Science.gov

Sample records for aaa fragrance ingredients

  1. A toxicological and dermatological assessment of aryl alkyl alcohols when used as fragrance ingredients.

    PubMed

    Belsito, D; Bickers, D; Bruze, M; Calow, P; Dagli, M L; Fryer, A D; Greim, H; Miyachi, Y; Saurat, J H; Sipes, I G

    2012-09-01

    The aryl alkyl alcohol (AAA) fragrance ingredients are a diverse group of chemical structures with similar metabolic and toxicity profiles. The AAA fragrances demonstrate low acute and subchronic dermal and oral toxicity. No carcinogenicity in rats or mice was observed in 2-year chronic testing of benzyl alcohol or α-methylbenzyl alcohol; the latter did induce species and gender-specific renal adenomas in male rats at the high dose. There was no to little genotoxicity, mutagenicity, or clastogenicity in the mutagenic in vitro bacterial assays, and in vitro mammalian cell assays. All in vivo micronucleus assays were negative. NOAELs for maternal and developmental toxicity are far in excess of current human exposure levels. At concentrations likely to be encountered by consumers, AAA fragrance ingredients are non-irritating to the skin. The potential for eye irritation is minimal. With the exception of benzyl alcohol and to a lesser extent phenethyl and 2-phenoxyethyl AAA alcohols, human sensitization studies, diagnostic patch tests and human induction studies, indicate that AAA fragrance ingredients generally have no or low sensitization potential. Available data indicate that the potential for photosensitization is low. It is concluded that these materials would not present a safety concern at current levels of use as fragrance ingredients.

  2. Fragranced consumer products: Chemicals emitted, ingredients unlisted

    SciTech Connect

    Steinemann, Anne C.; MacGregor, Ian C.; Gordon, Sydney M.; Gallagher, Lisa G.; Davis, Amy L.; Ribeiro, Daniel S.; Wallace, Lance A.

    2011-04-15

    Fragranced consumer products are pervasive in society. Relatively little is known about the composition of these products, due to lack of prior study, complexity of formulations, and limitations and protections on ingredient disclosure in the U.S. We investigated volatile organic compounds (VOCs) emitted from 25 common fragranced consumer products-laundry products, personal care products, cleaning supplies, and air fresheners-using headspace analysis with gas chromatography/mass spectrometry (GC/MS). Our analysis found 133 different VOCs emitted from the 25 products, with an average of 17 VOCs per product. Of these 133 VOCs, 24 are classified as toxic or hazardous under U.S. federal laws, and each product emitted at least one of these compounds. For 'green' products, emissions of these compounds were not significantly different from the other products. Of all VOCs identified across the products, only 1 was listed on any product label, and only 2 were listed on any material safety data sheet (MSDS). While virtually none of the chemicals identified were listed, this nonetheless accords with U.S. regulations, which do not require disclosure of all ingredients in a consumer product, or of any ingredients in a mixture called 'fragrance.' Because the analysis focused on compounds emitted and listed, rather than exposures and effects, it makes no claims regarding possible risks from product use. Results of this study contribute to understanding emissions from common products, and their links with labeling and legislation.

  3. Dermal sensitization quantitative risk assessment (QRA) for fragrance ingredients.

    PubMed

    Api, Anne Marie; Basketter, David A; Cadby, Peter A; Cano, Marie-France; Ellis, Graham; Gerberick, G Frank; Griem, Peter; McNamee, Pauline M; Ryan, Cindy A; Safford, Robert

    2008-10-01

    Based on chemical, cellular, and molecular understanding of dermal sensitization, an exposure-based quantitative risk assessment (QRA) can be conducted to determine safe use levels of fragrance ingredients in different consumer product types. The key steps are: (1) determination of benchmarks (no expected sensitization induction level (NESIL)); (2) application of sensitization assessment factors (SAF); and (3) consumer exposure (CEL) calculation through product use. Using these parameters, an acceptable exposure level (AEL) can be calculated and compared with the CEL. The ratio of AEL to CEL must be favorable to support safe use of the potential skin sensitizer. This ratio must be calculated for the fragrance ingredient in each product type. Based on the Research Institute for Fragrance Materials, Inc. (RIFM) Expert Panel's recommendation, RIFM and the International Fragrance Association (IFRA) have adopted the dermal sensitization QRA approach described in this review for fragrance ingredients identified as potential dermal sensitizers. This now forms the fragrance industry's core strategy for primary prevention of dermal sensitization to these materials in consumer products. This methodology is used to determine global fragrance industry product management practices (IFRA Standards) for fragrance ingredients that are potential dermal sensitizers. This paper describes the principles of the recommended approach, provides detailed review of all the information used in the dermal sensitization QRA approach for fragrance ingredients and presents key conclusions for its use now and refinement in the future.

  4. Fragranced consumer products and undisclosed ingredients

    SciTech Connect

    Steinemann, Anne C.

    2009-01-15

    Fragranced consumer products-such as air fresheners, laundry supplies, personal care products, and cleaners-are widely used in homes, businesses, institutions, and public places. While prevalent, these products can contain chemicals that are not disclosed to the public through product labels or material safety data sheets (MSDSs). What are some of these chemicals and what limits their disclosure? This article investigates these questions, and brings new pieces of evidence to the science, health, and policy puzzle. Results from a regulatory analysis, coupled with a chemical analysis of six best-selling products (three air fresheners and three laundry supplies), provide several findings. First, no law in the U.S. requires disclosure of all chemical ingredients in consumer products or in fragrances. Second, in these six products, nearly 100 volatile organic compounds (VOCs) were identified, but none of the VOCs were listed on any product label, and one was listed on one MSDS. Third, of these identified VOCs, ten are regulated as toxic or hazardous under federal laws, with three (acetaldehyde, chloromethane, and 1,4-dioxane) classified as Hazardous Air Pollutants (HAPs). Results point to a need for improved understanding of product constituents and mechanisms between exposures and effects.

  5. Natural ingredients based cosmetics. Content of selected fragrance sensitizers.

    PubMed

    Rastogi, S C; Johansen, J D; Menné, T

    1996-06-01

    In the present study, we have investigated 42 cosmetic products based on natural ingredients for content of 11 fragrance substances: geraniol, hydroxycitronellal, eugenol, isoeugenol, cinnamic aldehyde, cinnamic alcohol, alpha-amylcinnamic aldehyde, citral, coumarin, dihydrocoumarin and alpha-hexylcinnamic aldehyde. The study revealed that the 91% (20/22) of the natural ingredients based perfumes contained 0.027%-7.706% of 1 to 7 of the target fragrances. Between 1 and 5 of the chemically defined synthetic constituents of fragrance mix were found in 82% (18/22) of the perfumes. 35% (7/20) of the other cosmetic products (shampoos, creams, tonics, etc) were found to contain 0.0003-0.0820% of 1 to 3 of the target fragrances. Relatively high concentrations of hydroxycitronellal, coumarin, cinnamic alcohol and alpha-amyl cinnamic aldehyde were found in some of the investigated products. The detection of hydroxycitronellal and alpha-hexylcinnamic aldehyde in some of the products demonstrates that artificial fragrances, i.e., compounds not yet regarded as natural substances, may be present in products claimed to be based on natural ingredients.

  6. Consumer exposure to fragrance ingredients: providing estimates for safety evaluation.

    PubMed

    Cadby, Peter A; Troy, William R; Vey, Matthias G H

    2002-12-01

    To fully apply already published procedures for the safety evaluation of fragrance ingredients, it is necessary to estimate exposure through different routes and leading to different potential endpoints. Worst-case scenario calculations indicate that deposition on the surface of the skin following use of cosmetics represents the major route of exposure to fragrance ingredients when conservative estimates for evaporation, rinsing, and other forms of product removal are employed. Hydroalcoholic perfumes and colognes deliver the highest dose after single product use. Surveys of formulas used in this type of product allow the calculation of average maximum or upper 97.5th percentile concentration of the ingredient in formulas. With this type of exaggeration, the use of estimates of "typical" cosmetic use can be maximized to take account of excessive consumption patterns for both short-term and long-term exposure estimates. In the latter case, multiple product use must be considered. Short-term exposure (single product doses) of an ingredient found at an average maximum use level of P% in fragrances is taken to be 0.2 x P% or 3P microg/cm(2). Using upper 97.5th percentile concentrations (P(97.5)) of individual ingredients in fragrances, the long-term exposure is taken to be P(97.5) x 2,547 microg/kg body wt/day. The estimates of long-term exposure incorporate a number of highly conservative assumptions (e.g., over a long period, every product used will contain a fragrance with this ingredient at this high (P(97.5)) level).

  7. The antibacterial activity of fragrance ingredients against Legionella pneumophila.

    PubMed

    Shimizu, Ikuko; Isshiki, Yasunori; Nomura, Harue; Sakuda, Keisuke; Sakuma, Katsuya; Kondo, Seiichi

    2009-06-01

    In the current study we investigated the antibacterial activity of fragrance ingredients against Legionella pneumophila, a causative agent of severe pneumonia. Among the 41 different fragrance ingredients tested, we found that the natural fragrance ingredients oakmoss (OM) and birch tar oil (BT), which contain many components, exhibit potent antibacterial activity. The minimum inhibitory concentration (MIC, % (v/v)) of OM and BT were 0.0020 and 0.0024, respectively and were lower than that of cinnamic aldehyde (0.0078), which has been previously shown to possess high antimicrobial activity. In a time-kill assay of OM and BT at MIC and two times MIC, the colony forming units (CFU) of the microbe were reduced to between 10(-3) to 10(-4) of the original CFU after 1 h co-incubation. After this time, the CFU gradually decreased in number, but remained above detection levels even after a 48-h co-incubation, except for BT at two times MIC. In contrast, at a concentration of 0.1% OM and BT (approximately 50 times MIC), CFU were not detected after co-incubation for 1 h. Another 18 fragrance ingredients including ketone, aldehyde, lactone, acid, phenol derivative, aliphatic alcohol and quinoline also exhibited a lesser degree of antibacterial activity against L. pneumophila at a MIC of less than 0.10.

  8. The search for new fragrance ingredients for functional perfumery.

    PubMed

    Narula, Anubhav P S

    2004-12-01

    Functional perfumery is an integral part of the fragrance business. It demands that the ingredients chosen for compounding withstand the aggressive nature of some of the bases used for soaps, detergents, softeners, bleach, and personal-care products. The synthetic efforts in this area reported in this short personal account, presented in a talk at the RSC/SCI conference Flavours & Fragrances 2004 (Manchester), have resulted in the discovery of the two new proprietary molecules Fleuranil (5/6) and Khusinil (7), which fulfill the criteria of functional perfumery. The structure-odor relationships of several analogs of Fleuranil and Khusinil prepared in the course of these investigations are also presented.

  9. Toxicological profile of diethyl phthalate: a vehicle for fragrance and cosmetic ingredients.

    PubMed

    Api, A M

    2001-02-01

    Diethyl phthalate (DEP; CAS No. 84-66-2) has many industrial uses, as a solvent and vehicle for fragrance and cosmetic ingredients and subsequent skin contact. This review focuses on its safety in use as a solvent and vehicle for fragrance and cosmetic ingredients. Available data are reviewed for acute toxicity, eye irritation, dermal irritation, dermal sensitization, phototoxicity, photoallergenicity, percutaneous absorption, kinetics, metabolism, subchronic toxicity, teratogenicity, reproductive toxicity, estrogenic potential, genetic toxicity, chronic toxicity, carcinogenicity, in vitro toxicity, ecotoxicity, environmental fate and potential human exposure. No toxicological endpoints of concern have been identified. Comparison of estimated exposure (0.73 mg/kg/day) from dermal applications of fragrances and cosmetic products with other accepted industrial (5 mg/m(3) in air) and consumer exposures (350 mg/l in water; 0.75 mg/kg/day oral exposure) indicates no significant toxic liability for the use of DEP in fragrances and cosmetic products.

  10. Strategy to decrease the risk of adverse effects of fragrance ingredients in cosmetic products.

    PubMed

    Jansson, T; Lodén, M

    2001-09-01

    In spite of extensive self-regulation of the fragrance industry, fragrance ingredients are still major causes of allergic contact dermatitis. There are indications that the problem is increasing in some countries, and that many nonregulated compounds are involved in the development of allergies. The use of essential oils in fragrance compounds might add both allergenic and carcinogenic compounds to a product and the exact composition of such ingredients is difficult to control. Herein, we propose a simple strategy to decrease the risk of adverse effects of fragrance ingredients in cosmetic products. This strategy consists of four major steps: (1) limit the concentration of fragrance compound in the products, (2) follow legislation and guidelines, (3) limit the concentration of a number of well-known sensitizing fragrance chemicals, and (4) limit the concentration of essential oils and materials with unknown composition. The strategy is discussed as an alternative to animal testing and in relation to other more resource-demanding approaches to the same problem.

  11. Implementation of the dermal sensitization Quantitative Risk Assessment (QRA) for fragrance ingredients.

    PubMed

    Api, Anne Marie; Vey, Matthias

    2008-10-01

    Significant developments have recently been incorporated in the way dermal sensitization risk assessments are conducted for fragrance ingredients. Based on the RIFM Expert Panel's recommendation, RIFM and IFRA have formally adopted the QRA approach, refined for fragrance ingredients identified as contact allergens, as the core strategy for primary prevention of dermal sensitization to these materials in consumer products. This new methodology is a major improvement over the former approach because it specifically addresses the elements of exposure-based risk assessment that are unique to the induction of dermal sensitization, while being consistent with the principles of toxicological risk assessment. This methodology will be used to determine global fragrance industry product management practices (IFRA Standards) for potentially sensitizing fragrance ingredients, the first of which was implemented in May 2006 with the 40th Amendment to the IFRA Code of Practice. It contained the first four IFRA Standards based on the QRA, limiting the use of the materials for 11 individual product categories. One of the first four IFRA Standards based on the QRA was on the fragrance material citral. The basis for the acceptable exposure limits are presented in this paper.

  12. Skin sensitisation to fragrance ingredients: is there a role for household cleaning/maintenance products?

    PubMed

    Basketter, David A; Lemoine, Sylvie; McFadden, John P

    2015-01-01

    The induction of contact allergy to fragrance ingredients and the consequent risk of allergic contact dermatitis (ACD) present a human health concern that cannot be ignored. The problem arises when exposure exceeds safe levels, but the source(s) of exposure which lead to induction often remain unclear. This contrasts with the elicitation of ACD, where the eczema frequently can be traced to specific source(s) of skin exposure. Cosmetic products are often implicated, both for induction and elicitation. However, other products contain fragrance ingredients, including household cleaning products. In this paper, the risk assessment concerning the ability of these products to induce fragrance contact allergy is considered and the clinical evidence for the induction and/or elicitation of ACD is reviewed. It can be concluded that the risk of the induction of fragrance contact allergy from household cleaning products is low. Especially where more potent fragrance allergens are used in higher exposure products, the aggregated exposure from such products can augment the risk for the elicitation of ACD. This supports the need to manage this risk via the provision of information to consumers.

  13. A toxicologic and dermatologic assessment of cinnamyl phenylpropyl materials when used as fragrance ingredients.

    PubMed

    Belsito, D; Bickers, D; Bruze, M; Calow, P; Dagli, M; Fryer, A D; Greim, H; Miyachi, Y; Saurat, J H; Sipes, I G

    2011-12-01

    The cinnamyl phenylpropyl fragrance ingredients are a diverse group of chemical structures that have similar metabolic and toxicity profiles. A toxicological and dermatological review of these fragrance ingredients is presented. The common characteristic structural element of cinnamyl phenylpropyl materials is an aryl substituted primary alcohol/aldehyde/ester. For high end users, calculated maximum dermal exposures vary from 0.14% to 0.72%; systemic exposures vary from 0.0002 to 0.0280 mg/kg/day. Human dermatological studies show that these materials are not generally irritants or sensitizers at lower exposures from consumer products. Reactions (0.9%) in fragrance sensitive patients were observed with 3-phenyl-1-propanol at 5% in petrolatum. The cinnamyl phenylpropyl materials had low acute toxicity and no significant toxicity in repeat dose oral or dermal toxicity studies. No mutagenic or genotoxic activity in bacteria and mammalian cell line assays was observed. The cinnamyl phenylpropyl alcohol materials participate in the same beta oxidation pathways as their parent cinnamic acid derivatives, including common routes of absorption, distribution, and metabolic detoxification, and exhibit similar toxicological endpoints. Based on the review of available data, it is concluded that these materials would not present a safety concern at current levels of use as fragrance ingredients.

  14. Fragrance material review on anisyl alcohol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of anisyl alcohol when used as a fragrance ingredient is presented. Anisyl alcohol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for anisyl alcohol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, skin sensitization, elicitation, toxicokinetics, repeated dose, genotoxicity, and carcinogenicity data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances.

  15. Fragrance material review on phenylethyl alcohol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of phenylethyl alcohol when used as a fragrance ingredient is presented. Phenylethyl alcohol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for phenylethyl alcohol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, toxicokinetics, repeated dose, reproductive toxicity, genotoxicity, and carcinogenicity data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances.

  16. Fragrance material review on o-tolylethanol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of safety data for o-tolylethanol when used as a fragrance ingredient is presented. o-Tolylethanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for o-tolylethanol were evaluated then summarized and includes physical properties, skin irritation, and skin sensitisation data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances.

  17. Fragrance material review on benzyl alcohol.

    PubMed

    Scognamiglio, J; Jones, L; Vitale, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of benzyl alcohol when used as a fragrance ingredient is presented. Benzyl alcohol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for benzyl alcohol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, photoallergy, toxicokinetics, repeated dose, reproductive toxicity, genotoxicity, and carcinogenicity data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances.

  18. Fragrance material review on 2-benzylheptanol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-benzylheptanol when used as a fragrance ingredient is presented. 2-Benzylheptanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al., 2012 for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  19. Fragrance material review on 2-phenoxyethanol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-phenoxyethanol when used as a fragrance ingredient is presented. 2-Phenoxyethanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-phenoxyethanol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, photoallergy, toxicokinetics, repeated dose, and reproductive toxicity data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances.

  20. Fragrance material review on 2-methyl-4-phenyl-2-butanol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-methyl-4-phenyl-2-butanol when used as a fragrance ingredient is presented. 2-methyl-4-phenyl-2-butanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a tertiary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-methyl-4-phenyl-2-butanol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances. assessment of aryl alkyl alcohols when used as fragrance ingredients.

  1. Criteria for the Research Institute for Fragrance Materials, Inc. (RIFM) safety evaluation process for fragrance ingredients.

    PubMed

    Api, A M; Belsito, D; Bruze, M; Cadby, P; Calow, P; Dagli, M L; Dekant, W; Ellis, G; Fryer, A D; Fukayama, M; Griem, P; Hickey, C; Kromidas, L; Lalko, J F; Liebler, D C; Miyachi, Y; Politano, V T; Renskers, K; Ritacco, G; Salvito, D; Schultz, T W; Sipes, I G; Smith, B; Vitale, D; Wilcox, D K

    2015-08-01

    The Research Institute for Fragrance Materials, Inc. (RIFM) has been engaged in the generation and evaluation of safety data for fragrance materials since its inception over 45 years ago. Over time, RIFM's approach to gathering data, estimating exposure and assessing safety has evolved as the tools for risk assessment evolved. This publication is designed to update the RIFM safety assessment process, which follows a series of decision trees, reflecting advances in approaches in risk assessment and new and classical toxicological methodologies employed by RIFM over the past ten years. These changes include incorporating 1) new scientific information including a framework for choosing structural analogs, 2) consideration of the Threshold of Toxicological Concern (TTC), 3) the Quantitative Risk Assessment (QRA) for dermal sensitization, 4) the respiratory route of exposure, 5) aggregate exposure assessment methodology, 6) the latest methodology and approaches to risk assessments, 7) the latest alternatives to animal testing methodology and 8) environmental risk assessment. The assessment begins with a thorough analysis of existing data followed by in silico analysis, identification of 'read across' analogs, generation of additional data through in vitro testing as well as consideration of the TTC approach. If necessary, risk management may be considered.

  2. Criteria for the Research Institute for Fragrance Materials, Inc. (RIFM) safety evaluation process for fragrance ingredients.

    PubMed

    Api, A M; Belsito, D; Bruze, M; Cadby, P; Calow, P; Dagli, M L; Dekant, W; Ellis, G; Fryer, A D; Fukayama, M; Griem, P; Hickey, C; Kromidas, L; Lalko, J F; Liebler, D C; Miyachi, Y; Politano, V T; Renskers, K; Ritacco, G; Salvito, D; Schultz, T W; Sipes, I G; Smith, B; Vitale, D; Wilcox, D K

    2015-08-01

    The Research Institute for Fragrance Materials, Inc. (RIFM) has been engaged in the generation and evaluation of safety data for fragrance materials since its inception over 45 years ago. Over time, RIFM's approach to gathering data, estimating exposure and assessing safety has evolved as the tools for risk assessment evolved. This publication is designed to update the RIFM safety assessment process, which follows a series of decision trees, reflecting advances in approaches in risk assessment and new and classical toxicological methodologies employed by RIFM over the past ten years. These changes include incorporating 1) new scientific information including a framework for choosing structural analogs, 2) consideration of the Threshold of Toxicological Concern (TTC), 3) the Quantitative Risk Assessment (QRA) for dermal sensitization, 4) the respiratory route of exposure, 5) aggregate exposure assessment methodology, 6) the latest methodology and approaches to risk assessments, 7) the latest alternatives to animal testing methodology and 8) environmental risk assessment. The assessment begins with a thorough analysis of existing data followed by in silico analysis, identification of 'read across' analogs, generation of additional data through in vitro testing as well as consideration of the TTC approach. If necessary, risk management may be considered. PMID:25510979

  3. In vitro percutaneous absorption of the fragrance ingredient musk xylol.

    PubMed

    Hood, H L; Wickett, R R; Bronaugh, R L

    1996-05-01

    The percutaneous absorption of the fragrance fixative musk xylol was measured in vitro in human and hairless guinea pig skin. For comparison, musk xylol was applied to skin in an oil-in-water emulsion or the volatile solvent, methanol. After 24 hr, total absorption of musk xylol in hairless guinea pig skin was 55% from the emulsion vehicle and 45% from the methanol vehicle. With human skin, permeation of musk xylol from both vehicles decreased to 22% of the applied dose. When human studies were continued for an additional 6 days after skin surface washing, only 6% of the applied dose remained in skin. The data suggest that most of the absorbed musk xylol in skin at 24 hr will be systemically absorbed in vivo within 1 wk. Throughout the 24-hr absorption study, absorbed musk xylol was not metabolized. A permeability constant for musk xylol permeation through hairless guinea pig skin was determined by a modified procedure for the lipophilic compound. At each time point, some diffusion cells were terminated so that skin and receptor fluid levels could be determined. Under steady-state absorption the permeability constant was 6.86 x 10(-5) cm/hr. The amount of musk xylol penetrating skin from three types of cosmetic products was also calculated on the basis of actual conditions of use. Products that are applied to large areas of the body and remain on the skin for long periods will result in the greatest absorption of musk xylol.

  4. Criteria for development of a database for safety evaluation of fragrance ingredients.

    PubMed

    Ford, R A; Domeyer, B; Easterday, O; Maier, K; Middleton, J

    2000-04-01

    Over 2000 different ingredients are used in the manufacture of fragrances. The majority of these ingredients have been used for many decades. Despite this long history of use, all of these ingredients need continued monitoring to ensure that each ingredient meets acceptable safety standards. As with other large databases of existing chemicals, fulfilling this need requires an organized approach to identify the most important potential hazards. One such approach, specifically considering the dermal route of exposure as the most relevant one for fragrance ingredients, has been developed. This approach provides a rational selection of materials for review and gives guidance for determining the test data that would normally be considered necessary for the elevation of safety under intended conditions of use. As a first step, the process takes into account the following criteria: quantity of use, consumer exposure, and chemical structure. These are then used for the orderly selection of materials for review with higher quantity, higher exposure, and the presence of defined structural alerts all contributing to a higher priority for review. These structural alerts along with certain exposure and volume limits are then used to develop guidelines for determining the quality and quantity of data considered necessary to support an adequate safety evaluation of the chosen materials, taking into account existing data on the substance itself as well as on closely related analogs. This approach can be considered an alternative to testing; therefore, it is designed to be conservative but not so much so as to require excessive effort when not justified.

  5. A toxicological and dermatological assessment of alkyl cyclic ketones when used as fragrance ingredients. RIFM Expert Panel.

    PubMed

    Belsito, D; Bickers, D; Bruze, M; Calow, P; Dagli, M L; Fryer, A D; Greim, H; Miyachi, Y; Saurat, J H; Sipes, I G

    2013-12-01

    The alkyl cyclic ketone (ACK) fragrance ingredients are a diverse group of structures with similar metabolic and toxicity profiles. ACK fragrance materials demonstrate low acute toxicity. Upon repeat dose testing, some adverse effects in biochemical and hematological parameters, and slightly increased liver and kidney weights were reported, primarily at high doses, resulting from adaptive effects. Developmental effects occurred only in the presence of maternal toxicity. Assays in bacteria and mammalian cell systems and the mouse micronucleus assay did not demonstrate genotoxicity. ACK fragrance ingredients are considered non-irritating to the skin of humans; results showed few reactions, most of which were equivocal or involved doses greater than those in consumer products. Mild to moderate eye irritation in animal tests was observed with most compounds; however, full recovery was usually observed. Human sensitization studies indicate that ACK fragrance ingredients have a low sensitization potential. Diagnostic patch-tests indicated low sensitizing potential in humans; except for fragrance materials which caused reactions at 1% or 5%. Phototoxicity and photosensitization were not demonstrated in humans, and, with the possible exception of acetyl cedrene, would not be expected. It is concluded that ACK materials do not present a safety concern at current levels of use as fragrance ingredients.

  6. Novel database for exposure to fragrance ingredients in cosmetics and personal care products.

    PubMed

    Comiskey, D; Api, A M; Barratt, C; Daly, E J; Ellis, G; McNamara, C; O'Mahony, C; Robison, S H; Safford, B; Smith, B; Tozer, S

    2015-08-01

    Exposure of fragrance ingredients in cosmetics and personal care products to the population can be determined by way of a detailed and robust survey. The frequency and combinations of products used at specific times during the day will allow the estimation of aggregate exposure for an individual consumer, and to the sample population. In the present study, habits and practices of personal care and cosmetic products have been obtained from market research data for 36,446 subjects across European countries and the United States in order to determine the exposure to fragrance ingredients. Each subject logged their product uses, time of day and body application sites in an online diary for seven consecutive days. The survey data did not contain information on the amount of product used per occasion or body measurements, such as weight and skin surface area. Nevertheless, this was found from the literature where the likely amount of product used per occasion or body measurement could be probabilistically chosen from distributions of data based on subject demographics. The daily aggregate applied consumer product exposure was estimated based on each subject's frequency of product use, and Monte Carlo simulations of their likely product amount per use and body measurements. Statistical analyses of the habits and practices and consumer product exposure are presented, which show the robustness of the data and the ability to estimate aggregate consumer product exposure. Consequently, the data and modelling methods presented show potential as a means of performing ingredient safety assessments for personal care and cosmetics products.

  7. Novel database for exposure to fragrance ingredients in cosmetics and personal care products.

    PubMed

    Comiskey, D; Api, A M; Barratt, C; Daly, E J; Ellis, G; McNamara, C; O'Mahony, C; Robison, S H; Safford, B; Smith, B; Tozer, S

    2015-08-01

    Exposure of fragrance ingredients in cosmetics and personal care products to the population can be determined by way of a detailed and robust survey. The frequency and combinations of products used at specific times during the day will allow the estimation of aggregate exposure for an individual consumer, and to the sample population. In the present study, habits and practices of personal care and cosmetic products have been obtained from market research data for 36,446 subjects across European countries and the United States in order to determine the exposure to fragrance ingredients. Each subject logged their product uses, time of day and body application sites in an online diary for seven consecutive days. The survey data did not contain information on the amount of product used per occasion or body measurements, such as weight and skin surface area. Nevertheless, this was found from the literature where the likely amount of product used per occasion or body measurement could be probabilistically chosen from distributions of data based on subject demographics. The daily aggregate applied consumer product exposure was estimated based on each subject's frequency of product use, and Monte Carlo simulations of their likely product amount per use and body measurements. Statistical analyses of the habits and practices and consumer product exposure are presented, which show the robustness of the data and the ability to estimate aggregate consumer product exposure. Consequently, the data and modelling methods presented show potential as a means of performing ingredient safety assessments for personal care and cosmetics products. PMID:26003515

  8. Fragrance material review on 2,2-dimethyl-3-phenylpropanol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2,2-dimethyl-3-phenylpropanol when used as a fragrance ingredient is presented. 2,2-Dimethyl-3-phenylpropanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2,2-dimethyl-3-phenylpropanol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, phototoxicity, and photoallergy data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances.

  9. Fragrance material review on α,α,4-trimethylphenethyl alcohol.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of α,α,4-trimethylphenethyl alcohol when used as a fragrance ingredient is presented. α,α,4-Trimethylphenethyl alcohol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a tertiary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for α,α,4-trimethylphenethyl alcohol were evaluated then summarized and includes physical properties, skin irritation, mucous membrane (eye) irritation, and skin sensitization data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances.

  10. Fragrance material review on α-methylbenzyl alcohol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of α-methylbenzyl alcohol when used as a fragrance ingredient is presented. α-Methylbenzyl alcohol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a secondary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for α-methylbenzyl alcohol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, toxicokinetics, repeated dose, genotoxicity, and carcinogenicity data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances.

  11. Fragrance material review on α-isobutylphenethyl alcohol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of α-isobutylphenethyl alcohol when used as a fragrance ingredient is presented. α-Isobutylphenethyl alcohol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a secondary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for α-isobutylphenethyl alcohol were evaluated then summarized and includes physical properties, skin sensitization, and repeated dose data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances.

  12. Fragrance material review on p-α,α-trimethylbenzyl alcohol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of p-α,α-trimethylbenzyl alcohol when used as a fragrance ingredient is presented. p-α,α-Trimethylbenzyl alcohol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a tertiary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for p-α,α-trimethylbenzyl alcohol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitisation, toxicokinetics, and genotoxicity data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances.

  13. Fragrance material review on 3-methyl-5-phenylpentanol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 3-methyl-5-phenylpentanol when used as a fragrance ingredient is presented. 3-Methyl-5-phenylpentanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 3-methyl-5-phenylpentanol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitisation, phototoxicity, and photoallergy data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances.

  14. Fragrance material review on β-methylphenethyl alcohol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of β-methylphenethyl alcohol when used as a fragrance ingredient is presented. β-Methylphenethyl alcohol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for β-methylphenethyl alcohol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, toxicokinetics, repeated dose, and genotoxicity data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances.

  15. Fragrance material review on α-propylphenethyl alcohol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of α-propylphenethyl alcohol when used as a fragrance ingredient is presented. α-Propylphenethyl alcohol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a secondary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for α-propylphenethyl alcohol were evaluated then summarized and includes physical properties, acute toxicity, and genotoxicity data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances.

  16. Fragrance material review on 2-(3-methylphenyl) ethanol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-(3-methylphenyl) ethanol when used as a fragrance ingredient is presented. 2-(3-Methylphenyl) ethanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  17. Fragrance material review on 3-methyl-1-phenylbutan-2-ol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 3-methyl-1-phenylbutan-2-ol when used as a fragrance ingredient is presented. 3-Methyl-1-phenylbutan-2-ol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a secondary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 3-methyl-1-phenylbutan-2-ol were evaluated then summarized and includes physical properties and mucous membrane (eye) irritation data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  18. Fragrance material review on 2-phenyl-2-propanol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-phenyl-2-propanol when used as a fragrance ingredient is presented. 2-Phenyl-2-propanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a tertiary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-phenyl-2-propanol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, skin sensitization, and toxicokinetics data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances.

  19. Fragrance material review on p-isopropylbenzyl alcohol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of p-isopropylbenzyl alcohol when used as a fragrance ingredient is presented. p-Isopropylbenzyl alcohol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for p-isopropylbenzyl alcohol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, skin sensitization, toxicokinetics, and genotoxicity data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances.

  20. Fragrance material review on α,α-dimethylphenethyl alcohol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of α,α-dimethylphenethyl alcohol when used as a fragrance ingredient is presented. α,α-Dimethylphenethyl alcohol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a tertiary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for α,α-dimethylphenethyl alcohol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, and repeated dose data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al., 2012 for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances.

  1. Fragrance material review on anisyl alcohol (o-m-p-).

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of anisyl alcohol (o-m-p-) when used as a fragrance ingredient is presented. Anisyl alcohol (o-m-p-) is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alkyl alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar(-)Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  2. Fragrance material review on 1-phenyl-3-methyl-3-pentanol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 1-phenyl-3-methyl-3-pentanol when used as a fragrance ingredient is presented. 1-Phenyl-3-methyl-3-pentanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a tertiary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1-phenyl-3-methyl-3-pentanol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, and genotoxicity data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances.

  3. Fragrance material review on β-methoxy-benzeneethanol.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of β-methoxy-benzeneethanol when used as a fragrance ingredient is presented. β-methoxy-benzeneethanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for β-methoxy-benzeneethanol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, phototoxicity, and photoallergy data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al., 2012 for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances.

  4. Fragrance material review on 2-methyl-5-phenylpentanol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-methyl-5-phenylpentanol when used as a fragrance ingredient is presented. 2-Methyl-5-phenylpentanol is a member of the fragrance structural group aryl alkyl alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-methyl-5-phenylpentanol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, repeated dose, and genotoxicity data. A safety assessment of the entire aryl alkyl alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  5. Fragrance material review on 2-(4-methylphenoxy)ethanol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-(4-methylphenoxy)ethanol when used as a fragrance ingredient is presented. 2-(4-methylphenoxy)ethanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-(4-methylphenoxy)ethanol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, and skin sensitization data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances.

  6. Fragrance material review on 2-methyl-4-phenylpentanol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-methyl-4-phenylpentanol when used as a fragrance ingredient is presented. 2-Methyl-4-phenylpentanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAAs fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-methyl-4-phenylpentanol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, repeated dose, and genotoxicity data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances.

  7. Fragrance material review on 4-phenyl-3-buten-2-ol.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 4-phenyl-3-buten-2-ol when used as a fragrance ingredient is presented. 4-Phenyl-3-buten-2-ol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a secondary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 4-phenyl-3-buten-2-ol were evaluated then summarized and includes physical properties, and genotoxicity data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances.

  8. Fragrance material review on p-tolyl alcohol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of p-tolyl alcohol when used as a fragrance ingredient is presented. p-Tolyl alcohol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for p-tolyl alcohol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, and genotoxicity data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances.

  9. Fragrance material review on 2-p-tolylethanol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-p-tolylethanol when used as a fragrance ingredient is presented. 2-p-tolylethanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group-C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  10. A toxicologic and dermatologic assessment of cyclopentanones and cyclopentenones when used as fragrance ingredients.

    PubMed

    Belsito, D; Bickers, D; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Greim, H; Miyachi, Y; Saurat, J H; Sipes, I G

    2012-10-01

    The cyclopentanone and cyclopentenone group of fragrance ingredients was critically evaluated for safety following a complete literature search. For high end users, calculated maximum dermal exposures vary from 0.002% to 15.16% in hydroalcoholic products; systemic exposures vary from 0.0003 to 0.7122 mg/kg/day. The cyclopentanones and cyclopentenones had a low order of acute toxicity and no significant toxicity in repeat dose studies. No mutagenic or genotoxic activity in bacteria and mammalian cell line assays was observed. Developmental toxicity was not observed. Minimal evidence of skin irritation in humans is associated with current levels of use. Eleven materials were tested undiluted for eye irritation; three were considered irritants. No phototoxic and photosensitization reactions were seen with nine materials tested. At concentrations higher than current reported use, 14 materials were non-sensitizing in HRIPT or maximization tests. 2-Hexylidene cyclopentanone, 2-heptylidenecyclopentan-1-one and 3-methyl-2-(pentyloxy)-2-cyclopenten-1-one are weak sensitizers and have IFRA Standards. Risk of sensitization to the cyclopentanones and cyclopentenones is generally small under current levels of use. The Panel is of the opinion that there are no safety concerns for the cyclopentanones and cyclopentenones at reported levels of use and exposure as fragrance ingredients.

  11. A toxicological and dermatological assessment of macrocyclic lactone and lactide derivatives when used as fragrance ingredients.

    PubMed

    Belsito, D; Bickers, D; Bruze, M; Calow, P; Dagli, M L; Fryer, A D; Greim, H; Miyachi, Y; Saurat, J H; Sipes, I G

    2011-12-01

    The Macrocyclic Lactone and Lactide derivative (ML) group of fragrance ingredients was critically evaluated for safety following a complete literature search. For high end users, calculated maximum dermal exposures vary from 0.47% to 11.15%; systemic exposures vary from 0.0008 to 0.25mg/kg/day. The MLs had low acute toxicity and no significant toxicity in repeat dose oral or dermal toxicity studies. Effects on blood biochemistry were reversible after 2 weeks of no treatment. No mutagenic or genotoxic activity in bacteria and mammalian cell line assays was observed. Reproductive and developmental toxicity was not observed. Human dermatological studies show MLs are generally not irritating after one application. Minor irritation was observed in a few individuals following multiple applications. At rates consistent with reported levels for current human exposure, no phototoxicity or photosensitization was observed. In animal studies, the MLs are not sensitizers at lower exposures from consumer products. Eleven ML materials were evaluated for human sensitization. Of these, only ethylene brassylate showed evidence of sensitization in 2/27 studies (sensitization frequency 4/2059 total). Based on these findings, the Panel is of the opinion that there are no safety concerns for the MLs at reported levels of use and exposure as fragrance ingredients.

  12. Allergenicity evaluation of fragrance mix and its ingredients by using ex vivo local lymph node assay-BrdU endpoints.

    PubMed

    Ulker, Ozge Cemiloglu; Kaymak, Yesim; Karakaya, Asuman

    2014-03-01

    The present studies were performed to compare the differences between sensitization potency of fragrance mix and its ingredients (oak moss absolute, isoeugenol, eugenol, cinnamal, hydroxycitronellal, geraniol, cinnamic alcohol, alpha amyl cinnamal), by using ex vivo LLNA-BrdU ELISA. The SI and EC3 values were calculated and potency classification was found for the mixture and for each ingredients. TH1 cytokines (IL-2, IFN-γ) and TH2 cytokines (IL-4, IL-5) releases from lymph node cell culture were also investigated as contact sensitization endpoints. The EC3 values were calculated and the potency of contact sensitization were classified for fragrance mix, oak moss absolute, isoeugenol, eugenol, cinnamal, hydroxycitronellal, geraniol, cinnamic alcohol, alpha amyl cinnamal respectively: 4.4% (moderate), 3.4% (moderate), 0.88% (strong), 16.6% (weak), 1.91% (moderate), 9.77% (moderate), 13.1% (weak), 17.93% (weak), 7.74% (moderate). According to our results it should be concluded that exposure to fragrance mix does not constitute an evidently increased hazard compared to exposure to each of the eight fragrance ingredients separately. Cytokine analyses results indicate that both TH1 and TH2 cytokines are involved in the regulation of murine contact allergy and can be considered as useful endpoints.

  13. Use of an aggregate exposure model to estimate consumer exposure to fragrance ingredients in personal care and cosmetic products.

    PubMed

    Safford, B; Api, A M; Barratt, C; Comiskey, D; Daly, E J; Ellis, G; McNamara, C; O'Mahony, C; Robison, S; Smith, B; Thomas, R; Tozer, S

    2015-08-01

    Ensuring the toxicological safety of fragrance ingredients used in personal care and cosmetic products is essential in product development and design, as well as in the regulatory compliance of the products. This requires an accurate estimation of consumer exposure which, in turn, requires an understanding of consumer habits and use of products. Where ingredients are used in multiple product types, it is important to take account of aggregate exposure in consumers using these products. This publication investigates the use of a newly developed probabilistic model, the Creme RIFM model, to estimate aggregate exposure to fragrance ingredients using the example of 2-phenylethanol (PEA). The output shown demonstrates the utility of the model in determining systemic and dermal exposure to fragrances from individual products, and aggregate exposure. The model provides valuable information not only for risk assessment, but also for risk management. It should be noted that data on the concentrations of PEA in products used in this article were obtained from limited sources and not the standard, industry wide surveys typically employed by the fragrance industry and are thus presented here to illustrate the output and utility of the newly developed model. They should not be considered an accurate representation of actual exposure to PEA.

  14. Use of an aggregate exposure model to estimate consumer exposure to fragrance ingredients in personal care and cosmetic products.

    PubMed

    Safford, B; Api, A M; Barratt, C; Comiskey, D; Daly, E J; Ellis, G; McNamara, C; O'Mahony, C; Robison, S; Smith, B; Thomas, R; Tozer, S

    2015-08-01

    Ensuring the toxicological safety of fragrance ingredients used in personal care and cosmetic products is essential in product development and design, as well as in the regulatory compliance of the products. This requires an accurate estimation of consumer exposure which, in turn, requires an understanding of consumer habits and use of products. Where ingredients are used in multiple product types, it is important to take account of aggregate exposure in consumers using these products. This publication investigates the use of a newly developed probabilistic model, the Creme RIFM model, to estimate aggregate exposure to fragrance ingredients using the example of 2-phenylethanol (PEA). The output shown demonstrates the utility of the model in determining systemic and dermal exposure to fragrances from individual products, and aggregate exposure. The model provides valuable information not only for risk assessment, but also for risk management. It should be noted that data on the concentrations of PEA in products used in this article were obtained from limited sources and not the standard, industry wide surveys typically employed by the fragrance industry and are thus presented here to illustrate the output and utility of the newly developed model. They should not be considered an accurate representation of actual exposure to PEA. PMID:26071898

  15. Fragrance material review on β,β,3-trimethyl-benzenepropanol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of β,β,3-trimethyl-benzenepropanol when used as a fragrance ingredient is presented. β,β,3-Trimethyl-benzenepropanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for β,β,3-trimethyl-benzenepropanol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, photoallergy, repeated dose, and genotoxicity data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances.

  16. A safety assessment of branched chain saturated alcohols when used as fragrance ingredients.

    PubMed

    Belsito, D; Bickers, D; Bruze, M; Calow, P; Greim, H; Hanifin, J M; Rogers, A E; Saurat, J H; Sipes, I G; Tagami, H

    2010-07-01

    The Branched Chain Saturated Alcohol (BCSA) group of fragrance ingredients was evaluated for safety. In humans, no evidence of skin irritation was found at concentrations of 2-10%. Undiluted, 11 materials evaluated caused moderate to severe eye irritation. As current end product use levels are between 0.001% and 1.7%, eye irritation is not a concern. The materials have no or low sensitizing potential. For individuals who are already sensitized, an elicitation reaction is possible. Due to lack of UVA/UVB light-absorbing structures, and review of phototoxic/photoallergy data, the BCSA are not expected to elicit phototoxicity or photoallergy. The 15 materials tested have a low order of acute toxicity. Following repeated application, seven BCSA tested were of low systemic toxicity. Studies performed on eight BCSA and three metabolites show no in vivo or in vitro genotoxicity. A valid carcinogenicity study showed that 2-ethyl-1-hexanol is a weak inducer of liver tumors in female mice, however, the relevance of this effect and mode of action to humans is still a matter of debate. The Panel is of the opinion that there are no safety concerns regarding BCSA under the present levels of use and exposure.

  17. A toxicological and dermatological assessment of macrocyclic ketones when used as fragrance ingredients: the RIFM Expert Panel.

    PubMed

    Belsito, D; Bickers, D; Bruze, M; Calow, P; Dagli, M L; Fryer, A D; Greim, H; Miyachi, Y; Saurat, J H; Sipes, I G

    2011-12-01

    The macrocyclic ketone (MK) group of fragrance ingredients was evaluated for safety following a complete literature search. For high end users, calculated maximum dermal exposures vary from 0.13% to 1.10%; systemic exposures vary from 0.0005 to 0.0441 mg/kg/day. The MKs had low acute toxicity and no significant repeat dose toxicity. Liver weight and blood biochemistry effects were reversible after 2 weeks. No genotoxicity in bacteria and mammalian cell lines was observed. Reproductive toxicity was not observed for 3-methylcyclopentadecenone in an OECD compliant study. In humans, MKs are generally not irritating after one application. Animal studies showed irritation for some materials at concentrations higher than current consumer exposure. At rates consistent with current human exposure, phototoxicity and photosensitization were not observed. In animals, some MKs are sensitizers only at concentrations of 20%, 30%, or 100%, which are higher than current consumer exposure. No evidence of sensitization was observed in human tests. In patients with fragrance allergy, reactions were seen with cyclopentadecanone (3/178). Based on these findings, the Panel is of the opinion that there are no safety concerns for the MKs at reported levels of use and exposure as fragrance ingredients.

  18. A toxicological and dermatological assessment of aryl alkyl alcohol simple acid ester derivatives when used as fragrance ingredients.

    PubMed

    Belsito, D; Bickers, D; Bruze, M; Calow, P; Dagli, M L; Fryer, A D; Greim, H; Miyachi, Y; Saurat, J H; Sipes, I G

    2012-09-01

    The aryl alkyl alcohol simple acid ester derivatives (AAASAE) group of fragrance ingredients was critically evaluated for safety following a complete literature search of the pertinent data. For high end users, calculated maximum skin exposures vary widely from 0.01% to 4.17%. AAASAE exhibit a common route of primary metabolism by carboxylesterases resulting in the formation of the simple acid and an aryl alkyl alcohol. They have low acute toxicity. No significant toxicity was observed in repeat-dose toxicity tests. There was no evidence of carcinogenicity of benzyl alcohol when it was administered in the feed; gavage studies resulted in pancreatic carcinogenesis due to the corn oil vehicle. The AAASAE are not mutagenic in bacterial systems or in vitro in mammalian cells, and have little to no in vivo genotoxicity. Reproductive and developmental toxicity data show no indication of adverse effects on reproductive function and NOELs for maternal and developmental toxicity are far in excess of current exposure levels. The AAASAE are generally not irritating or sensitizing at the current levels of exposure. The Panel is of the opinion that there are no safety concerns regarding the AAASAE at the current levels of use and exposure.

  19. Fragrance contact allergy: a clinical review.

    PubMed

    Johansen, Jeanne D

    2003-01-01

    Most people in modern society are exposed daily to fragrance ingredients from one or more sources. Fragrance ingredients are also one of the most frequent causes of contact allergic reactions. The diagnosis is made by patch testing with a mixture of fragrance ingredients, the fragrance mix. This gives a positive patch-test reaction in about 10% of tested patients with eczema, and the most recent estimates show that 1.7-4.1% of the general population are sensitized to ingredients of the fragrance mix. Fragrance allergy occurs predominantly in women with facial or hand eczema. These women typically have a history of rash to a fine fragrance or scented deodorants. Chemical analysis has revealed that well known allergens from the fragrance mix are present in 15-100% of cosmetic products, including deodorants and fine fragrances, and most often in combinations of three to four allergens in the same products. This means that it is difficult to avoid exposure, as products labelled as 'fragrance free' have also been shown to contain fragrance ingredients, either because of the use of fragrance ingredients as preservatives or masking perfumes, or the use of botanicals. About 2500 different fragrance ingredients are currently used in the composition of perfumes and at least 100 of these are known contact allergens. Therefore, it is advisable to supplement standard patch testing with the patient's own stay-on cosmetic products, as well as the fragrance chemical hydroxyisohexyl-3-cyclohexane carboxaldehyde, which on its own gives responses in 1-3% of tested patients. The focus in recent years on the ingredients of the fragrance mix will probably result in the fragrance industry changing the composition of perfumes, and thus make the current diagnostic test less useful. New diagnostic tests are under development to identify contact allergy to new allergens, reflecting the continuous developments and trends in exposure.

  20. Patch testing with fine fragrances: comparison with fragrance mix, balsam of Peru and a fragrance series.

    PubMed

    Trattner, A; David, M

    2003-12-01

    High frequencies of contact allergy to fragrance ingredients have been reported in recent years. Only approximately 70-80% are detected by fragrance allergens in the standard patch test series. This investigation compares the patch test reactions to fine fragrances with reactions to fragrance mix (FM), balsam of Peru (BP) (Myroxylon pereirae resin) and a fragrance series. 641 consecutive patients with eczema were patch tested with the European standard series and with selected fine fragrances. Those who were positive to 1 of the fine fragrances or the FM or BP were also tested with the fragrance series. 95 (14.8%) patients were found to have a positive patch test reaction to FM or BP; 41 (6.4%) had positive results to fragrance no. 1 and 29 (4.5%) to no. 2. 9 (9.5% of the 95 positive patients) had a positive reaction to fine fragrances and a negative reaction to all other fragrance allergens in the standard series. These findings indicate that testing with fine fragrances can add to our evaluation of fragrance-sensitive patients.

  1. The IFRA: working towards the continually-improved safety of fragrance ingredients and the importance of a partnership with the dermatological community.

    PubMed

    Vey, Matthias G

    2004-01-01

    The relationship between the fragrance industry and the dermatological community in the past has not always been perceived as one of partnership. IFRA, the International Fragrance Association, has started a series of initiatives to underline the industry's commitment to market safe products that limit any unavoidable risk to the minimum while at the same time enabling the consumer to choose from a variety of fragranced products. This article describes current projects and future initiatives.

  2. Fragrance material review on hexadecanolide.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of hexadecanolide when used as a fragrance ingredient is presented. Hexadecanolide is a member of the fragrance structural group macrocyclic lactone and lactide derivatives. The fragrance ingredient described herein is one of 12 structurally diverse C14, C15, and C16 compounds that include (7) saturated mono-and (2) saturated di-ester lactones and (3) unsaturated lactones. For the latter, the double bond is not adjacent to (in conjugation with) the ester group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for hexadecanolide were evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; mucous membrane (eye) irritation; skin sensitization; phototoxicity; and genotoxicity data. A safety assessment of the macrocyclic lactone and lactide derivatives will be published simultaneously with this document. Please refer to Belsito et al. (2011) for an overall assessment of the safe use of this material and all macrocyclic lactone and lactide derivatives in fragrances. Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Hanifin, J.H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A Toxicologic and Dermatologic Assessment of Macrocylic Lactones and Lactide Derivatives When Used as Fragrance Ingredients.

  3. Fragrance material review on hexenylcyclopentanone.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of hexenylcyclopentanone when used as a fragrance ingredient is presented. Hexenylcyclopentanone is a member of the fragrance structural group ketones cyclopentanones and cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for hexenylcyclopentanone were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire ketones cyclopentanones and cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all ketones cyclopentanones and cyclopentenones in fragrances.

  4. Fragrance material review on dihydroisojasmone.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of dihydroisojasmone when used as a fragrance ingredient is presented. Dihydroisojasmone is a member of the fragrance structural group ketones cyclopentanones and cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for dihydroisojasmone were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, skin sensitization, and genotoxicity data. A safety assessment of the entire ketones cyclopentanones and cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all ketones cyclopentanones and cyclopentenones in fragrances.

  5. Fragrance material review on cyclopentanone.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of cyclopentanone when used as a fragrance ingredient is presented. Cyclopentanone is a member of the fragrance structural group ketones cyclopentanones and cyclopentanones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentanone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for cyclopentanone were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, repeated dose, reproductive toxicity, and genotoxicity data. A safety assessment of the entire ketones cyclopentanones and cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all ketones cyclopentanones and cyclopentenones in fragrances.

  6. Fragrance material review on isojasmone.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of isojasmone when used as a fragrance ingredient is presented. Isojasmone is a member of the fragrance structural group ketones cyclopentanones and cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for isojasmone were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, and skin sensitization data. A safety assessment of the entire ketones cyclopentanones and cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all ketones cyclopentanones and cyclopentenones in fragrances.

  7. The systemic exposure to the polycyclic musks, AHTN and HHCB, under conditions of use as fragrance ingredients: evidence of lack of complete absorption from a skin reservoir.

    PubMed

    Ford, R A; Hawkins, D R; Schwarzenbach, R; Api, A M

    1999-12-20

    7-Acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN) and 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexa-methylcyclopenta-gamma-2-be nzopyran (HHCB) are two large volume fragrance ingredients widely used in consumer products. As part of the risk evaluation, the systemic exposures to these materials was determined in rats under occlusion and in humans under simulated conditions of exposure. Ring 14C-labeled AHTN or HHCB were applied dermally in alcoholic solutions to rats at doses of 4.5 mg/kg and occluded for 6 h. Urine, feces and air were collected for up to 120 h and analyzed for radioactivity. Pairs of rats were sacrificed periodically for analysis of tissues and organs. The total amount absorbed was approximately 19% for AHTN and 14% for HHCB. In both cases, significant amounts diffused into the skin, most of which was further absorbed but a significant amount of which was lost to surface dressing by reverse diffusion and/or desquamation. Ring 14C-labeled AHTN or HHCB were applied in alcoholic solutions without occlusion to three male volunteers at concentrations approximating that which might be encountered in a typical cologne type product. After a 6-h period, all material was removed from the surface of the skin. Blood, feces and urine were collected over a 5-day period. For both materials, levels in blood and plasma were below limits of detection at all times. Based on excretion, primarily in the urine, the total absorbed dose was approximately 1 and 0.1% for AHTN and HHCB, respectively. However, over the 5-day period, 14.5% of AHTN and 19.5% of HHCB was recovered from the skin in dressings over the site of application indicating that a 'reservoir' had formed in the skin but the material in the reservoir was lost, by desquamation and/or by reverse absorption, and not available systemically. A mean of 24% (AHTN) and 22% (HHCB) was shown to evaporate under the conditions of exposure.

  8. Fragrance material review on 3-phenylpropyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 3-phenylpropyl acetate when used as a fragrance ingredient is presented. 3-Phenylpropyl acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 3-phenylpropyl acetate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, skin sensitization, and toxicokinetics data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al., 2012 for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  9. Fragrance material review on benzyl 2-hydroxypropionate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of benzyl 2-hydroxypropionate when used as a fragrance ingredient is presented. Benzyl 2-hydroxypropionate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for benzyl 2-hydroxypropionate were evaluated, then summarized, and includes: physical properties and acute toxicity data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  10. Fragrance material review on phenethyl butyrate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of phenethyl butyrate when used as a fragrance ingredient is presented. Phenethyl butyrate is a member of the fragrance structural group aryl alkyl alcohol simple acid esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for phenethyl butyrate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  11. Fragrance material review on anisyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of anisyl acetate when used as a fragrance ingredient is presented. Anisyl acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for anisyl acetate were evaluated, then summarized, and includes: physical properties, skin irritation, skin sensitization, elicitation, and phototoxicity data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al., 2012 for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  12. Fragrance material review on piperonyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of piperonyl acetate when used as a fragrance ingredient is presented. Piperonyl acetate is a member of the fragrance structural group aryl alkyl alcohol simple acid esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for piperonyl acetate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, toxicokinetics, and genotoxicity data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  13. Fragrance material review on phenethyl isobutyrate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of phenethyl isobutyrate when used as a fragrance ingredient is presented. Phenethyl isobutyrate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate, and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for phenethyl isobutyrate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, and genotoxicity data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  14. Fragrance material review on anisyl formate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of anisyl formate when used as a fragrance ingredient is presented. Anisyl formate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate, and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for anisyl formate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  15. Fragrance material review on benzyl formate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of benzyl formate when used as a fragrance ingredient is presented. Benzyl formate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for benzyl formate were evaluated, then summarized, and includes physical: properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, and genotoxicity data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al., 2012 for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  16. Fragrance material review on benzyl butyrate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of benzyl butyrate when used as a fragrance ingredient is presented. Benzyl butyrate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for benzyl butyrate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, skin sensitization, toxicokinetics, and repeated dose data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  17. Fragrance material review on 2-phenylpropyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-phenylpropyl acetate when used as a fragrance ingredient is presented. 2-Phenylpropyl acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-phenylpropyl acetate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, and skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  18. Fragrance material review on 2-phenoxyethyl propionate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-phenoxyethyl propionate when used as a fragrance ingredient is presented. 2-Phenoxyethyl propionate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-phenoxyethyl propionate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, skin sensitization, and genotoxicity data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  19. Fragrance material review on 4-methylbenzyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 4-methylbenzyl acetate when used as a fragrance ingredient is presented. 4-Methylbenzyl acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 4-methylbenzyl acetate were evaluated, then summarized, and includes: physical properties, skin irritation, skin sensitization, and elicitation data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  20. Fragrance material review on benzyl isobutyrate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of benzyl isobutyrate when used as a fragrance ingredient is presented. Benzyl isobutyrate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for benzyl isobutyrate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, or skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  1. Fragrance material review on phenethyl formate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of phenethyl formate when used as a fragrance ingredient is presented. Phenethyl formate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for phenethyl formate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, skin sensitization, and genotoxicity data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  2. Fragrance material review on anisyl propionate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of anisyl propionate when used as a fragrance ingredient is presented. Anisyl propionate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for anisyl propionate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al., 2012 for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  3. Fragrance material review on benzyl propionate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of benzyl propionate when used as a fragrance ingredient is presented. Benzyl propionate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1 to 4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for benzyl propionate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, skin sensitization, elicitation, toxicokinetics, and genotoxicity data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  4. Fragrance material review on phenethyl propionate.

