 mRNA expressions in rat lung tissues and increased TNF-α, iNOS, and 5-HT7 mRNA expressions in the A549 cell line. In in vitro parameters, LP44 agonist administration-related decrease was observed. Our study showed that lung 5-HT7 receptor expression is increased in LPS-induced endotoxemia. All this data suggest that 5-HT7 receptor overexpression is an important protective mechanism during LPS-induced sepsis-related cell damage.

  3. Speed of leukemia development and genetic diversity in xenograft models of T cell acute lymphoblastic leukemia

    PubMed Central

    Poglio, Sandrine; Lewandowski, Daniel; Calvo, Julien; Caye, Aurélie; Gros, Audrey; Laharanne, Elodie; Leblanc, Thierry; Landman-Parker, Judith; Baruchel, André; Soulier, Jean; Ballerini, Paola; Clappier, Emmanuelle; Pflumio, Françoise

    2016-01-01

    T cell acute lymphoblastic leukemia (T-ALL) develops through accumulation of multiple genomic alterations within T-cell progenitors resulting in clonal heterogeneity among leukemic cells. Human T-ALL xeno-transplantation in immunodeficient mice is a gold standard approach to study leukemia biology and we recently uncovered that the leukemia development is more or less rapid depending on T-ALL sample. The resulting human leukemia may arise through genetic selection and we previously showed that human T-ALL development in immune-deficient mice is significantly enhanced upon CD7+/CD34+ leukemic cell transplantations. Here we investigated the genetic characteristics of CD7+/CD34+ and CD7+/CD34− cells from newly diagnosed human T-ALL and correlated it to the speed of leukemia development. We observed that CD7+/CD34+ or CD7+/CD34− T-ALL cells that promote leukemia within a short-time period are genetically similar, as well as xenograft-derived leukemia resulting from both cell fractions. In the case of delayed T-ALL growth CD7+/CD34+ or CD7+/CD34− cells were either genetically diverse, the resulting xenograft leukemia arising from different but branched subclones present in the original sample, or similar, indicating decreased fitness to mouse micro-environment. Altogether, our work provides new information relating the speed of leukemia development in xenografts to the genetic diversity of T-ALL cell compartments. PMID:27191650

  4. An orthotopic xenograft model with survival hindlimb amputation allows investigation of the effect of tumor microenvironment on sarcoma metastasis.

    PubMed

    Goldstein, Seth D; Hayashi, Masanori; Albert, Catherine M; Jackson, Kyle W; Loeb, David M

    2015-10-01

    Overall survival rates for pediatric high-grade sarcoma have improved greatly in the past few decades, but prevention and treatment of distant metastasis remain the most compelling problems facing these patients. Traditional preclinical mouse models have not proven adequate to study the biology and treatment of spontaneous distant sarcoma metastasis. To address this deficit, we developed an orthotopic implantation/amputation model in which patient-derived sarcoma xenografts are surgically implanted into mouse hindlimbs, allowed to grow, then subsequently amputated and the animals observed for development of metastases. NOD/SCID/IL-2Rγ-null mice were implanted with either histologically intact high grade sarcoma patient-derived xenografts or cell lines in the pretibial space and affected limbs were amputated after tumor growth. In contrast to subcutaneous flank tumors, we were able to consistently detect spontaneous distant spread of the tumors using our model. Metastases were seen in 27-90 % of animals, depending on the xenograft, and were repeatable and predictable. We also demonstrate the utility of this model for studying the biology of metastasis and present preliminary new insights suggesting the role of arginine metabolism and macrophage phenotype polarization in creating a tumor microenvironment that facilitates metastasis. Subcutaneous tumors express more arginase than inducible nitric oxide synthase and demonstrate significant macrophage infiltration, whereas orthotopic tumors express similar amounts of inducible nitric oxide synthase and arginase and have only a scant macrophage infiltrate. Thus, we present a model of spontaneous distant sarcoma metastasis that mimics the clinical situation and is amenable to studying the biology of the entire metastatic cascade.

  5. Comparative Efficacy of 177Lu and 90Y for Anti-CD20 Pretargeted Radioimmunotherapy in Murine Lymphoma Xenograft Models

    PubMed Central

    Frost, Sofia H. L.; Frayo, Shani L.; Miller, Brian W.; Orozco, Johnnie J.; Booth, Garrett C.; Hylarides, Mark D.; Lin, Yukang; Green, Damian J.; Gopal, Ajay K.; Pagel, John M.; Bäck, Tom A.; Fisher, Darrell R.; Press, Oliver W.

    2015-01-01

    these human lymphoma xenograft models. PMID:25785845

  6. Comparative efficacy of 177Lu and 90Y for Anti-CD20 Pretargeted Radioimmunotherapy in Murine Lymphoma Xenograft Models

    DOE PAGES

    Frost, Sofia H. L.; Frayo, Shani L.; Miller, Brian W.; ...

    2015-03-18

    approaches in these human lymphoma xenograft models.« less

  7. Comparative efficacy of 177Lu and 90Y for anti-CD20 pretargeted radioimmunotherapy in murine lymphoma xenograft models.

    PubMed

    Frost, Sofia H L; Frayo, Shani L; Miller, Brian W; Orozco, Johnnie J; Booth, Garrett C; Hylarides, Mark D; Lin, Yukang; Green, Damian J; Gopal, Ajay K; Pagel, John M; Bäck, Tom A; Fisher, Darrell R; Press, Oliver W

    2015-01-01

    Pretargeted radioimmunotherapy (PRIT) is a multi-step method of selectively delivering high doses of radiotherapy to tumor cells while minimizing exposure to surrounding tissues. Yttrium-90 (90Y) and lutetium-177 (177Lu) are two of the most promising beta-particle emitting radionuclides used for radioimmunotherapy, which despite having similar chemistries differ distinctly in terms of radiophysical features. These differences may have important consequences for the absorbed dose to tumors and normal organs. Whereas 90Y has been successfully applied in a number of preclinical and clinical radioimmunotherapy settings, there have been few published pretargeting studies with 177Lu. We therefore compared the therapeutic potential of targeting either 90Y or 177Lu to human B-cell lymphoma xenografts in mice. Parallel experiments evaluating the biodistribution, imaging, dosimetry, therapeutic efficacy, and toxicity were performed in female athymic nude mice bearing either Ramos (Burkitt lymphoma) or Granta (mantle cell lymphoma) xenografts, utilizing an anti-CD20 antibody-streptavidin conjugate (1F5-SA) and an 90Y- or 177Lu-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-biotin second step reagent. The two radionuclides displayed comparable biodistributions in tumors and normal organs; however, the absorbed radiation dose delivered to tumor was more than twice as high for 90Y (1.3 Gy/MBq) as for 177Lu (0.6 Gy/MBq). More importantly, therapy with 90Y-DOTA-biotin was dramatically more effective than with 177Lu-DOTA-biotin, with 100% of Ramos xenograft-bearing mice cured with 37 MBq 90Y, whereas 0% were cured using identical amounts of 177Lu-DOTA-biotin. Similar results were observed in mice bearing Granta xenografts, with 80% of the mice cured with 90Y-PRIT and 0% cured with 177Lu-PRIT. Toxicities were comparable with both isotopes. 90Y was therapeutically superior to 177Lu for streptavidin-biotin PRIT approaches in these human lymphoma xenograft

  8. Antitumor effect of para-toluenesulfonamide against lung cancer xenograft in a mouse model

    PubMed Central

    Gao, Yang; Gao, Yonghua; Guan, Weijie; Huang, Liyan; Xu, Xiaoming; Zhang, Chenting; Chen, Xiuqing; Wu, Yizhuang; Zeng, Guangqiao

    2013-01-01

    Background Conventional chemotherapy and radiation therapy against non-small cell lung cancer (NSCLC) are relatively insensitive and unsatisfactory. Para-toluenesulfonamide (PTS), a unique antitumor drug for local intratumoral injection, shows an efficacy of severely suppressing solid tumor growth with mild side effects in clinical trials. The aim of this study was to investigate the effect of PTS on lung cancer H460 cells in vivo in nude mice and its underlying mechanisms in vitro. Methods A lung cancer model for in vivo experiment was established in BALB/c nude mice using H460 cells to examine the effect of local injection of PTS on tumor suppression. We also assessed the injury to the normal tissue by subcutaneous injection of PTS. In vitro, PTS was diluted into different doses for study on its antitumor mechanisms. We evaluated the necrotic effect of PTS on H460 cells by PI and Hoechst 33342 staining. Cell viability and membrane permeability were also determined by using CCK-8 and LDH assays respectively. All these tests were conducted in comparison with traditional local injection of anhydrous ethanol. Results PTS was shown to significantly inhibit the growth of H460 tumor xenografts in nude mice by inducing necrosis of the tumor histologically. Its effect on tumor growth was significantly stronger than that of anhydrous ethanol. By contrast, the injured normal tissue by PTS injection was less than that by ethanol. In vitro, PTS still demonstrated excellent necrotizing effect on H460 cells when diluted to a lower concentration. Detailed analysis of PTS on H460 cells indicated that PTS had a better effect on attenuating the cell viability and increasing the cell membrane permeability than ethanol at the same level. Conclusions PTS exhibits excellent inhibition effect on the growth of lung cancer by necrotizing tumor in vivo and in vitro, reducing tumor cell viability and augmenting the membrane permeability in vitro, with only mild injury to normal tissue. The

  9. Evidence for Feedback Regulation Following Cholesterol Lowering Therapy in a Prostate Cancer Xenograft Model.

    PubMed

    Masko, Elizabeth M; Alfaqih, Mahmoud A; Solomon, Keith R; Barry, William T; Newgard, Christopher B; Muehlbauer, Michael J; Valilis, Nikolaos A; Phillips, Tameika E; Poulton, Susan H; Freedland, Alexis R; Sun, Stephanie; Dambal, Shweta K; Sanders, Sergio E; Macias, Everardo; Freeman, Michael R; Dewhirst, Mark W; Pizzo, Salvatore V; Freedland, Stephen J

    2017-04-01

    Epidemiologic data suggest cholesterol-lowering drugs may prevent the progression of prostate cancer, but not the incidence of the disease. However, the association of combination therapy in cholesterol reduction on prostate or any cancer is unclear. In this study, we compared the effects of the cholesterol lowering drugs simvastatin and ezetimibe alone or in combination on the growth of LAPC-4 prostate cancer in vivo xenografts. Proliferation assays were conducted by MTS solution and assessed by Student's t-test. 90 male nude mice were placed on a high-cholesterol Western-diet for 7 days then injected subcutaneously with 1 × 10(5) LAPC-4 cells. Two weeks post-injection, mice were randomized to control, 11 mg/kg/day simvastatin, 30 mg/kg ezetimibe, or the combination and sacrificed 42 days post-randomization. We used a generalized linear model with the predictor variables of treatment, time, and treatment by time (i.e., interaction term) with tumor volume as the outcome variable. Total serum and tumor cholesterol were measured. Tumoral RNA was extracted and cDNA synthesized from 1 ug of total RNA for quantitative real-time PCR. Simvastatin directly reduced in vitro prostate cell proliferation in a dose-dependent, cell line-specific manner, but ezetimibe had no effect. In vivo, low continuous dosing of ezetimibe, delivered by food, or simvastatin, delivered via an osmotic pump had no effect on tumor growth compared to control mice. In contrast, dual treatment of simvastatin and ezetimibe accelerated tumor growth. Ezetimibe significantly lowered serum cholesterol by 15%, while simvastatin had no effect. Ezetimibe treatment resulted in higher tumor cholesterol. A sixfold induction of low density lipoprotein receptor mRNA was observed in ezetimibe and the combination with simvastatin versus control tumors. Systemic cholesterol lowering by ezetimibe did not slow tumor growth, nor did the cholesterol independent effects of simvastatin and the combined

  10. Appropriateness of Using Patient-Derived Xenograft Models for Pharmacologic Evaluation of Novel Therapies for Esophageal/Gastro-Esophageal Junction Cancers

    PubMed Central

    Dodbiba, Lorin; Teichman, Jennifer; Fleet, Andrew; Thai, Henry; Starmans, Maud H. W.; Navab, Roya; Chen, Zhuo; Girgis, Hala; Eng, Lawson; Espin-Garcia, Osvaldo; Shen, Xiaowei; Bandarchi, Bizhan; Schwock, Joerg; Tsao, Ming-Sound; El-Zimaity, Hala; Der, Sandy D.; Xu, Wei; Bristow, Robert G.; Darling, Gail E.; Boutros, Paul C.

    2015-01-01

    The high morbidity and mortality of patients with esophageal (E) and gastro-esophageal junction (GEJ) cancers, warrants new pre-clinical models for drug testing. The utility of primary tumor xenografts (PTXGs) as pre-clinical models was assessed. Clinicopathological, immunohistochemical markers (p53, p16, Ki-67, Her-2/neu and EGFR), and global mRNA abundance profiles were evaluated to determine selection biases of samples implanted or engrafted, compared with the underlying population. Nine primary E/GEJ adenocarcinoma xenograft lines were further characterized for the spectrum and stability of gene/protein expression over passages. Seven primary esophageal adenocarcinoma xenograft lines were treated with individual or combination chemotherapy. Tumors that were implanted (n=55) in NOD/SCID mice had features suggestive of more aggressive biology than tumors that were never implanted (n=32). Of those implanted, 21/55 engrafted; engraftment was associated with poorly differentiated tumors (p=0.04) and older patients (p=0.01). Expression of immunohistochemical markers were similar between patient sample and corresponding xenograft. mRNA differences observed between patient tumors and first passage xenografts were largely due to loss of human stroma in xenografts. mRNA patterns of early vs late passage xenografts and of small vs large tumors of the same passage were similar. Complete resistance was present in 2/7 xenografts while the remaining tumors showed varying degrees of sensitivity, that remained constant across passages. Because of their ability to recapitulate primary tumor characteristics during engraftment and across serial passaging, PTXGs can be useful clinical systems for assessment of drug sensitivity of human E/GEJ cancers. PMID:25826681

  11. [hVEGF siRNA inhibits initial growth of A549 tumor cells in nude mice and angiogenesis on CAM assay].

    PubMed

    Liu, Rong; Ma, Wen-jiang; Zhou, Jian-ya; Yang, Guang-di; Zhou, Jian-ying

    2009-03-01

    To investigate the effect of small interfering RNA (siRNA) targeting human vascular endothelial growth factor (hVEGF) on A549 cell growth in nude mice and angiogenesis on chorioallantoic membrane (CAM) assay. Three pairs of hVEGF siRNA-plasmid and non-silencing-plasmid were constructed, and transfected into A549 cells through lipofectamine 2000, respectively. The most effective pair of hVEGF siRNA-plasmid was selected by ELISA and real-time RT-PCR. A549 cells transfected with selected hVEGF siRNA- plasmid, A549 cells transfected with non-silencing-plasmid and A549 cells without transfection were inoculated into nude mice, respectively. Chick embryos were randomly divided into four groups and CAM was treated by different solutions for 48 h: culture media DMEM as negative control group,un-transfected A549 cell culture supernatants as positive control group, hVEGF siRNA A549 cell culture supernatants as hVEGF siRNA group and nonsilencing siRNA A549 cell culture supernatants as non-silencing siRNA group. The CAMs were harvested on d12 for microscopic assays. Compared with control group, hVEGF siRNA-plasmid induced 48% reduction in hVEGF secretion by A549 cells accompanied by 70% reduction in hVEGF mRNA. Compared with non-silencing siRNA group, the mean tumor volume of murine xenograft was reduced by 58% in hVEGF siRNA group; time for xenografts growing to 50 mm(3)was delayed by 5.4 d. hVEGF contents in xenograft were reduced by 54%; but mean doubling time of tumors and the growth rate of tumors were not significantly reduced. In CAM assays, hVEGF content was zero in negative group, and in hVEGF siRNA group that was 40%-44% of non-silencing siRNA group or positive group; vessels branch points of CAM in hVEGF siRNA group or non-silencing siRNA group or positive group were increased by 45%-55% compared with negative group; total vessel length of CAM in hVEGF siRNA group was increased by 53% compared with negative group, while in non-silencing siRNA group or positive group

  12. Highly Effective Auger-Electron Therapy in an Orthotopic Glioblastoma Xenograft Model using Convection-Enhanced Delivery

    PubMed Central

    Thisgaard, Helge; Halle, Bo; Aaberg-Jessen, Charlotte; Olsen, Birgitte Brinkmann; Therkelsen, Anne Sofie Nautrup; Dam, Johan Hygum; Langkjær, Niels; Munthe, Sune; Någren, Kjell; Høilund-Carlsen, Poul Flemming; Kristensen, Bjarne Winther

    2016-01-01

    Glioblastoma, the most common and malignant primary brain tumor, always recurs after standard treatment. Therefore, promising new therapeutic approaches are needed. Short-range Auger-electron-emitters carry the ability of causing highly damaging radiation effects in cells. The aim of this study was to test the effect of [125I]5-Iodo-2'-deoxyuridine (125I-UdR, a radioactive Auger-electron-emitting thymidine analogue) Auger-therapy on immature glioblastoma spheroid cultures and orthotopic xenografted glioblastoma-bearing rats, the latter by means of convection-enhanced delivery (CED). Moreover, we aimed to determine if the therapeutic effect could be enhanced when combining 125I-UdR therapy with the currently used first-line chemotherapeutic agent temozolomide. 125I-UdR significantly decreased glioblastoma cell viability and migration in vitro and the cell viability was further decreased by co-treatment with methotrexate and/or temozolomide. Intratumoral CED of methotrexate and 125I-UdR with and without concomitant systemic temozolomide chemotherapy significantly reduced the tumor burden in orthotopically xenografted glioblastoma-bearing nude rats. Thus, 100% (8/8) of the animals survived the entire observation period of 180 days when subjected to the combined Auger-chemotherapy while 57% (4/7) survived after the Auger-therapy alone. No animals (0/8) treated with temozolomide alone survived longer than 50 days. Blood samples and post-mortem histology showed no signs of dose-limiting adverse effects. In conclusion, the multidrug approach consisting of CED of methotrexate and 125I-UdR with concomitant systemic temozolomide was safe and very effective leading to 100% survival in an orthotopic xenograft glioblastoma model. Therefore, this therapeutic strategy may be a promising option for future glioblastoma therapy. PMID:27924163

  13. Cyclin-dependent kinase inhibitor Dinaciclib (SCH727965) inhibits pancreatic cancer growth and progression in murine xenograft models

    PubMed Central

    Bisht, Savita; Karikari, Collins; Garrido-Laguna, Ignacio; Rasheed, Zeshaan; Ottenhof, Niki A; Dadon, Tikva; Alvarez, Hector; Fendrich, Volker; Rajeshkumar, NV; Matsui, William; Brossart, Peter; Hidalgo, Manuel; Bannerji, Rajat

    2011-01-01

    Pancreatic cancer is one of the most lethal of human malignancies, and potent therapeutic options are lacking. Inhibition of cell cycle progression through pharmacological blockade of cyclin-dependent kinases (CDK) has been suggested as a potential treatment option for human cancers with deregulated cell cycle control. Dinaciclib (SCH727965) is a novel small molecule multi-CDK inhibitor with low nanomolar potency against CDK1, CDK2, CDK5 and CDK9 that has shown favorable toxicity and efficacy in preliminary mouse experiments, and has been well tolerated in Phase I clinical trials. In the current study, the therapeutic efficacy of SCH727965 on human pancreatic cancer cells was tested using in vitro and in vivo model systems. Treatment with SCH727965 significantly reduced in vitro cell growth, motility and colony formation in soft agar of MIAPaCa-2 and Pa20C cells. These phenotypic changes were accompanied by marked reduction of phosphorylation of Retinoblastoma (Rb) and reduced activation of RalA. Single agent therapy with SCH727965 (40 mg/kg i.p. twice weekly) for 4 weeks significantly reduced subcutaneous tumor growth in 10/10 (100%) of tested low-passage human pancreatic cancer xenografts. Treatment of low passage pancreatic cancer xenografts with a combination of SCH727965 and gemcitabine was significantly more effective than either agent alone. Gene Set Enrichment Analysis identified overrepresentation of the Notch and Transforming Growth Factor-β (TGFβ) signaling pathways in the xenografts least responsive to SCH727965 treatment. Treatment with the cyclin-dependent kinase inhibitor SCH727965 alone or in combination is a highly promising novel experimental therapeutic strategy against pancreatic cancer. PMID:21768779

  14. The use of thermographic imaging to evaluate therapeutic response in human tumour xenograft models

    PubMed Central

    Hussain, Nosheen; Connah, David; Ugail, Hassan; Cooper, Patricia A.; Falconer, Robert A.; Patterson, Laurence H.; Shnyder, Steven D.

    2016-01-01

    Non-invasive methods to monitor tumour growth are an important goal in cancer drug development. Thermographic imaging systems offer potential in this area, since a change in temperature is known to be induced due to changes within the tumour microenvironment. This study demonstrates that this imaging modality can be applied to a broad range of tumour xenografts and also, for the first time, the methodology’s suitability to assess anti-cancer agent efficacy. Mice bearing subcutaneously implanted H460 lung cancer xenografts were treated with a novel vascular disrupting agent, ICT-2552, and the cytotoxin doxorubicin. The effects on tumour temperature were assessed using thermographic imaging over the first 6 hours post-administration and subsequently a further 7 days. For ICT-2552 a significant initial temperature drop was observed, whilst for both agents a significant temperature drop was seen compared to controls over the longer time period. Thus thermographic imaging can detect functional differences (manifesting as temperature reductions) in the tumour response to these anti-cancer agents compared to controls. Importantly, these effects can be detected in the first few hours following treatment and therefore the tumour is observable non-invasively. As discussed, this technique will have considerable 3Rs benefits in terms of reduction and refinement of animal use. PMID:27491535

  15. Pseudotyped AAV Vector-Mediated Gene Transfer in a Human Fetal Trachea Xenograft Model: Implications for In Utero Gene Therapy for Cystic Fibrosis

    PubMed Central

    Leung, Alice; Katz, Anna B.; Lim, Foong-Yen; Habli, Mounira; Jones, Helen N.; Wilson, James M.; Crombleholme, Timothy M.

    2012-01-01

    Background Lung disease including airway infection and inflammation currently causes the majority of morbidities and mortalities associated with cystic fibrosis (CF), making the airway epithelium and the submucosal glands (SMG) novel target cells for gene therapy in CF. These target cells are relatively inaccessible to postnatal gene transfer limiting the success of gene therapy. Our previous work in a human-fetal trachea xenograft model suggests the potential benefit for treating CF in utero. In this study, we aim to validate adeno-associated virus serotype 2 (AAV2) gene transfer in a human fetal trachea xenograft model and to compare transduction efficiencies of pseudotyping AAV2 vectors in fetal xenografts and postnatal xenograft controls. Methodology/Principal Findings Human fetal trachea or postnatal bronchus controls were xenografted onto immunocompromised SCID mice for a four-week engraftment period. After injection of AAV2/2, 2/1, 2/5, 2/7 or 2/8 with a LacZ reporter into both types of xenografts, we analyzed for transgene expression in the respiratory epithelium and SMGs. At 1 month, transduction by AAV2/2 and AAV2/8 in respiratory epithelium and SMG cells was significantly greater than that of AAV2/1, 2/5, and 2/7 in xenograft tracheas. Efficiency in SMG transduction was significantly greater in AAV2/8 than AAV2/2. At 3 months, AAV2/2 and AAV2/8 transgene expression was >99% of respiratory epithelium and SMG. At 1 month, transduction efficiency of AAV2/2 and AAV2/8 was significantly less in adult postnatal bronchial xenografts than in fetal tracheal xenografts. Conclusions/Significance Based on the effectiveness of AAV vectors in SMG transduction, our findings suggest the potential utility of pseudotyped AAV vectors for treatment of cystic fibrosis. The human fetal trachea xenograft model may serve as an effective tool for further development of fetal gene therapy strategies for the in utero treatment of cystic fibrosis. PMID:22937069

  16. Rubus idaeus L Inhibits Invasion Potential of Human A549 Lung Cancer Cells by Suppression Epithelial-to-Mesenchymal Transition and Akt Pathway In Vitro and Reduces Tumor Growth In Vivo.

    PubMed

    Chu, Shu-Chen; Hsieh, Yih-Shou; Hsu, Li-Sung; Chen, Kuo-Shuen; Chiang, Chien-Cheng; Chen, Pei-Ni

    2014-05-01

    The metastasis of lung cancer is the most prevalent cause of patient death. Various treatment strategies have targeted the prevention of the occurrence of metastasis. The epithelial-mesenchymal transition (EMT) in lung cancer cells is considered a prerequisite to acquire the invasive/migratory phenotype and to subsequently achieve metastasis. However, the effects ofRubus idaeuson cancer invasion and the EMT of the human lung carcinoma remain unclear. In this article, we test the hypothesis thatR idaeusethyl acetate (RIAE) possesses an antimetastatic effect and reverses the EMT potential of human lung A549 cells. We extract the raspberryR idaeuswith methanol (RIME), chloroform (RICE), ethyl acetate (RIAE),n-butanol (RIBE), and water (RIWE). The RIAE treatment obviously inhibits the invasive (P< .001), motility (P< .001), spreading, and migratory potential (P< .001) of highly metastatic human lung cancer A549 cells. The zymography and promoter luciferase analysis reveals that RIAE decreases the proteinase and transcription activities of MMP-2 and u-PA. Molecular analyses show that RIAE increases the E-cadherin level that is mainly localized at the cellular membrane. This result was also verified through confocal analyses. RIAE also induces the upregulation of an epithelial marker, such as α-catenin, and decreases mesenchymal markers, such as snail-1 and N-cadherin, that promote cell invasion and metastasis. RIAE inhibits MMP-2 and u-PA by attenuating the NF-κB and p-Akt expression. The inhibition of RIAE on the growth of A549 cells in vivo was also verified using a cancer cell xenograft nude mice model. Our results show the anti-invasive/antitumor effects of RIAE and associated mechanisms, which suggest that RIAE should be further tested in clinically relevant models to exploit its potential benefits against metastatic lung cancer cells.

  17. Therapeutic Effects of Microbubbles Added to Combined High-Intensity Focused Ultrasound and Chemotherapy in a Pancreatic Cancer Xenograft Model

    PubMed Central

    Yu, Mi Hye; Kim, Hae Ri; Kim, Bo Ram; Park, Eun-Joo; Kim, Hoe Suk; Han, Joon Koo; Choi, Byung Ihn

    2016-01-01

    Objective To investigate whether high-intensity focused ultrasound (HIFU) combined with microbubbles enhances the therapeutic effects of chemotherapy. Materials and Methods A pancreatic cancer xenograft model was established using BALB/c nude mice and luciferase-expressing human pancreatic cancer cells. Mice were randomly assigned to five groups according to treatment: control (n = 10), gemcitabine alone (GEM; n = 12), HIFU with microbubbles (HIFU + MB, n = 11), combined HIFU and gemcitabine (HIGEM; n = 12), and HIGEM + MB (n = 13). After three weekly treatments, apoptosis rates were evaluated using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay in two mice per group. Tumor volume and bioluminescence were monitored using high-resolution 3D ultrasound imaging and in vivo bioluminescence imaging for eight weeks in the remaining mice. Results The HIGEM + MB group showed significantly higher apoptosis rates than the other groups (p < 0.05) and exhibited the slowest tumor growth. From week 5, the tumor-volume-ratio relative to the baseline tumor volume was significantly lower in the HIGEM + MB group than in the control, GEM, and HIFU + MB groups (p < 0.05). Despite visible distinction, the HIGEM and HIGEM + MB groups showed no significant differences. Conclusion High-intensity focused ultrasound combined with microbubbles enhances the therapeutic effects of gemcitabine chemotherapy in a pancreatic cancer xenograft model. PMID:27587968

  18. T Cell-Mediated Rejection of Human CD34(+) Cells Is Prevented by Costimulatory Blockade in a Xenograft Model.

    PubMed

    Oh, Annie L; Mahmud, Dolores; Nicolini, Benedetta; Mahmud, Nadim; Senyuk, Vitalyi; Patel, Pritesh R; Bonetti, Elisa; Arpinati, Mario; Ferrara, James L M; Rondelli, Damiano

    2017-08-14

    A xenograft model of stem cell rejection was developed by co-transplantating human CD34(+) and allogeneic CD3(+) T cells into NOD-scid ɣ-chain(null) mice. T cells caused graft failure when transplanted at any CD34/CD3 ratio between 1:50 and 1:.1. Kinetics experiments showed that 2 weeks after transplantation CD34(+) cells engrafted the marrow and T cells expanded in the spleen. Then, at 4 weeks only memory T cells populated both sites and rejected CD34(+) cells. Blockade of T cell costimulation was tested by injecting the mice with abatacept (CTLA4-IgG1) from day -1 to +27 (group A), from day -1 to +13 (group B), or from day +14 to +28 (group C). On day +56 groups B and C had rejected the graft, whereas in group A graft failure was completely prevented, although with lower stem cell engraftment than in controls (P = .03). Retransplantation of group A mice with same CD34(+) cells obtained a complete reconstitution of human myeloid and B cell lineages and excluded latent alloreactivity. In this first xenograft model of stem cell rejection we showed that transplantation of HLA mismatched CD34(+) cells may be facilitated by treatment with abatacept and late stem cell boost. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  19. Quercetin induces cell apoptosis of myeloma and displays a synergistic effect with dexamethasone in vitro and in vivo xenograft models.

    PubMed

    He, Donghua; Guo, Xing; Zhang, Enfan; Zi, Fuming; Chen, Jing; Chen, Qingxiao; Lin, Xuanru; Yang, Li; Li, Yi; Wu, Wenjun; Yang, Yang; He, Jingsong; Cai, Zhen

    2016-07-19

    Quercetin, a kind of dietary flavonoid, has shown its anticancer activity in many kinds of cancers including hematological malignancies (acute myelogenous leukemia, chronic myelogenous leukemia, chronic lymphocytic leukemia, and MM) in vitro and in vivo. However, its effects on MM need further investigation. In this study, MM cell lines were treated with quercetin alone or in combination with dexamethasone. In order to observe the effects in vivo, a xenograft model of human myeloma was established. Quercetin inhibited proliferation of MM cells (RPMI8226, ARP-1, and MM.1R) by inducing cell cycle arrest in the G2/M phase and apoptosis. Western blot showed that quercetin downregulated c-myc expression and upregulated p21 expression. Quercetin also activated caspase-3, caspase-9, and poly(ADP-ribose)polymerase 1. Caspase inhibitors partially blocked apoptosis induced by quercetin. Furthermore, quercetin combined with dexamethasone significantly increased MM cell apoptosis. In vivo xenograft models, quercetin obviously inhibited tumor growth. Caspase-3 was activated to a greater extent when quercetin was combined with dexamethasone. In conclusion, quercetin alone or in combination with dexamethasone may be an effective therapy for MM.

  20. Activin type IB receptor signaling in prostate cancer cells promotes lymph node metastasis in a xenograft model

    SciTech Connect

    Nomura, Masatoshi; Tanaka, Kimitaka; Wang, Lixiang; Goto, Yutaka; Mukasa, Chizu; Ashida, Kenji; Takayanagi, Ryoichi

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer ActRIB signaling induces Snail and S100A4 expressions in prostate cancer cells. Black-Right-Pointing-Pointer The prostate cancer cell lines expressing an active form of ActRIB were established. Black-Right-Pointing-Pointer ActRIB signaling promotes EMT and lymph node metastasis in xenograft model. -- Abstract: Activin, a member of the transforming growth factor-{beta} family, has been known to be a growth and differentiating factor. Despite its pluripotent effects, the roles of activin signaling in prostate cancer pathogenesis are still unclear. In this study, we established several cell lines that express a constitutive active form of activin type IB receptor (ActRIBCA) in human prostate cancer cells, ALVA41 (ALVA-ActRIBCA). There was no apparent change in the proliferation of ALVA-ActRIBCA cells in vitro; however, their migratory ability was significantly enhanced. In a xenograft model, histological analysis revealed that the expression of Snail, a cell-adhesion-suppressing transcription factor, was dramatically increased in ALVA-ActRIBCA tumors, indicating epithelial mesenchymal transition (EMT). Finally, mice bearing ALVA-ActRIBCA cells developed multiple lymph node metastases. In this study, we demonstrated that ActRIBCA signaling can promote cell migration in prostate cancer cells via a network of signaling molecules that work together to trigger the process of EMT, and thereby aid in the aggressiveness and progression of prostate cancers.

  1. Comparison of the effects of vitamin D products in a psoriasis plaque test and a murine psoriasis xenograft model.

    PubMed

    Kvist, Peter H; Svensson, Lars; Hagberg, Oskar; Hoffmann, Vibeke; Kemp, Kaare; Røpke, Mads A

    2009-12-17

    The aim of the present study was to compare the effects of Daivobet and calcipotriol on clinical score and biomarker responses in a modified version of the Scholtz-Dumas psoriasis plaque assay. Furthermore, it was the aim to compare the effects of calcipotriol and betamethasone in the murine psoriasis xenograft model. Twenty four patients with psoriasis were treated topically once daily for three weeks, whereas the grafted mice were treated for four weeks. Clinical responses were scored twice weekly and biopsies were taken at the end of each study to analyse for skin biomarkers by histology and immunohistochemistry. The results clearly demonstrate effects on both clinical signs and biomarkers. In the patient study the total clinical score was reduced significantly with both Daivobet and calcipotriol. Both treatments reduced epidermal thickness, Ki-67 and cytokeratin 16 expression. T cell infiltration was significantly reduced by Daivobet but only marginally by calcipotriol. Both treatments showed strong effects on the epidermal psoriatic phenotype.Results from the xenograft model essentially showed the same results. However differences were observed when investigating subtypes of T cells.The study demonstrates the feasibility of obtaining robust biomarker data in the psoriasis plaque test that correlate well with those obtained in other clinical studies. Furthermore, the biomarker data from the plaque test correlate with biopsy data from the grafted mice.

  2. Protection of A549 cells against the toxic effects of sulphur mustard by hexamethylenetetramine.

    PubMed

    Lindsay, C D; Hambrook, J L

    1997-02-01

    The A549 cell line was used as a model of the deep lung to study the toxicity and mechanism of action of sulphur mustard (HD), using the neutral red (NR) dye retention and gentian violet (GV) assays as indices of cell viability. It was found that exposure to concentrations in excess of 40 microM HD resulted in a rapid onset of toxicity. Exposure to 1000 microM HD reduced viability in A549 cell cultures to 61% after 2 h (control cultures = 100%), whereas exposure to 40 microM HD did not result in deleterious effects until 26 h at which point viability fell to only 84% (NR assay). Agarose gel electrophoresis of cell cultures exposed to 40 and 1000 microM HD and harvested at 4.5, 19 and 43 h after exposure to HD, indicated that cell death was due to necrosis, despite the observation that at the higher concentration of HD cells displayed many of the features common to cells undergoing apoptotic death. The ability of hexamethylenetetramine (HMT) to protect A549 cells against the effects of an LC50 challenge dose of HD was assessed using the GV and NR assays. It was found that HMT (15 mM) could protect cells against the effects of HD though HMT had to be present at the time of HD challenge. Cultures treated with HD only were 49% viable at 48 h after HD challenge, compared to 101% for protected cultures (NR assay) and 58% and 91% for unprotected and protected cultures respectively using the GV assay. Morphological observations of GV and NR stained cultures confirmed these findings. HMT concentrations of 2.5 to 25 mM were used. Maximal protection against the toxic effects of HD (LC50) was found at 10 to 25 mM HMT. Over this concentration range, HMT did not exert any toxic effects on A549 cells. Pretreatment of A549 cultures with HMT followed by its removal prior to HD challenge had no protective effect. Similarly, treating cultures with HD followed by addition of HMT did not increase the viability of the cultures, even if the HMT was added immediately after HD exposure

  3. Therapeutic Antibodies Targeting CSF1 Impede Macrophage Recruitment in a Xenograft Model of Tenosynovial Giant Cell Tumor

    PubMed Central

    Cheng, Hongwei; Clarkson, Paul W.; Gao, Dongxia; Pacheco, Marina; Wang, Yuzhuo; Nielsen, Torsten O.

    2010-01-01

    Tenosynovial giant cell tumor is a neoplastic disease of joints that can cause severe morbidity. Recurrences are common following local therapy, and no effective medical therapy currently exists. Recent work has demonstrated that all cases overexpress macrophage colony-stimulating factor (CSF1), usually as a consequence of an activating gene translocation, resulting in an influx of macrophages that form the bulk of the tumor. New anti-CSF1 drugs have been developed; however there are no preclinical models suitable for evaluation of drug benefits in this disease. In this paper, we describe a novel renal subcapsular xenograft model of tenosynovial giant cell tumor. Using this model, we demonstrate that an anti-CSF1 monoclonal antibody significantly inhibits host macrophage infiltration into this tumor. The results from this model support clinical trials of equivalent humanized agents and anti-CSF1R small molecule drugs in cases of tenosynovial giant cell tumor refractory to conventional local therapy. PMID:20981142

  4. Therapeutic Antibodies Targeting CSF1 Impede Macrophage Recruitment in a Xenograft Model of Tenosynovial Giant Cell Tumor.

    PubMed

    Cheng, Hongwei; Clarkson, Paul W; Gao, Dongxia; Pacheco, Marina; Wang, Yuzhuo; Nielsen, Torsten O

    2010-01-01

    Tenosynovial giant cell tumor is a neoplastic disease of joints that can cause severe morbidity. Recurrences are common following local therapy, and no effective medical therapy currently exists. Recent work has demonstrated that all cases overexpress macrophage colony-stimulating factor (CSF1), usually as a consequence of an activating gene translocation, resulting in an influx of macrophages that form the bulk of the tumor. New anti-CSF1 drugs have been developed; however there are no preclinical models suitable for evaluation of drug benefits in this disease. In this paper, we describe a novel renal subcapsular xenograft model of tenosynovial giant cell tumor. Using this model, we demonstrate that an anti-CSF1 monoclonal antibody significantly inhibits host macrophage infiltration into this tumor. The results from this model support clinical trials of equivalent humanized agents and anti-CSF1R small molecule drugs in cases of tenosynovial giant cell tumor refractory to conventional local therapy.

  5. Antitumor effects of FP3 in combination with capecitabine on PDTT xenograft models of primary colon carcinoma and related lymphatic and hepatic metastases.

    PubMed

    Jin, Ketao; Lan, Huanrong; Xie, Bojian; He, Kuifeng; Xu, Zhenzhen; Li, Guangliang; Han, Na; Teng, Lisong; Cao, Feilin

    2012-07-01

    FP3 is an engineered protein which contains the extracellular domain 2 of VEGF receptor 1 (Flt-1) and extracellular domain 3 and 4 of VEGF receptor 2 (Flk-1, KDR) fused to the Fc portion of human immunoglobulin G 1. Previous studies demonstrated its antiangiogenic effects in vitro and in vivo, and its antitumor activity in vivo. In this study, patient-derived tumor tissue (PDTT) xenograft models of primary colon carcinoma and lymphatic and hepatic metastases were established for assessment of the antitumor activity of FP3 in combination with capecitabine. Xenografts were treated with FP3, capecitabine, alone or in combination. After tumor growth was confirmed, volume and microvessel density in tumors were evaluated. Levels of VEGF, and PCNA in the tumor were examined by immunohistonchamical staining, level of thymidine phosphorylase (TP) was examined by ELISA, and levels of related cell signaling pathways proteins expression were examined by western blotting. FP3 in combination with capecitabine showed significant antitumor activity in three xenograft models (primary colon carcinoma, lymphatic metastasis, and hepatic metastasis). The microvessel density in tumor tissues treated with FP3 in combination with capecitabine was lower than that of the control. Antitumor activity of FP3 in combination with capecitabine was significantly higher than that of each agent alone in three xenograft models (primary colon carcinoma, lymphatic metastasis, and hepatic metastasis). This study indicated that addition of FP3 to capecitabine significantly improved tumor growth inhibition in the PDTT xenograft models of primary colon carcinoma and lymphatic and hepatic metastases.

  6. Nano-encapsulation of plitidepsin: in vivo pharmacokinetics, biodistribution, and efficacy in a renal xenograft tumor model.

    PubMed

    Oliveira, Hugo; Thevenot, Julie; Garanger, Elisabeth; Ibarboure, Emmanuel; Calvo, Pilar; Aviles, Pablo; Guillen, Maria Jose; Lecommandoux, Sébastien

    2014-04-01

    Plitidepsin is an antineoplasic currently in clinical evaluation in a phase III trial in multiple myeloma (ADMYRE). Presently, the hydrophobic drug plitidepsin is formulated using Cremophor®, an adjuvant associated with unwanted hypersensitivity reactions. In search of alternatives, we developed and tested two nanoparticle-based formulations of plitidepsin, aiming to modify/improve drug biodistribution and efficacy. Using nanoprecipitation, plitidepsin was loaded in polymer nanoparticles made of amphiphilic block copolymers (i.e. PEG-b-PBLG or PTMC-b-PGA). The pharmacokinetics, biodistribution and therapeutic efficacy was assessed using a xenograft renal cancer mouse model (MRI-H-121 xenograft) upon administration of the different plitidepsin formulations at maximum tolerated multiple doses (0.20 and 0.25 mg/kg for Cremophor® and copolymer formulations, respectively). High plitidepsin loading efficiencies were obtained for both copolymer formulations. Considering pharmacokinetics, PEG-b-PBLG formulation showed lower plasma clearance, associated with higher AUC and Cmax than Cremophor® or PTMC-b-PGA formulations. Additionally, the PEG-b-PBLG formulation presented lower liver and kidney accumulation compared with the other two formulations, associated with an equivalent tumor distribution. Regarding the anticancer activity, all formulations elicited similar efficacy profiles, as compared to the Cremophor® formulation, successfully reducing tumor growth rate. Although the nanoparticle formulations present equivalent anticancer activity, compared to the Cremophor® formulation, they show improved biodistribution profiles, presenting novel tools for future plitidepsin-based therapies.

  7. Potent efficacy signals from systemically administered oncolytic herpes simplex virus (HSV1716) in hepatocellular carcinoma xenograft models.

    PubMed

    Braidwood, Lynne; Learmonth, Kirsty; Graham, Alex; Conner, Joe

    2014-01-01

    Oncolytic herpes simplex virus (HSV1716), lacking the neurovirulence factor ICP34.5, has highly selective replication competence for cancer cells and has been used in clinical studies of glioma, melanoma, head and neck squamous cell carcinoma, pediatric non-central nervous system solid tumors, and malignant pleural mesothelioma. To date, 88 patients have received HSV1716 and the virus is well tolerated, with selective replication in tumor cells and no spread to surrounding normal tissue. We assessed the potential value of HSV1716 in preclinical studies with two human hepatocellular carcinoma cell lines, HuH7 and HepG2-luc. HSV1716 displayed excellent replication kinetics in vitro in HepG2-luc cells, a cell line engineered to express luciferase, and virus-mediated cell killing correlated with loss of light emissions from the cells. In vivo, the HepG2-luc cells readily formed light-emitting xenografts that were easily visualized by an in vivo imaging system and efficiently eliminated by HSV1716 oncolysis after intratumoral injection. HSV1716 also demonstrated strong efficacy signals in subcutaneous HuH7 xenografts in nude mice after intravenous administration of virus. In the HuH7 model, the intravenously injected virus replicated prolifically immediately after efficient tumor localization, resulting in highly significant reductions in tumor growth and enhanced survival. Our preclinical results demonstrate excellent tumor uptake of HSV1716, with prolific replication and potent oncolysis. These observations warrant a clinical study of HSV1716 in hepatocellular carcinoma.

  8. Evaluation of 9-cis retinoic acid and mitotane as antitumoral agents in an adrenocortical xenograft model.

    PubMed

    Nagy, Zoltán; Baghy, Kornélia; Hunyadi-Gulyás, Éva; Micsik, Tamás; Nyírő, Gábor; Rácz, Gergely; Butz, Henriett; Perge, Pál; Kovalszky, Ilona; Medzihradszky, Katalin F; Rácz, Károly; Patócs, Attila; Igaz, Peter

    2015-01-01

    The available drug treatment options for adrenocortical carcinoma (ACC) are limited. In our previous studies, the in vitro activity of 9-cis retinoic acid (9-cisRA) on adrenocortical NCI-H295R cells was shown along with its antitumoral effects in a small pilot xenograft study. Our aim was to dissect the antitumoral effects of 9-cisRA on ACC in a large-scale xenograft study involving mitotane, 9-cisRA and their combination. 43 male SCID mice inoculated with NCI-H295R cells were treated in four groups (i. control, ii. 9-cisRA, iii. mitotane, iv. 9-cisRA + mitotane) for 28 days. Tumor size follow-up, histological and immunohistochemical (Ki-67) analysis, tissue gene expression microarray, quantitative real-time-PCR for the validation of microarray results and to detect circulating microRNAs were performed. Protein expression was studied by proteomics and Western-blot validation. Only mitotane alone and the combination of 9-cisRA and mitotane resulted in significant tumor size reduction. The Ki-67 index was significantly reduced in both 9-cisRA and 9-cisRA+mitotane groups. Only modest changes at the mRNA level were found: the 9-cisRA-induced overexpression of apolipoprotein A4 and down-regulation of phosphodiesterase 4A was validated. The expression of circulating hsa-miR-483-5p was significantly reduced in the combined treatment group. The SET protein was validated as being significantly down-regulated in the combined mitotane+9-cisRA group. 9-cisRA might be a helpful additive agent in the treatment of ACC in combination with mitotane. Circulating hsa-miR-483-5p could be utilized for monitoring the treatment efficacy in ACC patients, and the treatment-induced reduction in protein SET expression might raise its relevance in ACC biology.

  9. Evaluation of 9-cis retinoic acid and mitotane as antitumoral agents in an adrenocortical xenograft model

    PubMed Central

    Nagy, Zoltán; Baghy, Kornélia; Hunyadi-Gulyás, Éva; Micsik, Tamás; Nyírő, Gábor; Rácz, Gergely; Butz, Henriett; Perge, Pál; Kovalszky, Ilona; Medzihradszky, Katalin F; Rácz, Károly; Patócs, Attila; Igaz, Peter

    2015-01-01

    The available drug treatment options for adrenocortical carcinoma (ACC) are limited. In our previous studies, the in vitro activity of 9-cis retinoic acid (9-cisRA) on adrenocortical NCI-H295R cells was shown along with its antitumoral effects in a small pilot xenograft study. Our aim was to dissect the antitumoral effects of 9-cisRA on ACC in a large-scale xenograft study involving mitotane, 9-cisRA and their combination. 43 male SCID mice inoculated with NCI-H295R cells were treated in four groups (i. control, ii. 9-cisRA, iii. mitotane, iv. 9-cisRA + mitotane) for 28 days. Tumor size follow-up, histological and immunohistochemical (Ki-67) analysis, tissue gene expression microarray, quantitative real-time-PCR for the validation of microarray results and to detect circulating microRNAs were performed. Protein expression was studied by proteomics and Western-blot validation. Only mitotane alone and the combination of 9-cisRA and mitotane resulted in significant tumor size reduction. The Ki-67 index was significantly reduced in both 9-cisRA and 9-cisRA+mitotane groups. Only modest changes at the mRNA level were found: the 9-cisRA-induced overexpression of apolipoprotein A4 and down-regulation of phosphodiesterase 4A was validated. The expression of circulating hsa-miR-483-5p was significantly reduced in the combined treatment group. The SET protein was validated as being significantly down-regulated in the combined mitotane+9-cisRA group. 9-cisRA might be a helpful additive agent in the treatment of ACC in combination with mitotane. Circulating hsa-miR-483-5p could be utilized for monitoring the treatment efficacy in ACC patients, and the treatment-induced reduction in protein SET expression might raise its relevance in ACC biology. PMID:26885453

  10. Comparative analysis of microRNA expression profiles between A549, A549/DDP and their respective exosomes.

    PubMed

    Qin, Xiaobing; Yu, Shaorong; Xu, Xiaoyue; Shen, Bo; Feng, Jifeng

    2017-06-27

    Exosomes were reported to transport bioactive molecules and influence the biology behavior of recipient cells. In order to study the role of exosomal microRNAs in the mechanism of cisplatin resistance to lung cancer cells, we analyzed the expression profiles of microRNAs in A549, A549/DDP cells and their exosomes by microarray. The results showed that a certain proportion of microRNAs were co-expressed in the cells and exosomes. Linear regression analysis showed that the expression of microRNAs in A549 and A549/DDP cells were strongly correlated with those in their respective exosomes. The expression level of 5 microRNAs (miR-197-5p, miR-4443, miR-642a-3p, miR-27b-3p and miR-100-5p) with the most differential expression were verified by qRT-PCR. The results were consistent with those of the microarray. Target gene prediction and pathway analysis discovered that the microRNAs in the intersections may participate in drug resistance. And the prediction of their association with diseases found that most of these microRNAs was associated with lung cancer. We could draw a preliminary conclusion that microRNAs in exosomes may be involved in the drug resistance of lung cancer cells to cisplatin.

  11. Comparative analysis of microRNA expression profiles between A549, A549/DDP and their respective exosomes

    PubMed Central

    Xu, Xiaoyue; Shen, Bo; Feng, Jifeng

    2017-01-01

    Exosomes were reported to transport bioactive molecules and influence the biology behavior of recipient cells. In order to study the role of exosomal microRNAs in the mechanism of cisplatin resistance to lung cancer cells, we analyzed the expression profiles of microRNAs in A549, A549/DDP cells and their exosomes by microarray. The results showed that a certain proportion of microRNAs were co-expressed in the cells and exosomes. Linear regression analysis showed that the expression of microRNAs in A549 and A549/DDP cells were strongly correlated with those in their respective exosomes. The expression level of 5 microRNAs (miR-197-5p, miR-4443, miR-642a-3p, miR-27b-3p and miR-100-5p) with the most differential expression were verified by qRT-PCR. The results were consistent with those of the microarray. Target gene prediction and pathway analysis discovered that the microRNAs in the intersections may participate in drug resistance. And the prediction of their association with diseases found that most of these microRNAs was associated with lung cancer. We could draw a preliminary conclusion that microRNAs in exosomes may be involved in the drug resistance of lung cancer cells to cisplatin. PMID:28178672

  12. Whole Exome Sequencing of Rapid Autopsy Tumors and Xenograft Models Reveals Possible Driver Mutations Underlying Tumor Progression

    PubMed Central

    Xie, Tao; Musteanu, Monica; Lopez-Casas, Pedro P.; Shields, David J.; Olson, Peter; Rejto, Paul A.; Hidalgo, Manuel

    2015-01-01

    Pancreatic Ductal Adenocarcinoma (PDAC) is a highly lethal malignancy due to its propensity to invade and rapidly metastasize and remains very difficult to manage clinically. One major hindrance towards a better understanding of PDAC is the lack of molecular data sets and models representative of end stage disease. Moreover, it remains unclear how molecularly similar patient-derived xenograft (PDX) models are to the primary tumor from which they were derived. To identify potential molecular drivers in metastatic pancreatic cancer progression, we obtained matched primary tumor, metastases and normal (peripheral blood) samples under a rapid autopsy program and performed whole exome sequencing (WES) on tumor as well as normal samples. PDX models were also generated, sequenced and compared to tumors. Across the matched data sets generated for three patients, there were on average approximately 160 single-nucleotide mutations in each sample. The majority of mutations in each patient were shared among the primary and metastatic samples and, importantly, were largely retained in the xenograft models. Based on the mutation prevalence in the primary and metastatic sites, we proposed possible clonal evolution patterns marked by functional mutations affecting cancer genes such as KRAS, TP53 and SMAD4 that may play an important role in tumor initiation, progression and metastasis. These results add to our understanding of pancreatic tumor biology, and demonstrate that PDX models derived from advanced or end-stage likely closely approximate the genetics of the disease in the clinic and thus represent a biologically and clinically relevant pre-clinical platform that may enable the development of effective targeted therapies for PDAC. PMID:26555578

  13. Comparative proteomic analysis of paclitaxel sensitive A549 lung adenocarcinoma cell line and its resistant counterpart A549-Taxol.

