Science.gov

Sample records for a549 xenograft model

  1. In vivo evaluation of curcumin-loaded nanoparticles in a A549 xenograft mice model.

    PubMed

    Yin, Hai-Tao; Zhang, De-Geng; Wu, Xiao-Li; Huang, Xin-En; Chen, Gang

    2013-01-01

    Curcumin (Cum) has been reported to have potential chemo-preventive and chemotherapeutic activity through influencing various processes, inducing cell cycle arrest, differentiation and apoptosis in a series of cancers. However, the poor solubility of Cum limits its further applications in the treatment of cancer. We have previously reported Cum-loaded nanoparticles (Cum-NPs) prepared with amphilic methoxy poly(ethylene glycol)-polycaprolactone (mPEG-PCL) block copolymers. The current study demonstrated superior antitumor efficacy of Cum-NPs over free Cum in the treatment of lung cancer. In vivo evaluation further demonstrated superior anticancer effects of Cum-NPs by delaying tumor growth compared to free Cum in an established A549 transplanted mice model. Moreover, Cum-NPs showed little toxicity to normal tissues including bone marrow, liver and kidney at a therapeutic dose. These results suggest that Cum-NPs are effective to inhibit the growth of human lung cancer with little toxicity to normal tissues, and could provide a clinically useful therapeutic regimen. They thus merit more research to evaluate the feasibility of clinical application.

  2. Irradiation-Dependent Effects on Tumor Perfusion and Endogenous and Exogenous Hypoxia Markers in an A549 Xenograft Model

    SciTech Connect

    Fokas, Emmanouil; Haenze, Joerg; Kamlah, Florentine; Eul, Bastian G.; Lang, Nico; Keil, Boris; Heverhagen, Johannes T.; Engenhart-Cabillic, Rita; An Hanxiang; Rose, Frank

    2010-08-01

    Purpose: Hypoxia is a major determinant of tumor radiosensitivity, and microenvironmental changes in response to ionizing radiation (IR) are often heterogenous. We analyzed IR-dependent changes in hypoxia and perfusion in A549 human lung adenocarcinoma xenografts. Materials and Methods: Immunohistological analysis of two exogenously added chemical hypoxic markers, pimonidazole and CCI-103F, and of the endogenous marker Glut-1 was performed time dependently after IR. Tumor vessels and apoptosis were analyzed using CD31 and caspase-3 antibodies. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and fluorescent beads (Hoechst 33342) were used to monitor vascular perfusion. Results: CCI-103F signals measuring the fraction of hypoxic areas after IR were significantly decreased by approximately 50% when compared with pimonidazole signals, representing the fraction of hypoxic areas from the same tumors before IR. Interestingly, Glut-1 signals were significantly decreased at early time point (6.5 h) after IR returning to the initial levels at 30.5 h. Vascular density showed no difference between irradiated and control groups, whereas apoptosis was significantly induced at 10.5 h post-IR. DCE-MRI indicated increased perfusion 1 h post-IR. Conclusions: The discrepancy between the hypoxic fractions of CCI-103F and Glut-1 forces us to consider the possibility that both markers reflect different metabolic alterations of tumor microenvironment. The reliability of endogenous markers such as Glut-1 to measure reoxygenation in irradiated tumors needs further consideration. Monitoring tumor microvascular response to IR by DCE-MRI and measuring tumor volume alterations should be encouraged.

  3. Tumor growth affects the metabonomic phenotypes of multiple mouse non-involved organs in an A549 lung cancer xenograft model

    PubMed Central

    Xu, Shan; Tian, Yuan; Hu, Yili; Zhang, Nijia; Hu, Sheng; Song, Dandan; Wu, Zhengshun; Wang, Yulan; Cui, Yanfang; Tang, Huiru

    2016-01-01

    The effects of tumorigenesis and tumor growth on the non-involved organs remain poorly understood although many research efforts have already been made for understanding the metabolic phenotypes of various tumors. To better the situation, we systematically analyzed the metabolic phenotypes of multiple non-involved mouse organ tissues (heart, liver, spleen, lung and kidney) in an A549 lung cancer xenograft model at two different tumor-growth stages using the NMR-based metabonomics approaches. We found that tumor growth caused significant metabonomic changes in multiple non-involved organ tissues involving numerous metabolic pathways, including glycolysis, TCA cycle and metabolisms of amino acids, fatty acids, choline and nucleic acids. Amongst these, the common effects are enhanced glycolysis and nucleoside/nucleotide metabolisms. These findings provided essential biochemistry information about the effects of tumor growth on the non-involved organs. PMID:27329570

  4. Inhibitory effect of radiotherapy combined with weekly recombinant human endostatin on the human pulmonary adenocarcinoma A549 xenografts in nude mice.

    PubMed

    Jiang, Xiao-dong; Dai, Peng; Wu, Jin; Song, Da-an; Yu, Jin-ming

    2011-05-01

    The aim of this study was to investigate the inhibitory effect of radiotherapy combined with weekly recombinant human endostatin (RHES) on the human pulmonary adenocarcinoma A549 xenografts in nude mice. The 40 A549 xenograft nude mice models were randomly divided into 4 groups (each group with 10 nude mice). Single radiotherapy group (group 1) was given a single external irradiation (6MV-X ray, 10 Gy) and peritumoral subcutaneous injection of 0.2 ml normal saline every day for 7 days. Single RHES group (group 2) was given peritumoral subcutaneous injection of 0.2 ml RHES (0.75 mg/ml) for 7 days. Combination therapy group (group 3) was given radiotherapy as the same as group 1 and RHES as the same as group 2. Control group was given normal saline as the same as group 1. The tumor volume was smaller in group 3 than in control group from the 8th day after treatment (P<0.05) and tumor regression occurred from the second week after treatment in group 3. On the 15th day after treatment, the inhibitory rates of tumor volume were 69.65%, 92.64% and 116.4% in groups 2, 1 and 3, respectively; MVD number was lower in group 3 than in group 1 (P<0.05); there was no statistical significance in VEGF expression between group 2 and control group as well as between group 3 and group 1 (P>0.05). Apoptosis was marked in group 3. Radiotherapy combined with weekly RHES can significantly inhibit tumor growth and earlier induce tumor regression, which may be related to the improvement of tumor hypoxia and the inhibition of radiation-induced tumor angiogenesis. Short-term application (1 week) of RHES is beneficial to clinical practice.

  5. Antitumor activity of EGFR targeted pH-sensitive immunoliposomes encapsulating gemcitabine in A549 xenograft nude mice.

    PubMed

    Kim, In-Young; Kang, Young-Sook; Lee, Doo Sung; Park, Heon-Joo; Choi, Eun-Kyung; Oh, Yu-Kyoung; Son, Hye-Jung; Kim, Jin-Seok

    2009-11-16

    Immunoliposomes directed by monoclonal antibodies are promising vehicles for tumor targeted drug delivery. Development of a long-circulating formulation of pH-sensitive liposomes (PSLs) with epidermal growth factor receptor (EGFR) antibody attached was designed and tested using A549 cells and BALB/c-nu/nu mouse tumor model. PSL formulation was prepared using small unilamellar vesicles of DOPE and CHEMS (6:4 molar ratio) by REV method. The average size and zeta-potential of the formulation measured by dynamic laser-light scattering were approximately 146+/-43.9 nm (PDI=0.09+/-0.02) and -1.77+/-0.03 mV, respectively. A549 cells were xenotransplanted into BALB/c-nu/nu mice and various formulations of gemcitabine (gem), such as in its free form, PSLs or Ab-PSLs, were injected intravenously via a tail vein. The rate of tumor volume increment in Ab-PSLs with gem-treated group was remarkably slower than that of other drug-treated group. The tumor from Ab-PSLs with gem 160 mg/kg-injected group exhibited a markedly lowest account of PCNA labeled cells and had highest TUNEL-positive cells among tested. This suggests that treatment of Ab-PSLs with gem resulted in an increased apoptosis of tumor cells, leading to tumor growth inhibition. These results demonstrate that PSLs provide an efficient and targeted delivery of gemcitabine and may represent a useful new treatment approach for tumors which overexpress the EGFR.

  6. Gene expression profile of A549 cells from tissue of 4D model predicts poor prognosis in lung cancer patients.

    PubMed

    Mishra, Dhruva K; Creighton, Chad J; Zhang, Yiqun; Gibbons, Don L; Kurie, Jonathan M; Kim, Min P

    2014-02-15

    The tumor microenvironment plays an important role in regulating cell growth and metastasis. Recently, we developed an ex vivo lung cancer model (four dimensional, 4D) that forms perfusable tumor nodules on a lung matrix that mimics human lung cancer histopathology and protease secretion pattern. We compared the gene expression profile (Human OneArray v5 chip) of A549 cells, a human lung cancer cell line, grown in a petri dish (two-dimensional, 2D), and of the same cells grown in the matrix of our ex vivo model (4D). Furthermore, we obtained gene expression data of A549 cells grown in a petri dish (2D) and matrigel (three-dimensional, 3D) from a previous study and compared the 3D expression profile with that of 4D. Expression array analysis showed 2,954 genes differentially expressed between 2D and 4D. Gene ontology (GO) analysis showed upregulation of several genes associated with extracellular matrix, polarity and cell fate and development. Moreover, expression array analysis of 2D vs. 3D showed 1,006 genes that were most differentially expressed, with only 36 genes (4%) having similar expression patterns as observed between 2D and 4D. Finally, the differential gene expression signature of 4D cells (vs. 2D) correlated significantly with poor survival in patients with lung cancer (n = 1,492), while the expression signature of 3D vs. 2D correlated with better survival in lung cancer patients with lung cancer. As patients with larger tumors have a worse rate of survival, the ex vivo 4D model may be a good mimic of natural progression of tumor growth in lung cancer patients.

  7. Cathepsin L upregulation-induced EMT phenotype is associated with the acquisition of cisplatin or paclitaxel resistance in A549 cells

    PubMed Central

    Han, Mei-ling; Zhao, Yi-fan; Tan, Cai-hong; Xiong, Ya-jie; Wang, Wen-juan; Wu, Feng; Fei, Yao; Wang, Long; Liang, Zhong-qin

    2016-01-01

    Aim: Cathepsin L (CTSL), a lysosomal acid cysteine protease, is known to play important roles in tumor metastasis and chemotherapy resistance. In this study we investigated the molecular mechanisms underlying the regulation of chemoresistance by CTSL in human lung cancer cells. Methods: Human lung cancer A549 cells, A549/PTX (paclitaxel-resistant) cells and A549/DDP (cisplatin-resistant) cells were tested. The resistance to cisplatin or paclitaxel was detected using MTT and the colony-formation assays. Actin remodeling was observed with FITC-Phalloidin fluorescent staining or immunofluorescence. A wound-healing assay or Transwell assay was used to assess the migration or invasion ability. The expression of CTSL and epithelial and mesenchymal markers was analyzed with Western blotting and immunofluorescence. The expression of EMT-associated transcription factors was measured with Western blotting or q-PCR. BALB/c nude mice were implanted subcutaneously with A549 cells overexpressing CTSL, and the mice were administered paclitaxel (10, 15 mg/kg, ip) every 3 d for 5 times. Results: Cisplatin or paclitaxel treatment (10–80 ng/mL) induced CTSL expression in A549 cells. CTSL levels were much higher in A549/PTX and A549/DDP cells than in A549 cells. Silencing of CTSL reversed the chemoresistance in A549/DDP and A549/TAX cells, whereas overexpression of CTSL attenuated the sensitivity of A549 cells to cisplatin or paclitaxel. Furthermore, A549/DDP and A549/TAX cells underwent morphological and cytoskeletal changes with increased cell invasion and migration abilities, accompanied by decreased expression of epithelial markers (E-cadherin and cytokeratin-18) and increased expression of mesenchymal markers (N-cadherin and vimentin), as well as upregulation of EMT-associated transcription factors Snail, Slug, ZEB1 and ZEB2. Silencing of CTSL reversed EMT in A549/DDP and A549/TAX cells; In contrast, overexpression of CTSL induced EMT in A549 cells. In xenograft nude mouse

  8. Nur77 attenuates endothelin-1 expression via downregulation of NF-κB and p38 MAPK in A549 cells and in an ARDS rat model.

    PubMed

    Jiang, Yujie; Zeng, Yi; Huang, Xia; Qin, Yueqiu; Luo, Weigui; Xiang, Shulin; Sooranna, Suren R; Pinhu, Liao

    2016-12-01

    Acute respiratory distress syndrome (ARDS) is characterized by inflammatory injury to the alveolar and capillary barriers that results in impaired gas exchange and severe acute respiratory failure. Nuclear orphan receptor Nur77 has emerged as a regulator of gene expression in inflammation, and its role in the pathogenesis of ARDS is not clear. The objective of this study is to investigate the potential role of Nur77 and its underlying mechanism in the regulation of endothelin-1 (ET-1) expression in lipopolysaccharide (LPS)-induced A549 cells and an ARDS rat model. We demonstrate that LPS induced Nur77 expression and nuclear export in A549 cells. Overexpression of Nur77 markedly decreased basal and LPS-induced ET-1 expression in A549 cells, whereas knockdown of Nur77 increased the ET-1 expression. LPS-induced phosphorylation and nuclear translocation of NF-κB and p38 MAPK were blocked by Nur77 overexpression and augmented by Nur77 knockdown in A549 cells. In vivo, LPS induced Nur77 expression in lung in ARDS rats. Pharmacological activation of Nur77 by cytosporone B (CsnB) inhibited ET-1 expression in ARDS rats, decreased LPS-induced phosphorylation of NF-κB and p38 MAPK, and relieved lung, liver, and kidney injury. Pharmacological deactivation of Nur77 by 1,1-bis-(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH, C-DIM8) had no effect on ET-1 expression and lung injury. These results indicated that Nur77 decreases ET-1 expression by suppressing NF-κB and p38 MAPK in LPS-stimulated A549 cells in vitro, and, in an LPS-induced ARDS rat model, CsnB reduced ET-1 expression and lung injury in ARDS rats.

  9. Nur77 attenuates endothelin-1 expression via downregulation of NF-κB and p38 MAPK in A549 cells and in an ARDS rat model

    PubMed Central

    Jiang, Yujie; Zeng, Yi; Huang, Xia; Qin, Yueqiu; Luo, Weigui; Xiang, Shulin; Sooranna, Suren R.

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is characterized by inflammatory injury to the alveolar and capillary barriers that results in impaired gas exchange and severe acute respiratory failure. Nuclear orphan receptor Nur77 has emerged as a regulator of gene expression in inflammation, and its role in the pathogenesis of ARDS is not clear. The objective of this study is to investigate the potential role of Nur77 and its underlying mechanism in the regulation of endothelin-1 (ET-1) expression in lipopolysaccharide (LPS)-induced A549 cells and an ARDS rat model. We demonstrate that LPS induced Nur77 expression and nuclear export in A549 cells. Overexpression of Nur77 markedly decreased basal and LPS-induced ET-1 expression in A549 cells, whereas knockdown of Nur77 increased the ET-1 expression. LPS-induced phosphorylation and nuclear translocation of NF-κB and p38 MAPK were blocked by Nur77 overexpression and augmented by Nur77 knockdown in A549 cells. In vivo, LPS induced Nur77 expression in lung in ARDS rats. Pharmacological activation of Nur77 by cytosporone B (CsnB) inhibited ET-1 expression in ARDS rats, decreased LPS-induced phosphorylation of NF-κB and p38 MAPK, and relieved lung, liver, and kidney injury. Pharmacological deactivation of Nur77 by 1,1-bis-(3′-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH, C-DIM8) had no effect on ET-1 expression and lung injury. These results indicated that Nur77 decreases ET-1 expression by suppressing NF-κB and p38 MAPK in LPS-stimulated A549 cells in vitro, and, in an LPS-induced ARDS rat model, CsnB reduced ET-1 expression and lung injury in ARDS rats. PMID:27765761

  10. A xenograft animal model of human arteriovenous malformations

    PubMed Central

    2013-01-01

    Background Arteriovenous malformations (AVMs) are a type of high-flow vascular malformations that most commonly occurs in the head and neck. They are present at birth but are usually clinically asymptomatic until later in life. The pathogenesis of AVMs remains unclear and therapeutic approaches to AVMs are unsatisfied. In order to provide a tool for studying the pathogenesis and therapies of this disease, we established and studied a xenograft animal model of human AVMs. Methods Fresh human AVMs specimens harvested from 4 patients were sectioned (5x5x5 mm) and xenografted subcutaneously in 5 immunologically naïve nude mice (Athymic Nude-Foxn1nu). Each mouse had four pieces specimens in four quadrants along the back. The grafts were observed weekly for volume, color and texture. The grafts were harvested at every 30 days intervals for histologic examination. All grafts (n = 20) were sectioned and stained for hematoxylin and eosin (H&E). Comparative pathologic evaluation of the grafts and native AVMs were performed by two blinded pathologists. Immunohistochemical examination of human-specific nuclear antigen, vascular endothelial growth factor receptor-2 (VEGFR-2) and Ki-67 was performed. Results Clinical characteristics and pathologic diagnosis of native human derived AVMs were confirmed. 85% (n = 17) of AVM xenografts survived although the sizes decreased after implantation. Histological examination demonstrated numerous small and medium-size vessels and revealed structural characteristics matching the native AVMs tissue.76.5% (n = 13) of the surviving xenografts were positive for Ki-67 and human-specific nuclear antigen suggesting survival of the human derived tissue, 52.9% (n = 9) were positive for VEGFR-2. Conclusions This preliminary xenograft animal model suggests that AVMs can survive in the nude mouse. The presence of human-specific nuclear antigen, VEGFR-2, and Ki-67 demonstrates the stability of native tissue qualities within the

  11. Toll-like receptor 5 agonist inhibition of growth of A549 lung cancer cells in vivo in a Myd88 dependent manner.

    PubMed

    Zhou, Shi-Xiang; Li, Feng-Sheng; Qiao, Yu-Lei; Zhang, Xue-Qing; Wang, Zhi-Dong

    2012-01-01

    The purpose of this study was to examine the effect of a Toll-like receptor 5 (TLR5) agonist, CBLB502, on the growth and radiosensitivity of A549 lung cancer cells in vivo. Expression of myeloid differentiation factor 88 (MyD88) or TLR5 was stably knocked down in human lung cancer cells (A549) using lentivirus expressing short hairpin RNA targeting human MyD88 or TLR5. Lack of MyD88 or TLR5 expression enhanced tumor growth in mouse xenografts of A549 lung cancer cells. CBLB502 inhibited the growth of A549 lung cancer cells, not A549-MyD88-KD cells in vivo in the murine xenograft model. Our results showed that the inhibition of A549 by CBLB502 in vivo was realized through regulating the expression of neutrophil recruiting cytokines and neutrophil infiltration. Finally, we found that activation of TLR5 signaling did not affect the radiosensitivity of tumors in vivo.

  12. 184AA3: A Xenograft Model of ER+ Breast Adenocarcinoma

    PubMed Central

    Hines, William C.; Kuhn, Irene; Thi, Kate; Chu, Berbie; Stanford-Moore, Gaelen; Sampayo, Rocío; Garbe, James C.; Stampfer, Martha; Borowsky, Alexander D.; Bissell, Mina

    2015-01-01

    Purpose Despite the prevalence and significant morbidity resulting from estrogen receptor positive (ER+) breast adenocarcinomas, there are only a few models of this cancer subtype available for drug development, and arguably none for studying etiology. Those models that do exist have questionable clinical relevance. Methods Given our goal of developing luminal models, we focused on six cell lines derived by minimal mutagenesis from normal human breast cells, and asked if any could generate clinically relevant xenografts, which we then extensively characterized. Results Xenografts of one cell line, 184AA3, consistently formed ER+ adenocarcinomas that had a high proliferative rate and other features consistent with “luminal B” intrinsic subtype. Squamous and spindle cell/mesenchymal differentiation was absent, in stark contrast to other cell lines that we examined or others have reported. We explored intratumoral heterogeneity produced by 184AA3 by immunophenotyping xenograft tumors and cultured cells, and characterized marker expression by immunofluorescence and flow cytometry. A CD44High subpopulation was discovered, yet their tumor forming ability was far less than CD44Low cells. Single cell cloning revealed the phenotypic plasticity of 184AA3, consistent with the intratumoral heterogeneity observed in xenografts. Characterization of ER expression in cultures revealed ER protein and signaling is intact, yet when estrogen was depleted in culture, and in vivo, it did not impact cell or tumor growth, analogous to therapeutically resistant ER+ cancers. Conclusions This model is appropriate for studies of the etiology of ovarian hormone independent adenocarcinomas, for identification of therapeutic targets, predictive testing and drug development. PMID:26661596

  13. Modeling of Chronic Myeloid Leukemia: An Overview of In Vivo Murine and Human Xenograft Models

    PubMed Central

    Vellenga, Edo

    2016-01-01

    Over the past years, a wide variety of in vivo mouse models have been generated in order to unravel the molecular pathology of Chronic Myeloid Leukemia (CML) and to develop and improve therapeutic approaches. These models range from (conditional) transgenic models, knock-in models, and murine bone marrow retroviral transduction models followed by transplantation. With the advancement of immunodeficient xenograft models, it has become possible to use human stem/progenitor cells for in vivo studies as well as cells directly derived from CML patients. These models not only mimic CML but also have been instrumental in uncovering various fundamental mechanisms of CML disease progression and tyrosine kinase inhibitor (TKI) resistance. With the availability of iPSC technology, it has become feasible to derive, maintain, and expand CML subclones that are at least genetically identical to those in patients. The following review provides an overview of all murine as well as human xenograft models for CML established till date. PMID:27642303

  14. Sp1 inhibition-mediated upregulation of VEGF 165 b induced by rh-endostatin enhances antiangiogenic and anticancer effect of rh-endostatin in A549.

    PubMed

    Li, Zhen-yu; Zhu, Fang; Hu, Jian-li; Peng, Gang; Chen, Jing; Zhang, Sheng; Chen, Xu; Zhang, Rui-guang; Chen, Ling-juan; Liu, Pian; Luo, Ming; Sun, Zhi-hua; Ren, Jing-hua; Huang, Li-li; Wu, Gang

    2011-08-01

    Recombinant human endostatin (rh-endostatin), a potential antiangiogenic agent, is used in non-small cell lung carcinoma treatment and represses vascular endothelial cell growth factor (VEGF) levels in tumor cell. However, precise affection of rh-endostatin on the proangiogenic VEGF isoforms (VEGF(165)) or antiangiogenic VEGF isoforms (VEGF(165)b) is not clear. We therefore tested the hypothesis that rh-endostatin could alter expression of these isoforms to regulate tumor growth. A549 cells were exposed to rh-endostatin, and the expression of VEGF(165) and VEGF(165)b was detected. The role of SP1 as a regulator of isoform expression was investigated. We then examined the anticancer and antiangiogenic efficacy of rh-endostatin in combination with exogenous VEGF(165)b against A549 cells, EA.HY 926 cells and xenograft model of human lung cancer. rh-Endostatin reduced VEGF(165) and induced VEGF(165)b as well as inhibited SP1 in A549 cells. SP1 inhibitor (betulinic acid) also developed those changes. VEGF(165)b-rh-endostatin combination was highly synergistic and inhibited growth, survival, and migration of A549 cells, VEGF-mediated VEGFR2 phosphorylation in EA.HY 926 cells, and tumor growth in xenograft model of human lung cancer. rh-Endostatin downregulates proangiogenic vascular endothelial growth factor A (VEGFA) isoform and upregulates antiangiogenic VEGFA isoform, possibly through inhibition of SP1. Furthermore, VEGF(165)b sensitizes A549 to rh-endostatin treatment and enhances the anticancer effect of rh-endostatin.

  15. Paracrine control of differentiation in the alveolar carcinoma, A549, by human foetal lung fibroblasts.

    PubMed

    Speirs, V; Ray, K P; Freshney, R I

    1991-10-01

    Synthesis of pulmonary surfactant (PS) is necessary for normal functioning of the lungs and its production is indicative of normal differentiated lung. The human alveolar carcinoma, A549, has been found to synthesis and secrete PS in vitro. The purpose of this study was to optimise the culture conditions for PS synthesis by A549 as well as to determine the potential role of foetal lung fibroblasts in the induction of PS by glucocorticoids. A549 cells growing in filter wells produced higher levels of PS in response to steroid, a 5-fold increase on the filter well compared to only a 1.5-fold increase when the cells were cultured on a conventional plastic substrate. A549 cells grown in filter wells responded to coculture with fibroblasts whether in direct contact or separated co-culture. A 20-fold increase in PS over control values was observed in separated steroid-treated co-cultures, suggesting the presence of a diffusible factor. A partially purified factor was isolated from fibroblast conditioned medium which was capable of inducing differentiation and other phenotypic changes in A549, namely induction of PS, reduction of plasminogen activator activity and reduction in the in vivo growth of A549 xenografts in nude mice. These results suggest that, under the correct conditions, A549 cells, although transformed, still retain the capacity to respond to differentiation-inducing signals from normal fibroblasts.

  16. Paracrine control of differentiation in the alveolar carcinoma, A549, by human foetal lung fibroblasts.

    PubMed Central

    Speirs, V.; Ray, K. P.; Freshney, R. I.

    1991-01-01

    Synthesis of pulmonary surfactant (PS) is necessary for normal functioning of the lungs and its production is indicative of normal differentiated lung. The human alveolar carcinoma, A549, has been found to synthesis and secrete PS in vitro. The purpose of this study was to optimise the culture conditions for PS synthesis by A549 as well as to determine the potential role of foetal lung fibroblasts in the induction of PS by glucocorticoids. A549 cells growing in filter wells produced higher levels of PS in response to steroid, a 5-fold increase on the filter well compared to only a 1.5-fold increase when the cells were cultured on a conventional plastic substrate. A549 cells grown in filter wells responded to coculture with fibroblasts whether in direct contact or separated co-culture. A 20-fold increase in PS over control values was observed in separated steroid-treated co-cultures, suggesting the presence of a diffusible factor. A partially purified factor was isolated from fibroblast conditioned medium which was capable of inducing differentiation and other phenotypic changes in A549, namely induction of PS, reduction of plasminogen activator activity and reduction in the in vivo growth of A549 xenografts in nude mice. These results suggest that, under the correct conditions, A549 cells, although transformed, still retain the capacity to respond to differentiation-inducing signals from normal fibroblasts. Images Figure 5 PMID:1654985

  17. Adenovirus-Mediated Expression of the p14 Fusion-Associated Small Transmembrane Protein Promotes Cancer Cell Fusion and Apoptosis In Vitro but Does Not Provide Therapeutic Efficacy in a Xenograft Mouse Model of Cancer

    PubMed Central

    Wong, Carmen M.; Poulin, Kathy L.; Tong, Grace; Christou, Carin; Kennedy, Michael A.; Falls, Theresa; Bell, John C.; Parks, Robin J.

    2016-01-01

    Adenoviruses (Ads) are used in numerous preclinical and clinical studies for delivery of anti-cancer therapeutic genes. Unfortunately, Ad has a poor ability to distribute throughout a tumor mass after intratumoral injection, and infects cells primarily within the immediate area of the injection tract. Thus, Ad-encoded transgene expression is typically limited to only a small percentage of cells within the tumor. One method to increase the proportion of the tumor impacted by Ad is through expression of fusogenic proteins. Infection of a single cell with an Ad vector encoding a fusogenic protein should lead to syncytium formation with adjacent cells, effectively spreading the effect of Ad and Ad-encoded therapeutic transgenes to a greater percentage of the tumor mass. Moreover, syncytium formation can be cytotoxic, suggesting that such proteins may be effective sole therapeutics. We show that an early region 1 (E1)-deleted Ad expressing reptilian reovirus p14 fusion-associated small transmembrane (FAST) protein caused extensive cell fusion in the replication-permissive 293 cell line and at high multiplicity of infection in non-permissive human lung adenocarcinoma A549 cells in vitro. FAST protein expression in the A549 cancer cell line led to a loss of cellular metabolic activity and membrane integrity, which correlated with induction of apoptosis. However, in an A549 xenograft CD-1 nude mouse cancer model, Ad-mediated FAST gene delivery did not induce detectable cell fusion, reduce tumor burden nor enhance mouse survival compared to controls. Taken together, our results show that, although AdFAST can enhance cancer cell killing in vitro, it is not effective as a sole therapeutic in the A549 tumor model in vivo. PMID:26986751

  18. Anti-tumor effect of bevacizumab on a xenograft model of feline mammary carcinoma

    PubMed Central

    MICHISHITA, Masaki; OHTSUKA, Aya; NAKAHIRA, Rei; TAJIMA, Tsuyoshi; NAKAGAWA, Takayuki; SASAKI, Nobuo; ARAI, Toshiro; TAKAHASHI, Kimimasa

    2015-01-01

    Feline mammary carcinomas are characterized by rapid progression and metastases. Vascular endothelial growth factor (VEGF) is a key regulator of tumor angiogenesis, proliferation and metastasis. The present study aimed to investigate the effects of a single drug therapy of bevacizumab on a xenograft model of feline mammary carcinoma expressing VEGF protein. Bevacizumab treatment suppressed tumor growth by inhibiting angiogenesis and enhancing apoptosis; however, it did not affect the tumor proliferation index. Thus, bevacizumab had anti-tumor effects on a xenograft model, and this may be useful for the treatment of feline mammary carcinoma. PMID:26616000

  19. Assessment of antitumor activity for tumor xenograft studies using exponential growth models.

    PubMed

    Wu, Jianrong

    2011-05-01

    In preclinical tumor xenograft experiments, the antitumor activity of the tested agents is often assessed by endpoints such as tumor doubling time, tumor growth delay (TGD), and log10 cell kill (LCK). In tumor xenograft literature, the values of these endpoints are presented without any statistical inference, which ignores the noise in the experimental data. However, using exponential growth models, these endpoints can be quantified by their growth curve parameters, thus allowing parametric inference, such as an interval estimate, to be used to assess the antitumor activity of the treatment.

  20. Human skeletal muscle xenograft as a new preclinical model for muscle disorders

    PubMed Central

    Zhang, Yuanfan; King, Oliver D.; Rahimov, Fedik; Jones, Takako I.; Ward, Christopher W.; Kerr, Jaclyn P.; Liu, Naili; Emerson, Charles P.; Kunkel, Louis M.; Partridge, Terence A.; Wagner, Kathryn R.

    2014-01-01

    Development of novel therapeutics requires good animal models of disease. Disorders for which good animal models do not exist have very few drugs in development or clinical trial. Even where there are accepted, albeit imperfect models, the leap from promising preclinical drug results to positive clinical trials commonly fails, including in disorders of skeletal muscle. The main alternative model for early drug development, tissue culture, lacks both the architecture and, usually, the metabolic fidelity of the normal tissue in vivo. Herein, we demonstrate the feasibility and validity of human to mouse xenografts as a preclinical model of myopathy. Human skeletal muscle biopsies transplanted into the anterior tibial compartment of the hindlimbs of NOD-Rag1null IL2rγnull immunodeficient host mice regenerate new vascularized and innervated myofibers from human myogenic precursor cells. The grafts exhibit contractile and calcium release behavior, characteristic of functional muscle tissue. The validity of the human graft as a model of facioscapulohumeral muscular dystrophy is demonstrated in disease biomarker studies, showing that gene expression profiles of xenografts mirror those of the fresh donor biopsies. These findings illustrate the value of a new experimental model of muscle disease, the human muscle xenograft in mice, as a feasible and valid preclinical tool to better investigate the pathogenesis of human genetic myopathies and to more accurately predict their response to novel therapeutics. PMID:24452336

  1. Mouse Xenograft Model for Mesothelioma | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

  2. Transplantation of Tissue-Engineered Cartilage in an Animal Model (Xenograft and Autograft): Construct Validation.

    PubMed

    Nemoto, Hitoshi; Watson, Deborah; Masuda, Koichi

    2015-01-01

    Tissue engineering holds great promise for cartilage repair with minimal donor-site morbidity. The in vivo maturation of a tissue-engineered construct can be tested in the subcutaneous tissues of the same species for autografts or of immunocompromised animals for allografts or xenografts. This section describes detailed protocols for the surgical transplantation of a tissue-engineered construct into an animal model to assess construct validity.

  3. First In-Mouse Development and Application of a Surgically Relevant Xenograft Model of Ovarian Carcinoma

    PubMed Central

    Helland, Øystein; Popa, Mihaela; Vintermyr, Olav K.; Molven, Anders; Gjertsen, Bjørn Tore; Bjørge, Line; McCormack, Emmet

    2014-01-01

    Purpose Preclinical models of epithelial ovarian cancer have not been exploited to evaluate the clinical standard combination therapy of surgical debulking with follow-up chemotherapy. As surgery is critical to patient survival, here we establish a combined surgical/chemotherapy xenograft model of epithelial ovarian cancer and demonstrate its translational relevance. Experimental Design SKOV-3luc+ ovary cancer cells were injected topically into the ovaries of immunodeficient mice. Disease development and effect of clinical standard treatment including hysterectomy, bilateral salpingoophorectomy and removal of metastasis with follow up chemotherapy (carboplatin 12 mg/kg + paclitaxel 15 mg/kg) was evaluated by clinical parameters. Tumor burden was quantified by bioluminescence imaging (BLI). Results The xenograft ovarian tumors developed were poorly differentiated and multicystic and the disease disseminated into the peritoneal cavity. When compared to the controls with a mean survival time of 4.9 weeks, mice treated with surgery and chemotherapy, surgery or chemotherapy demonstrated significantly improved mean survival of 16.1 weeks (p = 0.0008), 12.7 weeks (p = 0.0008), or 10.4 weeks (p = 0.008), respectively. Conclusion Combined surgical intervention and adjuvant chemotherapy was demonstrated for the first time in an orthotopic xenograft model of ovarian cancer. Similar to observation in human studies the combined approach resulted in the longest medial survival time, advocating application of this strategy in future preclinical therapeutic development for this disease. PMID:24594904

  4. Suppression of tumor growth in lung cancer xenograft model mice by poly(sorbitol-co-PEI)-mediated delivery of osteopontin siRNA.

    PubMed

    Cho, Won-Young; Hong, Seong-Ho; Singh, Bijay; Islam, Mohammad Ariful; Lee, Somin; Lee, Ah Young; Gankhuyag, Nomundelger; Kim, Ji-Eun; Yu, Kyeong-Nam; Kim, Kwang-Ho; Park, Young-Chan; Cho, Chong-Su; Cho, Myung-Haing

    2015-08-01

    Small interfering RNA (siRNA)-mediated gene silencing represents a promising strategy for treating diseases such as cancer; however, specific gene silencing requires an effective delivery system to overcome the instability and low transfection efficiency of siRNAs. To address this issue, a polysorbitol-based transporter (PSOT) was prepared by low molecular weight branched polyethylenimine (bPEI) crosslinked with sorbitol diacrylate (SDA). Osteopontin (OPN) gene, which is highly associated with non-small cell lung cancer (NSCLC) was targeted by siRNA therapy using siRNA targeting OPN (siOPN). Characterization study confirmed that PSOT formed compact complexes with siOPN and protected siOPN against degradation by RNase. PSOT/siOPN complexes demonstrated low cytotoxicity and enhanced transfection efficiency in vitro, suggesting that this carrier may be suitable for gene silencing. In the A549 and H460 lung cancer cell lines, PSOT/siOPN complexes demonstrated significant silencing efficiency at both RNA and protein levels. To study in vivo tumor growth suppression, two lung cancer cell-xenograft mouse models were prepared and PSOT/siOPN complexes were delivered into the mice through intravenous injection. The siOPN-treated groups demonstrated significantly reduced OPN expression at both the RNA and protein levels as well as suppression of tumor volume and weight. Taken together, siOPN delivery using PSOT may present an effective and novel therapeutic system for lung cancer treatment.

  5. Primary esophageal and gastro-esophageal junction cancer xenograft models: clinicopathological features and engraftment.

    PubMed

    Dodbiba, Lorin; Teichman, Jennifer; Fleet, Andrew; Thai, Henry; Sun, Bin; Panchal, Devang; Patel, Devalben; Tse, Alvina; Chen, Zhuo; Faluyi, Olusola O; Renouf, Daniel J; Girgis, Hala; Bandarchi, Bizhan; Schwock, Joerg; Xu, Wei; Bristow, Robert G; Tsao, Ming-Sound; Darling, Gail E; Ailles, Laurie E; El-Zimaity, Hala; Liu, Geoffrey

    2013-04-01

    There are very few xenograft models available for the study of esophageal (E) and gastro-esophageal junction (GEJ) cancer. Using a NOD/SCID model, we implanted 90 primary E and GEJ tumors resected from patients and six endoscopic biopsy specimens. Of 69 resected tumors with histologically confirmed viable adenocarcinoma or squamous cell carcinoma, 22 (32%) was engrafted. One of 11 tumors, considered to have had a complete pathological response to neo-adjuvant chemo-radiation, also engrafted. Of the 23 patients whose tumors were engrafted, 65% were male; 30% were early stage while 70% were late stage; 22% received neo-adjuvant chemo-radiation; 61% were GEJ cancers. Engraftment occurred in 18/54 (33%) adenocarcinomas and 5/16 (31%) squamous cell carcinomas. Small endoscopic biopsy tissue had a 50% (3/6) engraftment rate. Of the factors analyzed, pretreatment with chemo-radiation and well/moderate differentiation showed significantly lower correlation with engraftment (P<0.05). In the subset of patients who did not receive neo-adjuvant chemo-radiation, 18/41 (44%) engrafted compared with those with pretreatment where 5/29 (17%, P=0.02) engrafted. Primary xenograft lines may be continued through 4-12 passages. Xenografts maintained similar histology and morphological characteristics with only minor variations even after multiple passaging in most instances.

  6. Pulmonary metastases of the A549-derived lung adenocarcinoma tumors growing in nude mice. A multiple case study.

    PubMed

    Jakubowska, Monika; Sniegocka, Martyna; Podgórska, Ewa; Michalczyk-Wetula, Dominika; Urbanska, Krystyna; Susz, Anna; Fiedor, Leszek; Pyka, Janusz; Płonka, Przemysław M

    2013-01-01

    Lung adenocarcinoma is a leading human malignancy with fatal prognosis. Ninety percent of the deaths, however, are caused by metastases. The model of subcutaneous tumor xenograft in nude mice was adopted to study the growth of control and photodynamically treated tumors derived from the human A549 lung adenocarcinoma cell line. As a side-result of the primary studies, observations on the metastasis of these tumors to the murine lungs were collected, and reported in the present paper. The metastasizing primary tumors were drained by a prominent number of lymphatic vessels. The metastatic tissue revealed the morphology of well-differentiated or trans-differentiated adenocarcinoma. Further histological and histochemical analyses demonstrated the presence of golden-brown granules in the metastatic tissue, similar to these found in the tumor tissue. In contrast to the primary tumors, the electron paramagnetic resonance spectroscopy revealed no nitric oxide - hemoglobin complexes (a source of intense paramagnetic signals), in the metastases. No metastases were found in other murine organs; however, white infarctions were identified in a single liver. Taken together, the A549-derived tumors growing subcutaneously in nude mice can metastasize and grow on site in the pulmonary tissue. Thus, they can represent an alternative for the model of induced metastatic nodule formation, following intravenous administration of the cancerous cells.

  7. Patient Derived Xenograft Models: An Emerging Platform for Translational Cancer Research

    PubMed Central

    Hidalgo, Manuel; Amant, Frederic; Biankin, Andrew V.; Budinská, Eva; Byrne, Annette T.; Caldas, Carlos; Clarke, Robert B.; de Jong, Steven; Jonkers, Jos; Mælandsmo, Gunhild Mari; Roman-Roman, Sergio; Seoane, Joan; Trusolino, Livio; Villanueva, Alberto

    2014-01-01

    Recently, there has been increasing interest in the development and characterization of patient derived tumor xenograft (PDX) models for cancer research. PDX models mostly retain the principal histological and genetic characteristics of their donor tumor and remain stable across passages. These models have been shown to be predictive of clinical outcomes and are being used for preclinical drug evaluation, biomarker identification, biological studies, and personalized medicine strategies. This paper summarizes the current state of the art in this field including methodological issues, available collections, practical applications, challenges and shortcoming, and future directions, and introduces a European consortium of PDX models. PMID:25185190

  8. Patient-derived xenograft models of squamous cell carcinoma of the uterine cervix.

    PubMed

    Rofstad, Einar K; Simonsen, Trude G; Huang, Ruixia; Andersen, Lise Mari K; Galappathi, Kanthi; Ellingsen, Christine; Wegner, Catherine S; Hauge, Anette; Gaustad, Jon-Vidar

    2016-04-10

    Patient-derived xenograft (PDX) models of cancer are considered to reflect the biology and treatment response of human tumors to a larger extent than xenograft models initiated from established cell lines. The characterization of a panel of four novel PDX models of cervical carcinoma of the uterine cervix is described in this communication. The outcome of treatment differed substantially among the donor patients, and the PDX models were found to mirror the histology, aggressiveness, and metastatic propensity of the donor patients' tumors. Two of the models (BK-12 and LA-19) were highly metastatic, one model (ED-15) was poorly metastatic, and one model (HL-16) was non-metastatic. The primary tumors of the two highly metastatic models showed high density of intratumoral lymphatics, whereas the other two models did not develop intratumoral lymphatics. The potential of the models to metastasize to lymph nodes was associated with high expression of both angiogenesis-related genes and cancer stem cell-related genes. The models may be highly valuable for studying mechanisms linking lymph node metastasis to lymphangiogenesis, hemangiogenesis, and the presence of cancer stem cells.

  9. A Renewable Tissue Resource of Phenotypically Stable, Biologically and Ethnically Diverse, Patient-derived Human Breast Cancer Xenograft (PDX) Models

    PubMed Central

    Zhang, Xiaomei; Claerhout, Sofie; Pratt, Aleix; Dobrolecki, Lacey E.; Petrovic, Ivana; Lai, Qing; Landis, Melissa D.; Wiechmann, Lisa; Schiff, Rachel; Giuliano, Mario; Wong, Helen; Fuqua, Suzanne W.; Contreras, Alejandro; Gutierrez, Carolina; Huang, Jian; Mao, Sufeng; Pavlick, Anne C.; Froehlich, Amber M.; Wu, Meng-Fen; Tsimelzon, Anna; Hilsenbeck, Susan G.; Chen, Edward S.; Zuloaga, Pavel; Shaw, Chad A.; Rimawi, Mothaffar F.; Perou, Charles M.; Mills, Gordon B.; Chang, Jenny C.; Lewis, Michael T.

    2013-01-01

    Breast cancer research is hampered by difficulties in obtaining and studying primary human breast tissue, and by the lack of in vivo preclinical models that reflect patient tumor biology accurately. To overcome these limitations, we propagated a cohort of human breast tumors grown in the epithelium-free mammary fat pad of SCID/Beige and NOD/SCID/IL2γ-receptor null (NSG) mice, under a series of transplant conditions. Both models yielded stably transplantable xenografts at comparably high rates (~21% and ~19%, respectively). Of the conditions tested, xenograft take rate was highest in the presence of a low-dose estradiol pellet. Overall, 32 stably transplantable xenograft lines were established, representing 25 unique patients. Most tumors yielding xenografts were “triple-negative” (ER-PR-HER2+) (n=19). However, we established lines from three ER-PR-HER2+ tumors, one ER+PR-HER2−, one ER+PR+HER2− and one “triple-positive” (ER+PR+HER2+) tumor. Serially passaged xenografts show biological consistency with the tumor of origin, are phenotypically stable across multiple transplant generations at the histologic, transcriptomic, proteomic, and genomic levels, and show comparable treatment responses as those observed clinically. Xenografts representing 12 patients, including two ER+ lines, showed metastasis to the mouse lung. These models thus serve as a renewable, quality-controlled tissue resource for preclinical studies investigating treatment response and metastasis. PMID:23737486

  10. Dose-biomarker-response modeling of the anticancer effect of ethaselen in a human non-small cell lung cancer xenograft mouse model

    PubMed Central

    Ye, Suo-fu; Li, Jian; Ji, Shuang-min; Zeng, Hui-hui; Lu, Wei

    2017-01-01

    Thioredoxin reductase (TrxR) is a component of several redox-sensitive signaling cascades that mediate important biological processes such as cell survival, maturation, growth, migration and inhibition of apoptosis. The expression levels of TrxR1 in some human carcinoma cell lines are nearly 10 times higher than those in normal cells. Ethaselen is a novel antitumor candidate that exerts potent inhibition on non-small cell lung cancer (NSCLC) by targeting TrxR. In this study we explored the relationship between the ethaselen dose and TrxR activity level and the relationship between TrxR degradation and tumor apoptosis in a human lung carcinoma A549 xenograft model. BALB/c nude mice implanted with human NSCLC cell line A54 were administered ethaselen (36, 72, 108 mg·kg−1·d−1, ig) or vehicle for 10 d. The tumor size and TrxR activity levels in tumor tissues were daily recorded and detected. Based on the experimental data, NONMEM 7.2 was used to develop an integrated dose-biomarker-response model for describing the quantitative relationship between ethaselen dose and tumor eradication effects. The time course of TrxR activity levels was modeled using an indirect response model (IDR model), in which the influence of the tumor growth rates on Kin with the linear correction factor γ1 (0.021 d/mm). The drug binding-inhibition effects on Kout was described using a sigmoidal Emax model with Smax (5.95), SC50 (136 mg/kg) and Hill's coefficient γ2 (2.29). The influence of TrxR activity inhibition on tumor eradication was characterized by an Emax model with an Emax (130 mm3/d) and EC50 (0.0676). This model was further validated using a visual predictive check (VPC) and was used to predict the efficacy of different doses. In conclusion, the properties and characteristics of ethaselen acting on TrxR degradation and subsequently resulting in tumor apoptosis are characterized by the IDR model and integrated dose-biomarker-response model with high goodness-of-fit and great

  11. Development and rescue of human familial hypercholesterolaemia in a xenograft mouse model

    PubMed Central

    Bissig-Choisat, Beatrice; Wang, Lili; Legras, Xavier; Saha, Pradip K.; Chen, Leon; Bell, Peter; Pankowicz, Francis P.; Hill, Matthew C.; Barzi, Mercedes; Leyton, Claudia Kettlun; Leung, Hon-Chiu Eastwood; Kruse, Robert L.; Himes, Ryan W.; Goss, John A.; Wilson, James M.; Chan, Lawrence; Lagor, William R.; Bissig, Karl-Dimiter

    2015-01-01

    Diseases of lipid metabolism are a major cause of human morbidity, but no animal model entirely recapitulates human lipoprotein metabolism. Here we develop a xenograft mouse model using hepatocytes from a patient with familial hypercholesterolaemia caused by loss-of-function mutations in the low-density lipoprotein receptor (LDLR). Like familial hypercholesterolaemia patients, our familial hypercholesterolaemia liver chimeric mice develop hypercholesterolaemia and a 'humanized‘ serum profile, including expression of the emerging drug targets cholesteryl ester transfer protein and apolipoprotein (a), for which no genes exist in mice. We go on to replace the missing LDLR in familial hypercholesterolaemia liver chimeric mice using an adeno-associated virus 9-based gene therapy and restore normal lipoprotein profiles after administration of a single dose. Our study marks the first time a human metabolic disease is induced in an experimental animal model by human hepatocyte transplantation and treated by gene therapy. Such xenograft platforms offer the ability to validate human experimental therapies and may foster their rapid translation into the clinic. PMID:26081744

  12. Statistical evaluation and experimental design of a psoriasis xenograft transplantation model treated with cyclosporin A.

    PubMed

    Stenderup, Karin; Rosada, Cecilia; Alifrangis, Lene; Andersen, Søren; Dam, Tomas Norman

    2011-05-01

    Psoriasis xenograft transplantation models where human skin is transplanted onto immune-deficient mice are generally accepted in psoriasis research. Over the last decade, they have been widely employed to screen for new therapeutics with a potential anti-psoriatic effect. However, experimental designs differ in several parameters. Especially, the number of donors and grafts per experimental design varies greatly; numbers that are directly related to the probability of detecting statistically significant drug effects. In this study, we performed a statistical evaluation of the effect of cyclosporine A, a recognized anti-psoriatic drug, to generate a statistical model employable to simulate different scenarios of experimental designs and to calculate the associated statistical study power, defined as the probability of detecting a statistically significant anti-psoriatic drug treatment effect. Results showed that to achieve a study power of 0.8, at least 20 grafts per treatment group and a minimum of five donors should be included in the chosen experimental setting. To our knowledge, this is the first time that study power calculations have been performed to evaluate treatment effects in a psoriasis xenograft transplantation model. This study was based on a defined experimental protocol, thus other parameters such as drug potency, treatment protocol, mouse strain and graft size should, also, be taken into account when designing an experiment. We propose that the results obtained in this study may lend a more quantitative support to the validity of results obtained when exploring new potential anti-psoriatic drug effects.

  13. Decomplementation with cobra venom factor prolongs survival of xenografted islets in a rat to mouse model

    PubMed Central

    OBERHOLZER, J; YU, D; TRIPONEZ, F; CRETIN, N; ANDEREGGEN, E; MENTHA, G; WHITE, D; BUEHLER, L; MOREL, P; LOU, J

    1999-01-01

    Although the involvement of complement in hyperacute rejection of xenotransplants is well recognized, its role in rejection of devascularized xenografts, such as pancreatic islets, is not completely understood. In this study, we investigated whether complement participates in the immunopathology of xeno-islet transplantation in a concordant rat to mouse model. Rat pancreatic islets were implanted under the kidney capsule of normal and cobra venom factor (CVF)-decomplementized diabetic C57BL/6 mice. Graft survival was monitored by blood glucose levels. Deposition of IgM and C3 on grafted islets in vivo or on isolated islets in vitro (after incubation with normal and decomplementized mouse serum), as well as CD4- and CD8-positive leucocyte infiltration of grafts, was checked by immunohistochemistry. In addition, complement-mediated cytotoxicity on rat islet cells was evaluated by a 3-(4,5-dimethythiazolyl)-2.5-diphenyl-2H-tetrazolium-bromide (MTT) assay. A significant C3 deposition was found on grafted islets from the first day after transplantation in vivo, as well as on isolated islets after incubation with mouse serum in vitro. By MTT assay, complement-mediated cytotoxicity for islet cells was found. Decomplementation by CVF decreased C3 deposition on either isolated or grafted islets, delayed CD4- and CD8-positive leucocyte infiltration, led to significant inhibition of complement-mediated cytotoxicity for islet cells, and prolonged graft survival (mean survival time 21·3 versus 8·5 days; P <0·01). Our results indicate that decomplementation can prolong the survival time of devascularized xenografts across concordant species. The deposition of complement on transplanted islets may contribute to xenograft rejection by direct cytotoxicity and by promoting leucocyte infiltration. PMID:10447729

  14. Small-sample inference for incomplete longitudinal data with truncation and censoring in tumor xenograft models.

    PubMed

    Tan, Ming; Fang, Hong-Bin; Tian, Guo-Liang; Houghton, Peter J

    2002-09-01

    In cancer drug development, demonstrating activity in xenograft models, where mice are grafted with human cancer cells, is an important step in bringing a promising compound to humans. A key outcome variable is the tumor volume measured in a given period of time for groups of mice given different doses of a single or combination anticancer regimen. However, a mouse may die before the end of a study or may be sacrificed when its tumor volume quadruples, and its tumor may be suppressed for some time and then grow back. Thus, incomplete repeated measurements arise. The incompleteness or missingness is also caused by drastic tumor shrinkage (<0.01 cm3) or random truncation. Because of the small sample sizes in these models, asymptotic inferences are usually not appropriate. We propose two parametric test procedures based on the EM algorithm and the Bayesian method to compare treatment effects among different groups while accounting for informative censoring. A real xenograft study on a new antitumor agent, temozolomide, combined with irinotecan is analyzed using the proposed methods.

  15. Patient-derived xenograft models of colorectal cancer in pre-clinical research: a systematic review

    PubMed Central

    Brown, Kai M.; Xue, Aiqun; Mittal, Anubhav; Samra, Jaswinder S.; Smith, Ross; Hugh, Thomas J.

    2016-01-01

    AIMS We sought to objectively assess the internal and external validity of patient-derived xenograft (PDX) models as a platform in pre-clinical research into colorectal cancer (CRC). Metastatic disease is the most common cause of death from CRC, and despite significant research, the results of current combination chemotherapy and targeted therapies have been underwhelming for most of this patient group. One of the key factors limiting the success of translational CRC research is the biologically inaccurate models in which new therapies are developed. METHODS We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) checklist and SYRCLE (Systematic Review Centre for Laboratory animal Experimentation) guidelines to search Ovid MEDLINE and Embase databases up to July 2015 to identify studies involving PDX models of CRC where the model had been validated across multiple parameters. Data was extracted including host mouse strain, engraftment rate, site of engraftment, donor tumour source and development of metastases in the model. RESULTS Thirteen articles satisfied the inclusion criteria. There was significant heterogeneity amongst the included studies, but overall the median engraftment rate was high (70%) and PDX models faithfully recapitulated the characteristics of their patient tumours on the microscopic, genetic and functional levels. CONCLUSIONS PDX models of CRC have a reasonable internal validity and a high external validity. Developments in xenografting technology are broadening the applications of the PDX platform. However, the included studies could be improved by standardising reporting standards and closed following the ARRIVE (Animals in Research: Reporting In Vivo Experiments) guidelines. PMID:27517155

  16. Proteomic identification of the lactate dehydrogenase A in a radioresistant prostate cancer xenograft mouse model for improving radiotherapy

    PubMed Central

    Hao, Jingli; Graham, Peter; Chang, Lei; Ni, Jie; Wasinger, Valerie; Beretov, Julia; Deng, Junli; Duan, Wei; Bucci, Joseph; Malouf, David; Gillatt, David; Li, Yong

    2016-01-01

    Radioresistance is a major challenge for prostate cancer (CaP) metastasis and recurrence after radiotherapy. This study aimed to identify potential protein markers and signaling pathways associated with radioresistance using a PC-3 radioresistant (RR) subcutaneous xenograft mouse model and verify the radiosensitization effect from a selected potential candidate. PC-3RR and PC-3 xenograft tumors were established and differential protein expression profiles from two groups of xenografts were analyzed using liquid chromatography tandem-mass spectrometry. One selected glycolysis marker, lactate dehydrogenase A (LDHA) was validated, and further investigated for its role in CaP radioresistance. We found that 378 proteins and 51 pathways were significantly differentially expressed between PC-3RR and PC-3 xenograft tumors, and that the glycolysis pathway is closely linked with CaP radioresistance. In addition, we also demonstrated that knock down of LDHA with siRNA or inhibition of LDHA activity with a LDHA specific inhibitor (FX-11), could sensitize PC-3RR cells to radiotherapy with reduced epithelial-mesenchymal transition, hypoxia, DNA repair ability and autophagy, as well as increased DNA double strand breaks and apoptosis. In summary, we identified a list of potential RR protein markers and important signaling pathways from a PC-3RR xenograft mouse model, and demonstrate that targeting LDHA combined with radiotherapy could increase radiosensitivity in RR CaP cells, suggesting that LDHA is an ideal therapeutic target to develop combination therapy for overcoming CaP radioresistance. PMID:27708237

  17. A novel intraperitoneal metastatic xenograft mouse model for survival outcome assessment of esophageal adenocarcinoma

    PubMed Central

    Awasthi, Niranjan; Li, Jun; Schwarz, Margaret A.; Schwarz, Roderich E.; von Holzen, Urs

    2017-01-01

    Esophageal adenocarcinoma (EAC) has become the dominant type of esophageal cancer in United States. The 5-year survival rate of EAC is below 20% and most patients present with locally advanced or widespread metastatic disease, where current treatment is largely ineffective. Therefore, new therapeutic approaches are urgently needed. Improvement of EAC patient outcome requires well-characterized animal models in which to evaluate novel therapeutics. In this study we aimed to establish a peritoneal dissemination xenograft mouse model of EAC that would support survival outcome analyses. To find the best candidate cell line from 7 human EAC cell lines of different origin named ESO26, OE33, ESO51, SK-GT-2, OE19, OACM5.1C and Flo-1 were injected intraperitoneally/subcutaneously into SCID mice. The peritoneal/xenograft tumor formation and mouse survival were compared among different groups. All cell lines injected subcutaneously formed tumors within 3 months at variable rates. All cell lines except OACM5.1C formed intraperitoneal tumors within 3 months at variable rates. Median animal survival with peritoneal dissemination was 108 days for ESO26 cells (5X106), 65 days for OE33 cells (5X106), 88 days for ESO51 cells (5X106), 76 days for SK-GT-2 cells (5X106), 55 days for OE19 cells (5X106), 45 days for OE19 cells (10X106) and 82 days for Flo-1 cells (5X106). Interestingly, only in the OE19 model all mice (7/7 for 5X106 and 5/5 for10X106) developed bloody ascites with liver metastasis after intraperitoneal injection. The median survival time of these animals was the shortest (45 days for 10X106 cells). In addition, median survival was significantly increased after paclitaxel treatment compared with the control group (57 days versus 45 days, p = 0.0034) along with a significant decrease of the relative subcutaneous tumor volume (p = 0.00011). Thus peritoneal dissemination mouse xenograft model for survival outcome assessment after intraperitoneal injection of OE19 cells will

  18. Patient-Derived Xenografts as a Model System for Radiation Research

    PubMed Central

    Willey, Christopher D.; Gilbert, Ashley; Anderson, Joshua C.; Gillespie, G. Yancey

    2015-01-01

    The cancer literature is filled with promising preclinical studies demonstrating impressive efficacy for new therapeutics, yet translation of these approaches into clinical successes has been rare, indicating that current methods used to predict efficacy are sub-optimal. The most likely reason for the limitation of these studies is the disconnect between preclinical models and cancers treated in the clinic. Specifically, most preclinical models are poor representations of human disease. Immortalized cancer cell lines that dominate the cancer literature may be, in a sense, “paper tigers” that have been selected by decades of culture to be artificially driven by highly targetable proteins. Thus, although effective in treating these cell lines either in vitro or as artificial tumors transplanted from culture into experimental animals as xenografts, the identified therapies will likely underperform in a clinical setting. This inherent limitation not only applies to drug testing, but also to experiments with radiation therapy. Indeed, traditional radiobiology methods rely on monolayer culture systems, with emphasis on colony formation and DNA damage assessment that may have limited clinical translation. As such, there has been keen interest in developing tumor explant systems in which patient tumors are directly transplanted into, and solely maintained in vivo, using immunocompromised mice. These so-called Patient-Derived Xenografts (PDX) represent a robust model system that has been garnering support in academia and industry as a superior preclinical approach to drug testing. Likewise, PDX models have the potential to improve radiation research. In this review, we describe how PDX models are currently being used for both drug and radiation testing and how they can be incorporated into a translational research program. PMID:26384275

  19. In vivo-in vitro comparison of acute respiratory tract toxicity using human 3D airway epithelial models and human A549 and murine 3T3 monolayer cell systems.

    PubMed

    Sauer, Ursula G; Vogel, Sandra; Hess, Annemarie; Kolle, Susanne N; Ma-Hock, Lan; van Ravenzwaay, Bennard; Landsiedel, Robert

    2013-02-01

    The usefulness of in vitro systems to predict acute inhalation toxicity was investigated. Nineteen substances were tested in three-dimensional human airway epithelial models, EpiAirway™ and MucilAir™, and in A549 and 3T3 monolayer cell cultures. IC(50) values were compared to rat four-hour LC(50) values classified according to EPA and GHS hazard categories. Best results were achieved with a prediction model distinguishing toxic from non-toxic substances, with satisfactory specificities and sensitivities. Using a self-made four-level prediction model to classify substances into four in vitro hazard categories, in vivo-in vitro concordance was mediocre, but could be improved by excluding substances causing pulmonary edema and emphysema in vivo. None of the test systems was outstanding, and there was no evidence that tissue or monolayer systems using respiratory tract cells provide an added value. However, the test systems only reflected bronchiole epithelia and alveolar cells and investigated cytotoxicity. Effects occurring in other cells by other mechanisms could not be recognised. Further work should optimise test protocols and expand the set of substances tested to define applicability domains. In vivo respiratory toxicity data for in vitro comparisons should distinguish different modes of action, and their relevance for human health effects should be ensured.

  20. Genomic characterization of a large panel of patient-derived hepatocellular carcinoma xenograft tumor models for preclinical development.

    PubMed

    Gu, Qingyang; Zhang, Bin; Sun, Hongye; Xu, Qiang; Tan, Yexiong; Wang, Guan; Luo, Qin; Xu, Weiguo; Yang, Shuqun; Li, Jian; Fu, Jing; Chen, Lei; Yuan, Shengxian; Liang, Guibai; Ji, Qunsheng; Chen, Shu-Hui; Chan, Chi-Chung; Zhou, Weiping; Xu, Xiaowei; Wang, Hongyang; Fang, Douglas D

    2015-08-21

    Lack of clinically relevant tumor models dramatically hampers development of effective therapies for hepatocellular carcinoma (HCC). Establishment of patient-derived xenograft (PDX) models that faithfully recapitulate the genetic and phenotypic features of HCC becomes important. In this study, we first established a cohort of 65 stable PDX models of HCC from corresponding Chinese patients. Then we showed that the histology and gene expression patterns of PDX models were highly consistent between xenografts and case-matched original tumors. Genetic alterations, including mutations and DNA copy number alterations (CNAs), of the xenografts correlated well with the published data of HCC patient specimens. Furthermore, differential responses to sorafenib, the standard-of-care agent, in randomly chosen xenografts were unveiled. Finally, in the models expressing high levels of FGFR1 gene according to the genomic data, FGFR1 inhibitor lenvatinib showed greater efficacy than sorafenib. Taken together, our data indicate that PDX models resemble histopathological and genomic characteristics of clinical HCC tumors, as well as recapitulate the differential responses of HCC patients to the standard-of-care treatment. Overall, this large collection of PDX models becomes a clinically relevant platform for drug screening, biomarker discovery and translational research in preclinical setting.

  1. CysLT(1)R antagonists inhibit tumor growth in a xenograft model of colon cancer.

    PubMed

    Savari, Sayeh; Liu, Minghui; Zhang, Yuan; Sime, Wondossen; Sjölander, Anita

    2013-01-01

    The expression of the inflammatory G-protein coupled receptor CysLT1R has been shown to be upregulated in colon cancer patients and associated with poor prognosis. The present study investigated the correlation between CysLT1R and colon cancer development in vivo using CysLT1R antagonists (ZM198,615 or Montelukast) and the nude mouse xenograft model. Two drug administration regimens were established. The first regimen was established to investigate the importance of CysLT1R in tumor initiation. Nude mice were inoculated with 50 µM CysLT1R antagonist-pretreated HCT-116 colon cancer cells and received continued treatment (5 mg/kg/day, intraperitoneally). The second regimen aimed to address the role of CysLT1R in tumor progression. Nude mice were inoculated with non-pretreated HCT-116 cells and did not receive CysLT1R antagonist treatment until recordable tumor appearance. Both regimens resulted in significantly reduced tumor size, attributed to changes in proliferation and apoptosis as determined by reduced Ki-67 levels and increased levels of p21(WAF/Cip1) (P<0.01), cleaved caspase 3, and the caspase-cleaved product of cytokeratin 18. Decreased levels of VEGF (P<0.01) and reduced vessel size (P<0.05) were also observed, the latter only in the ZM198,615-pretreatment group. Furthermore, we performed a series of in vitro studies using the colon cancer cell line HCT-116 and CysLT1R antagonists. In addition to significant reductions in cell proliferation, adhesion and colony formation, we observed induction of cell cycle arrest and apoptosis in a dose-dependent manner. The ability of Montelukast to inhibit growth of human colon cancer xenograft was further validated by using two additional colon cancer cell lines, SW-480 and HT-29. Our results demonstrate that CysLT1R antagonists inhibit growth of colon cancer xenografts primarily by reducing proliferation and inducing apoptosis of the tumor cells.

  2. CysLT1R Antagonists Inhibit Tumor Growth in a Xenograft Model of Colon Cancer

    PubMed Central

    Savari, Sayeh; Liu, Minghui; Zhang, Yuan; Sime, Wondossen; Sjölander, Anita

    2013-01-01

    The expression of the inflammatory G-protein coupled receptor CysLT1R has been shown to be upregulated in colon cancer patients and associated with poor prognosis. The present study investigated the correlation between CysLT1R and colon cancer development in vivo using CysLT1R antagonists (ZM198,615 or Montelukast) and the nude mouse xenograft model. Two drug administration regimens were established. The first regimen was established to investigate the importance of CysLT1R in tumor initiation. Nude mice were inoculated with 50 µM CysLT1R antagonist-pretreated HCT-116 colon cancer cells and received continued treatment (5 mg/kg/day, intraperitoneally). The second regimen aimed to address the role of CysLT1R in tumor progression. Nude mice were inoculated with non-pretreated HCT-116 cells and did not receive CysLT1R antagonist treatment until recordable tumor appearance. Both regimens resulted in significantly reduced tumor size, attributed to changes in proliferation and apoptosis as determined by reduced Ki-67 levels and increased levels of p21WAF/Cip1 (P<0.01), cleaved caspase 3, and the caspase-cleaved product of cytokeratin 18. Decreased levels of VEGF (P<0.01) and reduced vessel size (P<0.05) were also observed, the latter only in the ZM198,615-pretreatment group. Furthermore, we performed a series of in vitro studies using the colon cancer cell line HCT-116 and CysLT1R antagonists. In addition to significant reductions in cell proliferation, adhesion and colony formation, we observed induction of cell cycle arrest and apoptosis in a dose-dependent manner. The ability of Montelukast to inhibit growth of human colon cancer xenograft was further validated by using two additional colon cancer cell lines, SW-480 and HT-29. Our results demonstrate that CysLT1R antagonists inhibit growth of colon cancer xenografts primarily by reducing proliferation and inducing apoptosis of the tumor cells. PMID:24039952

  3. Retrospective growth kinetics and radiosensitivity analysis of various human xenograft models

    PubMed Central

    Lee, Ji Young; Kim, Eun Ho; Chung, Namhyun

    2016-01-01

    The purpose of this study was to delineate the various factors that affect the growth characteristics of human cancer xenografts in nude mice and to reveal the relationship between the growth characteristics and radiosensitivity. We retrospectively analyzed 390 xenografts comprising nine different human cancer lines grown in nude mice used in our institute between 2009 and 2015. Tumor growth rate (TGR) was calculated using exponential growth equations. The relationship between the TGR of xenografts and the proliferation of the cells in vitro was examined. Additionally, we examined the correlations between the surviving fractions of cells after 2 Gy irradiation in vitro and the response of the xenograft to radiation. The TGR of xenografts was positively related to the proliferation of the cells in vitro (rP=0.9714, p<0.0001), whereas it was independent of the histological type of the xenografts. Radiation-induced suppression of the growth rate (T/C%) of xenografts was positively related to the radiosensitivity of the cells in vitro (SF2; rP=0.8684, p=0.0284) and TGR (rP=0.7623, p=0.0780). The proliferation of human cancer cells in vitro and the growth rate of xenografts were positively related. The radiosensitivity of cancer cells, as judged from the SF2 values in vitro, and the radiation-induced suppression of xenograft growth were positively related. In conclusion, the growth rate of human xenografts was independent of histological type and origin of the cancer cells, and was positively related to the proliferation of the cancer cells in vitro. PMID:28053611

  4. Utility of a human-mouse xenograft model and in vivo near-infrared fluorescent imaging for studying wound healing.

    PubMed

    Shanmugam, Victoria K; Tassi, Elena; Schmidt, Marcel O; McNish, Sean; Baker, Stephen; Attinger, Christopher; Wang, Hong; Shara, Nawar; Wellstein, Anton

    2015-12-01

    To study the complex cellular interactions involved in wound healing, it is essential to have an animal model that adequately mimics the human wound microenvironment. Currently available murine models are limited because wound contraction introduces bias into wound surface area measurements. The purpose of this study was to demonstrate utility of a human-mouse xenograft model for studying human wound healing. Normal human skin was harvested from elective abdominoplasty surgery, xenografted onto athymic nude (nu/nu) mice, and allowed to engraft for 3 months. The graft was then wounded using a 2-mm punch biopsy. Wounds were harvested on sequential days to allow tissue-based markers of wound healing to be followed sequentially. On the day of wound harvest, mice were injected with XenoLight RediJect cyclooxygenase-2 (COX-2) probe and imaged according to package instructions. Immunohistochemistry confirms that this human-mouse xenograft model is effective for studying human wound healing in vivo. Additionally, in vivo fluorescent imaging for inducible COX-2 demonstrated upregulation from baseline to day 4 (P = 0·03) with return to baseline levels by day 10, paralleling the reepithelialisation of the wound. This human-mouse xenograft model, combined with in vivo fluorescent imaging provides a useful mechanism for studying molecular pathways of human wound healing.

  5. Overexpression of Bcl-2–Associated Death Inhibits A549 Cell Growth In Vitro and In Vivo

    PubMed Central

    Huang, Na; Zhu, Jing; Liu, Dan; Li, Ya-Lun; Chen, Bo-Jiang; He, Yan-Qi; Liu, Kun; Mo, Xian-Ming

    2012-01-01

    Abstract The importance of apoptosis during the process of inhibiting tumorigenesis has been recognized. The role of BH3-only proapoptotic protein Bcl-2–associated death (BAD) in tumor growth remains controversial. The aim of this study was to explore the role of BAD in lung cancer cells. Our study showed that expression of BAD was upregulated in A549 cells by a recombinant lentivirus overexpressing BAD. In vitro, BAD overexpression significantly inhibited A549 cell proliferation and induced apoptosis in cell proliferation and apoptosis assays, respectively. The effect of BAD on A549 cells was studied in tumor xenograft of nude mice and the results showed that the tumor volume in the experimental group was smaller than the control groups. Further, immunohistochemical technique was used to determine the cell proliferation and apoptosis status of the lung tumor xenograft cells. This demonstrated that the in vivo and in vitro results were consistent. Taken together, our results indicate that overexpression of BAD inhibits the growth of A549 cells in vitro and in vivo, through inhibiting cell proliferation and inducing apoptosis. Thus, BAD could be a potential therapeutic target. PMID:22011203

  6. Molecular mechanisms underlying mangiferin-induced apoptosis and cell cycle arrest in A549 human lung carcinoma cells

    PubMed Central

    SHI, WEI; DENG, JIAGANG; TONG, RONGSHENG; YANG, YONG; HE, XIA; LV, JIANZHEN; WANG, HAILIAN; DENG, SHAOPING; QI, PING; ZHANG, DINGDING; WANG, YI

    2016-01-01

    Mangiferin, which is a C-glucosylxanthone (1,3,6,7-tetrahydroxyxanthone-C2-β-D-glucoside) purified from plant sources, has recently gained attention due to its various biological activities. The present study aimed to determine the apoptotic effects of mangiferin on A549 human lung adenocarcinoma cells. In vitro studies demonstrated that mangiferin exerted growth-inhibitory and apoptosis-inducing effects against A549 cells. In addition, mangiferin exhibited anti-tumor properties in A549 xenograft mice in vivo. Mangiferin triggered G2/M phase cell cycle arrest via down-regulating the cyclin-dependent kinase 1-cyclin B1 signaling pathway, and induced apoptotic cell death by inhibiting the protein kinase C-nuclear factor-κB pathway. In addition, mangiferin was able to enhance the antiproliferative effects of cisplatin on A549 cells, thus indicating the potential for a combined therapy. Notably, mangiferin exerted anticancer effects in vivo, where it was able to markedly decrease the volume and weight of subcutaneous tumor mass, and expand the lifespan of xenograft mice. The present study clarified the molecular mechanisms underlying mangiferin-induced antitumor activities, and suggested that mangiferin may be considered a potential antineoplastic drug for the future treatment of cancer. PMID:26935347

  7. New mouse xenograft model modulated by tumor-associated fibroblasts for human multi-drug resistance in cancer

    PubMed Central

    MA, YAN; LIN, ZHIQIANG; FALLON, JOHN K.; ZHAO, QIANG; LIU, DAN; WANG, YONGJUN; LIU, FENG

    2015-01-01

    We developed an MDR tumor model that is modulated by tumor-associated fibroblasts. Studies on proliferation of tumor cell lines including paclitaxel-sensitive and resistant cell lines were performed. The expressions of P-gp and α-smooth muscle actin (α-SMA) antigen were evaluated by immunohistochemistry and western blot analysis. Quantitative P-gp analyses of different cell lines were accomplished by nanoUPLC-MS/MS. Tumor cell colony formation assay and established xenograft model was used to investigate the relationship between P-gp expression, fibroblast levels and tumorigenesis. The mouse xenograft model was developed after co-inoculation with MDR tumor cells and NIH/3T3 fibroblast cells. There was no correlation between tumorigenesis in vivo and the growth rate of cells in vitro. The proliferation among different cell lines had no significant differences, but the P-gp expression and tumor growth in the xenograft model were fairly different. P-gp determination and α-SMA immunofluorescence staining clarified the relationship between P-gp expression, fibroblast levels and tumorigenesis. It was more difficult for tumor cells with higher P-gp levels to recruit fibroblasts in vivo, resulting in lower tumorigenesis due to the lack of structural and chemical support during tumor progression. In the established paclitaxel-resistant mouse xenograft model, no obvious antitumor effect was observed after Taxol treatment, but a significant decrease in tumor size for the group treated with gemcitabine sensitive to the model. The results show that the added fibroblasts do not disturb the applicability of the model in MDR. Therefore, this mouse xenograft MDR model could serve as an effective tool for MDR research. PMID:26352907

  8. Survivin Antisense Oligonucleotides Effectively Radiosensitize Colorectal Cancer Cells in Both Tissue Culture and Murine Xenograft Models

    SciTech Connect

    Roedel, Franz; Capalbo, Gianni; Weiss, Christian; Roedel, Claus

    2008-05-01

    Purpose: Survivin shows a radiation resistance factor in colorectal cancer. In the present study, we determined whether survivin messenger RNA levels in patients with rectal cancer predict tumor response after neoadjuvant radiochemotherapy and whether inhibition of survivin by the use of antisense oligonucleotides (ASOs) enhances radiation responses. Methods and Materials: SW480 colorectal carcinoma cells were transfected with survivin ASO (LY2181308) and irradiated with doses ranging from 0-8 Gy. Survivin expression, cell-cycle distribution, {gamma}H2AX fluorescence, and induction of apoptosis were monitored by means of immunoblotting, flow cytometry, and caspase 3/7 activity. Clonogenic survival was determined by using a colony-forming assay. An SW480 xenograft model was used to investigate the effect of survivin attenuation and irradiation on tumor growth. Furthermore, survivin messenger RNA levels were studied in patient biopsy specimens by using Affymetrix microarray analysis. Results: In the translational study of 20 patients with rectal cancer, increased survivin levels were associated with significantly greater risk of local tumor recurrence (p = 0.009). Treatment of SW480 cells with survivin ASOs and irradiation resulted in an increased percentage of apoptotic cells, caspase 3/7 activity, fraction of cells in the G{sub 2}/M phase, and H2AX phosphorylation. Clonogenic survival decreased compared with control-treated cells. Furthermore, treatment of SW480 xenografts with survivin ASOs and irradiation resulted in a significant delay in tumor growth. Conclusion: Survivin appears to be a molecular biomarker in patients with rectal cancer. Furthermore, in vitro and in vivo data suggest a potential role of survivin as a molecular target to improve treatment response to radiotherapy in patients with rectal cancer.

  9. Combining fisetin and ionizing radiation suppresses the growth of mammalian colorectal cancers in xenograft tumor models.

    PubMed

    Leu, Jyh-Der; Wang, Bo-Shen; Chiu, Shu-Jun; Chang, Chun-Yuan; Chen, Chien-Chih; Chen, Fu-Du; Avirmed, Shiirevnyamba; Lee, Yi-Jang

    2016-12-01

    Fisetin (3,7,3',4'-tetrahydroxyflavone), which belongs to the flavonoid group of polyphenols and is found in a wide range of plants, has been reported to exhibit a number of biological activities in human cancer cells, including antioxidant, anti-inflammatory, antiangiogenic, anti-invasive and antiproliferative effects. Although previous in vitro studies have shown that fisetin treatment increases the apoptotic rate and enhances the radiosensitivity of human colorectal cancer cells, the in vivo effects of fisetin on tumor growth remain unclear. In the present study a murine xenograft tumor model was employed to investigate the therapeutic effects of fisetin in combination with radiation on CT-26 colon cancer cells and human HCT116 colorectal cancer cells. This revealed that intratumoral injection of fisetin significantly suppressed the growth of CT-26 tumors compared with the untreated control group, but had little effect on the growth of HCT116 tumors. However, fisetin in combination with 2-Gy radiation enhanced tumor suppressor activity in murine colon and human colorectal xenograft tumors, as compared with 2-Gy fractionated radiation administered alone for 5 days and fisetin alone. Interestingly, fisetin downregulated the expression of the oncoprotein securin in a p53-independent manner. However, securin-null HCT116 tumors showed only moderate sensitivity to fisetin treatment, and the combination of fisetin and radiation did not significantly suppress securin-null HCT116 tumor growth compared with normal HCT116 tumors. Therefore, the role of securin in mediating the effect of fisetin on colorectal cancer growth warrants further investigation. In conclusion, the results of the current study provide important preclinical data for evaluating the efficacy of fisetin and radiation combination treatment as an adjuvant chemoradiotherapy for human colorectal cancers.

  10. The Anti-Proliferative Effect of Boron Neutron Capture Therapy in a Prostate Cancer Xenograft Model

    PubMed Central

    Yoshikawa, Yuki; Takai, Tomoaki; Ibuki, Naokazu; Hirano, Hajime; Nomi, Hayahito; Kawabata, Shinji; Kiyama, Satoshi; Miyatake, Shin-Ichi; Kuroiwa, Toshihiko; Suzuki, Minoru; Kirihata, Mitsunori; Azuma, Haruhito

    2015-01-01

    Purpose Boron neutron capture therapy (BNCT) is a selective radiation treatment for tumors that preferentially accumulate drugs carrying the stable boron isotope, 10B. BNCT has been evaluated clinically as an alternative to conventional radiation therapy for the treatment of brain tumors, and more recently, recurrent advanced head and neck cancer. Here we investigated the effect of BNCT on prostate cancer (PCa) using an in vivo mouse xenograft model that we have developed. Materials and Methods Mice bearing the xenotransplanted androgen-independent human PCa cell line, PC3, were divided into four groups: Group 1: untreated controls; Group 2: Boronophenylalanine (BPA); Group 3: neutron; Group 4: BPA-mediated BNCT. We compared xenograft growth among these groups, and the body weight and any motility disturbance were recorded. Immunohistochemical (IHC) studies of the proliferation marker, Ki-67, and TUNEL staining were performed 9 weeks after treatment. Results The in vivo studies demonstrated that BPA-mediated BNCT significantly delayed tumor growth in comparison with the other groups, without any severe adverse events. There was a significant difference in the rate of freedom from gait abnormalities between the BPA-mediated BNCT group and the other groups. The IHC studies revealed that BNCT treatment significantly reduced the number of Ki-67-positive cells in comparison with the controls (mean±SD 6.9±1.5 vs 12.7±4.0, p<0.05), while there was no difference in the number of apoptotic cells, suggesting that BPA-mediated BNCT reduced PCa progression without affecting apoptosis at 9 weeks post-treatment. Conclusions This study has provided the first preclinical proof-of-principle data to indicate that BPA-mediated BNCT reduces the in vivo growth of PCa. Although further studies will be necessary, BNCT might be a novel potential treatment for PCa. PMID:26325195

  11. Growth hormone receptor antagonism suppresses tumour regrowth after radiotherapy in an endometrial cancer xenograft model.

    PubMed

    Evans, Angharad; Jamieson, Stephen M F; Liu, Dong-Xu; Wilson, William R; Perry, Jo K

    2016-08-28

    Human GH expression is associated with poor survival outcomes for endometrial cancer patients, enhanced oncogenicity of endometrial cancer cells and reduced sensitivity to ionising radiation in vitro, suggesting that GH is a potential target for anticancer therapy. However, whether GH receptor inhibition sensitises to radiotherapy in vivo has not been tested. In the current study, we evaluated whether the GH receptor antagonist, pegvisomant (Pfizer), sensitises to radiotherapy in vivo in an endometrial tumour xenograft model. Subcutaneous administration of pegvisomant (20 or 100 mg/kg/day, s.c.) reduced serum IGF1 levels by 23% and 68%, respectively, compared to vehicle treated controls. RL95-2 xenografts grown in immunodeficient NIH-III mice were treated with vehicle or pegvisomant (100 mg/kg/day), with or without fractionated gamma radiation (10 × 2.5 Gy over 5 days). When combined with radiation, pegvisomant significantly increased the median time tumours took to reach 3× the pre-radiation treatment volume (49 days versus 72 days; p = 0.001). Immunohistochemistry studies demonstrated that 100 mg/kg pegvisomant every second day was sufficient to abrogate MAP Kinase signalling throughout the tumour. In addition, treatment with pegvisomant increased hypoxic regions in irradiated tumours, as determined by immunohistochemical detection of pimonidazole adducts, and decreased the area of CD31 labelling in unirradiated tumours, suggesting an anti-vascular effect. Pegvisomant did not affect intratumoral staining for HIF1α, VEGF-A, CD11b, or phospho-EGFR. Our results suggest that blockade of the human GH receptor may improve the response of GH and/or IGF1-responsive endometrial tumours to radiation.

  12. Combining fisetin and ionizing radiation suppresses the growth of mammalian colorectal cancers in xenograft tumor models

    PubMed Central

    Leu, Jyh-Der; Wang, Bo-Shen; Chiu, Shu-Jun; Chang, Chun-Yuan; Chen, Chien-Chih; Chen, Fu-Du; Avirmed, Shiirevnyamba; Lee, Yi-Jang

    2016-01-01

    Fisetin (3,7,3′,4′-tetrahydroxyflavone), which belongs to the flavonoid group of polyphenols and is found in a wide range of plants, has been reported to exhibit a number of biological activities in human cancer cells, including antioxidant, anti-inflammatory, antiangiogenic, anti-invasive and antiproliferative effects. Although previous in vitro studies have shown that fisetin treatment increases the apoptotic rate and enhances the radiosensitivity of human colorectal cancer cells, the in vivo effects of fisetin on tumor growth remain unclear. In the present study a murine xenograft tumor model was employed to investigate the therapeutic effects of fisetin in combination with radiation on CT-26 colon cancer cells and human HCT116 colorectal cancer cells. This revealed that intratumoral injection of fisetin significantly suppressed the growth of CT-26 tumors compared with the untreated control group, but had little effect on the growth of HCT116 tumors. However, fisetin in combination with 2-Gy radiation enhanced tumor suppressor activity in murine colon and human colorectal xenograft tumors, as compared with 2-Gy fractionated radiation administered alone for 5 days and fisetin alone. Interestingly, fisetin downregulated the expression of the oncoprotein securin in a p53-independent manner. However, securin-null HCT116 tumors showed only moderate sensitivity to fisetin treatment, and the combination of fisetin and radiation did not significantly suppress securin-null HCT116 tumor growth compared with normal HCT116 tumors. Therefore, the role of securin in mediating the effect of fisetin on colorectal cancer growth warrants further investigation. In conclusion, the results of the current study provide important preclinical data for evaluating the efficacy of fisetin and radiation combination treatment as an adjuvant chemoradiotherapy for human colorectal cancers. PMID:28105204

  13. Patient-derived xenograft (PDX) models in basic and translational breast cancer research.

    PubMed

    Dobrolecki, Lacey E; Airhart, Susie D; Alferez, Denis G; Aparicio, Samuel; Behbod, Fariba; Bentires-Alj, Mohamed; Brisken, Cathrin; Bult, Carol J; Cai, Shirong; Clarke, Robert B; Dowst, Heidi; Ellis, Matthew J; Gonzalez-Suarez, Eva; Iggo, Richard D; Kabos, Peter; Li, Shunqiang; Lindeman, Geoffrey J; Marangoni, Elisabetta; McCoy, Aaron; Meric-Bernstam, Funda; Piwnica-Worms, Helen; Poupon, Marie-France; Reis-Filho, Jorge; Sartorius, Carol A; Scabia, Valentina; Sflomos, George; Tu, Yizheng; Vaillant, François; Visvader, Jane E; Welm, Alana; Wicha, Max S; Lewis, Michael T

    2016-12-01

    Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research.