    PubMed

    McGinty, D; Vitale, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of phenethyl propionate when used as a fragrance ingredient is presented. Phenethyl propionate is a member of the fragrance structural group aryl alkyl alcohol simple acid esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for phenethyl propionate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, and elicitation data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  5. Vapor fragrancer

    NASA Astrophysics Data System (ADS)

    Sang, Q. Tran; Bryant, Timothy D.

    1987-05-01

    This invention relates to a vapor fragrancer for continuously, uniformly, and economically odorizing or deodorizing an environment. Homes, offices, automobiles, and space stations require either odorizing or deodorizing of the atmosphere to create pleasant conditions for work or leisure. A vapor fragrancer is provided to accomplish these goals. A supplier continuously supplies a predetermined amount of desired liquid fragrance from a container to a retaining material, which is positioned in the circulation path of the atmosphere. The supplier is either a low powered pump or a gravity dispenser. The atmosphere flowing in a circulation path passes over the retaining material containing the liquid fragrance and lifts a fragrant vapor from the retaining material. The atmosphere is thereby continuously and uniformly fragranced.

  6. Allergy to lichen acids in a fragrance.

    PubMed

    Rademaker, M

    2000-02-01

    A 48-year-old clerical officer with a recurrent facial eruption had positive patch test reactions to nickel, fragrance mix and lichen acid mix. On testing to individual ingredients of fragrance mix and lichen acid mix, she had 2+ reactions to oak moss, which is thought to be the main allergen in fragrance mix, and to usnic acid, which is one of a number of lichen acids comprising oak moss. Avoidance of fragrance use resulted in clearing of the eruption but, subsequently, an acute vesicular flare on her face and hands occurred after exposure to lichen on garden shrubs.

  7. Allergy to lichen acids in a fragrance.

    PubMed

    Rademaker, M

    2000-02-01

    A 48-year-old clerical officer with a recurrent facial eruption had positive patch test reactions to nickel, fragrance mix and lichen acid mix. On testing to individual ingredients of fragrance mix and lichen acid mix, she had 2+ reactions to oak moss, which is thought to be the main allergen in fragrance mix, and to usnic acid, which is one of a number of lichen acids comprising oak moss. Avoidance of fragrance use resulted in clearing of the eruption but, subsequently, an acute vesicular flare on her face and hands occurred after exposure to lichen on garden shrubs. PMID:10715903

  8. Fragrance material review on cyclohexadecanone.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of cyclohexadecanone when used as a fragrance ingredient is presented. Cyclohexadecanone is a member of the fragrance structural group macrocyclic ketones and derivatives. The fragrance ingredient described herein is one of 11 structurally diverse C15, C16 and C17 compounds that include three saturated and eight unsaturated ketones. For the latter, the double bond is not adjacent (in conjugation with) to the ketone group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to cyclohexadecanone and is not intended as a stand-alone document. Available data were evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; mucous membrane (eye) irritation; skin sensitization; repeated dose; and genotoxicity data. A safety assessment of the entire macrocyclic ketone and derivatives will be published simultaneously with this document. Please refer to Belsito et al. (2011) for an overall assessment of the safe use of this material and all macrocyclic ketone and derivatives in fragrances. Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Hanifin, J.H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A toxicologic and dermatologic assessment of macrocyclic ketones and derivatives when used as fragrance ingredients.

  9. Fragrance material review on cyclopentadecanone.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of cyclopentadecanone when used as a fragrance ingredient is presented. Cyclopentadecanone is a member of the fragrance structural group macrocyclic ketones and derivatives. The fragrance ingredient described herein is one of 11 structurally diverse C15, C16 and C17 compounds that include 3 saturated and 8 unsaturated ketones. For the latter, the double bond is not adjacent (in conjugation with) to the ketone group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to cyclopentadecanone and is not intended as a stand-alone document. Available data were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, photoallergy, and genotoxicity data. A safety assessment of the entire macrocyclic ketone and derivatives will be published simultaneously with this document. Please refer to Belsito et al. (2011) for an overall assessment of the safe use of this material and all macrocyclic ketones and derivatives in fragrances. Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Hanifin, J.H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A toxicologic and dermatologic assessment of macrocylic ketones and derivatives when used as fragrance ingredients.

  10. Abdominal Aortic Aneurysm (AAA)

    MedlinePlus

    ... Resources Professions Site Index A-Z Abdominal Aortic Aneurysm (AAA) Abdominal aortic aneurysm (AAA) occurs when atherosclerosis ... aortic aneurysm treated? What is an abdominal aortic aneurysm? The aorta, the largest artery in the body, ...

  11. Allergic contact dermatitis to fragrances. Part 1.

    PubMed

    Arribas, M P; Soro, P; Silvestre, J F

    2012-12-01

    Fragrances are a large group of substances and the second most common cause of allergic contact dermatitis in Spain. These potential allergens are extremely common and the general population is subject to continuous exposure on a daily basis. While the fragrance markers included in the current Spanish standard patch test series are good, there is room for improvement. New markers that have emerged in recent years have proven to be of value in standard series used in other countries. Diagnosing fragrance allergy has taken on even greater importance since the European Union added 26 fragrances to its list of mandatory ingredients to be specified on product labels. The aim of this review is to provide an update on allergic contact dermatitis to fragrances. We examine the main sources of exposure and clinical manifestations of this condition and propose a diagnostic and treatment protocol.

  12. Fragrance material review on 2-cyclopentylcyclopentanone.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of 2-cyclopentylcyclopentanone when used as a fragrance ingredient is presented. 2-cyclopentylcyclopentanone is a member of the fragrance structural group ketones cyclopentanones and cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-cyclopentylcyclopentanone were evaluated then summarized and includes physical properties data. A safety assessment of the entire ketones cyclopentanones and cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all ketones cyclopentanones and cyclopentenones in fragrances.

  13. Fragrance materials review on isoamyl alcohol.

    PubMed

    McGinty, D; Lapczynski, A; Scognamiglio, J; Letizia, C S; Api, A M

    2010-07-01

    A toxicologic and dermatologic review of isoamyl alcohol when used as a fragrance ingredient is presented. Isoamyl alcohol is a member of the fragrance structural group branched chain saturated alcohols. The common characteristic structural elements of the alcohols with saturated branched chain are one hydroxyl group per molecule, and a C(4)-C(12) carbon chain with one or several methyl side chains. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire branched chain saturated alcohol group will be published simultaneously with this document; please refer to Belsito et al. (2010) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  14. Fragrance material review on cyclotene propionate.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of cyclotene propionate when used as a fragrance ingredient is presented. Cyclotene propionate is a member of the fragrance structural group ketones cyclopentanones and cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for cyclotene propionate were evaluated then summarized and includes physical properties data. A safety assessment of the entire Ketones cyclopentanones and cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Ketones Cyclopentanones and Cyclopentenones in fragrances.

  15. Fragrance material review on 2-hexylidene cyclopentanone.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of 2-hexylidene cyclopentanone when used as a fragrance ingredient is presented. 2-Hexylidene cyclopentanone is a member of the fragrance structural group ketones alkyl cyclic. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-hexylidene cyclopentanone were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, photoallergy, toxicokinetics, repeated dose, and genotoxicity data. A safety assessment of the entire ketones alkyl cyclic will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all ketones alkyl cyclic in fragrances.

  16. Fragrance material review on 2-hexylcyclopentanone.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of 2-hexylcyclopentanone when used as a fragrance ingredient is presented. 2-Hexylcyclopentanone is a member of the fragrance structural group Ketones Cyclopentanones and Cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-hexylcyclopentanone were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, phototoxicity, and photoallergy data. A safety assessment of the entire Cyclopentanones and Cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all cyclopentanones and cyclopentenones in fragrances.

  17. Fragrance material review on 2-heptylcyclopentanone.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of 2-heptylcyclopentanone when used as a fragrance ingredient is presented. 2-Heptylcyclopentanone is a member of the fragrance structural group ketones cyclopentanones and cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-heptylcyclopentanone were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, phototoxicity, photoallergy, and genotoxicity data. A safety assessment of the entire ketones cyclopentanones and cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all ketones cyclopentanones and cyclopentenones in fragrances.

  18. Fragrance material review on 2-methylbutanol.

    PubMed

    McGinty, D; Scognamiglio, J; Letizia, C S; Api, A M

    2010-07-01

    A toxicologic and dermatologic review of 2-methylbutanol when used as a fragrance ingredient is presented. 2-Methylbutanol is a member of the fragrance structural group branched chain saturated alcohols. The common characteristic structural elements of the alcohols with saturated branched chain are one hydroxyl group per molecule, and a C(4)-C(12) carbon chain with one or several methyl side chains. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire branched chain saturated alcohol group will be published simultaneously with this document; please refer to Belsito et al., 2010 for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  19. Fragrance material review on isooctan-1-ol.

    PubMed

    McGinty, D; Scognamiglio, J; Letizia, C S; Api, A M

    2010-07-01

    A toxicologic and dermatologic review of isooctan-1-ol when used as a fragrance ingredient is presented. Isooctan-1-ol is a member of the fragrance structural group branched chain saturated alcohols. The common characteristic structural elements of the alcohols with saturated branched chain are one hydroxyl group per molecule, and a C(4)-C(12) carbon chain with one or several methyl side chains. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire branched chain saturated alcohol group will be published simultaneously with this document; please refer to Belsito et al. (2010) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  20. Fragrance material review on cis-jasmone.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of cis-jasmone when used as a fragrance ingredient is presented. cis-Jasmone is a member of the fragrance structural group ketones cyclopentanones and cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for cis-jasmone were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, phototoxicity, photoallergy, and genotoxicity data. A safety assessment of the entire ketones cyclopentanones and cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all ketones cyclopentanones and cyclopentenones in fragrances.

  1. Fragrance material review on 2-methylundecanol.

    PubMed

    McGinty, D; Scognamiglio, J; Letizia, C S; Api, A M

    2010-07-01

    A toxicologic and dermatologic review of 2-methylundecanol when used as a fragrance ingredient is presented. 2-Methylundecanol is a member of the fragrance structural group branched chain saturated alcohols. The common characteristic structural elements of the alcohols with saturated branched chain are one hydroxyl group per molecule, and a C(4)-C(12) carbon chain with one or several methyl side chains. This review contains the information available on this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire branched chain saturated alcohol group will be published simultaneously with this document; please refer to Belsito et al. (2010) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  2. Fragrance material review on isodecyl alcohol.

    PubMed

    McGinty, D; Scognamiglio, J; Letizia, C S; Api, A M

    2010-07-01

    A toxicologic and dermatologic review of isodecyl alcohol when used as a fragrance ingredient is presented. Isodecyl alcohol is a member of the fragrance structural group branched chain saturated alcohols. The common characteristic structural elements of the alcohols with saturated branched chain are one hydroxyl group per molecule, and a C(4)-C(12) carbon chain with one or several methyl side chains. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire branched chain saturated alcohol group will be published simultaneously with this document; please refer to Belsito et al. (2010) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  3. Fragrance material review on methyl jasmonate.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of methyl jasmonate when used as a fragrance ingredient is presented. Methyl jasmonate is a member of the fragrance structural group Ketones Cyclopentanones and Cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for methyl jasmonate were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, phototoxicity, and photoallergy data. A safety assessment of the entire Ketones Cyclopentanones and Cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Ketones Cyclopentanones and Cyclopentenones in fragrances.

  4. Fragrance material review on isononyl alcohol.

    PubMed

    McGinty, D; Scognamiglio, J; Letizia, C S; Api, A M

    2010-07-01

    A toxicologic and dermatologic review of isononyl alcohol when used as a fragrance ingredient is presented. Isononyl alcohol is a member of the fragrance structural group branched chain saturated alcohols. The common characteristic structural elements of the alcohols with saturated branched chain are one hydroxyl group per molecule, and a C(4)-C(12) carbon chain with one or several methyl side chains. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire branched chain saturated alcohol group will be published simultaneously with this document; please refer to Belsito et al. (2010) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  5. Fragrance chemicals in domestic and occupational products.

    PubMed

    Rastogi, S C; Heydorn, S; Johansen, J D; Basketter, D A

    2001-10-01

    Epidemiological studies have described an increasing prevalence of fragrance allergy and indicated an association with hand eczema. 59 domestic and occupational products intended for hand exposure were subjected to gas chromatography-mass spectrometric (GC-MS) analyses to test the hypothesis that fragrance chemicals known to have the potential to cause contact allergy but not included in fragrance mix (FM) may be common ingredients in these products. A quantitative analysis of 19 selected fragrances was performed by GC-MS. Further analysis of GC-MS data revealed the presence of 43 other fragrance chemicals/groups of fragrance chemicals in the products investigated. Among the 19 target substances the most commonly detected were limonene in 78%, linalool in 61% and citronellol in 47% of the products investigated. The FM ingredients were present in these products with the following frequencies: oak moss (evernic acid methylester) 2%, cinnamic alcohol 2%, cinnamic aldehyde (cinnamal) 3%, isoeugenol 5%, alpha-amylcinnamic aldehyde (amyl cinnamal) 8%, hydroxycitronellal 12%, eugenol 27%, and geraniol 41%. Thus, the chemical analyses of domestic and occupational products indicates that investigation of potential contact allergy related to these products types should consider fragrance allergens additional to those in the FM, since these may occur with high frequency.

  6. Fragrance material review on acetyl cedrene.

    PubMed

    Scognamiglio, J; Letizia, C S; Politano, V T; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of acetyl cedrene when used as a fragrance ingredient is presented. Acetyl cedrene is a member of the fragrance structural group Alkyl Cyclic Ketones. The generic formula for this group can be represented as (R1)(R2)CO. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for acetyl cedrene were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, photoallergy, toxicokinetics, repeated dose, reproductive toxicity, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (2013) (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients. Submitted with this manuscript.) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances.

  7. Fragrance material review on acetyl carene.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of acetyl carene when used as a fragrance ingredient is presented. Acetyl carene is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for acetyl carene were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013A Toxicologic and dermatologic assessment of alkyl cyclic ketones when used as fragrance ingredients. (submitted for publication).) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances.

  8. The composition of fine fragrances is changing.

    PubMed

    Rastogi, Suresh C; Menné, Torkil; Johansen, Jeanne Duus

    2003-03-01

    High frequencies of contact allergy to fragrance ingredients have been reported in recent years. Developments in analytical chemistry have made it possible to measure exposure to well-known fragrance contact allergens. It has been shown that exposure is widespread in different types of products. The products with the highest concentrations of allergens have been shown to be prestige perfumes intended for women. This investigation explores the possible development in formulation of prestige perfumes, with regard to their content of the chemically defined ingredients of the diagnostic patch test material, the fragrance mix (FM). 10 fine fragrances were subjected to chemical analysis: 5 of these had been launched years ago (1921-1990) and 5 were the latest launches by the same companies, introduced 2 months to 4 years before purchase. The analysis revealed that the 5 old perfumes contained a mean of 5 of the 7 target allergens of the FM, while the new perfumes contained a mean of 2.8 of the allergens. The mean concentrations of the target allergens were 2.6 times higher in the old perfumes than in the new perfumes, range 2.2-337. It is concluded that the old perfumes, which are still popular products on the market, have a different composition from the new perfumes. This may be due to change in fashion or to an effort by the fragrance industry to focus on fragrance contact allergy, especially that to the FM ingredients.

  9. Fragrance material review on cyclohexyl methyl pentanone.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of cyclohexyl methyl pentanone when used as a fragrance ingredient is presented. Cyclohexyl methyl pentanone is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for cyclohexyl methyl pentanone were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, phototoxicity, photoallergy, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A toxicologic and dermatologic assessment of alkyl cyclic ketones when used as fragrance ingredients (submitted for publication).) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances.

  10. Exposing covert fragrance chemicals.

    PubMed

    Scheinman, P L

    2001-12-01

    Fragrance is the most common cosmetic allergen found when dermatitis patients are patch tested in the United States and in many places worldwide. Fragrances are ubiquitous in our daily lives and are present in items ranging from toiletries to toilet tissue. Although fragrances enhance the smell or mask unpleasant odors of various cosmetics and household items, it becomes very difficult for fragrance-allergic patients to find products they can use. Many items labeled unscented and fragrance-free contain esoteric fragrance chemicals that most consumers would not recognize. This article details some covert fragrance agents to help physicians better educate their fragrance-sensitive patients.

  11. Fragrance material review on p-isopropylbenzyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of p-isopropylbenzyl acetate when used as a fragrance ingredient is presented. p-Isopropylbenzyl acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1 to 4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for p-isopropylbenzyl acetate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  12. Fragrance material review on 2-hydroxy-2-phenylethyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-hydroxy-2-phenylethyl acetate when used as a fragrance ingredient is presented. 2-Hydroxy-2-phenylethyl acetate is a member of the fragrance structural group aryl alkyl alcohol simple acid esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-hydroxy-2-phenylethyl acetate was evaluated then summarized and includes physical properties data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  13. Fragrance material review on ethyl phenyl carbinyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of ethyl phenyl carbinyl acetate when used as a fragrance ingredient is presented. Ethyl phenyl carbinyl acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for ethyl phenyl carbinyl acetate were evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; and skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  14. Fragrance material review on α-methylbenzyl propionate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of α-methylbenzyl propionate when used as a fragrance ingredient is presented. α-Methylbenzyl propionate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate, and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for α-methylbenzyl propionate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  15. Fragrance material review on 2-(p-tolyloxy)ethyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-(p-tolyloxy)ethyl acetate when used as a fragrance ingredient is presented. 2-(p-tolyloxy)ethyl acetate is a member of the fragrance structural group aryl alkyl alcohol simple acid esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-(p-tolyloxy)ethyl acetate were evaluated, then summarized, and includes physical properties data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  16. Fragrance material review on α-methylbenzyl isobutyrate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of α-methylbenzyl isobutyrate when used as a fragrance ingredient is presented. α-Methylbenzyl isobutyrate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for α-methylbenzyl isobutyrate were evaluated, then summarized, and includes physical properties data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  17. Fragrance material review on 2-(p-tolyloxy)ethyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-(p-tolyloxy)ethyl acetate when used as a fragrance ingredient is presented. 2-(p-tolyloxy)ethyl acetate is a member of the fragrance structural group aryl alkyl alcohol simple acid esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-(p-tolyloxy)ethyl acetate were evaluated, then summarized, and includes physical properties data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances. PMID:22414652

  18. Considerations for testing irritancy, allergy, and photoreactivity in fragrance safety evaluations.

    PubMed

    Hanifin, Jon M; Api, Anne Marie; Bickers, David R

    2003-06-01

    The aims of the Research Institute for Fragrance Materials, Inc. (RIFM), an international nonprofit science-based organization established in 1966 by the fragrance industry, include the prevention of adverse cutaneous effects, systemic toxicity, and environmental consequences from fragrance ingredients. This paper gives an overview of the RIFM testing and research program, how priorities are established, and how RIFM's safety evaluation process works.

  19. Disposition of fragrance ingredient [14C]1-(1,2,3,4,5,6,7,8-octahydro-2,3,8,8-tetramethyl-2-naphthalenyl)ethanone in male Fisher rats following oral administration and dermal application.

    PubMed

    Waidyanatha, Suramya; Ryan, Kristen

    2014-08-01

    1. Disposition of 1-(1,2,3,4,5,6,7,8-octahydro-2,3,8,8-tetramethyl-2-naphthalenyl)ethanone (β-OTNE), a fragrance ingredient in variety of consumer products, was investigated following a single oral (20 mg/kg) or a dermal (55 or 550 mg/kg) dose of [(14)C]β-OTNE to male Fisher rats. 2. Following oral administration, 28% and 39% of the dose was recovered in urine and feces, respectively, 48 h following administration. About 73% of a 20 mg/kg dose was excreted in bile within 48 h post-administration supporting significant oral absorption of [(14)C]β-OTNE. 3. Following dermal application to a covered site, absorption of [(14)C]β-OTNE 96 h following application was low (ca. 14%) and dose-independent. When the dose site was uncovered, the absorption increased to ca. 33% (55 mg/kg) and ca. 72% (550 mg/kg). 4. [(14)C]β-OTNE was distributed to tissues following both routes of exposure with the highest radioactive equivalents found in bladder, liver, kidney, adipose and pancreas. 5. Elimination of [(14)C]β-OTNE equivalents in blood and tissues was slow following both oral and dermal application suggesting potential for accumulation following multiple exposure. PMID:24533629

  20. Disposition of fragrance ingredient [14C]1-(1,2,3,4,5,6,7,8-octahydro-2,3,8,8-tetramethyl-2-naphthalenyl)ethanone in male Fisher rats following oral administration and dermal application.

    PubMed

    Waidyanatha, Suramya; Ryan, Kristen

    2014-08-01

    1. Disposition of 1-(1,2,3,4,5,6,7,8-octahydro-2,3,8,8-tetramethyl-2-naphthalenyl)ethanone (β-OTNE), a fragrance ingredient in variety of consumer products, was investigated following a single oral (20 mg/kg) or a dermal (55 or 550 mg/kg) dose of [(14)C]β-OTNE to male Fisher rats. 2. Following oral administration, 28% and 39% of the dose was recovered in urine and feces, respectively, 48 h following administration. About 73% of a 20 mg/kg dose was excreted in bile within 48 h post-administration supporting significant oral absorption of [(14)C]β-OTNE. 3. Following dermal application to a covered site, absorption of [(14)C]β-OTNE 96 h following application was low (ca. 14%) and dose-independent. When the dose site was uncovered, the absorption increased to ca. 33% (55 mg/kg) and ca. 72% (550 mg/kg). 4. [(14)C]β-OTNE was distributed to tissues following both routes of exposure with the highest radioactive equivalents found in bladder, liver, kidney, adipose and pancreas. 5. Elimination of [(14)C]β-OTNE equivalents in blood and tissues was slow following both oral and dermal application suggesting potential for accumulation following multiple exposure.

  1. Fragrance material review on ethylene dodecanedioate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of ethylene dodecanedioate when used as a fragrance ingredient is presented. Ethylene dodecanedioate is a member of the fragrance structural group macrocyclic lactone and lactide derivatives. The fragrance ingredient described herein is one of 12 structurally diverse C14, C15, and C16 compounds that include (7) saturated mono- and (2) saturated di-ester lactones and (3) unsaturated lactones. For the latter, the double bond is not adjacent to (in conjugation with) the ester group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to ethylene dodecanedioate and is not intended as a stand-alone document. Available data were evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; mucous membrane (eye) irritation; skin sensitization; phototoxicity; repeated dose; and genotoxicity data. A safety assessment of the entire macrocyclic lactone and lactide derivatives will be published simultaneously with this document. Please refer to Belsito et al. (2011) for an overall assessment of the safe use of this material and all macrocyclic lactone and lactide derivatives in fragrances. Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Hanifin, J.H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A toxicologic and dermatologic assessment of macrocylic lactone and lactide derivatives when used as fragrance ingredients.

  2. Fragrance material review on ethylene brassylate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of ethylene brassylate when used as a fragrance ingredient is presented. Ethylene brassylate is a member of the fragrance structural group macrocyclic lactone and lactide derivatives. The fragrance ingredient described herein is one of 12 structurally diverse C14, C15, and C16 compounds that include (7) saturated mono-and (2) saturated di-ester lactones and (3) unsaturated lactones. For the latter, the double bond is not adjacent to (in conjugation with) the ester group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to ethylene brassylate and is not intended as a stand-alone document. Available data were evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; skin sensitization; elicitation; phototoxicity; repeated dose; and genotoxicity data. A safety assessment of the entire macrocyclic lactone and lactide derivatives will be published simultaneously with this document. Please refer to Belsito et al. (2011) for an overall assessment of the safe use of this material and all macrocyclic lactone and lactide derivatives in fragrances. Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Hanifin, J.H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A toxicologic and dermatologic assessment of macrocylic lactone and lactide derivatives when used as fragrance ingredients.

  3. Fragrance material review on 11-oxahexadecanolide.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of 11-oxahexadecanolide when used as a fragrance ingredient is presented. 11-Oxahexadecanolide is a member of the fragrance structural group macrocyclic lactone and lactide derivatives. The fragrance ingredient described herein is one of 12 structurally diverse C14, C15, and C16 compounds that include (7) saturated mono- and (2) saturated di-ester lactones and (3) unsaturated lactones. For the latter, the double bond is not adjacent to (in conjugation with) the ester group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to 11-oxahexadecanolide and is not intended as a stand-alone document. Available data were evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; mucous membrane (eye) irritation; skin sensitization; phototoxicity; photoallergy; and genotoxicity data. A safety assessment of the entire macrocyclic lactone and lactide derivatives will be published simultaneously with this document. Please refer to Belsito et al. (2011) for an overall assessment of the safe use of this material and all macrocyclic lactone and lactide derivatives in fragrances. Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Hanifin, J.H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A toxicologic and dermatologic assessment of macrocylic lactones and lactide derivatives when used as fragrance ingredients.

  4. Fragrance material review on ω-6-hexadecenlactone.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of ω-6-hexadecenlactone when used as a fragrance ingredient is presented. ω-6-Hexadecenlactone is a member of the fragrance structural group macrocyclic lactone and lactide derivatives. The fragrance ingredient described herein is one of 12 structurally diverse C14, C15 and C16 compounds that include (7) saturated mono-and (2) saturated di-ester lactones and (3) unsaturated lactones. For the latter, the double bond is not adjacent to (in conjugation with) the ester group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to ω-6-hexadecenlactone and is not intended as a stand-alone document. All available data were evaluated then summarized. The data set includes: physical properties; acute toxicity; skin irritation; skin sensitization; and phototoxicity data. A safety assessment of the entire macrocyclic lactone and lactide derivatives will be published simultaneously with this document. Please refer to Belsito et al., 2011 for an overall assessment of the safe use of this material and all macrocyclic lactone and lactide derivatives in fragrances. Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Hanifin, J.H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A toxicologic and dermatologic assessment of macrocylic lactones and lactide derivatives when used as fragrance ingredients.

  5. Fragrance material review on phenethyl acetate.

    PubMed

    McGinty, D; Vitale, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of phenethyl acetate when used as a fragrance ingredient is presented. Phenethyl acetate is a member of the fragrance structural group aryl alkyl alcohol simple acid esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for phenethyl acetate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, toxicokinetics, repeated dose, genotoxicity, and carcinogenicity data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  6. Fragrance material review on benzyl acetate.

    PubMed

    McGinty, D; Vitale, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of benzyl acetate when used as a fragrance ingredient is presented. Benzyl acetate is a member of the fragrance structural group aryl alkyl alcohol simple acid esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for benzyl acetate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, toxicokinetics, repeated dose, reproductive toxicity, genotoxicity, or carcinogenicity data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Refer Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  7. Fragrance material review on 10-oxahexadecanolide.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of 10-oxahexadecanolide when used as a fragrance ingredient is presented. 10-Oxahexadecanolide is a member of the fragrance structural group macrocyclic lactone and lactide derivatives. The fragrance ingredient described herein is one of 12 structurally diverse C14, C15, and C16 compounds that include (7) saturated mono-and (2) saturated di-ester lactones and (3) unsaturated lactones. For the latter, the double bond is not adjacent to (in conjugation with) the ester group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to 10-oxahexadecanolide and is not intended as a stand-alone document. Available data were evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; skin sensitization; and phototoxicity data. A safety assessment of the entire macrocyclic lactone and lactide derivatives will be published simultaneously with this document. Please refer to Belsito et al., 2011 for an overall assessment of the safe use of this material and all macrocyclic lactone and lactide derivatives in fragrances. Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Hanifin, J.H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A toxicologic and dermatologic assessment of macrocylic lactones and lactide derivatives when used as fragrance ingredients.

  8. Fragrance material review on 3-phenylpropyl cinnamate.

    PubMed

    Bhatia, S P; Cocchiara, J; Wellington, G A; Lalko, J; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of 3-phenylpropyl cinnamate when used as a fragrance ingredient is presented. 3-Phenylpropyl cinnamate is a member of the fragrance structural group cinnamyl phenylpropyl compounds. The common characteristic structural element of cinnamyl phenylpropyl materials is an aryl substituted primary alcohol/aldehyde/ester. They are simple aromatic compounds with saturated propyl or unsaturated propenyl side chains containing a primary oxygenated functional group which has little toxic potential. 3-Phenyl-1-propyl derivatives participate in the same beta-oxidation pathways as do their parent cinnamic acid derivatives. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 3-phenylpropyl cinnamate was evaluated then summarized and includes physical properties, acute toxicity, skin irritation and skin sensitization. A safety assessment of all cinnamyl phenylpropyl compounds will be published simultaneously with this document. Please refer to Belsito et al. (2011) for an overall assessment of the safe use of this material and all the cinnamyl phenylpropyl materials in fragrances. Belsito, D., Bickers, D., Bruze, M., Dagli, M.L., Fryer, A., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A toxicologic and dermatologic assessment of cinnamyl phenylpropyl compounds when used as fragrance ingredients.

  9. Fragrance material review on 3-phenylpropyl isobutyrate.

    PubMed

    Bhatia, S P; Cocchiara, J; Wellington, G A; Lalko, J; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of 3-phenylpropyl isobutyrate when used as a fragrance ingredient is presented. 3-Phenylpropyl isobutyrate is a member of the fragrance structural group cinnamyl phenylpropyl compounds. The common characteristic structural element of cinnamyl phenylpropyl materials is an aryl substituted primary alcohol/aldehyde/ester. They are simple aromatic compounds with saturated propyl or unsaturated propenyl side chains containing a primary oxygenated functional group which has little toxic potential. 3-Phenyl-1-propyl derivatives participate in the same beta oxidation pathways as do their parent cinnamic acid derivatives. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 3-phenylpropyl isobutyrate was evaluated then summarized and includes physical properties, acute toxicity, skin irritation and skin sensitization. A safety assessment of all cinnamyl phenyl propyl compounds will be published simultaneously with this document. Please refer to Belsito et al. (2011) for an overall assessment of the safe use of this material and all cinnamyl phenylpropyl materials in fragrances. Belsito, D., Bickers, D., Bruze, M., Dagli, M.L., Fryer, A., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A toxicologic and dermatologic assessment of cinnamyl phenylpropyl compounds when used as fragrance ingredients.

  10. Fragrance material review on 2-phenoxyethyl isobutyrate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-phenoxyethyl isobutyrate when used as a fragrance ingredient is presented. 2-Phenoxyethyl isobutyrate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-phenoxyethyl isobutyrate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, toxicokinetics, repeated dose, and genotoxicity data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  11. Fragrance material review on 12-oxahexadecanolide.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of 12-oxahexadecanolide when used as a fragrance ingredient is presented. 12-Oxahexadecanolide is a member of the fragrance structural group macrocyclic lactone and lactide derivatives. The fragrance ingredient described herein is one of 12 structurally diverse C14, C15, and C16 compounds that include (7) saturated mono-and (2) saturated di-ester lactones and (3) unsaturated lactones. For the latter, the double bond is not adjacent to (in conjugation with) the ester group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to 12-oxahexadecanolide and is not intended as a stand-alone document. Available data were evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; mucous membrane (eye) irritation; skin sensitization; and phototoxicity data. A safety assessment of the entire macrocyclic lactone and lactide derivatives will be published simultaneously with this document. Please refer to Belsito et al. (2011) for an overall assessment of the safe use of this material and all macrocyclic lactone and lactide derivatives in fragrances. Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Hanifin, J.H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A toxicologic and dermatologic assessment of macrocylic lactones and lactide derivatives when used as fragrance ingredients.

  12. Fragrance material review on ω-pentadecalactone.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of ω-pentadecalactone when used as a fragrance ingredient is presented. ω-Pentadecalactone is a member of the fragrance structural group macrocyclic lactone and lactide derivatives. The fragrance ingredient described herein is one of 12 structurally diverse C14, C15, and C16 compounds that include (7) saturated mono-and (2) saturated di-ester lactones and (3) unsaturated lactones. For the latter, the double bond is not adjacent to (in conjugation with) the ester group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to ω-pentadecalactone and is not intended as a stand-alone document. Available data were evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; mucous membrane (eye) irritation; skin sensitization; elicitation; phototoxicity; repeated dose; and genotoxicity data. A safety assessment of macrocyclic lactone and lactide derivatives will be published simultaneously with this document. Please refer to Belsito et al. (2011) for an overall assessment of the safe use of this material and all macrocyclic lactone and lactide derivatives in fragrances. Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Hanifin, J.H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A toxicologic and dermatologic assessment of macrocylic lactones and lactide derivatives when used as fragrance ingredients.

  13. Fragrance material review on methyl dihydrojasmonate.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of methyl dihydrojasmonate when used as a fragrance ingredient is presented. Methyl dihydrojasmonate is a member of the fragrance structural group ketones cyclopentanones and cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for methyl dihydrojasmonate were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, photoallergy, toxicokinetics, repeated dose, reproductive toxicity, and genotoxicity data. A safety assessment of the entire ketones cyclopentanones and cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (this issue) for an overall assessment of the safe use of this material.

  14. AAAS: Politics. . . and Science

    ERIC Educational Resources Information Center

    Science News, 1978

    1978-01-01

    Reviews topics discussed during the American Association for the Advancement of Science (AAAS) meeting held in Washington, D.C. Topics included: the equal rights amendment, laetrile, nuclear radiation hazards, sociobiology, and various science topics. (SL)

  15. Science Education at AAAS

    ERIC Educational Resources Information Center

    Livermore, Arthur H.

    1975-01-01

    Describes several programs of the American Association for the Advancement of Science (AAAS) Office of Science Education (OSE), including short courses offered in the natural and social sciences, mathematics, and engineering to college teachers. Discusses several OSE publications. (MLH)

  16. Fragrance allergic contact dermatitis.

    PubMed

    Cheng, Judy; Zug, Kathryn A

    2014-01-01

    Fragrances are a common cause of allergic contact dermatitis in Europe and in North America. They can affect individuals at any age and elicit a spectrum of reactions from contact urticaria to systemic contact dermatitis. Growing recognition of the widespread use of fragrances in modern society has fueled attempts to prevent sensitization through improved allergen identification, labeling, and consumer education. This review provides an overview and update on fragrance allergy. Part 1 discusses the epidemiology and evaluation of suspected fragrance allergy. Part 2 reviews screening methods, emerging fragrance allergens, and management of patients with fragrance contact allergy. This review concludes by examining recent legislation on fragrances and suggesting potential additions to screening series to help prevent and detect fragrance allergy.

  17. The safety assessment of fragrance materials.

    PubMed

    Bickers, David R; Calow, Peter; Greim, Helmut A; Hanifin, Jon M; Rogers, Adrianne E; Saurat, Jean-Hilaire; Glenn Sipes, I; Smith, Robert L; Tagami, Hachiro

    2003-04-01

    Safety evaluation of the large number of diverse chemicals used as fragrance ingredients follows a systematic prioritization of data generation and analysis, consideration of exposure and critical analysis of the quality of the available information. In prior publications the research priorities used by the Research Institute for Fragrance Materials (RIFM), and the methods of exposure estimation used by industry have been summarized. This paper provides details of the approach used by the RIFM Expert Panel (REXPAN), to examine the dermal effects, systemic toxicity and environmental consequences of the use of and exposure to fragrance materials, which allow a reliable determination of safe use under intended conditions. The key to the usefulness of this analysis is the grouping of more than 2600 discrete ingredients into classes, based on chemical structures. Research sponsored by RIFM, data supplied by member companies, and relevant published reports from many sources are all considered during hazard characterization. A discussion is provided of REXPAN's decision tree approach to assessing the dermal, systemic and environmental endpoints and the types and quality of data included. This overall process results in well-documented conclusions which are provided to the International Fragrance Association (IFRA) as the basis for consideration of a new or existing Fragrance Material Standard and to industry for appropriate product risk management actions.

  18. Lyral: a fragrance allergen.

    PubMed

    Militello, Giuseppe; James, William

    2005-03-01

    Fragrances are a common cause of contact dermatitis and account for a large percentage of reactions to cosmetic products. Novel fragrance compounds that may not be detected by the common fragrance screening agents (including balsam of Peru and fragrance mix) are continually being produced. Lyral is one of those allergens found in many cosmetic and household products. This review will discuss the recent literature and the significance of this allergen to allergic contact dermatitis.

  19. Suspected fragrance allergy requires extended patch testing to individual fragrance allergens.

    PubMed

    Katsarma, G; Gawkrodger, D J

    1999-10-01

    This study has been performed to evaluate the efficacy of fragrance mix (FM) as a screen for fragrance allergy. Patients were included if they had had positive allergic reactions to FM, to 1 of the 8 ingredients of FM, to 1 of 14 other fragrance materials, or to their own perfume. 91 patients were studied. There were 65 women and 23 men (in 3, their sex was not recorded) allergic to FM on patch testing. The mean (+/-SD) age was 48.4+/-18.6 years. 22 patients gave a past history of atopic eczema. Dermatitis of the hands (31%) and face (26%) were the most common presenting complaints. 85 patients (93%) had a positive allergic patch test reaction to FM. 22 of the 40 tested to the extended fragrance series were positive to other perfumes as well, and of these, there were 14 reactions (in 9 patients) to allergens not in the FM. In addition, 6 patients were positive only to separately tested fragrance constituents and not to the FM. In conclusion, FM is an accurate screen for fragrance contact sensitivity. However, patch testing to an extended series is needed if there is clinical suspicion of perfume allergy, as otherwise about 7% of patients allergic to fragrances will be missed.

  20. Allergic contact dermatitis from the synthetic fragrances Lyral and acetyl cedrene in separate underarm deodorant preparations.

    PubMed

    Handley, J; Burrows, D

    1994-11-01

    The case is reported of a 28-year-old man who developed allergic contact dermatitis from 2 synthetic fragrance ingredients, Lyral (3- and 4-(4-hydroxy-4-methylpentyl)-3-cyclohexene-1-aldehyde) and acetyl cedrene, in separate underarm deodorant preparations. The implications of the patient's negative patch test reactions to the European standard series (Trolab) and cosmetics and fragrance series (both Chemotechnique Diagnostics) are discussed. The importance is stressed of patch testing with the patient's own preparations when cosmetic dermatitis is suspected, and of identifying and reporting offending fragrance ingredients, with a view possibly to updating the European standard series and commercially available cosmetics and fragrance series.

  1. Fragrance material review on 3-methyl-1-pentanol.

    PubMed

    McGinty, D; Scognamiglio, J; Letizia, C S; Api, A M

    2010-07-01

    A toxicologic and dermatologic review of 3-methyl-1-pentanol when used as a fragrance ingredient is presented. 3-Methyl-1-pentanol is a member of the fragrance structural group branched chain saturated alcohols. The common characteristic structural elements of the alcohols with saturated branched chain are one hydroxyl group per molecule, and a C(4) to C(12) carbon chain with one or several methyl side chains. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire branched chain saturated alcohol group will be published simultaneously with this document; please refer to Belsito et al. (2010) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  2. Fragrance material review on 6,8-dimethylnonan-2-ol.

    PubMed

    McGinty, D; Scognamiglio, J; Letizia, C S; Api, A M

    2010-07-01

    A toxicologic and dermatologic review of 6,8-dimethylnonan-2-ol when used as a fragrance ingredient is presented. 6,8-Dimethylnonan-2-ol is a member of the fragrance structural group branched chain saturated alcohols. The common characteristic structural elements of the alcohols with saturated branched chain are one hydroxyl group per molecule, and a C(4)-C(12) carbon chain with one or several methyl side chains. This review contains the information available on this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire branched chain saturated alcohol group will be published simultaneously with this document; please refer to Belsito et al. (2010) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  3. Fragrance material review on methyl hexyl oxo cyclopentanone carboxylate.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of methyl hexyl oxo cyclopentanone carboxylate when used as a fragrance ingredient is presented. Methyl hexyl oxo cyclopentanone carboxylate is a member of the fragrance structural group ketones cyclopentanones and cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for methyl hexyl oxo cyclopentanone carboxylate were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, skin sensitization, and genotoxicity data. A safety assessment of the entire ketones cyclopentanones and cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (this issue) for an overall assessment of the safe use of this material and all ketones cyclopentanones and cyclopentenones in fragrances.

  4. Fragrance material review on (4-methoxyphenyl)methyl isobutyrate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of (4-methoxyphenyl)methyl isobutyrate when used as a fragrance ingredient is presented. (4-Methoxyphenyl)methyl isobutyrate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to (4-methoxyphenyl)methyl isobutyrate and is not intended as a stand-alone document. Available data were evaluated, then summarized, and includes physical properties data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  5. Fragrance material review on 2,6-dimethyl-4-heptanol.

    PubMed

    McGinty, D; Scognamiglio, J; Letizia, C S; Api, A M

    2010-07-01

    A toxicologic and dermatologic review of 2,6-dimethyl-4-heptanol when used as a fragrance ingredient is presented. 2,6-Dimethyl-4-heptanol is a member of the fragrance structural group branched chain saturated alcohols. The common characteristic structural elements of the alcohols with saturated branched chain are one hydroxyl group per molecule, and a C(4)-C(12) carbon chain with one or several methyl side chains. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire branched chain saturated alcohol group will be published simultaneously with this document; please refer to Belsito et al. (2010) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  6. Fragrance material review on 2-ethyl-1-butanol.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2010-07-01

    A toxicologic and dermatologic review of 2-ethyl-1-butanol when used as a fragrance ingredient is presented. 2-Ethyl-1-butanol is a member of the fragrance structural group branched chain saturated alcohols. The common characteristic structural elements of the alcohols with saturated branched chain are one hydroxyl group per molecule, and a C(4)-C(12) carbon chain with one or several methyl side chains. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire branched chain saturated alcohol group will be published simultaneously with this document; please refer to Belsito et al. (2010) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  7. Fragrance material review on 2-ethyl-1-hexanol.

    PubMed

    McGinty, D; Scognamiglio, J; Letizia, C S; Api, A M

    2010-07-01

    A summary of the safety data available for 2-ethyl-1-hexanol when used as a fragrance ingredient is presented. 2-Ethyl-1-hexanol is a member of the fragrance structural group branched chain saturated alcohols in which the common characteristic structural element is one hydroxyl group per molecule, and a C(4) to C(12) carbon chain with one or several methyl side chains. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire branched chain saturated alcohol group will be published simultaneously with this document; please refer to Belsito et al. (2010) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  8. Fragrance material review on 2-heptylidenecyclopentan-1-one.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of 2-heptylidenecyclopentan-1-one when used as a fragrance ingredient is presented. 2-Heptylidenecyclopentan-1-one is a member of the fragrance structural group ketones cyclopentanones and cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-heptylidenecyclopentan-1-one were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, and repeated dose data. A safety assessment of the entire ketones cyclopentanones and cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all ketones cyclopentanones and cyclopentenones in fragrances.

  9. Fragrance material review on 3-methyl-2-pentylcyclopentan-1-one.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of 3-methyl-2-pentylcyclopentan-1-one when used as a fragrance ingredient is presented. 3-methyl-2-pentylcyclopentan-1-one is a member of the fragrance structural group ketones cyclopentanones and cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 3-methyl-2-pentylcyclopentan-1-one were evaluated then summarized and includes physical properties data. A safety assessment of the entire ketones cyclopentanones and cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all ketones cyclopentanones and cyclopentenones in fragrances.

  10. Fragrance material review on 4-methyl-2-pentanol.

    PubMed

    McGinty, D; Scognamiglio, J; Letizia, C S; Api, A M

    2010-07-01

    A toxicologic and dermatologic review of 4-methyl-2-pentanol when used as a fragrance ingredient is presented. 4-Methyl-2-pentanol is a member of the fragrance structural group branched chain saturated alcohols. The common characteristic structural elements of the alcohols with saturated branched chain are one hydroxyl group per molecule, and a C(4)-C(12) carbon chain with one or several methyl side chains. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire branched chain saturated alcohol group will be published simultaneously with this document; please refer to Belsito et al. (2010) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  11. Fragrance material review on isotridecan-1-ol (isomeric mixture).

    PubMed

    McGinty, D; Bhatia, S P; Scognamiglio, J; Letizia, C S; Api, A M

    2010-07-01

    A toxicologic and dermatologic review of isotridecan-1-ol (isomeric mixture) when used as a fragrance ingredient is presented. Isotridecan-1-ol (isomeric mixture) is a member of the fragrance structural group branched chain saturated alcohols. The common characteristic structural elements of the alcohols with saturated branched chain are one hydroxyl group per molecule, and a C(4)-C(12) carbon chain with one or several methyl side chains. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire branched chain saturated alcohol group will be published simultaneously with this document; please refer to Belsito et al. (2010) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  12. Fragrance material review on 2,6-dimethyl-2-heptanol.

    PubMed

    McGinty, D; Scognamiglio, J; Letizia, C S; Api, A M

    2010-07-01

    A toxicologic and dermatologic review of 2,6-dimethyl-2-heptanol when used as a fragrance ingredient is presented. 2,6-Dimethyl-2-heptanol is a member of the fragrance structural group branched chain saturated alcohols. The common characteristic structural elements of the alcohols with saturated branched chain are one hydroxyl group per molecule, and a C(4)-C(12) carbon chain with one or several methyl side chains. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire branched chain saturated alcohol group will be published simultaneously with this document; please refer to Belsito et al. (2010) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  13. Fragrance material review on 2-ethyl-1-hexanol.

    PubMed

    McGinty, D; Scognamiglio, J; Letizia, C S; Api, A M

    2010-07-01

    A summary of the safety data available for 2-ethyl-1-hexanol when used as a fragrance ingredient is presented. 2-Ethyl-1-hexanol is a member of the fragrance structural group branched chain saturated alcohols in which the common characteristic structural element is one hydroxyl group per molecule, and a C(4) to C(12) carbon chain with one or several methyl side chains. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire branched chain saturated alcohol group will be published simultaneously with this document; please refer to Belsito et al. (2010) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances. PMID:20659633

  14. Fragrance material review on 2-ethyl-1-butanol.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2010-07-01

    A toxicologic and dermatologic review of 2-ethyl-1-butanol when used as a fragrance ingredient is presented. 2-Ethyl-1-butanol is a member of the fragrance structural group branched chain saturated alcohols. The common characteristic structural elements of the alcohols with saturated branched chain are one hydroxyl group per molecule, and a C(4)-C(12) carbon chain with one or several methyl side chains. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire branched chain saturated alcohol group will be published simultaneously with this document; please refer to Belsito et al. (2010) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances. PMID:20659644

  15. AAA Foundation for Traffic Safety

    MedlinePlus

    ... Survey: Teens should be wired less while driving, AAA Arizona says ... - ABC15 Arizona Graduated Licensing Laws - Insurance ... of Top Deadly Mistakes Made by Teen Drivers -- AAA More... Spotlight American Driving Survey This survey provides ...

  16. Prevalence of fragrance allergy.

    PubMed

    Scheinman, Pamela L

    2002-01-01

    With the exception of the UK, where fragrance allergy remained fairly constant from the early 1980s until the mid-late 1990s, other centers worldwide (Denmark, Singapore, Slovenia and the USA) reported an increase in fragrance allergy during this period. The ubiquitous nature of fragrance in modern society, coupled with new and growing markets of fragrance products for children and men, likely contribute to this increase. Strict adherence to voluntary guidelines on concentration limits of known fragrance sensitizers in consumer products is necessary. Also, special attention by manufacturers to safety assessments for fragranced products to be used on 'high-risk' areas such as traumatized/dermatitic skin, occluded sites and areas of high absorption is needed.

  17. Selected oxidized fragrance terpenes are common contact allergens.

    PubMed

    Matura, Mihaly; Sköld, Maria; Börje, Anna; Andersen, Klaus E; Bruze, Magnus; Frosch, Peter; Goossens, An; Johansen, Jeanne D; Svedman, Cecilia; White, Ian R; Karlberg, Ann-Therese

    2005-06-01

    Terpenes are widely used fragrance compounds in fine fragrances, but also in domestic and occupational products. Terpenes oxidize easily due to autoxidation on air exposure. Previous studies have shown that limonene, linalool and caryophyllene are not allergenic themselves but readily form allergenic products on air-exposure. This study aimed to determine the frequency and characteristics of allergic reactions to selected oxidized fragrance terpenes other than limonene. In total 1511 consecutive dermatitis patients in 6 European dermatology centres were patch tested with oxidized fragrance terpenes and some oxidation fractions and compounds. Oxidized linalool and its hydroperoxide fraction were found to be common contact allergens. Of the patients tested, 1.3% showed a positive reaction to oxidized linalool and 1.1% to the hydroperoxide fraction. About 0.5% of the patients reacted to oxidized caryophyllene whereas 1 patient reacted to oxidized myrcene. Of the patients reacting to the oxidized terpenes, 58% had fragrance-related contact allergy and/or a positive history for adverse reaction to fragrances. Autoxidation of fragrance terpenes contributes greatly to fragrance allergy, which emphasizes the need of testing with compounds that patients are actually exposed to and not only with the ingredients originally applied in commercial formulations.

  18. Deodorants on the European market: quantitative chemical analysis of 21 fragrances.

    PubMed

    Rastogi, S C; Johansen, J D; Frosch, P; Menné, T; Bruze, M; Lepoittevin, J P; Dreier, B; Andersen, K E; White, I R

    1998-01-01

    Deodorants are one of the most frequently used types of cosmetics and side-effects from them are common. Recent studies relate perfume allergy to this type of product. 73 deodorants were analyzed by gas chromatography--mass spectrometry for the determination of the contents of 7 wellknown fragrance allergens from the fragrance mix and 14 other commonly used fragrance materials. The deodorants were purchased at retail outlets in 5 European countries. It was found that in general, fragrance mix ingredients were more frequently present in vapo- and aerosol sprays than in roll-on products. The levels of the fragrance mix substances ranged from 0.0001-0.2355%. The products investigated contained cinnamic aldehyde and isoeugenol less frequently (17% and 29% respectively), and eugenol and geraniol most frequently (57% and 76% respectively). The 14 other fragrance materials were found in 40-97% of the deodorants, with hedione and benzyl acetate the most frequently found substances. The concentration of these 14 substances ranged from 0.0001-2.7%. It is concluded that the levels of cinnamic aldehyde and isoeugenol found in the deodorants could prove to be relevant for elicitation of contact dermatitis. No conclusions could be drawn about the other fragrance mix constituents, as threshold levels in sensitized individuals have not been investigated. Furthermore, all of the fragrance materials investigated were frequently found in deodorants and, apart from the fragrance mix ingredients, the extent of problems with sensitization to these fragrance materials is largely unknown.

  19. The search for new amber ingredients.

    PubMed

    Narula, Anubhav P S

    2014-10-01

    There is a constant need for developing new fragrance ingredients in the flavor and fragrance industry, as it allows perfumers to create unique and differentiating perfumes for fine as well as functional products. Among all the categories of notes used in perfume creation, amber notes are indispensible and ubiquitous in their presence in all perfumes. Not only amber notes impart high performance and substantivity to fragrances, but they are paramount in the development of classic and legendary fragrances. This article is based on the plenary lecture delivered at the flavor & fragrance 2013 conference of the German Chemical Society in Leipzig, Germany. The strategy, rationale, and the various synthetic approaches that led to the discovery of two new very powerful, woody, amber materials, Amber Xtreme(®) (1) and Trisamber(®) (2), are delineated.

  20. Fragrance allergy: assessing the risk from washed fabrics.

    PubMed

    Corea, Namali V; Basketter, David A; Clapp, Catherine; Van Asten, Arian; Marty, Jean-Paul; Pons-Guiraud, Annick; Laverdet, Catherine

    2006-07-01

    The prevalence of contact allergy to fragrance ingredients increased during the last part of the 20th century with the consequence that a substantial number of individuals are at risk of experiencing allergic contact dermatitis (ACD) if they have a sufficient degree of skin exposure to the chemical to which they have become sensitized. Such exposure does not necessarily have to arise from the type of source that originally induced the sensitization. A number of sources of exposure are clearly associated with risk of elicitation of ACD, but the role of fragrance deposited on fabrics, for example as a result of laundry processes, also can be questioned. In this article, firstly, the risk of the induction of fragrance-related ACD from exposure to fragrance via fabric is considered. Using a quantitative risk-assessment approach, the risk appears to be extremely low. The possibility that fragrance residues on laundered fabrics might elicit reactions in those already sensitized by a different route is also discussed. Clinically, clothing pattern dermatitis associated with fragrance allergy is almost never observed, although this could be investigated clinically by exposing sensitized individuals to the relevant fragrance allergen.

  1. Fragrance material review on 2,4-dimethylbenzyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2,4-dimethylbenzyl acetate when used as a fragrance ingredient is presented. 2,4-Dimethylbenzyl acetate is a member of the fragrance structural group aryl alkyl alcohol simple acid esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, iso-butyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2,4-dimethylbenzyl acetate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, and skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  2. Fragrance material review on 3-methylcyclopentadecenone (mixed isomers).

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of 3-methylcyclopentadecenone when used as a fragrance ingredient is presented. 3-Methylcyclopentadecenone is a member of the fragrance structural group macrocyclic ketones and derivatives. The fragrance ingredient described herein is one of 11 structurally diverse C15, C16 and C17 compounds that include three saturated and eight unsaturated ketones. For the latter, the double bond is not adjacent (in conjugation with) to the ketone group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to 3-methylcyclopentadecenone and is not intended as a stand-alone document. Available data were evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; mucous membrane (eye) irritation; skin sensitization; reproductive toxicity; and genotoxicity data. A safety assessment of the entire macrocyclic ketones and derivatives will be published simultaneously with this document. Please refer to Belsito et al., 2011 for an overall assessment of the safe use of this material and all macrocyclic ketones and derivatives in fragrances. Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Hanifin, J.H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A toxicologic and dermatologic assessment of macrocylic ketones and derivatives when used as fragrance ingredients.

  3. Fragrance material review on oxacycloheptadec-10-ene-2-one.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of oxacycloheptadec-10-ene-2-one when used as a fragrance ingredient is presented. Oxacycloheptadec-10-ene-2-one is a member of the fragrance structural group macrocyclic lactone and lactide derivatives. The fragrance ingredient described herein is one of 12 structurally diverse C14, C15, and C16 compounds that include (7) saturated mono- and (2) saturated di-ester lactones and (3) unsaturated lactones. For the latter, the double bond is not adjacent to (in conjugation with) the ester group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to oxacycloheptadec-10-ene-2-one and is not intended as a stand-alone document. Available data were evaluated, then summarized, and includes: physical properties; skin irritation; mucous membrane (eye) irritation; skin sensitization; phototoxicity; and genotoxicity data. A safety assessment of the entire macrocyclic lactone and lactide derivatives will be published simultaneously with this document. Please refer to Belsito et al. (2011) for an overall assessment of the safe use of this material and all macrocyclic lactone and lactide derivatives in fragrances. Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Hanifin, J.H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A toxicologic and dermatologic assessment of macrocylic lactones and lactide derivatives when used as fragrance ingredients.

  4. Fragrance material review on carbonic acid, methyl phenylmethyl ester.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of carbonic acid, methyl phenylmethyl ester when used as a fragrance ingredient is presented. Carbonic acid, methyl phenylmethyl ester is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for carbonic acid, methyl phenylmethyl ester were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  5. Fragrance material review on cycloheptadeca-9-en-1-one.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of cycloheptadeca-9-en-1-one when used as a fragrance ingredient is presented. Cycloheptadeca-9-en-1-one is a member of the fragrance structural group macrocyclic ketones and derivatives. The fragrance ingredient described herein is one of 11 structurally diverse C15, C16 and C17 compounds that include three saturated and eight unsaturated ketones. For the latter, the double bond is not adjacent (in conjugation with) to the ketone group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to cycloheptadeca-9-en-1-one and is not intended as a stand-alone document. Available data were evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; skin sensitization; and phototoxicity data. A safety assessment of the entire macrocyclic ketones and derivatives will be published simultaneously with this document. Please refer to Belsito et al., 2011 for an overall assessment of the safe use of this material and all macrocyclic ketones and derivatives in fragrances. Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Hanifin, J.H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A toxicologic and dermatologic assessment of macrocylic ketones and derivatives when used as fragrance ingredients.