    PubMed

    Sun, Qiang-Ling; Sha, Hui-Fang; Yang, Xiao-Hua; Bao, Guo-Liang; Lu, Jing; Xie, Yin-Yin

    2011-03-01

    Paclitaxel is used as the first-line chemotherapy for Non-Small Cell Lung Cancer (NSCLC), but acquired resistance becomes a critical problem. Several mechanisms have been proposed in paclitaxel resistance, but they are not sufficient to exhaustively explain this resistance emergence. To better investigate molecular resistance mechanisms, a comparative proteomic approach was carried out to identify differentially expressed proteins between human lung adenocarcinoma A549 cell line (paclitaxel sensitive) and A549-Taxol cell line (acquired resistant). A paclitaxel-resistant subline (A549-Taxol) derived from the parental-sensitive cell line A549 was established by stepwise selection by paclitaxel. Total proteins in the two cell lines were separated by fluorescent differential gel electrophoresis (DIGE). Image analysis was carried out with the DeCyder 2D 6.5 software. Proteins associated with chemoresistance process were identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS). Some key molecules were valuated by Western blot. Thirty proteins were identified and grouped into eight main functional classes according to the biological processes in which they are likely to participate, i.e. signal transduction, cytoskeleton, redox reaction, energy and metabolism, and so on. Alterations of these processes might be involved in paclitaxel resistance. Most of the proteins showed mitochondrial and cytoplasm location. The up-regulation of CK8, CK18, ALDH1, CAST and ANX I in A549-Taxol cell line was verified by Western blot, in coincidence with the data obtained from proteomic analysis. For the first time, differentially expressed proteins between paclitaxel-sensitive cell line and paclitaxel-resistant one were explored by comparative proteomic approach in human lung adenocarcinoma. It may be useful for further studying of resistance mechanisms and screening of resistance biomarkers, so as to develop tailored therapeutic

  14. The metastasis suppressor KISS1 lacks antimetastatic activity in the C8161.9 xenograft model of melanoma.

    PubMed

    Navenot, Jean-Marc; Evans, Barry; Oishi, Shinya; Setsuda, Shohei; Fujii, Nobutaka; Peiper, Stephen C

    2012-04-01

    The objective of this study was to use the established xenograft model of human melanoma (C8161.9) to test a pharmacological approach to the effect of the metastasis suppressor KISS1. A KISS1 analog was used to inhibit the metastatic development of C8161.9 cells in nude mice. Further experiments were performed to test the validity of the C8161.9 model and test the connection between KISS1 expression and loss of metastatic potential. New clones of C8161.9 cells were obtained, with or without KISS1 expression, and were tested for metastasis formation. The absence of benefit in survival with the KISS1 analog compared with PBS prompted us to revisit the C8161.9 model. We found that the cells expressing KISS1, used in the previous study and obtained by transfection and single-cell cloning, were defective for both formation of orthotopic tumors and metastases. In mixing experiments, these cells could not suppress orthotopic tumor growth of KISS1-negative C8161.9 cells, suggesting that the suppression of metastasis by C8161.9-KISS1 cells may be intrinsic to the selected clone rather than related to KISS1 expression. Isolation of clones from parental C8161.9 cells in soft agar yielded cell populations that phenotypically and genotypically mimicked the KISS1-positive clone. In addition, new clones expressing KISS1 did not show any decrease in metastatic growth. These data demonstrate the heterogeneity of cell types in the C8161.9 cell line and the high risk of artifact linked to single-cell selection. A different xenograft model will be necessary to evaluate the use of KISS1 analogs as antimetastatic therapy.

  15. Celecoxib enhanced the cytotoxic effect of cisplatin in chemo-resistant gastric cancer xenograft mouse models through a cyclooxygenase-2-dependent manner.

    PubMed

    Xu, Hong-Bin; Shen, Fu-Ming; Lv, Qian-Zhou

    2016-04-05

    Our previous study suggested that co-administration of celecoxib increased chemo-sensitivity of multidrug-resistant human gastric cancer SGC-7901/DDP cells to cisplatin (DDP) in vitro. The present study was designed to investigate whether celecoxib had the similar activities in vivo. SGC-7901/DDP and SGC-7901 xenograft mouse models were established. At the end of the experiment, cisplatin treatment alone significantly inhibited tumor growth in SGC-7901 xenograft, as compared with that in SGC-7901/DDP xenograft, suggesting that it maintained cisplatin sensitivity. When cisplatin and celecoxib were co-administrated, their antitumor activities were augmented in SGC-7901/DDP xenograft. The levels of Ki67 and PCNA after combination therapy were significantly decreased in SGC-7901/DDP xenograft, as compared with those of cisplatin treatment alone. Moreover, examining the apoptotic index by TUNEL assay showed similar results. Further studies demonstrated the inhibitory effect of celecoxib on cyclooxygenase-2 and P-glycoprotein expression was the possible reason to increase sensitivity of SGC-7901/DDP cells to cisplatin in vivo. However, the ratio of thromboxane B2 and prostaglandin F1α was elevated after celecoxib treatment in mice. This has been proposed to increase the risk of thrombogenesis. Further studies are required to evaluate the efficacy and safety of celecoxib for reducing chemo-resistance in gastric cancer.

  16. Pre-Clinical Study of Panobinostat in Xenograft and Genetically Engineered Murine Diffuse Intrinsic Pontine Glioma Models

    PubMed Central

    Olaciregui, Nagore G.; Barton, Kelly L.; Ehteda, Anahid; Chitranjan, Arjanna; Chang, Cecilia; Gifford, Andrew J.; Tsoli, Maria; Ziegler, David S.; Carcaboso, Angel M.; Becher, Oren J.

    2017-01-01

    Background Diffuse intrinsic pontine glioma (DIPG), or high-grade brainstem glioma (BSG), is one of the major causes of brain tumor-related deaths in children. Its prognosis has remained poor despite numerous efforts to improve survival. Panobinostat, a histone deacetylase inhibitor, is a targeted agent that has recently shown pre-clinical efficacy and entered a phase I clinical trial for the treatment of children with recurrent or progressive DIPG. Methods A collaborative pre-clinical study was conducted using both a genetic BSG mouse model driven by PDGF-B signaling, p53 loss, and ectopic H3.3-K27M or H3.3-WT expression and an H3.3-K27M orthotopic DIPG xenograft model to confirm and extend previously published findings regarding the efficacy of panobinostat in vitro and in vivo. Results In vitro, panobinostat potently inhibited cell proliferation, viability, and clonogenicity and induced apoptosis of human and murine DIPG cells. In vivo analyses of tissue after short-term systemic administration of panobinostat to genetically engineered tumor-bearing mice indicated that the drug reached brainstem tumor tissue to a greater extent than normal brain tissue, reduced proliferation of tumor cells and increased levels of H3 acetylation, demonstrating target inhibition. Extended consecutive daily treatment of both genetic and orthotopic xenograft models with 10 or 20 mg/kg panobinostat consistently led to significant toxicity. Reduced, well-tolerated doses of panobinostat, however, did not prolong overall survival compared to vehicle-treated mice. Conclusion Our collaborative pre-clinical study confirms that panobinostat is an effective targeted agent against DIPG human and murine tumor cells in vitro and in short-term in vivo efficacy studies in mice but does not significantly impact survival of mice bearing H3.3-K27M-mutant tumors. We suggest this may be due to toxicity associated with systemic administration of panobinostat that necessitated dose de-escalation. PMID

  17. Artesunate induces AIF-dependent apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Zhou, Chen-juan; Chen, Tong-Sheng

    2012-03-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  18. TLE1 promotes EMT in A549 lung cancer cells through suppression of E-cadherin.

    PubMed

    Yao, Xin; Ireland, Shubha Kale; Pham, Tri; Temple, Brandi; Chen, Renwei; Raj, Madhwa H G; Biliran, Hector

    2014-12-12

    The Groucho transcriptional corepressor TLE1 protein has recently been shown to be a putative lung specific oncogene, but its underlying oncogenic activity in lung cancer has not been fully elucidated. In this report, we investigated whether TLE1 regulates lung cancer aggressiveness using the human lung adenocarcinoma cell line A549 as a model system. Through a combination of genetic approaches, we found that TLE1 potentiates epithelial-to-mesenchymal transition (EMT) in A549 cells in part through suppression of the tumor suppressor gene E-cadherin. Exogenous expression of TLE1 in A549 cells resulted in heightened EMT phenotypes (enhanced fibroblastoid morphology and increased cell migratory potential) and in molecular alterations characteristic of EMT (downregulation of the epithelial marker E-cadherin and upregulation of the mesenchymal marker Vimentin). Conversely, downregulation of endogenous TLE1 expression in these cells resulted in reversal of basal EMT characterized by a cuboidal-like epithelial cell phenotype, reduced cell motility, and upregulated E-cadherin expression. Mechanistic studies showed that TLE1 suppresses E-cadherin expression at the transcriptional level in part by recruiting histone deacetylase (HDAC) activity to the E-cadherin promoter. Consistently, the HDAC inhibitor TSA partially reversed the TLE1-induced E-cadherin downregulation and cell migration, suggesting a role for HDACs in TLE1-mediated transcriptional repression of E-cadherin and EMT function. These findings uncover a novel role of TLE1 in regulating EMT in A549 cells through its repressive effect on E-cadherin and provide a mechanism for TLE1 oncogenic activity in lung cancer.

  19. The common anesthetic, sevoflurane, induces apoptosis in A549 lung alveolar epithelial cells.

    PubMed

    Wei, Gui-Hua; Zhang, Juan; Liao, Da-Qing; Li, Zhuo; Yang, Jing; Luo, Nan-Fu; Gu, Yan

    2014-01-01

    Lung alveolar epithelial cells are the first barrier exposed to volatile anesthetics, such as sevoflurane, prior to reaching the targeted neuronal cells. Previously, the effects of volatile anesthetics on lung surfactant were studied primarily with physicochemical models and there has been little experimental data from cell cultures. Therefore it was investigated whether sevoflurane induces apoptosis of A549 lung epithelial cells. A549 cells were exposed to sevoflurane via a calibrated vaporizer with a 2 l/min flow in a gas‑tight chamber at 37˚C. The concentration of sevoflurane in Dulbecco's modified Eagle's medium was detected with gas chromatography. Untreated cells and cells treated with 2 µM daunorubicin hydrochloride (DRB) were used as negative and positive controls, respectively. Apoptosis factors, including the level of ATP, apoptotic‑bodies by terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling (TUNEL) assay, DNA damage and the level of caspase 3/7 were analyzed. Cells treated with sevoflurane showed a significant reduction in ATP compared with untreated cells. Effects in the DRB group were greater than in the sevoflurane group. The difference of TUNEL staining between the sevoflurane and untreated groups was statistically significant. DNA degradation was observed in the sevoflurane and DRB groups, however this was not observed in the untreated group. The sevoflurane and DRB groups induced increased caspase 3/7 activation compared with untreated cells. These results suggest that sevoflurane induces apoptosis in A549 cells. In conclusion, 5% sevoflurane induced apoptosis of A549 lung alveolar epithelial cells, which resulted in decreased cell viability, increased apoptotic bodies, impaired DNA integrality and increased levels of caspase 3/7.

  20. Lipocortin 1 mediates dexamethasone-induced growth arrest of the A549 lung adenocarcinoma cell line.

    PubMed Central

    Croxtall, J D; Flower, R J

    1992-01-01

    The synthetic glucocorticoid dexamethasone (1 microM to 1 pM) strongly (maximum greater than 80%) inhibits proliferation of the A549 human lung adenocarcinoma line (EC50 greater than 1 nM) and leads to the appearance, or a further increase (approximately 3-fold) in the expression on the cell surface, of the calcium and phospholipid binding protein lipocortin (annexin) 1. Both these effects, which are shared by hydrocortisone (1 microM) but not by progesterone or aldosterone (1 microM), are inhibited by the antiglucocorticoids RU38486 and RU43044 (1 microM). The nonsteroidal antiinflammatory drugs indomethacin (1 microM) and naproxen (10 microM) and human recombinant lipocortin 1 (0.05-5.0 micrograms/ml) also produce growth arrest in this cell line. During proliferation A549 cells spontaneously release prostaglandin E2 [10-20 ng (28-57 pmol) per ml per 5-day period] into the growth medium. In concentrations that cause growth-arrest, dexamethasone, indomethacin, and lipocortin 1 abolish the generation of this eicosanoid by A549 cells. Prostaglandin E2 itself (0.01-1 pM) stimulates cell growth and partially reverses (approximately 50%) the inhibition of growth caused by dexamethasone and indomethacin. Addition of the neutralizing anti-lipocortin 1 monoclonal antibody 1A (5 micrograms/ml), but not the nonneutralizing anti-lipocortin monoclonal antibody 1B, substantially reversed (greater than 80%) the inhibitory activity of dexamethasone on both growth and prostaglandin E2 synthesis. The generation of prostaglandin E2 by A549 cells seems to be an important regulator of cell proliferation in vitro and the dexamethasone-induced suppression of proliferation in this model is attributable to eicosanoid inhibition caused by lipocortin 1. Images PMID:1533045

  1. Seminal Plasma Promotes Lesion Development in a Xenograft Model of Endometriosis.

    PubMed

    McGuane, Jonathan T; Watson, Katherine M; Zhang, Jamie; Johan, M Zahied; Wang, Zhao; Kuo, Gabriel; Sharkey, David J; Robertson, Sarah A; Hull, M Louise

    2015-05-01

    The factors that predispose one-tenth of reproductive-aged women to endometriosis are poorly understood. We determined that genetic deficiency in transforming growth factor β1 impairs endometriosis-like lesion growth in mice. Given that seminal plasma is an abundant source of transforming growth factor β, we evaluated the effect of exposure to seminal plasma on the growth of endometrial lesions. Human endometrial explants were exposed to seminal plasma or to control medium before transfer to Prkdc(scid)-mutant (severe combined immunodeficient) mice. Xenografts exposed to seminal plasma showed an eightfold increase in volume and a 4.3-fold increase in weight after 14 days. These increases were associated with increased proliferation of endometrial epithelial cells and enhanced survival and proliferation of human stromal cells compared with those in control lesions, in which human stromal cell persistence was negligible. Although the distribution of macrophages was altered, their number and activation status did not change in response to seminal plasma. Seminal plasma stimulated the production of a variety of cytokines in endometrial tissue, including growth-regulated oncogene, granulocyte macrophage colony-stimulating factor, and IL-1β. These data suggest that seminal plasma enhances the formation of endometriosis-like lesion via a direct effect on endometrial cell survival and proliferation, rather than via macrophage-mediated mechanisms. These findings raise the possibility that endometrial exposure to seminal plasma could contribute to endometriotic disease progression in women.

  2. A Novel Synthetic Smoothened Antagonist Transiently Inhibits Pancreatic Adenocarcinoma Xenografts in a Mouse Model

    PubMed Central

    Strand, Martin F.; Wilson, Steven R.; Dembinski, Jennifer L.; Holsworth, Daniel D.; Khvat, Alexander; Okun, Ilya; Petersen, Dirk; Krauss, Stefan

    2011-01-01

    Background Hedgehog (Hh) signaling is over-activated in several solid tumors where it plays a central role in cell growth, stroma recruitment and tumor progression. In the Hh signaling pathway, the Smoothened (SMO) receptor comprises a primary drug target with experimental small molecule SMO antagonists currently being evaluated in clinical trials. Principal Findings Using Shh-Light II (Shh-L2) and alkaline phosphatase (AP) based screening formats on a “focused diversity” library we identified a novel small molecule inhibitor of the Hh pathway, MS-0022 (2-bromo-N-(4-(8-methylimidazo[1,2-a]pyridin-2-yl)phenyl)benzamide). MS-0022 showed effective Hh signaling pathway inhibition at the level of SMO in the low nM range, and Hh pathway inhibition downstream of Suppressor of fused (SUFU) in the low µM range. MS-0022 reduced growth in the tumor cell lines PANC-1, SUIT-2, PC-3 and FEMX in vitro. MS-0022 treatment led to a transient delay of tumor growth that correlated with a reduction of stromal Gli1 levels in SUIT-2 xenografts in vivo. Significance We document the in vitro and in vivo efficacy and bioavailability of a novel small molecule SMO antagonist, MS-0022. Although MS-0022 primarily interferes with Hh signaling at the level of SMO, it also has a downstream inhibitory effect and leads to a stronger reduction of growth in several tumor cell lines when compared to related SMO antagonists. PMID:21698280

  3. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model

    PubMed Central

    Parajuli, Keshab Raj; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2016-01-01

    Aminomethylphosphonic acid (AMPA) has been shown to inhibit prostate cancer cell growth in vitro. The purpose of the present study was to determine if AMPA could inhibit growth and metastasis of prostate cancer in vivo. Human prostate cancer PC-3-LacZ-luciferase cells were implanted into the ventral lateral lobes of the prostate in 39 athymic Nu/Nu nude male mice. Seven days later, mice were randomized into the control group (n = 14, treated intraperitoneally with phosphate buffered saline), low dose group (n = 10, treated intraperitoneally with AMPA at 400 mg/kg body weight/day), and high dose group (n = 15, treated intraperitoneally with AMPA at 800 mg/kg body weight/day). Tumor growth and metastasis were examined every 4-7 days by bioluminescence imaging of live mice. We found that AMPA treatment significantly inhibited growth and metastasis of orthotopic xenograft prostate tumors and prolonged the survival time of the mice. AMPA treatment decreased expression of BIRC2 and activated caspase 3, leading to increased apoptosis in the prostate tumors. AMPA treatment decreased expression of cyclin D1. AMPA treatment also reduced angiogenesis in the prostate tumors. Taken together, these results demonstrate that AMPA can inhibit prostate cancer growth and metastasis, suggesting that AMPA may be developed into a therapeutic agent for the treatment of prostate cancer. PMID:26840261

  4. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model.

    PubMed

    Parajuli, Keshab Raj; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2016-03-01

    Aminomethylphosphonic acid (AMPA) has been shown to inhibit prostate cancer cell growth in vitro. The purpose of the present study was to determine if AMPA could inhibit growth and metastasis of prostate cancer in vivo. Human prostate cancer PC-3-LacZ-luciferase cells were implanted into the ventral lateral lobes of the prostate in 39 athymic Nu/Nu nude male mice. Seven days later, mice were randomized into the control group (n = 14, treated intraperitoneally with phosphate buffered saline), low dose group (n = 10, treated intraperitoneally with AMPA at 400 mg/kg body weight/day), and high dose group (n = 15, treated intraperitoneally with AMPA at 800 mg/kg body weight/day). Tumor growth and metastasis were examined every 4-7 days by bioluminescence imaging of live mice. We found that AMPA treatment significantly inhibited growth and metastasis of orthotopic xenograft prostate tumors and prolonged the survival time of the mice. AMPA treatment decreased expression of BIRC2 and activated caspase 3, leading to increased apoptosis in the prostate tumors. AMPA treatment decreased expression of cyclin D1. AMPA treatment also reduced angiogenesis in the prostate tumors. Taken together, these results demonstrate that AMPA can inhibit prostate cancer growth and metastasis, suggesting that AMPA may be developed into a therapeutic agent for the treatment of prostate cancer.

  5. Prolonged cardiac xenograft survival in guinea pig-to-rat model by a highly active cobra venom factor.

    PubMed

    Sun, Qian-Yun; Chen, Gang; Guo, Hui; Chen, Shi; Wang, Wan-Yu; Xiong, Yu-Liang

    2003-09-01

    A highly active cobra venom factor (CVF) was isolated from the venom of Naja kaouthia by sequential column chromatography. It displays strong anticomplementary activity, and has 1515 U of anticomplementary activity per mg protein. A single dose of 0.1 mg/kg CVF given i.v. to rats completely abrogated complement activity for nearly 5 days. Given 0.02 mg/kg of CVF, the complement activity of rats was reduced by more than 96.5% in 6 h. In guinea pig-to-rat heart transplant model, rats treated with a single dose of 0.05 mg/kg CVF had significantly prolonged xenograft survival (56.12+/-6.27 h in CVF-treated rats vs. 0.19+/-0.07 h in control rats, P<0.001).

  6. Inhibition of MDM2 by RG7388 confers hypersensitivity to X-radiation in xenograft models of childhood sarcoma.

    PubMed

    Phelps, Doris; Bondra, Kathryn; Seum, Star; Chronowski, Christopher; Leasure, Justin; Kurmasheva, Raushan T; Middleton, Steven; Wang, Dian; Mo, Xiaokui; Houghton, Peter J

    2015-08-01

    Curative therapy for childhood sarcoma presents challenges when complete resection is not possible. Ionizing radiation (XRT) is used as a standard modality at diagnosis or recurrence for childhood sarcoma; however, local recurrence is still problematic. Most childhood sarcomas are TP53 wild type at diagnosis, although approximately 5-10% have MDM2 amplification or overexpression. The MDM2 inhibitor, RG7388, was examined alone or in combination with XRT (20Gy given in 2 Gy daily fractions) to immune-deficient mice bearing Rh18 (embryonal) or a total of 30 Gy in 2 Gy fractions to mice bearing Rh30 (alveolar) rhabdomyosarcoma xenografts. RG7388 was administered by oral gavage using two schedules (daily ×5; schedule 1 or once weekly; schedule 2). TP53-responsive gene products (p21, PUMA, DDB2, and MIC1) as well as markers of apoptosis were analyzed. RG7388 showed no significant single agent antitumor activity. Twenty Grays XRT induced complete regressions (CR) of Rh18 with 100 percent tumor regrowth by week 7, but no tumor regrowth at 20 weeks when combined with RG7388. RG7388 enhanced time to recurrence combined with XRT in Rh30 xenografts compared to 30 Gy XRT alone. RG7388 did not enhance XRT-induced local skin toxicity. Combination treatments induced TP53 responsive genes more rapidly and to a greater magnitude than single agent treatments. RG7388 enhanced the activity of XRT in both rhabdomyosarcoma models without increasing local XRT-induced skin toxicity. Changes in TP53-responsive genes were consistent with the synergistic activity of RG7388 and XRT in the Rh18 model. © 2015 Wiley Periodicals, Inc.

  7. Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers.

    PubMed

    Bradford, James R; Wappett, Mark; Beran, Garry; Logie, Armelle; Delpuech, Oona; Brown, Henry; Boros, Joanna; Camp, Nicola J; McEwen, Robert; Mazzola, Anne Marie; D'Cruz, Celina; Barry, Simon T

    2016-04-12

    The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX).Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment.In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery.

  8. Local delivery of cannabinoid-loaded microparticles inhibits tumor growth in a murine xenograft model of glioblastoma multiforme.

    PubMed

    Hernán Pérez de la Ossa, Dolores; Lorente, Mar; Gil-Alegre, Maria Esther; Torres, Sofía; García-Taboada, Elena; Aberturas, María Del Rosario; Molpeceres, Jesús; Velasco, Guillermo; Torres-Suárez, Ana Isabel

    2013-01-01

    Cannabinoids, the active components of marijuana and their derivatives, are currently investigated due to their potential therapeutic application for the management of many different diseases, including cancer. Specifically, Δ(9)-Tetrahydrocannabinol (THC) and Cannabidiol (CBD) - the two major ingredients of marijuana - have been shown to inhibit tumor growth in a number of animal models of cancer, including glioma. Although there are several pharmaceutical preparations that permit the oral administration of THC or its analogue nabilone or the oromucosal delivery of a THC- and CBD-enriched cannabis extract, the systemic administration of cannabinoids has several limitations in part derived from the high lipophilicity exhibited by these compounds. In this work we analyzed CBD- and THC-loaded poly-ε-caprolactone microparticles as an alternative delivery system for long-term cannabinoid administration in a murine xenograft model of glioma. In vitro characterization of THC- and CBD-loaded microparticles showed that this method of microencapsulation facilitates a sustained release of the two cannabinoids for several days. Local administration of THC-, CBD- or a mixture (1:1 w:w) of THC- and CBD-loaded microparticles every 5 days to mice bearing glioma xenografts reduced tumour growth with the same efficacy than a daily local administration of the equivalent amount of those cannabinoids in solution. Moreover, treatment with cannabinoid-loaded microparticles enhanced apoptosis and decreased cell proliferation and angiogenesis in these tumours. Our findings support that THC- and CBD-loaded microparticles could be used as an alternative method of cannabinoid delivery in anticancer therapies.

  9. Morphine modulates doxorubicin uptake and improves efficacy of chemotherapy in an intracranial xenograft model of human glioblastoma

    PubMed Central

    da Ros, Martina; Iorio, Anna Lisa; Consolante, Dario; Cardile, Francesco; Muratori, Monica; Fantappiè, Ornella; Lucchesi, Maurizio; Guidi, Milena; Pisano, Claudio; Sardi, Iacopo

    2016-01-01

    Morphine may alter the permeability of Blood-Brain Barrier (BBB), enhancing the access of molecules normally unable to cross it, as Doxorubicin (Dox). In addition, morphine seems to mediate the uptake of Dox into the brain by its reduced efflux mediated by P-glycoprotein (P-gp). We evaluated the antitumor efficacy of Dox plus morphine treatment by an orthotopic glioblastoma xenograft model. Foxn1 mice were injected with U87MG-luc cells in the left lobe of the brain and treated with Dox (5 mg/kg and 2.5 mg/kg, weekly) with or without morphine pretreatment (10 mg/kg, weekly). Bioluminescence imaging (BLI) was used to monitoring tumor growth and response to therapy. Additionally, we investigated the role of morphine on the uptake of Dox by MDCKII cells transfected with human MDR1 gene encoding for P-gp. The data demonstrate that only Dox 5 mg/kg determined a significant tumor regression while the lower dose (2.5 mg/kg) was not effective. However, if combined with morphine, the group treated with Dox 2.5 mg/kg showed a decreasing tumor growth. The average BLI for Dox 2.5 mg/kg plus morphine was 5 fold lower than Dox 2.5 mg/kg alone (P=0.0053) and 8 fold lower than vehicle (P=0.0004). Additionally, Dox increased in MDCKII-P-gp transfected cells only in the presence of morphine with a significantly higher level comparing control group (3.84) vs Dox plus morphine group (12.29, P<0.05). Our results indicate that Dox alone and in combination with morphine appear to be effective in controlling the growth of glioblastoma in a xenograft mouse model. PMID:27152241

  10. Effect of Isocaloric Low-Fat Diet on Prostate Cancer Xenograft Progression in a Hormone-Deprivation Model

    PubMed Central

    Lloyd, Jessica C.; Antonelli, Jodi; Thomas, Jean-Alfred; Phillips, Tameika E.; Poulton, Susan H. M.; Freedland, Stephen J.

    2013-01-01

    Purpose Previous mouse studies suggesting that low-fat diets slow prostate cancer (PCa) growth often used corn oil (ω-6), which enhances PCa growth, as their primary fat. Alternatively, using a saturated-fat-based diet, we previously found no significant difference in tumor growth between low-fat- and high-fat-fed SCID mice xenografted with LAPC-4 cells. Whether similar results would hold in a castration model is unclear. Materials and Methods A total of 80 male SCID mice were fed a Western diet (40% fat, 44% carbohydrate) and injected with LAPC-4 human PCa cells. When tumors reached 200mm3, mice were castrated and randomized to either an isocaloric Western or low-fat diet (12% fat, 72% carbohydrate). Animals were euthanized when tumors reached 1,000mm3. Serum was collected and assayed for PSA, insulin, IGF-1, and IGFBP-3. Tumors were assayed for total- and phosphorylated-Akt levels. Results Mice weights were equivalent across groups. Overall, dietary group was not significantly associated with survival (log-rank, p=0.32). There were no statistically-significant differences in PSA (p=0.53), IGF-axis parameters (all p>0.05), or p-Akt:t-Akt ratios (p=0.22) between groups at sacrifice. Conclusions In this xenograft model, we found no difference in tumor growth or survival between low-fat- vs. Western-fed mice, when the fat source was saturated fat. Given these results conflict from those when corn oil is used in which low-fat diets have been shown to delay PCa growth, these findings suggest type of fat may be as important as amount of fat in the setting of PCa. PMID:20172549

  11. Sonoporation with Acoustic Cluster Therapy (ACT®) induces transient tumour volume reduction in a subcutaneous xenograft model of pancreatic ductal adenocarcinoma.

    PubMed

    Kotopoulis, Spiros; Stigen, Endre; Popa, Mihaela; Safont, Mireia Mayoral; Healey, Andrew; Kvåle, Svein; Sontum, Per; Gjertsen, Bjørn Tore; Gilja, Odd Helge; McCormack, Emmet

    2017-01-10

    Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers with survival averaging only 3months if untreated following diagnosis. A major limitation in effectively treating PDAC using conventional and targeted chemotherapeutic agents, is inadequate drug delivery to the target location, predominantly due to a poorly vascularised, desmoplastic tumour microenvironment. Ultrasound in combination with ultrasound contrast agents, i.e., microbubbles, that flow through the vasculature and capillaries can be used to disrupt such mechanical barriers, potentially allowing for a greater therapeutic efficacy. This phenomenon is commonly referred to as sonoporation. In an attempt to improve the efficacy of sonoporation, novel microbubble formulations are being developed to address the limitation of commercially produced clinical diagnostic ultrasound contrast agents. In our work here we evaluate the ability of a novel formulation; namely Acoustic Cluster Therapy (ACT®) to improve the therapeutic efficacy of the chemotherapeutic agent paclitaxel, longitudinally in a xenograft model of PDAC. Results indicated that ACT® bubbles alone demonstrated no observable toxic effects, whilst ACT® in combination with paclitaxel can transiently reduce tumour volumes significantly, three days posttreatment (p=0.0347-0.0458). Quantitative 3D ultrasound validated the calliper measurements. Power Doppler ultrasound imaging indicated that ACT® in combination with paclitaxel was able to transiently sustain peak vasculature percentages as observed in the initial stages of tumour development. Nevertheless, there was no significant difference in tumour vasculature percentage at the end of treatment. The high vascular percentage correlated to the transient decrease and overall inhibition of the tumour volumes. In conclusion, ACT® improves the therapeutic efficacy of paclitaxel in a PDAC xenograft model allowing for transient tumour volume reduction and sustained tumour vasculature

  12. Protease inhibitor nafamostat mesilate attenuates complement activation and improves function of xenografts in a discordant lung perfusion model.

    PubMed

    Tagawa, Tsutomu

    2011-01-01

    Anti-complement activity of nafamostat mesilate (FUT-175) is strong including its variety of pharmacological effects. The effect of FUT-175 for xenografts in an ex vivo guinea pig-to-rat lung perfusion model was evaluated. Heparinized Lewis rat blood was used to perfuse the lungs in three groups (n = 6 each). Group I used Lewis rat left lung for donor, Group X used guinea pig left lung for donor, and Group XF used guinea pig left lung for donor, which was perfused with Lewis rat blood with 0.2 mg/ml of FUT-175. Complement activity causing 50% hemolysis (CH50) in the perfusion blood and pulmonary function either before or during perfusion were serially measured. Pathological assessments of the lungs were also carried out after perfusion. The duration of satisfactory pulmonary function was significantly increased in Group XF. Complement activity causing 50% hemolysis in Group XF decreased more significantly compared to Group X. FUT-175 suppressed both the increase in pulmonary arterial pressure and airway resistance, and the decrease in dynamic lung compliance. In Group X, pathology showed intra-alveolar hemorrhage, perivascular edema, and medial thickening with endothelial swelling of the pulmonary arteries. In Group XF, less changes were observed compared to Group X. Group X showed deposition of IgM, IgG, and C3 at the endothelium of arteries, which was fewer in Group XF, and even fewer in Group I. This study suggests that FUT-175 inhibited complement activation and improved lung xenograft function. FUT-175 ameliorates hyperacute rejection in a guinea pig-to-rat ex vivo xenogeneic lung perfusion model. © 2011 John Wiley & Sons A/S.

  13. Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers

    PubMed Central

    Bradford, James R.; Wappett, Mark; Beran, Garry; Logie, Armelle; Delpuech, Oona; Brown, Henry; Boros, Joanna; Camp, Nicola J.; McEwen, Robert; Mazzola, Anne Marie; D'Cruz, Celina; Barry, Simon T.

    2016-01-01

    The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX). Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment. In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery. PMID:26980748

  14. Cell (A549)-particle (Jasada Bhasma) interactions using Raman spectroscopy.

    PubMed

    Pyrgiotakis, G; Bhowmick, T K; Finton, K; Suresh, A K; Kane, S G; Bellare, J R; Moudgil, B M

    2008-06-01

    Current methods for the evaluation of cell interactions with particles are nonspecific, slow, and invasive to the cells. Raman spectroscopy is a noninvasive technique, and is used in the present study to investigate particle-cell interactions. The main focus of the present study is to employ Raman spectroscopy for investigating the interaction of human lung adenocarcinoma cell line (A549) with the particulate system Jasada Bhasma, a traditional Indian medicine. Jasada Bhasma is a unique preparation of zinc and is traditionally used for the treatment of various diseases like diabetes, age-related eye diseases, and as a health promotional tonic. The Raman spectral analysis is executed by identifying the difference in intracellular DNA/RNA, and proteins and lipids concentration between particles--treated and untreated cells. Comparison between Bhasma-treated and -untreated cells indicates that vibrational peaks corresponding to the DNA/RNA molecule show a significant increase in cells treated with the Jasada Bhasma. Apart from the DNA molecule, several other vibrational peaks related to the protein molecules also show a significant increase in A549 cells after treatment with Bhasma. These results indicate that Bhasma treatment of A549 possibly delays DNA degradation and enables retention of higher amount of protein molecules in the cells.

  15. FL118, a novel camptothecin analogue, overcomes irinotecan and topotecan resistance in human tumor xenograft models

    PubMed Central

    Ling, Xiang; Liu, Xiaojun; Zhong, Kai; Smith, Nicholas; Prey, Joshua; Li, Fengzhi

    2015-01-01

    Irinotecan and topotecan are the only camptothecin analogues approved by the FDA for cancer treatment. However, inherent and/or acquired irinotecan and topotecan resistance is a challenging issue in clinical practice. In this report, we showed that FL118, a novel camptothecin analogue, effectively obliterated human xenograft tumors that acquire irinotecan and topotecan resistance. Consistent with this finding, Pharmacokinetics studies indicated that FL118 rapidly clears from circulation, while effectively accumulating in tumors with a long elimination half-life. Consistent with our previous studies on irinotecan, FL118 exhibited ≥25 fold more effectiveness than topotecan at inhibiting cancer cell growth and colony formation; we further showed that although topotecan can inhibit the expression of survivin, Mcl-1, XIAP or cIAP2, its effectiveness is about 10-100 fold weaker than FL118. Lastly, in contrast to both SN-38 (active metabolite of irinotecan) and topotecan are substrates of the efflux pump proteins P-gp/MDR1 and ABCG2/BCRP, FL118 is not a substrate of P-gp and ABCG2. Consistently, sildenafil, a multiple efflux pump inhibitor, sensitized SN-38 much more than these of the ABCG2-selective inhibitor KO143 in growth inhibition of SW620 and HCT-8 cells. In contrast, both inhibitors showed no effect on FL118 efficacy. Given that both P-gp and ABCG2 express in SW620 and HCT-8 cells and FL118 is not a substrate for P-gp and ABCG2, this suggests that FL118 appears to bypass multiple efflux pump protein-induced resistance, which may contribute to FL118 overcoming irinotecan and topotecan resistance in vivo. These new findings provide renewed perspectives for further development of FL118 for clinical applications. PMID:26692923

  16. Both sunitinib and sorafenib are effective treatments for pheochromocytoma in a xenograft model.

    PubMed

    Denorme, M; Yon, L; Roux, C; Gonzalez, B J; Baudin, E; Anouar, Y; Dubessy, C

    2014-10-01

    Pheochromocytomas and paragangliomas are rare neuroendocrine tumors which develop from chromaffin cells of the adrenal medulla and extra-adrenal sites, leading to excess catecholamine release and hypertension. Many of the tumors are characterized by a high vascularity, suggesting the possible implementation of anti-angiogenic therapies for patients. Here, the efficacy of the tyrosine kinase inhibitors sunitinib and sorafenib was investigated in vivo and in vitro. Oral treatment with either sunitinib or sorafenib (40mg/kg/day) for 14days induced a marked reduction in the volume and weight of PC12 pheochromocytoma cell tumor xenografts in mice. Assessment of tumoral neo-angiogenesis, assessed by morphometric analysis of the vascular network after CD31 immunolabeling, showed that both sunitinib and sorafenib reduced the microvessel area (-85% and -80%, respectively) and length (-80% and -78%, respectively) in treated compared to control tumors. In addition, the number of vessel nodes was significantly lower in treated tumors (-95% and -84%, respectively). Furthermore, cleaved caspase 3 immunolabeling revealed a marked increase in the number of apoptotic cells in tumors from treated animals. Sunitinib and sorafenib could exert a direct effect on PC12 cell viability in vitro. While sunitinib induced a rapid (4h) and pronounced (5-fold) increase in caspase-3/7-dependent apoptosis, sorafenib seems to exert its cytotoxic activity through a different mechanism. Altogether, our data demonstrate that sunitinib and sorafenib have the ability to impair pheochromocytoma development by inhibiting angiogenesis and reducing tumor cell viability. These results strongly suggest that both sunitinib and sorafenib could represent valuable therapeutic tools for pheochromocytoma. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Chick embryo xenograft model reveals a novel perineural niche for human adipose-derived stromal cells

    PubMed Central

    Cordeiro, Ingrid R.; Lopes, Daiana V.; Abreu, José G.; Carneiro, Katia; Rossi, Maria I. D.; Brito, José M.

    2015-01-01

    ABSTRACT Human adipose-derived stromal cells (hADSC) are a heterogeneous cell population that contains adult multipotent stem cells. Although it is well established that hADSC have skeletal potential in vivo in adult organisms, in vitro assays suggest further differentiation capacity, such as into glia. Thus, we propose that grafting hADSC into the embryo can provide them with a much more instructive microenvironment, allowing the human cells to adopt diverse fates or niches. Here, hADSC spheroids were grafted into either the presumptive presomitic mesoderm or the first branchial arch (BA1) regions of chick embryos. Cells were identified without previous manipulations via human-specific Alu probes, which allows efficient long-term tracing of heterogeneous primary cultures. When grafted into the trunk, in contrast to previous studies, hADSC were not found in chondrogenic or osteogenic territories up to E8. Surprisingly, 82.5% of the hADSC were associated with HNK1+ tissues, such as peripheral nerves. Human skin fibroblasts showed a smaller tropism for nerves. In line with other studies, hADSC also adopted perivascular locations. When grafted into the presumptive BA1, 74.6% of the cells were in the outflow tract, the final goal of cardiac neural crest cells, and were also associated with peripheral nerves. This is the first study showing that hADSC could adopt a perineural niche in vivo and were able to recognize cues for neural crest cell migration of the host. Therefore, we propose that xenografts of human cells into chick embryos can reveal novel behaviors of heterogeneous cell populations, such as response to migration cues. PMID:26319582

  18. Effect of Melatonin on Tumor Growth and Angiogenesis in Xenograft Model of Breast Cancer

    PubMed Central

    Jardim-Perassi, Bruna Victorasso; Arbab, Ali S.; Ferreira, Lívia Carvalho; Borin, Thaiz Ferraz; Varma, Nadimpalli R. S.; Iskander, A. S. M.; Shankar, Adarsh; Ali, Meser M.; de Campos Zuccari, Debora Aparecida Pires

    2014-01-01

    As neovascularization is essential for tumor growth and metastasis, controlling angiogenesis is a promising tactic in limiting cancer progression. Melatonin has been studied for their inhibitory properties on angiogenesis in cancer. We performed an in vivo study to evaluate the effects of melatonin treatment on angiogenesis in breast cancer. Cell viability was measured by MTT assay after melatonin treatment in triple-negative breast cancer cells (MDA-MB-231). After, cells were implanted in athymic nude mice and treated with melatonin or vehicle daily, administered intraperitoneally 1 hour before turning the room light off. Volume of the tumors was measured weekly with a digital caliper and at the end of treatments animals underwent single photon emission computed tomography (SPECT) with Technetium-99m tagged vascular endothelial growth factor (VEGF) C to detect in vivo angiogenesis. In addition, expression of pro-angiogenic/growth factors in the tumor extracts was evaluated by membrane antibody array and collected tumor tissues were analyzed with histochemical staining. Melatonin in vitro treatment (1 mM) decreased cell viability (p<0.05). The breast cancer xenografts nude mice treated with melatonin showed reduced tumor size and cell proliferation (Ki-67) compared to control animals after 21 days of treatment (p<0.05). Expression of VEGF receptor 2 decreased significantly in the treated animals compared to that of control when determined by immunohistochemistry (p<0.05) but the changes were not significant on SPECT (p>0.05) images. In addition, there was a decrease of micro-vessel density (Von Willebrand Factor) in melatonin treated mice (p<0.05). However, semiquantitative densitometry analysis of membrane array indicated increased expression of epidermal growth factor receptor and insulin-like growth factor 1 in treated tumors compared to vehicle treated tumors (p<0.05). In conclusion, melatonin treatment showed effectiveness in reducing tumor growth and cell

  19. Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer.

    PubMed

    Zhao, Xin; Wang, Qiuting; Yang, Shijun; Chen, Chen; Li, Xiaoya; Liu, Jinyu; Zou, Zhongmei; Cai, Dayong

    2016-06-15

    Vascular endothelial growth factor receptor 2 (VEGFR2) mediated calcineurin/nuclear factor of activated T-cells (NFAT) pathway is crucial in the angiogenesis of human breast cancer. Quercetin (Qu), a flavonoid known to possess anti-angiogenesis and antitumor properties, inhibited calcineurin activity in vitro. Herein, we performed a study in vivo to evaluate the effects of Qu on the angiogenesis in breast cancer. Female BALB/c nude mice were injected with MCF-7 cells into the mammary fat and were randomly divided into four groups. The animals were treated with vehicle solution, tamoxifen (TAM, 5.6mg/kg), tacrolimus (FK506, 3mg/kg), or Qu (34mg/kg) for 21 days, respectively. The results showed that, similar to TAM and FK506, Qu decreased tumor growth, limited oncocyte proliferation and promoted tumor necrosis. Anti-angiogenic actions of Qu were demonstrated as decreased serum VEGF (P<0.01), and sparse microvessel density (P<0.05). Qu significantly inhibited tumor calcineurin activities, and the inhibitory rate was 62.73% in Qu treated animals, compared to that was 72.90% in FK506 group (P>0.05). Effects of Qu on calcineurin/NFAT pathway were confirmed as decreased subcellular located levels of VEGF (P<0.05), VEGFR2 (P<0.05) and NFATc3 (P<0.01), downregulated gene expression of VEGF (P<0.05), VEGFR2 (P<0.05) and NFATc3 (P<0.01), reduced protein levels of VEGF (P<0.05), VEGFR2 (P<0.05), and NFATc3 (P<0.01) in tumor tissues. These findings indicate that Qu inhibit angiogenesis of human breast cancer xenograft in nude mice, which was associated with suppressing calcineurin activity and its regulated pathway activation.

  20. Activation of Src and Src-associated signaling pathways in relation to hypoxia in human cancer xenograft models.

    PubMed

    Pham, Nhu-An; Magalhaes, Joao M M M; Do, Trevor; Schwock, Joerg; Dhani, Neesha; Cao, Ping-Jiang; Hill, Richard P; Hedley, David W

    2009-01-15

    The hypoxic response in vitro involves alterations in signaling proteins, including Src, STAT3 and AKT that are considered to be broadly pro-survival. The involvement of these signaling proteins in the hypoxic microenviroments that occur in solid tumors was investigated by the use of multicolor fluorescence image analysis to colocalize signaling proteins and regions of hypoxia in 4 human tumor xenografts, pancreatic carcinoma BxPC3 and PANC1 and cervical squamous cell carcinoma ME180 and SiHa. Expression levels of total Src protein (mean intensity x labeled region fraction) were higher in hypoxic regions, identified using the nitroimidazole probe EF5, relative to non-EF5 regions in all 4 tumor models. This was associated with higher levels of phosphorylated (p-) Y419p-Src and its substrate Y861p-FAK in EF5 positive regions of BxPC3 tumors. This effect was also seen in tumor-bearing mice continuously breathing 7% oxygen for 3 hr which markedly increased the extent of EF5 positive labeling. In contrast, the hypoxia treatment resulted in a significant decrease in S727p-STAT3 in BxPC3 xenografts and suggested that STAT3 activity is responsive to acute hypoxia, whereas Src-FAK signaling is associated with predominantly chronically hypoxic EF5 positive regions. Src activity in both hypoxic and nonhypoxic BxPC3 tumor regions was suppressed when mice were treated with the Src inhibitor AZD0530 (25 mg/kg/day, 5 days), suggesting that both hypoxic and normoxic tumor regions are accessible to pharmacological Src inhibition. These results show that signaling pathways are responsive to tumor hypoxia in vivo, although the effects appear to differ between individual tumor types. Copyright (c) 2008 Wiley-Liss, Inc.

  1. Targeting Tumor Vasculature Endothelial Cells and Tumor Cells for Immunotherapy of Human Melanoma in a Mouse Xenograft Model

    NASA Astrophysics Data System (ADS)

    Hu, Zhiwei; Sun, Ying; Garen, Alan

    1999-07-01

    An immunotherapy treatment for cancer that targets both the tumor vasculature and tumor cells has shown promising results in a severe combined immunodeficient mouse xenograft model of human melanoma. The treatment involves systemic delivery of an immunoconjugate molecule composed of a tumor-targeting domain conjugated to the Fc effector domain of human IgG1. The effector domain induces a cytolytic immune response against the targeted cells by natural killer cells and complement. Two types of targeting domains were used. One targeting domain is a human single-chain Fv molecule that binds to a chondroitin sulfate proteoglycan expressed on the surface of most human melanoma cells. Another targeting domain is factor VII (fVII), a zymogen that binds with high specificity and affinity to the transmembrane receptor tissue factor (TF) to initiate the blood coagulation cascade. TF is expressed by endothelial cells lining the tumor vasculature but not the normal vasculature, and also by many types of tumor cells including melanoma. Because the binding of a fVII immunoconjugate to TF might cause disseminated intravascular coagulation, the active site of fVII was mutated to inhibit coagulation without affecting the affinity for TF. The immunoconjugates were encoded as secreted molecules in a replication-defective adenovirus vector, which was injected into the tail vein of severe combined immunodeficient mice. The results demonstrate that a mutated fVII immunoconjugate, administered separately or together with a single-chain Fv immunoconjugate that binds to the tumor cells, can inhibit the growth or cause regression of an established human tumor xenograft. This procedure could be effective in treating a broad spectrum of human solid tumors that express TF on vascular endothelial cells and tumor cells.

  2. Patient-Derived Xenograft Models of Non-Small Cell Lung Cancer and Their Potential Utility in Personalized Medicine.

    PubMed

    Morgan, Katherine M; Riedlinger, Gregory M; Rosenfeld, Jeffrey; Ganesan, Shridar; Pine, Sharon R

    2017-01-01

    Traditional preclinical studies of cancer therapeutics have relied on the use of established human cell lines that have been adapted to grow in the laboratory and, therefore, may deviate from the cancer they were meant to represent. With the emphasis of cancer drug development shifting from non-specific cytotoxic agents to rationally designed molecularly targeted therapies or immunotherapy comes the need for better models with predictive value regarding therapeutic activity and response in clinical trials. Recently, the diversity and accessibility of immunodeficient mouse strains has greatly enhanced the production and utility of patient-derived xenograft (PDX) models for many tumor types, including non-small cell lung cancer (NSCLC). Combined with next-generation sequencing, NSCLC PDX mouse models offer an exciting tool for drug development and for studying targeted therapies while utilizing patient samples with the hope of eventually aiding in clinical decision-making. Here, we describe NSCLC PDX mouse models generated by us and others, their ability to reflect the parental tumors' histomorphological characteristics, as well as the effect of clonal selection and evolution on maintaining genomic integrity in low-passage PDXs compared to the donor tissue. We also raise vital questions regarding the practical utility of PDX and humanized PDX models in predicting patient response to therapy and make recommendations for addressing those questions. Once collaborations and standardized xenotransplantation and data management methods are established, NSCLC PDX mouse models have the potential to be universal and invaluable as a preclinical tool that guides clinical trials and standard therapeutic decisions.

  3. Setup and characterization of a human head and neck squamous cell carcinoma xenograft model in nude rats.

    PubMed

    Bao, Ande; Phillips, William T; Goins, Beth; McGuff, Howard S; Zheng, Xiangpeng; Woolley, F Ross; Natarajan, Mohan; Santoyo, Cristina; Miller, Frank R; Otto, Randal A

    2006-12-01

    To develop and characterize a new head and neck cancer animal model. A human head and neck squamous cell carcinoma (HNSCC) xenograft model in nude rats was established via subcutaneous inoculation of a human-origin HNSCC cell line, SCC-4. The tumor was evaluated for growth characteristics, pathologic features by hematoxylin-eosin (HE) staining, and immunohistochemistry of epidermal growth factor receptor (EGFR). 2-[18F] fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET) imaging characteristics were studied too. A new HNSCC animal model was successfully established. Tumor sizes reached about 1 cm3 on day 15 after tumor cell inoculation. HE staining pathology has confirmed that this tumor is a typical SCC. EGFR immunohistochemistry demonstrated this tumor model to be strongly EGFR positive. 18F-FDG PET study has shown that 18F-FDG accumulated in tumors. This study has demonstrated that this tumor model is an appropriate HNSCC tumor model for animal studies on HNSCC.

  4. Demethoxycurcumin-carrying chitosan-antibody core-shell nanoparticles with multitherapeutic efficacy toward malignant A549 lung tumor: from in vitro characterization to in vivo evaluation.

    PubMed

    Huang, Wei-Ting; Larsson, Mikael; Wang, Yen-Jen; Chiou, Shih-Hwa; Lin, Hui-Yi; Liu, Dean-Mo

    2015-04-06

    Targeting controlled release core-shell nanocarriers with the potential to overcome multidrug resistant (MDR) lung cancer were prepared based on demethoxycurcumin (DMC) loaded amphiphilic chitosan nanoparticles coated with an anti-EGFR antibody layer. The nanocarriers were characterized with regard to size with dynamic light scattering, SEM, and TEM. The characterization confirmed the nanocarriers to have a surface coating of the anti-EGFR antibody and a final size excellently suited for circulating targeting nanocarriers, i.e., <200 nm in diameter. In vitro drug release revealed extended quasi-Fickian release from the nanocarriers, with the anti-EGFR layer further reducing the release rate. Cell culture experiments using normoxic and MDR hypoxic cells overexpressing EGFR confirmed improved DMC delivery for anti-EGFR coated particles and revealed that the DMC was delivered to the cytoplasmic region of the cells, forming nanoprecipitates in lysosomes and endosomes. The effective endocytosis and targeting of the core-shell nanoparticles resulted in the nanocarriers achieving high cytotoxicity also against MDR cells. The therapeutic potential was further confirmed in an A549 xenograft lung tumor mouse model, where DMC loaded core-shell nanocarriers achieved about 8-fold reduction in tumor volume compared with control group over the 8 weeks of the investigation. Both in vitro and in vivo data suggest the anti-EGFR coated core-shell nanocarriers as highly promising for treatment of hypoxic MDR cancers, especially for non-small cell lung cancer.

  5. OSI-930: a novel selective inhibitor of Kit and kinase insert domain receptor tyrosine kinases with antitumor activity in mouse xenograft models.