  14. Antitumor Activity of VB-111, a Novel Antiangiogenic Virotherapeutic, in Thyroid Cancer Xenograft Mouse Models

    PubMed Central

    Reddi, H. V.; Madde, P.; Cohen, Y. C.; Bangio, L.; Breitbart, E.; Harats, D.; Bible, K. C.

    2011-01-01

    VB-111 is an engineered antiangiogenic adenovirus that expresses Fas-c in angiogenic blood vessels and has previously been shown to have significant antitumor activity in vitro and in vivo in Lewis lung carcinoma, melanoma, and glioblastoma models. To evaluate the efficacy of VB-111 in thyroid cancer, we conducted in vivo xenograft nude mouse studies using multiple thyroid cancer-derived cell lines models. VB-111 treatment resulted in 26.6% (P = 0.0596), 34.4% (P = 0.0046), and 37.6% (P = 0.0249) inhibition of tumor growth in follicular, papillary and anaplastic thyroid cancer models, respectively. No toxicity was observed in any model. All tumor types showed a consistent and significant reduction of CD-31 staining (P < 0.05), reflecting a reduction of angiogenic activity in the tumors, consistent with the intended targeting of the virus. A phase 2 clinical trial of VB-111 in patients with advanced differentiated thyroid cancer is ongoing. PMID:22701765

  15. Development of Patient Derived Xenograft Models of Overt Spontaneous Breast Cancer Metastasis: A Cautionary Note

    PubMed Central

    Paez-Ribes, Marta; Man, Shan; Xu, Ping; Kerbel, Robert S.

    2016-01-01

    Several approaches are being evaluated to improve the historically limited value of studying transplanted primary tumors derived by injection of cells from established cell lines for predicting subsequent cancer therapy outcomes in patients and clinical trials. These approaches include use of genetically engineered mouse models (GEMMs) of spontaneous tumors, or patient tumor tissue derived xenografts (PDXs). Almost all such therapy studies utilizing such models involve treatment of established primary tumors. An alternative approach we have developed involves transplanted human tumor xenografts derived from established cell lines to treat mice with overt visceral metastases after primary tumor resection. The rationale is to mimic the more challenging circumstance of treating patients with late stage metastatic disease. These metastatic models entail prior in vivo selection of heritable, phenotypically stable variants with increased aggressiveness for spontaneous metastasis; they were derived by orthotopic injection of tumor cells followed by primary tumor resection and serial selection of distant spontaneous metastases, from which variant cell lines having a more aggressive heritable metastatic phenotype were established. We attempted to adopt this strategy for breast cancer PDXs. We studied five breast cancer PDXs, with the emphasis on two, called HCI-001 and HCI-002, both derived from triple negative breast cancer patients. However significant technical obstacles were encountered. These include the inherent slow growth rates of PDXs, the rarity of overt spontaneous metastases (detected in only 3 of 144 mice), very high rates of tumor regrowths at the primary tumor resection site, the failure of the few human PDX metastases isolated to manifest a more aggressive metastatic phenotype upon re-transplantation into new hosts, and the formation of metastases which were derived from de novo mouse thymomas arising in aged SCID mice that we used for the experiments. We

  16. Histone modifications patterns in tissues and tumours from acute promyelocytic leukemia xenograft model in response to combined epigenetic therapy.

    PubMed

    Valiulienė, Giedrė; Treigytė, Gražina; Savickienė, Jūratė; Matuzevičius, Dalius; Alksnė, Milda; Jarašienė-Burinskaja, Rasa; Bukelskienė, Virginija; Navakauskas, Dalius; Navakauskienė, Rūta

    2016-04-01

    Xenograft models are suitable for in vivo study of leukemia's pathogenesis and the preclinical development of anti-leukemia agents but understanding of epigenetic regulatory mechanisms linking to adult cell functions in pathological conditions during different in vivo treatments is yet unknown. In this study, for the first time epigenetic chromatin modifications were characterized in tissues and tumours from murine xenograft model generated using the human acute promyelocytic leukemia (APL) NB4 cells engrafted in immunodeficient NOG mice. Xenografts were subjected to combined epigenetic treatment by histone deacetylase inhibitor Belinostat, histone methyltransferase inhibitor 3-DZNeaplanocin A and all-trans-retinoic acid based on in vitro model, where such combination inhibited NB4 cell growth and enhanced retinoic acid-induced differentiation to granulocytes. Xenotransplantation was assessed by peripheral blood cells counts, the analysis of cell surface markers (CD15, CD33, CD45) and the expression of certain genes (PML-RAR alpha, CSF3, G-CSFR, WT1). The combined treatment prolonged APL xenograft mice survival and prevented tumour formation. The analysis of the expression of histone marks such as acetylation of H4, trimethylation of H3K4, H3K9 and H3K27 in APL xenograft mice tumours and tissues demonstrated tissue-specific changes in the level of histone modifications and the APL prognostic mark, WT1 protein. In summary, the effects of epigenetic agents used in this study were positive for leukemia prevention and linked to a modulation of the chromatin epigenetic environment in adult tissues of malignant organism.

  17. Pharmacokinetic modeling of an induction regimen for in vivo combined testing of novel drugs against pediatric acute lymphoblastic leukemia xenografts.

    PubMed

    Szymanska, Barbara; Wilczynska-Kalak, Urszula; Kang, Min H; Liem, Natalia L M; Carol, Hernan; Boehm, Ingrid; Groepper, Daniel; Reynolds, C Patrick; Stewart, Clinton F; Lock, Richard B

    2012-01-01

    Current regimens for induction therapy of pediatric acute lymphoblastic leukemia (ALL), or for re-induction post relapse, use a combination of vincristine (VCR), a glucocorticoid, and L-asparaginase (ASP) with or without an anthracycline. With cure rates now approximately 80%, robust pre-clinical models are necessary to prioritize active new drugs for clinical trials in relapsed/refractory patients, and the ability of these models to predict synergy/antagonism with established therapy is an essential attribute. In this study, we report optimization of an induction-type regimen by combining VCR, dexamethasone (DEX) and ASP (VXL) against ALL xenograft models established from patient biopsies in immune-deficient mice. We demonstrate that the VXL combination was synergistic in vitro against leukemia cell lines as well as in vivo against ALL xenografts. In vivo, VXL treatment caused delays in progression of individual xenografts ranging from 22 to >146 days. The median progression delay of xenografts derived from long-term surviving patients was 2-fold greater than that of xenografts derived from patients who died of their disease. Pharmacokinetic analysis revealed that systemic DEX exposure in mice increased 2-fold when administered in combination with VCR and ASP, consistent with clinical findings, which may contribute to the observed synergy between the 3 drugs. Finally, as proof-of-principle we tested the in vivo efficacy of combining VXL with either the Bcl-2/Bcl-xL/Bcl-w inhibitor, ABT-737, or arsenic trioxide to provide evidence of a robust in vivo platform to prioritize new drugs for clinical trials in children with relapsed/refractory ALL.

  18. Radiation Dose Uncertainty and Correction for a Mouse Orthotopic and Xenograft Irradiation Model

    PubMed Central

    Gan, Gregory N.; Altunbas, Cem; Morton, John J.; Eagles, Justin; Backus, Jennifer; Dzingle, Wayne; Raben, David; Jimeno, Antonio

    2016-01-01

    Purpose In animal irradiation models, reported dose can vary significantly from the actual doses delivered. We describe an effective method for in vivo dose verification. Materials and Methods Mice bearing commercially-available cell line or patient-derived tumor cell orthotopic or flank xenografts were irradiated using a 160 kVp, 25 mA X-ray source. Entrance dose was evaluated using optically-stimulated luminescence dosimeters (OSLD) and exit dose was assessed using radiochromic film dosimetry. Results Tumor position within the irradiation field was validated using external fiducial markers. The average entrance dose in orthotopic tumors from 10 OSLDs placed on 2 different animal irradiation days was 514±37 cGy (range: 437–545). Exit dose measurements taken from 7 radiochromic films on two separate days were 341±21 cGy (a 34% attenuation). Flank tumor irradiation doses measured by OSLD were 368±9 cGy compared to exit doses of 330 cGy measured by radiochromic film. Conclusion Variations related to the irradiation model can lead to significant under or over- dosing in vivo which can affect tumor control and/or biologic endpoints that are dose dependent. We recommend that dose measurements be determined empirically based on the mouse model and irradiator used and dose compensation adjustments performed to ensure correct and appropriate doses. PMID:26689828

  19. Patient-Derived Xenograft Models to Improve Targeted Therapy in Epithelial Ovarian Cancer Treatment

    PubMed Central

    Scott, Clare L.; Becker, Marc A.; Haluska, Paul; Samimi, Goli

    2013-01-01

    Despite increasing evidence that precision therapy targeted to the molecular drivers of a cancer has the potential to improve clinical outcomes, high-grade epithelial ovarian cancer (OC) patients are currently treated without consideration of molecular phenotype, and predictive biomarkers that could better inform treatment remain unknown. Delivery of precision therapy requires improved integration of laboratory-based models and cutting-edge clinical research, with pre-clinical models predicting patient subsets that will benefit from a particular targeted therapeutic. Patient-derived xenografts (PDXs) are renewable tumor models engrafted in mice, generated from fresh human tumors without prior in vitro exposure. PDX models allow an invaluable assessment of tumor evolution and adaptive response to therapy. PDX models have been applied to pre-clinical drug testing and biomarker identification in a number of cancers including ovarian, pancreatic, breast, and prostate cancers. These models have been shown to be biologically stable and accurately reflect the patient tumor with regards to histopathology, gene expression, genetic mutations, and therapeutic response. However, pre-clinical analyses of molecularly annotated PDX models derived from high-grade serous ovarian cancer (HG-SOC) remain limited. In vivo response to conventional and/or targeted therapeutics has only been described for very small numbers of individual HG-SOC PDX in conjunction with sparse molecular annotation and patient outcome data. Recently, two consecutive panels of epithelial OC PDX correlate in vivo platinum response with molecular aberrations and source patient clinical outcomes. These studies underpin the value of PDX models to better direct chemotherapy and predict response to targeted therapy. Tumor heterogeneity, before and following treatment, as well as the importance of multiple molecular aberrations per individual tumor underscore some of the important issues addressed in PDX models

  20. Human Xenografts Are Not Rejected in a Naturally Occurring Immunodeficient Porcine Line: A Human Tumor Model in Pigs

    PubMed Central

    Basel, Matthew T.; Balivada, Sivasai; Beck, Amanda P.; Kerrigan, Maureen A.; Pyle, Marla M.; Dekkers, Jack C.M.; Wyatt, Carol R.; Rowland, Robert R.R.; Anderson, David E.; Bossmann, Stefan H.

    2012-01-01

    Abstract Animal models for cancer therapy are invaluable for preclinical testing of potential cancer treatments; however, therapies tested in such models often fail to translate into clinical settings. Therefore, a better preclinical model for cancer treatment testing is needed. Here we demonstrate that an immunodeficient line of pigs can host and support the growth of xenografted human tumors and has the potential to be an effective animal model for cancer therapy. Wild-type and immunodeficient pigs were injected subcutaneously in the left ear with human melanoma cells (A375SM cells) and in the right ear with human pancreatic carcinoma cells (PANC-1). All immunodeficient pigs developed tumors that were verified by histology and immunohistochemistry. Nonaffected littermates did not develop tumors. Immunodeficient pigs, which do not reject xenografted human tumors, have the potential to become an extremely useful animal model for cancer therapy because of their similarity in size, anatomy, and physiology to humans. PMID:23514746

  1. Antitumor activity of celastrol nanoparticles in a xenograft retinoblastoma tumor model

    PubMed Central

    Li, Zhanrong; Wu, Xianghua; Li, Jingguo; Yao, Lin; Sun, Limei; Shi, Yingying; Zhang, Wenxin; Lin, Jianxian; Liang, Dan; Li, Yongping

    2012-01-01

    Background Celastrol, a Chinese herbal medicine, has shown antitumor activity against various tumor cell lines. However, the effect of celastrol on retinoblastoma has not yet been analyzed. Additionally, the poor water solubility of celastrol restricts further therapeutic applications. The goal of this study was to evaluate the effect of celastrol nanoparticles (CNPs) on retinoblastoma and to investigate the potential mechanisms involved. Methods Celastrol-loaded poly(ethylene glycol)-block-poly(ɛ-caprolactone) nanopolymeric micelles were developed to improve the hydrophilicity of celastrol. The 2-(2-methoxy-4- nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulf-ophenyl)-2H tetrazolium monosodium salt (WST-8) assay was used to determine the inhibitory effect of CNPs on SO-Rb 50 cell proliferation in vitro. Immunofluorescence was used to evaluate the apoptotic effect of CNPs on nuclear morphology, and flow cytometry was used to quantify cellular apoptosis. The expression of Bcl-2, Bax, NF-κB p65, and phospo-NF-κB p65 proteins was assessed by Western blotting. A human retinoblastoma xenograft model was used to evaluate the inhibitory effects of CNPs on retinoblastoma in NOD-SCID mice. Hematoxylin and eosin staining was used to assess the apoptotic effects of CNPs on retinoblastoma. Results CNPs inhibit the proliferation of SO-Rb 50 cells in a dose- and time-dependent manner with an IC50 of 17.733 μg/mL (celastrol-loading content: 7.36%) after exposure to CNPs for 48 hours. CNPs induce apoptosis in SO-Rb 50 cells in a dose-dependent manner. The expression of Bcl-2, NF-κB p65, and phospo-NF-κB p65 proteins decreased after exposure to CNPs 54.4 μg/mL for 48 hours. Additionally, the Bax/Bcl-2 ratio increased, whereas the expression of Bax itself was not significantly altered. CNPs inhibit the growth of retinoblastoma and induce apoptosis in retinoblastoma cells in mice. Conclusion CNPs inhibit the growth of retinoblastoma in mouse xenograft model by inducing apoptosis in

  2. Tryptophan PET Imaging of the Kynurenine Pathway in Patient-Derived Xenograft Models of Glioblastoma

    PubMed Central

    Guastella, Anthony R.; Michelhaugh, Sharon K.; Klinger, Neil V.; Kupsky, William J.; Polin, Lisa A.; Muzik, Otto; Juhász, Csaba; Mittal, Sandeep

    2016-01-01

    Increasing evidence demonstrates the immunosuppressive kynurenine pathway’s (KP) role in the pathophysiology of human gliomas. To study the KP in vivo, we used the noninvasive molecular imaging tracer α-[11C]-methyl-l-tryptophan (AMT). The AMT-positron emission tomography (PET) has shown high uptake in high-grade gliomas and predicted survival in patients with recurrent glioblastoma (GBM). We generated patient-derived xenograft (PDX) models from dissociated cells, or tumor fragments, from 5 patients with GBM. Mice bearing subcutaneous tumors were imaged with AMT-PET, and tumors were analyzed to detect the KP enzymes indoleamine 2,3-dioxygenase (IDO) 1, IDO2, tryptophan 2,3-dioxygenase, kynureninase, and kynurenine 3-monooxygenase. Overall, PET imaging showed robust tumoral AMT uptake in PDX mice with prolonged tracer accumulation over 60 minutes, consistent with AMT trapping seen in humans. Immunostained tumor tissues demonstrated positive detection of multiple KP enzymes. Furthermore, intracranial implantation of GBM cells was performed with imaging at both 9 and 14 days postimplant, with a marked increase in AMT uptake at 14 days and a corresponding high level of tissue immunostaining for KP enzymes. These results indicate that our PDX mouse models recapitulate human GBM, including aberrant tryptophan metabolism, and offer an in vivo system for development of targeted therapeutics for patients with GBM. PMID:27151136

  3. Imaging Tumor Variation in Response to Photodynamic Therapy in Pancreatic Cancer Xenograft Models

    SciTech Connect

    Samkoe, Kimberley S.; Chen, Alina; Rizvi, Imran; O'Hara, Julia A.; Hoopes, P. Jack; Pereira, Stephen P.; Hasan, Tayyaba; Pogue, Brian W.

    2010-01-15

    Purpose: A treatment monitoring study investigated the differential effects of orthotopic pancreatic cancer models in response to interstitial photodynamic therapy (PDT), and the validity of using magnetic resonance imaging as a surrogate measure of response was assessed. Methods and Materials: Different orthotopic pancreatic cancer xenograft models (AsPC-1 and Panc-1) were used to represent the range of pathophysiology observed in human beings. Identical dose escalation studies (10, 20, and 40J/cm) using interstitial verteporfin PDT were performed, and magnetic resonance imaging with T2-weighted and T1-weighted contrast were used to monitor the total tumor volume and the vascular perfusion volume, respectively. Results: There was a significant amount of necrosis in the slower-growing Panc-1 tumor using high light dose, although complete necrosis was not observed. Lower doses were required for the same level of tumor kill in the faster-growing AsPC-1 cell line. Conclusions: The tumor growth rate and vascular pattern of the tumor affect the optimal PDT treatment regimen, with faster-growing tumors being relatively easier to treat. This highlights the fact that therapy in human beings shows a heterogeneous range of outcomes, and suggests a need for careful individualized treatment outcomes assessment in clinical work.

  4. Amelioration of psoriasis by anti-TNF-alpha RNAi in the xenograft transplantation model.

    PubMed

    Jakobsen, Maria; Stenderup, Karin; Rosada, Cecilia; Moldt, Brian; Kamp, Søren; Dam, Tomas N; Jensen, Thomas G; Mikkelsen, Jacob Giehm

    2009-10-01

    Tumor necrosis factor-alpha (TNF-alpha) is upregulated in psoriatic skin and represents a prominent target in psoriasis treatment. The level of TNF-alpha-encoding mRNA, however, is not increased in psoriatic skin, and it remains unclear whether intervention strategies based on RNA interference (RNAi) are therapeutically relevant. To test this hypothesis the present study describes first the in vitro functional screening of a panel of short hairpin RNAs (shRNAs) targeting human TNF-alpha mRNA and, next, the transfer of the most potent TNF-alpha shRNA variant, as assessed in vitro, to human skin in the psoriasis xenograft transplantation model by the use of lentiviral vectors. TNF-alpha shRNA treatment leads to amelioration of the psoriasis phentotype in the model, as documented by reduced epidermal thickness, normalization of the skin morphology, and reduced levels of TNF-alpha mRNA as detected in skin biopsies 3 weeks after a single vector injection of lentiviral vectors encoding TNF-alpha shRNA. Our data show efficient lentiviral gene delivery to psoriatic skin and therapeutic applicability of anti-TNF-alpha shRNAs in human skin. These findings validate TNF-alpha mRNA as a target molecule for a potential persistent RNA-based treatment of psoriasis and establish the use of small RNA effectors as a novel platform for target validation in psoriasis and other skin disorders.

  5. Physeal Bystander Effects in Rhabdomyosarcoma Radiotherapy: Experiments in a New Xenograft Model

    PubMed Central

    Horton, Jason A.; Strauss, Judith A.; Allen, Matthew J.; Damron, Timothy A.

    2011-01-01

    Radiotherapy used in the treatment of pediatric musculoskeletal sarcomas may result in crippling defects of skeletal growth. Several radioprotective strategies have shown potential for preserving function of the irradiated epiphysis but have not been evaluated in a tumor-bearing animal model. We developed two bioluminescent human rhabdomyosarcoma cell lines that were used to establish xenograft tumors in skeletally immature mice. Bioluminescence imaging and radiography allowed serial evaluation of tumor growth and tibial elongation following localized radiotherapy. High-dose (10 Gy) radiotherapy significantly reduced tumor growth velocity and prolonged the median survival of tumor-bearing mice but also resulted in a significant 3.3% shortening of the irradiated limb. Exposure to a lower, 2 Gy dose resulted in 4.1% decrease in limb length but did not extend survival. This new model provides a clinically relevant means to test the efficacy and safety of novel radioprotectant and radiorecovery strategies for use in this context. PMID:21559211

  6. Safety and efficacy of quadrapeutics versus chemoradiation in head and neck carcinoma xenograft model

    PubMed Central

    Lukianova-Hleb, Ekaterina Y; Kim, Yoo-Shin; Aryasomayajula, Bhawani; Boulikas, Teni; Phan, Jack; Hung, Mien-Chie; Torchilin, Vladimir P; O’Neill, Brian E; Lapotko, Dmitri O

    2015-01-01

    Chemoradiation is the strongest anti-tumor therapy but in resistant unresectable cancers it often lacks safety and efficacy. We compared our recently developed cell-level combination approach, quadrapeutics, to chemoradiation therapy to establish pre-clinical data for its biodistribution, safety and efficacy in head and neck squamous cell carcinoma (HNSCC), as a clinically challenging aggressive and resistant cancer. In vitro and in vivo models of four carcinomas were treated with standard chemoradiation and quadrapeutics using identical drug and radiation doses. We applied liposomal cisplatin or doxorubicin, colloidal gold, near-infrared laser pulses and radiation, all at low safe doses. The final evaluation used a xenograft model of HNSCC. Quadrapeutics enhanced standard chemoradiation in vitro by reducing head and neck cancer cell proliferation by 1000-fold, inhibiting tumor growth in vivo by 34-fold and improving animal survival by 5-fold, and reducing the side effects to a negligible level. In quadrapeutics, we observed an “inversion” of the drug efficacy of two standard drugs: doxorubicin, a low efficacy drug for the cancers studied, was two times more efficient than cisplatin, the first choice drug in clinic for HNSCC. The radical therapeutic gain of quadrapeutics resulted from the intracellular synergy of the four components employed which we administered in a specific sequence, while the reduction in the toxicity was due to the low doses of all four components. The biodistribution, safety and efficacy data for quadrapeutics in HNSCC ensure its high translational potential and justify the possibility of clinical trials. PMID:26885444

  7. Comprehensive analysis of leukocytes, vascularization and matrix metalloproteinases in human menstrual xenograft model.

    PubMed

    Guo, Yong; He, Bin; Xu, Xiangbo; Wang, Jiedong

    2011-02-17

    In our previous study, menstrual-like changes in mouse were provoked through the pharmacologic withdrawal of progesterone with mifepristone following induction of decidualization. However, mouse is not a natural menstruation animal, and the menstruation model using external stimuli may not truly reflect the occurrence and development of the human menstrual process. Therefore, we established a model of menstruation based on human endometrial xenotransplantation. In this model, human endometrial tissues were transplanted subcutaneously into SCID mice that were ovarectomized and supplemented with estrogen and progestogen by silastic implants with a scheme imitating the endocrinological milieu of human menstrual cycle. Morphology, hormone levels, and expression of vimentin and cytokeratin markers were evaluated to confirm the menstrual-like changes in this model. With 28 days of hormone treatment, transplanted human endometrium survived and underwent proliferation, differentiation and disintegration, similar to human endometrium in vivo. Human CD45+ cells showed a peak of increase 28 days post-transplantation. Three days after progesterone withdrawal, mouse CD45+ cells increased rapidly in number and were significantly greater than human CD45+ cell counts. Mouse CD31+ blood vascular-like structures were detected in both transplanted and host tissues. After progesterone withdrawal, the expression levels of matrix metalloproteinases (MMP) 1, 2, and 9 were increased. In summary, we successfully established a human endometrial xenotransplantation model in SCID mice, based on the results of menstrual-like changes in which MMP-1, 2 and 9 are involved. We showed that leukocytes are originated from in situ proliferation in human xenografts and involved in the occurrence of menstruation. This model will help to further understand the occurrence, growth, and differentiation of the endometrium and the underlying mechanisms of menstruation.

  8. Establishment, Maintenance and in vitro and in vivo Applications of Primary Human Glioblastoma Multiforme (GBM) Xenograft Models for Translational Biology Studies and Drug Discovery

    PubMed Central

    Carlson, Brett L.; Pokorny, Jenny L.; Schroeder, Mark A.; Sarkaria, Jann N.

    2011-01-01

    Development of clinically relevant tumor model systems for glioblastoma multiforme (GBM) is important for advancement of basic and translational biology. One model that has gained wide acceptance in the neuro-oncology community is the primary xenograft model. This model entails the engraftment of patient tumor specimens into the flank of nude mice and subsequent serial passage of these tumors in the flank of mice. These tumors then can be used to establish short-term explant cultures or intracranial xenografts. The focus of this manuscript is to review the procedures associated with the establishment, maintenance and utilization of a primary GBM xenograft panel. PMID:21743824

  9. Fine-tuning patient-derived xenograft models for precision medicine approaches in leukemia.

    PubMed

    Francis, Olivia L; Milford, Terry-Ann M; Beldiman, Cornelia; Payne, Kimberly J

    2016-03-01

    Many leukemias are characterized by well-known mutations that drive oncogenesis. Mice engineered with these mutations provide a foundation for understanding leukemogenesis and identifying therapies. However, data from whole genome studies provide evidence that malignancies are characterized by multiple genetic alterations that vary between patients, as well as inherited genetic variation that can also contribute to oncogenesis. Improved outcomes will require precision medicine approaches-targeted therapies tailored to malignancies in each patient. Preclinical models that reflect the range of mutations and the genetic background present in patient populations are required to develop and test the combinations of therapies that will be used to provide precision medicine therapeutic strategies. Patient-derived xenografts (PDX) produced by transplanting leukemia cells from patients into immune deficient mice provide preclinical models where disease mechanisms and therapeutic efficacy can be studied in vivo in context of the genetic variability present in patient tumors. PDX models are possible because many elements in the bone marrow microenvironment show cross-species activity between mice and humans. However, several cytokines likely to impact leukemia cells are species-specific with limited activity on transplanted human leukemia cells. In this review we discuss the importance of PDX models for developing precision medicine approaches to leukemia treatment. We illustrate how PDX models can be optimized to overcome a lack of cross-species cytokine activity by reviewing a recent strategy developed for use with a high-risk form of B-cell acute lymphoblastic leukemia (B-ALL) that is characterized by overexpression of CRLF2, a receptor component for the cytokine, TSLP.

  10. Systematic Repurposing Screening in Xenograft Models Identifies Approved Drugs with Novel Anti-Cancer Activity

    PubMed Central

    Roix, Jeffrey J.; Harrison, S. D.; Rainbolt, Elizabeth A.; Meshaw, Kathryn R.; McMurry, Avery S.; Cheung, Peter; Saha, Saurabh

    2014-01-01

    Approved drugs target approximately 400 different mechanisms of action, of which as few as 60 are currently used as anti-cancer therapies. Given that on average it takes 10–15 years for a new cancer therapeutic to be approved, and the recent success of drug repurposing for agents such as thalidomide, we hypothesized that effective, safe cancer treatments may be found by testing approved drugs in new therapeutic settings. Here, we report in-vivo testing of a broad compound collection in cancer xenograft models. Using 182 compounds that target 125 unique target mechanisms, we identified 3 drugs that displayed reproducible activity in combination with the chemotherapeutic temozolomide. Candidate drugs appear effective at dose equivalents that exceed current prescription levels, suggesting that additional pre-clinical efforts will be needed before these drugs can be tested for efficacy in clinical trials. In total, we suggest drug repurposing is a relatively resource-intensive method that can identify approved medicines with a narrow margin of anti-cancer activity. PMID:25093583

  11. Novel LIMK2 Inhibitor Blocks Panc-1 Tumor Growth in a mouse xenograft model

    PubMed Central

    Rak, Roni; Haklai, Roni; Elad-Tzfadia, Galit; Wolfson, Haim J.; Carmeli, Shmuel; Kloog, Yoel

    2014-01-01

    LIM kinases (LIMKs) are important cell cytoskeleton regulators that play a prominent role in cancer manifestation and neuronal diseases. The LIMK family consists of two homologues, LIMK1 and LIMK2, which differ from one another in expression profile, intercellular localization, and function. The main substrate of LIMK is cofilin, a member of the actin-depolymerizing factor (ADF) protein family. When phosphorylated by LIMK, cofilin is inactive. LIMKs play a contributory role in several neurodevelopmental disorders and in cancer growth and metastasis. We recently reported the development and validation of a novel LIMK inhibitor, referred to here as T56-LIMKi, using a combination of computational methods and classical biochemistry techniques. Here we report that T56-LIMKi inhibits LIMK2 with high specificity, and shows little or no cross-reactivity with LIMK1. We found that T56-LIMKi decreases phosphorylated cofilin (p-cofilin) levels and thus inhibits growth of several cancerous cell lines, including those of pancreatic cancer, glioma and schwannoma. Because the most promising in-vitro effect of T56-LIMKi was observed in the pancreatic cancer cell line Panc-1, we tested the inhibitor on a nude mouse Panc-1 xenograft model. T56-LIMKi reduced tumor size and p-cofilin levels in the Panc-1 tumors, leading us to propose T56-LIMKi as a candidate drug for cancer therapy. PMID:25593987

  12. Monitoring breast tumor progression by photoacoustic measurements: a xenograft mice model study

    NASA Astrophysics Data System (ADS)

    Priya, Mallika; Satish Rao, Bola Sadashiva; Chandra, Subhash; Datta, Anirbit; Nayak, Subramanya G.; Mahato, Krishna Kishore

    2015-10-01

    The current study reports the photoacoustic spectroscopy-based assessment of breast tumor progression in a nude mice xenograft model. The tumor was induced through subcutaneous injection of MCF-7 cells in female nude mice and was monitored for 20 days until the tumor volume reached 1000 mm3. The tumor tissues were extracted at three different time points (days 10, 15, and 20) after tumor inoculation and subjected to photoacoustic spectral recordings in time domain ex vivo at 281 nm pulsed laser excitations. The spectra were converted into the frequency domain using the fast Fourier transformed tools of MATLAB® algorithms and further utilized to extract seven statistical features (mean, median, area under the curve, variance and standard deviation, skewness and kurtosis) from each time point sample to assess the tumor growth with wavelet principal component analysis based logistic regression analysis performed on the data. The prediction accuracies of the analysis for day 10 versus day 15, day 15 versus day 20, and day 10 versus day 20 were found to be 92.31, 87.5, and 95.2%, respectively. Also, receiver operator characteristics area under the curve analysis for day 10 versus day 15, day 15 versus day 20, and day 10 versus day 20 were found to be 0.95, 0.85, and 0.93, respectively. The ability of photoacoustic measurements in the objective assessment of tumor progression has been clearly demonstrated, indicating its clinical potential.

  13. Resolution of psoriasis upon blockade of IL-15 biological activity in a xenograft mouse model.

    PubMed

    Villadsen, Louise S; Schuurman, Janine; Beurskens, Frank; Dam, Tomas N; Dagnaes-Hansen, Frederik; Skov, Lone; Rygaard, Jorgen; Voorhorst-Ogink, Marleen M; Gerritsen, Arnout F; van Dijk, Marc A; Parren, Paul W H I; Baadsgaard, Ole; van de Winkel, Jan G J

    2003-11-01

    Psoriasis is a chronic inflammatory disease of the skin characterized by epidermal hyperplasia, dermal angiogenesis, infiltration of activated T cells, and increased cytokine levels. One of these cytokines, IL-15, triggers inflammatory cell recruitment, angiogenesis, and production of other inflammatory cytokines, including IFN-gamma, TNF-alpha, and IL-17, which are all upregulated in psoriatic lesions. To investigate the role of IL-15 in psoriasis, we generated mAb's using human immunoglobulin-transgenic mice. One of the IL-15-specific antibodies we generated, 146B7, did not compete with IL-15 for binding to its receptor but potently interfered with the assembly of the IL-15 receptor alpha, beta, gamma complex. This antibody effectively blocked IL-15-induced T cell proliferation and monocyte TNF-alpha release in vitro. In a human psoriasis xenograft model, antibody 146B7 reduced the severity of psoriasis, as measured by epidermal thickness, grade of parakeratosis, and numbers of inflammatory cells and cycling keratinocytes. These results obtained with this IL-15-specific mAb support an important role for IL-15 in the pathogenesis of psoriasis.

  14. Mitochondrially targeted wild-type p53 induces apoptosis in a solid human tumor xenograft model

    PubMed Central

    Palacios, Gustavo; Crawford, Howard C.; Vaseva, Angelina; Moll, Ute M.

    2013-01-01

    Classic but also novel roles of p53 are becoming increasingly well characterized. We previously showed that ex vivo retroviral transfer of mitochondrially targeted wild type p53 (mitop53) in the Eμ-myc mouse lymphoma model efficiently induces tumor cell killing in vivo. In an effort to further explore the therapeutic potential of mitop53 for its pro-apoptotic effect in solid tumors, we generated replication-deficient recombinant human Adenovirus type 5 vectors. We show here that adenoviral delivery of mitop53 by intratumoral injection into HCT116 human colon carcinoma xenograft tumors in nude mice is surprisingly effective, resulting in tumor cell death of comparable potency to conventional p53. These apoptotic effects in vivo were confirmed by Ad5-mitop53 mediated cell death of HCT116 cells in culture. Together, these data provide encouragement to further explore the potential for novel mitop53 proteins in cancer therapy to execute the shortest known circuitry of p53 death signaling. PMID:18719383

  15. Anti-metastatic effects of liposomal gemcitabine in a human orthotopic LNCaP prostate cancer xenograft model.

    PubMed

    Jantscheff, Peter; Ziroli, Vittorio; Esser, Norbert; Graeser, Ralph; Kluth, Jessica; Sukolinskaya, Alena; Taylor, Lenka A; Unger, Clemens; Massing, Ulrich

    2009-01-01

    Fatal outcomes of prostate carcinoma (PCa) mostly result from metastatic spread rather than from primary tumor burden. Here, we monitored growth and metastatic spread of an orthotopic luciferase/GFP-expressing LNCaP PCa xenograft model in SCID mice by in vivo imaging and in vitro luciferase assay of tissues homogenates. Although the metastatic spread generally shows a significant correlation to primary tumor volumes, the susceptibility of various tissues to metastatic invasion was different in the number of affected animals as well as in absolute metastatic burden in the individual tissues. Using this xenograft model we showed that treatment with liposomal gemcitabine (GemLip) inhibited growth of the primary tumors (83.9 +/- 6.4%; P = 0.009) as well as metastatic burden in lymph nodes (95.6 +/- 24.0%; P = 0.047), lung (86.5 +/- 10.5%; P = 0.015), kidney (88.4 +/- 9.2%; P = 0.045) and stomach (79.5 +/- 6.6%; P = 0.036) already at very low efficient concentrations (8 mg/kg) as compared to conventional gemcitabine (360 mg/kg). Our data show that this orthotopic LNCaP xenograft PCa model seems to reflect the clinical situation characterized by the fact that at time of diagnosis, prostate neoplasms are biologically heterogeneous and thus, it is a useful model to investigate new anti-metastatic therapies.

  16. In vitro cytotoxicity of gold nanorods in A549 cells.

    PubMed

    Tang, Ying; Shen, Yafeng; Huang, Libin; Lv, Gaojian; Lei, Changhai; Fan, Xiaoyan; Lin, Fangxing; Zhang, Yuxia; Wu, Lihui; Yang, Yongji

    2015-03-01

    Gold nanoparticles, which have unique physicochemical characteristics, are being used for an increasingly wide range of applications in biomedical research. In this study, gold nanorods (width of 25 nm, length of 52 nm) were found to be internalized by A549 cells and were primarily localized in the lysosomes and membranous vesicles. The integrity of the membranes of A549 cells exposed to gold nanorods for 4h was damaged, as indicated by laser scanning confocal microscopy (LSCM). Increased lactate dehydrogenase (LDH) leakage and decreased cell viability further indicated the concentration-dependent cytotoxicity of the gold nanorods to the A549 cells. Reactive oxygen species (ROS) production was induced in the A549 cells by the gold nanorods, and this effect was positively correlated with the concentration of the gold nanorods. The results of this study indicated that exposure to gold nanorods caused dose-dependent cytotoxicity in A549 cells and that oxidative stress may be the main factor causing cytotoxicity.

  17. P450 inhibitor ketoconazole increased the intratumor drug levels and antitumor activity of fenretinide in human neuroblastoma xenograft models.

    PubMed

    Lopez-Barcons, Lluis; Maurer, Barry J; Kang, Min H; Reynolds, C Patrick

    2017-03-24

    We previously reported that concurrent ketoconazole, an oral anti-fungal agent and P450 enzyme inhibitor, increased plasma levels of the cytotoxic retinoid, fenretinide (4-HPR) in mice. We have now determined the effects of concurrent ketoconazole on 4-HPR cytotoxic dose-response in four neuroblastoma (NB) cell lines in vitro and on 4-HPR activity against two cell line-derived, subcutaneous NB xenografts (CDX) and three patient-derived NB xenografts (PDX). Cytotoxicity in vitro was assessed by DIMSCAN assay. Xenografted animals were treated with 4-HPR/LXS (240 mg/kg/day) + ketoconazole (38 mg/kg/day) in divided oral doses in cycles of five continuous days a week. In one model, intratumoral levels of 4-HPR and metabolites were assessed by HPLC assay, and in two models intratumoral apoptosis was assessed by TUNEL assay, on Day 5 of the first cycle. Antitumor activity was assessed by Kaplan-Meier event-free survival (EFS). The in vitro cytotoxicity of 4-HPR was not affected by ketoconazole (P ≥ 0.06). Ketoconazole increased intratumoral levels of 4-HPR (P = 0.02), of the active 4-oxo-4-HPR metabolite (P = 0.04), and intratumoral apoptosis (P ≤ 0.002), compared to 4-HPR/LXS-alone. Concurrent ketoconazole increased EFS in both CDX models compared to 4-HPR/LXS-alone (P ≤ 0.01). 4-HPR + ketoconazole also increased EFS in PDX models compared to controls (P ≤ 0.03). Thus, concurrent ketoconazole decreased 4-HPR metabolism with resultant increases of plasma and intratumoral drug levels and antitumor effects in neuroblastoma murine xenografts. These results support the clinical testing of concurrent ketoconazole and oral fenretinide in neuroblastoma. This article is protected by copyright. All rights reserved.

  18. Combination of Vandetanib, Radiotherapy, and Irinotecan in the LoVo Human Colorectal Cancer Xenograft Model

    SciTech Connect

    Wachsberger, Phyllis; Burd, Randy; Ryan, Anderson; Daskalakis, Constantine; Dicker, Adam P.

    2009-11-01

    Purpose: The tumor growth kinetics of the human LoVo colorectal xenograft model was assessed in response to vandetanib, an orally available receptor tyrosine kinase inhibitor, radiotherapy (RT), or irinotecan (CPT-11), as single therapies and in combination. Methods and Materials: LoVo cells were injected subcutaneously into the right hind limb (5x10{sup 6} cells in 100muL phosphate-buffered saline) of athymic NCR NUM mice and tumors were grown to a volume of 200-300 mm{sup 3} before treatment. Vandetanib was administered at 50 mg/kg daily orally for 14 days starting on Day 1. RT was given as three fractions (3x3 Gy) on Days 1, 2, and 3. CPT-11 was given at 15 mg/kg intraperitoneally on Days 1 and 3. Tumor volumes were measured on a daily basis and calculated by measuring tumor diameters with digital calipers in two orthogonal dimensions. Results: All three single treatments (vandetanib, CPT-11, and radiation) significantly slowed LoVo colorectal tumor growth. Vandetanib significantly increased the antitumor effects of CPT-11 and radiation when given in combination with either of these treatments. These treatment combinations resulted in a slow tumor growth rate during the 2 weeks of vandetanib administration. The triple combination of vandetanib, CPT-11, and radiation produced the most marked improvement in response as observed by measurable shrinkage of tumors during the first week of treatment. Conclusions: The tumor growth delay kinetics observed in this study of the LoVo colorectal model suggest concurrent and sustained post-sequencing of vandetanib with cytotoxic therapy may be beneficial in tumors of this type.

  19. Cellular therapy in combination with cytokines improves survival in a xenograft mouse model of ovarian cancer.

    PubMed

    Ingersoll, Susan B; Ahmad, Sarfraz; McGann, Hasina C; Banks, Robert K; Stavitzski, Nicole M; Srivastava, Milan; Ali, Ghazanfar; Finkler, Neil J; Edwards, John R; Holloway, Robert W

    2015-09-01

    Studies have shown enhanced survival of ovarian cancer patients in which the tumors are infiltrated with tumor infiltrating lymphocytes and natural killer cells showing the importance of immune surveillance and recognition in ovarian cancer. Therefore, in this study, we tested cellular immunotherapy and varying combinations of cytokines (IL-2 and/or pegylated-IFNα-2b) in a xenograft mouse model of ovarian cancer. SKOV3-AF2 ovarian cancer cells were injected intra-peritoneally (IP) into athymic nude mice. On day 7 post-tumor cell injection, mice were injected IP with peripheral blood mononuclear cells (PBMC; 5 × 10(6) PBMC) and cytokine combinations [IL-2 ± pegylated-IFNα-2b (IFN)]. Cytokine injections were continued weekly for IFN (12,000 U/injection) and thrice weekly for IL-2 (4000 U/injection). Mice were euthanized when they became moribund due to tumor burden at which time tumor and ascitic fluid were measured and collected. Treatment efficacy was measured by improved survival at 8 weeks and overall survival by Kaplan-Meier analysis. We observed that the mice tolerated all treatment combinations without significant weight loss or other apparent illness. Mice receiving PBMC plus IL-2 showed improved median survival (7.3 weeks) compared to mice with no treatment (4.2 weeks), IL-2 (3.5 weeks), PBMC (4.0 weeks), or PBMC plus IL-2 and IFN (4.3 weeks), although PBMC plus IL-2 was not statistically different than PBMC plus IFN (5.5 weeks, p > 0.05). We demonstrate that cytokine-stimulated cellular immune therapy with PBMC and IL-2 was well tolerated and resulted in survival advantage compared to untreated controls and other cytokine combinations in the nude-mouse model.

  20. An orthotopic xenograft model of intraneural NF1 MPNST suggests a potential association between steroid hormones and tumor cell proliferation.

    PubMed

    Perrin, George Q; Li, Hua; Fishbein, Lauren; Thomson, Susanne A; Hwang, Min S; Scarborough, Mark T; Yachnis, Anthony T; Wallace, Margaret R; Mareci, Thomas H; Muir, David

    2007-11-01

    Malignant peripheral nerve sheath tumors (MPNST) are the most aggressive cancers associated with neurofibromatosis type 1 (NF1). Here we report a practical and reproducible model of intraneural NF1 MPNST, by orthotopic xenograft of an immortal human NF1 tumor-derived Schwann cell line into the sciatic nerves of female scid mice. Intraneural injection of the cell line sNF96.2 consistently produced MPNST-like tumors that were highly cellular and showed extensive intraneural growth. These xenografts had a high proliferative index, were angiogenic, had significant mast cell infiltration and rapidly dominated the host nerve. The histopathology of engrafted intraneural tumors was consistent with that of human NF1 MPNST. Xenograft tumors were readily examined by magnetic resonance imaging, which also was used to assess tumor vascularity. In addition, the intraneural proliferation of sNF96.2 cell tumors was decreased in ovariectomized mice, while replacement of estrogen or progesterone restored tumor cell proliferation. This suggests a potential role for steroid hormones in supporting tumor cell growth of this MPNST cell line in vivo. The controlled orthotopic implantation of sNF96.2 cells provides for the precise initiation of intraneural MPNST-like tumors in a model system suitable for therapeutic interventions, including inhibitors of angiogenesis and further study of steroid hormone effects on tumor cell growth.

  1. Mitotane effects in a H295R xenograft model of adjuvant treatment of adrenocortical cancer.

    PubMed

    Lindhe, O; Skogseid, B

    2010-09-01

    Adrenocortical cancer is one of the most aggressive endocrine malignancies. Growth through the capsule or accidental release of cancer cells during surgery frequently results in metastatic disease. We investigated the antitumoral effect of 2 adrenocorticolytic compounds, O, P'-DDD and MeSO2-DDE, in the adrenocortical cell line H295R both in vitro and as a xenograft model in vivo. H295R cells were injected s. c. in nude mice. O, P'-DDD, MeSO2-DDE, or oil (control) was administered i. p., either simultaneously with cell injection at day 0 (mimicking adjuvant treatment), or at day 48 (established tumors). Accumulation of PET tracers [ (11)C]methionine (MET), [ (11)C] metomidate (MTO), 2-deoxy-2-[ (18)F]fluoro-d-glucose (FDG), and [ (18)F]-l-tyrosine (FLT) in the aggregates were assessed +/- drug treatment in vitro. Tumor growth was significantly inhibited when O, P'-DDD was given at the same time as injection of tumor cells. No significant growth inhibition was observed after treatment with O, P'-DDD at day 48. A significant reduction in FLT uptake and an increased FDG uptake, compared to control, were observed following treatment with 15 microM O, P'-DDD (p<0.01) in vitro. MeSO2-DDE (15 microM) treatment gave rise to a reduced MET and an increased FLT uptake (p<0.01). Both compounds reduced the uptake of MTO compared to control (p<0.01). Treatment with O, P'-DDD simultaneously to inoculation of H295R cells in mice, imitating release of cells during surgery, gave a markedly better effect than treatment of established H295R tumors. We suggest that FLT may be a potential PET biomarker when assessing adrenocortical cancer treatment with O,P'-DDD. Further studies in humans are needed to investigate this.

  2. Biodistribution of charged F(ab')2 photoimmunoconjugates in a xenograft model of ovarian cancer.

    PubMed

    Duska, L R; Hamblin, M R; Bamberg, M P; Hasan, T

    1997-01-01

    The effect of charge modification of photoimmunoconjugates (PICs) on their biodistribution in a xenograft model of ovarian cancer was investigated. Chlorin(e6)c(e6) was attached site specifically to the F(ab')2 fragment of the murine monoclonal antibody OC125, directed against human ovarian cancer cells, via poly-1-lysine linkers carrying cationic or anionic charges. Preservation of immunoreactivity was checked by enzyme-linked immunosorbent assay (ELISA). PICs were radiolabelled with 125I and compared with non-specific rabbit IgG PICs after intraperitoneal (i.p.) injection into nude mice. Samples were taken from normal organs and tumour at 3 h and 24 h. Tumour to normal 125I ratios showed that the cationic OC125F(ab')2 PIC had the highest tumour selectivity. Ratios for c(e6) were uniformly higher than for 125I, indicating that c(e6) became separated from 125I. OC125F(ab')2 gave highest tissue values of 125I, followed by cationic OC125F(ab')2 PIC; other species were much lower. The amounts of c(e6) delivered per gram of tumour were much higher for cationic OC125F(ab')2 PIC than for other species. The results indicate that cationic charge stimulates the endocytosis and lysosomal degradation of the OC125F(ab')2-pl-c(e6) that has bound to the i.p. tumour. Positively charged PICs may have applications in the i.p. photoimmunotherapy of minimal residual ovarian cancer.

  3. DMU-212 inhibits tumor growth in xenograft model of human ovarian cancer.

    PubMed

    Piotrowska, Hanna; Myszkowski, Krzysztof; Abraszek, Joanna; Kwiatkowska-Borowczyk, Eliza; Amarowicz, Ryszard; Murias, Marek; Wierzchowski, Marcin; Jodynis-Liebert, Jadwiga

    2014-05-01

    DMU-212 has been shown to evoke a mitochondrial apoptotic pathway in transformed fibroblasts and breast cancer. However, recently published data indicated the ability of DMU-212 to evoke apoptosis in both mitochondria- and receptor-mediated manner in two ovarian cancer cell lines, namely A-2780 and SKOV-3, which showed varied sensitivity to the compound tested. The pronounced cytotoxic effects of DMU-212 observed in A-2780 cells were related to the execution of extracellular apoptosis pathway and cell cycle arrest in G2/M phase. In view of the great anticancer potential of DMU-212 against A-2780 cell line, the aim of the current study was to assess antiproliferative activity of DMU-212 in xenograft model of ovarian cancer. To evaluate in vitro metabolic properties of cells that were to be injected into SCID mice, uptake and decline of DMU-212 in A-2780 ovarian cancer cell line was investigated. It was found that the concentration of the test compound in A-2780 cells was growing within first eight hours, and then the gradual decline was observed. A-2780 cells stably transfected with pcDNA3.1/Zeo(-)-Luc vector were subcutaneously inoculated into the right flanks of SCID mice. After seven days of the treatment with DMU-212 (50mg/kg b.w), tumor growth appeared to be suppressed in the animals treated with the compound tested. At day 14 of the experiment, tumor burden in mice treated with DMU-212 was significantly lower, as compared to untreated controls. Our findings suggest that DMU-212 might be considered as a potential anticancer agent used in ovarian cancer therapy.

  4. Effects of aurothiomalate treatment on canine osteosarcoma in a murine xenograft model.

    PubMed

    Scharf, Valery F; Farese, James P; Siemann, Dietmar W; Abbott, Jeffrey R; Kiupel, Matti; Salute, Marc E; Milner, Rowan J

    2014-03-01

    Osteosarcoma is a highly fatal cancer, with most patients ultimately succumbing to metastatic disease. The purpose of this study was to evaluate the effects of the antirheumatoid drug aurothiomalate on canine and human osteosarcoma cells and on canine osteosarcoma growth and metastasis in a mouse xenograft model. We hypothesized that aurothiomalate would decrease osteosarcoma cell survival, tumor cellular proliferation, tumor growth, and metastasis. After performing clonogenic assays, aurothiomalate or a placebo was administered to 54 mice inoculated with canine osteosarcoma. Survival, tumor growth, embolization, metastasis, histopathology, cell proliferation marker Ki67, and apoptosis marker caspase-3 were compared between groups. Statistical analysis was carried out using the Kaplan-Meier method with the log-rank test and one-way analysis of variance with the Tukey's test or Dunn's method. Aurothiomalate caused dose-dependent inhibition of osteosarcoma cell survival (P<0.001) and decreased tumor growth (P<0.001). Pulmonary macrometastasis and Ki67 labeling were reduced with low-dose aurothiomalate (P=0.033 and 0.005, respectively), and tumor emboli and pulmonary micrometastases were decreased with high-dose aurothiomalate (P=0.010 and 0.011, respectively). There was no difference in survival, tumor development, ulceration, mitotic indices, tumor necrosis, nonpulmonary metastases, and caspase-3 labeling. Aurothiomalate treatment inhibited osteosarcoma cell survival and reduced tumor cell proliferation, growth, embolization, and pulmonary metastasis. Given aurothiomalate's established utility in canine and human medicine, our results suggest that this compound may hold promise as an adjunctive therapy for osteosarcoma. Further translational research is warranted to better characterize the dose response of canine and human osteosarcoma to aurothiomalate.

  5. Flavonoids from Gynostemma pentaphyllum exhibit differential induction of cell cycle arrest in H460 and A549 cancer cells.

    PubMed

    Tsui, Ko-Chung; Chiang, Tzu-Hsuan; Wang, Jinn-Shyan; Lin, Li-Ju; Chao, Wei-Chih; Chen, Bing-Huei; Lu, Jyh-Feng

    2014-10-31

    Flavonoids, containing mainly kaempferol rhamnohexoside derivatives, were extracted from Gynostemma pentaphyllum (G. pentaphyllum) and their potential growth inhibition effects against H460 non-small cell lung cancer cells was explored and compared to that on A549 cells. The extracted flavonoids were found to exhibit antiproliferation effects against H460 cells (IC50 = 50.2 μg/mL), although the IC50 of H460 is 2.5-fold that of A549 cells (IC50 = 19.8 μg/mL). Further investigation revealed that H460 cells are more susceptible to kaempferol than A549, whereas A549 cell growth is better inhibited by kaempferol rhamnohexoside derivatives as compared with H460. In addition, flavonoids from G. pentaphyllum induced cell cycle arrest at both S and G2/M phases with concurrent modulated expression of the cellular proteins cyclin A, B, p53 and p21 in A549 cells, but not H460. On the contrary, apoptosis and concomitant alteration in balance of BCL-2 and BAX expression as well as activation of caspase-3 were equally affected between both cells by flavonoid treatment. These observations strongly suggest the growth inhibition discrepancy between H460 and A549 following flavonoid treatment can be attributed to the lack of cell cycle arrest in H460 cells and the differences between H460 and A549 cells may serve as contrasting models for further mechanistic investigations.

  6. Generation of Pediatric Leukemia Xenograft Models in NSG-B2m Mice: Comparison with NOD/SCID Mice.

    PubMed

    Gopalakrishnapillai, Anilkumar; Kolb, E Anders; Dhanan, Priyanka; Bojja, Aruna Sri; Mason, Robert W; Corao, Diana; Barwe, Sonali P

    2016-01-01

    Generation of orthotopic xenograft mouse models of leukemia is important to understand the mechanisms of leukemogenesis, cancer progression, its cross talk with the bone marrow microenvironment, and for preclinical evaluation of drugs. In these models, following intravenous injection, leukemic cells home to the bone marrow and proliferate there before infiltrating other organs, such as spleen, liver, and the central nervous system. Moreover, such models have been shown to accurately recapitulate the human disease and correlate with patient response to therapy and prognosis. Thus, various immune-deficient mice strains have been used with or without recipient preconditioning to increase engraftment efficiency. Mice homozygous for the severe combined immune deficiency (SCID) mutation and with non-obese diabetic background (NOD/SCID) have been used in the majority of leukemia xenograft studies. Later, NOD/SCID mice deficient for interleukin 2 receptor gamma chain (IL2Rγ) gene called NSG mice became the model of choice for leukemia xenografts. However, engraftment of leukemia cells without irradiation preconditioning still remained a challenge. In this study, we used NSG mice with null alleles for major histocompatibility complex class I beta2-microglobulin (β2m) called NSG-B2m. This is a first report describing the 100% engraftment efficiency of pediatric leukemia cell lines and primary samples in NSG-B2m mice in the absence of host preconditioning by sublethal irradiation. We also show direct comparison of the engraftment efficiency and growth rate of pediatric acute leukemia cells in NSG-B2m and NOD/SCID mice, which showed 80-90% engraftment efficiency. Secondary and tertiary xenografts in NSG-B2m mice generated by injection of cells isolated from the spleens of leukemia-bearing mice also behaved similar to the primary patient sample. We have successfully engrafted 25 acute lymphoblastic leukemia (ALL) and 5 acute myeloid leukemia (AML) patient samples with

  7. Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia

    PubMed Central

    Maude, Shannon L.; Tasian, Sarah K.; Vincent, Tiffaney; Hall, Junior W.; Sheen, Cecilia; Roberts, Kathryn G.; Seif, Alix E.; Barrett, David M.; Chen, I-Ming; Collins, J. Racquel; Mullighan, Charles G.; Hunger, Stephen P.; Harvey, Richard C.; Willman, Cheryl L.; Fridman, Jordan S.; Loh, Mignon L.; Grupp, Stephan A.

    2012-01-01

    CRLF2 rearrangements, JAK1/2 point mutations, and JAK2 fusion genes have been identified in Philadelphia chromosome (Ph)–like acute lymphoblastic leukemia (ALL), a recently described subtype of pediatric high-risk B-precursor ALL (B-ALL) which exhibits a gene expression profile similar to Ph-positive ALL and has a poor prognosis. Hyperactive JAK/STAT and PI3K/mammalian target of rapamycin (mTOR) signaling is common in this high-risk subset. We, therefore, investigated the efficacy of the JAK inhibitor ruxolitinib and the mTOR inhibitor rapamycin in xenograft models of 8 pediatric B-ALL cases with and without CRLF2 and JAK genomic lesions. Ruxolitinib treatment yielded significantly lower peripheral blast counts compared with vehicle (P < .05) in 6 of 8 human leukemia xenografts and lower splenic blast counts (P < .05) in 8 of 8 samples. Enhanced responses to ruxolitinib were observed in samples harboring JAK-activating lesions and higher levels of STAT5 phosphorylation. Rapamycin controlled leukemia burden in all 8 B-ALL samples. Survival analysis of 2 representative B-ALL xenografts demonstrated prolonged survival with rapamycin treatment compared with vehicle (P < .01). These data demonstrate preclinical in vivo efficacy of ruxolitinib and rapamycin in this high-risk B-ALL subtype, for which novel treatments are urgently needed, and highlight the therapeutic potential of targeted kinase inhibition in Ph-like ALL. PMID:22955920

  8. Speed of leukemia development and genetic diversity in xenograft models of T cell acute lymphoblastic leukemia

    PubMed Central

    Poglio, Sandrine; Lewandowski, Daniel; Calvo, Julien; Caye, Aurélie; Gros, Audrey; Laharanne, Elodie; Leblanc, Thierry; Landman-Parker, Judith; Baruchel, André; Soulier, Jean; Ballerini, Paola; Clappier, Emmanuelle; Pflumio, Françoise

    2016-01-01

    T cell acute lymphoblastic leukemia (T-ALL) develops through accumulation of multiple genomic alterations within T-cell progenitors resulting in clonal heterogeneity among leukemic cells. Human T-ALL xeno-transplantation in immunodeficient mice is a gold standard approach to study leukemia biology and we recently uncovered that the leukemia development is more or less rapid depending on T-ALL sample. The resulting human leukemia may arise through genetic selection and we previously showed that human T-ALL development in immune-deficient mice is significantly enhanced upon CD7+/CD34+ leukemic cell transplantations. Here we investigated the genetic characteristics of CD7+/CD34+ and CD7+/CD34− cells from newly diagnosed human T-ALL and correlated it to the speed of leukemia development. We observed that CD7+/CD34+ or CD7+/CD34− T-ALL cells that promote leukemia within a short-time period are genetically similar, as well as xenograft-derived leukemia resulting from both cell fractions. In the case of delayed T-ALL growth CD7+/CD34+ or CD7+/CD34− cells were either genetically diverse, the resulting xenograft leukemia arising from different but branched subclones present in the original sample, or similar, indicating decreased fitness to mouse micro-environment. Altogether, our work provides new information relating the speed of leukemia development in xenografts to the genetic diversity of T-ALL cell compartments. PMID:27191650

  9. An orthotopic xenograft model with survival hindlimb amputation allows investigation of the effect of tumor microenvironment on sarcoma metastasis.

    PubMed

    Goldstein, Seth D; Hayashi, Masanori; Albert, Catherine M; Jackson, Kyle W; Loeb, David M

    2015-10-01

    Overall survival rates for pediatric high-grade sarcoma have improved greatly in the past few decades, but prevention and treatment of distant metastasis remain the most compelling problems facing these patients. Traditional preclinical mouse models have not proven adequate to study the biology and treatment of spontaneous distant sarcoma metastasis. To address this deficit, we developed an orthotopic implantation/amputation model in which patient-derived sarcoma xenografts are surgically implanted into mouse hindlimbs, allowed to grow, then subsequently amputated and the animals observed for development of metastases. NOD/SCID/IL-2Rγ-null mice were implanted with either histologically intact high grade sarcoma patient-derived xenografts or cell lines in the pretibial space and affected limbs were amputated after tumor growth. In contrast to subcutaneous flank tumors, we were able to consistently detect spontaneous distant spread of the tumors using our model. Metastases were seen in 27-90 % of animals, depending on the xenograft, and were repeatable and predictable. We also demonstrate the utility of this model for studying the biology of metastasis and present preliminary new insights suggesting the role of arginine metabolism and macrophage phenotype polarization in creating a tumor microenvironment that facilitates metastasis. Subcutaneous tumors express more arginase than inducible nitric oxide synthase and demonstrate significant macrophage infiltration, whereas orthotopic tumors express similar amounts of inducible nitric oxide synthase and arginase and have only a scant macrophage infiltrate. Thus, we present a model of spontaneous distant sarcoma metastasis that mimics the clinical situation and is amenable to studying the biology of the entire metastatic cascade.

  10. Comparative Efficacy of 177Lu and 90Y for Anti-CD20 Pretargeted Radioimmunotherapy in Murine Lymphoma Xenograft Models

    PubMed Central

    Frost, Sofia H. L.; Frayo, Shani L.; Miller, Brian W.; Orozco, Johnnie J.; Booth, Garrett C.; Hylarides, Mark D.; Lin, Yukang; Green, Damian J.; Gopal, Ajay K.; Pagel, John M.; Bäck, Tom A.; Fisher, Darrell R.; Press, Oliver W.

    2015-01-01

    these human lymphoma xenograft models. PMID:25785845

  11. Comparative efficacy of 177Lu and 90Y for Anti-CD20 Pretargeted Radioimmunotherapy in Murine Lymphoma Xenograft Models

    DOE PAGES

    Frost, Sofia H. L.; Frayo, Shani L.; Miller, Brian W.; ...

    2015-03-18

    approaches in these human lymphoma xenograft models.« less

  12. Evaluation of 5-HT7 Receptor Trafficking on In Vivo and In Vitro Model of Lipopolysaccharide (LPS)-Induced Inflammatory Cell Injury in Rats and LPS-Treated A549 Cells.

    PubMed

    Ayaz, Gulsen; Halici, Zekai; Albayrak, Abdulmecit; Karakus, Emre; Cadirci, Elif

    2017-02-01

    This study aimed to investigate the effects of the 5-HT7 receptor agonist (LP44) and antagonist (SB269970) on LPS-induced in vivo tissue damage and cell culture by molecular methods. This study was conducted in two steps. For in vivo studies, 24 female rats were divided into four groups. Group I: healthy; II (2nd h): LPS 5 mg/kg administered intraperitoneally (i.p.); III (4th h): LPS 5 mg/kg administered i.p.; IV (8th h): LPS 5 mg/kg administered i.p. For in vitro studies, we used the A549 cell line. Groups: I control (healthy) (2-4 h); II LPS: 1 µg/ml E. Coli O55:B5 strain (2-4 h); III agonist (LP44) 10(-9) M (2-4 h); IV antagonist (SB269970) 10(-9) M (2-4 h); V LPS+agonist 10(-9) M (LP44 1 µg/ml) (2-4 h); VI LPS+antagonist 10(-9) M (2-4 h). In molecular analyses, we determined increased TNF-α, IL-1β, NF-κB, and 5-HT7 mRNA expressions in rat lung tissues and increased TNF-α, iNOS, and 5-HT7 mRNA expressions in the A549 cell line. In in vitro parameters, LP44 agonist administration-related decrease was observed. Our study showed that lung 5-HT7 receptor expression is increased in LPS-induced endotoxemia. All this data suggest that 5-HT7 receptor overexpression is an important protective mechanism during LPS-induced sepsis-related cell damage.

  13. Highly Effective Auger-Electron Therapy in an Orthotopic Glioblastoma Xenograft Model using Convection-Enhanced Delivery

    PubMed Central

    Thisgaard, Helge; Halle, Bo; Aaberg-Jessen, Charlotte; Olsen, Birgitte Brinkmann; Therkelsen, Anne Sofie Nautrup; Dam, Johan Hygum; Langkjær, Niels; Munthe, Sune; Någren, Kjell; Høilund-Carlsen, Poul Flemming; Kristensen, Bjarne Winther

    2016-01-01

    Glioblastoma, the most common and malignant primary brain tumor, always recurs after standard treatment. Therefore, promising new therapeutic approaches are needed. Short-range Auger-electron-emitters carry the ability of causing highly damaging radiation effects in cells. The aim of this study was to test the effect of [125I]5-Iodo-2'-deoxyuridine (125I-UdR, a radioactive Auger-electron-emitting thymidine analogue) Auger-therapy on immature glioblastoma spheroid cultures and orthotopic xenografted glioblastoma-bearing rats, the latter by means of convection-enhanced delivery (CED). Moreover, we aimed to determine if the therapeutic effect could be enhanced when combining 125I-UdR therapy with the currently used first-line chemotherapeutic agent temozolomide. 125I-UdR significantly decreased glioblastoma cell viability and migration in vitro and the cell viability was further decreased by co-treatment with methotrexate and/or temozolomide. Intratumoral CED of methotrexate and 125I-UdR with and without concomitant systemic temozolomide chemotherapy significantly reduced the tumor burden in orthotopically xenografted glioblastoma-bearing nude rats. Thus, 100% (8/8) of the animals survived the entire observation period of 180 days when subjected to the combined Auger-chemotherapy while 57% (4/7) survived after the Auger-therapy alone. No animals (0/8) treated with temozolomide alone survived longer than 50 days. Blood samples and post-mortem histology showed no signs of dose-limiting adverse effects. In conclusion, the multidrug approach consisting of CED of methotrexate and 125I-UdR with concomitant systemic temozolomide was safe and very effective leading to 100% survival in an orthotopic xenograft glioblastoma model. Therefore, this therapeutic strategy may be a promising option for future glioblastoma therapy. PMID:27924163

  14. The use of thermographic imaging to evaluate therapeutic response in human tumour xenograft models

    PubMed Central

    Hussain, Nosheen; Connah, David; Ugail, Hassan; Cooper, Patricia A.; Falconer, Robert A.; Patterson, Laurence H.; Shnyder, Steven D.

    2016-01-01

    Non-invasive methods to monitor tumour growth are an important goal in cancer drug development. Thermographic imaging systems offer potential in this area, since a change in temperature is known to be induced due to changes within the tumour microenvironment. This study demonstrates that this imaging modality can be applied to a broad range of tumour xenografts and also, for the first time, the methodology’s suitability to assess anti-cancer agent efficacy. Mice bearing subcutaneously implanted H460 lung cancer xenografts were treated with a novel vascular disrupting agent, ICT-2552, and the cytotoxin doxorubicin. The effects on tumour temperature were assessed using thermographic imaging over the first 6 hours post-administration and subsequently a further 7 days. For ICT-2552 a significant initial temperature drop was observed, whilst for both agents a significant temperature drop was seen compared to controls over the longer time period. Thus thermographic imaging can detect functional differences (manifesting as temperature reductions) in the tumour response to these anti-cancer agents compared to controls. Importantly, these effects can be detected in the first few hours following treatment and therefore the tumour is observable non-invasively. As discussed, this technique will have considerable 3Rs benefits in terms of reduction and refinement of animal use. PMID:27491535

  15. Pseudotyped AAV Vector-Mediated Gene Transfer in a Human Fetal Trachea Xenograft Model: Implications for In Utero Gene Therapy for Cystic Fibrosis

    PubMed Central

    Leung, Alice; Katz, Anna B.; Lim, Foong-Yen; Habli, Mounira; Jones, Helen N.; Wilson, James M.; Crombleholme, Timothy M.

    2012-01-01

    Background Lung disease including airway infection and inflammation currently causes the majority of morbidities and mortalities associated with cystic fibrosis (CF), making the airway epithelium and the submucosal glands (SMG) novel target cells for gene therapy in CF. These target cells are relatively inaccessible to postnatal gene transfer limiting the success of gene therapy. Our previous work in a human-fetal trachea xenograft model suggests the potential benefit for treating CF in utero. In this study, we aim to validate adeno-associated virus serotype 2 (AAV2) gene transfer in a human fetal trachea xenograft model and to compare transduction efficiencies of pseudotyping AAV2 vectors in fetal xenografts and postnatal xenograft controls. Methodology/Principal Findings Human fetal trachea or postnatal bronchus controls were xenografted onto immunocompromised SCID mice for a four-week engraftment period. After injection of AAV2/2, 2/1, 2/5, 2/7 or 2/8 with a LacZ reporter into both types of xenografts, we analyzed for transgene expression in the respiratory epithelium and SMGs. At 1 month, transduction by AAV2/2 and AAV2/8 in respiratory epithelium and SMG cells was significantly greater than that of AAV2/1, 2/5, and 2/7 in xenograft tracheas. Efficiency in SMG transduction was significantly greater in AAV2/8 than AAV2/2. At 3 months, AAV2/2 and AAV2/8 transgene expression was >99% of respiratory epithelium and SMG. At 1 month, transduction efficiency of AAV2/2 and AAV2/8 was significantly less in adult postnatal bronchial xenografts than in fetal tracheal xenografts. Conclusions/Significance Based on the effectiveness of AAV vectors in SMG transduction, our findings suggest the potential utility of pseudotyped AAV vectors for treatment of cystic fibrosis. The human fetal trachea xenograft model may serve as an effective tool for further development of fetal gene therapy strategies for the in utero treatment of cystic fibrosis. PMID:22937069

  16. Therapeutic Effects of Microbubbles Added to Combined High-Intensity Focused Ultrasound and Chemotherapy in a Pancreatic Cancer Xenograft Model

    PubMed Central

    Yu, Mi Hye; Kim, Hae Ri; Kim, Bo Ram; Park, Eun-Joo; Kim, Hoe Suk; Han, Joon Koo; Choi, Byung Ihn

    2016-01-01

    Objective To investigate whether high-intensity focused ultrasound (HIFU) combined with microbubbles enhances the therapeutic effects of chemotherapy. Materials and Methods A pancreatic cancer xenograft model was established using BALB/c nude mice and luciferase-expressing human pancreatic cancer cells. Mice were randomly assigned to five groups according to treatment: control (n = 10), gemcitabine alone (GEM; n = 12), HIFU with microbubbles (HIFU + MB, n = 11), combined HIFU and gemcitabine (HIGEM; n = 12), and HIGEM + MB (n = 13). After three weekly treatments, apoptosis rates were evaluated using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay in two mice per group. Tumor volume and bioluminescence were monitored using high-resolution 3D ultrasound imaging and in vivo bioluminescence imaging for eight weeks in the remaining mice. Results The HIGEM + MB group showed significantly higher apoptosis rates than the other groups (p < 0.05) and exhibited the slowest tumor growth. From week 5, the tumor-volume-ratio relative to the baseline tumor volume was significantly lower in the HIGEM + MB group than in the control, GEM, and HIFU + MB groups (p < 0.05). Despite visible distinction, the HIGEM and HIGEM + MB groups showed no significant differences. Conclusion High-intensity focused ultrasound combined with microbubbles enhances the therapeutic effects of gemcitabine chemotherapy in a pancreatic cancer xenograft model. PMID:27587968

  17. Activin type IB receptor signaling in prostate cancer cells promotes lymph node metastasis in a xenograft model

    SciTech Connect

    Nomura, Masatoshi; Tanaka, Kimitaka; Wang, Lixiang; Goto, Yutaka; Mukasa, Chizu; Ashida, Kenji; Takayanagi, Ryoichi

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer ActRIB signaling induces Snail and S100A4 expressions in prostate cancer cells. Black-Right-Pointing-Pointer The prostate cancer cell lines expressing an active form of ActRIB were established. Black-Right-Pointing-Pointer ActRIB signaling promotes EMT and lymph node metastasis in xenograft model. -- Abstract: Activin, a member of the transforming growth factor-{beta} family, has been known to be a growth and differentiating factor. Despite its pluripotent effects, the roles of activin signaling in prostate cancer pathogenesis are still unclear. In this study, we established several cell lines that express a constitutive active form of activin type IB receptor (ActRIBCA) in human prostate cancer cells, ALVA41 (ALVA-ActRIBCA). There was no apparent change in the proliferation of ALVA-ActRIBCA cells in vitro; however, their migratory ability was significantly enhanced. In a xenograft model, histological analysis revealed that the expression of Snail, a cell-adhesion-suppressing transcription factor, was dramatically increased in ALVA-ActRIBCA tumors, indicating epithelial mesenchymal transition (EMT). Finally, mice bearing ALVA-ActRIBCA cells developed multiple lymph node metastases. In this study, we demonstrated that ActRIBCA signaling can promote cell migration in prostate cancer cells via a network of signaling molecules that work together to trigger the process of EMT, and thereby aid in the aggressiveness and progression of prostate cancers.

  18. Comparison of the effects of vitamin D products in a psoriasis plaque test and a murine psoriasis xenograft model.

    PubMed

    Kvist, Peter H; Svensson, Lars; Hagberg, Oskar; Hoffmann, Vibeke; Kemp, Kaare; Røpke, Mads A

    2009-12-17

    The aim of the present study was to compare the effects of Daivobet and calcipotriol on clinical score and biomarker responses in a modified version of the Scholtz-Dumas psoriasis plaque assay. Furthermore, it was the aim to compare the effects of calcipotriol and betamethasone in the murine psoriasis xenograft model. Twenty four patients with psoriasis were treated topically once daily for three weeks, whereas the grafted mice were treated for four weeks. Clinical responses were scored twice weekly and biopsies were taken at the end of each study to analyse for skin biomarkers by histology and immunohistochemistry. The results clearly demonstrate effects on both clinical signs and biomarkers. In the patient study the total clinical score was reduced significantly with both Daivobet and calcipotriol. Both treatments reduced epidermal thickness, Ki-67 and cytokeratin 16 expression. T cell infiltration was significantly reduced by Daivobet but only marginally by calcipotriol. Both treatments showed strong effects on the epidermal psoriatic phenotype.Results from the xenograft model essentially showed the same results. However differences were observed when investigating subtypes of T cells.The study demonstrates the feasibility of obtaining robust biomarker data in the psoriasis plaque test that correlate well with those obtained in other clinical studies. Furthermore, the biomarker data from the plaque test correlate with biopsy data from the grafted mice.

  19. Therapeutic Antibodies Targeting CSF1 Impede Macrophage Recruitment in a Xenograft Model of Tenosynovial Giant Cell Tumor

    PubMed Central

    Cheng, Hongwei; Clarkson, Paul W.; Gao, Dongxia; Pacheco, Marina; Wang, Yuzhuo; Nielsen, Torsten O.

    2010-01-01

    Tenosynovial giant cell tumor is a neoplastic disease of joints that can cause severe morbidity. Recurrences are common following local therapy, and no effective medical therapy currently exists. Recent work has demonstrated that all cases overexpress macrophage colony-stimulating factor (CSF1), usually as a consequence of an activating gene translocation, resulting in an influx of macrophages that form the bulk of the tumor. New anti-CSF1 drugs have been developed; however there are no preclinical models suitable for evaluation of drug benefits in this disease. In this paper, we describe a novel renal subcapsular xenograft model of tenosynovial giant cell tumor. Using this model, we demonstrate that an anti-CSF1 monoclonal antibody significantly inhibits host macrophage infiltration into this tumor. The results from this model support clinical trials of equivalent humanized agents and anti-CSF1R small molecule drugs in cases of tenosynovial giant cell tumor refractory to conventional local therapy. PMID:20981142

  20. Antitumor effects of FP3 in combination with capecitabine on PDTT xenograft models of primary colon carcinoma and related lymphatic and hepatic metastases.

    PubMed

    Jin, Ketao; Lan, Huanrong; Xie, Bojian; He, Kuifeng; Xu, Zhenzhen; Li, Guangliang; Han, Na; Teng, Lisong; Cao, Feilin

    2012-07-01

    FP3 is an engineered protein which contains the extracellular domain 2 of VEGF receptor 1 (Flt-1) and extracellular domain 3 and 4 of VEGF receptor 2 (Flk-1, KDR) fused to the Fc portion of human immunoglobulin G 1. Previous studies demonstrated its antiangiogenic effects in vitro and in vivo, and its antitumor activity in vivo. In this study, patient-derived tumor tissue (PDTT) xenograft models of primary colon carcinoma and lymphatic and hepatic metastases were established for assessment of the antitumor activity of FP3 in combination with capecitabine. Xenografts were treated with FP3, capecitabine, alone or in combination. After tumor growth was confirmed, volume and microvessel density in tumors were evaluated. Levels of VEGF, and PCNA in the tumor were examined by immunohistonchamical staining, level of thymidine phosphorylase (TP) was examined by ELISA, and levels of related cell signaling pathways proteins expression were examined by western blotting. FP3 in combination with capecitabine showed significant antitumor activity in three xenograft models (primary colon carcinoma, lymphatic metastasis, and hepatic metastasis). The microvessel density in tumor tissues treated with FP3 in combination with capecitabine was lower than that of the control. Antitumor activity of FP3 in combination with capecitabine was significantly higher than that of each agent alone in three xenograft models (primary colon carcinoma, lymphatic metastasis, and hepatic metastasis). This study indicated that addition of FP3 to capecitabine significantly improved tumor growth inhibition in the PDTT xenograft models of primary colon carcinoma and lymphatic and hepatic metastases.

  1. Potent efficacy signals from systemically administered oncolytic herpes simplex virus (HSV1716) in hepatocellular carcinoma xenograft models.

    PubMed

    Braidwood, Lynne; Learmonth, Kirsty; Graham, Alex; Conner, Joe

    2014-01-01

    Oncolytic herpes simplex virus (HSV1716), lacking the neurovirulence factor ICP34.5, has highly selective replication competence for cancer cells and has been used in clinical studies of glioma, melanoma, head and neck squamous cell carcinoma, pediatric non-central nervous system solid tumors, and malignant pleural mesothelioma. To date, 88 patients have received HSV1716 and the virus is well tolerated, with selective replication in tumor cells and no spread to surrounding normal tissue. We assessed the potential value of HSV1716 in preclinical studies with two human hepatocellular carcinoma cell lines, HuH7 and HepG2-luc. HSV1716 displayed excellent replication kinetics in vitro in HepG2-luc cells, a cell line engineered to express luciferase, and virus-mediated cell killing correlated with loss of light emissions from the cells. In vivo, the HepG2-luc cells readily formed light-emitting xenografts that were easily visualized by an in vivo imaging system and efficiently eliminated by HSV1716 oncolysis after intratumoral injection. HSV1716 also demonstrated strong efficacy signals in subcutaneous HuH7 xenografts in nude mice after intravenous administration of virus. In the HuH7 model, the intravenously injected virus replicated prolifically immediately after efficient tumor localization, resulting in highly significant reductions in tumor growth and enhanced survival. Our preclinical results demonstrate excellent tumor uptake of HSV1716, with prolific replication and potent oncolysis. These observations warrant a clinical study of HSV1716 in hepatocellular carcinoma.

  2. Evaluation of 9-cis retinoic acid and mitotane as antitumoral agents in an adrenocortical xenograft model.

    PubMed

    Nagy, Zoltán; Baghy, Kornélia; Hunyadi-Gulyás, Éva; Micsik, Tamás; Nyírő, Gábor; Rácz, Gergely; Butz, Henriett; Perge, Pál; Kovalszky, Ilona; Medzihradszky, Katalin F; Rácz, Károly; Patócs, Attila; Igaz, Peter

    2015-01-01

    The available drug treatment options for adrenocortical carcinoma (ACC) are limited. In our previous studies, the in vitro activity of 9-cis retinoic acid (9-cisRA) on adrenocortical NCI-H295R cells was shown along with its antitumoral effects in a small pilot xenograft study. Our aim was to dissect the antitumoral effects of 9-cisRA on ACC in a large-scale xenograft study involving mitotane, 9-cisRA and their combination. 43 male SCID mice inoculated with NCI-H295R cells were treated in four groups (i. control, ii. 9-cisRA, iii. mitotane, iv. 9-cisRA + mitotane) for 28 days. Tumor size follow-up, histological and immunohistochemical (Ki-67) analysis, tissue gene expression microarray, quantitative real-time-PCR for the validation of microarray results and to detect circulating microRNAs were performed. Protein expression was studied by proteomics and Western-blot validation. Only mitotane alone and the combination of 9-cisRA and mitotane resulted in significant tumor size reduction. The Ki-67 index was significantly reduced in both 9-cisRA and 9-cisRA+mitotane groups. Only modest changes at the mRNA level were found: the 9-cisRA-induced overexpression of apolipoprotein A4 and down-regulation of phosphodiesterase 4A was validated. The expression of circulating hsa-miR-483-5p was significantly reduced in the combined treatment group. The SET protein was validated as being significantly down-regulated in the combined mitotane+9-cisRA group. 9-cisRA might be a helpful additive agent in the treatment of ACC in combination with mitotane. Circulating hsa-miR-483-5p could be utilized for monitoring the treatment efficacy in ACC patients, and the treatment-induced reduction in protein SET expression might raise its relevance in ACC biology.

  3. Evaluation of 9-cis retinoic acid and mitotane as antitumoral agents in an adrenocortical xenograft model

    PubMed Central

    Nagy, Zoltán; Baghy, Kornélia; Hunyadi-Gulyás, Éva; Micsik, Tamás; Nyírő, Gábor; Rácz, Gergely; Butz, Henriett; Perge, Pál; Kovalszky, Ilona; Medzihradszky, Katalin F; Rácz, Károly; Patócs, Attila; Igaz, Peter

    2015-01-01

    The available drug treatment options for adrenocortical carcinoma (ACC) are limited. In our previous studies, the in vitro activity of 9-cis retinoic acid (9-cisRA) on adrenocortical NCI-H295R cells was shown along with its antitumoral effects in a small pilot xenograft study. Our aim was to dissect the antitumoral effects of 9-cisRA on ACC in a large-scale xenograft study involving mitotane, 9-cisRA and their combination. 43 male SCID mice inoculated with NCI-H295R cells were treated in four groups (i. control, ii. 9-cisRA, iii. mitotane, iv. 9-cisRA + mitotane) for 28 days. Tumor size follow-up, histological and immunohistochemical (Ki-67) analysis, tissue gene expression microarray, quantitative real-time-PCR for the validation of microarray results and to detect circulating microRNAs were performed. Protein expression was studied by proteomics and Western-blot validation. Only mitotane alone and the combination of 9-cisRA and mitotane resulted in significant tumor size reduction. The Ki-67 index was significantly reduced in both 9-cisRA and 9-cisRA+mitotane groups. Only modest changes at the mRNA level were found: the 9-cisRA-induced overexpression of apolipoprotein A4 and down-regulation of phosphodiesterase 4A was validated. The expression of circulating hsa-miR-483-5p was significantly reduced in the combined treatment group. The SET protein was validated as being significantly down-regulated in the combined mitotane+9-cisRA group. 9-cisRA might be a helpful additive agent in the treatment of ACC in combination with mitotane. Circulating hsa-miR-483-5p could be utilized for monitoring the treatment efficacy in ACC patients, and the treatment-induced reduction in protein SET expression might raise its relevance in ACC biology. PMID:26885453

  4. Rubus idaeus L Inhibits Invasion Potential of Human A549 Lung Cancer Cells by Suppression Epithelial-to-Mesenchymal Transition and Akt Pathway In Vitro and Reduces Tumor Growth In Vivo.

