Science.gov

Sample records for aarhus warm ebis

  1. libChEBI: an API for accessing the ChEBI database.

    PubMed

    Swainston, Neil; Hastings, Janna; Dekker, Adriano; Muthukrishnan, Venkatesh; May, John; Steinbeck, Christoph; Mendes, Pedro

    2016-01-01

    ChEBI is a database and ontology of chemical entities of biological interest. It is widely used as a source of identifiers to facilitate unambiguous reference to chemical entities within biological models, databases, ontologies and literature. ChEBI contains a wealth of chemical data, covering over 46,500 distinct chemical entities, and related data such as chemical formula, charge, molecular mass, structure, synonyms and links to external databases. Furthermore, ChEBI is an ontology, and thus provides meaningful links between chemical entities. Unlike many other resources, ChEBI is fully human-curated, providing a reliable, non-redundant collection of chemical entities and related data. While ChEBI is supported by a web service for programmatic access and a number of download files, it does not have an API library to facilitate the use of ChEBI and its data in cheminformatics software. To provide this missing functionality, libChEBI, a comprehensive API library for accessing ChEBI data, is introduced. libChEBI is available in Java, Python and MATLAB versions from http://github.com/libChEBI, and provides full programmatic access to all data held within the ChEBI database through a simple and documented API. libChEBI is reliant upon the (automated) download and regular update of flat files that are held locally. As such, libChEBI can be embedded in both on- and off-line software applications. libChEBI allows better support of ChEBI and its data in the development of new cheminformatics software. Covering three key programming languages, it allows for the entirety of the ChEBI database to be accessed easily and quickly through a simple API. All code is open access and freely available.

  2. The EBI SRS server-new features.

    PubMed

    Zdobnov, Evgeny M; Lopez, Rodrigo; Apweiler, Rolf; Etzold, Thure

    2002-08-01

    Here we report on recent developments at the EBI SRS server (http://srs.ebi.ac.uk). SRS has become an integration system for both data retrieval and sequence analysis applications. The EBI SRS server is a primary gateway to major databases in the field of molecular biology produced and supported at EBI as well as European public access point to the MEDLINE database provided by US National Library of Medicine (NLM). It is a reference server for latest developments in data and application integration. The new additions include: concept of virtual databases, integration of XML databases like the Integrated Resource of Protein Domains and Functional Sites (InterPro), Gene Ontology (GO), MEDLINE, Metabolic pathways, etc., user friendly data representation in 'Nice views', SRSQuickSearch bookmarklets. SRS6 is a licensed product of LION Bioscience AG freely available for academics. The EBI SRS server (http://srs.ebi.ac.uk) is a free central resource for molecular biology data as well as a reference server for the latest developments in data integration.

  3. ASTEC—the Aarhus STellar Evolution Code

    NASA Astrophysics Data System (ADS)

    Christensen-Dalsgaard, Jørgen

    2008-08-01

    The Aarhus code is the result of a long development, starting in 1974, and still ongoing. A novel feature is the integration of the computation of adiabatic oscillations for specified models as part of the code. It offers substantial flexibility in terms of microphysics and has been carefully tested for the computation of solar models. However, considerable development is still required in the treatment of nuclear reactions, diffusion and convective mixing.

  4. First charge breeding results at CARIBU EBIS

    SciTech Connect

    Kondrashev, S., E-mail: kondrashev@anl.gov; Barcikowski, A., E-mail: kondrashev@anl.gov; Dickerson, C., E-mail: kondrashev@anl.gov

    The Electron Beam Ion Source (EBIS) developed to breed CARIBU radioactive beams at ATLAS is currently in the off-line commissioning stage. The beam commissioning is being performed using a low emittance surface ionization source producing singly-charged cesium ions. The primary goal of the off-line commissioning is the demonstration of high-efficiency charge breeding in the pulsed injection mode. An overview of the final design of the CARIBU EBIS charge breeder, the off-line commissioning installation and the first results on charge breeding of stable cesium ions are presented and discussed.

  5. The 7 Aarhus Statements on Climate Change

    NASA Astrophysics Data System (ADS)

    Margrethe Basse, Ellen; Svenning, Jens-Christian; Olesen, Jørgen E.; Besenbacher, Flemming; Læssøe, Jeppe; Seidenkrantz, Marit-Solveig; Lange, Lene

    2009-03-01

    More than 1000 prominent representatives from science, industry, politics and NGOs were gathered in Aarhus on 5-7 March 2009 for the international climate conference 'Beyond Kyoto: Addressing the Challenges of Climate Change'. Thematically, Beyond Kyoto was divided into seven areas of particular interest for understanding the effects of the projected future climate change and how the foreseen negative impacts can be counteracted by mitigation and adaptation measures. The themes were: Climate policy: the role of law and economics; Biodiversity and ecosystems; Agriculture and climate change; Nanotechnology solutions for a sustainable future; Citizens and society, and The Arctic. The main responsible scientists for the seven conference themes and representatives from the think-tank CONCITO delivered 'The 7 Aarhus Statements on Climate Change' as part of the closing session of the conference. The statements were also communicated to the Danish Government as well as to the press. This article is the product of the collective subsequent work of the seven theme responsibles and is a presentation of each theme statement in detail, emphasizing the current state of knowledge and how it may be used to minimize the expected negative impacts of future climate change.

  6. The CARIBU EBIS control and synchronization system

    SciTech Connect

    Dickerson, Clayton, E-mail: cdickerson@anl.gov; Peters, Christopher, E-mail: cdickerson@anl.gov

    2015-01-09

    The Californium Rare Isotope Breeder Upgrade (CARIBU) Electron Beam Ion Source (EBIS) charge breeder has been built and tested. The bases of the CARIBU EBIS electrical system are four voltage platforms on which both DC and pulsed high voltage outputs are controlled. The high voltage output pulses are created with either a combination of a function generator and a high voltage amplifier, or two high voltage DC power supplies and a high voltage solid state switch. Proper synchronization of the pulsed voltages, fundamental to optimizing the charge breeding performance, is achieved with triggering from a digital delay pulse generator. Themore » control system is based on National Instruments realtime controllers and LabVIEW software implementing Functional Global Variables (FGV) to store and access instrument parameters. Fiber optic converters enable network communication and triggering across the platforms.« less

  7. The CARIBU EBIS control and synchronization system

    NASA Astrophysics Data System (ADS)

    Dickerson, Clayton; Peters, Christopher

    2015-01-01

    The Californium Rare Isotope Breeder Upgrade (CARIBU) Electron Beam Ion Source (EBIS) charge breeder has been built and tested. The bases of the CARIBU EBIS electrical system are four voltage platforms on which both DC and pulsed high voltage outputs are controlled. The high voltage output pulses are created with either a combination of a function generator and a high voltage amplifier, or two high voltage DC power supplies and a high voltage solid state switch. Proper synchronization of the pulsed voltages, fundamental to optimizing the charge breeding performance, is achieved with triggering from a digital delay pulse generator. The control system is based on National Instruments realtime controllers and LabVIEW software implementing Functional Global Variables (FGV) to store and access instrument parameters. Fiber optic converters enable network communication and triggering across the platforms.

  8. The EBI Search engine: providing search and retrieval functionality for biological data from EMBL-EBI.

    PubMed

    Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Gur, Tamer; Cowley, Andrew; Li, Weizhong; Uludag, Mahmut; Pundir, Sangya; Cham, Jennifer A; McWilliam, Hamish; Lopez, Rodrigo

    2015-07-01

    The European Bioinformatics Institute (EMBL-EBI-https://www.ebi.ac.uk) provides free and unrestricted access to data across all major areas of biology and biomedicine. Searching and extracting knowledge across these domains requires a fast and scalable solution that addresses the requirements of domain experts as well as casual users. We present the EBI Search engine, referred to here as 'EBI Search', an easy-to-use fast text search and indexing system with powerful data navigation and retrieval capabilities. API integration provides access to analytical tools, allowing users to further investigate the results of their search. The interconnectivity that exists between data resources at EMBL-EBI provides easy, quick and precise navigation and a better understanding of the relationship between different data types including sequences, genes, gene products, proteins, protein domains, protein families, enzymes and macromolecular structures, together with relevant life science literature. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. The EBI search engine: EBI search as a service-making biological data accessible for all.

    PubMed

    Park, Young M; Squizzato, Silvano; Buso, Nicola; Gur, Tamer; Lopez, Rodrigo

    2017-07-03

    We present an update of the EBI Search engine, an easy-to-use fast text search and indexing system with powerful data navigation and retrieval capabilities. The interconnectivity that exists between data resources at EMBL-EBI provides easy, quick and precise navigation and a better understanding of the relationship between different data types that include nucleotide and protein sequences, genes, gene products, proteins, protein domains, protein families, enzymes and macromolecular structures, as well as the life science literature. EBI Search provides a powerful RESTful API that enables its integration into third-party portals, thus providing 'Search as a Service' capabilities, which are the main topic of this article. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. The EBI search engine: EBI search as a service—making biological data accessible for all

    PubMed Central

    Park, Young M.; Squizzato, Silvano; Buso, Nicola; Gur, Tamer

    2017-01-01

    Abstract We present an update of the EBI Search engine, an easy-to-use fast text search and indexing system with powerful data navigation and retrieval capabilities. The interconnectivity that exists between data resources at EMBL–EBI provides easy, quick and precise navigation and a better understanding of the relationship between different data types that include nucleotide and protein sequences, genes, gene products, proteins, protein domains, protein families, enzymes and macromolecular structures, as well as the life science literature. EBI Search provides a powerful RESTful API that enables its integration into third-party portals, thus providing ‘Search as a Service’ capabilities, which are the main topic of this article. PMID:28472374

  11. The Mars Simulation Laboratory, University of Aarhus

    NASA Astrophysics Data System (ADS)

    Merrison, J. P.; Field, D.; Finster, K.; Lomstein, B. Aa.; Nørnberg, P.; Ramsing, N. B.; Uggerhøj, E.

    2001-08-01

    Present day Mars presents an extremely hostile environment to organic material. The average temperature is low (-50C), the atmospheric pressure is also low (7mbar) and there is little water over most of the planet. Chemically the surface is extremely oxidising and no signs of organic material have been detected. There is also a strong component of ultra violet radiation in the Martian sun light, lethal to most organisms. At Aarhus University we have constructed a Mars simulation environment which reproduces the physical, chemical and mineralogical conditions on Mars. It is hoped to set limits on where organic matter (or even life) might exist on Mars, for example at some depth under the surface, beneath the polar ice or within rocks. It is also possible to adjust the conditions in the simulation to investigate the most extreme environments in which organisms can be preserved or still function.

  12. The EMBL-EBI bioinformatics web and programmatic tools framework.

    PubMed

    Li, Weizhong; Cowley, Andrew; Uludag, Mahmut; Gur, Tamer; McWilliam, Hamish; Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Lopez, Rodrigo

    2015-07-01

    Since 2009 the EMBL-EBI Job Dispatcher framework has provided free access to a range of mainstream sequence analysis applications. These include sequence similarity search services (https://www.ebi.ac.uk/Tools/sss/) such as BLAST, FASTA and PSI-Search, multiple sequence alignment tools (https://www.ebi.ac.uk/Tools/msa/) such as Clustal Omega, MAFFT and T-Coffee, and other sequence analysis tools (https://www.ebi.ac.uk/Tools/pfa/) such as InterProScan. Through these services users can search mainstream sequence databases such as ENA, UniProt and Ensembl Genomes, utilising a uniform web interface or systematically through Web Services interfaces (https://www.ebi.ac.uk/Tools/webservices/) using common programming languages, and obtain enriched results with novel visualisations. Integration with EBI Search (https://www.ebi.ac.uk/ebisearch/) and the dbfetch retrieval service (https://www.ebi.ac.uk/Tools/dbfetch/) further expands the usefulness of the framework. New tools and updates such as NCBI BLAST+, InterProScan 5 and PfamScan, new categories such as RNA analysis tools (https://www.ebi.ac.uk/Tools/rna/), new databases such as ENA non-coding, WormBase ParaSite, Pfam and Rfam, and new workflow methods, together with the retirement of depreciated services, ensure that the framework remains relevant to today's biological community. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Predictive Toxicology: Current Status and Future Outlook (EBI ...

    EPA Pesticide Factsheets

    Slide presentation at the EBI-EMBL Industry Programme Workshop on Predictive Toxicology and the currently status of Computational Toxicology activities at the US EPA. Slide presentation at the EBI-EMBL Industry Programme Workshop on Predictive Toxicology and the currently status of Computational Toxicology activities at the US EPA.

  14. Measurements of charge state breeding efficiency at BNL test EBIS

    SciTech Connect

    Kondrashev, S.; Alessi, J.; Beebe, E.N.