    PubMed

    Garton, Andrew J; Crew, Andrew P A; Franklin, Maryland; Cooke, Andrew R; Wynne, Graham M; Castaldo, Linda; Kahler, Jennifer; Winski, Shannon L; Franks, April; Brown, Eric N; Bittner, Mark A; Keily, John F; Briner, Paul; Hidden, Chris; Srebernak, Mary C; Pirrit, Carrie; O'Connor, Matthew; Chan, Anna; Vulevic, Bojana; Henninger, Dwight; Hart, Karen; Sennello, Regina; Li, An-Hu; Zhang, Tao; Richardson, Frank; Emerson, David L; Castelhano, Arlindo L; Arnold, Lee D; Gibson, Neil W

    2006-01-15

    OSI-930 is a novel inhibitor of the receptor tyrosine kinases Kit and kinase insert domain receptor (KDR), which is currently being evaluated in clinical studies. OSI-930 selectively inhibits Kit and KDR with similar potency in intact cells and also inhibits these targets in vivo following oral dosing. We have investigated the relationships between the potency observed in cell-based assays in vitro, the plasma exposure levels achieved following oral dosing, the time course of target inhibition in vivo, and antitumor activity of OSI-930 in tumor xenograft models. In the mutant Kit-expressing HMC-1 xenograft model, prolonged inhibition of Kit was achieved at oral doses between 10 and 50 mg/kg and this dose range was associated with antitumor activity. Similarly, prolonged inhibition of wild-type Kit in the NCI-H526 xenograft model was observed at oral doses of 100 to 200 mg/kg, which was the dose level associated with significant antitumor activity in this model as well as in the majority of other xenograft models tested. The data suggest that antitumor activity of OSI-930 in mouse xenograft models is observed at dose levels that maintain a significant level of inhibition of the molecular targets of OSI-930 for a prolonged period. Furthermore, pharmacokinetic evaluation of the plasma exposure levels of OSI-930 at these effective dose levels provides an estimate of the target plasma concentrations that may be required to achieve prolonged inhibition of Kit and KDR in humans and which would therefore be expected to yield a therapeutic benefit in future clinical evaluations of OSI-930.

  6. Discovery of 2'-hydroxychalcones as autophagy inducer in A549 lung cancer cells.

    PubMed

    Wang, Fang-Wu; Wang, Sheng-Qing; Zhao, Bao-Xiang; Miao, Jun-Ying

    2014-05-21

    A series of 2'-hydroxychalcone derivatives was synthesized and the effects of all the compounds on growth of A549 lung cancer cell were investigated. The results showed that all compounds had inhibitory effects on the growth of A549 lung cancer cells and compound possessed the highest growth inhibitory effect and induced autophagy of A549 lung cancer cells.

  7. Multi-Chemotherapeutic Schedules Containing the pan-FGFR Inhibitor ARQ 087 are Safe and Show Antitumor Activity in Different Xenograft Models.

    PubMed

    Chilà, Rosaria; Hall G, Terence; Abbadessa, Giovanni; Broggini, Massimo; Damia, Giovanna

    2017-02-02

    ARQ 087 is a multi-tyrosine kinase inhibitor with potent activity against the FGFR receptor family, currently in Phase I clinical studies for the treatment of advanced solid tumors. The compound has a very safe profile and induces tumor regressions in FGFR-driven models. The feasibility of combining ARQ 087 with chemotherapy was investigated in FGFR deregulated human xenografts. Nude mice were transplanted subcutaneously with H1581, and when tumor masses reached 150 mg, were randomized to receive vehicle, ARQ 087, paclitaxel, carboplatin as single agents or in combination. Similar experimental conditions were applied in nude mice bearing SNU16 and MFE296 xenografts, with the inclusion of capecitabine in the former xenograft model. In the different xenograft models, the drugs given as single agents ranged from very active to partially active. The double combinations were more active than the single ones, but the triple combinations were the most active. In particular, the combination of ARQ 087 + paclitaxel + carboplatin in H1581 bearing mice was able to induce tumor regression in all the mice, with 6/8 mice tumor free at day 140 after tumor transplant. Of note, no toxic deaths nor premature stopping or delaying of drug administration were observed. The data herein reported demonstrated the feasibility of using xenografts models for poli-chemotherapeutic trials mimicking the best standard of care in treatment of specific tumor type and that ARQ 087, a new pan-FGFR inhibitor, can be safely combined with standard cytotoxic chemotherapeutic drugs with apparently no sign of cumulative toxicity and an associated increased antitumor effect.

  8. Recombinant methioninase effectively targets a Ewing's sarcoma in a patient-derived orthotopic xenograft (PDOX) nude-mouse model.

    PubMed

    Murakami, Takashi; Li, Shukuan; Han, Qinghong; Tan, Yuying; Kiyuna, Tasuku; Igarashi, Kentaro; Kawaguchi, Kei; Hwang, Ho Kyoung; Miyake, Kentaro; Singh, Arun S; Nelson, Scott D; Dry, Sarah M; Li, Yunfeng; Hiroshima, Yukihiko; Lwin, Thinzar M; DeLong, Jonathan C; Chishima, Takashi; Tanaka, Kuniya; Bouvet, Michael; Endo, Itaru; Eilber, Fritz C; Hoffman, Robert M

    2017-03-01

    Methionine dependence is due to the overuse of methionine for aberrant transmethylation reactions in cancer. Methionine dependence may be the only general metabolic defect in cancer. In order to exploit methionine dependence for therapy, our laboratory previously cloned L-methionine α-deamino-γ-mercaptomethane lyase [EC 4.4.1.11]). The cloned methioninase, termed recombinant methioninase, or rMETase, has been tested in mouse models of human cancer cell lines. Ewing's sarcoma is recalcitrant disease even though development of multimodal therapy has improved patients'outcome. Here we report efficacy of rMETase against Ewing's sarcoma in a patient-derived orthotopic xenograft (PDOX) model. The Ewing's sarcoma was implanted in the right chest wall of nude mice to establish a PDOX model. Eight Ewing's sarcoma PDOX mice were randomized into untreated control group (n = 4) and rMETase treatment group (n = 4). rMETase (100 units) was injected intraperitoneally (i.p.) every 24 hours for 14 consecutive days. All mice were sacrificed on day-15, 24 hours after the last rMETase administration. rMETase effectively reduced tumor growth compared to untreated control. The methionine level both of plasma and supernatants derived from sonicated tumors was lower in the rMETase group. Body weight did not significantly differ at any time points between the 2 groups. The present study is the first demonstrating rMETase efficacy in a PDOX model, suggesting potential clinical development, especially in recalcitrant cancers such as Ewing's sarcoma.

  9. Comprehensive characterization of chemotherapeutic efficacy on metastases in the established gastric neuroendocrine cancer patient derived xenograft model

    PubMed Central

    Chen, Dawei; Pang, Liang; Guo, Sheng; Cai, Jie; Wery, Jean-Pierre; Li, Linda; Li, Henry Qixiang; Lin, Peter Ping

    2015-01-01

    The HuPrime® human gastric neuroendocrine carcinoma derived xenograft model GA0087 was established in this study. GA0087 PDX model showed high gene expression of vascular endothelial growth factors (VEGF)-A and B, and high potential of lung metastasis. Circulating tumor cells (CTCs) with either large or small size, circulating tumor microemboli (CTM) and lung metastatic lesions were detected in GA0087 PDX mice. The number of CTC correlated to the number of metastatic nodules in lung. Both primary tumor growth and metastasis in terms of the number of dynamically monitored CTCs and metastatic nodules were effectively suppressed by Cisplatin. Diverse subtypes of CTCs in the context of sensitivity to Cisplatin were specifically identified by subtraction enrichment (SE) integrated with in situ Phenotyping of cytokeratin 18 (CK18) and Karyotyping of chromosome 8 (in situ PK CTC by CK-iFISH). All the CK18-/diploid and majority of CK18+/diploid CTC subtypes were chemosensitive, whereas a higher percentage of CK18+/multiploid subtype of CTC were Cisplatin-insensitive. Combined histopathological examination of metastatic lesion and in situ PK CTC in a metastatic PDX (mPDX) tumor model are of particular significance, and may provide an unique and robust platform for cancer research as well as pre-clinical evaluation of therapeutic efficacy of new anti-cancer drugs. PMID:25909226

  10. Development of an ErbB-overexpressing A-431 Optical Reporting Tumor Xenograft Model to Assess Targeted Photodynamic Therapy Regimens

    PubMed Central

    Savellano, Mark D.; Owusu-Brackett, Nicci; Son, Ji; Callier, Thierri; Savellano, Dagmar Högemann

    2010-01-01

    To better assess the efficacy of erbB-targeted therapies, it would help to have optical reporting human tumor xenograft models that abundantly express erbB receptors. A-431 cells have frequently been used in erbB1-targeting studies, but a well-characterized optical reporting version of the cell line has not been readily available. In this study, optical reporting A-431 clones were developed that express both a fluorescent protein reporter (green, GFP; or red, RFP) and a bioluminescent reporter, firefly luciferase. Reporter genes were transduced into cells using commercial lentiviral vectors, and clonal selection was carried out using a series of procedures. A number of clones were isolated for further characterization. A GFP/luciferase clone, A-431/D4, and an RFP/luciferase clone, A-431/G4, were obtained that exhibit erbB1 expression levels and tumor growth kinetics similar to the parental cells. To demonstrate the utility of the optical reporting clones, A-431/G4 tumors were grown subcutaneously in nude mice and treated with vascular-targeted photodynamic therapy (PDT), which targets the angiogenic consequences of erbB signaling. The A-431/G4 tumor model permitted highly sensitive longitudinal monitoring of PDT treatment response using optical imaging. A-431/D4 and A-431/G4 optical reporting tumor models should also prove useful for assessing therapies that directly target the erbB1 receptor. PMID:20880229

  11. Development of a Patient-Derived Xenograft (PDX) of Breast Cancer Bone Metastasis in a Zebrafish Model

    PubMed Central

    Mercatali, Laura; La Manna, Federico; Groenewoud, Arwin; Casadei, Roberto; Recine, Federica; Miserocchi, Giacomo; Pieri, Federica; Liverani, Chiara; Bongiovanni, Alberto; Spadazzi, Chiara; de Vita, Alessandro; van der Pluijm, Gabri; Giorgini, Andrea; Biagini, Roberto; Amadori, Dino; Ibrahim, Toni; Snaar-Jagalska, Ewa

    2016-01-01

    Bone metastasis is a complex process that needs to be better understood in order to help clinicians prevent and treat it. Xenografts using patient-derived material (PDX) rather than cancer cell lines are a novel approach that guarantees more clinically realistic results. A primary culture of bone metastasis derived from a 67-year-old patient with breast cancer was cultured and then injected into zebrafish (ZF) embryos to study its metastatic potential. In vivo behavior and results of gene expression analyses of the primary culture were compared with those of cancer cell lines with different metastatic potential (MCF7 and MDA-MB-231). The MCF7 cell line, which has the same hormonal receptor status as the bone metastasis primary culture, did not survive in the in vivo model. Conversely, MDA-MB-231 disseminated and colonized different parts of the ZF, including caudal hematopoietic tissues (CHT), revealing a migratory phenotype. Primary culture cells disseminated and in later stages extravasated from the vessels, engrafting into ZF tissues and reaching the CHT. Primary cell behavior reflected the clinical course of the patient’s medical history. Our results underline the potential for using PDX models in bone metastasis research and outline new methods for the clinical application of this in vivo model. PMID:27556456

  12. Establishment of Patient-Derived Tumor Xenograft Models of Epithelial Ovarian Cancer for Preclinical Evaluation of Novel Therapeutics.

    PubMed

    Liu, Joyce F; Palakurthi, Sangeetha; Zeng, Qing; Zhou, Shan; Ivanova, Elena; Huang, Wei; Zervantonakis, Ioannis K; Selfors, Laura M; Shen, Yiping; Pritchard, Colin C; Zheng, Mei; Adleff, Vilmos; Papp, Eniko; Piao, Huiying; Novak, Marian; Fotheringham, Susan; Wulf, Gerburg M; English, Jessie; Kirschmeier, Paul T; Velculescu, Victor E; Paweletz, Cloud; Mills, Gordon B; Livingston, David M; Brugge, Joan S; Matulonis, Ursula A; Drapkin, Ronny

    2017-03-01

    Purpose: Ovarian cancer is the leading cause of death from gynecologic malignancy in the United States, with high rates of recurrence and eventual resistance to cytotoxic chemotherapy. Model systems that allow for accurate and reproducible target discovery and validation are needed to support further drug development in this disease.Experimental Design: Clinically annotated patient-derived xenograft (PDX) models were generated from tumor cells isolated from the ascites or pleural fluid of patients undergoing clinical procedures. Models were characterized by IHC and by molecular analyses. Each PDX was luciferized to allow for reproducible in vivo assessment of intraperitoneal tumor burden by bioluminescence imaging (BLI). Plasma assays for CA125 and human LINE-1 were developed as secondary tests of in vivo disease burden.Results: Fourteen clinically annotated and molecularly characterized luciferized ovarian PDX models were generated. Luciferized PDX models retain fidelity to both the nonluciferized PDX and the original patient tumor, as demonstrated by IHC, array CGH, and targeted and whole-exome sequencing analyses. Models demonstrated diversity in specific genetic alterations and activation of PI3K signaling pathway members. Response of luciferized PDX models to standard-of-care therapy could be reproducibly monitored by BLI or plasma markers.Conclusions: We describe the establishment of a collection of 14 clinically annotated and molecularly characterized luciferized ovarian PDX models in which orthotopic tumor burden in the intraperitoneal space can be followed by standard and reproducible methods. This collection is well suited as a platform for proof-of-concept efficacy and biomarker studies and for validation of novel therapeutic strategies in ovarian cancer. Clin Cancer Res; 23(5); 1263-73. ©2016 AACR. ©2016 American Association for Cancer Research.

  13. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts.

    PubMed

    Hoffman, Robert M

    2015-08-01

    The majority of human solid tumours do not metastasize when grown subcutaneously in immunocompromised mice; this includes patient-derived xenograft (PDX) models. However, orthotopic implantation of intact tumour tissue can lead to metastasis that mimics that seen in patients. These patient-derived orthotopic xenograft (PDOX) models have a long history and might better recapitulate human tumours than PDX models.

  14. Metallofullerene-based Nanoplatform for Brain Tumor Brachytherapy and Longitudinal Imaging in a Murine Orthotopic Xenograft Model

    PubMed Central

    Shultz, Michael D.; Wilson, John D.; Fuller, Christine E.; Zhang, Jianyuan; Dorn, Harry C.

    2011-01-01

    Purpose: To demonstrate in an orthotopic xenograft brain tumor model that a functionalized metallofullerene (f-Gd3N@C80) can enable longitudinal tumor imaging and, when radiolabeled with lutetium 177 (177Lu) and tetraazacyclododecane tetraacetic acid (DOTA) (177Lu-DOTA-f-Gd3N@C80), provide an anchor to deliver effective brachytherapy. Materials and Methods: All experiments involving the use of mice were carried out in accordance with protocols approved by the institutional animal care and use committee. Human glioblastoma U87MG cells were implanted by using stereotactic procedures into the brains of 37 female athymic nude-Foxn1nu mice and allowed to develop into a tumor for 8 days. T1- and T2-weighted magnetic resonance (MR) imaging was performed in five mice. Biodistribution studies were performed in 12 mice at four time points over 7 days to evaluate gadolinium content. Survival studies involved 20 mice that received infusion of a nanoplatform by means of convection-enhanced delivery (CED) 8 days after tumor implantation. Mice in survival studies were divided into two groups: one comprised untreated mice that received f-Gd3N@C80 alone and the other comprised mice treated with brachytherapy that received 1.11 MBq of 177Lu-DOTA-f-Gd3N@C80. Survival data were evaluated by using Kaplan-Meier statistical methods. Results: MR imaging showed extended tumor retention (25.6% ± 1.2 of the infused dose at 52 days, confirmed with biodistribution studies) of the f-Gd3N@C80 nanoplatform, which enabled longitudinal imaging. Successful coupling of 177Lu to the f-Gd3N@C80 surface was achieved by using a bifunctional macrocyclic chelator. The extended tumor retention allowed for effective brachytherapy, as indicated by extended survival time (>2.5 times that of the untreated group) and histologic signs of radiation-induced tumor damage. Conclusion: The authors have developed a multimodal nanoplatform and have demonstrated longitudinal tumor imaging, prolonged intratumoral probe

  15. Antitumor activity of orally bioavailable farnesyltransferase inhibitor, ABT-100, is mediated by antiproliferative, proapoptotic, and antiangiogenic effects in xenograft models.

    PubMed

    Ferguson, Debra; Rodriguez, Luis E; Palma, Joann P; Refici, Marion; Jarvis, Kenneth; O'Connor, Jacqueline; Sullivan, Gerard M; Frost, David; Marsh, Kennan; Bauch, Joy; Zhang, Haiying; Lin, Nan-Horng; Rosenberg, Saul; Sham, Hing L; Joseph, Ingrid B J K

    2005-04-15

    To evaluate the preclinical pharmacokinetics, antitumor efficacy, and mechanism of action of a novel orally active farnesyltransferase inhibitor, ABT-100. In vitro sensitivity of a panel of human cell lines was determined using proliferation and clonogenic assays. In vivo efficacy of ABT-100 was evaluated in xenograft models (flank or orthotopic) by assessing angiogenesis, proliferation, and apoptosis in correlation with pharmacokinetics. Efficacy of the racemate of ABT-100 (A-367074) was also compared with R115777 (tipifarnib). ABT-100 inhibited proliferation of cells in vitro carrying oncogenic H-Ras (EJ-1 bladder; IC(50) 2.2 nmol/L), Ki-Ras (DLD-1 colon, MDA-MB-231 breast, HCT-116 colon, and MiaPaCa-2 pancreatic; IC(50) range, 3.8-9.2 nmol/L), and wild-type Ras (PC-3 and DU-145; IC(50), 70 and 818 nmol/L, respectively) as well as clonogenic potential. ABT-100 shows 70% to 80% oral bioavailability in mice. ABT-100 regressed EJ-1 tumors (2-12.5 mg/kg/d s.c., every day for 21 days) and showed significant efficacy in DLD-1, LX-1, MiaPaCa-2, or PC-3 tumor-bearing mice (6.25-50 mg/kg/d s.c. once daily or twice daily orally). A-367074 showed equivalent efficacy to R115777 given at approximately one-fourth the total dose of R115777 for a shorter duration (EJ-1 and LX-1). Antitumor activity was associated with decreased cell proliferation (Ki-67), increased apoptosis (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling), and decreased angiogenesis. A reduction in tumor angiogenic cytokine levels (vascular endothelial growth factor, basic fibroblast growth factor, and interleukin-8) correlated with a reduction in tumor vascularity (CD31). Overall, ABT-100 has an acceptable pharmacokinetic profile, is well tolerated, and possesses broad-spectrum antitumor activity against a series of xenograft models similar to farnesyltransferase inhibitors in clinical development; therefore, it is an attractive candidate for clinical evaluation.

  16. Intravenous Formulation of HET0016 Decreased Human Glioblastoma Growth and Implicated Survival Benefit in Rat Xenograft Models

    PubMed Central

    Jain, Meenu; Gamage, Nipuni-Dhanesha H.; Alsulami, Meshal; Shankar, Adarsh; Achyut, Bhagelu R.; Angara, Kartik; Rashid, Mohammad H.; Iskander, Asm; Borin, Thaiz F.; Wenbo, Zhi; Ara, Roxan; Ali, Meser M.; Lebedyeva, Iryna; Chwang, Wilson B.; Guo, Austin; Bagher-Ebadian, Hassan; Arbab, Ali S.

    2017-01-01

    Glioblastoma (GBM) is a hypervascular primary brain tumor with poor prognosis. HET0016 is a selective CYP450 inhibitor, which has been shown to inhibit angiogenesis and tumor growth. Therefore, to explore novel treatments, we have generated an improved intravenous (IV) formulation of HET0016 with HPßCD and tested in animal models of human and syngeneic GBM. Administration of a single IV dose resulted in 7-fold higher levels of HET0016 in plasma and 3.6-fold higher levels in tumor at 60 min than that in IP route. IV treatment with HPßCD-HET0016 decreased tumor growth, and altered vascular kinetics in early and late treatment groups (p < 0.05). Similar growth inhibition was observed in syngeneic GL261 GBM (p < 0.05). Survival studies using patient derived xenografts of GBM811, showed prolonged survival to 26 weeks in animals treated with focal radiation, in combination with HET0016 and TMZ (p < 0.05). We observed reduced expression of markers of cell proliferation (Ki-67), decreased neovascularization (laminin and αSMA), in addition to inflammation and angiogenesis markers in the treatment group (p < 0.05). Our results indicate that HPßCD-HET0016 is effective in inhibiting tumor growth through decreasing proliferation, and neovascularization. Furthermore, HPßCD-HET0016 significantly prolonged survival in PDX GBM811 model. PMID:28139732

  17. Using heterogeneity of the patient-derived xenograft model to identify the chemoresistant population in ovarian cancer

    PubMed Central

    Dobbin, Zachary C.; Katre, Ashwini A.; Steg, Adam D.; Erickson, Britt K.; Shah, Monjri M.; Alvarez, Ronald D.; Conner, Michael G.; Schneider, David; Chen, Dongquan; Landen, Charles N.

    2014-01-01

    A cornerstone of preclinical cancer research has been the use of clonal cell lines. However, this resource has underperformed in its ability to effectively identify novel therapeutics and evaluate the heterogeneity in a patient's tumor. The patient-derived xenograft (PDX) model retains the heterogeneity of patient tumors, allowing a means to not only examine efficacy of a therapy, but also basic tenets of cancer biology in response to treatment. Herein we describe the development and characterization of an ovarian-PDX model in order to study the development of chemoresistance. We demonstrate that PDX tumors are not simply composed of tumor-initiating cells, but recapitulate the original tumor's heterogeneity, oncogene expression profiles, and clinical response to chemotherapy. Combined carboplatin/paclitaxel treatment of PDX tumors enriches the cancer stem cell populations, but persistent tumors are not entirely composed of these populations. RNA-Seq analysis of six pair of treated PDX tumors compared to untreated tumors demonstrates a consistently contrasting genetic profile after therapy, suggesting similar, but few, pathways are mediating chemoresistance. Pathways and genes identified by this methodology represent novel approaches to targeting the chemoresistant population in ovarian cancer PMID:25209969

  18. Intravenous Formulation of HET0016 Decreased Human Glioblastoma Growth and Implicated Survival Benefit in Rat Xenograft Models.

    PubMed

    Jain, Meenu; Gamage, Nipuni-Dhanesha H; Alsulami, Meshal; Shankar, Adarsh; Achyut, Bhagelu R; Angara, Kartik; Rashid, Mohammad H; Iskander, Asm; Borin, Thaiz F; Wenbo, Zhi; Ara, Roxan; Ali, Meser M; Lebedyeva, Iryna; Chwang, Wilson B; Guo, Austin; Bagher-Ebadian, Hassan; Arbab, Ali S

    2017-01-31

    Glioblastoma (GBM) is a hypervascular primary brain tumor with poor prognosis. HET0016 is a selective CYP450 inhibitor, which has been shown to inhibit angiogenesis and tumor growth. Therefore, to explore novel treatments, we have generated an improved intravenous (IV) formulation of HET0016 with HPßCD and tested in animal models of human and syngeneic GBM. Administration of a single IV dose resulted in 7-fold higher levels of HET0016 in plasma and 3.6-fold higher levels in tumor at 60 min than that in IP route. IV treatment with HPßCD-HET0016 decreased tumor growth, and altered vascular kinetics in early and late treatment groups (p < 0.05). Similar growth inhibition was observed in syngeneic GL261 GBM (p < 0.05). Survival studies using patient derived xenografts of GBM811, showed prolonged survival to 26 weeks in animals treated with focal radiation, in combination with HET0016 and TMZ (p < 0.05). We observed reduced expression of markers of cell proliferation (Ki-67), decreased neovascularization (laminin and αSMA), in addition to inflammation and angiogenesis markers in the treatment group (p < 0.05). Our results indicate that HPßCD-HET0016 is effective in inhibiting tumor growth through decreasing proliferation, and neovascularization. Furthermore, HPßCD-HET0016 significantly prolonged survival in PDX GBM811 model.

  19. Optimizing lutetium 177-anti-carbonic anhydrase IX radioimmunotherapy in an intraperitoneal clear cell renal cell carcinoma xenograft model.

    PubMed

    Muselaers, Constantijn H J; Oosterwijk, Egbert; Bos, Desirée L; Oyen, Wim J G; Mulders, Peter F A; Boerman, Otto C

    2014-01-01

    A new approach in the treatment of clear cell renal carcinoma (ccRCC) is radioimmunotherapy (RIT) using anti-carbonic anhydrase IX (CAIX) antibody G250. To investigate the potential of RIT with lutetium 177 (177Lu)-labeled G250, we conducted a protein dose escalation study and subsequently an RIT study in mice with intraperitoneally growing ccRCC lesions. Mice with intraperitoneal xenografts were injected with 1, 3, 10, 30, or 100 μg of G250 labeled with 10 MBq indium 111 (111In) to determine the optimal protein dose. The optimal protein dose determined with imaging and biodistribution studies was used in a subsequent RIT experiment in three groups of 10 mice with intraperitoneal SK-RC-52 tumors. One group received 13 MBq 177Lu-DOTA-G250, a control group received 13 MBq nonspecific 177Lu-MOPC21, and the second control group was not treated and received 20 MBq 111In-DOTA-G250. The optimal G250 protein dose to target ccRCC in this model was 10 μg G250. Treatment with 13 MBq 177Lu-DOTA-G250 was well tolerated and resulted in significantly prolonged median survival (139 days) compared to controls (49-53 days, p  =  .015), indicating that RIT has potential in this metastatic ccRCC model.

  20. The isothiocyanate erucin abrogates telomerase in hepatocellular carcinoma cells in vitro and in an orthotopic xenograft tumour model of HCC

    PubMed Central

    Herz, Corinna; Hertrampf, Anke; Zimmermann, Stefan; Stetter, Nadine; Wagner, Meike; Kleinhans, Claudia; Erlacher, Miriam; Schüler, Julia; Platz, Stefanie; Rohn, Sascha; Mersch-Sundermann, Volker; Lamy, Evelyn

    2014-01-01

    In contrast to cancer cells, most normal human cells have no or low telomerase levels which makes it an attractive target for anti-cancer drugs. The small molecule sulforaphane from broccoli is known for its cancer therapeutic potential in vitro and in vivo. In animals and humans it was found to be quickly metabolized into 4-methylthiobutyl isothiocyanate (MTBITC, erucin) which we recently identified as strong selective apoptosis inducer in hepatocellular carcinoma (HCC) cells. Here, we investigated the relevance of telomerase abrogation for cytotoxic efficacy of MTBITC against HCC. The drug was effective against telomerase, independent from TP53 and MTBITC also blocked telomerase in chemoresistant subpopulations. By using an orthotopic human liver cancer xenograft model, we give first evidence that MTBITC at 50 mg/KG b.w./d significantly decreased telomerase activity in vivo without affecting enzyme activity of adjacent normal tissue. Upon drug exposure, telomerase decrease was consistent with a dose-dependent switch to anti-survival, cell arrest and apoptosis in our in vitro HCC models. Blocking telomerase by the specific inhibitor TMPyP4 further sensitized cancer cells to MTBITC-mediated cytotoxicity. Overexpression of hTERT, but not enzyme activity deficient DNhTERT, protected against apoptosis; neither DNA damage nor cytostasis induction by MTBITC was prevented by hTERT overexpression. These findings imply that telomerase enzyme activity does not protect against MTBITC-induced DNA damage but impacts signalling processes upstream of apoptosis execution level. PMID:25256442

  1. Patient-Derived Xenograft Models of Non-Small Cell Lung Cancer and Their Potential Utility in Personalized Medicine

    PubMed Central

    Morgan, Katherine M.; Riedlinger, Gregory M.; Rosenfeld, Jeffrey; Ganesan, Shridar; Pine, Sharon R.

    2017-01-01

    Traditional preclinical studies of cancer therapeutics have relied on the use of established human cell lines that have been adapted to grow in the laboratory and, therefore, may deviate from the cancer they were meant to represent. With the emphasis of cancer drug development shifting from non-specific cytotoxic agents to rationally designed molecularly targeted therapies or immunotherapy comes the need for better models with predictive value regarding therapeutic activity and response in clinical trials. Recently, the diversity and accessibility of immunodeficient mouse strains has greatly enhanced the production and utility of patient-derived xenograft (PDX) models for many tumor types, including non-small cell lung cancer (NSCLC). Combined with next-generation sequencing, NSCLC PDX mouse models offer an exciting tool for drug development and for studying targeted therapies while utilizing patient samples with the hope of eventually aiding in clinical decision-making. Here, we describe NSCLC PDX mouse models generated by us and others, their ability to reflect the parental tumors’ histomorphological characteristics, as well as the effect of clonal selection and evolution on maintaining genomic integrity in low-passage PDXs compared to the donor tissue. We also raise vital questions regarding the practical utility of PDX and humanized PDX models in predicting patient response to therapy and make recommendations for addressing those questions. Once collaborations and standardized xenotransplantation and data management methods are established, NSCLC PDX mouse models have the potential to be universal and invaluable as a preclinical tool that guides clinical trials and standard therapeutic decisions. PMID:28154808

  2. A Novel Bufalin Derivative Exhibited Stronger Apoptosis-Inducing Effect than Bufalin in A549 Lung Cancer Cells and Lower Acute Toxicity in Mice

    PubMed Central

    Liu, Miao; Feng, Li-Xing; Sun, Peng; Liu, Wang; Wu, Wan-Ying; Jiang, Bao-Hong; Yang, Min; Hu, Li-Hong; Guo, De-An; Liu, Xuan

    2016-01-01

    BF211 is a synthetic molecule derived from bufalin (BF). The apoptosis-inducing effect of BF211 was stronger than that of BF while the acute toxicity of BF211 was much lower than that of BF. BF211 exhibited promising concentration-dependent anti-cancer effects in nude mice inoculated with A549 cells in vivo. The growth of A549 tumor xenografts was almost totally blocked by treatment with BF211 at 6 mg/kg. Notably, BF and BF211 exhibited differences in their binding affinity and kinetics to recombinant proteins of the α subunits of Na+/K+-ATPase. Furthermore, there was a difference in the effects of BF or BF211 on inhibiting the activity of porcine cortex Na+/K+-ATPase and in their time-dependent effects on intracellular Ca2+ levels in A549 cells. The time-dependent effects of BF or BF211 on the activation of Src, which was mediated by the Na+/K+-ATPase signalosome, in A549 cells were also different. Both BF and BF211 could induce apoptosis-related cascades, such as activation of caspase-3 and the cleavage of PARP (poly ADP-ribose polymerase) in A549 cells, in a concentration-dependent manner; however, the effects of BF211 on apoptosis-related cascades was stronger than that of BF. The results of the present study supported the importance of binding to the Na+/K+-ATPase α subunits in the mechanism of cardiac steroids and also suggested the possibility of developing new cardiac steroids with a stronger anti-cancer activity and lower toxicity as new anti-cancer agents. PMID:27459387

  3. A Novel Bufalin Derivative Exhibited Stronger Apoptosis-Inducing Effect than Bufalin in A549 Lung Cancer Cells and Lower Acute Toxicity in Mice.

    PubMed

    Liu, Miao; Feng, Li-Xing; Sun, Peng; Liu, Wang; Wu, Wan-Ying; Jiang, Bao-Hong; Yang, Min; Hu, Li-Hong; Guo, De-An; Liu, Xuan

    2016-01-01

    BF211 is a synthetic molecule derived from bufalin (BF). The apoptosis-inducing effect of BF211 was stronger than that of BF while the acute toxicity of BF211 was much lower than that of BF. BF211 exhibited promising concentration-dependent anti-cancer effects in nude mice inoculated with A549 cells in vivo. The growth of A549 tumor xenografts was almost totally blocked by treatment with BF211 at 6 mg/kg. Notably, BF and BF211 exhibited differences in their binding affinity and kinetics to recombinant proteins of the α subunits of Na+/K+-ATPase. Furthermore, there was a difference in the effects of BF or BF211 on inhibiting the activity of porcine cortex Na+/K+-ATPase and in their time-dependent effects on intracellular Ca2+ levels in A549 cells. The time-dependent effects of BF or BF211 on the activation of Src, which was mediated by the Na+/K+-ATPase signalosome, in A549 cells were also different. Both BF and BF211 could induce apoptosis-related cascades, such as activation of caspase-3 and the cleavage of PARP (poly ADP-ribose polymerase) in A549 cells, in a concentration-dependent manner; however, the effects of BF211 on apoptosis-related cascades was stronger than that of BF. The results of the present study supported the importance of binding to the Na+/K+-ATPase α subunits in the mechanism of cardiac steroids and also suggested the possibility of developing new cardiac steroids with a stronger anti-cancer activity and lower toxicity as new anti-cancer agents.

  4. Selective In Vivo Targeting of Human Liver Tumors by Optimized AAV3 Vectors in a Murine Xenograft Model

    PubMed Central

    Wang, Yuan; Zhang, Yuanhui; Ejjigani, Anila; Yin, Zifei; Lu, Yuan; Wang, Lina; Wang, Meng; Li, Jun; Hu, Zhongbo; Aslanidi, George V.; Zhong, Li; Gao, Guangping

    2014-01-01

    Abstract Current challenges for recombinant adeno-associated virus (rAAV) vector–based cancer treatment include the low efficiency and the lack of specificity in vivo. rAAV serotype 3 (rAAV3) vectors have previously been shown to be ineffective in normal mouse tissues following systemic administration. In the present study, we report that rAAV3 vectors can efficiently target and transduce various human liver cancer cells in vivo. Elimination of specific surface-exposed serine and threonine residues on rAAV3 capsids results in further augmentation in the transduction efficiency of these vectors, without any change in the viral tropism and cellular receptor interactions. In addition, we have identified a potential chemotherapy drug, shikonin, as a multifunctional compound to inhibit liver tumor growth as well as to significantly enhance the efficacy of rAAV vector-based gene therapy in vivo. Furthermore, we also document that suppression of tumorigenesis in a human liver cancer xenograft model can be achieved through systemic administration of the optimized rAAV3 vectors carrying a therapeutic gene, and shikonin at a dose that does not lead to liver damage. Our research provides a novel means to achieve not only targeted delivery but also the potential for gene therapy of human liver cancer. PMID:25296041

  5. Imatinib mesylate (Glivec) inhibits Schwann cell viability and reduces the size of human plexiform neurofibroma in a xenograft model.

    PubMed

    Demestre, Maria; Herzberg, Jan; Holtkamp, Nikola; Hagel, Christian; Reuss, David; Friedrich, Reinhard E; Kluwe, Lan; Von Deimling, Andreas; Mautner, Victor-F; Kurtz, Andreas

    2010-05-01

    Plexiform neurofibromas (PNF), one of the major features of neurofibromatosis type 1 (NF1), are characterized by complex cellular composition and mostly slow but variable growth patterns. In this study, we examined the effect of imatinib mesylate, a receptor tyrosine kinase inhibitor, on PNF-derived Schwann cells and PNF tumour growth in vitro and in vivo. In vitro, PNF-derived primary Schwann cells express platelet-derived growth factors receptors (PDGFR) alpha and beta, both targets of imatinib, and cell viability was reduced by imatinib mesylate, with 50% inhibition concentration (IC(50)) of 10 microM. For in vivo studies, PNF tumour fragments xenografted onto the sciatic nerve of athymic nude mice were first characterized. The tumours persisted for at least 63 days and maintained typical characteristics of PNFs such as complex cellular composition, low proliferation rate and angiogenesis. A transient enlargement of the graft size was due to inflammation by host cells. Treatment with imatinib mesylate at a daily dose of 75 mg/kg for 4 weeks reduced the graft size by an average of 80% (n = 8), significantly different from the original sizes within the group and from sizes of the grafts in 11 untreated mice in the control group (P < 0.001). We demonstrated that grafting human PNF tumour fragments into nude mice provides an adequate in vivo model for drug testing. Our results provide in vivo and in vitro evidence for efficacy of imatinib mesylate for PNF.

  6. Enhanced Antitumor Efficacy and Reduced Systemic Toxicity of Sulfatide-Containing Nanoliposomal Doxorubicin in a Xenograft Model of Colorectal Cancer

    PubMed Central

    Lin, Jia; Yu, Yan; Shigdar, Sarah; Fang, Ding Zhi; Du, Jun Rong; Wei, Ming Q.; Danks, Andrew; Liu, Ke; Duan, Wei

    2012-01-01

    Sulfatide is a glycosphingolipid known to interact with several extracellular matrix proteins, such as tenascin-C which is overexpressed in many types of cancer including that of the colon. In view of the limited success of chemotherapy in colorectal cancer and high toxicity of doxorubicin (DOX), a sulfatide-containing liposome (SCL) encapsulation approach was taken to overcome these barriers. This study assessed the in vitro cytotoxicity, biodistribution, therapeutic efficacy and systemic toxicity in vivo of sulfatide-containing liposomal doxorubicin (SCL-DOX) using human colonic adenocarcinoma HT-29 xenograft as the experimental model. In vitro, SCL-DOX was shown to be delivered into the nuclei and displayed prolonged retention compared with the free DOX. The use of this nanodrug delivery system to deliver DOX for treatment of tumor-bearing mice produced a much improved therapeutic efficacy in terms of tumor growth suppression and extended survival in contrast to the free drug. Furthermore, treatment of tumor-bearing mice with SCL-DOX resulted in a lower DOX uptake in the principal sites of toxicity of the free drug, namely the heart and skin, as well as reduced myelosuppression and diminished cardiotoxicity. Such natural lipid-guided nanodrug delivery systems may represent a new strategy for the development of effective anticancer chemotherapeutics targeting the tumor microenvironment for both primary tumor and micrometastases. PMID:23145140

  7. Antitumor activity of [Pt(O,O'-acac)(γ-acac)(DMS)] in mouse xenograft model of breast cancer

    PubMed Central

    Muscella, A; Vetrugno, C; Migoni, D; Biagioni, F; Fanizzi, F P; Fornai, F; De Pascali, S A; Marsigliante, S

    2014-01-01

    The higher and selective cytotoxicity of [Pt(O,O′-acac)(γ-acac)(DMS)] toward cancer cell in both immortalized cell lines and in breast cancer cells in primary cultures, stimulated a pre-clinical study so as to evaluate its therapeutic potential in vivo. The efficacy of [Pt(O,O′-acac)(γ-acac)(DMS)] was assessed using a xenograft model of breast cancer developed by injection of MCF-7 cells in the flank of BALB/c nude mice. Treatment of solid tumor-bearing mice with [Pt(O,O′-acac)(γ-acac)(DMS)] induced up to 50% reduction of tumor mass compared with an average 10% inhibition recorded in cisplatin-treated animals. Thus, chemotherapy with [Pt(O,O′-acac)(γ-acac)(DMS)] was much more effective than cisplatin. We also demonstrated enhanced in vivo pharmacokinetics, biodistribution and tolerability of [Pt(O,O′-acac)(γ-acac)(DMS)] when compared with cisplatin administered in Wistar rats. Pharmacokinetics studies with [Pt(O,O′-acac)(γ-acac)(DMS)] revealed prolonged Pt persistence in systemic blood circulation and decreased nefrotoxicity and hepatotoxicity, major target sites of cisplatin toxicity. Overall, [Pt(O,O′-acac)(γ-acac)(DMS)] turned out to be extremely promising in terms of greater in vivo anticancer activity, reduced nephrotoxicity and acute toxicity compared with cisplatin. PMID:24457958

  8. Porphysome nanoparticles for enhanced photothermal therapy in a patient-derived orthotopic pancreas xenograft cancer model: a pilot study

    NASA Astrophysics Data System (ADS)

    MacLaughlin, Christina M.; Ding, Lili; Jin, Cheng; Cao, Pingjiang; Siddiqui, Iram; Hwang, David M.; Chen, Juan; Wilson, Brian C.; Zheng, Gang; Hedley, David W.

    2016-08-01

    Local disease control is a major challenge in pancreatic cancer treatment, because surgical resection of the primary tumor is only possible in a minority of patients and radiotherapy cannot be delivered in curative doses. Despite the promise of photothermal therapy (PTT) for focal ablation of pancreatic tumors, this approach remains underinvestigated. Using photothermal sensitizers in combination with laser light irradiation for PTT can result in more efficient conversion of light energy to heat and improved spatial confinement of thermal destruction to the tumor. Porphysomes are self-assembled nanoparticles composed mainly of pyropheophorbide-conjugated phospholipids, enabling the packing of ˜80,000 porphyrin photosensitizers per particle. The high-density porphyrin loading imparts enhanced photonic properties and enables high-payload tumor delivery. A patient-derived orthotopic pancreas xenograft model was used to evaluate the feasibility of porphysome-enhanced PTT for pancreatic cancer. Biodistribution and tumor accumulation were evaluated using fluorescence intensity measurements from homogenized tissues and imaging of excised organs. Tumor surface temperature was recorded using IR optical imaging during light irradiation to monitor treatment progress. Histological analyses were conducted to determine the extent of PTT thermal damage. These studies may provide insight into the influence of heat-sink effect on thermal therapy dosimetry for well-perfused pancreatic tumors.

  9. Antibodies targeting human IL1RAP (IL1R3) show therapeutic effects in xenograft models of acute myeloid leukemia

    PubMed Central

    Ågerstam, Helena; Karlsson, Christine; Hansen, Nils; Sandén, Carl; Askmyr, Maria; von Palffy, Sofia; Högberg, Carl; Rissler, Marianne; Wunderlich, Mark; Juliusson, Gunnar; Richter, Johan; Sjöström, Kjell; Bhatia, Ravi; Mulloy, James C.; Järås, Marcus; Fioretos, Thoas

    2015-01-01

    Acute myeloid leukemia (AML) is associated with a poor survival rate, and there is an urgent need for novel and more efficient therapies, ideally targeting AML stem cells that are essential for maintaining the disease. The interleukin 1 receptor accessory protein (IL1RAP; IL1R3) is expressed on candidate leukemic stem cells in the majority of AML patients, but not on normal hematopoietic stem cells. We show here that monoclonal antibodies targeting IL1RAP have strong antileukemic effects in xenograft models of human AML. We demonstrate that effector-cell–mediated killing is essential for the observed therapeutic effects and that natural killer cells constitute a critical human effector cell type. Because IL-1 signaling is important for the growth of AML cells, we generated an IL1RAP-targeting antibody capable of blocking IL-1 signaling and show that this antibody suppresses the proliferation of primary human AML cells. Hence, IL1RAP can be efficiently targeted with an anti-IL1RAP antibody capable of both achieving antibody-dependent cellular cytotoxicity and blocking of IL-1 signaling as modes of action. Collectively, these results provide important evidence in support of IL1RAP as a target for antibody-based treatment of AML. PMID:26261316

  10. Antibodies targeting human IL1RAP (IL1R3) show therapeutic effects in xenograft models of acute myeloid leukemia.

    PubMed

    Ågerstam, Helena; Karlsson, Christine; Hansen, Nils; Sandén, Carl; Askmyr, Maria; von Palffy, Sofia; Högberg, Carl; Rissler, Marianne; Wunderlich, Mark; Juliusson, Gunnar; Richter, Johan; Sjöström, Kjell; Bhatia, Ravi; Mulloy, James C; Järås, Marcus; Fioretos, Thoas

    2015-08-25

    Acute myeloid leukemia (AML) is associated with a poor survival rate, and there is an urgent need for novel and more efficient therapies, ideally targeting AML stem cells that are essential for maintaining the disease. The interleukin 1 receptor accessory protein (IL1RAP; IL1R3) is expressed on candidate leukemic stem cells in the majority of AML patients, but not on normal hematopoietic stem cells. We show here that monoclonal antibodies targeting IL1RAP have strong antileukemic effects in xenograft models of human AML. We demonstrate that effector-cell-mediated killing is essential for the observed therapeutic effects and that natural killer cells constitute a critical human effector cell type. Because IL-1 signaling is important for the growth of AML cells, we generated an IL1RAP-targeting antibody capable of blocking IL-1 signaling and show that this antibody suppresses the proliferation of primary human AML cells. Hence, IL1RAP can be efficiently targeted with an anti-IL1RAP antibody capable of both achieving antibody-dependent cellular cytotoxicity and blocking of IL-1 signaling as modes of action. Collectively, these results provide important evidence in support of IL1RAP as a target for antibody-based treatment of AML.

  11. Targeting FGF19 inhibits tumor growth in colon cancer xenograft and FGF19 transgenic hepatocellular carcinoma models.

    PubMed

    Desnoyers, L R; Pai, R; Ferrando, R E; Hötzel, K; Le, T; Ross, J; Carano, R; D'Souza, A; Qing, J; Mohtashemi, I; Ashkenazi, A; French, D M

    2008-01-03

    Although fibroblast growth factor 19 (FGF19) can promote liver carcinogenesis in mice its involvement in human cancer is not well characterized. Here we report that FGF19 and its cognate receptor FGF receptor 4 (FGFR4) are coexpressed in primary human liver, lung and colon tumors and in a subset of human colon cancer cell lines. To test the importance of FGF19 for tumor growth, we developed an anti-FGF19 monoclonal antibody that selectively blocks the interaction of FGF19 with FGFR4. This antibody abolished FGF19-mediated activity in vitro and inhibited growth of colon tumor xenografts in vivo and effectively prevented hepatocellular carcinomas in FGF19 transgenic mice. The efficacy of the antibody in these models was linked to inhibition of FGF19-dependent activation of FGFR4, FRS2, ERK and beta-catenin. These findings suggest that the inactivation of FGF19 could be beneficial for the treatment of colon cancer, liver cancer and other malignancies involving interaction of FGF19 and FGFR4.

  12. The Addition of A Pregnenolone Pendant Group Enhances the Anticancer Properties of Titanocene Dichloride in a MCF-7 Xenograft Model

    PubMed Central

    Ramos, Gladiany; Loperena, Yaliz; Ortiz, Giovanni; Reyes, Fiorella; Szeto, Ada; Vera, Jose; Velez, Javier; Morales, Jessica; Morrero, Deborah; Castillo, Linnette; Dharmawardhane, Surangani; Melendez, Enrique; Washington, A. Valance

    2014-01-01

    Background/Aim Titanocene dichloride held great promise as a chemotherapeutic compound in preclinical studies. However, subsequent clinical trials revealed hepatoxicity and nephrotoxicity, which limited its use in clinical applications. Therefore, we used steroid pendant groups to improve the targeting of titanocene in the MCF-7 breast cancer cell line, and demonstrated a 10-fold lower effective dose compared to titanocene in in vitro assays. The aim of the present study was to test the efficacy of a titanocene functionalized with pregnenolone (Ti-Preg) in an in vivo breast cancer model. Materials and Methods Xenografts from the MCF7 breast cancer cell line were implanted into athymic nu/nu mice to evaluate the potential of Ti-Preg as an anti-breast cancer agent. Results Ti-Preg demonstrated a significant inhibition of MCF-7 tumor growth when compared to vehicle and to titanocene controls. Conclusion Our findings demonstrate the potential of steroid pendent groups for targeting chemotherapeutics to steroid hormone-dependent cancer. PMID:24692689

  13. Prediction of drug distribution in subcutaneous xenografts of human tumor cell lines and healthy tissues in mouse: application of the tissue composition-based model to antineoplastic drugs.

    PubMed

    Poulin, Patrick; Chen, Yung-Hsiang; Ding, Xiao; Gould, Stephen E; Hop, Cornelis Eca; Messick, Kirsten; Oeh, Jason; Liederer, Bianca M

    2015-04-01

    Advanced tissue composition-based models can predict the tissue-plasma partition coefficient (Kp ) values of drugs under in vivo conditions on the basis of in vitro and physiological input data. These models, however, focus on healthy tissues and do not incorporate data from tumors. The objective of this study was to apply a tissue composition-based model to six marketed antineoplastic drugs (docetaxel, DOC; doxorubicin, DOX; gemcitabine, GEM; methotrexate, MTX; topotecan, TOP; and fluorouracil, 5-FU) to predict their Kp values in three human tumor xenografts (HCT-116, H2122, and PC3) as well as in healthy tissues (brain, muscle, lung, and liver) under steady-state in vivo conditions in female NCR nude mice. The mechanisms considered in the tissue/tumor composition-based model are the binding to lipids and to plasma proteins, but the transporter effect was also investigated. The method consisted of analyzing tissue composition, performing the pharmacokinetics studies in mice, and calculating the corresponding in vivo Kp values. Analyses of tumor composition indicated that the tumor xenografts contained no or low amounts of common transporters by contrast to lipids. The predicted Kp values were within twofold and threefold of the measured values in 77% and 93% of cases, respectively. However, predictions for brain for each drug, for liver for MTX, and for each tumor xenograft for GEM were disparate from the observed values, and, therefore, not well served by the model. Overall, this study is the first step toward the mechanism-based prediction of Kp values of small molecules in healthy and tumor tissues in mouse when no transporter and permeation limitation effect is evident. This approach will be useful in selecting compounds based on their abilities to penetrate human cancer xenografts with a physiologically based pharmacokinetic (PBPK) model, thereby increasing therapeutic index for chemotherapy in oncology study. © 2015 Wiley Periodicals, Inc. and the American

  14. Intracranial AAV-IFN-β gene therapy eliminates invasive xenograft glioblastoma and improves survival in orthotopic syngeneic murine model.

    PubMed

    GuhaSarkar, Dwijit; Neiswender, James; Su, Qin; Gao, Guangping; Sena-Esteves, Miguel

    2017-02-01

    The highly invasive property of glioblastoma (GBM) cells and genetic heterogeneity are largely responsible for tumor recurrence after the current standard-of-care treatment and thus a direct cause of death. Previously, we have shown that intracranial interferon-beta (IFN-β) gene therapy by locally administered adeno-associated viral vectors (AAV) successfully treats noninvasive orthotopic glioblastoma models. Here, we extend these findings by testing this approach in invasive human GBM xenograft and syngeneic mouse models. First, we show that a single intracranial injection of AAV encoding human IFN-β eliminates invasive human GBM8 tumors and promotes long-term survival. Next, we screened five AAV-IFN-β vectors with different promoters to drive safe expression of mouse IFN-β in the brain in the context of syngeneic GL261 tumors. Two AAV-IFN-β vectors were excluded due to safety concerns, but therapeutic studies with the other three vectors showed extensive tumor cell death, activation of microglia surrounding the tumors, and a 56% increase in median survival of the animals treated with AAV/P2-Int-mIFN-β vector. We also assessed the therapeutic effect of combining AAV-IFN-β therapy with temozolomide (TMZ). As TMZ affects DNA replication, an event that is crucial for second-strand DNA synthesis of single-stranded AAV vectors before active transcription, we tested two TMZ treatment regimens. Treatment with TMZ prior to AAV-IFN-β abrogated any benefit from the latter, while the reverse order of treatment doubled the median survival compared to controls. These studies demonstrate the therapeutic potential of intracranial AAV-IFN-β therapy in a highly migratory GBM model as well as in a syngeneic mouse model and that combination with TMZ is likely to enhance its antitumor potency.

  15. The MET Inhibitor AZD6094 (Savolitinib, HMPL-504) Induces Regression in Papillary Renal Cell Carcinoma Patient-Derived Xenograft Models.