    PubMed

    Chu, Shu-Chen; Hsieh, Yih-Shou; Hsu, Li-Sung; Chen, Kuo-Shuen; Chiang, Chien-Cheng; Chen, Pei-Ni

    2014-05-01

    The metastasis of lung cancer is the most prevalent cause of patient death. Various treatment strategies have targeted the prevention of the occurrence of metastasis. The epithelial-mesenchymal transition (EMT) in lung cancer cells is considered a prerequisite to acquire the invasive/migratory phenotype and to subsequently achieve metastasis. However, the effects ofRubus idaeuson cancer invasion and the EMT of the human lung carcinoma remain unclear. In this article, we test the hypothesis thatR idaeusethyl acetate (RIAE) possesses an antimetastatic effect and reverses the EMT potential of human lung A549 cells. We extract the raspberryR idaeuswith methanol (RIME), chloroform (RICE), ethyl acetate (RIAE),n-butanol (RIBE), and water (RIWE). The RIAE treatment obviously inhibits the invasive (P< .001), motility (P< .001), spreading, and migratory potential (P< .001) of highly metastatic human lung cancer A549 cells. The zymography and promoter luciferase analysis reveals that RIAE decreases the proteinase and transcription activities of MMP-2 and u-PA. Molecular analyses show that RIAE increases the E-cadherin level that is mainly localized at the cellular membrane. This result was also verified through confocal analyses. RIAE also induces the upregulation of an epithelial marker, such as α-catenin, and decreases mesenchymal markers, such as snail-1 and N-cadherin, that promote cell invasion and metastasis. RIAE inhibits MMP-2 and u-PA by attenuating the NF-κB and p-Akt expression. The inhibition of RIAE on the growth of A549 cells in vivo was also verified using a cancer cell xenograft nude mice model. Our results show the anti-invasive/antitumor effects of RIAE and associated mechanisms, which suggest that RIAE should be further tested in clinically relevant models to exploit its potential benefits against metastatic lung cancer cells.

  5. Whole Exome Sequencing of Rapid Autopsy Tumors and Xenograft Models Reveals Possible Driver Mutations Underlying Tumor Progression

    PubMed Central

    Xie, Tao; Musteanu, Monica; Lopez-Casas, Pedro P.; Shields, David J.; Olson, Peter; Rejto, Paul A.; Hidalgo, Manuel

    2015-01-01

    Pancreatic Ductal Adenocarcinoma (PDAC) is a highly lethal malignancy due to its propensity to invade and rapidly metastasize and remains very difficult to manage clinically. One major hindrance towards a better understanding of PDAC is the lack of molecular data sets and models representative of end stage disease. Moreover, it remains unclear how molecularly similar patient-derived xenograft (PDX) models are to the primary tumor from which they were derived. To identify potential molecular drivers in metastatic pancreatic cancer progression, we obtained matched primary tumor, metastases and normal (peripheral blood) samples under a rapid autopsy program and performed whole exome sequencing (WES) on tumor as well as normal samples. PDX models were also generated, sequenced and compared to tumors. Across the matched data sets generated for three patients, there were on average approximately 160 single-nucleotide mutations in each sample. The majority of mutations in each patient were shared among the primary and metastatic samples and, importantly, were largely retained in the xenograft models. Based on the mutation prevalence in the primary and metastatic sites, we proposed possible clonal evolution patterns marked by functional mutations affecting cancer genes such as KRAS, TP53 and SMAD4 that may play an important role in tumor initiation, progression and metastasis. These results add to our understanding of pancreatic tumor biology, and demonstrate that PDX models derived from advanced or end-stage likely closely approximate the genetics of the disease in the clinic and thus represent a biologically and clinically relevant pre-clinical platform that may enable the development of effective targeted therapies for PDAC. PMID:26555578

  6. Protection of A549 cells against the toxic effects of sulphur mustard by hexamethylenetetramine.

    PubMed

    Lindsay, C D; Hambrook, J L

    1997-02-01

    The A549 cell line was used as a model of the deep lung to study the toxicity and mechanism of action of sulphur mustard (HD), using the neutral red (NR) dye retention and gentian violet (GV) assays as indices of cell viability. It was found that exposure to concentrations in excess of 40 microM HD resulted in a rapid onset of toxicity. Exposure to 1000 microM HD reduced viability in A549 cell cultures to 61% after 2 h (control cultures = 100%), whereas exposure to 40 microM HD did not result in deleterious effects until 26 h at which point viability fell to only 84% (NR assay). Agarose gel electrophoresis of cell cultures exposed to 40 and 1000 microM HD and harvested at 4.5, 19 and 43 h after exposure to HD, indicated that cell death was due to necrosis, despite the observation that at the higher concentration of HD cells displayed many of the features common to cells undergoing apoptotic death. The ability of hexamethylenetetramine (HMT) to protect A549 cells against the effects of an LC50 challenge dose of HD was assessed using the GV and NR assays. It was found that HMT (15 mM) could protect cells against the effects of HD though HMT had to be present at the time of HD challenge. Cultures treated with HD only were 49% viable at 48 h after HD challenge, compared to 101% for protected cultures (NR assay) and 58% and 91% for unprotected and protected cultures respectively using the GV assay. Morphological observations of GV and NR stained cultures confirmed these findings. HMT concentrations of 2.5 to 25 mM were used. Maximal protection against the toxic effects of HD (LC50) was found at 10 to 25 mM HMT. Over this concentration range, HMT did not exert any toxic effects on A549 cells. Pretreatment of A549 cultures with HMT followed by its removal prior to HD challenge had no protective effect. Similarly, treating cultures with HD followed by addition of HMT did not increase the viability of the cultures, even if the HMT was added immediately after HD exposure

  7. The metastasis suppressor KISS1 lacks antimetastatic activity in the C8161.9 xenograft model of melanoma.

    PubMed

    Navenot, Jean-Marc; Evans, Barry; Oishi, Shinya; Setsuda, Shohei; Fujii, Nobutaka; Peiper, Stephen C

    2012-04-01

    The objective of this study was to use the established xenograft model of human melanoma (C8161.9) to test a pharmacological approach to the effect of the metastasis suppressor KISS1. A KISS1 analog was used to inhibit the metastatic development of C8161.9 cells in nude mice. Further experiments were performed to test the validity of the C8161.9 model and test the connection between KISS1 expression and loss of metastatic potential. New clones of C8161.9 cells were obtained, with or without KISS1 expression, and were tested for metastasis formation. The absence of benefit in survival with the KISS1 analog compared with PBS prompted us to revisit the C8161.9 model. We found that the cells expressing KISS1, used in the previous study and obtained by transfection and single-cell cloning, were defective for both formation of orthotopic tumors and metastases. In mixing experiments, these cells could not suppress orthotopic tumor growth of KISS1-negative C8161.9 cells, suggesting that the suppression of metastasis by C8161.9-KISS1 cells may be intrinsic to the selected clone rather than related to KISS1 expression. Isolation of clones from parental C8161.9 cells in soft agar yielded cell populations that phenotypically and genotypically mimicked the KISS1-positive clone. In addition, new clones expressing KISS1 did not show any decrease in metastatic growth. These data demonstrate the heterogeneity of cell types in the C8161.9 cell line and the high risk of artifact linked to single-cell selection. A different xenograft model will be necessary to evaluate the use of KISS1 analogs as antimetastatic therapy.

  8. Celecoxib enhanced the cytotoxic effect of cisplatin in chemo-resistant gastric cancer xenograft mouse models through a cyclooxygenase-2-dependent manner.

    PubMed

    Xu, Hong-Bin; Shen, Fu-Ming; Lv, Qian-Zhou

    2016-04-05

    Our previous study suggested that co-administration of celecoxib increased chemo-sensitivity of multidrug-resistant human gastric cancer SGC-7901/DDP cells to cisplatin (DDP) in vitro. The present study was designed to investigate whether celecoxib had the similar activities in vivo. SGC-7901/DDP and SGC-7901 xenograft mouse models were established. At the end of the experiment, cisplatin treatment alone significantly inhibited tumor growth in SGC-7901 xenograft, as compared with that in SGC-7901/DDP xenograft, suggesting that it maintained cisplatin sensitivity. When cisplatin and celecoxib were co-administrated, their antitumor activities were augmented in SGC-7901/DDP xenograft. The levels of Ki67 and PCNA after combination therapy were significantly decreased in SGC-7901/DDP xenograft, as compared with those of cisplatin treatment alone. Moreover, examining the apoptotic index by TUNEL assay showed similar results. Further studies demonstrated the inhibitory effect of celecoxib on cyclooxygenase-2 and P-glycoprotein expression was the possible reason to increase sensitivity of SGC-7901/DDP cells to cisplatin in vivo. However, the ratio of thromboxane B2 and prostaglandin F1α was elevated after celecoxib treatment in mice. This has been proposed to increase the risk of thrombogenesis. Further studies are required to evaluate the efficacy and safety of celecoxib for reducing chemo-resistance in gastric cancer.

  9. Pre-Clinical Study of Panobinostat in Xenograft and Genetically Engineered Murine Diffuse Intrinsic Pontine Glioma Models

    PubMed Central

    Olaciregui, Nagore G.; Barton, Kelly L.; Ehteda, Anahid; Chitranjan, Arjanna; Chang, Cecilia; Gifford, Andrew J.; Tsoli, Maria; Ziegler, David S.; Carcaboso, Angel M.; Becher, Oren J.

    2017-01-01

    Background Diffuse intrinsic pontine glioma (DIPG), or high-grade brainstem glioma (BSG), is one of the major causes of brain tumor-related deaths in children. Its prognosis has remained poor despite numerous efforts to improve survival. Panobinostat, a histone deacetylase inhibitor, is a targeted agent that has recently shown pre-clinical efficacy and entered a phase I clinical trial for the treatment of children with recurrent or progressive DIPG. Methods A collaborative pre-clinical study was conducted using both a genetic BSG mouse model driven by PDGF-B signaling, p53 loss, and ectopic H3.3-K27M or H3.3-WT expression and an H3.3-K27M orthotopic DIPG xenograft model to confirm and extend previously published findings regarding the efficacy of panobinostat in vitro and in vivo. Results In vitro, panobinostat potently inhibited cell proliferation, viability, and clonogenicity and induced apoptosis of human and murine DIPG cells. In vivo analyses of tissue after short-term systemic administration of panobinostat to genetically engineered tumor-bearing mice indicated that the drug reached brainstem tumor tissue to a greater extent than normal brain tissue, reduced proliferation of tumor cells and increased levels of H3 acetylation, demonstrating target inhibition. Extended consecutive daily treatment of both genetic and orthotopic xenograft models with 10 or 20 mg/kg panobinostat consistently led to significant toxicity. Reduced, well-tolerated doses of panobinostat, however, did not prolong overall survival compared to vehicle-treated mice. Conclusion Our collaborative pre-clinical study confirms that panobinostat is an effective targeted agent against DIPG human and murine tumor cells in vitro and in short-term in vivo efficacy studies in mice but does not significantly impact survival of mice bearing H3.3-K27M-mutant tumors. We suggest this may be due to toxicity associated with systemic administration of panobinostat that necessitated dose de-escalation. PMID

  10. A Novel Synthetic Smoothened Antagonist Transiently Inhibits Pancreatic Adenocarcinoma Xenografts in a Mouse Model

    PubMed Central

    Strand, Martin F.; Wilson, Steven R.; Dembinski, Jennifer L.; Holsworth, Daniel D.; Khvat, Alexander; Okun, Ilya; Petersen, Dirk; Krauss, Stefan

    2011-01-01

    Background Hedgehog (Hh) signaling is over-activated in several solid tumors where it plays a central role in cell growth, stroma recruitment and tumor progression. In the Hh signaling pathway, the Smoothened (SMO) receptor comprises a primary drug target with experimental small molecule SMO antagonists currently being evaluated in clinical trials. Principal Findings Using Shh-Light II (Shh-L2) and alkaline phosphatase (AP) based screening formats on a “focused diversity” library we identified a novel small molecule inhibitor of the Hh pathway, MS-0022 (2-bromo-N-(4-(8-methylimidazo[1,2-a]pyridin-2-yl)phenyl)benzamide). MS-0022 showed effective Hh signaling pathway inhibition at the level of SMO in the low nM range, and Hh pathway inhibition downstream of Suppressor of fused (SUFU) in the low µM range. MS-0022 reduced growth in the tumor cell lines PANC-1, SUIT-2, PC-3 and FEMX in vitro. MS-0022 treatment led to a transient delay of tumor growth that correlated with a reduction of stromal Gli1 levels in SUIT-2 xenografts in vivo. Significance We document the in vitro and in vivo efficacy and bioavailability of a novel small molecule SMO antagonist, MS-0022. Although MS-0022 primarily interferes with Hh signaling at the level of SMO, it also has a downstream inhibitory effect and leads to a stronger reduction of growth in several tumor cell lines when compared to related SMO antagonists. PMID:21698280

  11. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model.

    PubMed

    Parajuli, Keshab Raj; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2016-03-01

    Aminomethylphosphonic acid (AMPA) has been shown to inhibit prostate cancer cell growth in vitro. The purpose of the present study was to determine if AMPA could inhibit growth and metastasis of prostate cancer in vivo. Human prostate cancer PC-3-LacZ-luciferase cells were implanted into the ventral lateral lobes of the prostate in 39 athymic Nu/Nu nude male mice. Seven days later, mice were randomized into the control group (n = 14, treated intraperitoneally with phosphate buffered saline), low dose group (n = 10, treated intraperitoneally with AMPA at 400 mg/kg body weight/day), and high dose group (n = 15, treated intraperitoneally with AMPA at 800 mg/kg body weight/day). Tumor growth and metastasis were examined every 4-7 days by bioluminescence imaging of live mice. We found that AMPA treatment significantly inhibited growth and metastasis of orthotopic xenograft prostate tumors and prolonged the survival time of the mice. AMPA treatment decreased expression of BIRC2 and activated caspase 3, leading to increased apoptosis in the prostate tumors. AMPA treatment decreased expression of cyclin D1. AMPA treatment also reduced angiogenesis in the prostate tumors. Taken together, these results demonstrate that AMPA can inhibit prostate cancer growth and metastasis, suggesting that AMPA may be developed into a therapeutic agent for the treatment of prostate cancer.

  12. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model

    PubMed Central

    Parajuli, Keshab Raj; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2016-01-01

    Aminomethylphosphonic acid (AMPA) has been shown to inhibit prostate cancer cell growth in vitro. The purpose of the present study was to determine if AMPA could inhibit growth and metastasis of prostate cancer in vivo. Human prostate cancer PC-3-LacZ-luciferase cells were implanted into the ventral lateral lobes of the prostate in 39 athymic Nu/Nu nude male mice. Seven days later, mice were randomized into the control group (n = 14, treated intraperitoneally with phosphate buffered saline), low dose group (n = 10, treated intraperitoneally with AMPA at 400 mg/kg body weight/day), and high dose group (n = 15, treated intraperitoneally with AMPA at 800 mg/kg body weight/day). Tumor growth and metastasis were examined every 4-7 days by bioluminescence imaging of live mice. We found that AMPA treatment significantly inhibited growth and metastasis of orthotopic xenograft prostate tumors and prolonged the survival time of the mice. AMPA treatment decreased expression of BIRC2 and activated caspase 3, leading to increased apoptosis in the prostate tumors. AMPA treatment decreased expression of cyclin D1. AMPA treatment also reduced angiogenesis in the prostate tumors. Taken together, these results demonstrate that AMPA can inhibit prostate cancer growth and metastasis, suggesting that AMPA may be developed into a therapeutic agent for the treatment of prostate cancer. PMID:26840261

  13. Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers

    PubMed Central

    Bradford, James R.; Wappett, Mark; Beran, Garry; Logie, Armelle; Delpuech, Oona; Brown, Henry; Boros, Joanna; Camp, Nicola J.; McEwen, Robert; Mazzola, Anne Marie; D'Cruz, Celina; Barry, Simon T.

    2016-01-01

    The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX). Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment. In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery. PMID:26980748

  14. Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers.

    PubMed

    Bradford, James R; Wappett, Mark; Beran, Garry; Logie, Armelle; Delpuech, Oona; Brown, Henry; Boros, Joanna; Camp, Nicola J; McEwen, Robert; Mazzola, Anne Marie; D'Cruz, Celina; Barry, Simon T

    2016-04-12

    The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX).Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment.In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery.

  15. Morphine modulates doxorubicin uptake and improves efficacy of chemotherapy in an intracranial xenograft model of human glioblastoma

    PubMed Central

    da Ros, Martina; Iorio, Anna Lisa; Consolante, Dario; Cardile, Francesco; Muratori, Monica; Fantappiè, Ornella; Lucchesi, Maurizio; Guidi, Milena; Pisano, Claudio; Sardi, Iacopo

    2016-01-01

    Morphine may alter the permeability of Blood-Brain Barrier (BBB), enhancing the access of molecules normally unable to cross it, as Doxorubicin (Dox). In addition, morphine seems to mediate the uptake of Dox into the brain by its reduced efflux mediated by P-glycoprotein (P-gp). We evaluated the antitumor efficacy of Dox plus morphine treatment by an orthotopic glioblastoma xenograft model. Foxn1 mice were injected with U87MG-luc cells in the left lobe of the brain and treated with Dox (5 mg/kg and 2.5 mg/kg, weekly) with or without morphine pretreatment (10 mg/kg, weekly). Bioluminescence imaging (BLI) was used to monitoring tumor growth and response to therapy. Additionally, we investigated the role of morphine on the uptake of Dox by MDCKII cells transfected with human MDR1 gene encoding for P-gp. The data demonstrate that only Dox 5 mg/kg determined a significant tumor regression while the lower dose (2.5 mg/kg) was not effective. However, if combined with morphine, the group treated with Dox 2.5 mg/kg showed a decreasing tumor growth. The average BLI for Dox 2.5 mg/kg plus morphine was 5 fold lower than Dox 2.5 mg/kg alone (P=0.0053) and 8 fold lower than vehicle (P=0.0004). Additionally, Dox increased in MDCKII-P-gp transfected cells only in the presence of morphine with a significantly higher level comparing control group (3.84) vs Dox plus morphine group (12.29, P<0.05). Our results indicate that Dox alone and in combination with morphine appear to be effective in controlling the growth of glioblastoma in a xenograft mouse model. PMID:27152241

  16. Effect of Melatonin on Tumor Growth and Angiogenesis in Xenograft Model of Breast Cancer

    PubMed Central

    Jardim-Perassi, Bruna Victorasso; Arbab, Ali S.; Ferreira, Lívia Carvalho; Borin, Thaiz Ferraz; Varma, Nadimpalli R. S.; Iskander, A. S. M.; Shankar, Adarsh; Ali, Meser M.; de Campos Zuccari, Debora Aparecida Pires

    2014-01-01

    As neovascularization is essential for tumor growth and metastasis, controlling angiogenesis is a promising tactic in limiting cancer progression. Melatonin has been studied for their inhibitory properties on angiogenesis in cancer. We performed an in vivo study to evaluate the effects of melatonin treatment on angiogenesis in breast cancer. Cell viability was measured by MTT assay after melatonin treatment in triple-negative breast cancer cells (MDA-MB-231). After, cells were implanted in athymic nude mice and treated with melatonin or vehicle daily, administered intraperitoneally 1 hour before turning the room light off. Volume of the tumors was measured weekly with a digital caliper and at the end of treatments animals underwent single photon emission computed tomography (SPECT) with Technetium-99m tagged vascular endothelial growth factor (VEGF) C to detect in vivo angiogenesis. In addition, expression of pro-angiogenic/growth factors in the tumor extracts was evaluated by membrane antibody array and collected tumor tissues were analyzed with histochemical staining. Melatonin in vitro treatment (1 mM) decreased cell viability (p<0.05). The breast cancer xenografts nude mice treated with melatonin showed reduced tumor size and cell proliferation (Ki-67) compared to control animals after 21 days of treatment (p<0.05). Expression of VEGF receptor 2 decreased significantly in the treated animals compared to that of control when determined by immunohistochemistry (p<0.05) but the changes were not significant on SPECT (p>0.05) images. In addition, there was a decrease of micro-vessel density (Von Willebrand Factor) in melatonin treated mice (p<0.05). However, semiquantitative densitometry analysis of membrane array indicated increased expression of epidermal growth factor receptor and insulin-like growth factor 1 in treated tumors compared to vehicle treated tumors (p<0.05). In conclusion, melatonin treatment showed effectiveness in reducing tumor growth and cell

  17. FL118, a novel camptothecin analogue, overcomes irinotecan and topotecan resistance in human tumor xenograft models

    PubMed Central

    Ling, Xiang; Liu, Xiaojun; Zhong, Kai; Smith, Nicholas; Prey, Joshua; Li, Fengzhi

    2015-01-01

    Irinotecan and topotecan are the only camptothecin analogues approved by the FDA for cancer treatment. However, inherent and/or acquired irinotecan and topotecan resistance is a challenging issue in clinical practice. In this report, we showed that FL118, a novel camptothecin analogue, effectively obliterated human xenograft tumors that acquire irinotecan and topotecan resistance. Consistent with this finding, Pharmacokinetics studies indicated that FL118 rapidly clears from circulation, while effectively accumulating in tumors with a long elimination half-life. Consistent with our previous studies on irinotecan, FL118 exhibited ≥25 fold more effectiveness than topotecan at inhibiting cancer cell growth and colony formation; we further showed that although topotecan can inhibit the expression of survivin, Mcl-1, XIAP or cIAP2, its effectiveness is about 10-100 fold weaker than FL118. Lastly, in contrast to both SN-38 (active metabolite of irinotecan) and topotecan are substrates of the efflux pump proteins P-gp/MDR1 and ABCG2/BCRP, FL118 is not a substrate of P-gp and ABCG2. Consistently, sildenafil, a multiple efflux pump inhibitor, sensitized SN-38 much more than these of the ABCG2-selective inhibitor KO143 in growth inhibition of SW620 and HCT-8 cells. In contrast, both inhibitors showed no effect on FL118 efficacy. Given that both P-gp and ABCG2 express in SW620 and HCT-8 cells and FL118 is not a substrate for P-gp and ABCG2, this suggests that FL118 appears to bypass multiple efflux pump protein-induced resistance, which may contribute to FL118 overcoming irinotecan and topotecan resistance in vivo. These new findings provide renewed perspectives for further development of FL118 for clinical applications. PMID:26692923

  18. Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer.

    PubMed

    Zhao, Xin; Wang, Qiuting; Yang, Shijun; Chen, Chen; Li, Xiaoya; Liu, Jinyu; Zou, Zhongmei; Cai, Dayong

    2016-06-15

    Vascular endothelial growth factor receptor 2 (VEGFR2) mediated calcineurin/nuclear factor of activated T-cells (NFAT) pathway is crucial in the angiogenesis of human breast cancer. Quercetin (Qu), a flavonoid known to possess anti-angiogenesis and antitumor properties, inhibited calcineurin activity in vitro. Herein, we performed a study in vivo to evaluate the effects of Qu on the angiogenesis in breast cancer. Female BALB/c nude mice were injected with MCF-7 cells into the mammary fat and were randomly divided into four groups. The animals were treated with vehicle solution, tamoxifen (TAM, 5.6mg/kg), tacrolimus (FK506, 3mg/kg), or Qu (34mg/kg) for 21 days, respectively. The results showed that, similar to TAM and FK506, Qu decreased tumor growth, limited oncocyte proliferation and promoted tumor necrosis. Anti-angiogenic actions of Qu were demonstrated as decreased serum VEGF (P<0.01), and sparse microvessel density (P<0.05). Qu significantly inhibited tumor calcineurin activities, and the inhibitory rate was 62.73% in Qu treated animals, compared to that was 72.90% in FK506 group (P>0.05). Effects of Qu on calcineurin/NFAT pathway were confirmed as decreased subcellular located levels of VEGF (P<0.05), VEGFR2 (P<0.05) and NFATc3 (P<0.01), downregulated gene expression of VEGF (P<0.05), VEGFR2 (P<0.05) and NFATc3 (P<0.01), reduced protein levels of VEGF (P<0.05), VEGFR2 (P<0.05), and NFATc3 (P<0.01) in tumor tissues. These findings indicate that Qu inhibit angiogenesis of human breast cancer xenograft in nude mice, which was associated with suppressing calcineurin activity and its regulated pathway activation.

  19. Patient-Derived Xenograft Models of Non-Small Cell Lung Cancer and Their Potential Utility in Personalized Medicine.

    PubMed

    Morgan, Katherine M; Riedlinger, Gregory M; Rosenfeld, Jeffrey; Ganesan, Shridar; Pine, Sharon R

    2017-01-01

    Traditional preclinical studies of cancer therapeutics have relied on the use of established human cell lines that have been adapted to grow in the laboratory and, therefore, may deviate from the cancer they were meant to represent. With the emphasis of cancer drug development shifting from non-specific cytotoxic agents to rationally designed molecularly targeted therapies or immunotherapy comes the need for better models with predictive value regarding therapeutic activity and response in clinical trials. Recently, the diversity and accessibility of immunodeficient mouse strains has greatly enhanced the production and utility of patient-derived xenograft (PDX) models for many tumor types, including non-small cell lung cancer (NSCLC). Combined with next-generation sequencing, NSCLC PDX mouse models offer an exciting tool for drug development and for studying targeted therapies while utilizing patient samples with the hope of eventually aiding in clinical decision-making. Here, we describe NSCLC PDX mouse models generated by us and others, their ability to reflect the parental tumors' histomorphological characteristics, as well as the effect of clonal selection and evolution on maintaining genomic integrity in low-passage PDXs compared to the donor tissue. We also raise vital questions regarding the practical utility of PDX and humanized PDX models in predicting patient response to therapy and make recommendations for addressing those questions. Once collaborations and standardized xenotransplantation and data management methods are established, NSCLC PDX mouse models have the potential to be universal and invaluable as a preclinical tool that guides clinical trials and standard therapeutic decisions.

  20. OSI-930: a novel selective inhibitor of Kit and kinase insert domain receptor tyrosine kinases with antitumor activity in mouse xenograft models.

    PubMed

    Garton, Andrew J; Crew, Andrew P A; Franklin, Maryland; Cooke, Andrew R; Wynne, Graham M; Castaldo, Linda; Kahler, Jennifer; Winski, Shannon L; Franks, April; Brown, Eric N; Bittner, Mark A; Keily, John F; Briner, Paul; Hidden, Chris; Srebernak, Mary C; Pirrit, Carrie; O'Connor, Matthew; Chan, Anna; Vulevic, Bojana; Henninger, Dwight; Hart, Karen; Sennello, Regina; Li, An-Hu; Zhang, Tao; Richardson, Frank; Emerson, David L; Castelhano, Arlindo L; Arnold, Lee D; Gibson, Neil W

    2006-01-15

    OSI-930 is a novel inhibitor of the receptor tyrosine kinases Kit and kinase insert domain receptor (KDR), which is currently being evaluated in clinical studies. OSI-930 selectively inhibits Kit and KDR with similar potency in intact cells and also inhibits these targets in vivo following oral dosing. We have investigated the relationships between the potency observed in cell-based assays in vitro, the plasma exposure levels achieved following oral dosing, the time course of target inhibition in vivo, and antitumor activity of OSI-930 in tumor xenograft models. In the mutant Kit-expressing HMC-1 xenograft model, prolonged inhibition of Kit was achieved at oral doses between 10 and 50 mg/kg and this dose range was associated with antitumor activity. Similarly, prolonged inhibition of wild-type Kit in the NCI-H526 xenograft model was observed at oral doses of 100 to 200 mg/kg, which was the dose level associated with significant antitumor activity in this model as well as in the majority of other xenograft models tested. The data suggest that antitumor activity of OSI-930 in mouse xenograft models is observed at dose levels that maintain a significant level of inhibition of the molecular targets of OSI-930 for a prolonged period. Furthermore, pharmacokinetic evaluation of the plasma exposure levels of OSI-930 at these effective dose levels provides an estimate of the target plasma concentrations that may be required to achieve prolonged inhibition of Kit and KDR in humans and which would therefore be expected to yield a therapeutic benefit in future clinical evaluations of OSI-930.

  1. TLE1 promotes EMT in A549 lung cancer cells through suppression of E-cadherin.

    PubMed

    Yao, Xin; Ireland, Shubha Kale; Pham, Tri; Temple, Brandi; Chen, Renwei; Raj, Madhwa H G; Biliran, Hector

    2014-12-12

    The Groucho transcriptional corepressor TLE1 protein has recently been shown to be a putative lung specific oncogene, but its underlying oncogenic activity in lung cancer has not been fully elucidated. In this report, we investigated whether TLE1 regulates lung cancer aggressiveness using the human lung adenocarcinoma cell line A549 as a model system. Through a combination of genetic approaches, we found that TLE1 potentiates epithelial-to-mesenchymal transition (EMT) in A549 cells in part through suppression of the tumor suppressor gene E-cadherin. Exogenous expression of TLE1 in A549 cells resulted in heightened EMT phenotypes (enhanced fibroblastoid morphology and increased cell migratory potential) and in molecular alterations characteristic of EMT (downregulation of the epithelial marker E-cadherin and upregulation of the mesenchymal marker Vimentin). Conversely, downregulation of endogenous TLE1 expression in these cells resulted in reversal of basal EMT characterized by a cuboidal-like epithelial cell phenotype, reduced cell motility, and upregulated E-cadherin expression. Mechanistic studies showed that TLE1 suppresses E-cadherin expression at the transcriptional level in part by recruiting histone deacetylase (HDAC) activity to the E-cadherin promoter. Consistently, the HDAC inhibitor TSA partially reversed the TLE1-induced E-cadherin downregulation and cell migration, suggesting a role for HDACs in TLE1-mediated transcriptional repression of E-cadherin and EMT function. These findings uncover a novel role of TLE1 in regulating EMT in A549 cells through its repressive effect on E-cadherin and provide a mechanism for TLE1 oncogenic activity in lung cancer.

  2. The common anesthetic, sevoflurane, induces apoptosis in A549 lung alveolar epithelial cells.

    PubMed

    Wei, Gui-Hua; Zhang, Juan; Liao, Da-Qing; Li, Zhuo; Yang, Jing; Luo, Nan-Fu; Gu, Yan

    2014-01-01

    Lung alveolar epithelial cells are the first barrier exposed to volatile anesthetics, such as sevoflurane, prior to reaching the targeted neuronal cells. Previously, the effects of volatile anesthetics on lung surfactant were studied primarily with physicochemical models and there has been little experimental data from cell cultures. Therefore it was investigated whether sevoflurane induces apoptosis of A549 lung epithelial cells. A549 cells were exposed to sevoflurane via a calibrated vaporizer with a 2 l/min flow in a gas‑tight chamber at 37˚C. The concentration of sevoflurane in Dulbecco's modified Eagle's medium was detected with gas chromatography. Untreated cells and cells treated with 2 µM daunorubicin hydrochloride (DRB) were used as negative and positive controls, respectively. Apoptosis factors, including the level of ATP, apoptotic‑bodies by terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling (TUNEL) assay, DNA damage and the level of caspase 3/7 were analyzed. Cells treated with sevoflurane showed a significant reduction in ATP compared with untreated cells. Effects in the DRB group were greater than in the sevoflurane group. The difference of TUNEL staining between the sevoflurane and untreated groups was statistically significant. DNA degradation was observed in the sevoflurane and DRB groups, however this was not observed in the untreated group. The sevoflurane and DRB groups induced increased caspase 3/7 activation compared with untreated cells. These results suggest that sevoflurane induces apoptosis in A549 cells. In conclusion, 5% sevoflurane induced apoptosis of A549 lung alveolar epithelial cells, which resulted in decreased cell viability, increased apoptotic bodies, impaired DNA integrality and increased levels of caspase 3/7.

  3. Artesunate induces AIF-dependent apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Zhou, Chen-juan; Chen, Tong-Sheng

    2012-03-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  4. Multi-Chemotherapeutic Schedules Containing the pan-FGFR Inhibitor ARQ 087 are Safe and Show Antitumor Activity in Different Xenograft Models.

    PubMed

    Chilà, Rosaria; Hall G, Terence; Abbadessa, Giovanni; Broggini, Massimo; Damia, Giovanna

    2017-02-02

    ARQ 087 is a multi-tyrosine kinase inhibitor with potent activity against the FGFR receptor family, currently in Phase I clinical studies for the treatment of advanced solid tumors. The compound has a very safe profile and induces tumor regressions in FGFR-driven models. The feasibility of combining ARQ 087 with chemotherapy was investigated in FGFR deregulated human xenografts. Nude mice were transplanted subcutaneously with H1581, and when tumor masses reached 150 mg, were randomized to receive vehicle, ARQ 087, paclitaxel, carboplatin as single agents or in combination. Similar experimental conditions were applied in nude mice bearing SNU16 and MFE296 xenografts, with the inclusion of capecitabine in the former xenograft model. In the different xenograft models, the drugs given as single agents ranged from very active to partially active. The double combinations were more active than the single ones, but the triple combinations were the most active. In particular, the combination of ARQ 087 + paclitaxel + carboplatin in H1581 bearing mice was able to induce tumor regression in all the mice, with 6/8 mice tumor free at day 140 after tumor transplant. Of note, no toxic deaths nor premature stopping or delaying of drug administration were observed. The data herein reported demonstrated the feasibility of using xenografts models for poli-chemotherapeutic trials mimicking the best standard of care in treatment of specific tumor type and that ARQ 087, a new pan-FGFR inhibitor, can be safely combined with standard cytotoxic chemotherapeutic drugs with apparently no sign of cumulative toxicity and an associated increased antitumor effect.

  5. Development of a Patient-Derived Xenograft (PDX) of Breast Cancer Bone Metastasis in a Zebrafish Model

    PubMed Central

    Mercatali, Laura; La Manna, Federico; Groenewoud, Arwin; Casadei, Roberto; Recine, Federica; Miserocchi, Giacomo; Pieri, Federica; Liverani, Chiara; Bongiovanni, Alberto; Spadazzi, Chiara; de Vita, Alessandro; van der Pluijm, Gabri; Giorgini, Andrea; Biagini, Roberto; Amadori, Dino; Ibrahim, Toni; Snaar-Jagalska, Ewa

    2016-01-01

    Bone metastasis is a complex process that needs to be better understood in order to help clinicians prevent and treat it. Xenografts using patient-derived material (PDX) rather than cancer cell lines are a novel approach that guarantees more clinically realistic results. A primary culture of bone metastasis derived from a 67-year-old patient with breast cancer was cultured and then injected into zebrafish (ZF) embryos to study its metastatic potential. In vivo behavior and results of gene expression analyses of the primary culture were compared with those of cancer cell lines with different metastatic potential (MCF7 and MDA-MB-231). The MCF7 cell line, which has the same hormonal receptor status as the bone metastasis primary culture, did not survive in the in vivo model. Conversely, MDA-MB-231 disseminated and colonized different parts of the ZF, including caudal hematopoietic tissues (CHT), revealing a migratory phenotype. Primary culture cells disseminated and in later stages extravasated from the vessels, engrafting into ZF tissues and reaching the CHT. Primary cell behavior reflected the clinical course of the patient’s medical history. Our results underline the potential for using PDX models in bone metastasis research and outline new methods for the clinical application of this in vivo model. PMID:27556456

  6. Development of an ErbB-overexpressing A-431 Optical Reporting Tumor Xenograft Model to Assess Targeted Photodynamic Therapy Regimens

    PubMed Central

    Savellano, Mark D.; Owusu-Brackett, Nicci; Son, Ji; Callier, Thierri; Savellano, Dagmar Högemann

    2010-01-01

    To better assess the efficacy of erbB-targeted therapies, it would help to have optical reporting human tumor xenograft models that abundantly express erbB receptors. A-431 cells have frequently been used in erbB1-targeting studies, but a well-characterized optical reporting version of the cell line has not been readily available. In this study, optical reporting A-431 clones were developed that express both a fluorescent protein reporter (green, GFP; or red, RFP) and a bioluminescent reporter, firefly luciferase. Reporter genes were transduced into cells using commercial lentiviral vectors, and clonal selection was carried out using a series of procedures. A number of clones were isolated for further characterization. A GFP/luciferase clone, A-431/D4, and an RFP/luciferase clone, A-431/G4, were obtained that exhibit erbB1 expression levels and tumor growth kinetics similar to the parental cells. To demonstrate the utility of the optical reporting clones, A-431/G4 tumors were grown subcutaneously in nude mice and treated with vascular-targeted photodynamic therapy (PDT), which targets the angiogenic consequences of erbB signaling. The A-431/G4 tumor model permitted highly sensitive longitudinal monitoring of PDT treatment response using optical imaging. A-431/D4 and A-431/G4 optical reporting tumor models should also prove useful for assessing therapies that directly target the erbB1 receptor. PMID:20880229

  7. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts.

    PubMed

    Hoffman, Robert M

    2015-08-01

    The majority of human solid tumours do not metastasize when grown subcutaneously in immunocompromised mice; this includes patient-derived xenograft (PDX) models. However, orthotopic implantation of intact tumour tissue can lead to metastasis that mimics that seen in patients. These patient-derived orthotopic xenograft (PDOX) models have a long history and might better recapitulate human tumours than PDX models.

  8. Metallofullerene-based Nanoplatform for Brain Tumor Brachytherapy and Longitudinal Imaging in a Murine Orthotopic Xenograft Model

    PubMed Central

    Shultz, Michael D.; Wilson, John D.; Fuller, Christine E.; Zhang, Jianyuan; Dorn, Harry C.

    2011-01-01

    Purpose: To demonstrate in an orthotopic xenograft brain tumor model that a functionalized metallofullerene (f-Gd3N@C80) can enable longitudinal tumor imaging and, when radiolabeled with lutetium 177 (177Lu) and tetraazacyclododecane tetraacetic acid (DOTA) (177Lu-DOTA-f-Gd3N@C80), provide an anchor to deliver effective brachytherapy. Materials and Methods: All experiments involving the use of mice were carried out in accordance with protocols approved by the institutional animal care and use committee. Human glioblastoma U87MG cells were implanted by using stereotactic procedures into the brains of 37 female athymic nude-Foxn1nu mice and allowed to develop into a tumor for 8 days. T1- and T2-weighted magnetic resonance (MR) imaging was performed in five mice. Biodistribution studies were performed in 12 mice at four time points over 7 days to evaluate gadolinium content. Survival studies involved 20 mice that received infusion of a nanoplatform by means of convection-enhanced delivery (CED) 8 days after tumor implantation. Mice in survival studies were divided into two groups: one comprised untreated mice that received f-Gd3N@C80 alone and the other comprised mice treated with brachytherapy that received 1.11 MBq of 177Lu-DOTA-f-Gd3N@C80. Survival data were evaluated by using Kaplan-Meier statistical methods. Results: MR imaging showed extended tumor retention (25.6% ± 1.2 of the infused dose at 52 days, confirmed with biodistribution studies) of the f-Gd3N@C80 nanoplatform, which enabled longitudinal imaging. Successful coupling of 177Lu to the f-Gd3N@C80 surface was achieved by using a bifunctional macrocyclic chelator. The extended tumor retention allowed for effective brachytherapy, as indicated by extended survival time (>2.5 times that of the untreated group) and histologic signs of radiation-induced tumor damage. Conclusion: The authors have developed a multimodal nanoplatform and have demonstrated longitudinal tumor imaging, prolonged intratumoral probe

  9. Intravenous Formulation of HET0016 Decreased Human Glioblastoma Growth and Implicated Survival Benefit in Rat Xenograft Models.

    PubMed

    Jain, Meenu; Gamage, Nipuni-Dhanesha H; Alsulami, Meshal; Shankar, Adarsh; Achyut, Bhagelu R; Angara, Kartik; Rashid, Mohammad H; Iskander, Asm; Borin, Thaiz F; Wenbo, Zhi; Ara, Roxan; Ali, Meser M; Lebedyeva, Iryna; Chwang, Wilson B; Guo, Austin; Bagher-Ebadian, Hassan; Arbab, Ali S

    2017-01-31

    Glioblastoma (GBM) is a hypervascular primary brain tumor with poor prognosis. HET0016 is a selective CYP450 inhibitor, which has been shown to inhibit angiogenesis and tumor growth. Therefore, to explore novel treatments, we have generated an improved intravenous (IV) formulation of HET0016 with HPßCD and tested in animal models of human and syngeneic GBM. Administration of a single IV dose resulted in 7-fold higher levels of HET0016 in plasma and 3.6-fold higher levels in tumor at 60 min than that in IP route. IV treatment with HPßCD-HET0016 decreased tumor growth, and altered vascular kinetics in early and late treatment groups (p < 0.05). Similar growth inhibition was observed in syngeneic GL261 GBM (p < 0.05). Survival studies using patient derived xenografts of GBM811, showed prolonged survival to 26 weeks in animals treated with focal radiation, in combination with HET0016 and TMZ (p < 0.05). We observed reduced expression of markers of cell proliferation (Ki-67), decreased neovascularization (laminin and αSMA), in addition to inflammation and angiogenesis markers in the treatment group (p < 0.05). Our results indicate that HPßCD-HET0016 is effective in inhibiting tumor growth through decreasing proliferation, and neovascularization. Furthermore, HPßCD-HET0016 significantly prolonged survival in PDX GBM811 model.

  10. Optimizing lutetium 177-anti-carbonic anhydrase IX radioimmunotherapy in an intraperitoneal clear cell renal cell carcinoma xenograft model.

    PubMed

    Muselaers, Constantijn H J; Oosterwijk, Egbert; Bos, Desirée L; Oyen, Wim J G; Mulders, Peter F A; Boerman, Otto C

    2014-01-01

    A new approach in the treatment of clear cell renal carcinoma (ccRCC) is radioimmunotherapy (RIT) using anti-carbonic anhydrase IX (CAIX) antibody G250. To investigate the potential of RIT with lutetium 177 (177Lu)-labeled G250, we conducted a protein dose escalation study and subsequently an RIT study in mice with intraperitoneally growing ccRCC lesions. Mice with intraperitoneal xenografts were injected with 1, 3, 10, 30, or 100 μg of G250 labeled with 10 MBq indium 111 (111In) to determine the optimal protein dose. The optimal protein dose determined with imaging and biodistribution studies was used in a subsequent RIT experiment in three groups of 10 mice with intraperitoneal SK-RC-52 tumors. One group received 13 MBq 177Lu-DOTA-G250, a control group received 13 MBq nonspecific 177Lu-MOPC21, and the second control group was not treated and received 20 MBq 111In-DOTA-G250. The optimal G250 protein dose to target ccRCC in this model was 10 μg G250. Treatment with 13 MBq 177Lu-DOTA-G250 was well tolerated and resulted in significantly prolonged median survival (139 days) compared to controls (49-53 days, p  =  .015), indicating that RIT has potential in this metastatic ccRCC model.

  11. Intravenous Formulation of HET0016 Decreased Human Glioblastoma Growth and Implicated Survival Benefit in Rat Xenograft Models

    PubMed Central

    Jain, Meenu; Gamage, Nipuni-Dhanesha H.; Alsulami, Meshal; Shankar, Adarsh; Achyut, Bhagelu R.; Angara, Kartik; Rashid, Mohammad H.; Iskander, Asm; Borin, Thaiz F.; Wenbo, Zhi; Ara, Roxan; Ali, Meser M.; Lebedyeva, Iryna; Chwang, Wilson B.; Guo, Austin; Bagher-Ebadian, Hassan; Arbab, Ali S.

    2017-01-01

    Glioblastoma (GBM) is a hypervascular primary brain tumor with poor prognosis. HET0016 is a selective CYP450 inhibitor, which has been shown to inhibit angiogenesis and tumor growth. Therefore, to explore novel treatments, we have generated an improved intravenous (IV) formulation of HET0016 with HPßCD and tested in animal models of human and syngeneic GBM. Administration of a single IV dose resulted in 7-fold higher levels of HET0016 in plasma and 3.6-fold higher levels in tumor at 60 min than that in IP route. IV treatment with HPßCD-HET0016 decreased tumor growth, and altered vascular kinetics in early and late treatment groups (p < 0.05). Similar growth inhibition was observed in syngeneic GL261 GBM (p < 0.05). Survival studies using patient derived xenografts of GBM811, showed prolonged survival to 26 weeks in animals treated with focal radiation, in combination with HET0016 and TMZ (p < 0.05). We observed reduced expression of markers of cell proliferation (Ki-67), decreased neovascularization (laminin and αSMA), in addition to inflammation and angiogenesis markers in the treatment group (p < 0.05). Our results indicate that HPßCD-HET0016 is effective in inhibiting tumor growth through decreasing proliferation, and neovascularization. Furthermore, HPßCD-HET0016 significantly prolonged survival in PDX GBM811 model. PMID:28139732

  12. Using heterogeneity of the patient-derived xenograft model to identify the chemoresistant population in ovarian cancer

    PubMed Central

    Dobbin, Zachary C.; Katre, Ashwini A.; Steg, Adam D.; Erickson, Britt K.; Shah, Monjri M.; Alvarez, Ronald D.; Conner, Michael G.; Schneider, David; Chen, Dongquan; Landen, Charles N.

    2014-01-01

    A cornerstone of preclinical cancer research has been the use of clonal cell lines. However, this resource has underperformed in its ability to effectively identify novel therapeutics and evaluate the heterogeneity in a patient's tumor. The patient-derived xenograft (PDX) model retains the heterogeneity of patient tumors, allowing a means to not only examine efficacy of a therapy, but also basic tenets of cancer biology in response to treatment. Herein we describe the development and characterization of an ovarian-PDX model in order to study the development of chemoresistance. We demonstrate that PDX tumors are not simply composed of tumor-initiating cells, but recapitulate the original tumor's heterogeneity, oncogene expression profiles, and clinical response to chemotherapy. Combined carboplatin/paclitaxel treatment of PDX tumors enriches the cancer stem cell populations, but persistent tumors are not entirely composed of these populations. RNA-Seq analysis of six pair of treated PDX tumors compared to untreated tumors demonstrates a consistently contrasting genetic profile after therapy, suggesting similar, but few, pathways are mediating chemoresistance. Pathways and genes identified by this methodology represent novel approaches to targeting the chemoresistant population in ovarian cancer PMID:25209969

  13. Patient-Derived Xenograft Models of Non-Small Cell Lung Cancer and Their Potential Utility in Personalized Medicine

    PubMed Central

    Morgan, Katherine M.; Riedlinger, Gregory M.; Rosenfeld, Jeffrey; Ganesan, Shridar; Pine, Sharon R.

    2017-01-01

    Traditional preclinical studies of cancer therapeutics have relied on the use of established human cell lines that have been adapted to grow in the laboratory and, therefore, may deviate from the cancer they were meant to represent. With the emphasis of cancer drug development shifting from non-specific cytotoxic agents to rationally designed molecularly targeted therapies or immunotherapy comes the need for better models with predictive value regarding therapeutic activity and response in clinical trials. Recently, the diversity and accessibility of immunodeficient mouse strains has greatly enhanced the production and utility of patient-derived xenograft (PDX) models for many tumor types, including non-small cell lung cancer (NSCLC). Combined with next-generation sequencing, NSCLC PDX mouse models offer an exciting tool for drug development and for studying targeted therapies while utilizing patient samples with the hope of eventually aiding in clinical decision-making. Here, we describe NSCLC PDX mouse models generated by us and others, their ability to reflect the parental tumors’ histomorphological characteristics, as well as the effect of clonal selection and evolution on maintaining genomic integrity in low-passage PDXs compared to the donor tissue. We also raise vital questions regarding the practical utility of PDX and humanized PDX models in predicting patient response to therapy and make recommendations for addressing those questions. Once collaborations and standardized xenotransplantation and data management methods are established, NSCLC PDX mouse models have the potential to be universal and invaluable as a preclinical tool that guides clinical trials and standard therapeutic decisions. PMID:28154808

  14. Discovery of 2'-hydroxychalcones as autophagy inducer in A549 lung cancer cells.

    PubMed

    Wang, Fang-Wu; Wang, Sheng-Qing; Zhao, Bao-Xiang; Miao, Jun-Ying

    2014-05-21

    A series of 2'-hydroxychalcone derivatives was synthesized and the effects of all the compounds on growth of A549 lung cancer cell were investigated. The results showed that all compounds had inhibitory effects on the growth of A549 lung cancer cells and compound possessed the highest growth inhibitory effect and induced autophagy of A549 lung cancer cells.

  15. Zoledronic acid reduces bone loss and tumor growth in an orthotopic xenograft model of osteolytic oral squamous cell carcinoma

    PubMed Central

    Martin, Chelsea K; Werbeck, Jillian L.; Thudi, Nanda K.; Lanigan, Lisa G.; Wolfe, Tobie D.; Toribio, Ramiro E.; Rosol, Thomas J.

    2010-01-01

    Squamous cell carcinoma is the most common form of oral cancer. Destruction and invasion of mandibular and maxillary bone frequently occurs and contributes to morbidity and mortalilty. We hypothesized that the bisphosphonate drug zoledronic acid (ZOL) would inhibit tumor-induced osteolysis and reduce tumor growth and invasion in a murine xenograft model of bone-invasive oral squamous cell carcinoma (OSCC) derived from an osteolytic feline OSCC. Luciferase-expressing OSCC cells (SCCF2Luc) were injected into the perimaxillary subgingiva of nude mice which were then treated with 100 μg/kg ZOL or vehicle. ZOL treatment reduced tumor growth and prevented loss of bone volume and surface area, but had no effect on tumor invasion. Effects on bone were associated with reduced osteolysis and increased periosteal new bone formation. ZOL-mediated inhibition of tumor-induced osteolysis was characterized by reduced numbers of tartrate-resistant acid phosphatase-positive osteoclasts at the tumor-bone interface, where it was associated with osteoclast vacuolar degeneration. The ratio of eroded to total bone surface was not affected by treatment, arguing that ZOL-mediated inhibition of osteolysis was independent of effects on osteoclast activation or initiation of bone resorption. In summary, our results establish that ZOL can reduce OSCC-induced osteolysis and my be valuable as an adjuvant therapy in OSCC to preserve mandibular and maxillary bone volume and function. PMID:20959474

  16. Targeting FGF19 inhibits tumor growth in colon cancer xenograft and FGF19 transgenic hepatocellular carcinoma models.

    PubMed

    Desnoyers, L R; Pai, R; Ferrando, R E; Hötzel, K; Le, T; Ross, J; Carano, R; D'Souza, A; Qing, J; Mohtashemi, I; Ashkenazi, A; French, D M

    2008-01-03

    Although fibroblast growth factor 19 (FGF19) can promote liver carcinogenesis in mice its involvement in human cancer is not well characterized. Here we report that FGF19 and its cognate receptor FGF receptor 4 (FGFR4) are coexpressed in primary human liver, lung and colon tumors and in a subset of human colon cancer cell lines. To test the importance of FGF19 for tumor growth, we developed an anti-FGF19 monoclonal antibody that selectively blocks the interaction of FGF19 with FGFR4. This antibody abolished FGF19-mediated activity in vitro and inhibited growth of colon tumor xenografts in vivo and effectively prevented hepatocellular carcinomas in FGF19 transgenic mice. The efficacy of the antibody in these models was linked to inhibition of FGF19-dependent activation of FGFR4, FRS2, ERK and beta-catenin. These findings suggest that the inactivation of FGF19 could be beneficial for the treatment of colon cancer, liver cancer and other malignancies involving interaction of FGF19 and FGFR4.

  17. Antitumor activity of [Pt(O,O'-acac)(γ-acac)(DMS)] in mouse xenograft model of breast cancer

    PubMed Central

    Muscella, A; Vetrugno, C; Migoni, D; Biagioni, F; Fanizzi, F P; Fornai, F; De Pascali, S A; Marsigliante, S

    2014-01-01

    The higher and selective cytotoxicity of [Pt(O,O′-acac)(γ-acac)(DMS)] toward cancer cell in both immortalized cell lines and in breast cancer cells in primary cultures, stimulated a pre-clinical study so as to evaluate its therapeutic potential in vivo. The efficacy of [Pt(O,O′-acac)(γ-acac)(DMS)] was assessed using a xenograft model of breast cancer developed by injection of MCF-7 cells in the flank of BALB/c nude mice. Treatment of solid tumor-bearing mice with [Pt(O,O′-acac)(γ-acac)(DMS)] induced up to 50% reduction of tumor mass compared with an average 10% inhibition recorded in cisplatin-treated animals. Thus, chemotherapy with [Pt(O,O′-acac)(γ-acac)(DMS)] was much more effective than cisplatin. We also demonstrated enhanced in vivo pharmacokinetics, biodistribution and tolerability of [Pt(O,O′-acac)(γ-acac)(DMS)] when compared with cisplatin administered in Wistar rats. Pharmacokinetics studies with [Pt(O,O′-acac)(γ-acac)(DMS)] revealed prolonged Pt persistence in systemic blood circulation and decreased nefrotoxicity and hepatotoxicity, major target sites of cisplatin toxicity. Overall, [Pt(O,O′-acac)(γ-acac)(DMS)] turned out to be extremely promising in terms of greater in vivo anticancer activity, reduced nephrotoxicity and acute toxicity compared with cisplatin. PMID:24457958

  18. Porphysome nanoparticles for enhanced photothermal therapy in a patient-derived orthotopic pancreas xenograft cancer model: a pilot study

    NASA Astrophysics Data System (ADS)

    MacLaughlin, Christina M.; Ding, Lili; Jin, Cheng; Cao, Pingjiang; Siddiqui, Iram; Hwang, David M.; Chen, Juan; Wilson, Brian C.; Zheng, Gang; Hedley, David W.

    2016-08-01

    Local disease control is a major challenge in pancreatic cancer treatment, because surgical resection of the primary tumor is only possible in a minority of patients and radiotherapy cannot be delivered in curative doses. Despite the promise of photothermal therapy (PTT) for focal ablation of pancreatic tumors, this approach remains underinvestigated. Using photothermal sensitizers in combination with laser light irradiation for PTT can result in more efficient conversion of light energy to heat and improved spatial confinement of thermal destruction to the tumor. Porphysomes are self-assembled nanoparticles composed mainly of pyropheophorbide-conjugated phospholipids, enabling the packing of ˜80,000 porphyrin photosensitizers per particle. The high-density porphyrin loading imparts enhanced photonic properties and enables high-payload tumor delivery. A patient-derived orthotopic pancreas xenograft model was used to evaluate the feasibility of porphysome-enhanced PTT for pancreatic cancer. Biodistribution and tumor accumulation were evaluated using fluorescence intensity measurements from homogenized tissues and imaging of excised organs. Tumor surface temperature was recorded using IR optical imaging during light irradiation to monitor treatment progress. Histological analyses were conducted to determine the extent of PTT thermal damage. These studies may provide insight into the influence of heat-sink effect on thermal therapy dosimetry for well-perfused pancreatic tumors.

  19. Intracranial AAV-IFN-β gene therapy eliminates invasive xenograft glioblastoma and improves survival in orthotopic syngeneic murine model.

    PubMed

    GuhaSarkar, Dwijit; Neiswender, James; Su, Qin; Gao, Guangping; Sena-Esteves, Miguel

    2017-02-01

    The highly invasive property of glioblastoma (GBM) cells and genetic heterogeneity are largely responsible for tumor recurrence after the current standard-of-care treatment and thus a direct cause of death. Previously, we have shown that intracranial interferon-beta (IFN-β) gene therapy by locally administered adeno-associated viral vectors (AAV) successfully treats noninvasive orthotopic glioblastoma models. Here, we extend these findings by testing this approach in invasive human GBM xenograft and syngeneic mouse models. First, we show that a single intracranial injection of AAV encoding human IFN-β eliminates invasive human GBM8 tumors and promotes long-term survival. Next, we screened five AAV-IFN-β vectors with different promoters to drive safe expression of mouse IFN-β in the brain in the context of syngeneic GL261 tumors. Two AAV-IFN-β vectors were excluded due to safety concerns, but therapeutic studies with the other three vectors showed extensive tumor cell death, activation of microglia surrounding the tumors, and a 56% increase in median survival of the animals treated with AAV/P2-Int-mIFN-β vector. We also assessed the therapeutic effect of combining AAV-IFN-β therapy with temozolomide (TMZ). As TMZ affects DNA replication, an event that is crucial for second-strand DNA synthesis of single-stranded AAV vectors before active transcription, we tested two TMZ treatment regimens. Treatment with TMZ prior to AAV-IFN-β abrogated any benefit from the latter, while the reverse order of treatment doubled the median survival compared to controls. These studies demonstrate the therapeutic potential of intracranial AAV-IFN-β therapy in a highly migratory GBM model as well as in a syngeneic mouse model and that combination with TMZ is likely to enhance its antitumor potency.

  20. Lack of long-lasting effects of mitotane adjuvant therapy in a mouse xenograft model of adrenocortical carcinoma.

    PubMed

    Doghman, Mabrouka; Lalli, Enzo

    2013-12-05

    Mitotane is a widely used drug in the therapy of adrenocortical carcinoma (ACC). It is important to set up preclinical protocols to study the possible synergistic effects of its association with new drugs for ACC therapy. We assessed the efficacy of different routes of administration of mitotane (i.p. and oral) in inhibiting growth of H295R ACC cell xenografts in an adjuvant setting. Both formulations of mitotane could inhibit H295R xenografts growth only at short times after carcinoma cells inoculation, even though plasma mitotane levels approached or fell within the therapeutic range in humans. Our results show that mitotane adjuvant therapy is inadequate to antagonize long-term growth of H295R cancer cells xenografts and that care should then be taken in the design of preclinical protocols to evaluate the performance of new drugs in association with mitotane.

  1. Circulating Tumor Cells as a Biomarker of Response to Treatment in Patient-Derived Xenograft Mouse Models of Pancreatic Adenocarcinoma

    PubMed Central

    Torphy, Robert J.; Tignanelli, Christopher J.; Kamande, Joyce W.; Moffitt, Richard A.; Herrera Loeza, Silvia G.; Soper, Steven A.; Yeh, Jen Jen

    2014-01-01

    Circulating tumor cells (CTCs) are cells shed from solid tumors into circulation and have been shown to be prognostic in the setting of metastatic disease. These cells are obtained through a routine blood draw and may serve as an easily accessible marker for monitoring treatment effectiveness. Because of the rapid progression of pancreatic ductal adenocarcinoma (PDAC), early insight into treatment effectiveness may allow for necessary and timely changes in treatment regimens. The objective of this study was to evaluate CTC burden as a biomarker of response to treatment with a oral phosphatidylinositol-3-kinase inhibitor, BKM120, in patient-derived xenograft (PDX) mouse models of PDAC. PDX mice were randomized to receive vehicle or BKM120 treatment for 28 days and CTCs were enumerated from whole blood before and after treatment using a microfluidic chip that selected for EpCAM (epithelial cell adhesion molecule) positive cells. This microfluidic device allowed for the release of captured CTCs and enumeration of these cells via their electrical impedance signatures. Median CTC counts significantly decreased in the BKM120 group from pre- to post-treatment (26.61 to 2.21 CTCs/250 µL, p = 0.0207) while no significant change was observed in the vehicle group (23.26 to 11.89 CTCs/250 µL, p = 0.8081). This reduction in CTC burden in the treatment group correlated with tumor growth inhibition indicating CTC burden is a promising biomarker of response to treatment in preclinical models. Mutant enriched sequencing of isolated CTCs confirmed that they harbored KRAS G12V mutations, identical to the matched tumors. In the long-term, PDX mice are a useful preclinical model for furthering our understanding of CTCs. Clinically, mutational analysis of CTCs and serial monitoring of CTC burden may be used as a minimally invasive approach to predict and monitor treatment response to guide therapeutic regimens. PMID:24586805

  2. Noninvasive monitoring of early antiangiogenic therapy response in human nasopharyngeal carcinoma xenograft model using MRI with RGD-conjugated ultrasmall superparamagnetic iron oxide nanoparticles

    PubMed Central

    Cui, Yanfen; Zhang, Caiyuan; Luo, Ran; Liu, Huanhuan; Zhang, Zhongyang; Xu, Tianyong; Zhang, Yong; Wang, Dengbin

    2016-01-01

    Purpose Arginine-glycine-aspartic acid (RGD)-based nanoprobes allow specific imaging of integrin αvβ3, a protein overexpressed during angiogenesis. Therefore, this study applied a novel RGD-coupled, polyacrylic acid (PAA)-coated ultrasmall superparamagnetic iron oxide (USPIO) (referred to as RGD-PAA-USPIO) in order to detect tumor angiogenesis and assess the early response to antiangiogenic treatment in human nasopharyngeal carcinoma (NPC) xenograft model by magnetic resonance imaging (MRI). Materials and methods The binding specificity of RGD-PAA-USPIO with human umbilical vein endothelial cells (HUVECs) was confirmed by Prussian blue staining and transmission electron microscopy in vitro. The tumor targeting of RGD-PAA-USPIO was evaluated in the NPC xenograft model. Later, mice bearing NPC underwent MRI at baseline and after 4 and 14 days of consecutive treatment with Endostar or phosphate-buffered saline (n=10 per group). Results The specific uptake of the RGD-PAA-USPIO nanoparticles was mainly dependent on the interaction between RGD and integrin αvβ3 of HUVECs. The tumor targeting of RGD-PAA-USPIO was observed in the NPC xenograft model. Moreover, the T2 relaxation time of mice in the Endostar-treated group decreased significantly compared with those in the control group both on days 4 and 14, consistent with the immunofluorescence results of CD31 and CD61 (P<0.05). Conclusion This study demonstrated that the magnetic resonance molecular nanoprobes, RGD-PAA-USPIOs, allow noninvasive in vivo imaging of tumor angiogenesis and assessment of the early response to antiangiogenic treatment in NPC xenograft model, favoring its potential clinical translation. PMID:27895477

  3. Biosynthesized Platinum Nanoparticles Inhibit the Proliferation of Human Lung-Cancer Cells in vitro and Delay the Growth of a Human Lung-Tumor Xenograft in vivo

    PubMed Central

    Yogesh, Bendale; Vineeta, Bendale; Rammesh, Natu; Saili, Paul

    2016-01-01

    Objectives: Lung cancer remains a deadly disease with unsatisfactory overall survival. Cisplatin, a standard platinum (Pt)-based chemotherapeutic agent, has the potential to inhibit the growth of lung cancer. Its use, however, is occasionally limited by severe organ toxicity. However, until now, no systematic study has been conducted to verify its efficacy with proper experimental support in vivo. Therefore, we examined whether biosynthesized Pt nanoparticles (NPs) inhibited human lung cancer in vitro and in vivo to validate their use in alternative and complementary medicine. Methods: We evaluated the in vitro and the in vivo anticancer efficiencies of biosynthesized Pt NPs in a subcutaneous xenograft model with A549 cells. Severe combined immune deficient mice (SCID) were divided into four groups: group 1 being the vehicle control group and groups 2, 3 and 4 being the experimental groups. Once the tumor volume had reached 70 ─ 75 mm3, the progression profile of the tumor growth kinetics and the body weights of the mice were measured every week for 6 weeks after oral administration of Pt NPs. Doses of Pt NPs of 500, 1,000 and 2,000 mg/kg of body weight were administered to the experimental groups and a dose of honey was administered to the vehicle control group. The efficacy was quantified by using the delay in tumor growth following the administration of Pt NPs of A549 human-lung-cancer xenografts growing in SCID mice. Results: The in vitro cytotoxicity evaluation indicated that Pt NPs, in a dose-dependent manner, inhibited the growth of A549 cells, and the in vivo evaluation showed that Pt NPs at the mid and high doses effectively inhibited and delayed the growth of lung cancer in SCID mice. Conclusion: These findings confirm the antitumor properties of biosynthesized Pt NPs and suggest that they may be a cost-effective alternative for the treatment of patients with lung cancer. PMID:27386144

  4. A Novel Bufalin Derivative Exhibited Stronger Apoptosis-Inducing Effect than Bufalin in A549 Lung Cancer Cells and Lower Acute Toxicity in Mice

    PubMed Central

    Liu, Miao; Feng, Li-Xing; Sun, Peng; Liu, Wang; Wu, Wan-Ying; Jiang, Bao-Hong; Yang, Min; Hu, Li-Hong; Guo, De-An; Liu, Xuan

    2016-01-01

    BF211 is a synthetic molecule derived from bufalin (BF). The apoptosis-inducing effect of BF211 was stronger than that of BF while the acute toxicity of BF211 was much lower than that of BF. BF211 exhibited promising concentration-dependent anti-cancer effects in nude mice inoculated with A549 cells in vivo. The growth of A549 tumor xenografts was almost totally blocked by treatment with BF211 at 6 mg/kg. Notably, BF and BF211 exhibited differences in their binding affinity and kinetics to recombinant proteins of the α subunits of Na+/K+-ATPase. Furthermore, there was a difference in the effects of BF or BF211 on inhibiting the activity of porcine cortex Na+/K+-ATPase and in their time-dependent effects on intracellular Ca2+ levels in A549 cells. The time-dependent effects of BF or BF211 on the activation of Src, which was mediated by the Na+/K+-ATPase signalosome, in A549 cells were also different. Both BF and BF211 could induce apoptosis-related cascades, such as activation of caspase-3 and the cleavage of PARP (poly ADP-ribose polymerase) in A549 cells, in a concentration-dependent manner; however, the effects of BF211 on apoptosis-related cascades was stronger than that of BF. The results of the present study supported the importance of binding to the Na+/K+-ATPase α subunits in the mechanism of cardiac steroids and also suggested the possibility of developing new cardiac steroids with a stronger anti-cancer activity and lower toxicity as new anti-cancer agents. PMID:27459387

  5. Visualizing Human Hematopoietic Stem Cell Trafficking In Vivo Using a Zebrafish Xenograft Model.

    PubMed

    Staal, Frank J T; Spaink, Herman P; Fibbe, Willem E

    2016-02-15

    Zebrafish is gaining increased popularity as a model organism to study stem cell biology. It also is widely used as model system to visualize human leukemic stem cells. However, xenotransplantation of primary human stem/progenitor cells has not been described. Here, we use casper pigmentation mutant fish that are transparent crossed to fli-GFP transgenic fish as recipients of red labeled human CD34(+) cells. We have investigated various conditions and protocols with the aim to monitor and visualize the fate of transplanted human CD34(+) cells. We here report successful use of casper mutant zebrafish embryos for the direct monitoring of human hematopoietic stem cell transplantation, differentiation, and trafficking in vivo.

  6. Human cytomegalovirus infection leads to elevated levels of transplant arteriosclerosis in a humanized mouse aortic xenograft model.

    PubMed

    Abele-Ohl, S; Leis, M; Wollin, M; Mahmoudian, S; Hoffmann, J; Müller, R; Heim, C; Spriewald, B M; Weyand, M; Stamminger, T; Ensminger, S M

    2012-07-01

    Recent findings emphasized an important role of human cytomegalovirus (HCMV) infection in the development of transplant arteriosclerosis. Therefore, the aim of this study was to develop a human peripheral blood lymphocyte (hu-PBL)/Rag-2(-/-) γc(-/-) mouse-xenograft-model to investigate both immunological as well as viral effector mechanisms in the progression of transplant arteriosclerosis. For this, sidebranches from the internal mammary artery were recovered during coronary artery bypass graft surgery, tissue-typed and infected with HCMV. Then, size-matched sidebranches were implanted into the infrarenal aorta of Rag-2(-/-) γc(-/-) mice. The animals were reconstituted with human peripheral blood mononuclear cells (PBMCs) 7 days after transplantation. HCMV-infection was confirmed by Taqman-PCR and immunofluorescence analyses. Arterial grafts were analyzed by histology on day 40 after transplantation. PBMC-reconstituted Rag-2(-/-) γc(-/-) animals showed splenic chimerism levels ranging from 1-16% human cells. After reconstitution, Rag-2(-/-) γc(-/-) mice developed human leukocyte infiltrates in their grafts and vascular lesions that were significantly elevated after infection. Cellular infiltration revealed significantly increased ICAM-1 and PDGF-R-β expression after HCMV-infection of the graft. Arterial grafts from unreconstituted Rag-2(-/-) γc(-/-) recipients showed no vascular lesions. These data demonstrate a causative relationship between HCMV-infection as an isolated risk factor and the development of transplant-arteriosclerosis in a humanized mouse arterial-transplant-model possibly by elevated ICAM-1 and PDGF-R-β expression.

  7. Effects of chitosan on xenograft models of melanoma in C57BL/6 mice and hepatoma formation in SCID mice.

    PubMed

    Yeh, Ming-Yang; Wu, Ming-Fang; Shang, Hung-Sheng; Chang, Jin-Biou; Shih, Yung-Luen; Chen, Yung-Liang; Hung, Hsiao-Fang; Lu, Hsu-Feng; Yeh, Chun; Wood, W Gibson; Hung, Fang-Ming; Chung, Jing-Gung

    2013-11-01

    According to the World Health Organization, Complementary and alternative medicine (CAM) is a comprehensive term referring to traditional medical treatments and various forms of indigenous medicines, also known as indigenous or folk medicine. Cancer patients often use CAM in the form of nutritional supplements, psychological techniques and natural medical approaches in the place of or in parallel to conventional medicine. The present study aimed to determine if Chitosan can inhibit lung metastasis and hepatoma formation, by studying xenograft of B16F10 melanoma cells in C57BL/6 mice and of Smmu 7721 cells in SCID mice, respectively. For the lung metastasis model, after a five-week treatment, the survival rates of B6 mice were 15% for the control group and 35%, 20%, 45% and 40% for the 320,000 kDa, 173,000 kDa, 86,000 kDa and 8,000 kDa molecular-weight treatment groups, respectively. Chitosan treatment dramatically increased lifespan and inhibited tumor metastasis especially in treatment groups of the low-molecular weight compound. For the hepatoma growth model, the size of the liver tumor mass was approximately >14 mm in the control group. In comparison to the control group, the tumor mass grew slowly with Chitosan treatment, especially at the low-molecular weight treatment group. Chitosan slowed-down the rate of tumor growth but did not inhibit tumor formation. Data presented herein demonstrate that Chitosan has anticancer effects and thus further study of the substance is warranted to examine for mechanisms of action and optimal dosage.

  8. A human xenograft model for testing early events of epithelial neoplastic invasion

    PubMed Central

    McCANDLESS, JOHN R.; CRESS, ANNE E.; RABINOVITZ, ISAAC; PAYNE, CLAIRE M.; BOWDEN, G. TIM; KNOX, J. DAVID; NAGLE, RAY B.

    2017-01-01

    We report on a model of human prostate tumor cell invasion using the SCID (severe combined immunodeficient) mouse diaphragm. Tumor cells were injected into SCID mice intraperitoneally and the diaphragms harvested three to five weeks later. Electron microscopy showed tumor cell penetration of the mesothelial cell layer and adhesion to the underlying basement membrane on the inferior surface of the mouse diaphragm, where colonies developed. Immunohistochemistry showed invasion by tumor cells through the basement membrane into the muscle of the diaphragm, presence of human tumor cells among the muscle cells and the presence of selected proteins on the invasion front of the tumor cells. Digital image analysis enabled quantitative comparison of events in the metastatic cascade by variants of the tumor cell line and evaluation of the effectiveness of a putative tumor inhibitor. Results suggest that the SCID mouse diaphragm model is a convenient, effective, easily oriented and reproducible in vivo model of the early events associated with human prostate tumor cell invasion. PMID:21533373

  9. Porphyrin lipid nanoparticles for enhanced photothermal therapy in a patient-derived orthotopic pancreas xenograft cancer model

    NASA Astrophysics Data System (ADS)

    MacLaughlin, Christina M.; Ding, Lili; Jin, Cheng; Cao, Pingjiang; Siddiqui, Iram; Hwang, David M.; Chen, Juan; Wilson, Brian C.; Zheng, Gang; Hedley, David W.

    2016-03-01

    Local disease control is a major problem in the treatment of pancreatic cancer, because curative-intent surgery is only possible in a minority of patients, and radiotherapy cannot be delivered in curative doses. Despite the promise of photothermal therapy (PTT) for ablation of pancreatic tumors, this approach remains under investigated. Using photothermal sensitizers in combination with laser light for PTT can result in more efficient conversion of light energy to heat, and confinement of thermal destruction to the tumor, thus sparing adjacent organs and vasculature. Porphyrins have been previously employed as photosensitizers for PDT and PTT, however their incorporation in to "porphysomes", lipid-based nanoparticles each containing ~80,000 porphyrins through conjugation of pyropheophorbide to phospholipids, carries two distinct advantages: 1) high-density porphyrin packing imparts the nanoparticles with enhanced photonic properties for imaging and phototherapy; 2) the enhanced permeability and retention effect may be exploited for optimal delivery of porphysomes to the tumor region thus high payload porphyrin delivery. The feasibility of porphysome-enhanced PTT for pancreatic cancer treatment was investigated using a patient-derived orthotopic pancreas xenograft tumor model. Uptake of porphysomes at the orthotopic tumor site was validated using ex vivo fluorescence imaging of intact organs of interest. The accumulation of porphysomes in orthotopic tumor microstructure was also confirmed by fluorescence imaging of excised tissue slices. PTT progress was monitored as changes in tumor surface temperature using IR optical imaging. Histological analyses were conducted to examine microstructure changes in tissue morphology, and the viability of remaining tumor tissues following exposure to heat. These studies may also provide insight as to the contribution of heat sink in application of thermal therapies to highly vascularized pancreatic tumors.

  10. Naltrindole Inhibits Human Multiple Myeloma Cell Proliferation In Vitro and in a Murine Xenograft Model In Vivo

    PubMed Central

    Mundra, Jyoti Joshi; Terskiy, Alexandra

    2012-01-01

    It has been demonstrated previously that immune cell activation and proliferation were sensitive to the effects of naltrindole, a nonpeptidic δ-opioid receptor-selective antagonist; therefore, we hypothesized that human multiple myeloma (MM) would be a valuable model for studying potential antineoplastic properties of naltrindole. [3H]naltrindole exhibited saturable, low-affinity binding to intact human MM cells; however, the pharmacological profile of the binding site differed considerably from the properties of δ-, κ-, and μ-opioid receptors, and opioid receptor mRNA was not detected in MM cells by reverse transcriptase-polymerase chain reaction. Naltrindole inhibited the proliferation of cultured human U266 MM cells in a time- and dose-dependent manner with an EC50 of 16 μM. The naltrindole-induced inhibition of U266 cell proliferation was not blocked by a 10-fold molar excess of naltrexone, a nonselective opioid antagonist. Additive inhibition of MM cell proliferation was observed when using a combination of naltrindole with the histone deacetylase inhibitor sodium valproate, the proteasome inhibitor bortezomib, the glucocorticoid receptor agonist dexamethasone, and the HMG CoA reductase inhibitor simvastatin. Treatment of U266 cells with naltrindole significantly decreased the level of the active, phosphorylated form of the kinases, extracellular signal-regulated kinase and Akt, which may be related to its antiproliferative activity. The antiproliferative activity of naltrindole toward MM cells was maintained in cocultures of MM and bone marrow-derived stromal cells, mimicking the bone marrow microenvironment. In vivo, naltrindole significantly decreased tumor cell volumes in human MM cell xenografts in severe combined immunodeficient mice. We hypothesize that naltrindole inhibits the proliferation of MM cells through a nonopioid receptor-dependent mechanism. PMID:22537770

  11. pH-Responsive Artemisinin Dimer in Lipid Nanoparticles Are Effective Against Human Breast Cancer in a Xenograft Model

    PubMed Central

    ZHANG, YITONG J.; ZHAN, XI; WANG, LIGUO; HO, RODNEY J.Y.; SASAKI, TOMIKAZU

    2016-01-01

    Artemisinin (ART), a well-known antimalaria drug, also exhibits anticancer activities. We previously reported a group of novel dimeric artemisinin piperazine conjugates (ADPs) possessing pH-dependent aqueous solubility and a proof-of-concept lipid nanoparticle formulation based on natural egg phosphatidylcholine (EPC). EPC may induce allergic reactions in individuals sensitive to egg products. Therefore, the goal of this report is to develop ADP-synthetic lipid particles suitable for in vivo evaluation. We found that ADP binds to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) with greater than 90% efficiency and forms drug–lipid particles (d ~ 80 nm). Cryo-electron microscopy of the ADP drug–lipid particles revealed unilamellar vesicle-like structures. Detailed characterization studies show insertion of the ADP lead compound, ADP109, into the DPPC membrane and the presence of an aqueous core. Over 50% of the ADP109 was released in 48 hours at pH4 compared with less than 20% at neutral. ADP109–lipid particles exhibited high potency against human breast cancer, but was tolerated well by nontumorigenic cells. In MDA-MB-231 mouse xenograft model, lipid-bound ADP109 particles were more effective than paclitaxel in controlling tumor growth. Cellular uptake studies showed endocytosis of the nanoparticles and release of core-trapped marker throughout the cytosol at 37°C. These results demonstrate, for the first time, the in vivo feasibility of lipid-bound ART dimer for cancer chemotherapy. PMID:25753991

  12. Anti-JAM-C therapy eliminates tumor engraftment in a xenograft model of mantle cell lymphoma.

    PubMed

    Doñate, Carmen; Vijaya Kumar, Archana; Imhof, Beat A; Matthes, Thomas

    2016-11-01

    Junctional adhesion molecule (JAM)-C is a member of the JAM family, expressed by a variety of different cell types, including human B lymphocytes and some B-cell lymphoma subtypes-in particular, mantle cell lymphoma (MCL). Treatment with anti-JAM-C pAbs reduces homing of human B cells to lymphoid organs in a NOD/SCID mouse model. In the present study, the role of JAM-C in the engraftment of human lymphoma B cells in mice was investigated. Administration of novel anti-JAM-C mAbs reduced tumor growth of JAM-C(+) MCL cells in bone marrow, spleen, liver, and lymph nodes of mice. Treatment with anti-JAM-C antibodies significantly reduced the proliferation of JAM-C-expressing lymphoma B cells. Moreover, the binding of anti-JAM-C antibodies inhibited the phosphorylation of ERK1/2, without affecting other signaling pathways. The results identify for the first time the intracellular MAPK cascade as the JAM-C-driven signaling pathway in JAM-C(+) B cells. Targeting JAM-C could constitute a new therapeutic strategy reducing lymphoma B-cell proliferation and their capacity to reach supportive lymphoid microenvironments.

  13. Effect of Citrus bergamia juice on human neuroblastoma cells in vitro and in metastatic xenograft models.

    PubMed

    Navarra, M; Ursino, M R; Ferlazzo, N; Russo, M; Schumacher, U; Valentiner, U

    2014-06-01

    Neuroblastoma is the most common extracranial pediatric solid tumor with poor prognosis in children with disseminated stage of disease. A number of studies show that molecules largely distributed in commonly consumed fruits and vegetables may have anti-tumor activity. In this study we evaluate the effect of Citrus bergamia (bergamot) juice (BJ) in vitro and in a spontaneous metastatic neuroblastoma SCID mouse model. Qualitative and quantitative characterizations of BJ flavonoid fractions were performed by RP-HPLC/PDA/MS. We show that BJ significantly affects SK-N-SH and LAN-1 cell proliferation in vitro, but fails to reduce primary tumor weight in vivo. Moreover, BJ reduced cell adhesiveness and invasion of LAN-1 and SK-N-SH cells in vitro and the number of pulmonary metastases under consideration of the number of tumor cells in the blood in mice inoculated with LAN-1 cells in vivo. These effects without any apparent sign of systemic toxicity confirm the potential clinical interest of BJ and lay the basis for further investigation in cancer.

  14. Uptake of verteporfin by orthotopic xenograft pancreas models with different levels of aggression

    NASA Astrophysics Data System (ADS)

    O'Hara, Julia; Samkoe, Kimberley S.; Chen, Alina; Hoopes, P. Jack; Rizvi, Imran; Hasan, Tayyaba; Pogue, Brian W.

    2009-06-01

    Pancreatic cancer is an aggressive disease with a poor prognosis, usually treated with chemoradiation therapy. Interstitial photodynamic therapy is a potentially effective adjuvant treatment that is under development. In the current study, two orthotopic pancreatic cancer models (AsPC-1 and Panc-1), have been characterized with respect to growth rates, morphology and liposomal drug (Verteporfin) uptake and distribution in SCID mice. Fluorescence of Verteporfin was measured in liver and tumor in vivo using a PDT fluorescence dosimeter with measurements taken before and up to one hour after tail vein injection. Fluorescence reached a plateau by about 15 minutes and did not decrease over the first hour. At time points from 15 minutes to 24 hrs, the internal organs (kidney, spleen, pancreas, tumor, muscle, lung, liver, and skin were excised and scanned on a Typhoon imager. The ratio of fluorescence in tumor versus normal tissues was analyzed with image processing, calculated at each time point and compared to in vivo results. Tissue distribution of Verteporfin in relation to functional vasculature marked by DiOc7 was carried out on frozen sections. Final analysis will result in determination of the ideal time point to administer light to achieve maximum tumor destruction while preserving normal tissue.

  15. Evaluation of the NOD/SCID xenograft model for glucocorticoid-regulated gene expression in childhood B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    2011-01-01

    Background Glucocorticoids such as prednisolone and dexamethasone are critical drugs used in multi-agent chemotherapy protocols used to treat acute lymphoblastic leukemia (ALL), and response to glucocorticoids is highly predictive of outcome. The NOD/SCID xenograft mouse model of ALL is a clinically relevant model in which the mice develop a systemic leukemia which retains the fundamental biological characteristics of the original disease. Here we report a study evaluating the NOD/SCID xenograft mouse model to investigate glucocorticoid-induced gene expression. Cells from a glucocorticoid-sensitive xenograft derived from a child with B-cell precursor ALL were inoculated into NOD/SCID mice. When highly engrafted the mice were randomized into groups of 4 to receive dexamethasone 15 mg/kg by intraperitoneal injection or vehicle control. Leukemia cells were harvested from mice spleens at 0, 8, 24 or 48 hours thereafter, and gene expression analyzed on Illumina WG-6_V3 chips, comparing all groups to time 0 hours. Results The 8 hour dexamethasone-treated timepoint had the highest number of significantly differentially expressed genes, with fewer observed at the 24 and 48 hour timepoints, and with minimal changes seen across the time-matched controls. When compared to publicly available datasets of glucocorticoid-induced gene expression from an in vitro cell line study and from an in vivo study of patients with ALL, at the level of pathways, expression changes in the 8 hour xenograft samples showed a similar response to patients treated with glucocorticoids. Replicate analysis revealed that at the 8 hour timepoint, a dataset with high signal and differential expression, using data from 3 replicates instead of 4 resulted in excellent recovery scores of > 0.9. However at other timepoints with less signal very poor recovery scores were obtained with 3 replicates. Conclusions The NOD/SCID xenograft mouse model provides a reproducible experimental system in which to

  16. A novel xenograft model to study the role of TSLP-induced CRLF2 signals in normal and malignant human B lymphopoiesis.

    PubMed

    Francis, Olivia L; Milford, Terry-Ann M; Martinez, Shannalee R; Baez, Ineavely; Coats, Jacqueline S; Mayagoitia, Karina; Concepcion, Katherine R; Ginelli, Elizabeth; Beldiman, Cornelia; Benitez, Abigail; Weldon, Abby J; Arogyaswamy, Keshav; Shiraz, Parveen; Fisher, Ross; Morris, Christopher L; Zhang, Xiao-Bing; Filippov, Valeri; Van Handel, Ben; Ge, Zheng; Song, Chunhua; Dovat, Sinisa; Su, Ruijun Jeanna; Payne, Kimberly J

    2016-04-01

    Thymic stromal lymphopoietin (TSLP) stimulates in-vitro proliferation of human fetal B-cell precursors. However, its in-vivo role during normal human B lymphopoiesis is unknown. Genetic alterations that cause overexpression of its receptor component, cytokine receptor-like factor 2 (CRLF2), lead to high-risk B-cell acute lymphoblastic leukemia implicating this signaling pathway in leukemogenesis. We show that mouse thymic stromal lymphopoietin does not stimulate the downstream pathways (JAK/STAT5 and PI3K/AKT/mTOR) activated by the human cytokine in primary high-risk leukemia with overexpression of the receptor component. Thus, the utility of classic patient-derived xenografts for in-vivo studies of this pathway is limited. We engineered xenograft mice to produce human thymic stromal lymphopoietin (+T mice) by injection with stromal cells transduced to express the cytokine. Control (-T) mice were produced using stroma transduced with control vector. Normal levels of human thymic stromal lymphopoietin were achieved in sera of +T mice, but were undetectable in -T mice. Patient-derived xenografts generated from +T as compared to -T mice showed a 3-6-fold increase in normal human B-cell precursors that was maintained through later stages of B-cell development. Gene expression profiles in high-risk B-cell acute lymphoblastic leukemia expanded in +T mice indicate increased mTOR pathway activation and are more similar to the original patient sample than those from -T mice. +T/-T xenografts provide a novel pre-clinical model for understanding this pathway in B lymphopoiesis and identifying treatments for high-risk B-cell acute lymphoblastic leukemia with overexpression of cytokine-like factor receptor 2.