  6. Fragrance material review on 16-hydroxy-7-hexadecenoic acid lactone.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of 16-hydroxy-7-hexadecenoic acid lactone when used as a fragrance ingredient is presented. 16-Hydroxy-7-hexadecenoic acid lactone is a member of the fragrance structural group macrocyclic lactone and lactide derivatives. The fragrance ingredient described herein is one of 12 structurally diverse C14, C15 and C16 compounds that include (1) saturated mono-and (2) saturated di-ester lactones and (3) unsaturated lactones. For the latter, the double bond is not adjacent to (in conjugation with) the ester group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to 16-hydroxy-7-hexadecenoic acid lactone and is not intended as a stand-alone document. Available data were evaluated, then summarized, and include physical properties data. A safety assessment of the entire macrocyclic lactone and lactide derivatives will be published simultaneously with this document. Please refer to Belsito et al., 2011 for an overall assessment of the safe use of this material and all macrocyclic lactone and lactide derivatives in fragrances. Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Hanifin, J.H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A toxicologic and dermatologic assessment of macrocylic lactones and lactide derivatives when used as fragrance ingredients.

  7. Fragrance material review on 4-cyclopentadecen-1-one, (Z)-.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of 4-cyclopentadecen-1-one, (Z)- when used as a fragrance ingredient is presented. 4-Cyclopentadecen-1-one, (Z)- is a member of the fragrance structural group macrocyclic ketones and derivatives. The fragrance ingredient described herein is one of 11 structurally diverse C15, C16 and C17 compounds that include three saturated and eight unsaturated ketones. For the latter, the double bond is not adjacent (in conjugation with) to the ketone group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to 4-cyclopentadecen-1-one, (Z)- and is not intended as a stand-alone document. Available data were evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; and skin sensitization data. A safety assessment of the entire macrocyclic ketone and derivatives will be published simultaneously with this document. Please refer to Belsito et al. (2011) for an overall assessment of the safe use of this material and all macrocyclic ketone and derivatives in fragrances. Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Hanifin, J.H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A toxicologic and dermatologic assessment of macrocylic ketones and derivatives when used as fragrance ingredients.

  8. Fragrance material review on 4-cyclopentadecen-1-one.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of 4-cyclopentadecen-1-one when used as a fragrance ingredient is presented. 4-Cyclopentadecen-1-one is a member of the fragrance structural group macrocyclic ketones and derivatives. The fragrance ingredient described herein is one of 11 structurally diverse C15, C16, and C17 compounds that include 3 saturated and 8 unsaturated ketones. For the latter, the double bond is not adjacent (in conjugation with) to the ketone group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to 4-cyclopentadecen-1-one and is not intended as a stand-alone document. Available data, including physical properties data, were evaluated then summarized. A safety assessment of the entire macrocyclic ketones and derivatives will be published simultaneously with this document; please refer to Belsito et al. (2011) for an overall assessment of the safe use of this material and all macrocyclic ketones and derivatives in fragrances. Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Hanifin, J.H., Miyachi, Y., Saurat, J.H., Sipes, I.G., this issue. A toxicologic and dermatologic assessment of macrocylic ketones and derivatives when used as fragrance ingredients.

  9. Fragrance material review on α-methylbenzyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of α-methylbenzyl acetate when used as a fragrance ingredient is presented. α-Methylbenzyl acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for α-methylbenzyl acetate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, and repeated dose data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  10. Fragrance material review on p-anisyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of p-anisyl acetate when used as a fragrance ingredient is presented. p-Anisyl acetate is a member of the fragrance structural group aryl alkyl alcohol simple acid esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for p-anisyl acetate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, and genotoxicity data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  11. Fragrance material review on 3-phenyl-1-propanol.

    PubMed

    Bhatia, S P; Wellington, G A; Cocchiara, J; Lalko, J; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of 3-phenyl-1-propanol when used as a fragrance ingredient is presented. 3-Phenyl-1-propanol is a member of the fragrance structural group cinnamyl phenylpropyl compounds. The common characteristic structural element of cinnamyl phenylpropyl materials is an aryl substituted primary alcohol/aldehyde/ester. They are simple aromatic compounds with saturated propyl or unsaturated propenyl side chains containing a primary oxygenated functional group which has little toxic potential. 3-Phenyl-1-propyl derivatives participate in the same beta-oxidation pathways as do their parent cinnamic acid derivatives. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 3-phenyl-1-propanol was evaluated then summarized and includes physical properties, acute toxicity, skin irritation, skin sensitization, in vitro skin absorption and mutagenicity. A safety assessment of all cinnamyl phenylpropyl compounds will be published simultaneously with this document; please refer to Belsito et al. (2011) for an overall assessment of the safe use of this material and all cinnamyl phenylpropyl materials in fragrances (Belsito, D., Bickers, D., Bruze, M., Dagli, M.L., Fryer, A., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A toxicologic and dermatologic assessment of cinnamyl phenylpropyl compounds when used as fragrance ingredients.).

  12. Fragrance material review on 3-methyl-1-cyclopentadecanone.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of 3-methyl-1-cyclopentadecanone when used as a fragrance ingredient is presented. 3-Methyl-1-cyclopentadecanone is a member of the fragrance structural group macrocyclic ketones and derivatives. The fragrance ingredient described herein is one of 11 structurally diverse C15, C16 and C17 compounds that include three saturated and eight unsaturated ketones. For the latter, the double bond is not adjacent (in conjugation with) to the ketone group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to 3-methyl-1-cyclopentadecanone and is not intended as a stand-alone document. Available data were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, skin sensitization, phototoxicity, toxicokinetics, repeated dose, and genotoxicity data. A safety assessment of the entire macrocyclic ketones and derivatives will be published simultaneously with this document. Please refer to Belsito et al. (2011) for an overall assessment of the safe use of this material and all macrocyclic ketones and derivatives in fragrances. Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Hanifin, J.H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A Toxicologic and Dermatologic Assessment of Macrocylic Ketones and Derivatives When Used as Fragrance Ingredients.

  13. Fragrance material review on 5-cyclohexadecen-1-one.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of 5-cyclohexadecen-1-one when used as a fragrance ingredient is presented. 5-Cyclohexadecen-1-one is a member of the fragrance structural group macrocyclic ketones and derivatives. The fragrance ingredient described herein is one of 11 structurally diverse C15, C16 and C17 compounds that include 3 saturated and 8 unsaturated ketones. For the latter, the double bond is not adjacent (in conjugation with) to the ketone group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to 5-cyclohexadecen-1-one and is not intended as a stand-alone document. Available data were evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; skin sensitization; elicitation; phototoxicity; and genotoxicity data. A safety assessment of the entire macrocyclic ketones and derivatives will be published simultaneously with this document. Please refer to Belsito et al. (2011) for an overall assessment of the safe use of this material and all macrocyclic ketones and derivatives in fragrances. Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Hanifin, J.H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A toxicologic and dermatologic assessment of macrocylic ketones and derivatives when used as fragrance ingredients.

  14. Fragrance material review on oxacyclohexadecane-2,13-dione.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of oxacyclohexadecane-2,13-dione when used as a fragrance ingredient is presented. Oxacyclohexadecane-2,13-dione is a member of the fragrance structural group macrocyclic lactone and lactide derivatives. The fragrance ingredient described herein is one of 12 structurally diverse C14, C15, and C16 compounds that include (7) saturated mono- and (2) saturated di-ester lactones and (3) unsaturated lactones. For the latter, the double bond is not adjacent to (in conjugation with) the ester group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to oxacyclohexadecane-2,13-dione and is not intended as a stand-alone document. Available data was evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; mucous membrane (eye) irritation; skin sensitization; phototoxicity; photoallergy; and genotoxicity data. A safety assessment of the entire macrocyclic lactone and lactide derivatives will be published simultaneously with this document. Please refer to Belsito et al. (2011) for an overall assessment of the safe use of this material and all macrocyclic lactone and lactide derivatives in fragrances. Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Hanifin, J.H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A toxicologic and dermatologic assessment of macrocylic lactones and lactide derivatives when used as fragrance ingredients.

  15. Fragrance material review on ethyl phenyl carbinyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of ethyl phenyl carbinyl acetate when used as a fragrance ingredient is presented. Ethyl phenyl carbinyl acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for ethyl phenyl carbinyl acetate were evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; and skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances. PMID:22433983

  16. Contact dermatitis to fragrances.

    PubMed

    Santucci, B; Cristaudo, A; Cannistraci, C; Picardo, M

    1987-02-01

    2 groups of patients (1200 and 1500 respectively) were patch tested with different concentrations of perfume mix and fragrance raw materials. The study was to evaluate the incidence of contact dermatitis to fragrances in Roma, Italy, and the influence of limited variations in fragrance and perfume mix concentrations on patch test responses. The results showed that a decrease in the perfume mix concentration from 16% to 8% correlated with a decrease in the % of positive patients (from 5.2% to 3.6%). Variations in the concentration of fragrance raw materials did not influence the % of positive reactions in the 2 groups. The perfume mixture at 16% or 8% gave some positive results, without a corresponding reaction to any of the constituents, that were not related to an excited skin syndrome.

  17. Marine fragrance chemistry.

    PubMed

    Hügel, Helmut M; Drevermann, Britta; Lingham, Anthony R; Marriott, Philip J

    2008-06-01

    The main marine message in perfumery is projected by Calone 1951 (7-methyl-2H-1,5-benzodioxepin-3(4H)-one). Kraft (Givaudan) and Gaudin (Firmenich) further maximized the marine fragrance molecular membership by extending the carbon chain of the 7-Me group. Our research targeted the polar group of the benzodioxepinone parent compound to investigate how this region of molecular makeup resonates with the dominant marine fragrance of the Calone 1951 structure. The olfactory evaluation of analogues prepared by chemical modification or removal of the CO group resulted in the introduction of aldehydic, sweet and floral-fruity notes with a diluted/diminished potency of the marine odor. To further analyze the olfactory properties of benzodioxepinones containing a diverse range of aromatic ring substituents, a novel synthesis route was developed. We found that a 7-alkyl group in Calone 1951 was essential for the maintenance of the significant marine odor characteristic, and our studies support the concept that the odorant structure occupying the hydrophobic binding pocket adjacent to the aromatic ring-binding site of the olfactory receptor is pivotal in the design and discovery of more potent and characteristic marine fragrances. How the structure of benzodioxepinones connects to marine sea-breeze fragrances is our continuing challenging research focus at the chemistry-biology interface.

  18. Fragrance material review on 3,4,5,6,6-pentamethylheptan-2-ol.

    PubMed

    McGinty, D; Scognamiglio, J; Letizia, C S; Api, A M

    2010-07-01

    A toxicologic and dermatologic review of 3,4,5,6,6-pentamethylheptan-2-ol when used as a fragrance ingredient is presented. 3,4,5,6,6-Pentamethylheptan-2-ol is a member of the fragrance structural group branched chain saturated alcohols. The common characteristic structural elements of the alcohols with saturated branched chain are one hydroxyl group per molecule, and a C(4)-C(12) carbon chain with one or several methyl side chains. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire branched chain saturated alcohol group will be published simultaneously with this document; please refer to Belsito et al. (2010) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  19. Fragrance material review on 3,5,5-trimethyl-1-hexanol.

    PubMed

    McGinty, D; Scognamiglio, J; Letizia, C S; Api, A M

    2010-07-01

    A toxicologic and dermatologic review of 3,5,5-trimethyl-1-hexanol when used as a fragrance ingredient is presented. 3,5,5-Trimethyl-1-hexanol is a member of the fragrance structural group branched chain saturated alcohols. The common characteristic structural elements of the alcohols with saturated branched chain are one hydroxyl group per molecule, and a C(4) to C(12) carbon chain with one or several methyl side chains. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire branched chain saturated alcohol group will be published simultaneously with this document; please refer to Belsito et al. (2010) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  20. Fragrance material review on 3,7-dimethyl-7-methoxyoctan-2-ol.

    PubMed

    McGinty, D; Scognamiglio, J; Letizia, C S; Api, A M

    2010-07-01

    A toxicologic and dermatologic review of 3,7-dimethyl-7-methoxyoctan-2-ol when used as a fragrance ingredient is presented. 3,7-Dimethyl-7-methoxyoctan-2-ol is a member of the fragrance structural group branched chain saturated alcohols. The common characteristic structural elements of the alcohols with saturated branched chain are one hydroxyl group per molecule, and a C(4)-C(12) carbon chain with one or several methyl side chains. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire branched chain saturated alcohol group will be published simultaneously with this document; please refer to Belsito et al. (2010) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  1. An in silico skin absorption model for fragrance materials.

    PubMed

    Shen, Jie; Kromidas, Lambros; Schultz, Terry; Bhatia, Sneha

    2014-12-01

    Fragrance materials are widely used in cosmetics and other consumer products. The Research Institute for Fragrance Materials (RIFM) evaluates the safety of these ingredients and skin absorption is an important parameter in refining systemic exposure. Currently, RIFM's safety assessment process assumes 100% skin absorption when experimental data are lacking. This 100% absorption default is not supportable and alternate default values were proposed. This study aims to develop and validate a practical skin absorption model (SAM) specific for fragrance material. It estimates skin absorption based on the methodology proposed by Kroes et al. SAM uses three default absorption values based on the maximum flux (J(max)) - namely, 10%, 40%, and 80%. J(max) may be calculated by using QSAR models that determine octanol/water partition coefficient (K(ow)), water solubility (S) and permeability coefficient (K(p)). Each of these QSAR models was refined and a semi-quantitative mechanistic model workflow is presented. SAM was validated with a large fragrance-focused data set containing 131 materials. All resulted in predicted values fitting the three-tiered absorption scenario based on Jmax ranges. This conservative SAM may be applied when fragrance material lack skin absorption data.

  2. Selected important fragrance sensitizers in perfumes--current exposures.

    PubMed

    Rastogi, Suresh Chandra; Johansen, Jeanne Duus; Bossi, Rossana

    2007-04-01

    Contact allergy to fragrance ingredients is frequent. Recommendations and regulations of some of the most frequent and potent fragrance allergens have recently been introduced. To investigate current exposures to 4 important fragrance allergens in hydroalcoholic cosmetic products. 25 popular perfume products of Danish as well as international brands were purchased from the Danish retail market. Contents of 4 important fragrance allergens, isoeugenol, hydroxy-iso-hexyl 3-cyclohexene carboxaldehyde (HICC, Lyral), were determined by gas chromatography-mass spectrometry, and atranol and chloro-atranol were determined by liquid chromatography-tandem mass spectrometry. Isoeugenol was found in 56%, HICC in 72%, atranol in 59%, and chloro-atranol in 36% of the 22 eau de toilette/eau de parfum products. The concentrations of isoeugenol were, in all products, below the recommended maximum concentration of 0.02%. HICC reached a maximum of 0.2%, which is 10-fold higher than maximum tolerable concentration considered safe by the EU Scientific Committee. The median concentrations of atranol and chloro-atranol in the investigated products were similar to those found in similar products in 2003. A significant decrease in the frequency of presence of chloro-atranol in the products was observed. There is still a wide-spread exposure to potent fragrance allergens in perfumes.

  3. [Diagnostic workup of fragrance allergy].

    PubMed

    Geier, J; Uter, W

    2015-09-01

    The diagnostic workup of contact allergy to fragrances must not be limited to patch testing with the two well-established fragrance mixes. False-positive reactions to these mixes occur in up to 50 % of the patch tested patients. For the diagnostic work-up of positive reactions, and in cases of suspected fragrance allergy, patch testing with the single mix components and additional fragrances is mandatory. Frequently sensitizing fragrance materials are the 14 components of the two fragrance mixes and tree moss (Evernia furfuracea), ylang ylang oil (I + II; Cananga odorata), lemongrass oil (Cymbopogon schoenanthus), sandalwood oil (Santalum album), jasmine absolute (Jasminum spp.), and, less frequently, clove oil (Eugenia caryophyllus), cedarwood oil (Cedrus atlantica/deodara, Juniperus virginiana), Neroli oil (Citrus aurantium amara flower oil), salicylaldehyde, narcissus absolute (Narcissus spp.), and patchouli oil (Pogostemon cablin). PMID:26253114

  4. [Diagnostic workup of fragrance allergy].

    PubMed

    Geier, J; Uter, W

    2015-09-01

    The diagnostic workup of contact allergy to fragrances must not be limited to patch testing with the two well-established fragrance mixes. False-positive reactions to these mixes occur in up to 50 % of the patch tested patients. For the diagnostic work-up of positive reactions, and in cases of suspected fragrance allergy, patch testing with the single mix components and additional fragrances is mandatory. Frequently sensitizing fragrance materials are the 14 components of the two fragrance mixes and tree moss (Evernia furfuracea), ylang ylang oil (I + II; Cananga odorata), lemongrass oil (Cymbopogon schoenanthus), sandalwood oil (Santalum album), jasmine absolute (Jasminum spp.), and, less frequently, clove oil (Eugenia caryophyllus), cedarwood oil (Cedrus atlantica/deodara, Juniperus virginiana), Neroli oil (Citrus aurantium amara flower oil), salicylaldehyde, narcissus absolute (Narcissus spp.), and patchouli oil (Pogostemon cablin).

  5. Fragrance material review on 2-pentylcyclopentan-1-one.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of 2-pentylcyclopentan-1-one when used as a fragrance ingredient is presented. 2-Pentylcyclopentan-1-one is a member of the fragrance structural group ketones cyclopentanones and cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-pentylcyclopentan-1-one were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitisation, elicitation, phototoxicity, photoallergy, and genotoxicity data. A safety assessment of the entire ketones cyclopentanones and cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all ketones cyclopentanones and cyclopentenones in fragrances.

  6. Fragrance material review on 1-(2,5,5-trimethylcycloheptyl)ethan-1-one.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of 1-(2,5,5-trimethylcycloheptyl)ethan-1-one when used as a fragrance ingredient is presented. 1-(2,5,5-Trimethylcycloheptyl)ethan-1-one is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1-(2,5,5-trimethylcycloheptyl)ethan-1-one were evaluated then summarized and includes physical properties, skin irritation, mucous membrane (eye) irritation, and skin sensitization data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A toxicologic and dermatologic assessment of alkyl cyclic ketones when used as fragrance ingredients. (submitted for publication)) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances.

  7. Fragrance material review on 1-(para-menthen-6-yl)-1-propanone.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of 1-(para-Menthen-6-yl)-1-propanone when used as a fragrance ingredient is presented. 1-(para-Menthen-6-yl)-1-propanone is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1-(para-Menthen-6-yl)-1-propanone were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, and skin sensitization, data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (2013) [Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013 A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients. Submitted with this manuscript.] for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances.

  8. Principles and methodology for identification of fragrance allergens in consumer products.

    PubMed

    Gimenez-Arnau, A; Gimenez-Arnau, E; Serra-Baldrich, E; Lepoittevin, J-P; Camarasa, J G

    2002-12-01

    Fragrances contain several hundreds of different chemicals, a few major and many minor, which are responsible for the complexity of the odour. Fragrances are a major cause of allergic contact dermatitis. As a diagnostic tool, the current fragrance mix is very useful though not ideal. A 50-year-old woman presented with a pruriginous, erythematous eruption, characterized by papules, vesicles, exudation and crusting over the neck and chest. With the suspicion of fragrance allergy, patch testing was performed. Initially, the only positive reaction observed was with her own eau de toilette named Woman. The TRUE Test fragrance mix patch test was negative. Chemical fractionation of Woman perfume concentrate was combined with a sequenced patch testing procedure and with structure-activity relationship studies. Ingredients supplied by the manufacturer were also included in the study. Benzophenone-2, Lyral, alpha-hexyl cinnamic aldehyde and alpha-damascone were found to be responsible for the patient's contact allergy to the commercial product. These substances contain chemical structural alerts giving them antigenic ability. The common use of new chemicals to manufacture fragrances, and the increased number of patients sensitive to them but with negative fragrance mix reactions, makes it necessary to identify new potential fragrance sensitizers in commercial products.

  9. Assessment of the risk of respiratory sensitization from fragrance allergens released by air fresheners.

    PubMed

    ter Burg, Wouter; Bouma, Krista; Schakel, Durk J; Wijnhoven, Susan W P; van Engelen, Jacqueline; van Loveren, Henk; Ezendam, Janine

    2014-04-01

    Consumers using air fresheners are exposed to the emitted ingredients, including fragrances, via the respiratory tract. Several fragrances are known skin sensitizers, but it is unknown whether inhalation exposure to these chemicals can induce respiratory sensitization. Effects on the immune system were assessed by testing a selection of five fragrance allergens in the respiratory local lymph node assay (LLNA). The probability and extent of exposure were assessed by measuring concentrations of the 24 known fragrance allergens in 109 air fresheners. It was shown that the most frequently used fragrances in air fresheners were D-limonene and linalool. In the respiratory LLNA, these fragrances were negative. Of the other tested chemicals, only isoeugenol induced a statistically significant increase in cell proliferation. Consumer exposure was assessed in more detail for D-limonene, linalool, and isoeugenol by using exposure modeling tools. It was shown that the most frequently used fragrances in air fresheners, D-limonene, and linalool gave rise to a higher consumer exposure compared with isoeugenol. To evaluate whether the consumer exposure to these fragrances is low or high, these levels were compared with measured air concentrations of diisocyanates, known human respiratory sensitizers. This comparison showed that consumer exposure from air fresheners to D-limonene, linalool, and isoeugenol is considerably lower than occupational exposure to diisocyanates. By combing this knowledge on sensitizing potency with the much lower exposure compared to diisocyanates it seems highly unlikely that isoeugenol can induce respiratory sensitization in consumers using air fresheners.

  10. Fragrance material review on E- and Z-oxacyclohexadec-12(+13)-en-2-one.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of E- and Z-oxacyclohexadec-12(+13)-en-2-one when used as a fragrance ingredient is presented. E- and Z-oxacyclohexadec-12(+13)-en-2-one is a member of macrocyclic lactone and lactide derivatives. The fragrance ingredient described herein is one of 12 structurally diverse C14, C15, and C16 compounds that include (7) saturated mono-and (2) saturated di-ester lactones and (3) unsaturated lactones. For the latter, the double bond is not adjacent to (in conjugation with) the ester group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data were evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; mucous membrane (eye) irritation; skin sensitization; toxicokinetics; repeated dose; reproductive toxicity; and genotoxicity data. A safety assessment of the macrocyclic lactone and lactide derivatives will be published simultaneously with this document. Please refer to Belsito et al. (2011) for an overall assessment of the safe use of this material and all macrocyclic lactone and lactide derivatives in fragrances. Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Hanifin, J.H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A toxicologic and dermatologic assessment of macrocylic lactones and lactide derivatives when used as fragrance ingredients.

  11. Fragrance as an occupational allergen.

    PubMed

    Buckley, D A; Rycroft, R J G; White, I R; McFadden, J P

    2002-02-01

    Sensitization to fragrance is believed to occur mainly outside the workplace. This study addresses the frequency of fragrance allergy in patch test patients of differing occupations during a 15 year period. The occupation most strongly associated with fragrance allergy in both sexes was health care work (positive tests in 11.7% of males and 10.4% of females). Retired individuals also had high rates of fragrance allergy (11.6% of males and 14.5% of females), and the prevalence of sensitization increased with advancing age. Health care workers and metal workers had statistically significantly higher rates of allergy to eugenol than did workers in other occupations. Food handlers had significantly higher rates of allergy to cinnamal and cinnamic alcohol. These findings suggest that sensitization to fragrance occurs more frequently in an occupational setting than is generally understood and could have implications for preventive measures.

  12. How to test for fragrance allergy.

    PubMed

    Larsen, W G

    2000-01-01

    Fragrance is the most common cause of cosmetic allergic contact dermatitis. Fragrance allergy detection is best accomplished by testing with the fragrance mixture, balsam of Peru, and either jasmine synthetic or absolute. It would be desirable to have common fragrance allergens listed on cosmetic labels so that patients could avoid the allergens to which they are allergic.

  13. Oak moss extracts in the diagnosis of fragrance contact allergy.

    PubMed

    Johansen, Jeanne Duus; Heydorn, Siri; Menné, Torkil

    2002-03-01

    Oak moss absolute is one of the eight ingredients of the fragrance mix (FM) used for diagnosing perfume allergy. Oak moss absolute is an extract prepared from the lichen Evernia prunastri growing on oak trees. It has been shown that the oak moss patch test material from one producer contained resin acids which are ingredients of another lichen, tree moss. Resin acids, e.g. abietic acid and dehydroabietic acid, are also the main allergens in colophonium. The aim of the study was to assess whether the contamination of oak moss absolute and thus the FM with resin acids had affected their diagnostic value so that they, instead of indicating fragrance allergy, had become indicators of allergy to resin acids and thus colophonium. Two studies were undertaken. First the relationship between patch test reactions to FM, oak moss absolute, both with contents of resin acids, and colophonium were assessed in 885 consecutive patients. A significant relationship between reactions to colophonium and FM was seen (p < 0.001) as well as a significant relationship between oak moss absolute and colophonium (p < 0.001). The relationship between colophonium and FM was still significant when all reactions to oak moss absolute were disregarded (p < 0.001), showing a relationship also between colophonium and fragrance ingredients other than oak moss absolute. Second, 119 consecutive patients were tested with an old and a new version of oak moss absolute containing resin acid (0.05%) and no measurable resin acid, respectively, and with the corresponding FM. No overall difference in reactivity to the old and new version of oak moss absolute/FM was seen. It is concluded the diagnostic value of oak moss absolute as indicator fragrance contact allergy has been and is unaffected by the resin acid contamination.

  14. Fragrance material review on 1,1-dimethyl-2-phenylethyl butyrate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 1,1-dimethyl-2-phenylethyl butyrate when used as a fragrance ingredient is presented. 1,1-Dimethyl-2-phenylethyl butyrate is a member of the fragrance structural group aryl alkyl alcohol simple acid esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1,1-dimethyl-2-phenylethyl butyrate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, and genotoxicity data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  15. Fragrance material review on 1,1-dimethyl-2-phenylethyl isobutyrate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 1,1-dimethyl-2-phenylethyl isobutyrate when used as a fragrance ingredient is presented. 1,1-Dimethyl-2-phenylethyl isobutyrate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1,1-dimethyl-2-phenylethyl isobutyrate were evaluated, then summarized, and includes physical properties data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al., 2012 for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  16. Fragrance material review on 1,1-dimethyl-2-phenylethyl formate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 1,1-dimethyl-2-phenylethyl formate when used as a fragrance ingredient is presented. 1,1-Dimethyl-2-phenylethyl formate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1,1-dimethyl-2-phenylethyl formate were evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; mucous membrane (eye) irritation; skin sensitization; and genotoxicity data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al., 2012 for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  17. Fragrance material review on 1,1-dimethyl-2-phenylethyl propionate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 1,1-dimethyl-2-phenylethyl propionate when used as a fragrance ingredient is presented. 1,1-Dimethyl-2-phenylethyl propionate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1,1-dimethyl-2-phenylethyl propionate were evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; and skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (submitted for publication) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  18. Fragrance material review on 1,3-dimethyl-3-phenylbutyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 1,3-dimethyl-3-phenylbutyl acetate when used as a fragrance ingredient is presented. 1,3-Dimethyl-3-phenylbutyl acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1 to 4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1,3-dimethyl-3-phenylbutyl acetate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, and photoallergy data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  19. Fragrance material review on cyclohexadec-8-en-1-one (mixture of cis and trans isomers).

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of cyclohexadec-8-en-1-one when used as a fragrance ingredient is presented. Cyclohexadec-8-en-1-one is a member of the fragrance structural group macrocyclic ketones and derivatives. The fragrance ingredient described herein is one of 11 structurally diverse C15, C16, and C17 compounds that include three saturated and eight unsaturated ketones. For the latter, the double bond is not adjacent (in conjugation with) to the ketone group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to cyclohexadec-8-en-1-one and is not intended as a stand-alone document. Available data, including physical properties data, were evaluated then summarized. A safety assessment of the entire macrocyclic ketones and derivatives will be published simultaneously with this document. Please refer to Belsito et al. (2011) for an overall assessment of the safe use of this material and all macrocyclic ketones and derivatives in fragrances. Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Hanifin, J.H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A toxicologic and dermatologic assessment of macrocylic ketones and derivatives when used as fragrance ingredients.

  20. Fragrance material review on 1,2-ethanediol, 1-phenyl-, 1,2-diacetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 1,2-ethanediol, 1-phenyl-, 1,2-diacetate when used as a fragrance ingredient is presented. 1,2-Ethanediol, 1-phenyl-, 1,2-diacetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1,2-ethanediol, 1-phenyl-, 1,2-diacetate were evaluated, then summarized, and includes physical properties data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE fragrances.

  1. Fragrance material review on 1-phenyl-3-methyl-3-pentyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 1-phenyl-3-methyl-3-pentyl acetate when used as a fragrance ingredient is presented. 1-Phenyl-3-methyl-3-pentyl acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1-phenyl-3-methyl-3-pentyl acetate were evaluated, then summarized, and includes physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  2. Fragrance material review on 3-phenyl-3-buten-1-yl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 3-phenyl-3-buten-1-yl acetate when used as a fragrance ingredient is presented. 3-Phenyl-3-buten-1-yl acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 3-phenyl-3-buten-1-yl acetate were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, and skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  3. Fragrance material review on 2-methyl-4-phenyl-2-butyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-methyl-4-phenyl-2-butyl acetate when used as a fragrance ingredient is presented. 2-Methyl-4-phenyl-2-butyl acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-methyl-4-phenyl-2-butyl acetate were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, skin sensitization, and elicitation data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  4. Fragrance material review on 1,3-benzodioxole-5-propanol, α-methyl-, 5-acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 1,3-benzodioxole-5-propanol, α-methyl-, 5-acetate when used as a fragrance ingredient is presented. 1,3-Benzodioxole-5-propanol, α-methyl-, 5-acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1,3-benzodioxole-5-propanol, α-methyl-, 5-acetate were evaluated, then summarized, and includes physical properties. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  5. Fragrance material review on 1-phenyl-3-methyl-3-pentyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 1-phenyl-3-methyl-3-pentyl acetate when used as a fragrance ingredient is presented. 1-Phenyl-3-methyl-3-pentyl acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1-phenyl-3-methyl-3-pentyl acetate were evaluated, then summarized, and includes physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances. PMID:22406574

  6. Fragrances in Cosmetics

    MedlinePlus

    ... sheets Room fresheners Carpet fresheners Statements on labels, marketing claims, consumer expectations, and even some ingredients may ... feeds Follow FDA on Twitter Follow FDA on Facebook View FDA videos on YouTube View FDA photos ...

  7. Frequency of false-negative reactions to the fragrance mix.

    PubMed

    de Groot, A C; van der Kley, A M; Bruynzeel, D P; Meinardi, M M; Smeenk, G; van Joost, T; Pavel, S

    1993-03-01

    To estimate the frequency of false-negative reactions to the fragrance mix, the 8 constituents of the mix in concentrations of 5% (2% for cinnamic aldehyde) were added to the European standard series for routine testing. Patients with positive reactions to individual ingredients in the absence of a reaction to the mix were retested with serial dilutions. In a 4-month period, 677 patients were tested. 61 (9%) reacted to the mix and to 1 or more of the ingredients. 4 patients (0.6% of all patients tested and 6.2% of the patients allergic to fragrances) had false-negative reactions to the mix. They were allergic to cinnamic alcohol, geraniol, isoeugenol and oak moss (1 reaction each), in the absence of a reaction to the fragrance mix. It is concluded that the currently used concentration of the mix (8 x 1%) not infrequently results in false-negative reactions, and that further research should be done to overcome this problem.

  8. Allergic contact dermatitis to fragrances: part 2.

    PubMed

    Arribas, M P; Soro, P; Silvestre, J F

    2013-01-01

    Allergic contact dermatitis due to fragrances usually manifests as subacute or chronic dermatitis because fragrances are found in a wide range of products to which patients are repeatedly exposed. The typical patient is a middle-aged woman with dermatitis on her hands and face, although other sites may be affected depending on the allergen and the product in which it is found. The standard patch test series of the Spanish Contact Dermatitis and Skin Allergy Research Group (GEIDAC) contains 4 fragrance markers: balsam of Peru, fragrance mix i, fragrance mix ii, and lyral. Testing with a specific fragrance series is recommended in patients with a positive result to any of these 4 markers. The use of a specific fragrance series and new legislation obliging manufacturers to specify the fragrances used in their products, will help to improve the management of allergic contact dermatitis due to fragrances.

  9. Pectin gel vehicles for controlled fragrance delivery.

    PubMed

    Liu, LinShu; Chen, Guoying; Fishman, Marshall L; Hicks, Kevin B

    2005-01-01

    Using citronellal as a model compound, pectin gels formulations were evaluated for the controlled fragrance release by kinetic and static methods. The pectins with higher degrees of esterification induced a stronger molecular association with the nonpolar fragrance. This resulted in a prolonged duration of fragrance release and the limitation of fragrance adsorption to the receptor skin layers. The increase in pectin concentrations suppressed the fragrance release by a diffusion mechanism. Blocking the carboxyl groups of pectin with calcium ions reduces the hydrophilicity of pectin and provides physical barriers for citronellal diffusion. The pectin/calcium microparticles are promising materials for controlled fragrance release.

  10. Fragrance material review on 2-cyclohexyl-1,6-heptadien-3-one.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of 2-cyclohexyl-1,6-heptadien-3-one when used as a fragrance ingredient is presented. 2-Cyclohexyl-1,6-heptadien-3-one is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all published and unpublished toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-cyclohexyl-1,6-heptadien-3-one were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, phototoxicity, photoallergy, repeated dose, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al., 2013 for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances.

  11. Fragrance material review on 1-(3,3-dimethylcyclohexyl)ethan-1-one.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A Toxicologic and Dermatologic review of 1-(3,3-dimethylcyclohexyl)ethan-1-one when used as a fragrance ingredient is presented. 1-(3,3-Dimethylcyclohexyl)ethan-1-one is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1-(3,3-dimethylcyclohexyl)ethan-1-one were evaluated then summarized and includes physical properties, skin irritation, mucous membrane (eye) irritation, skin sensitization, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al., 2013(1) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances.

  12. Fragrance material review on 1-(3,3-dimethylcyclohexyl)pent-4-en-1-one.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of 1-(3,3-dimethylcyclohexyl)pent-4-en-1-one when used as a fragrance ingredient is presented. 1-(3,3-Dimethylcyclohexyl)pent-4-en-1-one is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1-(3,3-dimethylcyclohexyl)pent-4-en-1-one were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, repeated dose, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A toxicologic and dermatologic assessment of alkyl cyclic ketones when used as fragrance ingredients (submitted for publication) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances.

  13. HS-GC-MS method for the analysis of fragrance allergens in complex cosmetic matrices.

    PubMed

    Desmedt, B; Canfyn, M; Pype, M; Baudewyns, S; Hanot, V; Courselle, P; De Beer, J O; Rogiers, V; De Paepe, K; Deconinck, E

    2015-01-01

    Potential allergenic fragrances are part of the Cosmetic Regulation with labelling and concentration restrictions. This means that they have to be declared on the ingredients list, when their concentration exceeds the labelling limit of 10 ppm or 100 ppm for leave-on or rinse-off cosmetics, respectively. Labelling is important regarding consumer safety. In this way, sensitised people towards fragrances might select their products based on the ingredients list to prevent elicitation of an allergic reaction. It is therefore important to quantify potential allergenic ingredients in cosmetic products. An easy to perform liquid extraction was developed, combined with a new headspace GC-MS method. The latter was capable of analysing 24 volatile allergenic fragrances in complex cosmetic formulations, such as hydrophilic (O/W) and lipophilic (W/O) creams, lotions and gels. This method was successfully validated using the total error approach. The trueness deviations for all components were smaller than 8%, and the expectation tolerance limits did not exceed the acceptance limits of ± 20% at the labelling limit. The current methodology was used to analyse 18 cosmetic samples that were already identified as being illegal on the EU market for containing forbidden skin whitening substances. Our results showed that these cosmetic products also contained undeclared fragrances above the limit value for labelling, which imposes an additional health risk for the consumer.

  14. Fluorometric determination of benzylideneacetone in fragrance products by liquid chromatography with post-column derivatization.

    PubMed

    Yates, R L; Wenninger, J A

    1988-01-01

    A method is described for the liquid chromatographic (LC)-fluorometric determination of benzylideneacetone in fragrance products. Benzylideneacetone is first separated from other fragrance ingredients by LC and then reacted post-column with a methanolic solution of isonicotinic acid hydrazide and aluminum nitrate. The reactants are maintained at 65 degrees C for about 1.5 min to quantitatively form the fluorescent isonicotinoyl hydrazone derivative of benzylideneacetone. The aluminum ion forms a complex with the hydrazone to enhance the fluorescence of the derivative. The amount of benzylideneacetone is determined by measuring the intensity of the fluorescence emitted by the hydrazone derivative and comparing that value with those obtained for derivatized standards. Recovery studies were conducted by spiking commercial fragrances with benzylideneacetone at concentrations of 0.01, 0.05, and 0.1% (w/v). Recoveries ranged from 98 to 104% with a mean recovery of 100.2% and a standard deviation of 2.4%.

  15. Genotoxicity of polycyclic musk fragrances in the sister-chromatid exchange test.

    PubMed

    Kevekordes, S; Mersch-Sundermann, V; Diez, M; Bolten, C; Dunkelberg, H

    1998-01-01

    The synthetic polycyclic musk fragrance compounds Galaxolide (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclo-penta-(g)-2-++ +benzopyrane, Tonalide (7-acetyl-1,1,3,4,4,6-hexamerthyltetraline), Celestolide (4-acetyl-1,1-dimethyl-6-tert, butylindane), Phantolide (6-acetyl-1,1,2,3,3,5-hexamethylindane), Cashmeran (6,7-dihydro-1,1,2,3,3-pentamethyl-4-(5H) indanone) and Traseolide (5-acetyl-1,1,2,6-tetramethyl-3-isopropylindane) are widely used as fragrance ingredients in perfumes, lotions and detergents; as food additives in cigarettes and fish baits. Several studies identified polycyclic musk fragrances in aquatic environment samples, human milk and human adipose tissue as highly lipophil with human lymphocytes.

  16. Present and future of cyclopropanations in fragrance chemistry.

    PubMed

    Schröder, Fridtjof

    2014-11-01

    The elaboration of new cyclopropanation methods is expected to make selectively new Δ-compounds available, either as precursors or as new ingredients with superior olfactory impacts. The improvement of cyclopropanation processes through understanding of reaction mechanisms reduces costs and environmental impact. Givaudan is the leading 'Flavor & Frangrance' company which successfully brings Δ-molecules to the market. Javanol(®) , for example, with its unique performance exemplifies the product of an efficient industrial cyclopropanation of a dienol precursor. Serenolide(®) , Toscanol(®) , and Pashminol(®) are other high-impact Δ-fragrance ingredients manufactured at Givaudan. This review describes our journey from advanced SimmonsSmith methodology using Zn carbenoids, to Al- and Mg-mediated cyclopropanation techniques in the context of related alternative cyclopropanation methods for the transfer of the CH2 group onto CC bonds. The resulting cyclopropane products are themselves interesting substrates for further transformation to other flavor and fragrance compounds. Throughout this Review, the notation Δ refers to the presence of a cyclopropane ring, i.e., a 'Δ-compound' is defined as a compound that contains a cyclopropyl substituent or a 'fused cyclopropa' component, or a 'spiro-cyclopropane' moiety.

  17. Fragrance allergy and hand eczema - a review.

    PubMed

    Heydorn, S; Menné, T; Johansen, J D

    2003-02-01

    Because hand eczema and fragrance allergy are common both among patients and in the general population, simultaneous occurrence by chance must be expected. Fragrances are ubiquitous and a part of many domestic and occupational products intended for hand exposure. The present review is based on a systematic literature research using both a manual and a Medline based search. The search identified 39 studies, including epidemiological patch test studies, general population patch test studies, case studies, and studies of occupational groups. The published data indicate a possible association between fragrance allergy and hand eczema. In future studies, a more detailed exposure assessment is needed, combined with patch test studies among patients with hand eczema tested with relevant fragrance allergens, as well as experimental control exposure studies to specific fragrance allergens on the hands. As exposures to fragrances on the hands are often simultaneous exposures to irritants, this combined exposure approach needs to be considered.

  18. Fragrance material review on 1,1-dimethyl-2-phenylethyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 1,1-dimethyl-2-phenylethyl acetate when used as a fragrance ingredient is presented. 1,1-Dimethyl-2-phenylethyl acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an Aryl Alkyl Alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to 1,1-dimethyl-2-phenylethyl acetate and is not intended as a stand-alone document. Available data were evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; mucous membrane (eye) irritation; skin sensitization; elicitation; and toxicokinetics data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  19. Fragrance material review on 2-hydroxy-3,4-dimethyl-2-cyclopenten-1-one.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of 2-hydroxy-3,4-dimethyl-2-cyclopenten-1-one when used as a fragrance ingredient is presented. 2-Hydroxy-3,4-dimethyl-2-cyclopenten-1-one is a member of the fragrance structural group Ketones Cyclopentanones and Cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-hydroxy-3,4-dimethyl-2-cyclopenten-1-one were evaluated, then summarized and includes physical properties data. A safety assessment of the entire Ketones Cyclopentanones and Cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Ketones Cyclopentanones and Cyclopentenones in fragrances.

  20. Fragrance material review on 2-(p-Menth-1-ene-10-yl) cyclopentanone.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of 2-(p-Menth-1-ene-10-yl) cyclopentanone when used as a fragrance ingredient is presented. 2-(p-Menth-1-ene-10-yl) cyclopentanone is a member of the fragrance structural group ketones cyclopentanones and cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-(p-Menth-1-ene-10-yl) cyclopentanone were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, repeated dose, and genotoxicity data. A safety assessment of the entire cyclopentanones and cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all cyclopentanones and cyclopentenones in fragrances.

  1. Fragrance material review on 2,2,5-trimethyl-5-pentylcyclopentanone.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of 2,2,5-trimethyl-5-pentylcyclopentanone when used as a fragrance ingredient is presented. 2,2,5-trimethyl-5-pentylcyclopentanone is a member of the fragrance structural group Ketones Cyclopentanones and Cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2,2,5-trimethyl-5-pentylcyclopentanone were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, and phototoxicity data. A safety assessment of the entire Ketones Cyclopentanones and Cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Ketones Cyclopentanones and Cyclopentenones in fragrances.

  2. Fragrance material review on methyl 3-oxo-2-(pent-2-enyl)cyclopentaneacetate.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of methyl 3-oxo-2-(pent-2-enyl)cyclopentaneacetate when used as a fragrance ingredient is presented. Methyl 3-oxo-2-(pent-2-enyl)cyclopentaneacetate is a member of the fragrance structural group Ketones Cyclopentanones and Cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for methyl 3-oxo-2-(pent-2-enyl)cyclopentaneacetate were evaluated then summarized and includes physical properties data. A safety assessment of the entire Ketones Cyclopentanones and Cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all ketones cyclopentanones and cyclopentenones in fragrances.

  3. Fragrance material review on 3-methyl-2-(pentyloxy)-2-cyclopenten-1-one.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of 3-methyl-2-(pentyloxy)-2-cyclopenten-1-one when used as a fragrance ingredient is presented. 3-Methyl-2-(pentyloxy)-2-cyclopenten-1-one is a member of the fragrance structural group ketones cyclopentanones and cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 3-methyl-2-(pentyloxy)-2-cyclopenten-1-one were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, phototoxicity, and photoallergy data. A safety assessment of the entire ketones cyclopentanones and cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all ketones cyclopentanones and cyclopentenones in fragrances.

  4. Fragrance material review on 3-ethyl-2-hydroxy-2-cyclopenten-1-one.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of 3-ethyl-2-hydroxy-2-cyclopenten-1-one when used as a fragrance ingredient is presented. 3-Ethyl-2-hydroxy-2-cyclopenten-1-one is a member of the fragrance structural group ketones cyclopentanones and cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 3-ethyl-2-hydroxy-2-cyclopenten-1-one were evaluated then summarized and includes physical properties, skin irritation, skin sensitization, and genotoxicity data. A safety assessment of the entire ketones cyclopentanones and cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all ketones cyclopentanones and cyclopentenones in fragrances.

  5. Fragrance material review on 3-methyl-2-(n-pentanyl)-2-cyclopenten-1-one.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of 3-methyl-2-(n-pentanyl)-2-cyclopenten-1-one when used as a fragrance ingredient is presented. 3-methyl-2-(n-pentanyl)-2-cyclopenten-1-one is a member of the fragrance structural group ketones cyclopentanones and cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 3-methyl-2-(n-pentanyl)-2-cyclopenten-1-one were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, and skin sensitization data. A safety assessment of the entire ketones cyclopentanones and cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all ketones cyclopentanones and cyclopentenones in fragrances.

  6. Fragrance material review on 2-(3,7-dimethyl-2,6-octadienyl)cyclopentanone.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of 2-(3,7-dimethyl-2,6-octadienyl)cyclopentanone when used as a fragrance ingredient is presented. 2-(3,7-Dimethyl-2,6-octadienyl)cyclopentanone is a member of the fragrance structural group Ketones Cyclopentanones and Cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-(3,7-dimethyl-2,6-octadienyl)cyclopentanone were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire Ketones Cyclopentanones and Cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Ketones Cyclopentanones and Cyclopentenones in fragrances.

  7. Fragrance material review on 3-methyl-2-(2-pentenyl)-2-cyclopenten-1-one.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-10-01

    A toxicologic and dermatologic review of 3-methyl-2-(2-pentenyl)-2-cyclopenten-1-one when used as a fragrance ingredient is presented. 3-methyl-2-(2-pentenyl)-2-cyclopenten-1-one is a member of the fragrance structural group ketones cyclopentanones and cyclopentenones. The common characteristic structural element of the group members is a cyclopentanone or cyclopentenone ring with a straight or branched chain alkane or alkene substituent. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 3-methyl-2-(2-pentenyl)-2-cyclopenten-1-one were evaluated then summarized and includes physical properties data. A safety assessment of the entire ketones cyclopentanones and cyclopentenones will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all ketones cyclopentanones and cyclopentenones in fragrances.

  8. Genetic analysis of abdominal aortic aneurysms (AAA)

    SciTech Connect

    St. Jean, P.L.; Hart, B.K.; Zhang, X.C.

    1994-09-01

    The association between AAA and gender, smoking (SM), hypertension (HTN) and inguinal herniation (IH) was examined in 141 AAA probands and 139 of their 1st degree relatives with aortic exam (36 affected, 103 unaffected). There was no significant difference between age at diagnosis of affecteds and age at exam of unaffecteds. Of 181 males, 142 had AAA; of 99 females, 35 had AAA. Using log-linear modeling AAA was significantly associated at the 5% level with gender, SM and HTN but not IH. The association of AAA with SM and HTN held when males and females were analyzed separately. HTN was -1.5 times more common in both affected males and females, while SM was 1.5 and 2 times more common in affected males and females, respectively. Tests of association and linkage analyses were performed with relevant candidate genes: 3 COL3A1 polymorphisms (C/T, ALA/THR, AvaII), 2 ELN polymorphisms (SER/GLY, (CA)n), FBN1(TAAA)n, 2 APOB polymorphisms (Xbal,Ins/Del), CLB4B (CA)n, PI and markers D1S243 (CA)n, HPR (CA)n and MFD23(CA)n. The loci were genotyped in > 100 AAA probands and > 95 normal controls. No statistically significant evidence of association at the 5% level was obtained for any of the loci using chi-square test of association. 28 families with 2 or more affecteds were analyzed using the affected pedigree member method (APM) and lod-score analyses. There was no evidence for linkage with any loci using APM. Lod-score analysis under an autosomal recessive model resulted in excluding linkage (lod score < -2) of all loci to AAA at {theta}=0.0. Under an autosomal dominant model, linkage was excluded at {theta}=0.0 to ELN, APOB, CLG4B, D1S243, HPR and MFD23. The various genes previously proposed in AAA pathogenesis are neither associated nor casually related in our study population.

  9. Pathophysiology of AAA: heredity vs environment.

    PubMed

    Björck, Martin; Wanhainen, Anders

    2013-01-01

    Abdominal aortic aneurysm (AAA) has a complex pathophysiology, in which both environmental and genetic factors play important roles, the most important being smoking. The recently reported falling prevalence rates of AAA in northern Europe and Australia/New Zeeland are largely explained by healthier smoking habits. Dietary factors and obesity, in particular abdominal obesity, are also of importance. A family history of AAA among first-degree relatives is present in approximately 13% of incident cases. The probability that a monozygotic twin of a person with an AAA has the disease is 24%, 71 times higher than that for a monozygotic twin of a person without AAA. Approximately 1000 SNPs in 100 candidate genes have been studied, and three genome-wide association studies were published, identifying different diverse weak associations. An example of interaction between environmental and genetic factors is the effect of cholesterol, where genetic and dietary factors affect levels of both HDL and LDL. True epigenetic studies have not yet been published.

  10. [Reactions to fragrances and textiles].

    PubMed

    Hausen, B M

    1987-12-01

    Allergic reactions to fragrances are caused by perfumes and perfume-containing items of our environment. The most important allergen is cinnamic aldehyde. By means of the mixed perfume test recommended by the International Contact Dermatitis Research Group (ICDRG), however, we are not able to detect more than half of the patients suffering from perfume allergy. Thus we suggest to make use of two new test series comprising most of the relevant fragrance components. Allergic reactions to textiles are mostly due to textile dyes. Special regard must be given to the disperse dyes of the azo group in nylon stockings and tights. The three most important allergens are disperse yellow 3, disperse orange 3, and disperse red 1. According to our experiments, the sensitizing potency of these dyes is comparatively low. In contrast, two recently introduced azo dyes (disperse blue 106 and 124), which are mainly used in blouses and trousers, proved to be strong sensitizers.

  11. A framework for prioritizing fragrance materials for aquatic risk assessment.

    PubMed

    Salvito, Daniel T; Senna, Ronald J; Federle, Thomas W

    2002-06-01

    More than 2,100 chemically defined organic chemicals are listed in the Research Institute of Fragrance Materials/Flavor and Extract Manufacturers' Association (RIFM/FEMA) Database that are used as ingredients of fragrances for consumer products. An approach was developed for prioritizing these fragrance materials for aquatic risk assessment by first estimating the predicted environmental concentration (PEC) of these fragrance materials in the aquatic environment based upon their physicochemical properties and annual volume of use. Subsequently, an effect level was predicted with a general quantitative structure-activity relationship (QSAR) for aquatic toxicity, and a predicted no-effect concentration (PNEC) was calculated from this effect level by using an assessment factor (AF) that accounts for uncertainty in the toxicity QSAR prediction. A conservative AF of 10(6) was applied to the endpoint predicted by the QSAR to provide an adequate margin of safety in the calculation of the PNEC. The PEC was compared to the PNEC to characterize the risk to freshwater aquatic organisms (e.g., Daphnia magna and Pimephales promelas). If the ratio of PEC to PNEC was below one, the material was considered to have negligible environmental risk and to be acceptable for the aquatic environment at current use levels. If this ratio exceeded one, the PNEC was refined by using more specific QSAR models (Ecological Structure-Activity Relationships [ECOSAR]). If the ratio continued to exceed one, the material became a candidate for further aquatic risk assessment procedures, which involve iterative steps to refine the PEC, the PNEC, or both by using measured ecotoxicological endpoints. Prioritization for this latter process can be based upon the magnitudes of the estimated PEC:PNEC ratios. When using the first tier of this approach, only 568 of 2,141 fragrance materials (26.5%) in the RIFM/FEMA Database had PEC:PNEC ratios greater than one. This percentage decreased to only 164 materials

  12. Fragrance material review on 1-spiro[4.5]dec-7-en-7-yl-4-pent-1-one.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of 1-spiro[4.5]dec-7-en-7-yl-4-pent-1-one when used as a fragrance ingredient is presented. 1-Spiro[4.5]dec-7-en-7-yl-4-pent-1-one is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all published and unpublished toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1-spiro[4.5]dec-7-en-7-yl-4-pent-1-one were evaluated then summarized and includes acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, phototoxicity, photoallergy, repeated dose, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (2013) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances.

  13. Alternatives for fragrance-allergic children.

    PubMed

    Jacob, Sharon E; Castanedo-Tardan, Mari Paz

    2008-02-01

    In 2007 "fragrances" were named "allergen of the year" by the American Contact Dermatitis Society to highlight the importance of this group of allergens. Because fragrance allergy in children is a real problem that is potentially avoidable by substituting products free of these sensitizing chemicals (see Table, page 103), action toward awareness and prevention is imperative.

  14. Addendum to Fragrance material review on linalool.

    PubMed

    Lapczynski, A; Letizia, C S; Api, A M

    2008-11-01

    A Fragrance material review on linalool was published by Letizia et al. in Food and Chemical Toxicology 41 (2003) 943-964. This addendum to the earlier publication will only report studies that were conducted after the Fragrance material review was published.

  15. Sensitization to fragrance materials in Indonesian cosmetics.

    PubMed

    Roesyanto-Mahadi, I D; Geursen-Reitsma, A M; van Joost, T; van den Akker, T W

    1990-04-01

    2 different groups of patients were patch tested with 2 test series (A and B) containing extracts of fragrance raw materials, traditionally used in Indonesian cosmetics. Series A consisted of diluted extracts of commercially available Indonesian fragrances. Series B consisted of extracts prepared in our department from corresponding indigenous flowers and fruits. Group 1 consisted of 32 patients positive to fragrance-mix, of whom 8 (25%) had positive tests to 1 or more of the different extracts of fragrance raw materials. Reactions were observed to extracts of: Rosa hybrida Hort (7); Canangium odoratum Baill (5); Citrus aurantifolia Swingle (4); Jasminum sambac Ait (2). 6 of the 8 patients had reactions to 1 or more of the components of fragrance-mix: oakmoss (3); cinnamic alcohol (2), isoeugenol (1); cinnamic aldehyde (1) and geraniol (1). Group 2 consisted of 159 patients patch tested on suspicion of contact dermatitis, who were fragrance-mix negative. Only 2 (1.2%) had a positive patch test to the extracts of fragrance raw materials. Specimens taken (as is) from the flowers and citrus fruits (being the basis sources of the fragrance raw materials) were less antigenic. The use of additional test series in Indonesia to detect allergy to traditional cosmetics and perfumes merits further investigation.

  16. Fragrance material review on 1-(2,4-dimethyl-3-cyclohexenyl)-2,2-dimethylpropan-1-one.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of 1-(2,4-dimethyl-3-cyclohexenyl)-2,2-dimethylpropan-1-one when used as a fragrance ingredient is presented. 1-(2,4-Dimethyl-3-cyclohexenyl)-2,2-dimethylpropan-1-one is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1-(2,4-dimethyl-3-cyclohexenyl)-2,2-dimethylpropan-1-one were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, sensitization, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients (submitted for publication)) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances.

  17. Fragrance material review on 1-(2,4,4,5,5-pentamethyl-1-cyclopenten-1-yl)ethan-1-one.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of 1-(2,4,4,5,5-pentamethyl-1-cyclopenten-1-yl)ethan-1-one when used as a fragrance ingredient is presented. 1-(2,4,4,5,5-Pentamethyl-1-cyclopenten-1-yl)ethan-1-one is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1-(2,4,4,5,5-pentamethyl-1-cyclopenten-1-yl)ethan-1-one were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, phototoxicity, and photoallergy data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients (submitted for publication)) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances.

  18. Fragrance material review on 1-(5,5-dimethylcyclohexen-1-yl)pent-4-en-1-one.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of 1-(5,5-dimethylcyclohexen-1-yl)pent-4-en-1-one when used as a fragrance ingredient is presented. 1-(5,5-Dimethylcyclohexen-1-yl)pent-4-en-1-one is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all published and unpublished toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1-(5,5-dimethylcyclohexen-1-yl)pent-4-en-1-one were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, and photoallergy data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients (submitted for publication)) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances.

  19. Fragrance material review on methyl-2,6,10-trimethylcyclododeca-2,5,9-trien-1-yl ketone.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of methyl 2,6,10-trimethylcyclododeca-2,5,9-trien-1-yl ketone when used as a fragrance ingredient is presented. Methyl 2,6,10-trimethylcyclododeca-2,5,9-trien-1-yl ketone is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for methyl 2,6,10-trimethylcyclododeca-2,5,9-trien-1-yl ketone were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, repeated dose, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients (submitted for publication)) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances.