    PubMed

    Schuller, Alwin G; Barry, Evan R; Jones, Rhys D O; Henry, Ryan E; Frigault, Melanie M; Beran, Garry; Linsenmayer, David; Hattersley, Maureen; Smith, Aaron; Wilson, Joanne; Cairo, Stefano; Déas, Olivier; Nicolle, Delphine; Adam, Ammar; Zinda, Michael; Reimer, Corinne; Fawell, Stephen E; Clark, Edwin A; D'Cruz, Celina M

    2015-06-15

    Papillary renal cell carcinoma (PRCC) is the second most common cancer of the kidney and carries a poor prognosis for patients with nonlocalized disease. The HGF receptor MET plays a central role in PRCC and aberrations, either through mutation, copy number gain, or trisomy of chromosome 7 occurring in the majority of cases. The development of effective therapies in PRCC has been hampered in part by a lack of available preclinical models. We determined the pharmacodynamic and antitumor response of the selective MET inhibitor AZD6094 in two PRCC patient-derived xenograft (PDX) models. Two PRCC PDX models were identified and MET mutation status and copy number determined. Pharmacodynamic and antitumor activity of AZD6094 was tested using a dose response up to 25 mg/kg daily, representing clinically achievable exposures, and compared with the activity of the RCC standard-of-care sunitinib (in RCC43b) or the multikinase inhibitor crizotinib (in RCC47). AZD6094 treatment resulted in tumor regressions, whereas sunitinib or crizotinib resulted in unsustained growth inhibition. Pharmacodynamic analysis of tumors revealed that AZD6094 could robustly suppress pMET and the duration of target inhibition was dose related. AZD6094 inhibited multiple signaling nodes, including MAPK, PI3K, and EGFR. Finally, at doses that induced tumor regression, AZD6094 resulted in a dose- and time-dependent induction of cleaved PARP, a marker of cell death. Data presented provide the first report testing therapeutics in preclinical in vivo models of PRCC and support the clinical development of AZD6094 in this indication. ©2015 American Association for Cancer Research.

  16. Lack of long-lasting effects of mitotane adjuvant therapy in a mouse xenograft model of adrenocortical carcinoma.

    PubMed

    Doghman, Mabrouka; Lalli, Enzo

    2013-12-05

    Mitotane is a widely used drug in the therapy of adrenocortical carcinoma (ACC). It is important to set up preclinical protocols to study the possible synergistic effects of its association with new drugs for ACC therapy. We assessed the efficacy of different routes of administration of mitotane (i.p. and oral) in inhibiting growth of H295R ACC cell xenografts in an adjuvant setting. Both formulations of mitotane could inhibit H295R xenografts growth only at short times after carcinoma cells inoculation, even though plasma mitotane levels approached or fell within the therapeutic range in humans. Our results show that mitotane adjuvant therapy is inadequate to antagonize long-term growth of H295R cancer cells xenografts and that care should then be taken in the design of preclinical protocols to evaluate the performance of new drugs in association with mitotane.

  17. Circulating Tumor Cells as a Biomarker of Response to Treatment in Patient-Derived Xenograft Mouse Models of Pancreatic Adenocarcinoma

    PubMed Central

    Torphy, Robert J.; Tignanelli, Christopher J.; Kamande, Joyce W.; Moffitt, Richard A.; Herrera Loeza, Silvia G.; Soper, Steven A.; Yeh, Jen Jen

    2014-01-01

    Circulating tumor cells (CTCs) are cells shed from solid tumors into circulation and have been shown to be prognostic in the setting of metastatic disease. These cells are obtained through a routine blood draw and may serve as an easily accessible marker for monitoring treatment effectiveness. Because of the rapid progression of pancreatic ductal adenocarcinoma (PDAC), early insight into treatment effectiveness may allow for necessary and timely changes in treatment regimens. The objective of this study was to evaluate CTC burden as a biomarker of response to treatment with a oral phosphatidylinositol-3-kinase inhibitor, BKM120, in patient-derived xenograft (PDX) mouse models of PDAC. PDX mice were randomized to receive vehicle or BKM120 treatment for 28 days and CTCs were enumerated from whole blood before and after treatment using a microfluidic chip that selected for EpCAM (epithelial cell adhesion molecule) positive cells. This microfluidic device allowed for the release of captured CTCs and enumeration of these cells via their electrical impedance signatures. Median CTC counts significantly decreased in the BKM120 group from pre- to post-treatment (26.61 to 2.21 CTCs/250 µL, p = 0.0207) while no significant change was observed in the vehicle group (23.26 to 11.89 CTCs/250 µL, p = 0.8081). This reduction in CTC burden in the treatment group correlated with tumor growth inhibition indicating CTC burden is a promising biomarker of response to treatment in preclinical models. Mutant enriched sequencing of isolated CTCs confirmed that they harbored KRAS G12V mutations, identical to the matched tumors. In the long-term, PDX mice are a useful preclinical model for furthering our understanding of CTCs. Clinically, mutational analysis of CTCs and serial monitoring of CTC burden may be used as a minimally invasive approach to predict and monitor treatment response to guide therapeutic regimens. PMID:24586805

  18. Nicotine induces resistance to erlotinib via cross-talk between α 1 nAChR and EGFR in the non-small cell lung cancer xenograft model.

    PubMed

    Li, Heyan; Wang, Shuo; Takayama, Koichi; Harada, Taishi; Okamoto, Isamu; Iwama, Eiji; Fujii, Akiko; Ota, Keiichi; Hidaka, Noriko; Kawano, Yuko; Nakanishi, Yoichi

    2015-04-01

    Given our previously published study, α 1 nicotinic acetylcholine receptor (nAChR) plays an essential role in nicotine-induced cell signaling and nicotine-induced resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) in non-small cell lung cancer (NSCLC) PC9 cells. The aim of this study was to investigate the potential mechanism between nAChR and EGFR for nicotine-induced resistance to EGFR-TKI erlotinib in the NSCLC xenograft model. We identified the role of nicotine to EGFR/AKT/ERK pathways and to erlotinib-resistance in NSCLC PC9 and HCC827 cells by MTS assay and western blot. Then, we established the PC9 xenograft model with nicotine exposure and treated mice with erlotinib combined with vehicle or nicotine. We confirmed the effects of nicotine on EGFR/AKT/ERK pathways and determined nicotine's potential in preventing from the effect of erlotinib on NSCLC cells. Then, we showed that nicotine exposures can promote tumor growth and induce resistance to erlotinib in the PC9 xenograft model. Our results also indicated that chronic oral administration of nicotine can cause more significant erlotinib-resistance compared with acute i.v. injection of nicotine through activating α 1 nAChR and EGFR pathways. These results suggest that nicotine contributes to the progression and erlotinib-resistance of the NSCLC xenograft model via the cooperation between nAChR and EGFR. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. Noninvasive monitoring of early antiangiogenic therapy response in human nasopharyngeal carcinoma xenograft model using MRI with RGD-conjugated ultrasmall superparamagnetic iron oxide nanoparticles

    PubMed Central

    Cui, Yanfen; Zhang, Caiyuan; Luo, Ran; Liu, Huanhuan; Zhang, Zhongyang; Xu, Tianyong; Zhang, Yong; Wang, Dengbin

    2016-01-01

    Purpose Arginine-glycine-aspartic acid (RGD)-based nanoprobes allow specific imaging of integrin αvβ3, a protein overexpressed during angiogenesis. Therefore, this study applied a novel RGD-coupled, polyacrylic acid (PAA)-coated ultrasmall superparamagnetic iron oxide (USPIO) (referred to as RGD-PAA-USPIO) in order to detect tumor angiogenesis and assess the early response to antiangiogenic treatment in human nasopharyngeal carcinoma (NPC) xenograft model by magnetic resonance imaging (MRI). Materials and methods The binding specificity of RGD-PAA-USPIO with human umbilical vein endothelial cells (HUVECs) was confirmed by Prussian blue staining and transmission electron microscopy in vitro. The tumor targeting of RGD-PAA-USPIO was evaluated in the NPC xenograft model. Later, mice bearing NPC underwent MRI at baseline and after 4 and 14 days of consecutive treatment with Endostar or phosphate-buffered saline (n=10 per group). Results The specific uptake of the RGD-PAA-USPIO nanoparticles was mainly dependent on the interaction between RGD and integrin αvβ3 of HUVECs. The tumor targeting of RGD-PAA-USPIO was observed in the NPC xenograft model. Moreover, the T2 relaxation time of mice in the Endostar-treated group decreased significantly compared with those in the control group both on days 4 and 14, consistent with the immunofluorescence results of CD31 and CD61 (P<0.05). Conclusion This study demonstrated that the magnetic resonance molecular nanoprobes, RGD-PAA-USPIOs, allow noninvasive in vivo imaging of tumor angiogenesis and assessment of the early response to antiangiogenic treatment in NPC xenograft model, favoring its potential clinical translation. PMID:27895477

  20. Chlorella sorokiniana induces mitochondrial-mediated apoptosis in human non-small cell lung cancer cells and inhibits xenograft tumor growth in vivo.

    PubMed

    Lin, Ping-Yi; Tsai, Ching-Tsan; Chuang, Wan-Ling; Chao, Ya-Hsuan; Pan, I-Horng; Chen, Yu-Kuo; Lin, Chi-Chen; Wang, Bing-Yen

    2017-02-01

    Lung cancer is one of the leading causes of cancer related deaths worldwide. Marine microalgae are a source of biologically active compounds and are widely consumed as a nutritional supplement in East Asian countries. It has been reported that Chlorella or Chlorella extracts have various beneficial pharmacological compounds that modulate immune responses; however, no studies have investigated the anti-cancer effects of Chlorella sorokiniana (CS) on non-small cell lung cancer (NSCLC). In this study, we evaluated the anti-cancer effects of CS in two human NSCLC cell lines (A549 and CL1-5 human lung adenocarcinoma cells), and its effects on tumor growth in a subcutaneous xenograft tumor model. We also investigated the possible molecular mechanisms governing the pharmacological function of CS. Our results showed that exposure of the two cell lines to CS resulted in a concentration-dependent reduction in cell viability. In addition, the percentage of apoptotic cells increased in a dose-dependent manner, suggesting that CS might induce apoptosis in human NSCLC cells. Western blot analysis revealed that exposure to CS resulted in increased protein expression of the cleaved/activated forms of caspase-3, caspase-9, and PARP, except caspase-8. ZDEVD (caspase-3 inhibitor) and Z-LEHD (caspase-9 inhibitor) were sufficient at preventing apoptosis in both A549 and CL1-5 cells, proving that CS induced cell death via the mitochondria-mediated apoptotic pathway. Exposure of A549 and CL1-5 cells to CS for 24 h resulted in decreased expression of Bcl-2 protein and increased expression of Bax protein as well as decreased expression of two IAP family proteins, survivin and XIAP. We demonstrated that CS induces mitochondrial-mediated apoptosis in NSCLC cells via downregulation of Bcl-2, XIAP and survivin. In addition, we also found that the tumors growth of subcutaneous xenograft in vivo was markedly inhibited after oral intake of CS.

  1. Biosynthesized Platinum Nanoparticles Inhibit the Proliferation of Human Lung-Cancer Cells in vitro and Delay the Growth of a Human Lung-Tumor Xenograft in vivo

    PubMed Central

    Yogesh, Bendale; Vineeta, Bendale; Rammesh, Natu; Saili, Paul

    2016-01-01

    Objectives: Lung cancer remains a deadly disease with unsatisfactory overall survival. Cisplatin, a standard platinum (Pt)-based chemotherapeutic agent, has the potential to inhibit the growth of lung cancer. Its use, however, is occasionally limited by severe organ toxicity. However, until now, no systematic study has been conducted to verify its efficacy with proper experimental support in vivo. Therefore, we examined whether biosynthesized Pt nanoparticles (NPs) inhibited human lung cancer in vitro and in vivo to validate their use in alternative and complementary medicine. Methods: We evaluated the in vitro and the in vivo anticancer efficiencies of biosynthesized Pt NPs in a subcutaneous xenograft model with A549 cells. Severe combined immune deficient mice (SCID) were divided into four groups: group 1 being the vehicle control group and groups 2, 3 and 4 being the experimental groups. Once the tumor volume had reached 70 ─ 75 mm3, the progression profile of the tumor growth kinetics and the body weights of the mice were measured every week for 6 weeks after oral administration of Pt NPs. Doses of Pt NPs of 500, 1,000 and 2,000 mg/kg of body weight were administered to the experimental groups and a dose of honey was administered to the vehicle control group. The efficacy was quantified by using the delay in tumor growth following the administration of Pt NPs of A549 human-lung-cancer xenografts growing in SCID mice. Results: The in vitro cytotoxicity evaluation indicated that Pt NPs, in a dose-dependent manner, inhibited the growth of A549 cells, and the in vivo evaluation showed that Pt NPs at the mid and high doses effectively inhibited and delayed the growth of lung cancer in SCID mice. Conclusion: These findings confirm the antitumor properties of biosynthesized Pt NPs and suggest that they may be a cost-effective alternative for the treatment of patients with lung cancer. PMID:27386144

  2. Human cytomegalovirus infection leads to elevated levels of transplant arteriosclerosis in a humanized mouse aortic xenograft model.

    PubMed

    Abele-Ohl, S; Leis, M; Wollin, M; Mahmoudian, S; Hoffmann, J; Müller, R; Heim, C; Spriewald, B M; Weyand, M; Stamminger, T; Ensminger, S M

    2012-07-01

    Recent findings emphasized an important role of human cytomegalovirus (HCMV) infection in the development of transplant arteriosclerosis. Therefore, the aim of this study was to develop a human peripheral blood lymphocyte (hu-PBL)/Rag-2(-/-) γc(-/-) mouse-xenograft-model to investigate both immunological as well as viral effector mechanisms in the progression of transplant arteriosclerosis. For this, sidebranches from the internal mammary artery were recovered during coronary artery bypass graft surgery, tissue-typed and infected with HCMV. Then, size-matched sidebranches were implanted into the infrarenal aorta of Rag-2(-/-) γc(-/-) mice. The animals were reconstituted with human peripheral blood mononuclear cells (PBMCs) 7 days after transplantation. HCMV-infection was confirmed by Taqman-PCR and immunofluorescence analyses. Arterial grafts were analyzed by histology on day 40 after transplantation. PBMC-reconstituted Rag-2(-/-) γc(-/-) animals showed splenic chimerism levels ranging from 1-16% human cells. After reconstitution, Rag-2(-/-) γc(-/-) mice developed human leukocyte infiltrates in their grafts and vascular lesions that were significantly elevated after infection. Cellular infiltration revealed significantly increased ICAM-1 and PDGF-R-β expression after HCMV-infection of the graft. Arterial grafts from unreconstituted Rag-2(-/-) γc(-/-) recipients showed no vascular lesions. These data demonstrate a causative relationship between HCMV-infection as an isolated risk factor and the development of transplant-arteriosclerosis in a humanized mouse arterial-transplant-model possibly by elevated ICAM-1 and PDGF-R-β expression.

  3. Cisplatin Increases Sensitivity to FGFR Inhibition in Patient-Derived Xenograft Models of Lung Squamous Cell Carcinoma.

    PubMed

    Weeden, Clare E; Holik, Aliaksei Z; Young, Richard J; Ma, Stephen B; Garnier, Jean-Marc; Fox, Stephen B; Antippa, Phillip; Irving, Louis B; Steinfort, Daniel P; Wright, Gavin M; Russell, Prudence A; Ritchie, Matthew E; Burns, Christopher J; Solomon, Benjamin; Asselin-Labat, Marie-Liesse

    2017-08-01

    Lung squamous cell carcinoma (SqCC) is a molecularly complex and genomically unstable disease. No targeted therapy is currently approved for lung SqCC, although potential oncogenic drivers of SqCC have been identified, including amplification of the fibroblast growth factor receptor 1 (FGFR1). Reports from a recently completed clinical trial indicate low response rates in patients treated with FGFR tyrosine kinase inhibitors, suggesting inadequacy of FGFR1 amplification as a biomarker of response, or the need for combination treatment. We aimed to develop accurate models of lung SqCC and determine improved targeted therapies for these tumors. We show that detection of FGFR1 mRNA by RNA in situ hybridization is a better predictor of response to FGFR inhibition than FGFR1 gene amplification using clinically relevant patient-derived xenograft (PDX) models of lung SqCC. FGFR1-overexpressing tumors were observed in all histologic subtypes of non-small cell lung cancers (NSCLC) as assessed on a tissue microarray, indicating a broader range of tumors that may respond to FGFR inhibitors. In FGFR1-overexpressing PDX tumors, we observed increased differentiation and reduced proliferation following FGFR inhibition. Combination therapy with cisplatin was able to increase tumor cell death, and dramatically prolonged animal survival compared to single-agent treatment. Our data suggest that FGFR tyrosine kinase inhibitors can benefit NSCLC patients with FGFR1-overexpressing tumors and provides a rationale for clinical trials combining cisplatin with FGFR inhibitors. Mol Cancer Ther; 16(8); 1610-22. ©2017 AACR. ©2017 American Association for Cancer Research.

  4. Molecular Imaging and Quantitation of EphA2 Expression in Xenograft Models with 89Zr-DS-8895a.

    PubMed

    Burvenich, Ingrid J G; Parakh, Sagun; Gan, Hui K; Lee, Fook-Thean; Guo, Nancy; Rigopoulos, Angela; Lee, Sze-Ting; Gong, Sylvia; O'Keefe, Graeme J; Tochon-Danguy, Henri; Kotsuma, Masakatsu; Hasegawa, Jun; Senaldi, Giorgio; Scott, Andrew M

    2016-06-01

    Subtype A2 of the erythropoietin-producing hepatocellular tyrosine kinase (EphA2) cell surface receptor is expressed in a range of epithelial cancers. This study evaluated the molecular imaging of EphA2 expression in vivo in mouse tumor models using SPECT/MR and PET/MR and a humanized anti-EphA2 antibody, DS-8895a. DS-8895a was labeled with (111)In, (125)I, and (89)Zr and assessed for radiochemical purity, immunoreactivity (Lindmo analysis), antigen-binding affinity (Scatchard analysis), and serum stability in vitro. In vivo biodistribution, imaging, and pharmacokinetic studies were performed with SPECT/MR and PET/MR. A dose-escalation study was also performed to determine EphA2 receptor saturability through tissue and imaging quantitative analysis. All conjugates demonstrated good serum stability and specific binding to EphA2-expressing cells in vitro. In vivo biodistribution studies showed high uptake of (111)In-CHX-A″-DTPA-DS-8895a and (89)Zr-Df-Bz-NCS-DS-8895a in EphA2-expressing xenograft models, with no specific uptake in normal tissues. In comparison, retention of (125)I-DS-8895a in tumors was lower because of internalization of the radioconjugate and dehalogenation. These results were confirmed by SPECT/MR and PET/MR. EphA2 receptor saturation was observed at the 30 mg/kg dose. Molecular imaging of tumor uptake of DS-8895a allows noninvasive measurement of EphA2 expression in tumors in vivo and determination of receptor saturation. (89)Zr-Df-Bz-NCS-DS-8895a is suited for human bioimaging trials on the basis of superior imaging characteristics and will inform DS-8895a dose assessment and patient response evaluation in clinical trials. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  5. Visualizing Human Hematopoietic Stem Cell Trafficking In Vivo Using a Zebrafish Xenograft Model.

    PubMed

    Staal, Frank J T; Spaink, Herman P; Fibbe, Willem E

    2016-02-15

    Zebrafish is gaining increased popularity as a model organism to study stem cell biology. It also is widely used as model system to visualize human leukemic stem cells. However, xenotransplantation of primary human stem/progenitor cells has not been described. Here, we use casper pigmentation mutant fish that are transparent crossed to fli-GFP transgenic fish as recipients of red labeled human CD34(+) cells. We have investigated various conditions and protocols with the aim to monitor and visualize the fate of transplanted human CD34(+) cells. We here report successful use of casper mutant zebrafish embryos for the direct monitoring of human hematopoietic stem cell transplantation, differentiation, and trafficking in vivo.

  6. A human xenograft model for testing early events of epithelial neoplastic invasion

    PubMed Central

    McCANDLESS, JOHN R.; CRESS, ANNE E.; RABINOVITZ, ISAAC; PAYNE, CLAIRE M.; BOWDEN, G. TIM; KNOX, J. DAVID; NAGLE, RAY B.

    2017-01-01

    We report on a model of human prostate tumor cell invasion using the SCID (severe combined immunodeficient) mouse diaphragm. Tumor cells were injected into SCID mice intraperitoneally and the diaphragms harvested three to five weeks later. Electron microscopy showed tumor cell penetration of the mesothelial cell layer and adhesion to the underlying basement membrane on the inferior surface of the mouse diaphragm, where colonies developed. Immunohistochemistry showed invasion by tumor cells through the basement membrane into the muscle of the diaphragm, presence of human tumor cells among the muscle cells and the presence of selected proteins on the invasion front of the tumor cells. Digital image analysis enabled quantitative comparison of events in the metastatic cascade by variants of the tumor cell line and evaluation of the effectiveness of a putative tumor inhibitor. Results suggest that the SCID mouse diaphragm model is a convenient, effective, easily oriented and reproducible in vivo model of the early events associated with human prostate tumor cell invasion. PMID:21533373

  7. The in ovo CAM-assay as a xenograft model for sarcoma.

    PubMed

    Sys, Gwen M L; Lapeire, Lore; Stevens, Nikita; Favoreel, Herman; Forsyth, Ramses; Bracke, Marc; De Wever, Olivier

    2013-07-17

    Sarcoma is a very rare disease that is heterogeneous in nature, all hampering the development of new therapies. Sarcoma patients are ideal candidates for personalized medicine after stratification, explaining the current interest in developing a reproducible and low-cost xenotransplant model for this disease. The chick chorioallantoic membrane is a natural immunodeficient host capable of sustaining grafted tissues and cells without species-specific restrictions. In addition, it is easily accessed, manipulated and imaged using optical and fluorescence stereomicroscopy. Histology further allows detailed analysis of heterotypic cellular interactions. This protocol describes in detail the in ovo grafting of the chorioallantoic membrane with fresh sarcoma-derived tumor tissues, their single cell suspensions, and permanent and transient fluorescently labeled established sarcoma cell lines (Saos-2 and SW1353). The chick survival rates are up to 75%. The model is used to study graft- (viability, Ki67 proliferation index, necrosis, infiltration) and host (fibroblast infiltration, vascular ingrowth) behavior. For localized grafting of single cell suspensions, ECM gel provides significant advantages over inert containment materials. The Ki67 proliferation index is related to the distance of the cells from the surface of the CAM and the duration of application on the CAM, the latter determining a time frame for the addition of therapeutic products.

  8. Combined ALK and MDM2 inhibition increases antitumor activity and overcomes resistance in human ALK mutant neuroblastoma cell lines and xenograft models.

    PubMed

    Wang, Hui Qin; Halilovic, Ensar; Li, Xiaoyan; Liang, Jinsheng; Cao, Yichen; Rakiec, Daniel P; Ruddy, David A; Jeay, Sebastien; Wuerthner, Jens U; Timple, Noelito; Kasibhatla, Shailaja; Li, Nanxin; Williams, Juliet A; Sellers, William R; Huang, Alan; Li, Fang

    2017-04-20

    The efficacy of ALK inhibitors in patients with ALK-mutant neuroblastoma is limited, highlighting the need to improve their effectiveness in these patients. To this end, we sought to develop a combination strategy to enhance the antitumor activity of ALK inhibitor monotherapy in human neuroblastoma cell lines and xenograft models expressing activated ALK. Herein, we report that combined inhibition of ALK and MDM2 induced a complementary set of anti-proliferative and pro-apoptotic proteins. Consequently, this combination treatment synergistically inhibited proliferation of TP53 wild-type neuroblastoma cells harboring ALK amplification or mutations in vitro, and resulted in complete and durable responses in neuroblastoma xenografts derived from these cells. We further demonstrate that concurrent inhibition of MDM2 and ALK was able to overcome ceritinib resistance conferred by MYCN upregulation in vitro and in vivo. Together, combined inhibition of ALK and MDM2 may provide an effective treatment for TP53 wild-type neuroblastoma with ALK aberrations.

  9. Novel murine xenograft model for the evaluation of stem cell therapy for profound dysphagia.

    PubMed

    Kuhn, Maggie A; Black, Amanda B; Siddiqui, M Tausif; Nolta, Jan A; Belafsky, Peter C

    2017-10-01

    Dysphagia is common and costly. Treatments are limited and innovative therapies are required. The tongue is essential for safe, effective swallowing and is a natural target for regenerative therapy. Muscle-derived stem cells (MDSCs) hold potential to restore dynamic function, and their application in the damaged tongue is appealing. We examined the safety and efficacy of human MDSC implantation into a novel mouse tongue model. Animal study. Adult immune-deficient mice were randomized to surgical (hemiglossectomy) and nonsurgical groups. Animals underwent lingual injection of human MDSCs or saline (control). Groups were followed for 12 weeks. The primary outcome was MDSC survival measured by an in vivo imaging system (IVIS). Secondary outcomes included animal survival and weight. Comparisons were made using a Mann-Whitney U test with an α of .05. Human MDSCs survived to the endpoint demonstrating 132% ± 465% and 15% ± 11% bioluminescence by IVIS at 12 weeks in hemiglossectomy and nonsurgical groups, respectively. All but one animal (hemiglossectomy with saline injection) survived to the study endpoint. Mean weight increased from baseline in all groups, with the greatest change observed in hemiglossectomy mice with MDSC injection (baseline 24.5 g ± 3.9 g; delta 5.9 g ± 4.6 g), exceeding the weight gain seen in surgical control mice (baseline 24.9 g ± 4.2 g, delta 2.7 g ± 1.4 g) (P = .04). MDSCs exhibited over 100% survival at 3 months when injected into an immune-deficient hemiglossectomy mouse model. Tongue-injured animals injected with MDSCs exhibited superior weight gain after hemiglossectomy than control animals (P < .05). These data support further investigation into the use of autologous MDSCs as a potential treatment for dysphagia secondary to tongue weakness and fibrosis LEVEL OF EVIDENCE: NA Laryngoscope, 127:E359-E363, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  10. [Effect of zedoary oil for cat D and cat K expression in A549 cell line].

    PubMed

    Yang, Changfu; Huang, Chunfang; Sun, Xiaofang; Niu, Jianzhao; Wang, Jifeng

    2012-03-01

    To explore the Zedoary oil on A549 cell line of collagen deposition cat D and cat K expression. The A549 cell line were treat by Zedoary oil on four different concentrations (0, 40, 80, 120 mg x L(-1)) in different time. Dynamic changes of collagen in A549 cell using Picric-sirius red method. Cat D and Cat K expression of level were detected by using western blot. The collagen content showed that Zedoary oil had an inhibitory effect on the deposition of A549 cells. The results of western blot showed that the expression of cat D and cat K were up-regulated significangly in A549 cells of Zedoary oil groups compared with that in controls. A549 cell of collagen deposition were reduced by Zedoary oil. The effects may due to the up-regulation of cat D and cat K.

  11. pH-Responsive Artemisinin Dimer in Lipid Nanoparticles Are Effective Against Human Breast Cancer in a Xenograft Model

    PubMed Central

    ZHANG, YITONG J.; ZHAN, XI; WANG, LIGUO; HO, RODNEY J.Y.; SASAKI, TOMIKAZU

    2016-01-01

    Artemisinin (ART), a well-known antimalaria drug, also exhibits anticancer activities. We previously reported a group of novel dimeric artemisinin piperazine conjugates (ADPs) possessing pH-dependent aqueous solubility and a proof-of-concept lipid nanoparticle formulation based on natural egg phosphatidylcholine (EPC). EPC may induce allergic reactions in individuals sensitive to egg products. Therefore, the goal of this report is to develop ADP-synthetic lipid particles suitable for in vivo evaluation. We found that ADP binds to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) with greater than 90% efficiency and forms drug–lipid particles (d ~ 80 nm). Cryo-electron microscopy of the ADP drug–lipid particles revealed unilamellar vesicle-like structures. Detailed characterization studies show insertion of the ADP lead compound, ADP109, into the DPPC membrane and the presence of an aqueous core. Over 50% of the ADP109 was released in 48 hours at pH4 compared with less than 20% at neutral. ADP109–lipid particles exhibited high potency against human breast cancer, but was tolerated well by nontumorigenic cells. In MDA-MB-231 mouse xenograft model, lipid-bound ADP109 particles were more effective than paclitaxel in controlling tumor growth. Cellular uptake studies showed endocytosis of the nanoparticles and release of core-trapped marker throughout the cytosol at 37°C. These results demonstrate, for the first time, the in vivo feasibility of lipid-bound ART dimer for cancer chemotherapy. PMID:25753991

  12. Porphyrin lipid nanoparticles for enhanced photothermal therapy in a patient-derived orthotopic pancreas xenograft cancer model

    NASA Astrophysics Data System (ADS)

    MacLaughlin, Christina M.; Ding, Lili; Jin, Cheng; Cao, Pingjiang; Siddiqui, Iram; Hwang, David M.; Chen, Juan; Wilson, Brian C.; Zheng, Gang; Hedley, David W.

    2016-03-01

    Local disease control is a major problem in the treatment of pancreatic cancer, because curative-intent surgery is only possible in a minority of patients, and radiotherapy cannot be delivered in curative doses. Despite the promise of photothermal therapy (PTT) for ablation of pancreatic tumors, this approach remains under investigated. Using photothermal sensitizers in combination with laser light for PTT can result in more efficient conversion of light energy to heat, and confinement of thermal destruction to the tumor, thus sparing adjacent organs and vasculature. Porphyrins have been previously employed as photosensitizers for PDT and PTT, however their incorporation in to "porphysomes", lipid-based nanoparticles each containing ~80,000 porphyrins through conjugation of pyropheophorbide to phospholipids, carries two distinct advantages: 1) high-density porphyrin packing imparts the nanoparticles with enhanced photonic properties for imaging and phototherapy; 2) the enhanced permeability and retention effect may be exploited for optimal delivery of porphysomes to the tumor region thus high payload porphyrin delivery. The feasibility of porphysome-enhanced PTT for pancreatic cancer treatment was investigated using a patient-derived orthotopic pancreas xenograft tumor model. Uptake of porphysomes at the orthotopic tumor site was validated using ex vivo fluorescence imaging of intact organs of interest. The accumulation of porphysomes in orthotopic tumor microstructure was also confirmed by fluorescence imaging of excised tissue slices. PTT progress was monitored as changes in tumor surface temperature using IR optical imaging. Histological analyses were conducted to examine microstructure changes in tissue morphology, and the viability of remaining tumor tissues following exposure to heat. These studies may also provide insight as to the contribution of heat sink in application of thermal therapies to highly vascularized pancreatic tumors.

  13. Naltrindole Inhibits Human Multiple Myeloma Cell Proliferation In Vitro and in a Murine Xenograft Model In Vivo

    PubMed Central

    Mundra, Jyoti Joshi; Terskiy, Alexandra

    2012-01-01

    It has been demonstrated previously that immune cell activation and proliferation were sensitive to the effects of naltrindole, a nonpeptidic δ-opioid receptor-selective antagonist; therefore, we hypothesized that human multiple myeloma (MM) would be a valuable model for studying potential antineoplastic properties of naltrindole. [3H]naltrindole exhibited saturable, low-affinity binding to intact human MM cells; however, the pharmacological profile of the binding site differed considerably from the properties of δ-, κ-, and μ-opioid receptors, and opioid receptor mRNA was not detected in MM cells by reverse transcriptase-polymerase chain reaction. Naltrindole inhibited the proliferation of cultured human U266 MM cells in a time- and dose-dependent manner with an EC50 of 16 μM. The naltrindole-induced inhibition of U266 cell proliferation was not blocked by a 10-fold molar excess of naltrexone, a nonselective opioid antagonist. Additive inhibition of MM cell proliferation was observed when using a combination of naltrindole with the histone deacetylase inhibitor sodium valproate, the proteasome inhibitor bortezomib, the glucocorticoid receptor agonist dexamethasone, and the HMG CoA reductase inhibitor simvastatin. Treatment of U266 cells with naltrindole significantly decreased the level of the active, phosphorylated form of the kinases, extracellular signal-regulated kinase and Akt, which may be related to its antiproliferative activity. The antiproliferative activity of naltrindole toward MM cells was maintained in cocultures of MM and bone marrow-derived stromal cells, mimicking the bone marrow microenvironment. In vivo, naltrindole significantly decreased tumor cell volumes in human MM cell xenografts in severe combined immunodeficient mice. We hypothesize that naltrindole inhibits the proliferation of MM cells through a nonopioid receptor-dependent mechanism. PMID:22537770

  14. Potentiation of antitumour activity of docetaxel by combination with trastuzumab in a human prostate cancer xenograft model and underlying mechanisms

    PubMed Central

    Legrier, M-E; Oudard, S; Judde, J-G; Guyader, C; de Pinieux, G; Boyé, K; de Cremoux, P; Dutrillaux, B; Poupon, M-F

    2007-01-01

    Antitumour activity of docetaxel (Taxotere®) in hormone-dependent (HD) and hormone-independent (HID) prostate cancer PAC120 xenograft model was previously reported, and its level was associated with HER2 protein expression. In the present study, we evaluate the antitumour effects of docetaxel combined with trastuzumab (Herceptin®), an anti-HER2 antibody. Although trastuzumab alone had no effect on tumour growth, it potentiated the antitumour activity of docetaxel in HD tumours and more strongly in HID variants. Using the HID28 variant, we show that docetaxel treatment of tumour-bearing mice induces an increased HER2 mRNA expression of the tyrosine kinase receptor of 25-fold 24 h after docetaxel treatment, while HER2 protein and p-AKT decreased. This was followed by an increase of HER2 protein 3 days (two-fold) after docetaxel treatment and by a strong HER2 release in the serum of treated mice; expression of phospho-ERK, p27, BCL2 and HSP70 concomitantly increased. Similar molecular alterations were induced by docetaxel plus trastuzumab combination, except for that there was a transient and complete disappearance of AR and HSP90 proteins 24 h after treatment. We show that in addition to its known effects on tubulin and mitotic spindles, docetaxel induces complex signalisation pathway mechanisms in surviving cells, including HER2, which can be pharmacologically targeted. This study suggests that the docetaxel/trastuzumab combination may prove an effective therapeutic approach for HER2-expressing hormone-refractory prostate cancer. PMID:17211467

  15. Uptake of verteporfin by orthotopic xenograft pancreas models with different levels of aggression

    NASA Astrophysics Data System (ADS)

    O'Hara, Julia; Samkoe, Kimberley S.; Chen, Alina; Hoopes, P. Jack; Rizvi, Imran; Hasan, Tayyaba; Pogue, Brian W.

    2009-06-01

    Pancreatic cancer is an aggressive disease with a poor prognosis, usually treated with chemoradiation therapy. Interstitial photodynamic therapy is a potentially effective adjuvant treatment that is under development. In the current study, two orthotopic pancreatic cancer models (AsPC-1 and Panc-1), have been characterized with respect to growth rates, morphology and liposomal drug (Verteporfin) uptake and distribution in SCID mice. Fluorescence of Verteporfin was measured in liver and tumor in vivo using a PDT fluorescence dosimeter with measurements taken before and up to one hour after tail vein injection. Fluorescence reached a plateau by about 15 minutes and did not decrease over the first hour. At time points from 15 minutes to 24 hrs, the internal organs (kidney, spleen, pancreas, tumor, muscle, lung, liver, and skin were excised and scanned on a Typhoon imager. The ratio of fluorescence in tumor versus normal tissues was analyzed with image processing, calculated at each time point and compared to in vivo results. Tissue distribution of Verteporfin in relation to functional vasculature marked by DiOc7 was carried out on frozen sections. Final analysis will result in determination of the ideal time point to administer light to achieve maximum tumor destruction while preserving normal tissue.

  16. Anti-JAM-C therapy eliminates tumor engraftment in a xenograft model of mantle cell lymphoma.

    PubMed

    Doñate, Carmen; Vijaya Kumar, Archana; Imhof, Beat A; Matthes, Thomas

    2016-11-01

    Junctional adhesion molecule (JAM)-C is a member of the JAM family, expressed by a variety of different cell types, including human B lymphocytes and some B-cell lymphoma subtypes-in particular, mantle cell lymphoma (MCL). Treatment with anti-JAM-C pAbs reduces homing of human B cells to lymphoid organs in a NOD/SCID mouse model. In the present study, the role of JAM-C in the engraftment of human lymphoma B cells in mice was investigated. Administration of novel anti-JAM-C mAbs reduced tumor growth of JAM-C(+) MCL cells in bone marrow, spleen, liver, and lymph nodes of mice. Treatment with anti-JAM-C antibodies significantly reduced the proliferation of JAM-C-expressing lymphoma B cells. Moreover, the binding of anti-JAM-C antibodies inhibited the phosphorylation of ERK1/2, without affecting other signaling pathways. The results identify for the first time the intracellular MAPK cascade as the JAM-C-driven signaling pathway in JAM-C(+) B cells. Targeting JAM-C could constitute a new therapeutic strategy reducing lymphoma B-cell proliferation and their capacity to reach supportive lymphoid microenvironments.

  17. Effect of Citrus bergamia juice on human neuroblastoma cells in vitro and in metastatic xenograft models.

    PubMed

    Navarra, M; Ursino, M R; Ferlazzo, N; Russo, M; Schumacher, U; Valentiner, U

    2014-06-01

    Neuroblastoma is the most common extracranial pediatric solid tumor with poor prognosis in children with disseminated stage of disease. A number of studies show that molecules largely distributed in commonly consumed fruits and vegetables may have anti-tumor activity. In this study we evaluate the effect of Citrus bergamia (bergamot) juice (BJ) in vitro and in a spontaneous metastatic neuroblastoma SCID mouse model. Qualitative and quantitative characterizations of BJ flavonoid fractions were performed by RP-HPLC/PDA/MS. We show that BJ significantly affects SK-N-SH and LAN-1 cell proliferation in vitro, but fails to reduce primary tumor weight in vivo. Moreover, BJ reduced cell adhesiveness and invasion of LAN-1 and SK-N-SH cells in vitro and the number of pulmonary metastases under consideration of the number of tumor cells in the blood in mice inoculated with LAN-1 cells in vivo. These effects without any apparent sign of systemic toxicity confirm the potential clinical interest of BJ and lay the basis for further investigation in cancer. Copyright © 2014. Published by Elsevier B.V.

  18. Evaluation of the NOD/SCID xenograft model for glucocorticoid-regulated gene expression in childhood B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    2011-01-01

    Background Glucocorticoids such as prednisolone and dexamethasone are critical drugs used in multi-agent chemotherapy protocols used to treat acute lymphoblastic leukemia (ALL), and response to glucocorticoids is highly predictive of outcome. The NOD/SCID xenograft mouse model of ALL is a clinically relevant model in which the mice develop a systemic leukemia which retains the fundamental biological characteristics of the original disease. Here we report a study evaluating the NOD/SCID xenograft mouse model to investigate glucocorticoid-induced gene expression. Cells from a glucocorticoid-sensitive xenograft derived from a child with B-cell precursor ALL were inoculated into NOD/SCID mice. When highly engrafted the mice were randomized into groups of 4 to receive dexamethasone 15 mg/kg by intraperitoneal injection or vehicle control. Leukemia cells were harvested from mice spleens at 0, 8, 24 or 48 hours thereafter, and gene expression analyzed on Illumina WG-6_V3 chips, comparing all groups to time 0 hours. Results The 8 hour dexamethasone-treated timepoint had the highest number of significantly differentially expressed genes, with fewer observed at the 24 and 48 hour timepoints, and with minimal changes seen across the time-matched controls. When compared to publicly available datasets of glucocorticoid-induced gene expression from an in vitro cell line study and from an in vivo study of patients with ALL, at the level of pathways, expression changes in the 8 hour xenograft samples showed a similar response to patients treated with glucocorticoids. Replicate analysis revealed that at the 8 hour timepoint, a dataset with high signal and differential expression, using data from 3 replicates instead of 4 resulted in excellent recovery scores of > 0.9. However at other timepoints with less signal very poor recovery scores were obtained with 3 replicates. Conclusions The NOD/SCID xenograft mouse model provides a reproducible experimental system in which to

  19. A novel xenograft model to study the role of TSLP-induced CRLF2 signals in normal and malignant human B lymphopoiesis.

    PubMed

    Francis, Olivia L; Milford, Terry-Ann M; Martinez, Shannalee R; Baez, Ineavely; Coats, Jacqueline S; Mayagoitia, Karina; Concepcion, Katherine R; Ginelli, Elizabeth; Beldiman, Cornelia; Benitez, Abigail; Weldon, Abby J; Arogyaswamy, Keshav; Shiraz, Parveen; Fisher, Ross; Morris, Christopher L; Zhang, Xiao-Bing; Filippov, Valeri; Van Handel, Ben; Ge, Zheng; Song, Chunhua; Dovat, Sinisa; Su, Ruijun Jeanna; Payne, Kimberly J

    2016-04-01

    Thymic stromal lymphopoietin (TSLP) stimulates in-vitro proliferation of human fetal B-cell precursors. However, its in-vivo role during normal human B lymphopoiesis is unknown. Genetic alterations that cause overexpression of its receptor component, cytokine receptor-like factor 2 (CRLF2), lead to high-risk B-cell acute lymphoblastic leukemia implicating this signaling pathway in leukemogenesis. We show that mouse thymic stromal lymphopoietin does not stimulate the downstream pathways (JAK/STAT5 and PI3K/AKT/mTOR) activated by the human cytokine in primary high-risk leukemia with overexpression of the receptor component. Thus, the utility of classic patient-derived xenografts for in-vivo studies of this pathway is limited. We engineered xenograft mice to produce human thymic stromal lymphopoietin (+T mice) by injection with stromal cells transduced to express the cytokine. Control (-T) mice were produced using stroma transduced with control vector. Normal levels of human thymic stromal lymphopoietin were achieved in sera of +T mice, but were undetectable in -T mice. Patient-derived xenografts generated from +T as compared to -T mice showed a 3-6-fold increase in normal human B-cell precursors that was maintained through later stages of B-cell development. Gene expression profiles in high-risk B-cell acute lymphoblastic leukemia expanded in +T mice indicate increased mTOR pathway activation and are more similar to the original patient sample than those from -T mice. +T/-T xenografts provide a novel pre-clinical model for understanding this pathway in B lymphopoiesis and identifying treatments for high-risk B-cell acute lymphoblastic leukemia with overexpression of cytokine-like factor receptor 2.

  20. Human intestinal epithelial cells produce proinflammatory cytokines in response to infection in a SCID mouse-human intestinal xenograft model of amebiasis.

    PubMed Central

    Seydel, K B; Li, E; Swanson, P E; Stanley, S L

    1997-01-01

    The protozoan parasite Entamoeba histolytica causes amebic dysentery and amebic liver abscess, diseases associated with significant morbidity and mortality worldwide. E. histolytica infection appears to involve the initial attachment of amebic trophozoites to intestinal epithelial cells, followed by lysis of these cells and subsequent invasion into the submucosa. A recent in vitro study (L. Eckmann, S. L. Reed, J. R. Smith, and M. F. Kagnoff, J. Clin. Invest. 96:1269-1279, 1995) demonstrated that incubation of E. histolytica trophozoites with epithelial cell lines results in epithelial cell production of inflammatory cytokines, including interleukin-1 (IL-1) and IL-8, suggesting that intestinal epithelial cell production of cytokines might play a role in the inflammatory response and tissue damage seen in intestinal amebiasis. To determine whether intestinal epithelial cell production of IL-1 and IL-8 occurs in response to E. histolytica infection in vivo and as an approach to studying the specific interactions between amebic trophozoites and human intestine, we used a SCID mouse-human intestinal xenograft (SCID-HU-INT) model of disease, where human intestinal xenografts were infected with virulent E. histolytica trophozoites. Infection of xenografts with E. histolytica trophozoites resulted in extensive tissue damage, which was associated with the development of an early inflammatory response composed primarily of neutrophils. Using oligonucleotide primers that specifically amplify human IL-1beta and IL-8, we could demonstrate by reverse transcription PCR that mRNA for both IL-1beta and IL-8 is produced by human intestinal xenografts in response to amebic infection. The increase in human intestinal IL-1beta and IL-8 in response to invasive amebiasis was confirmed by enzyme-linked immunosorbent assays specific for human IL-1beta and IL-8. Using immunohistochemistry, we confirmed that human intestinal epithelial cells were the source of IL-8 in infected xenografts

  1. Rapamycin targeting mTOR and hedgehog signaling pathways blocks human rhabdomyosarcoma growth in xenograft murine model

    SciTech Connect

    Kaylani, Samer Z.; Xu, Jianmin; Srivastava, Ritesh K.; Kopelovich, Levy; Pressey, Joseph G.; Athar, Mohammad

    2013-06-14

    Graphical abstract: Intervention of poorly differentiated RMS by rapamycin: In poorly differentiated RMS, rapamycin blocks mTOR and Hh signaling pathways concomitantly. This leads to dampening in cell cycle regulation and induction of apoptosis. This study provides a rationale for the therapeutic intervention of poorly differentiated RMS by treating patients with rapamycin alone or in combination with other chemotherapeutic agents. -- Highlights: •Rapamycin abrogates RMS tumor growth by modulating proliferation and apoptosis. •Co-targeting mTOR/Hh pathways underlie the molecular basis of effectiveness. •Reduction in mTOR/Hh pathways diminish EMT leading to reduced invasiveness. -- Abstract: Rhabdomyosarcomas (RMS) represent the most common childhood soft-tissue sarcoma. Over the past few decades outcomes for low and intermediate risk RMS patients have slowly improved while patients with metastatic or relapsed RMS still face a grim prognosis. New chemotherapeutic agents or combinations of chemotherapies have largely failed to improve the outcome. Based on the identification of novel molecular targets, potential therapeutic approaches in RMS may offer a decreased reliance on conventional chemotherapy. Thus, identification of effective therapeutic agents that specifically target relevant pathways may be particularly beneficial for patients with metastatic and refractory RMS. The PI3K/AKT/mTOR pathway has been found to be a potentially attractive target in RMS therapy. In this study, we provide evidence that rapamycin (sirolimus) abrogates growth of RMS development in a RMS xenograft mouse model. As compared to a vehicle-treated control group, more than 95% inhibition in tumor growth was observed in mice receiving parenteral administration of rapamycin. The residual tumors in rapamycin-treated group showed significant reduction in the expression of biomarkers indicative of proliferation and tumor invasiveness. These tumors also showed enhanced apoptosis

  2. Determination of minimum effective dose and optimal dosing schedule for liposomal curcumin in a xenograft human pancreatic cancer model.

    PubMed

    Mach, Claire M; Mathew, Lata; Mosley, Scott A; Kurzrock, Razelle; Smith, Judith A

    2009-06-01

    Curcumin is a food chemical present in tumeric (Curcuma longa) that has pharmacological activity to suppress carcinogenesis and inhibits multiple signaling pathways such as nuclear factor kappaB (NF-kappaB), cyclooxygenase-2 (Cox-2) and interleukin-8 (IL-8). Oral curcumin has poor oral bioavailability limiting its clinical activity; however, a patent pending liposomal formulation of curcumin was developed to improve drug delivery and has demonstrated activity in multiple cancers. This study was designed to determine the minimum effective dose (MED) as well as the optimal dosing schedule of liposomal curcumin in a xenograft mouse model of human pancreatic cancer. The MED determination and optimal schedule was evaluated in female athymic nude mice injected subcutaneously with MiaPaCa-2 cells. Dosing was initiated at an average tumor size of 5mm. For the MED, mice were treated with the following dose levels of liposomal curcumin: no treatment, liposome only, 1 mg/kg, 2 mg/kg, 5 mg/kg, 10 mg/kg, 20 mg/kg and 40 mg/kg given by tail vein injection three times weekly for 28 days. For the optimum dosing schedule, three additional schedules were evaluated and compared to the control of three times weekly; daily (five days per week), every four days, and weekly for 28 days. All mice were weighed and tumor measurements taken three times weekly to evaluate toxicity and efficacy. The 20 mg/kg dose had the greatest decrease in tumor growth at 52% decrease in tumor growth when compared to no treatment control mice. MED was determined to be 20 mg/kg and was used for the optimal dosing schedule determination. Daily dosing and three times per week dosing had greater inhibition of tumor growth with no discernable difference than once weekly or every 4 day dosing. No toxicity was observed at any dose or schedule. The MED for liposomal curcumin is 20 mg/kg given once daily three times per week to achieve optimal tumor growth inhibition. This was dose recommended for additional

  3. Assessment of PET tracer uptake in hormone-independent and hormone-dependent xenograft prostate cancer mouse models.

    PubMed

    Kukuk, Damaris; Reischl, Gerald; Raguin, Olivier; Wiehr, Stefan; Judenhofer, Martin S; Calaminus, Carsten; Honndorf, Valerie S; Quintanilla-Martinez, Leticia; Schönberger, Tanja; Duchamp, Olivier; Machulla, Hans-Jürgen; Pichler, Bernd J

    2011-10-01

    The pharmacokinetics of (18)F-fluorodeoxythymidine (FLT), (18)F-FDG, (11)C-choline, and (18)F-fluoroethylcholine (FEC) in 2 hormone-independent (PC-3, DU145) and 2 hormone-dependent (CWR22, PAC120) prostate cancer xenograft mouse models were evaluated by PET and compared by immunohistochemistry. Further investigation was performed to determine whether PET can detect early changes in tumor metabolism after androgen ablation therapy through surgical castration. PET was performed on 4 consecutive days. In addition, the CWR22 and PAC120 tumor models were surgically castrated after the baseline measurement and imaged again after castration. The tracer uptake was analyzed using time-activity curves, percentage injected dose per volume (%ID/cm(3)), and tumor-to-muscle ratio (T/M). Regarding the hormone-independent prostate tumor models, (18)F-FLT showed the best T/M and highest %ID/cm(3) in PC-3 (2.97 ± 0.63 %ID/cm(3)) and DU145 (2.06 ± 0.75 %ID/cm(3)) tumors. (18)F-FDG seemed to be the tracer of choice for delineation of the PC-3 tumors but not for the DU145 tumors. Using (11)C-choline (PC-3: 1.33 ± 0.29 %ID/cm(3), DU145: 1.60 ± 0.27 %ID/cm(3)) and (18)F-FEC, we did not find any significant uptake in the tumors, compared with muscle tissue. Regarding the hormone-dependent prostate tumor models, the CWR22 model showed a highly significant (P < 0.01) decrease in tumor (18)F-FDG uptake from 4.11 ± 1.29 %ID/cm(3) to 2.19 ± 1.45 %ID/cm(3) after androgen ablation therapy. However, the (18)F-FLT, (11)C-choline, or (18)F-FEC tracers did not provide sufficient uptake or reliable information about therapy response in CWR22 tumors. The PAC120 model showed a significant increase in (18)F-FLT tumor uptake (P = 0.015) after androgen ablation therapy. The accumulation of (18)F-FEC (before: 2.32 ± 1.01 %ID/cm(3), after: 1.36 ± 0.39 %ID/cm(3)) was found to be the next highest after (18)F-FDG (before: 2.45 ± 0.93 %ID/cm(3), after: 2.18 ± 0.65 %ID/cm(3)) in PAC120 tumors before

  4. Comparative efficacy of 177Lu and 90Y for Anti-CD20 Pretargeted Radioimmunotherapy in Murine Lymphoma Xenograft Models

    SciTech Connect

    Frost, Sofia H. L.; Frayo, Shani L.; Miller, Brian W.; Orozco, Johnnie J.; Booth, Garrett C.; Hylarides, Mark D.; Lin, Yukang; Green, Damian J.; Gopal, Ajay K.; Pagel, John M.; Bäck, Tom A.; Fisher, Darrell R.; Press, Oliver W.; Afrin, Farhat

    2015-03-18

    % cured with 177Lu-PRIT. Toxicities were comparable with both isotopes. Conclusion 90Y was therapeutically superior to 177Lu for streptavidin-biotin PRIT approaches in these human lymphoma xenograft models.

  5. Anti-tumor activity of Sann-Joong-Kuey-Jian-Tang alone and in combination with 5-fluorouracil in a human colon cancer colo 205 cell xenograft model.