  17. Human intestinal epithelial cells produce proinflammatory cytokines in response to infection in a SCID mouse-human intestinal xenograft model of amebiasis.

    PubMed Central

    Seydel, K B; Li, E; Swanson, P E; Stanley, S L

    1997-01-01

    The protozoan parasite Entamoeba histolytica causes amebic dysentery and amebic liver abscess, diseases associated with significant morbidity and mortality worldwide. E. histolytica infection appears to involve the initial attachment of amebic trophozoites to intestinal epithelial cells, followed by lysis of these cells and subsequent invasion into the submucosa. A recent in vitro study (L. Eckmann, S. L. Reed, J. R. Smith, and M. F. Kagnoff, J. Clin. Invest. 96:1269-1279, 1995) demonstrated that incubation of E. histolytica trophozoites with epithelial cell lines results in epithelial cell production of inflammatory cytokines, including interleukin-1 (IL-1) and IL-8, suggesting that intestinal epithelial cell production of cytokines might play a role in the inflammatory response and tissue damage seen in intestinal amebiasis. To determine whether intestinal epithelial cell production of IL-1 and IL-8 occurs in response to E. histolytica infection in vivo and as an approach to studying the specific interactions between amebic trophozoites and human intestine, we used a SCID mouse-human intestinal xenograft (SCID-HU-INT) model of disease, where human intestinal xenografts were infected with virulent E. histolytica trophozoites. Infection of xenografts with E. histolytica trophozoites resulted in extensive tissue damage, which was associated with the development of an early inflammatory response composed primarily of neutrophils. Using oligonucleotide primers that specifically amplify human IL-1beta and IL-8, we could demonstrate by reverse transcription PCR that mRNA for both IL-1beta and IL-8 is produced by human intestinal xenografts in response to amebic infection. The increase in human intestinal IL-1beta and IL-8 in response to invasive amebiasis was confirmed by enzyme-linked immunosorbent assays specific for human IL-1beta and IL-8. Using immunohistochemistry, we confirmed that human intestinal epithelial cells were the source of IL-8 in infected xenografts

  18. Rapamycin targeting mTOR and hedgehog signaling pathways blocks human rhabdomyosarcoma growth in xenograft murine model

    SciTech Connect

    Kaylani, Samer Z.; Xu, Jianmin; Srivastava, Ritesh K.; Kopelovich, Levy; Pressey, Joseph G.; Athar, Mohammad

    2013-06-14

    Graphical abstract: Intervention of poorly differentiated RMS by rapamycin: In poorly differentiated RMS, rapamycin blocks mTOR and Hh signaling pathways concomitantly. This leads to dampening in cell cycle regulation and induction of apoptosis. This study provides a rationale for the therapeutic intervention of poorly differentiated RMS by treating patients with rapamycin alone or in combination with other chemotherapeutic agents. -- Highlights: •Rapamycin abrogates RMS tumor growth by modulating proliferation and apoptosis. •Co-targeting mTOR/Hh pathways underlie the molecular basis of effectiveness. •Reduction in mTOR/Hh pathways diminish EMT leading to reduced invasiveness. -- Abstract: Rhabdomyosarcomas (RMS) represent the most common childhood soft-tissue sarcoma. Over the past few decades outcomes for low and intermediate risk RMS patients have slowly improved while patients with metastatic or relapsed RMS still face a grim prognosis. New chemotherapeutic agents or combinations of chemotherapies have largely failed to improve the outcome. Based on the identification of novel molecular targets, potential therapeutic approaches in RMS may offer a decreased reliance on conventional chemotherapy. Thus, identification of effective therapeutic agents that specifically target relevant pathways may be particularly beneficial for patients with metastatic and refractory RMS. The PI3K/AKT/mTOR pathway has been found to be a potentially attractive target in RMS therapy. In this study, we provide evidence that rapamycin (sirolimus) abrogates growth of RMS development in a RMS xenograft mouse model. As compared to a vehicle-treated control group, more than 95% inhibition in tumor growth was observed in mice receiving parenteral administration of rapamycin. The residual tumors in rapamycin-treated group showed significant reduction in the expression of biomarkers indicative of proliferation and tumor invasiveness. These tumors also showed enhanced apoptosis

  19. Anti-tumor activity of Sann-Joong-Kuey-Jian-Tang alone and in combination with 5-fluorouracil in a human colon cancer colo 205 cell xenograft model.

    PubMed

    Cheng, Chun-Yuan; Lin, Yi-Hsiang; Su, Chin-Cheng

    2010-01-01

    Malignant tumors are the leading cause of death in Taiwan; among these, colon cancer ranks third as a cause of cancer-related death. Sann-Joong-Kuey-Jian-Tang (SJKJT), a traditional Chinese medicinal prescription, has been used to treat lymph node diseases and infectious lesions, and exhibits cytotoxic activity in many cancer cell lines. Our previous studies demonstrated that SJKJT inhibits the proliferation of human colon cancer colo 205 cells in vitro. The aim of this study was to evaluate the anti-tumor activity of SJKJT alone and in combination with 5-fluorouracil (5-FU) in vivo. SCID mice bearing human colon cancer colo 205 cell xenografts were administered SJKJT alone (30 mg/kg daily, p.o.), SJKJT (30 mg/kg daily, p.o.) in combination with 5-FU (30 mg/kg weekly, i.p.), or vehicle alone. At the end of the 4-week dosing schedule, the tumor and animal body weights were individually measured. The SCID mice were sacrificed with CO2 inhalation, the xenograft tumors were dissected, and the protein expression of microtubule-associated protein light chain 3 (MAP-LC3-II) in colo 205 xenograft tumors was measured by Western blotting. In the control, SJKJT-, and SJKJT plus 5-FU-treated mice, the tumor weights were 6.37±2.57, 0.43±0.35 and 1.63±0.46 g, and the mice body weights were 29±0.55, 29±2.71 and 27±0.77 g, respectively. Treatment with SJKJT resulted in a reduction in tumor weight compared with the control group, indicating that SJKJT inhibits tumor growth in a colo 205 xenograft model. SJKJT also increased LC3-II protein expression as compared to the controls. The present study shows that SJKJT alone or in combination with 5-FU has a positive effect on the treatment of SCID mice bearing human colon cancer colo 205 cell xenografts. This suggests that SJKJT has therapeutic potential in the treatment of human colon cancer.

  20. Comparative efficacy of 177Lu and 90Y for Anti-CD20 Pretargeted Radioimmunotherapy in Murine Lymphoma Xenograft Models

    SciTech Connect

    Frost, Sofia H. L.; Frayo, Shani L.; Miller, Brian W.; Orozco, Johnnie J.; Booth, Garrett C.; Hylarides, Mark D.; Lin, Yukang; Green, Damian J.; Gopal, Ajay K.; Pagel, John M.; Bäck, Tom A.; Fisher, Darrell R.; Press, Oliver W.; Afrin, Farhat

    2015-03-18

    % cured with 177Lu-PRIT. Toxicities were comparable with both isotopes. Conclusion 90Y was therapeutically superior to 177Lu for streptavidin-biotin PRIT approaches in these human lymphoma xenograft models.

  1. Establishment of a patient-derived orthotopic Xenograft (PDOX) model of HER-2-positive cervical cancer expressing the clinical metastatic pattern.

    PubMed

    Hiroshima, Yukihiko; Zhang, Yong; Zhang, Nan; Maawy, Ali; Mii, Sumiyuki; Yamamoto, Mako; Uehara, Fuminari; Miwa, Shinji; Yano, Shuya; Murakami, Takashi; Momiyama, Masashi; Chishima, Takashi; Tanaka, Kuniya; Ichikawa, Yasushi; Bouvet, Michael; Murata, Takuya; Endo, Itaru; Hoffman, Robert M

    2015-01-01

    Squamous cell carcinoma of the cervix, highly prevalent in the developing world, is often metastatic and treatment resistant with no standard treatment protocol. Our laboratory pioneered the patient-derived orthotopic xenograft (PDOX) nude mouse model with the technique of surgical orthotopic implantation (SOI). Unlike subcutaneous transplant patient-derived xenograft (PDX) models, PDOX models metastasize. Most importantly, the metastasis pattern correlates to the patient. In the present report, we describe the development of a PDOX model of HER-2-positive cervical cancer. Metastasis after SOI in nude mice included peritoneal dissemination, liver metastasis, lung metastasis as well as lymph node metastasis reflecting the metastatic pattern in the donor patient. Metastasis was detected in 4 of 6 nude mice with primary tumors. Primary tumors and metastases in the nude mice had histological structures similar to the original tumor and were stained by an anti-HER-2 antibody in the same pattern as the patient's cancer. The metastatic pattern, histology and HER-2 tumor expression of the patient were thus preserved in the PDOX model. In contrast, subcutaneous transplantation of the patient's cervical tumors resulted in primary growth but not metastasis.

  2. Efficacy of Tumor-Targeting Salmonella A1-R on a Melanoma Patient-Derived Orthotopic Xenograft (PDOX) Nude-Mouse Model

    PubMed Central

    Yamamoto, Mako; Zhao, Ming; Hiroshima, Yukihiko; Zhang, Yong; Shurell, Elizabeth; Eilber, Fritz C.; Bouvet, Michael; Noda, Makoto; Hoffman, Robert M.

    2016-01-01

    Tumor-targeting Salmonella enterica serovar Typhimurium A1-R (Salmonella A1-R) had strong efficacy on a melanoma patient-derived orthotopic xenograft (PDOX) nude-mouse model. GFP-expressing Salmonella A1-R highly and selectively colonized the PDOX melanoma and significantly suppressed tumor growth (p = 0.021). The combination of Salmonella A1-R and cisplatinum (CDDP), both at low-dose, also significantly suppressed the growth of the melanoma PDOX (P = 0.001). Salmonella A1-R has future clinical potential for combination chemotherapy with CDDP of melanoma, a highly-recalcitrant cancer. PMID:27500926

  3. TIMP-2 modulates cancer cell transcriptional profile and enhances E-cadherin/beta-catenin complex expression in A549 lung cancer cells

    PubMed Central

    Bourboulia, Dimitra; Han, HuiYing; Isaac, Biju; Wei, Beiyang; Neckers, Len; Stetler-Stevenson, William G.

    2013-01-01

    Tissue Inhibitor of Metalloproteinase 2 (TIMP-2) plays an essential role in regulating matrix remodeling, cell growth, differentiation, angiogenesis and apoptosis in vitro and in vivo. We have recently shown that TIMP-2-mediated inhibition of tumor growth is independent of matrix metalloproteinase-mediated mechanisms, and is a consequence of modulating both the tumor cells and the tumor microenvironment. In the current study we aim to identify the molecular pathways associated with these effects. We analyzed the transcriptional profile of the human lung cancer cell line A549 upon overexpression of TIMP-2 and Ala+TIMP-2 (mutant that does not inhibit MMP activity), and we found changes in gene expression predominantly related to decreased tumor development and metastasis. Increased E-cadherin expression in response to both TIMP-2 and Ala+TIMP-2 expression was confirmed by real time quantitative RT-PCR and immunoblotting. A549 cells treated with epidermal growth factor (EGF) displayed loss of cobblestone morphology and cell-cell contact, while cells overexpressing TIMP-2 or Ala+TIMP-2 were resistant to EGF-induced morphological changes. Moreover, exogenous treatment with recombinant Ala+TIMP-2 blocked EGF induced down-regulation of E-cadherin. In vivo, immunohistochemistry of A549 xenografts expressing either TIMP-2 or Ala+TIMP-2 demonstrated increased E-cadherin protein levels. More importantly, transcriptional profile analysis of tumor tissue revealed critical pathways associated with effects on tumor-host interaction and inhibition of tumor growth. In conclusion, we show that TIMP-2 promotes an anti-tumoral transcriptional profile in vitro and in vivo, including upregulation of E-cadherin, in A549 lung cancer cells. PMID:23371049

  4. XactMice: humanizing mouse bone marrow enables microenvironment reconstitution in a patient-derived xenograft model of head and neck cancer

    PubMed Central

    Morton, J. Jason; Bird, Gregory; Keysar, Stephen B.; Astling, David P.; Lyons, Traci R; Anderson, Ryan T.; Glogowska, Magdalena J.; Estes, Patricia; Eagles, Justin R.; Le, Phuong N.; Gan, Gregory; McGettigan, Brett; Fernandez, Pamela; Padilla-Just, Nuria; Varella-Garcia, Marileila; Song, John I.; Bowles, Daniel W.; Schedin, Pepper; Tan, Aik-Choon; Roop, Dennis R.; Wang, Xiao-Jing; Refaeli, Yosef; Jimeno, Antonio

    2015-01-01

    The limitations of cancer cell lines have led to the development of direct patient derived xenograft (PDX) models. However, the interplay between the implanted human cancer cells and recruited mouse stromal and immune cells alters the tumor microenvironment and limits the value of these models. To overcome these constraints, we have developed a technique to expand human hematopoietic stem and progenitor cells (HSPCs) and use them to reconstitute the radiation-depleted bone marrow of a NOD/SCID/IL2rg−/− (NSG) mouse on which a patient’s tumor is then transplanted (XactMice). The human HSPCs produce immune cells that home into the tumor and help replicate its natural microenvironment. Despite previous passage on nude mice, the expression of epithelial, stromal, and immune genes in XactMice tumors aligns more closely to that of the patient tumor than to those grown in non-humanized mice – an effect partially facilitated by human cytokines expressed by both the HSPC progeny and the tumor cells. The human immune and stromal cells produced in the XactMice can help recapitulate the microenvironment of an implanted xenograft, reverse the initial genetic drift seen after passage on non-humanized mice, and provide a more accurate tumor model to guide patient treatment. PMID:25893296

  5. Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells.

    PubMed

    Chen, Bo; Tan, Yaoxi; Liang, Yan; Li, Yan; Chen, Lei; Wu, Shuangshuang; Xu, Wei; Wang, Yan; Zhao, Weihong; Wu, Jianqing

    2017-01-01

    Period2 (Per2) is a key mammalian circadian clock protein, and additionally has a tumor suppressive function. The present study aimed to investigate its role in drug resistance in A549/cisplatin (DDP) lung adenocarcinoma cells. Per2 knockdown and overexpression in A549/DDP cells were used to compare cell proliferation (by MTT assay), apoptosis (active-caspase 3 western blot) and clone forming assay. The activation of AKT/mechanistic target of rapamycin (mTOR) was investigated by a western blot assay. The Per2 expression level was decreased in A549/DDP cells compared with A549 cells. Per2 knockdown by short hairpin RNA protects A549/DDP cells from apoptosis, and promotes proliferation and migration. Per2 knockdown results in increased activation of the phosphoinositide 3-kinase (PI3K)/AKT/mTOR signaling pathway. Overexpression of Per2 in A549/DDP cells may reduce the activity of the PI3K/AKT/mTOR signaling pathway, and promote apoptosis of A549 cells. The results of the present study suggest that Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells.

  6. Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells

    PubMed Central

    Chen, Bo; Tan, Yaoxi; Liang, Yan; Li, Yan; Chen, Lei; Wu, Shuangshuang; Xu, Wei; Wang, Yan; Zhao, Weihong; Wu, Jianqing

    2017-01-01

    Period2 (Per2) is a key mammalian circadian clock protein, and additionally has a tumor suppressive function. The present study aimed to investigate its role in drug resistance in A549/cisplatin (DDP) lung adenocarcinoma cells. Per2 knockdown and overexpression in A549/DDP cells were used to compare cell proliferation (by MTT assay), apoptosis (active-caspase 3 western blot) and clone forming assay. The activation of AKT/mechanistic target of rapamycin (mTOR) was investigated by a western blot assay. The Per2 expression level was decreased in A549/DDP cells compared with A549 cells. Per2 knockdown by short hairpin RNA protects A549/DDP cells from apoptosis, and promotes proliferation and migration. Per2 knockdown results in increased activation of the phosphoinositide 3-kinase (PI3K)/AKT/mTOR signaling pathway. Overexpression of Per2 in A549/DDP cells may reduce the activity of the PI3K/AKT/mTOR signaling pathway, and promote apoptosis of A549 cells. The results of the present study suggest that Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells. PMID:28123577

  7. Vorinostat, an HDAC inhibitor attenuates epidermoid squamous cell carcinoma growth by dampening mTOR signaling pathway in a human xenograft murine model

    SciTech Connect

    Kurundkar, Deepali; Srivastava, Ritesh K.; Chaudhary, Sandeep C.; Ballestas, Mary E.; Kopelovich, Levy; Elmets, Craig A.; Athar, Mohammad

    2013-01-15

    Histone deacetylase (HDAC) inhibitors are potent anticancer agents and show efficacy against various human neoplasms. Vorinostat is a potent HDAC inhibitor and has shown potential to inhibit growth of human xenograft tumors. However, its effect on the growth of skin neoplasm remains undefined. In this study, we show that vorinostat (2 μM) reduced expression of HDAC1, 2, 3, and 7 in epidermoid carcinoma A431 cells. Consistently, it increased acetylation of histone H3 and p53. Vorinostat (100 mg/kg body weight, IP) treatment reduced human xenograft tumor growth in highly immunosuppressed nu/nu mice. Histologically, the vorinostat-treated tumor showed features of well-differentiation with large necrotic areas. Based on proliferating cell nuclear antigen (PCNA) staining and expression of cyclins D1, D2, E, and A, vorinostat seems to impair proliferation by down-regulating the expression of these proteins. However, it also induced apoptosis. The mechanism by which vorinostat blocks proliferation and makes tumor cells prone to apoptosis, involved inhibition of mTOR signaling which was accompanied by reduction in cell survival AKT and extracellular-signal regulated kinase (ERK) signaling pathways. Our data provide a novel mechanism-based therapeutic intervention for cutaneous squamous cell carcinoma (SCC). Vorinostat may be utilized to cure skin neoplasms in organ transplant recipient (OTR). These patients have high morbidity and surgical removal of these lesions which frequently develop in these patients, is difficult. -- Highlights: ► Vorinostat reduces SCC growth in a xenograft murine model. ► Vorinostat dampens proliferation and induces apoptosis in tumor cells. ► Diminution in mTOR, Akt and ERK signaling underlies inhibition in proliferation. ► Vorinostat by inhibiting HDACs inhibits epithelial–mesenchymal transition.

  8. Antitumor effects of deguelin on H460 human lung cancer cells in vitro and in vivo: Roles of apoptotic cell death and H460 tumor xenografts model.

    PubMed

    Hsu, Yu-Chieh; Chiang, Jo-Hua; Yu, Chun-Shu; Hsia, Te-Chun; Wu, Rick Sai-Chuen; Lien, Jin-Cherng; Lai, Kuang-Chi; Yu, Fu-Shun; Chung, Jing-Gung

    2017-01-01

    Deguelin, a naturally occurring rotenoid of the flavonoid family, is known to be an Akt inhibitor, to have chemopreventive activities and anti-tumor effect on several cancers. In this study, investigation to elucidate the effect of deguelin on apoptotic pathways in human lung cancer cells and on the anti-tumor effect in lung cancer xenograft nu/nu mice was performed. In vitro studies, found that deguelin induced cell morphological changes, and decreased the percentage of viability through the induction of apoptosis in H460 lung cancer cells. Deguelin triggered apoptosis in H460 cells was also confirmed by DAPI staining, DNA gel electrophoresis, and Annexin V-FITC staining and these effects are dose-dependent manners. It was also found that deguelin promoted the Ca(2+) production and activation of caspase-3 but decreased the level of ΔΨm in H460 cells. Western blots indicated that the protein levels of cytochrome c, AIF, and pro-apoptotic Bax and Bak protein were increased, but the anti-apoptotic Bcl-2 and Bcl-x were decreased that may have led to apoptosis in H460 cells after exposure to deguelin. It was also confirmed by confocal laser microscope examination that deguelin promoted the release of AIF from mitochondria to cytosol. In vivo studies, found that in immunodeficient nu/nu mice bearing H460 tumor xenografts showed that the deguelin significantly suppressed tumor growth. Deguelin might be a potential therapeutic agent for the treatment of lung cancer in the future. This finding might fully support a critical event for deguelin via induction of apoptotic cell death and H460 tumor xenografts model against human lung cancer. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 84-98, 2017.

  9. Tamoxifen increases apoptosis but does not influence markers of proliferation in an MCF-7 xenograft model of breast cancer.

    PubMed

    Hawkin, R A; Arends, M J; Ritchie, A A; Langdon, S; Miller, W R

    2000-04-01

    Twenty-four nude mice bearing MCF-7 breast cancer cells grown as xenografts and treated with tamoxifen (2.5 mg slow-release pellet) were studied for up to 35 days. Tumour size was measured in 2 dimensions at regular time-intervals and tumours were harvested on each of days 2, 4, 7, 14, 28 and 35 after the start of treatment. Control animals (8) received no treatment and the tumours were harvested after 0 or 35 days. Tumour sections were assessed for prevalence of apoptosis and mitosis and examined immunocytochemically for Ki(67)(MIB-1) and bcl-2 expression. Tumours increased in size during tamoxifen-treatment, but at a significantly slower rate (max. 2.6-fold) than in the untreated control animals; thus tumours not actually regressing may, nevertheless, be responding significantly to tamoxifen. MIB-1 and bcl-2 immunostaining and mitosis failed to show any consistent change over the period of study. Apoptosis, however, increased progressively and significantly to day-28 in tamoxifen-treated tumours, reaching approximately a 5-fold increase over day-0 values, then decreasing again to nearly 3-fold by day-35 (P= 0.0002). The apoptosis: mitosis ratio in treated tumours also increased to approximately 10-fold on day-28 over day-0 values, decreasing to nearly 4-fold by day-35 (P= 0.037). Within the treated group, apoptosis was significantly inversely correlated with both mitosis (R = -0.38, P= 0.03) and expression of bcl-2 (R = -0.48, P= 0.0056) and strongly positively correlated with both time on tamoxifen (R = +0.63, P= 0.0003) and the % inhibition of growth by tamoxifen (R = +0.58,P = 0.0012) in the 28 individual, treated tumours (estimated relative to the mean growth rate in the controls). The apoptosis: mitosis ratio was also inversely correlated with bcl-2 expression (R = -0.56, P= 0.0021) and positively correlated with both time on tamoxifen (R = +0.50, P= 0.0068) and % inhibition of growth (R = +0.56, P= 0.0019). In this hormone-sensitive tumour model for breast

  10. Novel Effects of Simvastatin on Uterine Fibroids: In vitro and Patient-Derived Xenograft Mouse Model Study

    PubMed Central

    BORAHAY, Mostafa A.; VINCENT, Kathleen; MOTAMEDI, Massoud; SBRANA, Elena; KILIC, Gokhan S.; AL-HENDY, Ayman; BOEHNING, Darren

    2015-01-01

    Objective Uterine leiomyomas represent a common gynecologic problem with no satisfactory long-term medical treatment. The purpose of this study is to examine the effects of simvastatin on uterine leiomyoma, both in vitro and in vivo. Study Design This is a laboratory-based experimental study. For in vitro studies, we used human and rat leiomyoma cells. For in vivo studies, we used immunodeficient mice supplemented with estrogen/progesterone pellets xenografted with human leiomyoma tissue explant. Results For in vitro studies, cells were treated with different concentrations of simvastatin for 48 hours. Simvastatin induced dose-dependent apoptosis in leiomyoma cells as measured by a fluorometric caspase-3 activity assay, and inhibited proliferation as demonstrated by an MTT assay (both were significant at 5 and 10 μM). In addition, simvastatin decreased Akt signaling pathway phosphorylation as examined using Western blot analysis. For in vivo studies, animals were treated for 28 days with simvastatin (20 μg/ gm body weight/ day) vs vehicle control. The treatment inhibited tumor growth as measured weekly using calipers and/ or ultrasound (P<.01). Finally, simvastatin decreased expression of the proliferation marker Ki67 in xenograft tumor tissue as examined by immunohistochemistry (P=.02). Conclusion Simvastatin can be a promising treatment for uterine leiomyoma. Further studies, including pharmacokinetic and drug delivery studies, are required. PMID:25840272

  11. Differential response to EGFR- and VEGF-targeted therapies in patient-derived tumor tissue xenograft models of colon carcinoma and related metastases.

    PubMed

    Jin, Ketao; Lan, Huanrong; Cao, Feilin; Han, Na; Xu, Zhenzhen; Li, Guangliang; He, Kuifeng; Teng, Lisong

    2012-08-01

    Heterogeneity in primary tumors and related metastases may result in failure of antitumor therapies, particularly in targeted therapies for the treatment of cancer. In this study, patient-derived tumor tissue (PDTT) xenograft models of colon carcinoma with lymphatic and hepatic metastases were used to evaluate the response to EGFR- and VEGF-targeted therapies. Our results showed that primary colon carcinoma and its corresponding lymphatic and hepatic metastases have a different response rate to anti-EGFR (cetuximab) and anti-VEGF (bevacizumab) therapies. However, the underlying mechanism of these types of phenomenon is still unclear. To investigate whether such phenomena may result from the heterogeneity in primary colon carcinoma and related metastases, we compared the expression levels of cell signaling pathway proteins using immunohistochemical staining and western blotting, and the gene status of KRAS using pyrosequencing in the same primary colon carcinoma and its corresponding lymphatic and hepatic metastatic tissues which were used for establishing the PDTT xenograft models. Our results showed that the expression levels of EGFR, VEGF, Akt/pAkt, ERK/pERK, MAPK/pMAPK, and mTOR/pmTOR were different in primary colon carcinoma and matched lymphatic and hepatic metastases although the KRAS gene status in all cases was wild-type. Our results indicate that the heterogeneity in primary colon carcinoma and its corresponding lymphatic and hepatic metastases may result in differences in the response to dual-inhibition of EGFR and VEGF.

  12. Increased COX-2 expression in epithelial and stromal cells of high mammographic density tissues and in a xenograft model of mammographic density.

    PubMed

    Chew, G L; Huo, C W; Huang, D; Hill, P; Cawson, J; Frazer, H; Hopper, J L; Haviv, I; Henderson, M A; Britt, K; Thompson, E W

    2015-08-01

    Mammographic density (MD) adjusted for age and body mass index is one of the strongest known risk factors for breast cancer. Given the high attributable risk of MD for breast cancer, chemoprevention with a safe and available agent that reduces MD and breast cancer risk would be beneficial. Cox-2 has been implicated in MD-related breast cancer risk, and was increased in stromal cells in high MD tissues in one study. Our study assessed differential Cox-2 expression in epithelial and stromal cells in paired samples of high and low MD human breast tissue, and in a validated xenograft biochamber model of MD. We also examined the effects of endocrine treatment upon Cox-2 expression in high and low MD tissues in the MD xenograft model. Paired high and low MD human breast tissue samples were immunostained for Cox-2, then assessed for differential expression and staining intensity in epithelial and stromal cells. High and low MD human breast tissues were separately maintained in biochambers in mice treated with Tamoxifen, oestrogen or placebo implants, then assessed for percentage Cox-2 staining in epithelial and stromal cells. Percentage Cox-2 staining was greater for both epithelial (p = 0.01) and stromal cells (p < 0.0001) of high compared with low MD breast tissues. In high MD biochamber tissues, percentage Cox-2 staining was greater in stromal cells of oestrogen-treated versus placebo-treated tissues (p = 0.05).

  13. Bufalin Inhibits HCT116 Colon Cancer Cells and Its Orthotopic Xenograft Tumor in Mice Model through Genes Related to Apoptotic and PTEN/AKT Pathways

    PubMed Central

    Wang, Jie; Chen, Chao; Wang, Shiying; Zhang, Yong; Yin, Peihao; Gao, Zhongxiang; Xu, Jie; Feng, Dianxu; Zuo, Qinsong; Zhao, Ronghua; Chen, Teng

    2015-01-01

    Aims. To investigate the anticolorectal cancer (CRC) effects of Bufalin, a bioactive polyhydroxysteroid from Venenum Bufonis, using HCT116 human CRC cell and an established orthotopic xenograft model in mice, and to explore the mechanisms of action. Material and Methods. Cultured HCT116 cells or BALB/c mice with orthotopic tumor were treated by Bufalin (positive control: 5-FU). Cell proliferation, apoptosis, and cycling were determined by MTT, Annexin V/PI staining, and flow cytometry, respectively. In mice, tumor inhibition rate and animal survival were calculated. The expressions of PTEN/phosphate-PTEN, AKT/phosphate-AKT, Bad, Bcl-xl, Bax, or Caspase-3 in cells and/or tumors were determined by Western blot or immunohistochemical staining. Results. Bufalin significantly inhibited cell proliferation and induced cell apoptosis and cycle arrest in a dose/time-dependent manner. In the animal model, Bufalin treatment resulted in significant inhibition of tumor growth and prolonged survival. In the Bufalin-treated cultured cells and/or xenograft tumors, the expressions of PTEN, Bad, Bax, and Caspase-3 were significantly increased, while p-AKT and Bcl-xL significantly decreased. Conclusions. Our results indicate that Bufalin inhibit cell proliferation and orthotopic tumor growth by inducing cell apoptosis through the intrinsic apoptotic pathway, which is of pivotal significance in the identification of an anticancer drug that may synergize with Bufalin. PMID:26770191

  14. 5α-reductase Inhibition Coupled with Short Off Cycles Increases Survival in the LNCaP Xenograft Prostate Tumor Model on Intermittent Androgen Deprivation Therapy

    PubMed Central

    Pascal, Laura E.; Masoodi, Khalid Z.; O’Malley, Katherine J.; Shevrin, Daniel; Gingrich, Jeffrey R.; Parikh, Rahul A.; Wang, Zhou

    2014-01-01

    Purpose Intermittent androgen deprivation therapy (IADT) for patients with PSA progression after treatment for localized prostate cancer is an alternative to the standard continuous ADT. IADT allows for the recovery of testosterone during off-cycles to stimulate regrowth and differentiation of the regressed prostate tumor in order to lessen the side effects of continuous ADT and potentially prolong survival. Previously, IADT coupled with finasteride was shown to prolong survival of animals bearing androgen-sensitive prostate tumors when off-cycle duration was not prolonged and fixed at 10–14 days. Regressed prostate tumor xenografts with testosterone replacement were initially responsive to 5α-reductase inhibition, but resumed growth after several days in the animal models. 5α-reductase inhibition in shorter off-cycles of testosterone recovery could maximize tumor growth inhibition during IADT and perhaps increase survival. Materials and Methods The LNCaP xenograft tumor model was utilized to evaluate the effectiveness of short off-cycles of 4 days coupled with 5α-reductase inhibition on IADT on survival and tumor regrowth. Results Dutasteride inhibited initial testosterone-induced tumor regrowth during both the first and second off-cycle and significantly increased survival. Conclusions These results further support the potential for IADT combined with 5α-reductase inhibition to improve survival in prostate cancer patients when off cycle durations are short or very short. PMID:25444984

  15. Phenethyl isothiocyanate inhibits proliferation and induces apoptosis in pancreatic cancer cells in vitro and in a MIAPaca2 xenograft animal model.

    PubMed

    Stan, Silvia D; Singh, Shivendra V; Whitcomb, David C; Brand, Randall E

    2014-01-01

    Pancreatic cancer is often diagnosed at an advanced stage and it has a poor prognosis that points to an increased need to develop effective chemoprevention strategies for this disease. We examined the ability of phenethyl isothiocyanate (PEITC), a naturally occurring isothiocyanate found in cruciferous vegetables, to inhibit the growth of pancreatic cancer cells in vitro and in a MIAPaca2 xenograft animal model. Exposure to PEITC inhibited pancreatic cancer cell growth in a dose-dependent manner, with an IC50 of approximately 7 μmol/L. PEITC treatment induced G2/M phase cell cycle arrest, downregulated the antiapoptotic proteins Bcl-2 and Bcl-XL, upregulated the proapoptotic protein Bak, and suppressed Notch 1 and 2 levels. In addition, treatment with PEITC induced cleavage of poly-(ADP-ribose) polymerase and led to increased cytoplasmic histone-associated DNA fragmentation and subdiploid (apoptotic) fraction in pancreatic cancer cells. Oral administration of PEITC suppressed the growth of pancreatic cancer cells in a MIAPaca2 xenograft animal model. Our data show that PEITC exerts its inhibitory effect on pancreatic cancer cells through several mechanisms, including G2/M phase cell cycle arrest and induction of apoptosis, and supports further investigation of PEITC as a chemopreventive agent for pancreatic cancer.

  16. 2′-(2-bromohexadecanoyl)-paclitaxel conjugate nanoparticles for the treatment of non-small cell lung cancer in an orthotopic xenograft mouse model

    PubMed Central

    Peng, Lei; Schorzman, Allison N; Ma, Ping; Madden, Andrew J; Zamboni, William C; Benhabbour, Soumya Rahima; Mumper, Russell J

    2014-01-01

    A nanoparticle (NP) formulation with 2′-(2-bromohexadecanoyl)-paclitaxel (Br-16-PX) conjugate was developed in these studies for the treatment of non-small cell lung cancer (NSCLC). The lipophilic paclitaxel conjugate Br-C16-PX was synthesized and incorporated into lipid NPs where the 16-carbon chain enhanced drug entrapment in the drug delivery system and improved in vivo pharmacokinetics. The electron-withdrawing bromine group was used to facilitate the conversion of Br-C16-PX to paclitaxel at the tumor site. The developed system was evaluated in luciferase-expressing A549 cells in vitro and in an orthotopic NSCLC mouse model. The results demonstrated that the Br-C16-PX NPs had a higher maximum tolerated dose (75 mg/kg) than Taxol® (19 mg/kg) and provided significantly longer median survival (88 days versus 70 days, P<0.05) in the orthotopic NSCLC model. An improved pharmacokinetic profile was observed for the Br-C16-PX NPs at 75 mg/kg compared to Taxol at 19 mg/kg. The area under the concentration versus time curve (AUC)0–96 h of Br-C16-PX from the NPs was 91.7-fold and 49.6-fold greater than Taxol in plasma and tumor-bearing lungs, respectively, which provided sustained drug exposure and higher antitumor efficacy in the NP-treated group. PMID:25114529

  17. As2 O3 combined with leflunomide prolongs heart xenograft survival via suppressing the response of Th1, Th2, and B cells in a rat model.

    PubMed

    Jiao, Zhi-Xing; Leng, Yun; Xia, Jun-Jie; Wu, Hai-Qiao; Jin, Ning; Fu, Jia-Zhao; Cheng, Lian-Na; Wang, Jin-Hua; Ni, Shao-Bin; Qi, Zhong-Quan

    2016-05-01

    Xenotransplantation remits the severe shortage of human organs and tissues for transplantation, which is a problem that severely limits the application of transplantation to the treatment of human disease. However, severe immune rejection significantly limits the efficacy of xenotransplantation. In this study, we systematically investigated the immunosuppressive effect and mechanism of action of As2 O3 and leflunomide using a hamster-to-rat heart xenotransplantation model. We initially examined heart xenograft survival following As2 O3 and leflunomide treatment alone or combined treatment. We found that treatment with As2 O3 combined with leflunomide can significantly prolong the survival of heart xenograft by inhibiting Th1 and Th2 differentiation and reducing the production of IgG and IgM. Interestingly, As2 O3 and leflunomide showed low toxicity to the organs of the recipient. Taken together, these observations indicate that treatment with As2 O3 combined with leflunomide may be a promising immunosuppressive schedule for xenotransplantation.

  18. Polyphenol-rich Avicennia marina leaf extracts induce apoptosis in human breast and liver cancer cells and in a nude mouse xenograft model

    PubMed Central

    Tu, Ming-Chin; Chang, Jia-Hua; Chen, Yen-Ju; Tu, Yu-Hsuan; Huang, Hsiu-Chen

    2016-01-01

    Avicennia marina is the most abundant and common mangrove species and has been used as a traditional medicine for skin diseases, rheumatism, ulcers, and smallpox. However, its anticancer activities and polyphenol contents remain poorly characterized. Thus, here we investigated anticancer activities of secondary A. marina metabolites that were purified by sequential soxhlet extraction in water, ethanol, methanol, and ethyl acetate (EtOAc). Experiments were performed in three human breast cancer cell lines (AU565, MDA-MB-231, and BT483), two human liver cancer cell lines (HepG2 and Huh7), and one normal cell line (NIH3T3). The chemotherapeutic potential of A. marina extracts was evaluated in a xenograft mouse model. The present data show that EtOAc extracts of A. marina leaves have the highest phenolic and flavonoid contents and anticancer activities and, following column chromatography, the EtOAc fractions F2-5, F3-2-9, and F3-2-10 showed higher cytotoxic effects than the other fractions. 1H-NMR and 13C-NMR profiles indicated that the F3-2-10 fraction contained avicennones D and E. EtOAc extracts of A. marina leaves also suppressed xenograft MDA-MB-231 tumor growth in nude mice, suggesting that EtOAc extracts of A. marina leaves may provide a useful treatment for breast cancer. PMID:27078842

  19. Effect of magnetic fluid hyperthermia on lung cancer nodules in a murine model.

    PubMed

    Hu, Runlei; Ma, Shenglin; Li, Hu; Ke, Xianfu; Wang, Guoqing; Wei, Dongshan; Wang, Wei

    2011-11-01

    The purpose of the present study was to investigate the therapeutic effect of magnetic fluid hyperthermia (MFH) induced by an alternating magnetic field (AMF) on human carcinoma A549 xenograft in nude mice. An animal model of human lung cancer was established by subcutaneous injection of human lung cancer A549 cells in BALB/c nude mice. The xenograft mice were randomly divided into four groups and each group was treated with an injection of a different concentration of magnetic fluid: control, low-dose (67.5 mg/ml), medium-dose (90.0 mg/ml) and high-dose group (112.5 mg/ml), respectively. Following the injection (24 h), the tumor was heated in an AMF for 30 min. Tumor volumes were then measured every week. The therapeutic effect was assessed by measuring the tumor volume and weight. Pathological examination was performed with a light and electronic microscope following treatment. The temperature at the surface of the tumor in the low-, medium- and high-dose groups increased to 41.3, 44.5 and 46.8°C, respectively. The tumor grew significantly slower in the medium- and high-dose groups (both p<0.05) compared to the control group. Cytoclasis and apoptosis were detected under light and electron microscopy. In conclusion, MFH induced by AMF inhibited tumor growth and promoted apoptosis of human carcinoma A549 cells in a xenograft mice model.

  20. Comparative Efficacy of 177Lu and 90Y for Anti-CD20 Pretargeted Radioimmunotherapy in Murine Lymphoma Xenograft Models

    SciTech Connect

    Frost, Sophia; Frayo, Shani; Miller, Brian W.; Orozco, Johnnie J.; Booth, Garrett C.; Hylarides, Mark; Lin, Yukang; Green, Damian J.; Gopal, Ajay K.; Pagel, John M.; Back, Tom; Fisher, Darrell R.; Press, Oliver W.

    2015-03-01

    Pretargeted radioimmunotherapy (PRIT) is a multi-step method of selectively delivering high doses of radiotherapy to tumor cells while minimizing exposure to surrounding tissues. Yttrium-90 (90Y) and lutetium-177 (177Lu) are two of the most promising beta-particle emitting radionuclides used for radioimmunotherapy, which despite having similar chemistries differ distinctly in terms of radiophysical features. These differences may have important consequences for the absorbed dose to tumors and normal organs. Whereas 90Y has been successfully applied in a number of preclinical and clinical radioimmunotherapy settings, there have been few published pretargeting studies with 177Lu. We therefore compared the therapeutic potential of targeting either 90Y or 177Lu to human B-cell lymphoma xenografts in mice.

  1. Enhanced anti-tumor activity of the glycoengineered type II CD20 antibody obinutuzumab (GA101) in combination with chemotherapy in xenograft models of human lymphoma

    PubMed Central

    Herting, Frank; Friess, Thomas; Bader, Sabine; Muth, Gunter; Hölzlwimmer, Gabriele; Rieder, Natascha; Umana, Pablo

    2014-01-01

    Obinutuzumab (GA101) is a novel glycoengineered type II CD20 antibody in development for non-Hodgkin lymphoma. We compared the anti-tumor activity of obinutuzumab and rituximab in preclinical studies using subcutaneous Z138 and WSU-DLCL2 xenograft mouse models. Obinutuzumab and rituximab were assessed alone and in combination with bendamustine, fludarabine, chlorambucil, doxorubicin and cyclophosphamide/vincristine. Owing to strong single-agent efficacy in these models, suboptimal doses of obinutuzumab were applied to demonstrate a combination effect. Obinutuzumab plus bendamustine achieved superior tumor growth inhibition versus rituximab plus bendamustine and showed a statistically significant effect versus the respective single treatments. Combinations of obinutuzumab with fludarabine, chlorambucil or cyclophosphamide/vincristine demonstrated significantly superior activity to rituximab-based treatment. Obinutuzumab monotherapy was at least as effective as rituximab plus chemotherapy in vivo, and obinutuzumab plus chemotherapy was superior to the respective monotherapies. These data support further clinical investigation of obinutuzumab plus chemotherapy. PMID:24304419

  2. Enhanced anti-tumor activity of the glycoengineered type II CD20 antibody obinutuzumab (GA101) in combination with chemotherapy in xenograft models of human lymphoma.

    PubMed

    Herting, Frank; Friess, Thomas; Bader, Sabine; Muth, Gunter; Hölzlwimmer, Gabriele; Rieder, Natascha; Umana, Pablo; Klein, Christian

    2014-09-01

    Obinutuzumab (GA101) is a novel glycoengineered type II CD20 antibody in development for non-Hodgkin lymphoma. We compared the anti-tumor activity of obinutuzumab and rituximab in preclinical studies using subcutaneous Z138 and WSU-DLCL2 xenograft mouse models. Obinutuzumab and rituximab were assessed alone and in combination with bendamustine, fludarabine, chlorambucil, doxorubicin and cyclophosphamide/vincristine. Owing to strong single-agent efficacy in these models, suboptimal doses of obinutuzumab were applied to demonstrate a combination effect. Obinutuzumab plus bendamustine achieved superior tumor growth inhibition versus rituximab plus bendamustine and showed a statistically significant effect versus the respective single treatments. Combinations of obinutuzumab with fludarabine, chlorambucil or cyclophosphamide/vincristine demonstrated significantly superior activity to rituximab-based treatment. Obinutuzumab monotherapy was at least as effective as rituximab plus chemotherapy in vivo, and obinutuzumab plus chemotherapy was superior to the respective monotherapies. These data support further clinical investigation of obinutuzumab plus chemotherapy.

  3. A novel orally available inhibitor of focal adhesion signaling increases survival in a xenograft model of diffuse large B-cell lymphoma with central nervous system involvement.

    PubMed

    Bosch, Rosa; Moreno, María José; Dieguez-Gonzalez, Rebeca; Céspedes, María Virtudes; Gallardo, Alberto; Trias, Manuel; Grañena, Albert; Sierra, Jorge; Casanova, Isolda; Mangues, Ramon

    2013-08-01

    Central nervous system dissemination is a relatively uncommon but almost always fatal complication in diffuse large B-cell lymphoma patients. Optimal therapy for central nervous involvement in this malignancy has not been established. In this paper, we aimed to evaluate the therapeutic effect of E7123, a celecoxib derivative that inhibits focal adhesion signaling, in a novel xenograft model of diffuse large B-cell lymphoma with central nervous system involvement. Cells obtained after disaggregation of HT subcutaneous tumors (HT-SC cells) were intravenously injected in NOD/SCID mice. These mice received oral vehicle or 75 mg/kg of E7123 daily until they were euthanized for weight loss or signs of sickness. The antitumor effect of E7123 was validated in an independent experiment using a bioluminescent mouse model. Intravenously injected HT-SC cells showed higher take rate and higher central nervous system tropism (associated with increased expression of β1-integrin and p130Cas proteins) than HT cells. The oral administration of E7123 significantly increased survival time in 2 independent experiments using mice injected with unmodified or bioluminescent HT-SC cells. We have developed a new xenograft model of diffuse large B-cell lymphoma with central nervous system involvement that can be used in the pre-clinical evaluation of new drugs for this malignancy. E7123 is a new, well-tolerated and orally available therapeutic agent that merits further investigation since it may improve current management of diffuse large B-cell lymphoma patients with central nervous system involvement.

  4. Prostate cancer xenografts engineered from 3D precision-porous poly(2-hydroxyethyl methacrylate) hydrogels as models for tumorigenesis and dormancy escape

    PubMed Central

    Long, Thomas J.; Sprenger, Cynthia C.; Plymate, Stephen R.; Ratner, Buddy D.

    2014-01-01

    Synthetic biomaterial scaffolds show promise for in vitro and in vivo 3D cancer models. Tumors engineered in biomaterial scaffolds have shown evidence of being more physiologically relevant than some traditional preclinical model systems, and synthetic biomaterials provide the added benefit of defined and consistent microenvironmental control. Here, we examine sphere-templated poly(2-hydroxyethyl methacrylate) (pHEMA) scaffolds as the basis for engineering xenografts from multiple human prostate cancer cell lines. pHEMA scaffolds seeded and pre-cultured with tumorigenic M12 cells prior to implantation generated tumors in athymic nude mice, demonstrating the ability of the scaffolds to be used as a synthetic vehicle for xenograft generation. pHEMA scaffolds seeded with LNCaP C4-2 cells, which require Matrigel or stromal cell support for tumor formation, were poorly tumorigenic up to twelve weeks after implantation even when Matrigel was infused into the scaffold, demonstrating a lack of necessary pro-tumorigenic signaling within the scaffolds. Finally, M12mac25 cells, which are ordinarily rendered non-tumorigenic through the expression of the tumor suppressor insulin-like growth factor binding protein 7 (IGFBP7), displayed a tumorigenic response when implanted within porous pHEMA scaffolds. These M12mac25 tumors showed a significantly higher macrophage infiltration within the scaffolds driven by the foreign body response to the materials. These findings show the potential for this biomaterials-based model system to be used in the study of prostate cancer tumorigenesis and dormancy escape. PMID:24942815

  5. Combined toxic effect of airborne heavy metals on human lung cell line A549.

    PubMed

    Choi, Yeowool; Park, Kihong; Kim, Injeong; Kim, Sang D

    2016-11-25

    Many studies have demonstrated that heavy metals existing as a mixture in the atmospheric environment cause adverse effects on human health and are important key factors of cytotoxicity; however, little investigation has been conducted on a toxicological study of a metal mixture from atmospheric fine particulate matter. The objective of this study was to predict the combined effects of heavy metals in aerosol by using in vitro human cells and obtain a suitable mixture toxicity model. Arsenic, nickel, and lead were selected for mixtures exposed to A549 human lung cancer cells. Cell proliferation (WST-1), glutathione (GSH), and interleukin (IL)-8 inhibition were observed and applied to the prediction models of mixture toxicity, concentration addition (CA) and independent action (IA). The total mixture concentrations were set by an IC10-fixed ratio of individual toxicity to be more realistic for mortality and enzyme inhibition tests. The results showed that the IA model was statistically closer to the observed results than the CA model in mortality, indicating dissimilar modes of action. For the GSH inhibition, the results predicted by the IA and CA models were highly overestimated relative to mortality. Meanwhile, the IL-8 results were stable with no significant change in immune reaction related to inflammation. In conclusion, the IA model is a rapid prediction model in heavy metals mixtures; mortality, as a total outcome of cell response, is a good tool for demonstrating the combined toxicity rather than other biochemical responses.

  6. Functional ginger extracts from supercritical fluid carbon dioxide extraction via in vitro and in vivo assays: antioxidation, antimicroorganism, and mice xenografts models.

    PubMed

    Lee, Chih-Chen; Chiou, Li-Yu; Wang, Jheng-Yang; Chou, Sin-You; Lan, John Chi-Wei; Huang, Tsi-Shu; Huang, Kuo-Chuan; Wang, Hui-Min

    2013-01-01

    Supercritical fluid carbon dioxide extraction technology was developed to gain the active components from a Taiwan native plant, Zingiber officinale (ginger). We studied the biological effects of ginger extracts via multiple assays and demonstrated the biofunctions in each platform. Investigations of ginger extracts indicated antioxidative properties in dose-dependant manners on radical scavenging activities, reducing powers and metal chelating powers. We found that ginger extracts processed moderate scavenging values, middle metal chelating levels, and slight ferric reducing powers. The antibacterial susceptibility of ginger extracts on Staphylococcus aureus, Streptococcus sobrinus, S. mutans, and Escherichia coli was determined with the broth microdilution method technique. The ginger extracts had operative antimicroorganism potentials against both Gram-positive and Gram-negative bacteria. We further discovered the strong inhibitions of ginger extracts on lethal carcinogenic melanoma through in vivo xenograft model. To sum up, the data confirmed the possible applications as medical cosmetology agents, pharmaceutical antibiotics, and food supplements.

  7. Functional Ginger Extracts from Supercritical Fluid Carbon Dioxide Extraction via In Vitro and In Vivo Assays: Antioxidation, Antimicroorganism, and Mice Xenografts Models

    PubMed Central

    Lee, Chih-Chen; Chiou, Li-Yu; Wang, Jheng-Yang; Chou, Sin-You; Lan, John Chi-Wei; Huang, Tsi-Shu; Huang, Kuo-Chuan

    2013-01-01

    Supercritical fluid carbon dioxide extraction technology was developed to gain the active components from a Taiwan native plant, Zingiber officinale (ginger). We studied the biological effects of ginger extracts via multiple assays and demonstrated the biofunctions in each platform. Investigations of ginger extracts indicated antioxidative properties in dose-dependant manners on radical scavenging activities, reducing powers and metal chelating powers. We found that ginger extracts processed moderate scavenging values, middle metal chelating levels, and slight ferric reducing powers. The antibacterial susceptibility of ginger extracts on Staphylococcus aureus, Streptococcus sobrinus, S. mutans, and Escherichia coli was determined with the broth microdilution method technique. The ginger extracts had operative antimicroorganism potentials against both Gram-positive and Gram-negative bacteria. We further discovered the strong inhibitions of ginger extracts on lethal carcinogenic melanoma through in vivo xenograft model. To sum up, the data confirmed the possible applications as medical cosmetology agents, pharmaceutical antibiotics, and food supplements. PMID:23983624

  8. Restriction of dietary protein decreases mTORC1 in tumors and somatic tissues of a tumor-bearing mouse xenograft model.

    PubMed

    Lamming, Dudley W; Cummings, Nicole E; Rastelli, Antonella L; Gao, Feng; Cava, Edda; Bertozzi, Beatrice; Spelta, Francesco; Pili, Roberto; Fontana, Luigi

    2015-10-13

    Reduced dietary protein intake and intermittent fasting (IF) are both linked to healthy longevity in rodents, and are effective in inhibiting cancer growth. The molecular mechanisms underlying the beneficial effects of chronic protein restriction (PR) and IF are unclear, but may be mediated in part by a down-regulation of the IGF/mTOR pathway. In this study we compared the effects of PR and IF on tumor growth in a xenograft mouse model of breast cancer. We also investigated the effects of PR and IF on the mechanistic Target Of Rapamycin (mTOR) pathway, inhibition of which extends lifespan in model organisms including mice. The mTOR protein kinase is found in two distinct complexes, of which mTOR complex 1 (mTORC1) is responsive to acute treatment with amino acids in cell culture and in vivo. We found that both PR and IF inhibit tumor growth and mTORC1 phosphorylation in tumor xenografts. In somatic tissues, we found that PR, but not IF, selectively inhibits the activity of the amino acid sensitive mTORC1, while the activity of the second mTOR complex, mTORC2, was relatively unaffected by PR. In contrast, IF resulted in increased S6 phosphorylation in multiple metabolic tissues. Our work represents the first finding that PR may reduce mTORC1 activity in tumors and multiple somatic tissues, and suggest that PR may represent a highly translatable option for the treatment not only of cancer, but also other age-related diseases.

  9. Anti-CD45 Pretargeted Radioimmunotherapy using Bismuth-213: High Rates of Complete Remission and Long-Term Survival in a Mouse Myeloid Leukemia Xenograft Model

    SciTech Connect

    Pagel, John M; Kenoyer, Aimee L; Back, Tom; Hamlin, Donald K; Wilbur, D Scott; Fisher, Darrell R; Park, Steven I; Frayo, Shani; Axtman, Amanda; Orgun, Nural; Orozoco, Johnnie; Shenoi, Jaideep; Lin, Yukang; Gopal, Ajay K; Green, Damian J; Appelbaum, Frederick R; Press, Oliver W

    2011-07-21

    Pretargeted radioimmunotherapy (PRIT) using an anti-CD45 antibody (Ab)-streptavidin (SA) conjugate and DOTA-biotin labeled with β-emitting radionuclides has been explored as a strategy to decrease relapse and toxicity. α-emitting radionuclides exhibit high cytotoxicity coupled with a short path-length, potentially increasing the therapeutic index and making them an attractive alternative to β-emitting radionuclides for patients with Acute Myeloid Leukemia (AML). Accordingly, we have used 213Bi in mice with human leukemia xenografts. Results demonstrated excellent localization of 213Bi-DOTA-biotin to tumors with minimal uptake into normal organs. After 10 minutes, 4.5 ± 1.1% of the injected dose of 213Bi was delivered per gram of tumor. α imaging demonstrated uniform radionuclide distribution within tumor tissue 45 minutes after 213Bi-DOTA-biotin injection. Radiation absorbed doses were similar to those observed using a β-emitting radionuclide (90Y) in the same model. We conducted therapy experiments in a xenograft model using a single-dose of 213Bi-DOTA-biotin given 24 hours after anti-CD45 Ab-SA conjugate. Among mice treated with anti-CD45 Ab-SA conjugate followed by 800 μCi of 213Bi- or 90Y-DOTA-biotin, 80% and 20%, respectively, survived leukemia-free for >100 days with minimal toxicity. These data suggest that anti-CD45 PRIT using an α-emitting radionuclide may be highly effective and minimally toxic for treatment of AML.

  10. Antitumor activity of (R,R')-4-methoxy-1-naphthylfenoterol in a rat C6 glioma xenograft model in the mouse.

    PubMed

    Bernier, Michel; Paul, Rajib K; Dossou, Katina S S; Wnorowski, Artur; Ramamoorthy, Anuradha; Paris, Arnaud; Moaddel, Ruin; Cloix, Jean-François; Wainer, Irving W

    2013-12-01

    (R,R')-4-methoxy-1-naphthylfenoterol (MNF) inhibits cancer cell proliferation in vitro through cell-type specific modulation of β2-adrenergic receptor and/or cannabinoid receptor function. Here, we report an investigation into antitumor activity of MNF in rat C6 glioma cells. The potent antiproliferative action of MNF in these cells (IC50 of ∼1 nmol/L) was refractory to pharmacological inhibition of β2-adrenergic receptor while a synthetic inverse agonist of cannabinoid receptor 1 significantly blocked MNF activity. The antitumor activity of MNF was then assessed in a C6 glioblastoma xenograft model in mice. Three days after subcutaneous implantation of C6 cells into the lower flank of nude mice, these animals were subjected to i.p. injections of saline or MNF (2 mg/kg) for 19 days and tumor volumes were measured over the course of the experiment. Gene expression analysis, quantitative RT-PCR and immunoblot assays were performed on the tumors after treatment. Significant reduction in mean tumor volumes was observed in mice receiving MNF when compared with the saline-treated group. We identified clusters in expression of genes involved in cellular proliferation, as well as molecular markers for glioblastoma that were significantly downregulated in tumors of MNF-treated mice as compared to saline-injected controls. The efficacy of MNF against C6 glioma cell proliferation in vivo and in vitro was accompanied by marked reduction in the expression of cell cycle regulator proteins. This study is the first demonstration of MNF-dependent chemoprevention of a glioblastoma xenograft model and may offer a potential mechanism for its anticancer action in vivo.

  11. Antitumor activity of (R,R’)-4-methoxy-1-naphthylfenoterol in a rat C6 glioma xenograft model in the mouse

    PubMed Central

    Bernier, Michel; Paul, Rajib K; Dossou, Katina S S; Wnorowski, Artur; Ramamoorthy, Anuradha; Paris, Arnaud; Moaddel, Ruin; Cloix, Jean-François; Wainer, Irving W

    2013-01-01

    (R,R’)-4-methoxy-1-naphthylfenoterol (MNF) inhibits cancer cell proliferation in vitro through cell-type specific modulation of β2-adrenergic receptor and/or cannabinoid receptor function. Here, we report an investigation into antitumor activity of MNF in rat C6 glioma cells. The potent antiproliferative action of MNF in these cells (IC50 of ∼1 nmol/L) was refractory to pharmacological inhibition of β2-adrenergic receptor while a synthetic inverse agonist of cannabinoid receptor 1 significantly blocked MNF activity. The antitumor activity of MNF was then assessed in a C6 glioblastoma xenograft model in mice. Three days after subcutaneous implantation of C6 cells into the lower flank of nude mice, these animals were subjected to i.p. injections of saline or MNF (2 mg/kg) for 19 days and tumor volumes were measured over the course of the experiment. Gene expression analysis, quantitative RT-PCR and immunoblot assays were performed on the tumors after treatment. Significant reduction in mean tumor volumes was observed in mice receiving MNF when compared with the saline-treated group. We identified clusters in expression of genes involved in cellular proliferation, as well as molecular markers for glioblastoma that were significantly downregulated in tumors of MNF-treated mice as compared to saline-injected controls. The efficacy of MNF against C6 glioma cell proliferation in vivo and in vitro was accompanied by marked reduction in the expression of cell cycle regulator proteins. This study is the first demonstration of MNF-dependent chemoprevention of a glioblastoma xenograft model and may offer a potential mechanism for its anticancer action in vivo. PMID:25505565

  12. Radiation-Induced Bystander Effects in A549 Cells Exposed to 6 MV X-rays.

    PubMed

    Yang, Shuning; Xu, Jing; Shao, Weixian; Geng, Chong; Li, Jia; Guo, Feng; Miao, Hui; Shen, Wenbin; Ye, Tao; Liu, Yazhou; Xu, Haiting; Zhang, Xuguang

    2015-07-01

    The aim of the study is to explore the bystander effects in A549 cells that have been exposed to 6MV X-ray. Control group, irradiated group, irradiated conditioned medium (ICM)-received group, and fresh medium group were designed in this study. A549 cells in the logarithmic growth phase were irradiated with 6MV X-ray at 0, 0.5, 1, 1.5, and 2. In ICM-received group, post-irradiation A549 cells were cultured for 3 h and were transferred into non-irradiated A549 cells for further cultivation. Clone forming test was applied to detect the survival fraction of cells. Annexin V-FITC/PI double-staining assay was used to detect the apoptosis of A549 cells 24, 48, 72, and 96 h after 2-Gy 6MV X-ray irradiation, and the curves of apoptosis were drawn. The changes in the cell cycles 4, 48, 72, and 96 h after 2-Gy 6MV X-ray irradiation were detected using PI staining flow cytometry. With the increase of irradiation dose, the survival fraction of A549 cells after the application of 0.5 Gy irradiation was decreasing continuously. In comparison to the control group, the apoptosis rate of the ICM-received group was increased in a time-dependent pattern, with the highest apoptosis rate observed at 72 h (p < 0.05). Cell count in G2/M stages was obviously increased compared with that of the control group (p < 0.05), with the highest count observed at 72 h, after which G2/M stage arrest was diminished. ICM can cause apparent A549 cell damage, indicating that 6MV X-ray irradiation can induce bystander effect on A549 cells, which reaches a peak at 72 h.

  13. Trichomonas vaginalis induces cytopathic effect on human lung alveolar basal carcinoma epithelial cell line A549.

    PubMed

    Salvador-Membreve, Daile Meek C; Jacinto, Sonia D; Rivera, Windell L

    2014-12-01

    Trichomonas vaginalis, the causative agent of trichomoniasis is generally known to inhabit the genitourinary tract. However, several case reports with supporting molecular and immunological identifications have documented its occurrence in the respiratory tract of neonates and adults. In addition, the reports have documented that its occurrence is associated with respiratory failures. The medical significance or consequence of this association is unclear. Thus, to establish the possible outcome from the interaction of T. vaginalis with lung cells, the cytopathic effects of the parasites were evaluated using monolayer cultures of the human lung alveolar basal carcinoma epithelial cell line A549. The possible effect of association of T. vaginalis with A549 epithelial cells was analyzed using phase-contrast, scanning electron microscopy and fluorescence microscopy. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), crystal-violet and TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling) assays were conducted for cytotoxicity testing. The results demonstrate that T. vaginalis: (1) adheres to A549 epithelial cells, suggesting a density-dependent parasite-cell association; (2) adherence on A549 is through flagella, membrane and axostyle; (3) causes cell detachment and cytotoxicity (50-72.4%) to A549 and this effect is a function of parasite density; and (4) induces apoptosis in A549 about 20% after 6 h of incubation. These observations indicate that T. vaginalis causes cytopathic effects on A549 cell. To date, this is the first report showing a possible interaction of T. vaginalis with the lung cells using A549 monolayer cultures. Further studies are recommended to completely elucidate this association.

  14. Rab27A regulates exosome secretion from lung adenocarcinoma cells A549: involvement of EPI64.

    PubMed

    Li, Wenhai; Hu, Yunsheng; Jiang, Tao; Han, Yong; Han, Guoliang; Chen, Jiakuan; Li, Xiaofei

    2014-11-01

    Exosomes are small membrane vesicles secreted into the extracellular compartment by exocytosis. The unique composition of exosomes can be transported to other cells which allow cells to exert biological functions at distant sites. However, in lung cancer, the regulation of exosome secretion was poorly understood. In this study, we employed human lung adenocarcinoma A549 cells to determine the exosome secretion and involved regulation mechanism. We found that Rab27A was expressed in A549 cells and the reduction of Rab27A by Rab27A-specific shRNA could significantly decrease the secretion of exosome by A549 cells. EPI64, a candidate GAP that is specific for Rab27, was also detected in A549 cells. By pull-down assay, we found that EPI64 participated in the exosome secretion of A549 cells by acting as a specific GAP for Rab27A, not Rab27B. Overexpression of EPI64 enhanced exosome secretion. Taken together, in A549 cells, EPI64 could regulate the exosome secretion by functioning as a GAP specific for Rab27A.

  15. Meta-[{sup 211}At]astatobenzylguanidine (MABG): In vivo evaluation in an athymic mouse human neuroblastoma xenograft model

    SciTech Connect

    Vaidyanathan, G.; Friedman, H.S.; Keir, S.T.

    1996-05-01

    Because of the short range and high linear energy transfer of {sup 211}At {alpha}-particles, the MIBG analogue MABG might be useful for the therapy of micrometastatic neuroblastoma and previous in vitro studies have demonstrated that under single-cell conditions, the cytotoxicity of MABG is > 1000 times higher than [{sup 131}I]MIBG. A paired label protocol was used to compare the tissue distribution of MABG and [{sup 131}I]MIBG in athymic mice bearing subcutaneous SK-N-SH human neuroblastoma xenografts from 1-24 hr after injection. In tumor, significantly higher (p < 0.05) uptake was observed for MABG (3.8 {plus_minus} 0.8%ID/g vs 3.1 {plus_minus} 0.7%ID/g at 8 hr). Pretreatment with desipramine reduced tumor uptake of MABG by 43%, suggesting that accumulation was related to the uptake-1 mechanism. Significantly higher uptake of MABG also was observed in normal tissue targets. For example, at 8 hr, heart uptake of MABG was 6.0 {plus_minus} 0.9 % ID/g compared with 4.5 {plus_minus} 0.8%ID/g for [{sup 131}I]MIBG. Two strategies were investigated to increase the tumor-to-hear uptake ratio. Pretreatment of mice with unlabeled MIBG (4 mg/kg) increased MABG tumor uptake by 1.5-fold while reducing uptake in several normal tissues including heart. The vesicular uptake blocker tetrabenazine (TBZ; 20 mg/kg), reduced MABG hear uptake by 30% of control values with not significant decrease in tumor levels. We conclude that MABG deserves further evaluation as a potential agent for the treatment of neuroblastoma, particularly in combination with strategies to minimize radiation dose to normal target tissues.

  16. Spatial and temporal mapping of heterogeneity in liposome uptake and microvascular distribution in an orthotopic tumor xenograft model.

    PubMed

    Ekdawi, Sandra N; Stewart, James M P; Dunne, Michael; Stapleton, Shawn; Mitsakakis, Nicholas; Dou, Yannan N; Jaffray, David A; Allen, Christine

    2015-06-10

    Existing paradigms in nano-based drug delivery are currently being challenged. Assessment of bulk tumor accumulation has been routinely considered an indicative measure of nanomedicine potency. However, it is now recognized that the intratumoral distribution of nanomedicines also impacts their therapeutic effect. At this time, our understanding of the relationship between the bulk (i.e., macro-) tumor accumulation of nanocarriers and their intratumoral (i.e., micro-) distribution remains limited. Liposome-based drug formulations, in particular, suffer from diminished efficacy in vivo as a result of transport-limiting properties, combined with the heterogeneous nature of the tumor microenvironment. In this report, we perform a quantitative image-based assessment of macro- and microdistribution of liposomes. Multi-scalar assessment of liposome distribution was enabled by a stable formulation which co-encapsulates an iodinated contrast agent and a near-infrared fluorescence probe, for computed tomography (CT) and optical microscopy, respectively. Spatio-temporal quantification of tumor uptake in orthotopic xenografts was performed using CT at the bulk tissue level, and within defined sub-volumes of the tumor (i.e., rim, periphery and core). Tumor penetration and relative distribution of liposomes were assessed by fluorescence microscopy of whole tumor sections. Microdistribution analysis of whole tumor images exposed a heterogeneous distribution of both liposomes and tumor vasculature. Highest levels of liposome uptake were achieved and maintained in the well-vascularized tumor rim over the study period, corresponding to a positive correlation between liposome and microvascular density. Tumor penetration of liposomes was found to be time-dependent in all regions of the tumor however independent of location in the tumor. Importantly, a multi-scalar comparison of liposome distribution reveals that macro-accumulation in tissues (e.g., blood, whole tumor) may not reflect

  17. Molecular Role of EGFR-MAPK Pathway in Patchouli Alcohol-Induced Apoptosis and Cell Cycle Arrest on A549 Cells In Vitro and In Vivo

    PubMed Central

    Yang, Liu; Lu, ChengHua; Xu, ZhenYu; Qiu, HongFu; Wang, JingWen; Zhu, Yin

    2016-01-01

    Nowadays, chemotherapy is still the main effective treatment for cancer. Herb prescriptions containing Pogostemon cablin Benth (also known as “Guang-Huo-Xiang”) have been widely used in Chinese medicine today. In our research, we found that patchouli alcohol, a compound isolated from the oil of Pogostemon cablin Benth, exerted antitumor ability against human lung cancer A549 cells ability both in vitro and in vivo. MTT assay was used to assess cell viability. Hoechst 33342 staining and TUNEL cover glass staining provided the visual evidence of apoptosis. Caspase activity measurement showed that patchouli alcohol activated caspase 9 and caspase 3 of mitochondria-mediated apoptosis. Consistently, patchouli alcohol inhibited the xenograft tumor in vivo. Further investigation of the underlying molecular mechanism showed that MAPK and EGFR pathway might contribute to the antitumor effect of patchouli alcohol. Our study proved that patchouli alcohol might be able to serve as a novel antitumor compound in the clinical treatment of lung cancer. PMID:27830146

  18. Human Umbilical Cord Stem Cell Xenografts Improve Cognitive Decline and Reduce the Amyloid Burden in a Mouse Model of Alzheimer’s Disease

    PubMed Central

    Boutajangout, Allal; Noorwali, Abdulwahab; Atta, Hazem; Wisniewski, Thomas

    2017-01-01

    Introduction Alzheimer’s disease (AD) is the most common cause of dementia. The search for new treatments is made more urgent given its increasing prevalence resulting from the aging of the global population. Over the past 20 years, stem cell technologies have become an increasingly attractive option to both study and potentially treat neurodegenerative diseases. Several investigators reported a beneficial effect of different types of stem or progenitor cells on the pathology and cognitive function in AD models. Mouse models are one of the most important research tools for finding new treatment for AD. We aimed to explore the possible therapeutic potential of human umbilical cord mesenchymal stem cell xenografts in a transgenic (Tg) mouse model of AD. Methods APP/PS1 Tg AD model mice received human umbilical cord stem cells, directly injected into the carotid artery. To test the efficacy of the umbilical cord stem cells in this AD model, behavioral tasks (sensorimotor and cognitive tests) and immunohistochemical quantitation of the pathology was performed. Results Treatment of the APP/PS1 AD model mice, with human umbilical cord stem cells, produced a reduction of the amyloid beta burden in the cortex and the hippocampus which correlated with a reduction of the cognitive loss. Conclusion Human umbilical cord mesenchymal stem cells appear to reduce AD pathology in a transgenic mouse model as documented by a reduction of the amyloid plaque burden compared to controls. This amelioration of pathology correlates with improvements on cognitive and sensorimotor tasks. PMID:27719629

  19. Evaluation of 6-([18F] fluoroacetamido)-1-hexanoic-anilide (18F-FAHA) as imaging probe in tumor xenograft mice model

    NASA Astrophysics Data System (ADS)

    Li, Fiona; Cho, Sung Ju; Yu, Lihai; Hudson, Robert H. E.; Luyt, Leonard G.; Pin, Christopher L.; Kovacs, Michael S.; Koropatnick, James; Lee, Ting-Yim

    2016-03-01

    Alteration in genetic expression is as important as gene mutation in cancer development and proliferation. Epigenetic changes affect gene expression without altering the DNA sequence. Histone deacetylase (HDAC), an enzyme facilitating histone remodelling, can lead to silencing of tumor suppressor genes making HDAC inhibitors viable anticancer drugs against tumors with increased activity of the enzyme. In this study we evaluated 18F-fluroacetamido-1-hexanoicanilide (18F-FAHA), an artificial HDAC substrate, as imaging probe of HDAC activity of human tumor xenografts in immunocompromised host mice. Human breast and melanoma cell lines, MDA-MB-468 and MDA-MB-435 respectively, known to overexpress HDAC activity were xenografted into immunocompromised mice and HDAC activity was imaged using 18F-FAHA. The melanoma group was treated with saline, SAHA (suberoylanilide hydroxamic acid, an approved anticancer HDAC inhibitor) in DMSO, or DMSO as positive control. Tracer kinetic modelling and SUV were used to estimate HDAC activity from dynamic PET data. Both breast tumor and melanoma group showed great variability in binding rate constant (BRC) of 18F-FAHA suggesting highly variable inter- and intra-tumoral HDAC activity. For the SAHA treated melanoma group, HDAC activity, as monitored by BRC of 18F-FAHA, decreased more than the two (positive and negative) control groups but not tumor growth. Our preliminary study showed that noninvasive PET imaging with 18F-FAHA has the potential to identify patients for whom treatment with HDAC inhibitors are appropriate, to assess the effectiveness of that treatment as an early marker of target reduction, and also eliminate the need for invasive tissue biopsy to individualize treatment.

  20. Tumor priming by Apo2L/TRAIL reduces interstitial fluid pressure and enhances efficacy of liposomal gemcitabine in a patient derived xenograft tumor model.

    PubMed

    Hylander, Bonnie L; Sen, Arindam; Beachy, Sarah H; Pitoniak, Rose; Ullas, Soumya; Gibbs, John F; Qiu, Jingxin; Prey, Joshua D; Fetterly, Gerald J; Repasky, Elizabeth A

    2015-11-10

    Interstitial fluid pressure (IFP) is elevated in tumors and high IFP, a negative cancer prognosticator, is known to limit the uptake and efficacy of anti-tumor therapeutics. Approaches that alter the tumor microenvironment and enhance uptake of therapeutics are collectively referred to as tumor "priming". Here we show that the cytotoxic biological therapy Apo2L/TRAIL can prime the tumor microenvironment and significantly lower IFP in three different human tumor xenograft models (Colo205, MiaPaca-2 and a patient gastrointestinal adenocarcinoma tumor xenograft). We found that a single dose of Apo2L/TRAIL resulted in a wave of apoptosis which reached a maximum at 8h post-treatment. Apoptotic debris subsequently disappeared concurrent with an increase in macrophage infiltration. By 24h post-treatment, treated tumors appeared less condensed with widening of the stromal areas which increased at 48 and 72h. Analysis of tumor vasculature demonstrated a significant increase in overall vessel size at 48 and 72h although the number of vessels did not change. Notably, IFP was significantly reduced in these tumors by 48h after Apo2L/TRAIL treatment. Administration of gemcitabine at this time resulted in increased tumor uptake of both gemcitabine and liposomal gemcitabine and significantly improved anti-tumor efficacy of liposomal gemcitabine. These results suggest that Apo2L/TRAIL has a potential as a tumor priming agent and provides a rationale for developing a sequencing schema for combination therapy such that an initial dose of Apo2L/TRAIL would precede administration of gemcitabine or other therapies.

  1. Patient-derived xenograft platform of OSCC: a renewable human bio-bank for preclinical cancer research and a new co-clinical model for treatment optimization.

    PubMed

    Sun, Shuyang; Zhang, Zhiyuan

    2016-03-01

    Advances in next-generation sequencing and bioinformatics have begun to reveal the complex genetic landscape in human cancer genomes, including oral squamous cell carcinoma (OSCC). Sophisticated preclinical models that fully represent intra- and inter-tumoral heterogeneity are required to understand the molecular diversity of cancer and achieve the goal of personalized therapies. Over the last decade, patient-derived xenograft (PDX) models generated from human tumor samples that can retain the histological and genetic features of their donor tumors have been shown to be the preferred preclinical tool in translational cancer research compared with other conventional preclinical models. Specifically, genetically well-defined PDX models can be applied to accelerate targeted antitumor drug development and biomarker discovery. Recently, we have successfully established and characterized an OSCC PDX panel as part of our tumor bio-bank for translational cancer research. In this paper, we discuss the establishment, characterization, and preclinical applications of the PDX models. In particular, we focus on the classification and applications of the PDX models based on validated annotations, including clinicopathological features, genomic profiles, and pharmacological testing information. We also explore the translational value of this well-annotated PDX panel in the development of co-clinical trials for patient stratification and treatment optimization in the near future. Although various limitations still exist, this preclinical approach should be further tested and improved.

  2. A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions.

    PubMed

    Fong, Eliza L S; Wan, Xinhai; Yang, Jun; Morgado, Micaela; Mikos, Antonios G; Harrington, Daniel A; Navone, Nora M; Farach-Carson, Mary C

    2016-01-01

    Patient-derived xenograft (PDX) models better represent human cancer than traditional cell lines. However, the complex in vivo environment makes it challenging to employ PDX models to investigate tumor-stromal interactions, such as those that mediate prostate cancer (PCa) bone metastasis. Thus, we engineered a defined three-dimensional (3D) hydrogel system capable of supporting the co-culture of PCa PDX cells and osteoblastic cells to recapitulate the PCa-osteoblast unit within the bone metastatic microenvironment in vitro. Our 3D model not only maintained cell viability but also preserved the typical osteogenic phenotype of PCa PDX cells. Additionally, co-culture cellularity was maintained over that of either cell type cultured alone, suggesting that the PCa-osteoblast cross-talk supports PCa progression in bone, as is hypothesized to occur in patients with prostatic bone metastasis. Strikingly, osteoblastic cells co-cultured with PCa PDX tumoroids organized around the tumoroids, closely mimicking the architecture of PCa metastases in bone. Finally, tumor-stromal signaling mediated by the fibroblast growth factor axis tightly paralleled that in the in vivo counterpart. Together, these findings indicate that this 3D PCa PDX model recapitulates important pathological properties of PCa bone metastasis, and validate the use of this model for controlled and systematic interrogation of complex in vivo tumor-stromal interactions.

  3. Longitudinal evaluation of the metabolic response of a tumor xenograft model to single fraction radiation therapy using magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Tessier, A. G.; Yahya, A.; Larocque, M. P.; Fallone, B. G.; Syme, A.

    2014-09-01

    Proton magnetic resonance spectroscopy (MRS) was used to evaluate the metabolic profile of human glioblastoma multiform brain tumors grown as xenografts in nude mice before, and at multiple time points after single fraction radiation therapy. Tumors were grown over the thigh in 16 mice in this study, of which 5 served as untreated controls and 11 had their tumors treated to 800 cGy with 200 kVp x-rays. Spectra were acquired within 24 h pre-treatment, and then at 3, 7 and 14 d post-treatment using a 9.4 T animal magnetic resonance (MR) system. For the untreated control tumors, spectra (1-2 per mouse) were acquired at different stages of tumor growth. Spectra were obtained with the PRESS pulse sequence using a 3  ×  3 × 3 mm3 voxel. Analysis was performed with the LCModel software platform. Six metabolites were profiled for this analysis: alanine (Ala), myo-inositol (Ins), taurine (Tau), creatine and phosphocreatine (Cr + PCr), glutamine and glutamate (Glu + Gln), and total choline (glycerophosphocholine + phosphocholine) (GPC + PCh). For the treated cohort, most metabolite/water concentration ratios were found to decrease in the short term at 3 and 7 d post-treatment, followed by an increase at 14 d post-treatment toward pre-treatment values. The lowest concentrations were observed at 7 d post-treatment, with magnitudes (relative to pre-treatment concentration ratios) of: 0.42  ±  24.6% (Ala), 0.43  ±  15.3% (Ins), 0.68  ±  27.9% (Tau), 0.52  ±  14.6% (GPC+PCh), 0.49  ±  21.0% (Cr + PCr) and 0.78  ±  24.5% (Glu + Gln). Control animals did not demonstrate any significant correlation between tumor volume and metabolite concentration, indicating that the observed kinetics were the result of the therapeutic intervention. We have demonstrated the feasibility of using MRS to follow multiple metabolic markers over time for the purpose of evaluating therapeutic response of tumors to radiation therapy. This study provides

  4. Rapamycin enhances docetaxel-induced cytotoxicity in a androgen-independent prostate cancer xenograft model by survivin downregulation

    SciTech Connect

    Morikawa, Yasuyuki; Koike, Hidekazu; Sekine, Yoshitaka; Matsui, Hiroshi; Shibata, Yasuhiro; Ito, Kazuto; Suzuki, Kazuhiro

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer Rapamycin (RPM) enhances the susceptibility of PC3 cells to docetaxel. Black-Right-Pointing-Pointer Low-dosage of docetaxel (DTX) did not reduce survivin expression levels in PC3 cells. Black-Right-Pointing-Pointer Combination treatment of RPM with DTX suppressed the expression of surviving. Black-Right-Pointing-Pointer SiRNA against survivin enhanced the susceptibility of PC3 cells to DTX. Black-Right-Pointing-Pointer RPM and DTX cotreatment inhibited PC3 cell growth and decreased surviving in vivo. -- Abstract: Background: Docetaxel is a first-line treatment choice in castration-resistant prostate cancer (CRPC). However, the management of CRPC remains an important challenge in oncology. There have been many reports on the effects of rapamycin, which is an inhibitor of the mammalian target of rapamycin (mTOR), in the treatment of carcinogenesis. We assessed the cytotoxic effects of the combination treatment of docetaxel and rapamycin in prostate cancer cells. Furthermore, we examined the relationship between these treatments and survivin, which is a member of the inhibitory apoptosis family. Methods: Prostate cancer cells were cultured and treated with docetaxel and rapamycin. The effects on proliferation were evaluated with the MTS assay. In addition, we evaluated the effect on proliferation of the combination treatment induced knockdown of survivin expression by small interfering RNA transfection and docetaxel. Protein expression levels were assayed using western blotting. PC3 cells and xenograft growth in nude mice were used to evaluate the in vivo efficacy of docetaxel and its combination with rapamycin. Results: In vitro and in vivo, the combination of rapamycin with docetaxel resulted in a greater inhibition of proliferation than treatment with rapamycin or docetaxel alone. In addition, in vitro and in vivo, rapamycin decreased basal surviving levels, and cotreatment with docetaxel further decreased these levels

  5. A Novel 99mTc-Labeled Molecular Probe for Tumor Angiogenesis Imaging in Hepatoma Xenografts Model: A Pilot Study

    PubMed Central

    Zhao, Qian; Yan, Ping; Wang, Rong Fu; Zhang, Chun Li; Li, Ling; Yin, Lei

    2013-01-01

    Introduction Visualization of tumor angiogenesis using radionuclide targeting provides important diagnostic information. In previous study, we proved that an arginine-arginine-leucine (RRL) peptide should be a tumor endothelial cell specific binding sequence. The overall aim of this study was to evaluate whether 99mTc-radiolabeled RRL could be noninvasively used for imaging of malignant tumors in vivo, and act as a new molecular probe targeting tumor angiogenesis. Methods The RRL peptide was designed and radiosynthesized with 99mTc by a one-step method. The radiolabeling efficiency and radiochemical purity were then characterized in vitro. 99mTc-RRL was injected intravenously in HepG2 xenograft-bearing BALB/c nude mice. Biodistribution and in vivo imaging were performed periodically. The relationship between tumor size and %ID uptake of 99mTc-RRL was also explored. Results The labeling efficiencies of 99mTc-RRL reached 76.9%±4.5% (n = 6) within 30–60 min at room temperature, and the radiochemical purity exceeded 96% after purification. In vitro stability experiment revealed the radiolabeled peptide was stable. Biodistribution data showed that 99mTc-RRL rapidly cleared from the blood and predominantly accumulated in the kidneys and tumor. The specific uptake of 99mTc-RRL in tumor was significantly higher than that of unlabeled RRL blocking and free pertechnetate control test after injection (p<0.05). The ratio of the tumor-to-muscle exceeded 6.5, tumor-to-liver reached 1.98 and tumor-to-blood reached 1.95. In planar gamma imaging study, the tumors were imaged clearly at 2–6 h after injection of 99mTc-RRL, whereas the tumor was not imaged clearly in blocking group. The tumor-to-muscle ratio of images with 99mTc-RRL was comparable with that of 18F-FDG PET images. Immunohistochemical analysis verified the excessive vasculature of tumor. There was a linear relationship between the tumor size and uptake of 99mTc-RRL with R2 = 0.821. Conclusion 99mTc-RRL can

  6. Long Term Culture of the A549 Cancer Cell Line Promotes Multilamellar Body Formation and Differentiation towards an Alveolar Type II Pneumocyte Phenotype

    PubMed Central

    Cooper, James Ross; Abdullatif, Muhammad Bilal; Burnett, Edward C.; Kempsell, Karen E.; Conforti, Franco; Tolley, Howard; Collins, Jane E.; Davies, Donna E.