    Charge breeding of singly charged ions is required to efficiently accelerate rare isotope ion beams for nuclear and astrophysics experiments, and to enhance the accuracy of low-energy Penning trap-assisted spectroscopy. An efficient charge breeder for the Californium Rare Isotope Breeder Upgrade (CARIBU) to the ANL Tandem Linear Accelerator System (ATLAS) facility is being developed using the BNL Test Electron Beam Ion Source (Test EBIS) as a prototype. Parameters of the CARIBU EBIS charge breeder are similar to those of the BNL Test EBIS except the electron beam current will be adjustable in the range from 1 to 2 {angstrom}. Themore » electron beam current density in the CARIBU EBIS trap will be significantly higher than in existing operational charge state breeders based on the EBIS concept. The charge state breeding efficiency is expected to be about 25% for the isotope ions extracted from the CARIBU. For the success of our EBIS project, it is essential to demonstrate high breeding efficiency at the BNL Test EBIS tuned to the regime close to the parameters of the CARIBU EBIS at ANL. The breeding efficiency optimization and measurements have been successfully carried out using a Cs{sup +} surface ionization ion source for externally pulsed injection into the BNL Test EBIS. A Cs{sup +} ion beam with a total number of ions of 5 x 10{sup 8} and optimized pulse length of 70 {mu}s has been injected into the Test EBIS and charge-bred for 5.3 ms for two different electron beam currents 1 and 1.5 {angstrom}. In these experiments we have achieved 70% injection/extraction efficiency and breeding efficiency into the most abundant charge state 17%.« less

  15. Analysis Tool Web Services from the EMBL-EBI.

    PubMed

    McWilliam, Hamish; Li, Weizhong; Uludag, Mahmut; Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Cowley, Andrew Peter; Lopez, Rodrigo

    2013-07-01

    Since 2004 the European Bioinformatics Institute (EMBL-EBI) has provided access to a wide range of databases and analysis tools via Web Services interfaces. This comprises services to search across the databases available from the EMBL-EBI and to explore the network of cross-references present in the data (e.g. EB-eye), services to retrieve entry data in various data formats and to access the data in specific fields (e.g. dbfetch), and analysis tool services, for example, sequence similarity search (e.g. FASTA and NCBI BLAST), multiple sequence alignment (e.g. Clustal Omega and MUSCLE), pairwise sequence alignment and protein functional analysis (e.g. InterProScan and Phobius). The REST/SOAP Web Services (http://www.ebi.ac.uk/Tools/webservices/) interfaces to these databases and tools allow their integration into other tools, applications, web sites, pipeline processes and analytical workflows. To get users started using the Web Services, sample clients are provided covering a range of programming languages and popular Web Service tool kits, and a brief guide to Web Services technologies, including a set of tutorials, is available for those wishing to learn more and develop their own clients. Users of the Web Services are informed of improvements and updates via a range of methods.

  16. Analysis Tool Web Services from the EMBL-EBI

    PubMed Central

    McWilliam, Hamish; Li, Weizhong; Uludag, Mahmut; Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Cowley, Andrew Peter; Lopez, Rodrigo

    2013-01-01

    Since 2004 the European Bioinformatics Institute (EMBL-EBI) has provided access to a wide range of databases and analysis tools via Web Services interfaces. This comprises services to search across the databases available from the EMBL-EBI and to explore the network of cross-references present in the data (e.g. EB-eye), services to retrieve entry data in various data formats and to access the data in specific fields (e.g. dbfetch), and analysis tool services, for example, sequence similarity search (e.g. FASTA and NCBI BLAST), multiple sequence alignment (e.g. Clustal Omega and MUSCLE), pairwise sequence alignment and protein functional analysis (e.g. InterProScan and Phobius). The REST/SOAP Web Services (http://www.ebi.ac.uk/Tools/webservices/) interfaces to these databases and tools allow their integration into other tools, applications, web sites, pipeline processes and analytical workflows. To get users started using the Web Services, sample clients are provided covering a range of programming languages and popular Web Service tool kits, and a brief guide to Web Services technologies, including a set of tutorials, is available for those wishing to learn more and develop their own clients. Users of the Web Services are informed of improvements and updates via a range of methods. PMID:23671338

  17. Off-line commissioning of EBIS and plans for its integration into ATLAS and CARIBU.

    PubMed

    Ostroumov, P N; Barcikowski, A; Dickerson, C A; Mustapha, B; Perry, A; Sharamentov, S I; Vondrasek, R C; Zinkann, G

    2016-02-01

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed at Argonne to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne Tandem Linac Accelerator System (ATLAS). The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and significantly improve the purity of reaccelerated radioactive ion beams. The CARIBU EBIS-CB has been successfully commissioned offline with an external singly charged cesium ion source. The performance of the EBIS fully meets the specifications to breed rare isotope beams delivered from CARIBU. The EBIS is being relocated and integrated into ATLAS and CARIBU. A long electrostatic beam transport system including two 180° bends in the vertical plane has been designed. The commissioning of the EBIS and the beam transport system in their permanent location will start at the end of this year.

  18. Off-line commissioning of EBIS and plans for its integration into ATLAS and CARIBU

    NASA Astrophysics Data System (ADS)

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Mustapha, B.; Perry, A.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G.

    2016-02-01

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed at Argonne to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne Tandem Linac Accelerator System (ATLAS). The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and significantly improve the purity of reaccelerated radioactive ion beams. The CARIBU EBIS-CB has been successfully commissioned offline with an external singly charged cesium ion source. The performance of the EBIS fully meets the specifications to breed rare isotope beams delivered from CARIBU. The EBIS is being relocated and integrated into ATLAS and CARIBU. A long electrostatic beam transport system including two 180° bends in the vertical plane has been designed. The commissioning of the EBIS and the beam transport system in their permanent location will start at the end of this year.

  19. Oxysterol-EBI2 signaling in immune regulation and viral infection.

    PubMed

    Daugvilaite, Viktorija; Arfelt, Kristine Niss; Benned-Jensen, Tau; Sailer, Andreas W; Rosenkilde, Mette M

    2014-07-01

    The seven transmembrane G protein-coupled receptor Epstein-Barr virus (EBV) induced gene 2 (EBI2; also known as GPR183) was identified in 1993 on the basis of its substantial upregulation in EBV-infected cells. It is primarily expressed in lymphoid cells; most abundantly in B cells. EBI2 is central for the positioning of B cells within the lymphoid organs, a process that is regulated in part by a chemotactic gradient formed by the endogenous lipid agonists, and in part by a fine-tuned regulation of EBI2 cell surface expression. The most potent endogenous EBI2 agonist is 7α, 25-dihydroxyxcholesterol (7α,25-OHC), yet many structurally related oxysterols can bind to an EBI2 pocket that is defined by the upper parts of the transmembrane helices and extracellular receptor regions. EBI2 signals via Gαi, as well as via G protein-independent pathways like β-arrestin recruitment. The concerted action of these pathways leads to cell migration. By genetically interfering with its up- and downregulation, EBI2 was also recently shown to induce cell proliferation, an action that could be inhibited by small molecule antagonists. Here, we focus on the oxysterol-EBI2 axis in immune control, including its role in the EBV life cycle. We also summarize the structural and functional properties of EBI2 interaction with oxysterol agonists and small molecule antagonists and discuss EBI2 as therapeutic target for diseases of the immune system. © 2014 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chemical Entity Recognition and Resolution to ChEBI

    PubMed Central

    Grego, Tiago; Pesquita, Catia; Bastos, Hugo P.; Couto, Francisco M.

    2012-01-01

    Chemical entities are ubiquitous through the biomedical literature and the development of text-mining systems that can efficiently identify those entities are required. Due to the lack of available corpora and data resources, the community has focused its efforts in the development of gene and protein named entity recognition systems, but with the release of ChEBI and the availability of an annotated corpus, this task can be addressed. We developed a machine-learning-based method for chemical entity recognition and a lexical-similarity-based method for chemical entity resolution and compared them with Whatizit, a popular-dictionary-based method. Our methods outperformed the dictionary-based method in all tasks, yielding an improvement in F-measure of 20% for the entity recognition task, 2–5% for the entity-resolution task, and 15% for combined entity recognition and resolution tasks. PMID:25937941

  1. Design and numerical characterization of a crossover EBIS

    NASA Astrophysics Data System (ADS)

    Geyer, Sabrina; Langbein, A.; Meusel, Oliver; Kester, Oliver

    2015-01-01

    For the investigation of highly charged ions, a crossover EBIS (XEBIS) was developed at the University of Frankfurt. In contrast to conventional EBIS/T devices the compression of the electron beam is achieved by electrostatic focusing to a crossover point in the interaction region. This concept allows a compact and simple design. Simulations performed with EGUN show a perveance of 2.1×10-7 A/V3/2 for the realized gun system. In the interaction region the electron beam has a density of around 10 A/cm2 and a minimum radius of 0.15 mm. The XEBIS has a total length of 112 mm with a trap length of 26 mm. It is designed for electron beam energies of up to 6 keV/q. The storage capacity of the trap region is in the order of 1×108 charges. Charge state breeding studies with CBSIM indicate for the noble gases as maximal achievable charge state Ar16+, Kr30+ and Xe35+. Thus ion beam currents of around 2.04 nA assuming 50 Hz repetition rate can be expected. The emittance of the extracted beam is approximated to 8 mm mrad. After completion of the construction phase, the XEBIS will be installed for first performance investigations at a dedicated test bench, equipped with a fast Faraday Cup (FC), a retarding field spectrometer, a luminescence screen and optical diagnostics. Subsequently the XEBIS will serve as source for highly charged ions at different experimental setups.

  2. Fast Ion extraction from the MedEBIS

    NASA Astrophysics Data System (ADS)

    Höltermann, H.; Becker, R.; Kleinod, M.; Müller, I.

    2004-01-01

    Cancer therapy synchrotrons profit from single turn injection in terms of size, costs and easy operation. The MEdically Dedicated EBIS (MEDEBIS), built in Frankfurt, will deliver short (~1.5 µs) and intense (~1.3 mA) pulses of highly charged light ions (C, N, O) to meet the requirements for therapy facilities. The MEDEBIS operates with an electron beam of 400 mA at 5 keV and a ratio of beam to drift tube of 1/20. Drift tube potentials up to 1.6 kV are switched in some 100 ns to deliver a 1.5 µs ion pulse at an axial field gradient of 6.5 kV/m. On extraction, all potentials applied to the drift tubes are set to a given primary potential to define the extraction gradient. During extraction the drift tubes are not held at constant voltage to avoid spreading out of the pulse due to the restoration of the full space charge depression at locations where ions have already been extracted. To locally distribute the action of the applied potentials the drift tubes are fully interpenetrating each other with tapered fingers. Combining these features result in a potential wall, which follows the extracted ion pulse and produces a compressed short ion pulse for single turn injection. In the future similar constructions could be considered for the RHIS EBIS device or proposed for LHC to provide the advantage with respect to lowest emittance and highest luminosity to the accelerators at BNL and CERN.

  3. Electronics for fast ion extraction from EBIS devices

    NASA Astrophysics Data System (ADS)

    Höltermann, H.; Becker, R.; Kleinod, M.; Müller, I.

    2004-05-01

    Future synchrotrons for cancer therapy could profit from single turn injection in terms of size, costs, and ease of operation [O. Kester, R. Becker, and M. Kleinod, Rev. Sci. Instrum. 67 (1996)]. Short (˜1.5 μs) and intense (˜1.3 mA) pulses of highly charged light ions (C6+, N7+, O8+) are a requirement for these future therapy facilities which can be provided by an EBIS ion source. Such a medically dedicated EBIS has an electron beam of 400 mA at 5 keV and needs an electron current density of 100 A/cm2 for a repetition rate of 10 Hz. To obtain a 1.5 μs ion pulse it is necessary to switch the drift tube potentials up to 1.6 kV (for a ratio of beam to drift tube of 1/20) in some 100 ns. To avoid spreading out of the pulse due to the restoration of the full space charge depression at locations where ions have already been extracted, the potentials applied to the drift tubes are changed with time. They will be adjusted for each drift tube according to the transit time of the ion pulse. Furthermore, the drift tubes are fully interpenetrating each other with tapered fingers in order to locally distribute the action of the applied potentials. This provides a potential wall, which is following the extracted ion pulse and results in a compressed short ion pulse for single turn injection into a synchrotron.

  4. Ionization of polarized 3He+ ions in EBIS trap with slanted electrostatic mirror.

    SciTech Connect

    Pikin,A.; Zelenski, A.; Kponou, A.

    2007-09-10

    Methods of producing the nuclear polarized {sup 3}He{sup +} ions and their ionization to {sup 3}H{sup ++} in ion trap of the electron Beam Ion Source (EBIS) are discussed. Computer simulations show that injection and accumulation of {sup 3}He{sup +} ions in the EBIS trap with slanted electrostatic mirror can be very effective for injection times longer than the ion traversal time through the trap.

  5. Ionization of polarized {sup 3}He{sup +} ions in EBIS trap with slanted electrostatic mirror

    SciTech Connect

    Pikin, A.; Zelenski, A.; Kponou, A.

    2008-02-06

    Methods of producing the nuclear polarized {sup 3}He{sup +} ions and their ionization to {sup 3}He{sup ++} in ion trap of the electron Beam Ion Source (EBIS) are discussed. Computer simulations show that injection and accumulation of {sup 3}He{sup +} ions in the EBIS trap with slanted electrostatic mirror can be very effective for injection times longer than the ion traversal time through the trap.