    PubMed

    Cheng, Chun-Yuan; Lin, Yi-Hsiang; Su, Chin-Cheng

    2010-01-01

    Malignant tumors are the leading cause of death in Taiwan; among these, colon cancer ranks third as a cause of cancer-related death. Sann-Joong-Kuey-Jian-Tang (SJKJT), a traditional Chinese medicinal prescription, has been used to treat lymph node diseases and infectious lesions, and exhibits cytotoxic activity in many cancer cell lines. Our previous studies demonstrated that SJKJT inhibits the proliferation of human colon cancer colo 205 cells in vitro. The aim of this study was to evaluate the anti-tumor activity of SJKJT alone and in combination with 5-fluorouracil (5-FU) in vivo. SCID mice bearing human colon cancer colo 205 cell xenografts were administered SJKJT alone (30 mg/kg daily, p.o.), SJKJT (30 mg/kg daily, p.o.) in combination with 5-FU (30 mg/kg weekly, i.p.), or vehicle alone. At the end of the 4-week dosing schedule, the tumor and animal body weights were individually measured. The SCID mice were sacrificed with CO2 inhalation, the xenograft tumors were dissected, and the protein expression of microtubule-associated protein light chain 3 (MAP-LC3-II) in colo 205 xenograft tumors was measured by Western blotting. In the control, SJKJT-, and SJKJT plus 5-FU-treated mice, the tumor weights were 6.37±2.57, 0.43±0.35 and 1.63±0.46 g, and the mice body weights were 29±0.55, 29±2.71 and 27±0.77 g, respectively. Treatment with SJKJT resulted in a reduction in tumor weight compared with the control group, indicating that SJKJT inhibits tumor growth in a colo 205 xenograft model. SJKJT also increased LC3-II protein expression as compared to the controls. The present study shows that SJKJT alone or in combination with 5-FU has a positive effect on the treatment of SCID mice bearing human colon cancer colo 205 cell xenografts. This suggests that SJKJT has therapeutic potential in the treatment of human colon cancer.

  6. TIMP-2 modulates cancer cell transcriptional profile and enhances E-cadherin/beta-catenin complex expression in A549 lung cancer cells

    PubMed Central

    Bourboulia, Dimitra; Han, HuiYing; Isaac, Biju; Wei, Beiyang; Neckers, Len; Stetler-Stevenson, William G.

    2013-01-01

    Tissue Inhibitor of Metalloproteinase 2 (TIMP-2) plays an essential role in regulating matrix remodeling, cell growth, differentiation, angiogenesis and apoptosis in vitro and in vivo. We have recently shown that TIMP-2-mediated inhibition of tumor growth is independent of matrix metalloproteinase-mediated mechanisms, and is a consequence of modulating both the tumor cells and the tumor microenvironment. In the current study we aim to identify the molecular pathways associated with these effects. We analyzed the transcriptional profile of the human lung cancer cell line A549 upon overexpression of TIMP-2 and Ala+TIMP-2 (mutant that does not inhibit MMP activity), and we found changes in gene expression predominantly related to decreased tumor development and metastasis. Increased E-cadherin expression in response to both TIMP-2 and Ala+TIMP-2 expression was confirmed by real time quantitative RT-PCR and immunoblotting. A549 cells treated with epidermal growth factor (EGF) displayed loss of cobblestone morphology and cell-cell contact, while cells overexpressing TIMP-2 or Ala+TIMP-2 were resistant to EGF-induced morphological changes. Moreover, exogenous treatment with recombinant Ala+TIMP-2 blocked EGF induced down-regulation of E-cadherin. In vivo, immunohistochemistry of A549 xenografts expressing either TIMP-2 or Ala+TIMP-2 demonstrated increased E-cadherin protein levels. More importantly, transcriptional profile analysis of tumor tissue revealed critical pathways associated with effects on tumor-host interaction and inhibition of tumor growth. In conclusion, we show that TIMP-2 promotes an anti-tumoral transcriptional profile in vitro and in vivo, including upregulation of E-cadherin, in A549 lung cancer cells. PMID:23371049

  7. Discrepancy Between Tumor Antigen Distribution and Radiolabeled Antibody Binding in a Nude Mouse Xenograft Model of Human Melanoma.

    PubMed

    Kim, Yong-Il; Paeng, Jin Chul; Cheon, Gi Jeong; Kang, Keon Wook; Lee, Dong Soo; Chung, June-Key

    2017-04-01

    Biodistribution of antibodies is vital to successful immunoscintigraphy/immunotherapy, and it is assumed to be similar to antigen distribution. We measured and compared the binding pattern of radiolabeled antibody to tissue antigen distribution in a nude mouse xenograft model of human melanoma. We transplanted 10(7) FEM-XII human melanoma cells into the right flank of five nude mice. For the control, we transplanted 5 × 10(6) LS174T human colon cancer cells into the left flank. Two weeks later, 10 μCi of (131)I-labeled melanoma-associated 96.5 monoclonal antibody (targeting p97 antigen) was intravenously injected. Three days later, we sacrificed the mice and evaluated 96.5 antibody binding and concentration in the tumors by ex vivo quantitative autoradiography (QAR). Two months later, we incubated adjacent tumor tissue slices in various concentrations of (125)I-labeled 96.5 MoAb and evaluated the distribution/concentration of p97 antigen by in vitro QAR. p97 antigen distribution was homogeneous in the tumors (total antigen concentration [Bmax] = 17.36-38.36 pmol/g). In contrast, radiolabeled 96.5 antibody binding was heterogenous between location within the tumor (estimated bound antigen concentration = 0.7-6.6 pmol/g). No quantifiable parameters were found to be related with radiolabeled antibody binding and tumor antigen distribution. Antibody-bound tumor antigen to total antigen ratios ranged between 2% and 38%. Heterogeneous features of target antibody binding were observed in contrast to relatively homogenous feature of tumor antigen. We did not identify any correlations between p97 antigen distribution and 96.5 antibody binding in melanoma tissue. Radiolabeled 96.5 antibody binding patterns within melanoma cannot be predicted based on p97 antigen distribution in the tumor, which needs to be further studied with several other methods and more subjects in the future.

  8. Preventing T cell rejection of pig xenografts.

    PubMed

    Higginbotham, Laura; Ford, Mandy L; Newell, Kenneth A; Adams, Andrew B

    2015-11-01

    Xenotransplantation is a potential solution to the limited supply of donor organs. While early barriers to xenograft acceptance, such as hyperacute rejection, are now largely avoided through genetic engineering, the next frontier in successful xenograft survival will require prevention of T cell-mediated rejection. Most successful immunosuppressive regimens in xenotransplantation utilize T cell depletion with antibody therapy. Additionally, the use of T cell costimulatory blockade - specifically blockade of the CD40-CD154 pathway - shows promise with several reports of long-term xenograft survival. Additional therapies, such as transgenic expression of T cell coinhibitory molecules or transfer of immunomodulatory cells to promote tolerance, may be necessary to achieve reliable long-term xenograft acceptance. Further studies in pre-clinical models are essential in order to optimize these regimens prior to trials in patients. Copyright © 2015. Published by Elsevier Ltd.

  9. Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells.

    PubMed

    Chen, Bo; Tan, Yaoxi; Liang, Yan; Li, Yan; Chen, Lei; Wu, Shuangshuang; Xu, Wei; Wang, Yan; Zhao, Weihong; Wu, Jianqing

    2017-01-01

    Period2 (Per2) is a key mammalian circadian clock protein, and additionally has a tumor suppressive function. The present study aimed to investigate its role in drug resistance in A549/cisplatin (DDP) lung adenocarcinoma cells. Per2 knockdown and overexpression in A549/DDP cells were used to compare cell proliferation (by MTT assay), apoptosis (active-caspase 3 western blot) and clone forming assay. The activation of AKT/mechanistic target of rapamycin (mTOR) was investigated by a western blot assay. The Per2 expression level was decreased in A549/DDP cells compared with A549 cells. Per2 knockdown by short hairpin RNA protects A549/DDP cells from apoptosis, and promotes proliferation and migration. Per2 knockdown results in increased activation of the phosphoinositide 3-kinase (PI3K)/AKT/mTOR signaling pathway. Overexpression of Per2 in A549/DDP cells may reduce the activity of the PI3K/AKT/mTOR signaling pathway, and promote apoptosis of A549 cells. The results of the present study suggest that Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells.

  10. Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells

    PubMed Central

    Chen, Bo; Tan, Yaoxi; Liang, Yan; Li, Yan; Chen, Lei; Wu, Shuangshuang; Xu, Wei; Wang, Yan; Zhao, Weihong; Wu, Jianqing

    2017-01-01

    Period2 (Per2) is a key mammalian circadian clock protein, and additionally has a tumor suppressive function. The present study aimed to investigate its role in drug resistance in A549/cisplatin (DDP) lung adenocarcinoma cells. Per2 knockdown and overexpression in A549/DDP cells were used to compare cell proliferation (by MTT assay), apoptosis (active-caspase 3 western blot) and clone forming assay. The activation of AKT/mechanistic target of rapamycin (mTOR) was investigated by a western blot assay. The Per2 expression level was decreased in A549/DDP cells compared with A549 cells. Per2 knockdown by short hairpin RNA protects A549/DDP cells from apoptosis, and promotes proliferation and migration. Per2 knockdown results in increased activation of the phosphoinositide 3-kinase (PI3K)/AKT/mTOR signaling pathway. Overexpression of Per2 in A549/DDP cells may reduce the activity of the PI3K/AKT/mTOR signaling pathway, and promote apoptosis of A549 cells. The results of the present study suggest that Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells. PMID:28123577

  11. Establishment of a patient-derived orthotopic Xenograft (PDOX) model of HER-2-positive cervical cancer expressing the clinical metastatic pattern.

    PubMed

    Hiroshima, Yukihiko; Zhang, Yong; Zhang, Nan; Maawy, Ali; Mii, Sumiyuki; Yamamoto, Mako; Uehara, Fuminari; Miwa, Shinji; Yano, Shuya; Murakami, Takashi; Momiyama, Masashi; Chishima, Takashi; Tanaka, Kuniya; Ichikawa, Yasushi; Bouvet, Michael; Murata, Takuya; Endo, Itaru; Hoffman, Robert M

    2015-01-01

    Squamous cell carcinoma of the cervix, highly prevalent in the developing world, is often metastatic and treatment resistant with no standard treatment protocol. Our laboratory pioneered the patient-derived orthotopic xenograft (PDOX) nude mouse model with the technique of surgical orthotopic implantation (SOI). Unlike subcutaneous transplant patient-derived xenograft (PDX) models, PDOX models metastasize. Most importantly, the metastasis pattern correlates to the patient. In the present report, we describe the development of a PDOX model of HER-2-positive cervical cancer. Metastasis after SOI in nude mice included peritoneal dissemination, liver metastasis, lung metastasis as well as lymph node metastasis reflecting the metastatic pattern in the donor patient. Metastasis was detected in 4 of 6 nude mice with primary tumors. Primary tumors and metastases in the nude mice had histological structures similar to the original tumor and were stained by an anti-HER-2 antibody in the same pattern as the patient's cancer. The metastatic pattern, histology and HER-2 tumor expression of the patient were thus preserved in the PDOX model. In contrast, subcutaneous transplantation of the patient's cervical tumors resulted in primary growth but not metastasis.

  12. Establishment of a Patient-Derived Orthotopic Xenograft (PDOX) Model of HER-2-Positive Cervical Cancer Expressing the Clinical Metastatic Pattern

    PubMed Central

    Hiroshima, Yukihiko; Zhang, Yong; Zhang, Nan; Maawy, Ali; Mii, Sumiyuki; Yamamoto, Mako; Uehara, Fuminari; Miwa, Shinji; Yano, Shuya; Murakami, Takashi; Momiyama, Masashi; Chishima, Takashi; Tanaka, Kuniya; Ichikawa, Yasushi; Bouvet, Michael; Murata, Takuya; Endo, Itaru; Hoffman, Robert M.

    2015-01-01

    Squamous cell carcinoma of the cervix, highly prevalent in the developing world, is often metastatic and treatment resistant with no standard treatment protocol. Our laboratory pioneered the patient-derived orthotopic xenograft (PDOX) nude mouse model with the technique of surgical orthotopic implantation (SOI). Unlike subcutaneous transplant patient-derived xenograft (PDX) models, PDOX models metastasize. Most importantly, the metastasis pattern correlates to the patient. In the present report, we describe the development of a PDOX model of HER-2-positive cervical cancer. Metastasis after SOI in nude mice included peritoneal dissemination, liver metastasis, lung metastasis as well as lymph node metastasis reflecting the metastatic pattern in the donor patient. Metastasis was detected in 4 of 6 nude mice with primary tumors. Primary tumors and metastases in the nude mice had histological structures similar to the original tumor and were stained by an anti-HER-2 antibody in the same pattern as the patient’s cancer. The metastatic pattern, histology and HER-2 tumor expression of the patient were thus preserved in the PDOX model. In contrast, subcutaneous transplantation of the patient’s cervical tumors resulted in primary growth but not metastasis. PMID:25689852

  13. Efficacy of Tumor-Targeting Salmonella A1-R on a Melanoma Patient-Derived Orthotopic Xenograft (PDOX) Nude-Mouse Model

    PubMed Central

    Yamamoto, Mako; Zhao, Ming; Hiroshima, Yukihiko; Zhang, Yong; Shurell, Elizabeth; Eilber, Fritz C.; Bouvet, Michael; Noda, Makoto; Hoffman, Robert M.

    2016-01-01

    Tumor-targeting Salmonella enterica serovar Typhimurium A1-R (Salmonella A1-R) had strong efficacy on a melanoma patient-derived orthotopic xenograft (PDOX) nude-mouse model. GFP-expressing Salmonella A1-R highly and selectively colonized the PDOX melanoma and significantly suppressed tumor growth (p = 0.021). The combination of Salmonella A1-R and cisplatinum (CDDP), both at low-dose, also significantly suppressed the growth of the melanoma PDOX (P = 0.001). Salmonella A1-R has future clinical potential for combination chemotherapy with CDDP of melanoma, a highly-recalcitrant cancer. PMID:27500926

  14. The Application of Heptamethine Cyanine Dye DZ-1 and Indocyanine Green for Imaging and Targeting in Xenograft Models of Hepatocellular Carcinoma.

    PubMed

    Zhang, Caiqin; Zhao, Yong; Zhang, He; Chen, Xue; Zhao, Ningning; Tan, Dengxu; Zhang, Hai; Shi, Changhong

    2017-06-21

    Near infrared fluorescence (NIRF) imaging has strong potential for widespread use in noninvasive tumor imaging. Indocyanine green (ICG) is the only Food and Drug Administration (FDA) -approved NIRF dye for clinical diagnosis; however, it is unstable and poorly targets tumors. DZ-1 is a novel heptamethine cyanine NIRF dye, suitable for imaging and tumor targeting. Here, we compared the fluorescence intensity and metabolism of DZ-1 and ICG. Additionally, we assayed their specificities and abilities to target tumor cells, using cultured hepatocellular carcinoma (HCC) cell lines, a nude mouse subcutaneous xenograft model of liver cancer, and a rabbit orthotopic transplantation model. We found that DZ-1 accumulates in tumor tissue and specifically recognizes HCC in subcutaneous and orthotopic models. The NIRF intensity of DZ-1 was one order of magnitude stronger than that of ICG, and DZ-1 showed excellent intraoperative tumor targeting in the rabbit model. Importantly, ICG accumulated at tumor sites, as well as in the liver and kidney. Furthermore, DZ-1 analog-gemcitabine conjugate (NIRG) exhibited similar tumor-specific targeting and imaging properties, including inhibition of tumor growth, in HCC patient-derived xenograft (PDX) mice. DZ-1 and NIRG demonstrated superior tumor-targeting specificity, compared to ICG. We show that DZ-1 is an effective molecular probe for specific imaging, targeting, and therapy in HCC.

  15. Honokiol Crosses BBB and BCSFB, and Inhibits Brain Tumor Growth in Rat 9L Intracerebral Gliosarcoma Model and Human U251 Xenograft Glioma Model

    PubMed Central

    Zhang, Xiaoyan; Deng, Linyu; Zheng, Hao; Deng, Chongyang; Wen, Jiaolin; Wang, Ning; Peng, Cheng; Zhao, Xia; Wei, Yuquan; Chen, Lijuan

    2011-01-01

    Background Gliosarcoma is one of the most common malignant brain tumors, and anti-angiogenesis is a promising approach for the treatment of gliosarcoma. However, chemotherapy is obstructed by the physical obstacle formed by the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB). Honokiol has been known to possess potent activities in the central nervous system diseases, and anti-angiogenic and anti-tumor properties. Here, we hypothesized that honokiol could cross the BBB and BCSFB for the treatment of gliosarcoma. Methodologies We first evaluated the abilities of honokiol to cross the BBB and BCSFB by measuring the penetration of honokiol into brain and blood-cerebrospinal fluid, and compared the honokiol amount taken up by brain with that by other tissues. Then we investigated the effect of honokiol on the growth inhibition of rat 9L gliosarcoma cells and human U251 glioma cells in vitro. Finally we established rat 9L intracerebral gliosarcoma model in Fisher 344 rats and human U251 xenograft glioma model in nude mice to investigate the anti-tumor activity. Principal Findings We showed for the first time that honokiol could effectively cross BBB and BCSFB. The ratios of brain/plasma concentration were respectively 1.29, 2.54, 2.56 and 2.72 at 5, 30, 60 and 120 min. And about 10% of honokiol in plasma crossed BCSFB into cerebrospinal fluid (CSF). In vitro, honokiol produced dose-dependent inhibition of the growth of rat 9L gliosarcoma cells and human U251 glioma cells with IC50 of 15.61 µg/mL and 16.38 µg/mL, respectively. In vivo, treatment with 20 mg/kg body weight of honokiol (honokiol was given twice per week for 3 weeks by intravenous injection) resulted in significant reduction of tumor volume (112.70±10.16 mm3) compared with vehicle group (238.63±19.69 mm3, P = 0.000), with 52.77% inhibiting rate in rat 9L intracerebral gliosarcoma model, and (1450.83±348.36 mm3) compared with vehicle group (2914.17±780.52 mm3, P = 0

  16. Honokiol crosses BBB and BCSFB, and inhibits brain tumor growth in rat 9L intracerebral gliosarcoma model and human U251 xenograft glioma model.

    PubMed

    Wang, Xianhuo; Duan, Xingmei; Yang, Guangli; Zhang, Xiaoyan; Deng, Linyu; Zheng, Hao; Deng, Chongyang; Wen, Jiaolin; Wang, Ning; Peng, Cheng; Zhao, Xia; Wei, Yuquan; Chen, Lijuan

    2011-04-29

    Gliosarcoma is one of the most common malignant brain tumors, and anti-angiogenesis is a promising approach for the treatment of gliosarcoma. However, chemotherapy is obstructed by the physical obstacle formed by the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB). Honokiol has been known to possess potent activities in the central nervous system diseases, and anti-angiogenic and anti-tumor properties. Here, we hypothesized that honokiol could cross the BBB and BCSFB for the treatment of gliosarcoma. We first evaluated the abilities of honokiol to cross the BBB and BCSFB by measuring the penetration of honokiol into brain and blood-cerebrospinal fluid, and compared the honokiol amount taken up by brain with that by other tissues. Then we investigated the effect of honokiol on the growth inhibition of rat 9L gliosarcoma cells and human U251 glioma cells in vitro. Finally we established rat 9L intracerebral gliosarcoma model in Fisher 344 rats and human U251 xenograft glioma model in nude mice to investigate the anti-tumor activity. We showed for the first time that honokiol could effectively cross BBB and BCSFB. The ratios of brain/plasma concentration were respectively 1.29, 2.54, 2.56 and 2.72 at 5, 30, 60 and 120 min. And about 10% of honokiol in plasma crossed BCSFB into cerebrospinal fluid (CSF). In vitro, honokiol produced dose-dependent inhibition of the growth of rat 9L gliosarcoma cells and human U251 glioma cells with IC(50) of 15.61 µg/mL and 16.38 µg/mL, respectively. In vivo, treatment with 20 mg/kg body weight of honokiol (honokiol was given twice per week for 3 weeks by intravenous injection) resulted in significant reduction of tumor volume (112.70±10.16 mm(3)) compared with vehicle group (238.63±19.69 mm(3), P = 0.000), with 52.77% inhibiting rate in rat 9L intracerebral gliosarcoma model, and (1450.83±348.36 mm(3)) compared with vehicle group (2914.17±780.52 mm(3), P = 0.002), with 50.21% inhibiting rate in

  17. Apoptotic effect of citrus fruit extract nobiletin on lung cancer cell line A549 in vitro and in vivo.

    PubMed

    Luo, Gang; Guan, Xiaoling; Zhou, Liming

    2008-06-01

    Lung cancer is the leading cause for cancer-related death worldwide and the effectiveness of current treatments is very limited. Here we reported that Nobiletin, an effective component of citrus fruit, has antiproliferative activity on lung cancer cells both in vitro and in vivo. Cell viability and clonogenic assay showed that Nobiletin dose-dependently suppressed the proliferation of human lung adenocarcinoma cell line A549 cells, while has having a minimal effect on human umbilical vein endothelial cell line ECV-304 cells. DNA fragment assay and comet assay demonstrated that Nobiletin induced A549 cell apoptosis. Nobiletin-induced cell cycle arrest at G(2)/M phase was detected by Flow cytometric analysis. In addition, Western blot analysis revealed that A549 cells pretreated with Nobiletin showed decreased Bcl-2 and increased Bax protein expression, which were positively correlated with elevated expression of p53 compared to control. Furthermore, Nobiletin had overt inhibitory effect on the tumor growth in nude mice model was observed in vivo. Taken together, these results suggest that Nobiletin could induce p53-mediated cell cycle arrest and apoptosis via modulated the Bax:Bcl-2 protein ratio, is effective as a potent antitumor agent on lung tumors.

  18. XactMice: humanizing mouse bone marrow enables microenvironment reconstitution in a patient-derived xenograft model of head and neck cancer

    PubMed Central

    Morton, J. Jason; Bird, Gregory; Keysar, Stephen B.; Astling, David P.; Lyons, Traci R; Anderson, Ryan T.; Glogowska, Magdalena J.; Estes, Patricia; Eagles, Justin R.; Le, Phuong N.; Gan, Gregory; McGettigan, Brett; Fernandez, Pamela; Padilla-Just, Nuria; Varella-Garcia, Marileila; Song, John I.; Bowles, Daniel W.; Schedin, Pepper; Tan, Aik-Choon; Roop, Dennis R.; Wang, Xiao-Jing; Refaeli, Yosef; Jimeno, Antonio

    2015-01-01

    The limitations of cancer cell lines have led to the development of direct patient derived xenograft (PDX) models. However, the interplay between the implanted human cancer cells and recruited mouse stromal and immune cells alters the tumor microenvironment and limits the value of these models. To overcome these constraints, we have developed a technique to expand human hematopoietic stem and progenitor cells (HSPCs) and use them to reconstitute the radiation-depleted bone marrow of a NOD/SCID/IL2rg−/− (NSG) mouse on which a patient’s tumor is then transplanted (XactMice). The human HSPCs produce immune cells that home into the tumor and help replicate its natural microenvironment. Despite previous passage on nude mice, the expression of epithelial, stromal, and immune genes in XactMice tumors aligns more closely to that of the patient tumor than to those grown in non-humanized mice – an effect partially facilitated by human cytokines expressed by both the HSPC progeny and the tumor cells. The human immune and stromal cells produced in the XactMice can help recapitulate the microenvironment of an implanted xenograft, reverse the initial genetic drift seen after passage on non-humanized mice, and provide a more accurate tumor model to guide patient treatment. PMID:25893296

  19. Vorinostat, an HDAC inhibitor attenuates epidermoid squamous cell carcinoma growth by dampening mTOR signaling pathway in a human xenograft murine model

    SciTech Connect

    Kurundkar, Deepali; Srivastava, Ritesh K.; Chaudhary, Sandeep C.; Ballestas, Mary E.; Kopelovich, Levy; Elmets, Craig A.; Athar, Mohammad

    2013-01-15

    Histone deacetylase (HDAC) inhibitors are potent anticancer agents and show efficacy against various human neoplasms. Vorinostat is a potent HDAC inhibitor and has shown potential to inhibit growth of human xenograft tumors. However, its effect on the growth of skin neoplasm remains undefined. In this study, we show that vorinostat (2 μM) reduced expression of HDAC1, 2, 3, and 7 in epidermoid carcinoma A431 cells. Consistently, it increased acetylation of histone H3 and p53. Vorinostat (100 mg/kg body weight, IP) treatment reduced human xenograft tumor growth in highly immunosuppressed nu/nu mice. Histologically, the vorinostat-treated tumor showed features of well-differentiation with large necrotic areas. Based on proliferating cell nuclear antigen (PCNA) staining and expression of cyclins D1, D2, E, and A, vorinostat seems to impair proliferation by down-regulating the expression of these proteins. However, it also induced apoptosis. The mechanism by which vorinostat blocks proliferation and makes tumor cells prone to apoptosis, involved inhibition of mTOR signaling which was accompanied by reduction in cell survival AKT and extracellular-signal regulated kinase (ERK) signaling pathways. Our data provide a novel mechanism-based therapeutic intervention for cutaneous squamous cell carcinoma (SCC). Vorinostat may be utilized to cure skin neoplasms in organ transplant recipient (OTR). These patients have high morbidity and surgical removal of these lesions which frequently develop in these patients, is difficult. -- Highlights: ► Vorinostat reduces SCC growth in a xenograft murine model. ► Vorinostat dampens proliferation and induces apoptosis in tumor cells. ► Diminution in mTOR, Akt and ERK signaling underlies inhibition in proliferation. ► Vorinostat by inhibiting HDACs inhibits epithelial–mesenchymal transition.

  20. Antitumor effects of deguelin on H460 human lung cancer cells in vitro and in vivo: Roles of apoptotic cell death and H460 tumor xenografts model.

    PubMed

    Hsu, Yu-Chieh; Chiang, Jo-Hua; Yu, Chun-Shu; Hsia, Te-Chun; Wu, Rick Sai-Chuen; Lien, Jin-Cherng; Lai, Kuang-Chi; Yu, Fu-Shun; Chung, Jing-Gung

    2017-01-01

    Deguelin, a naturally occurring rotenoid of the flavonoid family, is known to be an Akt inhibitor, to have chemopreventive activities and anti-tumor effect on several cancers. In this study, investigation to elucidate the effect of deguelin on apoptotic pathways in human lung cancer cells and on the anti-tumor effect in lung cancer xenograft nu/nu mice was performed. In vitro studies, found that deguelin induced cell morphological changes, and decreased the percentage of viability through the induction of apoptosis in H460 lung cancer cells. Deguelin triggered apoptosis in H460 cells was also confirmed by DAPI staining, DNA gel electrophoresis, and Annexin V-FITC staining and these effects are dose-dependent manners. It was also found that deguelin promoted the Ca(2+) production and activation of caspase-3 but decreased the level of ΔΨm in H460 cells. Western blots indicated that the protein levels of cytochrome c, AIF, and pro-apoptotic Bax and Bak protein were increased, but the anti-apoptotic Bcl-2 and Bcl-x were decreased that may have led to apoptosis in H460 cells after exposure to deguelin. It was also confirmed by confocal laser microscope examination that deguelin promoted the release of AIF from mitochondria to cytosol. In vivo studies, found that in immunodeficient nu/nu mice bearing H460 tumor xenografts showed that the deguelin significantly suppressed tumor growth. Deguelin might be a potential therapeutic agent for the treatment of lung cancer in the future. This finding might fully support a critical event for deguelin via induction of apoptotic cell death and H460 tumor xenografts model against human lung cancer. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 84-98, 2017.

  1. Mitochondrial DNA-depleted A549 cells are resistant to bleomycin.

    PubMed

    Brar, Sukhdev S; Meyer, Joel N; Bortner, Carl D; Van Houten, Bennett; Martin, William J

    2012-09-01

    Alveolar epithelial cells are considered to be the primary target of bleomycin-induced lung injury, leading to interstitial fibrosis. The molecular mechanisms by which bleomycin causes this damage are poorly understood but are suspected to involve generation of reactive oxygen species and DNA damage. We studied the effect of bleomycin on mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) in human alveolar epithelial A549 cells. Bleomycin caused an increase in reactive oxygen species production, DNA damage, and apoptosis in A549 cells; however, bleomycin induced more mtDNA than nDNA damage. DNA damage was associated with activation of caspase-3, cleavage of poly(ADP-ribose) polymerase, and cleavage and activation of protein kinase D1 (PKD1), a newly identified mitochondrial oxidative stress sensor. These effects appear to be mtDNA-dependent, because no caspase-3 or PKD1 activation was observed in mtDNA-depleted (ρ(0)) A549 cells. Survival rate after bleomycin treatment was higher for A549 ρ(0) than A549 cells. These results suggest that A549 ρ(0) cells are more resistant to bleomycin toxicity than are parent A549 cells, likely in part due to the depletion of mtDNA and impairment of mitochondria-dependent apoptotic pathways.

  2. Mitochondrial DNA-depleted A549 cells are resistant to bleomycin

    PubMed Central

    Brar, Sukhdev S.; Meyer, Joel N.; Bortner, Carl D.; Van Houten, Bennett

    2012-01-01

    Alveolar epithelial cells are considered to be the primary target of bleomycin-induced lung injury, leading to interstitial fibrosis. The molecular mechanisms by which bleomycin causes this damage are poorly understood but are suspected to involve generation of reactive oxygen species and DNA damage. We studied the effect of bleomycin on mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) in human alveolar epithelial A549 cells. Bleomycin caused an increase in reactive oxygen species production, DNA damage, and apoptosis in A549 cells; however, bleomycin induced more mtDNA than nDNA damage. DNA damage was associated with activation of caspase-3, cleavage of poly(ADP-ribose) polymerase, and cleavage and activation of protein kinase D1 (PKD1), a newly identified mitochondrial oxidative stress sensor. These effects appear to be mtDNA-dependent, because no caspase-3 or PKD1 activation was observed in mtDNA-depleted (ρ0) A549 cells. Survival rate after bleomycin treatment was higher for A549 ρ0 than A549 cells. These results suggest that A549 ρ0 cells are more resistant to bleomycin toxicity than are parent A549 cells, likely in part due to the depletion of mtDNA and impairment of mitochondria-dependent apoptotic pathways. PMID:22773697

  3. [Construction of BAD Lentivirus Vector and Its Effect on Proliferation in A549 Cell Lines].

    PubMed

    Huang, Na; He, Yan-qi; Zhu, Jing; Li, Wei-min

    2015-05-01

    To construct the recombinant lentivirus expressing vector BAD (Bcl-2-associated death protein) gene and to study its effect on A549 cell proliferation. The BAD gene was amplified from plasmid pAV-MCMV-BAD-GFP by PCR. The purified BAD gene fragment was inserted into a lentivirus vector (pLVX-IRES-ZsGreen 1), and the insertion was identified by PCR, restriction endonuclease analysis and DNA sequencing. A549 cells were then transfected with the packaged recombinant lentivirus, and resistant cell clones were selected with flow cytometry. The expression of BAD in A549 cell lines stably transduction with a lentivirus was examined using Western blot. The effect of BAD overexpression on proliferation of A549 cells was evaluated by using CCK-8 kit. Restriction enzyme digestion and DNA sequencing showed that the full-length BAD gene (507 bp) had been successfully subcloned into the lentiviral vector to result in the recombinant vector pLVX-IRES-ZsGreen 1. Monoclonal cell lines BAD-A549 was produced after transfection with the recombinant lentivirus and selected with flow cytometry. Stable expression of BAD protein was verified by Western blot. In vitro, the OD value in BAD group was significantly lower than that of control groups from 120-144 h (P<0. 05). A549 cell lines stably transduced with a lentivirus expressing the BAD gene had been successfully generated. In vitro, BAD overexpression significantly inhibited A549 cells proliferation.

  4. [Grape seed proanthocyanidins inhibits the invasion and migration of A549 lung cancer cells].

    PubMed

    Zhou, Yehan; Ye, Xiufeng; Shi, Yao; Wang, Ke; Wan, Dan

    2016-02-01

    To explore the effect of grape seed proanthocyanidins (GSPs) on the invasion and migration of A549 lung cancer cells and the underlying mechanism. Trypan blue dye exclusion assay was used to determine the cytotoxic effect of varying doses of GSPs on the BEAS-2B normal human pulmonary epithelial cells. After treated with 0, 10, 20, 40, 80 μg/mL GSP, the proliferation of A549 cells was detected by MTT assay; the invasion and migration of A549 cells were determined by Transwell(TM) assay and scratch wound assay, respectively. The levels of epithelial growth factor receptor (EGFR), E-cadherin, N-cadherin in A549 cells treated with GSPs were detected by Western blotting. (0-40) μg/mL GSPs had no significant toxic effect on BEAS-2B cells, while 80 μg/mL GSPs had significant cytotoxicity to BEAS-2B cells. The proliferation of A549 cells was significantly inhibited within limited dosage in a dose-dependent manner, and the abilities of invasion and migration of A549 cells were also inhibited. Western blotting showed that the expression of EGFR and N-cadherin decreased, while E-cadherin increased after GSPs treatment. GSPs could inhibit the abilities of proliferation, invasion and migration of A549 cells, which might be related to the dow-regulation of EGFR and N-cadherin and the up-regulation of E-cadherin.

  5. Tamoxifen increases apoptosis but does not influence markers of proliferation in an MCF-7 xenograft model of breast cancer.

    PubMed

    Hawkin, R A; Arends, M J; Ritchie, A A; Langdon, S; Miller, W R

    2000-04-01

    Twenty-four nude mice bearing MCF-7 breast cancer cells grown as xenografts and treated with tamoxifen (2.5 mg slow-release pellet) were studied for up to 35 days. Tumour size was measured in 2 dimensions at regular time-intervals and tumours were harvested on each of days 2, 4, 7, 14, 28 and 35 after the start of treatment. Control animals (8) received no treatment and the tumours were harvested after 0 or 35 days. Tumour sections were assessed for prevalence of apoptosis and mitosis and examined immunocytochemically for Ki(67)(MIB-1) and bcl-2 expression. Tumours increased in size during tamoxifen-treatment, but at a significantly slower rate (max. 2.6-fold) than in the untreated control animals; thus tumours not actually regressing may, nevertheless, be responding significantly to tamoxifen. MIB-1 and bcl-2 immunostaining and mitosis failed to show any consistent change over the period of study. Apoptosis, however, increased progressively and significantly to day-28 in tamoxifen-treated tumours, reaching approximately a 5-fold increase over day-0 values, then decreasing again to nearly 3-fold by day-35 (P= 0.0002). The apoptosis: mitosis ratio in treated tumours also increased to approximately 10-fold on day-28 over day-0 values, decreasing to nearly 4-fold by day-35 (P= 0.037). Within the treated group, apoptosis was significantly inversely correlated with both mitosis (R = -0.38, P= 0.03) and expression of bcl-2 (R = -0.48, P= 0.0056) and strongly positively correlated with both time on tamoxifen (R = +0.63, P= 0.0003) and the % inhibition of growth by tamoxifen (R = +0.58,P = 0.0012) in the 28 individual, treated tumours (estimated relative to the mean growth rate in the controls). The apoptosis: mitosis ratio was also inversely correlated with bcl-2 expression (R = -0.56, P= 0.0021) and positively correlated with both time on tamoxifen (R = +0.50, P= 0.0068) and % inhibition of growth (R = +0.56, P= 0.0019). In this hormone-sensitive tumour model for breast

  6. Intraperitoneal immunotherapy with T cells stably and transiently expressing anti-EpCAM CAR in xenograft models of peritoneal carcinomatosis

    PubMed Central

    Chi, Zhixia; Du, Shou-Hui; Chen, Can; Tay, Johan C.K.; Toh, Han Chong; Connolly, John E.; Xu, Xue Hu; Wang, Shu

    2017-01-01

    The epithelial cell adhesion molecule (EpCAM) is overexpressed in a wide variety of tumor types, including peritoneal carcinomatosis (PC) from gastrointestinal and gynecological malignancies. To develop a chimeric antigen receptor T (CART) cell therapy approach to treat patients with end-stage PC, we constructed third generation CARs specific to EpCAM using the 4D5MOC-B single chain variable fragment. CART cells were generated with lentiviral transduction and exhibited specific in vitro killing activity against EpCAM-positive human ovarian and colorectal cancer cells. A single intraperitoneal injection of the CART cells eradicated established ovarian xenografts and resulted in significantly prolonged animal survival. Since EpCAM is also expressed on normal epithelium, anti-EpCAM CART cells were generated by mRNA electroporation that display a controlled cytolytic activity with a limited CAR expression duration. Multiple repeated infusions of these RNA CAR-modified T cells delayed disease progression in immunodeficient mice bearing well-established peritoneal ovarian and colorectal xenografts. Thus, our study demonstrates the effectiveness of using anti-EpCAM CAR-expressing T cells for local treatment of PC in mice. The possibility of using this approach for clinical treatment of EpCAM-positive gastrointestinal and gynecological malignancies warrants further validation. PMID:28088790

  7. Novel Effects of Simvastatin on Uterine Fibroids: In vitro and Patient-Derived Xenograft Mouse Model Study

    PubMed Central

    BORAHAY, Mostafa A.; VINCENT, Kathleen; MOTAMEDI, Massoud; SBRANA, Elena; KILIC, Gokhan S.; AL-HENDY, Ayman; BOEHNING, Darren

    2015-01-01

    Objective Uterine leiomyomas represent a common gynecologic problem with no satisfactory long-term medical treatment. The purpose of this study is to examine the effects of simvastatin on uterine leiomyoma, both in vitro and in vivo. Study Design This is a laboratory-based experimental study. For in vitro studies, we used human and rat leiomyoma cells. For in vivo studies, we used immunodeficient mice supplemented with estrogen/progesterone pellets xenografted with human leiomyoma tissue explant. Results For in vitro studies, cells were treated with different concentrations of simvastatin for 48 hours. Simvastatin induced dose-dependent apoptosis in leiomyoma cells as measured by a fluorometric caspase-3 activity assay, and inhibited proliferation as demonstrated by an MTT assay (both were significant at 5 and 10 μM). In addition, simvastatin decreased Akt signaling pathway phosphorylation as examined using Western blot analysis. For in vivo studies, animals were treated for 28 days with simvastatin (20 μg/ gm body weight/ day) vs vehicle control. The treatment inhibited tumor growth as measured weekly using calipers and/ or ultrasound (P<.01). Finally, simvastatin decreased expression of the proliferation marker Ki67 in xenograft tumor tissue as examined by immunohistochemistry (P=.02). Conclusion Simvastatin can be a promising treatment for uterine leiomyoma. Further studies, including pharmacokinetic and drug delivery studies, are required. PMID:25840272

  8. 5α-reductase Inhibition Coupled with Short Off Cycles Increases Survival in the LNCaP Xenograft Prostate Tumor Model on Intermittent Androgen Deprivation Therapy

    PubMed Central

    Pascal, Laura E.; Masoodi, Khalid Z.; O’Malley, Katherine J.; Shevrin, Daniel; Gingrich, Jeffrey R.; Parikh, Rahul A.; Wang, Zhou

    2014-01-01

    Purpose Intermittent androgen deprivation therapy (IADT) for patients with PSA progression after treatment for localized prostate cancer is an alternative to the standard continuous ADT. IADT allows for the recovery of testosterone during off-cycles to stimulate regrowth and differentiation of the regressed prostate tumor in order to lessen the side effects of continuous ADT and potentially prolong survival. Previously, IADT coupled with finasteride was shown to prolong survival of animals bearing androgen-sensitive prostate tumors when off-cycle duration was not prolonged and fixed at 10–14 days. Regressed prostate tumor xenografts with testosterone replacement were initially responsive to 5α-reductase inhibition, but resumed growth after several days in the animal models. 5α-reductase inhibition in shorter off-cycles of testosterone recovery could maximize tumor growth inhibition during IADT and perhaps increase survival. Materials and Methods The LNCaP xenograft tumor model was utilized to evaluate the effectiveness of short off-cycles of 4 days coupled with 5α-reductase inhibition on IADT on survival and tumor regrowth. Results Dutasteride inhibited initial testosterone-induced tumor regrowth during both the first and second off-cycle and significantly increased survival. Conclusions These results further support the potential for IADT combined with 5α-reductase inhibition to improve survival in prostate cancer patients when off cycle durations are short or very short. PMID:25444984

  9. Bufalin Inhibits HCT116 Colon Cancer Cells and Its Orthotopic Xenograft Tumor in Mice Model through Genes Related to Apoptotic and PTEN/AKT Pathways

    PubMed Central

    Wang, Jie; Chen, Chao; Wang, Shiying; Zhang, Yong; Yin, Peihao; Gao, Zhongxiang; Xu, Jie; Feng, Dianxu; Zuo, Qinsong; Zhao, Ronghua; Chen, Teng

    2015-01-01

    Aims. To investigate the anticolorectal cancer (CRC) effects of Bufalin, a bioactive polyhydroxysteroid from Venenum Bufonis, using HCT116 human CRC cell and an established orthotopic xenograft model in mice, and to explore the mechanisms of action. Material and Methods. Cultured HCT116 cells or BALB/c mice with orthotopic tumor were treated by Bufalin (positive control: 5-FU). Cell proliferation, apoptosis, and cycling were determined by MTT, Annexin V/PI staining, and flow cytometry, respectively. In mice, tumor inhibition rate and animal survival were calculated. The expressions of PTEN/phosphate-PTEN, AKT/phosphate-AKT, Bad, Bcl-xl, Bax, or Caspase-3 in cells and/or tumors were determined by Western blot or immunohistochemical staining. Results. Bufalin significantly inhibited cell proliferation and induced cell apoptosis and cycle arrest in a dose/time-dependent manner. In the animal model, Bufalin treatment resulted in significant inhibition of tumor growth and prolonged survival. In the Bufalin-treated cultured cells and/or xenograft tumors, the expressions of PTEN, Bad, Bax, and Caspase-3 were significantly increased, while p-AKT and Bcl-xL significantly decreased. Conclusions. Our results indicate that Bufalin inhibit cell proliferation and orthotopic tumor growth by inducing cell apoptosis through the intrinsic apoptotic pathway, which is of pivotal significance in the identification of an anticancer drug that may synergize with Bufalin. PMID:26770191

  10. Increased COX-2 expression in epithelial and stromal cells of high mammographic density tissues and in a xenograft model of mammographic density.

    PubMed

    Chew, G L; Huo, C W; Huang, D; Hill, P; Cawson, J; Frazer, H; Hopper, J L; Haviv, I; Henderson, M A; Britt, K; Thompson, E W

    2015-08-01

    Mammographic density (MD) adjusted for age and body mass index is one of the strongest known risk factors for breast cancer. Given the high attributable risk of MD for breast cancer, chemoprevention with a safe and available agent that reduces MD and breast cancer risk would be beneficial. Cox-2 has been implicated in MD-related breast cancer risk, and was increased in stromal cells in high MD tissues in one study. Our study assessed differential Cox-2 expression in epithelial and stromal cells in paired samples of high and low MD human breast tissue, and in a validated xenograft biochamber model of MD. We also examined the effects of endocrine treatment upon Cox-2 expression in high and low MD tissues in the MD xenograft model. Paired high and low MD human breast tissue samples were immunostained for Cox-2, then assessed for differential expression and staining intensity in epithelial and stromal cells. High and low MD human breast tissues were separately maintained in biochambers in mice treated with Tamoxifen, oestrogen or placebo implants, then assessed for percentage Cox-2 staining in epithelial and stromal cells. Percentage Cox-2 staining was greater for both epithelial (p = 0.01) and stromal cells (p < 0.0001) of high compared with low MD breast tissues. In high MD biochamber tissues, percentage Cox-2 staining was greater in stromal cells of oestrogen-treated versus placebo-treated tissues (p = 0.05).

  11. Differential response to EGFR- and VEGF-targeted therapies in patient-derived tumor tissue xenograft models of colon carcinoma and related metastases.

    PubMed

    Jin, Ketao; Lan, Huanrong; Cao, Feilin; Han, Na; Xu, Zhenzhen; Li, Guangliang; He, Kuifeng; Teng, Lisong

    2012-08-01

    Heterogeneity in primary tumors and related metastases may result in failure of antitumor therapies, particularly in targeted therapies for the treatment of cancer. In this study, patient-derived tumor tissue (PDTT) xenograft models of colon carcinoma with lymphatic and hepatic metastases were used to evaluate the response to EGFR- and VEGF-targeted therapies. Our results showed that primary colon carcinoma and its corresponding lymphatic and hepatic metastases have a different response rate to anti-EGFR (cetuximab) and anti-VEGF (bevacizumab) therapies. However, the underlying mechanism of these types of phenomenon is still unclear. To investigate whether such phenomena may result from the heterogeneity in primary colon carcinoma and related metastases, we compared the expression levels of cell signaling pathway proteins using immunohistochemical staining and western blotting, and the gene status of KRAS using pyrosequencing in the same primary colon carcinoma and its corresponding lymphatic and hepatic metastatic tissues which were used for establishing the PDTT xenograft models. Our results showed that the expression levels of EGFR, VEGF, Akt/pAkt, ERK/pERK, MAPK/pMAPK, and mTOR/pmTOR were different in primary colon carcinoma and matched lymphatic and hepatic metastases although the KRAS gene status in all cases was wild-type. Our results indicate that the heterogeneity in primary colon carcinoma and its corresponding lymphatic and hepatic metastases may result in differences in the response to dual-inhibition of EGFR and VEGF.

  12. Cisplatin and 4-hexylresorcinol synergise to decrease metastasis and increase survival rate in an oral mucosal melanoma xenograft model: a preliminary study.

    PubMed

    Lee, Sang-Woon; Kim, Seong-Gon; Park, Young-Wook; Kweon, Haeyong; Kim, Jwa-Young; Rotaru, Horatiu

    2013-06-01

    The present study was undertaken to examine the effects of cisplatin plus 4-hexylresorcinol (4-HR) combination therapy on oral mucosal melanoma (OMM) using cultured primary OMM cells in a tumour xenograft model. Cultured primary OMM cells were used for the MTT assay and DNA microarray. OMM cells were implanted into the submandibular glands of nude mice. The mice were then treated with cisplatin only or cisplatin plus 4-HR. Tumour size changes, survival rate and tumour metastasis were compared between the two groups by observation, micro-positron emission tomography (PET) and histological examination. In the MTT assay, the cisplatin plus 4-HR group showed significantly higher inhibition of OMM cell growth compared to the other groups (p<0.05). DNA microarray results showed significant inhibition of matrix metalloproteinase (MMP)-2 gene expression upon 4-HR application. The necropsy and micro-PET results showed that the mice from the cisplatin-only group had more distant metastases than the mice from the cisplatin plus 4-HR combination group (p=0.002). MMP-2 expression was lower in the primary tumours in the cisplatin plus 4-HR combination group than in the cisplatin-only group (p<0.001). Overall survival was longer in mice from the cisplatin plus 4-HR combination group than in the cisplatin-only group (p=0.049). In conclusion, the combined effect of cisplatin and 4-HR resulted in fewer metastases and longer survival than cisplatin-only treatment in the OMM xenograft model.

  13. Decorin protein core affects the global gene expression profile of the tumor microenvironment in a triple-negative orthotopic breast carcinoma xenograft model.

    PubMed

    Buraschi, Simone; Neill, Thomas; Owens, Rick T; Iniguez, Leonardo A; Purkins, George; Vadigepalli, Rajanikanth; Evans, Barry; Schaefer, Liliana; Peiper, Stephen C; Wang, Zi-Xuan; Iozzo, Renato V

    2012-01-01

    Decorin, a member of the small leucine-rich proteoglycan gene family, exists and functions wholly within the tumor microenvironment to suppress tumorigenesis by directly targeting and antagonizing multiple receptor tyrosine kinases, such as the EGFR and Met. This leads to potent and sustained signal attenuation, growth arrest, and angiostasis. We thus sought to evaluate the tumoricidal benefits of systemic decorin on a triple-negative orthotopic breast carcinoma xenograft model. To this end, we employed a novel high-density mixed expression array capable of differentiating and simultaneously measuring gene signatures of both Mus musculus (stromal) and Homo sapiens (epithelial) tissue origins. We found that decorin protein core modulated the differential expression of 374 genes within the stromal compartment of the tumor xenograft. Further, our top gene ontology classes strongly suggests an unexpected and preferential role for decorin protein core to inhibit genes necessary for immunomodulatory responses while simultaneously inducing expression of those possessing cellular adhesion and tumor suppressive gene properties. Rigorous verification of the top scoring candidates led to the discovery of three genes heretofore unlinked to malignant breast cancer that were reproducibly found to be induced in several models of tumor stroma. Collectively, our data provide highly novel and unexpected stromal gene signatures as a direct function of systemic administration of decorin protein core and reveals a fundamental basis of action for decorin to modulate the tumor stroma as a biological mechanism for the ascribed anti-tumorigenic properties.

  14. Decorin Protein Core Affects the Global Gene Expression Profile of the Tumor Microenvironment in a Triple-Negative Orthotopic Breast Carcinoma Xenograft Model

    PubMed Central

    Owens, Rick T.; Iniguez, Leonardo A.; Purkins, George; Vadigepalli, Rajanikanth; Evans, Barry; Schaefer, Liliana; Peiper, Stephen C.; Wang, Zi-Xuan; Iozzo, Renato V.

    2012-01-01

    Decorin, a member of the small leucine-rich proteoglycan gene family, exists and functions wholly within the tumor microenvironment to suppress tumorigenesis by directly targeting and antagonizing multiple receptor tyrosine kinases, such as the EGFR and Met. This leads to potent and sustained signal attenuation, growth arrest, and angiostasis. We thus sought to evaluate the tumoricidal benefits of systemic decorin on a triple-negative orthotopic breast carcinoma xenograft model. To this end, we employed a novel high-density mixed expression array capable of differentiating and simultaneously measuring gene signatures of both Mus musculus (stromal) and Homo sapiens (epithelial) tissue origins. We found that decorin protein core modulated the differential expression of 374 genes within the stromal compartment of the tumor xenograft. Further, our top gene ontology classes strongly suggests an unexpected and preferential role for decorin protein core to inhibit genes necessary for immunomodulatory responses while simultaneously inducing expression of those possessing cellular adhesion and tumor suppressive gene properties. Rigorous verification of the top scoring candidates led to the discovery of three genes heretofore unlinked to malignant breast cancer that were reproducibly found to be induced in several models of tumor stroma. Collectively, our data provide highly novel and unexpected stromal gene signatures as a direct function of systemic administration of decorin protein core and reveals a fundamental basis of action for decorin to modulate the tumor stroma as a biological mechanism for the ascribed anti-tumorigenic properties. PMID:23029096

  15. Phenethyl isothiocyanate inhibits proliferation and induces apoptosis in pancreatic cancer cells in vitro and in a MIAPaca2 xenograft animal model.

    PubMed

    Stan, Silvia D; Singh, Shivendra V; Whitcomb, David C; Brand, Randall E

    2014-01-01

    Pancreatic cancer is often diagnosed at an advanced stage and it has a poor prognosis that points to an increased need to develop effective chemoprevention strategies for this disease. We examined the ability of phenethyl isothiocyanate (PEITC), a naturally occurring isothiocyanate found in cruciferous vegetables, to inhibit the growth of pancreatic cancer cells in vitro and in a MIAPaca2 xenograft animal model. Exposure to PEITC inhibited pancreatic cancer cell growth in a dose-dependent manner, with an IC50 of approximately 7 μmol/L. PEITC treatment induced G2/M phase cell cycle arrest, downregulated the antiapoptotic proteins Bcl-2 and Bcl-XL, upregulated the proapoptotic protein Bak, and suppressed Notch 1 and 2 levels. In addition, treatment with PEITC induced cleavage of poly-(ADP-ribose) polymerase and led to increased cytoplasmic histone-associated DNA fragmentation and subdiploid (apoptotic) fraction in pancreatic cancer cells. Oral administration of PEITC suppressed the growth of pancreatic cancer cells in a MIAPaca2 xenograft animal model. Our data show that PEITC exerts its inhibitory effect on pancreatic cancer cells through several mechanisms, including G2/M phase cell cycle arrest and induction of apoptosis, and supports further investigation of PEITC as a chemopreventive agent for pancreatic cancer.