  20. Fragrance material review on 1-(3,3-dimethylbicyclo[2.2.1]hept-2-yl)ethane-1-one.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of 1-(3,3-dimethylbicyclo[2.2.1]hept-2-yl)ethane-1-one when used as a fragrance ingredient is presented. 1-(3,3-Dimethylbicyclo[2.2.1]hept-2-yl)ethane-1-one is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1-(3,3-dimethylbicyclo[2.2.1]hept-2-yl)ethane-1-one were evaluated then summarized and includes physical properties, skin irritation, mucous membrane (eye) irritation, and skin sensitization data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients (submitted for publication) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances.

  1. Fragrance material review on 1-(2,6,6-trimethyl-2-cyclohexen-1-yl)pent-1-en-3-one.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of 1-(2,6,6-trimethyl-2-cyclohexen-1-yl)pent-1-en-3-one when used as a fragrance ingredient is presented. 1-(2,6,6-Trimethyl-2-cyclohexen-1-yl)pent-1-en-3-one is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1-(2,6,6-trimethyl-2-cyclohexen-1-yl)pent-1-en-3-one were evaluated then summarized and includes physical properties data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones when used as fragrance ingredients. Submitted for publication) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances.

  2. Fragrance material review on 1-(3,5,6-trimethyl-3-cyclohexen-1-yl)ethan-1-one.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of 1-(3,5,6-trimethyl-3-cyclohexen-1-yl)ethan-1-one when used as a fragrance ingredient is presented. 1-(3,5,6-Trimethyl-3-cyclohexen-1-yl)ethan-1-one is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1-(3,5,6-trimethyl-3-cyclohexen-1-yl)ethan-1-one were evaluated then summarized and includes physical properties, skin irritation, and skin sensitization data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients (submitted for publication)) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances.

  3. Sequence analysis of the AAA protein family.

    PubMed Central

    Beyer, A.

    1997-01-01

    The AAA protein family, a recently recognized group of Walker-type ATPases, has been subjected to an extensive sequence analysis. Multiple sequence alignments revealed the existence of a region of sequence similarity, the so-called AAA cassette. The borders of this cassette were localized and within it, three boxes of a high degree of conservation were identified. Two of these boxes could be assigned to substantial parts of the ATP binding site (namely, to Walker motifs A and B); the third may be a portion of the catalytic center. Phylogenetic trees were calculated to obtain insights into the evolutionary history of the family. Subfamilies with varying degrees of intra-relatedness could be discriminated; these relationships are also supported by analysis of sequences outside the canonical AAA boxes: within the cassette are regions that are strongly conserved within each subfamily, whereas little or even no similarity between different subfamilies can be observed. These regions are well suited to define fingerprints for subfamilies. A secondary structure prediction utilizing all available sequence information was performed and the result was fitted to the general 3D structure of a Walker A/GTPase. The agreement was unexpectedly high and strongly supports the conclusion that the AAA family belongs to the Walker superfamily of A/GTPases. PMID:9336829

  4. The quality of skin care products and their ingredients.

    PubMed

    Zatz, J L

    2001-02-01

    Several ingredients used in skin products have been criticized as being excessively harsh, allergenic, or otherwise unsuitable for use, especially in the elderly population. Preservatives, in particular, have been condemned, leading to a proliferation of "preservative-free" products. Other descriptive/promotional phrases with negative connotations are "fragrance-free" and "emulsifier-free." Inferences regarding these designations might suggest that preservatives, fragrances, emulsifiers, and a number of other ingredients serve no important function, are superfluous in terms of product quality, and, therefore, should be left out of all skin products. While this is obviously not the case, neither is the obverse. Ingredients used in skin care products should be carefully chosen to support or maintain the overall effectiveness and utility of the product, and the concentration of such ingredients should be given careful consideration. After briefly reviewing skin structure and changes that occur during aging, this article examines the concept of product quality. Major nondrug ingredient categories will be addressed, including the reasons for using such ingredients in skin care products, the products in which they are required, the limitations and choices available within each category, and guidelines for product selection.

  5. Fragrance sensitivity in coal miners.

    PubMed

    Goodfield, M J; Saihan, E M

    1988-02-01

    In a prospective study, we have examined the incidence of fragrance sensitivity in Nottinghamshire coal miners. Our results confirm previous reports of an increased incidence of such sensitivity in miners (45%) when compared with both male (20%) and female (13%) non-miners. This increased incidence is not related to an increased use of perfumed cosmetics, but may be related to the use of a highly perfumed body lotion in subjects who already have a high incidence of irritant hand eczema. There was no significant increase in the rate of positive reactions to other applied allergens.

  6. 26 CFR 1.1368-2 - Accumulated adjustments account (AAA).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 11 2010-04-01 2010-04-01 true Accumulated adjustments account (AAA). 1.1368-2... adjustments account (AAA). (a) Accumulated adjustments account—(1) In general. The accumulated adjustments account is an account of the S corporation and is not apportioned among shareholders. The AAA is...

  7. Fragrances as new contaminants in the Venice lagoon.

    PubMed

    Vecchiato, Marco; Cremonese, Simone; Gregoris, Elena; Barbaro, Elena; Gambaro, Andrea; Barbante, Carlo

    2016-10-01

    Fragrance Materials (FMs) are omnipresent components of household and Personal Care Products (PCPs). In spite of their widespread use, little is known about their environmental occurrence. We selected 17 among the longest-lasting and most stable fragrance ingredients that are commercially available, namely: Amberketal, Ambrofix, Amyl Salicylate, Benzyl Salicylate, Bourgeonal, Dupical, Hexyl Salicylate, Isobutavan, Lemonile, Mefranal, Myraldene, Okoumal, Oranger Crystals, Pelargene, Peonile, Tridecene-2-Nitrile, Ultravanil. A new analytical method was developed to quantify FMs in water samples and it was applied to perform the first study about the distribution of these compounds in the surface waters of the city of Venice and its lagoon. Total FMs concentrations range from about 30ngL(-1) to more than 10μgL(-1) in polluted canals during the low tide. Sewage discharges were supposed to be the main sources of the selected FMs in the environment. Salicylates, oestrogenic and allergenic compounds, were in general the most abundant and widespread components. This study reports for the first time the detection of most of the selected FMs in surface waters and represent the first step to understand their environmental fate. PMID:27267717

  8. AAA-DDD triple hydrogen bond complexes.

    PubMed

    Blight, Barry A; Camara-Campos, Amaya; Djurdjevic, Smilja; Kaller, Martin; Leigh, David A; McMillan, Fiona M; McNab, Hamish; Slawin, Alexandra M Z

    2009-10-01

    Experiment and theory both suggest that the AAA-DDD pattern of hydrogen bond acceptors (A) and donors (D) is the arrangement of three contiguous hydrogen bonding centers that results in the strongest association between two species. Murray and Zimmerman prepared the first example of such a system (complex 3*2) and determined the lower limit of its association constant (K(a)) in CDCl(3) to be 10(5) M(-1) by (1)H NMR spectroscopy (Murray, T. J. and Zimmerman, S. C. J. Am. Chem. Soc. 1992, 114, 4010-4011). The first cationic AAA-DDD pair (3*4(+)) was described by Bell and Anslyn (Bell, D. A. and Anslyn, E. A. Tetrahedron 1995, 51, 7161-7172), with a K(a) > 5 x 10(5) M(-1) in CH(2)Cl(2) as determined by UV-vis spectroscopy. We were recently able to quantify the strength of a neutral AAA-DDD arrangement using a more chemically stable AAA-DDD system, 6*2, which has an association constant of 2 x 10(7) M(-1) in CH(2)Cl(2) (Djurdjevic, S., Leigh, D. A., McNab, H., Parsons, S., Teobaldi, G. and Zerbetto, F. J. Am. Chem. Soc. 2007, 129, 476-477). Here we report on further AA(A) and DDD partners, together with the first precise measurement of the association constant of a cationic AAA-DDD species. Complex 6*10(+)[B(3,5-(CF(3))(2)C(6)H(3))(4)(-)] has a K(a) = 3 x 10(10) M(-1) at RT in CH(2)Cl(2), by far the most strongly bound triple hydrogen bonded system measured to date. The X-ray crystal structure of 6*10(+) with a BPh(4)(-) counteranion shows a planar array of three short (NH...N distances 1.95-2.15 A), parallel (but staggered rather than strictly linear; N-H...N angles 165.4-168.8 degrees), primary hydrogen bonds. These are apparently reinforced, as theory predicts, by close electrostatic interactions (NH-*-N distances 2.78-3.29 A) between each proton and the acceptor atoms of the adjacent primary hydrogen bonds.

  9. Safety Assessment of Panax spp Root-Derived Ingredients as Used in Cosmetics.

    PubMed

    Becker, Lillian C; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-01-01

    The Cosmetic Ingredient Review Expert Panel (Panel) reviewed the safety of 13 Panax spp root-derived ingredients as used in cosmetics. Panax "spp" indicates that multiple species within the genus are used in cosmetics, but not all species within that genus. Four species are being considered in this safety assessment. These ingredients function mostly as skin-conditioning agents-miscellaneous, fragrance ingredients, skin-conditioning agents-humectant, skin-conditioning agents-emollient, and cosmetic astringents. The Panel reviewed available data related to these ingredients and addressed the issue of pulegone, a constituent of these ingredients and other ingredients, such as peppermint oil. The Panel concluded that these Panax spp root-derived ingredients are safe in the practices of use and concentration as given in this safety assessment. PMID:26684797

  10. Safety Assessment of Panax spp Root-Derived Ingredients as Used in Cosmetics.

    PubMed

    Becker, Lillian C; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-01-01

    The Cosmetic Ingredient Review Expert Panel (Panel) reviewed the safety of 13 Panax spp root-derived ingredients as used in cosmetics. Panax "spp" indicates that multiple species within the genus are used in cosmetics, but not all species within that genus. Four species are being considered in this safety assessment. These ingredients function mostly as skin-conditioning agents-miscellaneous, fragrance ingredients, skin-conditioning agents-humectant, skin-conditioning agents-emollient, and cosmetic astringents. The Panel reviewed available data related to these ingredients and addressed the issue of pulegone, a constituent of these ingredients and other ingredients, such as peppermint oil. The Panel concluded that these Panax spp root-derived ingredients are safe in the practices of use and concentration as given in this safety assessment.

  11. Adverse reactions to fragrances. A clinical review.

    PubMed

    de Groot, A C; Frosch, P J

    1997-02-01

    This article reviews side-effects of fragrance materials present in cosmetics with emphasis on clinical aspects: epidemiology, types of adverse reactions, clinical picture, diagnostic procedures, and the sensitizers. Considering the ubiquitous occurrence of fragrance materials, the risk of side-effects is small. In absolute numbers, however, fragrance allergy is common, affecting approximately 1% of the general population. Although a detailed profile of patients sensitized to fragrances needs to be elucidated, common features of contact allergy are: axillary dermatitis, dermatitis of the face (including the eyelids) and neck, well-circumscribed patches in areas of "dabbing-on" perfumes (wrists, behind the ears) and (aggravation of) hand eczema. Depending on the degree of sensitivity, the severity of dermatitis may range from mild to severe with dissemination and even erythroderma. Airborne or "connubial" contact dermatitis should always be suspected. Other less frequent adverse reactions to fragrances are photocontact dermatitis, immediate contact reactions and pigmentary changes. The fragrance mix, although very useful for the detection of sensitive patients, both causes false-positive and false-negative reactions, and detects only 70% of perfume-allergic patients. Therefore, future research should be directed at increasing the sensitivity and the specificity of the mix. Relevance is said to be established in 50-65% of positive reactions, but accurate criteria are needed. Suggestions are made for large-scale investigation of several fragrances on the basis of literature data and frequency of use in cosmetics. The literature on adverse reactions to balsam of Peru (an indicator for fragrance sensitivity), essential oils (which currently appear to be used more in aromatherapy than in perfumery) and on fragrances used as flavours and spices in foods and beverages is not discussed in detail, but pertinent side-effects data are tabulated and relevant literature is

  12. Characterization of T cell responses to fragrances.

    PubMed

    Sieben, S; Hertl, M; Al Masaoudi, T; Merk, H F; Blömeke, B

    2001-05-01

    Fragrances are worldwide a major cause of allergic contact dermatitis (ACD), a delayed-type hypersensitivity reaction mediated by T lymphocytes. We investigated T cell responses to fragrances using peripheral blood mononuclear cells (PBMC) and T cells from skin lesions of fragrance-allergic patients. The components of a fragrance mixture (eugenol, isoeugenol, geraniol, oak moss, alpha-amyl cinnamic aldehyde, cinnamic aldehyde, cinnamic alcohol, and hydroxycitronellal) that is commonly used in the patch test were studied in vitro in the lymphocyte transformation test (LTT). PBMC from fragrance-allergic patients (n = 32) showed significant stimulations to all eight fragrances. The calculated stimulation indices (SI) varied between 2.1 and 21.8. The influence of metabolic enzymes on T cell stimulation was studied for two fragrances. Interestingly, stimulation of eugenol and isoeugenol was increased in the presence of antigen-modified human liver microsomes (CYP450) or recombinant CYP1A1 in five of seven cases. Furthermore, we established 18 T cell clones (TCC) from a skin lesion reacting specifically to eugenol. FACS analysis revealed that the majority (n = 15, 83%) of TCC were CD3(+), CD4(+), and HLA-DR(+). Seventeen percent (n = 3) of the clones were CD8(+). TCC (n = 4) released significant amounts of IL-2 and IFN-gamma but no IL-4 and IL-5. In addition, CD4(+) TCC (n = 3) showed antigen-induced cytotoxic activities against autologous B cells. In summary, we demonstrated for the first time that fragrance-specific CD4(+) and CD8(+) T lymphocytes are present in fragrance-allergic individuals. In addition, our results suggest that CYPs can be involved in the formation of the nominative antigen.

  13. Good quantification practices of flavours and fragrances by mass spectrometry

    PubMed Central

    Begnaud, Frédéric

    2016-01-01

    Over the past 15 years, chromatographic techniques with mass spectrometric detection have been increasingly used to monitor the rapidly expanded list of regulated flavour and fragrance ingredients. This trend entails a need for good quantification practices suitable for complex media, especially for multi-analytes. In this article, we present experimental precautions needed to perform the analyses and ways to process the data according to the most recent approaches. This notably includes the identification of analytes during their quantification and method validation, when applied to real matrices, based on accuracy profiles. A brief survey of application studies based on such practices is given. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644977

  14. Fragrance compounds and amphiphilic association structures.

    PubMed

    Friberg, S E

    1998-05-01

    Fragrance formulations have traditionally been based on alcohol as the solvent, but the recent legal restrictions on volatile organic solvents have prompted the industry to change to aqueous solubilized systems. The article reviews the fundamental factors in the application of such systems evaluating the influence by different amphiphilic association structures on the vapor pressure of fragrance compounds. This information is subsequently used to estimate the variation of fragrance compound vapor pressures during evaporation. The results reveal that the vapor pressure versus time variation is improved compared to solvent-based formulations.

  15. Tolerance of fragranced and fragrance-free facial cleansers in adults with clinically sensitive skin.

    PubMed

    Draelos, Zoe D; Fowler, Joseph; Larsen, Walter G; Hornby, Sidney; Walters, Russel M; Appa, Yohini

    2015-10-01

    Although mild, fragrance-free, nonfoaming cleansers generally are recommended for individuals with sensitive skin, many consumers choose fragranced foaming cleansers. The addition of hydrophobically modified polymers (HMPs) to mild facial cleansers has been shown to improve product tolerability in individuals with sensitive skin while facilitating foaming. The objective of the 2 studies reported here was to assess the tolerability of a mild, HMP-containing, foaming facial cleanser with a fragrance that was free of common allergens and irritating essential oils in patients with sensitive skin. In the first study, 8 participants with clinically diagnosed fragrance sensitivity used a gentle foaming HMP-containing facial cleanser with or without fragrance for 3 weeks. Both cleansers improved global disease severity, irritation, and erythema with similar cleansing effectiveness. The second study was a 3-week, prospective, double-blind, randomized, 2-center study of 153 participants with clinically diagnosed sensitive skin. In this study, the fragranced gentle foaming cleanser with HMP was as well tolerated as a benchmark gentle, fragrance-free, nonfoaming cleanser. Itching, irritation, and desquamation were most improved from baseline in both groups. The participant-rated effectiveness of the cleanser with HMP was similar or better than the benchmark cleanser after 3 weeks of use. In conclusion, the gentle facial cleanser with HMPs and a fragrance offers a new option for adults with sensitive skin who may prefer, and commonly use, a fragranced and foaming product.

  16. Patch tests with fragrance materials and preservatives.

    PubMed

    de Groot, A C; Liem, D H; Nater, J P; van Ketel, W G

    1985-02-01

    179 patients suspected of cosmetic allergy were patch tested with a series of 16 fragrance materials and 9 preservatives. In 67 patients (37.4%), 1 or more of these substances gave positive reactions. In the group of fragrance materials, the largest numbers of positive patch test reactions were seen to isoeugenol, oak moss, geraniol, alpha-amylcinnamic alcohol, and a mixture of alpha-amylcinnamic aldehyde and alpha-hexylcinnamic aldehyde. The fragrance mix in the ICDRG standard series detected nearly 80% of cases of contact allergy to fragrance materials other than its constituents. In the group of preservatives, Kathon CG and quaternium-15 scored the highest number of positive reactions. It is argued that the commonly used patch test concentrations of 2% for oak moss and geraniol may be too low to detect all cases of sensitization.

  17. Fragrance allergy in patients with hand eczema - a clinical study.

    PubMed

    Heydorn, Siri; Johansen, Jeanne Duus; Andersen, Klaus E; Bruze, Magnus; Svedman, Cecilia; White, Ian R; Basketter, David A; Menné, Torkil

    2003-06-01

    Fragrance allergy and hand eczema are both common among dermatological patients. Fragrance mix (FM) and its constituents have a recognized relevance to exposure to fine fragrances and cosmetic products. Based on extensive chemical analysis and database search, a new selection of fragrances was established, including 14 known fragrance allergens present in products to which hand exposure would occur. A non-irritating patch-test concentration for some fragrances was established in 212 consecutive patients. 658 consecutive patients presenting with hand eczema were patch tested with the European standard series and the developed selection of fragrances. 67 (10.2%) of the 658 patients had a positive reaction to 1 or more of our selection of fragrance chemicals present in the new selection. The most common reactions to fragrances not included in the FM were to citral, Lyral (hydroxyisohexyl-3-cyclohexene carboxaldehyde) and oxidized l-limonene. A concomitant reaction to the FM identified potential fragrance allergy in less than (1/2) of these patients. Exposure assessment and a statistically significant association between a positive patch test to our selected fragrances and patients' history support the relevance of this selection of fragrances. Those with a positive reaction to our selected fragrances were significantly more likely to have 1 or more positive patch tests in the standard series. This observation is the basis for the hypothesis concerning cross-reactivity and the effect of simultaneous exposure. The study found that fragrance allergy could be a common problem in patients with eczema on the hands.

  18. How to instruct patients sensitive to fragrances.

    PubMed

    Larsen, W G

    1989-10-01

    Patients who are sensitive to fragrances should either use fragrance-free cosmetics or undergo a repeat open application test to the cosmetic or perfume to determine sensitivity. Unusual reactions include systemic contact dermatitis due to balsam of Peru, benzyl alcohol, and menthol. Some responses involve pigmented eruptions due to phototoxic or photoallergic agents in perfumes and incense. Other reactions include consort dermatitis and reactions to toothpastes, gum and perfumes in paper products, sanitary napkins, ostomy pastes, and detergents.

  19. Determination of musk ambrette, musk xylol, and musk ketone in fragrance products by capillary gas chromatography with electron capture detection.

    PubMed

    Wisneski, H H

    2001-01-01

    A gas chromatographic method using a capillary column with electron capture detection was developed for the simultaneous determination of 3 nitromusk fragrance ingredients: musk ambrette (MA), musk xylol (MX), and musk ketone (MK), in fragrance products. The accuracy of the method was determined by recovery of each nitromusk from fortified fragrance products at 3 different concentrations. Recoveries ranged from 95.0 to 105.9% for MA, 88.4 to 102.5% for MX, and 93.7 to 103.7% for MK. The method was used to survey 30 fragrance products purchased in the Washington, DC, area for each of the nitromusks. MA was not found in any of the products. MX was found in 9 products at levels ranging from 0.001 to 0.22%; MK was found in 8 products at levels ranging from 0.023 to 0.45%. The presence of MX and MK was confirmed by gas chromatography/mass spectrometry in many of the fragrance products.

  20. Fragrance contact dermatitis in Korea: a joint study.

    PubMed

    An, Susun; Lee, Ai-Young; Lee, Cheol Heon; Kim, Do-Won; Hahm, Jeong Hee; Kim, Kea-Jeung; Moon, Kee-Chan; Won, Young Ho; Ro, Young-Suck; Eun, Hee Chul

    2005-12-01

    The purpose of this study is to determine the frequency of responses to selected fragrances in patients with suspected fragrance allergy and to evaluate the risk factors. 9 dermatology departments of university hospitals have participated in this study for the past 1 year. To determine allergic response to fragrances, 18 additional fragrances in addition to the Korean standard and a commercial fragrance series were patch-tested in patients with suspecting cosmetic contact dermatitis. Over 80% of the patients were women, and the most common site was the face. Cinnamic alcohol and sandalwood oil (Santalum album L.) showed high frequencies of positive responses. Of the specific fragrances, ebanol, alpha-isomethyl-ionone (methyl ionone-gamma) and Lyral (hydroxyisohexyl 3-cyclohexane carboxdaldehyde) showed high positive responses. We compared the results obtained during this study with those of other studies and concluded that including additional fragrance allergens may be useful for the detection of fragrance allergy.

  1. Fragrance material review on 1-(1,2,3,4,5,6,7,8-octahydro-2,3,8,8-tetramethyl-2-naphthalenyl)ethanone (OTNE).

    PubMed

    Scognamiglio, J; Letizia, C S; Politano, V T; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of 1-(1,2,3,4,5,6,7,8-octahydro-2,3,8,8-tetramethyl-2-naphthalenyl)ethanone (OTNE) when used as a fragrance ingredient is presented. OTNE is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for OTNE were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, photoallergy, toxicokinetics, repeated dose, reproductive toxicity, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (2013) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances.

  2. Fragrance sensitisers: Is inhalation an allergy risk?

    PubMed

    Basketter, David; Kimber, Ian

    2015-12-01

    It is well established that some fragrance substances have the potential to cause skin sensitisation associated with the development of allergic contact dermatitis (ACD). Fragrances are invariably relatively volatile leading to the consideration that inhalation of fragrances might be a relevant route for either the induction of allergic sensitisation or the elicitation of allergic reactions. Moreover, there has been increasing recognition that allergic sensitisation of the respiratory tract can be induced by topical exposure to certain chemical allergens. Here the central question addressed is whether inhalation exposure to fragrance allergens has the potential to cause skin and/or respiratory sensitisation via the respiratory tract, or elicit allergic symptoms in those already sensitised. In addressing those questions, the underlying immunobiology of skin and respiratory sensitisation to chemicals has been reviewed briefly, and the relevant experimental and clinical evidence considered. The essential mechanistic differences between skin and respiratory allergy appear consistent with other sources of information, including the phenomenon of ACD that can arise from topical exposure to airborne allergens, but in the absence of accompanying respiratory effects. The conclusion is that, in contrast to topical exposure (including topical exposure to airborne material), inhalation of fragrance sensitisers does not represent a health risk with respect to allergy.

  3. Understanding fragrance allergy using an exposure-based risk assessment approach.

    PubMed

    Gerberick, G F; Robinson, M K; Felter, S P; White, I R; Basketter, D A

    2001-12-01

    Conducting a sound skin sensitization risk assessment prior to the introduction of new ingredients and products into the market place is essential. The process by which low-molecular-weight chemicals induce and elicit skin sensitization is dependent on many factors, including the ability of the chemical to penetrate the skin, react with protein, and trigger a cell-mediated immune response. Based on our chemical, cellular and molecular understanding of allergic contact dermatitis, it is possible to carry out a quantitative risk assessment. Specifically, by estimating the exposure to the allergen and its allergenic potency, it is feasible to assess quantitatively the sensitization risk of an ingredient in a particular product type. This paper focuses on applying exposure-based risk assessment tools to understanding fragrance allergy for 2 hypothetical products containing the fragrance allergen cinnamic aldehyde. The risk assessment process predicts that an eau de toilette leave-on product containing 1000 ppm or more cinnamic aldehyde would pose an unacceptable risk of induction of skin sensitization, while a shampoo, containing the same level of cinnamic aldehyde, would pose an acceptable risk of induction of skin sensitization, based on limited exposure to the ingredient from a rinse-off product application.

  4. Fragrance material review on 3-methyl-5-(2,2,3-trimethyl-3-cyclopenten-1-yl)pent-3-en-2-one.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of 3-methyl-5-(2,2,3-trimethyl-3-cyclopenten-1-yl)pent-3-en-2-one when used as a fragrance ingredient is presented. 3-Methyl-5-(2,2,3-trimethyl-3-cyclopenten-1-yl)pent-3-en-2-one is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 3-methyl-5-(2,2,3-trimethyl-3-cyclopenten-1-yl)pent-3-en-2-one were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, sensitization, phototoxicity, photoallergy, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones when used as fragrance ingredients. Submitted for publication) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances.

  5. Citral a fragrance allergen and irritant.

    PubMed

    Heydorn, S; Menné, T; Andersen, K E; Bruze, M; Svedman, C; White, I R; Basketter, D A

    2003-07-01

    Citral is a well known contact allergen and a contact irritant. Routine patch testing in the past may have been restricted because of possible irritant (IR) patch test responses. 586 consecutive patients, with hand eczema, were patch tested with a selection of fragrances including citral 2% petrolatum and the European standard series. 28 of the patients showed a positive patch test reaction (+ to +++) to citral and 82 at least 1 IR patch test reaction and no positive patch test reaction to citral. A statistically significant association between a positive patch test reaction to citral and positive patch test reactions to other fragrances compared with IR reactions (n = 82) was established. The difference regarding fragrance history found between those with IR and positive reactions to citral was not significant. Citral could be an allergen and/or irritant, worthy of further more extensive studies.

  6. Contact dermatitis to cosmetics, fragrances, and botanicals.

    PubMed

    Ortiz, Karel J; Yiannias, James A

    2004-01-01

    Cosmetics, fragrances, and botanicals are important causes of allergic contact dermatitis. Identifying and avoiding the causative allergens can pose a challenge to both the patient and the dermatologist. The site of involvement can give the investigator clues to the cause of the eruption in many cases. Fragrances and preservatives are the two most clinically relevant allergens in cosmetics. Botanicals are being added to cosmetics because of consumer demand and are now being recognized as sources of allergy as well. Patch testing allows for the detection of allergens that are potentially relevant in the genesis of the patient's eczema. Common skin-care product allergens, including fragrances and botanicals as well as those found in sunscreen, nail, and hair-care products, are reviewed. Practical methods of allergen avoidance are also discussed.

  7. Integrated Control of Axonemal Dynein AAA+ Motors

    PubMed Central

    King, Stephen M.

    2012-01-01

    Axonemal dyneins are AAA+ enzymes that convert ATP hydrolysis to mechanical work. This leads to the sliding of doublet microtubules with respect to each other and ultimately the generation of ciliary/flagellar beating. However, in order for useful work to be generated, the action of individual dynein motors must be precisely controlled. In addition, cells modulate the motility of these organelles through a variety of second messenger systems and these signals too must be integrated by the dynein motors to yield an appropriate output. This review describes the current status of efforts to understand dynein control mechanisms and their connectivity focusing mainly on studies of the outer dynein arm from axonemes of the unicellular biflagellate green alga Chlamydomonas. PMID:22406539

  8. Lavender fragrance cleansing gel effects on relaxation.

    PubMed

    Field, Tiffany; Diego, Miguel; Hernandez-Reif, Maria; Cisneros, Wendy; Feijo, Larissa; Vera, Yanexy; Gil, Karla; Grina, Diana; Claire He, Qing

    2005-02-01

    Alertness, mood, and math computations were assessed in 11 healthy adults who sniffed a cosmetic cleansing gel with lavender floral blend aroma, developed to be relaxing using Mood Mapping. EEG patterns and heart rate were also recorded before, during, and after the aroma session. The lavender fragrance blend had a significant transient effect of improving mood, making people feel more relaxed, and performing the math computation faster. The self-report and physiological data are consistent with relaxation profiles during other sensory stimuli such as massage and music, as reported in the literature. The data suggest that a specific cosmetic fragrance can have a significant role in enhancing relaxation.

  9. AAAS Communicating Science Program: Reflections on Evaluation

    NASA Astrophysics Data System (ADS)

    Braha, J.

    2015-12-01

    The AAAS Center for Public Engagement (Center) with science builds capacity for scientists to engage public audiences by fostering collaboration among natural or physical scientists, communication researchers, and public engagement practitioners. The recently launched Leshner Leadership Institute empowers cohorts of mid-career scientists to lead public engagement by supporting their networks of scientists, researchers, and practitioners. The Center works closely with social scientists whose research addresses science communication and public engagement with science to ensure that the Communicating Science training program builds on empirical evidence to inform best practices. Researchers ( Besley, Dudo, & Storkdieck 2015) have helped Center staff and an external evaluator develop pan instrument that measures progress towards goals that are suggested by the researcher, including internal efficacy (increasing scientists' communication skills and confidence in their ability to engage with the public) and external efficacy (scientists' confidence in engagement methods). Evaluation results from one year of the Communicating Science program suggest that the model of training yields positive results that support scientists in the area that should lead to greater engagement. This talk will explore the model for training, which provides a context for strategic communication, as well as the practical factors, such as time, access to public engagement practitioners, and technical skill, that seems to contribute to increased willingness to engage with public audiences. The evaluation program results suggest willingness by training participants to engage directly or to take preliminary steps towards engagement. In the evaluation results, 38% of trained scientists reported time as a barrier to engagement; 35% reported concern that engagement would distract from their work as a barrier. AAAS works to improve practitioner-researcher-scientist networks to overcome such barriers.

  10. Fragrance contact dermatitis: a worldwide multicenter investigation (Part II).

    PubMed

    Larsen, W; Nakayama, H; Fischer, T; Elsner, P; Frosch, P; Burrows, D; Jordan, W; Shaw, S; Wilkinson, J; Marks, J; Sugawara, M; Nethercott, M; Nethercott, J

    2001-06-01

    The purpose of this study was to determine the frequency of responses to selected fragrance materials in patients who were fragrance sensitive. 178 patients were evaluated in 8 centers worldwide with a fragrance mix (FM) and 20 other fragrance materials. Reaction to the fragrance mixture (FM) occurred in 78.7% of the subjects. Substances reacting at a rate of 2% or higher included jasmine absolute, geranium oil bourbon, l-citronellol, spearmint oil, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-gamma-2-benzopyran, omega-6-hexadecenlactone, dimethyltetrahydrobenzaldehyde (isomer mixture), and alpha-amylcinnamaldehyde. These chemicals should be furthur evaluated to corroborate their allergenicity. We are constantly looking for new fragrance allergens to extend the diagnostic capability of the fragrance mix (FM).

  11. Fragrance contact dermatitis - a worldwide multicenter investigation (Part III).

    PubMed

    Larsen, Walter; Nakayama, Hideo; Fischer, Torkil; Elsner, Peter; Frosch, Peter; Burrows, Desmond; Jordan, William; Shaw, Stephanie; Wilkinson, John; Marks, James; Sugawara, M; Nethercott, Marc; Nethercott, James

    2002-03-01

    The purpose of this study was to determine the frequency of responses to selected fragrance materials in patients who were fragrance sensitive. 218 fragrance sensitive subjects were evaluated in eight centres worldwide with a fragrance mixture (FM) and 17 less well-studied fragrance materials. Reaction to the fragrance mixture (FM) occurred in 76% of the subjects. The (FM) detected all reactions to nerol and hydroxycitronellol and 93% of the reactions to clove bud oil. Ten fragrance materials were not detected by the FM and deserve further study: benzenepropanol, beta, beta, 3-trimethyl, hexyl-salicylate, dl-citronellol, synthetic ylang ylang oil, benzyl mixture, cyclohexyl-acetate, eugenyl methyl ether, isoeugenyl methyl ether, 3-phenyl-1-propanol, and 3, 7-dimethyl-7-methoxyoctan-2-ol.

  12. Fragrance contact dermatitis - a worldwide multicenter investigation (Part III).

    PubMed

    Larsen, Walter; Nakayama, Hideo; Fischer, Torkil; Elsner, Peter; Frosch, Peter; Burrows, Desmond; Jordan, William; Shaw, Stephanie; Wilkinson, John; Marks, James; Sugawara, M; Nethercott, Marc; Nethercott, James

    2002-03-01

    The purpose of this study was to determine the frequency of responses to selected fragrance materials in patients who were fragrance sensitive. 218 fragrance sensitive subjects were evaluated in eight centres worldwide with a fragrance mixture (FM) and 17 less well-studied fragrance materials. Reaction to the fragrance mixture (FM) occurred in 76% of the subjects. The (FM) detected all reactions to nerol and hydroxycitronellol and 93% of the reactions to clove bud oil. Ten fragrance materials were not detected by the FM and deserve further study: benzenepropanol, beta, beta, 3-trimethyl, hexyl-salicylate, dl-citronellol, synthetic ylang ylang oil, benzyl mixture, cyclohexyl-acetate, eugenyl methyl ether, isoeugenyl methyl ether, 3-phenyl-1-propanol, and 3, 7-dimethyl-7-methoxyoctan-2-ol. PMID:12000321

  13. Acute toxic effects of fragrance products.

    PubMed

    Anderson, R C; Anderson, J H

    1998-01-01

    To evaluate whether fragrance products can produce acute toxic effects in mammals, we allowed groups of male Swiss-Webster mice to breathe the emissions of five commercial colognes or toilet water for 1 h. We used the ASTM-E-981 test method to evaluate sensory irritation and pulmonary irritation. We used a computerized version of this test to measure the duration of the break at the end of inspiration and the duration of the pause at the end of expiration. Decreases in expiratory flow velocity indicated airflow limitation. We subjected the mice to a functional observational battery to probe for changes in nervous system function. The emissions of these fragrance products caused various combinations of sensory irritation, pulmonary irritation, decreases in expiratory airflow velocity, as well as alterations of the functional observational battery indicative of neurotoxicity. Neurotoxicity was more severe after mice were repeatedly exposed to the fragrance products. Evaluation of one of the test atmospheres with gas chromatography/mass spectrometry revealed the presence of chemicals for which irritant and neurotoxic properties had been documented previously. In summary, some fragrance products emitted chemicals that caused a variety of acute toxicities in mice.

  14. Sorbent trapping solid-phase microextraction of fragrance allergens in indoor air.

    PubMed

    Lamas, J Pablo; Sanchez-Prado, Lucia; Lores, Marta; Garcia-Jares, Carmen; Llompart, Maria

    2010-08-13

    Exposure to fragrance substances is exponentially increasing in our daily life due to the enhanced use of scented products. Some fragrances are known to be important sensitizers, inhalation being an important exposure pathway in indoor environments. A simple and sensitive method based on solid-phase enrichment and solid-phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS) has been developed for the analysis of 24 volatile fragrance allergens in indoor air. Suspected allergens present in the air (0.2 m(3)) were adsorbed onto a very small quantity of florisil (25 mg) and then transferred to a SPME fiber in the headspace mode (HS). To the best of our knowledge, this paper describes the first application of SPME for the determination of these compounds in air samples. The experimental parameters affecting the microextraction process have been optimized using a multifactor experimental design strategy. Accuracy, linearity, precision and detection limits (LODs) were evaluated to assess the performance of the proposed method. External calibration, using spiked sorbent standards, and not requiring the complete sampling process (only the SPME step), demonstrated to be suitable for the quantification of all suspected allergens. Recovery studies were performed at three concentration levels (0.04, 1.00 and 50 microg m(-3)), obtaining quantitative recoveries (> or = 85%) in most cases. LOD values at the low ng m(-3) level were achieved for all the target compounds. The application of the method to daily home air samples demonstrated the ubiquity of this kind of fragrance ingredients in quotidian indoor environments, finding 18 of the 24 considered compounds in concentrations ranging from 0.01 to 56 microg m(-3). Benzyl alcohol, linalool, citronellol, ionone and lilial were found in most analyzed samples.

  15. Intraspecific geographic variation of fragrances acquired by orchid bees in native and introduced populations.

    PubMed

    Ramírez, Santiago R; Eltz, Thomas; Fritzsch, Falko; Pemberton, Robert; Pringle, Elizabeth G; Tsutsui, Neil D

    2010-08-01

    Male orchid bees collect volatiles, from both floral and non-floral sources, that they expose as pheromone analogues (perfumes) during courtship display. The chemical profile of these perfumes, which includes terpenes and aromatic compounds, is both species-specific and divergent among closely related lineages. Thus, fragrance composition is thought to play an important role in prezygotic reproductive isolation in euglossine bees. However, because orchid bees acquire fragrances entirely from exogenous sources, the chemical composition of male perfumes is prone to variation due to environmental heterogeneity across habitats. We used Gas Chromatography/Mass Spectrometry (GC/MS) to characterize the perfumes of 114 individuals of the green orchid bee (Euglossa aff. viridissima) sampled from five native populations in Mesoamerica and two naturalized populations in the southeastern United States. We recorded a total of 292 fragrance compounds from hind-leg extracts, and found that overall perfume composition was different for each population. We detected a pronounced chemical dissimilarity between native (Mesoamerica) and naturalized (U.S.) populations that was driven both by proportional differences of common compounds as well as the presence of a few chemicals unique to each population group. Despite these differences, our data also revealed remarkable qualitative consistency in the presence of several major fragrance compounds across distant populations from dissimilar habitats. In addition, we demonstrate that naturalized bees are attracted to and collect large quantities of triclopyr 2-butoxyethyl ester, the active ingredient of several commercially available herbicides. By comparing incidence values and consistency indices across populations, we identify putative functional compounds that may play an important role in courtship signaling in this species of orchid bee.

  16. The Research Institute for Fragrance Materials' human repeated insult patch test protocol.

    PubMed

    Politano, Valerie T; Api, Anne Marie

    2008-10-01

    With implementation of the dermal sensitization QRA approach for fragrance ingredients, IFRA/RIFM are recommending use of the RIFM standard human repeated insult patch test (HRIPT) protocol for generation of confirmatory human data for the induction of dermal sensitization in a normal human population. Details of this standard HRIPT protocol are provided in this paper. The study protocol consists of two phases--Induction and Challenge. In the Induction phase, patches treated with fragrance ingredients in 75% diethyl phthalate/25% ethanol are applied to backs of volunteers for 24h. Following patch removal there is a 24-h rest period and volunteers are patched again at the same site. This procedure is repeated to achieve 9 applications over a 3-week period. There is an approximate 2-week rest period followed by a Challenge phase of a single 24-h patch application of test article applied to a naïve site on the back. Skin reactions at the naïve site observed at Challenge may be suggestive of dermal sensitization, and a Rechallenge is performed to confirm the nature of the reactivity. This study is designed to confirm the No-Observed-Effect-Level for induction of dermal sensitization in a normal human population.

  17. Safety of ingredients used in cosmetics.

    PubMed

    Bergfeld, Wilma F; Belsito, Donald V; Marks, James G; Andersen, F Alan

    2005-01-01

    The Cosmetic Ingredient Review (CIR) program was established in 1976 by the Cosmetics, Toiletry, and Fragrance Association, with the support of the Food and Drug Administration (FDA) and the Consumer Federation of America (CFA). CIR performs independent, expert reviews to determine if ingredients used in cosmetics are safe. CIR staff prepares summaries of available data and the CIR Expert Panel reviews the data in open, public meetings. If more data are needed, requests are made. Unpublished studies may be provided, but become public and available for review once summarized in CIR safety assessments. Tentative conclusions are supported with a rationale and public comment is sought. Taking any input into consideration, a final safety assessment monograph is issued. These monographs are submitted for publication in the peer-reviewed International Journal of Toxicology . To date, 1194 individual cosmetic ingredients have been addressed. Of these, 683 were found to be safe in cosmetics in the present practices of use and concentration. With qualifications, another 388 have been found safe for use in cosmetics; specific qualifications for each are given. Nine ingredients have been deemed unsafe for use in cosmetics and the safety issue has been described. The available data were found insufficient to support the safety of 114 ingredients; the needed data are listed. Hair dyes represent an important product category reviewed by CIR. In considering hair dyes, the CIR Expert Panel reviews experimental and clinical data specific to the particular chemical structure of each hair dye and reviews epidemiologic studies that address hair dye use that are less specific. Recently the CIR Expert Panel concluded that the available epidemiologic studies are insufficient to conclude there is a causal relationship between hair dye use and cancer and other end points. It is inevitable that new information will become available concerning ingredients for which safety assessments were

  18. Fundamental Characteristics of AAA+ Protein Family Structure and Function

    PubMed Central

    2016-01-01

    Many complex cellular events depend on multiprotein complexes known as molecular machines to efficiently couple the energy derived from adenosine triphosphate hydrolysis to the generation of mechanical force. Members of the AAA+ ATPase superfamily (ATPases Associated with various cellular Activities) are critical components of many molecular machines. AAA+ proteins are defined by conserved modules that precisely position the active site elements of two adjacent subunits to catalyze ATP hydrolysis. In many cases, AAA+ proteins form a ring structure that translocates a polymeric substrate through the central channel using specialized loops that project into the central channel. We discuss the major features of AAA+ protein structure and function with an emphasis on pivotal aspects elucidated with archaeal proteins. PMID:27703410

  19. Fragrance material review on (3aalpha,4alpha,6alpha,7alpha,7aalpha)-3a,4,5,6,7,7a-hexahydro-3-methyl-5-methylene-4,7-methano-1H-inden-6-yl acetate.

    PubMed

    Bhatia, S P; Jones, L; Letizia, C S; Api, A M

    2008-12-01

    A toxicologic and dermatologic review of (3aalpha,4alpha,6alpha,7alpha,7aalpha)-3a,4,5,6,7,7a-hexahydro-3-methyl-5-methylene-4,7-methano-1H-inden-6-yl acetate when used as a fragrance ingredient is presented.

  20. Inhibitors of the AAA+ Chaperone p97

    PubMed Central

    Chapman, Eli; Maksim, Nick; de la Cruz, Fabian; La Clair, James J.

    2015-01-01

    It is remarkable that a pathway as ubiquitous as protein quality control can be targeted to treat cancer. Bortezomib, an inhibitor of the proteasome, was first approved by the US Food and Drug Administration (FDA) more than 10 years ago to treat refractory myeloma and later extended to lymphoma. Its use has increased the survival rate of myeloma patients by as much as three years. This success was followed with the recent accelerated approval of the natural product derived proteasome inhibitor carfilzomib (Kyprolis®), which is used to treat patients with bortezomib-resistant multiple myeloma. The success of these two drugs has validated protein quality control as a viable target to fight select cancers, but begs the question why are proteasome inhibitors limited to lymphoma and myeloma? More recently, these limitations have encouraged the search for additional targets within the protein quality control system that might offer heightened cancer cell specificity, enhanced clinical utility, a lower rate of resistance, reduced toxicity, and mitigated side effects. One promising target is p97, an ATPase associated with various cellular activities (AAA+) chaperone. p97 figures prominently in protein quality control as well as serving a variety of other cellular functions associated with cancer. More than a decade ago, it was determined that up-regulation of p97 in many forms of cancer correlates with a poor clinical outcome. Since these initial discoveries, a mechanistic explanation for this observation has been partially illuminated, but details are lacking. Understandably, given this clinical correlation, myriad roles within the cell, and its importance in protein quality control, p97 has emerged as a potential therapeutic target. This review provides an overview of efforts towards the discovery of small molecule inhibitors of p97, offering a synopsis of efforts that parallel the excellent reviews that currently exist on p97 structure, function, and physiology. PMID

  1. European Directive fragrances in natural products.

    PubMed

    Scheman, Andrew; Scheman, Nicole; Rakowski, Ella-Marie

    2014-01-01

    Information on the presence of European Directive fragrance (EUF) allergens in plants and foods is important for numerous reasons. If an individual is allergic to an EUF and is avoiding fragrance, it is possible that they may still be exposed to the allergen in a natural product. In addition, because many of these allergens are also found in foods, it is possible that ingestion of a food containing the allergen may induce systemic contact allergy. Finally, individuals with lip dermatitis may react to contact with foods that contain the allergen. In this article, we have used the data available to identify which plants and foods contain EUF. When available, concentrations of EUF in natural products are provided. The goal of this article is to narrow down the list of botanicals to avoid for specific EUF allergies.

  2. Modeling ready biodegradability of fragrance materials.

    PubMed

    Ceriani, Lidia; Papa, Ester; Kovarich, Simona; Boethling, Robert; Gramatica, Paola

    2015-06-01

    In the present study, quantitative structure activity relationships were developed for predicting ready biodegradability of approximately 200 heterogeneous fragrance materials. Two classification methods, classification and regression tree (CART) and k-nearest neighbors (kNN), were applied to perform the modeling. The models were validated with multiple external prediction sets, and the structural applicability domain was verified by the leverage approach. The best models had good sensitivity (internal ≥80%; external ≥68%), specificity (internal ≥80%; external 73%), and overall accuracy (≥75%). Results from the comparison with BIOWIN global models, based on group contribution method, show that specific models developed in the present study perform better in prediction than BIOWIN6, in particular for the correct classification of not readily biodegradable fragrance materials.

  3. Accenting Fashion: Cosmetics, Toiletries and Fragrances. Resources in Technology.

    ERIC Educational Resources Information Center

    Threlfall, K. Denise; Ritz, John M.

    1994-01-01

    Presents information on the manufacture of cosmetics, toiletries, and fragrances. Includes a design brief, giving context, challenge, objectives, material and equipment needs, evaluation, student outcomes, and quiz. (SK)

  4. Microencapsulated fragrances in melamine formaldehyde resins.

    PubMed

    Bône, Stéphane; Vautrin, Claire; Barbesant, Virginie; Truchon, Stéphane; Harrison, Ian; Geffroy, Cédric

    2011-01-01

    The process for making melamine formaldehyde microcapsules containing fragrant oil is well-known. Recently, this technology has been used to enhance the olfactory performance on fabrics. However keeping the fragrance in the capsule during storage, improving the olfactory benefit and releasing a low amount of formaldehyde is highly challenging. To answer these challenges, Givaudan has developed its own melamine formaldehyde microcapsule, called Mechacaps, which is described in this article.

  5. Contact allergy to cosmetics: causative ingredients.

    PubMed

    de Groot, A C

    1987-07-01

    Of 1781 patients with contact dermatitis seen during a period of 6 years (1981-1986), 75 (4.2%) had allergy to cosmetic products. The face was most frequently affected. In many cases, the dermatitis was limited to the eyelids (18.7%) or the face (40.0%). Skin care products (moisturizing and cleansing cream/lotion/milk) accounted for more than half (52.3%), followed by nail cosmetics (8.0%), shaving preparations (8.0%) and deodorants (6.8%). The ingredients most often responsible were fragrances (45.1%), followed by the preservative Kathon CG (11.0%) and the emulsifier oleamidopropyl dimethylamine (9.8%). In 14 patients (18.7%), patch tests with the responsible cosmetic product were negative. In them, the diagnosis was made by use tests and/or repeated open application tests. Compulsory declaration of ingredients on cosmetic product labels in the EEC, analagous to the USA situation, would be of great benefit both to patients and to physicians.

  6. Evaluation of phototoxic properties of fragrances.

    PubMed

    Placzek, Marianne; Frömel, Wolfgang; Eberlein, Bernadette; Gilbertz, Klaus-Peter; Przybilla, Bernhard

    2007-01-01

    Fragrances are widely used in topical formulations and can cause photoallergic or phototoxic reactions. To identify phototoxic effects, 43 fragrances were evaluated in vitro with a photohaemolysis test using suspensions of human erythrocytes exposed to radiation sources rich in ultraviolet (UV) A or B in the presence of the test compounds. Haemolysis was measured by reading the absorbance values, and photohaemolysis was calculated as a percentage of total haemolysis. Oakmoss caused photohaemolysis of up to 100% with radiation rich in UVA and up to 26% with radiation rich in UVB. Moderate UVA-induced haemolysis (5-11%) was found with benzyl alcohol, bergamot oil, costus root oil, lime oil, orange oil, alpha-amyl cinnamic aldehyde and laurel leaf oil. Moderate UVB-induced haemolysis was induced by hydroxy citronellal, cinnamic alcohol, cinnamic aldehyde, alpha-amyl cinnamic aldehyde and laurel leaf oil. The phototoxic effects depended on the concentration of the compounds and the UV doses administered. We conclude that some, but not all, fragrances exert phototoxic effects in vitro. Assessment of the correlation of the clinical effects of these findings could lead to improved protection of the skin from noxious compounds.

  7. Effect of fragrance use on discrimination of individual body odor

    PubMed Central

    Allen, Caroline; Havlíček, Jan; Roberts, S. Craig

    2015-01-01

    Previous research suggests that artificial fragrances may be chosen to complement or enhance an individual’s body odor, rather than simply masking it, and that this may create an odor blend with an emergent quality that is perceptually distinguishable from body odor or fragrance alone. From this, it can be predicted that a new emergent odor might be more easily identified than an individual’s body odor in isolation. We used a triangle test paradigm to assess whether fragrance affects people’s ability to distinguish between individual odors. Six male and six female donors provided axillary odor samples in three conditions (without fragrance, wearing their own fragrance, and wearing an assigned fragrance). In total, 296 female and 131 male participants selected the odd one from three odor samples (two from one donor, one from another; both of the same sex). We found that participants could discriminate between the odors at above chance levels in all three odor conditions. Olfactory identification ability (measured using Sniffin’ Sticks) positively predicted discrimination performance, and sex differences in performance were also observed, with female raters being correct more often than men. Success rates were also higher for odors of male donors. Additionally, while performance was above chance in all conditions, individual odor discrimination varied across the three conditions. Discrimination rate was significantly higher in the “no fragrance” condition than either of the fragranced conditions. Importantly, however, discrimination rate was also significantly higher in the “own fragrance” condition than the “assigned fragrance” condition, suggesting that naturally occurring variance in body odor is more preserved when blended with fragrances that people choose for themselves, compared with other fragrances. Our data are consistent with the idea that fragrance choices are influenced by fragrance interactions with an individual’s own body odor

  8. Fragrance material review on 1-[5(or 6)-methyl-7(or 8)-1-(methylethyl)bicyclo[2.2.2]oct-5-en-2-yl]ethan-1-one.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of 1-[5(Or 6)-Methyl-7(or 8)-1-(methylethyl)bicyclo[2.2.2]oct-5-en-2-yl]ethan-1-one when used as a fragrance ingredient is presented. 1-[5(Or 6)-Methyl-7(or 8)-1-(methylethyl)bicyclo[2.2.2]oct-5-en-2-yl]ethan-1-one is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1-[5(Or 6)-Methyl-7(or 8)-1-(methylethyl)bicyclo[2.2.2]oct-5-en-2-yl]ethan-1-one were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, phototoxicity, photoallergy, and genotoxicity, data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al., Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients. (submitted for publication)). for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances.

  9. Role of AAA(+)-proteins in peroxisome biogenesis and function.

    PubMed

    Grimm, Immanuel; Erdmann, Ralf; Girzalsky, Wolfgang

    2016-05-01

    Mutations in the PEX1 gene, which encodes a protein required for peroxisome biogenesis, are the most common cause of the Zellweger spectrum diseases. The recognition that Pex1p shares a conserved ATP-binding domain with p97 and NSF led to the discovery of the extended family of AAA+-type ATPases. So far, four AAA+-type ATPases are related to peroxisome function. Pex6p functions together with Pex1p in peroxisome biogenesis, ATAD1/Msp1p plays a role in membrane protein targeting and a member of the Lon-family of proteases is associated with peroxisomal quality control. This review summarizes the current knowledge on the AAA+-proteins involved in peroxisome biogenesis and function.

  10. Fragrance mix reactions and lime allergic contact dermatitis.

    PubMed

    Swerdlin, Amy; Rainey, David; Storrs, Frances J

    2010-01-01

    Allergic contact dermatitis due to citrus fruits is rare, but has been reported in cooks and bartenders. We report an interesting case of a bartender with hand dermatitis who had an allergic contact sensitivity to lime peel, fragrance mix I, and fragrance mix II. Most reported cases of citrus peel allergy are due to d-limonene, which makes up the majority of the peel oil. However, our patient had an allergic reaction to geraniol, which is a minor component of the peel oil and is present in fragrance mix I. It is important to consider a contact sensitivity to citrus in patients who have positive reactions to fragrance mix I and II and who are occupationally exposed to citrus fruits. An initial positive reaction to fragrance mixes should prompt further testing to citrus in these individuals.

  11. Fragrance mix reactions and lime allergic contact dermatitis.

    PubMed

    Swerdlin, Amy; Rainey, David; Storrs, Frances J

    2010-01-01

    Allergic contact dermatitis due to citrus fruits is rare, but has been reported in cooks and bartenders. We report an interesting case of a bartender with hand dermatitis who had an allergic contact sensitivity to lime peel, fragrance mix I, and fragrance mix II. Most reported cases of citrus peel allergy are due to d-limonene, which makes up the majority of the peel oil. However, our patient had an allergic reaction to geraniol, which is a minor component of the peel oil and is present in fragrance mix I. It is important to consider a contact sensitivity to citrus in patients who have positive reactions to fragrance mix I and II and who are occupationally exposed to citrus fruits. An initial positive reaction to fragrance mixes should prompt further testing to citrus in these individuals. PMID:20646673

  12. Final report on the safety assessment of Cocos nucifera (coconut) oil and related ingredients.

    PubMed

    Burnett, Christina L; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2011-05-01

    Cocos nucifera (coconut) oil, oil from the dried coconut fruit, is composed of 90% saturated triglycerides. It may function as a fragrance ingredient, hair conditioning agent, or skin-conditioning agent and is reported in 626 cosmetics at concentrations from 0.0001% to 70%. The related ingredients covered in this assessment are fatty acids, and their hydrogenated forms, corresponding fatty alcohols, simple esters, and inorganic and sulfated salts of coconut oil. The salts and esters are expected to have similar toxicological profiles as the oil, its hydrogenated forms, and its constituent fatty acids. Coconut oil and related ingredients are safe as cosmetic ingredients in the practices of use and concentration described in this safety assessment.

  13. Ingredients: where pet food starts.

    PubMed

    Thompson, Angele

    2008-08-01

    Every clinician is asked "What should I feed my pet?" Understanding the ingredients in pet food is an important part of making the best recommendation. Pet food can be as simple as one ingredient or as complicated as containing more than 60 ingredients. Pet food and its ingredients are regulated by the Food and Drug Administration and state feed officials. Part of that regulation is the review and definition of ingredients. Existing ingredients change and new ingredients become available so the need for ingredient definitions grows. Ingredients for product formulations are chosen based on their nutrient content, digestibility, palatability, functionality, availability, and cost. As an example, a typical, nutritionally complete dry dog food with 42 ingredients is examined and the ingredients are discussed here. Safe, healthy pet food starts with safe ingredients sourced from well-monitored suppliers. The ultimate goal of both veterinarians and pet food manufacturers is the same--long healthy lives for dogs and cats.

  14. Homogeneous asymmetric catalysis in fragrance chemistry.

    PubMed

    Ciappa, Alessandra; Bovo, Sara; Bertoldini, Matteo; Scrivanti, Alberto; Matteoli, Ugo

    2008-06-01

    Opposite enantiomers of a chiral fragrance may exhibit different olfactory activities making a synthesis in high enantiomeric purity commercially and scientifically interesting. Accordingly, the asymmetric synthesis of four chiral odorants, Fixolide, Phenoxanol, Citralis, and Citralis Nitrile, has been investigated with the aim to develop practically feasible processes. In the devised synthetic schemes, the key step that leads to the formation of the stereogenic center is the homogeneous asymmetric hydrogenation of a prochiral olefin. By an appropriate choice of the catalyst and the reaction conditions, Phenoxanol, Citralis, and Citralis Nitrile were obtained in high enantiomeric purity, and odor profiles of the single enantiomers were determined.

  15. Psychology of fragrance use: perception of individual odor and perfume blends reveals a mechanism for idiosyncratic effects on fragrance choice.