  6. Electron-beam-ion-source (EBIS) modeling progress at FAR-TECH, Inc

    SciTech Connect

    Kim, J. S., E-mail: kim@far-tech.com; Zhao, L., E-mail: kim@far-tech.com; Spencer, J. A., E-mail: kim@far-tech.com

    FAR-TECH, Inc. has been developing a numerical modeling tool for Electron-Beam-Ion-Sources (EBISs). The tool consists of two codes. One is the Particle-Beam-Gun-Simulation (PBGUNS) code to simulate a steady state electron beam and the other is the EBIS-Particle-In-Cell (EBIS-PIC) code to simulate ion charge breeding with the electron beam. PBGUNS, a 2D (r,z) electron gun and ion source simulation code, has been extended for efficient modeling of EBISs and the work was presented previously. EBIS-PIC is a space charge self-consistent PIC code and is written to simulate charge breeding in an axisymmetric 2D (r,z) device allowing for full three-dimensional ion dynamics.more » This 2D code has been successfully benchmarked with Test-EBIS measurements at Brookhaven National Laboratory. For long timescale (< tens of ms) ion charge breeding, the 2D EBIS-PIC simulations take a long computational time making the simulation less practical. Most of the EBIS charge breeding, however, may be modeled in 1D (r) as the axial dependence of the ion dynamics may be ignored in the trap. Where 1D approximations are valid, simulations of charge breeding in an EBIS over long time scales become possible, using EBIS-PIC together with PBGUNS. Initial 1D results are presented. The significance of the magnetic field to ion dynamics, ion cooling effects due to collisions with neutral gas, and the role of Coulomb collisions are presented.« less

  7. Dovetailing biology and chemistry: integrating the Gene Ontology with the ChEBI chemical ontology

    PubMed Central

    2013-01-01

    Background The Gene Ontology (GO) facilitates the description of the action of gene products in a biological context. Many GO terms refer to chemical entities that participate in biological processes. To facilitate accurate and consistent systems-wide biological representation, it is necessary to integrate the chemical view of these entities with the biological view of GO functions and processes. We describe a collaborative effort between the GO and the Chemical Entities of Biological Interest (ChEBI) ontology developers to ensure that the representation of chemicals in the GO is both internally consistent and in alignment with the chemical expertise captured in ChEBI. Results We have examined and integrated the ChEBI structural hierarchy into the GO resource through computationally-assisted manual curation of both GO and ChEBI. Our work has resulted in the creation of computable definitions of GO terms that contain fully defined semantic relationships to corresponding chemical terms in ChEBI. Conclusions The set of logical definitions using both the GO and ChEBI has already been used to automate aspects of GO development and has the potential to allow the integration of data across the domains of biology and chemistry. These logical definitions are available as an extended version of the ontology from http://purl.obolibrary.org/obo/go/extensions/go-plus.owl. PMID:23895341

  8. Public participation in environmental impact assessment-implementing the Aarhus Convention

    SciTech Connect

    Hartley, Nicola; Wood, Christopher

    This article explores the nature of public participation in the environmental impact assessment (EIA) process in the context of the potential integration of the Aarhus Convention principles into the UK EIA system. Although the Convention advocates 'early' and 'effective' participation, these terms remain undefined and questions persist about exactly how to implement the Aarhus principles. Ten practice evaluation criteria derived from the Aarhus Convention are used to analyse the public participation procedures used in four UK waste disposal EIA case studies. The paper reports the extent to which the practice evaluation criteria were fulfilled, explores the types and effectiveness ofmore » the participation methods used in the EIAs, and highlights some of the key barriers that appear to impede the execution of 'early' and 'effective' participation programmes. It concludes that the Aarhus Convention will undoubtedly lead to a strengthening of participation procedures but that the level of improvement secured will depend upon how its ideals are interpreted and incorporated into legislation and practice.« less

  9. Development of an EBIS charge breeder for the Rare Isotope Science Project

    NASA Astrophysics Data System (ADS)

    Son, Hyock-Jun; Park, Young-Ho; Kondrashev, Sergey; Kim, Jongwon; Lee, Bong Ju; Chung, Moses

    2017-10-01

    In Korea, a heavy ion accelerator facility called RAON is being designed to produce various rare isotopes for the Rare Isotope Science Project (RISP) (Jeong, 2016) [1], (Moon, 2014) [2]. This facility is designed to use both In-flight Fragment (IF) and Isotope Separation On-Line (ISOL) techniques in order to produce a wide variety of RI beams for nuclear physics experiments. An Electron Beam Ion Source (EBIS) will be used for charge breeding of Rare Isotope (RI) beams in the ISOL system. The charge-to-mass ratio (q/A) of the RI beams after charge breeding is ≥1/4. The highly charged RI beams will be accelerated by a linac post-accelerator and delivered to a low energy (∼18 MeV/u) experimental hall or the IF system. The RAON EBIS will use a 3 A electron gun and a 6 T superconducting solenoid for high capacity, high efficiency, and short breeding time. In front of the charge breeder, an RFQ cooler-buncher will be used to deliver a bunched beam with small emittance to the EBIS charge breeder. The main design of the RAON EBIS has been carried out on the basis of several beam analyses and technical reviews. In this paper, current progress of the development of the RAON EBIS charge breeder will be presented.

  10. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog).

    PubMed

    MacArthur, Jacqueline; Bowler, Emily; Cerezo, Maria; Gil, Laurent; Hall, Peggy; Hastings, Emma; Junkins, Heather; McMahon, Aoife; Milano, Annalisa; Morales, Joannella; Pendlington, Zoe May; Welter, Danielle; Burdett, Tony; Hindorff, Lucia; Flicek, Paul; Cunningham, Fiona; Parkinson, Helen

    2017-01-04

    The NHGRI-EBI GWAS Catalog has provided data from published genome-wide association studies since 2008. In 2015, the database was redesigned and relocated to EMBL-EBI. The new infrastructure includes a new graphical user interface (www.ebi.ac.uk/gwas/), ontology supported search functionality and an improved curation interface. These developments have improved the data release frequency by increasing automation of curation and providing scaling improvements. The range of available Catalog data has also been extended with structured ancestry and recruitment information added for all studies. The infrastructure improvements also support scaling for larger arrays, exome and sequencing studies, allowing the Catalog to adapt to the needs of evolving study design, genotyping technologies and user needs in the future. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog)

    PubMed Central

    MacArthur, Jacqueline; Bowler, Emily; Cerezo, Maria; Gil, Laurent; Hall, Peggy; Hastings, Emma; Junkins, Heather; McMahon, Aoife; Milano, Annalisa; Morales, Joannella; Pendlington, Zoe May; Welter, Danielle; Burdett, Tony; Hindorff, Lucia; Flicek, Paul; Cunningham, Fiona; Parkinson, Helen

    2017-01-01

    The NHGRI-EBI GWAS Catalog has provided data from published genome-wide association studies since 2008. In 2015, the database was redesigned and relocated to EMBL-EBI. The new infrastructure includes a new graphical user interface (www.ebi.ac.uk/gwas/), ontology supported search functionality and an improved curation interface. These developments have improved the data release frequency by increasing automation of curation and providing scaling improvements. The range of available Catalog data has also been extended with structured ancestry and recruitment information added for all studies. The infrastructure improvements also support scaling for larger arrays, exome and sequencing studies, allowing the Catalog to adapt to the needs of evolving study design, genotyping technologies and user needs in the future. PMID:27899670

  12. Searching and Extracting Data from the EMBL-EBI Complex Portal.

    PubMed

    Meldal, Birgit H M; Orchard, Sandra

    2018-01-01

    The Complex Portal ( www.ebi.ac.uk/complexportal ) is an encyclopedia of macromolecular complexes. Complexes are assigned unique, stable IDs, are species specific, and list all participating members with links to an appropriate reference database (UniProtKB, ChEBI, RNAcentral). Each complex is annotated extensively with its functions, properties, structure, stoichiometry, tissue expression profile, and subcellular location. Links to domain-specific databases allow the user to access additional information and enable data searching and filtering. Complexes can be saved and downloaded in PSI-MI XML, MI-JSON, and tab-delimited formats.

  13. Respiration monitoring by Electrical Bioimpedance (EBI) Technique in a group of healthy males. Calibration equations.

    NASA Astrophysics Data System (ADS)

    Balleza, M.; Vargas, M.; Kashina, S.; Huerta, M. R.; Delgadillo, I.; Moreno, G.

    2017-01-01

    Several research groups have proposed the electrical impedance tomography (EIT) in order to analyse lung ventilation. With the use of 16 electrodes, the EIT is capable to obtain a set of transversal section images of thorax. In previous works, we have obtained an alternating signal in terms of impedance corresponding to respiration from EIT images. Then, in order to transform those impedance changes into a measurable volume signal a set of calibration equations has been obtained. However, EIT technique is still expensive to attend outpatients in basics hospitals. For that reason, we propose the use of electrical bioimpedance (EBI) technique to monitor respiration behaviour. The aim of this study was to obtain a set of calibration equations to transform EBI impedance changes determined at 4 different frequencies into a measurable volume signal. In this study a group of 8 healthy males was assessed. From obtained results, a high mathematical adjustment in the group calibrations equations was evidenced. Then, the volume determinations obtained by EBI were compared with those obtained by our gold standard. Therefore, despite EBI does not provide a complete information about impedance vectors of lung compared with EIT, it is possible to monitor the respiration.

  14. Recent charge-breeding developments with EBIS/T devices (invited).

    PubMed

    Schwarz, S; Lapierre, A

    2016-02-01

    Short breeding times, narrow charge state distributions, low background, high efficiency, and the flexible time structure of the ejected low-emittance ion pulses are among the most attractive features of electron beam ion source or trap (EBIS/T) based charge breeders. Significant progress has been made to further improve these properties: Several groups are working to increase current densities towards 10(3) or even 10(4) A/cm(2). These current densities will become necessary to deliver high charge states of heavy nuclei in a short time and/or provide sufficient space-charge capacity to handle high-current ion beams in next-generation rare-isotope beam (RIB) facilities. Efficient capture of continuous beams, attractive because of its potential of handling highest-current ion beams, has become possible with the development of high-density electron beams of >1 A. Requests for the time structure of the charge bred ion pulse range from ultra-short pulses to quasi-continuous beams. Progress is being made on both ends of this spectrum, by either dividing the extracted charge in many pulse-lets, adjusting the extraction potential for a near-uniform long pulse, or adding dedicated devices to spread the ion bunches delivered from the EBIS/T in time. Advances in EBIS/T charge state breeding are summarized, including recent results with NSCL's ReA EBIS/T charge breeder.

  15. Recent charge-breeding developments with EBIS/T devices (invited)

    SciTech Connect

    Schwarz, S., E-mail: schwarz@nscl.msu.edu; Lapierre, A.

    Short breeding times, narrow charge state distributions, low background, high efficiency, and the flexible time structure of the ejected low-emittance ion pulses are among the most attractive features of electron beam ion source or trap (EBIS/T) based charge breeders. Significant progress has been made to further improve these properties: Several groups are working to increase current densities towards 10{sup 3} or even 10{sup 4} A/cm{sup 2}. These current densities will become necessary to deliver high charge states of heavy nuclei in a short time and/or provide sufficient space-charge capacity to handle high-current ion beams in next-generation rare-isotope beam (RIB) facilities.more » Efficient capture of continuous beams, attractive because of its potential of handling highest-current ion beams, has become possible with the development of high-density electron beams of >1 A. Requests for the time structure of the charge bred ion pulse range from ultra-short pulses to quasi-continuous beams. Progress is being made on both ends of this spectrum, by either dividing the extracted charge in many pulse-lets, adjusting the extraction potential for a near-uniform long pulse, or adding dedicated devices to spread the ion bunches delivered from the EBIS/T in time. Advances in EBIS/T charge state breeding are summarized, including recent results with NSCL’s ReA EBIS/T charge breeder.« less

  16. The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013.

    PubMed

    Hastings, Janna; de Matos, Paula; Dekker, Adriano; Ennis, Marcus; Harsha, Bhavana; Kale, Namrata; Muthukrishnan, Venkatesh; Owen, Gareth; Turner, Steve; Williams, Mark; Steinbeck, Christoph

    2013-01-01

    ChEBI (http://www.ebi.ac.uk/chebi) is a database and ontology of chemical entities of biological interest. Over the past few years, ChEBI has continued to grow steadily in content, and has added several new features. In addition to incorporating all user-requested compounds, our annotation efforts have emphasized immunology, natural products and metabolites in many species. All database entries are now 'is_a' classified within the ontology, meaning that all of the chemicals are available to semantic reasoning tools that harness the classification hierarchy. We have completely aligned the ontology with the Open Biomedical Ontologies (OBO) Foundry-recommended upper level Basic Formal Ontology. Furthermore, we have aligned our chemical classification with the classification of chemical-involving processes in the Gene Ontology (GO), and as a result of this effort, the majority of chemical-involving processes in GO are now defined in terms of the ChEBI entities that participate in them. This effort necessitated incorporating many additional biologically relevant compounds. We have incorporated additional data types including reference citations, and the species and component for metabolites. Finally, our website and web services have had several enhancements, most notably the provision of a dynamic new interactive graph-based ontology visualization.

  17. Design of an EBIS charge breeder system for rare-isotope beams

    NASA Astrophysics Data System (ADS)

    Park, Young-Ho; Son, Hyock-Jun; Kim, Jongwon

    2016-09-01

    Rare-isotope beams will be produced by using the isotope separation on-line (ISOL) system at the Rare Isotope Science Project (RISP). A proton cyclotron is the driver accelerator for ISOL targets, and uranium carbide (UCx) will be a major target material. An isotope beam of interest extracted from the target will be ionized and selected by using a mass separator. The beam emittance will then be reduced by using a radio-frequency quadrupole (RFQ) cooler before the beam is injected into the electron-beam ion-source (EBIS) charge breeder (CB). The maximum electron beam current of the EBIS is 3 A from a cathode made of IrCe in an applied magnetic field of 0.2 T. The size of the electron beam is compressed by magnetic fields of up to 6 T caused in the charge-breeding region by a superconducting solenoid. The design of EBIS-CB was performed by using mechanics as well as beam optics. A test stand for the electron gun and its collector, which can take an electron-beam power of 20 kW, are under construction. The gun assembly was first tested by using a high-voltage pulse so as to measure its perveance. The design of the EBIS, along with its test stand, is described.