  16. 2′-(2-bromohexadecanoyl)-paclitaxel conjugate nanoparticles for the treatment of non-small cell lung cancer in an orthotopic xenograft mouse model

    PubMed Central

    Peng, Lei; Schorzman, Allison N; Ma, Ping; Madden, Andrew J; Zamboni, William C; Benhabbour, Soumya Rahima; Mumper, Russell J

    2014-01-01

    A nanoparticle (NP) formulation with 2′-(2-bromohexadecanoyl)-paclitaxel (Br-16-PX) conjugate was developed in these studies for the treatment of non-small cell lung cancer (NSCLC). The lipophilic paclitaxel conjugate Br-C16-PX was synthesized and incorporated into lipid NPs where the 16-carbon chain enhanced drug entrapment in the drug delivery system and improved in vivo pharmacokinetics. The electron-withdrawing bromine group was used to facilitate the conversion of Br-C16-PX to paclitaxel at the tumor site. The developed system was evaluated in luciferase-expressing A549 cells in vitro and in an orthotopic NSCLC mouse model. The results demonstrated that the Br-C16-PX NPs had a higher maximum tolerated dose (75 mg/kg) than Taxol® (19 mg/kg) and provided significantly longer median survival (88 days versus 70 days, P<0.05) in the orthotopic NSCLC model. An improved pharmacokinetic profile was observed for the Br-C16-PX NPs at 75 mg/kg compared to Taxol at 19 mg/kg. The area under the concentration versus time curve (AUC)0–96 h of Br-C16-PX from the NPs was 91.7-fold and 49.6-fold greater than Taxol in plasma and tumor-bearing lungs, respectively, which provided sustained drug exposure and higher antitumor efficacy in the NP-treated group. PMID:25114529

  17. Effect of magnetic fluid hyperthermia on lung cancer nodules in a murine model.

    PubMed

    Hu, Runlei; Ma, Shenglin; Li, Hu; Ke, Xianfu; Wang, Guoqing; Wei, Dongshan; Wang, Wei

    2011-11-01

    The purpose of the present study was to investigate the therapeutic effect of magnetic fluid hyperthermia (MFH) induced by an alternating magnetic field (AMF) on human carcinoma A549 xenograft in nude mice. An animal model of human lung cancer was established by subcutaneous injection of human lung cancer A549 cells in BALB/c nude mice. The xenograft mice were randomly divided into four groups and each group was treated with an injection of a different concentration of magnetic fluid: control, low-dose (67.5 mg/ml), medium-dose (90.0 mg/ml) and high-dose group (112.5 mg/ml), respectively. Following the injection (24 h), the tumor was heated in an AMF for 30 min. Tumor volumes were then measured every week. The therapeutic effect was assessed by measuring the tumor volume and weight. Pathological examination was performed with a light and electronic microscope following treatment. The temperature at the surface of the tumor in the low-, medium- and high-dose groups increased to 41.3, 44.5 and 46.8°C, respectively. The tumor grew significantly slower in the medium- and high-dose groups (both p<0.05) compared to the control group. Cytoclasis and apoptosis were detected under light and electron microscopy. In conclusion, MFH induced by AMF inhibited tumor growth and promoted apoptosis of human carcinoma A549 cells in a xenograft mice model.

  18. Polyphenol-rich Avicennia marina leaf extracts induce apoptosis in human breast and liver cancer cells and in a nude mouse xenograft model.

    PubMed

    Huang, Cheng; Lu, Chung-Kuang; Tu, Ming-Chin; Chang, Jia-Hua; Chen, Yen-Ju; Tu, Yu-Hsuan; Huang, Hsiu-Chen

    2016-06-14

    Avicennia marina is the most abundant and common mangrove species and has been used as a traditional medicine for skin diseases, rheumatism, ulcers, and smallpox. However, its anticancer activities and polyphenol contents remain poorly characterized. Thus, here we investigated anticancer activities of secondary A. marina metabolites that were purified by sequential soxhlet extraction in water, ethanol, methanol, and ethyl acetate (EtOAc). Experiments were performed in three human breast cancer cell lines (AU565, MDA-MB-231, and BT483), two human liver cancer cell lines (HepG2 and Huh7), and one normal cell line (NIH3T3). The chemotherapeutic potential of A. marina extracts was evaluated in a xenograft mouse model. The present data show that EtOAc extracts of A. marina leaves have the highest phenolic and flavonoid contents and anticancer activities and, following column chromatography, the EtOAc fractions F2-5, F3-2-9, and F3-2-10 showed higher cytotoxic effects than the other fractions. 1H-NMR and 13C-NMR profiles indicated that the F3-2-10 fraction contained avicennones D and E. EtOAc extracts of A. marina leaves also suppressed xenograft MDA-MB-231 tumor growth in nude mice, suggesting that EtOAc extracts of A. marina leaves may provide a useful treatment for breast cancer.

  19. 5α-Reductase inhibition coupled with short off cycles increases survival in the LNCaP xenograft prostate tumor model on intermittent androgen deprivation therapy.

    PubMed

    Pascal, Laura E; Masoodi, Khalid Z; O'Malley, Katherine J; Shevrin, Daniel; Gingrich, Jeffrey R; Parikh, Rahul A; Wang, Zhou

    2015-04-01

    Intermittent androgen deprivation therapy in patients with prostate specific antigen progression after localized prostate cancer treatment is an alternative to standard continuous androgen deprivation therapy. Intermittent androgen deprivation therapy allows for testosterone recovery during off cycles. This stimulates regrowth and differentiation of the regressed prostate tumor, lessens the side effects of continuous androgen deprivation therapy and potentially prolongs survival. Previously intermittent androgen deprivation therapy coupled with finasteride was shown to prolong survival in animals bearing androgen sensitive prostate tumors when the off cycle duration was not prolonged but rather fixed at 10 to 14 days. Regressed prostate tumor xenografts with testosterone replacement were initially responsive to 5α-reductase inhibition but growth resumed after several days. In shorter off cycles of testosterone recovery 5α-reductase inhibition might maximize tumor growth inhibition during intermittent androgen deprivation therapy and perhaps increase survival. We used the LNCaP xenograft tumor model to evaluate the effectiveness of short off cycles of 4 days coupled with 5α-reductase inhibition on survival and tumor regrowth while on intermittent androgen deprivation therapy. Dutasteride inhibited initial testosterone induced tumor regrowth off cycles 1 and 2, and significantly increased survival. These results further support the potential for intermittent androgen deprivation therapy combined with 5α-reductase inhibition to improve survival in patients with prostate cancer when off cycle duration is short or very short. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. As2 O3 combined with leflunomide prolongs heart xenograft survival via suppressing the response of Th1, Th2, and B cells in a rat model.

    PubMed

    Jiao, Zhi-Xing; Leng, Yun; Xia, Jun-Jie; Wu, Hai-Qiao; Jin, Ning; Fu, Jia-Zhao; Cheng, Lian-Na; Wang, Jin-Hua; Ni, Shao-Bin; Qi, Zhong-Quan

    2016-05-01

    Xenotransplantation remits the severe shortage of human organs and tissues for transplantation, which is a problem that severely limits the application of transplantation to the treatment of human disease. However, severe immune rejection significantly limits the efficacy of xenotransplantation. In this study, we systematically investigated the immunosuppressive effect and mechanism of action of As2 O3 and leflunomide using a hamster-to-rat heart xenotransplantation model. We initially examined heart xenograft survival following As2 O3 and leflunomide treatment alone or combined treatment. We found that treatment with As2 O3 combined with leflunomide can significantly prolong the survival of heart xenograft by inhibiting Th1 and Th2 differentiation and reducing the production of IgG and IgM. Interestingly, As2 O3 and leflunomide showed low toxicity to the organs of the recipient. Taken together, these observations indicate that treatment with As2 O3 combined with leflunomide may be a promising immunosuppressive schedule for xenotransplantation.

  1. Metformin impairs Rho GTPase signaling to induce apoptosis in neuroblastoma cells and inhibits growth of tumors in the xenograft mouse model of neuroblastoma

    PubMed Central

    Kumar, Ambrish; Al-Sammarraie, Nadia; DiPette, Donald J.; Singh, Ugra S.

    2014-01-01

    Metformin has been shown to inhibit tumor growth in xenograft rodent models of adult cancers, and various human clinical trials are in progress. However, the precise molecular mechanisms of metformin action are largely unknown. In the present study we examined the anti-tumor activity of metformin against neuroblastoma, and determined the underlying signaling mechanisms. Using human neuroblastoma xenograft mice, we demonstrated that oral administration of metformin (100 and 250 mg/kg body weight) significantly inhibited the growth of tumors. The interference of metformin in spheroid formation further confirmed the anti-tumor activity of metformin. In tumors, the activation of Rac1 (GTP-Rac1) and Cdc42 (GTP-Cdc42) was increased while RhoA activation (GTP-RhoA) was decreased by metformin. It also induced phosphorylation of JNK and inhibited the phosphorylation of ERK1/2 without affecting p38 MAP Kinase. Infection of cells by adenoviruses expressing dominant negative Rac1 (Rac1-N17), Cdc42 (Cdc42-N17) or constitutively active RhoA (RhoA-V14), or incubation of cells with pharmacological inhibitors of Rac1 (NSC23766) or Cdc42 (ML141) significantly protected neuroblastoma cells from metformin-induced apoptosis. Additionally, inhibition of JNK activity along with Rac1 or Cdc42 attenuated cytotoxic effects of metformin. These studies demonstrated that metformin impairs Rho GTPases signaling to induce apoptosis via JNK pathway. PMID:25365944

  2. Evaluating the Anticancer Properties of Liposomal Copper in a Nude Mouse Xenograft Model of Human Prostate Cancer: Formulation, In Vitro, In Vivo, Histology and Tissue Distribution Studies

    PubMed Central

    Wang, Yan; Zeng, San; Lin, Tien-Min; Krugner-Higby, Lisa; Lyman, Doug; Steffen, Dana; Xiong, May P.

    2014-01-01

    Purpose Although copper (Cu) complexes have been investigated as anticancer agents, there has been no description of Cu itself as a cancer killing agent. A stealth liposomal Cu formulation (LpCu) was studied in vitro and in vivo. Methods LpCu was evaluated in prostate cancer origin PC-3 cells by a metabolic cytotoxicity assay, by monitoring reactive oxygen species (ROS), and by flow cytometry. LpCu efficacy was evaluated in vivo using intratumoral and intravenous injections into mice bearing PC-3 xenograft tumors. Toxicology was assessed by performing hematological and blood biochemistry assays, and tissue histology and Cu distribution was investigated by elemental analysis. Results LpCu and free Cu salts displayed similar levels of cell metabolic toxicity and ROS. Flow cytometry indicated that the mechanisms of cell death were both apoptosis and necrosis. Animals injected i.t. with 3.5 mg/kg or i.v. with 3.5 and 7.0 mg/kg LpCu exhibited significant tumor growth inhibition. Kidney and eye were the main organs affected by Cu-mediated toxicities, but spleen and liver were the major organs of Cu deposition. Conclusions LpCu was effective at reducing tumor burden in the xenograft prostate cancer model. There was histological evidence of Cu toxicity in kidneys and eyes of animals treated at the maximum tolerated dose of LpCu 7.0 mg/kg. PMID:24848339

  3. Polyphenol-rich Avicennia marina leaf extracts induce apoptosis in human breast and liver cancer cells and in a nude mouse xenograft model

    PubMed Central

    Tu, Ming-Chin; Chang, Jia-Hua; Chen, Yen-Ju; Tu, Yu-Hsuan; Huang, Hsiu-Chen

    2016-01-01

    Avicennia marina is the most abundant and common mangrove species and has been used as a traditional medicine for skin diseases, rheumatism, ulcers, and smallpox. However, its anticancer activities and polyphenol contents remain poorly characterized. Thus, here we investigated anticancer activities of secondary A. marina metabolites that were purified by sequential soxhlet extraction in water, ethanol, methanol, and ethyl acetate (EtOAc). Experiments were performed in three human breast cancer cell lines (AU565, MDA-MB-231, and BT483), two human liver cancer cell lines (HepG2 and Huh7), and one normal cell line (NIH3T3). The chemotherapeutic potential of A. marina extracts was evaluated in a xenograft mouse model. The present data show that EtOAc extracts of A. marina leaves have the highest phenolic and flavonoid contents and anticancer activities and, following column chromatography, the EtOAc fractions F2-5, F3-2-9, and F3-2-10 showed higher cytotoxic effects than the other fractions. 1H-NMR and 13C-NMR profiles indicated that the F3-2-10 fraction contained avicennones D and E. EtOAc extracts of A. marina leaves also suppressed xenograft MDA-MB-231 tumor growth in nude mice, suggesting that EtOAc extracts of A. marina leaves may provide a useful treatment for breast cancer. PMID:27078842

  4. Tumor growth inhibition with cetuximab and chemotherapy in non-small cell lung cancer xenografts expressing wild-type and mutated epidermal growth factor receptor.

    PubMed

    Steiner, Philipp; Joynes, Christopher; Bassi, Rajiv; Wang, Su; Tonra, James R; Hadari, Yaron R; Hicklin, Daniel J

    2007-03-01

    Targeting the epidermal growth factor receptor (EGFR) is a validated approach to treat cancer. In non-small cell lung cancer (NSCLC), EGFR contains somatic mutations in 10% of patients, which correlates with increased response rates to small molecule inhibitors of EGFR. We analyzed the effects of the monoclonal IgG1 antibody Erbitux (cetuximab) in NSCLC xenografts with wild-type (wt) or mutated EGFR. NSCLC cell lines were grown s.c. in nude mice. Dose-dependent efficacy was established for cetuximab. To determine whether combination therapy produces tumor regressions, cetuximab was dosed at half-maximal efficacy with chemotherapy used at maximum tolerated dose. Cetuximab showed antitumor activity in wt (A549, NCI-H358, NCI-H292) and mutated [HCC-827 (delE746-A750), NCI-H1975 (L858R, T790M)] EGFR-expressing xenografts. In the H292 model, cetuximab and docetaxel combination therapy was more potent to inhibit tumor growth than cetuximab or docetaxel alone. Cisplatin augmented efficacy of cetuximab to produce 6 of 10 regressions, whereas 1 of 10 regressions was found with cetuximab and no regression was found with cisplatin. Using H1975 xenografts, gemcitabine increased efficacy of cetuximab resulting in 12 of 12 regressions. Docetaxel with cetuximab was more efficacious with seven of nine regressions compared with single treatments. Cetuximab inhibited autophosphorylation of EGFR in both H292 and H1975 tumor lysates. Exploring the underlying mechanism for combination effects in the H1975 xenograft model, docetaxel in combination with cetuximab added to the antiproliferative effects of cetuximab but was the main component in this drug combination to induce apoptosis. Cetuximab showed antitumor activity in NSCLC models expressing wt and mutated EGFR. Combination treatments increased the efficacy of cetuximab, which may be important for the management of patients with chemorefractory NSCLC.

  5. Comparative Efficacy of 177Lu and 90Y for Anti-CD20 Pretargeted Radioimmunotherapy in Murine Lymphoma Xenograft Models

    SciTech Connect

    Frost, Sophia; Frayo, Shani; Miller, Brian W.; Orozco, Johnnie J.; Booth, Garrett C.; Hylarides, Mark; Lin, Yukang; Green, Damian J.; Gopal, Ajay K.; Pagel, John M.; Back, Tom; Fisher, Darrell R.; Press, Oliver W.

    2015-03-01

    Pretargeted radioimmunotherapy (PRIT) is a multi-step method of selectively delivering high doses of radiotherapy to tumor cells while minimizing exposure to surrounding tissues. Yttrium-90 (90Y) and lutetium-177 (177Lu) are two of the most promising beta-particle emitting radionuclides used for radioimmunotherapy, which despite having similar chemistries differ distinctly in terms of radiophysical features. These differences may have important consequences for the absorbed dose to tumors and normal organs. Whereas 90Y has been successfully applied in a number of preclinical and clinical radioimmunotherapy settings, there have been few published pretargeting studies with 177Lu. We therefore compared the therapeutic potential of targeting either 90Y or 177Lu to human B-cell lymphoma xenografts in mice.

  6. Combined toxic effect of airborne heavy metals on human lung cell line A549.

    PubMed

    Choi, Yeowool; Park, Kihong; Kim, Injeong; Kim, Sang D

    2016-11-25

    Many studies have demonstrated that heavy metals existing as a mixture in the atmospheric environment cause adverse effects on human health and are important key factors of cytotoxicity; however, little investigation has been conducted on a toxicological study of a metal mixture from atmospheric fine particulate matter. The objective of this study was to predict the combined effects of heavy metals in aerosol by using in vitro human cells and obtain a suitable mixture toxicity model. Arsenic, nickel, and lead were selected for mixtures exposed to A549 human lung cancer cells. Cell proliferation (WST-1), glutathione (GSH), and interleukin (IL)-8 inhibition were observed and applied to the prediction models of mixture toxicity, concentration addition (CA) and independent action (IA). The total mixture concentrations were set by an IC10-fixed ratio of individual toxicity to be more realistic for mortality and enzyme inhibition tests. The results showed that the IA model was statistically closer to the observed results than the CA model in mortality, indicating dissimilar modes of action. For the GSH inhibition, the results predicted by the IA and CA models were highly overestimated relative to mortality. Meanwhile, the IL-8 results were stable with no significant change in immune reaction related to inflammation. In conclusion, the IA model is a rapid prediction model in heavy metals mixtures; mortality, as a total outcome of cell response, is a good tool for demonstrating the combined toxicity rather than other biochemical responses.

  7. [Compound K suppresses myeloid-derived suppressor cells in a mouse model bearing CT26 colorectal cancer xenograft].

    PubMed

    Wang, Rong; Li, Yalin; Wang, Wuzhou; Zhou, Meijuan; Cao, Zhaohui

    2015-05-01

    To investigate the effect of ginseng-derived compound K (C-K) on apoptosis, immunosuppressive activity, and pro-inflammatory cytokine production of myeloid-derived suppressor cells (MDSCs) from mice bearing colorectal cancer xenograft. Flow-sorted bone marrow MDSCs from Balb/c mice bearing CT26 tumor xenograft were treated with either C-K or PBS for 96 h and examined for apoptosis with Annexin V/7-AAD, Cox-2 and Arg-1 expressions using qRT-PCR, and supernatant IL-1β, IL-6, and IL-17 levels with ELISA. C-K- or PBS-treated MDSCs were subcutaneously implanted along with CT26 tumor cells in WT Balb/c mice, and the tumor size and morphology were evaluated 21 days later. C-K treatment significantly increased the percentages of early and late apoptotic MDSCs in vitro (P<0.01 and P<0.05, respectively), decreased the expressions of immunosuppression-related genes Cox-2 (P<0.05) and Arg-1 (P<0.01), and suppressed the production of IL-1β (P<0.05), IL-6 (P<0.01), and IL-17 (P<0.05) by the MDSCs . Compared with PBS-pre-treated cells, C-K-pretreated MDSCs showed significantly attenuated activity in promoting CT26 tumor growth in mice (P<0.01). C-K can suppress the immunosuppresive effect of MDSCs to inhibit tumor cell proliferation in mice, which suggests a new strategy of tumor therapy by targeting MDSCs.

  8. Comparison of planar, PET and well-counter measurements of total tumor radioactivity in a mouse xenograft model.

    PubMed

    Green, Michael V; Seidel, Jurgen; Williams, Mark R; Wong, Karen J; Ton, Anita; Basuli, Falguni; Choyke, Peter L; Jagoda, Elaine M

    2017-10-01

    Quantitative small animal radionuclide imaging studies are often carried out with the intention of estimating the total radioactivity content of various tissues such as the radioactivity content of mouse xenograft tumors exposed to putative diagnostic or therapeutic agents. We show that for at least one specific application, positron projection imaging (PPI) and PET yield comparable estimates of absolute total tumor activity and that both of these estimates are highly correlated with direct well-counting of these same tumors. These findings further suggest that in this particular application, PPI is a far more efficient data acquisition and processing methodology than PET. Forty-one athymic mice were implanted with PC3 human prostate cancer cells transfected with prostate-specific membrane antigen (PSMA (+)) and one additional animal (for a total of 42) with a control blank vector (PSMA (-)). All animals were injected with [(18)F] DCFPyl, a ligand for PSMA, and imaged for total tumor radioactivity with PET and PPI. The tumors were then removed, assayed by well counting for total radioactivity and the values between these methods intercompared. PET, PPI and well-counter estimates of total tumor radioactivity were highly correlated (R(2)>0.98) with regression line slopes near unity (0.95xenograft tumor radioactivity can be measured with PET or PPI with an accuracy comparable to well counting if certain experimental and pharmacokinetic conditions are met. In this particular application, PPI is significantly more efficient than PET in making these measurements. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Enhanced antitumor effect of anti-tissue factor antibody-conjugated epirubicin-incorporating micelles in xenograft models

    PubMed Central

    Yamamoto, Yoshiyuki; Hyodo, Ichinosuke; Koga, Yoshikatsu; Tsumura, Ryo; Sato, Ryuta; Obonai, Toshihumi; Fuchigami, Hirobumi; Furuya, Fumiaki; Yasunaga, Masahiro; Harada, Mitsunori; Kato, Yasuki; Ohtsu, Atsushi; Matsumura, Yasuhiro

    2015-01-01

    For the creation of a successful antibody–drug conjugate (ADC), both scientific and clinical evidence has indicated that highly toxic anticancer agents (ACA) should be conjugated to a monoclonal antibody (mAb) to administer a reasonable amount of ADC to patients without compromising the affinity of the mAb. For ordinary ACA, the conjugation of a mAb to ACA-loaded micellar nanoparticles is clinically applicable. Tissue factor (TF) is often overexpressed in various cancer cells and tumor vascular endothelium. Accordingly, anti-TF-NC-6300, consisting of epirubicin-incorporating micelles (NC-6300) conjugated with the F(ab')2 of anti-TF mAb was developed. The in vitro and in vivo efficacy and pharmacokinetics of anti-TF-NC-6300 were compared to NC-6300 using two human pancreatic cancer cell lines, BxPC3 (high TF expression) and SUIT2 (low TF expression), and a gastric cancer cell line, 44As3 (high TF expression). The intracellular uptake of epirubicin was faster and greater in BxPC3 cells treated with anti-TF-NC-6300, compared with NC-6300. Anti-TF-NC-6300 showed a superior antitumor activity in BxPC3 and 44As3 xenografts, compared with NC-6300, while the activities of both micelles were similar in the SUIT2 xenograft. A higher tumor accumulation of anti-TF-NC-6300 compared to NC-6300 was seen, regardless of the TF expression levels. However, anti-TF-NC-6300 appeared to be localized to the tumor cells with high TF expression. These results indicated that the enhanced antitumor effect of anti-TF-NC6300 may be independent of the tumor accumulation but may depend on the selective intratumor localization and the preferential internalization of anti-TF-NC-6300 into high TF tumor cells. PMID:25711681

  10. Enhanced antitumor effect of anti-tissue factor antibody-conjugated epirubicin-incorporating micelles in xenograft models.

    PubMed

    Yamamoto, Yoshiyuki; Hyodo, Ichinosuke; Koga, Yoshikatsu; Tsumura, Ryo; Sato, Ryuta; Obonai, Toshihumi; Fuchigami, Hirobumi; Furuya, Fumiaki; Yasunaga, Masahiro; Harada, Mitsunori; Kato, Yasuki; Ohtsu, Atsushi; Matsumura, Yasuhiro

    2015-05-01

    For the creation of a successful antibody-drug conjugate (ADC), both scientific and clinical evidence has indicated that highly toxic anticancer agents (ACA) should be conjugated to a monoclonal antibody (mAb) to administer a reasonable amount of ADC to patients without compromising the affinity of the mAb. For ordinary ACA, the conjugation of a mAb to ACA-loaded micellar nanoparticles is clinically applicable. Tissue factor (TF) is often overexpressed in various cancer cells and tumor vascular endothelium. Accordingly, anti-TF-NC-6300, consisting of epirubicin-incorporating micelles (NC-6300) conjugated with the F(ab')2 of anti-TF mAb was developed. The in vitro and in vivo efficacy and pharmacokinetics of anti-TF-NC-6300 were compared to NC-6300 using two human pancreatic cancer cell lines, BxPC3 (high TF expression) and SUIT2 (low TF expression), and a gastric cancer cell line, 44As3 (high TF expression). The intracellular uptake of epirubicin was faster and greater in BxPC3 cells treated with anti-TF-NC-6300, compared with NC-6300. Anti-TF-NC-6300 showed a superior antitumor activity in BxPC3 and 44As3 xenografts, compared with NC-6300, while the activities of both micelles were similar in the SUIT2 xenograft. A higher tumor accumulation of anti-TF-NC-6300 compared to NC-6300 was seen, regardless of the TF expression levels. However, anti-TF-NC-6300 appeared to be localized to the tumor cells with high TF expression. These results indicated that the enhanced antitumor effect of anti-TF-NC6300 may be independent of the tumor accumulation but may depend on the selective intratumor localization and the preferential internalization of anti-TF-NC-6300 into high TF tumor cells. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  11. Leptin promotes metastasis by inducing an epithelial-mesenchymal transition in A549 lung cancer cells.

    PubMed

    Feng, Helin; Liu, Qingyi; Zhang, Ning; Zheng, Lihua; Sang, Meixiang; Feng, Jiangang; Zhang, Jinming; Wu, Xiangyun; Shan, Baoen

    2013-01-01

    Leptin, an adipocyte-derived cytokine associated with obesity, has been reported to participate in carcinogenesis. Epithelial-mesenchymal transition (EMT) is also considered as a key event in tumor metastasis. The aim of this study is to investigate the mechanism of leptin in the promotion of EMT leading to metastasis in A549 lung cancer cells. We investigated the effect of leptin on migration of A549 cells using wound healing and transwell assays. The incidence of EMT in A549 cells was examined by real-time PCR and immunofluorescence staining. The expression of TGF-β in A549 cells was detected by real-time PCR, and blocking of TGF-β in A549 cells was achieved by siRNA techniques. Additional work was performed using 100 patient samples, which included samples from 50 patients diagnosed with lung cancer and an additional 50 patients diagnosed with lung cancer with metastatic bone lesions. Leptin expression was measured using immunohistochemistry techniques. We demonstrated that leptin can effectively enhance the metastasis of human lung cancer A549 cell line using both wound healing and transwell assays. We also found the incidence of EMT in A549 cells after leptin exposure. Furthermore, we detected the expression of TGF-β in A549 cells, which had been reported to play an important role in inducing EMT. We showed that leptin can significantly upregulate TGF-β at both the mRNA and protein levels in A549 cells. Using siRNA to block the expression of TGF-β in A549 cells, we confirmed the role of TGF-β in the promotion of metastasis and induction of EMT. Furthermore, we found that in patient samples leptin was present at higher levels in samples associated with diagnosis of lung cancer bone metastases tissue than lung cancer tissue. Our results indicated that leptin promoted the metastasis of A549 human lung cancer cell lines by inducing EMT in a TGF-β-dependent manner.

  12. Radiation-Induced Bystander Effects in A549 Cells Exposed to 6 MV X-rays.

    PubMed

    Yang, Shuning; Xu, Jing; Shao, Weixian; Geng, Chong; Li, Jia; Guo, Feng; Miao, Hui; Shen, Wenbin; Ye, Tao; Liu, Yazhou; Xu, Haiting; Zhang, Xuguang

    2015-07-01

    The aim of the study is to explore the bystander effects in A549 cells that have been exposed to 6MV X-ray. Control group, irradiated group, irradiated conditioned medium (ICM)-received group, and fresh medium group were designed in this study. A549 cells in the logarithmic growth phase were irradiated with 6MV X-ray at 0, 0.5, 1, 1.5, and 2. In ICM-received group, post-irradiation A549 cells were cultured for 3 h and were transferred into non-irradiated A549 cells for further cultivation. Clone forming test was applied to detect the survival fraction of cells. Annexin V-FITC/PI double-staining assay was used to detect the apoptosis of A549 cells 24, 48, 72, and 96 h after 2-Gy 6MV X-ray irradiation, and the curves of apoptosis were drawn. The changes in the cell cycles 4, 48, 72, and 96 h after 2-Gy 6MV X-ray irradiation were detected using PI staining flow cytometry. With the increase of irradiation dose, the survival fraction of A549 cells after the application of 0.5 Gy irradiation was decreasing continuously. In comparison to the control group, the apoptosis rate of the ICM-received group was increased in a time-dependent pattern, with the highest apoptosis rate observed at 72 h (p < 0.05). Cell count in G2/M stages was obviously increased compared with that of the control group (p < 0.05), with the highest count observed at 72 h, after which G2/M stage arrest was diminished. ICM can cause apparent A549 cell damage, indicating that 6MV X-ray irradiation can induce bystander effect on A549 cells, which reaches a peak at 72 h.

  13. Trichomonas vaginalis induces cytopathic effect on human lung alveolar basal carcinoma epithelial cell line A549.

    PubMed

    Salvador-Membreve, Daile Meek C; Jacinto, Sonia D; Rivera, Windell L

    2014-12-01

    Trichomonas vaginalis, the causative agent of trichomoniasis is generally known to inhabit the genitourinary tract. However, several case reports with supporting molecular and immunological identifications have documented its occurrence in the respiratory tract of neonates and adults. In addition, the reports have documented that its occurrence is associated with respiratory failures. The medical significance or consequence of this association is unclear. Thus, to establish the possible outcome from the interaction of T. vaginalis with lung cells, the cytopathic effects of the parasites were evaluated using monolayer cultures of the human lung alveolar basal carcinoma epithelial cell line A549. The possible effect of association of T. vaginalis with A549 epithelial cells was analyzed using phase-contrast, scanning electron microscopy and fluorescence microscopy. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), crystal-violet and TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling) assays were conducted for cytotoxicity testing. The results demonstrate that T. vaginalis: (1) adheres to A549 epithelial cells, suggesting a density-dependent parasite-cell association; (2) adherence on A549 is through flagella, membrane and axostyle; (3) causes cell detachment and cytotoxicity (50-72.4%) to A549 and this effect is a function of parasite density; and (4) induces apoptosis in A549 about 20% after 6 h of incubation. These observations indicate that T. vaginalis causes cytopathic effects on A549 cell. To date, this is the first report showing a possible interaction of T. vaginalis with the lung cells using A549 monolayer cultures. Further studies are recommended to completely elucidate this association.

  14. Antiproliferative and apoptotic effects of diffractaic acid in A549 and AGS cancer cells

    NASA Astrophysics Data System (ADS)

    Kızıl, Hamit Emre; Aǧar, Güleray

    2017-04-01

    In this study, we determined the antiproliferative and apoptotic effects of diffractaic acid by measuring the gene expression changes of topo II α, caspase-3 and p53 on A549 and AGS cancer cells. Real time PCR assay was used to measure the change folds. It was determined that concentrations of 12,5, 50 and 100 µg / ml were antiproliferative and apoptotic for the A549 cancer cell line and 50 µg / ml for the AGS cell line.

  15. Development of patient-derived xenograft models from a spontaneously immortal low-grade meningioma cell line, KCI-MENG1.

    PubMed

    Michelhaugh, Sharon K; Guastella, Anthony R; Varadarajan, Kaushik; Klinger, Neil V; Parajuli, Prahlad; Ahmad, Aamir; Sethi, Seema; Aboukameel, Amro; Kiousis, Sam; Zitron, Ian M; Ebrahim, Salah A; Polin, Lisa A; Sarkar, Fazlul H; Bollig-Fischer, Aliccia; Mittal, Sandeep

    2015-07-15

    There is a paucity of effective therapies for recurrent/aggressive meningiomas. Establishment of improved in vitro and in vivo meningioma models will facilitate development and testing of novel therapeutic approaches. A primary meningioma cell line was generated from a patient with an olfactory groove meningioma. The cell line was extensively characterized by performing analysis of growth kinetics, immunocytochemistry, telomerase activity, karyotype, and comparative genomic hybridization. Xenograft models using immunocompromised SCID mice were also developed. Histopathology of the patient tumor was consistent with a WHO grade I typical meningioma composed of meningothelial cells, whorls, and occasional psammoma bodies. The original tumor and the early passage primary cells shared the standard immunohistochemical profile consistent with low-grade, good prognosis meningioma. Low passage KCI-MENG1 cells were composed of two cell types with spindle and round morphologies, showed linear growth curve, had very low telomerase activity, and were composed of two distinct unrelated clones on cytogenetic analysis. In contrast, high passage cells were homogeneously round, rapidly growing, had high telomerase activity, and were composed of a single clone with a near triploid karyotype containing 64-66 chromosomes with numerous aberrations. Following subcutaneous and orthotopic transplantation of low passage cells into SCID mice, firm tumors positive for vimentin and progesterone receptor (PR) formed, while subcutaneous implant of high passage cells yielded vimentin-positive, PR-negative tumors, concordant with a high-grade meningioma. Although derived from a benign meningioma specimen, the newly-established spontaneously immortal KCI-MENG1 meningioma cell line can be utilized to generate xenograft tumor models with either low- or high-grade features, dependent on the cell passage number (likely due to the relative abundance of the round, near-triploid cells). These human

  16. Rab27A regulates exosome secretion from lung adenocarcinoma cells A549: involvement of EPI64.

    PubMed

    Li, Wenhai; Hu, Yunsheng; Jiang, Tao; Han, Yong; Han, Guoliang; Chen, Jiakuan; Li, Xiaofei

    2014-11-01

    Exosomes are small membrane vesicles secreted into the extracellular compartment by exocytosis. The unique composition of exosomes can be transported to other cells which allow cells to exert biological functions at distant sites. However, in lung cancer, the regulation of exosome secretion was poorly understood. In this study, we employed human lung adenocarcinoma A549 cells to determine the exosome secretion and involved regulation mechanism. We found that Rab27A was expressed in A549 cells and the reduction of Rab27A by Rab27A-specific shRNA could significantly decrease the secretion of exosome by A549 cells. EPI64, a candidate GAP that is specific for Rab27, was also detected in A549 cells. By pull-down assay, we found that EPI64 participated in the exosome secretion of A549 cells by acting as a specific GAP for Rab27A, not Rab27B. Overexpression of EPI64 enhanced exosome secretion. Taken together, in A549 cells, EPI64 could regulate the exosome secretion by functioning as a GAP specific for Rab27A.

  17. Enhanced anti-tumor activity of the glycoengineered type II CD20 antibody obinutuzumab (GA101) in combination with chemotherapy in xenograft models of human lymphoma

    PubMed Central

    Herting, Frank; Friess, Thomas; Bader, Sabine; Muth, Gunter; Hölzlwimmer, Gabriele; Rieder, Natascha; Umana, Pablo

    2014-01-01

    Obinutuzumab (GA101) is a novel glycoengineered type II CD20 antibody in development for non-Hodgkin lymphoma. We compared the anti-tumor activity of obinutuzumab and rituximab in preclinical studies using subcutaneous Z138 and WSU-DLCL2 xenograft mouse models. Obinutuzumab and rituximab were assessed alone and in combination with bendamustine, fludarabine, chlorambucil, doxorubicin and cyclophosphamide/vincristine. Owing to strong single-agent efficacy in these models, suboptimal doses of obinutuzumab were applied to demonstrate a combination effect. Obinutuzumab plus bendamustine achieved superior tumor growth inhibition versus rituximab plus bendamustine and showed a statistically significant effect versus the respective single treatments. Combinations of obinutuzumab with fludarabine, chlorambucil or cyclophosphamide/vincristine demonstrated significantly superior activity to rituximab-based treatment. Obinutuzumab monotherapy was at least as effective as rituximab plus chemotherapy in vivo, and obinutuzumab plus chemotherapy was superior to the respective monotherapies. These data support further clinical investigation of obinutuzumab plus chemotherapy. PMID:24304419

  18. Enhanced anti-tumor activity of the glycoengineered type II CD20 antibody obinutuzumab (GA101) in combination with chemotherapy in xenograft models of human lymphoma.

    PubMed

    Herting, Frank; Friess, Thomas; Bader, Sabine; Muth, Gunter; Hölzlwimmer, Gabriele; Rieder, Natascha; Umana, Pablo; Klein, Christian

    2014-09-01

    Obinutuzumab (GA101) is a novel glycoengineered type II CD20 antibody in development for non-Hodgkin lymphoma. We compared the anti-tumor activity of obinutuzumab and rituximab in preclinical studies using subcutaneous Z138 and WSU-DLCL2 xenograft mouse models. Obinutuzumab and rituximab were assessed alone and in combination with bendamustine, fludarabine, chlorambucil, doxorubicin and cyclophosphamide/vincristine. Owing to strong single-agent efficacy in these models, suboptimal doses of obinutuzumab were applied to demonstrate a combination effect. Obinutuzumab plus bendamustine achieved superior tumor growth inhibition versus rituximab plus bendamustine and showed a statistically significant effect versus the respective single treatments. Combinations of obinutuzumab with fludarabine, chlorambucil or cyclophosphamide/vincristine demonstrated significantly superior activity to rituximab-based treatment. Obinutuzumab monotherapy was at least as effective as rituximab plus chemotherapy in vivo, and obinutuzumab plus chemotherapy was superior to the respective monotherapies. These data support further clinical investigation of obinutuzumab plus chemotherapy.

  19. The effect of single agent oral fusaric acid (FA) on the growth of subcutaneously xenografted SCC-1 cells in a nude mouse model.

    PubMed

    Ruda, James M; Beus, Kirt S; Hollenbeak, Christopher S; Wilson, Ronald P; Stack, Brendan C

    2006-09-01

    To determine whether oral administration of fusaric acid (FA) inhibits tumor growth in an animal model of head and neck cancer (HNSCC). In vivo murine model, two arm controlled study. Thirty-eight (38) 5-week-old athymic nude mice were randomly assigned to a fusaric acid treatment group (1 mg/mL) (n = 19) or a sterile saline group (n = 19). A left, lateral flank subcutaneous injection of 2.0 x 10(6) UM-SCC-1 cells were administered to all mice on day 1. Both groups were gavaged daily with either 0.25 mLs of oral FA or sterile saline throughout the experiment (32 days). Latency to a measurable tumor (> or =65 mm3), and tumor volumes were recorded after tumor xenografting. Tumor weights were recorded at the conclusion of the experiment. Tumor volume growth curves were modeled as polynomial functions of time with treatment interaction effects. Survivorship functions for time to measurable tumor were estimated using the Kaplan-Meier product limit estimator. Survival analysis showed mice treated with FA developed measurable tumors after a significantly longer interval post-xenografting than control mice (p = 0.00451). By Day 9, all mice in the control group had developed measurable tumors in comparison to only 78% of mice in the FA group. Likewise, estimated growth curves for both groups suggested that mice receiving FA demonstrated significantly slower tumor growth rates throughout the entire study period (p < 0.0001). At the conclusion of the experiment, tumor weights from both the control and FA groups were also significantly different (p = 0.0142). Single agent oral fusaric acid (1 mg/mL) is an inhibitor of UM-SCC-1 in a murine model. As an orally active agent, it may have a potential role in the treatment of human squamous cell carcinoma of the head and neck.

  20. Reproducibility study of [(18)F]FPP(RGD)2 uptake in murine models of human tumor xenografts.

    PubMed

    Chang, Edwin; Liu, Shuangdong; Gowrishankar, Gayatri; Yaghoubi, Shahriar; Wedgeworth, James Patrick; Chin, Frederick; Berndorff, Dietmar; Gekeler, Volker; Gambhir, Sanjiv S; Cheng, Zhen

    2011-04-01

    An (18)F-labeled PEGylated arginine-glycine-aspartic acid (RGD) dimer {[(18)F]FPP(RGD)(2)} has been used to image tumor α(v)β(3) integrin levels in preclinical and clinical studies. Serial positron emission tomography (PET) studies may be useful for monitoring antiangiogenic therapy response or for drug screening; however, the reproducibility of serial scans has not been determined for this PET probe. The purpose of this study was to determine the reproducibility of the integrin α(v)β(3)-targeted PET probe, [(18)F]FPP(RGD)(2,) using small animal PET. Human HCT116 colon cancer xenografts were implanted into nude mice (n = 12) in the breast and scapular region and grown to mean diameters of 5-15 mm for approximately 2.5 weeks. A 3-min acquisition was performed on a small animal PET scanner approximately 1 h after administration of [(18)F]FPP(RGD)(2) (1.9-3.8 MBq, 50-100 μCi) via the tail vein. A second small animal PET scan was performed approximately 6 h later after reinjection of the probe to assess for reproducibility. Images were analyzed by drawing an ellipsoidal region of interest (ROI) around the tumor xenograft activity. Percentage injected dose per gram (%ID/g) values were calculated from the mean or maximum activity in the ROIs. Coefficients of variation and differences in %ID/g values between studies from the same day were calculated to determine the reproducibility. The coefficient of variation (mean±SD) for %ID(mean)/g and %ID(max)/g values between [(18)F]FPP(RGD)(2) small animal PET scans performed 6 h apart on the same day were 11.1 ± 7.6% and 10.4 ± 9.3%, respectively. The corresponding differences in %ID(mean)/g and %ID(max)/g values between scans were -0.025 ± 0.067 and -0.039 ± 0.426. Immunofluorescence studies revealed a direct relationship between extent of α(ν)β(3) integrin expression in tumors and tumor vasculature with level of tracer uptake. Mouse body weight, injected dose, and fasting state did not

  1. Modeling BCR-ABL and MLL-AF9 leukemia in a human bone marrow-like scaffold-based xenograft model.

    PubMed

    Sontakke, P; Carretta, M; Jaques, J; Brouwers-Vos, A Z; Lubbers-Aalders, L; Yuan, H; de Bruijn, J D; Martens, A C M; Vellenga, E; Groen, R W J; Schuringa, J J

    2016-10-01

    Although NOD-SCID IL2Rγ(-/-) (NSG) xenograft mice are currently the most frequently used model to study human leukemia in vivo, the absence of a human niche severely hampers faithful recapitulation of the disease. We used NSG mice in which ceramic scaffolds seeded with human mesenchymal stromal cells were implanted to generate a human bone marrow (huBM-sc)-like niche. We observed that, in contrast to the murine bone marrow (mBM) niche, the expression of BCR-ABL or MLL-AF9 was sufficient to induce both primary acute myeloid leukemia (AML) and acute lymphocytic leukemia (ALL). Stemness was preserved within the human niches as demonstrated by serial transplantation assays. Efficient engraftment of AML MLL-AF9 and blast-crisis chronic myeloid leukemia patient cells was also observed, whereby the immature blast-like phenotype was maintained in the huBM-sc niche but to a much lesser extent in mBM niches. We compared transcriptomes of leukemias derived from mBM niches versus leukemias from huBM-like scaffold-based niches, which revealed striking differences in the expression of genes associated with hypoxia, mitochondria and metabolism. Finally, we utilized the huBM-sc MLL-AF9 B-ALL model to evaluate the efficacy of the I-BET151 inhibitor in vivo. In conclusion, we have established human niche models in which the myeloid and lymphoid features of BCR-ABL(+) and MLL-AF9(+) leukemias can be studied in detail.

  2. Molecular Role of EGFR-MAPK Pathway in Patchouli Alcohol-Induced Apoptosis and Cell Cycle Arrest on A549 Cells In Vitro and In Vivo

    PubMed Central

    Yang, Liu; Lu, ChengHua; Xu, ZhenYu; Qiu, HongFu; Wang, JingWen; Zhu, Yin

    2016-01-01

    Nowadays, chemotherapy is still the main effective treatment for cancer. Herb prescriptions containing Pogostemon cablin Benth (also known as “Guang-Huo-Xiang”) have been widely used in Chinese medicine today. In our research, we found that patchouli alcohol, a compound isolated from the oil of Pogostemon cablin Benth, exerted antitumor ability against human lung cancer A549 cells ability both in vitro and in vivo. MTT assay was used to assess cell viability. Hoechst 33342 staining and TUNEL cover glass staining provided the visual evidence of apoptosis. Caspase activity measurement showed that patchouli alcohol activated caspase 9 and caspase 3 of mitochondria-mediated apoptosis. Consistently, patchouli alcohol inhibited the xenograft tumor in vivo. Further investigation of the underlying molecular mechanism showed that MAPK and EGFR pathway might contribute to the antitumor effect of patchouli alcohol. Our study proved that patchouli alcohol might be able to serve as a novel antitumor compound in the clinical treatment of lung cancer. PMID:27830146

  3. Prostate cancer xenografts engineered from 3D precision-porous poly(2-hydroxyethyl methacrylate) hydrogels as models for tumorigenesis and dormancy escape

    PubMed Central

    Long, Thomas J.; Sprenger, Cynthia C.; Plymate, Stephen R.; Ratner, Buddy D.

    2014-01-01

    Synthetic biomaterial scaffolds show promise for in vitro and in vivo 3D cancer models. Tumors engineered in biomaterial scaffolds have shown evidence of being more physiologically relevant than some traditional preclinical model systems, and synthetic biomaterials provide the added benefit of defined and consistent microenvironmental control. Here, we examine sphere-templated poly(2-hydroxyethyl methacrylate) (pHEMA) scaffolds as the basis for engineering xenografts from multiple human prostate cancer cell lines. pHEMA scaffolds seeded and pre-cultured with tumorigenic M12 cells prior to implantation generated tumors in athymic nude mice, demonstrating the ability of the scaffolds to be used as a synthetic vehicle for xenograft generation. pHEMA scaffolds seeded with LNCaP C4-2 cells, which require Matrigel or stromal cell support for tumor formation, were poorly tumorigenic up to twelve weeks after implantation even when Matrigel was infused into the scaffold, demonstrating a lack of necessary pro-tumorigenic signaling within the scaffolds. Finally, M12mac25 cells, which are ordinarily rendered non-tumorigenic through the expression of the tumor suppressor insulin-like growth factor binding protein 7 (IGFBP7), displayed a tumorigenic response when implanted within porous pHEMA scaffolds. These M12mac25 tumors showed a significantly higher macrophage infiltration within the scaffolds driven by the foreign body response to the materials. These findings show the potential for this biomaterials-based model system to be used in the study of prostate cancer tumorigenesis and dormancy escape. PMID:24942815

  4. Cetuximab Inhibits T790M-Mediated Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor in a Lung Adenocarcinoma Patient-Derived Xenograft Mouse Model.

    PubMed

    Martin, Petra; Stewart, Erin; Pham, Nhu-An; Mascaux, Celine; Panchal, Devang; Li, Ming; Kim, Lucia; Sakashita, Shingo; Wang, Dennis; Sykes, Jenna; Friess, Thomas; Shepherd, Frances A; Liu, Geoffrey; Tsao, Ming-Sound

    2016-09-01

    The epidermal growth factor receptor (EGFR) kinase domain T790M (amino acid substitution at position 790 in EGFR from threonine [T] to methionine [M]) mutation in non-small-cell lung cancer (NSCLC) results in resistance to EGFR tyrosine kinase inhibitors (TKIs). We used a patient-derived tumor xenograft (PDX) model containing an EGFR exon 19 deletion/T790M mutation to assess response to the EGFR-directed antibody cetuximab. Changes in the EGFR signaling pathway and ligand expression after treatment were investigated. PDX were randomized into control and treatment arms. Pharmacodynamic studies were performed at 2 and 24 hours and at 4 days after a single administration of cetuximab, erlotinib, or dacomitinib. Changes in the EGFR signaling pathway were assessed using Western blot analysis, and baseline mRNA expression of EGFR ligands using microarray analysis. Relative changes after treatment were assessed using quantitative polymerase chain reaction. The xenograft showed a dramatic response to cetuximab. A complete reduction of total EGFR and phosphorylated EGFR occurred after cetuximab treatment. The PDX had increased baseline levels of heparin-binding epidermal growth factor-like growth factor (HB-EGF) compared with other PDX models with or without EGFR mutations. Amphiregulin was significantly reduced 2 hours after treatment with cetuximab. Compared with control mice, cetuximab- and EGFR-TKI-treated mice had significantly reduced HB-EGF gene expression at 2 hours, however, by day 4 the level of HB-EGF expression was higher. The effect of cetuximab compared with EGFR TKI on HB-EGF gene expression levels differed significantly at 2 and 24 hours but not at 4 days. We showed a dramatic tumor response with cetuximab in an exon 19 deletion/T790M EGFR mutant lung adenocarcinoma PDX model, which suggests a role for the autocrine feedback loop in the mutant EGFR signaling pathway. Further investigation using cetuximab in NSCLC with T790M mutation is warranted. Copyright

  5. A novel orally available inhibitor of focal adhesion signaling increases survival in a xenograft model of diffuse large B-cell lymphoma with central nervous system involvement.

    PubMed

    Bosch, Rosa; Moreno, María José; Dieguez-Gonzalez, Rebeca; Céspedes, María Virtudes; Gallardo, Alberto; Trias, Manuel; Grañena, Albert; Sierra, Jorge; Casanova, Isolda; Mangues, Ramon

    2013-08-01

    Central nervous system dissemination is a relatively uncommon but almost always fatal complication in diffuse large B-cell lymphoma patients. Optimal therapy for central nervous involvement in this malignancy has not been established. In this paper, we aimed to evaluate the therapeutic effect of E7123, a celecoxib derivative that inhibits focal adhesion signaling, in a novel xenograft model of diffuse large B-cell lymphoma with central nervous system involvement. Cells obtained after disaggregation of HT subcutaneous tumors (HT-SC cells) were intravenously injected in NOD/SCID mice. These mice received oral vehicle or 75 mg/kg of E7123 daily until they were euthanized for weight loss or signs of sickness. The antitumor effect of E7123 was validated in an independent experiment using a bioluminescent mouse model. Intravenously injected HT-SC cells showed higher take rate and higher central nervous system tropism (associated with increased expression of β1-integrin and p130Cas proteins) than HT cells. The oral administration of E7123 significantly increased survival time in 2 independent experiments using mice injected with unmodified or bioluminescent HT-SC cells. We have developed a new xenograft model of diffuse large B-cell lymphoma with central nervous system involvement that can be used in the pre-clinical evaluation of new drugs for this malignancy. E7123 is a new, well-tolerated and orally available therapeutic agent that merits further investigation since it may improve current management of diffuse large B-cell lymphoma patients with central nervous system involvement.

  6. In Silico cancer cell versus stroma cellularity index computed from species-specific human and mouse transcriptome of xenograft models: towards accurate stroma targeting therapy assessment

    PubMed Central

    2014-01-01

    Background The current state of the art for measuring stromal response to targeted therapy requires burdensome and rate limiting quantitative histology. Transcriptome measures are increasingly affordable and provide an opportunity for developing a stromal versus cancer ratio in xenograft models. In these models, human cancer cells are transplanted into mouse host tissues (stroma) and together coevolve into a tumour microenvironment. However, profiling the mouse or human component separately remains problematic. Indeed, laser capture microdissection is labour intensive. Moreover, gene expression using commercial microarrays introduces significant and underreported cross-species hybridization errors that are commonly overlooked by biologists. Method We developed a customized dual-species array, H&M array, and performed cross-species and species-specific hybridization measurements. We validated a new methodology for establishing the stroma vs cancer ratio using transcriptomic data. Results In the biological validation of the H&M array, cross-species hybridization of human and mouse probes was significantly reduced (4.5 and 9.4 fold reduction, respectively; p < 2x10-16 for both, Mann-Whitney test). We confirmed the capability of the H&M array to determine the stromal to cancer cells ratio based on the estimation of cellularity index of mouse/human mRNA content in vitro. This new metrics enable to investigate more efficiently the stroma-cancer cell interactions (e.g. cellularity) bypassing labour intensive requirement and biases of laser capture microdissection. Conclusion These results provide the initial evidence of improved and cost-efficient analytics for the investigation of cancer cell microenvironment, using species-specificity arrays specifically designed for xenografts models. PMID:25079962

  7. Scopoletin, an active principle of tree tobacco (Nicotiana glauca) inhibits human tumor vascularization in xenograft models and modulates ERK1, VEGF-A, and FGF-2 in computer model.