    PubMed

    Lenochová, Pavlína; Vohnoutová, Pavla; Roberts, S Craig; Oberzaucher, Elisabeth; Grammer, Karl; Havlíček, Jan

    2012-01-01

    Cross-culturally, fragrances are used to modulate body odor, but the psychology of fragrance choice has been largely overlooked. The prevalent view is that fragrances mask an individual's body odor and improve its pleasantness. In two experiments, we found positive effects of perfume on body odor perception. Importantly, however, this was modulated by significant interactions with individual odor donors. Fragrances thus appear to interact with body odor, creating an individually-specific odor mixture. In a third experiment, the odor mixture of an individual's body odor and their preferred perfume was perceived as more pleasant than a blend of the same body odor with a randomly-allocated perfume, even when there was no difference in pleasantness between the perfumes. This indicates that fragrance use extends beyond simple masking effects and that people choose perfumes that interact well with their own odor. Our results provide an explanation for the highly individual nature of perfume choice.

  16. Psychology of Fragrance Use: Perception of Individual Odor and Perfume Blends Reveals a Mechanism for Idiosyncratic Effects on Fragrance Choice

    PubMed Central

    Lenochová, Pavlína; Vohnoutová, Pavla; Roberts, S. Craig; Oberzaucher, Elisabeth; Grammer, Karl; Havlíček, Jan

    2012-01-01

    Cross-culturally, fragrances are used to modulate body odor, but the psychology of fragrance choice has been largely overlooked. The prevalent view is that fragrances mask an individual's body odor and improve its pleasantness. In two experiments, we found positive effects of perfume on body odor perception. Importantly, however, this was modulated by significant interactions with individual odor donors. Fragrances thus appear to interact with body odor, creating an individually-specific odor mixture. In a third experiment, the odor mixture of an individual's body odor and their preferred perfume was perceived as more pleasant than a blend of the same body odor with a randomly-allocated perfume, even when there was no difference in pleasantness between the perfumes. This indicates that fragrance use extends beyond simple masking effects and that people choose perfumes that interact well with their own odor. Our results provide an explanation for the highly individual nature of perfume choice. PMID:22470479

  17. Organic Pesticide Ingredients

    MedlinePlus

    ... Control a pest Integrated Pest Management What are pesticides? Herbicides Disinfectants Fungicides Insecticides Natural and Biological Pesticides ... Other types of pesticides Disponible en español Organic Pesticide Ingredients Organic foods are not necessarily pesticide-free. ...

  18. An investigation of internal phase losses during the microencapsulation of fragrances.

    PubMed

    Flores, R J; Wall, M D; Carnahan, D W; Orofino, T A

    1992-01-01

    Prototype fragrances, prepared from common fragrance components, were extracted with water, recovered, and characterized by gas chromatography before and after the water treatment, revealing a significant loss of the more water-soluble components. Unextracted prototype fragrances were also microencapsulated by a gelatin/gum arabic coacervation process. The microencapsulated fragrance oils were recovered from the microcapsules, using pepsin enzyme to open up the capsules. Comparison of GC results of microencapsulated fragrance oil versus unencapsulated oil showed many of the changes could be ascribed to solubility losses of the more water-soluble components to the process water. Deliberate inclusion of toluene as a fragrance component in one of the prototype fragrances showed that some losses of highly volatile fragrance components can be expected during microencapsulation; but because most fragrance components do not approach the volatility of toluene, such losses are expected to be minimal. Chromatograms taken before and after microencapsulation of two commercial fragrances are discussed.

  19. Distribution of Wall Stress in Abdominal Aortic Aneurysm (AAA)

    NASA Astrophysics Data System (ADS)

    Lasheras, Juan

    2005-11-01

    Abdominal aortic aneurysm (AAA) rupture is believed to occur when the mechanical stress acting on the wall exceeds the strength of the wall tissue. Therefore, knowledge of the AAA wall stress distribution could be useful in assessing its risk of rupture. In our research, a finite element analysis was used to determine the wall stresses both in idealized models and in a real clinical model in which the aorta was considered isotropic with nonlinear material properties and was loaded with a given pressure. In the idealized models, both maximum diameter and asymmetry were found to have substantial influence on the distribution of the wall stress. The thrombus inside the AAA was also found to help protecting the walls from high stresses. Using CT scans of the AAA, the actual geometry of the aneurysm was reconstructed and we found that wall tension increases on the flatter surface (typically corresponds to the posterior surface) and at the inflection points of the bulge. In addition to the static analysis, we also performed simulations of the effect of unsteady pressure wave propagation inside the aneurysm.

  20. Ex-congressman Rush Holt to lead AAAS

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2015-01-01

    The particle physicist Rush Holt, who served in the US Congress for 15 years, has been named as the next chief executive of the American Association for the Advancement of Science (AAAS) - the non-profit US society that promotes public engagement with science and technology.

  1. The Adult Asperger Assessment (AAA): A Diagnostic Method

    ERIC Educational Resources Information Center

    Baron-Cohen, Simon; Wheelwright, Sally; Robinson, Janine; Woodbury-Smith, Marc

    2005-01-01

    At the present time there are a large number of adults who have "suspected" Asperger syndrome (AS). In this paper we describe a new instrument, the Adult Asperger Assessment (AAA), developed in our clinic for adults with AS. The need for a new instrument relevant to the diagnosis of AS in adulthood arises because existing instruments are designed…

  2. THE AAA3 DOMAIN OF CYTOPLASMIC DYNEIN ACTS AS A SWITCH TO FACILITATE MICROTUBULE RELEASE

    PubMed Central

    Dewitt, Mark A.; Cypranowska, Caroline A.; Cleary, Frank B.; Belyy, Vladislav; Yildiz, Ahmet

    2014-01-01

    Cytoplasmic dynein is an AAA+ motor responsible for intracellular cargo transport and force generation along microtubules (MTs). Unlike kinesin and myosin, dynein contains multiple ATPase subunits, with AAA1 serving as the primary catalytic site. ATPase activity at AAA3 is also essential for robust motility, but its role in dynein’s mechanochemical cycle remains unclear. Here, we introduced transient pauses in Saccharomyces cerevisiae dynein motility by using a slowly hydrolyzing ATP analog. Analysis of pausing behavior revealed that AAA3 hydrolyzes nucleotide an order of magnitude slower than AAA1 and the two sites do not coordinate. ATPase mutations to AAA3 abolish the ability of dynein to modulate MT release. Nucleotide hydrolysis at AAA3 lifts this “MT gate” to fast motility. These results suggest that AAA3 acts as a switch that repurposes cytoplasmic dynein for fast cargo transport and MT anchoring tasks in cells. PMID:25486306

  3. Multicomponent analytical methodology to control phthalates, synthetic musks, fragrance allergens and preservatives in perfumes.

    PubMed

    Sanchez-Prado, Lucia; Llompart, Maria; Lamas, J Pablo; Garcia-Jares, Carmen; Lores, Marta

    2011-07-15

    A simple, fast, robust and reliable multicomponent analytical method applicable in control laboratories with a high throughput level has been developed to analyze commercial brands of perfumes. Contents of 52 cosmetic ingredients belonging to different chemical families can be determined in a single run. Instrumental linearity, precision of the method and recovery studies in real samples showed excellent results, so that quantification by external calibration can be effectively applied. Relevant limits of detection and quantification were obtained for all the targets considered, far below the legal requirements and amply adequate for its accurate analytical control. A survey of 70 commercial perfumes and colognes has been performed, in order to verify whether these products complied with the recent changes in European legislation: regarding the maxima allowed concentrations of the ingredients and/or ingredient labelling. All samples contained some of the target ingredients. Several samples do not comply with the regulations concerning the presence of phthalates. Musks data confirmed the trend about the replacement of nitromusks by polycyclic musks; as well as the noticeable introduction of macrocyclic musks in the perfumes composition. The prohibited musk moskene has been detected in one sample in an appreciable concentration. The average number of fragrance allergens is twelve per sample; their presence must be indicated in the list of ingredients when its concentration exceeds the 0.001%, but values higher than 1% have been found in some samples. Preservatives data show that parabens, although ubiquitous in other cosmetic products, are not widely used in perfumery. In contrast, the presence of BHT is indeed widespread. The degree of compliance with the European Regulation on the labelling has been evaluated in a subset of samples, and only about the 38% of the perfumes were properly labelled for the allergens tested.

  4. Molecularly Defined Nanostructures Based on a Novel AAA-DDD Triple Hydrogen-Bonding Motif.

    PubMed

    Papmeyer, Marcus; Vuilleumier, Clément A; Pavan, Giovanni M; Zhurov, Konstantin O; Severin, Kay

    2016-01-26

    A facile and flexible method for the synthesis of a new AAA-DDD triple hydrogen-bonding motif is described. Polytopic supramolecular building blocks with precisely oriented AAA and DDD groups are thus accessible in few steps. These building blocks were used for the assembly of large macrocycles featuring four AAA-DDD interactions and a macrobicyclic complex with a total of six AAA-DDD interactions.

  5. Fate and transport of fragrance materials in principal environmental sinks.

    PubMed

    Zhang, Xiaolei; Brar, Satinder Kaur; Yan, Song; Tyagi, Rajeshwar Dayal; Surampalli, Rao Y

    2013-10-01

    Fragrance materials are widely present in the environment, such as air, water, and soil. Concerns have been raised due to the increasing utilization and suspected impact on human health. The bioaccumulating property is considered as one of the causes of the toxicity to human beings. The removal of fragrance materials from environmental sinks has not been paid enough attention due to the lack of regulation and research on their toxicity. This paper provides systematic information on how fragrance materials are transferred to the environment, how do they affect human lives, and what is their fate in water, wastewater, wastewater sludge, and soil.

  6. Colophonium and Compositae mix as markers of fragrance allergy: cross-reactivity between fragrance terpenes, colophonium and compositae plant extracts.

    PubMed

    Paulsen, E; Andersen, K E

    2005-11-01

    The aim of this study was to assess the strength of any association between sensitization to 'new' fragrance compounds and sensitization to Compositae, fragrance mix, Myroxylon pereirae resin and colophonium, respectively. Consecutive eczema patients were tested with a series of essential oils and selected fragrance compounds and another series of oxidized terpenes in connection with European multicentre fragrance projects. Contact allergy to either series was frequently detected, in 5% of 318 and 4.6% of 262 persons tested, and both had a statistically significant association with Compositae, colophonium and fragrance mix sensitization. The individual results indicated that simultaneously occurring positive reactions to essential oils, colophonium and Compositae were based on cross-reactivity rather than concomitant sensitization. Thus, all patients with positive reaction to the rare fragrance sensitizer beta-caryophyllene had positive colophonium reactions, and cross-reactivity between essential oils and Compositae was related to the Compositae plant extracts of the Compositae mix and not the pure sesquiterpene lactones of the standard series. The implication is that Compositae mix and colophonium may be markers of fragrance allergy, which is important to know when assessing the relevance of positive reactions to Compositae plant extracts and colophonium.

  7. Inhibition of early AAA formation by aortic intraluminal pentagalloyl glucose (PGG) infusion in a novel porcine AAA model

    PubMed Central

    Kloster, Brian O.; Lund, Lars; Lindholt, Jes S.

    2016-01-01

    Background The vast majority of abdominal aortic aneurysms found in screening programs are small, and as no effective treatment exits, many will expand until surgery is indicated. Therefore, it remains intriguing to develop a safe and low cost treatment of these small aneurysms, that is able to prevent or delay their expansion. In this study, we investigated whether intraluminal delivered pentagalloyl glucose (PGG) can impair the early AAA development in a porcine model. Methods The infrarenal aorta was exposed in thirty pigs. Twenty underwent an elastase based AAA inducing procedure and ten of these received an additional intraluminal PGG infusion. The final 10 were sham operated and served as controls. Results All pigs who only had an elastase infusion developed macroscopically expanding AAAs. In pigs treated with an additional PGG infusion the growth rate of the AP-diameter rapidly returned to physiological values as seen in the control group. In the elastase group, histology revealed more or less complete resolution of the elastic lamellae in the media while they were more abundant, coherent and structurally organized in the PGG group. The control group displayed normal physiological growth and histology. Conclusion In our model, intraluminal delivered PGG is able to penetrate the aortic wall from the inside and impair the early AAA development by stabilizing the elastic lamellae and preserving their integrity. The principle holds a high clinical potential if it can be translated to human conditions, since it, if so, potentially could represent a new drug for stabilizing small abdominal aneurysms. PMID:27144001

  8. Macrocyclic fragrance materials--a screening-level environmental assessment using chemical categorization.

    PubMed

    Salvito, Daniel; Lapczynski, Aurelia; Sachse-Vasquez, Christen; McIntosh, Colin; Calow, Peter; Greim, Helmut; Escher, Beate

    2011-09-01

    A screening-level aquatic environmental risk assessment for macrocyclic fragrance materials using a "group approach" is presented using data for 30 macrocyclic fragrance ingredients. In this group approach, conservative estimates of environmental exposure and ecotoxicological effects thresholds for compounds within two subgroups (15 macrocyclic ketones and 15 macrocyclic lactones/lactides) were used to estimate the aquatic ecological risk potential for these subgroups. It is reasonable to separate these fragrance materials into the two subgroups based on the likely metabolic pathway required for biodegradation and on expected different ecotoxicological modes of action. The current volumes of use for the macrocyclic ketones in both Europe and North America ranges from <1 (low kg quantities) to no greater than 50 metric tonnes in either region and for macrocyclic lactones/lactides the volume of use range for both regions is <1 to no greater than 1000 metric tonnes in any one region. Based on these regional tonnages, biodegradability of these two subgroups of materials, and minimal in stream dilution (3:1), the conservatively predicted exposure concentrations for macrocyclic ketones would range from <0.01 to 0.05 μg/L in Europe and from <0.01 to 0.03 μg/L in North America. For macrocyclic lactones/lactides, the concentration within the mixing zone would range from <0.01 to 0.7 μg/L in Europe and from <0.01 to 1.0 μg/L in North America. The PNECs derived for the macrocyclic ketones is 0.22 μg/L and for macrocyclic lactones/lactides is 2.7 μg/L. The results of this screening-level aquatic ecological risk assessment indicate that at their current tonnage, often referred to as volumes of use, macrocyclic fragrance materials in Europe and North America, pose a negligible risk to aquatic biota; with no PEC/PNEC ratio exceeding 1 for any material in any subgroup.

  9. Polycyclic musk fragrances in the aquatic environment.

    PubMed

    Rimkus, G G

    1999-12-20

    The polycyclic musk fragrances, mainly 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta(g)-2-ben zopyrane (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyltetrahydronaphthalene (AHTN) are synthetic musk fragrances which are used in almost all scented consumer products, such as perfumes, cosmetics and laundry detergents. Concerning their chemical structures the polycyclic musks are indane and tetraline derivatives highly substituted mainly by methyl groups. Their production has been increased continuously during the last years with a world-wide production volume today of about 6000 t/year. After their application in private households they are dumped via the sewage treatment plants into the aquatic environment. In this review the analysis of polycyclic musk compounds in environmental samples is shortly presented and all published data of polycyclic musk compounds in water, sediment, suspended particulate matter (SPM), sewage sludge, and biota are summarized and discussed. The highest HHCB and AHTN concentrations were analysed in water (maximum concentrations: 6 microg HHCB/l, 4.4 microg AHTN/1) and sludge (maximum concentrations: 63 mg HHCB/kg dry matter, 34 mg AHTN/kg dry matter) from sewage plants, and in fish (maximum concentrations: 159 mg HHCB/kg lipid, 58 mg AHTN/kg lipid) from sewage ponds. In all other samples from different aquatic ecosystems these chemicals were unequivocally detected in varying concentrations dependent on the distance to sewage treatment plants. Even in marine water samples from the German Bight HHCB and AHTN could be quantified at the lower ng/l level. Very often HHCB and AHTN formed the major organic contaminants, in all samples their concentrations exceeded those of musk xylene and musk ketone. Also several by-products and impurities of the commercial polycyclic musks were analysed in river and waste water samples in not negligible amounts. The apparently ubiquitous distribution of polycyclic musks in the aquatic environment

  10. RIFM fragrance ingredient safety assessment, Fenchyl alcohol, CAS registry number 1632-73-1.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Shen, J; Schultz, T W; Sipes, I G; Wall, B; Wilcox, D K

    2015-10-01

    The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, as well as, environmental safety. Repeated dose toxicity was determined to have the most conservative systemic exposure derived NO[A]EL of 15 mg/kg/day. A gavage 13-week subchronic toxicity study conducted in rats on a suitable read across analog resulted in a MOE of 10,714 while assuming 100% absorption from skin contact and inhalation. A MOE of >100 is deemed acceptable.

  11. RIFM fragrance ingredient safety assessment, linalyl isobutyrate, CAS registry number 78-35-3.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2015-10-01

    The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, as well as, environmental safety. Reproductive toxicity was based on the Threshold of Toxicological Concern (TTC) of 0.03 mg/kg/day for a Cramer Class I material. The estimated systemic exposure is determined to be below this value while assuming 80% absorption from skin contact and 100% from inhalation. A systemic exposure below the TTC value is acceptable.

  12. RIFM fragrance ingredient safety assessment, Linalyl isovalerate, CAS Registry Number 1118-27-0.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2015-10-01

    The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, as well as, environmental safety. Reproductive toxicity was based on the Threshold of Toxicological Concern (TTC) of 0.03 mg/kg/day for a Cramer Class I material. The estimated systemic exposure is determined to be equal to this value while assuming 100% absorption from skin contact and inhalation. A systemic exposure at or below the TTC value is acceptable.

  13. RIFM fragrance ingredient safety assessment, isoamyl salicylate, CAS registry number 87-20-7.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2015-10-01

    The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, as well as, environmental safety. Repeated dose toxicity was determined using to have the most conservative systemic exposure derived NOAEL of 47 mg/kg/day. A dietary 13-week subchronic toxicity study conducted in rats on a suitable read across analog resulted in a MOE of 2350 while considering 10.3% absorption from skin contact and 100% from inhalation. A MOE of >100 is deemed acceptable.

  14. RIFM fragrance ingredient safety assessment, α-butylcinnamaldehyde, CAS Registry Number 7492-44-6.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2015-10-01

    The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, as well as, environmental safety. Repeated dose toxicity was determined to have the most conservative systemic exposure derived NO[A]EL of 29.9 mg/kg/day. A dietary 14-week subchronic toxicity study conducted in rats on a suitable read across analog resulted in a MOE of 3784810 while considering 9.54% absorption from skin contact and 100% from inhalation. A MOE of > 100 is deemed acceptable.

  15. RIFM fragrance ingredient safety assessment, Isoborneol, CAS Registry Number 124-76-5.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2015-10-01

    The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential as well as environmental safety. Repeated dose toxicity was determined to have the most conservative systemic exposure derived NOAEL of 15 mg/kg/day based on a gavage 13-week subchronic toxicity study conducted in rats on a read across analog resulting in a MOE of 1000 considering 100% absorption from skin contact and inhalation. A MOE of >100 is deemed acceptable.

  16. RIFM fragrance ingredient safety assessment, Isoborneol, CAS Registry Number 124-76-5.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2015-10-01

    The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential as well as environmental safety. Repeated dose toxicity was determined to have the most conservative systemic exposure derived NOAEL of 15 mg/kg/day based on a gavage 13-week subchronic toxicity study conducted in rats on a read across analog resulting in a MOE of 1000 considering 100% absorption from skin contact and inhalation. A MOE of >100 is deemed acceptable. PMID:26291250

  17. RIFM fragrance ingredient safety assessment, Fenchyl alcohol, CAS registry number 1632-73-1.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Shen, J; Schultz, T W; Sipes, I G; Wall, B; Wilcox, D K

    2015-10-01

    The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, as well as, environmental safety. Repeated dose toxicity was determined to have the most conservative systemic exposure derived NO[A]EL of 15 mg/kg/day. A gavage 13-week subchronic toxicity study conducted in rats on a suitable read across analog resulted in a MOE of 10,714 while assuming 100% absorption from skin contact and inhalation. A MOE of >100 is deemed acceptable. PMID:26342767

  18. RIFM fragrance ingredient safety assessment, linalyl isobutyrate, CAS registry number 78-35-3.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2015-10-01

    The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, as well as, environmental safety. Reproductive toxicity was based on the Threshold of Toxicological Concern (TTC) of 0.03 mg/kg/day for a Cramer Class I material. The estimated systemic exposure is determined to be below this value while assuming 80% absorption from skin contact and 100% from inhalation. A systemic exposure below the TTC value is acceptable. PMID:26423640

  19. RIFM fragrance ingredient safety assessment, isoamyl salicylate, CAS registry number 87-20-7.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2015-10-01

    The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, as well as, environmental safety. Repeated dose toxicity was determined using to have the most conservative systemic exposure derived NOAEL of 47 mg/kg/day. A dietary 13-week subchronic toxicity study conducted in rats on a suitable read across analog resulted in a MOE of 2350 while considering 10.3% absorption from skin contact and 100% from inhalation. A MOE of >100 is deemed acceptable. PMID:26419451

  20. RIFM fragrance ingredient safety assessment, Linalyl isovalerate, CAS Registry Number 1118-27-0.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2015-10-01

    The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, as well as, environmental safety. Reproductive toxicity was based on the Threshold of Toxicological Concern (TTC) of 0.03 mg/kg/day for a Cramer Class I material. The estimated systemic exposure is determined to be equal to this value while assuming 100% absorption from skin contact and inhalation. A systemic exposure at or below the TTC value is acceptable. PMID:26334794

  1. RIFM fragrance ingredient safety assessment, α-butylcinnamaldehyde, CAS Registry Number 7492-44-6.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2015-10-01

    The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, as well as, environmental safety. Repeated dose toxicity was determined to have the most conservative systemic exposure derived NO[A]EL of 29.9 mg/kg/day. A dietary 14-week subchronic toxicity study conducted in rats on a suitable read across analog resulted in a MOE of 3784810 while considering 9.54% absorption from skin contact and 100% from inhalation. A MOE of > 100 is deemed acceptable. PMID:26364876

  2. Botanical ingredients in cosmeceuticals.

    PubMed

    Baumann, Leslie

    2007-11-01

    During the last 10 to 15 years, complementary and alternative medicine (CAM) has become increasingly popular in the US. Within this realm of health care, oral and topical herbal supplements have become some of the most frequently used alternative therapies. Most herbal supplements are based on, or include, several botanical ingredients with long histories of traditional or folk medicine usage. Among the numerous botanical ingredients available on the market today, several are believed to confer dermatologic benefits. This article will focus on a select group of botanical compounds, many of which have long traditions in Asian medicine, with potential or exhibited dermatologic applications, including curcumin, Ginkgo biloba, ginseng, silymarin, soy, and tea tree oil. Other botanical agents, such as arnica, bromelain, chamomile, pomegranate, caffeine, green tea, licorice, and resveratrol, are also briefly considered. Some of these ingredients have been incorporated into topical formulations.

  3. Rapid LC-MS method for the detection of common fragrances in personal care products without sample preparation.

    PubMed

    Famiglini, Giorgio; Termopoli, Veronica; Palma, Pierangela; Capriotti, Fabiana; Cappiello, Achille

    2014-05-01

    An LC-MS method for the analysis of personal care and household products without sample preparation is presented. The method takes advantage of the Direct-electron ionization (EI) LC-MS interface for the quantitation of principal components, as well as for the identification of unknown or undeclared ingredients. The technique has proven its inertness toward matrix effects and the electron ionization allows quantitation and library identification. Commercially available products (shower gel, perfume, and hand cream) were diluted with methanol and injected directly into a nano-LC column. Limonene, linalool, and citral were selected as target compounds because of their use as fragrances in toiletry and detergent products. These and all other fragrances are commonly determined with GC-MS analysis, prior to sample cleanup, a procedure that can lead to analytes loss. The selected compounds are not detected with ESI because of their poor or very low response. Figures of merit and validation studies were executed and special attention was devoted to matrix-effects evaluation, because a sample preparation procedure is not involved. No matrix effects were observed, and the repeatability was excellent even after several weeks of operation. Products composition was investigated in full scan mode to determine the presence of unknown or not listed ingredients.

  4. Masculinity/femininity of fine fragrances affects color-odor correspondences: a case for cognitions influencing cross-modal correspondences.

    PubMed

    Zellner, Debra A; McGarry, Amy; Mattern-McClory, Rachel; Abreu, Diana

    2008-02-01

    Four experiments found that the colors people choose as corresponding to the odors of fine fragrances are influenced by the perceived masculinity/femininity of those fragrances. Experiment 1 examined the colors chosen for 3 male and 3 female fragrances. The pattern of colors chosen for female fragrances differed from that for male fragrances. Experiments 2 and 3 found that colors assigned to 2 unisex fragrances depend on whether subjects thought that the fragrances were male or female fragrances. Experiment 4, by labeling unisex fragrances as male or female, showed that this difference in color selection was the result of subjects' thinking that a fragrance is a male or female fragrance. Thinking of the masculinity/femininity of a fragrance influences the selection of colors that corresponds to these odors.

  5. Impact of room fragrance products on indoor air quality

    NASA Astrophysics Data System (ADS)

    Uhde, Erik; Schulz, Nicole

    2015-04-01

    Everyday life can no longer be imagined without fragrances and scented products. For the consumer, countless products exists which are solely or partly intended to give off a certain scent in sufficient concentrations to odorize a complete room. Sprays, diffusers and evaporators, scented candles and automatic devices for the distribution of fragrance liquids are typical examples of such products. If the consumer uses such products, his consent to the release of certain chemicals in his home can be implied, however, he may not know what kind of fragrance substances and solvents will be present in which concentrations. In this study, we determined the volatile emissions of a number of fragrance products in detail. Measurements were carried out under controlled conditions in test chambers. The products were tested in a passive (unused) and an active state, wherever applicable. Following a defined test protocol, the release of volatile organic compounds, ultrafine particles and NOx was monitored for each product. The potential for forming secondary organic aerosols under the influence of ozone was studied, and for a selection of products the long-term emission behavior was assessed. A remarkable variety of fragrance substances was found and more than 100 relevant compounds were identified and quantified. While it is the intended function of such products to release fragrance substances, also considerable amounts of non-odorous solvents and by-products were found to be released from several air fresheners. Emissions rates exceeding 2 mg/(unit*h) were measured for the five most common solvents.

  6. Further important sensitizers in patients sensitive to fragrances.

    PubMed

    Frosch, P J; Johansen, J D; Menné, T; Pirker, C; Rastogi, S C; Andersen, K E; Bruze, M; Goossens, A; Lepoittevin, J P; White, I R

    2002-08-01

    The aim of this study was to determine the frequency of responses to selected fragrance materials in consecutive patients patch tested in 6 dermatological centres in Europe. 1855 patients were evaluated with the 8% fragrance mix (FM) and 14 other frequently used well-defined fragrance chemicals (series I). Each patient was classified regarding a history of adverse reactions to fragrances: certain, probable, questionable, none. Reactions to FM occurred in 11.3% of the subjects. The 6 substances with the highest reactivity following FM were Lyral (2.7%), citral (1.1%), farnesol P (0.5%), citronellol (0.4%), hexyl cinnamic aldehyde (0.3%), and coumarin (0.3%). 41 (2.2%) of the patients reacted only to materials of series I and not to FM. 6.6% of 1855 patients gave a history of adverse reactions to fragrances which was classified as certain. This group reacted to FM only in 41.1%, to series I and FM in 12.0% and to series I only in 7.2%. 74.3% of the 39 patients reacting to both FM and 1 of the materials of series I had any type of positive fragrance history, which was significantly higher in comparison to those with isolated reactions to series I (53.6% of 41), p = 0.04. The study identified further sensitizers relevant for patch testing of patients with contact dermatitis, of which Lyral is the most important single chemical.

  7. Functional ingredients from microalgae.

    PubMed

    Buono, Silvia; Langellotti, Antonio Luca; Martello, Anna; Rinna, Francesca; Fogliano, Vincenzo

    2014-08-01

    A wide variety of natural sources are under investigation to evaluate their possible use for new functional ingredient formulation. Some records attested the traditional and ancient use of wild harvested microalgae as human food but their cultivation for different purposes started about 40 years ago. The most popular species are Arthrospira (traditional name, Spirulina), Chlorella spp., Dunaliella spp. and Haematococcus spp. Microalgae provide a bewildering array of opportunities to develop healthier food products using innovative approaches and a number of different strategies. Compared to other natural sources of bioactive ingredients, microalgae have many advantages such as their huge biodiversity, the possibility to grow in arid land and with limited fresh water consumption and the flexibility of their metabolism, which could be adapted to produce specific molecules. All these factors led to very sustainable production making microalgae eligible as one of the most promising foods for the future, particularly as source of proteins, lipids and phytochemicals. In this work, a revision of the knowledge about the use of microalgae as food and as a source of functional ingredients has been performed. The most interesting results in the field are presented and commented upon, focusing on the different species of microalgae and the activity of the nutritionally relevant compounds. A summary of the health effects obtained together with pros and cons in the adoption of this natural source as functional food ingredients is also proposed. PMID:24957182

  8. Functional ingredients from microalgae.

    PubMed

    Buono, Silvia; Langellotti, Antonio Luca; Martello, Anna; Rinna, Francesca; Fogliano, Vincenzo

    2014-08-01

    A wide variety of natural sources are under investigation to evaluate their possible use for new functional ingredient formulation. Some records attested the traditional and ancient use of wild harvested microalgae as human food but their cultivation for different purposes started about 40 years ago. The most popular species are Arthrospira (traditional name, Spirulina), Chlorella spp., Dunaliella spp. and Haematococcus spp. Microalgae provide a bewildering array of opportunities to develop healthier food products using innovative approaches and a number of different strategies. Compared to other natural sources of bioactive ingredients, microalgae have many advantages such as their huge biodiversity, the possibility to grow in arid land and with limited fresh water consumption and the flexibility of their metabolism, which could be adapted to produce specific molecules. All these factors led to very sustainable production making microalgae eligible as one of the most promising foods for the future, particularly as source of proteins, lipids and phytochemicals. In this work, a revision of the knowledge about the use of microalgae as food and as a source of functional ingredients has been performed. The most interesting results in the field are presented and commented upon, focusing on the different species of microalgae and the activity of the nutritionally relevant compounds. A summary of the health effects obtained together with pros and cons in the adoption of this natural source as functional food ingredients is also proposed.

  9. Allergy to selected cosmetic ingredients

    PubMed Central

    Adamczuk, Piotr; Wróblewska, Paula; Zwoliński, Jacek; Chmielewska-Badora, Jolanta; Krasowska, Ewelina; Galińska, Elżbieta M.; Cholewa, Grażyna; Piątek, Jacek; Koźlik, Jacek

    2013-01-01

    In an era in which cosmetics are commonly used, their often prolonged contact with the human body should determine the safety of their use. Often cosmetics are the cause of many side effects, mainly hypersensitivity reactions. Common groups of cosmetic components responsible for side effects are fragrances, preservatives and dyes. This paper focuses on the most allergenic components. PMID:24353491

  10. Safety assessment of castoreum extract as a food ingredient.

    PubMed

    Burdock, G A

    2007-01-01

    Castoreum extract (CAS NO. 8023-83-4; FEMA NO. 2261) is a natural product prepared by direct hot-alcohol extraction of castoreum, the dried and macerated castor sac scent glands (and their secretions) from the male or female beaver. It has been used extensively in perfumery and has been added to food as a flavor ingredient for at least 80 years. Both the Flavor and Extract Manufacturers Association (FEMA) and the Food and Drug Administration (FDA) regard castoreum extract as generally recognized as safe (GRAS). Acute toxicity studies in animals indicate that castoreum extract is nontoxic by both oral and dermal routes of administration and is not irritating or phototoxic to skin. Skin sensitization has not been observed in human subject tests. Castoreum extract possesses weak antibacterial activity. A long historical use of castoreum extract as a flavoring and fragrance ingredient has resulted in no reports of human adverse reactions. On the basis of this information, low-level, long-term exposure to castoreum extract does not pose a health risk. The objective of this review is to evaluate the safety-in-use of castoreum extract as a food ingredient.

  11. Pro-fragrant ionic liquids with stable hemiacetal motifs: water-triggered release of fragrances.

    PubMed

    Gunaratne, H Q Nimal; Nockemann, Peter; Seddon, Kenneth R

    2015-03-14

    Stable liquid and solid salts in the form of elusive hemiacetals, appended with fragrant alcohols, have been synthesised as pro-fragrances, and the controlled release of these fragrances, triggered by water, is demonstrated. PMID:25679944

  12. Polyvalent type IV sensitizations to multiple fragrances and a skin protection cream in a metal worker.

    PubMed

    Tanko, Zita; Shab, Arna; Diepgen, Thomas Ludwig; Weisshaar, Elke

    2009-06-01

    Fragrances are very common in everyday products. A metalworker with chronic hand eczema and previously diagnosed type IV sensitizations to epoxy resin, balsam of Peru, fragrance mix and fragrance mix II was diagnosed with additional type IV sensitizations to geraniol, hydroxycitronellal, lilial, tree moss, oak moss absolute, citral, citronellol, farnesol, Lyral, fragrance mix II and fragrance mix (with sorbitan sesquioleate). In addition, a type IV sensitization to the skin protection cream containing geraniol and citronellol used at the workplace was detected, and deemed occupationally relevant in this case. The patient could have had contact to fragrances through private use of cosmetics and detergents. On the other hand, the fragrance-containing skin protection cream supports occupational exposure. This case report demonstrates that fragrance contact allergy has to be searched for and clarified individually, which requires a thorough history and a detailed analysis of the work place.

  13. The human skin: fragrances and pheromones.

    PubMed

    Berliner, D L; Jennings-White, C; Lavker, R M

    1991-10-01

    Non-human mammalian pheromones are commonly used as perfumery ingredients. The actual purpose for using these compounds is as a fixative or carrier for the odor effects of the other ingredients as well as a contributor, in part, to the over-all scent of the perfume. Although such materials are used for their fixative and odor qualities rather than their pheromonal effects, perfumes are generally marketed as having the ability to enhance sexual attractiveness. While providing a scent may elicit a positive pleasant response, this should not be confused with a pheromone response. The attractive effect of perfumes is principally related to the effect of the pleasant scent. A more logical approach would be to use human pheromones which, for humans, are both more natural and more effective as true sensual attractants. It seems likely that implementation of this approach will constitute an important paradigm in the perfume industry as perfumery moves from the realm of art to that of science.

  14. Contact allergy to fragrances: frequencies of sensitization from 1996 to 2002. Results of the IVDK*.

    PubMed

    Schnuch, Axel; Lessmann, Holger; Geier, Johannes; Frosch, Peter J; Uter, Wolfgang

    2004-02-01

    Increasing frequencies of sensitization to the fragrance mix (FM) have been acknowledged as a serious problem for many years. It is well known that the single compounds (SCs) of the FM contribute differently to the FM patch rest reactions. In this study, we were interested in the time trends of the FM, the SCs, Myroxylon pereirae resin (MP; balsam of Peru) and oil of turpentine (OT) as possible further indicators of perfume allergy and analysed the data collected by the Information Network of Departments of Dermatology multicentre project from 1996 to 2002. During the study period (1996-2002), the FM [8% petrolatum (pet.)], MP (25% pet.) and OT (1% pet.) were tested in 59,298, 59,334 and 59,478 patients, respectively. SCs were tested in a selected group of patients, ranging from n = 1083 to n = 1924 per year. A significant increase in the proportions of patients with positive reactions to FM, MP and OT between 1996 and 1998 is noted, and a significant decline from 1999 to 2002 (Cochrane Armitage trend test, P < 0.0001). The highest frequency of sensitization to the FM was 13.1% in 1999, and the lowest 7.8% in 2002. The number of concomitant reactions to OT, a surrogate marker for terpenes, in FM-positive patients was significantly increased between 1997 and 1999. Reactions to SCs in FM-positive patients were observed in 29.9% (oak moss absolute) to 5.9% (geraniol). There was no time trend in reactions to SCs, although the relative share was increased for isoeugenol, cinnamic aldehyde and geraniol in 1999. In summary, we report for the first time, a significant decline in sensitization to the FM, very probably due to a reduced exposure (less potent allergens used in fine fragrances, possibly less use of natural ingredient-based cosmetics and lowered use concentration of important fragrance allergens). The differences in ranking of SCs could stimulate (a) a redefinition of the FM and (b) a differentiated preventive and regulatory approach, with oak moss and

  15. The fragrance mix and its constituents: a 14-year material.

    PubMed

    Johansen, J D; Menné, T

    1995-01-01

    Results from 14 years of patch testing with the fragrance mix and its constituents are reviewed. From 1979-1992, 8215 consecutive patients were patch tested with the fragrance mix and 449 (5.5%) had a positive reaction. An increase in the frequency of reactions to fragrance mix was seen from the first 5-year period to the last. Only 54.4% of the patients tested in the last 5-year period with the individual constituents of the mix had at least 1 positive reaction. The results of testing with the constituents are the basis for a discussion of methodological problems. A significant decrease in the frequency of reaction to cinnamic aldehyde was registered, at the same time as the test concentration was reduced from 2% to 1% pet. However, no significant variations in the frequency of reactions to oak moss were seen, notwithstanding a similar reduction in test concentration.

  16. Differential expression of TRAIL and its receptors relative to calcification in AAA

    SciTech Connect

    Liu, Xun . E-mail: mpscrs@bath.ac.uk; Winrow, Vivienne R.; Horrocks, Michael; Stevens, Cliff R.

    2007-06-22

    Abdominal aortic aneurysm (AAA) is commonly associated with atherosclerosis. Human AAA tissue displays cells undergoing all stages of apoptosis. Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis in tumour cells but not in normal cells. It has death receptors and decoy receptors. An inhibitor of TRAIL, osteoprotegerin (OPG), is involved in osteogenesis and vascular calcification. We investigated TRAIL and its receptors in AAA compared within normal aorta (NA). Both qualitative and quantitative analyses of calcification in AAA walls were determined using Von Kossa staining and pre-operation computer tomography (CT) scans. There was a significant difference in calcification level at different locations in the AAA wall (p < 0.05). Apoptosis was confirmed in AAA by TUNEL assay. A significant difference in TRAIL and its receptor expression was observed between normal aortae and AAA (p < 0.05). Significant differences were also observed between tissues displaying different extents of calcification for TRAIL mRNA (p < 0.05) by RT-PCR examination and OPG protein (p < 0.01) by protein blotting examination. We propose that this pattern of expression of TRAIL and its receptors may contribute to AAA formation and calcification in the AAA wall.

  17. Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases.

    PubMed

    Kirstein, Janine; Molière, Noël; Dougan, David A; Turgay, Kürşad

    2009-08-01

    Members of the AAA+ protein superfamily contribute to many diverse aspects of protein homeostasis in prokaryotic cells. As a fundamental component of numerous proteolytic machines in bacteria, AAA+ proteins play a crucial part not only in general protein quality control but also in the regulation of developmental programmes, through the controlled turnover of key proteins such as transcription factors. To manage these many, varied tasks, Hsp100/Clp and AAA+ proteases use specific adaptor proteins to enhance or expand the substrate recognition abilities of their cognate protease. Here, we review our current knowledge of the modulation of bacterial AAA+ proteases by these cellular arbitrators.

  18. Lyral is an important sensitizer in patients sensitive to fragrances.

    PubMed

    Frosch, P J; Johansen, J D; Menné, T; Rastogi, S C; Bruze, M; Andersen, K E; Lepoittevin, J P; Giménez Arnau, E; Pirker, C; Goossens, A; White, I R

    1999-12-01

    Contact allergy to fragrances is a common problem world-wide. The currently used fragrance mix (FM) for patch testing has only eight constituents and does not identify all fragrance-allergic patients. As perfumes may contain 100 or more substances, the search for markers for allergy continues. The synthetic fragrance 4-(4-hydroxy-4-methylpentyl)-3-cyclohexene carboxaldehyde (Lyral) was tested together with the FM and 11 other fragrance substances on consecutive patients in six European departments of dermatology. All patients were carefully questioned regarding a history of reactions to scented products in the past and were grouped into four categories: 'certain', 'probable', 'questionable' and 'none'. Lyral (5% in petrolatum) gave a positive reaction in 2.7% of 1855 patients (range 1.2-17%) and ranked next to 11.3% with FM allergy. Twenty-four patients reacted to both Lyral and FM, but 21 (1.1%) reacted positively only to Lyral. Of 124 patients with a 'certain' history, 53.2% reacted to the FM and a further 7.2% to Lyral only. If any kind of history of fragrance intolerance was given, 80% (40 of 50) of Lyral positive patients had a 'positive' history while only 58.6% (123 of 210) of FM positive patients had such a history; this difference was significant at P < 0.01. Lyral was identified by gas chromatography-mass spectrometry in some products which had caused an allergic contact dermatitis in four typical patients who showed a patch test positive to Lyral and negative or doubtful to FM. In conclusion, we recommend the testing of 5% Lyral (in petrolatum) in patients suspected of contact dermatitis.

  19. Deodorants: a clinical provocation study in fragrance-sensitive individuals.

    PubMed

    Johansen, J D; Rastogi, S C; Bruze, M; Andersen, K E; Frosch, P; Dreier, B; Lepoittevin, J P; White, I; Menné, T

    1998-10-01

    Deodorants are one of the most marketed types of cosmetics and are frequently reported as a cause of dermatitis, particularly among fragrance-sensitive persons. The aim of this study was to investigate the ability of deodorants, which had previously caused axillary dermatitis in fragrance-mix-sensitive eczema patients, to provoke reactions on repeated open application tests on the upper arm and in the axillae, and to relate the findings to the content of fragrance-mix constituents in those deodorants. 14 eczema patients performed a 7-day use test with 1 or 2 deodorants that had caused a rash within the last 12 months. 2 applications per day were made in the axilla and simultaneously on a 25 cm2 area on the upper arm. A total of 20 deodorants were tested among the 14 patients. Afterwards, the deodorants were subjected to quantitative chemical analysis identifying constituents of the fragrance mix. 12/20 (60%) deodorants elicited eczema on use testing in the axilla. 8/12 deodorants were positive in the axilla on day (D) 7 and 4 both in the axilla and on the upper arm. 2 of the 4 developed a reaction in the axilla before it developed on the upper arm. Chemical analysis revealed that 18/19 deodorants contained between 1 and 6 of the fragrance-mix constituents, on average 3 being found. The mean concentration of fragrance-mix constituents was generally higher in the deodorants causing a positive use test, as compared with those giving a negative reaction, indicating that the differences between the deodorants in terms of elicitation potential were more related to quantitative aspects of allergen content than of a qualitative nature. It is recommended that deodorants are tested in the axilla in the case of a negative use test on the upper arm and a strong clinical suspicion.

  20. Reactions in selected patients to 22 fragrance materials.

    PubMed

    Malten, K E; van Ketel, W G; Nater, J P; Liem, D H

    1984-07-01

    182 patients on the basis of 6 criteria were suspected of suffering from contact sensitization to cosmetics. 77 (42%) gave a positive reaction to one or more of a series of 22 fragrance and flavor raw materials. The hands were most often involved. Cinnamic alcohol, hydroxycitronellal, eugenol, coumarin, and abitol gave the most common positive reactions; less frequent were cinnamic aldehyde, dihydrocoumarin and dimethylcitraconate. Their relevance could not be traced. However, the first 4 substances were the most frequently identified in 79 suspected cosmetics sent in for analysis by the patients or their physicians. The stability of room-stored petrolatum-fragrance mixtures should be checked.

  1. Engineering fluorescent protein substrates for the AAA+ Lon protease.

    PubMed

    Wohlever, Matthew L; Nager, Andrew R; Baker, Tania A; Sauer, Robert T

    2013-04-01

    AAA+ proteases, such as Escherichia coli Lon, recognize protein substrates by binding to specific peptide degrons and then unfold and translocate the protein into an internal degradation chamber for proteolysis. For some AAA+ proteases, attaching specific degrons to the N- or C-terminus of green fluorescent protein (GFP) generates useful substrates, whose unfolding and degradation can be monitored by loss of fluorescence, but Lon fails to degrade appropriately tagged GFP variants at a significant rate. Here, we demonstrate that Lon catalyzes robust unfolding and degradation of circularly permuted variants of GFP with a β20 degron appended to the N terminus or a sul20 degron appended to the C terminus. Lon degradation of non-permuted GFP-sul20 is very slow, in part because the enzyme cannot efficiently extract the degron-proximal C-terminal β-strand to initiate denaturation. The circularly permuted GFP substrates described here allow convenient high-throughput assays of the kinetics of Lon degradation in vitro and also permit assays of Lon proteolysis in vivo.

  2. Training Scientists to be Effective Communicators: AAAS Communicating Science Workshops

    NASA Astrophysics Data System (ADS)

    Cendes, L.; Lohwater, T.

    2012-12-01

    "Communicating Science: Tools for Scientists and Engineers" is a workshop program developed by AAAS to provide guidance and practice for scientists and engineers in communicating about science with public audiences. The program was launched at the 2008 AAAS Annual Meeting in Boston and has since provided 24 workshops for more than 1,500 scientist and engineer attendees at universities, science society meetings, and government agency labs around the United States. Each interactive workshop targets scientists and engineers specifically and has included content such as message development, defining audience, identifying opportunities for engaging the public, and practice with public presentations and cameras. The workshop format allows for collaborative learning through small-group discussion, resource sharing, and participation in critique of other participants' presentations. Continuous monitoring of the program includes on-site and online surveys and evaluation. On an assessment of workshops from 2008-2010, attendees reported that knowledge gained from the workshop helped in crafting messages about their scientific work for use in communicating with public audiences, and approximately 80 percent of respondents reported participation in communication with a public audience after attending the workshop. Through workshop content and feedback of participating scientists, this presentation will highlight some best practices and resources for scientists who want to take a proactive role in science communication.

  3. Dermatotoxicologic clinical solutions: clinical management of fragrance mix #1 #2 patients?

    PubMed

    Edwards, Ashley; Blickenstaff, Nicholas; Coman, Garrett; Maibach, Howard

    2015-01-01

    Today's fragrances are present in more than just perfumes, having become ubiquitous in skin care products such as creams, shampoos, sun tan lotion and deodorants. While aromatics can arouse the senses, aromatic compounds applied to skin can also cause allergic contact dermatitis. This article describes diagnosis, limitations of patch testing for fragrance mix 1 and fragrance mix 2, the relevance of fragrance concentration in products, use testing of common consumer products and our current recommendations in regards to the management of fragrance contact allergy.

  4. Application of response function methodology for the simultaneous determination of potential fragrance allergens and preservatives in personal care products using micellar electrokinetic chromatography.

    PubMed

    Lopez-Gazpio, J; Garcia-Arrona, R; Millán, E

    2014-01-01

    A micellar electrokinetic chromatography method was developed for determination of 15 suspected fragrance allergens and preservatives. The target compounds are widely used as ingredients in many personal care products, and all of them are included in the European Regulation concerning cosmetic products. The method was optimized by using a central composite experimental design and response surface methodology. A modified chromatographic response function was defined to weigh the terms in the response function adequately. After optimization of experimental conditions, a background electrolyte of 100 mM sodium dodecyl sulphate and 24 mM sodium tetraborate and pH 9.0 was selected for the separation of the analytes. The developed methodology was evaluated in terms of linearity, limits of detection and quantification, precision and accuracy, showing appropriate values (i.e., R (2) = ≥0.99 and accuracy of 89-115 %). Finally, applicability of the micellar electrokinetic chromatography method was assessed by successfully quantifying fragrance allergens and preservatives in commercial personal care products. The most commonly found analyte was linalool (48.3 % of samples) followed by benzoic acid (37.6 %). All samples contained at least one of the target compounds, thus confirming the ubiquity of fragrance allergens and preservatives in personal care products.

  5. Allergens in combination have a synergistic effect on the elicitation response: a study of fragrance-sensitized individuals.

    PubMed

    Johansen, J D; Skov, L; Volund, A; Andersen, K; Menné, T

    1998-08-01

    Perfume ingredients were chosen as model substances to study the effect of allergens in combination on the elicitation response. Two groups of eczema patients were studied. One consisted of 18 subjects with a contact allergy to two fragrance substances and the other was a control group of 15 subjects allergic to only one of the same two fragrance substances. The test and matched control subject were patch tested in exactly the same way with two allergens applied in serial dilution in separate chambers on one side and combined in one chamber on the other side of the upper back. The assessment of reactions was carried out on day 3 by clinical grading and laser Doppler flowmetry, and the extent of the reaction was measured in millimetres. The data were analysed by logistic dose-response models. It was found that the combination of two allergens in individuals allergic to both substances had a synergistic effect on the elicitation response evaluated by all three methods. The 1 : 1 mixtures of the two allergens elicited responses as if the doses were three to four times higher than those actually used, which is significantly more than expected if an additive effect had been present. In the control group, no increased response was seen to the combined allergens compared with the allergens tested separately. The synergistic effect demonstrated is likely to apply to other contact allergens as well and should be taken into account in designing diagnostic tests and performing safety assessments.

  6. Quantitative structure-activity relationship modelling of oral acute toxicity and cytotoxic activity of fragrance materials in rodents.

    PubMed

    Papa, E; Luini, M; Gramatica, P

    2009-10-01

    Fragrance materials are used as ingredients in many consumer and personal care products. The wide and daily use of these substances, as well as their mainly uncontrolled discharge through domestic sewage, make fragrance materials both potential indoor and outdoor air pollutants which are also connected to possible toxic effects on humans (asthma, allergies, headaches). Unfortunately, little is known about the environmental fate and toxicity of these substances. However, the use of alternative, predictive approaches, such as quantitative structure-activity relationships (QSARs), can help in filling the data gap and in the characterization of the environmental and toxicological profile of these substances. In the proposed study, ordinary least squares regression-based QSAR models were developed for three toxicological endpoints: mouse oral LD(50), inhibition of NADH-oxidase (EC(50) NADH-Ox) and the effect on mitochondrial membrane potential (EC(50) DeltaPsim). Theoretical molecular descriptors were calculated by using DRAGON software, and the best QSAR models were developed according to the principles defined by the Organization for Economic Co-operation and Development.

  7. Allergic contact dermatitis to preservatives and fragrances in cosmetics.

    PubMed

    Hamilton, Tatyana; de Gannes, Gillian C

    2011-04-01

    Cosmetics are an important cause of allergic contact dermatitis (ACD). Fragrances and preservatives are the two most clinically relevant allergens found in cosmetic products. Patch testing remains the gold standard for identification of causative allergens. Common cosmetic allergens are reviewed. Practical methods of allergen avoidance are also discussed.

  8. [A fragrance workshop, a mediation tool for teenagers].

    PubMed

    Saada, Valérie; Harf, Aurélie; Le Camus, Sabine; Moro, Marie Rose

    2013-01-01

    The fragrance workshop is one of the therapies used with young people in the day hospital of the Adolescent Centre of Cochin hospital in Paris. This unique form of mediation offers, through the use of a sense which is often neglected, access to the imaginary world of teenagers, allowing regression and the evocation of memories in a contained framework.

  9. [Use of fragrances. What about the side effects?].

    PubMed

    Straff, W

    2005-12-01

    Fragrances are increasingly used in private and public domains. Over recent years the olfactory sense has been paid more and more scientific and economic attention. While on the one hand bad smells are counteracted by fragrances, marketing experts are now trying to introduce this sense into multimedia-based experiences. Technical means are used to address positively and directly the sense of smell. The aim is to make the smell a unique feature for a certain brand or location. When it comes to "style of living" or "special shopping experience" nowadays the olfactory design plays an important role. Although fragrances are applied very frequently, there is still a lack of knowledge about the potential consequences for health and the environment. Certain substances (musk compounds) have been proven persistent and accumulative, and others belong to the most common causes of contact eczema. Some people also report special sensitivities towards certain smells for unknown reasons. Unlike audiovisual attractions it is very difficult for humans to avoid olfactory stimuli. The question arises whether fragrance materials constitute a group of substances that should receive more attention concerning their risk for health and the environment.

  10. Synthesis of Methyl Diantilis, a Commercially Important Fragrance

    ERIC Educational Resources Information Center

    Miles, William H.; Connell, Katelyn B.

    2006-01-01

    Synthetic sequences in the undergraduate organic chemistry laboratory illustrate important synthetic strategies, reagents, or experimental techniques, oftentimes resulting in the synthesis of commercially important compounds. A fragrance with a 'spicy, carnation, sweet, vanilla', named after carnations (Dianthus caryophllus), Methyl Diantillis is…

  11. Expanding the fragrance chemical space for virtual screening.

    PubMed

    Ruddigkeit, Lars; Awale, Mahendra; Reymond, Jean-Louis

    2014-01-01

    The properties of fragrance molecules in the public databases SuperScent and Flavornet were analyzed to define a "fragrance-like" (FL) property range (Heavy Atom Count ≤ 21, only C, H, O, S, (O + S) ≤ 3, Hydrogen Bond Donor ≤ 1) and the corresponding chemical space including FL molecules from PubChem (NIH repository of molecules), ChEMBL (bioactive molecules), ZINC (drug-like molecules), and GDB-13 (all possible organic molecules up to 13 atoms of C, N, O, S, Cl). The FL subsets of these databases were classified by MQN (Molecular Quantum Numbers, a set of 42 integer value descriptors of molecular structure) and formatted for fast MQN-similarity searching and interactive exploration of color-coded principal component maps in form of the FL-mapplet and FL-browser applications freely available at http://www.gdb.unibe.ch. MQN-similarity is shown to efficiently recover 15 different fragrance molecule families from the different FL subsets, demonstrating the relevance of the MQN-based tool to explore the fragrance chemical space. PMID:24876890

  12. Expanding the fragrance chemical space for virtual screening

    PubMed Central

    2014-01-01

    The properties of fragrance molecules in the public databases SuperScent and Flavornet were analyzed to define a “fragrance-like” (FL) property range (Heavy Atom Count ≤ 21, only C, H, O, S, (O + S) ≤ 3, Hydrogen Bond Donor ≤ 1) and the corresponding chemical space including FL molecules from PubChem (NIH repository of molecules), ChEMBL (bioactive molecules), ZINC (drug-like molecules), and GDB-13 (all possible organic molecules up to 13 atoms of C, N, O, S, Cl). The FL subsets of these databases were classified by MQN (Molecular Quantum Numbers, a set of 42 integer value descriptors of molecular structure) and formatted for fast MQN-similarity searching and interactive exploration of color-coded principal component maps in form of the FL-mapplet and FL-browser applications freely available at http://www.gdb.unibe.ch. MQN-similarity is shown to efficiently recover 15 different fragrance molecule families from the different FL subsets, demonstrating the relevance of the MQN-based tool to explore the fragrance chemical space. PMID:24876890

  13. Combinatorial QSAR of ambergris fragrance compounds.

    PubMed

    Kovatcheva, Assia; Golbraikh, Alexander; Oloff, Scott; Xiao, Yun-De; Zheng, Weifan; Wolschann, Peter; Buchbauer, Gerhard; Tropsha, Alexander

    2004-01-01

    A combinatorial quantitative structure-activity relationships (Combi-QSAR) approach has been developed and applied to a data set of 98 ambergris fragrance compounds with complex stereochemistry. The Combi-QSAR approach explores all possible combinations of different independent descriptor collections and various individual correlation methods to obtain statistically significant models with high internal (for the training set) and external (for the test set) accuracy. Seven different descriptor collections were generated with commercially available MOE, CoMFA, CoMMA, Dragon, VolSurf, and MolconnZ programs; we also included chirality topological descriptors recently developed in our laboratory (Golbraikh, A.; Bonchev, D.; Tropsha, A. J. Chem. Inf. Comput. Sci. 2001, 41, 147-158). CoMMA descriptors were used in combination with MOE descriptors. MolconnZ descriptors were used in combination with chirality descriptors. Each descriptor collection was combined individually with four correlation methods, including k-nearest neighbors (kNN) classification, Support Vector Machines (SVM), decision trees, and binary QSAR, giving rise to 28 different types of QSAR models. Multiple diverse and representative training and test sets were generated by the divisions of the original data set in two. Each model with high values of leave-one-out cross-validated correct classification rate for the training set was subjected to extensive internal and external validation to avoid overfitting and achieve reliable predictive power. Two validation techniques were employed, i.e., the randomization of the target property (in this case, odor intensity) also known as the Y-randomization test and the assessment of external prediction accuracy using test sets. We demonstrate that not every combination of the data modeling technique and the descriptor collection yields a validated and predictive QSAR model. kNN classification in combination with CoMFA descriptors was found to be the best QSAR

  14. Analysis of a Typical Chinese High School Biology Textbook Using the AAAS Textbook Standards

    ERIC Educational Resources Information Center

    Liang, Ye; Cobern, William W.