    2016-01-01

    Pulmonary research requires models that represent the physiology of alveolar epithelium but concerns with reproducibility, consistency and the technical and ethical challenges of using primary or stem cells has resulted in widespread use of continuous cancer or other immortalized cell lines. The A549 ‘alveolar’ cell line has been available for over four decades but there is an inconsistent view as to its suitability as an appropriate model for primary alveolar type II (ATII) cells. Since most work with A549 cells involves short term culture of proliferating cells, we postulated that culture conditions that reduced proliferation of the cancer cells would promote a more differentiated ATII cell phenotype. We examined A549 cell growth in different media over long term culture and then used microarray analysis to investigate temporal regulation of pathways involved in cell cycle and ATII differentiation; we also made comparisons with gene expression in freshly isolated human ATII cells. Analyses indicated that long term culture in Ham’s F12 resulted in substantial modulation of cell cycle genes to result in a quiescent population of cells with significant up-regulation of autophagic, differentiation and lipidogenic pathways. There were also increased numbers of up- and down-regulated genes shared with primary cells suggesting adoption of ATII characteristics and multilamellar body (MLB) development. Subsequent Oil Red-O staining and Transmission Electron Microscopy confirmed MLB expression in the differentiated A549 cells. This work defines a set of conditions for promoting ATII differentiation characteristics in A549 cells that may be advantageous for studies with this cell line. PMID:27792742

  7. Study of gaseous benzene effects upon A549 lung epithelial cells using a novel exposure system.

    PubMed

    Mascelloni, Massimiliano; Delgado-Saborit, Juana Maria; Hodges, Nikolas J; Harrison, Roy M

    2015-08-19

    Volatile organic compounds (VOCs) are ubiquitous pollutants known to be present in both indoor and outdoor air arising from various sources. Indoor exposure has increasingly become a major cause of concern due to the effects that such pollutants can have on health. Benzene, along with toluene, is one of the main components of the VOC mixture and is a known carcinogen due to its genotoxic effects. The aim of this study was to test the feasibility of an in vitro model to study the short-term effects of exposure of lung cells to airborne benzene. We studied the effects of exposure on DNA and the production of reactive oxygen species (ROS) in A549 cells, exposed to various concentrations of benzene (0.03; 0.1; 0.3 ppm) in gaseous form using a custom designed cell exposure chamber. Results showed a concentration-dependent increase of DNA breaks and an increase of ROS production, confirming the feasibility of the experimental procedure and validating the model for further in vitro studies of exposure to other VOCs.

  8. Antitumor effect of FGFR inhibitors on a novel cholangiocarcinoma patient derived xenograft mouse model endogenously expressing an FGFR2-CCDC6 fusion protein.

    PubMed

    Wang, Yu; Ding, Xiwei; Wang, Shaoqing; Moser, Catherine D; Shaleh, Hassan M; Mohamed, Essa A; Chaiteerakij, Roongruedee; Allotey, Loretta K; Chen, Gang; Miyabe, Katsuyuki; McNulty, Melissa S; Ndzengue, Albert; Barr Fritcher, Emily G; Knudson, Ryan A; Greipp, Patricia T; Clark, Karl J; Torbenson, Michael S; Kipp, Benjamin R; Zhou, Jie; Barrett, Michael T; Gustafson, Michael P; Alberts, Steven R; Borad, Mitesh J; Roberts, Lewis R

    2016-09-28

    Cholangiocarcinoma is a highly lethal cancer with limited therapeutic options. Recent genomic analysis of cholangiocarcinoma has revealed the presence of fibroblast growth factor receptor 2 (FGFR2) fusion proteins in up to 13% of intrahepatic cholangiocarcinoma (iCCA). FGFR fusions have been identified as a novel oncogenic and druggable target in a number of cancers. In this study, we established a novel cholangiocarcinoma patient derived xenograft (PDX) mouse model bearing an FGFR2-CCDC6 fusion protein from a metastatic lung nodule of an iCCA patient. Using this PDX model, we confirmed the ability of the FGFR inhibitors, ponatinib, dovitinib and BGJ398, to modulate FGFR signaling, inhibit cell proliferation and induce cell apoptosis in cholangiocarcinoma tumors harboring FGFR2 fusions. In addition, BGJ398 appeared to be superior in potency to ponatinib and dovitinib in this model. Our findings provide a strong rationale for the investigation of FGFR inhibitors, particularly BGJ398, as a therapeutic option for cholangiocarcinoma patients harboring FGFR2 fusions.

  9. Radix Tetrastigma hemsleyani flavone inhibits proliferation, migration, and invasion of human lung carcinoma A549 cells

    PubMed Central

    Zhong, Liangrui; Zheng, Junxian; Sun, Qianqian; Wei, Kemin; Hu, Yijuan

    2016-01-01

    Radix Tetrastigma hemsleyani flavone (RTHF) is widely used as a traditional herb and has detoxification and anti-inflammatory effects. In this study, we investigated the potential effects of RTHF on the growth and metastasis of human lung adenocarcinoma A549 cells and evaluated its mechanisms. A549 cells were treated with RTHF at various concentrations for different periods. In vitro Cell Counting Kit-8 assay and colony formation methods showed that RTHF had dose- and time-dependent antiproliferation effects on A549 cells. A cell adhesion assay showed that RTHF decreased A549 cell adhesion in a dose-dependent manner. Cell invasion and migration were investigated using the Transwell assay and observed using an inverted microscope; the results showed that cell metastasis was significantly lower in the treatment group than that in the control group (P<0.01). Expression of metastasis-related matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) was detected by real-time polymerase chain reaction and Western blotting. The results showed that the expression of MMP-2, MMP-9, and TIMP-1 decreased, while that of TIMP-2 increased significantly in the RTHF group when compared with the results of the control group. These results show that RTHF exhibits antigrowth and antimetastasis activity in lung cancer A549 cells by decreasing the expression of MMP-2/-9 and TIMP-1 and increasing that of TIMP-2. PMID:26893573

  10. AZ17: a new bispecific drug targeting IL-6 and IL-23 with potential clinical use--improves psoriasis in a human xenograft transplantation model.

    PubMed

    Stenderup, Karin; Rosada, Cecilia; Shanebeck, Kurt; Brady, William; Van Brunt, Michael P; King, Gordon; Marelli, Marcello; Slagle, Paul; Xu, Hengyu; Nairn, Natalie W; Johnson, Jeffrey; Wang, Aijun A; Li, Gary; Thornton, Kenneth C; Dam, Tomas N; Grabstein, Kenneth H

    2015-10-01

    Targeting more than one molecule in multifactorial diseases involving several disease mediators may provide improved therapeutic efficacy. Psoriasis is a multifactorial disease in which interleukin (IL)-6 and IL-23 are important disease mediators because they facilitate development of Th17 cells; widely accepted to be associated with psoriasis. To meet the need for new therapeutics, we aimed to create a clinically relevant bispecific drug, by combining the inhibitory properties of anti-IL-6 and anti-IL-23 antibodies, exhibiting high affinity, high stability and the ability to be produced in high yield. The bispecific molecule AZ17 was created by combining high affinity binding domains originating from monoclonal antibodies targeting human IL-6 and IL-23. To allow for high and efficient production, AZ17 was assembled by site-specific bioconjugation from two individual single chain fragment variables that were synthesized separately in Escherichia coli. To improve stability and extend pharmacokinetics, a flexible poly-ethylene glycol molecule was used as linker. In preclinical psoriasis models, AZ17 reduced IL-23-induced ear inflammation and improved psoriasis in a xenograft transplantation model where psoriasis skin is transplanted onto immune-deficient mice. The data presented here suggest AZ17 to be a promising drug candidate in psoriasis and other inflammatory diseases associated with Th17 cell development.

  11. Impact of bevacizumab in combination with erlotinib on EGFR-mutated non-small cell lung cancer xenograft models with T790M mutation or MET amplification.

    PubMed

    Furugaki, Koh; Fukumura, Junko; Iwai, Toshiki; Yorozu, Keigo; Kurasawa, Mitsue; Yanagisawa, Mieko; Moriya, Yoichiro; Yamamoto, Kaname; Suda, Kenichi; Mizuuchi, Hiroshi; Mitsudomi, Tetsuya; Harada, Naoki

    2016-02-15

    Erlotinib (ERL), an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, shows notable efficacy against non-small cell lung cancer (NSCLC) harboring EGFR mutations. Bevacizumab (BEV), a humanized monoclonal antibody to vascular endothelial cell growth factor (VEGF), in combination with ERL (BEV+ERL) significantly extended progression-free survival in patients with EGFR-mutated NSCLC compared with ERL alone. However, the efficacy of BEV+ERL against EGFR-mutated NSCLC harboring T790M mutation or MET amplification, is unclear. Here, we examined the antitumor activity of BEV+ERL in four xenograft models of EGFR-mutated NSCLC (three harboring ERL resistance mutations). In the HCC827 models (exon 19 deletion: DEL), ERL significantly inhibited tumor growth by blocking EGFR signal transduction. Although there was no difference between ERL and BEV+ERL in maximum tumor growth inhibition, BEV+ERL significantly suppressed tumor regrowth during a drug-cessation period. In the HCC827-EPR model (DEL+T790M) and HCC827-vTR model (DEL+MET amplification), ERL reduced EGFR signal transduction and showed less pronounced but still significant tumor growth inhibition than in the HCC827 model. In these models, tumor growth inhibition was significantly stronger with BEV+ERL than with each single agent. In the NCI-H1975 model (L858R+T790M), ERL did not inhibit growth or EGFR signal transduction, and BEV+ERL did not inhibit growth more than BEV. BEV alone significantly decreased microvessel density in each tumor. In conclusion, addition of BEV to ERL did not enhance antitumor activity in primarily ERL-resistant tumors with T790M mutation; however, BEV+ERL enhanced antitumor activity in T790M mutation- or MET amplification-positive tumors as long as their growth remained significantly suppressed by ERL.

  12. Inhibition of human tumor xenograft growth in nude mice by a conjugate of monoclonal antibody LA22 to epidermal growth factor receptor with anti-tumor antibiotics mitomycin C

    SciTech Connect

    Shao Wei; Zhao Shan; Liu Zhaofei; Zhang Jianzhong; Ma Shujun; Sato, J. Denry; Zhang Peng; Tong Mei; Han Jiping; Wang Yan; Bai Dongmei; Wang Fan . E-mail: wangfan@bjmu.edu.cn; Sun Le . E-mail: lsun@welsonpharma.com

    2006-10-20

    Anti-EGFR monoclonal antibodies LA22 and Erbitux bind to different epitopes of EGFR. The chemimmunoconjugates of MMC with LA22 or Erbitux were prepared, and in vitro cytotoxicity assays with A549 cells showed that LA22-MMC was much more potent than Erbitux or Erbitux-MMC. Viabilities of A549 cells treated with LA22-MMC, Erbitux or Erbitux-MMC were 35%, 94%, and 81%, respectively. Immunoscintigraphy of xenografts of human A431 and A549 cells in nude mice both showed that {sup 125}I-labeled-LA22-MMC enriched in tumor sites prominently. Most importantly, in vivo assays showed LA22-MMC was significantly more effective than free drug MMC in the treatment of subcutaneous xenografts of human A431 cells in nude mice (83% inhibition for LA22-MMC and 30% for MMC). We concluded that LA22-MMC could be a very potent drug for treatment of solid tumors.

  13. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    PubMed

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells.

  14. Induction of p53-independent growth inhibition in lung carcinoma cell A549 by gypenosides

    PubMed Central

    Liu, Jung-Sen; Chiang, Tzu-Hsuan; Wang, Jinn-Shyan; Lin, Li-Ju; Chao, Wei-Chih; Inbaraj, Baskaran Stephen; Lu, Jyh-Feng; Chen, Bing-Huei

    2015-01-01

    The objectives of this study are to investigate antiproliferative effect and mechanisms of bioactive compounds from Gynostemma pentaphyllum (G. pentaphyllum) on lung carcinoma cell A549. Saponins, carotenoids and chlorophylls were extracted and fractionated by column chromatography, and were subjected to high-performance liquid chromatography-mass spectrometry analyses. The saponin fraction, which consisted mainly of gypenoside (Gyp) XXII and XXIII, rather than the carotenoid and chlorophyll ones, was effective in inhibiting A549 cell growth in a concentration- and a time-dependent manner as evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The estimated half maximal inhibitory concentration (IC50) of Gyp on A549 cells was 30.6 μg/ml. Gyp was further demonstrated to induce an apparent arrest of the A549 cell cycle at both the S phase and the G2/M phase, accompanied by a concentration- and a time-dependent increase in the proportions of both the early and late apoptotic cells. Furthermore, Gyp down-regulated cellular expression of cyclin A and B as well as BCL-2, while up-regulated the expression of BAX, DNA degradation factor 35 KD, poly [ADP-ribose] polymerase 1, p53, p21 and caspase-3. Nevertheless, both the treatment of a p53 inhibitor, pifithrin-α, and the small hairpin RNA-mediated p53 knockdown in the A549 cells did not alter the growth inhibition effect induced by Gyp. As a result, the cell cycle arrest and apoptosis of A549 cells induced by Gyp would most likely proceed through p53-independent pathway(s). PMID:25781909

  15. Alkylator-Induced and Patient-Derived Xenograft Mouse Models of Therapy-Related Myeloid Neoplasms Model Clinical Disease and Suggest the Presence of Multiple Cell Subpopulations with Leukemia Stem Cell Activity

    PubMed Central

    Johnson, Carl; Gratzinger, Dita; Majeti, Ravindra

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous group of aggressive bone marrow cancers arising from transformed hematopoietic stem and progenitor cells (HSPC). Therapy-related AML and MDS (t-AML/MDS) comprise a subset of AML cases occurring after exposure to alkylating chemotherapy and/or radiation and are associated with a very poor prognosis. Less is known about the pathogenesis and disease-initiating/leukemia stem cell (LSC) subpopulations of t-AML/MDS compared to their de novo counterparts. Here, we report the development of mouse models of t-AML/MDS. First, we modeled alkylator-induced t-AML/MDS by exposing wild type adult mice to N-ethyl-N-nitrosurea (ENU), resulting in several models of AML and MDS that have clinical and pathologic characteristics consistent with human t-AML/MDS including cytopenia, myelodysplasia, and shortened overall survival. These models were limited by their inability to transplant clinically aggressive disease. Second, we established three patient-derived xenograft models of human t-AML. These models led to rapidly fatal disease in recipient immunodeficient xenografted mice. LSC activity was identified in multiple HSPC subpopulations suggesting there is no canonical LSC immunophenotype in human t-AML. Overall, we report several new t-AML/MDS mouse models that could potentially be used to further define disease pathogenesis and test novel therapeutics. PMID:27428079

  16. A novel brain metastasis xenograft model for convection‑enhanced delivery of targeted toxins via a micro‑osmotic pump system enabled for real‑time bioluminescence imaging.

    PubMed

    Huang, Jun; Li, Yan Michael; Cheng, Quan; Vallera, Daniel A; Hall, Walter A

    2015-10-01

    Brain metastasis is a common cause of mortality in patients with cancer, and is associated with poor prognosis. There is a current requirement for the identification of relevant brain metastasis tumor models, which may be used to test novel therapeutic agents and delivery systems in pre‑clinical studies. The present study aimed to investigate the development of a murine model of brain metastasis, and the application of bioluminescence imaging (BLI) for monitoring tumor growth and response to targeted toxins (TT). A luciferase‑modified human brain metastasis cell line was implanted into the caudate‑putamen of athymic mice using a stereotactic frame. Tumor growth was monitored by BLI, and tumor volume was calculated from three‑dimensional measurements of serial histopathological sections. Histopathological analyses revealed the presence of tumor growth within the caudate‑putamen of all of the mice, and BLI was shown to be correlated with tumor volume. To evaluate whether this model would allow the detection of a therapeutic response, mice bearing metastatic brain tumor cell xenografts were treated with TT delivered by convection‑enhanced delivery (CED), via a micro‑osmotic pump system. The TT‑treated groups were submitted to metastatic brain tumor cell experiments, the results of which suggested that TT treatment delayed tumor growth, as determined by BLI monitoring, and significantly extended the survival of the mice. The results of the present study demonstrated the efficacy of a brain metastasis model for CED of TT via a micro‑osmotic pump system in athymic mice, in which tumor growth and response to therapy were accurately monitored by BLI. In conclusion, this model may be well‑suited for pre‑clinical testing of potential therapeutics for the treatment of patients with metastatic brain tumors.

  17. Inhibition of p300 lysine acetyltransferase activity by luteolin reduces tumor growth in head and neck squamous cell carcinoma (HNSCC) xenograft mouse model

    PubMed Central

    Selvi, Ruthrotha B.; Swaminathan, Amrutha; Chatterjee, Snehajyoti; Shanmugam, Muthu K.; Li, Feng; Ramakrishnan, Gowsica B.; Siveen, Kodappully Sivaraman; Chinnathambi, Arunachalam; Zayed, M. Emam; Alharbi, Sulaiman Ali; Basha, Jeelan; Bhat, Akshay; Vasudevan, Madavan; Dharmarajan, Arunasalam; Sethi, Gautam; Kundu, Tapas K.

    2015-01-01

    Chromatin acetylation is attributed with distinct functional relevance with respect to gene expression in normal and diseased conditions thereby leading to a topical interest in the concept of epigenetic modulators and therapy. We report here the identification and characterization of the acetylation inhibitory potential of an important dietary flavonoid, luteolin. Luteolin was found to inhibit p300 acetyltransferase with competitive binding to the acetyl CoA binding site. Luteolin treatment in a xenografted tumor model of head and neck squamous cell carcinoma (HNSCC), led to a dramatic reduction in tumor growth within 4 weeks corresponding to a decrease in histone acetylation. Cells treated with luteolin exhibit cell cycle arrest and decreased cell migration. Luteolin treatment led to an alteration in gene expression and miRNA profile including up-regulation of p53 induced miR-195/215, let7C; potentially translating into a tumor suppressor function. It also led to down-regulation of oncomiRNAs such as miR-135a, thereby reflecting global changes in the microRNA network. Furthermore, a direct correlation between the inhibition of histone acetylation and gene expression was established using chromatin immunoprecipitation on promoters of differentially expressed genes. A network of dysregulated genes and miRNAs was mapped along with the gene ontology categories, and the effects of luteolin were observed to be potentially at multiple levels: at the level of gene expression, miRNA expression and miRNA processing. PMID:26517526

  18. Diverse in vivo effects of soluble and membrane-bound M-CSF on tumor-associated macrophages in lymphoma xenograft model.

    PubMed

    Liao, Jinfeng; Feng, Wenli; Wang, Rong; Ma, Shihui; Wang, Lina; Yang, Xiao; Yang, Feifei; Lin, Yongmin; Ren, Qian; Zheng, Guoguang

    2016-01-12

    Macrophage colony-stimulating factor (M-CSF) is an important cytokine for monocyte/macrophage lineage. Secretory M-CSF (sM-CSF) and membrane-bound M-CSF (mM-CSF) are two major alternative splicing isoforms. The functional diversity of these isoforms in the activation of tumor-associated macrophages (TAMs), especially in lymphoma microenvironment, has not been documented. Here, we studied the effects of M-CSF isoforms on TAMs in xenograft mouse model. More infiltrating TAMs were detected in microenvironment with mM-CSF and sM-CSF. TAMs could be divided into three subpopulations based on their expression of CD206 and Ly6C. While sM-CSF had greater potential to recruit and induce differentiation of TAMs and TAM subpopulations, mM-CSF had greater potential to induce proliferation of TAMs and TAM subpopulations. Though both isoforms educated TAMs and TAM subpopulations to M2-like macrophages, mM-CSF and sM-CSF induced different spectrums of phenotype-associated genes in TAMs and TAM subpopulations. These results suggested the diverse effects of M-CSF isoforms on the activation of TAMs and TAM subpopulations in lymphoma microenvironments.

  19. Robust and cost effective expansion of human regulatory T cells highly functional in a xenograft model of graft-versus-host disease.

    PubMed

    Chakraborty, Rikhia; Mahendravada, Aruna; Perna, Serena K; Rooney, Cliona M; Heslop, Helen E; Vera, Juan F; Savoldo, Barbara; Dotti, Gianpietro

    2013-04-01

    The low frequency of naturally occurring regulatory T cells (nTregs) in peripheral blood and the suboptimal protocols available for their ex vivo expansion limit the development of clinical trials based on the adoptive transfer of these cells. We have, therefore, generated a simplified, robust and cost-effective platform for the large-scale expansion of nTregs using a gas permeable static culture flask (G-Rex) in compliance with Good Manufacturing Practice. More than 10(9) putative Tregs co-expressing CD25 and CD4 molecules (92 ± 5%) and FoxP3 (69 ± 19%) were obtained within 21 days of culture. Expanded Tregs showed potent regulatory activity in vitro (80 ± 13% inhibition of CD8(+) cell division) and in vivo (suppression or delay of graft-versus-host disease in a xenograft mouse model) indicating that the cost-effective and simplified production of nTregs we propose will facilitate the implementation of clinical trials based on their adoptive transfer.

  20. Efficacy and toxicity of a CD22-targeted antibody-saporin conjugate in a xenograft model of non-Hodgkin’s lymphoma

    PubMed Central

    Kato, Jason; O’Donnell, Robert T.; Abuhay, Mastewal; Tuscano, Joseph M.

    2012-01-01

    Antibody drug conjugates (ADCs) can deliver potent drugs to cancer cells by employing the specificity of monoclonal antibodies (mAbs). ADCs have demonstrated significant anticancer activity and, in 2011, brentuximab vedotin has been approved by the FDA for the treatment of Hodgkin's and anaplastic large cell lymphomas. CD22 is an ideal target for ADC against B-cell malignancies because of its lineage-specific expression and rapid internalization upon antibody binding. In this study, we evaluated the anti-CD22 mAb HB22.7 as a vehicle for the targeted delivery of the potent toxin saporin (SAP). In vitro, HB22.7-SAP was cytotoxic against a panel of non-Hodgkin's lymphoma (NHL) cell lines representing the most common types of the disease. Moreover, in a xenograft model of NHL, HB22.7-SAP significantly inhibited the growth of established lesions and completely prevented tumor development when treatment was initiated within 24 h from tumor-cell inoculation. HB22.7-SAP had no significant in vivo toxicity. In conclusion, HB22.7 constitutes a potential platform for CD22-targeted ADCs. PMID:23264893

  1. Combination of the c-Met Inhibitor Tivantinib and Zoledronic Acid Prevents Tumor Bone Engraftment and Inhibits Progression of Established Bone Metastases in a Breast Xenograft Model

    PubMed Central

    Previdi, Sara; Scolari, Federica; Chilà, Rosaria; Ricci, Francesca; Abbadessa, Giovanni; Broggini, Massimo

    2013-01-01

    Bone is the most common metastatic site for breast cancer. There is a significant need to understand the molecular mechanisms controlling the engraftment and growth of tumor cells in bone and to discover novel effective therapeutic strategies. The aim of this study was to assess the effects of tivantinib and Zoledronic Acid (ZA) in combination in a breast xenograft model of bone metastases. Cancer cells were intracardially implanted into immunodeficient mice and the effects of drugs alone or in combination on bone metastasis were evaluated by in vivo non-invasive optical and micro-CT imaging technologies. Drugs were administered either before (preventive regimen) or after (therapeutic regimen) bone metastases were detectable. In the preventive regimen, the combination of tivantinib plus ZA was much more effective than single agents in delaying bone metastatic tumor growth. When administered in the therapeutic schedule, the combination delayed metastatic progression and was effective in improving survival. These effects were not ascribed to a direct cytotoxic effect of the combined therapy on breast cancer cells in vitro. The results of this study provide the rationale for the design of new combinatorial strategies with tivantinib and ZA for the treatment of breast cancer bone metastases. PMID:24260160

  2. Effective elimination of adult B-lineage acute lymphoblastic leukemia by disulfiram/copper complex in vitro and in vivo in patient-derived xenograft models.

    PubMed

    Deng, Manman; Jiang, Zhiwu; Li, Yin; Zhou, Yong; Li, Jie; Wang, Xiangmeng; Yao, Yao; Wang, Weiguang; Li, Peng; Xu, Bing

    2016-12-13

    Disulfiram (DS), a clinically used drug to control alcoholism, has displayed promising anti-cancer activity against a wide range of tumors. Here, we demonstrated that DS/copper (Cu) complex effectively eliminated adult B-ALL cells in vitro and in vivo in patient-derived xenograft (PDX) humanized mouse models, reflected by inhibition of cell proliferation, induction of apoptosis, suppression of colony formation, and reduction of PDX tumor growth, while sparing normal peripheral blood mononuclear cells. Mechanistically, these events were associated with disruption of mitochondrial membrane potential and down-regulation of the anti-apoptotic proteins Bcl-2 and Bcl-xL. Further analysis on B-ALL patients' clinical characteristics revealed that the ex vivo efficacy of DS/Cu in primary samples was significantly correlated to p16 gene deletion and peripheral blood WBC counts at diagnosis, while age, LDH level, extramedullary infiltration, status post intensive induction therapy, immune phenotype, risk category, and Ph chromosome had no effect. Together, these findings indicate that disulfiram, particularly when administrated in combination with copper, might represent a potential repurposing agent for treatment of adult B-ALL patients, including those clinically characterized by one or more adverse prognostic factors.

  3. Assessing Metabolic Changes in Response to mTOR Inhibition in a Mantle Cell Lymphoma Xenograft Model Using AcidoCEST MRI

    PubMed Central

    Akhenblit, Paul J.; Hanke, Neale T.; Gill, Alexander; Persky, Daniel O.; Howison, Christine M.; Pagel, Mark D.; Baker, Amanda F.

    2016-01-01

    AcidoCEST magnetic resonance imaging (MRI) has previously been shown to measure tumor extracellular pH (pHe) with excellent accuracy and precision. This study investigated the ability of acidoCEST MRI to monitor changes in tumor pHe in response to therapy. To perform this study, we used the Granta 519 human mantle cell lymphoma cell line, which is an aggressive B-cell malignancy that demonstrates activation of the phosphatidylinositol-3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway. We performed in vitro and in vivo studies using the Granta 519 cell line to investigate the efficacy and associated changes induced by the mTOR inhibitor, everolimus (RAD001). AcidoCEST MRI studies showed a statistically significant increase in tumor pHe of 0.10 pH unit within 1 day of initiating treatment, which foreshadowed a decrease in tumor growth of the Granta 519 xenograft model. AcidoCEST MRI then measured a decrease in tumor pHe 7 days after initiating treatment, which foreshadowed a return to normal tumor growth rate. Therefore, this study is a strong example that acidoCEST MRI can be used to measure tumor pHe that may serve as a marker for therapeutic efficacy of anticancer therapies. PMID:27140422

  4. FR255734, a humanized, Fc-Silent, Anti-CD28 antibody, improves psoriasis in the SCID mouse-psoriasis xenograft model.

    PubMed

    Raychaudhuri, Siba P; Kundu-Raychaudhuri, Smriti; Tamura, Kouichi; Masunaga, Taro; Kubo, Kaori; Hanaoka, Kaori; Jiang, Wen-Yue; Herzenberg, Leonore A; Herzenberg, Leonard A

    2008-08-01

    In psoriasis, CD28/B7 costimulatory molecules are well characterized. Here, using the severe combined immunodeficient (SCID) mouse-psoriasis xenograft model, we report therapeutic efficacy of a humanized anti-CD28 monoclonal antibody (FR255734; Astellas Pharmaceuticals Inc., Tokyo, Japan). Transplanted psoriasis plaques on the SCID mouse were treated weekly for 4 weeks with intraperitoneal injections of FR255734 at 10, 3, and 1-mg kg(-1) doses. Groups treated with doses of 10 and 3 mg kg(-1) had significant thinning of the epidermis and reduced HLA-DR-positive lymphocytic infiltrates. The length of the rete pegs changed from 415.2+/-59.6 to 231.4+/-40.4 microm (P<0.005) in the 10-mg kg(-1) group, and from 323.4+/-69.6 to 237.5+/-73.6 microm in the 3-mg kg(-1) group (P=0.002). Positive controls treated with CTLA4-Ig and cyclosporine had significant histological improvement, whereas plaques treated with saline and isotype controls (human and mouse IgG2) remained unchanged. In vitro studies have shown that FR255734 effectively blocked T-cell proliferation and proinflammatory cytokine production. These observations warrant studies to evaluate the efficacy of FR255734 in human autoimmune diseases.

  5. Autophagy induction by leptin contributes to suppression of apoptosis in cancer cells and xenograft model: involvement of p53/FoxO3A axis.

    PubMed

    Nepal, Saroj; Kim, Mi Jin; Hong, Jin Tae; Kim, Sang Hyun; Sohn, Dong-Hwan; Lee, Sung Hee; Song, Kyung; Choi, Dong Young; Lee, Eung Seok; Park, Pil-Hoon

    2015-03-30

    Leptin, a hormone mainly produced from adipose tissue, has been shown to induce proliferation of cancer cells. However, the molecular mechanisms underlying leptin-induced tumor progression have not been clearly elucidated. In the present study, we investigated the role of autophagy in leptin-induced cancer cell proliferation using human hepatoma (HepG2) and breast cancer cells (MCF-7), and tumor growth in a xenograft model. Herein, we showed that leptin treatment caused autophagy induction as assessed by increase in expression of autophagy-related genes, including beclin-1, Atg5 and LC3 II, further induction of autophagosome formation and autophagic flux. Interestingly, inhibition of autophagic process by treatment with inhibitors and LC3B gene silencing blocked leptin-induced increase in cell number and suppression of apoptosis, indicating a crucial role of autophagy in leptin-induced tumor progression. Moreover, gene silencing of p53 or FoxO3A prevented leptin-induced LC3 II protein expression, suggesting an involvement of p53/FoxO3A axis in leptin-induced autophagy activation. Leptin administration also accelerated tumor growth in BALB/c nude mice, which was found to be autophagy dependent. Taken together, our results demonstrate that leptin-induced tumor growth is mediated by autophagy induction and autophagic process would be a promising target to regulate development of cancer caused by leptin production.

  6. Targeting αvβ3 and αvβ5 integrins inhibits pulmonary metastasis in an intratibial xenograft osteosarcoma mouse model

    PubMed Central

    Gvozdenovic, Ana; Boro, Aleksandar; Meier, Daniela; Bode-Lesniewska, Beata; Born, Walter; Muff, Roman; Fuchs, Bruno

    2016-01-01

    Osteosarcoma is an aggressive bone cancer that has a high propensity for metastasis to the lungs. Patients with metastatic disease face a very poor prognosis. Therefore, novel therapeutics, efficiently suppressing the metastatic process, are urgently needed. Integrins play a pivotal role in tumor cell adhesion, motility and metastasis. Here, we evaluated αvβ3 and αvβ5 integrin inhibition with cilengitide as a novel metastasis-suppressive therapeutic approach in osteosarcoma. Immunohistochemical analysis of αvβ3 and αvβ5 integrins expression in a tissue microarray of tumor specimens collected from osteosarcoma patients revealed that αvβ5 integrin is mainly found on tumor cells, whereas αvβ3 is predominantly expressed by stromal cells. In vitro functional assays demonstrated that cilengitide dose-dependently inhibited de novo adhesion, provoked detachment and inhibited migration of osteosarcoma cell lines. Cilengitide induced a decline in cell viability, blocked the cell cycle in the G1 phase and caused anoikis by activation of the Hippo pathway. In a xenograft orthotopic mouse model cilengitide minimally affected intratibial primary tumor growth but, importantly, suppressed pulmonary metastasis. The data demonstrate that targeting αvβ3 and αvβ5 integrins in osteosarcoma should be considered as a novel therapeutic option for patients with metastatic disease. PMID:27409827

  7. Tubeimoside-1 suppresses tumor angiogenesis by stimulation of proteasomal VEGFR2 and Tie2 degradation in a non-small cell lung cancer xenograft model

    PubMed Central

    Gu, Yuan; Körbel, Christina; Scheuer, Claudia; Nenicu, Anca; Menger, Michael D.; Laschke, Matthias W.

    2016-01-01

    Tubeimoside-1 (TBMS1) is a potent anti-tumor phytochemical. Its functional and molecular mode of action, however, remains elusive so far. Since angiogenesis is essential for tumor progression and metastasis, we herein investigated the anti-angiogenic effects of the compound. In a non-small cell lung cancer (NSCLC) xenograft model we found that treatment of CD1 nu/nu mice with TBMS1 (5mg/kg) significantly suppressed the growth and vascularization of NCI-H460 flank tumors. Moreover, TBMS1 dose-dependently reduced vascular sprouting in a rat aortic ring assay. In vitro, TBMS1 induced endothelial cell apoptosis without decreasing the viability of NSCLC tumor cells and inhibited the migration of endothelial cells by disturbing their actin filament organization. TBMS1 further stimulated the proteasomal degradation of vascular endothelial growth factor receptor-2 (VEGFR2) and Tie2 in endothelial cells, which down-regulated AKT/mTOR signaling. These findings indicate that TBMS1 represents a novel phytochemical for anti-angiogenic treatment of cancer and other angiogenesis-related diseases. PMID:26701724

  8. Thermosensitive liposomal cisplatin in combination with local hyperthermia results in tumor growth delay and changes in tumor microenvironment in xenograft models of lung carcinoma.

    PubMed

    Dou, Yannan Nancy; Dunne, Michael; Huang, Huang; Mckee, Trevor; Chang, Martin C; Jaffray, David A; Allen, Christine

    2016-11-01

    Treatment efficacy of a heat-activated thermosensitive liposome formulation of cisplatin (CDDP), known as HTLC, was determined in xenograft models of non-small-cell lung carcinoma. The short-term impact of local hyperthermia (HT) on tumor morphology, microvessel density and local inflammatory response was also evaluated. The HTLC formulation in combination with local HT resulted in a significant advantage in therapeutic effect in comparison with free drug and a non-thermosensitive liposome formulation of CDDP (i.e. Lipoplatin(TM)) when administered at their maximum tolerated doses. Local HT-induced widespread cell necrosis and a significant reduction in microvessel density in the necrotic regions of tumors. CD11b-expressing innate leukocytes were demonstrated to infiltrate and reside preferentially at the necrotic rim of tumors, likely as a means to phagocytose-damaged tissue. Colocalization of CD11b with a marker of DNA damage (i.e. γH2AX) revealed a small portion of CD11b-expressing leukocytes that were possibly undergoing apoptosis as a result of HT-induced damage and/or the short lifespan of leukocytes. Overall, HT-induced tissue damage (i.e. at 24-h post-treatment) alone did not result in significant improvements in treatment effect, rather, the enhancement in tumor drug availability was correlated with improved therapeutic outcomes.

  9. Recombinant interleukin-2 significantly augments activity of rituximab in human tumor xenograft models of B-cell non-Hodgkin lymphoma.

    PubMed

    Lopes de Menezes, Daniel E; Denis-Mize, Kimberly; Tang, Yan; Ye, Helen; Kunich, John C; Garrett, Evelyn N; Peng, Jing; Cousens, Lawrence S; Gelb, Arnold B; Heise, Carla; Wilson, Susan E; Jallal, Bahija; Aukerman, Sharon L

    2007-01-01

    Recombinant interleukin-2 (rIL-2) is a pleiotropic cytokine that activates select immune effector cell responses associated with antitumor activity, including antibody-dependent cellular cytotoxicity (ADCC). Rituximab is an anti-CD20 monoclonal antibody that activates ADCC in non-Hodgkin lymphoma (NHL). The ability of rIL-2 to augment rituximab-dependent tumor responses was investigated. The efficacy of rIL-2 in combination with rituximab was evaluated in 2 NHL tumor xenograft models: the CD20hi, rituximab-sensitive, low-grade Daudi model and the CD20lo, aggressive, rituximab-resistant Namalwa model. Combination of rIL-2 plus rituximab was synergistic in a rituximab-sensitive Daudi tumor model, as evidenced by significant tumor regressions and increased time to tumor progression, compared with rIL-2 and rituximab single agents. In contrast, rituximab-resistant Namalwa tumors were responsive to single-agent rIL-2 and showed an increased response when combined with rituximab. Using in vitro killing assays, rIL-2 was shown to enhance activity of rituximab by activating ADCC and lymphokine-activated killer activity. Additionally, the activity of rIL-2 plus rituximab F(ab')2 was similar to that of rIL-2 alone, indicating a critical role for immunoglobulin G1 Fc-FcgammaR-effector responses in mediating ADCC. Antiproliferative and apoptotic tumor responses, along with an influx of immune effector cells, were observed by immunohistochemistry. Collectively, the data suggest that rIL-2 mediates potent tumoricidal activity against NHL tumors, in part, through activation and trafficking of monocytes and natural killer cells to tumors. These data support the mechanistic and therapeutic rationale for combination of rIL-2 with rituximab in NHL clinical trials and for single-agent rIL-2 in rituximab-resistant NHL patients.

  10. Enhanced Replication of Hepatitis E Virus Strain 47832c in an A549-Derived Subclonal Cell Line

    PubMed Central

    Schemmerer, Mathias; Apelt, Silke; Trojnar, Eva; Ulrich, Rainer G.; Wenzel, Jürgen J.; Johne, Reimar

    2016-01-01

    Hepatitis E virus (HEV) is a human pathogen with increasing importance. The lack of efficient cell culture systems hampers systematic studies on its replication cycle, virus neutralization and inactivation. Here, several cell lines were inoculated with the HEV genotype 3c strain 47832c, previously isolated from a chronically infected transplant patient. At 14 days after inoculation the highest HEV genome copy numbers were found in A549 cells, followed by PLC/PRF/5 cells, whereas HepG2/C3A, Huh-7 Lunet BLR and MRC-5 cells only weakly supported virus replication. Inoculation of A549-derived subclone cell lines resulted in most cases in reduced HEV replication. However, the subclone A549/D3 was susceptible to lower virus concentrations and resulted in higher virus yields as compared to parental A549 cells. Transcriptome analysis indicated a downregulation of genes for carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 5 and 6, and an upregulation of the syndecan 2 (SDC2) gene in A549/D3 cells compared to A549 cells. However, treatment of A549/D3 cells or A549 cells with CEACAM- or syndecan 2-specific antisera did not influence HEV replication. The results show that cells supporting more efficient HEV replication can be selected from the A549 cell line. The specific mechanisms responsible for the enhanced replication remain unknown. PMID:27690085

  11. Anti-CCR7 therapy exerts a potent anti-tumor activity in a xenograft model of human mantle cell lymphoma

    PubMed Central

    2013-01-01

    Background The chemokine receptor CCR7 mediates lymphoid dissemination of many cancers, including lymphomas and epithelial carcinomas, thus representing an attractive therapeutic target. Previous results have highlighted the potential of the anti-CCR7 monoclonal antibodies to inhibit migration in transwell assays. The present study aimed to evaluate the in vivo therapeutic efficacy of an anti-CCR7 antibody in a xenografted human mantle cell lymphoma model. Methods NOD/SCID mice were either subcutaneously or intravenously inoculated with Granta-519 cells, a human cell line derived from a leukemic mantle cell lymphoma. The anti-CCR7 mAb treatment (3 × 200 μg) was started on day 2 or 7 to target lymphoma cells in either a peri-implantation or a post-implantation stage, respectively. Results The anti-CCR7 therapy significantly delayed the tumor appearance and also reduced the volumes of tumors in the subcutaneous model. Moreover, an increased number of apoptotic tumor cells was detected in mice treated with the anti-CCR7 mAb compared to the untreated animals. In addition, significantly reduced number of Granta-519 cells migrated from subcutaneous tumors to distant lymphoid organs, such as bone marrow and spleen in the anti-CCR7 treated mice. In the intravenous models, the anti-CCR7 mAb drastically increased survival of the mice. Accordingly, dissemination and infiltration of tumor cells in lymphoid and non-lymphoid organs, including lungs and central nervous system, was almost abrogated. Conclusions The anti-CCR7 mAb exerts a potent anti-tumor activity and might represent an interesting therapeutic alternative to conventional therapies. PMID:24305507

  12. Cell division cycle 25 homolog c effects on low-dose hyper-radiosensitivity and induced radioresistance at elevated dosage in A549 cells.

    PubMed

    Zhao, Yanxia; Cui, Yingshan; Han, Jun; Ren, Jinghua; Wu, Gang; Cheng, Jing

    2012-09-01

    The underlying mechanisms behind both low-dose hyper-radiosensitivity (HRS) and induced radioresistance (IRR), generally occurring at elevated radiation levels, remain unclear; however, elucidation of the relationship between cell cycle division 25 homolog c (Cdc25c) phosphatase and HRS/IRR may provide important insights into this process. Two cell lines with disparate HRS status, A549 and SiHa cells, were selected as cell models for comparison of dose-dependent Cdc25c phosphatase expression subsequent to low-dose irradiation. Knockdown of Cdc25c in A549 cells was mediated by transfection with a pGCsi-RAN-U6neo vector containing hairpin siRNA sequences. S216-phosphorylated Cdc25c protein [p-Cdc25c (Ser216)], cell survival and mitotic ratio were measured by western blot, colony-forming assay and histone H3 phosphorylation analysis. Variant p-Cdc25c (Ser216) expression was observed in the two cell lines after irradiation. The p-Cdc25c (Ser216) expression noted in SiHa cells after administration of 0-1 Gy radiation was similar to the radioresistance model; however, in A549 cells, the dose response for the phosphorylation of the Cdc25c Ser216 residue overlapped the level required to overcome the HRS response. Furthermore, Cdc25c repression prior to low-dose radiation induced more distinct HRS and prevented the development of IRR. The dose required to overcome the HRS response coincided with the effect of early G2-phase checkpoint arrest in A549 cells (approximately 0.3 Gy), and Cdc25c knockdown in A549 cells (approximately 0.5 Gy) corresponded to the phosphorylation of the Cdc25c Ser216 residue. Resultant data confirmed that dose-dependent Cdc25c phosphatase does effectively act as an early G2-phase checkpoint, thus indicating mechanistic importance in the HRS to IRR transition in A549 cells.

  13. Cold stress increases reactive oxygen species formation via TRPA1 activation in A549 cells.

    PubMed

    Sun, Wenwu; Wang, Zhonghua; Cao, Jianping; Cui, Haiyang; Ma, Zhuang

    2016-03-01

    Reactive oxygen species (ROS) are responsible for lung damage during inhalation of cold air. However, the mechanism of the ROS production induced by cold stress in the lung is still unclear. In this work, we measured the changes of ROS and the cytosolic Ca(2+) concentration ([Ca(2+)]c) in A549 cell. We observed that cold stress (from 20 to 5 °C) exposure of A549 cell resulted in an increase of ROS and [Ca(2+)]c, which was completely attenuated by removing Ca(2+) from medium. Further experiments showed that cold-sensing transient receptor potential subfamily member 1 (TRPA1) agonist (allyl isothiocyanate, AITC) increased the production of ROS and the level of [Ca(2+)]c in A549 cell. Moreover, HC-030031, a TRPA1 selective antagonist, significantly inhibited the enhanced ROS and [Ca(2+)]c induced by AITC or cold stimulation, respectively. Taken together, these data demonstrated that TRPA1 activation played an important role in the enhanced production of ROS induced by cold stress in A549 cell.

  14. The role of PRRX1 in the apoptosis of A549 cells induced by cisplatin

    PubMed Central

    Zhu, Hongbin; Sun, Gengyun; Dong, Jiahui; Fei, Liming

    2017-01-01

    Paired related homeobox1 (PRRX1) was a newly identified Epithelial mesenchymal transition (EMT) inducer. It was found that the decreased expression of PRRX1 in breast cancer and liver cancer could enable tumor cells to obtain tumor stem cell characteristics in vitro studies. However, the role of PRRX1 in lung cancer was still unknown. The down-regulated PRRX1 gene in A549 cells was established by slow virus infection in this study. The apoptosis of A549 cells was observed after the treatment of different concentrations of cisplatin and the role of PRRX1 in the apoptosis of A549 cells was explored. MTT results showed that down-regulated PRRX1 gene could resist the inhibitory effect of cisplatin on cell proliferation. The results of flow cytometry assay showed that down-regulated PRRX1 gene could reduce the apoptosis and promote A549 cells to enter G2 phase. Mitochondrial membrane potential detection showed that PRRX1 gene could inhibit the decrease of mitochondrial membrane potential. Western blotting results showed that down-regulated PRRX1 gene could reduce the expression levels of Caspase3, caspase9, Apaf-1 and cytochrome C. In a word, down-regulation of PRRX1 could cause lung cancer cells to produce anti apoptotic ability and resistance to cisplatin, which maybe through caspase3 pathway. PMID:28337269

  15. Edaravone Decreases Paraquat Toxicity in A549 Cells and Lung Isolated Mitochondria

    PubMed Central

    Shokrzadeh, Mohammad; Shaki, Fatemeh; Mohammadi, Ebrahim; Rezagholizadeh, Neda; Ebrahimi, Fatemeh

    2014-01-01

    Edaravone, an antioxidant and radical scavenger, showed protective effects against oxidative stress-like condition. Paraquat (PQ) is toxic herbicide considerable evidence suggests that oxidative stress and mitochondrial dysfunction contribute to PQ toxicity. In this study, protective effect of edaravone against PQ induced toxicity and reactive oxygen species (ROS) generation in A549 cells and lung isolated mitochondria were evaluated. A549 cells and lung isolated mitochondria were divided into control group, PQ group, edaravone group and PQ plus edaravone-pretreated group. Cellular and mitochondrial viability assayed using MTT test and ROS generations in both cellular and mitochondrial fraction were determined by fluorometry using DCFH-DA as indicator. Our results showed that edaravone (5–100 µM) prevented PQ (500 µM) induced cytotoxicity in A549 cells that the best protective effect was observed at concentration of 50 µM of edaravone. In addition, PQ-induced ROS generation in A549 cells significantly inhibited by edaravone. Moreover, PQ decreased mitochondria viability and also increased ROS generation in lung isolated mitochondria that edaravone (25–400 µM) markedly inhibited these toxic effects. In overall, the results of this study suggest that lung mitochondria maintenance is essential for maintaining PQt cytotoxicity and Edaravone is a protective drug against PQ toxicity in-vitro. PMID:25237364

  16. Functional expression of nicotine influx transporter in A549 human alveolar epithelial cells.

    PubMed

    Tega, Yuma; Yuzurihara, Chihiro; Kubo, Yoshiyuki; Akanuma, Shin-ichi; Ehrhardt, Carsten; Hosoya, Ken-ichi

    2016-02-01

    Nicotine is a potent addictive alkaloid, and is rapidly absorbed through the alveoli of the lung. However, the transport mechanism of nicotine at the human alveolar epithelial barrier has not been investigated in great detail. In the present study, the transport mechanism of nicotine across alveolar epithelium was investigated in vitro using A549 cells, a human adenocarcinoma-derived cell line with an alveolar epithelial cell like phenotype. Nicotine uptake by A549 cells exhibited time-, temperature-, and concentration-dependence with a Km of 50.4 μM. These results suggest that a carrier-mediated transport process is involved in nicotine transport in human alveolar epithelial cells. Nicotine uptake by A549 cells was insensitive to change in extracellular pH. Moreover, nicotine uptake by A549 cells could be inhibited by organic cations such as verapamil and pyrilamine, but not typical substrates of organic cation transporters and β2-agonist. These results suggest that a novel, not yet molecularly identified, organic cation transporter plays a role in nicotine transport which is unlikely to interact with β2-agonist transport. This nicotine influx transporter in human alveolar epithelium might have implications for the rapid absorption of nicotine into the systemic circulation.

  17. Evaluation of a549 as a new vaccine cell substrate: digging deeper with massively parallel sequencing.

    PubMed

    Shabram, Paul; Kolman, John L

    2014-01-01

    In the past three decades, the use of tumorigenic cell substrates has been the topic of five Vaccine and Related Biological Products Advisory Committee (VRBPAC) meetings, including a review of the A549 cell line in September 2012. Over that period of time, major technological advances in biotechnology have improved our ability to assess the risk associated with using a tumorigenic cell line. As part of the September 2012 review, we assessed the history of A549 cells and evaluated the probable transforming event based on patterns of mutations to cancer genes. In addition, massively parallel sequencing was used to first screen then augment the characterization of A549 cells by searching for the presence of hidden viral threats using sequencing of the entire cellular transcriptome and comparing sequences to a curated viral sequence database. Based upon the combined results of next-generation sequencing technology along with standard cell characterization as outlined in published regulatory guidances, we believe that A549 cells pose no more risk than any other cell substrate for the manufacture of vaccines.

  18. Oxidative stress and inflammatory response to printer toner particles in human epithelial A549 lung cells.

    PubMed

    Könczöl, Mathias; Weiß, Adilka; Gminski, Richard; Merfort, Irmgard; Mersch-Sundermann, Volker

    2013-02-04

    Reports on adverse health effects related to occupational exposure to toner powder are still inconclusive. Therefore, we have previously conducted an in vitro-study to characterize the genotoxic potential of three commercially available black printer toner powders in A549 lung cells. In these cell-based assays it was clearly demonstrated that the tested toner powders damage DNA and induce micronucleus (MN) formation. Here, we have studied the cytotoxic and proinflammatory potential of these three types of printer toner particles and the influence of ROS and NF-κB induction in order to unravel the underlying mechanisms. A549 cells were exposed to various concentrations of printer toner particle suspensions for 24 h. The toner particles were observed to exert significant cytotoxic effects in the WST-1 and neutral red (NR)-assays, although to a varying extent. Caspase 3/7 activity increased, while the mitochondrial membrane potential (MMP) was not affected. Particles of all three printer toner powders induced concentration-dependent formation of reactive oxygen species (ROS), as measured in the DCFH-DA assay. Furthermore, toner particle exposure enhanced interleukin-6 and interleukin-8 production, which is in agreement with activation of the transcription factor NF-κB in A549 cells shown by the electrophoretic mobility shift assay (EMSA). Therefore, it can be concluded that exposure of A549 lung cells to three selected printer toner powders caused oxidative stress through induction of ROS. Increased ROS formation may trigger genotoxic effects and activate proinflammatory pathways.

  19. Changes in the cellular proteins of A549 infected with Hepatitis E virus by proteomics analysis

    PubMed Central

    2014-01-01

    Background Our understanding of Hepatitis E virus (HEV) has changed enormously over the past 30 years, from a waterborne infection causing outbreaks of acute hepatitis in developing countries to an infection of global distribution causing a range of hepatic and extra-hepatic illness. However, the key proteins playing important parts in the virus infection were still unknown. Understanding the changes of cellular proteins in these cells exposed to HEV is helpful for elucidating molecular mechanisms associated with function alterations of HEV-infected susceptible cells. In the present study, a comparative gel-based proteomic analysis was employed to study the changes in cellular proteins of A549 exposed to HEV in vitro to provide novel information for understanding the functional alterations of A549 induced by HEV infection. Result Of 2 585-3 152 protein spots visualized on each gel using silver staining, a total of 31 protein spots were found to be differentially expressed in HEV-infected A549 cells compared with mock-infected A549, including 10 significantly up-regulated protein spots and 21 significantly down-regulated protein spots. Conclusion Our work is the first time regarding the proteomic analysis on the cellular responses to HEV infection. This work is helpful for investigating the molecular basis associated with the interaction between HEV and the host cells although more efforts should be required to discover the mechanisms. PMID:25175408

  20. The CRISPR/Cas9 system efficiently reverts the tumorigenic ability of BCR/ABL in vitro and in a xenograft model of chronic myeloid leukemia.

    PubMed

    García-Tuñón, Ignacio; Hernández-Sánchez, María; Ordoñez, José Luis; Alonso-Pérez, Veronica; Álamo-Quijada, Miguel; Benito, Rocio; Guerrero, Carmen; Hernández-Rivas, Jesús María; Sánchez-Martín, Manuel

    2017-02-09

    CRISPR/Cas9 technology was used to abrogate p210 oncoprotein expression in the Boff-p210 cell line, a pro-B line derived from interlukin-3-dependent Baf/3, that shows IL-3-independence arising from the constitutive expression of BCR-ABL p210. Using this approach, pools of Boff-p210-edited cells and single edited cell-derived clones were obtained and functionally studied in vitro. The loss of p210 expression in Boff-p210 cells resulted in the loss of ability to grow in the absence of IL-3, as the Baf/3 parental line, showing significantly increased apoptosis levels. Notably, in a single edited cell-derived clone carrying a frame-shift mutation that prevents p210 oncoprotein expression, the effects were even more drastic, resulting in cell death. These edited cells were injected subcutaneously in immunosuppressed mice and tumor growth was followed for three weeks. BCR/ABL-edited cells developed smaller tumors than those originating from unedited Boff-p210 parental cells. Interestingly, the single edited cell-derived clone was unable to develop tumors, similar to what is observed with the parental Baf/3 cell line.CRISPR/Cas9 genomic editing technology allows the ablation of the BCR/ABL fusion gene, causing an absence of oncoprotein expression, and blocking its tumorigenic effects in vitro and in the in vivo xenograft model of CML. The future application of this approach in in vivo models of CML will allow us to more accurately assess the value of CRISPR/Cas9 technology as a new therapeutic tool that overcomes resistance to the usual treatments for CML patients.

  1. Preclinical activity of the type II CD20 antibody GA101 (obinutuzumab) compared with rituximab and ofatumumab in vitro and in xenograft models.

    PubMed

    Herter, Sylvia; Herting, Frank; Mundigl, Olaf; Waldhauer, Inja; Weinzierl, Tina; Fauti, Tanja; Muth, Gunter; Ziegler-Landesberger, Doris; Van Puijenbroek, Erwin; Lang, Sabine; Duong, Minh Ngoc; Reslan, Lina; Gerdes, Christian A; Friess, Thomas; Baer, Ute; Burtscher, Helmut; Weidner, Michael; Dumontet, Charles; Umana, Pablo; Niederfellner, Gerhard; Bacac, Marina; Klein, Christian

    2013-10-01

    We report the first preclinical in vitro and in vivo comparison of GA101 (obinutuzumab), a novel glycoengineered type II CD20 monoclonal antibody, with rituximab and ofatumumab, the two currently approved type I CD20 antibodies. The three antibodies were compared in assays measuring direct cell death (AnnexinV/PI staining and time-lapse microscopy), complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cell-mediated phagocytosis (ADCP), and internalization. The models used for the comparison of their activity in vivo were SU-DHL4 and RL xenografts. GA101 was found to be superior to rituximab and ofatumumab in the induction of direct cell death (independent of mechanical manipulation required for cell aggregate disruption formed by antibody treatment), whereas it was 10 to 1,000 times less potent in mediating CDC. GA101 showed superior activity to rituximab and ofatumumab in ADCC and whole-blood B-cell depletion assays, and was comparable with these two in ADCP. GA101 also showed slower internalization rate upon binding to CD20 than rituximab and ofatumumab. In vivo, GA101 induced a strong antitumor effect, including complete tumor remission in the SU-DHL4 model and overall superior efficacy compared with both rituximab and ofatumumab. When rituximab-pretreated animals were used, second-line treatment with GA101 was still able to control tumor progression, whereas tumors escaped rituximab treatment. Taken together, the preclinical data show that the glyoengineered type II CD20 antibody GA101 is differentiated from the two approved type I CD20 antibodies rituximab and ofatumumab by its overall preclinical activity, further supporting its clinical investigation.

  2. Harnessing Autopsied DIPG Tumor Tissues for Orthotopic Xenograft Model Development in the Brain Stems of SCID Mice

    DTIC Science & Technology

    2012-09-01

    virtually all children with this disease within 1-2 years of diagnosis1. Because DIPGs are not amenable for surgery due to its location and...10. Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL. CD44+ CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model...co-expression of CD117 (c-kit) and osteocalcin in activated bone marrow stem cells in different diseases . Br J Haematol. 2002;118:305-312. 18

  3. Ketogenic Diets Enhance Oxidative Stress and Radio-Chemo-Therapy Responses in Lung Cancer Xenografts

    PubMed Central

    Allen, Bryan G.; Bhatia, Sudershan K.; Buatti, John M.; Brandt, Kristin E.; Lindholm, Kaleigh E.; Button, Anna M.; Szweda, Luke I.; Smith, Brian J.; Spitz, Douglas R.; Fath, Melissa A.

    2014-01-01

    Purpose Ketogenic diets (KDs) are high in fat and low in carbohydrates as well as protein which forces cells to rely on lipid oxidation and mitochondrial respiration rather than glycolysis for energy metabolism. Cancer cells (relative to normal cells) are believed to exist in a state of chronic oxidative stress mediated by mitochondrial metabolism. The current study tests the hypothesis that KDs enhance radio-chemo-therapy responses in lung cancer xenografts by enhancing oxidative stress. Experimental Design Mice bearing NCI-H292 and A549 lung cancer xenografts were fed a KD (KetoCal® 4:1 fats: proteins+carbohydrates) and treated with either conventionally fractionated (1.8-2 Gy) or hypofractionated (6 Gy) radiation as well as conventionally fractionated radiation combined with carboplatin. Mice weights and tumor size were monitored. Tumors were assessed for immuno-reactive 4-hydroxy-2-nonenal-(4HNE) modified proteins as a marker of oxidative stress as well as PCNA and γH2AX as indices of proliferation and DNA damage, respectively. Results The KD combined with radiation resulted in slower tumor growth in both NCI-H292 and A549 xenografts (p<0.05), relative to radiation alone. The KD also slowed tumor growth when combined with carboplatin and radiation, relative to control. Tumors from animals fed a KD in combination with radiation demonstrated increases in oxidative damage mediated by lipid peroxidation as determined by 4HNE-modified proteins as well as decreased proliferation as assessed by decreased immunoreactive PCNA. Conclusions These results show that a KD enhances radio-chemo-therapy responses in lung cancer xenografts by a mechanism that may involve increased oxidative stress. PMID:23743570

  4. [Effect of two different acellular lung matrices on α-SMA expression in A549 cells].

    PubMed

    Chen, C; Wang, Z Y; Weng, J; Wang, Z B; Mei, J; Du, X H; Wang, L

    2017-01-24

    Objective: To explore the effect of acellular normal and fibrotic lung matrices on alpha smooth muscle actin (α-SMA) expression in human lung adenocarcinoma cell line A549. Methods: Twenty adult SD rats were randomly divided into normal group and idiopathic pulmonary fibrosis(IPF)group (n=10 each). The pulmonary fibrosis was induced by Bleomycin. Normal and fibrotic decellularized lungs were made, then sections with 500 μm thick were cut by a standard Vibratome. None scaffold was set as control group. A549 cells were seeded dropwise into different slices (normal and fibrotic scaffolds), and cultured for one week in vitro. The expression of α-SMA was measured by immunofluorescence staining and quantitative real time polymerase chain reaction (qRT-PCR). Results: In control group, the expression of α-SMA protein was positive in A549 cells by immunofluorescence staining. However, it expressed weakly both in normal and fibrotic scaffold group, and the fluorescence intensity in fibrotic scaffold group was significant lower than that in normal group (P<0.05). The relative expression amount of α-SMA mRNA in normal and fibrotic scaffold group were (0.70±0.11) and (0.55±0.12), which were significant lower than that of control group (1.28±0.21) (P<0.05). Moreover, the relative expression of α-SMA mRNA in fibrotic scaffold group was decreased compared to that in normal scaffold group (P<0.05). Conclusions: Acellular normal and fibrotic lung scaffold can downregulate the expression of α-SMA in human lung adenocarcinoma cell line A549. It may inhibit the movement of A549 cells in acellular normal and fibrotic lung matrices, especially in acellular fibrotic lung scaffold.

  5. Role of gambogic acid and NaI131 in A549/DDP cells

    PubMed Central

    Huang, Jing; Zhu, Xiaoli; Wang, Huan; Han, Shuhua; Liu, Lu; Xie, Yan; Chen, Daozhen; Zhang, Qiang; Zhang, Li; Hu, Yue

    2017-01-01

    Resistance to platinum in tumor tissue is a considerable barrier against effective lung cancer treatment. Radionuclide therapy is the primary adjuvant treatment, however, the toxic side effects limit its dosage in the clinical setting. Therefore, the present study aimed to determine whether an NaI131 radiosensitizer could help reduce the toxic side effects of radionuclide therapy. In vitro experiments were conducted to determine whether NaI131 can inhibit platinum resistance in A549/DDP cells, which are cisplatin-resistant non-small cell lung cancer cells, and whether gambogic acid (GA) is an effective NaI131 radiosensitizer. Cell proliferation following drug intervention was analyzed using MTT and isobolographic analysis. Apoptosis was assessed by flow cytometry. In addition, the mechanisms of drug intervention were analyzed by measuring the expression of P-glycoprotein (P-gP), B cell lymphoma 2 (Bcl-2), Bcl2-associated X protein (Bax) and P53 using western blot analysis and immunocytochemistry. According to isobolographic analysis, a low concentration of NaI131 combined with GA had a synergistic effect on the inhibition of A549/DDP cell proliferation, which was consistent with an increased rate of apoptosis. Furthermore, the overexpression of Bax, and the downregulation of P-gP, P53 and Bcl-2 observed demonstrated the potential mechanism(s) of NaI131 and GA intervention. NaI131 may induce apoptosis in A549/DDP cells by regulating apoptosis-related proteins. A low concentration combination of NaI131 and GA was able to significantly inhibit A549/DDP cell proliferation and induce cell apoptosis. Thus, the two drugs appear to have a synergistic effect on apoptosis of A549/DDP cells. PMID:28123519

  6. Rapamycin‐induced autophagy sensitizes A549 cells to radiation associated with DNA damage repair inhibition

    PubMed Central

    Li, Yong; Liu, Fen; Wang, Yong; Li, Donghai; Guo, Fei; Xu, Liyao; Zeng, Zhengguo; Zhong, Xiaojun

    2016-01-01

    Abstract Background Autophagy has been reported to increase in cancer cells after radiation. However, it remains unknown whether increased autophagy as a result of radiation affects DNA damage repair and sensitizes cancer cells. In this study, the radiosensitization effect of rapamycin, a mammalian target of rapamycin inhibitor that induces autophagy, on human lung adenocarcinoma A549 cells was investigated. Methods A549 cells were treated with different concentrations of rapamycin. Cell viability was evaluated by methyl‐thiazolyl‐tetrazolium assay. Survival fraction values of A549 cells after radiotherapy were detected by colony formation assay. Autophagosome was observed by a transmission electron microscope. Furthermore, Western blot was employed to examine alterations in autophagy protein LC3 and p62, DNA damage protein γ–H2AX, and DNA damage repair proteins Rad51, Ku70, and Ku80. Rad51, Ku70, and Ku80 messenger ribonucleic acid (mRNA) expression levels were examined by real‐time polymerase chain reaction. Results Rapamycin suppressed A549 cell proliferation in dose and time‐dependent manners. An inhibitory concentration (IC) 10 dose of rapamycin could induce autophagy in A549 cells. Rapamycin combined with radiation significantly decreased the colony forming ability of cells, compared with rapamycin or radiation alone. Rapamycin and radiation combined increased γ–H2AX expression levels and decreased Rad51 and Ku80 expression levels, compared with single regimens. However, rapamycin treatment did not induce any change in Rad51, Ku70, and Ku80 mRNA levels, regardless of radiation. Conclusions These findings indicate that increasing autophagy sensitizes lung cancer cells to radiation. PMID:27385978

  7. Prevention of EBV lymphoma development by oncolytic myxoma virus in a murine xenograft model of post-transplant lymphoproliferative disease

    SciTech Connect

    Kim, Manbok; Rahman, Masmudur M.; Cogle, Christopher R.

    2015-07-10

    Epstein–Barr virus (EBV) has been associated with a variety of epithelial and hematologic malignancies, including B-, T- and NK cell-lymphomas, Hodgkin's disease (HD), post-transplant lymphoproliferative diseases (LPDs), nasopharyngeal and gastric carcinomas, smooth muscle tumors, and HIV-associated lymphomas. Currently, treatment options for EBV-associated malignancies are limited. We have previously shown that myxoma virus specifically targets various human solid tumors and leukemia cells in a variety of animal models, while sparing normal human or murine tissues. Since transplant recipients of bone marrow or solid organs often develop EBV-associated post-transplant LPDs and lymphoma, myxoma virus may be of utility to prevent EBV-associated malignancies in immunocompromised transplant patients where treatment options are frequently limited. In this report, we demonstrate the safety and efficacy of myxoma virus purging as a prophylactic strategy for preventing post-transplant EBV-transformed human lymphomas, using a highly immunosuppressed mouse xenotransplantation model. This provides support for developing myxoma virus as a potential oncolytic therapy for preventing EBV-associated LPDs following transplantation of bone marrow or solid organ allografts. - Highlights: • Myxoma virus effectively infects and purges EBV lymphoma cells in vivo. • Oncolytic myxoma virus effectively eradicates oncogenic EBV tumorigenesis. • Ex vivo pre-treatment of myxoma virus can be effective as a preventive treatment modality for post-transplant lymphoproliferative diseases.

  8. Responsiveness of human prostate carcinoma bone tumors to interleukin-2 therapy in a mouse xenograft tumor model.

    PubMed

    Kocheril, S V; Grignon, D J; Wang, C Y; Maughan, R L; Montecillo, E J; Talati, B; Tekyi-Mensah, S; Pontes, J e; Hillman, G G

    1999-01-01

    We have tested an immunotherapy approach for the treatment of metastatic prostate carcinoma using a bone tumor model. Human PC-3 prostate carcinoma tumor cells were heterotransplanted into the femur cavity of athymic Balb/c nude mice. Tumor cells replaced marrow cells in the bone cavity, invaded adjacent bone and muscle tissues, and formed a palpable tumor at the hip joint. PC-3/IF cell lines, generated from bone tumors by serial in vivo passages, grew with faster kinetics in the femur and metastasized to inguinal lymph nodes. Established tumors were treated with systemic interleukin-2 (IL-2) injections. IL-2 significantly inhibited the formation of palpable tumors and prolonged mouse survival at nontoxic low doses. Histologically IL-2 caused vascular damage and infiltration of polymorphonuclear cells and lymphocytes in the tumor as well as necrotic areas with apoptotic cells. These findings suggest destruction of tumor cells by systemic IL-2 therapy and IL-2 responsiveness of prostate carcinoma bone tumors.

  9. DICER governs characteristics of glioma stem cells and the resulting tumors in xenograft mouse models of glioblastoma

    PubMed Central

    Alamsahebpour, Amir; Burrell, Kelly; Li, Mira; Karabork, Merve; Ekinci, Can; Koch, Elizabeth; Solaroglu, Ihsan; Chang, Jeffery T.; Wouters, Bradly; Aldape, Kenneth; Zadeh, Gelareh

    2016-01-01

    The RNAse III endonuclease DICER is a key regulator of microRNA (miRNA) biogenesis and is frequently decreased in a variety of malignancies. We characterized the role of DICER in glioblastoma (GB), specifically demonstrating its effects on the ability of glioma stem-like cells (GSCs) to form tumors in a mouse model of GB. DICER silencing in GSCs reduced their stem cell characteristics, while tumors arising from these cells were more aggressive, larger in volume, and displayed a higher proliferation index and lineage differentiation. The resulting tumors, however, were more sensitive to radiation treatment. Our results demonstrate that DICER silencing enhances the tumorigenic potential of GSCs, providing a platform for analysis of specific relevant miRNAs and development of potentially novel therapies against GB. PMID:27421140

  10. Disparate In Vivo Efficacy of FTY720 in Xenograft Models of Philadelphia Positive and Negative B-lineage Acute Lymphoblastic Leukemia

    PubMed Central

    Wallington-Beddoe, Craig T.; Don, Anthony S.; Hewson, John; Qiao, Qiao; Papa, Rachael A.; Lock, Richard B.; Bradstock, Kenneth F.; Bendall, Linda J.

    2012-01-01

    Most patients with acute lymphoblastic leukemia (ALL) respond well to standard chemotherapy-based treatments. However a significant proportion of patients, particularly adult patients, relapse with the majority dying of leukemia. FTY720 is an immunosuppressive drug that was recently approved for the treatment of multiple sclerosis and is currently under pre-clinical investigation as a therapy for a number of hematological malignancies. Using human ALL xenografts in NOD/SCIDγc−/− mice, we show for the first time that three Ph+ human ALL xenografts responded to FTY720 with an 80±12% (p = 0.048) reduction in overall disease when treatment was commenced early. In contrast, treatment of mice with FTY720 did not result in reduced leukemia compared to controls using four separate human Ph− ALL xenografts. Although FTY720 reactivated PP2A in vitro, this reactivation was not required for death of Ph− ALL cells. The plasma levels of FTY720 achieved in the mice were in the high nanomolar range. However, the response seen in the Ph+ ALL xenografts when treatment was initiated early implies that in vivo efficacy may be obtained with substantially lower drug concentrations than those required in vitro. Our data suggest that while FTY720 may have potential as a treatment for Ph+ ALL it will not be a useful agent for the treatment of Ph− B-ALL. PMID:22570713

  11. Three-dimensional MR mapping of angiogenesis with alpha5beta1(alpha nu beta3)-targeted theranostic nanoparticles in the MDA-MB-435 xenograft mouse model.

    PubMed

    Schmieder, Anne H; Caruthers, Shelton D; Zhang, Huiying; Williams, Todd A; Robertson, J David; Wickline, Samuel A; Lanza, Gregory M

    2008-12-01

    Our objectives were 1) to characterize angiogenesis in the MDA-MB-435 xenograft mouse model with three-dimensional (3D) MR molecular imaging using alpha(5)beta(1)(RGD)- or irrelevant RGS-targeted paramagnetic nanoparticles and 2) to use MR molecular imaging to assess the antiangiogenic effectiveness of alpha(5)beta(1)(alpha(nu)beta(3))- vs. alpha(nu)beta(3)-targeted fumagillin (50 mug/kg) nanoparticles. Tumor-bearing mice were imaged with MR before and after administration of either alpha(5)beta(1)(RGD) or irrelevant RGS-paramagnetic nanoparticles. In experiment 2, mice received saline or alpha(5)beta(1)(alpha(nu)beta(3))- or alpha(nu)beta(3)-targeted fumagillin nanoparticles on days 7, 11, 15, and 19 posttumor implant. On day 22, MRI was performed using alpha(5)beta(1)(alpha(nu)beta(3))-targeted paramagnetic nanoparticles to monitor the antiangiogenic response. 3D reconstructions of alpha(5)beta(1)(RGD)-signal enhancement revealed a sparse, asymmetrical pattern of angiogenesis along the tumor periphery, which occupied <2.0% tumor surface area. alpha(5)beta(1)-targeted rhodamine nanoparticles colocalized with FITC-lectin corroborated the peripheral neovascular signal. alpha(5)beta(1)(alpha(nu)beta(3))-fumagillin nanoparticles decreased neovasculature to negligible levels relative to control; alpha(nu)beta(3)-targeted fumagillin nanoparticles were less effective (P>0.05). Reduction of angiogenesis in MDA-MB-435 tumors from low to negligible levels did not decrease tumor volume. MR molecular imaging may be useful for characterizing tumors with sparse neovasculature that are unlikely to have a reduced growth response to targeted antiangiogenic therapy.

  12. Function of the Blood-Brain Barrier and Restriction of Drug Delivery to Invasive Glioma Cells: Findings in an Orthotopic Rat Xenograft Model of Glioma

    PubMed Central

    Agarwal, Sagar; Manchanda, Pooja; Vogelbaum, Michael A.; Ohlfest, John R.

    2013-01-01

    Despite aggressive treatment with radiation and chemotherapy, recurrence of glioblastoma multiforme (GBM) is inevitable. The objective of this study was to show that the blood-brain barrier (BBB), through a combination of tight junctions and active efflux transporters in the brain microvasculature, can significantly restrict delivery of molecularly targeted agents to invasive glioma cells. Transgenic mice lacking P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) were used to study efflux of erlotinib at the BBB. A U87 rat xenograft model of GBM was used to investigate the regional distribution of erlotinib to the tumor, and brain regions surrounding the tumor. The effect of concurrent administration of elacridar on regional tumor distribution of erlotinib was evaluated. We show that erlotinib transport across an intact BBB is significantly restricted due to P-gp- and Bcrp-mediated efflux transport. We then show that the BBB is sufficiently intact in areas of brain adjacent to the tumor core to significantly restrict erlotinib delivery. Inhibition of P-gp and Bcrp by the dual inhibitor elacridar dramatically increased erlotinib delivery to the tumor core, rim, and normal brain. These results provide conclusive evidence of the impact that active efflux at the BBB has on the delivery of molecularly targeted therapy to different tumor regions in glioma. These data also support the possibility that the repeated failure of clinical trials of new drugs for gliomas may be in part due to a failure to achieve effective concentrations in invasive tumor cells that reside behind an intact BBB. PMID:23014761

  13. Kv1.3 in Psoriatic Disease: PAP-1, a small molecule inhibitor of Kv1.3 is effective in the SCID mouse psoriasis - xenograft model

    PubMed Central

    Kundu-Raychaudhuri, Smriti; Chen, Yi-Je; Wulff, Heike; Raychaudhuri, Siba P

    2015-01-01

    Kv1.3 channels regulate the activation/proliferation of effector memory T cells and thus play a critical role in the pathogenesis of autoimmune diseases. Using a combination of immunohistochemistry, confocal microscopy, flow cytometry and electrophysiology methods we observed a significant enrichment of activated Kv1.3+ memory T cells in psoriasis plaques and synovial fluid from patients with psoriasis/psoriatic arthritis (PsA) compared to non-lesional psoriatic skin, normal skin or peripheral blood lympho-mononuclear cells. In in vitro studies performed with lesional mononuclear cells or T cells derived from skin and joints of psoriatic disease, the small molecule Kv1.3 blocker PAP-1 dose-dependently inhibited proliferation and suppressed IL-2 and IFN-γ production. To further substantiate the pathologic role of Kv1.3highTEM cells in psoriatic disease we tested whether PAP-1 is able to improve psoriatic disease pathology in the SCID mouse-psoriasis skin xenograft model. Following four weeks of daily treatment with 2% PAP-1 ointment we noticed about 50% reduction in the epidermal thickness (rete peg length) and the number of CD3+ lymphocytes/mm2 of dermis decreased by 85%. Vehicle treated and untreated plaques in contrast remained unchanged and showed no reduction in epidermis thickness and infiltrating CD3+ T cells and HLA-DR+ T cells. Based on these results we propose the development of Kv1.3 targeted topical immunotherapy for psoriasis and possibly for other inflammatory skin conditions, where effector memory T cells are involved in the pathogenesis. PMID:25175978

  14. Lycium barbarum polysaccharides induce apoptosis in human prostate cancer cells and inhibits prostate cancer growth in a xenograft mouse model of human prostate cancer.

    PubMed

    Luo, Qiong; Li, Zhuoneng; Yan, Jun; Zhu, Fan; Xu, Ruo-Jun; Cai, Yi-Zhong

    2009-08-01

    Lycium barbarum polysaccharides (LBPs) are important functional constituents in red-colored fruits of L. barbarum (Guo Qi Zi, a well-known traditional Chinese medicinal plant commonly known as Goji berry or wolfberry). The influence of LBP on human prostate cancer cells was systematically investigated in vitro and in vivo. The in vitro effects of LBP on two cell lines (PC-3 and DU-145) were examined by using trypan blue exclusion staining, single-cell gel electrophoresis, flow cytometry, terminal dUTP nick-end labeling assay, and immunohistochemical assay (assessment of Bcl-2 and Bax expression). The in vivo effect of LBP on PC-3 cells was assessed in the nude mouse xenograft tumor model. The in vitro results showed that LBP can dose- and time-dependently inhibit the growth of both PC-3 and DU-145 cells. LBP caused the breakage of DNA strands of PC-3 and DU-145 cells; the tail frequency and tail length were significantly higher than that of control cells. LBP also markedly induced PC-3 and DU-145 cell apoptosis, with the highest apoptosis rates at 41.5% and 35.5%, respectively. The ratio of Bcl-2/Bax protein expression following LBP treatments decreased significantly with a dose-effect relationship, which suggested that LBP can regulate the expression of Bcl-2 and Bax to induce apoptosis of PC-3 and DU-145 cells. The in vivo experimental results indicate that LBP might significantly inhibit PC-3 tumor growth in nude mice. Both the tumor volume and weight of the LBP treatment group were significantly lower than those of the control group.

  15. Highly efficient IL-21 and feeder cell-driven ex vivo expansion of human NK cells with therapeutic activity in a xenograft mouse model of melanoma.

    PubMed

    Granzin, Markus; Stojanovic, Ana; Miller, Matthias; Childs, Richard; Huppert, Volker; Cerwenka, Adelheid

    2016-01-01

    Natural killer (NK) cells are promising antitumor effector cells, but the generation of sufficient NK cell numbers for adoptive immunotherapy remains challenging. Therefore, we developed a method for highly efficient ex vivo expansion of human NK cells. Ex vivo expansion of NK cells in medium containing IL-2 and irradiated clinical-grade feeder cells (EBV-LCL) induced a 22-fold NK cell expansion after one week that was significantly increased to 53-fold by IL-21. Repeated stimulation with irradiated EBV-LCL and IL-2 and addition of IL-21 at the initiation of the culture allowed sustained NK cell proliferation with 10(11)-fold NK cell expansion after 6 weeks. Compared to naive NK cells, expanded NK cells upregulated TRAIL, NKG2D, and DNAM-1, had superior cytotoxicity against tumor cell lines in vitro and produced more IFNγ and TNF-α upon PMA/Iono stimulation. Most importantly, adoptive transfer of NK cells expanded using feeder cells, IL-2 and IL-21 led to significant inhibition of tumor growth in a melanoma xenograft mouse model, which was greater than with NK cells activated with IL-2 alone. Intriguingly, adoptively transferred NK cells maintained their enhanced production of IFNγ and TNF-α upon ex vivo restimulation, although they rapidly lost their capacity to degranulate and mediate tumor cytotoxicity after the in vivo transfer. In conclusion, we developed a protocol for ex vivo NK cell expansion that results in outstanding cell yields. The expanded NK cells possess potent antitumor activity in vitro and in vivo and could be utilized at high numbers for adoptive immunotherapy in the clinic.

  16. Inhibition of Cell Proliferation and Growth of Pancreatic Cancer by Silencing of Carbohydrate Sulfotransferase 15 In Vitro and in a Xenograft Model

    PubMed Central

    Shibazaki, Yuichiro; Yoneyama, Hiroyuki; Fujii, Masato; Hashiguchi, Taishi; Ito, Zensho; Kajihara, Mikio; Misawa, Takeyuki; Homma, Sadamu; Ohkusa, Toshifumi

    2015-01-01

    Chondroitin sulfate E (CS-E), a highly sulfated glycosaminoglycan, is known to promote tumor invasion and metastasis. Because the presence of CS-E is detected in both tumor and stromal cells in pancreatic ductal adenocarcinoma (PDAC), multistage involvement of CS-E in the development of PDAC has been considered. However, its involvement in the early stage of PDAC progression is still not fully understood. In this study, to clarify the direct role of CS-E in tumor, but not stromal, cells of PDAC, we focused on carbohydrate sulfotransferase 15 (CHST15), a specific enzyme that biosynthesizes CS-E, and investigated the effects of the CHST15 siRNA on tumor cell proliferation in vitro and growth in vivo. CHST15 mRNA is highly expressed in the human pancreatic cancer cell lines PANC-1, MIA PaCa-2, Capan-1 and Capan-2. CHST15 siRNA significantly inhibited the expression of CHST15 mRNA in these four cells in vitro. Silencing of the CHST15 gene in the cells was associated with significant reduction of proliferation and up-regulation of the cell cycle inhibitor-related gene p21CIP1/WAF1. In a subcutaneous xenograft tumor model of PANC-1 in nude mice, a single intratumoral injection of CHST15 siRNA almost completely suppressed tumor growth. Reduced CHST15 protein signals associated with tumor necrosis were observed with the treatment with CHST15 siRNA. These results provide evidence of the direct action of CHST15 on the proliferation of pancreatic tumor cells partly through the p21CIP1/WAF1 pathway. Thus, CHST15-CS-E axis-mediated tumor cell proliferation could be a novel therapeutic target in the early stage of PDAC progression. PMID:26642349

  17. Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model.

    PubMed

    Podesta, Jennifer E; Al-Jamal, Khuloud T; Herrero, M Antonia; Tian, Bowen; Ali-Boucetta, Hanene; Hegde, Vikas; Bianco, Alberto; Prato, Maurizio; Kostarelos, Kostas

    2009-05-01

    Carbon nanotubes are novel nanomaterials that are thought to offer potential benefits to a variety of biomedical and clinical applications. In this study, the treatment of a human lung carcinoma model in vivo using siRNA sequences leading to cytotoxicity and cell death is carried out using either cationic liposomes (DOTAP:cholesterol) or amino-functionalized multi-walled carbon nanotubes (MWNT - NH(+)(3)). Validation for the most cytotoxic siRNA sequence using a panel of human carcinoma and murine cells reveals that the proprietary siTOX sequence is human specific and can lead to significant cytotoxic activities delivered both by liposome or MWNT - NH(+)(3) in vitro. A comparative study using both types of vector indicates that only MWNT - NH(+)(3):siRNA complexes administered intratumorally can elicit delayed tumor growth and increased survival of xenograft-bearing animals. siTOX delivery via the cationic MWNT - NH(+)(3) is biologically active in vivo by triggering an apoptotic cascade, leading to extensive necrosis of the human tumor mass. This suggests that carbon-nanotube-mediated delivery of siRNA by intratumoral administration leads to successful and statistically significant suppression of tumor volume, followed by a concomitant prolongation of survival of human lung tumor-bearing animals. The direct comparison between carbon nanotubes and liposomes demonstrates the potential advantages offered by carbon nanotubes for the intracellular delivery of therapeutic agents in vivo. The present work may act as the impetus for further studies to explore the therapeutic capacity of chemically functionalized carbon nanotubes to deliver siRNA directly into the cytoplasm of target cells and achieve effective therapeutic silencing in various disease indications where local delivery is feasible or desirable.

  18. Novel phyto-derivative BRM270 inhibits hepatocellular carcinoma cells proliferation by inducing G2/M phase cell cycle arrest and apoptosis in xenograft mice model.

    PubMed

    Kumar Mongre, Raj; Sharma, Neelesh; Singh Sodhi, Simrinder; Ghosh, Mrinmoy; Kumar Singh, Amit; Kim, Nameun; Park, Yang Ho; Shin, Young Gyu; Kim, Sung Jin; Jiao Jiao, Zhang; Huynh, Do Luong; Jeong, Dong Kee

    2017-03-01

    Hepatocellular carcinoma (HCC) is a major threat to human health worldwide and development of novel antineoplastic drug is demanding task. BRM270 is a proprietary combination of traditional medicinal herbs, has been shown to be effective against a wide range of stem-like cancer initiating cells (SLCICs). However, the underlying mechanism and antitumor efficacy of BRM270 in human hepatocellular carcinoma (HCC) cells have not been well elucidated till date. Here we studied the tumoricidal effect of BRM270 on human-CD133(+) expressing stem-like HepG-2 and SNU-398 cells. Gene expression profiling by qPCR and specific cellular protein expressions was measured using immunocytochemistry/western blot analysis. In vivo efficacy of BRM270 has been elucidated in the SLCICs induced xenograft model. In addition, 2DG-(2-Deoxy-d-Glucose) optical-probe guided tumor monitoring was performed to delineate the size and extent of metastasized tumor. Significant (P<0.05) induction of Annexin-V positive cell population and dose-dependent upregulation of caspase-3 confirmed apoptotic cell death by pre/late apoptosis. In addition, bright field and fluorescence microscopy of treated cells revealed apoptotic morphology and DNA fragmentation in Hoechst33342 staining. Levels of c-Myc, Bcl-2 and c-Jun as invasive potential apoptotic marker were detected using qPCR/Western blot. Moreover, BRM270 significantly (P<0.05) increased survival rate that observed by Kaplan-Meier log rank test. In conclusion, these results indicate that BRM270 can effectively inhibit proliferation and induce apoptosis in hepatoma cells by down-regulating CyclinD1/Bcl2 mediated c-Jun apoptotic pathway.