    PubMed

    Tabana, Yasser M; Hassan, Loiy Elsir A; Ahamed, Mohamed B Khadeer; Dahham, Saad S; Iqbal, Muhammad Adnan; Saeed, Mohammed A A; Khan, Md Shamsuddin S; Sandai, Doblin; Majid, Aman S Abdul; Oon, Chern Ein; Majid, Amin Malik S A

    2016-09-01

    We recently reported the antineovascularization effect of scopoletin on rat aorta and identified its potential anti-angiogenic activity. Scopoletin could be useful as a systemic chemotherapeutic agent against angiogenesis-dependent malignancies if its antitumorigenic activity is investigated and scientifically proven using a suitable human tumor xenograft model. In the present study, bioassay-guided (anti-angiogenesis) phytochemical investigation was conducted on Nicotiana glauca extract which led to the isolation of scopoletin. Further, anti-angiogenic activity of scopoletin was characterized using ex vivo, in vivo and in silico angiogenesis models. Finally, the antitumorigenic efficacy of scopoletin was studied in human colorectal tumor xenograft model using athymic nude mice. For the first time, an in vivo anticancer activity of scopoletin was reported and characterized using xenograft models. Scopoletin caused significant suppression of sprouting of microvessels in rat aortic explants with IC50 (median inhibitory concentration) 0.06μM. Scopoletin (100 and 200mg/kg) strongly inhibited (59.72 and 89.4%, respectively) vascularization in matrigel plugs implanted in nude mice. In the tumor xenograft model, scopoletin showed remarkable inhibition on tumor growth (34.2 and 94.7% at 100 and 200mg/kg, respectively). Tumor histology revealed drastic reduction of the extent of vascularization. Further, immunostaining of CD31 and NG2 receptors in the histological sections confirmed the antivascular effect of scopoletin in tumor vasculature. In computer modeling, scopoletin showed strong ligand affinity and binding energies toward the following angiogenic factors: protein kinase (ERK1), vascular endothelial growth factor A (VEGF-A), and fibroblast growth factor 2 (FGF-2). These results suggest that the antitumor activity of scopoletin may be due to its strong anti-angiogenic effect, which may be mediated by its effective inhibition of ERK1, VEGF-A, and FGF-2. Copyright

  8. Filamentous, mixed micelles of triblock copolymers enhance tumor localization of indocyanine green in a murine xenograft model

    PubMed Central

    Kim, Tae Hee; Mount, Christopher W; Dulken, Benjamin W; Ramos, Jenelyn; Fu, Caroline J; Khant, Htet A; Chiu, Wah; Gombotz, Wayne R; Pun, Suzie H

    2012-01-01

    Polymeric micelles formed by the self-assembly of amphiphilic block copolymers can be used to encapsulate hydrophobic drugs for tumor-delivery applications. Filamentous carriers with high aspect ratios offer potential advantages over spherical carriers, including prolonged circulation times. In this work, mixed micelles comprised of poly (ethylene oxide)-poly-[(R)-3-hydroxybutyrate]-poly (ethylene oxide) (PEO-PHB-PEO) and Pluronic F-127 (PF-127) were used to encapsulate a near-infrared fluorophore. The micelle formulations were assessed for tumor accumulation after tail vein injection to xenograft tumor-bearing mice by non-invasive optical imaging. The mixed micelle formulation that facilitated the highest tumor accumulation was shown by cryo-electron microscopy to be filamentous in structure compared to spherical structures of pure PF-127 micelles. In addition, increased dye loading efficiency and dye stability was attained in this mixed micelle formulation compared to pure PEO-PHB-PEO micelles. Therefore, the optimized PEO-PHB-PEO/PF-127 mixed micelle formulation offers advantages for cancer delivery over micelles formed from the individual copolymer components. PMID:22118658

  9. Biodistribution and pharmacokinetics of a telodendrimer micellar paclitaxel nanoformulation in a mouse xenograft model of ovarian cancer

    PubMed Central

    Xiao, Wenwu; Luo, Juntao; Jain, Teesta; Riggs, John W; Tseng, Harry P; Henderson, Paul T; Cherry, Simon R; Rowland, Douglas; Lam, Kit S

    2012-01-01

    Background A multifunctional telodendrimer-based micelle system was characterized for delivery of imaging and chemotherapy agents to mouse tumor xenografts. Previous optical imaging studies demonstrated qualitatively that these classes of nanoparticles, called nanomicelles, preferentially accumulate at tumor sites in mice. The research reported herein describes the detailed quantitative imaging and biodistribution profiling of nanomicelles loaded with a cargo of paclitaxel. Methods The telodendrimer was covalently labeled with 125I and the nanomicelles were loaded with 14C-paclitaxel, which allowed measurement of pharmacokinetics and biodistribution in the mice using microSPECT/CT imaging and liquid scintillation counting, respectively. Results The radio imaging data showed preferential accumulation of nanomicelles at the tumor site along with a slower clearance rate than paclitaxel formulated in Cremophor EL (Taxol®). Liquid scintillation counting confirmed that 14C-labeled paclitaxel sequestered in nanomicelles had increased uptake by tumor tissue and slower pharmacokinetics than Taxol. Conclusion Overall, the results indicate that nanomicelle-formulated paclitaxel is a potentially superior formulation compared with Taxol in terms of water solubility, pharmacokinetics, and tumor accumulation, and may be clinically useful for both tumor imaging and improved chemotherapy applications. PMID:22605931

  10. Functional Ginger Extracts from Supercritical Fluid Carbon Dioxide Extraction via In Vitro and In Vivo Assays: Antioxidation, Antimicroorganism, and Mice Xenografts Models

    PubMed Central

    Lee, Chih-Chen; Chiou, Li-Yu; Wang, Jheng-Yang; Chou, Sin-You; Lan, John Chi-Wei; Huang, Tsi-Shu; Huang, Kuo-Chuan

    2013-01-01

    Supercritical fluid carbon dioxide extraction technology was developed to gain the active components from a Taiwan native plant, Zingiber officinale (ginger). We studied the biological effects of ginger extracts via multiple assays and demonstrated the biofunctions in each platform. Investigations of ginger extracts indicated antioxidative properties in dose-dependant manners on radical scavenging activities, reducing powers and metal chelating powers. We found that ginger extracts processed moderate scavenging values, middle metal chelating levels, and slight ferric reducing powers. The antibacterial susceptibility of ginger extracts on Staphylococcus aureus, Streptococcus sobrinus, S. mutans, and Escherichia coli was determined with the broth microdilution method technique. The ginger extracts had operative antimicroorganism potentials against both Gram-positive and Gram-negative bacteria. We further discovered the strong inhibitions of ginger extracts on lethal carcinogenic melanoma through in vivo xenograft model. To sum up, the data confirmed the possible applications as medical cosmetology agents, pharmaceutical antibiotics, and food supplements. PMID:23983624

  11. Functional ginger extracts from supercritical fluid carbon dioxide extraction via in vitro and in vivo assays: antioxidation, antimicroorganism, and mice xenografts models.

    PubMed

    Lee, Chih-Chen; Chiou, Li-Yu; Wang, Jheng-Yang; Chou, Sin-You; Lan, John Chi-Wei; Huang, Tsi-Shu; Huang, Kuo-Chuan; Wang, Hui-Min

    2013-01-01

    Supercritical fluid carbon dioxide extraction technology was developed to gain the active components from a Taiwan native plant, Zingiber officinale (ginger). We studied the biological effects of ginger extracts via multiple assays and demonstrated the biofunctions in each platform. Investigations of ginger extracts indicated antioxidative properties in dose-dependant manners on radical scavenging activities, reducing powers and metal chelating powers. We found that ginger extracts processed moderate scavenging values, middle metal chelating levels, and slight ferric reducing powers. The antibacterial susceptibility of ginger extracts on Staphylococcus aureus, Streptococcus sobrinus, S. mutans, and Escherichia coli was determined with the broth microdilution method technique. The ginger extracts had operative antimicroorganism potentials against both Gram-positive and Gram-negative bacteria. We further discovered the strong inhibitions of ginger extracts on lethal carcinogenic melanoma through in vivo xenograft model. To sum up, the data confirmed the possible applications as medical cosmetology agents, pharmaceutical antibiotics, and food supplements.

  12. [Establishment and biological characteristics of a multi-drug resistant cell line A549/Gem.].

    PubMed

    Wang, Weixia; Liu, Xiaoqing; Liu, Guangxian; Lin, Li; Zheng, Xiaoling; Zhu, Yunfeng; Li, Xiaobing

    2008-02-20

    Multi-drug resistance is one of the most important reason why the survival time of non-small cell lung cancer patients is so short. The aim of this study is to establish multi-drug resistant cell line A549/Gem and discuss its biological characters so as to elaborate the possible mechanisms of gemcitabine resistance. Human gemcitabine-resistant non-small cell lung cancer cell line A549/Gem was established by repeated clinical serous peak concentration then low but gradually increasing concentration of gemcitabine from its parental cell human lung adenocarcinoma cell line A549 which is sensitive to gemcitabine. During the course of inducement, monitored its morphology, checked its resistance index and resistant pedigree by MTT method, gathered its growth curve and calculated its doubling time, examined its DNA contents and cell cycles by flow cytometry; at the same time, measured its expression of P53, EGFR, c-erb-B-2, PTEN, PCNA, c-myc, VEGF, MDR-1, Bcl-2, nm23, MMP-9, TIMP-1, CD44v6 Proteins, and RRM1 mRNA. The resistance index of A549/Gem' to gemcitabine was 163.228, and the cell line also exhibited cross-resistance to vinorelbine, taxotere, fluorouraci, etoposide and cisplatin, but kept sensitivity to paclitaxol and oxaliplatin. The doubling time of it was shorter and figures in G0-G1 phase were increased than A549. Compared with A549, A549/Gem' achieved EGFR and c-myc protein expression, nm23 protein expression enhanced, p53, Cerb-B-2 and bcl-2 protein expression reduced, PTEN, PCNA and MDR-1 protein expression vanished, but that of MMP-9, VEGF, CD44v6 and TIMP-1 protein changed trivially. Meanwhile, the expression of RRM1 mRNA was augmented markedly. The resistance index of A549/Gem to gemcitabine was 129.783, and the cell line also held cross-resistance to vinorelbine, taxotere, etoposide, cisplatin and sensitivity to paclitaxol. But the resistance to fluorouracil and sensitivity to oxaliplatin vanished. And the expression of RRM1 mRNA decreased visibly. The

  13. Stromal platelet-derived growth factor receptor α (PDGFRα) provides a therapeutic target independent of tumor cell PDGFRα expression in lung cancer xenografts

    PubMed Central

    Gerber, David E.; Gupta, Puja; Dellinger, Michael T.; Toombs, Jason E.; Peyton, Michael; Duignan, Inga; Malaby, Jennifer; Bailey, Timothy; Burns, Colleen; Brekken, Rolf A.; Loizos, Nick

    2012-01-01

    In lung cancer, platelet-derived growth factor receptor α (PDGFRα) is expressed frequently by tumor-associated stromal cells and by cancer cells in a subset of tumors. We sought to determine the effect of targeting stromal PDGFRα in preclinical lung tumor xenograft models (human tumor, mouse stroma). Effects of anti-human (IMC-3G3) and anti-mouse (1E10) PDGFRα mAbs on proliferation and PDGFRα signaling were evaluated in lung cancer cell lines and mouse fibroblasts. Therapy studies were performed using established PDGFRα-positive H1703 cells and PDGFRα-negative Calu-6, H1993, and A549 subcutaneous tumors in immunocompromised mice treated with vehicle, anti-PDGFRα mAbs, chemotherapy, or combination therapy. Tumors were analyzed for growth and levels of growth factors. IMC-3G3 inhibited PDGFRα activation and the growth of H1703 cells in vitro and tumor growth in vivo, but had no effect on PDGFRα-negative cell lines or mouse fibroblasts. 1E10 inhibited growth and PDGFRα activation of mouse fibroblasts, but had no effect on human cancer cell lines in vitro. In vivo, 1E10-targeted inhibition of murine PDGFRα reduced tumor growth as single-agent therapy in Calu-6 cells and enhanced the effect of chemotherapy in xenografts derived from A549 cells. We also identified that low expression cancer cell expression of VEGF-A and elevated expression of PDGF-AA were associated with response to stromal PDGFRα targeting. We conclude that stromal PDGFRα inhibition represents a means for enhancing control of lung cancer growth in some cases, independent of tumor cell PDGFRα expression. PMID:22933705

  14. Anti-CD45 Pretargeted Radioimmunotherapy using Bismuth-213: High Rates of Complete Remission and Long-Term Survival in a Mouse Myeloid Leukemia Xenograft Model

    SciTech Connect

    Pagel, John M; Kenoyer, Aimee L; Back, Tom; Hamlin, Donald K; Wilbur, D Scott; Fisher, Darrell R; Park, Steven I; Frayo, Shani; Axtman, Amanda; Orgun, Nural; Orozoco, Johnnie; Shenoi, Jaideep; Lin, Yukang; Gopal, Ajay K; Green, Damian J; Appelbaum, Frederick R; Press, Oliver W

    2011-07-21

    Pretargeted radioimmunotherapy (PRIT) using an anti-CD45 antibody (Ab)-streptavidin (SA) conjugate and DOTA-biotin labeled with β-emitting radionuclides has been explored as a strategy to decrease relapse and toxicity. α-emitting radionuclides exhibit high cytotoxicity coupled with a short path-length, potentially increasing the therapeutic index and making them an attractive alternative to β-emitting radionuclides for patients with Acute Myeloid Leukemia (AML). Accordingly, we have used 213Bi in mice with human leukemia xenografts. Results demonstrated excellent localization of 213Bi-DOTA-biotin to tumors with minimal uptake into normal organs. After 10 minutes, 4.5 ± 1.1% of the injected dose of 213Bi was delivered per gram of tumor. α imaging demonstrated uniform radionuclide distribution within tumor tissue 45 minutes after 213Bi-DOTA-biotin injection. Radiation absorbed doses were similar to those observed using a β-emitting radionuclide (90Y) in the same model. We conducted therapy experiments in a xenograft model using a single-dose of 213Bi-DOTA-biotin given 24 hours after anti-CD45 Ab-SA conjugate. Among mice treated with anti-CD45 Ab-SA conjugate followed by 800 μCi of 213Bi- or 90Y-DOTA-biotin, 80% and 20%, respectively, survived leukemia-free for >100 days with minimal toxicity. These data suggest that anti-CD45 PRIT using an α-emitting radionuclide may be highly effective and minimally toxic for treatment of AML.

  15. Antitumor activity of (R,R')-4-methoxy-1-naphthylfenoterol in a rat C6 glioma xenograft model in the mouse.

    PubMed

    Bernier, Michel; Paul, Rajib K; Dossou, Katina S S; Wnorowski, Artur; Ramamoorthy, Anuradha; Paris, Arnaud; Moaddel, Ruin; Cloix, Jean-François; Wainer, Irving W

    2013-12-01

    (R,R')-4-methoxy-1-naphthylfenoterol (MNF) inhibits cancer cell proliferation in vitro through cell-type specific modulation of β2-adrenergic receptor and/or cannabinoid receptor function. Here, we report an investigation into antitumor activity of MNF in rat C6 glioma cells. The potent antiproliferative action of MNF in these cells (IC50 of ∼1 nmol/L) was refractory to pharmacological inhibition of β2-adrenergic receptor while a synthetic inverse agonist of cannabinoid receptor 1 significantly blocked MNF activity. The antitumor activity of MNF was then assessed in a C6 glioblastoma xenograft model in mice. Three days after subcutaneous implantation of C6 cells into the lower flank of nude mice, these animals were subjected to i.p. injections of saline or MNF (2 mg/kg) for 19 days and tumor volumes were measured over the course of the experiment. Gene expression analysis, quantitative RT-PCR and immunoblot assays were performed on the tumors after treatment. Significant reduction in mean tumor volumes was observed in mice receiving MNF when compared with the saline-treated group. We identified clusters in expression of genes involved in cellular proliferation, as well as molecular markers for glioblastoma that were significantly downregulated in tumors of MNF-treated mice as compared to saline-injected controls. The efficacy of MNF against C6 glioma cell proliferation in vivo and in vitro was accompanied by marked reduction in the expression of cell cycle regulator proteins. This study is the first demonstration of MNF-dependent chemoprevention of a glioblastoma xenograft model and may offer a potential mechanism for its anticancer action in vivo.

  16. Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia.

    PubMed

    Maude, Shannon L; Dolai, Sibasish; Delgado-Martin, Cristina; Vincent, Tiffaney; Robbins, Alissa; Selvanathan, Arthavan; Ryan, Theresa; Hall, Junior; Wood, Andrew C; Tasian, Sarah K; Hunger, Stephen P; Loh, Mignon L; Mullighan, Charles G; Wood, Brent L; Hermiston, Michelle L; Grupp, Stephan A; Lock, Richard B; Teachey, David T

    2015-03-12

    Early T-cell precursor (ETP) acute lymphoblastic leukemia (ALL) is a recently described subtype of T-ALL characterized by a unique immunophenotype and genomic profile, as well as a high rate of induction failure. Frequent mutations in cytokine receptor and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways led us to hypothesize that ETP-ALL is dependent on JAK/STAT signaling. Here we demonstrate aberrant activation of the JAK/STAT pathway in ETP-ALL blasts relative to non-ETP T-ALL. Moreover, ETP-ALL showed hyperactivation of STAT5 in response to interleukin-7, an effect that was abrogated by the JAK1/2 inhibitor ruxolitinib. In vivo, ruxolitinib displayed activity in 6 of 6 patient-derived murine xenograft models of ETP-ALL, with profound single-agent efficacy in 5 models. Ruxolitinib treatment decreased peripheral blast counts relative to pretreatment levels and compared with control (P < .01) in 5 of 6 ETP-ALL xenografts, with marked reduction in mean splenic blast counts (P < .01) in 6 of 6 samples. Surprisingly, both JAK/STAT pathway activation and ruxolitinib efficacy were independent of the presence of JAK/STAT pathway mutations, raising the possibility that the therapeutic potential of ruxolitinib in ETP-ALL extends beyond those cases with JAK mutations. These findings establish the preclinical in vivo efficacy of ruxolitinib in ETP-ALL, a biologically distinct subtype for which novel therapies are needed. © 2015 by The American Society of Hematology.

  17. Antitumor activity of a dual epidermal growth factor receptor and ErbB2 kinase inhibitor MP-412 (AV-412) in mouse xenograft models.

    PubMed

    Suzuki, Tsuyoshi; Fujii, Akihiro; Ohya, Junichi; Nakamura, Hideo; Fujita, Fumiko; Koike, Masako; Fujita, Masahide

    2009-08-01

    Although epidermal growth factor receptor (EGFR) kinase inhibitors are effective for the treatment of non-small cell lung cancer (NSCLC), the emergence of mutations resistant to these inhibitors, such as T790M, has become a clinical problem. Recently, ErbB2 mutations have also been identified in a small number of NSCLC patients. Therefore, novel therapies to overcome these mutations are desirable. We describe the antitumor activity of MP-412 (AV-412), a dual EGFR/ErbB2 kinase inhibitor, against three lung cancer models with EGFR and ErbB2 mutations and also against various human xenografts with overexpression of these receptors. MP-412 inhibited phosphorylation of EGFR and its downstream signaling in NCI-H1650 and NCI-H1975 cell lines, which harbor the E746-A750 deletion and L858R + T790M point mutations, respectively, in EGFR. MP-412 inhibited the growth of these cell lines in vitro and in vivo, whereas the precedent kinase inhibitors lapatinib, erlotinib, and gefitinib were ineffective against NCI-H1975 cells in vivo. Furthermore, MP-412 inhibited ErbB2 signaling in the NCI-H1781 cell line, which harbors the G776V,C insertion in ErbB2, and correlated with its antiproliferation activity. When its antitumor spectrum was further explored in several cancer types overexpressing EGFR or ErbB2, MP-412 showed potent activity in KPL-4 and DU145 xenografts, in which lapatinib was ineffective. MP-412 also inhibited tumor models in which conventional chemotherapies were less effective. These results suggest that MP-412 is a potent dual inhibitor with the potential for treating solid cancers that overexpress EGFR or ErbB2, including NSCLC cells harboring mutations resistant to the first generation of kinase inhibitors.

  18. Antitumor activity of (R,R’)-4-methoxy-1-naphthylfenoterol in a rat C6 glioma xenograft model in the mouse

    PubMed Central

    Bernier, Michel; Paul, Rajib K; Dossou, Katina S S; Wnorowski, Artur; Ramamoorthy, Anuradha; Paris, Arnaud; Moaddel, Ruin; Cloix, Jean-François; Wainer, Irving W

    2013-01-01

    (R,R’)-4-methoxy-1-naphthylfenoterol (MNF) inhibits cancer cell proliferation in vitro through cell-type specific modulation of β2-adrenergic receptor and/or cannabinoid receptor function. Here, we report an investigation into antitumor activity of MNF in rat C6 glioma cells. The potent antiproliferative action of MNF in these cells (IC50 of ∼1 nmol/L) was refractory to pharmacological inhibition of β2-adrenergic receptor while a synthetic inverse agonist of cannabinoid receptor 1 significantly blocked MNF activity. The antitumor activity of MNF was then assessed in a C6 glioblastoma xenograft model in mice. Three days after subcutaneous implantation of C6 cells into the lower flank of nude mice, these animals were subjected to i.p. injections of saline or MNF (2 mg/kg) for 19 days and tumor volumes were measured over the course of the experiment. Gene expression analysis, quantitative RT-PCR and immunoblot assays were performed on the tumors after treatment. Significant reduction in mean tumor volumes was observed in mice receiving MNF when compared with the saline-treated group. We identified clusters in expression of genes involved in cellular proliferation, as well as molecular markers for glioblastoma that were significantly downregulated in tumors of MNF-treated mice as compared to saline-injected controls. The efficacy of MNF against C6 glioma cell proliferation in vivo and in vitro was accompanied by marked reduction in the expression of cell cycle regulator proteins. This study is the first demonstration of MNF-dependent chemoprevention of a glioblastoma xenograft model and may offer a potential mechanism for its anticancer action in vivo. PMID:25505565

  19. TNF-α-stimulated macrophages protect A549 lung cells against iron and oxidation.

    PubMed

    Persson, H Lennart; Vainikka, Linda K; Eriksson, Ida; Wennerström, Urban

    2013-01-01

    Previously, we have shown that TNF-α protects iron-exposed J774 macrophages against iron-catalyzed oxidative lysosomal disruption and cell death by increasing reduced glutathione and H-ferritin in cells. Because J774 cells are able to harbor large amounts of iron, which is potentially harmful in a redox-active state, we hypothesized that TNF-α-stimulated J774 macrophages will prevent iron-driven oxidative killing of alveolar epithelial A549 cells in co-culture. In the present study, iron trichloride (which is endocytosed by cells as hydrated iron-phosphate complexes) was mainly deposited inside the lysosomes of J774 macrophages, while A549 cells, equally iron exposed, accumulated much less iron. When challenged by oxidants, however, reactive lysosomal iron in A549 cells promoted lysosomal disruption and cell death, particularly in the presence of TNF-α. This effect resulted from an elevation in ROS generation by TNF-α, while a compensatory upregulation of protective molecules (H-ferritin and/or reduced glutathione) by TNF-α was absent. A549 cell death was particularly pronounced when iron and TNF-α were present in the conditioned medium during oxidant challenge; thus, iron-driven oxidative reactions in the culture medium were a much greater hazard to A549 cells than those taking place inside their lysosomes. Consequently, the iron chelator, deferoxamine, efficiently prevented A549 cell death when added to the culture medium during an oxidant challenge. In co-cultures of TNF-α-stimulated lung cells, J774 macrophages sequestered iron inside their lysosomes and protected A549 cells from oxidative reactions and cell death. Thus, the collective effect of TNF-α on co-cultured lung cells was mainly cytoprotective. Copyright © 2011 Elsevier GmbH. All rights reserved.

  20. Antineoplastic effects of deoxyelephantopin, a sesquiterpene lactone from Elephantopus scaber, on lung adenocarcinoma (A549) cells.

    PubMed

    Kabeer, Farha A; Sreedevi, Geetha B; Nair, Mangalam S; Rajalekshmi, Dhanya S; Gopalakrishnan, Latha P; Kunjuraman, Sujathan; Prathapan, Remani

    2013-07-01

    Deoxyelephantopin, a sesquiterpene lactone from Elephantopus scaber, showed inhibition of the growth of various tumor cells in vitro. In the present study, we investigated the cytotoxicity and apoptosis-inducing capacity of deoxyelephantopin on lung adenocarcinoma (A549) cells. The cytotoxic effect of deoxyelephantopin on A549 cells and normal lymphocytes was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 50% inhibitory concentration (IC50) value was determined. The self-renewal and proliferating potential of A549 cells after treatment with deoxyelephantopin were examined by colony formation assay. Cellular morphology of deoxyelephantopin-treated cells was observed using phase-contrast microscopy. The induction of apoptosis was evaluated using acridine orange and ethidium bromide staining, Hoechst 33342 staining, terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end-labeling (TUNEL) assay, DNA fragmentation analysis and Annexin V-fluorescein isothiocyanate staining by flow cytometry. Activation of caspases was detected using fluorogenic substrate specific to caspases 2, 3, 8 and 9 and flow cytometric analysis. The total cellular DNA content and expression of cleaved poly (ADP-ribose) polymerase was also analyzed. Deoxyelephantopin exhibited cytotoxicity to A549 cells (IC50 = 12.287 μg/mL), however, there was no toxicity towards normal human lymphocytes. Deoxyelephantopin suppressed the colony-forming ability of A549 cells in a dose-dependent manner. Acridine orange, ethidium bromide and Hoechst 33342 staining showed cell shrinkage, chromosomal condensation and nuclear fragmentation, indicating induction of apoptosis. Deoxyelephantopin increased apoptosis of A549 cells, as evidenced by more TUNEL-positive cells. DNA fragmentation and Annexin V staining revealed late-stage apoptotic cell population. Deoxyelephantopin inhibited A549 cell growth by cell cycle arrest at G2/M phase and induced apoptosis through

  1. Genomic characterization of patient-derived xenograft models established from fine needle aspirate biopsies of a primary pancreatic ductal adenocarcinoma and from patient-matched metastatic sites

    PubMed Central

    de Abreu, Francine B.; Gardner, Timothy B.; Gordon, Stuart R.; Barth, Richard J.; Colacchio, Thomas A.; Wood, Matthew; Kacsoh, Balint Z.; Bouley, Stephanie J.; Cui, Jingxuan; Hamilton, Joanna; Choi, Jungbin A.; Lange, Joshua T.; Peterson, Jason D.; Padmanabhan, Vijayalakshmi; Tomlinson, Craig R.; Tsongalis, Gregory J.; Suriawinata, Arief A.; Smith, Kerrington D.

    2016-01-01

    N-of-1 trials target actionable mutations, yet such approaches do not test genomically-informed therapies in patient tumor models prior to patient treatment. To address this, we developed patient-derived xenograft (PDX) models from fine needle aspiration (FNA) biopsies (FNA-PDX) obtained from primary pancreatic ductal adenocarcinoma (PDAC) at the time of diagnosis. Here, we characterize PDX models established from one primary and two metastatic sites of one patient. We identified an activating KRAS G12R mutation among other mutations in these models. In explant cells derived from these PDX tumor models with a KRAS G12R mutation, treatment with inhibitors of CDKs (including CDK9) reduced phosphorylation of a marker of CDK9 activity (phospho-RNAPII CTD Ser2/5) and reduced viability/growth of explant cells derived from PDAC PDX models. Similarly, a CDK inhibitor reduced phospho-RNAPII CTD Ser2/5, increased apoptosis, and inhibited tumor growth in FNA-PDX and patient-matched metastatic-PDX models. In summary, PDX models can be constructed from FNA biopsies of PDAC which in turn can enable genomic characterization and identification of potential therapies. PMID:26934555

  2. Study of gaseous benzene effects upon A549 lung epithelial cells using a novel exposure system.

    PubMed

    Mascelloni, Massimiliano; Delgado-Saborit, Juana Maria; Hodges, Nikolas J; Harrison, Roy M

    2015-08-19

    Volatile organic compounds (VOCs) are ubiquitous pollutants known to be present in both indoor and outdoor air arising from various sources. Indoor exposure has increasingly become a major cause of concern due to the effects that such pollutants can have on health. Benzene, along with toluene, is one of the main components of the VOC mixture and is a known carcinogen due to its genotoxic effects. The aim of this study was to test the feasibility of an in vitro model to study the short-term effects of exposure of lung cells to airborne benzene. We studied the effects of exposure on DNA and the production of reactive oxygen species (ROS) in A549 cells, exposed to various concentrations of benzene (0.03; 0.1; 0.3 ppm) in gaseous form using a custom designed cell exposure chamber. Results showed a concentration-dependent increase of DNA breaks and an increase of ROS production, confirming the feasibility of the experimental procedure and validating the model for further in vitro studies of exposure to other VOCs.

  3. Human Umbilical Cord Stem Cell Xenografts Improve Cognitive Decline and Reduce the Amyloid Burden in a Mouse Model of Alzheimer’s Disease

    PubMed Central

    Boutajangout, Allal; Noorwali, Abdulwahab; Atta, Hazem; Wisniewski, Thomas

    2017-01-01

    Introduction Alzheimer’s disease (AD) is the most common cause of dementia. The search for new treatments is made more urgent given its increasing prevalence resulting from the aging of the global population. Over the past 20 years, stem cell technologies have become an increasingly attractive option to both study and potentially treat neurodegenerative diseases. Several investigators reported a beneficial effect of different types of stem or progenitor cells on the pathology and cognitive function in AD models. Mouse models are one of the most important research tools for finding new treatment for AD. We aimed to explore the possible therapeutic potential of human umbilical cord mesenchymal stem cell xenografts in a transgenic (Tg) mouse model of AD. Methods APP/PS1 Tg AD model mice received human umbilical cord stem cells, directly injected into the carotid artery. To test the efficacy of the umbilical cord stem cells in this AD model, behavioral tasks (sensorimotor and cognitive tests) and immunohistochemical quantitation of the pathology was performed. Results Treatment of the APP/PS1 AD model mice, with human umbilical cord stem cells, produced a reduction of the amyloid beta burden in the cortex and the hippocampus which correlated with a reduction of the cognitive loss. Conclusion Human umbilical cord mesenchymal stem cells appear to reduce AD pathology in a transgenic mouse model as documented by a reduction of the amyloid plaque burden compared to controls. This amelioration of pathology correlates with improvements on cognitive and sensorimotor tasks. PMID:27719629

  4. Human Umbilical Cord Stem Cell Xenografts Improve Cognitive Decline and Reduce the Amyloid Burden in a Mouse Model of Alzheimer's Disease.

    PubMed

    Boutajangout, Allal; Noorwali, Abdulwahab; Atta, Hazem; Wisniewski, Thomas

    2017-01-01

    Alzheimer's disease (AD) is the most common cause of dementia. The search for new treatments is made more urgent given its increasing prevalence resulting from the aging of the global population. Over the past 20 years, stem cell technologies have become an increasingly attractive option to both study and potentially treat neurodegenerative diseases. Several investigators reported a beneficial effect of different types of stem or progenitor cells on the pathology and cognitive function in AD models. Mouse models are one of the most important research tools for finding new treatment for AD. We aimed to explore the possible therapeutic potential of human umbilical cord mesenchymal stem cell xenografts in a transgenic (Tg) mouse model of AD. APP/PS1 Tg AD model mice received human umbilical cord stem cells, directly injected into the carotid artery. To test the efficacy of the umbilical cord stem cells in this AD model, behavioral tasks (sensorimotor and cognitive tests) and immunohistochemical quantitation of the pathology was performed. Treatment of the APP/PS1 AD model mice, with human umbilical cord stem cells, produced a reduction of the amyloid beta burden in the cortex and the hippocampus which correlated with a reduction of the cognitive loss. Human umbilical cord mesenchymal stem cells appear to reduce AD pathology in a transgenic mouse model as documented by a reduction of the amyloid plaque burden compared to controls. This amelioration of pathology correlates with improvements on cognitive and sensorimotor tasks.

  5. Spatial and temporal mapping of heterogeneity in liposome uptake and microvascular distribution in an orthotopic tumor xenograft model.

    PubMed

    Ekdawi, Sandra N; Stewart, James M P; Dunne, Michael; Stapleton, Shawn; Mitsakakis, Nicholas; Dou, Yannan N; Jaffray, David A; Allen, Christine

    2015-06-10

    Existing paradigms in nano-based drug delivery are currently being challenged. Assessment of bulk tumor accumulation has been routinely considered an indicative measure of nanomedicine potency. However, it is now recognized that the intratumoral distribution of nanomedicines also impacts their therapeutic effect. At this time, our understanding of the relationship between the bulk (i.e., macro-) tumor accumulation of nanocarriers and their intratumoral (i.e., micro-) distribution remains limited. Liposome-based drug formulations, in particular, suffer from diminished efficacy in vivo as a result of transport-limiting properties, combined with the heterogeneous nature of the tumor microenvironment. In this report, we perform a quantitative image-based assessment of macro- and microdistribution of liposomes. Multi-scalar assessment of liposome distribution was enabled by a stable formulation which co-encapsulates an iodinated contrast agent and a near-infrared fluorescence probe, for computed tomography (CT) and optical microscopy, respectively. Spatio-temporal quantification of tumor uptake in orthotopic xenografts was performed using CT at the bulk tissue level, and within defined sub-volumes of the tumor (i.e., rim, periphery and core). Tumor penetration and relative distribution of liposomes were assessed by fluorescence microscopy of whole tumor sections. Microdistribution analysis of whole tumor images exposed a heterogeneous distribution of both liposomes and tumor vasculature. Highest levels of liposome uptake were achieved and maintained in the well-vascularized tumor rim over the study period, corresponding to a positive correlation between liposome and microvascular density. Tumor penetration of liposomes was found to be time-dependent in all regions of the tumor however independent of location in the tumor. Importantly, a multi-scalar comparison of liposome distribution reveals that macro-accumulation in tissues (e.g., blood, whole tumor) may not reflect

  6. 5α-Reductase Inhibition Suppresses Testosterone-Induced Initial Regrowth of Regressed Xenograft Prostate Tumors in Animal Models

    PubMed Central

    Masoodi, Khalid Z.; Ramos Garcia, Raquel; Pascal, Laura E.; Wang, Yujuan; Ma, Hei M.; O'Malley, Katherine; Eisermann, Kurtis; Shevrin, Daniel H.; Nguyen, Holly M.; Vessella, Robert L.; Nelson, Joel B.; Parikh, Rahul A.

    2013-01-01

    Androgen deprivation therapy (ADT) is the standard treatment for patients with prostate-specific antigen progression after treatment for localized prostate cancer. An alternative to continuous ADT is intermittent ADT (IADT), which allows recovery of testosterone during off-cycles to stimulate regrowth and differentiation of the regressed prostate tumor. IADT offers patients a reduction in side effects associated with ADT, improved quality of life, and reduced cost with no difference in overall survival. Our previous studies showed that IADT coupled with 5α-reductase inhibitor (5ARI), which blocks testosterone conversion to DHT could prolong survival of animals bearing androgen-sensitive prostate tumors when off-cycle duration was fixed. To further investigate this clinically relevant observation, we measured the time course of testosterone-induced regrowth of regressed LuCaP35 and LNCaP xenograft tumors in the presence or absence of a 5ARI. 5α-Reductase inhibitors suppressed the initial regrowth of regressed prostate tumors. However, tumors resumed growth and were no longer responsive to 5α-reductase inhibition several days after testosterone replacement. This finding was substantiated by bromodeoxyuridine and Ki67 staining of LuCaP35 tumors, which showed inhibition of prostate tumor cell proliferation by 5ARI on day 2, but not day 14, after testosterone replacement. 5α-Reductase inhibitors also suppressed testosterone-stimulated proliferation of LNCaP cells precultured in androgen-free media, suggesting that blocking testosterone conversion to DHT can inhibit prostate tumor cell proliferation via an intracrine mechanism. These results suggest that short off-cycle coupled with 5α-reductase inhibition could maximize suppression of prostate tumor growth and, thus, improve potential survival benefit achieved in combination with IADT. PMID:23671262

  7. Meta-[{sup 211}At]astatobenzylguanidine (MABG): In vivo evaluation in an athymic mouse human neuroblastoma xenograft model

    SciTech Connect

    Vaidyanathan, G.; Friedman, H.S.; Keir, S.T.

    1996-05-01

    Because of the short range and high linear energy transfer of {sup 211}At {alpha}-particles, the MIBG analogue MABG might be useful for the therapy of micrometastatic neuroblastoma and previous in vitro studies have demonstrated that under single-cell conditions, the cytotoxicity of MABG is > 1000 times higher than [{sup 131}I]MIBG. A paired label protocol was used to compare the tissue distribution of MABG and [{sup 131}I]MIBG in athymic mice bearing subcutaneous SK-N-SH human neuroblastoma xenografts from 1-24 hr after injection. In tumor, significantly higher (p < 0.05) uptake was observed for MABG (3.8 {plus_minus} 0.8%ID/g vs 3.1 {plus_minus} 0.7%ID/g at 8 hr). Pretreatment with desipramine reduced tumor uptake of MABG by 43%, suggesting that accumulation was related to the uptake-1 mechanism. Significantly higher uptake of MABG also was observed in normal tissue targets. For example, at 8 hr, heart uptake of MABG was 6.0 {plus_minus} 0.9 % ID/g compared with 4.5 {plus_minus} 0.8%ID/g for [{sup 131}I]MIBG. Two strategies were investigated to increase the tumor-to-hear uptake ratio. Pretreatment of mice with unlabeled MIBG (4 mg/kg) increased MABG tumor uptake by 1.5-fold while reducing uptake in several normal tissues including heart. The vesicular uptake blocker tetrabenazine (TBZ; 20 mg/kg), reduced MABG hear uptake by 30% of control values with not significant decrease in tumor levels. We conclude that MABG deserves further evaluation as a potential agent for the treatment of neuroblastoma, particularly in combination with strategies to minimize radiation dose to normal target tissues.

  8. Tumor priming by Apo2L/TRAIL reduces interstitial fluid pressure and enhances efficacy of liposomal gemcitabine in a patient derived xenograft tumor model.

    PubMed

    Hylander, Bonnie L; Sen, Arindam; Beachy, Sarah H; Pitoniak, Rose; Ullas, Soumya; Gibbs, John F; Qiu, Jingxin; Prey, Joshua D; Fetterly, Gerald J; Repasky, Elizabeth A

    2015-11-10

    Interstitial fluid pressure (IFP) is elevated in tumors and high IFP, a negative cancer prognosticator, is known to limit the uptake and efficacy of anti-tumor therapeutics. Approaches that alter the tumor microenvironment and enhance uptake of therapeutics are collectively referred to as tumor "priming". Here we show that the cytotoxic biological therapy Apo2L/TRAIL can prime the tumor microenvironment and significantly lower IFP in three different human tumor xenograft models (Colo205, MiaPaca-2 and a patient gastrointestinal adenocarcinoma tumor xenograft). We found that a single dose of Apo2L/TRAIL resulted in a wave of apoptosis which reached a maximum at 8h post-treatment. Apoptotic debris subsequently disappeared concurrent with an increase in macrophage infiltration. By 24h post-treatment, treated tumors appeared less condensed with widening of the stromal areas which increased at 48 and 72h. Analysis of tumor vasculature demonstrated a significant increase in overall vessel size at 48 and 72h although the number of vessels did not change. Notably, IFP was significantly reduced in these tumors by 48h after Apo2L/TRAIL treatment. Administration of gemcitabine at this time resulted in increased tumor uptake of both gemcitabine and liposomal gemcitabine and significantly improved anti-tumor efficacy of liposomal gemcitabine. These results suggest that Apo2L/TRAIL has a potential as a tumor priming agent and provides a rationale for developing a sequencing schema for combination therapy such that an initial dose of Apo2L/TRAIL would precede administration of gemcitabine or other therapies.

  9. Evaluation of 6-([18F] fluoroacetamido)-1-hexanoic-anilide (18F-FAHA) as imaging probe in tumor xenograft mice model

    NASA Astrophysics Data System (ADS)

    Li, Fiona; Cho, Sung Ju; Yu, Lihai; Hudson, Robert H. E.; Luyt, Leonard G.; Pin, Christopher L.; Kovacs, Michael S.; Koropatnick, James; Lee, Ting-Yim

    2016-03-01

    Alteration in genetic expression is as important as gene mutation in cancer development and proliferation. Epigenetic changes affect gene expression without altering the DNA sequence. Histone deacetylase (HDAC), an enzyme facilitating histone remodelling, can lead to silencing of tumor suppressor genes making HDAC inhibitors viable anticancer drugs against tumors with increased activity of the enzyme. In this study we evaluated 18F-fluroacetamido-1-hexanoicanilide (18F-FAHA), an artificial HDAC substrate, as imaging probe of HDAC activity of human tumor xenografts in immunocompromised host mice. Human breast and melanoma cell lines, MDA-MB-468 and MDA-MB-435 respectively, known to overexpress HDAC activity were xenografted into immunocompromised mice and HDAC activity was imaged using 18F-FAHA. The melanoma group was treated with saline, SAHA (suberoylanilide hydroxamic acid, an approved anticancer HDAC inhibitor) in DMSO, or DMSO as positive control. Tracer kinetic modelling and SUV were used to estimate HDAC activity from dynamic PET data. Both breast tumor and melanoma group showed great variability in binding rate constant (BRC) of 18F-FAHA suggesting highly variable inter- and intra-tumoral HDAC activity. For the SAHA treated melanoma group, HDAC activity, as monitored by BRC of 18F-FAHA, decreased more than the two (positive and negative) control groups but not tumor growth. Our preliminary study showed that noninvasive PET imaging with 18F-FAHA has the potential to identify patients for whom treatment with HDAC inhibitors are appropriate, to assess the effectiveness of that treatment as an early marker of target reduction, and also eliminate the need for invasive tissue biopsy to individualize treatment.

  10. Metabonomic studies of pancreatic cancer response to radiotherapy in a mouse xenograft model using magnetic resonance spectroscopy and principal components analysis.

    PubMed

    He, Xin-Hong; Li, Wen-Tao; Gu, Ya-Jia; Yang, Bao-Feng; Deng, Hui-Wen; Yu, Yi-Hua; Peng, Wei-Jun

    2013-07-14

    To investigate the metabolic profiles of xenograft pancreatic cancer before and after radiotherapy by high-resolution magic angle spinning proton magnetic resonance spectroscopy (HRMAS (1)H NMR) combined with principal components analysis (PCA) and evaluate the radiotherapeutic effect. The nude mouse xenograft model of human pancreatic cancer was established by injecting human pancreatic cancer cell SW1990 subcutaneously into the nude mice. When the tumors volume reached 800 mm(3), the mice received various radiation doses. Two weeks later, tumor tissue sections were prepared for running the NMR measurements. (1)H NMR and PCA were used to determine the changes in the metabolic profiles of tumor tissues after radiotherapy. Metabolic profiles of normal pancreas, pancreatic tumor tissues, and radiation- treated pancreatic tumor tissues were compared. Compared with (1)H NMR spectra of the normal nude mouse pancreas, the levels of choline, taurine, alanine, isoleucine, leucine, valine, lactate, and glutamic acid of the pancreatic cancer group were increased, whereas an opposite trend for phosphocholine, glycerophosphocholine, and betaine was observed. The ratio of phosphocholine to creatine, and glycerophosphocholine to creatine showed noticeable decrease in the pancreatic cancer group. After further evaluation of the tissue metabolic profile after treatment with three different radiation doses, no significant change in metabolites was observed in the (1)H NMR spectra, while the inhibition of tumor growth was in proportion to the radiation doses. However, PCA results showed that the levels of choline and betaine were decreased with the increased radiation dose, and conversely, the level of acetic acid was dramatically increased. The combined methods were demonstrated to have the potential for allowing early diagnosis and assessment of pancreatic cancer response to radiotherapy.

  11. Pre-transplant antibody screening and anti-CD154 costimulation blockade promote long-term xenograft survival in a pig-to-primate kidney transplant model.

    PubMed

    Higginbotham, Laura; Mathews, Dave; Breeden, Cynthia A; Song, Mingqing; Farris, Alton Brad; Larsen, Christian P; Ford, Mandy L; Lutz, Andrew J; Tector, Matthew; Newell, Kenneth A; Tector, A Joseph; Adams, Andrew B

    2015-01-01

    Xenotransplantation has the potential to alleviate the organ shortage that prevents many patients with end-stage renal disease from enjoying the benefits of kidney transplantation. Despite significant advances in other models, pig-to-primate kidney xenotransplantation has met limited success. Preformed anti-pig antibodies are an important component of the xenogeneic immune response. To address this, we screened a cohort of 34 rhesus macaques for anti-pig antibody levels. We then selected animals with both low and high titers of anti-pig antibodies to proceed with kidney transplant from galactose-α1,3-galactose knockout/CD55 transgenic pig donors. All animals received T-cell depletion followed by maintenance therapy with costimulation blockade (either anti-CD154 mAb or belatacept), mycophenolate mofetil, and steroid. The animal with the high titer of anti-pig antibody rejected the kidney xenograft within the first week. Low-titer animals treated with anti-CD154 antibody, but not belatacept exhibited prolonged kidney xenograft survival (>133 and >126 vs. 14 and 21 days, respectively). Long-term surviving animals treated with the anti-CD154-based regimen continue to have normal kidney function and preserved renal architecture without evidence of rejection on biopsies sampled at day 100. This description of the longest reported survival of pig-to-non-human primate kidney xenotransplantation, now >125 days, provides promise for further study and potential clinical translation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. In vitro and in vivo studies on radiobiological effects of prolonged fraction delivery time in A549 cells

    PubMed Central

    Jiang, Ling; Xiong, Xiao-Peng; Hu, Chao-Su; Ou, Zhou-Luo; Zhu, Guo-Pei; Ying,, Hong-Mei

    2013-01-01

    Intensity-modulated radiation therapy, when used in the clinic, prolongs fraction delivery time. Here we investigated both the in vivoand in vitroradiobiological effects on the A549 cell line, including the effect of different delivery times with the same dose on A549 tumor growth in nude mice. The in vitroeffects were studied with clonogenic assays, using linear-quadratic and incomplete repair models to fit the dose-survival curves. Fractionated irradiation of different doses was given at one fraction per day, simulating a clinical dose-time-fractionation pattern. The longer the interval between the exposures, the more cells survived. To investigate the in vivoeffect, we used sixty-four nude mice implanted with A549 cells in the back legs, randomly assigned into eight groups. A 15 Gy radiation dose was divided into different subfractions. The maximum and minimum tumor diameters were recorded to determine tumor growth. Tumor growth was delayed for groups with prolonged delivery time (40 min) compared to the group receiving a single dose of 15 Gy (P< 0.05), and tumors with a 20 min delivery time had delayed growth compared to those with a 40 min delivery time [20′ (7.5 Gy × 2 F) vs 40′ (7.5 Gy × 2 F), P= 0.035; 20′ (3 Gy × 5 F) vs 40′ (3 Gy × 5 F); P= 0.054; 20′ (1.67 Gy × 9 F) vs 40′ (1.67 Gy × 9 F), P= 0.028]. A prolonged delivery time decreased the radiobiological effects, so we strongly recommend keeping the delivery time as short as possible. PMID:23090953

  13. In vitro and in vivo studies on radiobiological effects of prolonged fraction delivery time in A549 cells.

    PubMed

    Jiang, Ling; Xiong, Xiao-Peng; Hu, Chao-Su; Ou, Zhou-Luo; Zhu, Guo-Pei; Ying, Hong-Mei

    2013-03-01

    Intensity-modulated radiation therapy, when used in the clinic, prolongs fraction delivery time. Here we investigated both the in vivoand in vitroradiobiological effects on the A549 cell line, including the effect of different delivery times with the same dose on A549 tumor growth in nude mice. The in vitroeffects were studied with clonogenic assays, using linear-quadratic and incomplete repair models to fit the dose-survival curves. Fractionated irradiation of different doses was given at one fraction per day, simulating a clinical dose-time-fractionation pattern. The longer the interval between the exposures, the more cells survived. To investigate the in vivoeffect, we used sixty-four nude mice implanted with A549 cells in the back legs, randomly assigned into eight groups. A 15 Gy radiation dose was divided into different subfractions. The maximum and minimum tumor diameters were recorded to determine tumor growth. Tumor growth was delayed for groups with prolonged delivery time (40 min) compared to the group receiving a single dose of 15 Gy (P< 0.05), and tumors with a 20 min delivery time had delayed growth compared to those with a 40 min delivery time [20' (7.5 Gy × 2 F) vs 40' (7.5 Gy × 2 F), P= 0.035; 20' (3 Gy × 5 F) vs 40' (3 Gy × 5 F); P= 0.054; 20' (1.67 Gy × 9 F) vs 40' (1.67 Gy × 9 F), P= 0.028]. A prolonged delivery time decreased the radiobiological effects, so we strongly recommend keeping the delivery time as short as possible.

  14. Long Term Culture of the A549 Cancer Cell Line Promotes Multilamellar Body Formation and Differentiation towards an Alveolar Type II Pneumocyte Phenotype.

    PubMed

    Cooper, James Ross; Abdullatif, Muhammad Bilal; Burnett, Edward C; Kempsell, Karen E; Conforti, Franco; Tolley, Howard; Collins, Jane E; Davies, Donna E

    2016-01-01

    Pulmonary research requires models that represent the physiology of alveolar epithelium but concerns with reproducibility, consistency and the technical and ethical challenges of using primary or stem cells has resulted in widespread use of continuous cancer or other immortalized cell lines. The A549 'alveolar' cell line has been available for over four decades but there is an inconsistent view as to its suitability as an appropriate model for primary alveolar type II (ATII) cells. Since most work with A549 cells involves short term culture of proliferating cells, we postulated that culture conditions that reduced proliferation of the cancer cells would promote a more differentiated ATII cell phenotype. We examined A549 cell growth in different media over long term culture and then used microarray analysis to investigate temporal regulation of pathways involved in cell cycle and ATII differentiation; we also made comparisons with gene expression in freshly isolated human ATII cells. Analyses indicated that long term culture in Ham's F12 resulted in substantial modulation of cell cycle genes to result in a quiescent population of cells with significant up-regulation of autophagic, differentiation and lipidogenic pathways. There were also increased numbers of up- and down-regulated genes shared with primary cells suggesting adoption of ATII characteristics and multilamellar body (MLB) development. Subsequent Oil Red-O staining and Transmission Electron Microscopy confirmed MLB expression in the differentiated A549 cells. This work defines a set of conditions for promoting ATII differentiation characteristics in A549 cells that may be advantageous for studies with this cell line.