  18. ChEBI in 2016: Improved services and an expanding collection of metabolites

    PubMed Central

    Hastings, Janna; Owen, Gareth; Dekker, Adriano; Ennis, Marcus; Kale, Namrata; Muthukrishnan, Venkatesh; Turner, Steve; Swainston, Neil; Mendes, Pedro; Steinbeck, Christoph

    2016-01-01

    ChEBI is a database and ontology containing information about chemical entities of biological interest. It currently includes over 46 000 entries, each of which is classified within the ontology and assigned multiple annotations including (where relevant) a chemical structure, database cross-references, synonyms and literature citations. All content is freely available and can be accessed online at http://www.ebi.ac.uk/chebi. In this update paper, we describe recent improvements and additions to the ChEBI offering. We have substantially extended our collection of endogenous metabolites for several organisms including human, mouse, Escherichia coli and yeast. Our front-end has also been reworked and updated, improving the user experience, removing our dependency on Java applets in favour of embedded JavaScript components and moving from a monthly release update to a ‘live’ website. Programmatic access has been improved by the introduction of a library, libChEBI, in Java, Python and Matlab. Furthermore, we have added two new tools, namely an analysis tool, BiNChE, and a query tool for the ontology, OntoQuery. PMID:26467479

  19. Ebi3 Prevents Trypanosoma cruzi-Induced Myocarditis by Dampening IFN-γ-Driven Inflammation.

    PubMed

    Medina, Tiago Silva; Oliveira, Gabriela Gonçalves; Silva, Maria Cláudia; David, Bruna Araújo; Silva, Grace Kelly; Fonseca, Denise Morais; Sesti-Costa, Renata; Frade, Amanda Farage; Baron, Monique Andrade; Ianni, Barbara; Pereira, Alexandre Costa; Chevillard, Christophe; Cunha-Neto, Edécio; Marin-Neto, José Antonio; Silva, João Santana

    2017-01-01

    The identification of anti-inflammatory mediators can reveal important targetable molecules capable of counterbalancing Trypanosoma cruzi -induced myocarditis. Composed of Ebi3 and IL-27p28 subunits, IL-27 is produced by myeloid cells and is able to suppress inflammation by inducing IL-10-producing Tr1 cells, thus emerging as a potential candidate to ameliorate cardiac inflammation induced by T. cruzi . Although IL-27 has been extensively characterized as a suppressive cytokine that prevents liver immunopathogenesis after T. cruzi infection, the mechanisms underlying its effects on T. cruzi -induced myocarditis remain largely unknown. Here, wild-type (WT) and Ebi3-deficient animals were intraperitoneally infected with trypomastigotes of T. cruzi Y strain and used to evaluate the potential anti-inflammatory properties of Ebi3 during T. cruzi infection. The survival rates of mice were daily recorded, the frequency of inflammatory cells was analyzed by flow cytometry and inflammatory mediators were measured by ELISA, real-time PCR and PCR array. We reported that T. cruzi -induced myocarditis was prevented by Ebi3. Stressors mainly recognized by TLR2 and TLR4 receptors on myeloid cells were essential to trigger IL-27p28 production. In addition, Ebi3 regulated IFN-γ-mediated myocarditis by promoting an anti-inflammatory environment through IL-10, which was most likely produced by Tr1 cells rather than classical regulatory T cells (Tregs), in the heart tissue of T. cruzi -infected animals. Furthermore, in vivo IFN-γ blockade ameliorated the host survival without compromising the parasite control in the bloodstream. In humans, IL-27p28 was correlated with cardiac protection during Chagas disease. Patients with mild clinical forms of the disease produced high levels of IL-27p28, whereas lower levels were found in those with severe forms. In addition, polymorphic sites at Ebi3 gene were associated with severe cardiomyopathy in patients with Chagas disease. Collectively

  20. Ebi3 Prevents Trypanosoma cruzi-Induced Myocarditis by Dampening IFN-γ-Driven Inflammation

    PubMed Central

    Medina, Tiago Silva; Oliveira, Gabriela Gonçalves; Silva, Maria Cláudia; David, Bruna Araújo; Silva, Grace Kelly; Fonseca, Denise Morais; Sesti-Costa, Renata; Frade, Amanda Farage; Baron, Monique Andrade; Ianni, Barbara; Pereira, Alexandre Costa; Chevillard, Christophe; Cunha-Neto, Edécio; Marin-Neto, José Antonio; Silva, João Santana

    2017-01-01

    The identification of anti-inflammatory mediators can reveal important targetable molecules capable of counterbalancing Trypanosoma cruzi-induced myocarditis. Composed of Ebi3 and IL-27p28 subunits, IL-27 is produced by myeloid cells and is able to suppress inflammation by inducing IL-10-producing Tr1 cells, thus emerging as a potential candidate to ameliorate cardiac inflammation induced by T. cruzi. Although IL-27 has been extensively characterized as a suppressive cytokine that prevents liver immunopathogenesis after T. cruzi infection, the mechanisms underlying its effects on T. cruzi-induced myocarditis remain largely unknown. Here, wild-type (WT) and Ebi3-deficient animals were intraperitoneally infected with trypomastigotes of T. cruzi Y strain and used to evaluate the potential anti-inflammatory properties of Ebi3 during T. cruzi infection. The survival rates of mice were daily recorded, the frequency of inflammatory cells was analyzed by flow cytometry and inflammatory mediators were measured by ELISA, real-time PCR and PCR array. We reported that T. cruzi-induced myocarditis was prevented by Ebi3. Stressors mainly recognized by TLR2 and TLR4 receptors on myeloid cells were essential to trigger IL-27p28 production. In addition, Ebi3 regulated IFN-γ-mediated myocarditis by promoting an anti-inflammatory environment through IL-10, which was most likely produced by Tr1 cells rather than classical regulatory T cells (Tregs), in the heart tissue of T. cruzi-infected animals. Furthermore, in vivo IFN-γ blockade ameliorated the host survival without compromising the parasite control in the bloodstream. In humans, IL-27p28 was correlated with cardiac protection during Chagas disease. Patients with mild clinical forms of the disease produced high levels of IL-27p28, whereas lower levels were found in those with severe forms. In addition, polymorphic sites at Ebi3 gene were associated with severe cardiomyopathy in patients with Chagas disease. Collectively, we

  1. Evaluation and Cross-Comparison of Lexical Entities of Biological Interest (LexEBI)

    PubMed Central

    Rebholz-Schuhmann, Dietrich; Kim, Jee-Hyub; Yan, Ying; Dixit, Abhishek; Friteyre, Caroline; Hoehndorf, Robert; Backofen, Rolf; Lewin, Ian

    2013-01-01

    Motivation Biomedical entities, their identifiers and names, are essential in the representation of biomedical facts and knowledge. In the same way, the complete set of biomedical and chemical terms, i.e. the biomedical “term space” (the “Lexeome”), forms a key resource to achieve the full integration of the scientific literature with biomedical data resources: any identified named entity can immediately be normalized to the correct database entry. This goal does not only require that we are aware of all existing terms, but would also profit from knowing all their senses and their semantic interpretation (ambiguities, nestedness). Result This study compiles a resource for lexical terms of biomedical interest in a standard format (called “LexEBI”), determines the overall number of terms, their reuse in different resources and the nestedness of terms. LexEBI comprises references for protein and gene entries and their term variants and chemical entities amongst other terms. In addition, disease terms have been identified from Medline and PubmedCentral and added to LexEBI. Our analysis demonstrates that the baseforms of terms from the different semantic types show only little polysemous use. Nonetheless, the term variants of protein and gene names (PGNs) frequently contain species mentions, which should have been avoided according to protein annotation guidelines. Furthermore, the protein and gene entities as well as the chemical entities, both do comprise enzymes leading to hierarchical polysemy, and a large portion of PGNs make reference to a chemical entity. Altogether, according to our analysis based on the Medline distribution, 401,869 unique PGNs in the documents contain a reference to 25,022 chemical entities, 3,125 disease terms or 1,576 species mentions. Conclusion LexEBI delivers the complete biomedical and chemical Lexeome in a standardized representation (http://www.ebi.ac.uk/Rebholz-srv/LexEBI/). The resource provides the disease terms as open

  2. Epstein-Barr virus-induced gene 3 (EBI3) polymorphisms and expression are associated with susceptibility to pulmonary tuberculosis.

    PubMed

    Zheng, Ruijuan; Liu, Haipeng; Song, Peng; Feng, Yonghong; Qin, Lianhua; Huang, Xiaochen; Chen, Jianxia; Yang, Hua; Liu, Zhonghua; Cui, Zhenglin; Hu, Zhongyi; Ge, Baoxue

    2015-07-01

    Tuberculosis (TB) remains a major global health problem and host genetic factors play a critical role in susceptibility and resistance to TB. The aim of this study was to identify novel candidate genes associated with TB susceptibility. We performed a population-based case-control study to genotype 13 tag SNPs spanning Epstein-Barr virus-induced gene 3 (EBI3), colony stimulating factor 2 (CSF2), IL-4, interferon beta 1 (IFNB1), chemokine (C-X-C motif) ligand 14 (CXCL14) and myeloid differentiation primary response gene 88 (Myd88) genes in 435 pulmonary TB patients and 375 health donors from China. We observed that EBI3 gene rs4740 polymorphism was associated with susceptibility to pulmonary tuberculosis (PTB) and the allele G was associated with a protective effect against PTB. Furthermore, EBI3 deficiency led to reduced bacterial burden and histopathological impairment in the lung of mice infected with Mycobacterium bovis BCG. Meanwhile, higher abundance of EBI3 was observed in the granuloma of PTB patients and in the lung tissue of BCG-infected mice. Of note, the expression of EBI3 in macrophages was remarkably induced by mycobacteria infection at both mRNA and protein level. In conclusion, EBI3 gene rs4740 polymorphism is closely associated with susceptibility to PTB and the elevation and enrichment of EBI3 in the lung which at least partially derived from macrophages may contribute to the exacerbation of mycobacterial infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Global Warming.

    ERIC Educational Resources Information Center

    Hileman, Bette

    1989-01-01

    States the foundations of the theory of global warming. Describes methodologies used to measure the changes in the atmosphere. Discusses steps currently being taken in the United States and the world to slow the warming trend. Recognizes many sources for the warming and the possible effects on the earth. (MVL)

  4. The 'Seamless Web': the development of the electronic patient record in Aarhus region, Denmark.

    PubMed

    Jensen, C B

    2003-01-01

    The article surveys the organization of the current project to develop an electronic patient record in the Aarhus Region, Denmark. The article is based on various policy documents and reports as well as a number of semi-structured interviews with project managers from the EPR organization in Aarhus County and with participants in the development process at local hospitals. This material is used to present and discuss the framing of the project in a 'discourse coalition'. The stabilization of a specific discourse coalition has been an important factor in ensuring the success of the development project up to the present moment. This coalition became relatively stable by integrating a diverse set of actors in a story-line about the relationships between co-operation, management and technology in the medial sector, and has influenced the modular organization of the project. The successful maintenance of the discourse coalition allows the project to appear 'seamless' from the outside. Conversely, the project is likely to be continually reviewed as successful only to the extent that it is able to flexibly keep the fluctuating set of relevant actors in alignment. If the practical work of keeping a coalition in place remains invisible it becomes easy to imagine an ideal way of planning large socio-technical projects, like developing an ECR. But practical success is more likely to be achieved if one takes seriously the thorough intertwining of discursive, organizational and technical aspects of development projects.

  5. Environmental assessment of garden waste management in the Municipality of Aarhus, Denmark

    SciTech Connect

    Boldrin, Alessio, E-mail: aleb@env.dtu.dk; Andersen, Jacob K.; Christensen, Thomas H.

    2011-07-15

    An environmental assessment of six scenarios for handling of garden waste in the Municipality of Aarhus (Denmark) was performed from a life cycle perspective by means of the LCA-model EASEWASTE. In the first (baseline) scenario, the current garden waste management system based on windrow composting was assessed, while in the other five scenarios alternative solutions including incineration and home composting of fractions of the garden waste were evaluated. The environmental profile (normalised to Person Equivalent, PE) of the current garden waste management in Aarhus is in the order of -6 to 8 mPE Mg{sup -1} ww for the non-toxic categoriesmore » and up to 100 mPE Mg{sup -1} ww for the toxic categories. The potential impacts on non-toxic categories are much smaller than what is found for other fractions of municipal solid waste. Incineration (up to 35% of the garden waste) and home composting (up to 18% of the garden waste) seem from an environmental point of view suitable for diverting waste away from the composting facility in order to increase its capacity. In particular the incineration of woody parts of the garden waste improved the environmental profile of the garden waste management significantly.« less

  6. Environmental assessment of garden waste management in the Municipality of Aarhus, Denmark.

    PubMed

    Boldrin, Alessio; Andersen, Jacob K; Christensen, Thomas H

    2011-07-01

    An environmental assessment of six scenarios for handling of garden waste in the Municipality of Aarhus (Denmark) was performed from a life cycle perspective by means of the LCA-model EASEWASTE. In the first (baseline) scenario, the current garden waste management system based on windrow composting was assessed, while in the other five scenarios alternative solutions including incineration and home composting of fractions of the garden waste were evaluated. The environmental profile (normalised to Person Equivalent, PE) of the current garden waste management in Aarhus is in the order of -6 to 8 mPE Mg(-1) ww for the non-toxic categories and up to 100 mPE Mg(-1) ww for the toxic categories. The potential impacts on non-toxic categories are much smaller than what is found for other fractions of municipal solid waste. Incineration (up to 35% of the garden waste) and home composting (up to 18% of the garden waste) seem from an environmental point of view suitable for diverting waste away from the composting facility in order to increase its capacity. In particular the incineration of woody parts of the garden waste improved the environmental profile of the garden waste management significantly. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. cMapper: gene-centric connectivity mapper for EBI-RDF platform.