  19. Continuous administration of bevacizumab plus capecitabine, even after acquired resistance to bevacizumab, restored anti-angiogenic and antitumor effect in a human colorectal cancer xenograft model

    PubMed Central

    Iwai, Toshiki; Sugimoto, Masamichi; Harada, Suguru; Yorozu, Keigo; Kurasawa, Mitsue; Yamamoto, Kaname

    2016-01-01

    Vascular endothelial growth factor (VEGF)-neutralizing therapy with bevacizumab has become increasingly important for treating colorectal cancer. It was demonstrated that second-line chemotherapy together with bevacizumab after disease progression (PD) on first-line therapy including bevacizumab showed clinical benefits in metastatic colorectal and breast cancers (ML18147 trial, TANIA trial). One of the rationales for these trials was that the refractoriness to first-line therapy is caused by resistance to not so much bevacizumab as to the chemotherapeutic agents. Nevertheless, resistance to bevacizumab cannot be ruled out because VEGF-independent angiogenesis has been reported to be a mechanism of resistance to anti-VEGF therapy. In this study, we used a xenograft model with the human colon cancer HT-29 cells to investigate the mechanisms underlying the effect of continued administration of bevacizumab plus capecitabine even after resistance to bevacizumab was acquired. The combination of capecitabine plus bevacizumab exhibited significantly stronger antitumor and anti-angiogenic activities than did monotherapy with either agent. Capecitabine treatment significantly increased the intratumoral VEGF level compared with the control group; however, the combination with bevacizumab neutralized the VEGF. Among angiogenic factors other than VEGF, intratumoral galectin-3, which reportedly promotes angiogenesis both dependent on, and independently of VEGF, was significantly decreased in the capecitabine group and the combination group compared with the control group. In an in vitro experiment, 5-fluorouracil (5-FU), an active metabolite of capecitabine, inhibited galectin-3 production by HT-29 cells. These results suggested that capecitabine has a dual mode of action: namely, inhibition of tumor cell growth and inhibition of galectin-3 production by tumor cells. Thus, capecitabine and bevacizumab may work in a mutually complementary manner in tumor angiogenesis inhibition

  20. Target therapy of multiple myeloma by PTX-NPs and ABCG2 antibody in a mouse xenograft model

    PubMed Central

    Xue, Jun; Zhan, Xi; Shi, Fangfang; Li, Miao; Wu, Songyan; Luo, Shouhua; Zhang, Tianzhu; Zhang, Yu; Ming, Ji; Gu, Ning

    2015-01-01

    Multiple myeloma (MM) remains to be an incurable disease. The purpose of this study was to evaluate the effect of ABCG2 monoclonal antibody (McAb) combined with paclitaxel (PTX) conjugated with Fe3O4 nanoparticles (NPs) on MM progressed from cancer stem cells (CSCs)in non-obese-diabetic/severe-combined-immunodeficiency (NOD/SCID) mouse model. Mice were injected with MM CSCs as marked by CD138−CD34− phenotypes through tail veins. The developed MM mice were examined by micro-computer tomography scanning, ultrasonography and enzyme-linked immunosorbent analysis. These mice were then intravenously treated with different combinations of NPs, PTX, McAb, PTX-NPs and melphalan/prednisone once a week for four weeks. The injected mice developed characteristic MM-associated syndromes, including lytic bone lesions, renal damages and proteinuria. All the treated mice showed decrease in bone lesions, renal damages and anemia but increase in apoptosis compared with the mice treated with NPs only. In particular, the treatment with ABCG2 McAb plus PTX-NPs induced the strongest therapeutic response and had an efficacy even better than that of melphalan/prednisone, a conventional regimen for MM patients. These data suggest that PTX-NPs with ABCG2 McAb can be developed into potential treatment regimens for patients with relapsed/refractory MM. PMID:26314844

  1. Target therapy of multiple myeloma by PTX-NPs and ABCG2 antibody in a mouse xenograft model.

    PubMed

    Yang, Cuiping; Xiong, Fei; Dou, Jun; Xue, Jun; Zhan, Xi; Shi, Fangfang; Li, Miao; Wu, Songyan; Luo, Shouhua; Zhang, Tianzhu; Zhang, Yu; Ming, Ji; Gu, Ning

    2015-09-29

    Multiple myeloma (MM) remains to be an incurable disease. The purpose of this study was to evaluate the effect of ABCG2 monoclonal antibody (McAb) combined with paclitaxel (PTX) conjugated with Fe3O4 nanoparticles (NPs) on MM progressed from cancer stem cells (CSCs) in non-obese-diabetic/severe-combined-immunodeficiency (NOD/SCID) mouse model. Mice were injected with MM CSCs as marked by CD138-CD34- phenotypes through tail veins. The developed MM mice were examined by micro-computer tomography scanning, ultrasonography and enzyme-linked immunosorbent analysis. These mice were then intravenously treated with different combinations of NPs, PTX, McAb, PTX-NPs and melphalan/prednisone once a week for four weeks. The injected mice developed characteristic MM-associated syndromes, including lytic bone lesions, renal damages and proteinuria. All the treated mice showed decrease in bone lesions, renal damages and anemia but increase in apoptosis compared with the mice treated with NPs only. In particular, the treatment with ABCG2 McAb plus PTX-NPs induced the strongest therapeutic response and had an efficacy even better than that of melphalan/prednisone, a conventional regimen for MM patients. These data suggest that PTX-NPs with ABCG2 McAb can be developed into potential treatment regimens for patients with relapsed/refractory MM.

  2. Total lymphoid irradiation and discordant cardiac xenografts

    SciTech Connect

    Kaplan, E.; Dresdale, A.R.; Diehl, J.T.; Katzen, N.A.; Aronovitz, M.J.; Konstam, M.A.; Payne, D.D.; Cleveland, R.J. )

    1990-01-01

    Total lymphoid irradiation can prolong concordant cardiac xenografts. The effects of total lymphoid irradiation in a discordant xenograft model (guinea pig to rat) were studied with and without adjuvant pharmacologic immunosuppression. Inbred Lewis rats were randomly allocated to one of four groups. Group 1 (n = 6) served as a control group and rats received no immunosuppression. Group 2 (n = 5) received triple-drug therapy that consisted of intraperitoneal azathioprine (2 mg/kg), cyclosporine (20 mg/kg), and methylprednisolone (1 mg/kg) for 1 week before transplantation. Group 3 animals (n = 5) received 15 Gy of total lymphoid irradiation in 12 divided doses over a 3-week period. Group 4 (n = 6) received both triple-drug therapy and total lymphoid irradiation as described for groups 2 and 3. Complement-dependent cytotoxicity assay was performed to determine if a correlation between complement-dependent cytotoxicity and rejection-free interval existed. Rejection was defined as cessation of graft pulsation and was confirmed by histologic test results. Only groups 1 and 2 showed a difference in survival (group 1, 6.9 +/- 1.0 minutes; group 2, 14.2 +/- 2.7 minutes, p = 0.02). Although total lymphoid irradiation did decrease complement-dependent cytotoxicity, linear regression revealed no correlation between complement-dependent cytotoxicity and graft survival (coefficient of correlation, 0.30). Unlike concordant cardiac xenografts, total lymphoid irradiation with or without triple-drug therapy does not prolong graft survival.

  3. Blockade of the ERK pathway enhances the therapeutic efficacy of the histone deacetylase inhibitor MS-275 in human tumor xenograft models

    SciTech Connect

    Sakamoto, Toshiaki; Ozaki, Kei-ichi; Fujio, Kohsuke; Kajikawa, Shu-hei; Uesato, Shin-ichi; Watanabe, Kazushi; Tanimura, Susumu; Koji, Takehiko; Kohno, Michiaki

    2013-04-19

    Highlights: •Blockade of the ERK pathway enhances the anticancer efficacy of HDAC inhibitors. •MEK inhibitors sensitize human tumor xenografts to HDAC inhibitor cytotoxicity. •Such the enhanced efficacy is achieved by a transient blockade of the ERK pathway. •This drug combination provides a promising therapeutic strategy for cancer patients. -- Abstract: The ERK pathway is up-regulated in various human cancers and represents a prime target for mechanism-based approaches to cancer treatment. Specific blockade of the ERK pathway alone induces mostly cytostatic rather than pro-apoptotic effects, however, resulting in a limited therapeutic efficacy of the ERK kinase (MEK) inhibitors. We previously showed that MEK inhibitors markedly enhance the ability of histone deacetylase (HDAC) inhibitors to induce apoptosis in tumor cells with constitutive ERK pathway activation in vitro. To evaluate the therapeutic efficacy of such drug combinations, we administered the MEK inhibitor PD184352 or AZD6244 together with the HDAC inhibitor MS-275 in nude mice harboring HT-29 or H1650 xenografts. Co-administration of the MEK inhibitor markedly sensitized the human xenografts to MS-275 cytotoxicity. A dose of MS-275 that alone showed only moderate cytotoxicity thus suppressed the growth of tumor xenografts almost completely as well as induced a marked reduction in tumor cellularity when administered with PD184352 or AZD6244. The combination of the two types of inhibitor also induced marked oxidative stress, which appeared to result in DNA damage and massive cell death, specifically in the tumor xenografts. The enhanced therapeutic efficacy of the drug combination was achieved by a relatively transient blockade of the ERK pathway. Administration of both MEK and HDAC inhibitors represents a promising chemotherapeutic strategy with improved safety for cancer patients.

  4. Endostatin enhances antitumor effect of tumor antigen-pulsed dendritic cell therapy in mouse xenograft model of lung carcinoma

    PubMed Central

    Liang, Jing; Liu, Xiaolin; Xie, Qi; Chen, Guoling; Li, Xingyu; Jia, Yanrui; Yin, Beibei; Qu, Xun; Li, Yan

    2016-01-01

    Objective To investigate the antitumor effect of endostatin combined with tumor antigen-pulsed dendritic cell (DC)-T cell therapy on lung cancer. Methods Transplanted Lewis lung cancer (LLC) models of C57BL/6 mice were established by subcutaneous injection of LLC cells in left extremity axillary. Tumor antigen-pulsed DC-T cells from spleen cells and bone of mice were cultured in vitro. Tumor-bearing mice were randomly divided into three groups, including DC-T+endostatin group, DC-T group, and phosphate-buffered saline (PBS) control group. Microvessel density (MVD) of tumor tissue in tumor-bearing mice was determined by immunohistochemistry (IHC). The expressions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) were determined by Western blotting and IHC staining. The proportions of CD8+ T cells, mature dendritic cells (mDC), tumor-associated macrophages [TAM (M1/M2)], and myeloid-derived suppressor cells (MDSC) in suspended cells of tumor tissue were determined by flow cytometry. The expressions of interleukin (IL)-6, IL-10, IL-17, transforming growth factor-β (TGF-β) and interferon-γ (IFN-γ) in suspended cells of tumor tissue were detected by enzyme-linked immune sorbent assay (ELISA). Results DC-T cells combined with endostatin remarkably suppressed tumor growth. MVD of mice in DC-T+endostatin group was significantly lower than that of the control group and DC-T monotherapy group. The expressions of VEGF, IL-6 and IL-17 in tumors were markedly decreased, but IFN-γ and HIF-1α increased after treating with DC-T cells combined with endostatin, compared to control group and DC-T group. In the DC-T+endostatin group, the proportions of MDSC and TAM (M2 type) were significantly decreased, mDC and TAM (M1 type) were up-regulated, and CD8+ T cells were recruited to infiltrate tumors, in contrast to PBS control and DC-T monotherapy. DC-T cells combined with endostatin potently reduced the expressions of IL-6, IL-10, TGF-β and

  5. Evaluating dynamic contrast-enhanced and photoacoustic CT to assess intra-tumor heterogeneity in xenograft mouse models

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.; Liu, Bo; Cao, Minsong; Reinecke, Dan; Dzemidzic, Mario; Liang, Yun; Kruger, Robert

    2006-03-01

    Purpose: To evaluate photoacoustic CT spectroscopy (PCT-S) and dynamic contrast-enhanced CT (DCE-CT) ability to measure parameters - oxygen saturation and vascular physiology - associated with the intra-tumor oxygenation status. Material and Methods: Breast (VEGF165 enhance MCF-7) and ovarian (SKOV3x) cancer cells were implanted into the fat pads and flanks of immune deficient mice and allowed to grow to a diameter of 8-15 mm. CT was used to determine physiological parameters by acquiring a sequence of scans over a 10 minute period after an i.v. injection of a radio-opaque contrast agent (Isovue). These time-dependent contrast-enhanced curves were fit to a two-compartmental model determining tumor perfusion, fractional plasma volume, permeability-surface area produce, and fractional interstitial volume on a voxel-by-voxel basis. After which, the tumors were imaged using photoacoustic CT (Optosonics, Inc., Indianapolis, IN 46202). The near infrared spectra (700-910 nm) within the vasculature was fit to linear combination of measured oxy- and deoxy-hemoglobin blood samples to obtain oxygen saturation levels (SaO II). Results: The PCT-S scanner was first calibrated using different samples of oxygenated blood, from which a statistical error ranging from 2.5-6.5% was measured and a plot of the hemoglobin dissociation curve was consistent with empirical formula. In vivo determination of tumor vasculature SaO II levels were measurably tracked, and spatially correlated to the periphery of the tumor. Tumor depend variations in SaO II - 0.32 (ovarian) and 0.60 (breast) - and in vascular physiology - perfusion, 1.03 and 0.063 mL/min/mL, and fractional plasma volume, 0.20 and 0.07 - were observed. Conclusion: Combined, PCT-S and CED-CT has the potential to measure intra-tumor levels of tumor oxygen saturation and vascular physiology, key parameters associated with hypoxia.

  6. Effect of exogenous surfactants on viability and DNA synthesis in A549, immortalized mouse type II and isolated rat alveolar type II cells

    PubMed Central

    2011-01-01

    Background In mechanically ventilated preterm infants with respiratory distress syndrome (RDS), exogenous surfactant application has been demonstrated both to decrease DNA-synthesis but also and paradoxically to increase epithelial cell proliferation. However, the effect of exogenous surfactant has not been studied directly on alveolar type II cells (ATII cells), a key cell type responsible for alveolar function and repair. Objective The aim of this study was to investigate the effects of two commercially available surfactant preparations on ATII cell viability and DNA synthesis. Methods Curosurf® and Alveofact® were applied to two ATII cell lines (human A549 and mouse iMATII cells) and to primary rat ATII cells for periods of up to 24 h. Cell viability was measured using the redox indicator resazurin and DNA synthesis was measured using BrdU incorporation. Results Curosurf® resulted in slightly decreased cell viability in all cell culture models. However, DNA synthesis was increased in A549 and rat ATII cells but decreased in iMATII cells. Alveofact® exhibited the opposite effects on A549 cells and had very mild effects on the other two cell models. Conclusion This study showed that commercially available exogenous surfactants used to treat preterm infants with RDS can have profound effects on cell viability and DNA synthesis. PMID:21324208

  7. FGFR3 silencing by siRNA inhibits invasion of A549 cells

    PubMed Central

    Li, Yuhua; Liu, Xiguang; Zhang, Hongjun; Jiang, Tao; Xiao, Wenjing; Zhao, Shufen; Yu, Xiaoyun; Han, Fanjie

    2016-01-01

    The present study identified that fibroblast growth factor receptor 3 (FGFR3) was significantly upregulated in bone metastasis of lung adenocarcinoma. RNA interference (RNAi) is a powerful approach for treating a wide range of human diseases, including cancer, through downregulating the expression of selected genes. In the present study, the invasiveness of A549 cells cultured in vitro was altered by small interfering (si)RNA targeting FGFR3, and the regulatory effect of silencing FGFR3 on the expression levels of E-cadherin and matrix metalloproteinase (MMP)9 was investigated. Human lung adenocarcinoma A549 cells were transfected with synthetic specific siRNAs targeting a fragment of the FGFR3 gene (namely, siRNA-855, siRNA-1447 and siRNA-2076) or with negative control (NC) siRNA. Cells were divided into five groups (A, siRNA-855 group; B, siRNA-1447 group; C, siRNA-2076 group; D, NC-siRNA group; and E, blank control group). The effect of the above siRNAs targeting FGFR3 on the invasion capacity of A549 cells was detected by Transwell assay. siRNAs against FGFR3 were transfected into A549 cells with by Lipofectamine® 2000, and the expression levels of FGFR3, E-cadherin and MMP9 were measured by reverse transcription-quantitative polymerase chain reaction and western blot assay. The experimental findings indicated that the expression levels of FGFR3 and MMP9 were significantly reduced in the siRNA-FGFR3-transfected groups (A-C groups), compared with those in the D and E groups (P<0.01). In addition, the expression levels of E-cadherin were markedly elevated in the A-C groups, compared with those in the D and E groups (P<0.01). There was no significant difference in E-cadherin expression between the A-C groups, or between the D and E groups (P>0.05). These results indicated that siRNA-FGFR3 was able to decrease the invasiveness of A549 cells, inhibit the expression of MMP9 and increase the expression of E-cadherin by downregulating the expression of FGFR3. Taken

  8. Growth and Metastases of Human Lung Cancer Are Inhibited in Mouse Xenografts by a Transition State Analogue of 5′-Methylthioadenosine Phosphorylase*

    PubMed Central

    Basu, Indranil; Locker, Joseph; Cassera, Maria B.; Belbin, Thomas J.; Merino, Emilio F.; Dong, Xinyuan; Hemeon, Ivan; Evans, Gary B.; Guha, Chandan; Schramm, Vern L.

    2011-01-01

    The S-adenosylmethionine (AdoMet) salvage enzyme 5′-methylthioadenosine phosphorylase (MTAP) has been implicated as both a cancer target and a tumor suppressor. We tested these hypotheses in mouse xenografts of human lung cancers. AdoMet recycling from 5′-methylthioadenosine (MTA) was blocked by inhibition of MTAP with methylthio-DADMe-Immucillin-A (MTDIA), an orally available, nontoxic, picomolar transition state analogue. Blood, urine, and tumor levels of MTA increased in response to MTDIA treatment. MTDIA treatment inhibited A549 (human non-small cell lung carcinoma) and H358 (human bronchioloalveolar non-small cell lung carcinoma cells) xenograft tumor growth in immunodeficient Rag2−/−γC−/− and NCr-nu mice. Systemic MTA accumulation is implicated as the tumor-suppressive metabolite because MTDIA is effective for in vivo treatment of A549 MTAP−/− and H358 MTAP+/+ tumors. Tumors from treated mice showed increased MTA and decreased polyamines but little alteration in AdoMet, methionine, or adenine levels. Gene expression profiles of A549 tumors from treated and untreated mice revealed only modest alterations with 62 up-regulated and 63 down-regulated mRNAs (≥3-fold). MTDIA antitumor activity in xenografts supports MTAP as a target for lung cancer therapy. PMID:21135097

  9. Isolation of eastern equine encephalitis virus in A549 and MRC-5 cell cultures.

    PubMed

    Sotomayor, E A; Josephson, S L

    1999-07-01

    Eastern equine encephalitis (EEE) has been diagnosed either serologically or by virus isolation. Until now, the recovery of EEE virus has been delegated to reference laboratories with the expertise and resources needed to amplify the virus in a susceptible vertebrate host and/or to isolate and identify the virus in cell culture. We report a case in which EEE virus was recovered directly from a patient's cerebrospinal fluid in A549 and MRC-5 cell cultures. Many clinical virology laboratories routinely use these cells to recover adenovirus, herpes simplex virus, and enterovirus. To the best of our knowledge, this is the first report of isolation of EEE virus in A549 cell culture. This report demonstrates the possibility of recovery of EEE virus in cell culture without the necessity of bioamplification or maintaining unusual cell lines.

  10. G4-Tetra DNA Duplex Induce Lung Cancer Cell Apoptosis in A549 Cells

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobo; Zhao, YiZhuo; Lu, Hu; Fu, Cuiping; Li, Xiao; Jiang, Liyan; Li, Shanqun

    2016-10-01

    The specific DNA is typically impermeable to the plasma membrane due to its natural characters, but DNA tetra structures (DTNs) can be readily uptake by cells in the absence of transfection agents, providing a new strategy to deliver DNA drugs. In this research, the delivery efficiency of tetrahedral DNA nanostructures was measured on adenocarcinomic human alveolar basal epithelial (A549) cells via delivering AS1411 (G4). The DNA tetra-AS1411 complex was rapidly and abundantly uptake by A549 cells, and the induced apoptosis was enhanced. Furthermore, biodistribution in mouse proved the rapid clearance from non-targeted organs in vivo. This study improved the understanding of potential function in DNA-based drug delivery and proved that DTNs-AS1411 could be potentially useful for the treatment of lung cancer.

  11. Upregulation of AQP3 and AQP5 induced by dexamethasone and ambroxol in A549 cells.

    PubMed

    Ben, Yong; Chen, Jie; Zhu, Rong; Gao, Lei; Bai, Chunxue

    2008-04-30

    Aquaporins (AQPs) are membrane channel proteins that play roles in the regulation of water permeability in many tissues. AQP1 and AQP5 expressed in lung provide the principal route for osmotically driven water transport. In the airways, AQP3 and AQP4 facilitate water transport. Dexamethasone and ambroxol are often used to treat patients with pulmonary diseases accompanied by airway hypersecretion. The role of AQPs in these effective treatments has not been addressed. In this study, we analyzed the expression of AQPs in a human airway epithelial cell line (A549 cells) and showed that AQP3 and 5, but not AQP1 and 4, were expressed in A549 cells. Both dexamethasone and ambroxol stimulated the expression of AQP3 and 5 at the mRNA and protein levels. The data suggest potential roles of AQP3 and 5 in the regulation of airway hypersecretion, perhaps ultimately providing a target for treating such diseases.

  12. Deactivation of A549 cancer cells in vitro by a dielectric barrier discharge plasma needle

    NASA Astrophysics Data System (ADS)

    Huang, Jun; Chen, Wei; Li, Hui; Wang, Xing-Quan; Lv, Guo-Hua; Khohsa, M. Latif; Guo, Ming; Feng, Ke-Cheng; Wang, Peng-Ye; Yang, Si-Ze

    2011-03-01

    An inactivation mechanism study on A549 cancer cells by means of a dielectric barrier discharge plasma needle is presented. The neutral red uptake assay provides a quantitative estimation of cell viability after plasma treatment. Experimental results show that the efficiency of argon plasma for the inactivation process is very dependent on power and treatment time. A 27 W power and 120 s treatment time along with 900 standard cubic centimeter per minute Ar flow and a nozzle-to-sample separation of 3 mm are the best parameters of the process. According to the argon emission spectra of the plasma jet and the optical microscope images of the A549 cells after plasma treatment, it is concluded that the reactive species (for example, OH and O) in the argon plasma play a major role in the cell deactivation.

  13. Tomatidine inhibits invasion of human lung adenocarcinoma cell A549 by reducing matrix metalloproteinases expression.

    PubMed

    Yan, Kun-Huang; Lee, Liang-Ming; Yan, Shao-Han; Huang, Hsiang-Ching; Li, Chia-Chen; Lin, Hui-Ting; Chen, Pin-Shern

    2013-05-25

    Tomatidine is an aglycone of glycoalkaloid tomatine in tomato. Tomatidine is found to possess anti-inflammatory properties and may serve as a chemosensitizer in multidrug-resistant tumor cells. However, the effect of tomatidine on cancer cell metastasis remains unclear. This study examines the effect of tomatidine on the migration and invasion of human lung adenocarcinoma A549 cell in vitro. The data demonstrates that tomatidine does not effectively inhibit the viability of A549 cells. When treated with non-toxic doses of tomatidine, cell invasion is markedly suppressed by Boyden chamber invasion assay, while cell migration is not affected. Tomatidine reduces the mRNA level of matrix metalloproteinase-2 (MMP-2), MMP-9 and increases the expression of reversion-inducing cysteine-rich protein with kazal motifs (RECK), as well as tissue inhibitor of metalloproteinase-1 (TIMP-1). The immunoblotting assays indicate that tomatidine is very effective in suppressing the phosphorylation of Akt and extracellular signal regulating kinase (ERK). In addition, tomatidine significantly decreases the nuclear level of nuclear factor kappa B (NF-κB), which suggests that tomatidine inhibits NF-κB activity. Furthermore, the treatment of inhibitors specific for PI3K/Akt (LY294002), ERK (U0126), or NF-κB (pyrrolidine dithiocarbamate) to A549 cells reduced cell invasion and MMP-2/9 expression. The results suggest that tomatidine inhibits the invasion of A549 cells by reducing the expression of MMPs. It also inhibits ERK and Akt signaling pathways and NF-κB activity. These findings demonstrate a new therapeutic potential for tomatidine in anti-metastatic therapy.

  14. Fucoidan from Undaria pinnatifida induces apoptosis in A549 human lung carcinoma cells.

    PubMed

    Boo, Hye-Jin; Hyun, Jae-Hee; Kim, Sang-Cheol; Kang, Jung-Il; Kim, Min-Kyoung; Kim, Sun-Yeou; Cho, Heeyeong; Yoo, Eun-Sook; Kang, Hee-Kyoung

    2011-07-01

    Fucoidan, a sulfated polysaccharide, has various biological activities, such as anticancer, antiangiogenic and antiinflammatory effects; however, the mechanisms of action of fucoidan on anticancer activity have not been fully elucidated. The anticancer effects of fucoidan from Undaria pinnatifida on A549 human lung carcinoma cells were examined. Treatment of A549 cells with fucoidan resulted in potent antiproliferative activity. Also, some typical apoptotic characteristics, such as chromatin condensation and an increase in the population of sub-G1 hypodiploid cells, were observed. With respect to the mechanism underlying the induction of apoptosis, fucoidan reduced Bcl-2 expression, but the expression of Bax was increased in a dose-dependent manner compared with the controls. Furthermore, fucoidan induced caspase-9 activation, but decreased the level of procaspase-3. Cleavage of poly-ADP-ribose polymerase (PARP), a vital substrate of effector caspase, was found. The study further investigated the role of the MAPK and PI3K/Akt pathways with respect to the apoptotic effect of fucoidan, and showed that fucoidan activates ERK1/2 in A549 cells. Unlike ERK1/2, however, treatment with fucoidan resulted in the down-regulation of phospho-p38 expression. In addition, fucoidan resulted in the down-regulation of phospho-PI3K/Akt. Together, these results indicate that fucoidan induces apoptosis of A549 human lung cancer cells through down-regulation of p38, PI3K/Akt, and the activation of the ERK1/2 MAPK pathway.

  15. The biophysical property of A549 cells transferred by VEGF-D.

    PubMed

    Wang, Zhen; Wu, Xiu-Li; Wang, Xu; Tian, Hong-Xia; Chen, Zhi-Hong; Li, Yang-Qiu

    2014-01-01

    Vascular endothelial growth factor-D (VEGF-D) together with VEGF-C is considered to be associated with lymphangiogenesis and angiogenesis and involve in tumorization. This study aims to investigate the influence of exogenous VEGF-D gene on the biophysical property of cell surface of lung adenocarcinoma cell line. A panel of lung adenocarcinoma cell lines were examined the expression of VEGF-D and VEGF-C by real-time PCR. The VEGF-D recombinant plasmid containing enhanced green fluorescence protein (EGFP) was constructed and transfected to the cell line with no expression of VEGF-D and confirmed by real-time PCR and Western blot analysis. Topographic images of cells were obtained by using atomic force microscope (AFM) in contact mode. Unlike VEGF-C, VEGF-D was found to have a very low expression or undetectable expression in lung adenocarcinoma cell lines. The VEGF-D recombinant plasmid had been constructed successfully and was transferred into the human lung adenocarcinoma cell line A549 cells which had no endogenous expression of VEGF-D, and exogenous VEGF-D could be detected in mRNA and protein expression levels in the gene modified cells, while the VEGF-C gene expression had no change after VEGF-D transfection. After transfection, the irregular microspikes or nano clusters could observe on the surface of A549 cells, and VEGF-D transfected A549 cells became more rigid. The exogenous VEGF-D gene might cause the remarkable biophysical architectural changes in the A549 cells, which might as a novel biomarker for evaluation of its biological function.

  16. Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells.

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Siddiqui, Maqsood A; Ahmad, Javed; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; AlSalhi, Mohamad S; Alrokayan, Salman A

    2011-05-10

    Due to the interesting magnetic and electrical properties with good chemical and thermal stabilities, nickel ferrite nanoparticles are being utilized in many applications including magnetic resonance imaging, drug delivery and hyperthermia. Recent studies have shown that nickel ferrite nanoparticles produce cytotoxicity in mammalian cells. However, there is very limited information concerning the toxicity of nickel ferrite nanoparticles at the cellular and molecular level. The aim of this study was to investigate the cytotoxicity, oxidative stress and apoptosis induction by well-characterized nickel ferrite nanoparticles (size 26 nm) in human lung epithelial (A549) cells. Nickel ferrite nanoparticles induced dose-dependent cytotoxicity in A549 cells demonstrated by MTT, NRU and LDH assays. Nickel ferrite nanoparticles were also found to induce oxidative stress evidenced by generation of reactive oxygen species (ROS) and depletion of antioxidant glutathione (GSH). Further, co-treatment with the antioxidant L-ascorbic acid mitigated the ROS generation and GSH depletion due to nickel ferrite nanoparticles suggesting the potential mechanism of oxidative stress. Quantitative real-time PCR analysis demonstrated that following the exposure of A549 cells to nickel ferrite nanoparticles, the level of mRNA expressions of cell cycle checkpoint protein p53 and apoptotic proteins (bax, caspase-3 and caspase-9) were significantly up-regulated, whereas the expression of anti-apoptotic proteins (survivin and bcl-2) were down-regulated. Moreover, activities of caspase-3 and caspase-9 enzymes were also significantly higher in nickel ferrite nanoparticles exposed cells. To the best of our knowledge this is the first report showing that nickel ferrite nanoparticles induced apoptosis in A549 cells through ROS generation and oxidative stress via p53, survivin, bax/bcl-2 and caspase pathways.

  17. Effects of tanshinone nanoemulsion and extract on inhibition of lung cancer cells A549.

    PubMed

    Lee, W D; Liang, Y J; Chen, B H

    2016-12-09

    Danshen (Salvia miltiorrhiza), a Chinese medicinal herb, consists of several functional components including tanshinones responsible for prevention of several chronic diseases. This study intends to prepare tanshinone extract and nanoemulsion from danshen and determine their inhibition effect on lung cancer cells A549. A highly stable tanshinone nanoemulsion composed of Capryol 90, Tween 80, ethanol and deionized water with the mean particle size of 14.2 nm was successfully prepared. Tanshinone nanoemulsion was found to be more effective in inhibiting A549 proliferation than tanshinone extract. Both nanoemulsion and extract could penetrate into cytoplasm through endocytosis, with the former being more susceptible than the latter. A dose-dependent response in up-regulation of p-JNK, p53 and p21 and down-regulation of CDK2, cyclin D1 and cyclin E1 expressions was observed with the cell cycle arrested at G0/G1 phase. The cellular microcompartment change of A549 was also investigated. The study demonstrated that tanshinone nanoemulsion may be used as a botanic drug for treatment of lung cancer.

  18. Sinomenine inhibits A549 human lung cancer cell invasion by mediating the STAT3 signaling pathway

    PubMed Central

    Jiang, Shulong; Gao, Yebo; Hou, Wei; Liu, Rui; Qi, Xin; Xu, Xia; Li, Jie; Bao, Yanju; Zheng, Honggang; Hua, Baojin

    2016-01-01

    Increasing evidence suggests that the failure of lung cancer treatment may occur as a result of tumor invasion and metastasis. Signal transducer and activator of transcription 3 (STAT3), an epithelial-mesenchymal transition-inducing transcription factor, is a key signaling molecule involved in the proliferation, apoptosis, invasion and metastasis of tumor cells. Sinomenine is an alkaloid compound with an antineoplastic potential against a variety of cancer cells. The aim of the present study was to assess the antitumor mechanisms of sinomenine in the A549 human lung cancer cell line. The results demonstrated that sinomenine manifested dose-dependent cytotoxicity and induced apoptosis in A549 cells. The protein expression of Janus kinase 2, STAT3, phosphorylated-STAT3, Snail, N-cadherin and vimentin decreased in sinomenine-treated cells, while E-cadherin protein expression increased. The regulation of STAT3, N-cadherin and E-cadherin by sinomenine was further confirmed by reverse transcription-quantitative polymerase chain reaction and immunofluorescent staining. It was demonstrated that sinomenine exerts inhibitory effects on A549 human lung cancer cell invasion, possibly through the inhibition of STAT3 signaling. These results provide a novel insight into the role of sinomenine in the treatment of non-small cell lung cancer. PMID:27446441

  19. Wnt/{beta}-catenin signaling regulates cancer stem cells in lung cancer A549 cells

    SciTech Connect

    Teng, Ying; Wang, Xiuwen; Wang, Yawei; Ma, Daoxin

    2010-02-12

    Wnt/{beta}-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that {beta}-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of {beta}-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of {beta}-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/{beta}-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.

  20. PVM/MA-shelled selol nanocapsules promote cell cycle arrest in A549 lung adenocarcinoma cells

    PubMed Central

    2014-01-01

    Background Selol is an oily mixture of selenitetriacylglycerides that was obtained as a semi-synthetic compound containing selenite. Selol is effective against cancerous cells and less toxic to normal cells compared with inorganic forms of selenite. However, Selol’s hydrophobicity hinders its administration in vivo. Therefore, the present study aimed to produce a formulation of Selol nanocapsules (SPN) and to test its effectiveness against pulmonary adenocarcinoma cells (A549). Results Nanocapsules were produced through an interfacial nanoprecipitation method. The polymer shell was composed of poly(methyl vinyl ether-co-maleic anhydride) (PVM/MA) copolymer. The obtained nanocapsules were monodisperse and stable. Both free Selol (S) and SPN reduced the viability of A549 cells, whereas S induced a greater reduction in non-tumor cell viability than SPN. The suppressor effect of SPN was primarily associated to the G2/M arrest of the cell cycle, as was corroborated by the down-regulations of the CCNB1 and CDC25C genes. Apoptosis and necrosis were induced by Selol in a discrete percentage of A549 cells. SPN also increased the production of reactive oxygen species, leading to oxidative cellular damage and to the overexpression of the GPX1, CYP1A1, BAX and BCL2 genes. Conclusions This study presents a stable formulation of PVM/MA-shelled Selol nanocapsules and provides the first demonstration that Selol promotes G2/M arrest in cancerous cells. PMID:25149827

  1. Effects of tanshinone nanoemulsion and extract on inhibition of lung cancer cells A549

    NASA Astrophysics Data System (ADS)

    Lee, W. D.; Liang, Y. J.; Chen, B. H.

    2016-12-01

    Danshen (Salvia miltiorrhiza), a Chinese medicinal herb, consists of several functional components including tanshinones responsible for prevention of several chronic diseases. This study intends to prepare tanshinone extract and nanoemulsion from danshen and determine their inhibition effect on lung cancer cells A549. A highly stable tanshinone nanoemulsion composed of Capryol 90, Tween 80, ethanol and deionized water with the mean particle size of 14.2 nm was successfully prepared. Tanshinone nanoemulsion was found to be more effective in inhibiting A549 proliferation than tanshinone extract. Both nanoemulsion and extract could penetrate into cytoplasm through endocytosis, with the former being more susceptible than the latter. A dose-dependent response in up-regulation of p-JNK, p53 and p21 and down-regulation of CDK2, cyclin D1 and cyclin E1 expressions was observed with the cell cycle arrested at G0/G1 phase. The cellular microcompartment change of A549 was also investigated. The study demonstrated that tanshinone nanoemulsion may be used as a botanic drug for treatment of lung cancer.

  2. Myeloid cell leukemia-1 is a key molecular target for mithramycin A-induced apoptosis in androgen-independent prostate cancer cells and a tumor xenograft animal model.

    PubMed

    Choi, Eun-Sun; Jung, Ji-Youn; Lee, Jin-Seok; Park, Jong-Hwan; Cho, Nam-Pyo; Cho, Sung-Dae

    2013-01-01

    Mithramycin A (Mith) is a natural polyketide that has been used in multiple areas of research including apoptosis of various cancer cells. Here, we examined the critical role of Mith in apoptosis and its molecular mechanism in DU145 and PC3 prostate cancer cells and tumor xenografts. Mith decreased cell growth and induced apoptosis in DU145 and PC-3 cells. Myeloid cell leukemia-1 (Mcl-1) was over-expressed in both cell lines compared to RWPE1 cells. Mith inhibited Mcl-1 protein expression in both cells, but only altered Mcl-1 mRNA levels in PC-3 cells. We also found that Mith reduced Mcl-1 protein levels through both proteasome-dependent protein degradation and the inhibition of protein synthesis in DU145 cells. Studies using siRNA confirmed that the knockdown of Mcl-1 induced apoptosis. Mith significantly suppressed TPA-induced neoplastic cell transformation through the down-regulation of the Mcl-1 protein in JB6 cells, and suppressed the transforming activity of both cell types. Mith also inhibited tumor growth and Mcl-1 levels, in addition to inducing apoptosis, in athymic nude mice bearing DU145 cell xenografts without affecting five normal organs. Therefore, Mith inhibits cell growth and induces apoptosis by suppressing Mcl-1 in both prostate cancer cells and xenograft tumors, and thus is a potent anticancer drug candidate for prostate cancer.

  3. Cytotoxicity of carbon nanotube variants: a comparative in vitro exposure study with A549 epithelial and J774 macrophage cells.

    PubMed

    Kumarathasan, Prem; Breznan, Dalibor; Das, Dharani; Salam, Mohamed A; Siddiqui, Yunus; MacKinnon-Roy, Christine; Guan, Jingwen; de Silva, Nimal; Simard, Benoit; Vincent, Renaud

    2015-03-01

    While production of engineered carbon nanotubes (CNTs) has escalated in recent years, knowledge of risk associated with exposure to these materials remains unclear. We report on the cytotoxicity of four CNT variants in human lung epithelial cells (A549) and murine macrophages (J774). Morphology, metal content, aggregation/agglomeration state, pore volume, surface area and modifications were determined for the pristine and oxidized single-walled (SW) and multi-walled (MW) CNTs. Cytotoxicity was evaluated by cellular ATP content, BrdU incorporation, lactate dehydrogenase (LDH) release, and CellTiter-Blue (CTB) reduction assays. All CNTs were more cytotoxic than respirable TiO2 and SiO2 reference particles. Oxidation of CNTs removed most metallic impurities but introduced surface polar functionalities. Although slopes of fold changes for cytotoxicity endpoints were steeper with J774 compared to A549 cells, CNT cytotoxicity ranking in both cell types was assay-dependent. Based on CTB reduction and BrdU incorporation, the cytotoxicity of the polar oxidized CNTs was higher compared to the pristine CNTs. In contrast, pristine CNTs were more cytotoxic than oxidized CNTs when assessed for cellular ATP and LDH. Correlation analyses between CNTs' physico-chemical properties and average relative potency revealed the impact of metal content and surface area on the potency values estimated using ATP and LDH assays, while surface polarity affected the potency values estimated from CTB and BrdU assays. We show that in order to reliably estimate the risk posed by these materials, in vitro toxicity assessment of CNTs should be conducted with well characterized materials, in multiple cellular models using several cytotoxicity assays that report on distinct cellular processes.

  4. Fludioxonil induced the cancer growth and metastasis via altering epithelial-mesenchymal transition via an estrogen receptor-dependent pathway in cellular and xenografted breast cancer models.

    PubMed

    Go, Ryeo-Eun; Kim, Cho-Won; Jeon, So-Ye; Byun, Yong-Sub; Jeung, Eui-Bae; Nam, Ki-Hoan; Choi, Kyung-Chul

    2017-04-01

    Fludioxonil is an antifungal agent used in agricultural applications that is present at measurable amounts in fruits and vegetables. In this study, the effects of fludioxonil on cancer cell viability, epithelial-mesenchymal transition (EMT), and metastasis were examined in MCF-7 clonal variant breast cancer cell (MCF-7 CV cells) with estrogen receptors (ERs). MCF-7 CV cells were cultured with 0.1% DMSO (control), 17β-estradiol (E2; 1 ×10(-9) M, positive control), or fludioxonil (10(-5) -10(-8) M). MTT assay revealed that fludioxonil increased MCF-7 CV cell proliferation 1.2 to 1.5 times compared to the control, while E2 markedly increased the cell proliferation by about 3.5 times. When the samples were co-treated with ICI 182,780 (10(-8) M), an ER antagonist, fludioxonil-induced cell proliferation was reversed to the level of the control. Protein levels of cyclin E1, cyclin D1, Snail, and N-cadherin increased in response to fludioxonil as the reaction to E2, but these increases were not observed when fludioxonil was administered with ICI 182,780. Moreover, the protein level of p21 and E-cadherin decreased in response to treatment with fludioxonil, but remained at the control level when co-treated with ICI 182,780. In xenografted mouse models transplanted with MCF-7 CV cells, fludioxonil significantly increased the tumor mass formation by about 2.5 times as E2 did when compared to vehicle (0.1% DMSO) during the experimental period (80 days). Immunohistochemistry revealed that the protein level of proliferating cell nuclear antigen (PCNA), Snail, and cathepsin D increased in response to fludioxonil as the reaction to E2. These results imply that fludioxonil may have a potential to induce growth or metastatic behaviors of breast cancer by regulation of the expression of cell cycle-, EMT-, and metastasis-related genes via the ER-dependent pathway. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1439-1454, 2017.

  5. Anti-CCR4 monoclonal antibody enhances antitumor immunity by modulating tumor-infiltrating Tregs in an ovarian cancer xenograft humanized mouse model

    PubMed Central

    Chang, De-Kuan; Peterson, Eric; Sun, Jiusong; Goudie, Calum; Drapkin, Ronny I.; Liu, Joyce F.; Matulonis, Ursula; Zhu, Quan; Marasco, Wayne A.

    2016-01-01

    ABSTRACT Recent studies have demonstrated that regulatory T cells (Tregs) are recruited to tumor sites where they can suppress antitumor immunity. The chemokine receptor CCR4 is expressed at high levels on functional CD4+CD25+FoxP3+ Tregs and production of the CCR4 ligand CCL22 by tumor cells and tumor-associated macrophages is associated with Treg recruitment to the tumor site. Here, we tested IgG1 and IgG4 isotypes of human anti-CCR4 mAb2-3 for their in vitro activity and in vivo capacity in a NSG mouse model bearing CCL22-secreting ovarian cancer (OvCA) xenograft to modulate Tregs and restore antitumor activity. Both mAb2-3 isotypes blocked in vitro chemoattraction of Tregs to CCL22-secreting OvCA cells. However, they differed in their in vivo mode of action with IgG1 causing Treg depletion and IgG4 blocking migration to the tumors. Primary T cells that were primed with OvCA-pulsed dendritic cells (DCs) demonstrated INFγ secretion that could be enhanced through Treg depletion by mAb2-3. Humanized mice reconstructed with allogeneic tumor-primed T cells (TP-T) were used to evaluate the restoration of OvCA immunity by depletion or blockade of Tregs with mAb2-3. We observed that IgG1 was more potent than IgG4 in inhibiting tumor growth. Mechanism studies demonstrated that mAb2-3 treatment lead to inhibition of IL-2 binding to its receptor. Further studies showed that mAb2-3 induced CD25 shedding (sCD25) from Tregs which lead to a decrease in IL-2-dependent survival. Together, the results demonstrate that mAb2-3 is an agonist antibody that can restore anti-OvCA immunity through modulation of Treg activity. PMID:27141347

  6. Intracellular calcium promotes radioresistance of non-small cell lung cancer A549 cells through activating Akt signaling.

    PubMed

    Wang, Yiling; He, Jiantao; Zhang, Shenghui; Yang, Qingbo

    2017-03-01

    Radiotherapy is a major therapeutic approach in non-small cell lung cancer but is restricted by radioresistance. Although Akt signaling promotes radioresistance in non-small cell lung cancer, it is not well understood how Akt signaling is activated. Since intracellular calcium (Ca(2+)) could activate Akt in A549 cells, we investigated the relationship between intracellular calcium (Ca(2+)) and Akt signaling in radioresistant A549 cells by establishing radioresistant non-small cell lung cancer A549 cells. The radioresistant cell line A549 was generated by dose-gradient irradiation of the parental A549 cells. The cell viability, proliferation, and apoptosis were, respectively, assessed using the cell counting kit-8, EdU labeling, and flow cytometry analysis. The phosphorylation of Akt was evaluated by Western blotting, and the intracellular Ca(2+) concentration was assessed by Fluo 4-AM. The radioresistant A549 cells displayed mesenchymal morphology. After additional irradiation, the radioresistant A549 cells showed decreased cell viability and proliferation but increased apoptosis. Moreover, the intracellular Ca(2+) concentration and the phosphorylation level on the Akt473 site in radioresistant A549 cells were higher than those in original cells, whereas the percentage of apoptosis in radioresistant A549 cells was less. All these results could be reversed by verapamil. In conclusion, our study found that intracellular Ca(2+) could promote radioresistance of non-small cell lung cancer cells through phosphorylating of Akt on the 473 site, which contributes to a better understanding on the non-small cell lung cancer radioresistance, and may provide a new target for radioresistance management.

  7. Effects of CH4893237, a new orally active estrogen receptor downregulator, on breast cancer xenograft models with low serum estrogen levels.

    PubMed

    Yoneya, Takaaki; Tsunenari, Toshiaki; Taniguchi, Kenji; Kanbe, Yoshitake; Morikawa, Kazumi; Yamada-Okabe, Hisafumi; Lee, Yeon-Ho; Lee, Mee-Hyun; Kwon, Lae-Sung

    2009-03-01

    We compared the antitumor efficacy and estrogen receptor (ER) degradation of CH4893237, a new orally active selective ER downregulator, with fulvestrant and tamoxifen in human breast cancer xenografts with low levels of serum estrogen (E2) (50.6, 22.9 and <16.7 pg/ml), equivalent to the ranges in postmenopausal or aromatase inhibitor-treated breast cancer patients. In addition, using proteolysis assays, we tested the conformational changes induced in ERalpha and ERbeta by CH4893237, fulvestrant, and 4-OH tamoxifen (4OHT). In ZR-75-1 xenografts with 50.6 pg/ml E2, CH4893237 (100 and 300 mg/kg/day p.o.) as well as fulvestrant (1 and 3 mg/body/week s.c.) showed complete growth inhibition (>90%) and tamoxifen (30 and 100 mg/kg/day p.o.) showed moderate tamoxifen resistance. The antitumor activity of CH4893237 (300 mg/kg) was the same as that of fulvestrant (3 mg/body) but the rate of ER degradation induced by CH4893237 (300 mg/kg) was significantly stronger than that of fulvestrant (3 mg/body) (94.3 vs. 85.5%, P<0.01). In Br-10 xenografts with 22.9 pg/ml E2, CH4893237 (30 mg/kg) and fulvestrant (1 mg/body) showed potent growth inhibition (>70%) whereas tamoxifen (1, 10 and 100 mg/kg) showed strong tamoxifen resistance. In Br-10 xenografts with ovariectomized-level E2 (<16.7 pg/ml), tamoxifen (30 mg/kg) increased the tumor volume but CH4893237 (30 mg/kg) showed no agonistic activity. In the ERalpha and ERbeta proteolysis assays, the band pattern for CH4893237 was different from fulvestrant. Thus, CH48793237 showed potent antitumor efficacies without agonistic activity and superior ER degradation in human breast cancer xenografts with low serum E2. Furthermore, the proteolysis studies suggest that CH4893237 induces conformational changes of ER different from those induced by fulvestrant. Therefore, CH4893237 alone or in combination with an aromatase inhibitor may be an efficient treatment for postmenopausal breast cancer patients.

  8. Dielectric barrier discharge plasma in Ar/O{sub 2} promoting apoptosis behavior in A549 cancer cells

    SciTech Connect

    Huang Jun; Li Hui; Chen Wei; Lv Guohua; Wang Xingquan; Zhang Guoping; Wang Pengye; Ostrikov, Kostya; Yang Size

    2011-12-19

    The Ar/O{sub 2} plasma needle in the induction of A549 cancer cells apoptosis process is studied by means of real-time observation. The entire process of programmed cell death is observed. The typical morphological changes of A549 apoptosis are detected by 4', 6-diamidino-2-phenylindole staining, for example, chromatin condensation and nuclear fragmentation. Cell viability is determined and quantified by neutral red uptake assay, and the survival rate of A549 from Ar/O{sub 2} plasmas is presented. Further spectral analysis indicates the reactive species, including O and OH play crucial roles in the cell inactivation.

  9. Dielectric barrier discharge plasma in Ar/O2 promoting apoptosis behavior in A549 cancer cells

    NASA Astrophysics Data System (ADS)

    Huang, Jun; Li, Hui; Chen, Wei; Lv, Guo-Hua; Wang, Xing-Quan; Zhang, Guo-Ping; Ostrikov, Kostya; Wang, Peng-Ye; Yang, Si-Ze

    2011-12-01

    The Ar/O2 plasma needle in the induction of A549 cancer cells apoptosis process is studied by means of real-time observation. The entire process of programmed cell death is observed. The typical morphological changes of A549 apoptosis are detected by 4', 6-diamidino-2-phenylindole staining, for example, chromatin condensation and nuclear fragmentation. Cell viability is determined and quantified by neutral red uptake assay, and the survival rate of A549 from Ar/O2 plasmas is presented. Further spectral analysis indicates the reactive species, including O and OH play crucial roles in the cell inactivation.

  10. Sodium orthovanadate affects growth of some human epithelial cancer cells (A549, HTB44, DU145).

    PubMed

    Klein, Andrzej; Holko, Przemyslaw; Ligeza, Janusz; Kordowiak, Anna M

    2008-01-01

    Within the concentration range of 1-20 microM, orthovanadate (Na3VO4) demonstrated a time and dose-dependent inhibition of autocrine growth of the human carcinoma cell lines A549 (lung), HTB44 (kidney) and DU145 (prostate), as compared to appropriate controls (without Na3VO4). The investigation was conducted by two methods: staining with N-hexa-methylpararosaniline (crystal violet=CV) or bromide3-(4,5-dimethyltio-azo-2)-2,5-diphenyl-tetrazole (MTT). In 5, 10 and 20 microM of Na3VO4 in serum-free medium, the mean values of these two tests for A549 were approximately 40%, 45% or 65% as compared to the appropriate controls. HTB44 had the greatest opportunity (statistically insignificant) at lower vanadium concentrations (up to 10 microM), whereas at 20 microM growth inhibition of these cells was approximately 50% of the controls. DU145 showed approximately 33%, 65% and 98% growth inhibition for 5, 10 and 20 microM of Na3VO4, respectively Additionally, hypothetical curves obtained by a MANOVA test based on the CV results after 72 h incubation with Na3VO4 in serum-free medium, and an example of a time-dependent effect of Na3VO4 on A549 cells, were also presented. Sodium orthovanadate was also examined for its cytotoxic capabilities, especially its ability to induce tumor cell apoptosis; the results were compared with the effect of paclitaxel. The target cells were dyed by differential staining (HOECHST33258 and propidium iodide) after 3 h and 24 h (DU145) or 3 h and 72 h (A549) of incubation with the vanadium compound. Contrary to the two cancer cell lines (viable, apoptotic or necrotic in experimental conditions), the renal HTB44 cells were insensitive up to 15 microM Na3VO4 concentrations. After 3 h incubation with Na3VO4, both lung (A549) and prostate (DU145) cancer cells showed a slight but significant reduction in the percentage of viable cells, and an increased amount of apoptotic cells. In contrast to the lung cells, DU145 prostate cells after 24 h were more

  11. Analysis of the Lipidome of Xenografts Using MALDI-IMS and UHPLC-ESI-QTOF

    NASA Astrophysics Data System (ADS)

    Fernández, Roberto; Lage, Sergio; Abad-García, Beatriz; Barceló-Coblijn, Gwendolyn; Terés, Silvia; López, Daniel H.; Guardiola-Serrano, Francisca; Martín, M. Laura; Escribá, Pablo V.; Fernández, José A.

    2014-07-01

    Human tumor xenografts in immunodeficient mice are a very popular model to study the development of cancer and to test new drug candidates. Among the parameters analyzed are the variations in the lipid composition, as they are good indicators of changes in the cellular metabolism. Here, we present a study on the distribution of lipids in xenografts of NCI-H1975 human lung cancer cells, using MALDI imaging mass spectrometry and UHPLC-ESI-QTOF. The identification of lipids directly from the tissue by MALDI was aided by the comparison with identification using ESI ionization in lipid extracts from the same xenografts. Lipids belonging to PCs, PIs, SMs, DAG, TAG, PS, PA, and PG classes were identified and their distribution over the xenograft was determined. Three areas were identified in the xenograft, corresponding to cells in different metabolic stages and to a layer of adipose tissue that covers the xenograft.

  12. Therapeutic effects of sorafenib on the A549/DDP human lung adenocarcinoma cell line in vitro.

    PubMed

    Chen, Xiang-Qi; Wang, Yu-Lan; Li, Zhi-Ying; Lin, Ting-Yan

    2014-07-01

    The aim of the present study was to observe the effects of sorafenib on the proliferation, apoptosis and invasion of A549/DDP cisplatin-resistant lung adenocarcinoma cells cultured in vitro. The A549/DDP cisplatin-resistant lung adenocarcinoma cell strain was cultured in vitro, the cell culture group incubated in culture medium only was set as the control group (Group S0) and the four concentration gradients of sorafenib were added to the culture groups as the experimental groups: S1, 2 µmol/l; S2, 4 µmol/l; S3, 8 µmol/l; and S4, 16 µmol/l. The MTT assay was used to determine the growth inhibition rate of the cells, which were respectively subjected to sorafenib treatment for 24, 48 and 72 h. Flow cytometry was used to determine the rate of apoptosis of cells in each group following sorafenib treatment for 72 h. Furthermore, the Transwell invasion experiment was used to determine the effect on A549/DDP cell invasion following sorafenib treatment for 24 h. Based on the MTT assay, it was found that the inhibition rates of A549/DDP cisplatin-resistant lung adenocarcinoma cells in groups S1-4 following sorafenib treatment for 24 h were 4.58±2.82, 14.93±2.62, 37.58±7.13 and 58.39±8.15%, respectively. For 48 h, inhibition rates in S1-4 were 14.98±2.93, 26.28±7.31, 63.00±3.05 and 78.84±3.96%, respectively, and for 72 h, inhibition rates were 18.80±2.82, 32.71±2.55, 75.51±4.73 and 87.50±3.36%, respectively. The difference in the inhibition rates of cells among the experimental groups for the same incubation time showed statistical significance (P<0.05). Flow cytometric analysis indicated that the rate of apoptosis in the control group was 8.88±0.81% following sorafenib treatment for 72 h, and the rates of apoptosis in groups S1-4 were, 12.84±0.24, 17.27±0.78, 21.98±0.75 and 49.67±1.38%, respectively. The rate of apoptosis in each experimental group was higher compared with that in the control group (P<0.05). The difference in the rate of apoptosis

  13. In vitro and in vivo antitumor activity of scutebarbatine A on human lung carcinoma A549 cell lines.

    PubMed

    Yang, Xiao-Kun; Xu, Ming-Yuan; Xu, Gui-Sen; Zhang, Yu-Lan; Xu, Zhao-Xia

    2014-06-25

    During our systematic study on the anticancer activities of Scutellaria barbata, scutebarbatine A (SBT-A), one of the major alkaloids in S. barbata, was found to have antitumor effects on A549 cells. Thus, we designed the present study to investigate in detail the antitumor effects of SBT-A. The cytotoxic effect of SBT-A on A549 in vitro were determined by an MTT assay and evaluated by IC50 values. Furthermore, results of Hoechst 33258 and Annexin V/PI staining assays demonstrated that SBT-A had significant antitumor effects on A549 cells via apoptosis, in a concentration-dependent manner. What's more, the mechanism was explored by western blotting, and our study revealed that SBT-A can up-regulate the expressions of cytochrome c, caspase-3 and 9, and down-regulate the levels of Bcl-2 in A549 cells. Finally, the antitumor effects of SBT-A were evaluated in vivo by using transplanted tumor nude mice, and the results confirmed that SBT-A has a notable antitumor effect on A549 cancer via mitochondria-mediated apoptosis. Collectively, our results demonstrated that SBT-A showed significant antitumor effects on A549 cells in vivo and in vitro via mitochondria-mediated apoptosis by up-regulating expressions of caspase-3 and 9, and down-regulating Bcl-2.

  14. Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 non-small cell lung cancer cells

    PubMed Central

    Yong, Wai Kuan; Ho, Yen Fong; Malek, Sri Nurestri Abd

    2015-01-01

    Background: Xanthohumol, a major prenylated chalcone found in female hop plant, Humulus lupulus, was reported to have various chemopreventive and anti-cancer properties. However, its apoptotic effect on human alveolar adenocarcinoma cell line (A549) of non-small cell lung cancer (NSCLC) was unknown. Objective: This study aimed to investigate the effects of xanthohumol on apoptosis in A549 human NSCLC cells. Materials and Methods: A549 cell proliferation was determined by sulforhodamine B assay. Morphological changes of the cells were studied via phase contrast and fluorescent microscopy. Induction of apoptosis was assessed by Annexin-V fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining, DNA fragmentation (TUNEL) assay mitochondrial membrane potential assay, cell cycle analysis, and caspase activity studies. Results: Xanthohumol was found to decrease cell proliferation in A549 cells but had relatively low cytotoxicity on normal human lung fibroblast cell line (MRC-5). Typical cellular and nuclear apoptotic features were also observed in A549 cells treated with xanthohumol. Onset of apoptosis in A549 cells was further confirmed by externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells after treatment. Xanthohumol induced accumulation of cells in sub G1 and S phase based on cell cycle analysis and also increased the activities of caspase-3, -8, and -9. Conclusion: This work suggests that xanthohumol as an apoptosis inducer, may be a potent therapeutic compound for NSCLC. PMID:26664015

  15. Artesunate suppresses tumor growth and induces apoptosis through the modulation of multiple oncogenic cascades in a chronic myeloid leukemia xenograft mouse model

    PubMed Central

    Kim, Chulwon; Lee, Jong Hyun; Kim, Sung-Hoon; Sethi, Gautam; Ahn, Kwang Seok

    2015-01-01

    Artesunate (ART), a semi-synthetic derivative of artemisinin, is one of the most commonly used anti-malarial drugs. Also, ART possesses anticancer potential albeit through incompletely understood molecular mechanism(s). Here, the effect of ART on various protein kinases, associated gene products, cellular response, and apoptosis was investigated. The in vivo effect of ART on the growth of human CML xenograft tumors in athymic nu/nu mice was also examined. In our preliminary experiments, we first observed that phosphorylation of p38, ERK, CREB, Chk-2, STAT5, and RSK proteins were suppressed upon ART exposure. Interestingly, ART induced the expression of SOCS-1 protein and depletion of SOCS-1 using siRNA abrogated the STAT5 inhibitory effect of the drug. Also various dephosphorylations caused by ART led to the suppression of various survival gene products and induced apoptosis through caspase-3 activation. Moreover, ART also substantially potentiated the apoptosis induced by chemotherapeutic agents. Finally, when administered intraperitoneally, ART inhibited p38, ERK, STAT5, and CREB activation in tumor tissues and the growth of human CML xenograft tumors in mice without exhibiting any significant adverse effects. Overall, our results suggest that ART exerts its anti-proliferative and pro-apoptotic effects through suppression of multiple signaling cascades in CML both in vitro and in vivo. PMID:25738364

  16. Optimisation and molecular signalling of apoptosis in sequential cryotherapy and chemotherapy combination in human A549 lung cancer xenografts in SCID mice

    PubMed Central

    Forest, V; Hadjeres, R; Bertrand, R; Jean-François, R

    2009-01-01

    We define the optimal parameters for combination of cryotherapy (nitrous oxide) with chemotherapy (vinorelbine ditartrate, VNB) treatment and characterise some of the signals involved for apoptosis activation. No advantage appeared when cryotherapy and VNB were combined simultaneously compared to cryosurgery alone. In contrast, tumour volumes were reduced after a sequential treatment schedule, where each individual treatment was separated by 48 h. No significant benefit appeared when the sequential treatment was separated by 24 h, although some individual mice showed a good response. The sequence of treatment had no impact on the observed tumour growth inhibition in mice. The number of apoptotic cells was significantly augmented in the sequential treatment schedule where VNB was administered 48 h before cryotherapy. In this sequential treatment, the number of apoptotic cells correlated with heightened expression of the BH3-only Puma, Noxa and Bim-EL, at both the mRNA and protein levels. No significant change in Bax, Bcl-xL and Bcl-2 mRNA expression was apparent, whereas Mcl-1 expression increased only slightly to a much lower level than BH3-only mRNAs. Our data indicate that 48 h sequential rather than simultaneous cryotherapy with VNB in future cancer cryochemotherapy schedules will enhance the tumour response, and argue that VNB administration, 48 h before cryotherapy, will provoke apoptosis more efficiently. PMID:19455143

  17. Identification of Biomarkers of Necrosis in Xenografts Using Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Fernández, Roberto; Garate, Jone; Lage, Sergio; Terés, Silvia; Higuera, Mónica; Bestard-Escalas, Joan; López, Daniel H.; Guardiola-Serrano, Francisca; Escribá, Pablo V.; Barceló-Coblijn, Gwendolyn; Fernández, José A.

    2016-02-01

    Xenografts are commonly used to test the effect of new drugs on human cancer. However, because of their heterogeneity, analysis of the results is often controversial. Part of the problem originates in the existence of tumor cells at different metabolic stages: from metastatic to necrotic cells, as it happens in real tumors. Imaging mass spectrometry is an excellent solution for the analysis of the results as it yields detailed information not only on the composition of the tissue but also on the distribution of the biomolecules within the tissue. Here, we use imaging mass spectrometry to determine the distribution of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and their plasmanyl- and plasmenylether derivatives (PC-P/O and PE-P/O) in xenografts of five different tumor cell lines: A-549, NCI-H1975, BX-PC3, HT29, and U-87 MG. The results demonstrate that the necrotic areas showed a higher abundance of Na+ adducts and of PC-P/O species, whereas a large abundance of PE-P/O species was found in all the xenografts. Thus, the PC/PC-ether and Na+/K+ ratios may highlight the necrotic areas while an increase on the number of PE-ether species may be pointing to the existence of viable tumor tissues. Furthermore, the existence of important changes in the concentration of Na+ and K+ adducts between different tissues has to be taken into account while interpreting the imaging mass spectrometry results.

  18. TGFβ upregulates PAR-1 expression and signalling responses in A549 lung adenocarcinoma cells

    PubMed Central

    Smoktunowicz, Natalia; Platé, Manuela; Stern, Alejandro Ortiz; D'Antongiovanni, Vanessa; Robinson, Eifion; Chudasama, Vijay; Caddick, Stephen; Scotton, Chris J.; Jarai, Gabor; Chambers, Rachel C.

    2016-01-01

    The major high-affinity thrombin receptor, proteinase activated receptor-1 (PAR-1) is expressed at low levels by the normal epithelium but is upregulated in many types of cancer, including lung cancer. The thrombin-PAR-1 signalling axis contributes to the activation of latent TGFβ in response to tissue injury via an αvβ6 integrin-mediated mechanism. TGFβ is a pleiotropic cytokine that acts as a tumour suppressor in normal and dysplastic cells but switches into a tumour promoter in advanced tumours. In this study we demonstrate that TGFβ is a positive regulator of PAR-1 expression in A549 lung adenocarcinoma cells, which in turn increases the sensitivity of these cells to thrombin signalling. We further demonstrate that this effect is Smad3-, ERK1/2- and Sp1-dependent. We also show that TGFβ-mediated PAR-1 upregulation is accompanied by increased expression of integrin αv and β6 subunits. Finally, TGFβ pre-stimulation promotes increased migratory potential of A549 to thrombin. These data have important implications for our understanding of the interplay between coagulation and TGFβ signalling responses in lung cancer. PMID:27566553

  19. Cytotoxicity of semiconductor nanoparticles in A549 cells is attributable to their intrinsic oxidant activity

    NASA Astrophysics Data System (ADS)

    Escamilla-Rivera, Vicente; Uribe-Ramirez, Marisela; Gonzalez-Pozos, Sirenia; Velumani, Subramaniam; Arreola-Mendoza, Laura; De Vizcaya-Ruiz, Andrea

    2016-04-01

    Copper indium gallium diselenide (CIGS) and cadmium sulfide (CdS) nanoparticles (NP) are next generation semiconductors used in photovoltaic cells (PV). They possess high quantum efficiency, absorption coefficient, and cheaper manufacturing costs compared to silicon. Due to their potential for an industrial development and the lack of information about the risk associated in their use, we investigated the influence of the physicochemical characteristics of CIGS (9 nm) and CdS (20 nm) in relation to the induction of cytotoxicity in human alveolar A549 cells through ROS generation and mitochondrial dysfunction. CIGS induced cytotoxicity in a dose dependent manner in lower concentrations than CdS; both NP were able to induce ROS in A549. Moreover, CIGS interact directly with mitochondria inducing depolarization that leads to the induction of apoptosis compared to CdS. Antioxidant pretreatment significantly prevented the loss of mitochondrial membrane potential and cytotoxicity, suggesting ROS generation as the main cytotoxic mechanism. These results demonstrate that semiconductor characteristics of NP are crucial for the type and intensity of the cytotoxic effects. Our work provides relevant information that may help guide the production of a safer NP-based PV technologies, and would be a valuable resource on future risk assessment for a safer use of nanotechnology in the development of clean sources of renewable energy.

  20. Previous heat shock treatment inhibits Mayaro virus replication in human lung adenocarcinoma (A549) cells.

    PubMed

    Virgilio, P L; Godinho-Netto, M C; Carvalho Mda, G

    1997-01-01

    Human lung adenocarcinoma cells (A549) were submitted to mild or severe heat shock (42 degrees C or 44 degrees C) for 1 h, while another group of cells was double-heat-shocked (submitted to 42 degrees C for 1 h, returned to 37 degrees C for 3 h, then exposed to 44 degrees C for 1 h). After each heat treatment, the cells were infected with Mayaro virus for 24 h and incubated at 37 degrees C. The results showed that the double-heat-shocked thermotolerant cells exhibited a 10(4)-fold virus titre inhibition, despite the recovery of protein synthesis and original morphology 24 h post-infection. In contrast, cells submitted to mild or severe heat shock exhibited weaker inhibition of Mayaro virus titre (10(2)-fold). The mildly heat-shocked cells also presented a full recovery in protein synthesis, which was not observed in severely heat-shocked cells. These results indicate that exposure of A549 cells to a mild or to a double heat shock treatment before Mayaro virus infection induces an antiviral state.

  1. Middle infrared radiation induces G2/M cell cycle arrest in A549 lung cancer cells.

    PubMed

    Chang, Hsin-Yi; Shih, Meng-Her; Huang, Hsuan-Cheng; Tsai, Shang-Ru; Juan, Hsueh-Fen; Lee, Si-Chen

    2013-01-01

    There were studies investigating the effects of broadband infrared radiation (IR) on cancer cell, while the influences of middle-infrared radiation (MIR) are still unknown. In this study, a MIR emitter with emission wavelength band in the 3-5 µm region was developed to irradiate A549 lung adenocarcinoma cells. It was found that MIR exposure inhibited cell proliferation and induced morphological changes by altering the cellular distribution of cytoskeletal components. Using quantitative PCR, we found that MIR promoted the expression levels of ATM (ataxia telangiectasia mutated), ATR (ataxia-telangiectasia and Rad3-related and Rad3-related), TP53 (tumor protein p53), p21 (CDKN1A, cyclin-dependent kinase inhibitor 1A) and GADD45 (growth arrest and DNA-damage inducible), but decreased the expression levels of cyclin B coding genes, CCNB1 and CCNB2, as well as CDK1 (Cyclin-dependent kinase 1). The reduction of protein expression levels of CDC25C, cyclin B1 and the phosphorylation of CDK1 at Thr-161 altogether suggest G(2)/M arrest occurred in A549 cells by MIR. DNA repair foci formation of DNA double-strand breaks (DSB) marker γ-H2AX and sensor 53BP1 was induced by MIR treatment, it implies the MIR induced G(2)/M cell cycle arrest resulted from DSB. This study illustrates a potential role for the use of MIR in lung cancer therapy by initiating DSB and blocking cell cycle progression.

  2. Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer.

    PubMed

    Khan, Merajuddin; Khan, Mujeeb; Al-Marri, Abdulhadi H; Al-Warthan, Abdulrahman; Alkhathlan, Hamad Z; Siddiqui, Mohammed Rafiq H; Nayak, Vadithe Lakshma; Kamal, Ahmed; Adil, Syed F

    2016-01-01

    Recently, graphene and graphene-based materials have been increasingly used for various biological applications due to their extraordinary physicochemical properties. Here, we demonstrate the anticancer properties and apoptosis-inducing ability of silver doped highly reduced graphene oxide nanocomposites synthesized by employing green approach. These nano composites (PGE-HRG-Ag) were synthesized by using Pulicaria glutinosa extract (PGE) as a reducing agent and were evaluated for their anticancer properties against various human cancer cell lines with tamoxifen as the reference drug. A correlation between the amount of Ag nanoparticles on the surface of highly reduced graphene oxide (HRG) and the anticancer activity of nanocomposite was observed, wherein an increase in the concentration of Ag nanoparticles on the surface of HRG led to the enhanced anticancer activity of the nanocomposite. The nanocomposite PGE-HRG-Ag-2 exhibited more potent cytotoxicity than standard drug in A549 cells, a human lung cancer cell line. A detailed investigation was undertaken and Fluorescence activated cell sorting (FACS) analysis demonstrated that the nanocomposite PGE-HRG-Ag-2 showed G0/G1 phase cell cycle arrest and induced apoptosis in A549 cells. Studies such as, measurement of mitochondrial membrane potential, generation of reactive oxygen species (ROS) and Annexin V-FITC staining assay suggested that this compound induced apoptosis in human lung cancer cells.

  3. Cimicifuga foetida L. inhibited human respiratory syncytial virus in HEp-2 and A549 cell lines.

    PubMed

    Wang, Kuo Chih; Chang, Jung San; Chiang, Lien Chai; Lin, Chun Ching

    2012-01-01

    Human respiratory syncytial virus (HRSV) causes serious pediatric infection of the lower respiratory tract without effective therapeutic modality. Sheng-Ma-Ge-Gen-Tang (SMGGT; Shoma-kakkon-to) has been proven to be effective at inhibiting HRSV-induced plaque formation, and Cimicifuga foetida is the major constituent of SMGGT. We tested the hypothesis that C. foetida effectively inhibited the cytopathic effects of HRSV by a plaque reduction assay in both human upper (HEp2) and lower (A549) respiratory tract cell lines. Its ability to stimulate anti-viral cytokines was evaluated by an enzyme-linked immunosorbent assay (ELISA). C. foetida dose-dependently inhibited HRSV-induced plaque formation (p < 0.0001) before and after viral inoculation, especially in A549 cells (p < 0.0001). C. foetida dose-dependently inhibited viral attachment (p < 0.0001) and could increase heparins effect on viral attachment. In addition, C. foetida time-dependently and dose-dependently (p < 0.0001) inhibited HRSV internalization. C. foetida could stimulate epithelial cells to secrete IFN-β to counteract viral infection. However, C. foetida did not stimulate TNF-α secretion. Therefore, C. foetida could be useful in managing HRSV infection. This is the first evidence to support that C. foetida possesses antiviral activity.

  4. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    NASA Astrophysics Data System (ADS)

    Brown, David M.; Varet, Julia; Johnston, Helinor; Chrystie, Alison; Stone, Vicki

    2015-10-01

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks' balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle's activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed.

  5. COPD promotes migration of A549 lung cancer cells: the role of chemokine CCL21.

    PubMed

    Kuźnar-Kamińska, Barbara; Mikuła-Pietrasik, Justyna; Sosińska, Patrycja; Książek, Krzysztof; Batura-Gabryel, Halina

    2016-01-01

    Patients with COPD develop lung cancer more frequently than healthy smokers. At the same time, molecular mediators promoting various aspects of cancer cell progression are still elusive. In this report, we examined whether COPD can be coupled with increased migration of non-small-cell lung cancer cells A549 and, if so, whether this effect may be related to altered production and activity of chemokines CCL21, CXCL5, and CXCL12. The study showed that the migration of A549 cells through the polycarbonate membrane and basement membrane extract toward a chemotactic gradient elicited by serum from patients with COPD was markedly higher as compared with serum from healthy donors. The concentration of CCL21 and CXCL12, but not CXCL5, in serum from patients with COPD was also increased. Experiments in which CCL21- and CXCL12-dependent signaling was blocked revealed that increased migration of the cancer cells upon treatment with serum from patients with COPD was mediated exclusively by CCL21. Collectively, our results indicate that COPD may contribute to the progression of lung cancer via CCL21-dependent intensification of cancer cell migration.

  6. Tumor-specific targeting by Bavituximab, a phosphatidylserine-targeting monoclonal antibody with vascular targeting and immune modulating properties, in lung cancer xenografts

    PubMed Central

    Gerber, David E; Hao, Guiyang; Watkins, Linda; Stafford, Jason H; Anderson, Jon; Holbein, Blair; Öz, Orhan K; Mathews, Dana; Thorpe, Philip E; Hassan, Gedaa; Kumar, Amit; Brekken, Rolf A; Sun, Xiankai

    2015-01-01

    Bavituximab is a chimeric monoclonal antibody with immune modulating and tumor-associated vascular disrupting properties demonstrated in models of non-small cell lung cancer (NSCLC). The molecular target of Bavituximab, phosphatidylserine (PS), is exposed on the outer leaflet of the membrane bi-layer of malignant vascular endothelial cells and tumor cells to a greater extent than on normal tissues. We evaluated the tumor-targeting properties of Bavituximab for imaging of NSCLC xenografts when radiolabeled with 111In through conjugation with a bifunctional chelating agent, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). In vitro binding of 111In-DOTA-Bavituximab to PS was determined by enzyme-linked immunosorbent assay (ELISA). Biodistribution of 111In-DOTA-Bavituximab was conducted in normal rats, which provided data for dosimetry calculation. Single-photon emission computed tomography/computed tomography (SPECT/CT) imaging was performed in athymic nude rats bearing A549 NSCLC xenografts. At the molar conjugation ratio of 0.54 DOTA per Bavituximab, the PS binding affinity of 111In-DOTA-Bavituximab was comparable to that of unmodified Bavituximab. Based on the quantitative SPECT/CT imaging data analysis, 111In-DOTA-Bavituximab demonstrated tumor-specific uptake as measured by the tumor-tomuscle ratio, which peaked at 5.2 at 72 hr post-injection. In contrast, the control antibody only presented a contrast of 1.2 at the same time point.These findings may underlie the diagnostic efficacy and relative low rates of systemic vascular and immune-related toxicities of this immunoconjugate. Future applications of 111In-DOTA-bavituximab may include prediction of efficacy, indication of tumor immunologic status, or characterization of radiographic findings. PMID:26550540

  7. Jolkinolide A and Jolkinolide B Inhibit Proliferation of A549 Cells and Activity of Human Umbilical Vein Endothelial Cells

    PubMed Central

    Shen, Lei; Zhang, Shan-Qiang; Liu, Lei; Sun, Yu; Wu, Yu-Xuan; Xie, Li-Ping; Liu, Ji-Cheng

    2017-01-01

    Background Jolkinolide A (JA) and Jolkinolide B (JB) are diterpenoids extracted from the roots of Euphorbia fischeriana Steud and have been shown to have anti-tumor activity. However, their effects on the ability of tumor cells to invade blood vessels and metastasize remain largely unknown. Investigations into the effects of JA and JB on the angiogenesis of tumor tissues may facilitate the identification of new natural drugs with anti-tumor growth and metastasis activities. Material/Methods We used different concentrations of JA and JB (20 μg/ml, 40 μg/ml, 60 μg/ml, 80 μg/ml, and 100 μg/ml) to stimulate A549 cells and then studied the effects on the growth and metastasis of lung cancers. In addition, we used conditional media from A549 cells (A549-CM) stimulated by either JA or JB in different concentrations to culture human umbilical vein endothelial cells (HUVECs). Results We found that both JA and JB significantly inhibited the Akt-STAT3-mTOR signaling pathway and reduced the expression of VEGF in A549 cells, but JB exhibited more significant inhibitory effects than JA. The JB-stimulated A549 cell conditional media had a greater inhibitory effect on the proliferation and migration of HUVECs than did the conditional media of JA-stimulated A549 cells. This effect gradually increased with increasing concentrations of either type of Jolkinolide. Conclusions Our results suggest that JA and JB inhibited VEGF expression in A549 cells through the inhibition of the Akt-STAT3-mTOR signaling pathway, and directly inhibited the proliferation and migration of HUVECs. These findings are of great significance for the development of new plant-derived chemotherapy agents for the treatment of cancer. PMID:28087861

  8. Genistein inhibits A549 human lung cancer cell proliferation via miR-27a and MET signaling

    PubMed Central

    Yang, Yang; Zang, Aimin; Jia, Youchao; Shang, Yanhong; Zhang, Zhuoqi; Ge, Kun; Zhang, Jinchao; Fan, Wufang; Wang, Bei

    2016-01-01

    Genistein is a soybean isoflavone; in its aglycone it has various biological activities. Animal experiments, clinical studies and epidemiological investigations suggest that genistein has preventative and curative functions for a number of diseases, particularly in cancer. The present study explored the potential anti-cancer effect of genistein by observing its role in inhibiting A549 human lung cancer cell proliferation and investigating the possible mechanism. A549 cells were exposed to various concentrations of genistein (0, 10, 25, 50, 100 and 200 µM; dissolved in physiological saline) for 1, 2 and 3 days. Subsequently, the viability of A549 cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell apoptosis was examined using a flow cytometer, caspase 3/9 activity was measured using commercial kits, reverse transcription quantitative polymerase chain reaction was used to analyze the miR-27a expression and western blotting was used to investigate MET protein expression. The results suggested a significant inhibition of A549 cell growth following treatment with genistein in a time- and dose-dependent manner. The current study also indicated that treatment with genistein significantly induces cell apoptosis and promotes caspase-3/9 activation of A549 cells in a dose-dependent manner. Further functional assays revealed that the anti-cancer effect of genistein activated microRNA-27a (miR-27a) expression levels and reduced MET protein expression in A549 cells. In conclusion, the present study demonstrates that genistein inhibits A549 human lung cancer cell proliferation. Furthermore, this study reports, for the first time, a correlation between the anti-cancer effect of genistein and miR-27a-mediated MET signaling. PMID:27602162

  9. Sequential treatment with cytarabine and decitabine has an increased anti-leukemia effect compared to cytarabine alone in xenograft models of childhood acute myeloid leukemia.

    PubMed

    Leonard, Sarah M; Perry, Tracey; Woodman, Ciarán B; Kearns, Pamela

    2014-01-01

    The current interest in epigenetic priming is underpinned by the belief that remodelling of the epigenetic landscape will sensitise tumours to subsequent therapy. In this pre-clinical study, paediatric AML cells expanded in culture and primary AML xenografts were treated with decitabine, a DNA demethylating agent, and cytarabine, a frontline cytotoxic agent used in the treatment of AML, either alone or in combination. Sequential treatment with decitabine and cytarabine was found to be more effective in reducing tumour burden than treatment with cytarabine alone suggesting that the sequential delivery of these agents may a have real clinical advantage in the treatment of paediatric AML. However we found no evidence to suggest that this outcome was dependent on priming with a hypomethylating agent, as the benefits observed were independent of the order in which these drugs were administered.

  10. Targeting Tumor Cells with Anti-CD44 Antibody Triggers Macrophage-Mediated Immune Modulatory Effects in a Cancer Xenograft Model

    PubMed Central

    Maisel, Daniela; Birzele, Fabian; Voss, Edgar; Nopora, Adam; Bader, Sabine; Friess, Thomas; Goller, Bernhard; Laifenfeld, Daphna; Weigand, Stefan; Runza, Valeria

    2016-01-01

    CD44, a transmembrane receptor reported to be involved in various cellular functions, is overexpressed in several cancer types and supposed to be involved in the initiation, progression and prognosis of these cancers. Since the sequence of events following the blockage of the CD44-HA interaction has not yet been studied in detail, we profiled xenograft tumors by RNA Sequencing to elucidate the mode of action of the anti-CD44 antibody RG7356. Analysis of tumor and host gene-expression profiles led us to the hypothesis that treatment with RG7356 antibody leads to an activation of the immune system. Using cytokine measurements we further show that this activation involves the secretion of chemo-attractants necessary for the recruitment of immune cells (i.e. macrophages) to the tumor site. We finally provide evidence for antibody-dependent cellular phagocytosis (ADCP) of the malignant cells by macrophages. PMID:27463372

  11. Targeting Tumor Cells with Anti-CD44 Antibody Triggers Macrophage-Mediated Immune Modulatory Effects in a Cancer Xenograft Model.

    PubMed

    Maisel, Daniela; Birzele, Fabian; Voss, Edgar; Nopora, Adam; Bader, Sabine; Friess, Thomas; Goller, Bernhard; Laifenfeld, Daphna; Weigand, Stefan; Runza, Valeria

    2016-01-01

    CD44, a transmembrane receptor reported to be involved in various cellular functions, is overexpressed in several cancer types and supposed to be involved in the initiation, progression and prognosis of these cancers. Since the sequence of events following the blockage of the CD44-HA interaction has not yet been studied in detail, we profiled xenograft tumors by RNA Sequencing to elucidate the mode of action of the anti-CD44 antibody RG7356. Analysis of tumor and host gene-expression profiles led us to the hypothesis that treatment with RG7356 antibody leads to an activation of the immune system. Using cytokine measurements we further show that this activation involves the secretion of chemo-attractants necessary for the recruitment of immune cells (i.e. macrophages) to the tumor site. We finally provide evidence for antibody-dependent cellular phagocytosis (ADCP) of the malignant cells by macrophages.