  15. Long Term Culture of the A549 Cancer Cell Line Promotes Multilamellar Body Formation and Differentiation towards an Alveolar Type II Pneumocyte Phenotype

    PubMed Central

    Cooper, James Ross; Abdullatif, Muhammad Bilal; Burnett, Edward C.; Kempsell, Karen E.; Conforti, Franco; Tolley, Howard; Collins, Jane E.; Davies, Donna E.

    2016-01-01

    Pulmonary research requires models that represent the physiology of alveolar epithelium but concerns with reproducibility, consistency and the technical and ethical challenges of using primary or stem cells has resulted in widespread use of continuous cancer or other immortalized cell lines. The A549 ‘alveolar’ cell line has been available for over four decades but there is an inconsistent view as to its suitability as an appropriate model for primary alveolar type II (ATII) cells. Since most work with A549 cells involves short term culture of proliferating cells, we postulated that culture conditions that reduced proliferation of the cancer cells would promote a more differentiated ATII cell phenotype. We examined A549 cell growth in different media over long term culture and then used microarray analysis to investigate temporal regulation of pathways involved in cell cycle and ATII differentiation; we also made comparisons with gene expression in freshly isolated human ATII cells. Analyses indicated that long term culture in Ham’s F12 resulted in substantial modulation of cell cycle genes to result in a quiescent population of cells with significant up-regulation of autophagic, differentiation and lipidogenic pathways. There were also increased numbers of up- and down-regulated genes shared with primary cells suggesting adoption of ATII characteristics and multilamellar body (MLB) development. Subsequent Oil Red-O staining and Transmission Electron Microscopy confirmed MLB expression in the differentiated A549 cells. This work defines a set of conditions for promoting ATII differentiation characteristics in A549 cells that may be advantageous for studies with this cell line. PMID:27792742

  16. Radix Tetrastigma hemsleyani flavone inhibits proliferation, migration, and invasion of human lung carcinoma A549 cells

    PubMed Central

    Zhong, Liangrui; Zheng, Junxian; Sun, Qianqian; Wei, Kemin; Hu, Yijuan

    2016-01-01

    Radix Tetrastigma hemsleyani flavone (RTHF) is widely used as a traditional herb and has detoxification and anti-inflammatory effects. In this study, we investigated the potential effects of RTHF on the growth and metastasis of human lung adenocarcinoma A549 cells and evaluated its mechanisms. A549 cells were treated with RTHF at various concentrations for different periods. In vitro Cell Counting Kit-8 assay and colony formation methods showed that RTHF had dose- and time-dependent antiproliferation effects on A549 cells. A cell adhesion assay showed that RTHF decreased A549 cell adhesion in a dose-dependent manner. Cell invasion and migration were investigated using the Transwell assay and observed using an inverted microscope; the results showed that cell metastasis was significantly lower in the treatment group than that in the control group (P<0.01). Expression of metastasis-related matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) was detected by real-time polymerase chain reaction and Western blotting. The results showed that the expression of MMP-2, MMP-9, and TIMP-1 decreased, while that of TIMP-2 increased significantly in the RTHF group when compared with the results of the control group. These results show that RTHF exhibits antigrowth and antimetastasis activity in lung cancer A549 cells by decreasing the expression of MMP-2/-9 and TIMP-1 and increasing that of TIMP-2. PMID:26893573

  17. Ursolic Acid Reduces Mycobacterium tuberculosis-Induced Nitric Oxide Release in Human Alveolar A549 cells.

    PubMed

    Zerin, Tamanna; Lee, Minjung; Jang, Woong Sik; Nam, Kung-Woo; Song, Ho-Yeon

    2015-07-01

    Alveolar epithelial cells have been functionally implicated in Mycobacterium tuberculosis infection. This study investigated the role of ursolic acid (UA)-a triterpenoid carboxylic acid with potent antioxidant, anti-tumor, anti-inflammatory, and anti-tuberculosis properties in mycobacterial infection of alveolar epithelial A549 cells. We observed that M. tuberculosis successfully entered A549 cells. Cytotoxi-city was mediated by nitric oxide (NO). A549 toxicity peaked along with NO generation 72 h after infection. The NO generated by mycobacterial infection in A549 cells was insufficient to kill mycobacteria, as made evident by the mycobacteria growth indicator tube time to detect (MGIT TTD) and viable cell count assays. Treatment of mycobacteria-infected cells with UA reduced the expression of inducible nitric oxide synthase, NO generation, and eventually improved cell viability. Moreover, UA was found to quench the translocation of the transcription factor, nuclear factor kappa B (NF-κB), from the cytosol to the nucleus in mycobacteria-infected cells. This study is the first to demonstrate the cytotoxic role of NO in the eradication of mycobacteria and the role of UA in reducing this cytotoxicity in A549 cells.

  18. Patient-derived xenograft platform of OSCC: a renewable human bio-bank for preclinical cancer research and a new co-clinical model for treatment optimization.

    PubMed

    Sun, Shuyang; Zhang, Zhiyuan

    2016-03-01

    Advances in next-generation sequencing and bioinformatics have begun to reveal the complex genetic landscape in human cancer genomes, including oral squamous cell carcinoma (OSCC). Sophisticated preclinical models that fully represent intra- and inter-tumoral heterogeneity are required to understand the molecular diversity of cancer and achieve the goal of personalized therapies. Over the last decade, patient-derived xenograft (PDX) models generated from human tumor samples that can retain the histological and genetic features of their donor tumors have been shown to be the preferred preclinical tool in translational cancer research compared with other conventional preclinical models. Specifically, genetically well-defined PDX models can be applied to accelerate targeted antitumor drug development and biomarker discovery. Recently, we have successfully established and characterized an OSCC PDX panel as part of our tumor bio-bank for translational cancer research. In this paper, we discuss the establishment, characterization, and preclinical applications of the PDX models. In particular, we focus on the classification and applications of the PDX models based on validated annotations, including clinicopathological features, genomic profiles, and pharmacological testing information. We also explore the translational value of this well-annotated PDX panel in the development of co-clinical trials for patient stratification and treatment optimization in the near future. Although various limitations still exist, this preclinical approach should be further tested and improved.

  19. A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions.

    PubMed

    Fong, Eliza L S; Wan, Xinhai; Yang, Jun; Morgado, Micaela; Mikos, Antonios G; Harrington, Daniel A; Navone, Nora M; Farach-Carson, Mary C

    2016-01-01

    Patient-derived xenograft (PDX) models better represent human cancer than traditional cell lines. However, the complex in vivo environment makes it challenging to employ PDX models to investigate tumor-stromal interactions, such as those that mediate prostate cancer (PCa) bone metastasis. Thus, we engineered a defined three-dimensional (3D) hydrogel system capable of supporting the co-culture of PCa PDX cells and osteoblastic cells to recapitulate the PCa-osteoblast unit within the bone metastatic microenvironment in vitro. Our 3D model not only maintained cell viability but also preserved the typical osteogenic phenotype of PCa PDX cells. Additionally, co-culture cellularity was maintained over that of either cell type cultured alone, suggesting that the PCa-osteoblast cross-talk supports PCa progression in bone, as is hypothesized to occur in patients with prostatic bone metastasis. Strikingly, osteoblastic cells co-cultured with PCa PDX tumoroids organized around the tumoroids, closely mimicking the architecture of PCa metastases in bone. Finally, tumor-stromal signaling mediated by the fibroblast growth factor axis tightly paralleled that in the in vivo counterpart. Together, these findings indicate that this 3D PCa PDX model recapitulates important pathological properties of PCa bone metastasis, and validate the use of this model for controlled and systematic interrogation of complex in vivo tumor-stromal interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. An evaluation of 2-deoxy-2-[18F]fluoro-D-glucose and 3'-deoxy-3'-[18F]-fluorothymidine uptake in human tumor xenograft models.

    PubMed

    Keen, Heather; Pichler, Bernd; Kukuk, Damaris; Duchamp, Olivier; Raguin, Olivier; Shannon, Aoife; Whalley, Nichola; Jacobs, Vivien; Bales, Juliana; Gingles, Neill; Ricketts, Sally-Ann; Wedge, Stephen R

    2012-06-01

    The aim of this study is to assess the variability of 2-deoxy-2-[(18)F]fluoro-D: -glucose ([(18)F]-FDG) and 3'-deoxy-3'-[(18)F]-fluorothymidine ([(18)F]-FLT) uptake in pre-clinical tumor models and examine the relationship between imaging data and related histological biomarkers. [(18)F]-FDG and [(18)F]-FLT studies were carried out in nine human tumor xenograft models in mice. A selection of the models underwent histological analysis for endpoints relevant to radiotracer uptake. Comparisons were made between in vitro uptake, in vivo imaging, and ex vivo histopathology data using quantitative and semi-quantitative analysis. In vitro data revealed that [1-(14)C]-2-deoxy-D: -glucose ([(14)C]-2DG) uptake in the tumor cell lines was variable. In vivo, [(18)F]-FDG and [(18)F]-FLT uptake was highly variable across tumor types and uptake of one tracer was not predictive for the other. [(14)C]-2DG uptake in vitro did not predict for [(18)F]-FDG uptake in vivo. [(18)F]-FDG SUV was inversely proportional to Ki67 and necrosis levels and positively correlated with HKI. [(18)F]-FLT uptake positively correlated with Ki67 and TK1. When evaluating imaging biomarkers in response to therapy, the choice of tumor model should take into account in vivo baseline radiotracer uptake, which can vary significantly between models.

  1. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    PubMed

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells.

  2. Aptamer based electrochemical sensor for detection of human lung adenocarcinoma A549 cells

    NASA Astrophysics Data System (ADS)

    Sharma, Rachna; Varun Agrawal, Ved; Sharma, Pradeep; Varshney, R.; Sinha, R. K.; Malhotra, B. D.

    2012-04-01

    We report results of the studies relating to development of an aptamer-based electrochemical biosensor for detection of human lung adenocarcinoma A549 cells. The aminated 85-mer DNA aptamer probe specific for the A549 cells has been covalently immobilized onto silane self assembled monolayer (SAM) onto ITO surface using glutaraldehyde as the crosslinker. The results of cyclic voltammetry and differential pulse voltammetry studies reveal that the aptamer functionalized bioelectrode can specifically detect lung cancer cells in the concentration range of 103 to 107 cells/ml with detection limit of 103 cells/ml within 60 s. The specificity studies of the bioelectrode have been carried out with control KB cells. No significant change in response is observed for control KB cells as compared to that of the A549 target cells.

  3. Longitudinal evaluation of the metabolic response of a tumor xenograft model to single fraction radiation therapy using magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Tessier, A. G.; Yahya, A.; Larocque, M. P.; Fallone, B. G.; Syme, A.

    2014-09-01

    Proton magnetic resonance spectroscopy (MRS) was used to evaluate the metabolic profile of human glioblastoma multiform brain tumors grown as xenografts in nude mice before, and at multiple time points after single fraction radiation therapy. Tumors were grown over the thigh in 16 mice in this study, of which 5 served as untreated controls and 11 had their tumors treated to 800 cGy with 200 kVp x-rays. Spectra were acquired within 24 h pre-treatment, and then at 3, 7 and 14 d post-treatment using a 9.4 T animal magnetic resonance (MR) system. For the untreated control tumors, spectra (1-2 per mouse) were acquired at different stages of tumor growth. Spectra were obtained with the PRESS pulse sequence using a 3  ×  3 × 3 mm3 voxel. Analysis was performed with the LCModel software platform. Six metabolites were profiled for this analysis: alanine (Ala), myo-inositol (Ins), taurine (Tau), creatine and phosphocreatine (Cr + PCr), glutamine and glutamate (Glu + Gln), and total choline (glycerophosphocholine + phosphocholine) (GPC + PCh). For the treated cohort, most metabolite/water concentration ratios were found to decrease in the short term at 3 and 7 d post-treatment, followed by an increase at 14 d post-treatment toward pre-treatment values. The lowest concentrations were observed at 7 d post-treatment, with magnitudes (relative to pre-treatment concentration ratios) of: 0.42  ±  24.6% (Ala), 0.43  ±  15.3% (Ins), 0.68  ±  27.9% (Tau), 0.52  ±  14.6% (GPC+PCh), 0.49  ±  21.0% (Cr + PCr) and 0.78  ±  24.5% (Glu + Gln). Control animals did not demonstrate any significant correlation between tumor volume and metabolite concentration, indicating that the observed kinetics were the result of the therapeutic intervention. We have demonstrated the feasibility of using MRS to follow multiple metabolic markers over time for the purpose of evaluating therapeutic response of tumors to radiation therapy. This study provides

  4. A Novel 99mTc-Labeled Molecular Probe for Tumor Angiogenesis Imaging in Hepatoma Xenografts Model: A Pilot Study

    PubMed Central

    Zhao, Qian; Yan, Ping; Wang, Rong Fu; Zhang, Chun Li; Li, Ling; Yin, Lei

    2013-01-01

    Introduction Visualization of tumor angiogenesis using radionuclide targeting provides important diagnostic information. In previous study, we proved that an arginine-arginine-leucine (RRL) peptide should be a tumor endothelial cell specific binding sequence. The overall aim of this study was to evaluate whether 99mTc-radiolabeled RRL could be noninvasively used for imaging of malignant tumors in vivo, and act as a new molecular probe targeting tumor angiogenesis. Methods The RRL peptide was designed and radiosynthesized with 99mTc by a one-step method. The radiolabeling efficiency and radiochemical purity were then characterized in vitro. 99mTc-RRL was injected intravenously in HepG2 xenograft-bearing BALB/c nude mice. Biodistribution and in vivo imaging were performed periodically. The relationship between tumor size and %ID uptake of 99mTc-RRL was also explored. Results The labeling efficiencies of 99mTc-RRL reached 76.9%±4.5% (n = 6) within 30–60 min at room temperature, and the radiochemical purity exceeded 96% after purification. In vitro stability experiment revealed the radiolabeled peptide was stable. Biodistribution data showed that 99mTc-RRL rapidly cleared from the blood and predominantly accumulated in the kidneys and tumor. The specific uptake of 99mTc-RRL in tumor was significantly higher than that of unlabeled RRL blocking and free pertechnetate control test after injection (p<0.05). The ratio of the tumor-to-muscle exceeded 6.5, tumor-to-liver reached 1.98 and tumor-to-blood reached 1.95. In planar gamma imaging study, the tumors were imaged clearly at 2–6 h after injection of 99mTc-RRL, whereas the tumor was not imaged clearly in blocking group. The tumor-to-muscle ratio of images with 99mTc-RRL was comparable with that of 18F-FDG PET images. Immunohistochemical analysis verified the excessive vasculature of tumor. There was a linear relationship between the tumor size and uptake of 99mTc-RRL with R2 = 0.821. Conclusion 99mTc-RRL can

  5. Rapamycin enhances docetaxel-induced cytotoxicity in a androgen-independent prostate cancer xenograft model by survivin downregulation

    SciTech Connect

    Morikawa, Yasuyuki; Koike, Hidekazu; Sekine, Yoshitaka; Matsui, Hiroshi; Shibata, Yasuhiro; Ito, Kazuto; Suzuki, Kazuhiro

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer Rapamycin (RPM) enhances the susceptibility of PC3 cells to docetaxel. Black-Right-Pointing-Pointer Low-dosage of docetaxel (DTX) did not reduce survivin expression levels in PC3 cells. Black-Right-Pointing-Pointer Combination treatment of RPM with DTX suppressed the expression of surviving. Black-Right-Pointing-Pointer SiRNA against survivin enhanced the susceptibility of PC3 cells to DTX. Black-Right-Pointing-Pointer RPM and DTX cotreatment inhibited PC3 cell growth and decreased surviving in vivo. -- Abstract: Background: Docetaxel is a first-line treatment choice in castration-resistant prostate cancer (CRPC). However, the management of CRPC remains an important challenge in oncology. There have been many reports on the effects of rapamycin, which is an inhibitor of the mammalian target of rapamycin (mTOR), in the treatment of carcinogenesis. We assessed the cytotoxic effects of the combination treatment of docetaxel and rapamycin in prostate cancer cells. Furthermore, we examined the relationship between these treatments and survivin, which is a member of the inhibitory apoptosis family. Methods: Prostate cancer cells were cultured and treated with docetaxel and rapamycin. The effects on proliferation were evaluated with the MTS assay. In addition, we evaluated the effect on proliferation of the combination treatment induced knockdown of survivin expression by small interfering RNA transfection and docetaxel. Protein expression levels were assayed using western blotting. PC3 cells and xenograft growth in nude mice were used to evaluate the in vivo efficacy of docetaxel and its combination with rapamycin. Results: In vitro and in vivo, the combination of rapamycin with docetaxel resulted in a greater inhibition of proliferation than treatment with rapamycin or docetaxel alone. In addition, in vitro and in vivo, rapamycin decreased basal surviving levels, and cotreatment with docetaxel further decreased these levels

  6. Induction of p53-independent growth inhibition in lung carcinoma cell A549 by gypenosides

    PubMed Central

    Liu, Jung-Sen; Chiang, Tzu-Hsuan; Wang, Jinn-Shyan; Lin, Li-Ju; Chao, Wei-Chih; Inbaraj, Baskaran Stephen; Lu, Jyh-Feng; Chen, Bing-Huei

    2015-01-01

    The objectives of this study are to investigate antiproliferative effect and mechanisms of bioactive compounds from Gynostemma pentaphyllum (G. pentaphyllum) on lung carcinoma cell A549. Saponins, carotenoids and chlorophylls were extracted and fractionated by column chromatography, and were subjected to high-performance liquid chromatography-mass spectrometry analyses. The saponin fraction, which consisted mainly of gypenoside (Gyp) XXII and XXIII, rather than the carotenoid and chlorophyll ones, was effective in inhibiting A549 cell growth in a concentration- and a time-dependent manner as evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The estimated half maximal inhibitory concentration (IC50) of Gyp on A549 cells was 30.6 μg/ml. Gyp was further demonstrated to induce an apparent arrest of the A549 cell cycle at both the S phase and the G2/M phase, accompanied by a concentration- and a time-dependent increase in the proportions of both the early and late apoptotic cells. Furthermore, Gyp down-regulated cellular expression of cyclin A and B as well as BCL-2, while up-regulated the expression of BAX, DNA degradation factor 35 KD, poly [ADP-ribose] polymerase 1, p53, p21 and caspase-3. Nevertheless, both the treatment of a p53 inhibitor, pifithrin-α, and the small hairpin RNA-mediated p53 knockdown in the A549 cells did not alter the growth inhibition effect induced by Gyp. As a result, the cell cycle arrest and apoptosis of A549 cells induced by Gyp would most likely proceed through p53-independent pathway(s). PMID:25781909

  7. Peginterferon Beta-1a Shows Antitumor Activity as a Single Agent and Enhances Efficacy of Standard of Care Cancer Therapeutics in Human Melanoma, Breast, Renal, and Colon Xenograft Models.

    PubMed

    Boccia, Antonio; Virata, Cyrus; Lindner, Daniel; English, Nicki; Pathan, Nuzhat; Brickelmaier, Margot; Hu, Xiao; Gardner, Jennifer L; Peng, Liaomin; Wang, Xinzhong; Zhang, Xiamei; Yang, Lu; Perron, Keli; Yco, Grace; Kelly, Rebecca; Gamez, James; Scripps, Thomas; Bennett, Donald; Joseph, Ingrid B; Baker, Darren P

    2017-01-01

    Because of its tumor-suppressive effect, interferon-based therapy has been used for the treatment of melanoma. However, limited data are available regarding the antitumor effects of pegylated interferons, either alone or in combination with approved anticancer drugs. We report that treatment of human WM-266-4 melanoma cells with peginterferon beta-1a induced apoptotic markers. Additionally, peginterferon beta-1a significantly inhibited the growth of human SK-MEL-1, A-375, and WM-266-4 melanoma xenografts established in immunocompromised mice. Peginterferon beta-1a regressed large, established WM-266-4 xenografts in nude mice. Treatment of SK-MEL-1 tumor-bearing mice with a combination of peginterferon beta-1a and the MEK inhibitor PD325901 ((R)-N-(2,3-dihydroxypropoxy)-3,4-difluoro-2-(2-fluoro-4-iodophenylamino)benzamide) significantly improved tumor growth inhibition compared with either agent alone. Examination of the antitumor activity of peginterferon beta-1a in combination with approved anticancer drugs in breast and renal carcinomas revealed improved antitumor activity in these preclinical xenograft models, as did the combination of peginterferon beta-1a and bevacizumab in a colon carcinoma xenograft model.

  8. Immune response to bovine pericardium implanted into α1,3-galactosyltransferase knockout mice: feasibility as an animal model for testing efficacy of anticalcification treatments of xenografts.

    PubMed

    Lee, Cheul; Ahn, Hyuk; Kim, Soo Hwan; Choi, Sun Young; Kim, Yong Jin

    2012-07-01

    Glutaraldehyde (GA)-fixed xenografts are prone to calcification after implantation in humans and there is evidence that immune reaction to the Galα1,3-Galβ1,4GlcNAc-R (α-Gal) antigen may play a part in this process. The objectives of this study were to evaluate the immune response of α1,3-galactosyltransferase knockout (α-Gal KO) mice to bovine pericardium and to evaluate the effect of various anticalcification treatments on bovine pericardium using mouse subcutaneous implantation model. Bovine pericardial tissues were divided into eight groups according to the method of anticalcification treatments. Prepared tissues were subcutaneously implanted into the α-Gal KO and wild-type mice for 2 months, and anti-α-Gal antibodies were measured at 2 weeks and 2 months after implantation. Explanted tissues were examined by immunohistochemistry and calcium contents of the explanted tissues were measured. Titres of IgM and IgG antibodies in the α-Gal KO mice increased significantly according to the duration of implantation, whereas titres of IgM and IgG antibodies in the wild-type mice increased until 2 weeks after implantation without further increase thereafter. Titres of IgG antibodies measured at 2 months after implantation were significantly higher in the α-Gal KO mice than in the wild-type mice. Immunohistochemistry revealed macrophages surrounding the pericardial tissues irrespective of the mouse type into which the tissues implanted, whereas T-cells could only be observed in the tissues implanted into the α-Gal KO mice. Except the high-concentration GA-treated group, calcium contents of anticalcification-treated groups were all significantly lower or tended to be lower than that of the control group, irrespective of the mouse type. Calcium contents of the control group were significantly higher in the α-Gal KO mice than in the wild-type mice. Bovine pericardium implanted into the α-Gal KO mice caused significant increase in anti-α-Gal antibodies, showed

  9. Antitumor effect of FGFR inhibitors on a novel cholangiocarcinoma patient derived xenograft mouse model endogenously expressing an FGFR2-CCDC6 fusion protein.

    PubMed

    Wang, Yu; Ding, Xiwei; Wang, Shaoqing; Moser, Catherine D; Shaleh, Hassan M; Mohamed, Essa A; Chaiteerakij, Roongruedee; Allotey, Loretta K; Chen, Gang; Miyabe, Katsuyuki; McNulty, Melissa S; Ndzengue, Albert; Barr Fritcher, Emily G; Knudson, Ryan A; Greipp, Patricia T; Clark, Karl J; Torbenson, Michael S; Kipp, Benjamin R; Zhou, Jie; Barrett, Michael T; Gustafson, Michael P; Alberts, Steven R; Borad, Mitesh J; Roberts, Lewis R

    2016-09-28

    Cholangiocarcinoma is a highly lethal cancer with limited therapeutic options. Recent genomic analysis of cholangiocarcinoma has revealed the presence of fibroblast growth factor receptor 2 (FGFR2) fusion proteins in up to 13% of intrahepatic cholangiocarcinoma (iCCA). FGFR fusions have been identified as a novel oncogenic and druggable target in a number of cancers. In this study, we established a novel cholangiocarcinoma patient derived xenograft (PDX) mouse model bearing an FGFR2-CCDC6 fusion protein from a metastatic lung nodule of an iCCA patient. Using this PDX model, we confirmed the ability of the FGFR inhibitors, ponatinib, dovitinib and BGJ398, to modulate FGFR signaling, inhibit cell proliferation and induce cell apoptosis in cholangiocarcinoma tumors harboring FGFR2 fusions. In addition, BGJ398 appeared to be superior in potency to ponatinib and dovitinib in this model. Our findings provide a strong rationale for the investigation of FGFR inhibitors, particularly BGJ398, as a therapeutic option for cholangiocarcinoma patients harboring FGFR2 fusions.

  10. Antitumor effect of FGFR inhibitors on a novel cholangiocarcinoma patient derived xenograft mouse model endogenously expressing an FGFR2-CCDC6 fusion protein

    PubMed Central

    Wang, Yu; Ding, Xiwei; Wang, Shaoqing; Moser, Catherine D.; Shaleh, Hassan M.; Mohamed, Essa A.; Chaiteerakij, Roongruedee; Allotey, Loretta K.; Chen, Gang; Miyabe, Katsuyuki; McNulty, Melissa S.; Ndzengue, Albert; Knudson, Ryan A.; Greipp, Patricia T.; Clark, Karl J.; Torbenson, Michael S.; Kipp, Benjamin R.; Zhou, Jie; Barrett, Michael T.; Gustafson, Michael P.; Alberts, Steven R.; Borad, Mitesh J.; Roberts, Lewis R.

    2016-01-01

    Cholangiocarcinoma is a highly lethal cancer with limited therapeutic options. Recent genomic analysis of cholangiocarcinoma has revealed the presence of fibroblast growth factor receptor 2 (FGFR2) fusion proteins in up to 13% of intrahepatic cholangiocarcinoma (iCCA). FGFR fusions have been identified as a novel oncogenic and druggable target in a number of cancers. In this study, we established a novel cholangiocarcinoma patient derived xenograft (PDX) mouse model bearing an FGFR2-CCDC6 fusion protein from a metastatic lung nodule of an iCCA patient. Using this PDX model, we confirmed the ability of the FGFR inhibitors, ponatinib, dovitinib and BGJ398, to modulate FGFR signaling, inhibit cell proliferation and induce cell apoptosis in cholangiocarcinoma tumors harboring FGFR2 fusions. In addition, BGJ398 appeared to be superior in potency to ponatinib and dovitinib in this model. Our findings provide a strong rationale for the investigation of FGFR inhibitors, particularly BGJ398, as a therapeutic option for cholangiocarcinoma patients harboring FGFR2 fusions. PMID:27216979

  11. Development of drug-loaded chitosan hollow nanoparticles for delivery of paclitaxel to human lung cancer A549 cells.

    PubMed

    Jiang, Jie; Liu, Ying; Wu, Chao; Qiu, Yang; Xu, Xiaoyan; Lv, Huiling; Bai, Andi; Liu, Xuan

    2017-08-01

    In this study, biodegradable chitosan hollow nanospheres (CHN) were fabricated using polystyrene nanospheres (PS) as templates. CHN were applied to increase the solubility of poorly water-soluble drugs. The lung cancer drug paclitaxel (PTX), which is used as a model drug, was loaded into CHN by the adsorption equilibrium method. The drug-loaded sample (PTX-CHN) offered sustained PTX release and good bioavailability. The state characterization of PTX by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) showed that the PTX absorbed into CHN existed in an amorphous state. An in vitro toxicity experiment indicated that CHN were nontoxic as carriers of poorly water-soluble drugs. The PTX-CHN produced a marked inhibition of lung cancer A549 cells proliferation and encouraged apoptosis. A cell uptake experiment indicated that PTX-CHN was successfully taken up by lung cancer A549 cells. Furthermore, a degradation experiment revealed that CHN were readily biodegradable. These findings state clearly that CHN can be regarded as promising biomaterials for lung cancer treatment.

  12. Frankincense essential oil prepared from hydrodistillation of Boswellia sacra gum resins induces human pancreatic cancer cell death in cultures and in a xenograft murine model

    PubMed Central

    2012-01-01

    Background Regardless of the availability of therapeutic options, the overall 5-year survival for patients diagnosed with pancreatic cancer remains less than 5%. Gum resins from Boswellia species, also known as frankincense, have been used as a major ingredient in Ayurvedic and Chinese medicine to treat a variety of health-related conditions. Both frankincense chemical extracts and essential oil prepared from Boswellia species gum resins exhibit anti-neoplastic activity, and have been investigated as potential anti-cancer agents. The goals of this study are to identify optimal condition for preparing frankincense essential oil that possesses potent anti-tumor activity, and to evaluate the activity in both cultured human pancreatic cancer cells and a xenograft mouse cancer model. Methods Boswellia sacra gum resins were hydrodistilled at 78°C; and essential oil distillate fractions were collected at different durations (Fraction I at 0–2 h, Fraction II at 8–10 h, and Fraction III at 11–12 h). Hydrodistillation of the second half of gum resins was performed at 100°C; and distillate was collected at 11–12 h (Fraction IV). Chemical compositions were identified by gas chromatography–mass spectrometry (GC-MS); and total boswellic acids contents were quantified by high-performance liquid chromatography (HPLC). Frankincense essential oil-modulated pancreatic tumor cell viability and cytotoxicity were determined by colorimetric assays. Levels of apoptotic markers, signaling molecules, and cell cycle regulators expression were characterized by Western blot analysis. A heterotopic (subcutaneous) human pancreatic cancer xenograft nude mouse model was used to evaluate anti-tumor capability of Fraction IV frankincense essential oil in vivo. Frankincense essential oil-induced tumor cytostatic and cytotoxic activities in animals were assessed by immunohistochemistry. Results Longer duration and higher temperature hydrodistillation produced more abundant high molecular

  13. Frankincense essential oil prepared from hydrodistillation of Boswellia sacra gum resins induces human pancreatic cancer cell death in cultures and in a xenograft murine model.

    PubMed

    Ni, Xiao; Suhail, Mahmoud M; Yang, Qing; Cao, Amy; Fung, Kar-Ming; Postier, Russell G; Woolley, Cole; Young, Gary; Zhang, Jingzhe; Lin, Hsueh-Kung

    2012-12-13

    Regardless of the availability of therapeutic options, the overall 5-year survival for patients diagnosed with pancreatic cancer remains less than 5%. Gum resins from Boswellia species, also known as frankincense, have been used as a major ingredient in Ayurvedic and Chinese medicine to treat a variety of health-related conditions. Both frankincense chemical extracts and essential oil prepared from Boswellia species gum resins exhibit anti-neoplastic activity, and have been investigated as potential anti-cancer agents. The goals of this study are to identify optimal condition for preparing frankincense essential oil that possesses potent anti-tumor activity, and to evaluate the activity in both cultured human pancreatic cancer cells and a xenograft mouse cancer model. Boswellia sacra gum resins were hydrodistilled at 78°C; and essential oil distillate fractions were collected at different durations (Fraction I at 0-2 h, Fraction II at 8-10 h, and Fraction III at 11-12 h). Hydrodistillation of the second half of gum resins was performed at 100°C; and distillate was collected at 11-12 h (Fraction IV). Chemical compositions were identified by gas chromatography-mass spectrometry (GC-MS); and total boswellic acids contents were quantified by high-performance liquid chromatography (HPLC). Frankincense essential oil-modulated pancreatic tumor cell viability and cytotoxicity were determined by colorimetric assays. Levels of apoptotic markers, signaling molecules, and cell cycle regulators expression were characterized by Western blot analysis. A heterotopic (subcutaneous) human pancreatic cancer xenograft nude mouse model was used to evaluate anti-tumor capability of Fraction IV frankincense essential oil in vivo. Frankincense essential oil-induced tumor cytostatic and cytotoxic activities in animals were assessed by immunohistochemistry. Longer duration and higher temperature hydrodistillation produced more abundant high molecular weight compounds, including boswellic

  14. Enhanced Replication of Hepatitis E Virus Strain 47832c in an A549-Derived Subclonal Cell Line.

    PubMed

    Schemmerer, Mathias; Apelt, Silke; Trojnar, Eva; Ulrich, Rainer G; Wenzel, Jürgen J; Johne, Reimar

    2016-09-29

    Hepatitis E virus (HEV) is a human pathogen with increasing importance. The lack of efficient cell culture systems hampers systematic studies on its replication cycle, virus neutralization and inactivation. Here, several cell lines were inoculated with the HEV genotype 3c strain 47832c, previously isolated from a chronically infected transplant patient. At 14 days after inoculation the highest HEV genome copy numbers were found in A549 cells, followed by PLC/PRF/5 cells, whereas HepG2/C3A, Huh-7 Lunet BLR and MRC-5 cells only weakly supported virus replication. Inoculation of A549-derived subclone cell lines resulted in most cases in reduced HEV replication. However, the subclone A549/D3 was susceptible to lower virus concentrations and resulted in higher virus yields as compared to parental A549 cells. Transcriptome analysis indicated a downregulation of genes for carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 5 and 6, and an upregulation of the syndecan 2 (SDC2) gene in A549/D3 cells compared to A549 cells. However, treatment of A549/D3 cells or A549 cells with CEACAM- or syndecan 2-specific antisera did not influence HEV replication. The results show that cells supporting more efficient HEV replication can be selected from the A549 cell line. The specific mechanisms responsible for the enhanced replication remain unknown.

  15. Enhanced Replication of Hepatitis E Virus Strain 47832c in an A549-Derived Subclonal Cell Line

    PubMed Central

    Schemmerer, Mathias; Apelt, Silke; Trojnar, Eva; Ulrich, Rainer G.; Wenzel, Jürgen J.; Johne, Reimar

    2016-01-01

    Hepatitis E virus (HEV) is a human pathogen with increasing importance. The lack of efficient cell culture systems hampers systematic studies on its replication cycle, virus neutralization and inactivation. Here, several cell lines were inoculated with the HEV genotype 3c strain 47832c, previously isolated from a chronically infected transplant patient. At 14 days after inoculation the highest HEV genome copy numbers were found in A549 cells, followed by PLC/PRF/5 cells, whereas HepG2/C3A, Huh-7 Lunet BLR and MRC-5 cells only weakly supported virus replication. Inoculation of A549-derived subclone cell lines resulted in most cases in reduced HEV replication. However, the subclone A549/D3 was susceptible to lower virus concentrations and resulted in higher virus yields as compared to parental A549 cells. Transcriptome analysis indicated a downregulation of genes for carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 5 and 6, and an upregulation of the syndecan 2 (SDC2) gene in A549/D3 cells compared to A549 cells. However, treatment of A549/D3 cells or A549 cells with CEACAM- or syndecan 2-specific antisera did not influence HEV replication. The results show that cells supporting more efficient HEV replication can be selected from the A549 cell line. The specific mechanisms responsible for the enhanced replication remain unknown. PMID:27690085

  16. Tumor growth-inhibitory effect of an angiotensin-converting enzyme inhibitor (captopril) in a lung cancer xenograft model analyzed using 18F-FDG-PET/CT.

    PubMed

    Nakaya, Koji; Otsuka, Hideki; Kondo, Kazuya; Otani, Tamaki; Nagata, Motoi

    2016-02-01

    We administered an angiotensin-converting enzyme inhibitor (captopril) to mice implanted with a human lung adenocarcinoma epithelial cell line (A549 cells) and investigated the tumor growth-inhibitory effect of captopril from the viewpoint of glucose metabolism using (18)F-fluorodeoxyglucose ((18)F-FDG)-PET/CT. Subcutaneous implantation of A549 cells (1.9×10(6) cells) was carried out in the lower right flank of mice. Fifteen days after the transplantation of A549 cells, mice (six in each group) were treated with captopril (3.0 mg/mouse) or saline (1000 μl/mouse) for 5 days. We performed (18)F-FDG-PET/CT imaging of the mice before and after the treatment and evaluated the degree of (18)F-FDG accumulation in tumors. In both groups (the captopril-administrated and control groups), values for the metabolic tumor volume (MTV), maximum standardized uptake value, total lesion glycolysis, and tumor volume after treatment had a tendency to increase. However, tumor growth was suppressed in the captopril-administrated group compared with the control group. In terms of the growth rate, the MTV and tumor volume were significantly different (P<0.05). It was found that captopril exerted a potential tumor growth-inhibitory effect; this was because the captopril-administrated group showed low values of MTV, maximum standardized uptake value, total lesion glycolysis, and tumor volume in comparison with the control group.

  17. AZ17: a new bispecific drug targeting IL-6 and IL-23 with potential clinical use--improves psoriasis in a human xenograft transplantation model.

    PubMed

    Stenderup, Karin; Rosada, Cecilia; Shanebeck, Kurt; Brady, William; Van Brunt, Michael P; King, Gordon; Marelli, Marcello; Slagle, Paul; Xu, Hengyu; Nairn, Natalie W; Johnson, Jeffrey; Wang, Aijun A; Li, Gary; Thornton, Kenneth C; Dam, Tomas N; Grabstein, Kenneth H

    2015-10-01

    Targeting more than one molecule in multifactorial diseases involving several disease mediators may provide improved therapeutic efficacy. Psoriasis is a multifactorial disease in which interleukin (IL)-6 and IL-23 are important disease mediators because they facilitate development of Th17 cells; widely accepted to be associated with psoriasis. To meet the need for new therapeutics, we aimed to create a clinically relevant bispecific drug, by combining the inhibitory properties of anti-IL-6 and anti-IL-23 antibodies, exhibiting high affinity, high stability and the ability to be produced in high yield. The bispecific molecule AZ17 was created by combining high affinity binding domains originating from monoclonal antibodies targeting human IL-6 and IL-23. To allow for high and efficient production, AZ17 was assembled by site-specific bioconjugation from two individual single chain fragment variables that were synthesized separately in Escherichia coli. To improve stability and extend pharmacokinetics, a flexible poly-ethylene glycol molecule was used as linker. In preclinical psoriasis models, AZ17 reduced IL-23-induced ear inflammation and improved psoriasis in a xenograft transplantation model where psoriasis skin is transplanted onto immune-deficient mice. The data presented here suggest AZ17 to be a promising drug candidate in psoriasis and other inflammatory diseases associated with Th17 cell development.

  18. In vitro and in vivo antitumor effects of the VO-chrysin complex on a new three-dimensional osteosarcoma spheroids model and a xenograft tumor in mice.

    PubMed

    León, Ignacio E; Cadavid-Vargas, Juan F; Resasco, Agustina; Maschi, Fabricio; Ayala, Miguel A; Carbone, Cecilia; Etcheverry, Susana B

    2016-12-01

    Osteosarcoma (OS) is the most common primary tumor of bone, occurring predominantly in the second decade of life. High-dose cytotoxic chemotherapy and surgical resection have improved prognosis, with long-term survival for patients with localized disease. Vanadium is an ultra-trace element that after being absorbed accumulates in bone. Besides, vanadium compounds have been studied during recent years to be considered as representative of a new class of non-platinum antitumor agents. Moreover, flavonoids are a wide family of polyphenolic compounds that display many interesting biological effects. Since coordination of ligands to metals can improve the pharmacological properties, we report herein, for the first time, the in vitro and in vivo effects of an oxidovanadium(IV) complex with the flavonoid chrysin on the new 3D human osteosarcoma and xenograft osteosarcoma mice models. The pharmacological results show that VOchrys inhibited the cell viability affecting the shape and volume of the spheroids and VOchrys suppressed MG-63 tumor growth in the nude mice without inducing toxicity and side effects. As a whole, the results presented herein demonstrate that the antitumor action of the complex was very promissory on human osteosarcoma models, whereby suggesting that VOchrys is a potentially good candidate for future use in alternative antitumor treatments.

  19. Impact of bevacizumab in combination with erlotinib on EGFR-mutated non-small cell lung cancer xenograft models with T790M mutation or MET amplification.

    PubMed

    Furugaki, Koh; Fukumura, Junko; Iwai, Toshiki; Yorozu, Keigo; Kurasawa, Mitsue; Yanagisawa, Mieko; Moriya, Yoichiro; Yamamoto, Kaname; Suda, Kenichi; Mizuuchi, Hiroshi; Mitsudomi, Tetsuya; Harada, Naoki

    2016-02-15

    Erlotinib (ERL), an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, shows notable efficacy against non-small cell lung cancer (NSCLC) harboring EGFR mutations. Bevacizumab (BEV), a humanized monoclonal antibody to vascular endothelial cell growth factor (VEGF), in combination with ERL (BEV+ERL) significantly extended progression-free survival in patients with EGFR-mutated NSCLC compared with ERL alone. However, the efficacy of BEV+ERL against EGFR-mutated NSCLC harboring T790M mutation or MET amplification, is unclear. Here, we examined the antitumor activity of BEV+ERL in four xenograft models of EGFR-mutated NSCLC (three harboring ERL resistance mutations). In the HCC827 models (exon 19 deletion: DEL), ERL significantly inhibited tumor growth by blocking EGFR signal transduction. Although there was no difference between ERL and BEV+ERL in maximum tumor growth inhibition, BEV+ERL significantly suppressed tumor regrowth during a drug-cessation period. In the HCC827-EPR model (DEL+T790M) and HCC827-vTR model (DEL+MET amplification), ERL reduced EGFR signal transduction and showed less pronounced but still significant tumor growth inhibition than in the HCC827 model. In these models, tumor growth inhibition was significantly stronger with BEV+ERL than with each single agent. In the NCI-H1975 model (L858R+T790M), ERL did not inhibit growth or EGFR signal transduction, and BEV+ERL did not inhibit growth more than BEV. BEV alone significantly decreased microvessel density in each tumor. In conclusion, addition of BEV to ERL did not enhance antitumor activity in primarily ERL-resistant tumors with T790M mutation; however, BEV+ERL enhanced antitumor activity in T790M mutation- or MET amplification-positive tumors as long as their growth remained significantly suppressed by ERL. © 2015 UICC.

  20. Inhibition of human tumor xenograft growth in nude mice by a conjugate of monoclonal antibody LA22 to epidermal growth factor receptor with anti-tumor antibiotics mitomycin C

    SciTech Connect

    Shao Wei; Zhao Shan; Liu Zhaofei; Zhang Jianzhong; Ma Shujun; Sato, J. Denry; Zhang Peng; Tong Mei; Han Jiping; Wang Yan; Bai Dongmei; Wang Fan . E-mail: wangfan@bjmu.edu.cn; Sun Le . E-mail: lsun@welsonpharma.com

    2006-10-20

    Anti-EGFR monoclonal antibodies LA22 and Erbitux bind to different epitopes of EGFR. The chemimmunoconjugates of MMC with LA22 or Erbitux were prepared, and in vitro cytotoxicity assays with A549 cells showed that LA22-MMC was much more potent than Erbitux or Erbitux-MMC. Viabilities of A549 cells treated with LA22-MMC, Erbitux or Erbitux-MMC were 35%, 94%, and 81%, respectively. Immunoscintigraphy of xenografts of human A431 and A549 cells in nude mice both showed that {sup 125}I-labeled-LA22-MMC enriched in tumor sites prominently. Most importantly, in vivo assays showed LA22-MMC was significantly more effective than free drug MMC in the treatment of subcutaneous xenografts of human A431 cells in nude mice (83% inhibition for LA22-MMC and 30% for MMC). We concluded that LA22-MMC could be a very potent drug for treatment of solid tumors.

  1. Changes in the cellular proteins of A549 infected with Hepatitis E virus by proteomics analysis

    PubMed Central

    2014-01-01

    Background Our understanding of Hepatitis E virus (HEV) has changed enormously over the past 30 years, from a waterborne infection causing outbreaks of acute hepatitis in developing countries to an infection of global distribution causing a range of hepatic and extra-hepatic illness. However, the key proteins playing important parts in the virus infection were still unknown. Understanding the changes of cellular proteins in these cells exposed to HEV is helpful for elucidating molecular mechanisms associated with function alterations of HEV-infected susceptible cells. In the present study, a comparative gel-based proteomic analysis was employed to study the changes in cellular proteins of A549 exposed to HEV in vitro to provide novel information for understanding the functional alterations of A549 induced by HEV infection. Result Of 2 585-3 152 protein spots visualized on each gel using silver staining, a total of 31 protein spots were found to be differentially expressed in HEV-infected A549 cells compared with mock-infected A549, including 10 significantly up-regulated protein spots and 21 significantly down-regulated protein spots. Conclusion Our work is the first time regarding the proteomic analysis on the cellular responses to HEV infection. This work is helpful for investigating the molecular basis associated with the interaction between HEV and the host cells although more efforts should be required to discover the mechanisms. PMID:25175408

  2. Edaravone Decreases Paraquat Toxicity in A549 Cells and Lung Isolated Mitochondria

    PubMed Central

    Shokrzadeh, Mohammad; Shaki, Fatemeh; Mohammadi, Ebrahim; Rezagholizadeh, Neda; Ebrahimi, Fatemeh

    2014-01-01

    Edaravone, an antioxidant and radical scavenger, showed protective effects against oxidative stress-like condition. Paraquat (PQ) is toxic herbicide considerable evidence suggests that oxidative stress and mitochondrial dysfunction contribute to PQ toxicity. In this study, protective effect of edaravone against PQ induced toxicity and reactive oxygen species (ROS) generation in A549 cells and lung isolated mitochondria were evaluated. A549 cells and lung isolated mitochondria were divided into control group, PQ group, edaravone group and PQ plus edaravone-pretreated group. Cellular and mitochondrial viability assayed using MTT test and ROS generations in both cellular and mitochondrial fraction were determined by fluorometry using DCFH-DA as indicator. Our results showed that edaravone (5–100 µM) prevented PQ (500 µM) induced cytotoxicity in A549 cells that the best protective effect was observed at concentration of 50 µM of edaravone. In addition, PQ-induced ROS generation in A549 cells significantly inhibited by edaravone. Moreover, PQ decreased mitochondria viability and also increased ROS generation in lung isolated mitochondria that edaravone (25–400 µM) markedly inhibited these toxic effects. In overall, the results of this study suggest that lung mitochondria maintenance is essential for maintaining PQt cytotoxicity and Edaravone is a protective drug against PQ toxicity in-vitro. PMID:25237364

  3. The role of PRRX1 in the apoptosis of A549 cells induced by cisplatin

    PubMed Central

    Zhu, Hongbin; Sun, Gengyun; Dong, Jiahui; Fei, Liming

    2017-01-01

    Paired related homeobox1 (PRRX1) was a newly identified Epithelial mesenchymal transition (EMT) inducer. It was found that the decreased expression of PRRX1 in breast cancer and liver cancer could enable tumor cells to obtain tumor stem cell characteristics in vitro studies. However, the role of PRRX1 in lung cancer was still unknown. The down-regulated PRRX1 gene in A549 cells was established by slow virus infection in this study. The apoptosis of A549 cells was observed after the treatment of different concentrations of cisplatin and the role of PRRX1 in the apoptosis of A549 cells was explored. MTT results showed that down-regulated PRRX1 gene could resist the inhibitory effect of cisplatin on cell proliferation. The results of flow cytometry assay showed that down-regulated PRRX1 gene could reduce the apoptosis and promote A549 cells to enter G2 phase. Mitochondrial membrane potential detection showed that PRRX1 gene could inhibit the decrease of mitochondrial membrane potential. Western blotting results showed that down-regulated PRRX1 gene could reduce the expression levels of Caspase3, caspase9, Apaf-1 and cytochrome C. In a word, down-regulation of PRRX1 could cause lung cancer cells to produce anti apoptotic ability and resistance to cisplatin, which maybe through caspase3 pathway. PMID:28337269

  4. Functional expression of nicotine influx transporter in A549 human alveolar epithelial cells.

    PubMed

    Tega, Yuma; Yuzurihara, Chihiro; Kubo, Yoshiyuki; Akanuma, Shin-ichi; Ehrhardt, Carsten; Hosoya, Ken-ichi

    2016-02-01

    Nicotine is a potent addictive alkaloid, and is rapidly absorbed through the alveoli of the lung. However, the transport mechanism of nicotine at the human alveolar epithelial barrier has not been investigated in great detail. In the present study, the transport mechanism of nicotine across alveolar epithelium was investigated in vitro using A549 cells, a human adenocarcinoma-derived cell line with an alveolar epithelial cell like phenotype. Nicotine uptake by A549 cells exhibited time-, temperature-, and concentration-dependence with a Km of 50.4 μM. These results suggest that a carrier-mediated transport process is involved in nicotine transport in human alveolar epithelial cells. Nicotine uptake by A549 cells was insensitive to change in extracellular pH. Moreover, nicotine uptake by A549 cells could be inhibited by organic cations such as verapamil and pyrilamine, but not typical substrates of organic cation transporters and β2-agonist. These results suggest that a novel, not yet molecularly identified, organic cation transporter plays a role in nicotine transport which is unlikely to interact with β2-agonist transport. This nicotine influx transporter in human alveolar epithelium might have implications for the rapid absorption of nicotine into the systemic circulation.

  5. Oxidative stress and inflammatory response to printer toner particles in human epithelial A549 lung cells.

    PubMed

    Könczöl, Mathias; Weiß, Adilka; Gminski, Richard; Merfort, Irmgard; Mersch-Sundermann, Volker

    2013-02-04

    Reports on adverse health effects related to occupational exposure to toner powder are still inconclusive. Therefore, we have previously conducted an in vitro-study to characterize the genotoxic potential of three commercially available black printer toner powders in A549 lung cells. In these cell-based assays it was clearly demonstrated that the tested toner powders damage DNA and induce micronucleus (MN) formation. Here, we have studied the cytotoxic and proinflammatory potential of these three types of printer toner particles and the influence of ROS and NF-κB induction in order to unravel the underlying mechanisms. A549 cells were exposed to various concentrations of printer toner particle suspensions for 24 h. The toner particles were observed to exert significant cytotoxic effects in the WST-1 and neutral red (NR)-assays, although to a varying extent. Caspase 3/7 activity increased, while the mitochondrial membrane potential (MMP) was not affected. Particles of all three printer toner powders induced concentration-dependent formation of reactive oxygen species (ROS), as measured in the DCFH-DA assay. Furthermore, toner particle exposure enhanced interleukin-6 and interleukin-8 production, which is in agreement with activation of the transcription factor NF-κB in A549 cells shown by the electrophoretic mobility shift assay (EMSA). Therefore, it can be concluded that exposure of A549 lung cells to three selected printer toner powders caused oxidative stress through induction of ROS. Increased ROS formation may trigger genotoxic effects and activate proinflammatory pathways.

  6. Cold stress increases reactive oxygen species formation via TRPA1 activation in A549 cells.

    PubMed

    Sun, Wenwu; Wang, Zhonghua; Cao, Jianping; Cui, Haiyang; Ma, Zhuang

    2016-03-01

    Reactive oxygen species (ROS) are responsible for lung damage during inhalation of cold air. However, the mechanism of the ROS production induced by cold stress in the lung is still unclear. In this work, we measured the changes of ROS and the cytosolic Ca(2+) concentration ([Ca(2+)]c) in A549 cell. We observed that cold stress (from 20 to 5 °C) exposure of A549 cell resulted in an increase of ROS and [Ca(2+)]c, which was completely attenuated by removing Ca(2+) from medium. Further experiments showed that cold-sensing transient receptor potential subfamily member 1 (TRPA1) agonist (allyl isothiocyanate, AITC) increased the production of ROS and the level of [Ca(2+)]c in A549 cell. Moreover, HC-030031, a TRPA1 selective antagonist, significantly inhibited the enhanced ROS and [Ca(2+)]c induced by AITC or cold stimulation, respectively. Taken together, these data demonstrated that TRPA1 activation played an important role in the enhanced production of ROS induced by cold stress in A549 cell.

  7. Oridonin promotes G2/M arrest in A549 cells by facilitating ATM activation.

    PubMed

    Zheng, Mingxing; Zhu, Zhibing; Zhao, Yongzhao; Yao, Da; Wu, Maoqing; Sun, Gengyun

    2017-01-01

    Previous studies have demonstrated that oridonin, a tetracyclic diterpenoid compound extracted from Rabdosia rubescens, inhibits proliferation and induces apoptosis in several tumor cell lines. However, the mechanism by which oridonin inhibits the cell cycle remains poorly understood. In the present study, possible mechanisms by which oridonin affects cell cycle progression were explored in A549 lung cancer cells. Flow cytometry analysis indicated that oridonin inhibited the proliferation of A549 cells by inducing G2/M cell cy