    PubMed

    Shoaib, Muhammad; Ansari, Adnan Ahmad; Ahn, Sung-Min

    2017-01-15

    In this era of biological big data, data integration has become a common task and a challenge for biologists. The Resource Description Framework (RDF) was developed to enable interoperability of heterogeneous datasets. The EBI-RDF platform enables an efficient data integration of six independent biological databases using RDF technologies and shared ontologies. However, to take advantage of this platform, biologists need to be familiar with RDF technologies and SPARQL query language. To overcome this practical limitation of the EBI-RDF platform, we developed cMapper, a web-based tool that enables biologists to search the EBI-RDF databases in a gene-centric manner without a thorough knowledge of RDF and SPARQL. cMapper allows biologists to search data entities in the EBI-RDF platform that are connected to genes or small molecules of interest in multiple biological contexts. The input to cMapper consists of a set of genes or small molecules, and the output are data entities in six independent EBI-RDF databases connected with the given genes or small molecules in the user's query. cMapper provides output to users in the form of a graph in which nodes represent data entities and the edges represent connections between data entities and inputted set of genes or small molecules. Furthermore, users can apply filters based on database, taxonomy, organ and pathways in order to focus on a core connectivity graph of their interest. Data entities from multiple databases are differentiated based on background colors. cMapper also enables users to investigate shared connections between genes or small molecules of interest. Users can view the output graph on a web browser or download it in either GraphML or JSON formats. cMapper is available as a web application with an integrated MySQL database. The web application was developed using Java and deployed on Tomcat server. We developed the user interface using HTML5, JQuery and the Cytoscape Graph API. cMapper can be accessed at

  8. Decreased interleukin 35 and CD4+EBI3+ T cells in patients with active systemic lupus erythematosus.

    PubMed

    Ouyang, Han; Shi, Yong-Bing; Liu, Zhi-Chun; Wang, Zhi; Feng, Sheng; Kong, Shu-Min; Lu, Ying

    2014-08-01

    Interleukin 35 (IL-35) is likely to contribute to the development of autoimmune diseases, as the Epstein-Barr virus-induced gene protein 3 (EBI3) is the specificity subunit of IL-35. Nevertheless, until recently, no studies have evaluated its role in systemic lupus erythematosus (SLE) in humans. The objective of this study was to investigate the serum IL-35 level and the percentage of CD4EBI3 T cells in the peripheral blood of patients with SLE and explore the roles of double-positive T cells and IL-35 in the pathogenesis of SLE and the effects of glucocorticoid on these roles. Fifty-five hospitalized patients with SLE were recruited, and 20 volunteers were enrolled as healthy controls. Serum IL-35 levels were measured by enzyme-linked immunosorbent assay, and the percentage of CD4EBI3 T cells was analyzed by flow cytometry. The serum IL-35 level and the percentage of CD4EBI3 T cells were significantly decreased in patients with active SLE compared with healthy controls and patients with inactive SLE. The serum IL-35 level and the percentage of CD4EBI3 T cells were negatively correlated with the SLE disease activity index. The percentages of CD4EBI3 T cells and serum IL-35 levels in 10 untreated patients with active SLE were increased at days l, 3, and 7 after the treatment with methylprednisolone (0.8 mg·kg·d) compared with the percentages before the treatment. These results demonstrate that abnormalities in IL-35 and CD4EBI3 T cells may play important roles in the pathogenesis of SLE; the percentage of double-positive T cells and the level of IL-35 are parameters for the evaluation of SLE activity and severity.

  9. The Aarhus convention in the nuclear sector-right to information versus nonproliferation?

    PubMed

    Stražišar, Borut; Kralj, Metka

    2016-06-01

    Nuclear events and problems in siting procedures of nuclear plants poses problems of timely information and the question of proper and trustful information. This paper is divided into three parts. In the first part, the right to information and the Aarhus convention are analysed. The basic rights of the public in the field of environmental matters are presented and discussed. Such rights are also examined through the case law of the European Court of Human Rights. The second part deals with the problem of possible conflicts between the right to information (and environmental information) and obligations from NPT. The third part proposes some solutions to provide a balance between the obligation of giving information and the obligation of protecting certain information under the NPT.

  10. Using EMBL-EBI services via Web interface and programmatically via Web Services

    PubMed Central

    Lopez, Rodrigo; Cowley, Andrew; Li, Weizhong; McWilliam, Hamish

    2015-01-01

    The European Bioinformatics Institute (EMBL-EBI) provides access to a wide range of databases and analysis tools that are of key importance in bioinformatics. As well as providing Web interfaces to these resources, Web Services are available using SOAP and REST protocols that enable programmatic access to our resources and allow their integration into other applications and analytical workflows. This unit describes the various options available to a typical researcher or bioinformatician who wishes to use our resources via Web interface or programmatically via a range of programming languages. PMID:25501941

  11. Using EMBL-EBI Services via Web Interface and Programmatically via Web Services.

    PubMed

    Lopez, Rodrigo; Cowley, Andrew; Li, Weizhong; McWilliam, Hamish

    2014-12-12

    The European Bioinformatics Institute (EMBL-EBI) provides access to a wide range of databases and analysis tools that are of key importance in bioinformatics. As well as providing Web interfaces to these resources, Web Services are available using SOAP and REST protocols that enable programmatic access to our resources and allow their integration into other applications and analytical workflows. This unit describes the various options available to a typical researcher or bioinformatician who wishes to use our resources via Web interface or programmatically via a range of programming languages. Copyright © 2014 John Wiley & Sons, Inc.

  12. EBI metagenomics--a new resource for the analysis and archiving of metagenomic data.

    PubMed

    Hunter, Sarah; Corbett, Matthew; Denise, Hubert; Fraser, Matthew; Gonzalez-Beltran, Alejandra; Hunter, Christopher; Jones, Philip; Leinonen, Rasko; McAnulla, Craig; Maguire, Eamonn; Maslen, John; Mitchell, Alex; Nuka, Gift; Oisel, Arnaud; Pesseat, Sebastien; Radhakrishnan, Rajesh; Rocca-Serra, Philippe; Scheremetjew, Maxim; Sterk, Peter; Vaughan, Daniel; Cochrane, Guy; Field, Dawn; Sansone, Susanna-Assunta

    2014-01-01

    Metagenomics is a relatively recently established but rapidly expanding field that uses high-throughput next-generation sequencing technologies to characterize the microbial communities inhabiting different ecosystems (including oceans, lakes, soil, tundra, plants and body sites). Metagenomics brings with it a number of challenges, including the management, analysis, storage and sharing of data. In response to these challenges, we have developed a new metagenomics resource (http://www.ebi.ac.uk/metagenomics/) that allows users to easily submit raw nucleotide reads for functional and taxonomic analysis by a state-of-the-art pipeline, and have them automatically stored (together with descriptive, standards-compliant metadata) in the European Nucleotide Archive.

  13. Surface and material analytics based on Dresden-EBIS platform technology

    SciTech Connect

    Schmidt, M., E-mail: mike.schmidt@dreebit.com; König, J., E-mail: mike.schmidt@dreebit.com; Bischoff, L.

    2015-01-09

    Nowadays widely used mass spectrometry systems utilize energetic ions hitting a sample and sputter material from the surface of a specimen. The generated secondary ions are separated and detected with high mass resolution to determine the target materials constitution. Based on this principle, we present an alternative approach implementing a compact Electron Beam Ion Source (EBIS) in combination with a Liquid Metal Ion Source (LMIS). An LMIS can deliver heavy elements which generate high sputter yields on a target surface. More than 90% of this sputtered material consists of mono- and polyatomic neutrals. These particles are able to penetrate themore » magnetic field of an EBIS and they will be ionized within the electron beam. A broad spectrum of singly up to highly charged ions can be extracted depending on the operation conditions. Polyatomic ions will decay during the charge-up process. A standard bending magnet or a Wien filter is used to separate the different ion species due to their mass-to-charge ratio. Using different charge states of ions as it is common with EBIS it is also possible to resolve interfering charge-to-mass ratios of only singly charged ions. Different setups for the realization of feeding the electron beam with sputtered atoms of solids will be presented and discussed. As an example the analysis of a copper surface is used to show high-resolution spectra with low background noise. Individual copper isotopes and clusters with different isotope compositions can be resolved at equal atomic numbers. These results are a first step for the development of a new compact low-cost and high-resolution mass spectrometry system. In a more general context, the described technique demonstrates an efficient method for feeding an EBIS with atoms of nearly all solid elements from various solid target materials. The new straightforward design of the presented setup should be of high interest for a broad range of applications in materials research as well

  14. Non-invasive method for the aortic blood pressure waveform estimation using the measured radial EBI

    NASA Astrophysics Data System (ADS)

    Krivoshei, Andrei; Lamp, Jürgen; Min, Mart; Uuetoa, Tiina; Uuetoa, Hasso; Annus, Paul

    2013-04-01

    The paper presents a method for the Central Aortic Pressure (CAP) waveform estimation from the measured radial Electrical Bio-Impedance (EBI). The method proposed here is a non-invasive and health-safe approach to estimate the cardiovascular system parameters, such as the Augmentation Index (AI). Reconstruction of the CAP curve from the EBI data is provided by spectral domain transfer functions (TF), found on the bases of data analysis. Clinical experiments were carried out on 30 patients in the Center of Cardiology of East-Tallinn Central Hospital during coronary angiography on patients in age of 43 to 80 years. The quality and reliability of the method was tested by comparing the evaluated augmentation indices obtained from the invasively measured CAP data and from the reconstructed curve. The correlation coefficient r = 0.89 was calculated in the range of AICAP values from 5 to 28. Comparing to the traditional tonometry based method, the developed one is more convenient to use and it allows long-term monitoring of the AI, what is not possible with tonometry probes.

  15. Investigations of the emittance and brightness of ion beams from an electron beam ion source of the Dresden EBIS type.

    PubMed

    Silze, Alexandra; Ritter, Erik; Zschornack, Günter; Schwan, Andreas; Ullmann, Falk

    2010-02-01

    We have characterized ion beams extracted from the Dresden EBIS-A, a compact room-temperature electron beam ion source (EBIS) with a permanent magnet system for electron beam compression, using a pepper-pot emittance meter. The EBIS-A is the precursor to the Dresden EBIS-SC in which the permanent magnets have been replaced by superconducting solenoids for the use of the source in high-ion-current applications such as heavy-ion cancer therapy. Beam emittance and brightness values were calculated from data sets acquired for a variety of source parameters, in leaky as well as pulsed ion extraction mode. With box shaped pulses of C(4+) ions at an energy of 39 keV root mean square emittances of 1-4 mm mrad and a brightness of 10 nA mm(-2) mrad(-2) were achieved. The results meet the expectations for high quality ion beams generated by an electron beam ion source.

  16. BiNChE: a web tool and library for chemical enrichment analysis based on the ChEBI ontology.

    PubMed

    Moreno, Pablo; Beisken, Stephan; Harsha, Bhavana; Muthukrishnan, Venkatesh; Tudose, Ilinca; Dekker, Adriano; Dornfeldt, Stefanie; Taruttis, Franziska; Grosse, Ivo; Hastings, Janna; Neumann, Steffen; Steinbeck, Christoph

    2015-02-21

    Ontology-based enrichment analysis aids in the interpretation and understanding of large-scale biological data. Ontologies are hierarchies of biologically relevant groupings. Using ontology annotations, which link ontology classes to biological entities, enrichment analysis methods assess whether there is a significant over or under representation of entities for ontology classes. While many tools exist that run enrichment analysis for protein sets annotated with the Gene Ontology, there are only a few that can be used for small molecules enrichment analysis. We describe BiNChE, an enrichment analysis tool for small molecules based on the ChEBI Ontology. BiNChE displays an interactive graph that can be exported as a high-resolution image or in network formats. The tool provides plain, weighted and fragment analysis based on either the ChEBI Role Ontology or the ChEBI Structural Ontology. BiNChE aids in the exploration of large sets of small molecules produced within Metabolomics or other Systems Biology research contexts. The open-source tool provides easy and highly interactive web access to enrichment analysis with the ChEBI ontology tool and is additionally available as a standalone library.

  17. Development of the Oldenburg Epistemic Beliefs Questionnaire (OLEQ), a German Questionnaire Based on the Epistemic Belief Inventory (EBI)

    ERIC Educational Resources Information Center

    Paechter, Manuela; Rebmann, Karin; Schloemer, Tobias; Mokwinski, Bjoern; Hanekamp, Yvonne; Arendasy, Martin

    2013-01-01

    The present research describes the development of a German questionnaire for measurement of domain-general epistemic beliefs. Pre-studies on the psychometric properties of a German version of the Epistemic Beliefs Inventory (EBI) had emphasized the necessity to develop an instrument that is especially constructed for German-speaking samples. The…

  18. Existing data sources for clinical epidemiology: Aarhus University Clinical Trial Candidate Database, Denmark.

    PubMed

    Nørrelund, Helene; Mazin, Wiktor; Pedersen, Lars

    2014-01-01

    Denmark is facing a reduction in clinical trial activity as the pharmaceutical industry has moved trials to low-cost emerging economies. Competitiveness in industry-sponsored clinical research depends on speed, quality, and cost. Because Denmark is widely recognized as a region that generates high quality data, an enhanced ability to attract future trials could be achieved if speed can be improved by taking advantage of the comprehensive national and regional registries. A "single point-of-entry" system has been established to support collaboration between hospitals and industry. When assisting industry in early-stage feasibility assessments, potential trial participants are identified by use of registries to shorten the clinical trial startup times. The Aarhus University Clinical Trial Candidate Database consists of encrypted data from the Danish National Registry of Patients allowing an immediate estimation of the number of patients with a specific discharge diagnosis in each hospital department or outpatient specialist clinic in the Central Denmark Region. The free access to health care, thorough monitoring of patients who are in contact with the health service, completeness of registration at the hospital level, and ability to link all databases are competitive advantages in an increasingly complex clinical trial environment.