  12. MR diffusion-weighted imaging-based subcutaneous tumour volumetry in a xenografted nude mouse model using 3D Slicer: an accurate and repeatable method

    PubMed Central

    Ma, Zelan; Chen, Xin; Huang, Yanqi; He, Lan; Liang, Cuishan; Liang, Changhong; Liu, Zaiyi

    2015-01-01

    Accurate and repeatable measurement of the gross tumour volume(GTV) of subcutaneous xenografts is crucial in the evaluation of anti-tumour therapy. Formula and image-based manual segmentation methods are commonly used for GTV measurement but are hindered by low accuracy and reproducibility. 3D Slicer is open-source software that provides semiautomatic segmentation for GTV measurements. In our study, subcutaneous GTVs from nude mouse xenografts were measured by semiautomatic segmentation with 3D Slicer based on morphological magnetic resonance imaging(mMRI) or diffusion-weighted imaging(DWI)(b = 0,20,800 s/mm2) . These GTVs were then compared with those obtained via the formula and image-based manual segmentation methods with ITK software using the true tumour volume as the standard reference. The effects of tumour size and shape on GTVs measurements were also investigated. Our results showed that, when compared with the true tumour volume, segmentation for DWI(P = 0.060–0.671) resulted in better accuracy than that mMRI(P < 0.001) and the formula method(P < 0.001). Furthermore, semiautomatic segmentation for DWI(intraclass correlation coefficient, ICC = 0.9999) resulted in higher reliability than manual segmentation(ICC = 0.9996–0.9998). Tumour size and shape had no effects on GTV measurement across all methods. Therefore, DWI-based semiautomatic segmentation, which is accurate and reproducible and also provides biological information, is the optimal GTV measurement method in the assessment of anti-tumour treatments. PMID:26489359

  13. Selenite Treatment Inhibits LAPC-4 Tumor Growth and Prostate-Specific Antigen Secretion in a Xenograft Model of Human Prostate Cancer

    SciTech Connect

    Bhattacharyya, Rumi S.; Husbeck, Bryan; Feldman, David; Knox, Susan J.

    2008-11-01

    Purpose: Selenium compounds have known chemopreventive effects on prostate cancer. However selenite, an inorganic form of selenium, has not been extensively studied as a treatment option for prostate cancer. Our previous studies have demonstrated the inhibition of androgen receptor expression and androgen stimulated prostate-specific antigen (PSA) expression by selenite in human prostate cancer cell lines. In this study, we investigated the in vivo effects of selenite as a therapy to treat mice with established LAPC-4 tumors. Methods and Materials: Male mice harboring androgen-dependent LAPC-4 xenograft tumors were treated with selenite (2 mg/kg intraperitoneally three times per week) or vehicle for 42 days. In addition, androgen-independent LAPC-4 xenograft tumors were generated in female mice over 4 to 6 months. Once established, androgen-independent LAPC-4 tumor fragments were passaged into female mice and were treated with selenite or vehicle for 42 days. Changes in tumor volume and serum PSA levels were assessed. Results: Selenite significantly decreased androgen-dependent LAPC-4 tumor growth in male mice over 42 days (p < 0.001). Relative tumor volume was decreased by 41% in selenite-treated animals compared with vehicle-treated animals. The inhibition of LAPC-4 tumor growth corresponded to a marked decrease in serum PSA levels (p < 0.01). In the androgen-independent LAPC-4 tumors in female mice, selenite treatment decreased tumor volume by 58% after 42 days of treatment (p < 0.001). Conclusions: These results suggest that selenite may have potential as a novel therapeutic agent to treat both androgen-dependent and androgen-independent prostate cancer.

  14. Synthetic siRNA targeting the breakpoint of EWS/Fli-1 inhibits growth of Ewing sarcoma xenografts in a mouse model.

    PubMed

    Takigami, Iori; Ohno, Takatoshi; Kitade, Yukio; Hara, Akira; Nagano, Akihito; Kawai, Gou; Saitou, Mitsuru; Matsuhashi, Aya; Yamada, Kazunari; Shimizu, Katsuji

    2011-01-01

    The EWS/Fli-1 fusion gene, a product of the translocation t(11;22, q24;q12), is detected in 85% of Ewing sarcomas and primitive neuroectodermal tumors. It is thought to be a transcriptional activator that plays a significant role in tumorigenesis. In this study, we developed a novel EWS/Fli-1 blockade system using RNA interference and tested its application for inhibiting the proliferation of Ewing sarcoma cells in vitro and the treatment of mouse tumor xenografts in vivo. We designed and synthesized a small interfering RNA (siRNA) possessing an aromatic compound at the 3'-end targeting the breakpoint of EWS/Fli-1. As this sequence is present only in tumor cells, it is a potentially relevant target. We found that the siRNA targeting EWS/Fli-1 significantly suppressed the expression of EWS/Fli-1 protein sequence specifically and also reduced the expression of c-Myc protein in Ewing sarcoma cells. We further demonstrated that inhibition of EWS/Fli-1 expression efficiently inhibited the proliferation of the transfected cells but did not induce apoptotic cell death. In addition, the siRNA possessing the aromatic compound at the 3'-end was more resistant to nucleolytic degradation than the unmodified siRNA. Administration of the siRNA with atelocollagen significantly inhibited the tumor growth of TC-135, a Ewing sarcoma cell line, which had been subcutaneously xenografted into mice. Moreover, modification of the 3'-end with an aromatic compound improved its efficiency in vivo. Our data suggest that specific downregulation of EWS/Fli-1 by RNA interference is a possible approach for the treatment of Ewing sarcoma.

  15. The synergistic antitumor effects of all-trans retinoic acid and C-phycocyanin on the lung cancer A549 cells in vitro and in vivo.

    PubMed

    Li, Bing; Gao, Mei-Hua; Chu, Xian-Ming; Teng, Lei; Lv, Cong-Yi; Yang, Peng; Yin, Qi-Feng

    2015-02-15

    The anticancer effects and mechanism of all-trans retinoic acid (ATRA), C-phycocyanin (C-PC) or ATRA+C-PC on the growth of A549 cells were studied in in vitro and in vivo experiments. The effects of C-PC and ATRA on the growth of A549 cells were determined. The expression of CDK-4 and caspase-3, and the cellular apoptosis levels were detected. The tumor model was established by subcutaneous injection of A549 cells to the left axilla of the NU/NU mice. The weights of tumor and the spleen were tested. The viabilities of T-cells and spleen cells, TNF levels, the expression of Bcl-2 protein and Cyclin D1 gene were examined. Results showed both C-PC and ATRA could inhibit the growth of tumor cells in vivo and in vitro. ATRA+C-PC cooperatively showed a higher antitumor activity. The dosage of ATRA was reduced when it was administered with C-PC together, and the toxicity was reduced as well. ATRA+C-PC could decrease CDK-4 but increase caspase-3 protein expression level and induce cell apoptosis. ATRA alone could lower the activities of T lymphocytes and spleen weights, but the combination with C-PC could effectively promote viability of T cells and spleen. C-PC+ATRA could up-regulate TNF, and down-regulate Bcl-2 and Cyclin D1 gene. The combination might inhibit tumor growth by inhibiting the progress of cell cycle, inducing cell apoptosis and enhancing the body immunity.

  16. Resveratrol reduces IL-6 and VEGF secretion from co-cultured A549 lung cancer cells and adipose-derived mesenchymal stem cells.

    PubMed

    Sahin, Erhan; Baycu, Cengiz; Koparal, Ayse Tansu; Burukoglu Donmez, Dilek; Bektur, Ezgi

    2016-06-01

    Stem cell therapies are important treatment methodologies used in many areas of experimental or clinical medicine. In recent studies of cancer models, Mesenchymal stem cells (MSCs) suppressed the growth of cancer cells. However, also in some studies, stem cell treatments have been shown to induce cancer formation, increase tumor volume, induce the formation of new vessels, and lead to cancer invasion. The presence of MSC-secreted cytokines and their effects on cancer cells limits the reliability of MSC-based treatments. Resveratrol (trans-3,5,4'-trihydroxystilbene), an antioxidant found in red wine, has been shown to have therapeutic effects against several cancers. The aim of this study was to co-culture MSCs with A549 cancer cells to suppress the release of cancer-promoting cytokines from MSCs and to increase the applicability and reliability of stem cell therapies with resveratrol. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and neutral red cell viability assays were used to find safety dose of resveratrol. The MSCs secreted the cytokines IL-6 and VEGF, and the effect of resveratrol on these cytokines was analyzed by ELISA and western blot analysis of conditioned medium. One μM of resveratrol was found to be the safety dose for the A549 cancer cells and MSCs. We observed the highest release of IL-6 and VEGF from the co-cultured A549 cells and MSCs, and resveratrol was found to significantly decrease the release of these cytokines. Our study suggests that resveratrol exerts a positive effect on the release of cytokines. The safety dose of resveratrol can be administered together with stem cells during stem cell treatment.

  17. Inhibition of mitogen activated protein kinases increases the sensitivity of A549 lung cancer cells to the cytotoxicity induced by a kava chalcone analog.

    PubMed

    Warmka, Janel K; Solberg, Eric L; Zeliadt, Nicholette A; Srinivasan, Balasubramanian; Charlson, Aaron T; Xing, Chengguo; Wattenberg, Elizabeth V

    2012-08-03

    We are interested in investigating the biological activity of chalcones, a major class of compounds found in the beverage kava, in order to develop potent and selective chemopreventive candidates. Consumption of kava in the South Pacific Islands is inversely correlated with cancer incidence, even among smokers. Accordingly, chalcones have anti-cancer activities in animal and cell culture models. To investigate signaling pathways that affect chalcone action we studied a potent analog, (E)-3-(3-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (chalcone-24). Chalcone-24 was selected from a series of chalcone analogs that were synthesized based on the structures derived from flavokawain compounds found in kava, and screened in A549 lung cancer cells for induction of cytotoxicity and inhibition of NF-κB, a transcription factor associated with cell survival. Incubation of A549 cells with chalcone-24 resulted in a dose-dependent inhibition of cell viability, inhibition of NF-κB, activation of caspases, and activation of extracellular signal regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK); ERK1/2 and JNK are mitogen activated protein kinases that play central roles in regulating cell fate. Pharmacological inhibitors of ERK1/2 or JNK increased the sensitivity of A549 cells to chalcone-24-induced cytotoxicity, without affecting NF-κB or caspase activity. These results will help refine the synthesis of chalcone analogs to maximize the combination of actions required to prevent and treat cancer.

  18. Rosemary extract reduces Akt/mTOR/p70S6K activation and inhibits proliferation and survival of A549 human lung cancer cells.

    PubMed

    Moore, Jessy; Megaly, Mark; MacNeil, Adam J; Klentrou, Panagiota; Tsiani, Evangelia

    2016-10-01

    Compounds of plant origin and food components have attracted scientific attention for use as agents for cancer prevention and treatment. Rosemary extract contains polyphenols that were shown to have anti-cancer and other health benefits. The survival pathways of Akt, mammalian target of rapamycin (mTOR) and p70S6K, and the apoptotic protein poly ADP ribose polymerase (PARP) are key modulators of cancer cell growth and survival. In this study, we examined the effects of rosemary extract on proliferation, survival and apoptosis of human non-small cell lung cancer (NSCLC) cells and its influence on signaling events. Human NSCLC adenocarcinoma A549 cells were used. Cell proliferation and clonogenic survival were assessed using specific assays. Immunoblotting was used to examine total and phosphorylated levels of Akt, mTOR and p70S6K, and cleavage of PARP. Rosemary extract dose-dependently inhibited cell proliferation and reduced clonogenic survival of A549 cells, while PARP cleavage, an indicator of apoptosis, was enhanced. Rosemary extract significantly reduced total and phosphorylated/activated Akt, mTOR and p70S6K levels. In conclusion, rosemary extract inhibited proliferation, blocked clonogenic survival, and enhanced apoptosis of A549 lung cancer cells. These effects were associated with inhibition of Akt and downstream mTOR and p70S6K activity. Our data suggest that rosemary extract may have considerable anti-tumor and chemoprevention properties in lung cancer and deserves further systematic investigation in animal models of lung cancer.

  19. Schisandrin B inhibits the proliferation of human lung adenocarcinoma A549 cells by inducing cycle arrest and apoptosis

    PubMed Central

    Lv, Xue-Jiao; Zhao, Li-Jing; Hao, Yu-Qiu; Su, Zhen-Zhong; Li, Jun-Yao; Du, Yan-Wei; Zhang, Jie

    2015-01-01

    Lung cancer is the leading cause of cancer death in the world. Schizandrin B (Sch B) is one of the main dibenzocyclooctadiene lignans present in the fruit of Schisandra chinensis (Schisandraceae). Sch B has multiple functions against cancer. The aim of this study was to determine the effect of Sch B on the proliferation, cell cycling, apoptosis and invasion of lung adenocarcinoma A549 cells by MTT, flow cytometry, wound healing and transwell invasion assays. Treatment with Sch B inhibited the proliferation of A549 cells in a dose-dependent manner. Sch B induced cell cycle arrest at G0/G1 phase by down-regulating the expression of cyclin D1, cyclin-dependent kinase (CDK)4, and CDK6, but up-regulating p53 and p21 expression in A549 cells. Furthermore, Sch B triggered A549 cell apoptosis by increasing Bax, cleaved caspase-3, 9, Cyto C, but decreasing Bcl-2 and PCNA expression. In addition, Sch B inhibited the invasion and migration of A549 cells by down-regulating the expressions of HIF-1, VEGF, MMP-9 and MMP-2. Therefore, Sch B has potent anti-tumor activity and may be a promising traditional Chinese medicine for human lung carcinoma. PMID:26221229

  20. Psoralen reverses docetaxel-induced multidrug resistance in A549/D16 human lung cancer cells lines.

    PubMed

    Hsieh, Ming-Ju; Chen, Mu-Kuan; Yu, Ya-Yen; Sheu, Gwo-Tarng; Chiou, Hui-Ling

    2014-06-15

    Chemotherapy is the recommended treatment for advanced-stage cancers. However, the emergence of multidrug resistance (MDR), the ability of cancer cells to become simultaneously resistant to different drugs, limits the efficacy of chemotherapy. Previous studies have shown that herbal medicine or natural food may be feasible for various cancers as potent chemopreventive drug. This study aims to explore the capablility of reversing the multidrug resistance of docetaxel (DOC)-resistant A549 cells (A549/D16) of psoralen and the underlying mechanisms. In this study, results showed that the cell viability of A549/D16 subline is decreased when treated with psoralen plus DOC, while psoralen has no effect on the cell proliferation on A549 and A549/D16 cells. Furthermore, mRNA and proteins levels of ABCB1 were decreased in the presence of psoralen, while decreased ABCB1 activity was also revealed by flow cytometry. Based on these results, we believe that psoralen may be feasible for reversing the multidrug resistance by inhibiting ABCB1 gene and protein expression. Such inhibition will lead to a decrease in ABCB1 activity and anti-cancer drug efflux, which eventually result in drug resistance reversal and therefore, sensitizing drug-resistant cells to death in combination with chemotherapeutic drugs.

  1. Gliotoxin promotes Aspergillus fumigatus internalization into type II human pneumocyte A549 cells by inducing host phospholipase D activation.

    PubMed

    Jia, Xiaodong; Chen, Fangyan; Pan, Weihua; Yu, Rentao; Tian, Shuguang; Han, Gaige; Fang, Haiqin; Wang, Shuo; Zhao, Jingya; Li, Xianping; Zheng, Dongyu; Tao, Sha; Liao, Wanqing; Han, Xuelin; Han, Li

    2014-06-01

    The internalization of Aspergillus fumigatus into lung epithelial cells is critical for the infection process in the host. Gliotoxin is the most potent toxin produced by A. fumigatus. However, its role in A. fumigatus internalization into the lung epithelial cells is still largely unknown. In the present study, the deletion of the gliP gene regulating the production of gliotoxin in A. fumigatus suppressed the internalization of conidia into the A549 lung epithelial cells, and this suppression could be rescued by the exogenous addition of gliotoxin. At lower concentrations, gliotoxin enhanced the internalization of the conidia of A. fumigatus into A549 cells; in contrast, it inhibited the phagocytosis of J774 macrophages in a dose-dependent manner. Under a concentration of 100 ng/ml, gliotoxin had no effect on A549 cell viability but attenuated ROS production in a dose-dependent manner. Gliotoxin significantly stimulated the phospholipase D activity in the A549 cells at a concentration of 50 ng/ml. This stimulation was blocked by the pretreatment of host cells with PLD1- but not PLD2-specific inhibitor. Morphological cell changes induced by gliotoxin were observed in the A549 cells accompanying with obvious actin cytoskeleton rearrangement and a moderate alteration of phospholipase D distribution. Our data indicated that gliotoxin might be responsible for modulating the A. fumigatus internalization into epithelial cells through phospholipase D1 activation and actin cytoskeleton rearrangement.

  2. Wheatgrass Extract Ameliorates Hypoxia-induced Mucin Gene Expression in A549 cells

    PubMed Central

    Sim, Ju hwan; Choi, Moon-Hee; Shin, Hyun-Jae; Lee, Ji-Eun

    2017-01-01

    Background: Wheatgrass is known to have antioxidant, antiaging, and anti-inflammatory effect. However, its protective effect against hypoxia is not yet evaluated. Objective: In this study, we evaluated the protective and anti-inflammatory effect of wheatgrass against the hypoxia in airway epithelial cells. Materials and Methods: A549 human lung adenocarcinoma cells were incubated in a hypoxic condition (CO2 5%/O2 1%) for 24 hr in the presence of different concentration of wheatgrass 50, 75, 100, and 150 μg/mL, and the magnitude of each immunologic response produced by the A549 cells was compared. The mRNA expression level of mucin gene (MUC), 5A, 5B, 8, GM-CSF, TNF-α, and VEGF were evaluated by using real-time polymerase chain reaction. The MUC proteins level before and after knocking out the hypoxia-inducible factor (hif)-1α via short interfering (si) RNA transfection were assessed by immunoblot analysis. Accordingly, the involved cell signaling pathway was evaluated by immunoblot analysis. Results: The inflammatory cytokines (GM-CSF, TNF- α) and the expressions of MUC 5A, 5B, and 8 were augmented by hypoxia. The augmented MUC expression was decreased by the wheatgrass extract administration. Hif-1α gene expression after hypoxia exposure was decreased by wheatgrass. Knockdown of hif-1α by siRNA reduced the mucin gene expression and which was more enhanced by wheatgrass extract. Conclusion: Theses results suggest that wheatgrass may be useful in the treatment of sinonasal disease by inhibiting mucus hypersecretion in airway epithelium. SUMMARY Wheatgrass extract decreases the hypoxia-induced MUC 5A, 5B and 8 expression.Hif-1α gene expression after hypoxia exposure was decreased by wheatgrass.Wheatgrass inhibits p44/42 phosphorylation in hypoxia-exposed airway epithelial cells. Abbreviations used: A549: human lung adenocarcinoma cells, GM-CSF: granulocyte-macrophage colony stimulating factor, HIF: hypoxia inducible factor, IL: interleukin, MUC: mucin, MTT: 3

  3. [Influence of Berberine on Cisplatin Antineoplastic Effect in A549 Cells].

    PubMed

    Jiang, Guojun; Li, Li; Wu, Xiaoxiang; Dong, Shuying; Tong, Xuhui

    2015-08-01

    背景与目的 以顺铂为基础的化疗方案是晚期非小细胞肺癌的一线化疗方案,但是由于顺铂的不良反应严重及耐药性的产生均限制了它的临床应用,本研究采用联合用药的方式观察黄连素对顺铂抗肿瘤作用的影响,并探讨其可能机制。方法 分别观察黄连素对肺腺癌细胞A549细胞中总Cx43蛋白、细胞膜Cx43蛋白的表达以及细胞缝隙连接功能的改变,通过标准细胞集落克隆实验观察黄连素对顺铂细胞毒性的影响;并观察PKC激酶的表达。结果 黄连素在0 μM-10 μM浓度范围内对细胞无毒性,通过增加细胞内总Cx43蛋白和胞膜Cx43蛋白的表达而增强细胞缝隙连接功能,0.1 μM、1 μM、10 μM黄连素可以显著增强细胞间的荧光传递,与空白对照组相比,黄连素预处理后的细胞间荧光传递功能分别增加了33.3% (P=0.002,3)、67.0% (P<0.001)、160.0% (P<0.001),这种作用与PKC的活性被抑制相关,抑制PKC活性可以进一步增加顺铂对A549细胞的毒性作用。结论 黄连素可通过增加A549细胞的缝隙连接功能而明显增强顺铂的细胞毒性。.

  4. Cyto- and genotoxicity assessment of Gold nanoparticles obtained by laser ablation in A549 lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Di Bucchianico, Sebastiano; Migliore, Lucia; Marsili, Paolo; Vergari, Chiara; Giammanco, Francesco; Giorgetti, Emilia

    2015-05-01

    Gold nanoparticles have attracted enormous interest in biomedical applications, based on their unique optical properties. However, their toxicity on human tissues is still an open issue. Beyond the potential intrinsic toxicity of nanostructured gold, a non-negligible contribution of stabilizers or reaction by-products related to current wet chemical synthesis procedures can be expected. Aimed at isolating gold contribution from that of any other contaminant, we produced colloidal suspensions of Gold nanoparticles having average size <10 nm in deionized water or acetone by pulsed laser ablation, that permits preparation of uncoated and highly stable Gold nanoparticles in pure solvents. Subsequently, we investigated the role of surface chemistry, size, and dispersivity of synthesized Gold nanoparticles in exerting toxicity in a cell model system of deep respiratory tract, representing the main route of exposure to NPs, namely adenocarcinoma epithelial A549 cells. Gold nanoparticles prepared in water showed no particular signs of cytotoxicity, cytostasis, and/or genotoxicity as assessed by MTT colorimetric viability test and Cytokinesis-block micronucleus cytome assay up to concentrations of the order of 5 μg/mL. In contrast, Gold nanoparticles produced in pure acetone and then transferred into deionized water showed impaired cell viability, apoptosis responses, micronuclei, and dicentric chromosomes induction as well as nuclear budding, as a function of the amount of surface contaminants like amorphous carbon and enolate ions.

  5. Halothane-induced alterations in cellular structure and proliferation of A549 cells.

    PubMed

    Stephanova, E; Topouzova-Hristova, T; Hazarosova, R; Moskova, V

    2008-12-01

    Genotoxicity, cytotoxicity or teratogenicity are among the well-known detrimental effects of the volatile anaesthetics. The aim of the present work was to study the structural changes, proliferative activity and the possibility of alveolar A549 cells to recover after in vitro exposure to halothane at 1.5 and 2.1mM concentrations. Our data indicated significant reduction of viability, suppression of mitotic activity more than 60%, and that these alterations were accompanied by disturbances of nuclear and nucleolar structures. The most prominent negative effect was the destruction of the lamellar bodies, the main storage organelles of pulmonary surfactant, substantial for the lung physiology. In conclusion, halothane applied at clinically relevant concentrations exerts genotoxic and cytotoxic effect on the alveolar cells in vitro, most likely as a consequence of stress-induced apoptosis, thus modulating the respiratory function.

  6. In vitro anticancer activity of fucoidan from Turbinaria conoides against A549 cell lines.

    PubMed

    Marudhupandi, Thangapandi; Ajith Kumar, Thipramalai Thankappan; Lakshmanasenthil, Shanmugaasokan; Suja, Gunasekaran; Vinothkumar, Thirumalairaj

    2015-01-01

    The present study was conducted to evaluate the anticancer activity of fucoidan isolated from brown seaweed Turbinaria conoides. Extracted fucoidan contained 53 ± 0.69% of fucose and 38 ± 0.42% of sulphate, respectively. Functional groups and structural characteristics of the fucoidan were analyzed by FT-IR and NMR. In vitro anticancer effect was studied on A549 cell line. Fucoidan inhibited the growth of cancer cells in a dose-dependent manner and potent anticancer activities were 24.9-73.5% in the concentrations of 31.25-500 μg/ml. The CTC50 value against the cancer cell was found to be 45 μg/ml and the CTC50 value of normal Vero cell line is 325 μg/ml. This study suggests that the fucoidan from T. conoides could be significantly improved if the active component is further purified and tested for further investigation in various cancer cell lines.

  7. Cytokines from the tumor microenvironment modulate sirtinol cytotoxicity in A549 lung carcinoma cells.

    PubMed

    Pal, Shyama; Shankar, Bhavani S; Sainis, Krishna B

    2013-10-01

    Cytokines in tumor microenvironment play an important role in the success or failure of molecular targeted therapies. We have chosen tumor necrosis factor α (TNF-α), TNF related apoptosis inducing ligand (TRAIL), insulin-like growth factor 1 (IGF-1) and transforming growth factor β (TGF-β) as representative pro-inflammatory, pro-apoptotic, anti-apoptotic and anti-inflammatory tumor derived cytokines. Analysis of Oncomine database revealed the differential expression of these cytokines in a subset of cancer patients. The effects of these cytokines on cytotoxicity of FDA approved drugs - cisplatin and taxol and inhibitors of epidermal growth factor receptor - AG658, Janus kinase - AG490 and SIRT1 - sirtinol were assessed in A549 lung cancer cells. TRAIL augmented cytotoxicity of sirtinol and IGF-1 had a sparing effect. Since TRAIL and IGF-1 differentially modulated sirtinol cytotoxicity, further studies were carried out to identify the mechanisms. Sirtinol or knockdown of SIRT1 increased the expression of death receptors DR4 and DR5 and sensitized A549 cells to TRAIL. Increased cell death in presence of TRAIL and sirtinol was caspase independent and demonstrated classical features of necroptosis. Inhibition of iNOS increased caspase activity and switched the mode of cell death to caspase mediated apoptosis. Interestingly, sirtinol or SIRT1 knockdown did not increase IGF-1R expression. Instead, it abrogated ligand induced downregulation of IGF-1R and increased cell survival through PI3K-AKT pathway. In conclusion, these findings reveal that the tumor microenvironment contributes to modulation of cytotoxicity of drugs and that combination therapy, with agents that increase TRAIL signaling and suppress IGF-1 pathway may potentiate anticancer effect.

  8. High Throughput Determination of TGFβ1/SMAD3 Targets in A549 Lung Epithelial Cells

    PubMed Central

    Kaplan, Tommy; Yu, Haiying; Bais, Abha S.; Richards, Thomas; Pandit, Kusum V.; Zeng, Qilu; Benos, Panayiotis V.; Friedman, Nir; Eickelberg, Oliver; Kaminski, Naftali

    2011-01-01

    Background Transforming growth factor beta 1 (TGFβ1) plays a major role in many lung diseases including lung cancer, pulmonary hypertension, and pulmonary fibrosis. TGFβ1 activates a signal transduction cascade that results in the transcriptional regulation of genes in the nucleus, primarily through the DNA-binding transcription factor SMAD3. The objective of this study is to identify genome-wide scale map of SMAD3 binding targets and the molecular pathways and networks affected by the TGFβ1/SMAD3 signaling in lung epithelial cells. Methodology We combined chromatin immunoprecipitation with human promoter region microarrays (ChIP-on-chip) along with gene expression microarrays to study global transcriptional regulation of the TGFβ1/SMAD3 pathway in human A549 alveolar epithelial cells. The molecular pathways and networks associated with TGFβ1/SMAD3 signaling were identified using computational approaches. Validation of selected target gene expression and direct binding of SMAD3 to promoters were performed by quantitative real time RT-PCR and electrophoretic mobility shift assay on A549 and human primary lung epithelial cells. Results and Conclusions Known TGFβ1 target genes such as SERPINE1, SMAD6, SMAD7, TGFB1 and LTBP3, were found in both ChIP-on-chip and gene expression analyses as well as some previously unrecognized targets such as FOXA2. SMAD3 binding of FOXA2 promoter and changed expression were confirmed. Computational approaches combining ChIP-on-chip and gene expression microarray revealed multiple target molecular pathways affected by the TGFβ1/SMAD3 signaling. Identification of global targets and molecular pathways and networks associated with TGFβ1/SMAD3 signaling allow for a better understanding of the mechanisms that determine epithelial cell phenotypes in fibrogenesis and carcinogenesis as does the discovery of the direct effect of TGFβ1 on FOXA2. PMID:21625455

  9. Calcium is not required for triggering volume restoration in hypotonically challenged A549 epithelial cells.

    PubMed

    Ponomarchuk, Olga; Boudreault, Francis; Orlov, Sergei N; Grygorczyk, Ryszard

    2016-11-01

    Maintenance of cell volume is a fundamental housekeeping function in eukaryotic cells. Acute cell swelling activates a regulatory volume decrease (RVD) process with poorly defined volume sensing and intermediate signaling mechanisms. Here, we analyzed the putative role of Ca(2+) signaling in RVD in single substrate-adherent human lung epithelial A549 cells. Acute cell swelling was induced by perfusion of the flow-through imaging chamber with 50 % hypotonic solution at a defined fluid turnover rate. Changes in cytosolic Ca(2+) concentration ([Ca(2+)]i) and cell volume were monitored simultaneously with ratiometric Fura-2 fluorescence and 3D reconstruction of stereoscopic single-cell images, respectively. Hypotonic challenge caused a progressive swelling peaking at ∼20 min and followed, during the next 20 min, by RVD of 60 ± 7 % of the peak volume increase. However, at the rate of swelling used in our experiments, these processes were not accompanied by a measurable increment of [Ca(2+)]i. Loading with intracellular Ca(2+) chelator BAPTA slightly delayed peak of swelling but did not prevent RVD in 82 % of cells. Further, electrophysiology whole-cell patch-clamp experiments showed that BAPTA did not block activation of volume-regulated anion channel (VRAC) measured as swelling-induced outwardly rectifying 5-nitro-2-(3-phenylpropyl-amino) benzoic acid sensitive current. Together, our data suggest that intracellular Ca(2+)-mediated signaling is not essential for VRAC activation and subsequent volume restoration in A549 cells.

  10. α-Mangostin: A Dietary Antioxidant Derived from the Pericarp of Garcinia mangostana L. Inhibits Pancreatic Tumor Growth in Xenograft Mouse Model

    PubMed Central

    Mustafa, Ala; Fischer, Joseph W.; Singh, Ashok; Zhong, Weixiong; Shekhani, Mohammed Ozair; Meske, Louise; Havighurst, Thomas; Kim, KyungMann; Verma, Ajit Kumar

    2014-01-01

    Abstract Aims: Pancreatic cancer (PC) is the most aggressive malignant disease, ranking as the fourth most leading cause of cancer-related death among men and women in the United States. In this study, we provide evidence of chemotherapeutic effects of α-mangostin, a dietary antioxidant isolated from the pericarp of Garcinia mangostana L. against human PC. Results: The chemotherapeutic effect of α-mangostin was determined using four human PC cells (PL-45, PANC1, BxPC3, and ASPC1). α-Mangostin resulted in a significant inhibition of PC cells viability without having any effects on normal human pancreatic duct epithelial cells. α-Mangostin showed a dose-dependent increase of apoptosis in PC cells. Also, α-mangostin inhibited the expression levels of pNF-κB/p65Ser552, pStat3Ser727, and pStat3Tyr705. α-Mangostin inhibited DNA binding activity of nuclear factor kappa B (NF-κB) and signal transducer and activator 3 (Stat3). α-Mangostin inhibited the expression levels of matrix metallopeptidase 9 (MMP9), cyclin D1, and gp130; however, increased expression of tissue inhibitor of metalloproteinase 1 (TIMP1) was observed in PC cells. In addition, i.p. administration of α-mangostin (6 mg/kg body weight, 5 days a week) resulted in a significant inhibition of both primary (PL-45) and secondary (ASPC1) human PC cell-derived orthotopic and ectopic xenograft tumors in athymic nude mice. No sign of toxicity was observed in any of the mice administered with α-mangostin. α-Mangostin treatment inhibited the biomarkers of cell proliferation (Ki-67 and proliferating cell nuclear antigen [PCNA]) in the xenograft tumor tissues. Innovation: We present, for the first time, that dietary antioxidant α-mangostin inhibits the growth of PC cells in vitro and in vivo. Conclusion: These results suggest the potential therapeutic efficacy of α-mangostin against human PC. Antioxid. Redox Signal. 21, 682–699. PMID:24295217

  11. Salvianolic acid A positively regulates PTEN protein level and inhibits growth of A549 lung cancer cells

    PubMed Central

    BI, LEI; CHEN, JIANPING; YUAN, XIAOJING; JIANG, ZEQUN; CHEN, WEIPING

    2013-01-01

    Salvianolic acid A (Sal A) is an effective compound extracted from Salvia miltiorrhiza which has been used in the treatment of various diseases. Preliminary data indicate that Sal A treatment has a specific anti-lung cancer effect. However, the manner in which Sal A regulates cancer growth remains unknown. In this study, the A549 lung cancer cell line and its response to Sal A treatment was examined. Results showed that Sal A treatment significantly decreased A549 cell growth, promoted partial apoptosis and increased mitochondrial membrane permeability. Western blot analysis showed that Sal A upregulated the phosphatase and tensin homolog (PTEN) protein level, while consistently downregulating Akt phosphorylation. These results indicate that Sal A negatively mediates A549 lung cancer cell line growth or apoptosis, most likely by positively regulating PTEN protein level. PMID:24648921

  12. 4-tert-Octylphenol stimulates the expression of cathepsins in human breast cancer cells and xenografted breast tumors of a mouse model via an estrogen receptor-mediated signaling pathway.

    PubMed

    Lee, Hye-Rim; Choi, Kyung-Chul

    2013-02-08

    Endocrine disrupting chemicals (EDCs) are defined as environmental compounds that modulate steroid hormone receptor-dependent responses an abnormal manner, resulting in adverse health problems for humans such as cancer growth and metastasis. Cathepsins are proteases that have been implicated in cancer progression. However, there have been few studies about the association between cathepsins and estrogenic chemicals during the cancer progression. In this study, we examined the effect(s) of 4-tert-octylphenol (OP), a potent EDC, on the expression of cathepsins B and D in human MCF-7 breast cancer cells and a xenograft mouse model. Treatment with OP significantly induced the proliferation MCF-7 cells in an MTT assay. In addition, the expression of cathepsins B and D was markedly enhanced in MCF-7 cells at both the transcriptional and the translational levels following treatment with E2 or OP up to 48h. These results demonstrated the ability of OP to disrupt normal transcriptional regulation of cathepsins B and D in human breast cancer cells. However, the effects of OP on cell growth or overexpression of cathepsins by inhibiting ER-mediated signaling were abolished by an ER antagonist and siRNA specific for ERα. In conclusion, our findings suggest that OP at 10(-6)M, like E2, may accelerate breast cancer cell proliferation and the expression of cathepsins through an ER-mediated signaling pathway. In addition, the breast cancer cells exposed with OP to a xenograft mouse model were more aggressive according to our histological analysis and showed markedly increased expression of cathepsin B. These effects of mouse model resulted in an increased potential for metastasis in breast cancer. Taken together, we determined that OP can adversely affect human health by promoting cancer proliferation and metastasis through the amplification of cathepsins B and D via the ER-mediated signaling pathway.

  13. Transcriptome Profiles of Human Lung Epithelial Cells A549 Interacting with Aspergillus fumigatus by RNA-Seq

    PubMed Central

    Jia, Xiaodong; Wang, Shuo; Wang, Jing; Chen, Yong; Zhao, Jingya; Tian, Shuguang; Han, Xuelin; Han, Li

    2015-01-01

    Lung epithelial cells constitute the first defense line of host against the inhaled Aspergillus fumigatus; however, the transcriptional response of human alveolar type II epithelial cells was still unclear. Here we used RNA-Seq technology to assess the transcriptome profiles of A549 cells following direct interaction with conidia of A. fumigatus. The total number of identified genes was 19118. Compared with uninfected A549 cells, 459 genes were differentially expressed in cells co-incubated with conidia for 8 h, including 302 up-regulated genes and 157 down-regulated genes. GO and KEGG pathway enrichment analysis showed that most of the up-regulated genes were related to immune response, chemotaxis and inflammatory response and enriched in cytokine-cytokine receptor interaction, JAK-STAT and MAPK signaling pathways. The down-regulated genes were mainly enriched for terms associated with development, hemopoiesis and ion transport. Among them, EGR4 and HIST1H4J gene had the maximum of fold change in up-regulated and down-regulated genes, respectively. Fourteen up-regulated genes and three down-regulated genes were further validated and significant increase on expression of IL-6, IL-8 and TNF-α in A549 cells were confirmed by qRT-PCR during the interaction of A549 cells with A. fumigatus. Besides, western blot showed that expression of two proteins (ARC, EGR1) significantly increased in A549 cells during interaction with A. fumigatus conidia for 8h. Interference of endogenous expression of ARC or EGR1 protein in A549 cells reduced the internalization of A. fumigatus. These results provided important insights into dynamic changes of gene expression in lung epithelial cells, especially its strong immunological response against A. fumigatus infection. PMID:26273834

  14. 5-allyl-7-gen-difluoromethoxychrysin enhances TRAIL-induced apoptosis in human lung carcinoma A549 cells

    PubMed Central

    2011-01-01

    Background 5-allyl-7-gen-difluoromethoxychrysin (AFMC) is a novel synthetic analogue of chrysin that has been reported to inhibit proliferation in various cancer cell lines. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-cancer agent. Methods The cytotoxicity of A549 and WI-38 cells were determined using colorimetry. Apoptosis was detected by flow cytometry (FCM) after propidium iodide (PI) fluorescence staining and agarose gel electrophoresis. Caspase activities were evaluated using enzyme-linked immunosorbent assay (ELISA).The expressions of DR4 and DR5 were analyzed using FCM and western blot. Results Subtoxic concentrations of AFMC sensitize human non-small cell lung cancer (NSCLC) A549 cells to TRAIL-mediated apoptosis. Combined treatment of A549 cells with AFMC and TRAIL significantly activated caspase-3, -8 and -9. The caspase-3 inhibitor zDEVD-fmk and the caspase-8 inhibitor zIETD-fmk blocked the apoptosis of A549 cells induced by co-treatment with AFMC and TRAIL. In addition, we found that treatment of A549 cells with AFMC significantly induced the expression of death receptor 5 (DR5). AFMC-mediated sensitization of A549 cells to TRAIL was efficiently reduced by administration of a blocking antibody or small interfering RNAs against DR5. AFMC also caused increase of the Sub-G1 cells by TRAIL treatment and increased the expression levels of DR5 in other NSCLC H460 and H157 cell lines. In contrast, AFMC-mediated induction of DR5 expression was not observed in human embryo lung WI-38 cells, and AFMC did not sensitize WI-38 cells to TRAIL-induced apoptosis. Conclusions AFMC synergistically enhances TRAIL-mediated apoptosis in NSCLC cells through up-regulating DR5 expression. PMID:21801359

  15. Improvement of Parameter Estimations in Tumor Growth Inhibition Models on Xenografted Animals: Handling Sacrifice Censoring and Error Caused by Experimental Measurement on Larger Tumor Sizes.

    PubMed

    Pierrillas, Philippe B; Tod, Michel; Amiel, Magali; Chenel, Marylore; Henin, Emilie

    2016-09-01

    The purpose of this study was to explore the impact of censoring due to animal sacrifice on parameter estimates and tumor volume calculated from two diameters in larger tumors during tumor growth experiments in preclinical studies. The type of measurement error that can be expected was also investigated. Different scenarios were challenged using the stochastic simulation and estimation process. One thousand datasets were simulated under the design of a typical tumor growth study in xenografted mice, and then, eight approaches were used for parameter estimation with the simulated datasets. The distribution of estimates and simulation-based diagnostics were computed for comparison. The different approaches were robust regarding the choice of residual error and gave equivalent results. However, by not considering missing data induced by sacrificing the animal, parameter estimates were biased and led to false inferences in terms of compound potency; the threshold concentration for tumor eradication when ignoring censoring was 581 ng.ml(-1), but the true value was 240 ng.ml(-1).

  16. Anti-tumor effect of adipose tissue derived-mesenchymal stem cells expressing interferon-β and treatment with cisplatin in a xenograft mouse model for canine melanoma.

    PubMed

    Ahn, Jin ok; Lee, Hee woo; Seo, Kyoung won; Kang, Sung keun; Ra, Jeong chan; Youn, Hwa young

    2013-01-01

    Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are attractive cell-therapy vehicles for the delivery of anti-tumor molecules into the tumor microenvironment. The innate tropism of AT-MSCs for tumors has important implications for effective cellular delivery of anti-tumor molecules, including cytokines, interferon, and pro-drugs. The present study was designed to determine the possibility that the combination of stem cell-based gene therapy with low-dose cisplatin would improve therapeutic efficacy against canine melanoma. The IFN-β transduced canine AT-MSCs (cAT-MSC-IFN-β) inhibited the growth of LMeC canine melanoma cells in direct and indirect in vitro co-culture systems. In animal experiments using BALB/c nude mouse xenografts, which developed by injecting LMeC cells, the combination treatment of cAT-MSC-IFN-β and low-dose cisplatin significantly reduced tumor volume compared with the other treatment groups. Fluorescent microscopic analysis with a TUNEL (terminal deoxynucleotidyl transferase-mediated nick-end labeling) assay of tumor section provided evidence for homing of cAT-MSC-IFN-β to the tumor site and revealed that the combination treatment of cAT-MSC-IFN-β with low-dose cisplatin induced high levels of cell apoptosis. These findings may prove useful in further explorations of the application of these combined approaches to the treatment of malignant melanoma and other tumors.

  17. Systematic comparison of tissue fixation with alternative fixatives to conventional tissue fixation with buffered formalin in a xenograft-based model.

    PubMed

    Nietner, Thorben; Jarutat, Tiantom; Mertens, Alfred

    2012-09-01

    In our study we systematically compared the alternative fixatives acidified formal alcohol (AFA), PAXgene®, HOPE®, and combinations of AFA or formalin with ultrasound treatment to standard (buffered) formalin fixation. We examined general morphology and detectability of protein structures by immunohistochemistry of the membrane receptors epidermal growth factor receptor (EGFR), insulin-like growth factor 1 receptor (IGF-1R), and phosphorylated human epidermal growth factor receptor 2 (phospho-HER2). In order to allow for stringent comparability of different fixation techniques, we used matched mouse xenograft tumor samples from three different human cancer cell lines (colon, ovarian, and non-small cell lung cancer), either fixed conventionally with formalin or an alternative fixative. Tissue morphology after fixation with AFA and PAXgene® was comparable to formalin-fixed paraffin-embedded tissue (FFPET) morphology. Ultrasound fixations resulted in slightly inferior morphology and HOPE® fixation preserved morphology only poorly compared to FFPET in this system. None of the tested alternative fixatives enabled immunohistochemical detectability of all three targets in the same manner as FFPET. Pronounced staining was possible for EGFR and IGF-1R with all alternative fixatives but HOPE®, and phospho-HER2 staining was only noteworthy with formalin-ultrasound-fixed tissue. Therefore, the use of alternative fixatives comes with the need for careful validation of obtained IHC results individually for each target.

  18. Optimized S-trityl-L-cysteine-based inhibitors of kinesin spindle protein with potent in vivo antitumor activity in lung cancer xenograft models.

    PubMed

    Good, James A D; Wang, Fang; Rath, Oliver; Kaan, Hung Yi Kristal; Talapatra, Sandeep K; Podgórski, Dawid; MacKay, Simon P; Kozielski, Frank

    2013-03-14

    The mitotic kinesin Eg5 is critical for the assembly of the mitotic spindle and is a promising chemotherapy target. Previously, we identified S-trityl-L-cysteine as a selective inhibitor of Eg5 and developed triphenylbutanamine analogues with improved potency, favorable drug-like properties, but moderate in vivo activity. We report here their further optimization to produce extremely potent inhibitors of Eg5 (K(i)(app) < 10 nM) with broad-spectrum activity against cancer cell lines comparable to the Phase II drug candidates ispinesib and SB-743921. They have good oral bioavailability and pharmacokinetics and induced complete tumor regression in nude mice explanted with lung cancer patient xenografts. Furthermore, they display fewer liabilities with CYP-metabolizing enzymes and hERG compared with ispinesib and SB-743921, which is important given the likely application of Eg5 inhibitors in combination therapies. We present the case for this preclinical series to be investigated in single and combination chemotherapies, especially targeting hematological malignancies.

  19. Anticancer activity of pyrithione zinc in oral cancer cells identified in small molecule screens and xenograft model: Implications for oral cancer therapy.

    PubMed

    Srivastava, Gunjan; Matta, Ajay; Fu, Guodong; Somasundaram, Raj Thani; Datti, Alessandro; Walfish, Paul G; Ralhan, Ranju

    2015-10-01

    Oral squamous cell carcinoma (OSCC) patients diagnosed in late stages have limited chemotherapeutic options, underscoring the great need for development of new anticancer agents for more effective disease management. We aimed to identify novel anticancer agents for OSCC using quantitative high throughput assays for screening six chemical libraries consisting of 5170 small molecule inhibitors. In depth characterization resulted in identification of pyrithione zinc (PYZ) as the most effective cytotoxic agent inhibiting cell proliferation and inducing apoptosis in OSCC cells in vitro. Further, treatment with PYZ reduced colony forming, migration and invasion potential of oral cancer cells in a dose-dependent manner. PYZ treatment also led to altered expression of several key components of the major signaling pathways including PI3K/AKT/mTOR and WNT/β-catenin in OSCC cells. In addition, treatment with PYZ also reduced expression of 14-3-3ζ, 14-3-3σ, cyclin D1, c-Myc and pyruvate kinase M2 (PKM2), proteins identified in our earlier studies to be involved in development and progression of OSCCs. Importantly, PYZ treatment significantly reduced tumor xenograft volume in immunocompromised NOD/SCID/Crl mice without causing apparent toxicity to normal tissues. Taken together, we demonstrate in vitro and in vivo efficacy of PYZ in OSCC. In conclusion, we identified PYZ in HTS assays and demonstrated in vitro and in vivo pre-clinical efficacy of PYZ as a novel anticancer therapeutic candidate in OSCC.

  20. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling

    NASA Astrophysics Data System (ADS)

    Cheng, C.-Y.; Perevedentseva, E.; Tu, J.-S.; Chung, P.-H.; Cheng, C.-L.; Liu, K.-K.; Chao, J.-I.; Chen, P.-H.; Chang, C.-C.

    2007-04-01

    This letter presents direct observation of growth hormone receptor in one single cancer cell using nanodiamond-growth hormone complex as a specific probe. The interaction of surface growth hormone receptor of A549 human lung epithelial cells with growth hormone was observed using nanodiamond's unique spectroscopic signal via confocal Raman mapping. The growth hormone molecules were covalent conjugated to 100nm diameter carboxylated nanodiamonds, which can be recognized specifically by the growth hormone receptors of A549 cell. The Raman spectroscopic signal of diamond provides direct and in vitro observation of growth hormone receptors in physiology condition in a single cell level.

  1. Pharmacokinetic-pharmacodynamic modeling of biomarker response and tumor growth inhibition to an orally available heat shock protein 90 inhibitor in a human tumor xenograft mouse model.

    PubMed

    Yamazaki, Shinji; Nguyen, Leslie; Vekich, Sylvia; Shen, Zhongzhou; Yin, Min-Jean; Mehta, Pramod P; Kung, Pei-Pei; Vicini, Paolo

    2011-09-01

    PF04942847 [2-amino-4-{4-chloro-2-[2-(4-fluoro-1H-pyrazol-1-yl)ethoxy]-6-methylphenyl}-N-(2,2-difluoropropyl)-5,7-dihydro-6H-pyrrolo[3,4-d]pyrimidine-6-carboxamide] was identified as an orally available, ATP-competitive, small-molecule inhibitor of heat shock protein 90 (HSP90). The objectives of the present study were: 1) to characterize the pharmacokinetic-pharmacodynamic relationship of the plasma concentrations of PF04942847 to the inhibition of HSP90-dependent protein kinase, AKT, as a biomarker and 2) to characterize the relationship of AKT degradation to tumor growth inhibition as a pharmacological response (antitumor efficacy). Athymic mice implanted with MDA-MB-231 human breast cancer cells were treated with PF04942847 once daily at doses selected to encompass ED(50) values. Plasma concentrations of PF04942847 were adequately described by a two-compartment pharmacokinetic model. A time delay (hysteresis) was observed between the plasma concentrations of PF04942847 and AKT degradation; therefore, a link model was used to account for the hysteresis. The model reasonably fit the time courses of AKT degradation with the estimated EC(50) of 18 ng/ml. For tumor growth inhibition, the signal transduction model reasonably fit the inhibition of individual tumor growth curves with the estimated EC(50) of 7.3 ng/ml. Thus, the EC(50) for AKT degradation approximately corresponded to the EC(50) to EC(80) for tumor growth inhibition, suggesting that 50% AKT degradation was required for significant antitumor efficacy (50-80%). The consistent relationship between AKT degradation and antitumor efficacy was also demonstrated by applying an integrated signal transduction model for linking AKT degradation to tumor growth inhibition. The present results will be helpful in determining the appropriate dosing regimen and guiding dose escalation to achieve efficacious systemic exposure in the clinic.

  2. Preclinical evaluation of the anti-tumor effects of the natural isoflavone genistein in two xenograft mouse models monitored by [18F]FDG, [18F]FLT, and [64Cu]NODAGA-cetuximab small animal PET

    PubMed Central

    Honndorf, Valerie S.; Wiehr, Stefan; Rolle, Anna-Maria; Schmitt, Julia; Kreft, Luisa; Quintanilla-Martinez, Letitia; Kohlhofer, Ursula; Reischl, Gerald; Maurer, Andreas; Boldt, Karsten; Schwarz, Michael; Schmidt, Holger; Pichler, Bernd J.

    2016-01-01

    The natural phytoestrogen genistein is known as protein kinase inhibitor and tumor suppressor in various types of cancers. We studied its antitumor effect in two different xenograft models using positron emission tomography (PET) in vivo combined with ex vivo histology and nuclear magnetic resonance (NMR) metabolic fingerprinting. Procedures A431 and Colo205 tumor-bearing mice were treated with vehicle or genistein (500 mg/kg/d) over a period of 12 days. Imaging was performed with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and 3′-deoxy-3′-[18F]fluorothymidine ([18F] FLT). In a second study A431 tumor-bearing mice were treated with vehicle, genistein (500 mg/kg/d), cetuximab (1mg/3d) or a combination of the compounds and imaged using [18F]FDG, [18F]FLT and [64Cu]NODAGA-cetuximab. Data were compared to histology and principal components analysis (PCA) of NMR fingerprinting data. Results Genistein reduced tumor growth significantly in both xenografts. [18F] FLT uptake was consistent in both models and corresponded to histological findings and also PCA whereas [18F]FDG and [64Cu]NODAGA-cetuximab were not suitable for therapy monitoring. Conclusions As mono-therapy the natural isoflavone genistein has a powerful therapeutic effect in vivo on A431 and Colo205 tumors. [18F]FLT has superior consistency compared to the other tested tracers in therapy monitoring, while the treatment effect could be shown on the molecular level by histology and metabolic fingerprinting. PMID:27070087

  3. Carbocisteine attenuates hydrogen peroxide-induced inflammatory injury in A549 cells via NF-κB and ERK1/2 MAPK pathways.

    PubMed

    Wang, Wei; Zheng, Jin-Ping; Zhu, Shao-Xuan; Guan, Wei-Jie; Chen, Mao; Zhong, Nan-Shan

    2015-02-01

    Carbocisteine is a mucolytic drug with anti-oxidative effect, we had previously proved that carbocisteine remarkably reduced the rate of acute exacerbations and improved the quality of life in patients with chronic obstructive pulmonary disease (COPD), however, very little is known about its mechanisms. In this study, we aimed to investigate the anti-inflammatory effects of carbocisteine against hydrogen peroxide (H2O2). A549 cells were cultured in vitro and treated with H2O2 as damaged cell models, carbocisteine was administered 24h prior to or after H2O2 exposure, and the protective effects of carbocisteine were determined by MTT, qRT-PCR, ELISA, western blot and immunofluorescence assays. The results showed that carbocisteine could increase cell viability and decrease LDH, IL-6 and IL-8 levels in the supernatant. Additionally, carbocisteine decreased IL-6, IL-8, TNF-α, IP-10 and MIP-1β mRNA in a dose-dependent manner. Moreover, carbocisteine could attenuate phosphorylation of NF-κB p65 and ERK1/2 and inhibit the nuclear translocation of pNF-κB p65 induced by H2O2. In conclusion, carbocisteine inhibited H2O2-induced inflammatory injury in A549 cells, NF-κB and ERK1/2 MAPK were the target pathways.

  4. Intracellular dynamics and fate of polystyrene nanoparticles in A549 Lung epithelial cells monitored by image (cross-) correlation spectroscopy and single particle tracking.

    PubMed

    Deville, Sarah; Penjweini, Rozhin; Smisdom, Nick; Notelaers, Kristof; Nelissen, Inge; Hooyberghs, Jef; Ameloot, Marcel

    2015-10-01

    Novel insights in nanoparticle (NP) uptake routes of cells, their intracellular trafficking and subcellular targeting can be obtained through the investigation of their temporal and spatial behavior. In this work, we present the application of image (cross-) correlation spectroscopy (IC(C)S) and single particle tracking (SPT) to monitor the intracellular dynamics of polystyrene (PS) NPs in the human lung carcinoma A549 cell line. The ensemble kinetic behavior of NPs inside the cell was characterized by temporal and spatiotemporal image correlation spectroscopy (TICS and STICS). Moreover, a more direct interpretation of the diffusion and flow detected in the NP motion was obtained by SPT by monitoring individual NPs. Both techniques demonstrate that the PS NP transport in A549 cells is mainly dependent on microtubule-assisted transport. By applying spatiotemporal image cross-correlation spectroscopy (STICCS), the correlated motions of NPs with the early endosomes, late endosomes and lysosomes are identified. PS NPs were equally distributed among the endolysosomal compartment during the time interval of the experiments. The cotransport of the NPs with the lysosomes is significantly larger compared to the other cell organelles. In the present study we show that the complementarity of ICS-based techniques and SPT enables a consistent elaborate model of the complex behavior of NPs inside biological systems.

  5. King cobra (Ophiophagus hannah) venom L-amino acid oxidase induces apoptosis in PC-3 cells and suppresses PC-3 solid tumor growth in a tumor xenograft mouse model.

    PubMed

    Lee, Mui Li; Fung, Shin Yee; Chung, Ivy; Pailoor, Jayalakshmi; Cheah, Swee Hung; Tan, Nget Hong

    2014-01-01

    King cobra (Ophiophagus hannah) venom L-amino acid oxidase (OH-LAAO), a heat stable enzyme, has been shown to exhibit very potent anti-proliferative activity against human breast and lung tumorigenic cells but not in their non-tumorigenic counterparts. We further examine its in vitro and in vivo anti-tumor activity in a human prostate adenocarcinoma (PC-3) model. OH-LAAO demonstrated potent cytotoxicity against PC-3 cells with IC50 of 0.05 µg/mL after 72 h incubation in vitro. It induced apoptosis as evidenced with an increase in caspase-3/7 cleavages and an increase in annexin V-stained cells. To examine its in vivo anti-tumor activity, we treated PC-3 tumor xenograft implanted subcutaneously in immunodeficient NU/NU (nude) mice with 1 µg/g OH-LAAO given intraperitoneally (i.p.). After 8 weeks of treatment, OH-LAAO treated PC-3 tumors were markedly inhibited, when compared to the control group (P <0.05). TUNEL staining analysis on the tumor sections showed a significantly increase of apoptotic cells in the LAAO-treated animals. Histological examinations of the vital organs in these two groups showed no significant differences with normal tissues, indicating no obvious tissue damage. The treatment also did not cause any significant changes on the body weight of the mice during the duration of the study. These observations suggest that OH-LAAO cytotoxic effects may be specific to tumor xenografts and less to normal organs. Given its potent anti-tumor activities shown in vitro as well as in vivo, the king cobra venom LAAO can potentially be developed to treat prostate cancer and other solid tumors.

  6. Kinematic modeling and its implication in longitudinal chemotherapy study of tumor physiology: ovarian xenograft mouse model and contrast-enhanced dynamic CT (Honorable Mention Poster Award)

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.; Liang, Yun; Hutchins, Gary D.

    2004-04-01

    The purpose of this study is to demonstrate that dynamic CT provides the necessary sensitivity to quantify tumor physiology and differences in chemotherapeutic response. A compartmental mouse model utilizing measured contrast-enhanced dynamic CT scans is used to simulate systematic and statistical errors associated with tumor physiology: perfusion, permeability (PS), fractional plasma volume (fp), and fractional interstitial volume. The solute utilized is a small molecular weight radio-opaque contrast agent (isovue). For such an intravascular-interstitial medium, the kinematics simplifies to a two compartmental diffusive dominated set of coupled differential equations. Each combination of physiological parameters is repeatedly simulated fifteen times from which statistical errors calculated. The fractional change relative to the true value (systematic error) and standard deviation (statistical error) are plotted as a function of PS, fp, scanner temporal resolution and noise, and contrast media injection rates. By extrapolating from experimental data found in literature, a relative change in PS and fp of approximately 40% is required. Thus, the longitudinal response of two chemotherapeutic drugs under investigation - proteasome and IMPDH inhibitors - are hypothesized to induce different physiological responses. The first set of simulations varies PS from 0.05 to 0.40 mL/min/mL and fp from 0.01 to 0.07 mL/mL while holding all other physiological parameters constant. Errors in PS remain below 3% while statistical errors for fp increase significantly as the volume decreases toward 1-2%: errors remain less than 6% for fp>0.03 while increasing to above 15% for fp<0.02. The second set of simulations are performed quantifying the relationship between scanner temporal resolution and contrast media injection rate for various tumor permeabilities. For the majority of cases, the errors remain below 5%. As PS approaches perfusion, a total error less than 6% can be maintained

  7. Enhanced production of nitric oxide in A549 cells through activation of TRPA1 ion channel by cold stress.

    PubMed

    Sun, Wenwu; Wang, Zhonghua; Cao, Jianping; Wang, Xu; Han, Yaling; Ma, Zhuang

    2014-08-31

    The respiratory epithelium is exposed to the external environment, and inhalation of cold air is common during the season of winter. In addition, the lung is a major source of nitric oxide (NO). However, the effect of cold stress on the production of NO is still unclear. In the present work, We measured the change of NO in single cell with DACF-DA and the change in cytosolic Ca(2+) concentration ([Ca(2+)]c) in A549 cell. We observed that cold stress (from 20 °C to 5 °C) induced an increase of NO in A549 cell, which was completely abolished by applying an extracellular Ca(2+) free medium. Further experiments showed that cold-sensing transient receptor potential subfamily member 1 (TRPA1) channel agonist (allyl isothiocyanate, AITC) increased the production of NO and the level of [Ca(2+)]c in A549 cell. Additionally, TRPA1 inhibitor, Ruthenium red (RR) and camphor, significantly blocked the enhanced production of NO and the rise of [Ca(2+)]c induced by AITC or cold stimulation, respectively. Taken together, these data indicated that cold-induced TRPA1 activation was responsible for the enhanced production of NO in A549 cell.

  8. Effect of copper overload on the survival of HepG2 and A-549 human-derived cells.

    PubMed

    Arnal, N; de Alaniz, M J T; Marra, C A

    2013-03-01

    We investigated the effect of copper (Cu) overload (20-160 µM/24 h) in two cell lines of human hepatic (HepG2) and pulmonary (A-549) origin by determining lipid and protein damage and the response of the antioxidant defence system. A-549 cells were more sensitive to Cu overload than HepG2 cells. A marked increase was observed in both the cell lines in the nitrate plus nitrite concentration, protein carbonyls and thiobarbituric acid reactive substances (TBARS). The TBARS increase was consistent with an increment in saturated fatty acids at the expense of polyunsaturated acids in a Cu concentration-dependent fashion. Antioxidant enzymes were stimulated by Cu overload. Superoxide dismutase activity increased significantly in both the cell lines, with greater increases in HepG2 than in A-549 cells. A marked increase in ceruloplasmin and metallothionein content in both the cell types was also observed. Dose-dependent decreases in α-tocopherol and ferric reducing ability were observed. Total glutathione content was lower in A-549 cells and higher in HepG2. Calpain and caspase-3 were differentially activated in a dose-dependent manner under copper-induced reactive oxygen species production. We conclude that Cu exposure of human lung- and liver-derived cells should be considered a reliable experimental system for detailed study of mechanism/mechanisms by which Cu overload exerts its deleterious effects.

  9. Enhancement of radiosensitivity by CpG-oligodeoxyribonucleotide-7909 in human non-small cell lung cancer A549 cells.

    PubMed

    Zha, Lin; Qiao, Tiankui; Yuan, Sujuan; Lei, Linjie

    2010-04-01

    CpG-oligodeoxyribonucleotides (CpG-ODNs), which induce signaling through the toll-like receptor 9, are currently under investigation as immunity stimulators against cancer. It has recently been suggested that CpG-ODNs may also enhance sensitivity to traditional therapies including chemotherapy in certain cancer-cell lines. The purpose of this study was to define the activity of CpG-ODN7909 in increasing radiosensitivity of the human non-small cell lung cancer cell line A549 in vitro. First, a dose- and time-dependent inhibitory effect on cell viability was observed after A549 cells were treated with different concentrations of CpG-ODN7909 (5, 10, 30, and 60 microg/mL). Second, decreased cell clonogenic survival, enhanced cell apoptotic index, accumulated percentage of cells in the G2/M phase, and increased tumor necrosis factor (TNF)-alpha secretion were found after combined treatments with 10 microg/mL of CpG-ODN7909 and radiation compared to either treatment alone (p < 0.05). Furthermore, the toll-like receptor 9 mRNA was found to express in A549. The results suggest that CpG-ODN7909 can increase the radiosensitivity of human non-small cell lung cancer A549 cells, which may be associated with reduced cell clonogenic survival, enhanced apoptosis, prolonged cell-cycle arrest in G2/M, and stimulation of TNF-alpha secretion.

  10. Green tea polyphenol EGCG reverse cisplatin resistance of A549/DDP cell line through candidate genes demethylation.

    PubMed

    Zhang, Youwei; Wang, Xiang; Han, Liang; Zhou, Yizhou; Sun, Sanyuan

    2015-02-01

    Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, has been extensively studied as a potential demethylating agent. Our hypothesis is that EGCG could resensitize non-small-cell lung cancer (NSCLC) cells to cisplatin (DDP) through candidate genes demethylation. The A549/DDP cell line was established by continuous exposure of A549 cells to increasing concentrations of DDP. MTT, colony formation assay, flow cytometric analysis, Hoechst staining, real time-PCR, quantitative methylation-specific PCR and in vivo experiments were performed in this study. EGCG+DDP treatment significantly caused proliferation inhibition, cell cycle arrest in G1 phase, increase of apoptosis in A549/DDP cells, along with inhibition of DNA methyltransferase (DNMT) activity and histone deacetylase (HDAC) activity, reversal of hypermethylated status and downregulated expression of GAS1, TIMP4, ICAM1 and WISP2 gene in A549/DDP cells. Furthermore, pre-treatment with EGCG followed by DDP caused significant tumor inhibition in vivo. Methylation levels of GAS1, TIMP4, ICAM1 and WISP2 were decreased and their expression levels were increased in EGCG-treatment groups, but only combinatorial treatment group caused growth inhibition. In conclusion, we identified EGCG pretreatment resensitized cells to DDP, along with the demethylation and restoration of expression of candidate genes.

  11. Winter fine particulate matter from Milan induces morphological and functional alterations in human pulmonary epithelial cells (A549).

    PubMed

    Gualtieri, Maurizio; Mantecca, Paride; Corvaja, Viviana; Longhin, Eleonora; Perrone, Maria Grazia; Bolzacchini, Ezio; Camatini, Marina

    2009-07-10

    Samples of PM(2.5) were gravimetrically collected during the winter 2005/2006 in the urban area of Milan (North Italy). Samples were chemically characterized and the particles were detached from filters to determine their cytotoxic effects on the A549 cell line. Based on the potential toxicological relevance of its components, Milan winter PM(2.5) contained high concentrations of pro-oxidant transition metals and PAHs, while re-suspended particles showed a relatively high frequency of dimensional classes ranging from 40 nm to 300 nm. A549 cells exposed to particle suspensions showed a concentration-dependent decrease in viability, starting from 10 microg/cm(2). Phagocytosis of particles by A549 cells and particle aggregates were morphologically characterized and seemed to depend on both particle concentration and exposure time, with the majority of particles being engulfed in membrane-bound vacuoles after 24h of exposure. The ability of ultrafine particles to penetrate and spread throughout the cells was also verified. Cell membrane lysis and mitochondrial ultrastructural disruption appeared to be the main modifications induced by PM(2.5) on A549 cells. Concomitantly to the adverse effects observed in terms of cell mortality and ultrastructural lesions, a significant intracellular production of reactive oxygen species (ROS) was observed, suggesting that the cytotoxicity, exerted by the winter PM(2.5) in Milan, derived also from its oxidative potential, probably associated with particle-adsorbed metals and PAHs.

  12. The synergistic effect of resveratrol in combination with cisplatin on apoptosis via modulating autophagy in A549 cells.

    PubMed

    Hu, Song; Li, Xiaolin; Xu, Rongrong; Ye, Lingyun; Kong, Hui; Zeng, Xiaoning; Wang, Hong; Xie, Weiping

    2016-06-01

    Several studies have shown that combination treatment with natural products and chemotherapy agents can improve the sensitivity and cytotoxicity of chemotherapy agents. Resveratrol, a natural product, has many biological effects including antitumor and antiviral activities, as well as vascular protective effect. The aim of this study is to investigate the synergistic anticancer effect of resveratrol in combination with cisplatin and the potential anticancer mechanisms involved in A549 cells. The results obtained from Cell Counting Kit-8 and isobolographic analysis demonstrated that combination of resveratrol and cisplatin resulted in synergistic cytotoxic effects in A549 cells. Results from Hoechst staining, flow cytometry and western blot analysis suggested that resveratrol enhanced cisplatin-mediated apoptosis. Meanwhile, the changes of LC3-II and P62 levels and formation of autophagosome suggested that resveratrol in combination with cisplatin triggered autophagy. More importantly, inhibiting autophagy by 3-methyladenine markedly attenuated the apoptosis caused by combination of resveratrol and cisplatin in A549 cells. Taken together, our study provides the first evidence that resveratrol combined with cisplatin synergistically induce apoptosis via modulating autophagic cell death in A549 cells. These findings also help us to understand the role of natural products in combination with chemotherapy agents in lung cancer.

  13. Transcriptome Sequencing Reveals Key Pathways and Genes Associated with Cisplatin Resistance in Lung Adenocarcinoma A549 Cells

    PubMed Central

    Fang, Yani; Zhang, Cheng; Wu, Tong; Wang, Qi; Liu, Jinhui; Dai, Penggao

    2017-01-01

    Acquired resistance to cisplatin-based chemotherapy frequently occurs in patients with non-small cell lung cancer, and the underlying molecular mechanisms are not well understood. The aim of this study was to investigate whether a distinct gene expression pattern is associated with acquired resistance to cisplatin in human lung adenocarcinoma. Whole-transcriptome sequencing was performed to compare the genome-wide gene expression patterns of the human lung adenocarcinoma A549 cisplatin-resistant cell line A549/DDP with those of its progenitor cell line A549. A total of 1214 differentially expressed genes (DEGs) were identified, 656 of which were upregulated and 558 were downregulated. Functional annotation of the DEGs in the Kyoto Encyclopedia of Genes and Genomes database revealed that most of the identified genes were enriched in the PI3K/AKT, mitogen-activated protein kinase, actin cytoskeleton regulation, and focal adhesion pathways in A549/DDP cells. These results support previous studies demonstrating that the pathways regulating cell proliferation and invasion confer resistance to chemotherapy. Furthermore, the results proved that cell adhesion and cytoskeleton regulation is associated with cisplatin resistance in human lung cancer. Our study provides new promising biomarkers for lung cancer prognosis and potential therapeutic targets for lung cancer treatment. PMID:28114404

  14. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus

    PubMed Central

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells. PMID:26345201

  15. Novel curcumin analogue IHCH exhibits potent anti‑proliferative effects by inducing autophagy in A549 lung cancer cells.

    PubMed

    Zhou, Guang-Zhou; Xu, Su-Li; Sun, Gang-Chun; Chen, Xiao-Bing

    2014-07-01

    Curcumin is a natural polyphenolic compound that exhibits strong antioxidant and anticancer activities; however, low bioavailability has restricted its application in chemotherapeutic trials. The present study aimed to investigate the anticancer effect of the novel curcumin derivative 2E,6E‑2‑(1H‑indol‑3‑yl) methylene)‑6‑(4‑hydroxy‑3‑methoxy benzylidene)‑cyclohexanone (IHCH) on A549 lung cancer cells. Cells were treated with IHCH at different concentrations (1‑40 µM) for different time periods (1‑36 h). Microscopic analysis revealed that IHCH inhibited A549 cell growth and induced the formation of characteristic autophagolysosomes in a dose‑ and time‑dependent manner. Furthermore, the inhibitory rate of IHCH (40 µM) on A549 cell viability was 77.34% after 36 h of treatment. Acridine orange staining revealed an increase in autophagic vacuoles in the IHCH‑treated A549 cells. Monodansylcadaverine staining was used to analyze autophagy rate. Immunocytochemistry revealed an increase in light chain (LC) 3 protein expression in the IHCH‑treated cells and western blot analysis detected the conversion of LC3‑I to LC3‑II, as well as the recruitment of LC3 to autophagosomes in the cytoplasmatic compartment, suggesting the occurrence of autophagy. These findings show that IHCH induced autophagy in A549 cells, which is a novel cell death mechanism induced by curcumin derivatives.

  16. Pomegranate fruit extract inhibits prosurvival pathways in human A549 lung carcinoma cells and tumor growth in athymic nude mice.

    PubMed

    Khan, Naghma; Hadi, Naghma; Afaq, Farrukh; Syed, Deeba N; Kweon, Mee-Hyang; Mukhtar, Hasan

    2007-01-01

    Developing novel mechanism-based chemopreventive approaches for lung cancer through the use of dietary substances which humans can accept has become an important goal. In the present study, employing normal human bronchial epithelial cells (NHBE) and human lung carcinoma A549 cells, we first compared the growth inhibitory effects of pomegranate fruit extract (PFE). Treatment of PFE (50-150 microg/ml) for 72 h was found to result in a decrease in the viability of A549 cells but had only minimal effects on NHBE cells as assessed by the MTT and Trypan blue assays. PFE treatment of A549 cells also resulted in dose-dependent arrest of cells in G0-G1 phase of the cell cycle (as assessed by DNA cell cycle analysis). We further found that PFE treatment also resulted in (i) induction of WAF1/p21 and KIP1/p27, (ii) decrease in the protein expressions of cyclins D1, D2 and E, and (iii) decrease in cyclin-dependent kinase (cdk) 2, cdk4 and cdk6 expression. The treatment of cells with PFE inhibited (i) phosphorylation of MAPK proteins, (ii) inhibition of PI3K, (iii) phosphorylation of Akt at Thr308, (iv) NF-kappaB and IKKalpha, (v) degradation and phosphorylation of IkappaBalpha, and (vi) Ki-67 and PCNA. We also found that PFE treatment to A549 cells resulted in inhibition of NF-kappaB DNA-binding activity. Oral administration of PFE (0.1 and 0.2%, wt/vol) to athymic nude mice implanted with A549 cells resulted in a significant inhibition in tumor growth. Our results provide a suggestion that PFE can be a useful chemopreventive/chemotherapeutic agent against human lung cancer.

  17. Capsaicin-induced genotoxic stress does not promote apoptosis in A549 human lung and DU145 prostate cancer cells.

    PubMed

    Lewinska, Anna; Jarosz, Paulina; Czech, Joanna; Rzeszutek, Iwona; Bielak-Zmijewska, Anna; Grabowska, Wioleta; Wnuk, Maciej

    2015-02-01

    Capsaicin is the major pungent component of the hot chili peppers of the genus Capsicum, which are consumed worldwide as a food additive. More recently, the selective action of capsaicin against cancer cells has been reported. Capsaicin was found to induce apoptosis and inhibit proliferation of a wide range of cancer cells in vitro, whereas being inactive against normal cells. As data on capsaicin-induced genotoxicity are limited and the effects of capsaicin against human lung A549 and DU145 prostate cancer cells were not explored in detail, we were interested in determining whether capsaicin-associated genotoxicity may also provoke A549 and DU145 cell death. Capsaicin-induced decrease in metabolic activity and cell proliferation, and changes in the cell cycle were limited to high concentrations used (≥ 100 μM), whereas, at lower concentrations, capsaicin stimulated both DNA double strand breaks and micronuclei production. Capsaicin was unable to provoke apoptotic cell death when used up to 250 μM concentrations. Capsaicin induced oxidative stress, but was ineffective in provoking the dissipation of the mitochondrial inner transmembrane potential. A different magnitude of p53 binding protein 1 (53BP1) recruitment contributed to diverse capsaicin-induced genotoxic effects in DU145 and A549 cells. Capsaicin was also found to be a DNA hypermethylating agent in A549 cells. In summary, we have shown that genotoxic effects of capsaicin may contribute to limited susceptibility of DU145 and A549 cancer cells to apoptosis in vitro, which may question the usefulness of capsaicin-based anticancer therapy, at least in a case of lung and prostate cancer.

  18. MicroRNA-490-3p inhibits proliferation of A549 lung cancer cells by targeting CCND1

    SciTech Connect

    Gu, Haihua; Yang, Tao; Fu, Shaozi; Chen, Xiaofan; Guo, Lei; Ni, Yiming

    2014-01-31

    Highlights: • We examined the level of miR-490-3p in A549 lung cancer cells compared with normal bronchial epithelial cell line. • We are the first to show the function of miR-490-3p in A549 lung cancer cells. • We demonstrate CCND1 may be one of the targets of miR-490-3p. - Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate the translation of messenger RNAs by binding their 3′-untranslated region (3′UTR). In this study, we found that miR-490-3p is significantly down-regulated in A549 lung cancer cells compared with the normal bronchial epithelial cell line. To better characterize the role of miR-490-3p in A549 cells, we performed a gain-of-function analysis by transfecting the A549 cells with chemically synthesized miR-490-3P mimics. Overexpression of miR-490-3P evidently inhibits cell proliferation via G1-phase arrest. We also found that forced expression of miR-490-3P decreased both mRNA and protein levels of CCND1, which plays a key role in G1/S phase transition. In addition, the dual-luciferase reporter assays indicated that miR-490-3P directly targets CCND1 through binding its 3′UTR. These findings indicated miR-490-3P could be a potential suppressor of cellular proliferation.

  19. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus.

    PubMed

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.

  20. Human amniotic fluid-derived stem cells expressing cytosine deaminase and thymidine kinase inhibits the growth of breast cancer cells in cellular and xenograft mouse models.

    PubMed

    Kang, N-H; Hwang, K-A; Yi, B-R; Lee, H J; Jeung, E-B; Kim, S U; Choi, K-C

    2012-06-01

    As human amniotic fluid-derived stem cells (hAFSCs) are capable of multiple lineage differentiation, extensive self-renewal and tumor targeting, they may be valuable for clinical anticancer therapies. In this study, we used hAFSCs as vehicles for targeted delivery of therapeutic suicide genes to breast cancer cells. hAFSCs were engineered to produce AF2.CD-TK cells in order to express two suicide genes encoding bacterial cytosine deaminase (CD) and herpes simplex virus thymidine kinase (HSV-TK) that convert non-toxic prodrugs, 5-fluorocytosine (5-FC) and mono-phosphorylate ganciclovir (GCV-MP), into cytotoxic metabolites, 5-fluorouracil (5-FU) and triphosphate ganciclovir (GCV-TP), respectively. In cell viability test in vitro, AF2.CD-TK cells inhibited the growth of MDA-MB-231 human breast cancer cells in the presence of the 5-FC or GCV prodrugs, or a combination of these two reagents. When the mixture of 5-FC and GCV was treated together, an additive cytotoxic effect was observed in the cell viability. In animal experiments using female BALB/c nude mouse xenografts, which developed by injecting MDA-MB-231 cells, treatment with AF2.CD-TK cells in the presence of 5-FC and GCV significantly reduced tumor volume and weight to the same extent seen in the mice treated with 5-FU. Histopathological and fluorescent staining assays further showed that AF2.CD-TK cells were located exactly at the site of tumor formation. Furthermore, breast tissues treated with AF2.CD-TK cells and two prodrugs maintained their normal structures (for example, the epidermis and reticular layers) while breast tissue structures in 5-FU-treated mice were almost destroyed by the potent cytotoxicity of the drug. Taken together, these results indicate that AF2.CD-TK cells can serve as excellent vehicles in a novel therapeutic cell-based gene-directed prodrug system to selectively target breast malignancies.

  1. Selective antitumor effect of neural stem cells expressing cytosine deaminase and interferon-beta against ductal breast cancer cells in cellular and xenograft models.

    PubMed

    Yi, Bo-Rim; Hwang, Kyung-A; Aboody, Karen S; Jeung, Eui-Bae; Kim, Seung U; Choi, Kyung-Chul

    2014-01-01

    Due to their inherent tumor-tropic properties, genetically engineered stem cells may be advantageous for gene therapy treatment of various human cancers, including brain, liver, ovarian, and prostate malignancies. In this study, we employed human neural stem cells (HB1.F3; hNSCs) transduced with genes expressing Escherichia coli cytosine deaminase (HB1.F3.CD) and human interferon-beta (HB1.F3.CD.IFN-β) as a treatment strategy for ductal breast cancer. CD can convert the prodrug 5-fluorocytosine (5-FC) to its active chemotherapeutic form, 5-fluorouracil (5-FU), which induces a tumor-killing effect through DNA synthesis inhibition. IFN-β also strongly inhibits tumor growth by the apoptotic process. RT-PCR confirmed that HB1.F3.CD cells expressed CD and HB1.F3.CD.IFN-β cells expressed both CD and IFN-β. A modified transwell migration assay showed that HB1.F3.CD and HB1.F3.CD.IFN-β cells selectively migrated toward MCF-7 and MDA-MB-231 human breast cancer cells. In hNSC-breast cancer co-cultures the viability of breast cancer cells which were significantly reduced by HB1.F3.CD or HB1.F3.CD.IFN-β cells in the presence of 5-FC. The tumor inhibitory effect was greater with the HB1.F3.CD.IFN-β cells, indicating an additional effect of IFN-β to 5-FU. In addition, the tumor-tropic properties of these hNSCs were found to be attributed to chemoattractant molecules secreted by breast cancer cells, including stem cell factor (SCF), c-kit, vascular endothelial growth factor (VEGF), and VEGF receptor 2. An in vivo assay performed using MDA-MB-231/luc breast cancer mammary fat pad xenografts in immunodeficient mice resulted in 50% reduced tumor growth and increased long-term survival in HB1.F3.CD and HB1.F3.CD.IFN-β plus 5-FC treated mice relative to controls. Our results suggest that hNSCs genetically modified to express CD and/or IFN-β genes can be used as a novel targeted cancer gene therapy.

  2. Improving In Vivo High-Resolution CT Imaging of the Tumour Vasculature in Xenograft Mouse Models through Reduction of Motion and Bone-Streak Artefacts

    PubMed Central

    Kersemans, Veerle; Kannan, Pavitra; Beech, John S.; Bates, Russell; Irving, Benjamin; Gilchrist, Stuart; Allen, Philip D.; Thompson, James; Kinchesh, Paul; Casteleyn, Christophe; Schnabel, Julia; Partridge, Mike; Muschel, Ruth J.; Smart, Sean C.

    2015-01-01

    Introduction Preclinical in vivo CT is commonly used to visualise vessels at a macroscopic scale. However, it is prone to many artefacts which can degrade the quality of CT images significantly. Although some artefacts can be partially corrected for during image processing, they are best avoided during acquisition. Here, a novel imaging cradle and tumour holder was designed to maximise CT resolution. This approach was used to improve preclinical in vivo imaging of the tumour vasculature. Procedures A custom built cradle containing a tumour holder was developed and fix-mounted to the CT system gantry to avoid artefacts arising from scanner vibrations and out-of-field sample positioning. The tumour holder separated the tumour from bones along the axis of rotation of the CT scanner to avoid bone-streaking. It also kept the tumour stationary and insensitive to respiratory motion. System performance was evaluated in terms of tumour immobilisation and reduction of motion and bone artefacts. Pre- and post-contrast CT followed by sequential DCE-MRI of the tumour vasculature in xenograft transplanted mice was performed to confirm vessel patency and demonstrate the multimodal capacity of the new cradle. Vessel characteristics such as diameter, and branching were quantified. Results Image artefacts originating from bones and out-of-field sample positioning were avoided whilst those resulting from motions were reduced significantly, thereby maximising the resolution that can be achieved with CT imaging in vivo. Tumour vessels ≥ 77 μm could be resolved and blood flow to the tumour remained functional. The diameter of each tumour vessel was determined and plotted as histograms and vessel branching maps were created. Multimodal imaging using this cradle assembly was preserved and demonstrated. Conclusions The presented imaging workflow minimised image artefacts arising from scanner induced vibrations, respiratory motion and radiopaque structures and enabled in vivo CT imaging

  3. Raw and thermally treated cement asbestos exerts different cytotoxicity effects on A549 cells in vitro.

    PubMed

    Pugnaloni, Armanda; Lucarini, Guendalina; Rubini, Corrado; Smorlesi, Arianna; Tomasetti, Marco; Strafella, Elisabetta; Armeni, Tatiana; Gualtieri, Alessandro F

    2015-01-01

    Raw cement asbestos (RCA) undergoes a complete solid state transformation when heated at high temperatures. The secondary raw material produced, high temperatures-cement asbestos (HT-CA) is composed of newly-formed crystals in place of the asbestos fibers present in RCA. Our previous study showed that HT-CA exerts lower cytotoxic cell damage compared to RCA. Nevertheless further investigations are needed to deepen our understanding of pathogenic pathways involving oxidative and nitrative damage. Our aim is to deepen the understanding of the biological effects on A549 cells of these materials regarding DNA damage related proteins (p53, its isoform p73 and TRAIL) and nitric oxide (NO) production during inducible nitric oxide synthase (iNOS)-mediated inflammation. Increments of p53/p73 expression, iNOS positive cells and NO concentrations were found with RCA, compared to HT-CA and controls mainly at 48 h. Interestingly, ferrous iron causing reactive oxygen species (ROS)-mediated DNA damage was found in RCA as a contaminant. HT-CA thermal treatment induces a global recrystallization with iron in a crystal form poorly released in media. HT-CA slightly interferes with genome expression and exerts lower inflammatory potential compared to RCA on biological systems. It could represent a safe approach for storing or recycling asbestos and an environmentally friendly alternative to asbestos waste.

  4. Biosynthesis of gold nanoparticles and related cytotoxicity evaluation using A549 cells.

    PubMed

    Sathishkumar, M; Pavagadhi, S; Mahadevan, A; Balasubramanian, R

    2015-04-01

    Biosynthesis of gold nanoparticles (AuNPs) has become an attractive area of research as it is environmentally benign. The toxicity of AuNPs synthesized by chemical routes has been widely studied. However, little is known about the toxicity associated with the biological synthesis of AuNPs. The present study was carried out to synthesize AuNPs using star anise (Illicium verum; a commercially available spice in abundance)and evaluate its toxicity using human epithelial lung cells (A549) in comparison with AuNPs synthesized by the traditional chemical methods (using sodium citrate and sodium borohydride). Apart from cell viability, markers of oxidative stress (reduced glutathione) and cell death (caspases) were also evaluated to understand the mechanisms of toxicity. Cell viability was observed to be 65.7 percent and 72.3 percent in cells exposed to chemically synthesized AuNPs at the highest dose (200nM) as compared to 80.2 percent for biologically synthesized AuNPs. Protective coating/capping of AuNPs by various polyphenolic compounds present in star anise extract appears to be a major contributor to lower toxicity observed in biologically synthesized AuNPs.