    2013-01-01

    The purpose of this study was to evaluate a typical Chinese high school biology textbook using the textbook standards of the American Association for the Advancement of Science (AAAS). The data were composed of three chapters selected from the textbook. Each chapter was analyzed and rated using the AAAS textbook standards. Pearson correlations…

  15. Developmental toxicity studies of four fragrances in rats.

    PubMed

    Christian, M S; Parker, R M; Hoberman, A M; Diener, R M; Api, A M

    1999-12-20

    Four fragrances, 6-acetyl-1,1,2,4,4,7-hexamethyltetraline (AHTN), 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-gamma-2-ben zopyran (HHCB), musk ketone and musk xylene were tested for developmental toxicity in Sprague-Dawley rats (25/group, 3 groups/fragrance, 2 fragrances/corn oil control). Dosages tested were HHCB: 50, 150, 500 mg/kg per day; AHTN: 5, 15, 50 mg/kg per day; musk ketone: 15, 45, 150 mg/kg per day; musk xylene: 20, 60, 200 mg/kg per day. All dosages tested exceeded multiples of the estimated maximal daily human dermal exposure. Treatment (gavage, 5 ml/kg) occurred on GDs 7-17 and Caesarean-sectioning on GD 20. Based on the results of these studies, none of the four fragrances tested were more toxic in the conceptuses than in the dams. Maternal NOAELs were 50, 5, 15 and 20 mg/kg per day for HHCB, AHTN, musk ketone and musk xylene, respectively (150, 50, 45 and 60 mg/kg per day caused clinical signs and reduced weight gain and feed consumption). Developmental NOAELs were 150, 50, 45 and 200 mg/kg per day for HHCB, AHTN, musk ketone and musk xylene, respectively. No adverse effects on embryo-fetal viability, growth or morphology occurred at the highest dosages of AHTN (50 mg/kg per day) or musk xylene (200 mg/kg per day). Developmental toxicity occurred at the high-dosages of HHCB (axial skeletal malformations at 500 mg/kg per day) and musk ketone (increased postimplantation loss and reduced fetal body weight at 150 mg/kg per day). The results of this study indicate that under conditions of normal use, the tested fragrances do not pose a risk to human conceptuses.

  16. Further important sensitizers in patients sensitive to fragrances.

    PubMed

    Frosch, P J; Johansen, J D; Menné, T; Pirker, C; Rastogi, S C; Andersen, K E; Bruze, M; Goossens, A; Lepoittevin, J P; White, I R

    2002-11-01

    In order to find sensitizers additional to the current fragrance mix (FM) a series of fragrance materials (series II) was evaluated in 6 dermatological centres in Europe. 11 of the test materials were essential oils, the remaining 7 being either mixtures of isomers or simple chemicals of frequent usage in the perfume industry. 1606 patients were consecutively tested with series II and 8% FM. Each patient was classified regarding a history of adverse reactions to scented products: certain, probable, questionable, none. Reactions to FM occurred most frequently in 11.4% of the subjects. The 6 materials with the highest reactivity after the FM were ylang-ylang oil (YY) I (2.6%), YY II (2.5%), lemongrass oil (1.6%), narcissus absolute (1.3%), jasmine absolute (1.2%) and sandalwood oil (0.9%). 48 (3.0%) of the patients reacted only to materials of series II and not to FM. 6.0% of 1606 patients gave a history of adverse reactions to fragrances which was classified as certain. This group reacted to FM only in 22.9%, to series II and FM in 15.6% and to series II only in 5.2%. 63.5% of the patients reacting to both FM and 1 of the materials of series II had some type of positive fragrance history, which was higher in comparison to those with isolated reactions to FM (46.2% of 121) or to series II, respectively, (45.8% of 48). However, this difference was not statistically significant. In conclusion, the materials of series II identified a further subset of patients with a fragrance problem, which would have been missed by the current FM as the single screening tool for patch testing.

  17. Safety assessment of Ylang-Ylang (Cananga spp.) as a food ingredient.

    PubMed

    Burdock, George A; Carabin, Ioana G

    2008-02-01

    Ylang-Ylang oil is used in the food industry as a flavor ingredient. It is a complex chemical mixture in the form of an essential oil extracted by water or water-and-steam distillation from the fresh flowers of Cananga odorata Hook. f. & Thomson. Ylang-Ylang oil has been reported to cause dermal sensitization reactions in animals and humans, but it is unclear what constituent(s) within the essential oil comprise the offending agent(s) and whether some Ylang-Ylang oils that have had certain constituent(s) removed are any less prone to cause such allergic reactions. There is no indication in the literature that food exposure to Ylang-Ylang oil has caused allergic reactions. One subchronic inhalation toxicity study, involving Ylang-Ylang oil as part of a larger fragrance raw materials mixture, gave no indication of causing adverse effects, but the relevance to risk assessment of oral food flavoring use exposures is likely minimal. No further toxicity data for Ylang-Ylang oil have been reported. Notwithstanding the foregoing, Ylang-Ylang oil has a long history of fragrance and food flavoring use, with no indication that its estimated consumption from food flavoring use (0.0001 mg/kg/day) has led to any adverse human health effects. These data indicate that at the current level of intake as a food ingredient, Ylang-Ylang oil does not pose a health risk to humans.

  18. Safety assessment of Ylang-Ylang (Cananga spp.) as a food ingredient.

    PubMed

    Burdock, George A; Carabin, Ioana G

    2008-02-01

    Ylang-Ylang oil is used in the food industry as a flavor ingredient. It is a complex chemical mixture in the form of an essential oil extracted by water or water-and-steam distillation from the fresh flowers of Cananga odorata Hook. f. & Thomson. Ylang-Ylang oil has been reported to cause dermal sensitization reactions in animals and humans, but it is unclear what constituent(s) within the essential oil comprise the offending agent(s) and whether some Ylang-Ylang oils that have had certain constituent(s) removed are any less prone to cause such allergic reactions. There is no indication in the literature that food exposure to Ylang-Ylang oil has caused allergic reactions. One subchronic inhalation toxicity study, involving Ylang-Ylang oil as part of a larger fragrance raw materials mixture, gave no indication of causing adverse effects, but the relevance to risk assessment of oral food flavoring use exposures is likely minimal. No further toxicity data for Ylang-Ylang oil have been reported. Notwithstanding the foregoing, Ylang-Ylang oil has a long history of fragrance and food flavoring use, with no indication that its estimated consumption from food flavoring use (0.0001 mg/kg/day) has led to any adverse human health effects. These data indicate that at the current level of intake as a food ingredient, Ylang-Ylang oil does not pose a health risk to humans. PMID:17980945

  19. Encapsulation of new active ingredients.

    PubMed

    Onwulata, C I

    2012-01-01

    The organic construct consumed as food comes packaged in units that carry the active components and protect the entrapped active materials until delivered to targeted human organs. The packaging and delivery role is mimicked in the microencapsulation tools used to deliver active ingredients in processed foods. Microencapsulation efficiency is balanced against the need to access the entrapped nutrients in bioavailable forms. Encapsulated ingredients boosted with bioactive nutrients are intended for improved health and well-being and to prevent future health problems. Presently, active ingredients are delivered using new techniques, such as hydrogels, nanoemulsions, and nanoparticles. In the future, nutraceuticals and functional foods may be tailored to individual metabolic needs and tied to each person's genetic makeup. Bioactive ingredients provide health-enhancing nutrients and are protected through encapsulation processes that shield the active ingredients from deleterious environments.

  20. In-vitro human skin penetration of the fragrance material geranyl nitrile.

    PubMed

    Brain, K R; Green, D M; Lalko, J; Api, A M

    2007-02-01

    In-vitro human skin permeation and distribution of geranyl nitrile (GN) was determined using epidermal membranes following application (5 microl/cm(2)) in 70% ethanol, under non-occlusive conditions, at maximum in-use concentration (1%). Permeation was measured (12 time-points over 24 h) using 6% (w/v) Oleth-20 in pH 7.4 phosphate buffered saline as receptor. Permeation of reference benzoic acid was assessed using the same skin donors. Overall recovery of GN at 24 h was low (14.1+/-0.4%) due to evaporation. Evaporative loss of GN from polytetrafluoroethylene (PTFE) sheet, under the same conditions was rapid (93% over 24h) although this overestimated loss during permeation where evaporation competed with uptake. At 24 h, 1.89+/-0.15 microg/cm(2) GN, (3.74+/-0.30% of applied dose) (mean+/-standard error, SE, n=12), had permeated. Following rapid initial permeation, the absorption plateaued due to depletion. Levels of GN in the epidermis (plus any remaining stratum corneum after tape stripping), filter paper membrane support and receptor fluid were combined (as per SCCNFP guidelines) to produce a total absorbed dose value of 4.72+/-0.32%. Systemic exposure resulting from the use of GN as a fragrance ingredient, under unoccluded conditions, would be low based on the currently reported use levels.

  1. Solid-phase microextraction gas chromatography-mass spectrometry determination of fragrance allergens in baby bathwater.

    PubMed

    Lamas, J Pablo; Sanchez-Prado, Lucia; Garcia-Jares, Carmen; Llompart, Maria

    2009-07-01

    A method based on solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) has been optimized for the determination of fragrance allergens in water samples. This is the first study devoted to this family of cosmetic ingredients performed by SPME. The influence of parameters such as fibre coating, extraction and desorption temperatures, salting-out effect and sampling mode on the extraction efficiency has been studied by means of a mixed-level factorial design, which allowed the study of the main effects as well as two-factor interactions. Excluding desorption temperature, the other parameters were, in general, very important for the achievement of high response. The final procedure was based on headspace sampling at 100 degrees C, using polydimethylsiloxane/divinylbenzene fibres. The method showed good linearity and precision for all compounds, with detection limits ranging from 0.001 to 0.3 ng mL(-1). Reliability was demonstrated through the evaluation of the recoveries in different real water samples, including baby bathwater and swimming pool water. The absence of matrix effects allowed the use of external standard calibration to quantify the target compounds in the samples. The proposed procedure was applied to the determination of allergens in several real samples. All the target compounds were found in the samples, and, in some cases, at quite high concentrations. The presence and the levels of these chemicals in baby bathwater should be a matter of concern.

  2. Ultrasound-assisted emulsification-microextraction of fragrance allergens in water.

    PubMed

    Becerril-Bravo, Elias; Pablo Lamas, J; Sanchez-Prado, Lucia; Lores, Marta; Garcia-Jares, Carmen; Jimenez, Blanca; Llompart, Maria

    2010-12-01

    A method based on ultrasound-assisted emulsification-microextraction (USAEME) and gas chromatography-mass spectrometry (GC-MS) has been developed for the analysis of regulated fragrance allergens in water. Extraction conditions such as the type of solvent, extraction temperature, irradiation time, and salting-out effect were optimized using a multivariate approach. Compounds were extracted during 2 min in an acoustically emulsified media formed by 100 μL chloroform and 10 mL sample. The USAEME process provided an efficient and exhaustive extraction (enrichment factor ∼100) and, after centrifugation, the extract was ready for GC analysis. Validation was performed using spiked ultrapure water as well as other most complex matrices such as sewage water. Recoveries between 75% and 110% were generally obtained, and precision was characterized by RSD values <10% in most cases. The limits of detection (LODs) were at the sub-nanogram per millilitre level. The proposed procedure was applied to the determination of allergens in several real samples including tap water, baby bathwater, recreational place water, public washing place water, and sewage water. The presence of some of the target compounds was confirmed in all the samples excluding tap water, demonstrating the ubiquity of this group of cosmetic and personal care products ingredients.

  3. High loading fragrance encapsulation based on a polymer-blend: preparation and release behavior.

    PubMed

    Sansukcharearnpon, Aurapan; Wanichwecharungruang, Supason; Leepipatpaiboon, Natchanun; Kerdcharoen, Teerakiat; Arayachukeat, Sunatda

    2010-05-31

    The six fragrances, camphor, citronellal, eucalyptol, limonene, menthol and 4-tert-butylcyclohexyl acetate, which represent different chemical functionalities, were encapsulated with a polymer-blend of ethylcellulose (EC), hydroxypropyl methylcellulose (HPMC) and poly(vinyl alcohol) (PV(OH)) using solvent displacement (ethanol displaced by water). The process gave >or=40% fragrance loading capacity with >or=80% encapsulation efficiency at the fragrance to polymer weight ratio of 1:1 and at initial polymer concentrations of 2000-16,000 ppm and the obtained fragrance-encapsulated spheres showed hydrodynamic diameters of less than 450 nm. The release profile of the encapsulated fragrances, evaluated by both thermal gravimetric and electronic nose techniques, indicated different release characteristics amongst the six encapsulated fragrances. Limonene showed the fastest release with essentially no retention by the nanoparticles, while eucalyptol and menthol showed the slowest release.

  4. Evaluation of the sedative effect of fragrance on Filipinas using a biochemical marker.

    PubMed

    Yamaguchi, Masaki; Sakakima, Josaku; Sato, Kimiharu; Nakano, Kimihiro

    2007-03-01

    The purpose of this study is to evaluate the usefulness of salivary amylase activity as an indicator of the acute psychological sedative effects of fragrances used in household products such as clothing softeners. Twenty seven healthy Philippine female subjects in their late 30 s were enrolled (38.7+/-5.2 yr). This study was undertaken to investigate the favorite fragrance of Asian and Pacific Islander women. Our results indicated that (i) a mixed floral fragrance might be a favorite fragrance for Filipinas; (ii) fragrances contained in a softener significantly induced a sedative effect in humans, as assessed by both analysis of the biochemical marker and subjective evaluation; (iii) salivary amylase activity has the potential to be an excellent indicator for the evaluation of the acute psychological sedative effects of fragrance.

  5. Effects of fragrance on female sexual arousal and mood across the menstrual cycle.

    PubMed

    Graham, C A; Janssen, E; Sanders, S A

    2000-01-01

    The effects of fragrance on sexual response in women were investigated using subjective and physiological measures of sexual arousal and of mood. Responses were obtained from female participants in three different fragrance conditions (female fragrance, male fragrance, and a "blank" or neutral substance), as they viewed erotic and sexually neutral films, and fantasized about sexual situations. Each woman was tested twice: during the midfollicular and periovulatory phases of her menstrual cycle. Menstrual cycle phase effects were apparent; self-report data indicated greater sexual arousal and more positive mood during the periovulatory than during the follicular phase. Results demonstrated a positive effect of the male fragrance on genital arousal during erotic fantasy, but this finding was apparent only during the follicular phase testing session. This effect did not appear to be mediated by any effects of fragrance on mood. PMID:10705769

  6. Studies on the potential for genotoxic carcinogenicity of fragrances and other chemicals.

    PubMed

    Rosenkranz, H S; Zhang, Y P; Klopman, G

    1998-08-01

    The potential of fragrances, physiological chemicals, natural products and a group of randomly selected chemicals to induce cancers by a genotoxic mechanism (i.e. "genotoxic" carcinogenesis) was compared using structure-activity relationships (SAR) models. Fragrances are significantly less likely to induce genotoxic carcinogenicity than randomly selected chemicals or natural products. With respect to the latter potential, fragrances were indistinguishable from normal mammalian physiological constituents.

  7. Patch testing with a new fragrance mix detects additional patients sensitive to perfumes and missed by the current fragrance mix.

    PubMed

    Frosch, Peter J; Pirker, Claudia; Rastogi, Suresh C; Andersen, Klaus E; Bruze, Magnus; Svedman, Cecilia; Goossens, An; White, Ian R; Uter, Wolfgang; Arnau, Elena Giménez; Lepoittevin, Jean-Pierre; Menné, Torkil; Johansen, Jeanne Duus

    2005-04-01

    The currently used 8% fragrance mix (FM I) does not identify all patients with a positive history of adverse reactions to fragrances. A new FM II with 6 frequently used chemicals was evaluated in 1701 consecutive patients patch tested in 6 dermatological centres in Europe. FM II was tested in 3 concentrations - 28% FM II contained 5% hydroxyisohexyl 3-cyclohexene carboxaldehyde (Lyral), 2% citral, 5% farnesol, 5% coumarin, 1% citronellol and 10%alpha-hexyl-cinnamic aldehyde; in 14% FM II, the single constituents' concentration was lowered to 50% and in 2.8% FM II to 10%. Each patient was classified regarding a history of adverse reactions to fragrances: certain, probable, questionable, none. Positive reactions to FM I occurred in 6.5% of the patients. Positive reactions to FM II were dose-dependent and increased from 1.3% (2.8% FM II), through 2.9% (14% FM II) to 4.1% (28% FM II). Reactions classified as doubtful or irritant varied considerably between the 6 centres, with a mean value of 7.2% for FM I and means ranging from 1.8% to 10.6% for FM II. 8.7% of the tested patients had a certain fragrance history. Of these, 25.2% were positive to FM I; reactivity to FM II was again dose-dependent and ranged from 8.1% to 17.6% in this subgroup. Comparing 2 groups of history - certain and none - values for sensitivity and specificity were calculated: sensitivity: FM I, 25.2%; 2.8% FM II, 8.1%; 14% FM II, 13.5%; 28% FM II, 17.6%; specificity: FM I, 96.5%; 2.8% FM II, 99.5%; 14% FM II, 98.8%; 28% FM II, 98.1%. 31/70 patients (44.3%) positive to 28% FM II were negative to FM I, with 14% FM II this proportion being 16/50 (32%). In the group of patients with a certain history, a total of 7 patients were found reacting to FM II only. Conversely, in the group of patients without any fragrance history, there were significantly more positive reactions to FM I than to any concentration of FM II. In conclusion, the new FM II detects additional patients sensitive to fragrances missed

  8. Supercritical fluid extraction of plant flavors and fragrances.

    PubMed

    Capuzzo, Andrea; Maffei, Massimo E; Occhipinti, Andrea

    2013-06-19

    Supercritical fluid extraction (SFE) of plant material with solvents like CO₂, propane, butane, or ethylene is a topic of growing interest. SFE allows the processing of plant material at low temperatures, hence limiting thermal degradation, and avoids the use of toxic solvents. Although today SFE is mainly used for decaffeination of coffee and tea as well as production of hop extracts on a large scale, there is also a growing interest in this extraction method for other industrial applications operating at different scales. In this review we update the literature data on SFE technology, with particular reference to flavors and fragrance, by comparing traditional extraction techniques of some industrial medicinal and aromatic crops with SFE. Moreover, we describe the biological activity of SFE extracts by describing their insecticidal, acaricidal, antimycotic, antimicrobial, cytotoxic and antioxidant properties. Finally, we discuss the process modelling, mass-transfer mechanisms, kinetics parameters and thermodynamic by giving an overview of SFE potential in the flavors and fragrances arena.

  9. Comparison of ready biodegradation estimation methods for fragrance materials.

    PubMed

    Boethling, Robert

    2014-11-01

    Biodegradability is fundamental to the assessment of environmental exposure and risk from organic chemicals. Predictive models can be used to pursue both regulatory and chemical design (green chemistry) objectives, which are most effectively met when models are easy to use and available free of charge. The objective of this work was to evaluate no-cost estimation programs with respect to prediction of ready biodegradability. Fragrance materials, which are structurally diverse and have significant exposure potential, were used for this purpose. Using a database of 222 fragrance compounds with measured ready biodegradability, 10 models were compared on the basis of overall accuracy, sensitivity, specificity, and Matthews correlation coefficient (MCC), a measure of quality for binary classification. The 10 models were VEGA© Non-Interactive Client, START (Toxtree©), Biowin©1-6, and two models based on inductive machine learning. Applicability domain (AD) was also considered. Overall accuracy was ca. 70% and varied little over all models, but sensitivity, specificity and MCC showed wider variation. Based on MCC, the best models for fragrance compounds were Biowin6, VEGA and Biowin3. VEGA performance was slightly better for the <50% of the compounds it identified as having "high reliability" predictions (AD index >0.8). However, removing compounds with one and only one quaternary carbon yielded similar improvement in predictivity for VEGA, START, and Biowin3/6, with a smaller penalty in reduced coverage. Of the nine compounds for which the eight models (VEGA, START, Biowin1-6) all disagreed with the measured value, measured analog data were available for seven, and all supported the predicted value. VEGA, Biowin3 and Biowin6 are judged suitable for ready biodegradability screening of fragrance compounds.

  10. Cosmetic benefits of natural ingredients.

    PubMed

    Bowe, Whitney P; Pugliese, Silvina

    2014-09-01

    Photoaging is a leading concern for patients and many of these patients will express a desire to utilize natural ingredients as treatment. Mushrooms, feverfew, green tea, licorice, olive oil, soy, and coffee berry have been shown to have antioxidant properties and may play a role in the treatment and prevention of photoaging. In this manuscript, the most recent select basic science and clinical studies examining the mechanisms and efficacy of these ingredients will be discussed.

  11. Selection of fragrance for cosmetic cream containing olive oil.

    PubMed

    Parente, María Emma; Gámbaro, Adriana; Boinbaser, Lucía; Roascio, Antonella

    2014-01-01

    Perceptions of essences for potential use in the development of a line of cosmetic emulsions containing olive oil were studied. Six cream samples prepared with six essences selected in a preliminary study were evaluated for overall liking and intention to purchase by a 63-women sample. A check-all-that-apply (CATA) question consisting of 32 terms was used to gather information about consumer perceptions of fragrance, affective associations, effects on the skin, price, target market, zones of application, and occasions of use. Hierarchical cluster analysis led to the identification of two consumer clusters with different frequency of use of face creams. The two clusters assigned different overall liking scores to the samples and used the CATA terms differently to describe them. A fragrance with jasmine as its principal note was selected for further development of cosmetic creams, as it was awarded the highest overall liking scores by respondents of the two clusters, and was significantly associated with cosmetic features including nourishing, moisturizing, softening, with a delicious and mild smell, and with a natural image, as well as being considered suitable for face and body creams. The use of CATA questions enabled the rapid identification of attributes associated by respondents with a cosmetic cream's fragrance, in addition to contributing relevant information for the definition of marketing and communication strategies. PMID:25043487

  12. Selection of fragrance for cosmetic cream containing olive oil.

    PubMed

    Parente, María Emma; Gámbaro, Adriana; Boinbaser, Lucía; Roascio, Antonella

    2014-01-01

    Perceptions of essences for potential use in the development of a line of cosmetic emulsions containing olive oil were studied. Six cream samples prepared with six essences selected in a preliminary study were evaluated for overall liking and intention to purchase by a 63-women sample. A check-all-that-apply (CATA) question consisting of 32 terms was used to gather information about consumer perceptions of fragrance, affective associations, effects on the skin, price, target market, zones of application, and occasions of use. Hierarchical cluster analysis led to the identification of two consumer clusters with different frequency of use of face creams. The two clusters assigned different overall liking scores to the samples and used the CATA terms differently to describe them. A fragrance with jasmine as its principal note was selected for further development of cosmetic creams, as it was awarded the highest overall liking scores by respondents of the two clusters, and was significantly associated with cosmetic features including nourishing, moisturizing, softening, with a delicious and mild smell, and with a natural image, as well as being considered suitable for face and body creams. The use of CATA questions enabled the rapid identification of attributes associated by respondents with a cosmetic cream's fragrance, in addition to contributing relevant information for the definition of marketing and communication strategies.

  13. Modelling of residually stressed materials with application to AAA.

    PubMed

    Ahamed, T; Dorfmann, L; Ogden, R W

    2016-08-01

    Residual stresses are generated in living tissues by processes of growth and adaptation and they significantly influence the mechanical behaviour of the tissues. Thus, to effectively model the elastic response of the tissues relative to a residually stressed configuration the residual stresses need to be incorporated into the constitutive equations. The purposes of this paper are (a) to summarise a general elastic constitutive formulation that includes residual stress, (b) to specify the tensors needed for the three-dimensional implementation of the theory in a nonlinear finite element code, and (c) to use the theory and its implementation to evaluate the wall stress distribution in an abdominal aortic aneurysm (AAA) using patient specific geometry and material model parameters. The considered material is anisotropic with two preferred directions indicating the orientation of the collagen fibres in the aortic tissue. The method described in this paper is general and can be used, by specifying appropriate energy functions, to investigate other residually stressed biological systems. PMID:26874252

  14. AAA: Road Debris a Mounting Danger on U.S. Highways

    MedlinePlus

    ... Highways Crashes involving objects that have fallen from vehicles up 40 percent since 2001 To use the ... the AAA Foundation for Traffic Safety. Crashes involving vehicle-related debris are up 40 percent since the ...

  15. An AAA-DDD triply hydrogen-bonded complex easily accessible for supramolecular polymers.

    PubMed

    Han, Yi-Fei; Chen, Wen-Qiang; Wang, Hong-Bo; Yuan, Ying-Xue; Wu, Na-Na; Song, Xiang-Zhi; Yang, Lan

    2014-12-15

    For a complementary hydrogen-bonded complex, when every hydrogen-bond acceptor is on one side and every hydrogen-bond donor is on the other, all secondary interactions are attractive and the complex is highly stable. AAA-DDD (A=acceptor, D=donor) is considered to be the most stable among triply hydrogen-bonded sequences. The easily synthesized and further derivatized AAA-DDD system is very desirable for hydrogen-bonded functional materials. In this case, AAA and DDD, starting from 4-methoxybenzaldehyde, were synthesized with the Hantzsch pyridine synthesis and Friedländer annulation reaction. The association constant determined by fluorescence titration in chloroform at room temperature is 2.09×10(7)  M(-1) . The AAA and DDD components are not coplanar, but form a V shape in the solid state. Supramolecular polymers based on AAA-DDD triply hydrogen bonded have also been developed. This work may make AAA-DDD triply hydrogen-bonded sequences easily accessible for stimuli-responsive materials.

  16. Determining the influence of calcification on the failure properties of abdominal aortic aneurysm (AAA) tissue.

    PubMed

    O'Leary, Siobhan A; Mulvihill, John J; Barrett, Hilary E; Kavanagh, Eamon G; Walsh, Michael T; McGloughlin, Tim M; Doyle, Barry J

    2015-02-01

    Varying degrees of calcification are present in most abdominal aortic aneurysms (AAAs). However, their impact on AAA failure properties and AAA rupture risk is unclear. The aim of this work is evaluate and compare the failure properties of partially calcified and predominantly fibrous AAA tissue and investigate the potential reasons for failure. Uniaxial mechanical testing was performed on AAA samples harvested from 31 patients undergoing open surgical repair. Individual tensile samples were divided into two groups: fibrous (n=31) and partially calcified (n=38). The presence of calcification was confirmed by fourier transform infrared spectroscopy (FTIR). A total of 69 mechanical tests were performed and the failure stretch (λf), failure stress (σf) and failure tension (Tf) were recorded for each test. Following mechanical testing, the failure sites of a subset of both tissue types were examined using scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy (EDS) to investigate the potential reasons for failure. It has been shown that the failure properties of partially calcified tissue are significantly reduced compared to fibrous tissue and SEM and EDS results suggest that the junction between a calcification deposit and the fibrous matrix is highly susceptible to failure. This study implicates the presence of calcification as a key player in AAA rupture risk and provides further motivation for the development of non-invasive methods of measuring calcification.

  17. Determining the influence of calcification on the failure properties of abdominal aortic aneurysm (AAA) tissue.

    PubMed

    O'Leary, Siobhan A; Mulvihill, John J; Barrett, Hilary E; Kavanagh, Eamon G; Walsh, Michael T; McGloughlin, Tim M; Doyle, Barry J

    2015-02-01

    Varying degrees of calcification are present in most abdominal aortic aneurysms (AAAs). However, their impact on AAA failure properties and AAA rupture risk is unclear. The aim of this work is evaluate and compare the failure properties of partially calcified and predominantly fibrous AAA tissue and investigate the potential reasons for failure. Uniaxial mechanical testing was performed on AAA samples harvested from 31 patients undergoing open surgical repair. Individual tensile samples were divided into two groups: fibrous (n=31) and partially calcified (n=38). The presence of calcification was confirmed by fourier transform infrared spectroscopy (FTIR). A total of 69 mechanical tests were performed and the failure stretch (λf), failure stress (σf) and failure tension (Tf) were recorded for each test. Following mechanical testing, the failure sites of a subset of both tissue types were examined using scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy (EDS) to investigate the potential reasons for failure. It has been shown that the failure properties of partially calcified tissue are significantly reduced compared to fibrous tissue and SEM and EDS results suggest that the junction between a calcification deposit and the fibrous matrix is highly susceptible to failure. This study implicates the presence of calcification as a key player in AAA rupture risk and provides further motivation for the development of non-invasive methods of measuring calcification. PMID:25482218

  18. Studies on Fragrance Delivery from Inorganic Nanocontainers: Encapsulation, Release and Modeling Studies

    NASA Astrophysics Data System (ADS)

    Ghodke, Shailesh Adinath; Sonawane, Shirish Hari; Bhanvase, Bharat Apparao; Mishra, Satyendra; Joshi, Kalpana Shrikant

    2015-04-01

    The present work deals with encapsulation of fragrance molecule in inorganic nanocontainers substrate and investigation of its prolonged release at different pH condition. The nanocontainers used were aluminosilicate clay (Halloysite) having cylindrical shape with outside diameter in the range of 30-50 nm, 15 nm lumen and length equal to 800 ± 300 nm. Rosewater absolute was used as a sample fragrance for loading in nanocontainer and delivery purpose. The fragrance loaded nanocontainers were coated with a thin layer of polyelectrolyte i.e. Polyacrylic Acid (PAA). The structural characteristics of prepared nanocontainers were determined by using Fourier Transform Intra-red Spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA) and UV spectroscopy analysis. Release of fragrance molecules in the aqueous medium was monitored for 24 h. The fragrance release was found to be responsive as the amount of fragrance release increases with increase in pH value from 3 to 7. Fragrance release has been studied by using various permeation kinetic models such as zero order, first order, Hixson-Crowell, Higuchi, Korsmeyer-Peppas and Hopfenberg models. Korsemyer-Peppas shows the best fit (R2 = 0.9544) compared to other kinetic model for the release of fragrance from nanocontainers.

  19. Verification of IMRT dose calculations using AAA and PBC algorithms in dose buildup regions.

    PubMed

    Oinam, Arun S; Singh, Lakhwant

    2010-08-26

    The purpose of this comparative study was to test the accuracy of anisotropic analytical algorithm (AAA) and pencil beam convolution (PBC) algorithms of Eclipse treatment planning system (TPS) for dose calculations in the low- and high-dose buildup regions. AAA and PBC algorithms were used to create two intensity-modulated radiotherapy (IMRT) plans of the same optimal fluence generated from a clinically simulated oropharynx case in an in-house fabricated head and neck phantom. The TPS computed buildup doses were compared with the corresponding measured doses in the phantom using thermoluminescence dosimeters (TLD 100). Analysis of dose distribution calculated using PBC and AAA shows an increase in gamma value in the dose buildup region indicating large dose deviation. For the surface areas of 1, 50 and 100 cm2, PBC overestimates doses as compared to AAA calculated value in the range of 1.34%-3.62% at 0.6 cm depth, 1.74%-2.96% at 0.4 cm depth, and 1.96%-4.06% at 0.2 cm depth, respectively. In high-dose buildup region, AAA calculated doses were lower by an average of -7.56% (SD = 4.73%), while PBC was overestimated by 3.75% (SD = 5.70%) as compared to TLD measured doses at 0.2 cm depth. However, at 0.4 and 0.6 cm depth, PBC overestimated TLD measured doses by 5.84% (SD = 4.38%) and 2.40% (SD = 4.63%), respectively, while AAA underestimated the TLD measured doses by -0.82% (SD = 4.24%) and -1.10% (SD = 4.14%) at the same respective depth. In low-dose buildup region, both AAA and PBC overestimated the TLD measured doses at all depths except -2.05% (SD = 10.21%) by AAA at 0.2 cm depth. The differences between AAA and PBC at all depths were statistically significant (p < 0.05) in high-dose buildup region, whereas it is not statistically significant in low-dose buildup region. In conclusion, AAA calculated the dose more accurately than PBC in clinically important high-dose buildup region at 0.4 cm and 0.6 cm depths. The use of an orfit cast increases the dose buildup

  20. Determination of suspected fragrance allergens in cosmetics by matrix solid-phase dispersion gas chromatography-mass spectrometry analysis.

    PubMed

    Sanchez-Prado, Lucia; Lamas, J Pablo; Alvarez-Rivera, Gerardo; Lores, Marta; Garcia-Jares, Carmen; Llompart, Maria

    2011-08-01

    An effective low cost sample preparation methodology for the determination of regulated fragrance allergens in leave-on and rinse-off cosmetics has been developed applying, for the first time, matrix solid-phase dispersion (MSPD) to this kind of analytes and samples. The selection of the most suitable extraction conditions was made using statistical tools such as ANOVA, as well as a factorial multifactor experimental design. These studies were carried out using real cosmetic samples. In the final conditions, 0.5 of sample, previously mixed with 1g of anhydrous Na(2)SO(4), were blended with 2g of dispersive sorbent (Florisil), and the MSPD column was eluted with 5 mL of hexane/acetone (1:1). The extract was then analyzed by GC-MS without any further clean-up or concentration step. Accuracy, precision, linearity and detection limits (LODs) were evaluated to assess the performance of the proposed method. Quantitative recoveries (>75%) were obtained and RSD values were lower than 10% in all cases. The quantification limits were well below those set by the international cosmetic regulations, making this multi-component analytical method suitable for routine control. In addition, the MSPD method can be implemented in any laboratory at low cost since it does not require special equipment. Finally, a wide variety of cosmetic products were analyzed. All the samples contained several of the target cosmetic ingredients, with and average number of seven. The total fragrance allergen content was in general quite high, even in baby care products, with values close to or up to 1%, for several samples, although the actual European Cosmetic Regulation was fulfilled.

  1. Advertising to the enemy: enhanced floral fragrance increases beetle attraction and reduces plant reproduction.

    PubMed

    Theis, Nina; Adler, Lynn S

    2012-02-01

    Many organisms face challenges in avoiding predation while searching for mates. For plants, emitting floral fragrances to advertise reproductive structures could increase the attraction of detrimental insects along with pollinators. Very few studies have experimentally evaluated the costs and benefits of fragrance emission with explicit consideration of how plant fitness is affected by both pollinators and florivores. To determine the reproductive consequences of increasing the apparency of reproductive parts, we manipulated fragrance, pollination, and florivores in the wild Texas gourd, Cucurbita pepo var. texana. With enhanced fragrance we found an increase in the attraction of florivores, rather than pollinators, and a decrease in seed production. This study is the first to demonstrate that enhanced floral fragrance can increase the attraction of detrimental florivores and decrease plant reproduction, suggesting that florivory as well as pollination has shaped the evolution of floral scent. PMID:22624324

  2. A single base substitution in BADH/AMADH is responsible for fragrance in cucumber (Cucumis sativus L.), and development of SNAP markers for the fragrance.

    PubMed

    Yundaeng, Chutintorn; Somta, Prakit; Tangphatsornruang, Sithichoke; Chankaew, Sompong; Srinives, Peerasak

    2015-09-01

    Sequence analysis revealed that an SNP (A1855G) in CsBADH of cucumber accession PK2011T202 causes amino acid change in a highly conserved motif, Y163C. Gene mapping showed association between the SNP and the fragrance. Pandan-like fragrance is a value-added trait in several food crops such as rice, vegetable soybean and sorghum. The fragrance is caused by the volatile chemical 2-acetyl-1-pyrroline (2AP). Mutation(s) in betaine aldehyde dehydrogenase 2 (BADH2; also known as aminoaldehyde dehydrogenase 2) gene causes defective BADH2 and results in biosynthesis of 2AP. Recently, cucumber cultivars possessing pandan-like fragrance were discovered in Thailand. In this study, we report an association between CsBADH and the fragrance in cucumber accession "PK2011T202". Gene expression analysis of CsBADH in leaves of PK2011T202 and "301176" (non-fragrant) at various growth stages revealed that CsBADH was expressed in both accessions. Sequence comparison of CsBADH showed that PK2011T202 possesses a single base substitution (A1855G) in exon 5 which causes an amino acid change in a highly conserved motif of BADH, Y163C. Single nucleotide-amplified polymorphism markers were developed to detect the SNP polymorphism between the wild-type and fragrance alleles. Since CsBADH is located on chromosome 1, quantitative trait locus (QTL) mapping was conducted for this chromosome using an F2 and a backcross populations developed from the cross between PK2011T202 and 301176. QTL analysis in both populations showed that the major QTL for fragrance, qFgr, was co-localized with the CsBADH. We concluded that the defect function of CsBADH is responsible for fragrance in cucumber PK2011T202. PMID:26081947

  3. A single base substitution in BADH/AMADH is responsible for fragrance in cucumber (Cucumis sativus L.), and development of SNAP markers for the fragrance.

    PubMed

    Yundaeng, Chutintorn; Somta, Prakit; Tangphatsornruang, Sithichoke; Chankaew, Sompong; Srinives, Peerasak

    2015-09-01

    Sequence analysis revealed that an SNP (A1855G) in CsBADH of cucumber accession PK2011T202 causes amino acid change in a highly conserved motif, Y163C. Gene mapping showed association between the SNP and the fragrance. Pandan-like fragrance is a value-added trait in several food crops such as rice, vegetable soybean and sorghum. The fragrance is caused by the volatile chemical 2-acetyl-1-pyrroline (2AP). Mutation(s) in betaine aldehyde dehydrogenase 2 (BADH2; also known as aminoaldehyde dehydrogenase 2) gene causes defective BADH2 and results in biosynthesis of 2AP. Recently, cucumber cultivars possessing pandan-like fragrance were discovered in Thailand. In this study, we report an association between CsBADH and the fragrance in cucumber accession "PK2011T202". Gene expression analysis of CsBADH in leaves of PK2011T202 and "301176" (non-fragrant) at various growth stages revealed that CsBADH was expressed in both accessions. Sequence comparison of CsBADH showed that PK2011T202 possesses a single base substitution (A1855G) in exon 5 which causes an amino acid change in a highly conserved motif of BADH, Y163C. Single nucleotide-amplified polymorphism markers were developed to detect the SNP polymorphism between the wild-type and fragrance alleles. Since CsBADH is located on chromosome 1, quantitative trait locus (QTL) mapping was conducted for this chromosome using an F2 and a backcross populations developed from the cross between PK2011T202 and 301176. QTL analysis in both populations showed that the major QTL for fragrance, qFgr, was co-localized with the CsBADH. We concluded that the defect function of CsBADH is responsible for fragrance in cucumber PK2011T202.

  4. Phylogenetic fragrance patterns in Nicotiana sections Alatae and Suaveolentes.

    PubMed

    Raguso, Robert A; Schlumpberger, Boris O; Kaczorowski, Rainee L; Holtsford, Timothy P

    2006-09-01

    We analyzed floral volatiles from eight tobacco species (Nicotiana; Solanaceae) including newly discovered Brazilian taxa (Nicotiana mutabilis and "Rastroensis") in section Alatae. Eighty-four compounds were found, including mono- and sesquiterpenoids, nitrogenous compounds, benzenoid and aliphatic alcohols, aldehydes and esters. Floral scent from recent accessions of Nicotiana alata, Nicotiana bonariensis and Nicotiana langsdorffii differed from previously published data, suggesting intraspecific variation in scent composition at the level of biosynthetic class. Newly discovered taxa in Alatae, like their relatives, emit large amounts of 1,8-cineole and smaller amounts of monoterpenes on a nocturnal rhythm, constituting a chemical synapomorphy for this lineage. Fragrance data from three species of Nicotiana sect. Suaveolentes, the sister group of Alatae, (two Australian species: N. cavicola, N. ingulba; one African species: N. africana), were compared to previously reported data from their close relative, N. suaveolens. Like N. suaveolens, N. cavicola and N. ingulba emit fragrances dominated by benzenoids and phenylpropanoids, whereas the flowers of N. africana lacked a distinct floral scent and instead emitted only small amounts of an aliphatic methyl ester from foliage. Interestingly, this ester also is emitted from foliage of N. longiflora and N. plumbaginifolia (both in section Alatae s.l.), which share a common ancestor with N. africana. This result, combined with the synapomorphic pattern of 1,8 cineole emission in Alatae s.s., suggests that phylogenetic signal explains a major component of fragrance composition among tobacco species in sections Alatae and Suaveolentes. At the intraspecific level, interpopulational scent variation is widespread in sect. Alatae, and may reflect edaphic specialization, introgression, local pollinator shifts, genetic drift or artificial selection in cultivation. Further studies with genetically and geographically well

  5. [Contact allergy for perfume ingredients in cosmetics and toilet articles].

    PubMed

    de Groot, A C

    1997-03-22

    Fragrance materials are not only present in products primarily used for their scent such as perfume, eau de toilette, deodorant and aftershave, but also in cosmetics, toiletries, household products and industrial materials. Of the general population, approximately one percent are allergic to fragrance materials, men nearly as frequent as women. Of patients consulting the dermatologist because of dermatitis, 6-11% have a positive patch test to the fragrance mix. Allergic contact dermatitis due to fragrances usually consists of erythema and desquamation, often localized in the neck, behind the ears, in the arm-pits or around the eyes. It can worsen pre-existing dermatoses such as hand eczema, atopic dermatitis, perianal dermatitis or vulvar dermatitis. The diagnosis of contact allergy to fragrances is made by epicutaneous tests with the European standard series (including some markers for fragrance sensitivity: the fragrance mix, balsam of Peru and colophony) and the patient's own contact materials. A positive patch test reaction must be followed by evaluation of its relevance. Advice to the patient is directed towards avoidance of fragranced products, if possible, and explanation of how use tests can identify fragranced products which can be used without ill effects.

  6. Contact allergens for armpits--allergenic fragrances specified on deodorants.

    PubMed

    Klaschka, Ursula

    2012-11-01

    According to the so-called "26 allergens rule" 26 supposedly allergenic fragrances must be specified on the containers of cosmetic products if they are present above 0.001% in leave-on products and, 0.01% in rinse-off products. This declaration is meant to inform the consumers of potential risks of skin sensitizers in the products. As many consumers of deodorants suffer from allergic or irritant contact dermatitis in the axillae, the presence of allergens in deodorants deserves special attention. The objective of this study was to find answers to the following questions: Does compulsory labeling lead to omission of strong allergenic fragrances in deodorants? Is there a difference in the use patterns of strong and weak allergens? What is the quantitative exposure to fragrances by deodorants? Is the situation in Germany different from other European countries? Is there a difference between deodorants for men and for women? I tested the implementation of the "26 allergens rule" and compiled which allergenic fragrances are specified on the containers of deodorants. Three market studies were conducted in Germany in 2008, 2010 and 2011. The labels of a total number of 374 deodorants were analyzed as to whether any of the "26 allergens" were listed. The frequency of each allergen in the deodorants was compared with results from previous studies by other authors. It was found that up to 83% of the deodorants contain at least one of the "26 allergens" and that up to 30% of all products contain strong allergens above the threshold for labeling (0.001% in the product). The most frequently listed allergens are medium or weak allergens. In comparison with other authors, the frequency of the "26 allergens" in products is slightly smaller in these recent studies for the German market. There is no significant difference between deodorants for men and women, as far as the labeling of the "26 allergens" is concerned. The results show that the mandatory labeling procedure as designed

  7. Contact allergens for armpits--allergenic fragrances specified on deodorants.

    PubMed

    Klaschka, Ursula

    2012-11-01

    According to the so-called "26 allergens rule" 26 supposedly allergenic fragrances must be specified on the containers of cosmetic products if they are present above 0.001% in leave-on products and, 0.01% in rinse-off products. This declaration is meant to inform the consumers of potential risks of skin sensitizers in the products. As many consumers of deodorants suffer from allergic or irritant contact dermatitis in the axillae, the presence of allergens in deodorants deserves special attention. The objective of this study was to find answers to the following questions: Does compulsory labeling lead to omission of strong allergenic fragrances in deodorants? Is there a difference in the use patterns of strong and weak allergens? What is the quantitative exposure to fragrances by deodorants? Is the situation in Germany different from other European countries? Is there a difference between deodorants for men and for women? I tested the implementation of the "26 allergens rule" and compiled which allergenic fragrances are specified on the containers of deodorants. Three market studies were conducted in Germany in 2008, 2010 and 2011. The labels of a total number of 374 deodorants were analyzed as to whether any of the "26 allergens" were listed. The frequency of each allergen in the deodorants was compared with results from previous studies by other authors. It was found that up to 83% of the deodorants contain at least one of the "26 allergens" and that up to 30% of all products contain strong allergens above the threshold for labeling (0.001% in the product). The most frequently listed allergens are medium or weak allergens. In comparison with other authors, the frequency of the "26 allergens" in products is slightly smaller in these recent studies for the German market. There is no significant difference between deodorants for men and women, as far as the labeling of the "26 allergens" is concerned. The results show that the mandatory labeling procedure as designed

  8. Categorization of fragrance contact allergens for prioritization of preventive measures: clinical and experimental data and consideration of structure-activity relationships.

    PubMed

    Uter, Wolfgang; Johansen, Jeanne D; Börje, Anna; Karlberg, Ann-Therese; Lidén, Carola; Rastogi, Suresh; Roberts, David; White, Ian R

    2013-10-01

    Contact allergy to fragrances is still relatively common, affecting ∼ 16% of patients patch tested for suspected allergic contact dermatitis, considering all current screening allergens. The objective of the review is to systematically retrieve, evaluate and classify evidence on contact allergy to fragrances, in order to arrive at recommendations for targeting of primary and secondary prevention. Besides published evidence on contact allergy in humans, animal data (local lymph node assay), annual use volumes and structure-activity relationships (SARs) were considered for an algorithmic categorization of substances as contact allergens. A total of 54 individual chemicals and 28 natural extracts (essential oils) can be categorized as established contact allergens in humans, including all 26 substances previously identified as contact allergens (SCCNFP/0017/98). Twelve of the 54 individual chemicals are considered to be of special concern, owing to the high absolute number of reported cases of contact allergy (>100). Additionally, 18 single substances and one natural mixture are categorized as established contact allergens in animals. SARs, combined with limited human evidence, contributed to the categorization of a further 26 substances as likely contact allergens. In conclusion, the presence of 127 single fragrance substances and natural mixtures should, owing to their skin sensitizing properties, be disclosed, for example on the label. As an additional preventive measure, the maximum use concentration of 11 substances of special concern should be limited to 100 ppm. The substance hydroxyisohexyl 3-cyclohexene carboxaldehyde and the two ingredients chloroatranol and atranol in the natural extracts Evernia prunastri and Evernia furfuracea should not be present in cosmetic products.

  9. Cytoplasmic dynein regulates its attachment to microtubules via nucleotide state-switched mechanosensing at multiple AAA domains.

    PubMed

    Nicholas, Matthew P; Berger, Florian; Rao, Lu; Brenner, Sibylle; Cho, Carol; Gennerich, Arne

    2015-05-19

    Cytoplasmic dynein is a homodimeric microtubule (MT) motor protein responsible for most MT minus-end-directed motility. Dynein contains four AAA+ ATPases (AAA: ATPase associated with various cellular activities) per motor domain (AAA1-4). The main site of ATP hydrolysis, AAA1, is the only site considered by most dynein motility models. However, it remains unclear how ATPase activity and MT binding are coordinated within and between dynein's motor domains. Using optical tweezers, we characterize the MT-binding strength of recombinant dynein monomers as a function of mechanical tension and nucleotide state. Dynein responds anisotropically to tension, binding tighter to MTs when pulled toward the MT plus end. We provide evidence that this behavior results from an asymmetrical bond that acts as a slip bond under forward tension and a slip-ideal bond under backward tension. ATP weakens MT binding and reduces bond strength anisotropy, and unexpectedly, so does ADP. Using nucleotide binding and hydrolysis mutants, we show that, although ATP exerts its effects via binding AAA1, ADP effects are mediated by AAA3. Finally, we demonstrate "gating" of AAA1 function by AAA3. When tension is absent or applied via dynein's C terminus, ATP binding to AAA1 induces MT release only if AAA3 is in the posthydrolysis state. However, when tension is applied to the linker, ATP binding to AAA3 is sufficient to "open" the gate. These results elucidate the mechanisms of dynein-MT interactions, identify regulatory roles for AAA3, and help define the interplay between mechanical tension and nucleotide state in regulating dynein motility.

  10. Identification of AAAS gene mutation in Allgrove syndrome: A report of three cases

    PubMed Central

    LI, WENJING; GONG, CHUNXIU; QI, ZHAN; WU, DI; CAO, BINGYAN

    2015-01-01

    Allgrove syndrome (AS) is an autosomal recessive congenital disease, caused by mutations in the AAAS gene, and is characterized by the triad of Addison's disease, achalasia and alacrima. The present study describes three newly diagnosed cases of AS, in which genetic analysis of the AAAS gene was used to identify AAAS gene mutations, to enhance the understanding of the pathogenesis and clinical manifestations of AS in the Chinese population. Two of the cases exhibited homozygous mutations of c.771delG (p.Arg258GlyfsX33) in exon 8 and one case exhibited a homozygous mutation of c.1366C>T (p.Q456X) in exon 15. A review of the current literature suggests that the AAAS c.771delG mutation has only been reported in the Chinese population. Genetic analysis of the AAAS gene in Chinese AS patients at a young age may facilitate an earlier diagnosis and the timely initiation of the appropriate treatment, ultimately improving the patient outcome. PMID:26622478

  11. Tuning of essential oil properties by enzymatic treatment: towards sustainable processes for the generation of new fragrance ingredients.

    PubMed

    Antoniotti, Sylvain

    2014-01-01

    In this review, several strategies of modification of essential oils by enzymatic treatment are presented. Being either applied before or after the production of the essential oil, enzymatic methods are shown to be particularly adapted to attain the required selectivity, specificity and efficiency in sustainable processes delivering products eligible for the natural grade. Examples dealing with the optimization of the properties of essential oils in terms of biological activity, odor and safety are provided, and it is likely that these strategies will address other type of properties in the future, such as the physico-chemical properties, for example.

  12. RIFM fragrance ingredient safety assessment, 2-methyl-3-buten-2-ol, CAS Registry Number 115-18-4.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Shen, J; Schultz, T W; Sipes, I G; Wall, B; Wilcox, D K

    2015-10-01

    The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential as well as environmental safety. Repeated dose, developmental, and reproductive toxicities were determined to have the most conservative systemic exposure derived NO[A]EL of 50 mg/kg/day, based on OECD gavage toxicity studies in rats, that resulted in a MOE of 4545455 after considering 100% absorption from skin contact and inhalation. A MOE of >100 is deemed acceptable.

  13. RIFM fragrance ingredient safety assessment, 2-methyl-3-buten-2-ol, CAS Registry Number 115-18-4.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Shen, J; Schultz, T W; Sipes, I G; Wall, B; Wilcox, D K

    2015-10-01

    The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential as well as environmental safety. Repeated dose, developmental, and reproductive toxicities were determined to have the most conservative systemic exposure derived NO[A]EL of 50 mg/kg/day, based on OECD gavage toxicity studies in rats, that resulted in a MOE of 4545455 after considering 100% absorption from skin contact and inhalation. A MOE of >100 is deemed acceptable. PMID:26206495

  14. Read-across estimates of aquatic toxicity for selected fragrances.

    PubMed

    Rorije, Emiel; Aldenberg, Tom; Peijnenburg, Willie

    2013-03-01

    Read-across as a non-animal testing alternative for the generation of risk assessment data can be useful in those cases where quantitative structure-activity relationship (QSAR) models are not available, or are less well developed. This paper provides read-across case studies for the estimation of the aquatic toxicity of five different fragrance substances, and proposes a pragmatic approach for expressing uncertainty in read-across estimates. The aquatic toxicity estimates and their uncertainties are subsequently used to estimate fresh water compartment Predicted No-Effect Concentrations (PNECs), with their two-sided 90% Confidence Intervals (CIs). These PNECs can be used directly in risk assessment. The results of the musk fragrance read-across cases (musk xylene, musk ketone and galaxolide) are compared to experimentally derived PNEC values. The read-across estimates made by using similarity in a hypothesised mechanism of action for (acute) toxicity of musk xylene gave a PNEC of 2μg/L (90% CI 0.0004-13.5μg/L) with the Species Sensitivity Distribution (SSD) approach. This estimated value is 1.8 times above the experimentally-based fresh water PNEC of 1.1μg/L. For musk ketone and galaxolide, the PNEC values based on the SSD approach and employing a toxicity mechanism-based read-across were 2.0 times greater, and 4.9 times below the experimentally derived PNEC values, respectively. PMID:23614546

  15. Structure-activity relationships for selected fragrance allergens.

    PubMed

    Patlewicz, G Y; Wright, Z M; Basketter, D A; Pease, C K; Lepoittevin, J-P; Arnau, E Giménez

    2002-10-01

    Fragrance substances represent a very diverse group of chemicals, a proportion of them providing not only desirable aroma characteristics, but also being associated with adverse effects, notably the ability to cause allergic reactions in the skin. However, efforts to find substitute materials are hampered by the need to undertake animal testing to evaluate both the presence and the degree of skin sensitization hazard. One potential route to avoid such testing is to understand the relationships between chemical structure and skin sensitization. In the present work we have evaluated two groups of fragrance chemicals, saturated aldehydes (aryl substituted and aliphatic aldehydes) and alpha,beta-unsaturated aldehydes. Data on their skin sensitization potency defined using the local lymph node assay has been evaluated in relation to their physicochemical properties. The initial outcome has been consistent with the concept that alpha,beta-unsaturated aldehydes react largely via Michael addition, whilst the group of saturated aldehydes form Schiff bases with proteins. Simple models of chemical reactivity based on these mechanisms suggest that it may be possible to predict allergenic potency. Accordingly, the evaluation of an additional group of similar aldehydes is now underway to assess the robustness of these models, with some emphasis being based on ensuring a wider spread of chemical reactivity.

  16. Removal of pharmaceuticals and fragrances in biological wastewater treatment.

    PubMed

    Joss, Adriano; Keller, Elvira; Alder, Alfredo C; Göbel, Anke; McArdell, Christa S; Ternes, Thomas; Siegrist, Hansruedi

    2005-09-01

    The removal of seven pharmaceuticals and two fragrances in the biological units of various full-scale municipal wastewater treatment plants was studied. The observed removal of pharmaceuticals was mainly due to biological transformation and varied from insignificant (<10%, carbamazepine) to>90% (ibuprofen). However, no quantitative relationship between structure and activity can be set up for the biological transformation. Overall, it can be concluded that for compounds showing a sorption coefficient (K(d)) of below 300 L kg(-1), sorption onto secondary sludge is not relevant and their transformation can consequently be assessed simply by comparing influent and effluent concentrations. The two fragrances (HHCB, AHTN) studied were mainly removed by sorption onto sludge. For the compounds studied, comparable transformation and sorption was seen for different reactor types (conventional activated sludge, membrane bioreactor and fixed bed reactor) as well as for sludge ages between 10 and 60-80 days and temperatures between 12 degrees C and 21 degrees C. However, some significant variations in the observed removal currently lack an explanation. The observed incoming daily load of iopromide and roxithromycin in medium-sized municipal wastewater treatment plants (up to 80,000 population equivalents) is generated by only a small number of patients: the consequences for representative 24h composite sampling are discussed. Generally, the paper presents a method for setting up mass balances for micropollutants over entire wastewater treatment plants, including an estimation of the accuracy of the quantified fate (i.e. removal by sorption and biological transformation).

  17. Read-across estimates of aquatic toxicity for selected fragrances.

    PubMed

    Rorije, Emiel; Aldenberg, Tom; Peijnenburg, Willie

    2013-03-01

    Read-across as a non-animal testing alternative for the generation of risk assessment data can be useful in those cases where quantitative structure-activity relationship (QSAR) models are not available, or are less well developed. This paper provides read-across case studies for the estimation of the aquatic toxicity of five different fragrance substances, and proposes a pragmatic approach for expressing uncertainty in read-across estimates. The aquatic toxicity estimates and their uncertainties are subsequently used to estimate fresh water compartment Predicted No-Effect Concentrations (PNECs), with their two-sided 90% Confidence Intervals (CIs). These PNECs can be used directly in risk assessment. The results of the musk fragrance read-across cases (musk xylene, musk ketone and galaxolide) are compared to experimentally derived PNEC values. The read-across estimates made by using similarity in a hypothesised mechanism of action for (acute) toxicity of musk xylene gave a PNEC of 2μg/L (90% CI 0.0004-13.5μg/L) with the Species Sensitivity Distribution (SSD) approach. This estimated value is 1.8 times above the experimentally-based fresh water PNEC of 1.1μg/L. For musk ketone and galaxolide, the PNEC values based on the SSD approach and employing a toxicity mechanism-based read-across were 2.0 times greater, and 4.9 times below the experimentally derived PNEC values, respectively.