  19. Numerical design of an EBIS collector to optimize electron collection and ion extraction

    NASA Astrophysics Data System (ADS)

    Dietrich, Jürgen

    1990-12-01

    For the Frankfurt EBIS (R. Becker et al., Nucl. Instr. and Meth. B24/25 (1987) 838, ref. [1]), a new collector was designed using the relativistic electron optics program EGUN (W.B. Herrmannsfeldt, SLAC-331 (1988), ref. [2]) and the magnetic field program INTMAG (R. Becker, Nucl. Instr. and Meth. B42 (1989) 303, ref. [3]). To model the fringing field of the main solenoid, a bucking coil and a cylindrical shim is provided. The current of the bucking coil and the position and shape of the shim are optimized with INTMAG for minimum fringing field to allow expansion of the electron beam by its space charge. The magnetic field data output from INTMAG is directly used as input for EGUN to calculate the electron and ion trajectories. The initial conditions for the trajectories were computed from the paraxial ray equation. Different operation modes of the collector are investigated including the behaviour of secondary electrons.

  20. EBI metagenomics—a new resource for the analysis and archiving of metagenomic data

    PubMed Central

    Hunter, Sarah; Corbett, Matthew; Denise, Hubert; Fraser, Matthew; Gonzalez-Beltran, Alejandra; Hunter, Christopher; Jones, Philip; Leinonen, Rasko; McAnulla, Craig; Maguire, Eamonn; Maslen, John; Mitchell, Alex; Nuka, Gift; Oisel, Arnaud; Pesseat, Sebastien; Radhakrishnan, Rajesh; Rocca-Serra, Philippe; Scheremetjew, Maxim; Sterk, Peter; Vaughan, Daniel; Cochrane, Guy; Field, Dawn; Sansone, Susanna-Assunta

    2014-01-01

    Metagenomics is a relatively recently established but rapidly expanding field that uses high-throughput next-generation sequencing technologies to characterize the microbial communities inhabiting different ecosystems (including oceans, lakes, soil, tundra, plants and body sites). Metagenomics brings with it a number of challenges, including the management, analysis, storage and sharing of data. In response to these challenges, we have developed a new metagenomics resource (http://www.ebi.ac.uk/metagenomics/) that allows users to easily submit raw nucleotide reads for functional and taxonomic analysis by a state-of-the-art pipeline, and have them automatically stored (together with descriptive, standards-compliant metadata) in the European Nucleotide Archive. PMID:24165880

  1. Ion Sources, Preinjectors and the Road to EBIS (459th Brookhaven Lecture)

    SciTech Connect

    Alessi, James

    2010-07-21

    To meet the requirements of the scientific programs of the Relativistic Heavy Ion Collider and the NASA Space Radiation Lab, BNL's Collider-Accelerator Department needs a variety of ion sources. Although these sources are a relatively small and inexpensive part of an accelerator, they can have a big impact on the machine's overall performance. For the 459th Brookhaven Lecture, James Alessi will describe C-AD's long history of developing state-of-the-art ion sources for its accelerators, and its current process for source and pre-injector development. He will follow up with a discussion of the features and development status of EBIS, which, as themore » newest source and preinjector, is in the final stages of commissioning at the end of a five-year construction project.« less

  2. Global Warming?

    ERIC Educational Resources Information Center

    Eichman, Julia Christensen; Brown, Jeff A.

    1994-01-01

    Presents information and data on an experiment designed to test whether different atmosphere compositions are affected by light and temperature during both cooling and heating. Although flawed, the experiment should help students appreciate the difficulties that researchers face when trying to find evidence of global warming. (PR)

  3. Controls on subsurface methane fluxes and shallow gas formation in Baltic Sea sediment (Aarhus Bay, Denmark)

    NASA Astrophysics Data System (ADS)

    Flury, Sabine; Røy, Hans; Dale, Andrew W.; Fossing, Henrik; Tóth, Zsuzsanna; Spiess, Volkhard; Jensen, Jørn Bo; Jørgensen, Bo Barker

    2016-09-01

    Shallow gas accumulates in coastal marine sediments when the burial rate of reactive organic matter beneath the sulfate zone is sufficiently high and the methanogenic zone is sufficiently deep. We investigated the controls on methane production and free methane gas accumulation along a 400 m seismo-acoustic transect across a sharp transition from gas-free into gas-bearing sediment in Aarhus Bay (Denmark). Twelve gravity cores were taken, in which the pore water was analyzed for inorganic solutes while rates of organic carbon mineralization were measured experimentally by 35SO42- radiotracer method. The thickness of organic-rich Holocene mud increased from 5 to 10 m along the transect concomitant with a shallowing of the depth of the sulfate-methane transition from >4 m to 2.5 m. In spite of drastic differences in the distribution of methane and sulfate in the sediment along the transect, there were only small differences in total mineralization, and methanogenesis was only equivalent to about 1% of sulfate reduction. Shallow gas appeared where the mud thickness exceeded 8-9 m. Rates of methanogenesis increased along the transect as did the upward diffusive flux of methane. Interestingly, the increase in the sedimentation rate and Holocene mud thickness had only a modest direct effect on methanogenesis rates in deep sediments. This increase in methane flux, however, triggered a shallowing of the sulfate-methane transition which resulted in a large increase in methanogenesis at the top of the methanogenic zone. Thus, our results demonstrate a positive feedback mechanism that causes a strong enhancement of methanogenesis and explains the apparently abrupt appearance of gas when a threshold thickness of organic-rich mud is exceeded.

  4. Methanobacterium aarhusense sp. nov., a novel methanogen isolated from a marine sediment (Aarhus Bay, Denmark).

    PubMed

    Shlimon, Adris Georgis; Friedrich, Michael W; Niemann, Helge; Ramsing, Niels Birger; Finster, Kai

    2004-05-01

    Strain H2-LR(T), a 5-18 micro m long and 0.7 micro m wide filamentous, mesophilic, moderately halophilic, non-motile hydrogenotrophic methanogen, was isolated from marine sediment of Aarhus Bay, Denmark, 1.7 m below the sediment surface. On the basis of 16S rRNA gene comparison with sequences of known methanogens, strain H2-LR(T) could be affiliated to the genus Methanobacterium. The strain forms a distinct line of descent within this genus, with Methanobacterium oryzae (95.9 % sequence identity) and Methanobacterium bryantii (95.7 % sequence identity) as its closest relatives. The 16S rRNA-based affiliation was supported by comparison of the mcrA gene, which encodes the alpha-subunit of methyl-coenzyme M reductase. Strain H2-LR(T) grew only on H(2)/CO(2). The DNA G+C content is 34.9 mol%. Optimum growth temperature was 45 degrees C. The strain grew equally well at pH 7.5 and 8. No growth or methane production was observed below pH 5 or above pH 9. Strain H2-LR(T) grew well within an NaCl concentration range of 100 and 900 mM. No growth or methane production was observed at 1 M NaCl. At 50 mM NaCl, growth and methane production were reduced. Based on 16S rRNA gene sequence analysis, the isolate is proposed to represent a novel taxon within the genus Methanobacterium, namely Methanobacterium aarhusense sp. nov. The type strain is H2-LR(T) (=DSM 15219(T)=ATCC BAA-828(T)).

  5. Global warming

    NASA Astrophysics Data System (ADS)

    Houghton, John

    2005-06-01

    'Global warming' is a phrase that refers to the effect on the climate of human activities, in particular the burning of fossil fuels (coal, oil and gas) and large-scale deforestation, which cause emissions to the atmosphere of large amounts of 'greenhouse gases', of which the most important is carbon dioxide. Such gases absorb infrared radiation emitted by the Earth's surface and act as blankets over the surface keeping it warmer than it would otherwise be. Associated with this warming are changes of climate. The basic science of the 'greenhouse effect' that leads to the warming is well understood. More detailed understanding relies on numerical models of the climate that integrate the basic dynamical and physical equations describing the complete climate system. Many of the likely characteristics of the resulting changes in climate (such as more frequent heat waves, increases in rainfall, increase in frequency and intensity of many extreme climate events) can be identified. Substantial uncertainties remain in knowledge of some of the feedbacks within the climate system (that affect the overall magnitude of change) and in much of the detail of likely regional change. Because of its negative impacts on human communities (including for instance substantial sea-level rise) and on ecosystems, global warming is the most important environmental problem the world faces. Adaptation to the inevitable impacts and mitigation to reduce their magnitude are both necessary. International action is being taken by the world's scientific and political communities. Because of the need for urgent action, the greatest challenge is to move rapidly to much increased energy efficiency and to non-fossil-fuel energy sources.

  6. EBI metagenomics in 2016 - an expanding and evolving resource for the analysis and archiving of metagenomic data

    PubMed Central

    Mitchell, Alex; Bucchini, Francois; Cochrane, Guy; Denise, Hubert; Hoopen, Petra ten; Fraser, Matthew; Pesseat, Sebastien; Potter, Simon; Scheremetjew, Maxim; Sterk, Peter; Finn, Robert D.

    2016-01-01

    EBI metagenomics (https://www.ebi.ac.uk/metagenomics/) is a freely available hub for the analysis and archiving of metagenomic and metatranscriptomic data. Over the last 2 years, the resource has undergone rapid growth, with an increase of over five-fold in the number of processed samples and consequently represents one of the largest resources of analysed shotgun metagenomes. Here, we report the status of the resource in 2016 and give an overview of new developments. In particular, we describe updates to data content, a complete overhaul of the analysis pipeline, streamlining of data presentation via the website and the development of a new web based tool to compare functional analyses of sequence runs within a study. We also highlight two of the higher profile projects that have been analysed using the resource in the last year: the oceanographic projects Ocean Sampling Day and Tara Oceans. PMID:26582919

  7. EBI1/CCR7 is a new member of dendritic cell chemokine receptor that is up-regulated upon maturation.

    PubMed

    Yanagihara, S; Komura, E; Nagafune, J; Watarai, H; Yamaguchi, Y

    1998-09-15

    Dendritic cells (DC) that are stimulated with inflammatory mediators can maturate and migrate from nonlymphoid tissues to lymphoid organs to initiate T cell-mediated immune responses. This migratory step is closely related to the maturation of the DC. In an attempt to identify chemokine receptors that might influence migration and are selectively expressed in mature DC, we have discovered that the chemokine receptor, EBI1/CCR7, is strikingly up-regulated upon maturation in three distinct culture systems: 1) mouse bone marrow-derived DC, 2) mouse epidermal Langerhans cells, and 3) human monocyte-derived DC. The EBI1/CCR7 expressed in mature DC is functional because ELC/MIP-3beta, recently identified as a ligand of EBI1/CCR7, induces a rise in intracellular free calcium concentrations and directional migration of human monocyte-derived mature DC (HLA-DRhigh, CD1a(low), CD14-, CD25+, CD83+, and CD86high) in a dose-dependent manner, but not of immature DC (HLA-DRlow, CD1a(high), CD14-, CD25-, CD83-, and CD86-). In contrast, macrophage inflammatory protein-1alpha (MIP-1alpha), monocyte chemotactic protein-3 (MCP-3), and RANTES are active on immature DC but not on mature DC. Thus, it seems likely that MIP-1alpha, MCP-3, and RANTES can mediate the migration of immature DC located in peripheral sites, whereas ELC/MIP-3beta can direct the migration of Ag-carrying DC from peripheral inflammatory sites, where DC are stimulated to up-regulate the expression of EBI1/CCR7, to lymphoid organs. It is postulated that different chemokines and chemokine receptors are involved in DC migration in vivo, depending on the maturation state of DC.

  8. A Campaign Study of Sea Spray Aerosol Properties in the Bay of Aarhus

    NASA Astrophysics Data System (ADS)

    Nguyen, Quynh; Rasmussen, Berit; Kristensen, Kasper; Sloth Nielsen, Lærke; Bilde, Merete

    2016-04-01

    The oceans of the world are a dominant source of atmospheric aerosol. Together with mineral dust, sea spray aerosols (SSA) constitute the largest mass flux of particulate matter in the atmosphere (Andreae and Rosenfeld, 2008). Due to their effects on the global radiative budget - both directly as scatterers and absorbers of solar and terrestrial radiation, and indirectly as cloud condensation nuclei (CCN), SSA are considered an important component of the climate system. The sea-surface microlayer (SML) is an ultra-thin boundary layer between the ocean and the atmosphere. The high concentration of surface-active organic compounds in the SML, compared to that of the underlying water column, creates rigid film-like layer over the surface of the ocean. The SML is believed to play an important role in the formation and composition of SSA. However, current knowledge on the SML and its impacts on SSA remain limited. To characterize the SML of natural seawater and examine its impacts on aerosol properties, a field campaign was conducted in the bay of Aarhus, Denmark, during spring 2015. Bulk seawater was collected 1-2 times every week along with selective sampling of the SML. Characterization of the sea water and SML included a wide range of measurements, including surface tension, water activity, dissolved organic matter, and chemical composition analysis by liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS). SSA was generated from sampled sea water by diffusion of air bubbles through a 10L seawater sample situated in a sea spray tank. Particle number concentration and CCN measurements were conducted along with measurements of the organic share in the aerosol phase as indicated by volatility measurements. To investigate the effect of the SML, spiking of the seawater samples with additional SML was performed and measurements repeated for comparison. Preliminary results show that the SML samples

  9. Depth Distribution and Assembly of Sulfate-Reducing Microbial Communities in Marine Sediments of Aarhus Bay

    PubMed Central

    Jochum, Lara M.; Chen, Xihan; Lever, Mark A.; Loy, Alexander; Jørgensen, Bo Barker; Schramm, Andreas

    2017-01-01

    ABSTRACT Most sulfate-reducing microorganisms (SRMs) present in subsurface marine sediments belong to uncultured groups only distantly related to known SRMs, and it remains unclear how changing geochemical zones and sediment depth influence their community structure. We mapped the community composition and abundance of SRMs by amplicon sequencing and quantifying the dsrB gene, which encodes dissimilatory sulfite reductase subunit beta, in sediment samples covering different vertical geochemical zones ranging from the surface sediment to the deep sulfate-depleted subsurface at four locations in Aarhus Bay, Denmark. SRMs were present in all geochemical zones, including sulfate-depleted methanogenic sediment. The biggest shift in SRM community composition and abundance occurred across the transition from bioturbated surface sediments to nonbioturbated sediments below, where redox fluctuations and the input of fresh organic matter due to macrofaunal activity are absent. SRM abundance correlated with sulfate reduction rates determined for the same sediments. Sulfate availability showed a weaker correlation with SRM abundances and no significant correlation with the composition of the SRM community. The overall SRM species diversity decreased with depth, yet we identified a subset of highly abundant community members that persists across all vertical geochemical zones of all stations. We conclude that subsurface SRM communities assemble by the persistence of members of the surface community and that the transition from the bioturbated surface sediment to the unmixed sediment below is a main site of assembly of the subsurface SRM community. IMPORTANCE Sulfate-reducing microorganisms (SRMs) are key players in the marine carbon and sulfur cycles, especially in coastal sediments, yet little is understood about the environmental factors controlling their depth distribution. Our results suggest that macrofaunal activity is a key driver of SRM abundance and community structure

  10. Predictors of international students' psychological and sociocultural adjustment to the context of reception while studying at Aarhus University, Denmark.