  5. Superinfection exclusion is absent during acute Junin virus infection of Vero and A549 cells

    PubMed Central

    Gaudin, Raphaël; Kirchhausen, Tomas

    2015-01-01

    Many viruses have evolved strategies of so-called “superinfection exclusion” to prevent re-infection of a cell that the same virus has already infected. Although Old World arenavirus infection results in down-regulation of its viral receptor and thus superinfection exclusion, whether New World arenaviruses have evolved such a mechanism remains unclear. Here we show that acute infection by the New World Junin virus (JUNV) failed to down-regulate the transferrin receptor and did not induce superinfection exclusion. We observed that Vero cells infected by a first round of JUNV (Candid1 strain) preserve an ability to internalize new incoming JUNV particles that is comparable to that of non-infected cells. Moreover, we developed a dual infection assay with the wild-type Candid1 JUNV and a recombinant JUNV-GFP virus to discriminate between first and second infections at the transcriptional and translational levels. We found that Vero and A549 cells already infected by JUNV were fully competent to transcribe viral RNA from a second round of infection. Furthermore, flow cytometry analysis of viral protein expression indicated that viral translation was normal, regardless of whether cells were previously infected or not. We conclude that in acutely infected cells, Junin virus lacks a superinfection exclusion mechanism. PMID:26549784

  6. Role of cytoskeleton network in anisosmotic volume changes of intact and permeabilized A549 cells.

    PubMed

    Platonova, Alexandra; Ponomarchuk, Olga; Boudreault, Francis; Kapilevich, Leonid V; Maksimov, Georgy V; Grygorczyk, Ryszard; Orlov, Sergei N

    2015-10-01

    Recently we found that cytoplasm of permeabilized mammalian cells behaves as a hydrogel displaying intrinsic osmosensitivity. This study examined the role of microfilaments and microtubules in the regulation of hydrogel osmosensitivity, volume-sensitive ion transporters, and their contribution to volume modulation of intact cells. We found that intact and digitonin-permeabilized A549 cells displayed similar rate of shrinkage triggered by hyperosmotic medium. It was significantly slowed-down in both cell preparations after disruption of actin microfilaments by cytochalasin B, suggesting that rapid water release by intact cytoplasmic hydrogel contributes to hyperosmotic shrinkage. In hyposmotic swelling experiments, disruption of microtubules by vinblastine attenuated the maximal amplitude of swelling in intact cells and completely abolished it in permeabilized cells. The swelling of intact cells also triggered ~10-fold elevation of furosemide-resistant (86)Rb+ (K+) permeability and the regulatory volume decrease (RVD), both of which were abolished by Ba2+. Interestingly, RVD and K+ permeability remained unaffected in cytocholasin/vinblastine treated cells demonstrating that cytoskeleton disruption has no direct impact on Ba2+-sensitive K+-channels involved in RVD. Our results show, for the first time, that the cytoskeleton network contributes directly to passive cell volume adjustments in anisosmotic media via the modulation of the water retained by the cytoplasmic hydrogel.

  7. Taxol-induced paraptosis-like A549 cell death is not senescence

    NASA Astrophysics Data System (ADS)

    Wang, Chao-yang; Chen, Tong-Sheng

    2011-03-01

    Our previous studies have shown that taxol, a potent anticancer agent, induces caspase-independent cell death and cytoplasmic vacuolization in human lung cancer cells. However, the mechanisms of taxol-induced cytoplasmic vacuolization are poorly understood. Cytoplasmic vacuolization have been reported to be a characteristic of cell senescence. Here, we employed confocal fluorescence microscopy imaging to study the reversibility of taxol-induced cytoplasmic vacuolization and whether taxol triggers senescence in A549 cells. We found that taxol-induced cytoplasmic vacuolization at 6 or 9 h after treatment with taxol did not decrease but increase at 24 h or 72 h after refreshing the culture medium without taxol, indicating taxol-induced cytoplasmic vacuolization is irreversible. We used SA-β-Gal (senescence-associated β-galactosidase) to assess whether taxol-induced cell death in cytoplasmic vacuolization fashion is senescence, and found that hydrogen peroxide (H2O2)-treated, but not taxol-treated cells is significantly stained by the SA-β-Gal, a senescence testing kit, indicating that the form of taxol-induced cell death is not senescence.

  8. Pinus massoniana bark extract inhibits migration of the lung cancer A549 cell line

    PubMed Central

    Mao, Ping; Zhang, Ershao; Chen, Yang; Liu, Likun; Rong, Daqing; Liu, Qingfeng; Li, Weiling

    2017-01-01

    The bark of Pinus massoniana is a traditional Chinese medicine for the treatment of various health disorders. Previous studies have demonstrated that P. massoniana bark extract (PMBE) may induce the apoptosis of hepatoma and cervical cancer cells. However, whether PMBE is able to inhibit the migration of lung cancer cells requires further investigation. In the current study, the effects of PMBE on the viability of human lung cancer A549 cells were detected using an MTT assay. The migration of lung cancer cells following exposure to PMBE were quantified using wound healing and Transwell assays, respectively. The expression levels of matrix metalloproteinase (MMP)-9 were determined using western blotting. The results revealed that PMBE significantly inhibited the growth of the lung cancer cells. In addition, the wound closure rate and the migration of the lung cancer cells were suppressed by PMBE. Furthermore, the expression levels of MMP-9 were reduced. These findings indicated that PMBE is able to restrict the migration and invasion of lung cancer cells, and that PMBE may serve as a novel therapeutic agent for patients with metastatic lung cancer in the future. PMID:28356994

  9. Superinfection exclusion is absent during acute Junin virus infection of Vero and A549 cells.

    PubMed

    Gaudin, Raphaël; Kirchhausen, Tomas

    2015-11-09

    Many viruses have evolved strategies of so-called "superinfection exclusion" to prevent re-infection of a cell that the same virus has already infected. Although Old World arenavirus infection results in down-regulation of its viral receptor and thus superinfection exclusion, whether New World arenaviruses have evolved such a mechanism remains unclear. Here we show that acute infection by the New World Junin virus (JUNV) failed to down-regulate the transferrin receptor and did not induce superinfection exclusion. We observed that Vero cells infected by a first round of JUNV (Candid1 strain) preserve an ability to internalize new incoming JUNV particles that is comparable to that of non-infected cells. Moreover, we developed a dual infection assay with the wild-type Candid1 JUNV and a recombinant JUNV-GFP virus to discriminate between first and second infections at the transcriptional and translational levels. We found that Vero and A549 cells already infected by JUNV were fully competent to transcribe viral RNA from a second round of infection. Furthermore, flow cytometry analysis of viral protein expression indicated that viral translation was normal, regardless of whether cells were previously infected or not. We conclude that in acutely infected cells, Junin virus lacks a superinfection exclusion mechanism.

  10. Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549

    NASA Astrophysics Data System (ADS)

    Syaefudin; Juniarti, A.; Rosiyana, L.; Setyani, A.; Khodijah, S.

    2016-01-01

    The aim of the present study is to evaluate cytotoxicity effect of nanoparticles of Selaginella doederleinii (S. doederleinii) leaves extract. S. doederleinii was extracted by maceration method using 70%(v/v) ethanol as solvent. Phytochemical content was analyzed qualitatively by using Harborne and Thin Layer Chromatography (TLC) methods. Nanoparticle extract was prepared by ionic gelation using chitosan as encapsulant agent. Anticancer activity was performed by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results showed that S. doederleinii contains of flavonoids. Nanoparticle of S. doederleinii leaves extract greatly inhibited A549 cells growth (cancer cells), with IC50 of 3% or 1020 μg/ml. These nanoparticles extract also inhibited the growth of Chang cells (normal cells), with IC50 of 4% or 1442 μg/ml. The effective concentration of nanoparticles extract which inhibits cancer cells without harming the normal cells is 0.5% or 167 μg/ml. Further studies are needed to obtain the concentration of nanoparticles extract which can selectively suppress cancer cells.

  11. [Heart Transplantation;Allograft and Xenograft].

    PubMed

    Fukushima, Norihide

    2017-01-01

    Prior to starting clinical cardiac allotransplantation, cardiac xenotransplantation was performed in human in 1960s. In 1964, Hardy performed cardiac transplantation using a chimpanzee heart and Bailey performed cardiac transplantation using a baboon heart to an infant with hypoplastic left heart. The use of cyclosporine has greatly improved the outcome of clinical cardiac transplantation and cardiac allotransplantation became an established treatment strategy for the patients with end-stage heart failure. Although concordant cardiac xenotransplantation from a primate to a human may be successfully performed using current immunosuppressive regimen, a primate heart is not a good candidate for cardiac xenograft due to animal light issues and its size. Therefore, many investigators have tried to extend the survival period in discordant xenograft from pig to primate, but no prolonged surviving orthotropic cardiac xenograft has been established yet. In this review, experiments of concordant and discordant cardiac xenografts which were performed by the authors were introduced.

  12. Toxicity of wood smoke particles in human A549 lung epithelial cells: the role of PAHs, soot and zinc.

    PubMed

    Dilger, Marco; Orasche, Jürgen; Zimmermann, Ralf; Paur, Hanns-Rudolf; Diabaté, Silvia; Weiss, Carsten

    2016-12-01

    Indoor air pollution is associated with increased morbidity and mortality. Specifically, the health impact of emissions from domestic burning of biomass and coal is most relevant and is estimated to contribute to over 4 million premature deaths per year worldwide. Wood is the main fuel source for biomass combustion and the shift towards renewable energy sources will further increase emissions from wood combustion even in developed countries. However, little is known about the constituents of wood smoke and biological mechanisms that are responsible for adverse health effects. We exposed A549 lung epithelial cells to collected wood smoke particles and found an increase in cellular reactive oxygen species as well as a response to bioavailable polycyclic aromatic hydrocarbons. In contrast, cell vitality and regulation of the pro-inflammatory cytokine interleukin-8 were not affected. Using a candidate approach, we could recapitulate WSP toxicity by the combined actions of its constituents soot, metals and PAHs. The soot fraction and metals were found to be the most important factors for ROS formation, whereas the PAH response can be mimicked by the model PAH benzo[a]pyrene. Strikingly, PAHs adsorbed to WSPs were even more potent in activating target gene expression than B[a]P individually applied in suspension. As PAHs initiate multiple adverse outcome pathways and are prominent carcinogens, their role as key pollutants in wood smoke and its health effects warrants further investigation. The presented results suggest that each of the investigated constituents soot, metals and PAHs are major contributors to WSP toxicity. Mitigation strategies to prevent adverse health effects of wood combustion should therefore not only aim at reducing the emitted soot and PAHs but also the metal content, through the use of more efficient combustion appliances, and particle precipitation techniques, respectively.

  13. YL529, a novel, orally available multikinase inhibitor, potently inhibits angiogenesis and tumour growth in preclinical models

    PubMed Central

    Xu, Youzhi; Lin, Hongjun; Meng, Nana; Lu, Wenjie; Li, Guobo; Han, Yuanyuan; Dai, Xiaoyun; Xia, Yong; Song, Xiangrong; Yang, Shengyong; Wei, Yuquan; Yu, Luoting; Zhao, Yinglan

    2013-01-01

    Background and Purpose Targeted chemotherapy using small-molecule inhibitors of angiogenesis and proliferation is a promising strategy for cancer therapy. Experimental Approach YL529 was developed via computer-aided drug design, de novo synthesis and high-throughput screening. The biochemical, pharmacodynamic and toxicological profiles of YL529 were investigated using kinase and cell viability assays, a mouse tumour cell-containing alginate bead model, a zebrafish angiogenesis model and several human tumour xenograft models in athymic mice. Key Results In vitro, YL529 selectively inhibited the activities of VEGFR2/VEGFR3 and serine/threonine kinase RAF kinase. YL529 inhibited VEGF165-induced phosphorylation of VEGFR2, as well as the proliferation, migration, invasion and tube formation of human umbilical vascular endothelial cells. It also significantly blocked vascular formation and angiogenesis in the zebrafish model. Moreover, YL529 strongly attenuated the proliferation of A549 cells by disrupting the RAF/mitogen-activated protein (MAP) or extracellular signal-regulated kinase (Erk) kinase (MEK) kinase kinase/MAPK pathway. Oral administration of YL529 (37.5–150 mg−1·kg−1·day−1) to nude mice bearing established tumour xenografts significantly prevented the growth (60–80%) of A549, SPC-A1, A375, OS-RC-2 and HCT116 tumours without detectable toxicity. YL529 markedly reduced microvessel density and increased tumour cell apoptosis in the tumours formed in mice inoculated with the lung cancer cells, SPC-A1 and A549, and the colon carcinoma cells, HCT116. Conclusions and Implications YL529, an orally active multikinase inhibitor, shows therapeutic potential for solid tumours, and warrants further investigation as a possible anticancer agent. PMID:23594209

  14. Three-dimensional quantitative structure-activity relationship study on anti-cancer activity of 3,4-dihydroquinazoline derivatives against human lung cancer A549 cells

    NASA Astrophysics Data System (ADS)

    Cho, Sehyeon; Choi, Min Ji; Kim, Minju; Lee, Sunhoe; Lee, Jinsung; Lee, Seok Joon; Cho, Haelim; Lee, Kyung-Tae; Lee, Jae Yeol

    2015-03-01

    A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human lung cancer A549 cells were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, 1 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields (q2 = 0.720, r2 = 0.897). This model was validated by an external test set of 6 compounds giving satisfactory predictive r2 value of 0.923 as well as the scrambling stability test. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human lung cancer.

  15. Efficacy of tumor-targeting Salmonella typhimurium A1-R in combination with anti-angiogenesis therapy on a pancreatic cancer patient-derived orthotopic xenograft (PDOX) and cell line mouse models.

    PubMed

    Hiroshima, Yukihiko; Zhang, Yong; Murakami, Takashi; Maawy, Ali; Miwa, Shinji; Yamamoto, Mako; Yano, Shuya; Sato, Sho; Momiyama, Masashi; Mori, Ryutaro; Matsuyama, Ryusei; Chishima, Takashi; Tanaka, Kuniya; Ichikawa, Yasushi; Bouvet, Michael; Endo, Itaru; Zhao, Ming; Hoffman, Robert M

    2014-12-15

    The aim of the present study was to examine the efficacy of tumor-targeting Salmonella typhimurium A1-R treatment following anti-vascular endothelial growth factor (VEGF) therapy on VEGF-positive human pancreatic cancer. A pancreatic cancer patient-derived orthotopic xenograft (PDOX) that was VEGF-positive and an orthotopic VEGF-positive human pancreatic cancer cell line (MiaPaCa-2-GFP) as well as a VEGF-negative cell line (Panc-1) were tested. Nude mice with these tumors were treated with gemcitabine (GEM), bevacizumab (BEV), and S. typhimurium A1-R. BEV/GEM followed by S. typhimurium A1-R significantly reduced tumor weight compared to BEV/GEM treatment alone in the PDOX and MiaPaCa-2 models. Neither treatment was as effective in the VEGF-negative model as in the VEGF-positive models. These results demonstrate that S. typhimurium A1-R following anti-angiogenic therapy is effective on pancreatic cancer including the PDOX model, suggesting its clinical potential.

  16. Efficacy of tumor-targeting Salmonella typhimurium A1-R in combination with anti-angiogenesis therapy on a pancreatic cancer patient-derived orthotopic xenograft (PDOX) and cell line mouse models

    PubMed Central

    Hiroshima, Yukihiko; Zhang, Yong; Murakami, Takashi; Maawy, Ali; Miwa, Shinji; Yamamoto, Mako; Yano, Shuya; Sato, Sho; Momiyama, Masashi; Mori, Ryutaro; Matsuyama, Ryusei; Chishima, Takashi; Tanaka, Kuniya; Ichikawa, Yasushi; Bouvet, Michael; Endo, Itaru; Zhao, Ming; Hoffman, Robert M.

    2014-01-01

    The aim of the present study was to examine the efficacy of tumor-targeting Salmonella typhimurium A1-R treatment following anti-vascular endothelial growth factor (VEGF) therapy on VEGF-positive human pancreatic cancer. A pancreatic cancer patient-derived orthotopic xenograft (PDOX) that was VEGF-positive and an orthotopic VEGF-positive human pancreatic cancer cell line (MiaPaCa-2-GFP) as well as a VEGF-negative cell line (Panc-1) were tested. Nude mice with these tumors were treated with gemcitabine (GEM), bevacizumab (BEV), and S. typhimurium A1-R. BEV/GEM followed by S. typhimurium A1-R significantly reduced tumor weight compared to BEV/GEM treatment alone in the PDOX and MiaPaCa-2 models. Neither treatment was as effective in the VEGF-negative model as in the VEGF-positive models. These results demonstrate that S. typhimurium A1-R following anti-angiogenic therapy is effective on pancreatic cancer including the PDOX model, suggesting its clinical potential. PMID:25402324

  17. Effects of Per2 overexpression on growth inhibition and metastasis, and on MTA1, nm23-H1 and the autophagy-associated PI3K/PKB signaling pathway in nude mice xenograft models of ovarian cancer.

    PubMed

    Wang, Zhaoxia; Li, Li; Wang, Yang

    2016-06-01

    The aim of the present study was to evaluate the association between Period2 (Per2) and the occurrence and development of ovarian cancer, in addition to evaluating the effect of this gene on the growth and metastasis of ovarian cancer in nude mice xenograft models. The detection of Per2 by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blotting methods at various stages of ovarian cancer in tumor tissue samples was conducted. Nude mice xenograft models of ovarian cancer were constructed using an ovarian cancer cell line and, using a gene transfection technique, exogenous infusion of the recombinant gene, Per2, was performed. To assess for the successful and stable expression of Per2 in the tumor tissue, levels of Per2 expression in the nude mice xenograft models were detected by RT‑qPCR. During the experimental period, the tumor volumes were measured every three days. Two weeks following treatment cessation, the nude mice were sacrificed and the tumor weight and volume were measured. Furthermore, detection of the changes in expression levels of metastasis‑associated gene 1 (MTA‑1) and tumor metastasis suppressor gene, non‑metastasis protein 23‑H1 (nm23‑H1), and the expression change of autophagy‑associated signal transduction pathway, phosphatidylinositol 3‑kinase (PI3K)/protein kinase B (PKB) kinase were analyzed. The findings demonstrated that with ovarian cancer stage development, the expression of Per2 gradually reduced or ceased. In addition, exogenous Per2 was successfully and stably expressed in nude mice tumor tissue samples. Furthermore, in the Per2 overexpression group, MTA‑1 protein expression was significantly reduced when compared with the phosphate‑buffered saline (PBS) control and empty plasmid groups, while nm23‑H1 protein expression was significantly higher when compared with those two groups. The expression levels of PI3K and PKB kinase, which are marker proteins of the autophagy

  18. Erlotinib pretreatment improves photodynamic therapy of non-small cell lung carcinoma xenografts via multiple mechanisms

    PubMed Central

    Gallagher-Colombo, Shannon M.; Miller, Joann; Cengel, Keith A.; Putt, Mary E.; Vinogradov, Sergei A.; Busch, Theresa M.

    2015-01-01

    Aberrant expression of the epidermal growth factor receptor (EGFR) is a common characteristic of many cancers including non-small cell lung carcinoma (NSCLC), head and neck squamous cell carcinoma, and ovarian cancer. While EGFR is currently a favorite molecular target for treatment of these cancers, inhibition of the receptor with small molecule inhibitors (i.e.- erlotinib) or monoclonal antibodies (i.e.- cetuximab) does not provide long-term therapeutic benefit as standalone treatment. Interestingly, we have found that addition of erlotinib to photodynamic therapy (PDT) can improve treatment response in typically erlotinib-resistant NSCLC tumor xenografts. Ninety-day complete response rates of 63% are achieved when erlotinib is administered in three doses before PDT of H460 human tumor xenografts, compared to 16% after PDT-alone. Similar benefit is found when erlotinib is added to PDT of A549 NCSLC xenografts. Improved response is accompanied by increased vascular shutdown, and erlotinib increases the in vitro cytotoxicity of PDT to endothelial cells. Tumor uptake of the photosensitizer (benzoporphyrin derivative monoacid ring A; BPD) is increased by the in vivo administration of erlotinib; nevertheless, this elevation of BPD levels only partially accounts for the benefit of erlotinib to PDT. Thus, pretreatment with erlotinib augments multiple mechanisms of PDT effect that collectively lead to large improvements in therapeutic efficacy. These data demonstrate that short-duration administration of erlotinib before PDT can greatly improve the responsiveness of even erlotinib-resistant tumors to treatment. Results will inform clinical investigation of EGFR-targeting therapeutics in conjunction with PDT. PMID:26054596

  19. Acute high-dose X-radiation-induced genomic changes in A549 cells.

    PubMed

    Muradyan, A; Gilbertz, K; Stabentheiner, S; Klause, S; Madle, H; Meineke, V; Ullmann, R; Scherthan, H

    2011-06-01

    Accidents with ionizing radiation often involve single, acute high-dose exposures that can lead to acute radiation syndrome and late effects such as carcinogenesis. To study such effects at the cellular level, we investigated acute ionizing radiation-induced chromosomal aberrations in A549 adenocarcinoma cells at the genome-wide level by exposing the cells to an acute dose of 6 Gy 240 kV X rays. One sham-irradiated clone and four surviving irradiated clones were recovered by minimal dilution and further expanded and analyzed by chromosome painting and tiling-path array CGH, with the nonirradiated clone 0 serving as the control. Acute X-ray exposure induced specific translocations and changes in modal chromosome number in the four irradiated clones. Array CGH disclosed unique and recurrent genomic changes, predominantly losses, and revealed that the fragile sites FRA3B and FRA16D were preferential regions of genomic alterations in all irradiated clones, which is likely related to radioresistant S-phase progression and genomic stress. Furthermore, clone 4 displayed an increased radiosensitivity at doses >5 Gy. Pairwise comparisons of the gene expression patterns of all irradiated clones to the sham-irradiated clone 0 revealed an enrichment of the Gene Ontology term "M Phase" (P = 6.2 × 10(-7)) in the set of differentially expressed genes of clone 4 but not in those of clones 1-3. Ionizing radiation-induced genomic changes and fragile site expression highlight the capacity of a single acute radiation exposure to affect the genome of exposed cells by inflicting genomic stress.

  20. Imaging and characterization of stretch-induced ATP release from alveolar A549 cells.

    PubMed

    Grygorczyk, Ryszard; Furuya, Kishio; Sokabe, Masahiro

    2013-03-01

    Abstract  Mechano-transduction at cellular and tissue levels often involves ATP release and activation of the purinergic signalling cascade. In the lungs, stretch is an important physical stimulus but its impact on ATP release, the underlying release mechanisms and transduction pathways are poorly understood. Here, we investigated the effect of unidirectional stretch on ATP release from human alveolar A549 cells by real-time luciferin-luciferase bioluminescence imaging coupled with simultaneous infrared imaging, to monitor the extent of cell stretch and to identify ATP releasing cells. In subconfluent (<90%) cell cultures, single 1 s stretch (10-40%)-induced transient ATP release from a small fraction (1.5%) of cells that grew in number dose-dependently with increasing extent of stretch. ATP concentration in the proximity (150 μm) of releasing cells often exceeded 10 μm, sufficient for autocrine/paracrine purinoreceptor stimulation of neighbouring cells. ATP release responses were insensitive to the putative ATP channel blockers carbenoxolone and 5-nitro-2-(3-phenylpropyl-amino) benzoic acid, but were inhibited by N-ethylmaleimide and bafilomycin. In confluent cell cultures, the maximal fraction of responding cells dropped to <0.2%, but was enhanced several-fold in the wound/scratch area after it was repopulated by new cells during the healing process. Fluo8 fluorescence experiments revealed two types of stretch-induced intracellular Ca(2+) responses, rapid sustained Ca(2+) elevations in a limited number of cells and delayed secondary responses in neighbouring cells, seen as Ca(2+) waves whose propagation was consistent with extracellular diffusion of released ATP. Our experiments revealed that a single >10% stretch was sufficient to initiate intercellular purinergic signalling in alveolar cells, which may contribute to the regulation of surfactant secretion and wound healing.

  1. PM10-biogenic fraction drives the seasonal variation of proinflammatory response in A549 cells.

    PubMed

    Camatini, Marina; Corvaja, Viviana; Pezzolato, Eleonora; Mantecca, Paride; Gualtieri, Maurizio

    2012-02-01

    PM10 was collected in a Milan urban site, representative of the city air quality, during winter and summer 2006. Mean daily PM10 concentration was 48 μg m(-3) during summer and 148 μg m(-3) during winter. Particles collected on Teflon filters were chemically characterized and the endotoxin content determined by the LAL test. PM10-induced cell toxicity, assessed with MTT and LDH methods, and proinflammatory potential, monitored by IL-6 and IL-8 cytokines release, were investigated on the human alveolar epithelial cell line A549 exposed to increasing doses of PM. Besides untreated cells, exposure to inert carbon particles (2-12 μm) was also used as additional control. Both cell toxicity and proinflammatory potency resulted to be higher for summer PM10 with respect of winter PM10, with IL-6 showing the highest dose-dependent release. The relevance of biogenic components adsorbed onto PM10 in eliciting the proinflammatory mediators release was investigated by inhibition experiments. Polymixin B (Poly) was used to inhibit particle-bind LPS while Toll-like receptor-2 antibody (a-TLR2) to specifically block the activation of this receptor. While cell viability was not modulated in cells coexposed to PM10 and Poly or a-TLR2 or both, inflammatory response did it, with IL-6 release being the most inhibited. In conclusion, Milan PM10-induced seasonal-dependent biological effects, with summer particles showing higher cytotoxic and proinflammatory potential. Cytotoxicity seemed to be unaffected by the PM biogenic components, while inflammation was significantly reduced after the inhibition of some biogenic activated pathways. Besides, the PM-associated biogenic activity does not entirely justify the PM-induced inflammatory effects. © 2010 Wiley Periodicals, Inc. Environ Toxicol 2012.

  2. Hyperoxia enhances VEGF release from A549 cells via post-transcriptional processes

    PubMed Central

    Shenberger, Jeffrey S.; Zhang, Lianqin; Powell, Richard J.; Barchowsky, Aaron

    2007-01-01

    Exposure of animals to hyperoxia decreases lung VEGF mRNA expression concomitant with an acute increase in VEGF protein within the epithelial lining fluid (ELF). The VEGF concentration in ELF is in excess of that found in the plasma, leading to the hypothesis that hyperoxia stimulates the release of VEGF protein from stores within the extracellular matrix. To test this hypothesis in a cell culture system, we exposed A549 cells to 95% O2 for 48 hrs followed by recovery in room air (RA) for 24 hrs. We found that Ox increased VEGF protein 2- to 3-fold within the medium at 48 hrs of exposure and during recovery. Heparin clearing revealed the medium to contain a 50:50 mixture of the heparin-binding (VEGF165) and heparin-non-binding (VEGF121) proteins and Ox to increase both proteins equally. Transcriptional activation of VEGF appears unlikely to explain the increase in VEGF protein as full-length and splice variant VEGF mRNA expression were unchanged by hyperoxia. Analysis of cell-associated VEGF proteins found that Ox increased the expression of VEGF121 and VEGF165 proteins. Blocking binding sites with exogenous heparin enhanced VEGF protein in the medium from RA grown cells while heparinase digestion of bound VEGF revealed a greater reserve of VEGF protein in RA cells. Collectively these findings indicate that hyperoxia enhances the expression of VEGF121/165 proteins and facilitates the release of VEGF165 from cell-associated stores. Increases in VEGF in ELF may represent an adaptive response fostering cell survival and type II cell proliferation in O2-induced lung injury. PMID:17664148

  3. Suitable parameter choice on quantitative morphology of A549 cell in epithelial–mesenchymal transition

    PubMed Central

    Ren, Zhou-Xin; Yu, Hai-Bin; Li, Jian-Sheng; Shen, Jun-Ling; Du, Wen-Sen

    2015-01-01

    Evaluation of morphological changes in cells is an integral part of study on epithelial to mesenchymal transition (EMT), however, only a few papers reported the changes in quantitative parameters and no article compared different parameters for demanding better parameters. In the study, the purpose was to investigate suitable parameters for quantitative evaluation of EMT morphological changes. A549 human lung adenocarcinoma cell line was selected for the study. Some cells were stimulated by transforming growth factor-β1 (TGF-β1) for EMT, and other cells were as control without TGF-β1 stimulation. Subsequently, cells were placed in phase contrast microscope and three arbitrary fields were captured and saved with a personal computer. Using the tools of Photoshop software, some cells in an image were selected, segmented out and exchanged into unique hue, and other part in the image was shifted into another unique hue. The cells were calculated with 29 morphological parameters by Image Pro Plus software. A parameter between cells with or without TGF-β1 stimulation was compared statistically and nine parameters were significantly different between them. Receiver operating characteristic curve (ROC curve) of a parameter was described with SPSS software and F-test was used to compare two areas under the curves (AUCs) in Excel. Among them, roundness and radius ratio were the most AUCs and were significant higher than the other parameters. The results provided a new method with quantitative assessment of cell morphology during EMT, and found out two parameters, roundness and radius ratio, as suitable for quantification. PMID:26182364

  4. DNA double-strand breaks activate ATM independent of mitochondrial dysfunction in A549 cells.

    PubMed

    Kalifa, Lidza; Gewandter, Jennifer S; Staversky, Rhonda J; Sia, Elaine A; Brookes, Paul S; O'Reilly, Michael A

    2014-10-01

    Excessive nuclear or mitochondrial DNA damage can lead to mitochondrial dysfunction, decreased energy production, and increased generation of reactive oxygen species (ROS). Although numerous cell signaling pathways are activated when cells are injured, the ataxia telangiectasia mutant (ATM) protein has emerged as a major regulator of the response to both mitochondrial dysfunction and nuclear DNA double-strand breaks (DSBs). Because mitochondrial dysfunction is often a response to excessive DNA damage, it has been difficult to determine whether nuclear and/or mitochondrial DNA DSBs activate ATM independent of mitochondrial dysfunction. In this study, mitochondrial and nuclear DNA DSBs were generated in the A549 human lung adenocarcinoma cell line by infecting with retroviruses expressing the restriction endonuclease PstI fused to a mitochondrial targeting sequence (MTS) or nuclear localization sequence (NLS) and a hemagglutinin antigen epitope tag (HA). Expression of MTS-PstI-HA or NLS-PstI-HA activated the DNA damage response defined by phosphorylation of ATM, the tumor suppressor protein p53 (TP53), KRAB-associated protein (KAP)-1, and structural maintenance of chromosomes (SMC)-1. Phosphorylated ATM and SMC1 were detected in nuclear fractions, whereas phosphorylated TP53 and KAP1 were detected in both mitochondrial and nuclear fractions. PstI also enhanced expression of the cyclin-dependent kinase inhibitor p21 and inhibited cell growth. This response to DNA damage occurred in the absence of detectable mitochondrial dysfunction and excess production of ROS. These findings reveal that DNA DSBs are sufficient to activate ATM independent of mitochondrial dysfunction and suggest that the activated form of ATM and some of its substrates are restricted to the nuclear compartment, regardless of the site of DNA damage.

  5. Benzophenone-1 stimulated the growth of BG-1 ovarian cancer cells by cell cycle regulation via an estrogen receptor alpha-mediated signaling pathway in cellular and xenograft mouse models.

    PubMed

    Park, Min-Ah; Hwang, Kyung-A; Lee, Hye-Rim; Yi, Bo-Rim; Jeung, Eui-Bae; Choi, Kyung-Chul

    2013-03-08

    2,4-Dihydroxybenzophenone (benzophenone-1; BP-1) is an UV stabilizer primarily used to prevent polymer degradation and deterioration in quality due to UV irradiation. Recently, BP-1 has been reported to bioaccumulate in human bodies by absorption through the skin and has the potential to induce health problems including endocrine disruption. In the present study, we examined the xenoestrogenic effect of BP-1 on BG-1 human ovarian cancer cells expressing estrogen receptors (ERs) and relevant xenografted animal models in comparison with 17-β estradiol (E2). In in vitro cell viability assay, BP-1 (10(-8)-10(-5)M) significantly increased BG-1 cell growth the way E2 did. The mechanism underlying the BG-1 cell proliferation was proved to be related with the up-regulation of cyclin D1, a cell cycle progressor, by E2 or BP-1. Both BP-1 and E2 induced cell growth and up-regulation of cyclin D1 were reversed by co-treatment with ICI 182,780, an ER antagonist, suggesting that BP-1 may mediate the cancer cell proliferation via an ER-dependent pathway like E2. On the other hand, the expression of p21, a regulator of cell cycle progression at G1 phase, was not altered by BP-1 though it was down-regulated by E2. In xenograft mouse models transplanted with BG-1 cells, BP-1 or E2 treatment significantly increased the tumor mass formation compared to a vehicle (corn oil) within 8 weeks. In histopathological analysis, the tumor sections of E2 or BP-1 group displayed extensive cell formations with high density and disordered arrangement, which were supported by the increased number of BrdUrd positive nuclei and the over-expression of cyclin D1 protein. Taken together, these results suggest that BP-1 is an endocrine disrupting chemical (EDC) that exerts xenoestrogenic effects by stimulating the proliferation of BG-1 ovarian cancer via ER signaling pathway associated with cell cycle as did E2.

  6. Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures.

    PubMed

    Malacrida, Leonel; Astrada, Soledad; Briva, Arturo; Bollati-Fogolín, Mariela; Gratton, Enrico; Bagatolli, Luis A

    2016-11-01

    Using LAURDAN spectral imaging and spectral phasor analysis we concurrently studied the growth and hydration state of subcellular organelles (lamellar body-like, LB-like) from live A549 lung cancer cells at different post-confluence days. Our results reveal a time dependent two-step process governing the size and hydration of these intracellular LB-like structures. Specifically, a first step (days 1 to 7) is characterized by an increase in their size, followed by a second one (days 7 to 14) where the organelles display a decrease in their global hydration properties. Interestingly, our results also show that their hydration properties significantly differ from those observed in well-characterized artificial lamellar model membranes, challenging the notion that a pure lamellar membrane organization is present in these organelles at intracellular conditions. Finally, these LB-like structures show a significant increase in their hydration state upon secretion, suggesting a relevant role of entropy during this process.

  7. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model

    PubMed Central

    Tulotta, Claudia; Stefanescu, Cristina; Beletkaia, Elena; Bussmann, Jeroen; Tarbashevich, Katsiaryna; Schmidt, Thomas; Snaar-Jagalska, B. Ewa

    2016-01-01

    ABSTRACT Triple-negative breast cancer (TNBC) is a highly aggressive and recurrent type of breast carcinoma that is associated with poor patient prognosis. Because of the limited efficacy of current treatments, new therapeutic strategies need to be developed. The CXCR4-CXCL12 chemokine signaling axis guides cell migration in physiological and pathological processes, including breast cancer metastasis. Although targeted therapies to inhibit the CXCR4-CXCL12 axis are under clinical experimentation, still no effective therapeutic approaches have been established to block CXCR4 in TNBC. To unravel the role of the CXCR4-CXCL12 axis in the formation of TNBC early metastases, we used the zebrafish xenograft model. Importantly, we demonstrate that cross-communication between the zebrafish and human ligands and receptors takes place and human tumor cells expressing CXCR4 initiate early metastatic events by sensing zebrafish cognate ligands at the metastatic site. Taking advantage of the conserved intercommunication between human tumor cells and the zebrafish host, we blocked TNBC early metastatic events by chemical and genetic inhibition of CXCR4 signaling. We used IT1t, a potent CXCR4 antagonist, and show for the first time its promising anti-tumor effects. In conclusion, we confirm the validity of the zebrafish as a xenotransplantation model and propose a pharmacological approach to target CXCR4 in TNBC. PMID:26744352

  8. A non-invasive approach to monitor chronic lymphocytic leukemia engraftment in a xenograft mouse model using ultra-small superparamagnetic iron oxide-magnetic resonance imaging (USPIO-MRI).

    PubMed

    Valdora, Francesca; Cutrona, Giovanna; Matis, Serena; Morabito, Fortunato; Massucco, Carlotta; Emionite, Laura; Boccardo, Simona; Basso, Luca; Recchia, Anna Grazia; Salvi, Sandra; Rosa, Francesca; Gentile, Massimo; Ravina, Marco; Pace, Daniele; Castronovo, Angela; Cilli, Michele; Truini, Mauro; Calabrese, Massimo; Neri, Antonino; Neumaier, Carlo Emanuele; Fais, Franco; Baio, Gabriella; Ferrarini, Manlio

    2016-11-01

    Chronic lymphocytic leukemia (CLL) is the most prevalent leukemia among adults. Despite its indolent nature, CLL remains an incurable disease. Herein we aimed to monitor CLL disease engraftment and, progression/regression in a xenograft CLL mouse model using ultra-small superparamagnetic iron oxide-magnetic resonance imaging (USPIO-MRI). Spleen contrast enhancement, quantified as percentage change in signal intensity upon USPIO administration, demonstrated a difference due to a reduced USPIO uptake, in the spleens of mice injected with CLL cells (NSG-CLL, n=71) compared to controls (NSG-CTR, n=17). These differences were statistically significant both after 2 and 4weeks from CLL cells injection. In addition comparison of mice treated with rituximab with untreated controls for changes in spleen iron uptake confirmed that it is possible to monitor treatment efficacy in this mouse model of CLL using USPIO-enhanced MRI. Further applications could include the preclinical in vivo monitoring of new therapies and the clinical evaluation of CLL patients.

  9. Pathology of Human Pheochromocytoma and Paraganglioma Xenografts in NSG Mice

    PubMed Central

    Powers, James F.; Pacak, Karel; Tischler, Arthur S.

    2016-01-01

    A major impediment to the development of effective treatments for metastatic or unresectable pheochromocytomas and paragangliomas has been the absence of valid models for pre-clinical testing. Attempts to establish cell lines or xenografts from human pheochromocytomas and paragangliomas have previously been unsuccessful. NOD-scid gamma (NSG) mice are a recently developed strain lacking functional B-cells, T-cells and NK cells. We report here that xenografts of primary human paragangliomas will take in NSG mice while maintaining their architectural and immunophenotypic characteristics as expressed in the patients. In contrast to grafts of cell lines and of most common types of primary tumors, the growth rate of grafted paragangliomas is very slow, accurately representing the growth rate of most pheochromocytomas and paragangliomas even in metastases in humans. Although the model is therefore technically challenging, primary patient derived xenografts of paragangliomas in NSG mice provide a potentially valuable new tool that could prove especially valuable for testing treatments aimed at eradicating the small tumor deposits that are often numerous in patients with metastatic paraganglioma. PMID:27709415

  10. Knockdown of Aurora-B inhibits the growth of non-small cell lung cancer A549 cells.

    PubMed

    Yu, Jing Jing; Zhou, Long Dian; Zhao, Tian Tian; Bai, Wei; Zhou, Jing; Zhang, Wei

    2015-09-01

    Elevated expression of Aurora-B affects cell apoptosis and proliferation in a variety of solid tumors. However, the role of Aurora-B has been poorly evaluated in non-small cell lung cancer (NSCLC). In the present study, it was found that Aurora-B was overexpressed in tissue specimens obtained from 174 patients with lung cancer. It was also demonstrated that knockdown of Aurora-B induces apoptosis and inhibits the growth of lung cancer A549 cells in vitro and in vivo. Furthermore, it was found that silencing Aurora-B decreased the activity of the phosphoinositide 3-kinase (PI3K)/AKT pathway. Therefore, it was concluded that knockdown of Aurora-B induces apoptosis and inhibits growth in NSCLC A549 cells, in addition to inhibiting the activity of the PI3K/AKT signaling pathway. Targeting Aurora-B may provide a novel target for lung cancer therapy.

  11. Mutational Landscapes of Sequential Prostate Metastases and Matched Patient Derived Xenografts during Enzalutamide Therapy

    PubMed Central

    Kohli, Manish; Wang, Liguo; Xie, Fang; Sicotte, Hugues; Yin, Ping; Dehm, Scott M.; Hart, Steven N.; Vedell, Peter T.; Barman, Poulami; Qin, Rui; Mahoney, Douglas W.; Carlson, Rachel E.; Eckel-Passow, Jeanette E.; Atwell, Thomas D.; Eiken, Patrick W.; McMenomy, Brendan P.; Wieben, Eric D.; Jha, Gautam; Jimenez, Rafael E.; Weinshilboum, Richard; Wang, Liewei

    2015-01-01

    Developing patient derived models from individual tumors that capture the biological heterogeneity and mutation landscape in advanced prostate cancer is challenging, but essential for understanding tumor progression and delivery of personalized therapy in metastatic castrate resistant prostate cancer stage. To demonstrate the feasibility of developing patient derived xenograft models in this stage, we present a case study wherein xenografts were derived from cancer metastases in a patient progressing on androgen deprivation therapy and prior to initiating pre-chemotherapy enzalutamide treatment. Tissue biopsies from a metastatic rib lesion were obtained for sequencing before and after initiating enzalutamide treatment over a twelve-week period and also implanted subcutaneously as well as under the renal capsule in immuno-deficient mice. The genome and transcriptome landscapes of xenografts and the original patient tumor tissues were compared by performing whole exome and transcriptome sequencing of the metastatic tumor tissues and the xenografts at both time points. After comparing the somatic mutations, copy number variations, gene fusions and gene expression we found that the patient’s genomic and transcriptomic alterations were preserved in the patient derived xenografts with high fidelity. These xenograft models provide an opportunity for predicting efficacy of existing and potentially novel drugs that is based on individual metastatic tumor expression signature and molecular pharmacology for delivery of precision medicine. PMID:26695660

  12. Suppression of SCARA5 by Snail1 is essential for EMT-associated cell migration of A549 cells

    PubMed Central

    Liu, J; Hu, G; Chen, D; Gong, A-Y; Soori, G S; Dobleman, T J; Chen, X-M

    2013-01-01

    Accumulating evidence indicates that epithelial-to-mesenchymal transition (EMT) might be a key event for cancer progression. The upregulation of Snail1, one of the most extensively studied EMT regulators, has been implicated in cancer metastasis, but the underlying mechanisms remain unclear. This study aims to identify that Snail1 targets regulating EMT-associated cancer cell migration. Human lung carcinoma A549 cells were treated with transforming growth factor beta 1 (TGF-β1), and EMT-associated phenotypic and functional alterations were monitored. TGF-β1 induced typical EMT-like morphological changes, ‘cadherin switching' and cell migration in A549 cells. TGF-β1 stimulation induced rapid and persistent upregulation of Snail1. Moreover, Snail1 upregulation was required for EMT-associated cell migration. Several metastasis suppressors with putative Snail1-binding sites in their promoters were dramatically repressed in A549 cells during TGF-β1-induced EMT. Gain- and loss-of Snail1 function experiments demonstrated that scavenger receptor class A member 5 (SCARA5) was negatively regulated by Snail1. Importantly, SCARA5 downregulation was essential for EMT-induced migration in A549 cells. The chromatin immunoprecipitation assay revealed that Snail1 could bind to the E-box elements in SCARA5 promoter, implying that SCARA5 is a direct Snail1 target modulating cancer cell mobility during EMT. In addition, we showed that DNA methyltransferase 1 was physically associated with Snail1 to silence SCARA5 expression with an unidentified DNA methylation-independent mechanism, suggesting the complexity of Snail1-mediated epigenetic regulation. Collectively, our data demonstrated that EMT-regulator Snail1 suppresses the expression of SCARA5 to promote cancer progression, highlighting the possibility to target Snail1 and SCARA5 for cancer treatment. PMID:24061576

  13. Suppression of SCARA5 by Snail1 is essential for EMT-associated cell migration of A549 cells.

    PubMed

    Liu, J; Hu, G; Chen, D; Gong, A-Y; Soori, G S; Dobleman, T J; Chen, X-M

    2013-09-23

    Accumulating evidence indicates that epithelial-to-mesenchymal transition (EMT) might be a key event for cancer progression. The upregulation of Snail1, one of the most extensively studied EMT regulators, has been implicated in cancer metastasis, but the underlying mechanisms remain unclear. This study aims to identify that Snail1 targets regulating EMT-associated cancer cell migration. Human lung carcinoma A549 cells were treated with transforming growth factor beta 1 (TGF-β1), and EMT-associated phenotypic and functional alterations were monitored. TGF-β1 induced typical EMT-like morphological changes, 'cadherin switching' and cell migration in A549 cells. TGF-β1 stimulation induced rapid and persistent upregulation of Snail1. Moreover, Snail1 upregulation was required for EMT-associated cell migration. Several metastasis suppressors with putative Snail1-binding sites in their promoters were dramatically repressed in A549 cells during TGF-β1-induced EMT. Gain- and loss-of Snail1 function experiments demonstrated that scavenger receptor class A member 5 (SCARA5) was negatively regulated by Snail1. Importantly, SCARA5 downregulation was essential for EMT-induced migration in A549 cells. The chromatin immunoprecipitation assay revealed that Snail1 could bind to the E-box elements in SCARA5 promoter, implying that SCARA5 is a direct Snail1 target modulating cancer cell mobility during EMT. In addition, we showed that DNA methyltransferase 1 was physically associated with Snail1 to silence SCARA5 expression with an unidentified DNA methylation-independent mechanism, suggesting the complexity of Snail1-mediated epigenetic regulation. Collectively, our data demonstrated that EMT-regulator Snail1 suppresses the expression of SCARA5 to promote cancer progression, highlighting the possibility to target Snail1 and SCARA5 for cancer treatment.

  14. Gold nanoparticles induce cytotoxicity in the alveolar type-II cell lines A549 and NCIH441

    PubMed Central

    Uboldi, Chiara; Bonacchi, Daniele; Lorenzi, Giada; Hermanns, M Iris; Pohl, Christine; Baldi, Giovanni; Unger, Ronald E; Kirkpatrick, C James

    2009-01-01

    Background During the last years engineered nanoparticles (NPs) have been extensively used in different technologies and consequently many questions have arisen about the risk and the impact on human health following exposure to nanoparticles. Nevertheless, at present knowledge about the cytotoxicity induced by NPs is still largely incomplete. In this context, we have investigated the cytotoxicity induced by gold nanoparticles (AuNPs), which differed in size and purification grade (presence or absence of sodium citrate residues on the particle surface) in vitro, in the human alveolar type-II (ATII)-like cell lines A549 and NCIH441. Results We found that the presence of sodium citrate residues on AuNPs impaired the viability of the ATII-like cell lines A549 and NCIH441. Interestingly, the presence of an excess of sodium citrate on the surface of NPs not only reduced the in vitro viability of the cell lines A549 and NCIH441, as shown by MTT assay, but also affected cellular proliferation and increased the release of lactate dehydrogenase (LDH), as demonstrated by Ki-67 and LDH-release assays respectively. Furthermore, we investigated the internalization of AuNPs by transmission electron microscopy (TEM) and we observed that particles were internalized by active endocytosis in the cell lines A549 and NCIH441 within 3 hr. In addition, gold particles accumulated in membrane-bound vesicles and were not found freely dispersed in the cytoplasm. Conclusion Our data suggest that the presence of contaminants, such as sodium citrate, on the surface of gold nanoparticles might play a pivotal role in inducing cytotoxicity in vitro, but does not influence the uptake of the particles in human ATII-like cell lines. PMID:19545423

  15. Casticin Induced Apoptosis in A375.S2 Human Melanoma Cells through the Inhibition of NF-[Formula: see text]B and Mitochondria-Dependent Pathways In Vitro and Inhibited Human Melanoma Xenografts in a Mouse Model In Vivo.

    PubMed

    Shiue, Yin-Wen; Lu, Chi-Cheng; Hsiao, Yu-Ping; Liao, Ching-Lung; Lin, Jing-Pin; Lai, Kuang-Chi; Yu, Chien-Chih; Huang, Yi-Ping; Ho, Heng-Chien; Chung, Jing-Gung

    2016-01-01

    Casticin, a polymethoxyflavone occurring in natural plants, has been shown to have anticancer activities. In the present study, we aims to investigate the anti-skin cancer activity of casticin on melanoma cells in vitro and the antitumor effect of casticin on human melanoma xenografts in nu/nu mice in vivo. A flow cytometric assay was performed to detect expression of viable cells, cell cycles, reactive oxygen species production, levels of [Formula: see text] and caspase activity. A Western blotting assay and confocal laser microscope examination were performed to detect expression of protein levels. In the in vitro studies, we found that casticin induced morphological cell changes and DNA condensation and damage, decreased the total viable cells, and induced G2/M phase arrest. Casticin promoted reactive oxygen species (ROS) production, decreased the level of [Formula: see text], and promoted caspase-3 activities in A375.S2 cells. The induced G2/M phase arrest indicated by the Western blotting assay showed that casticin promoted the expression of p53, p21 and CHK-1 proteins and inhibited the protein levels of Cdc25c, CDK-1, Cyclin A and B. The casticin-induced apoptosis indicated that casticin promoted pro-apoptotic proteins but inhibited anti-apoptotic proteins. These findings also were confirmed by the fact that casticin promoted the release of AIF and Endo G from mitochondria to cytosol. An electrophoretic mobility shift assay (EMSA) assay showed that casticin inhibited the NF-[Formula: see text]B binding DNA and that these effects were time-dependent. In the in vivo studies, results from immuno-deficient nu/nu mice bearing the A375.S2 tumor xenograft indicated that casticin significantly suppressed tumor growth based on tumor size and weight decreases. Early G2/M arrest and mitochondria-dependent signaling contributed to the apoptotic A375.S2 cell demise induced by casticin. In in vivo experiments, A375.S2 also efficaciously suppressed tumor volume in a

  16. Lysyl oxidase mediates hypoxia-induced radioresistance in non-small cell lung cancer A549 cells

    PubMed Central

    Gong, Chongwen; Gu, Runxia; Jin, Honglin; Sun, Yao; Li, Zhenyu; Wu, Gang

    2016-01-01

    Hypoxia-induced radioresistance has been well known as the main obstacle in cancer radiotherapy. Lysyl oxidase (LOX) was previously demonstrated to play an important role in hypoxia-induced biological behaviors, such as metastasis and angiogenesis, through hypoxia-inducible factor-1α (HIF-1α), which is an important contributing factor to radioresistance in tumor cells. However, how LOX plays a role in hypoxia-induced radioresistance has yet to be determined. Here, we found that LOX expression was in accordance with HIF-1α expression, and LOX expression at the mRNA and protein level, and enzymatic activity were remarkably upregulated in the hypoxic A549 cells, compared with normoxic A549 cells. Inhibition of LOX resulted in the reduction of the ability to repair double-stranded breaks (DSBs), promotion of apoptosis, relief of G2/M cycle arrest, and eventually reduction of hypoxia-induced radioresistance in the hypoxic A549 cells. This suggests that LOX may play an important role in hypoxia-induced radioresistance. Together, our results might suggest a novel potential therapeutic target in the management of non-small cell lung cancer (NSCLC). PMID:26515140

  17. 13-Methyl-palmatrubine induces apoptosis and cell cycle arrest in A549 cells in vitro and in vivo

    PubMed Central

    Chen, Jingxian; Lu, Xingang; Lu, Chenghua; Wang, Chunying; Xu, Haizhu; Xu, Xiaoli; Gou, Haixin; Zhu, Bing; Du, Wangchun

    2016-01-01

    Corydalis yanhusuo, a well-known herbaceous plant, is commonly used in the treatment of inflammation, injury and pain. One natural agent isolated from Corydalis yanhusuo, 13-methyl-palmatrubine, was found to have a cytotoxic effect on cancer cells as reported in published studies. In the present study, we synthesized a potential anti-lung tumor agent, 13-methyl-palmatrubine and analyzed its activity. 13-Methyl-palmatrubine exhibited a cytotoxic effect on a panel of cancer cell lines in a time- and concentration-dependent manner. Among all the tested cancer cell lines, lung cancer A549 cells were most sensitive to 13-methyl-palmatrubine treatment. Meanwhile 13-methyl-palmatrubine showed less cytotoxicity in human normal cells. Our investigation revealed that 13-methyl-palmatrubine induced apoptosis and cell cycle arrest in A549 cells in a dose-dependent manner. Furthermore, 13-methyl-palmatrubine treatment caused activation of P38 and JNK pathways and blocked the EGFR pathway. In conclusion, our findings demonstrated that 13-methyl-palmatrubine inhibited the growth of A549 cells mediated by blocking of the EGFR signaling pathway and activation of the MAPK signaling pathway and provides a better understanding of the molecular mechanisms of 13-methyl-palmatrubine. PMID:27633656

  18. Over expression of miR-200c suppresses invasion and restores methotrexate sensitivity in lung cancer A549 cells.

    PubMed

    Shan, Wulin; Zhang, Xiaolei; Li, Ming; Deng, Fang; Zhang, Jing

    2016-11-30

    MicroRNAs have become recognized as key players in the development of malignancy. MiR-200c can function as a tumor suppressor gene. However, the effect of miR-200c on methotrexate resistance remains unclear to date. This study aims to evaluate the function of miR-200c in lung cancer A549 cells. The data presented in our study demonstrated that the expression of miR-200c was down-regulated in methotrexate-resistant A549 cells. Over expression of miR-200c could significantly inhibit cell proliferation, induce G0/G1 cell cycle arrest and induce cell apoptosis. RT-PCR and Western blot assays showed that the expression of P53 and P21 were significantly increased with miR-200c overexpression. These results indicated that over expression of miR-200c might enhance the sensitivity of A549 cells to methotrexate through the P53/P21 pathway. Furthermore, miR-200c overexpression significantly inhibited cell migration and invasion with increasing the expression of E-cad and decreasing the expression of EZH2. In consequence, we provide a mechanism of acquired resistance to methotrexate that is caused by the loss of miR-200c in lung cancer cells. Along with this, our study demonstrates the complex network of microRNA mediated chemoresistance.

  19. Effects of green tea extract on lung cancer A549 cells: proteomic identification of proteins associated with cell migration.

    PubMed

    Lu, Qing-Yi; Yang, Yanan; Jin, Yu Sheng; Zhang, Zuo-Feng; Heber, David; Li, Frederick P; Dubinett, Steven M; Sondej, Melissa A; Loo, Joseph A; Rao, Jian Yu

    2009-02-01

    Green tea polyphenols exhibit multiple antitumor activities, and the mechanisms of action are not completely understood. Previously, we reported that green tea extract (GTE)-induced actin remolding is associated with increased cell adhesion and decreased motility in A549 lung cancer cells. To identify the cellular targets responsible for green tea-induced actin remodeling, we performed 2-DE LC-MS/MS of A549 cells before and after GTE exposure. We have identified 14 protein spots that changed in expression (> or =2-fold) after GTE treatment. These proteins are involved in calcium-binding, cytoskeleton and motility, metabolism, detoxification, or gene regulation. In particular we found upregulation of several genes that modulate actin remodeling and cell migration, including lamin A/C. Our data indicated that GTE-induced lamin A/C upregulation appears to be at the transcriptional level and the increased expression results in the decrease in cell motility, as confirmed by siRNA. The result of the study demonstrates that GTE alters the levels of many proteins involved in growth, motility and apoptosis of A549 cells and their identification may explain the multiple antitumor activities of GTE.

  20. A novel polysaccharide from Sargassum integerrimum induces apoptosis in A549 cells and prevents angiogensis in vitro and in vivo

    PubMed Central

    Liu, Ge; Kuang, Shan; Wu, Shimei; Jin, Weihua; Sun, Chaomin

    2016-01-01

    Many polysaccharides isolated from plants have exhibited promising antitumor activities. The aim of this study is to investigate the antitumor activity of the novel polysaccharide named SPS from Sargassum integerrimum, elucidate the underlying anticancer mechanism in a human lung cancer cell line A549, and evaluate its anti-angiogenic activity both in vitro and in vivo. The results show that SPS significantly reduces A549 cells viability in a dose- and time-dependent manner via MTT method. Flow cytometry analysis indicates that SPS could induce cell apoptosis, the loss of mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS) and G2/M phase cell cycle arrest of A549 cells. Up-regulation of the expressions of P53 and Bax, down-regulation of the expression of Bcl-2, and activation of cleaved caspase-3, caspase-9 and PARP are also detected by western blotting after the treatment of SPS. In addition, SPS inhibits the proliferation, migration and cord formation of human umbilical vein endothelial cells (HUVECs) in vitro, and prevents the vascular development of zebrafish embryos in vivo. Altogether, our data prove the anticancer and anti-angiogenesis properties of SPS, and provide further insights into the potential pharmacological application of SPS as antitumor and anti-angiogenic agent against lung cancer. PMID:27216943

  1. The effects of Davallic acid from Davallia divaricata Blume on apoptosis induction in A549 lung cancer cells.

    PubMed

    Cheng, An-Sheng; Chang, We-Chang; Cheng, Yu-Hsiang; Chen, Kai-Yu; Chen, Kai-Hsien; Chang, Tsu-Liang

    2012-11-01

    Traditional or folk medicinal herbs continue to be prescribed in the treatment of various diseases and conditions in many cultures. Recent scientific efforts have focused on the potential roles of extracts of traditional herbs as alternative and complementary medications for cancer treatment. In Taiwan, Davallia divaricata Blume has been traditionally employed in folk medicine for therapy of lung cancer, davallic acid being the major active compound of D. divaricata Blume. In this study, we investigated the inhibitory activity of davallic acid on the proliferation of A549 lung cancer cells. Davallic acid was extracted from D. divaricata Blume, and its effects on cell viability, cell cycle distribution, ROS level, and apoptotic protein expression in A549 cells were determined. Davallic acid significantly induced reactive oxygen species (ROS) generation as well as caspase-3, -8, and -9 activation, thereby repressing A549 cell growth and elevating apoptotic activity. Since lung cancer has a high incidence of recurrence, these results indicate that davallic acid may have the potential to be a natural anti-lung cancer compound, and may provide a basis for further study of its use in combating cancer.

  2. Silver nanoparticles induce apoptosis and G2/M arrest via PKCζ-dependent signaling in A549 lung cells.

    PubMed

    Lee, Young Sook; Kim, Dong Woon; Lee, Young Ho; Oh, Jung Hwa; Yoon, Seokjoo; Choi, Mi Sun; Lee, Sung Kyu; Kim, Ji Won; Lee, Kyuhong; Song, Chang-Woo

    2011-12-01

    The use of silver nanoparticles is one of the fastest growing product categories in the nanotechnology industry, with a focus on antimicrobial activity. However, thus far, toxicity data for silver nanoparticles are limited. In this study, we investigated the cytotoxic effects of silver nanoparticles (Ag NPs) and the pathway by which they affect A549 lung epithelial cells. The effects of Ag NPs on cell survival, cell cycle progression, and mRNA and protein alterations of selected cell cycle- and apoptosis-related genes were studied using formazan dye and LDH release assays, flow cytometric analysis, semi-quantitative RT-PCR, and Western blot analysis. Ag NPs reduced cell viability, increased LDH release, and modulated cell cycle distribution through the accumulation of cells at G2/M and sub-G1 phases (cell death), with a concurrent decrease in cells at G1. Ag NP treatment increased Bax and Bid mRNA levels and downregulated Bcl-2 and Bcl-w mRNAs in a dose-dependent manner. Furthermore, Ag NPs altered the mRNA levels of protein kinase C (PKC) family members. In particular, ectopic overexpression of PKCζ led to the enhancement of cellular proliferation and reduced sensitivity to Ag NPs in A549 cells. Together, these results suggest that Ag NPs induce strong toxicity and G2/M cell cycle arrest by a mechanism involving PKCζ downregulation in A549 cells.

  3. Effect of silencing SATB1 on proliferation, invasion and apoptosis of A549 human lung adenocarcinoma cells

    PubMed Central

    Huang, Bo; Zhou, Hongli; Wang, Siwang; Lang, Xian Ping; Wang, Xiaodong

    2016-01-01

    The present study aimed to explore the clinical characteristics of special adenine-thymine-rich sequence-binding protein 1 (SATB1) in lung adenocarcinoma and its role in the proliferation, invasion, migration and apoptosis of the lung adenocarcinoma cell line A549. The expression of SATB1 was first studied in tumor tissues of lung adenocarcinoma and adjacent non-tumor tissues. The siRNA green fluorescent protein expression vector of SATB1 was constructed and transfected into the lung adenocarcinoma cell line A549, then a fluorescence microscope was used to study the transfection efficiency. Western blot analysis was adopted to measure the silencing efficiency. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Transwell and scratch assays were used to study cell proliferation, invasion and migration activity, and the apoptosis rate was tested by flow cytometry. SATB1 expression was low in the adjacent non-tumor tissues but high in lung adenocarcinoma tissues, and it was reversely proportional to the differentiation degree. Following transfection with SATB1-siRNA, the expression of SATB1 in A549 cells was blocked (P<0.01). In addition, the proliferation, invasion and migration abilities of cells decreased significantly while the apoptosis rate increased significantly (P<0.01). In conclusion SATB1 is closely associated with the pathogenesis and development of lung adenocarcinoma. PMID:27895736

  4. Induction of apoptosis in human lung carcinoma A549 epithelial cells with an ethanol extract of Tremella mesenterica.

    PubMed

    Chen, Nan-Yin; Lai, Hsi-Huai; Hsu, Tai-Hao; Lin, Fang-Yi; Chen, Jian-Zhi; Lo, Hui-Chen

    2008-05-01

    Tremella mesenterica (TM) is a common food and folk medicine widely used in several Asian countries as a tonic for the lungs. In the present study, we compared the effects of extracellular polysaccharides (EPS), intracellular polysaccharides (IPS), and ethanol extract (EE) of Tremella mesenterica on the induction of apoptosis into human lung carcinoma A549 epithelial cells. The EE, but not the EPS or the IPS, almost completely inhibited the growth of A549 cells. The results of Annexin V-FITC/PI staining and flow cytometric analysis indicated that the percentage of Annexin V(+)/PI(-) cells in EE-treated cells increased to 32.8%. The results of further investigation showed a disruption of mitochondrial transmembrane potential (DeltaPsi(m)), the production of reactive oxygen species (ROS), and the activation of caspase-3 protein in EE-treated cells. These findings suggest that EE can decrease cell viability and induce apoptosis in A549 cell lines by activating a mitochondrial pathway.

  5. 4-Methoxydalbergione suppresses growth and induces apoptosis in human osteosarcoma cells in vitro and in vivo xenograft model through down-regulation of the JAK2/STAT3 pathway

    PubMed Central

    Quang, Tran-Hong; Oh, Hyuncheol; Lee, Dong-Sung; Auh, Q-Schick; Kim, Eun-Cheol

    2016-01-01

    Although the heartwood of Dalbergia odorifera T. Chen (Leguminosae) is an important source of traditional Korean and Chinese medicines, the effects of novel compound methoxydalbergione (4-MD) isolated from Dalbergia odorifera was not reported. Herein, we investigated the effects of the 4-MD in vitro and in vivo against osteosarcoma cells and its molecular mechanisms. 4-MD inhibited the proliferation of osteosarcoma cells and induced apoptosis as evidenced by Annexin V + and TUNEL + cells. This apoptosis was accompanied by upregulation of apoptotic proteins (procaspase-3 and PARP), but downregulation of anti-apoptotic proteins (Bcl-2, Bcl-xL, and Survivin). 4-MD inhibited phosphorylation of JAK2 and STAT3 with the inactivation of mitogen-activated protein kinases (MAPKs) and CREB, and the upregulation of PTEN in osteosarcoma cells. Importantly, 4-MD reduced colony formation in soft agar and inhibited tumor growth in mice xenograft model in association with the reduced expression of PCNA, Ki67, p-STAT3, and Survivin. Taken together, the present study for the first time demonstrates that 4-MD exerts in vitro and in vivo anti-proliferative effects against osteosarcoma cells through the inhibition of the JAK2/STAT3 pathway, and suggest the potential for therapeutic application of 4-MD in the treatment of osteosarcoma. PMID:26755649

  6. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    SciTech Connect

    Zhang, Jian; Zhang, Tao; Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling; Yin, Hong

    2010-08-13

    Research highlights: {yields} Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells {yields} Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway {yields} Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* {yields} miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  7. Study of the synergistic effects of all-transretinoic acid and C-phycocyanin on the growth and apoptosis of A549 cells.

    PubMed

    Li, Bing; Gao, Mei-Hua; Lv, Cong-Yi; Yang, Peng; Yin, Qi-Feng

    2016-03-01

    In the present study, we investigated the effects of the combination of all-transretinoic acid (ATRA) and natural nontoxic C-phycocyanin (C-PC) on the growth of A549 lung cancer cells in vitro and in vivo. Furthermore, the anticancer mechanism of the drug combination was revealed. Results showed both C-PC and ATRA could inhibit the growth of A549 cells in vivo. The combination of ATRA+C-PC could yield a higher inhibition rate. C-PC exerted a major effect on the proliferation of human embryo lung cells, but ATRA at a high concentration exerted an inhibitory effect. In addition, ATRA+C-PC could decrease the CDK4 mRNA level, but upregulated caspase-3 protein expression and induced cell apoptosis. A mouse model with tumor was constructed by a subcutaneous injection to the left axilla of nu nude (NU/NU) mice. Compared with the control group, the tumor weight was decreased in the single-drug treatment group and was the lowest in the combination group. C-PC+ATRA could upregulate tumor necrosis factor levels and downregulate Bcl-2 expression and the cyclin D1 gene in the tumor. C-PC could promote T cells' activities and spleen weight, but a single use of ATRA exerted an opposite effect. The dosage of ATRA could be reduced when combined with C-PC to reduce the toxic side-effects. In summary, the antitumor effects of the C-PC+ATRA combination were more significant than a single drug in vivo and in vitro.

  8. Assessing the survival of MRC5 and a549 cell lines upon exposure to pyruvic Acid, sodium citrate and sodium bicarbonate - biomed 2013.

    PubMed

    Farah, Ibrahim O; Lewis, Veshell L; Ayensu, Wellington K; Cameron, Joseph A

    2013-01-01

    Lung cancer is among the most prevalent and deadly cancers in United States. In general, cancer cells are known to exhibit higher rates of glycolysis in comparison to normal cells. In attempting to exploit this unique cancer-dependent ATP generation phenomenon, it was our hypothesis that upon exposure to organic inhibitors of glycolysis, cancer cells would not survive normally and that their growth and viability would be vastly decreased; essential glycolytic ATP production will be exhausted to the point of collapsing energy utilization. Furthermore, we hypothesize that no negative effect would be seen with exposures to organic inhibitors for normal lung cells. The human lung fibroblast MRC-5 and the human A549 alveolar epithelial cell lines were used as in vitro models of normal lung and lung cancers respectively. Using standard methods, both cell lines were maintained and exposed to pyruvic acid, sodium citrate and sodium bicarbonate reagents at concentration levels ranging from 31.3-2,000 µg/ml in 96 well plates in quadruplets and experiments repeated at least three times using MTT, and cell counting (T4 Cellometer) assays as well as phase-contrast photo-imaging for parallel morphological displays of any changes in the course of their vitality and metabolic activities. Our results indicate that exposure of both cell lines to these organics resulted in concentration dependent cell destruction/cell survival depending on the cell line exposed. Pyruvic acid, sodium citrate and sodium bicarbonate showed statistically significant (p<0.05) differential negative effects on the A549 cell line in comparison to its unexposed control as well as to their effects on the MRC-5 cell line, presenting a potential promise for their use as cancer biotherapeutics.

  9. Moringa oleifera Gold Nanoparticles Modulate Oncogenes, Tumor Suppressor Genes, and Caspase-9 Splice Variants in A549 Cells.

    PubMed

    Tiloke, Charlette; Phulukdaree, Alisa; Anand, Krishnan; Gengan, Robert M; Chuturgoon, Anil A

    2016-10-01

    Gold nanoparticles (AuNP's) facilitate cancer cell recognition and can be manufactured by green synthesis using nutrient rich medicinal plants such as Moringa oleifera (MO). Targeting dysregulated oncogenes and tumor suppressor genes is crucial for cancer therapeutics. We investigated the antiproliferative effects of AuNP synthesized from MO aqueous leaf extracts (MLAuNP ) in A549 lung and SNO oesophageal cancer cells. A one-pot green synthesis technique was used to synthesise MLAuNP . A549, SNO cancer cells and normal peripheral blood mononuclear cells (PBMCs) were exposed to MLAuNP and CAuNP to evaluate cytotoxicity (MTT assay); apoptosis was measured by phosphatidylserine (PS) externalization, mitochondrial depolarization (ΔΨm) (flow cytometry), caspase-3/7, -9 activity, and ATP levels (luminometry). The mRNA expression of c-myc, p53, Skp2, Fbw7α, and caspase-9 splice variants was determined using qPCR, while relative protein expression of c-myc, p53, SRp30a, Bax, Bcl-2, Smac/DIABLO, Hsp70, and PARP-1 were determined by Western blotting. MLAuNP and CAuNP were not cytotoxic to PBMCs, whilst its pro-apoptotic properties were confirmed in A549 and SNO cells. MLAuNP significantly increased caspase activity in SNO cells while MLAuNP significantly increased PS externalization, ΔΨm, caspase-9, caspase-3/7 activities, and decreased ATP levels in A549 cells. Also, p53 mRNA and protein levels, SRp30a (P = 0.428), Bax, Smac/DIABLO and PARP-1 24 kDa fragment levels were significantly increased. Conversely, MLAuNP significantly decreased Bcl-2, Hsp70, Skp2, Fbw7α, c-myc mRNA, and protein levels and activated alternate splicing with caspase-9a splice variant being significantly increased. MLAuNP possesses antiproliferative properties and induced apoptosis in A549 cells by activating alternate splicing of caspase-9. J. Cell. Biochem. 117: 2302-2314, 2016. © 2016 Wiley Periodicals, Inc.

  10. Coffee inhibits nuclear factor-kappa B in prostate cancer cells and xenografts.

    PubMed

    Kolberg, Marit; Pedersen, Sigrid; Mitake, Maiko; Holm, Kristine Lillebø; Bøhn, Siv Kjølsrud; Blomhoff, Heidi Kiil; Carlsen, Harald; Blomhoff, Rune; Paur, Ingvild

    2016-01-01

    Chronic inflammation contributes to prostate cancer and the transcription factor Nuclear Factor-kappa B (NF-κB) is constitutively active in most such cancers. We examine the effects of coffee on NF-κB and on the regulation of selected genes in human-derived prostate cancer cells (PC3) and in PC3 xenografts in athymic nude mice. PC3 cells stably transduced with an NF-κB-luciferase reporter were used both in vitro and for xenografts. NF-κB activity was measured by reporter assays, DNA binding and in vivo imaging. Gene expression was measured in PC3 cells, xenografts and tumor microenvironment by low-density arrays. Western blotting of activated caspases was used to quantify apoptosis. Coffee inhibited TNFα-induced NF-κB activity and DNA-binding in PC3 cells. Furthermore, coffee increased apoptosis and modulated expression of a number of inflammation- and cancer-related genes in TNFα-treated PC3 cells. In vivo imaging revealed a 31% lower NF-κB-luciferase activation in the xenografts of the mice receiving 5% coffee compared to control mice. Interestingly, we observed major changes in gene expression in the PC3 cells in xenografts as compared to PC3 cells in vitro. In PC3 xenografts, genes related to inflammation, apoptosis and cytoprotection were down-regulated in mice receiving coffee, and coffee also affected the gene expression in the xenograft microenvironment. Our data demonstrate that coffee inhibits NF-κB activity in PC3 cells in vitro and in xenografts. Furthermore, coffee modulates transcription of genes related to prostate cancer and inflammation. Our results are the first to suggest mechanistic links between coffee consumption and prostate cancer in an experimental mouse model.

  11. Tumor-targeting Salmonella typhimurium A1-R combined with temozolomide regresses malignant melanoma with a BRAF-V600E mutation in a patient-derived orthotopic xenograft (PDOX) model

    PubMed Central

    Kawaguchi, Kei; Igarashi, Kentaro; Murakami, Takashi; Chmielowski, Bartosz; Kiyuna, Tasuku; Zhao, Ming; Zhang, Yong; Singh, Arun; Unno, Michiaki; Nelson, Scott D.; Russell, Tara A.; Dry, Sarah M.; Li, Yunfeng; Eilber, Fritz C.; Hoffman, Robert M.

    2016-01-01

    Melanoma is a recalcitrant disease in need of transformative therapuetics. The present study used a patient-derived orthotopic xenograft (PDOX) nude-mouse model of melanoma with a BRAF-V600E mutation to determine the efficacy of temozolomide (TEM) combined with tumor-targeting Salmonella typhimurium A1-R. A melanoma obtained from the right chest wall of a patient was grown orthotopically in the right chest wall of nude mice to establish a PDOX model. Two weeks after implantation, 40 PDOX nude mice were divided into 4 groups: G1, control without treatment (n = 10); G2, TEM (25 mg/kg, administrated orally daily for 14 consecutive days, n = 10); G3, S. typhimurium A1-R (5 × 107 CFU/100 μl, i.v., once a week for 2 weeks, n = 10); G4, TEM combined with S. typhimurium A1-R (25 mg/kg, administrated orally daily for 14 consecutive days and 5 × 107 CFU/100 μl, i.v., once a week for 2 weeks, respectively, n = 10). Tumor sizes were measured with calipers twice a week. On day 14 from initiation of treatment, all treatments significantly inhibited tumor growth compared to untreated control (TEM: p < 0.0001; S. typhimurium A1-R: p < 0.0001; TEM combined with S. typhimurium A1-R: p < 0.0001). TEM combined with S. typhimurium A1-R was significantly more effective than either S. typhimurium A1-R (p = 0.0004) alone or TEM alone (p = 0.0017). TEM combined with S. typhimurium A1-R could regress the melanoma in the PDOX model and has important future clinical potential for melanoma patients. PMID:27835903

  12. Metastatic recurrence in a pancreatic cancer patient derived orthotopic xenograft (PDOX) nude mouse model is inhibited by neoadjuvant chemotherapy in combination with fluorescence-guided surgery with an anti-CA 19-9-conjugated fluorophore.

    PubMed

    Hiroshima, Yukihiko; Maawy, Ali; Zhang, Yong; Murakami, Takashi; Momiyama, Masashi; Mori, Ryutaro; Matsuyama, Ryusei; Katz, Matthew H G; Fleming, Jason B; Chishima, Takashi; Tanaka, Kuniya; Ichikawa, Yasushi; Endo, Itaru; Hoffman, Robert M; Bouvet, Michael

    2014-01-01

    The aim of this study is to determine the efficacy of neoadjuvant chemotherapy (NAC) with gemcitabine (GEM) in combination with fluorescence-guided surgery (FGS) on a pancreatic cancer patient derived orthotopic xenograft (PDOX) model. A PDOX model was established from a CA19-9-positive, CEA-negative tumor from a patient who had undergone a pancreaticoduodenectomy for pancreatic adenocarcinoma. Mice were randomized to 4 groups: bright light surgery (BLS) only; BLS+NAC; FGS only; and FGS+NAC. An anti-CA19-9 or anti-CEA antibody conjugated to DyLight 650 was administered intravenously via the tail vein of mice with the pancreatic cancer PDOX 24 hours before surgery. The PDOX was brightly labeled with fluorophore-conjugated anti-CA19-9, but not with a fluorophore-conjugated anti-CEA antibody. FGS was performed using the fluorophore-conjugated anti-CA19-9 antibody. FGS had no benefit over BLS to prevent metastatic recurrence. NAC in combination with BLS did not convey an advantage over BLS to prevent metastatic recurrence. However, FGS+NAC significantly reduced the metastatic recurrence frequency to one of 8 mice, compared to FGS only after which metastasis recurred in 6 out of 8 mice, and BLS+NAC with metastatic recurrence in 7 out of 8 mice (p = 0.041). Thus NAC in combination with FGS can reduce or even eliminate metastatic recurrence of pancreatic cancer sensitive to NAC. The present study further emphasizes the power of the PDOX model which enables metastasis to occur and thereby identify the efficacy of NAC in combination with FGS on metastatic recurrence.

  13. Desmoplastic small round cell tumor (DSRCT) xenografts and tissue culture lines: Establishment and initial characterization

    PubMed Central

    MARKIDES, CONSTANTINE S.A.; COIL, DOUGLAS R.; LUONG, LINH H.; MENDOZA, JOHN; KOZIELSKI, TONY; VARDEMAN, DANA; GIOVANELLA, BEPPINO C.

    2013-01-01

    Desmoplastic small round cell tumor (DSRCT) is an extremely rare and aggressive neoplasm, which mainly affects young males and generally presents as a widely disseminated tumor within the peritoneal cavity. Due to the rarity of the tumor, its younger and overall healthier patient population (compared with other tumor types) and the fact that it lacks definitive histological and immunohistological features, the diagnosis of DSRCT may be frequently delayed or the tumor may be entirely misdiagnosed as a different type of abdominal sarcoma. The present study aimed to rectify the lack of models that exist for this rare neoplasm, through the development of several DSRCT tissue cultures and xenograft lines. Samples were received from surgeries and biopsies from patients worldwide and were immediately processed for xenograft development in nude mice. Tumor tissues were minced and fragments were injected into the dorsal flanks of nude mice. Of the 14 samples received, nine were established into xenograft lines and five into tissue culture lines. Xenografts displayed the microscopic histology of their parent tumors and demonstrated two different growth rates among the established xenograft lines. Overall, the establishment of these xenograft and tissue culture lines provides researchers with tools to evaluate DSRCT responses to chemotherapy and to investigate DSRCT-specific signaling pathways or mechanisms. PMID:23759995

  14. Xenograft survival in two species combinations using total-lymphoid irradiation and cyclosporine

    SciTech Connect

    Knechtle, S.J.; Halperin, E.C.; Bollinger, R.R.

    1987-02-01

    Total lymphoid irradiation (TLI) has profound immunosuppressive actions and has been applied successfully to allotransplantation but not xenotransplantation. Cyclosporine (CsA) has not generally permitted successful xenotransplantation of organs but has not been used in combination with TLI. TLI and CsA were given alone and in combination to rats that were recipients of hamster or rabbit cardiac xenografts. Combined TLI and CsA prolonged survival of hamster-to-rat cardiac xenografts from three days in untreated controls to greater than 100 days in most recipients. TLI alone significantly prolonged rabbit to rat xenograft survival with doubling of survival time. However, combined treatment did not significantly prolong rabbit-to-rat cardiac xenograft survival compared with TLI alone. The hamster and rat are phylogenetically closely related. Transplants from hamsters to rat are concordant xenografts since the time course of unmodified rejection is similar to first-set rejection of allografts. Although the rabbit-to-rat transplant is also between concordant species (average survival of untreated controls: 3.2 days) the rabbit and rat are more distantly related. These results suggest that TLI is an effective immunosuppressant when applied to cardiac xenotransplants in these animal models; that the choice of species critically affects xenograft survival when TLI and/or CsA are used for immunosuppression; and that the closely related species combination tested has markedly prolonged (greater than 100 days) survival using combined TLI and CsA.

  15. Xenografting of testis tissue from bison calf donors into recipient mice as a strategy for salvaging genetic material.

    PubMed

    Abbasi, Sepideh; Honaramooz, Ali

    2011-09-01

    The objective was to evaluate the long-term outcome of testis tissue xenografting from neonatal bison calves as a model for closely related rare or endangered ungulates. Testis tissue was collected postmortem from two newborn bison calves (Bison bison bison) and small fragments of the tissue were grafted under the back skin of immunodeficient recipient mice (n = 15 mice; eight fragments/mouse). Single xenograft samples were removed from representative recipient mice every 2 mo after grafting (for up to 16 mo). The retrieved xenografts were evaluated for seminiferous tubular density, tubular diameter, seminiferous tubular morphology, and identification of the most advanced germ cell type. Overall, 69% of the grafted testis fragments were recovered as xenografts. Xenografts weight increased (P < 0.02) approximately four-fold by 2 mo and 10-fold by 16 mo post-grafting. In testis xenografts, gradual maturational changes were evident, manifested as the first detection of the following at the times specified: seminiferous tubule expansion, 2 mo; spermatocytes, 6 mo; round spermatids, 12 mo; and elongated spermatids, 16 mo. Furthermore, there were differences between the two donor calves regarding the efficiency of spermatogenesis in xenografts. The timing of complete spermatogenesis approximately corresponded to the reported timing of sexual maturation in bison. This study demonstrated, apparently for the first time, that testis tissue xenografting from neonatal bison donors into recipient mice resulted in testicular maturation and complete development of spermatogenesis in the grafts.

  16. Patient-derived xenografts: A platform for accelerating translational research in prostate cancer.

    PubMed

    Davies, Alastair H; Wang, Yuzhuo; Zoubeidi, Amina

    2017-03-15

    Recently, there has been renewed interest in the development and characterization of patient-derived tumour xenograft (PDX) models. Numerous PDX models have been established for prostate cancer and, importantly, retain the principal molecular, genetic, and histological characteristics of the donor tumour. As such, these models provide significant improvements over standard cell line xenograft models for biological studies, preclinical drug development, and personalized medicine strategies. This review summarizes the current state of the art in this field, illustrating the opportunities and limitations of PDX models in translational prostate cancer research.

  17. The Role of Growth Hormone and Insulin-Like Growth Factor 1 in Human Breast Cancer Growth in a Mouse Xenograft Model

    DTIC Science & Technology

    1998-10-01

    The purpose of this research is to determine the role of human growth hormone (hGH) and insulin-like growth factor 1(IGF-1) in the development of an...progression of tumor growth in the animal model. In addition, growth hormone may be semi-inhibitory to growth for tumors dependent upon estrogen

  18. The Role of Growth Hormone and Insulin-Like Growth Factor-1 in Human Breast Cancer Growth in a Mouse Xenograft Model

    DTIC Science & Technology

    1999-10-01

    The purpose of this research is to determine the role of human growth hormone (hGH) and insulin-like growth factor 1 (IGF- 1) in the development of...the progression of tumor growth in the animal model. In addition growth hormone may be semi-inhibitory to growth for tumors dependent upon estrogen

  19. Tumor dosimetry for I-131 trastuzumab therapy in a Her2+ NCI N87 xenograft mouse model using the Siemens SYMBIA E gamma camera with a pinhole collimator

    NASA Astrophysics Data System (ADS)

    Lee, Young Sub; Kim, Jin Su; Deuk Cho, Kyung; Kang, Joo Hyun; Moo Lim, Sang

    2015-07-01

    We performed imaging and therapy using I-131 trastuzumab and a pinhole collimator attached to a conventional gamma camera for human use in a mouse model. The conventional clinical gamma camera with a 2-mm radius-sized pinhole collimator was used for monitoring the animal model after administration of I-131 trastuzumab The highest and lowest radiation-received organs were osteogenic cells (0.349 mSv/MBq) and skin (0.137 mSv/MBq), respectively. The mean coefficients of variation (%CV) of the effective dose equivalent and effective dose were 0.091 and 0.093 mSv/MBq respectively. We showed the feasibility of the pinholeattached conventional gamma camera for human use for the assessment of dosimetry. Mouse dosimetry and prediction of human dosimetry could be used to provide data for the safety and efficacy of newly developed therapeutic schemes.

  20. Single-photon emission computed tomographic imaging of the early time course of therapy-induced cell death using technetium 99m tricarbonyl His-annexin A5 in a colorectal cancer xenograft model.

    PubMed

    Vangestel, Christel; Van de Wiele, Christophe; Mees, Gilles; Mertens, Koen; Staelens, Steven; Reutelingsperger, Chris; Pauwels, Patrick; Van Damme, Nancy; Peeters, Marc

    2012-04-01

    As apoptosis occurs over an interval of time after administration of apoptosis-inducing therap