  18. Prevalence of fragrance sensitivity in the American population.

    PubMed

    Caress, Stanley M; Steinemann, Anne C

    2009-03-01

    This study determined the percentages of individuals who report adverse effects from exposure to fragranced products in the U.S. population and in subpopulations of those with asthma or chemical sensitivity. Data were collected through telephone interviews from two geographically weighted, random samples of the continental U.S. in two surveys during 2002-2003 and 2005-2006 (1,057 and 1,058 cases, respectively). Respondents were asked if they find being next to someone wearing a scented product irritating or appealing; if they have headaches, breathing difficulties, or other problems when exposed to air fresheners or deodorizers; and if they are irritated by the scent from laundry products, fabric softeners, or dryer sheets that are vented outside. Results aggregated from both surveys found that 30.5% of the general population reported scented products on others irritating, 19% reported adverse health effects from air fresheners, and 10.9% reported irritation by scented laundry products vented outside. This study reveals that a considerable percentage of the U.S. population reports adverse health effects or irritation from fragranced products, with higher percentages among those with asthma and chemical sensitivity.

  19. Prevalence of fragrance sensitivity in the American population.

    PubMed

    Caress, Stanley M; Steinemann, Anne C

    2009-03-01

    This study determined the percentages of individuals who report adverse effects from exposure to fragranced products in the U.S. population and in subpopulations of those with asthma or chemical sensitivity. Data were collected through telephone interviews from two geographically weighted, random samples of the continental U.S. in two surveys during 2002-2003 and 2005-2006 (1,057 and 1,058 cases, respectively). Respondents were asked if they find being next to someone wearing a scented product irritating or appealing; if they have headaches, breathing difficulties, or other problems when exposed to air fresheners or deodorizers; and if they are irritated by the scent from laundry products, fabric softeners, or dryer sheets that are vented outside. Results aggregated from both surveys found that 30.5% of the general population reported scented products on others irritating, 19% reported adverse health effects from air fresheners, and 10.9% reported irritation by scented laundry products vented outside. This study reveals that a considerable percentage of the U.S. population reports adverse health effects or irritation from fragranced products, with higher percentages among those with asthma and chemical sensitivity. PMID:19326669

  20. Supercritical fluid extraction of plant flavors and fragrances.

    PubMed

    Capuzzo, Andrea; Maffei, Massimo E; Occhipinti, Andrea

    2013-01-01

    Supercritical fluid extraction (SFE) of plant material with solvents like CO₂, propane, butane, or ethylene is a topic of growing interest. SFE allows the processing of plant material at low temperatures, hence limiting thermal degradation, and avoids the use of toxic solvents. Although today SFE is mainly used for decaffeination of coffee and tea as well as production of hop extracts on a large scale, there is also a growing interest in this extraction method for other industrial applications operating at different scales. In this review we update the literature data on SFE technology, with particular reference to flavors and fragrance, by comparing traditional extraction techniques of some industrial medicinal and aromatic crops with SFE. Moreover, we describe the biological activity of SFE extracts by describing their insecticidal, acaricidal, antimycotic, antimicrobial, cytotoxic and antioxidant properties. Finally, we discuss the process modelling, mass-transfer mechanisms, kinetics parameters and thermodynamic by giving an overview of SFE potential in the flavors and fragrances arena. PMID:23783457

  1. Testing with fine fragrances in eczema patients: results and test methods.

    PubMed

    Johansen, J D; Frosch, P J; Rastogi, S C; Menné, T

    2001-05-01

    The frequencies of contact allergic reactions to 2 fine fragrances were studied by patch testing. Further, a comparison was made of test results before and after evaporation of the solvent. A total of 480 consecutive eczema patients were included, 100 in the Dortmund clinic and 380 in the Gentofte clinic. Patch testing was done with 2 international brand prestige fragrances. Each fragrance was tested in duplicate. One was applied immediately and the other was allowed to dry for 5 min before application. Testing procedures and assessment of reactions followed the international recommendations. In Dortmund 11% (11/100) and in Gentofte 5.8% (22/380) gave a positive patch test reaction to one or both of the fine fragrances. Assessments done in Gentofte showed that in 73% of the cases the positive reaction indicated a clinically relevant fragrance allergy. More irritant reactions were found to the wet, non-evaporated form of the fragrances compared with the dried form, while the method of testing did not significantly influence the number of positive reactions. It is recommended that patch testing be performed with hydro-alcoholic fragrance products after evaporation of the solvent.

  2. Synthetic Musk Fragrances in Lake Erie and Lake Ontario Sediment Cores

    PubMed Central

    Peck, Aaron M.; Linebaugh, Emily K.; Hornbuckle, Keri C.

    2009-01-01

    Two sediment cores collected from Lake Ontario and Lake Erie were sectioned, dated, and analyzed for five polycyclic musk fragrances and two nitro musk fragrances. The polycyclic musk fragrances were HHCB (Galaxolide), AHTN (Tonalide), ATII (Traseolide), ADBI (Celestolide), and AHMI (Phantolide). The nitro musk fragrances were musk ketone and musk xylene. Chemical analysis was performed by gas chromatography/mass spectrometry (GC/MS) and results from Lake Erie were confirmed using gas chromatography/triple-quadrupole mass spectrometry (GC/MS/MS). The chemical signals observed at the two sampling locations were different from each other due primarily to large differences in the sedimentation rates at the two sampling locations. HHCB was detected in the Lake Erie core while six compounds were detected in the Lake Ontario core. Using measured fragrance and 210Pb activity, the burden of synthetic musk fragrances estimated from these sediment cores is 1900 kg in Lake Erie and 18000 kg in Lake Ontario. The input of these compounds to the lakes is increasing. The HHCB accumulation rates in Lake Erie for 1979-2003 and 1990-2003 correspond to doubling times of 16 ± 4 yr and 8 ± 2 yr, respectively. The results reflect current U.S. production trends for the sum of all fragrance compounds. PMID:17007119

  3. Dynein motors: How AAA+ ring opening and closing coordinates microtubule binding and linker movement.

    PubMed

    Schmidt, Helgo

    2015-05-01

    Dyneins are a family of motor proteins that move along the microtubule. Motility is generated in the motor domain, which consists of a ring of six AAA+ (ATPases associated with diverse cellular activities) domains, the linker and the microtubule-binding domain (MTBD). The cyclic ATP-hydrolysis in the AAA+ ring causes the remodelling of the linker, which creates the necessary force for movement. The production of force has to be synchronized with cycles of microtubule detachment and rebinding to efficiently create movement along the microtubule. The analysis of four dynein motor domain crystal structures in the essay presented here provides evidence that this crucial coordination is carried out by open/closed AAA+ ring conformations.

  4. Simulated inhalation levels of fragrance materials in a surrogate air freshener formulation.

    PubMed

    Rogers, Robert E; Isola, Daniel A; Jeng, Chwen-Jyh; Lefebvre, Andrea; Smith, Ladd W

    2005-10-15

    This study measured postapplication exposure levels of fragrance materials in a surrogate air freshener formulation in an environmentally-controlled exposure room (ECER). A five-s spray was released to simulate normal consumer use conditions. Time-course airborne fragrance material levels were sampled with Tenax tubes, and aerosol size distributions were monitored with a TSI 3320 aerodynamic particle sizer. Triplicate experiments were performed for each of the control/test substances. The control substance (unfragranced formulation) experiments indicated that the airborne fragrance materials were not detected, suggesting that the base propellant formulation did not interfere with the sampling procedure or analytical results. The test substance experiments found that the higher the volatility of the fragrance material, the higherthe airborne fragrance concentration within the ECER. In the adult breathing zone height, the maximum concentrations of the nine fragrance materials ranged from 108 to 347 microg/m3 during the first minute postapplication. In the child breathing zone height, the maximum fragrance material concentrations ranged from 125 to 362 microg/m3 during 2-6 min postapplication. Particle size distributions indicated that approximately 60-70% of the generated aerosols were less than 1 microm aerodynamic diameter. Initial peak particle mass concentrations (<5 microm) were 800-1000 microg/m3 during the first minute postapplication. Following initial peak concentrations, there was approximately 10-15 min of fluctuation, and then particle levels decayed gradually and exponentiallyto near background levels. Exposure to the test formulation would originate from two components: particle-bound and vapor-phase fragrance materials. Particle-bound fragrance exposure accounted for approximately 47% and 72% of the total exposures during the first minute postapplication period in the adult and child breathing zone heights, respectively.

  5. Overview of Food Ingredients, Additives and Colors

    MedlinePlus

    ... additives? Q. How are ingredients listed on a product label? A . Food manufacturers are required to list all ... in the food on the label. On a product label, the ingredients are listed in order of predominance, ...

  6. Cell-Activation by Shear Stresses in Abdominal Aortic Aneurysms (AAA)

    NASA Astrophysics Data System (ADS)

    Salsac, Anne-Virginie; Sparks, Steven; Chomaz, Jean-Marc; Lasheras, Juan C.

    2003-11-01

    Increasing experimental evidence indicates that low and oscillatory shear stresses promote proliferative, thrombotic, adhesive and inflammatory-mediated degenerative conditions throughout the wall of the aorta. These degenerative conditions have been shown to be involved in the pathogenesis of AAAs, a permanent, localized dilatation of the abdominal aorta. The purpose of this study is to measure both the magnitude and the duration of the shear stresses acting on both the arterial walls and on the blood cells inside AAAs, and to characterize their changes as the AAA enlarges. We conducted a parametric in-vitro study of the pulsatile blood flow in elastic models of AAAs while systematically varying the blood flow parameters, and the geometry of the aneurysm's bulging. The instantaneous flow characteristic inside the AAA was measured using DPIV at a sampling rate of 15 Hertz. A "cell-activation parameter" defined as the integral of the product of the magnitude of the shear stress and the time during which the stress acts was computed along each of the blood cell pathlines. The Lagrangian tracking of the blood cells shows that a large majority of them are subjected first to very high level of shear-induced "cell-activation" while later on they are entrained in regions of stasis where their residence time can increase up to several cardiac cycles. This cell-activation followed by the entrainment in low shear regions creates the optimal cell-adhesive and inflammatory-mediated degenerative conditions that are postulated to play an important role in the etiology and progressive enlargement of AAAs.

  7. Allergy to ingredients of vehicles.

    PubMed

    Hannuksela, M; Kousa, M; Pirilä, V

    1976-04-01

    Common ingredients of vehicles such as perfumes, antibacterial agents, emulsifiers and other surface active agents, propylene glycol, lanolin and wool alcohols were tested in eczema patients over a three-year period. Perfume allergy was detected in 3.6% of the cases, sensitivity to thiomersal in 2%, to sorbic acid in 0.8%, to parabens in only 0.3%, and to wool alcohols in 1.2%. Reactions to emulsifiers were seen over 1% of those tested.

  8. Severe anaphylaxis: the secret ingredient.

    PubMed

    Buergi, Andreas; Jung, Barbara; Padevit, Christian; John, Hubert; Ganter, Michael T

    2014-02-01

    In this case report, we describe a healthy urological patient who suffered severe intraoperative anaphylaxis to chlorhexidine, an ingredient contained in frequently used lubricants (Instillagel, Endosgel). Chlorhexidine is a well-known skin disinfectant and antiseptic component in mouthwash or other over the counter antiseptic pharmaceuticals. There is little awareness that commonly used lubricants may contain hidden chlorhexidine. After severe intraoperative anaphylaxis, it is important to investigate all potential (including hidden) agents that might have caused this life-threatening reaction. PMID:25611155

  9. Determination of coumarin in fragrance products by capillary gas chromatography with electron capture detection.

    PubMed

    Wisneski, H H

    2001-01-01

    A gas chromatographic (GC) method is described for the determination of coumarin in fragrance products. Coumarin was tentatively identified by retention time and confirmed by GC/mass spectrometry. The amount of coumarin was determined by external standard. The method was validated by conducting recovery studies from fortified fragrance products at several concentrations. Recoveries of coumarin ranged from 99 to 110%, with a relative standard deviation of 3.24. The method was used to survey a variety of fragrance products purchased in the metropolitan Washington, DC area, for coumarin. Seventy one percent of the products were found to contain coumarin at concentrations ranging from 0.002 to 0.61%.

  10. Determination of fragrance content in perfume by Raman spectroscopy and multivariate calibration

    NASA Astrophysics Data System (ADS)

    Godinho, Robson B.; Santos, Mauricio C.; Poppi, Ronei J.

    2016-03-01

    An alternative methodology is herein proposed for determination of fragrance content in perfumes and their classification according to the guidelines established by fine perfume manufacturers. The methodology is based on Raman spectroscopy associated with multivariate calibration, allowing the determination of fragrance content in a fast, nondestructive, and sustainable manner. The results were considered consistent with the conventional method, whose standard error of prediction values was lower than the 1.0%. This result indicates that the proposed technology is a feasible analytical tool for determination of the fragrance content in a hydro-alcoholic solution for use in manufacturing, quality control and regulatory agencies.

  11. Determination of fragrance content in perfume by Raman spectroscopy and multivariate calibration.

    PubMed

    Godinho, Robson B; Santos, Mauricio C; Poppi, Ronei J

    2016-03-15

    An alternative methodology is herein proposed for determination of fragrance content in perfumes and their classification according to the guidelines established by fine perfume manufacturers. The methodology is based on Raman spectroscopy associated with multivariate calibration, allowing the determination of fragrance content in a fast, nondestructive, and sustainable manner. The results were considered consistent with the conventional method, whose standard error of prediction values was lower than the 1.0%. This result indicates that the proposed technology is a feasible analytical tool for determination of the fragrance content in a hydro-alcoholic solution for use in manufacturing, quality control and regulatory agencies.

  12. Determination of fragrance content in perfume by Raman spectroscopy and multivariate calibration.

    PubMed

    Godinho, Robson B; Santos, Mauricio C; Poppi, Ronei J

    2016-03-15

    An alternative methodology is herein proposed for determination of fragrance content in perfumes and their classification according to the guidelines established by fine perfume manufacturers. The methodology is based on Raman spectroscopy associated with multivariate calibration, allowing the determination of fragrance content in a fast, nondestructive, and sustainable manner. The results were considered consistent with the conventional method, whose standard error of prediction values was lower than the 1.0%. This result indicates that the proposed technology is a feasible analytical tool for determination of the fragrance content in a hydro-alcoholic solution for use in manufacturing, quality control and regulatory agencies. PMID:26771246

  13. 21 CFR 347.20 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Combinations of skin protectant and sunscreen active ingredients. Any one (two when required to be in... single sunscreen active ingredient, or any permitted combination of these ingredients, provided...

  14. 21 CFR 347.20 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Combinations of skin protectant and sunscreen active ingredients. Any one (two when required to be in... single sunscreen active ingredient, or any permitted combination of these ingredients, provided...

  15. 21 CFR 347.20 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Combinations of skin protectant and sunscreen active ingredients. Any one (two when required to be in... single sunscreen active ingredient, or any permitted combination of these ingredients, provided...

  16. 21 CFR 347.20 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Combinations of skin protectant and sunscreen active ingredients. Any one (two when required to be in... single sunscreen active ingredient, or any permitted combination of these ingredients, provided...

  17. 21 CFR 347.20 - Permitted combinations of active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Combinations of skin protectant and sunscreen active ingredients. Any one (two when required to be in... single sunscreen active ingredient, or any permitted combination of these ingredients, provided...

  18. 21 CFR 701.30 - Ingredient names established for cosmetic ingredient labeling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Ingredient names established for cosmetic... AND HUMAN SERVICES (CONTINUED) COSMETICS COSMETIC LABELING Labeling of Specific Ingredients § 701.30 Ingredient names established for cosmetic ingredient labeling. The Commissioner establishes the...

  19. 21 CFR 701.30 - Ingredient names established for cosmetic ingredient labeling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Ingredient names established for cosmetic... AND HUMAN SERVICES (CONTINUED) COSMETICS COSMETIC LABELING Labeling of Specific Ingredients § 701.30 Ingredient names established for cosmetic ingredient labeling. The Commissioner establishes the...

  20. 21 CFR 701.30 - Ingredient names established for cosmetic ingredient labeling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Ingredient names established for cosmetic... AND HUMAN SERVICES (CONTINUED) COSMETICS COSMETIC LABELING Labeling of Specific Ingredients § 701.30 Ingredient names established for cosmetic ingredient labeling. The Commissioner establishes the...

  1. 21 CFR 701.30 - Ingredient names established for cosmetic ingredient labeling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Ingredient names established for cosmetic... AND HUMAN SERVICES (CONTINUED) COSMETICS COSMETIC LABELING Labeling of Specific Ingredients § 701.30 Ingredient names established for cosmetic ingredient labeling. The Commissioner establishes the...

  2. 21 CFR 701.30 - Ingredient names established for cosmetic ingredient labeling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Ingredient names established for cosmetic... AND HUMAN SERVICES (CONTINUED) COSMETICS COSMETIC LABELING Labeling of Specific Ingredients § 701.30 Ingredient names established for cosmetic ingredient labeling. The Commissioner establishes the...

  3. Assessment of the risk of fragrance allergy in the general population: challenges and methodological issues.

    PubMed

    Naldi, Luigi

    2008-01-01

    There are still unanswered questions about the safety of fragrances. In this conference paper, fragrance allergy will be considered in the context of a wider discussion concerning the prevalence and causes of contact dermatitis. No criteria for a reliable diagnosis of 'contact dermatitis' are available. International recommendations and standardization for the patch test method exist; however, the question of whether agents that are positive are causally linked to contact dermatitis remains fraught with uncertainties concerning false-positive rates and clinical relevance. Most of the discussion concerning prevalence or incidence variations of allergic contact dermatitis to fragrances concentrate on the frequency of positive patch tests in clinical series, i.e. 'floating numerators'. Risk assessment requires that data from different sources are integrated and compared. Therefore, both a 'sentinel surveillance' system and more refined epidemiological studies in well defined populations are needed to reliably assess risks associated with fragrance exposure.

  4. Immediate contact reactions to fragrance mix constituents and Myroxylon pereirae resin.

    PubMed

    Tanaka, S; Matsumoto, Y; Dlova, N; Ostlere, L S; Goldsmith, P C; Rycroft, R J G; Basketter, D A; White, I R; Banerjee, P; McFadden, J P

    2004-07-01

    We have studied patients who have positive-patch test reactions to fragrance-allergic screening substances fragrance mix (FM) or Myroxylon pereirae resin (balsam of Peru) for immediate contact reactions to the standard FM, the constituents of the FM and Myroxylon pereirae resin. In the fragrance-positive subjects (n = 60), there were positive immediate contact reactions to Myroxylon pereirae resin in 56.6% and to FM in 11.6%. In a control group (n = 50) of eczematous, patch test-negative patients there were positive immediate reactions to Myroxylon pereirae resin in 58.0% subjects and to FM in 12.0%. The absence of a significant difference between the fragrance-allergic group and control group is in keeping with a non-immunological basis for the majority of the immediate reactions seen.

  5. Increase in contact allergy to fragrances: patch-test results 1989-1998.

    PubMed

    Lunder, T; Kansky, A

    2000-08-01

    We report the results of patch tests with fragrance-mix as a part of the standard series carried out over the last 10 years (1989-1998) during routine testing of 6129 patients in our department. 5.9% of the total number of patients who were patch tested were positive to fragrance mix. The sex ratio was 2.3:1 with a female predominance. In 1989-1993, the frequency of contact sensitivity to fragrance mix was 3.9% (4.9% for females and 2.1% for males). This rate rose both in female and male patients during the observed period of time and attained 8.9% (females) and 4.1% (males) in 1994-1998; the overall frequency in 1994-98 was 7.5%. This rising trend, which was statistically significant, might be the consequence of an increased use of cosmetics and toiletries containing fragrances in our population.

  6. Mechanism of Air Oxidation of the Fragrance Terpene Geraniol.

    PubMed

    Bäcktorp, Carina; Hagvall, Lina; Börje, Anna; Karlberg, Ann-Therese; Norrby, Per-Ola; Nyman, Gunnar

    2008-01-01

    The fragrance terpene geraniol autoxidizes upon air exposure and forms a mixture of oxidation products, some of which are skin sensitizers. Reactions of geraniol with O2 have been studied with DFT (B3LYP) and the computational results compared to experimentally observed product ratios. The oxidation is initiated by hydrogen abstraction, forming an allylic radical which combines with an O2 molecule to yield an intermediate peroxyl radical. In the subsequent step, geraniol differs from previously studied cases, in which the radical chain reaction is propagated through intermolecular hydrogen abstraction. The hydroxy-substituted allylic peroxyl radical prefers an intramolecular rearrangement, producing observable aldehydes and the hydroperoxyl radical, which in turn can propagate the radical reaction. Secondary oxidation products like epoxides and formates were also considered, and plausible reaction pathways for formation are proposed. PMID:26619983

  7. Comparison of percutaneous absorption of fragrances by humans and monkeys.

    PubMed

    Bronaugh, R L; Stewart, R F; Wester, R C; Bucks, D; Mailbach, H I; Anderson, J

    1985-01-01

    The percutaneous absorption of two cosmetic fragrance materials, safrole and cinnamyl anthranilate, as well as of cinnamic alcohol and cinnamic acid, has been measured at occluded and non-occluded application sites. Absorption values were determined in the rhesus monkey in vivo. Absorption through human skin was measured by using excised skin in diffusion cells. Because of the insolubility in water of safrole and cinnamyl anthranilate, a nonionic surfactant solution (6% oleth 20) was used in the receptor chamber of the diffusion cell in order to facilitate the partitioning of the compounds from the skin into the receptor fluid. The relative volatility of the compounds was determined in order to aid in the interpretation of the absorption results. The greatest difference between in vivo and in vitro absorption values occurred with safrole, which was the least well absorbed and the most volatile compound. Cinnamic acid absorption through non-occluded human skin (17.8 +/- 4.9%, mean +/- SEM) was significantly lower than through monkey skin (38.6 +/- 8.3%). The values for absorption through human and monkey skin did not differ significantly for cinnamyl anthranilate (24.0 +/- 5.1% v. 26.1 +/- 2.3%) or cinnamic alcohol (33.9 +/- 7.3% v. 25.4 +/- 4.4%). Occlusion of the skin resulted in greater permeation of all of the compounds; a significant difference in permeability between the two types of skin occurred only with safrole. The fragrances were absorbed well, but their volatility must be considered in a toxicity evaluation. There was reasonable agreement between the values obtained from the studies of the human skin in vitro and the monkey skin in vivo.

  8. Norwalk Community College AA-AS Degree Review Committee Curriculum Report, August 21, 1989.

    ERIC Educational Resources Information Center

    Pennino, Eileen M.; Luster, Gwen Tolliver

    In an attempt to revitalize and reform its curriculum, the Associate of Arts-Associate of Science (AA-AS) Degree Review Committee (DRC) of Connecticut's Norwalk Community College issued a curriculum report proposing a 21 credit, limited distributive core for the AS degree (which accounts for 80% of the college's degree recipients). This proposal…

  9. Professional Ethics Activities in the Scientific and Engineering Societies. AAAS Professional Ethics Project.

    ERIC Educational Resources Information Center

    Chalk, Rosemary; And Others

    Presented is an overview of the depth and range of the ethics activities undertaken by societies affiliated with the American Association for the Advancement of Science (AAAS). Included in this report are: (1) reviews of previous surveys of organizations which had adopted codes of ethics; (2) descriptions of the methodology and findings of the…

  10. Fluid Characteristics in Abdominal Aortic Aneurysms (AAAs) and Its Correlation to Thrombus Formation

    NASA Astrophysics Data System (ADS)

    Tang, Rubing; Bar-Yoseph, Pinhas Z.; Lasheras, Juan

    2008-11-01

    It has been observed that most large Abdominal Aortic Aneurysms (AAAs) develop an intraluminal thrombus as they progressively enlarge. Previous studies have suggested that the build up of the thrombus may be associated with the altered hemodynamic patterns that arise inside the AAA. We have performed a parametrical computational study of the flow patterns inside enlarging AAA to investigate the possible mechanism controlling the thrombus formation. Pulsatile blood flows were simulated in idealized models of fusiform aneurysms with different dilatation ratios and the effects of shear-activated platelet accumulation and platelet/wall interaction were evaluated based on the calculated flow fields. The platelet activation level (PAL) was determined by computing the integral over time of flow shear stresses exerted over the platelets as they are transported throughout the aneurysm. Our results have shown that the values of PAL in AAAs are in fact smaller than the maximum value obtained in a healthy abdominal aorta. However, we show that the transportation of blood cells towards the wall and the formation of stagnation points on the aneurysm's wall play more significant roles in thrombus formation than PAL.

  11. Effects of doping and bias voltage on the screening in AAA-stacked trilayer graphene

    NASA Astrophysics Data System (ADS)

    Mohammadi, Yawar; Moradian, Rostam; Shirzadi Tabar, Farzad

    2014-09-01

    We calculate the static polarization of AAA-stacked trilayer graphene (TLG) and study its screening properties within the random phase approximation (RPA) in all undoped, doped and biased regimes. We find that the static polarization of undoped AAA-stacked TLG is a combination of the doped and undoped single-layer graphene static polarization. This leads to an enhancement of the dielectric background constant along a Thomas-Fermi screening with the Thomas-Fermi wave vector which is independent of carrier concentrations and a 1/r3 power law decay for the long-distance behavior of the screened Coulomb potential. We show that effects of a bias voltage can be taken into account by a renormalization of the interlayer hopping energy to a new bias-voltage-dependent value, indicating screening properties of AAA-stacked TLG can be tuned electrically. We also find that screening properties of doped AAA-stacked TLG, when μ exceeds √{2}γ, are similar to that of doped SLG only depending on doping. While for μ<√{2}γ, its screening properties are combination of SLG and AA-stacked bilayer graphene screening properties and they are determined by doping and the interlayer hopping energy.

  12. Structure of Lmaj006129AAA, a hypothetical protein from Leishmania major

    SciTech Connect

    Arakaki, Tracy; Le Trong, Isolde; Phizicky, Eric; Quartley, Erin; DeTitta, George; Luft, Joseph; Lauricella, Angela; Anderson, Lori; Kalyuzhniy, Oleksandr; Worthey, Elizabeth; Myler, Peter J.; Kim, David; Baker, David; Hol, Wim G. J.; Merritt, Ethan A.

    2006-03-01

    The crystal structure of a conserved hypothetical protein from L. major, Pfam sequence family PF04543, structural genomics target ID Lmaj006129AAA, has been determined at a resolution of 1.6 Å. The gene product of structural genomics target Lmaj006129 from Leishmania major codes for a 164-residue protein of unknown function. When SeMet expression of the full-length gene product failed, several truncation variants were created with the aid of Ginzu, a domain-prediction method. 11 truncations were selected for expression, purification and crystallization based upon secondary-structure elements and disorder. The structure of one of these variants, Lmaj006129AAH, was solved by multiple-wavelength anomalous diffraction (MAD) using ELVES, an automatic protein crystal structure-determination system. This model was then successfully used as a molecular-replacement probe for the parent full-length target, Lmaj006129AAA. The final structure of Lmaj006129AAA was refined to an R value of 0.185 (R{sub free} = 0.229) at 1.60 Å resolution. Structure and sequence comparisons based on Lmaj006129AAA suggest that proteins belonging to Pfam sequence families PF04543 and PF01878 may share a common ligand-binding motif.

  13. The two faces of hydrogen-bond strength on triple AAA-DDD arrays.

    PubMed

    Lopez, Alfredo Henrique Duarte; Caramori, Giovanni Finoto; Coimbra, Daniel Fernando; Parreira, Renato Luis Tame; da Silva, Éder Henrique

    2013-12-01

    Systems that are connected through multiple hydrogen bonds are the cornerstone of molecular recognition processes in biology, and they are increasingly being employed in supramolecular chemistry, specifically in molecular self-assembly processes. For this reason, the effects of different substituents (NO2, CN, F, Cl, Br, OCH3 and NH2) on the electronic structure, and consequently on the magnitude of hydrogen bonds in triple AAA-DDD arrays (A=acceptor, D=donor) were evaluated in the light of topological [electron localization function (ELF) and quantum theory of atoms in molecules (QTAIM)], energetic [Su-Li energy-decomposition analysis (EDA) and natural bond orbital analysis (NBO)], and geometrical analysis. The results based on local H-bond descriptors (geometries, QTAIM, ELF, and NBO) indicate that substitutions with electron-withdrawing groups on the AAA module tend to strengthen, whereas electron-donating substituents tend to weaken the covalent character of the AAA-DDD intermolecular H-bonds, and also indicate that the magnitude of the effect is dependent on the position of substitution. In contrast, Su-Li EDA results show an opposite behavior when compared to local H-bond descriptors, indicating that electron-donating substituents tend to increase the magnitude of H-bonds in AAA-DDD arrays, and thus suggesting that the use of local H-bond descriptors describes the nature of H bonds only partially, not providing enough insight about the strength of such H bonds.

  14. Anonymous Communication Policies for the Internet: Results and Recommendations of the AAAS Conference.

    ERIC Educational Resources Information Center

    Teich, Al; Frankel, Mark S.; Kling, Rob; Lee, Yaching

    1999-01-01

    Reports the results of a conference on the Internet and anonymous communication organized by the American Association for the Advancement of Science (AAAS). Discusses how anonymous communications can be shaped by the law, education, and public awareness, and highlights the importance of involving all affected interests in policy development.…

  15. The mouse fidgetin gene defines a new role for AAA family proteins in mammalian development.

    PubMed

    Cox, G A; Mahaffey, C L; Nystuen, A; Letts, V A; Frankel, W N

    2000-10-01

    The mouse mutation fidget arose spontaneously in a heterogeneous albino stock. This mutant mouse is characterized by a side-to-side head-shaking and circling behaviour, due to reduced or absent semicircular canals. Fidget mice also have small eyes, associated with cell-cycle delay and insufficient growth of the retinal neural epithelium, and lower penetrance skeletal abnormalities, including pelvic girdle dysgenesis, skull bone fusions and polydactyly. By positional cloning, we found the gene mutated in fidget mice, fidgetin (Fign), which encodes a new member of the 'meiotic' or subfamily-7 (SF7; ref. 7) group of ATPases associated with diverse cellular activities (AAA proteins). We also discovered two closely related mammalian genes. AAA proteins are molecular chaperones that facilitate a variety of functions, including membrane fusion, proteolysis, peroxisome biogenesis, endosome sorting and meiotic spindle formation, but functions for the SF7 AAA proteins are largely unknown. Fidgetin is the first mutant AAA protein found in a mammalian developmental mutant, thus defining a new role for these proteins in embryonic development.

  16. National dosimetric audit network finds discrepancies in AAA lung inhomogeneity corrections.

    PubMed

    Dunn, Leon; Lehmann, Joerg; Lye, Jessica; Kenny, John; Kron, Tomas; Alves, Andrew; Cole, Andrew; Zifodya, Jackson; Williams, Ivan

    2015-07-01

    This work presents the Australian Clinical Dosimetry Service's (ACDS) findings of an investigation of systematic discrepancies between treatment planning system (TPS) calculated and measured audit doses. Specifically, a comparison between the Anisotropic Analytic Algorithm (AAA) and other common dose-calculation algorithms in regions downstream (≥2cm) from low-density material in anthropomorphic and slab phantom geometries is presented. Two measurement setups involving rectilinear slab-phantoms (ACDS Level II audit) and anthropomorphic geometries (ACDS Level III audit) were used in conjunction with ion chamber (planar 2D array and Farmer-type) measurements. Measured doses were compared to calculated doses for a variety of cases, with and without the presence of inhomogeneities and beam-modifiers in 71 audits. Results demonstrate a systematic AAA underdose with an average discrepancy of 2.9 ± 1.2% when the AAA algorithm is implemented in regions distal from lung-tissue interfaces, when lateral beams are used with anthropomorphic phantoms. This systemic discrepancy was found for all Level III audits of facilities using the AAA algorithm. This discrepancy is not seen when identical measurements are compared for other common dose-calculation algorithms (average discrepancy -0.4 ± 1.7%), including the Acuros XB algorithm also available with the Eclipse TPS. For slab phantom geometries (Level II audits), with similar measurement points downstream from inhomogeneities this discrepancy is also not seen. PMID:25921329

  17. Subchronic inhalation studies of complex fragrance mixtures in rats and hamsters.

    PubMed

    Fukayama, M Y; Easterday, O D; Serafino, P A; Renskers, K J; North-Root, H; Schrankel, K R

    1999-12-20

    Users of consumer products are invariably and intentionally exposed to complex mixtures in such products. With finished fragrance products, these mixtures may represent 100 or more fragrance raw materials (FRMs). The objective of the described studies was to evaluate the safety of finished fragrance products via the inhalation route. In total, the finished products contained approximately 100 FRMs at concentrations of 1% or greater. Major FRMs evaluated included benzyl acetate, coumarin, hydroxycitronellal, musk ketone, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta-gamma-2-be nzopyran (HHCB) and phenyl ethyl alcohol. Groups of rats or hamsters were exposed by inhalation (whole body) to the mixtures at 5, 9 or 50 mg/m3 for 4 h per day, 5 days per week for 6 or 13 weeks. For each of the fragrance products, the doses used generally represented a ten- to 100-fold exaggeration of levels expected to be achieved during typical use by consumers. With one exception, the fragrances were aerosolized prior to introduction into the inhalation chamber. The exception product was formulated with a propellant, packaged in a pressurized container and expelled with an automated actuator. In all studies, chamber concentrations of fragrance were monitored. Particle sizes ranged from 0.5 to 7.5 microm, depending on the study. Subchronic exposure to all fragrance mixtures resulted in no toxicologically significant effects on animal survival, behavior, body weights or weight gains, organ weights, or in hematology, clinical chemistry, or urinalysis parameters. No gross pathological or histopathological findings related to test material exposures were observed. These studies support the conclusions that the fragrance mixtures would not pose a hazard to product users based on repeated and exaggerated inhalation exposures of animals.

  18. Use of cyclodextrins as a cosmetic delivery system for fragrance materials: linalool and benzyl acetate.

    PubMed

    Numanoğlu, Ulya; Sen, Tangül; Tarimci, Nilüfer; Kartal, Murat; Koo, Otilia M Y; Onyüksel, Hayat

    2007-01-01

    The aim of this study was to increase the stability and water solubility of fragrance materials, to provide controlled release of these compounds, and to convert these substances from liquid to powder form by preparing their inclusion complexes with cyclodextrins (CDs). For this purpose, linalool and benzyl acetate were chosen as the fragrance materials. The use of beta-cyclodextrin (beta CD) and 2-hydroxypropyl-beta-cyclodextrin (2-HP beta CD) for increasing the solubility of these 2 fragrance materials was studied. Linalool and benzyl acetate gave a B-type diagram with beta CD, whereas they gave an A(L)-type diagram with 2-HP beta CD. Therefore, complexes of fragrance materials with 2-HP beta CD at 1:1 and 1:2 molar ratios (guest:host) were prepared. The formation of inclusion complexes was confirmed using proton nuclear magnetic resonance ((1)H-NMR) spectroscopy and circular dichroism spectroscopy. The results of the solubility studies showed that preparing the inclusion complex with 2-HP beta CD at a 1:1 molar ratio increased the solubility of linalool 5.9-fold and that of benzyl acetate 4.2-fold, whereas the complexes at a 1:2 molar ratio increased the solubility 6.4- and 4.5-fold for linalool and benzyl acetate, respectively. The stability and in vitro release studies were performed on the gel formulations prepared using uncomplexed fragrance materials or inclusion complexes of fragrance materials at a 1:1 molar ratio. It was observed that the volatility of both fragrance materials was decreased by preparing the inclusion complexes with 2-HP beta CD. Also, in vitro release data indicated that controlled release of fragrances could be possible if inclusion complexes were prepared.

  19. Patch testing discordance alert: false-negative findings with rubber additives and fragrances.

    PubMed

    Sherertz, E F; Fransway, A F; Belsito, D V; DeLeo, V A; Fowler, J F; Maibach, H I; Marks, J G; Mathias, C G; Pratt, M D; Rietschel, R L; Taylor, J S

    2001-08-01

    From July 1996 through June 1998, the North American Contact Dermatitis Group evaluated 318 patients for suspected contact dermatitis by patch testing simultaneously with Finn Chambers and the T.R.U.E. Test allergen system. Discrepancies between the two systems were found in some of the results, particularly with fragrance and rubber allergens. These results suggest that positive reactions to fragrance, thiuram, and carba mix allergens may be missed if the T.R.U.E. Test is used alone.

  20. Perfume Fragrance Discrimination Using Resistance And Capacitance Responses Of Polymer Sensors

    NASA Astrophysics Data System (ADS)

    Lima, John Paul Hempel; Vandendriessche, Thomas; Fonseca, Fernando J.; Lammertyn, Jeroen; Nicolai, Bart M.; de Andrade, Adnei Melges

    2009-05-01

    This work shows a comparison between electrical resistance and capacitance responses of ethanol and five different fragrances using an electronic nose based on conducting polymers. Gas chromatography—mass spectrometry (GC-MS) measurements were performed to evaluate the main differences between the analytes. It is shown that although the fragrances are quite similar in their compositions the sensors are able to discriminate them through PCA (Principal Component Analysis) and ANNs (Artificial Neural Network) analysis.

  1. Advances in assessing ingredient safety.

    PubMed

    Dourson, Michael L; York, Raymond G

    2016-08-01

    The safety of food ingredients will be assessed in the 21st century by mixture of traditional methods, such as the "safe" dose concept, which is thought to be an accurate but imprecise estimation of dose below the population threshold for adverse effect, and contemporary methods, such as the Benchmark Dose (BMD), Chemical Specific Adjustment Factors (CSAF), physiologically-based pharmacokinetic models, and biologically-informed dose response modeling. New research on the horizon related to toxicology 21 may also improve these risk assessment methods, or suggest new ones. These traditional, contemporary and new methods and research will be briefly described. PMID:27427210

  2. Novel biocompatible nanocapsules for slow release of fragrances on the human skin.

    PubMed

    Hosseinkhani, Baharak; Callewaert, Chris; Vanbeveren, Nelleke; Boon, Nico

    2015-01-25

    There is a growing demand for fragranced products, but due to the poor aqueous solubility and instability of fragrance molecules, their use is limited. Nowadays, fragrance encapsulation in biocompatible nanocontainer material is emerging as a novel strategy to overcome the evaporation of volatile molecules and to prolong the sensory characteristics of fragrance molecules and the longevity of perfumes. The objective of this study was to develop an innovative sustained release system of perfume, by entrapping fragrance molecules in a polymeric nanocarrier; the impact of this strategy on the human axillary microbiome was further assessed. Stabilised poly-l-lactic acid nanocapsules (PLA-NCs) with a diameter of approximately 115 nm were prepared through nanoprecipitation. Size and morphology of the capsules were evaluated using Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS). Two model hydrophobic compounds, chlorobenzene and fluorescein, representing two different types of functionalised molecules, were encapsulated in PLA-NCs with an efficiency rate of 50%. Different release behaviours were seen, dependent on hydrophobicity. For hydrophobic compounds, a steady release was observed over 48hours. The polymeric nanocarriers did not impact the human axillary microbiome. Because of the slow and sustained release of fragrances, encapsulation of molecules in biocompatible NCs can represent a revolutionary contribution to the future of toiletries, body deodorant products, and in washing and cleaning sectors. PMID:25224920

  3. Novel biocompatible nanocapsules for slow release of fragrances on the human skin.

    PubMed

    Hosseinkhani, Baharak; Callewaert, Chris; Vanbeveren, Nelleke; Boon, Nico

    2015-01-25

    There is a growing demand for fragranced products, but due to the poor aqueous solubility and instability of fragrance molecules, their use is limited. Nowadays, fragrance encapsulation in biocompatible nanocontainer material is emerging as a novel strategy to overcome the evaporation of volatile molecules and to prolong the sensory characteristics of fragrance molecules and the longevity of perfumes. The objective of this study was to develop an innovative sustained release system of perfume, by entrapping fragrance molecules in a polymeric nanocarrier; the impact of this strategy on the human axillary microbiome was further assessed. Stabilised poly-l-lactic acid nanocapsules (PLA-NCs) with a diameter of approximately 115 nm were prepared through nanoprecipitation. Size and morphology of the capsules were evaluated using Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS). Two model hydrophobic compounds, chlorobenzene and fluorescein, representing two different types of functionalised molecules, were encapsulated in PLA-NCs with an efficiency rate of 50%. Different release behaviours were seen, dependent on hydrophobicity. For hydrophobic compounds, a steady release was observed over 48hours. The polymeric nanocarriers did not impact the human axillary microbiome. Because of the slow and sustained release of fragrances, encapsulation of molecules in biocompatible NCs can represent a revolutionary contribution to the future of toiletries, body deodorant products, and in washing and cleaning sectors.

  4. Asymmetric processing of a substrate protein in sequential allosteric cycles of AAA+ nanomachines

    NASA Astrophysics Data System (ADS)

    Kravats, Andrea N.; Tonddast-Navaei, Sam; Bucher, Ryan J.; Stan, George

    2013-09-01

    Essential protein quality control includes mechanisms of substrate protein (SP) unfolding and translocation performed by powerful ring-shaped AAA+ (ATPases associated with various cellular activities) nanomachines. These SP remodeling actions are effected by mechanical forces imparted by AAA+ loops that protrude into the central channel. Sequential intra-ring allosteric motions, which underlie repetitive SP-loop interactions, have been proposed to comprise clockwise (CW), counterclockwise (CCW), or random (R) conformational transitions of individual AAA+ subunits. To probe the effect of these allosteric mechanisms on unfoldase and translocase functions, we perform Langevin dynamics simulations of a coarse-grained model of an all-alpha SP processed by the single-ring ClpY ATPase or by the double-ring p97 ATPase. We find that, in all three allosteric mechanisms, the SP undergoes conformational transitions along a common set of pathways, which reveals that the active work provided by the ClpY machine involves single loop-SP interactions. Nevertheless, the rates and yields of SP unfolding and translocation are controlled by mechanism-dependent loop-SP binding events, as illustrated by faster timescales of SP processing in CW allostery compared with CCW and R allostery. The distinct efficacy of allosteric mechanisms is due to the asymmetric collaboration of adjacent subunits, which involves CW-biased structural motions of AAA+ loops and results in CW-compatible torque applied onto the SP. Additional simulations of mutant ClpY rings, which render a subset of subunits catalytically-defective or reduce their SP binding affinity, reveal that subunit-based conformational transitions play the major role in SP remodeling. Based on these results we predict that the minimally functional AAA+ ring includes three active subunits, only two of which are adjacent.

  5. Asymmetric processing of a substrate protein in sequential allosteric cycles of AAA+ nanomachines.

    PubMed

    Kravats, Andrea N; Tonddast-Navaei, Sam; Bucher, Ryan J; Stan, George

    2013-09-28

    Essential protein quality control includes mechanisms of substrate protein (SP) unfolding and translocation performed by powerful ring-shaped AAA+ (ATPases associated with various cellular activities) nanomachines. These SP remodeling actions are effected by mechanical forces imparted by AAA+ loops that protrude into the central channel. Sequential intra-ring allosteric motions, which underlie repetitive SP-loop interactions, have been proposed to comprise clockwise (CW), counterclockwise (CCW), or random (R) conformational transitions of individual AAA+ subunits. To probe the effect of these allosteric mechanisms on unfoldase and translocase functions, we perform Langevin dynamics simulations of a coarse-grained model of an all-alpha SP processed by the single-ring ClpY ATPase or by the double-ring p97 ATPase. We find that, in all three allosteric mechanisms, the SP undergoes conformational transitions along a common set of pathways, which reveals that the active work provided by the ClpY machine involves single loop-SP interactions. Nevertheless, the rates and yields of SP unfolding and translocation are controlled by mechanism-dependent loop-SP binding events, as illustrated by faster timescales of SP processing in CW allostery compared with CCW and R allostery. The distinct efficacy of allosteric mechanisms is due to the asymmetric collaboration of adjacent subunits, which involves CW-biased structural motions of AAA+ loops and results in CW-compatible torque applied onto the SP. Additional simulations of mutant ClpY rings, which render a subset of subunits catalytically-defective or reduce their SP binding affinity, reveal that subunit-based conformational transitions play the major role in SP remodeling. Based on these results we predict that the minimally functional AAA+ ring includes three active subunits, only two of which are adjacent.

  6. The frequency of fragrance allergy in a patch-test population over a 17-year period.

    PubMed

    Buckley, D A; Wakelin, S H; Seed, P T; Holloway, D; Rycroft, R J; White, I R; McFadden, J P

    2000-02-01

    Fragrances are widely encountered in our daily environment and are known to be a common cause of allergic contact dermatitis. We have reviewed our patch test data from 1980 to 1996 to establish whether the pattern of fragrance allergy has changed with time. During this period, 25,545 patients (10,450 male, 15,005 female) were patch tested with the European standard series. The mean annual frequency of positive reactions to the fragrance mix was 8.5% in females (range 6.1-10.9) and 6.7% in males (range 5.1-12.9). Females were 1.3 times more likely to be allergic to fragrance (P < 0.001, 95% confidence interval, CI 1.17-1.41). Males with fragrance allergy were older than females by 5.6 years (mean age 48.2 vs. 42.6 years; P < 0.001, 95% CI 3.9-7.3). The incidence of a concomitant positive patch test to balsam of Peru in fragrance-sensitive patients showed wide variation, suggesting that it is not a reliable marker of fragrance allergy. There was a positive correlation between the isomers isoeugenol and eugenol. Oak moss remained the most common overall allergen throughout the study, positive in 38.3% of females and 35.6% of males who were tested to the constituents of the fragrance mix. During the period of the study the incidence of positive tests to oak moss increased by 5% yearly (P = 0.001, 95% CI 2.2-8.7). The frequency of allergic reactions to eugenol and geraniol remained relatively constant. Isoeugenol and alpha-amyl cinnamic aldehyde sensitivity increased and hydroxycitronellal showed a slow decline. There was a striking reduction in the frequency of sensitivity to cinnamic aldehyde (by 18% yearly; P < 0.001, 95% CI 14.3-21.0) and cinnamic alcohol (by 9% yearly; P < 0.001, 95% CI 5.2-12.9); these are now uncommon fragrance allergens. These data show temporal trends which may reflect the frequency of population exposure to individual fragrances.

  7. Novel botanical ingredients for beverages.

    PubMed

    Gruenwald, Joerg

    2009-01-01

    Natural substances are generally preferred over chemical ones and are generally seen as healthy. The increasing demand for natural ingredients, improving health and appearance, is also attracting beverages as the fastest growing segment on the functional food market. Functional beverages are launched as fortified water, tea, diary or juices claiming overall nutrition, energy, anti-aging or relaxing effects. The substitution of so called superfruits, such as berries, grapes, or pomegranate delivers an effective range of beneficial compounds, including vitamins, fatty acids, minerals, and anti-oxidants. In this context, new exotic and African fruits could be useful sources in the near future. Teas and green botanicals, such as algae or aloe vera are also rich in effective bioactives and have been used traditionally. The botanical kingdom offers endless possibilities.

  8. Effects of chiral fragrances on human autonomic nervous system parameters and self-evaluation.

    PubMed

    Heuberger, E; Hongratanaworakit, T; Böhm, C; Weber, R; Buchbauer, G

    2001-03-01

    The effects of chiral fragrances (enantiomers of limonene and carvone) on the human autonomic nervous system (ANS) and on self-evaluation were studied in 20 healthy volunteers. Each fragrance was administered to each subject by inhalation using an A-A-B design. Individuals were tested in four separate sessions; in one session one fragrance was administered. ANS parameters recorded were skin temperature, skin conductance, breathing rate, pulse rate, blood oxygen saturation and systolic as well as diastolic blood pressure. Subjective experience was assessed in terms of mood, calmness and alertness on visual analog scales. In addition, fragrances were rated in terms of pleasantness, intensity and stimulating property. Inhalation of (+)-limonene led to increased systolic blood pressure, subjective alertness and restlessness. Inhalation of (-)-limonene caused an increase in systolic blood pressure but had no effects on psychological parameters. Inhalation of (-)-carvone caused increases in pulse rate, diastolic blood pressure and subjective restlessness. After inhalation of (+)-carvone increased levels of systolic as well as diastolic blood pressure were observed. Correlational analyses revealed that changes in both ANS parameters and self-evaluation were in part related to subjective evaluation of the odor and suggest that both pharmacological and psychological mechanisms are involved in the observed effects. In conclusion, the present study indicates that: (i) prolonged inhalation of fragrances influences ANS parameters as well as mental and emotional conditions; (ii) effects of fragrances are in part based on subjective evaluation of odor; (iii) chirality of odor molecules seems to be a central factor with respect to the biological activity of fragrances.

  9. SFM-FDTD analysis of triangular-lattice AAA structure: Parametric study of the TEM mode

    NASA Astrophysics Data System (ADS)

    Hamidi, M.; Chemrouk, C.; Belkhir, A.; Kebci, Z.; Ndao, A.; Lamrous, O.; Baida, F. I.

    2014-05-01

    This theoretical work reports a parametric study of enhanced transmission through annular aperture array (AAA) structure arranged in a triangular lattice. The effect of the incidence angle in addition to the inner and outer radii values on the evolution of the transmission spectra is carried out. To this end, a 3D Finite-Difference Time-Domain code based on the Split Field Method (SFM) is used to calculate the spectral response of the structure for any angle of incidence. In order to work through an orthogonal unit cell which presents the advantage to reduce time and space of computation, special periodic boundary conditions are implemented. This study provides a new modeling of AAA structures useful for producing tunable ultra-compact devices.

  10. Geometrical factors influencing the hemodynamic behavior of the AAA stent grafts: essentials for the clinician.

    PubMed

    Georgakarakos, Efstratios; Argyriou, Christos; Schoretsanitis, Nikolaos; Ioannou, Chris V; Kontopodis, Nikolaos; Morgan, Robert; Tsetis, Dimitrios

    2014-12-01

    Endovascular aneurysm repair (EVAR) is considered to be the treatment of choice for abdominal aortic aneurysms (AAA). Despite the initial technical success, EVAR is amenable to early and late complications, among which the migration of the endograft (EG) with subsequent proximal endoleak (Type Ia) leads to repressurization of the AAA sac, exposure to excessive wall stress, and, hence, to potential rupture. This article discusses the influence that certain geometrical factors, such as neck angulation, iliac bifurcation, EG curvature, neck-to-iliac diameter, and length ratios, as well as iliac limbs configuration can exert on the hemodynamic behavior of the EGs. The information provided could help both clinicians and EG manufacturers towards further development and improvement of EG designs and better operational planning. PMID:24938906

  11. Substituent effects in double-helical hydrogen-bonded AAA-DDD complexes.

    PubMed

    Wang, Hong-Bo; Mudraboyina, Bhanu P; Wisner, James A

    2012-01-27

    Two series of DDD and AAA hydrogen-bond arrays were synthesized that form triply-hydrogen-bonded double-helical complexes when combined in CDCl(3) solution. Derivatization of the DDD arrays with electron-withdrawing groups increases the complex association constants by up to a factor of 30 in those arrays examined. Derivatization of the AAA arrays with electron donating substituents reveals a similar magnitude effect on the complex stabilities. The effect of substitution on both types of arrays are modeled quite satisfactorily (R(2) > 0.96 in all cases) as free energy relationships with respect to the sums of their Hammett substituent constants. In all, the complex stabilities can be manipulated over more than three orders of magnitude (>20 kJ mol(-1)) using this type of modification.

  12. Dosimetric comparison of Acuros XB, AAA, and XVMC in stereotactic body radiotherapy for lung cancer

    SciTech Connect

    Tsuruta, Yusuke; Nakata, Manabu; Higashimura, Kyoji; Nakamura, Mitsuhiro Matsuo, Yukinori; Monzen, Hajime; Mizowaki, Takashi; Hiraoka, Masahiro

    2014-08-15

    Purpose: To compare the dosimetric performance of Acuros XB (AXB), anisotropic analytical algorithm (AAA), and x-ray voxel Monte Carlo (XVMC) in heterogeneous phantoms and lung stereotactic body radiotherapy (SBRT) plans. Methods: Water- and lung-equivalent phantoms were combined to evaluate the percentage depth dose and dose profile. The radiation treatment machine Novalis (BrainLab AG, Feldkirchen, Germany) with an x-ray beam energy of 6 MV was used to calculate the doses in the composite phantom at a source-to-surface distance of 100 cm with a gantry angle of 0°. Subsequently, the clinical lung SBRT plans for the 26 consecutive patients were transferred from the iPlan (ver. 4.1; BrainLab AG) to the Eclipse treatment planning systems (ver. 11.0.3; Varian Medical Systems, Palo Alto, CA). The doses were then recalculated with AXB and AAA while maintaining the XVMC-calculated monitor units and beam arrangement. Then the dose-volumetric data obtained using the three different radiation dose calculation algorithms were compared. Results: The results from AXB and XVMC agreed with measurements within ±3.0% for the lung-equivalent phantom with a 6 × 6 cm{sup 2} field size, whereas AAA values were higher than measurements in the heterogeneous zone and near the boundary, with the greatest difference being 4.1%. AXB and XVMC agreed well with measurements in terms of the profile shape at the boundary of the heterogeneous zone. For the lung SBRT plans, AXB yielded lower values than XVMC in terms of the maximum doses of ITV and PTV; however, the differences were within ±3.0%. In addition to the dose-volumetric data, the dose distribution analysis showed that AXB yielded dose distribution calculations that were closer to those with XVMC than did AAA. Means ± standard deviation of the computation time was 221.6 ± 53.1 s (range, 124–358 s), 66.1 ± 16.0 s (range, 42–94 s), and 6.7 ± 1.1 s (range, 5–9 s) for XVMC, AXB, and AAA, respectively. Conclusions: In the

  13. The Drug Diazaborine Blocks Ribosome Biogenesis by Inhibiting the AAA-ATPase Drg1*

    PubMed Central

    Loibl, Mathias; Klein, Isabella; Prattes, Michael; Schmidt, Claudia; Kappel, Lisa; Zisser, Gertrude; Gungl, Anna; Krieger, Elmar; Pertschy, Brigitte; Bergler, Helmut

    2014-01-01

    The drug diazaborine is the only known inhibitor of ribosome biogenesis and specifically blocks large subunit formation in eukaryotic cells. However, the target of this drug and the mechanism of inhibition were unknown. Here we identify the AAA-ATPase Drg1 as a target of diazaborine. Inhibitor binding into the second AAA domain of Drg1 requires ATP loading and results in inhibition of ATP hydrolysis in this site. As a consequence the physiological activity of Drg1, i.e. the release of Rlp24 from pre-60S particles, is blocked, and further progression of cytoplasmic preribosome maturation is prevented. Our results identify the first target of an inhibitor of ribosome biogenesis and provide the mechanism of inhibition of a key step in large ribosomal subunit formation. PMID:24371142

  14. Indications for and outcome of open AAA repair in the endovascular era.

    PubMed

    Wieker, Carola M; Spazier, Max; Böckler, Dittmar

    2016-04-01

    The benefits, safety and efficacy of endovascular aortic aneurysm repair (EVAR) is well documented and intensively reported in multiple randomized trials and meta-analysis. Therefore, EVAR became the first choice of abdominal aortic aneurysms (AAA) treatment in almost 70-100% of patients. Consecutively, open repair (OR) is performed less frequently in morphologically preselected patients. Anatomical condition remains the most important factor for indication for OR. Especially unfavorable intrarenal landing zone based on difficult neck anatomy like very short neck or excessive neck angulation is still the most predictive factor. Furthermore, patients presenting additional iliac aneurysms, aortoiliac occlusive disease or variations of renal arteries are recommended for OR. Randomized trials like EVAR 1, DREAM and OVER from the year 2004/2005 and 2009 showed lower 30-day mortality rates in EVAR compared to OR. However, the late mortality rates after two years became equal in both treatment options. Furthermore, reinterventions after EVAR occur more frequently than after OR. Analysis from our own data showed a higher 30-day mortality in the patients who underwent OR in the endovascular era (15% vs. 2.5%), however the number of emergency open AAA repair because of ruptured aneurysms was much higher in the endovascular era (32.5% vs. 5%). In conclusion, treatment of AAA has changed in the past decade. Nevertheless OR of AAA still remains as a safe and durable method in experienced surgeons, even in the endovascular era. High volume centres are needed to offer the best patients' treatment providing the best postoperative outcome. Therefore OR must remain a part of fellowship training in the future. To decide the best treatment option many facts like patients' fitness and preference or finally the anatomic suitability for endovascular repair have to be considered. PMID:26822580

  15. Structures of the double-ring AAA ATPase Pex1-Pex6 involved in peroxisome biogenesis.

    PubMed

    Tan, Dongyan; Blok, Neil B; Rapoport, Tom A; Walz, Thomas

    2016-03-01

    The Pex1 and Pex6 proteins are members of the AAA family of ATPases and are involved in peroxisome biogenesis. Recently, cryo-electron microscopy structures of the Pex1-Pex6 complex in different nucleotide states have been determined. This Structural Snapshot describes the structural features of the complex and their implications for its function, as well as questions that still await answers.