    PubMed

    Ozer, Simon

    2015-12-01

    The number of international students engaging in intercultural education and thereby adjusting to cross-cultural transition has risen conspicuously as a consequence of globalization and increased mobility. This process of acculturation has been associated with increased creativity as well as adaptation challenges. This paper investigates international students' psychological and sociocultural adjustment to studying at Aarhus University in Denmark. Both international students (n = 129) and domestic students (n = 111) participated in the study. The international students did not report impaired psychological conditions as compared to the control group of domestic students. However, the international students reported a significantly lower level of social support. Social support and perceived discrimination were significant predictors of both psychological and sociocultural adjustment. Additionally, the level of English proficiency alone predicted sociocultural adjustment. Values of vertical individualism and horizontal collectivism predicted psychological adjustment. Finally, integration was found to be a significantly more adaptive acculturation orientation than separation in regard to sociocultural adjustment. These findings were discussed in relation to relevant international research and it was concluded that international students comprise a resourceful student sample and that the international academic environment at Aarhus University appears to be an adequately cultural and value-oriented good fit as a context of reception for the multicultural engagement of international students. © 2015 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  11. Effect of EBI3 on radiation-induced immunosuppression of cervical cancer HeLa cells by regulating Treg cells through PD-1/PD-L1 pathway.

    PubMed

    Zhang, Song-An; Niyazi, Hu-Er-Xi-Dan; Hong, Wen; Tuluwengjiang, Gu-Li-Xian; Zhang, Lei; Zhang, Yang; Su, Wei-Peng; Bao, Yong-Xing

    2017-03-01

    This study aimed to investigate the effect of EBI3 on radiation-induced immunosuppression of cervical cancer HeLa cells by regulating Treg cells through PD-1/PD-L1 signaling pathway. A total of 43 adult female Wistar rats were selected and injected with HeLa cells in the caudal vein to construct a rat model of cervical cancer. All model rats were randomly divided into the radiotherapy group ( n = 31) and the control group ( n = 12). The immunophenotype of Treg cells was detected by the flow cytometry. The protein expressions of EBI3, PD-1, and PD-L1 in cervical cancer tissues were tested by the streptavidin-peroxidase method. HeLa cells in the logarithmic growth phase were divided into four groups: the blank, the negative control group, the EBI3 mimics group, and the EBI3 inhibitors group. Western blotting was used to detect PD-1 and PD-L1 protein expressions. MTT assay was performed to measure the proliferation of Treg cells. Flow cytometry was used to detect cell cycle and apoptosis, and CD4 + /CD8 + T cell ratio in each group. Compared with before and 1 week after radiotherapy, the percentages of CD4 + T cells and CD8 + T cells were significantly decreased in the radiotherapy group at 1 month after radiotherapy. Furthermore, down-regulation of EBI3 and up-regulation of PD-1 and PD-L1 were observed in cervical cancer tissues at 1 month after radiotherapy. In comparison to the blank and negative control groups, increased expression of EBI3 and decreased expressions of PD-1 and PD-L1 were found in the EBI3 mimics group. However, the EBI3 inhibitors group had a lower expression of EBI3 and higher expressions of PD-1 and PD-L1 than those in the blank and negative control groups. The EBI3 mimics group showed an increase in the optical density value (0.43 ± 0.05), while a decrease in the optical density value (0.31 ± 0.02) was found in the EBI3 inhibitors group. Moreover, compared with the blank and negative control groups, the apoptosis rates

  12. Rapid establishment of the European Bank for induced Pluripotent Stem Cells (EBiSC) - the Hot Start experience.

    PubMed

    De Sousa, Paul A; Steeg, Rachel; Wachter, Elisabeth; Bruce, Kevin; King, Jason; Hoeve, Marieke; Khadun, Shalinee; McConnachie, George; Holder, Julie; Kurtz, Andreas; Seltmann, Stefanie; Dewender, Johannes; Reimann, Sascha; Stacey, Glyn; O'Shea, Orla; Chapman, Charlotte; Healy, Lyn; Zimmermann, Heiko; Bolton, Bryan; Rawat, Trisha; Atkin, Isobel; Veiga, Anna; Kuebler, Bernd; Serano, Blanca Miranda; Saric, Tomo; Hescheler, Jürgen; Brüstle, Oliver; Peitz, Michael; Thiele, Cornelia; Geijsen, Niels; Holst, Bjørn; Clausen, Christian; Lako, Majlinda; Armstrong, Lyle; Gupta, Shailesh K; Kvist, Alexander J; Hicks, Ryan; Jonebring, Anna; Brolén, Gabriella; Ebneth, Andreas; Cabrera-Socorro, Alfredo; Foerch, Patrik; Geraerts, Martine; Stummann, Tina C; Harmon, Shawn; George, Carol; Streeter, Ian; Clarke, Laura; Parkinson, Helen; Harrison, Peter W; Faulconbridge, Adam; Cherubin, Luca; Burdett, Tony; Trigueros, Cesar; Patel, Minal J; Lucas, Christa; Hardy, Barry; Predan, Rok; Dokler, Joh; Brajnik, Maja; Keminer, Oliver; Pless, Ole; Gribbon, Philip; Claussen, Carsten; Ringwald, Annette; Kreisel, Beate; Courtney, Aidan; Allsopp, Timothy E

    2017-04-01

    A fast track "Hot Start" process was implemented to launch the European Bank for Induced Pluripotent Stem Cells (EBiSC) to provide early release of a range of established control and disease linked human induced pluripotent stem cell (hiPSC) lines. Established practice amongst consortium members was surveyed to arrive at harmonised and publically accessible Standard Operations Procedures (SOPs) for tissue procurement, bio-sample tracking, iPSC expansion, cryopreservation, qualification and distribution to the research community. These were implemented to create a quality managed foundational collection of lines and associated data made available for distribution. Here we report on the successful outcome of this experience and work flow for banking and facilitating access to an otherwise disparate European resource, with lessons to benefit the international research community. ETOC: The report focuses on the EBiSC experience of rapidly establishing an operational capacity to procure, bank and distribute a foundational collection of established hiPSC lines. It validates the feasibility and defines the challenges of harnessing and integrating the capability and productivity of centres across Europe using commonly available resources currently in the field. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark)

    NASA Astrophysics Data System (ADS)

    Holmkvist, Lars; Ferdelman, Timothy G.; Jørgensen, Bo Barker

    2011-06-01

    Sulfate reduction and sulfur-iron geochemistry were studied in 5-6 m deep gravity cores of Holocene mud from Aarhus Bay (Denmark). A goal was to understand whether sulfate is generated by re-oxidation of sulfide throughout the sulfate and methane zones, which might explain the abundance of active sulfate reducers deep below the main sulfate zone. Sulfate penetrated down to 130 cm where methane started to build up and where the concentration of free sulfide peaked at 5.5 mM. Below this sulfate-methane transition, sulfide diffused downwards to a sulfidization front at 520 cm depth, below which dissolved iron, Fe 2+, accumulated in the pore water. Sulfate reduction rates measured by 35S-tracer incubations in the sulfate zone were high due to high concentrations of reactive organic matter. Within the sulfate-methane transition, sulfate reduction was distinctly stimulated by the anaerobic oxidation of methane. In the methane zone below, sulfate remained at positive "background" concentrations of <0.5 mM down to the sulfidization front. Sulfate reduction decreased steeply to rates which at 300-500 cm depth were 0.2-1 pmol SO 42- cm -3 d -1, i.e., 4-5 orders of magnitude lower than rates measured near the sediment surface. The turn-over time of sulfate increased from 3 years at 12 cm depth to 100-1000 years down in the methane zone. Sulfate reduction in the methane zone accounted for only 0.1% of sulfate reduction in the entire sediment column and was apparently limited by the low pore water concentration of sulfate and the low availability of organic substrates. Amendment of the sediment with both sulfate and organic substrates immediately caused a 10- to 40-fold higher, "potential sulfate reduction" which showed that a physiologically intact community of sulfate reducing bacteria was present. The "background" sulfate concentration appears to be generated from the reaction of downwards diffusing sulfide with deeply buried Fe(III) species, such as poorly-reactive iron

  14. Warm Mix Asphalt

    DOT National Transportation Integrated Search

    2009-04-17

    State of Alaska State of Alaska - Warm Mix Project Warm Mix Project: Location - Petersburg, Alaska which is Petersburg, Alaska which is located in the heart of Southeast Alaska located in the heart of Southeast Alaska's Inside Passage at the tip of M...

  15. Reconciling Warming Trends

    NASA Technical Reports Server (NTRS)

    Schmidt, Gavin A.; Shindell, Drew T.; Tsigaridis, Konstantinos

    2014-01-01

    Climate models projected stronger warming over the past 15 years than has been seen in observations. Conspiring factors of errors in volcanic and solar inputs, representations of aerosols, and El NiNo evolution, may explain most of the discrepancy.

  16. Warm and Cool Dinosaurs.

    ERIC Educational Resources Information Center

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  17. Warm Hands and Feet

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Comfort Products, Inc. was responsible for the cold weather glove and thermal boots, adapted from a spacesuit design that kept astronauts warm or cool in the temperature extremes of the Apollo Moon Mission. Gloves and boots are thermally heated. Batteries are worn inside wrist of glove or sealed in sole of skiboot and are rechargeable hundreds of times. They operate flexible resistance circuit which is turned on periodically when wearer wants to be warm.

  18. G-warm inflation

    NASA Astrophysics Data System (ADS)

    Herrera, Ramón

    2017-05-01

    A warm inflationary universe in the context of Galileon model or G-model is studied. Under a general formalism we study the inflationary dynamics and the cosmological perturbations considering a coupling of the form G(phi,X)=g(phi) X. As a concrete example, we consider an exponential potential together with the cases in which the dissipation and Galilean coefficients are constants. Also, we study the weak regime given by the condition R<1+3gHdot phi, and the strong regime in which 1warm inflation, assuming the condition for warm inflation in which the temperature T>H, the conditions or the weak and strong regimes, together with the consistency relation r=r(ns) from Planck data.

  19. G-warm inflation

    SciTech Connect

    Herrera, Ramón, E-mail: ramon.herrera@pucv.cl

    A warm inflationary universe in the context of Galileon model or G-model is studied. Under a general formalism we study the inflationary dynamics and the cosmological perturbations considering a coupling of the form G (φ, X )= g (φ) X . As a concrete example, we consider an exponential potential together with the cases in which the dissipation and Galilean coefficients are constants. Also, we study the weak regime given by the condition R <1+3 gH φ-dot , and the strong regime in which 1< R +3 gH φ-dot . Additionally, we obtain constraints on the parameters during the evolutionmore » of G-warm inflation, assuming the condition for warm inflation in which the temperature T > H , the conditions or the weak and strong regimes, together with the consistency relation r = r ( n {sub s} ) from Planck data.« less

  20. Overexpression of Epstein-Barr virus-induced gene 3 protein (EBI3) in MRL/lpr mice suppresses their lupus nephritis by activating regulatory T cells.

    PubMed

    Shinsuke, Nishimura; Hiroshi, Inoue

    2013-11-01

    To identify the effect of an imbalance of Th1/Th2 cytokines on the development of autoimmune glomerulonephritis (lupus nephritis), we studied the modification of pathological changes in diffuse proliferative glomerulonephritis (DPGN) and membranous glomerulonephritis (MGN) in MRL/lpr mice, which are animal models of systemic lupus erythematosus (SLE). Transgenic MRL/lpr mice (Tg) that overexpressed Epstein--Barr virus-induced gene 3 (EBI3) showed almost normal renal function, which was demonstrated by healing of glomerulonephritis upon renal histology, as compared to the wild-type MRL/lpr (Wt) mice. The levels of anti-dsDNA antibodies and IgE decreased in the Tg mice compared to Wt mice. Quantitative real-time PCR indicated an increase in the mRNA levels of FoxP3, and a decrease in that of IFNγ in the splenocytes of Tg mice as compared to Wt mice. In addition, flow cytometric analysis showed an increase in CD4(+)CD25(+)FoxP3(+)-T cells in the former, as compared to the latter. Our findings suggest that EBI3-overexpression in MRL/lpr mice induces generation of regulatory T cells, which causes suppression of autoimmune and inflammatory reactions by affecting the Th1/Th2 cytokine balance.