  16. Dissipation of fragrance materials in sludge-amended soils.

    PubMed

    DiFrancesco, Angela M; Chiu, Pei C; Standley, Laurel J; Allen, Herbert E; Salvito, Daniel T

    2004-01-01

    A possible removal mechanism for fragrance materials (FMs) in wastewater is adsorption to sludge, and sludge application to land may be a route through which FMs are released to the soil environment. However, little is known about the concentrations and fate of FMs in soil receiving sludge application. This study was conducted to better understand the dissipation of FMs in sludge-amended soils. We first determined the spiking and extraction efficiencies for 22 FMs in soil and leachate samples. Nine FMs were detected in digested sludges from two wastewater treatment plants in Delaware using these methods. We conducted a 1-year die-away experiment which involved four different soils amended with sludge, with and without spiking of the 22 FMs. The initial dissipation of FMs in all spiked trays was rapid, and only seven FMs remained at concentrations above the quantification limits after 3 months: AHTN, HHCB, musk ketone, musk xylene, acetyl cedrene, OTNE, and DPMI. After 1 year, the only FMs remaining in all spiked trays were musk ketone and AHTN. DPMI was the only FM that leached significantly from the spiked trays, and no FMs were detected in leachate from any unspiked tray. While soil organic matter content affected the dissipation rate in general, different mechanisms (volatilization, transformation, leaching) appeared to be important for different FMs.

  17. Fragrance technology for the dermatologist - a review and practical application.

    PubMed

    Cortez-Pereira, Claudia S; Baby, André R; Velasco, Maria V R

    2010-09-01

    Cosmetic product development has increased in recent years. The value of a product is emphasized in its safety and effectiveness. The stability study in the context of product quality evaluation during shelf life becomes primordial to guarantee the integrity of the physical, chemical, and olfactory properties. In this study, aromatic compositions had been submitted to the stability normal test, at low temperature (4.0 ± 2.0°C), at room temperature (22.0 ± 2.0°C), and in oven (45.0 ± 2.0°C). The compositions were analyzed at 15, 30, 60, and 90 days versus a fresh aromatic composition 48 h after preparation, in which the organoleptic characteristics and pH value were evaluated besides undertaking sensory evaluation. The results demonstrated that at the high temperature (45.0 ± 2.0°C), in which the oxidative processes of the fragrance components are accelerated, the cosmetic preparation "A" was chosen because it showed more acceptable physical-chemical properties and in terms of sensory evaluation of perfume character and intensity was approved for commercial use.

  18. Functional Expression of an Orchid Fragrance Gene in Lactococcus lactis

    PubMed Central

    Song, Adelene Ai Lian; Abdullah, Janna O.; Abdullah, Mohd Puad; Shafee, Norazizah; Rahim, Raha A.

    2012-01-01

    Vanda Mimi Palmer (VMP), an orchid hybrid of Vanda tesselata and Vanda Tan Chay Yan is a highly scented tropical orchid which blooms all year round. Previous studies revealed that VMP produces a variety of isoprenoid volatiles during daylight. Isoprenoids are well known to contribute significantly to the scent of most fragrant plants. They are a large group of secondary metabolites which may possess valuable characteristics such as flavor, fragrance and toxicity and are produced via two pathways, the mevalonate (MVA) pathway or/and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. In this study, a sesquiterpene synthase gene denoted VMPSTS, previously isolated from a floral cDNA library of VMP was cloned and expressed in Lactococcus lactis to characterize the functionality of the protein. L. lactis, a food grade bacterium which utilizes the mevalonate pathway for isoprenoid production was found to be a suitable host for the characterization of plant terpene synthases. Through recombinant expression of VMPSTS, it was revealed that VMPSTS produced multiple sesquiterpenes and germacrene D dominates its profile. PMID:22408409

  19. Dental patient anxiety: Possible deal with Lavender fragrance

    PubMed Central

    Zabirunnisa, Md.; Gadagi, Jayaprakash S.; Gadde, Praveen; Myla, Nagamalleshwari; Koneru, Jyothirmai; Thatimatla, Chandrasekhar

    2014-01-01

    Objective: The pure essence of plants (essential oils) provides both psychological and physiological benefits when used accurately and safely. Conventionally, Lavender oil is known for relaxing, carminative, and sedative effects. Hence, an attempt was made to know the effect of Lavender essential oil on dental patient anxiety. Methods: The present study included two comparison groups (Lavender and control group), each comprising five dental clinics. In Lavender group, the ambient odor of Lavender essential oil was maintained with the help of a candle warmer in the reception area and in the control group, candle warmer with normal water was used. A total of 597 patients, aged above 18 years were included. A questionnaire comprising demographic information, and a modified dental anxiety scale was given to the patients in waiting room, and data regarding anxiety levels was recorded. Findings: Student's t-test (unpaired) showed a significant reduction in anxiety scores of Lavender group compared with the control group. Analysis of variances test showed reduction in anxiety scores as age increased in Lavender group. Conclusion: Fragrance of Lavender oil at reception area may effectively reduce the patient's state or current anxiety. This practice on routine usage can improve the quality of dental treatments. PMID:25328900

  20. Consumers' choice-blindness to ingredient information.

    PubMed

    Cheung, T T L; Junghans, A F; Dijksterhuis, G B; Kroese, F; Johansson, P; Hall, L; De Ridder, D T D

    2016-11-01

    Food manufacturers and policy makers have been tailoring food product ingredient information to consumers' self-reported preference for natural products and concerns over food additives. Yet, the influence of this ingredient information on consumers remains inconclusive. The current study aimed at examining the first step in such influence, which is consumers' attention to ingredient information on food product packaging. Employing the choice-blindness paradigm, the current study assessed whether participants would detect a covertly made change to the naturalness of ingredient list throughout a product evaluation procedure. Results revealed that only few consumers detected the change on the ingredient lists. Detection was improved when consumers were instructed to judge the naturalness of the product as compared to evaluating the product in general. These findings challenge consumers' self-reported use of ingredient lists as a source of information throughout product evaluations. While most consumers do not attend to ingredient information, this tendency can be slightly improved by prompting their consideration of naturalness. Future research should investigate the reasons for consumers' inattention to ingredient information and develop more effective strategies for conveying information to consumers.

  1. 21 CFR 106.20 - Ingredient control.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Ingredient control. 106.20 Section 106.20 Food and... CONSUMPTION INFANT FORMULA QUALITY CONTROL PROCEDURES (Eff. until 7-10-14) Quality Control Procedures for Assuring Nutrient Content of Infant Formulas § 106.20 Ingredient control. (a) Except as provided in §...

  2. 21 CFR 106.20 - Ingredient control.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Ingredient control. 106.20 Section 106.20 Food and... CONSUMPTION INFANT FORMULA QUALITY CONTROL PROCEDURES Quality Control Procedures for Assuring Nutrient Content of Infant Formulas § 106.20 Ingredient control. (a) Except as provided in § 106.20(b), no...

  3. 21 CFR 106.20 - Ingredient control.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Ingredient control. 106.20 Section 106.20 Food and... CONSUMPTION INFANT FORMULA QUALITY CONTROL PROCEDURES Quality Control Procedures for Assuring Nutrient Content of Infant Formulas § 106.20 Ingredient control. (a) Except as provided in § 106.20(b), no...

  4. Characterization of ATPase activity of the AAA ARC from Bifidobacterium longum subsp. infantis.

    PubMed

    Guzmán-Rodríguez, Mabel; de la Rosa, Ana Paulina Barba; Santos, Leticia

    2015-01-01

    Bifidobacteria are considered to be probiotics that exist in the large intestine and are helpful to maintain human health. Oral administration of bifidobacteria may be effective in improving the intestinal flora and environment, stimulating the immune response and possibly preventing cancer. However, for consistent and positive results, further well-controlled studies are urgently needed to describe the basic mechanisms of this microorganism. Analysis of the proteasome-lacking Bifidobacterium longum genome reveals that it possesses a gene, IPR003593 AAA ATPase core, which codes a 56 kDa protein containing one AAA ATPase domain. Phylogenetic classification made by CLANS, positioned this sequence into the ARC divergent branch of the AAA ATPase family of proteins. N-terminal analysis of the sequence indicates this protein is closely related to other ATPases such as the Rhodococcus erythropolis ARC, Archaeoglobus fulgidus PAN, Mycobacterium tuberculosis Mpa and the human proteasomal Rpt1 subunit. This gene was cloned, the full-length recombinant protein was overexpressed in Escherichia coli, purified as a high-molecular size complex and named Bl-ARC. Enzymatic characterization showed that Bl-ARC ATPase is active, Mg(+2)-dependent and sensitive to N-ethylmaleimide. Gene organization positions bl-arc in a region flanked by a cluster of genes that includes pup, dop and pafA genes. These findings point to a possible function as a chaperone in the degradation pathway via pupylation.

  5. An atypical AAA+ ATPase assembly controls efficient transposition through DNA remodeling and transposase recruitment

    PubMed Central

    Arias-Palomo, Ernesto; Berger, James M.

    2015-01-01

    Transposons are ubiquitous genetic elements that drive genome rearrangements, evolution, and the spread of infectious disease and drug-resistance. Many transposons, such as Mu, Tn7 and IS21, require regulatory AAA+ ATPases for function. We use x-ray crystallography and cryo-electron microscopy to show that the ATPase subunit of IS21, IstB, assembles into a clamshell-shaped decamer that sandwiches DNA between two helical pentamers of ATP-associated AAA+ domains, sharply bending the duplex into a 180° U-turn. Biochemical studies corroborate key features of the structure, and further show that the IS21 transposase, IstA, recognizes the IstB•DNA complex and promotes its disassembly by stimulating ATP hydrolysis. Collectively, these studies reveal a distinct manner of higher-order assembly and client engagement by a AAA+ ATPase and suggest a mechanistic model where IstB binding and subsequent DNA bending primes a selected insertion site for efficient transposition. PMID:26276634

  6. Structural basis for DNA-mediated allosteric regulation facilitated by the AAA+ module of Lon protease.

    PubMed

    Lee, Alan Yueh-Luen; Chen, Yu-Da; Chang, Yu-Yung; Lin, Yu-Ching; Chang, Chi-Fon; Huang, Shing-Jong; Wu, Shih-Hsiung; Hsu, Chun-Hua

    2014-02-01

    Lon belongs to a unique group of AAA+ proteases that bind DNA. However, the DNA-mediated regulation of Lon remains elusive. Here, the crystal structure of the α subdomain of the Lon protease from Brevibacillus thermoruber (Bt-Lon) is presented, together with biochemical data, and the DNA-binding mode is delineated, showing that Arg518, Arg557 and Arg566 play a crucial role in DNA binding. Electrostatic interactions contributed by arginine residues in the AAA+ module are suggested to be important to DNA binding and allosteric regulation of enzymatic activities. Intriguingly, Arg557, which directly binds DNA in the α subdomain, has a dual role in the negative regulation of ATPase stimulation by DNA and in the domain-domain communication in allosteric regulation of Bt-Lon by substrate. In conclusion, structural and biochemical evidence is provided to show that electrostatic interaction in the AAA+ module is important for DNA binding by Lon and allosteric regulation of its enzymatic activities by DNA and substrate.

  7. Subunit dynamics and nucleotide-dependent asymmetry of an AAA(+) transcription complex.

    PubMed

    Zhang, Nan; Gordiyenko, Yuliya; Joly, Nicolas; Lawton, Edward; Robinson, Carol V; Buck, Martin

    2014-01-01

    Bacterial enhancer binding proteins (bEBPs) are transcription activators that belong to the AAA(+) protein family. They form higher-order self-assemblies to regulate transcription initiation at stress response and pathogenic promoters. The precise mechanism by which these ATPases utilize ATP binding and hydrolysis energy to remodel their substrates remains unclear. Here we employed mass spectrometry of intact complexes to investigate subunit dynamics and nucleotide occupancy of the AAA(+) domain of one well-studied bEBP in complex with its substrate, the σ(54) subunit of RNA polymerase. Our results demonstrate that the free AAA(+) domain undergoes significant changes in oligomeric states and nucleotide occupancy upon σ(54) binding. Such changes likely correlate with one transition state of ATP and are associated with an open spiral ring formation that is vital for asymmetric subunit function and interface communication. We confirmed that the asymmetric subunit functionality persists for open promoter complex formation using single-chain forms of bEBP lacking the full complement of intact ATP hydrolysis sites. Outcomes reconcile low- and high-resolution structures and yield a partial sequential ATP hydrolysis model for bEBPs. PMID:24055699

  8. Functional characterization of fidgetin, an AAA-family protein mutated in fidget mice

    SciTech Connect

    Yang Yan; Mahaffey, Connie L.; Berube, Nathalie; Nystuen, Arne; Frankel, Wayne N. . E-mail: wnf@jax.org

    2005-03-10

    The mouse fidget mutation is an autosomal recessive mutation that renders reduced or absent semicircular canals, microphthalmia, and various skeletal abnormalities to affected mice. We previously identified the defective gene which encodes fidgetin, a new member of the ATPases associated with diverse cellular activities (AAA proteins). Here, we report on the subcellular localization of fidgetin as well as that of two closely related proteins, fidgetin-like 1 and fidgetin-like 2. Epitope-tagging and immunostaining revealed that both fidgetin and fidgetin-like 2 were predominantly localized to the nucleus, whereas fidgetin-like 1 was both nuclear and cytoplasmic. Furthermore, deletion studies identified a putative bipartite nuclear localization signal in the middle portion of the fidgetin protein. Since AAA proteins are known to form functional hetero- or homo-hexamers, we used reciprocal immunoprecipitation to examine the potential interaction among these proteins. We found that fidgetin interacted with itself and this specific interaction was abolished when either the N- or C-terminus of the protein was truncated. Taken together, our results suggest that fidgetin is a nuclear AAA-family protein with the potential to form homo-oligomers, thus representing the first step towards the elucidation of fidgetin's cellular function and the disease mechanism in fidget mutant mice.

  9. Molecular snapshots of the Pex1/6 AAA+ complex in action

    PubMed Central

    Ciniawsky, Susanne; Grimm, Immanuel; Saffian, Delia; Girzalsky, Wolfgang; Erdmann, Ralf; Wendler, Petra

    2015-01-01

    The peroxisomal proteins Pex1 and Pex6 form a heterohexameric type II AAA+ ATPase complex, which fuels essential protein transport across peroxisomal membranes. Mutations in either ATPase in humans can lead to severe peroxisomal disorders and early death. We present an extensive structural and biochemical analysis of the yeast Pex1/6 complex. The heterohexamer forms a trimer of Pex1/6 dimers with a triangular geometry that is atypical for AAA+ complexes. While the C-terminal nucleotide-binding domains (D2) of Pex6 constitute the main ATPase activity of the complex, both D2 harbour essential substrate-binding motifs. ATP hydrolysis results in a pumping motion of the complex, suggesting that Pex1/6 function involves substrate translocation through its central channel. Mutation of the Walker B motif in one D2 domain leads to ATP hydrolysis in the neighbouring domain, giving structural insights into inter-domain communication of these unique heterohexameric AAA+ assemblies. PMID:26066397

  10. Functional characterization of fidgetin, an AAA-family protein mutated in fidget mice.

    PubMed

    Yang, Yan; Mahaffey, Connie L; Bérubé, Nathalie; Nystuen, Arne; Frankel, Wayne N

    2005-03-10

    The mouse fidget mutation is an autosomal recessive mutation that renders reduced or absent semicircular canals, microphthalmia, and various skeletal abnormalities to affected mice. We previously identified the defective gene which encodes fidgetin, a new member of the ATPases associated with diverse cellular activities (AAA proteins). Here, we report on the subcellular localization of fidgetin as well as that of two closely related proteins, fidgetin-like 1 and fidgetin-like 2. Epitope-tagging and immunostaining revealed that both fidgetin and fidgetin-like 2 were predominantly localized to the nucleus, whereas fidgetin-like 1 was both nuclear and cytoplasmic. Furthermore, deletion studies identified a putative bipartite nuclear localization signal in the middle portion of the fidgetin protein. Since AAA proteins are known to form functional hetero- or homo-hexamers, we used reciprocal immunoprecipitation to examine the potential interaction among these proteins. We found that fidgetin interacted with itself and this specific interaction was abolished when either the N- or C-terminus of the protein was truncated. Taken together, our results suggest that fidgetin is a nuclear AAA-family protein with the potential to form homo-oligomers, thus representing the first step towards the elucidation of fidgetin's cellular function and the disease mechanism in fidget mutant mice.

  11. Contact allergy caused by fragrance mix and Myroxylon pereirae (balsam of Peru)--a retrospective study.

    PubMed

    Turić, Petra; Lipozencić, Jasna; Milavec-Puretić, Visnja; Kulisić, Sandra Marinović

    2011-03-01

    Because of their widespread use, fragrances are among the most common causes of contact allergic dermatitis, second only to nickel. During a five-year period 3,065 patients with contact dermatitis were patch tested using a specific mix of fragrances. 509 (16.6%) patients were allergic to the fragrance mix, while 258 (8.4%) patients exhibited an allergic reaction to Myroxylon pereirae (balsam of Peru). Between those 509 patients, 157 were patch tested with eight individual substances contained in the fragrance mix: cinnamal, cinnamyl alcohol, eugenol, isoeugenol, geraniol, hydroxycitronellal, alpha-amyl cinnamal and Evernia prunastri (oak moss). The most frequent allergens were isoeugenol 57.9% (91/157), eugenol 55.4% (87/157), cinnamyl alcohol 34.4% (54/157) and Evernia prunastri (oak moss) 24.2% (38/157). There were 62 patients (39.5%) who exhibited an allergic reaction to both the fragrance mix and Myroxylon pereirae (balsam of Peru). The results prove the importance of avoiding allergens in daily life, especially in industrial and cosmetic products. In order to prevent ACD, better cooperation between industry and dermatologists is needed.

  12. Experimental and computational studies on the flow fields in aortic aneurysms associated with deployment of AAA stent-grafts

    NASA Astrophysics Data System (ADS)

    Zhang, Xiwen; Yao, Zhaohui; Zhang, Yan; Xu, Shangdong

    2007-10-01

    Pulsatile flow fields in rigid abdominal aortic aneurysm (AAA) models were investigated numerically, and the simulation results are found in good agreement with particle image velocimetry (PIV) measurements. There are one or more vortexes in the AAA bulge, and a fairly high wall shear stress exists at the distal end, and thus the AAA is in danger of rupture. Medical treatment consists of inserting a vascular stent-graft in the AAA, which would decrease the blood impact to the inner walls and reduce wall shear stress so that the rupture could be prevented. A new computational model, based on porous medium model, was developed and results are documented. Therapeutic effect of the stent-graft was verified numerically with the new model.

  13. An in vitro phototoxicity assay battery (photohaemolysis and 3T3 NRU PT test) to assess phototoxic potential of fragrances.

    PubMed

    Nam, Chunja; An, Susun; Lee, Eunyoung; Moon, Seongjoon; Kang, Jongkoo; Chang, Ihseop

    2004-06-01

    The purpose of this study was to compare the in vivo and in vitro phototoxicity potentials of 13 fragrances. We used the 3T3 neutral red uptake phototoxicity (3T3 NRU PT) test and the photohaemolysis test as in vitro phototoxicity assays. In the 3T3 NRU PT test, all of the fragrances were non-phototoxic. Six fragrances were phototoxic in the photohaemolysis test. Three of the six photohaemolytic fragrances were phototoxic in the guinea-pig photoirritation test. These phototoxic fragrances did not cause cellular phototoxicity, but showed a photohaemolytic reaction. The photohaemolysis test was more sensitive than the 3T3 NRU PT test for screening for the phototoxicity of fragrances. The accuracy of this in vitro phototoxicity test battery was 82%. It is thought that the major phototoxic mechanism of fragrances is cell membrane damage. We suggest that a battery composed of the 3T3 NRU PT test and the photohaemolysis test is a simple and effective model for the in vitro phototoxicity assay of fragrances.

  14. Development of a multianalyte method based on micro-matrix-solid-phase dispersion for the analysis of fragrance allergens and preservatives in personal care products.

    PubMed

    Celeiro, Maria; Guerra, Eugenia; Lamas, J Pablo; Lores, Marta; Garcia-Jares, Carmen; Llompart, Maria

    2014-05-30

    An effective, simple and low cost sample preparation method based on matrix solid-phase dispersion (MSPD) followed by gas chromatography-mass spectrometry (GC-MS) or gas chromatography-triple quadrupole-mass spectrometry (GC-MS/MS) has been developed for the rapid simultaneous determination of 38 cosmetic ingredients, 25 fragrance allergens and 13 preservatives. All target substances are frequently used in cosmetics and personal care products and they are subjected to use restrictions or labeling requirements according to the EU Cosmetic Directive. The extraction procedure was optimized on real non-spiked rinse-off and leave-on cosmetic products by means of experimental designs. The final miniaturized process required the use of only 0.1g of sample and 1 mL of organic solvent, obtaining a final extract ready for analysis. The micro-MSPD method was validated showing satisfactory performance by GC-MS and GC-MS/MS analysis. The use of GC coupled to triple quadrupole mass detection allowed to reach very low detection limits (low ng g(-1)) improving, at the same time, method selectivity. In an attempt to improve the chromatographic analysis of preservatives, the inclusion of a derivatization step was also assessed. The proposed method was applied to a broad range of cosmetics and personal care products (shampoos, body milk, moisturizing milk, toothpaste, hand creams, gloss lipstick, sunblock, deodorants and liquid soaps among others), demonstrating the extended use of these substances. The concentration levels were ranging from the sub parts per million to the parts per mill. The number of target fragrance allergens per samples was quite high (up to 16). Several fragrances (linalool, farnesol, hexylcinnamal, and benzyl benzoate) have been detected at levels >0.1% (1,000 μg g(-1)). As regards preservatives, phenoxyethanol was the most frequently found additive reaching quite high concentration (>1,500 μg g(-1)) in five cosmetic products. BHT was detected in eight

  15. Development of a multianalyte method based on micro-matrix-solid-phase dispersion for the analysis of fragrance allergens and preservatives in personal care products.

    PubMed

    Celeiro, Maria; Guerra, Eugenia; Lamas, J Pablo; Lores, Marta; Garcia-Jares, Carmen; Llompart, Maria

    2014-05-30

    An effective, simple and low cost sample preparation method based on matrix solid-phase dispersion (MSPD) followed by gas chromatography-mass spectrometry (GC-MS) or gas chromatography-triple quadrupole-mass spectrometry (GC-MS/MS) has been developed for the rapid simultaneous determination of 38 cosmetic ingredients, 25 fragrance allergens and 13 preservatives. All target substances are frequently used in cosmetics and personal care products and they are subjected to use restrictions or labeling requirements according to the EU Cosmetic Directive. The extraction procedure was optimized on real non-spiked rinse-off and leave-on cosmetic products by means of experimental designs. The final miniaturized process required the use of only 0.1g of sample and 1 mL of organic solvent, obtaining a final extract ready for analysis. The micro-MSPD method was validated showing satisfactory performance by GC-MS and GC-MS/MS analysis. The use of GC coupled to triple quadrupole mass detection allowed to reach very low detection limits (low ng g(-1)) improving, at the same time, method selectivity. In an attempt to improve the chromatographic analysis of preservatives, the inclusion of a derivatization step was also assessed. The proposed method was applied to a broad range of cosmetics and personal care products (shampoos, body milk, moisturizing milk, toothpaste, hand creams, gloss lipstick, sunblock, deodorants and liquid soaps among others), demonstrating the extended use of these substances. The concentration levels were ranging from the sub parts per million to the parts per mill. The number of target fragrance allergens per samples was quite high (up to 16). Several fragrances (linalool, farnesol, hexylcinnamal, and benzyl benzoate) have been detected at levels >0.1% (1,000 μg g(-1)). As regards preservatives, phenoxyethanol was the most frequently found additive reaching quite high concentration (>1,500 μg g(-1)) in five cosmetic products. BHT was detected in eight

  16. Occurrence of synthetic musk fragrances in human blood from 11 cities in China.

    PubMed

    Hu, Zhengjun; Shi, Yali; Niu, Hongyun; Cai, Yaqi; Jiang, Guibin; Wu, Yongning

    2010-09-01

    We measured two nitro musk fragrances (musk xylene) and musk ketone) and five polycyclic musk fragrances (galaxolide [HHCB], tonalide [AHTN], celestolide [ADBI], traseolide [ATII], and phantolide [AHMI]) in human blood samples from 11 cities of China (n = 204). Possible temporal trends in musk concentrations and associations with personal factors, such as gender, age, and others, were studied. Galaxolide (HHCB) showed the highest median concentration (0.85 ng/g) followed by AHTN (0.53 ng/g) with high detection frequency (91 and 77%, respectively). Concentrations of the other synthetic musk fragrances, including musk ketone and musk xylene, were all below the quantification limits. The results suggested that musk concentrations were not significantly relative to gender and body weight but positively correlated with age groups and locations. Apparent differences were also observed in the ratios of HHCB to AHTN concentrations among different cities.

  17. Structural Insights into the Unusually Strong ATPase Activity of the AAA Domain of the Caenorhabditis elegans Fidgetin-like 1 (FIGL-1) Protein*

    PubMed Central

    Peng, Wentao; Lin, Zhijie; Li, Weirong; Lu, Jing; Shen, Yuequan; Wang, Chunguang

    2013-01-01

    The FIGL-1 (fidgetin like-1) protein is a homolog of fidgetin, a protein whose mutation leads to multiple developmental defects. The FIGL-1 protein contains an AAA (ATPase associated with various activities) domain and belongs to the AAA superfamily. However, the biological functions and developmental implications of this protein remain unknown. Here, we show that the AAA domain of the Caenorhabditis elegans FIGL-1 protein (CeFIGL-1-AAA), in clear contrast to homologous AAA domains, has an unusually high ATPase activity and forms a hexamer in solution. By determining the crystal structure of CeFIGL-1-AAA, we found that the loop linking helices α9 and α10 folds into the short helix α9a, which has an acidic surface and interacts with a positively charged surface of the neighboring subunit. Disruption of this charge interaction by mutagenesis diminishes both the ATPase activity and oligomerization capacity of the protein. Interestingly, the acidic residues in helix α9a of CeFIGL-1-AAA are not conserved in other homologous AAA domains that have relatively low ATPase activities. These results demonstrate that the sequence of CeFIGL-1-AAA has adapted to establish an intersubunit charge interaction, which contributes to its strong oligomerization and ATPase activity. These unique properties of CeFIGL-1-AAA distinguish it from other homologous proteins, suggesting that CeFIGL-1 may have a distinct biological function. PMID:23979136

  18. Potentiation of the ionotropic GABA receptor response by whiskey fragrance.

    PubMed

    Hossain, Sheikh Julfikar; Aoshima, Hitoshi; Koda, Hirofumi; Kiso, Yoshinobu

    2002-11-01

    It is well-known that the target of most mood-defining compounds is an ionotropic gamma-aminobutyric acid receptor (GABA(A) receptor). The potentiation of the response of these inhibitory neurotransmitter receptors induces anxiolytic, sedative, and anesthetic activity in the human brain. To study the effects of whiskey fragrance on the GABA(A) receptor-mediated response, GABA(A) receptors were expressed in Xenopus oocyte by injecting rat whole brain mRNA or cRNA prepared from the cloned cDNA for the alpha(1) and beta(1) subunits of the bovine receptors. Most whiskey components such as phenol, ethoxy, and lactone derivatives potentiated the electrical responses of GABA(A) receptors, especially ethyl phenylpropanoate (EPP), which strongly potentiated the response. When this compound was applied to mice through respiration, the convulsions induced by pentetrazole were delayed, suggesting that EPP was absorbed by the brain, where it could potentiate the GABA(A) receptor responses. The extract of other alcoholic drinks such as wine, sake, brandy, and shochu also potentiated the responses to varying degrees. Although these fragrant components are present in alcoholic drinks at low concentrations (extremely small quantities compared with ethanol), they may also modulate the mood or consciousness of the human through the potentiation of the GABA(A) receptor response after absorption into the brain, because these hydrophobic fragrant compounds are easily absorbed into the brain through the blood-brain barrier and are several thousands times as potent as ethanol in the potentiation of the GABA(A) receptor-mediated response.

  19. Potentiation of the ionotropic GABA receptor response by whiskey fragrance.

    PubMed

    Hossain, Sheikh Julfikar; Aoshima, Hitoshi; Koda, Hirofumi; Kiso, Yoshinobu

    2002-11-01

    It is well-known that the target of most mood-defining compounds is an ionotropic gamma-aminobutyric acid receptor (GABA(A) receptor). The potentiation of the response of these inhibitory neurotransmitter receptors induces anxiolytic, sedative, and anesthetic activity in the human brain. To study the effects of whiskey fragrance on the GABA(A) receptor-mediated response, GABA(A) receptors were expressed in Xenopus oocyte by injecting rat whole brain mRNA or cRNA prepared from the cloned cDNA for the alpha(1) and beta(1) subunits of the bovine receptors. Most whiskey components such as phenol, ethoxy, and lactone derivatives potentiated the electrical responses of GABA(A) receptors, especially ethyl phenylpropanoate (EPP), which strongly potentiated the response. When this compound was applied to mice through respiration, the convulsions induced by pentetrazole were delayed, suggesting that EPP was absorbed by the brain, where it could potentiate the GABA(A) receptor responses. The extract of other alcoholic drinks such as wine, sake, brandy, and shochu also potentiated the responses to varying degrees. Although these fragrant components are present in alcoholic drinks at low concentrations (extremely small quantities compared with ethanol), they may also modulate the mood or consciousness of the human through the potentiation of the GABA(A) receptor response after absorption into the brain, because these hydrophobic fragrant compounds are easily absorbed into the brain through the blood-brain barrier and are several thousands times as potent as ethanol in the potentiation of the GABA(A) receptor-mediated response. PMID:12405783

  20. Testing of SOS induction of artificial polycyclic musk fragrances in E. coli PQ37 (SOS chromotest).

    PubMed

    Mersch-Sundermann, V; Kevekordes, S; Jenter, C

    1998-05-01

    Synthetic fragrances are widespread in the environment. Residues were found in animals, human tissues and breast milk. Therefore, six artificial polycyclic musk fragrances--Galaxolide, Tonalide, Celestolide, Phantolide, Cashmeran and Traseolide--were tested for SOS induction using the Escherichia coli PQ37 genotoxicity assay (SOS chromotest) in the presence (+S9) and absence (-S9) of an exogenous metabolizing system. All compounds tested exhibited no SOS inducing potency with the SOS chromotest. These results could be rated as one indicator of the biological inactivity of this group of compounds with respect to genotoxicity.

  1. Determinants of exposure to fragranced product chemical mixtures in a sample of twins.

    PubMed

    Gribble, Matthew O; Bandeen-Roche, Karen; Fox, Mary A

    2015-02-01

    Fragranced product chemical mixtures may be relevant for environmental health, but little is known about exposure. We analyzed results from an olfactory challenge with the synthetic musk fragrance 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopento-γ-2-benzopyran (HHCB), and a questionnaire about attitudes toward chemical safety and use of fragranced products, in a sample of 140 white and 17 black twin pairs attending a festival in Ohio. Data for each product were analyzed using robust ordered logistic regressions with random intercepts for "twin pair" and "sharing address with twin", and fixed effects for sex, age, education, and "ever being bothered by fragrances". Due to the small number of black participants, models were restricted to white participants except when examining racial differences. Overall patterns of association were summarized across product-types through random-effects meta-analysis. Principal components analysis was used to summarize clustering of product use. The dominant axis of variability in fragranced product use was "more vs. less", followed by a distinction between household cleaning products and personal care products. Overall, males used fragranced products less frequently than females (adjusted proportionate odds ratio 0.55, 95% confidence interval 0.33, 0.93). This disparity was driven by personal care products (0.42, 95% CI: 0.19, 0.96), rather than household cleaning products (0.79, 95% CI: 0.49, 1.25) and was particularly evident for body lotion (0.12, 95% CI: 0.05, 0.27). Overall usage differed by age (0.64, 95% CI: 0.43, 0.95) but only hand soap and shampoo products differed significantly. "Ever being bothered by fragrance" had no overall association (0.92, 95% CI: 0.65, 1.30) but was associated with laundry detergent use (0.46, 95% CI: 0.23, 0.93). Similarly, black vs. white differences on average were not significant (1.34, 95% CI: 0.55, 3.28) but there were apparent differences in use of shampoo (0.01, 95% CI: 0.00, 0

  2. Determinants of exposure to fragranced product chemical mixtures in a sample of twins.

    PubMed

    Gribble, Matthew O; Bandeen-Roche, Karen; Fox, Mary A

    2015-01-27

    Fragranced product chemical mixtures may be relevant for environmental health, but little is known about exposure. We analyzed results from an olfactory challenge with the synthetic musk fragrance 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopento-γ-2-benzopyran (HHCB), and a questionnaire about attitudes toward chemical safety and use of fragranced products, in a sample of 140 white and 17 black twin pairs attending a festival in Ohio. Data for each product were analyzed using robust ordered logistic regressions with random intercepts for "twin pair" and "sharing address with twin", and fixed effects for sex, age, education, and "ever being bothered by fragrances". Due to the small number of black participants, models were restricted to white participants except when examining racial differences. Overall patterns of association were summarized across product-types through random-effects meta-analysis. Principal components analysis was used to summarize clustering of product use. The dominant axis of variability in fragranced product use was "more vs. less", followed by a distinction between household cleaning products and personal care products. Overall, males used fragranced products less frequently than females (adjusted proportionate odds ratio 0.55, 95% confidence interval 0.33, 0.93). This disparity was driven by personal care products (0.42, 95% CI: 0.19, 0.96), rather than household cleaning products (0.79, 95% CI: 0.49, 1.25) and was particularly evident for body lotion (0.12, 95% CI: 0.05, 0.27). Overall usage differed by age (0.64, 95% CI: 0.43, 0.95) but only hand soap and shampoo products differed significantly. "Ever being bothered by fragrance" had no overall association (0.92, 95% CI: 0.65, 1.30) but was associated with laundry detergent use (0.46, 95% CI: 0.23, 0.93). Similarly, black vs. white differences on average were not significant (1.34, 95% CI: 0.55, 3.28) but there were apparent differences in use of shampoo (0.01, 95% CI: 0.00, 0

  3. [The introduction of medical product's applications by using flavor and fragrance analyzer "FF-2020"].

    PubMed

    Kita, Junichi

    2014-01-01

    The design concept of flavor and fragrance analyzer "FF-2020" was descried; at first how to recognize the quantification of odor, introducing traditional quantification of odor and how to compose the analyzer. At last two analysis of the medical goods were described. The most important thing to quantify the odor is to recognize the three faced of odor that is chemical component face, subjective feeling and objective feeling. For the electronic nose like a flavor and fragrance analyzer, objective feeling should be quantified by the analyzer. Then the original mode of analysis was made to realize the quantification of the objective feeling.

  4. Immediate and delayed reactions to cosmetic ingredients.

    PubMed

    Emmons, W W; Marks, J G

    1985-10-01

    The purpose of this study was to investigate the incidence and etiology of cutaneous reactions caused by cosmetics, with an emphasis on perfume sensitivity. 19 control subjects and 31 patch test clinic patients (16 with a history of adverse cosmetic reactions) were examined for sensitivity by history, open and patch testing using the North American Contact Dermatitis Group (NACDG) fragrance screening series and 11 other common allergens found in cosmetics. Contact urticaria was very frequent to certain chemicals; however, patients with a history of cosmetic sensitivity were not found to have a significant increase in positive reactions when compared to controls or patients with eczematous skin. 12 subjects had positive patch test reactions, most of which were not clinically relevant. 3 patients with a history of cosmetic sensitivity had positive reactions, only 1 of which was in the fragrance screening series (cinnamic alcohol). There were 6 reactions in patients with eczematous skin, 4 of which were to preservatives. 3 controls had positive reactions, each to thimerosal. A history of cosmetic sensitivity was not confirmed by open and closed skin testing in our subjects.

  5. Distributions of polycyclic musk fragrance in wastewater treatment plant (WWTP) effluents and sludges in the United States.

    PubMed

    Sun, Ping; Casteel, Kenneth; Dai, Hongjian; Wehmeyer, Kenneth R; Kiel, Brian; Federle, Thomas

    2014-09-15

    The polycyclic musks, AHTN and HHCB are fragrance ingredients widely used in consumer products. A monitoring campaign was conducted and collected grab effluent and sludge samples at 40 wastewater treatment plants (WWTP) across the United States to understand their occurrence and statistical distribution in these matrices. AHTN concentration in effluent ranged from <0.05 μg/L (LOQ) to 0.44 μg/L with a mean and standard deviation of 0.18 ± 0.11 μg/L. HHCB concentrations in effluent ranged from 0.45 to 4.79 μg/L with a mean of 1.86 ± 1.01 μg/L. AHTN concentrations in sludge ranged from 0.65 to 15.0mg/kg dw (dry weight) with a mean and standard deviation being 3.69 ± 2.57 mg/kg dw, while HHCB sludge concentrations were between 4.1 and 91 mg/kg with a mean of 34.0 ± 23.1mg/kg dw. Measured concentrations of AHTN and HHCB were significantly correlated with each other in both effluent and sludge. The concentrations of HHCB in both effluent and sludge were approximately an order of magnitude higher than those for AHTN, consistent with 2011 usage levels. The highest measured effluent concentrations for both AHTN and HHCB were below their respective freshwater PNECs (predicted no effect concentrations), indicating a negligible risk to biological communities below WWTPs, even in the absence of upstream dilution. Moreover, the large number of effluents and sludges sampled provides a statistical distribution of loadings that can be used to develop more extensive probabilistic exposure assessments for WWTP mixing zones and sludge amended soils.

  6. Hydroxyisohexyl 3-cyclohexene carboxaldehyde- known as Lyral: quantitative aspects and risk assessment of an important fragrance allergen.

    PubMed

    Johansen, J D; Frosch, P J; Svedman, C; Andersen, K E; Bruze, M; Pirker, C; Menné, T

    2003-06-01

    Hydroxyisohexyl 3-cyclohexene carboxaldehyde, also known as Lyral, is a fragrance ingredient identified as the cause of contact allergic reactions in 2-3% of eczema patients undergoing patch testing. Lyral has been included in the standard patch test series in many clinics due to its importance as an allergen. It has been used without restrictions in cosmetic products, until now. In the present study, the dose-response relationship of Lyral contact allergy was studied with doses relevant for normal exposure in cosmetic products. 18 eczema patients, who previously had given a positive patch test to Lyral 5% petrolatum, were included along with 7 control subjects. All cases were tested with a serial dilution of Lyral in ethanol 6% to 6 p.p.m and subjected to a 2-week, repeated open application test with a low dose of Lyral in ethanol. In the case of no reaction, this was followed by another 2 weeks of testing with a higher dose. The test was performed at the volar aspect of the forearm. In 16 of 18 cases (89%), a positive use test developed, 11 reacting to the low and 5 to the high concentration. None reacted to the vehicle control of ethanol applied to the contralateral arm. All controls were negative to both the test solutions of Lyral and the ethanol control. The difference between the test and the control group was statistically significant (Fisher's test, P < 0.001). It is concluded that Lyral at the current usage levels is inducing sensitization in the community. The same levels were shown to elicit allergic contact dermatitis in almost all sensitized individuals. A significant reduction in usage concentrations is recommended to prevent contact allergic reactions.

  7. Distributions of polycyclic musk fragrance in wastewater treatment plant (WWTP) effluents and sludges in the United States.

    PubMed

    Sun, Ping; Casteel, Kenneth; Dai, Hongjian; Wehmeyer, Kenneth R; Kiel, Brian; Federle, Thomas

    2014-09-15

    The polycyclic musks, AHTN and HHCB are fragrance ingredients widely used in consumer products. A monitoring campaign was conducted and collected grab effluent and sludge samples at 40 wastewater treatment plants (WWTP) across the United States to understand their occurrence and statistical distribution in these matrices. AHTN concentration in effluent ranged from <0.05 μg/L (LOQ) to 0.44 μg/L with a mean and standard deviation of 0.18 ± 0.11 μg/L. HHCB concentrations in effluent ranged from 0.45 to 4.79 μg/L with a mean of 1.86 ± 1.01 μg/L. AHTN concentrations in sludge ranged from 0.65 to 15.0mg/kg dw (dry weight) with a mean and standard deviation being 3.69 ± 2.57 mg/kg dw, while HHCB sludge concentrations were between 4.1 and 91 mg/kg with a mean of 34.0 ± 23.1mg/kg dw. Measured concentrations of AHTN and HHCB were significantly correlated with each other in both effluent and sludge. The concentrations of HHCB in both effluent and sludge were approximately an order of magnitude higher than those for AHTN, consistent with 2011 usage levels. The highest measured effluent concentrations for both AHTN and HHCB were below their respective freshwater PNECs (predicted no effect concentrations), indicating a negligible risk to biological communities below WWTPs, even in the absence of upstream dilution. Moreover, the large number of effluents and sludges sampled provides a statistical distribution of loadings that can be used to develop more extensive probabilistic exposure assessments for WWTP mixing zones and sludge amended soils. PMID:24792690

  8. Active Pharmaceutical Ingredients and Aquatic Organisms

    EPA Science Inventory

    The presence of active pharmaceuticals ingredients (APIs) in aquatic systems in recent years has led to a burgeoning literature examining environmental occurrence, fate, effects, risk assessment, and treatability of these compounds. Although APIs have received much attention as ...

  9. NASA Astrophysics E/PO Impact: NASA SOFIA AAA Program Evaluation Results

    NASA Astrophysics Data System (ADS)

    Harman, Pamela; Backman, Dana E.; Clark, Coral; Inverness Research Sofia Aaa Evaluation Team, Wested Sofia Aaa Evaluation Team

    2015-01-01

    SOFIA is an airborne observatory, studying the universe at infrared wavelengths, capable of making observations that are impossible for even the largest and highest ground-based telescopes. SOFIA also inspires the development of new scientific instrumentation and fosters the education of young scientists and engineers.SOFIA is an 80% - 20% partnership of NASA and the German Aerospace Center (DLR), consisting of an extensively modified Boeing 747SP aircraft carrying a reflecting telescope with an effective diameter of 2.5 meters (100 inches). The SOFIA aircraft is based at NASA Armstrong Flight Research Center, Building 703, in Palmdale, California. The Science Program and Outreach Offices are located at NASA Ames Research center. SOFIA is a program in NASA's Science Mission Directorate, Astrophysics Division.Data will be collected to study many different kinds of astronomical objects and phenomena, including star cycles, solar system formation, identification of complex molecules in space, our solar system, galactic dust, nebulae and ecosystems.Airborne Astronomy Ambassador (AAA) Program:The SOFIA Education and Communications program exploits the unique attributes of airborne astronomy to contribute to national goals for the reform of science, technology, engineering, and math (STEM) education, and to elevate public scientific and technical literacy.The AAA effort is a professional development program aspiring to improve teaching, inspire students, and inform the community. To date, 55 educators from 21 states; Cycles 0, 1 and 2; have completed their astronomy professional development and their SOFIA science flight experience. Evaluation has confirmed the program's positive impact on the teacher participants, on their students, and in their communities. The inspirational experience has positively impacted their practice and career trajectory. AAAs have incorporated content knowledge and specific components of their experience into their curricula, and have given

  10. Morphological State as a Predictor for Reintervention and Mortality After EVAR for AAA

    SciTech Connect

    Ohrlander, Tomas; Dencker, Magnus; Acosta, Stefan

    2012-10-15

    Purpose: This study was designed to assess aorto-iliac morphological characteristics in relation to reintervention and all-cause long-term mortality in patients undergoing standard EVAR for infrarenal AAA. Methods: Patients treated with EVAR (Zenith{sup Registered-Sign} Stentgrafts, Cook) between May 1998 and February 2006 were prospectively enrolled in a computerized database where comorbidities and preoperative aneurysm morphology were entered. Reinterventions and mortality were checked until December 1, 2010. Median follow-up time was 68 months. Results: A total of 304 patients were included, of which 86% were men. Median age was 74 years. The reintervention rate was 23.4% (71/304). A greater diameter of the common iliac artery (p = 0.037; hazard ratio (HR) 1.037 [1.002-1.073]) was an independent factor for an increased number of reinterventions. The 30-day mortality rate was 3.0% (9/304). Aneurysm-related deaths due to AAA occurred in 4.9% (15/304). Five patients died due to a concomitant ruptured thoracic aortic aneurysm. The mortality until end of follow-up was 54.3% (165/304). The proportion of deaths caused by vascular diseases was 61.6%. The severity of angulation of the iliac arteries (p = 0.014; HR 1.018 [95% confidence interval (CI) 1.004-1.033]) and anemia (p = 0.044; HR 2.79 [95% CI 1.029-7.556]) remained as independent factors associated with all-cause long-term mortality. The crude reintervention-free survival rate at 1, 3, and 5 years was 84.5%, 64.8%, and 51.6%, respectively. Conclusions: The initial aorto-iliac morphological state in patients scheduled for standard EVAR for AAA seems to be strongly related to the need for reinterventions and long-term mortality.

  11. SU-E-P-16: A Feasibility Study of Using Eclipse AAA for SRS Treatement

    SciTech Connect

    Lim, S; LoSasso, T

    2015-06-15

    Purpose: To commission Varian Eclipse AAA for SRS treatment and compare the accuracy with Brainlab iPlan system for clinical cases measured with radiochromic film. Methods: A 6MV AAA clinical model for a Varian TrueBeam STx is used as baseline. The focal spot and field size of the baseline model(BASE) are (1.75,0.75) and 40×40cm{sup 2} respectively. Maximum field sizes, output factors(S{sub t}), FWHM focal spot and secondary source sizes are systematically adjusted to obtain an optimized model(OPT) by comparing the calculated PDD’s, profiles, and output factors with measurements taken with a stereotactic diode(SD) and, cc01 and cc04 ion chambers in Blue Phantom. In-phantom dose distributions of clinical SRS fields are calculated using the OPT and the clinical Brainlab iPlan pencil-beam. Within the 90% isodose-line(ROI), the average dose difference between the calculations and radiochromic film measurements are assessed. Results: The maximum field, focal spot and secondary source sizes for the OPT are 15×15cm{sup 2}, (0,0), and 32.3mm respectively. The OPT St input at 1.0 and 2.0cm fields are increased by 4.5% and 1.5% from BASE. The calculated output of the BASE and OPT underestimate by 16.1%–3.2% respectively at 0.5×0.5cm{sup 2} field and 3.1%−0.02% respectively at 1.0×1.0cm{sup 2} field. The depth doses at 10cm are within 3.5% and 0.4% of measurements for 0.5×0.5 and 1.0×1.0cm{sup 2}. The ROI dose of OPT and iPlan are within 1.6% and 0.6% of film measurements for 3.0cm clinical fields. For 1.0cm fields, the ROI dose of OPT underestimate 0.0–2.0% and iPlan overestimates 1.7–2.9% relative to measurements. Conclusion: The small field dose calculation of Eclipse AAA algorithm can be significantly improved by carefully adjusting the input parameters. The larger deviation of the OPT for 0.5×0.5cm{sup 2} field from measurements can be attributed to the lowest 1.0cm field size input limit of AAA. The OPT compares reasonably well with the iPlan pencil

  12. The fragrance hand immersion study - an experimental model simulating real-life exposure for allergic contact dermatitis on the hands.

    PubMed

    Heydorn, S; Menné, T; Andersen, K E; Bruze, M; Svedman, C; Basketter, D; Johansen, J D

    2003-06-01

    Recently, we showed that 10 x 2% of consecutively patch-tested hand eczema patients had a positive patch test to a selection of fragrances containing fragrances relevant to hand exposure. In this study, we used repeated skin exposure to a patch test-positive fragrance allergen in patients previously diagnosed with hand eczema to explore whether immersion of fingers in a solution with or without the patch-test-positive fragrance allergen would cause or exacerbate hand eczema on the exposed finger. The study was double blinded and randomized. All participants had a positive patch test to either hydroxycitronellal or Lyral (hydroxyisohexyl 3-cyclohexene carboxaldehyde). Each participant immersed a finger from each hand, once a day, in a solution containing the fragrance allergen or placebo. During the first 2 weeks, the concentration of fragrance allergen in the solution was low (approximately 10 p.p.m.), whilst during the following 2 weeks, the concentration was relatively high (approximately 250 p.p.m.), imitating real-life exposure to a household product like dishwashing liquid diluted in water and the undiluted product, respectively. Evaluation was made using a clinical scale and laser Doppler flow meter. 3 of 15 hand eczema patients developed eczema on the finger immersed in the fragrance-containing solution, 3 of 15 on the placebo finger and 3 of 15 on both fingers. Using this experimental exposure model simulating real-life exposure, we found no association between immersion of a finger in a solution containing fragrance and development of clinically visible eczema on the finger in 15 participants previously diagnosed with hand eczema and with a positive patch test to the fragrance in question.

  13. Nature Trails, Braille Trails, Foot Paths, Fragrance Gardens, Touch Museums for the Blind; Policy Statement.

    ERIC Educational Resources Information Center

    American Foundation for the Blind, New York, NY.

    The policy statement by the American Foundation for the Blind deals with nature trails, braille trails, foot paths, fragrance gardens, and touch museums for the blind. It is stated that the foundation approves of services such as provision of tape recorded guides and planting of fragrant shrubs which would benefit all users while recognizing…

  14. Elimination of the musk fragrances galaxolide and tonalide from wastewater by ozonation and concomitant stripping.

    PubMed

    Nöthe, T; Hartmann, D; von Sonntag, J; von Sonntag, C; Fahlenkamp, H

    2007-01-01

    Ozone reacts with the musk fragrances tonalide and galaxolide with rate constants of 8 M(-1)s(-1) and 140 M(-1)s(-1), respectively. In wastewater, ozone eliminates only the more reactive compound, galaxolide, in competition with its reaction with the wastewater matrix. As both compounds are also stripped in a bubble column, tonalide is also eliminated to some extent.

  15. Thioether profragrances: parameters influencing the performance of precursor-based fragrance delivery in functional perfumery.

    PubMed

    Maddalena, Umberto; Trachsel, Alain; Fankhauser, Peter; Berthier, Damien L; Benczédi, Daniel; Wang, Wei; Xi, Xiujuan; Shen, Youqing; Herrmann, Andreas

    2014-11-01

    A series of thioether profragrances was prepared by reaction of different sulfanylalkanoates with δ-damascone and tested for their release efficiencies in a fabric-softener and an all-purpose cleaner application. Dynamic headspace analysis on dry cotton and on a ceramic plate revealed that the performance of the different precursors depended on the structure, but also on the particular conditions encountered in different applications. Moreover, profragrances derived from other α,β-unsaturated fragrance aldehydes and ketones were synthesized analogously and evaluated using the same test protocol. Thioethers were found to be suitable precursors to release the corresponding fragrances, but neither the quantity of profragrance deposited from an aqueous environment onto the target surface, nor the amount of fragrance released after deposition could be linearly correlated to the hydrophilicity or hydrophobicity of the compounds. Different sets of compounds were found to be the best performers for different types of applications. Only one of the compounds evaluated in the present work, namely the thiolactic acid derivative of δ-damascone, efficiently released the corresponding fragrance in both of the tested applications. Profragrance development for functional perfumery thus remains a partially empirical endeavour. More knowledge (and control) of the various application conditions are required for an efficient profragrance design.

  16. A diagnostic pearl in allergic contact dermatitis to fragrances: the atomizer sign.

    PubMed

    Jacob, Sharon E; Castanedo-Tardan, Mari Paz; Castanedo-Tarden, Mari Paz

    2008-11-01

    Allergic contact dermatitis (ACD) reactions to fragrances may present in a variety of ways because of exposure to these allergens from a wide range of sources. We describe a diagnostic pearl for this common ACD, primarily seen overlying the prominentia laryngea (Adam's apple) both in women and girls, which we have called the atomizer sign.

  17. Adding Scents to Symbols: Using Food Fragrances with Deafblind Young People Making Choices at Mealtimes

    ERIC Educational Resources Information Center

    Murdoch, Heather; Gough, Anne; Boothroyd, Eileen; Williams, Kate

    2014-01-01

    This article is written by Heather Murdoch, research consultant for the Seashell Trust, Anne Gough, deputy headteacher at Royal School Manchester/Seashell Trust, Eileen Boothroyd, consultant for the Seashell Trust, and Kate Williams, a creative perfumer for Seven (PZ Cussons). It describes the use of food fragrances with deafblind students who are…

  18. A higher plant mitochondrial homologue of the yeast m-AAA protease. Molecular cloning, localization, and putative function.

    PubMed

    Kolodziejczak, Marta; Kolaczkowska, Anna; Szczesny, Bartosz; Urantowka, Adam; Knorpp, Carina; Kieleczawa, Jan; Janska, Hanna

    2002-11-15

    Mitochondrial AAA metalloproteases play a fundamental role in mitochondrial biogenesis and function. They have been identified in yeast and animals but not yet in plants. This work describes the isolation and sequence analysis of the full-length cDNA from the pea (Pisum sativum) with significant homology to the yeast matrix AAA (m-AAA) protease. The product of this clone was imported into isolated pea mitochondria where it was processed to its mature form (PsFtsH). We have shown that the central region of PsFtsH containing the chaperone domain is exposed to the matrix space. Furthermore, we have demonstrated that the pea protease can complement respiration deficiency in the yta10 and/or yta12 null yeast mutants, indicating that the plant protein can compensate for the loss of at least some of the important m-AAA functions in yeast. Based on biochemical experiments using isolated pea mitochondria, we propose that PsFtsH-like m-AAA is involved in the accumulation of the subunit 9 of the ATP synthase in the mitochondrial membrane.

  19. Identification of coumarin as the sensitizer in a patient sensitive to her own perfume but negative to the fragrance mix.

    PubMed

    Mutterer, V; Giménez Arnau, E; Lepoittevin, J P; Johansen, J D; Frosch, P J; Menné, T; Andersen, K E; Bruze, M; Rastogi, S C; White, I R

    1999-04-01

    The aim of this study was to identify the chemicals responsible for the sensitivity of a 44-year-old woman to her own perfume, but showing negative patch test results to the fragrance mix. For this purpose, the perfume concentrate from the eau de toilette was chemically fractionated. Each fraction obtained was afterwards tested on the patient using a ROAT and/or a patch test. Only 1 fraction gave a positive ROAT result. This fraction was analyzed and found to contain coumarin and ethyl vanillin. Coumarin, one of the most widely used fragrance compounds that is not present in the fragrance mix, was confirmed as being the sensitizer.

  20. TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching

    PubMed Central

    Ye, Qiaozhen; Rosenberg, Scott C; Moeller, Arne; Speir, Jeffrey A; Su, Tiffany Y; Corbett, Kevin D

    2015-01-01

    The AAA+ family ATPase TRIP13 is a key regulator of meiotic recombination and the spindle assembly checkpoint, acting on signaling proteins of the conserved HORMA domain family. Here we present the structure of the Caenorhabditis elegans TRIP13 ortholog PCH-2, revealing a new family of AAA+ ATPase protein remodelers. PCH-2 possesses a substrate-recognition domain related to those of the protein remodelers NSF and p97, while its overall hexameric architecture and likely structural mechanism bear close similarities to the bacterial protein unfoldase ClpX. We find that TRIP13, aided by the adapter protein p31(comet), converts the HORMA-family spindle checkpoint protein MAD2 from a signaling-active ‘closed’ conformer to an inactive ‘open’ conformer. We propose that TRIP13 and p31(comet) collaborate to inactivate the spindle assembly checkpoint through MAD2 conformational conversion and disassembly of mitotic checkpoint complexes. A parallel HORMA protein disassembly activity likely underlies TRIP13's critical regulatory functions in meiotic chromosome structure and recombination. DOI: http://dx.doi.org/10.7554/eLife.07367.001 PMID:25918846