  1. Warm and Cool Cityscapes

    ERIC Educational Resources Information Center

    Jubelirer, Shelly

    2012-01-01

    Painting cityscapes is a great way to teach first-grade students about warm and cool colors. Before the painting begins, the author and her class have an in-depth discussion about big cities and what types of buildings or structures that might be seen in them. They talk about large apartment and condo buildings, skyscrapers, art museums,…

  2. Warm natural inflation

    NASA Astrophysics Data System (ADS)

    Mishra, Hiranmaya; Mohanty, Subhendra; Nautiyal, Akhilesh

    2012-04-01

    In warm inflation models there is the requirement of generating large dissipative couplings of the inflaton with radiation, while at the same time, not de-stabilising the flatness of the inflaton potential due to radiative corrections. One way to achieve this without fine tuning unrelated couplings is by supersymmetry. In this Letter we show that if the inflaton and other light fields are pseudo-Nambu-Goldstone bosons then the radiative corrections to the potential are suppressed and the thermal corrections are small as long as the temperature is below the symmetry breaking scale. In such models it is possible to fulfil the contrary requirements of an inflaton potential which is stable under radiative corrections and the generation of a large dissipative coupling of the inflaton field with other light fields. We construct a warm inflation model which gives the observed CMB-anisotropy amplitude and spectral index where the symmetry breaking is at the GUT scale.

  3. Teaching Global Warming

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    2004-05-01

    Every citizen's education should include socially relevant science courses because, as the American Association for the Advancement of Science puts it, "Without a scientifically literate population, the outlook for a better world is not promising." I have developed a conceptual liberal-arts physics course that covers the major principles of classical physics, emphasizes modern/contemporary physics, and includes societal topics such as global warming, ozone depletion, transportation, exponential growth, scientific methodology, risk assessment, nuclear weapons, nuclear power, and the energy future. The societal topics, occupying only about 15% of the class time, appear to be the main cause of the surprising popularity of this course among non-scientists. I will outline some ideas for incorporating global warming into such a course or into any other introductory physics course. For further details, see my textbook Physics: Concepts and Connections (Prentice Hall, 3rd edition 2003).

  4. Military Implications of Global Warming.

    DTIC Science & Technology

    1999-05-20

    U.S. environmental issues also have important global implications. This paper analyzes current U.S. Policy as it pertains to global warming and climate...for military involvement to reduce global warming . Global warming and other environmental issues are important to the U.S. military. As the United

  5. Global Warming And Meltwater

    NASA Astrophysics Data System (ADS)

    Bratu, S.

    2012-04-01

    In order to find new approaches and new ideas for my students to appreciate the importance of science in their daily life, I proposed a theme for them to debate. They had to search for global warming information and illustrations in the media, and discuss the articles they found in the classroom. This task inspired them to search for new information about this important and timely theme in science. I informed my students that all the best information about global warming and meltwater they found would be used in a poster that would help us to update the knowledge base of the Physics laboratory. I guided them to choose the most eloquent images and significant information. Searching and working to create this poster, the students arrived to better appreciate the importance of science in their daily life and to critically evaluate scientific information transmitted via the media. In the poster we created, one can find images, photos and diagrams and some interesting information: Global warming refers to the rising average temperature of the Earth's atmosphere and oceans and its projected evolution. In the last 100 years, the Earth's average surface temperature increased by about 0.8 °C with about two thirds of the increase occurring over just the last three decades. Warming of the climate system is unequivocal, and scientists are more than 90% certain most of it is caused by increasing concentrations of greenhouse gases produced by human activities such as deforestation and burning fossil fuel. They indicate that during the 21st century the global surface temperature is likely to rise a further 1.1 to 2.9 °C for the lowest emissions scenario and 2.4 to 6.4 °C for the highest predictions. An increase in global temperature will cause sea levels to rise and will change the amount and pattern of precipitation, and potentially result in expansion of subtropical deserts. Warming is expected to be strongest in the Arctic and would be associated with continuing decrease of

  6. Predictive value of Tokuhashi scoring systems in spinal metastases, focusing on various primary tumor groups: evaluation of 448 patients in the Aarhus spinal metastases database.

    PubMed

    Wang, Miao; Bünger, Cody Eric; Li, Haisheng; Wu, Chunsen; Høy, Kristian; Niedermann, Bent; Helmig, Peter; Wang, Yu; Jensen, Anders Bonde; Schättiger, Katrin; Hansen, Ebbe Stender

    2012-04-01

    We conducted a prospective cohort study of 448 patients with spinal metastases from a variety of cancer groups. To determine the specific predictive value of the Tokuhashi scoring system (T12) and its revised version (T15) in spinal metastases of various primary tumors. The life expectancy of patients with spinal metastases is one of the most important factors in selecting the treatment modality. Tokuhashi et al formulated a prognostic scoring system with a total sum of 12 points for preoperative prediction of life expectancy in 1990 and revised it in 2005 to a total sum of 15 points. There is a lack of knowledge about the specific predictive value of those scoring systems in patients with spinal metastases from a variety of cancer groups. We included 448 patients with vertebral metastases who underwent surgical treatment during November 1992 to November 2009 in Aarhus University Hospital NBG. Data were retrieved from Aarhus Metastases Database. Scores based on T12 and T15 were calculated prospectively for each patient. We divided all the patients into different groups dictated by the site of their primary tumor. Predictive value and accuracy rate of the 2 scoring systems were compared in each cancer group. Both the T12 and T15 scoring systems showed statistically significant predictive value when the 448 patients were analyzed in total (T12, P < 0.0001; T15, P < 0.0001). The accuracy rate was significantly higher in T15 (P < 0.0001) than in T12. The further analyses by primary cancer groups showed that the predictive value of T12 and T15 was primarily determined by the prostate (P = 0.0003) and breast group (P = 0.0385). Only T12 displayed predictive value in the colon group (P = 0.0011). Neither of the scoring systems showed significant predictive value in the lung (P > 0.05), renal (P > 0.05), or miscellaneous primary tumor groups (P > 0.05). The accuracy rate of prognosis in T15 was significantly improved in the prostate (P = 0.0032) and breast group (P < 0

  7. Optimal Threshold Determination for Interpreting Semantic Similarity and Particularity: Application to the Comparison of Gene Sets and Metabolic Pathways Using GO and ChEBI

    PubMed Central

    Bettembourg, Charles; Diot, Christian; Dameron, Olivier

    2015-01-01

    Background The analysis of gene annotations referencing back to Gene Ontology plays an important role in the interpretation of high-throughput experiments results. This analysis typically involves semantic similarity and particularity measures that quantify the importance of the Gene Ontology annotations. However, there is currently no sound method supporting the interpretation of the similarity and particularity values in order to determine whether two genes are similar or whether one gene has some significant particular function. Interpretation is frequently based either on an implicit threshold, or an arbitrary one (typically 0.5). Here we investigate a method for determining thresholds supporting the interpretation of the results of a semantic comparison. Results We propose a method for determining the optimal similarity threshold by minimizing the proportions of false-positive and false-negative similarity matches. We compared the distributions of the similarity values of pairs of similar genes and pairs of non-similar genes. These comparisons were performed separately for all three branches of the Gene Ontology. In all situations, we found overlap between the similar and the non-similar distributions, indicating that some similar genes had a similarity value lower than the similarity value of some non-similar genes. We then extend this method to the semantic particularity measure and to a similarity measure applied to the ChEBI ontology. Thresholds were evaluated over the whole HomoloGene database. For each group of homologous genes, we computed all the similarity and particularity values between pairs of genes. Finally, we focused on the PPAR multigene family to show that the similarity and particularity patterns obtained with our thresholds were better at discriminating orthologs and paralogs than those obtained using default thresholds. Conclusion We developed a method for determining optimal semantic similarity and particularity thresholds. We applied

  8. Global Warming: A Reduced Threat?.

    NASA Astrophysics Data System (ADS)

    Michaels, Patrick J.; Stooksbury, David E.

    1992-10-01

    One popular and apocalyptic vision of the world influenced by increasing concentrations of infrared-absorbing trace gases is that of ecological disaster brought about by rapidly rising temperatures, sea level, and evaporation rates. This vision developed from a suite of climate models that have since considerably changed in both their dynamics and their estimates of prospective warming. Observed temperatures indicate that much more warming should already have taken place than predicted by earlier models in the Northern Hemisphere, and that night, rather than day, readings in that hemisphere show a relative warming. A high-latitude polar-night warming or a general night warming could be either benign or beneficial. A large number of plant species show both increased growth and greater water-use efficiency under enhanced carbon dioxide.An extensive body of evidence now indicates that anthropo-generated sulfate emissions are mitigating some of the warming, and that increased cloudiness as a result of these emissions will further enhance night, rather than day, warming. The sulfate emissions, though, are not sufficient to explain all of the night warming. However, the sensitivity of climate to anthropogenerated aerosols, and the general lack of previously predicted warming, could drastically alter the debate on global warming in favor of less expensive policies.

  9. Transient ischemic attack and minor stroke are the most common manifestations of acute cerebrovascular disease: a prospective, population-based study--the Aarhus TIA study.

    PubMed

    von Weitzel-Mudersbach, Paul; Andersen, Grethe; Hundborg, Heidi H; Johnsen, Søren P

    2013-01-01

    Severity of acute vascular illness may have changed in the last decades due to improvements in primary and secondary prevention. Population-based data on the severity of acute ischemic cerebrovascular disease are sparse. We aimed to examine incidence, characteristics and severity of acute ischemic cerebrovascular disease in a well-defined population. All patients admitted with transient ischemic attack (TIA) or acute ischemic stroke from March 1, 2007, to February 29, 2008, with residence in the Aarhus area, were included. Incidence rates and characteristics of TIA and ischemic stroke were compared. TIA accounted for 30%, TIA and minor stroke combined for 65% of all acute ischemic cerebrovascular events. Age-adjusted incidence rates of TIA and ischemic stroke were 72.2/100,000 and 129.5/100,000 person-years, respectively. TIA patients were younger than stroke patients (66.3 vs. 72.7 years; p < 0.001). Atrial fibrillation, previous myocardial infarction and previous stroke were significantly more frequent in stroke patients; no differences in other baseline characteristics were found. Minor events are the most common in ischemic cerebrovascular disease, and may constitute a larger proportion than previously reported. TIA and stroke patients share many characteristics; however, TIA patients are younger and have fewer manifestations of atherosclerotic diseases, indicating a high potential for secondary prevention. Copyright © 2012 S. Karger AG, Basel.

  10. Antarctica: Cooling or Warming?

    NASA Astrophysics Data System (ADS)

    Bunde, Armin; Ludescher, Josef; Franzke, Christian

    2013-04-01

    We consider the 14 longest instrumental monthly mean temperature records from the Antarctica and analyse their correlation properties by wavelet and detrended fluctuation analysis. We show that the stations in the western and the eastern part of the Antarctica show significant long-term memory governed by Hurst exponents close to 0.8 and 0.65, respectively. In contrast, the temperature records at the inner part of the continent (South Pole and Vostok), resemble white noise. We use linear regression to estimate the respective temperature differences in the records per decade (i) for the annual data, (ii) for the summer and (iii) for the winter season. Using a recent approach by Lennartz and Bunde [1] we estimate the respective probabilities that these temperature differences can be exceeded naturally without inferring an external (anthropogenic) trend. We find that the warming in the western part of the continent and the cooling at the South Pole is due to a gradually changes in the cold extremes. For the winter months, both cooling and warming are well outside the 95 percent confidence interval, pointing to an anthropogenic origin. In the eastern Antarctica, the temperature increases and decreases are modest and well within the 95 percent confidence interval. [1] S. Lennartz and A. Bunde, Phys. Rev. E 84, 021129 (2011)

  11. Is Global Warming Accelerating?

    NASA Astrophysics Data System (ADS)

    Shukla, J.; Delsole, T. M.; Tippett, M. K.

    2009-12-01

    A global pattern that fluctuates naturally on decadal time scales is identified in climate simulations and observations. This newly discovered component, called the Global Multidecadal Oscillation (GMO), is related to the Atlantic Meridional Oscillation and shown to account for a substantial fraction of decadal fluctuations in the observed global average sea surface temperature. IPCC-class climate models generally underestimate the variance of the GMO, and hence underestimate the decadal fluctuations due to this component of natural variability. Decomposing observed sea surface temperature into a component due to anthropogenic and natural radiative forcing plus the GMO, reveals that most multidecadal fluctuations in the observed global average sea surface temperature can be accounted for by these two components alone. The fact that the GMO varies naturally on multidecadal time scales implies that it can be predicted with some skill on decadal time scales, which provides a scientific rationale for decadal predictions. Furthermore, the GMO is shown to account for about half of the warming in the last 25 years and hence a substantial fraction of the recent acceleration in the rate of increase in global average sea surface temperature. Nevertheless, in terms of the global average “well-observed” sea surface temperature, the GMO can account for only about 0.1° C in transient, decadal-scale fluctuations, not the century-long 1° C warming that has been observed during the twentieth century.

  12. Warm dark matter

    SciTech Connect

    Horiuchi, Shunsaku, E-mail: horiuchi@vt.edu

    2016-06-21

    The cold dark matter paradigm has been extremely successful in explaining the large-scale structure of the Universe. However, it continues to face issues when confronted by observations on sub-Galactic scales. A major caveat, now being addressed, has been the incomplete treatment of baryon physics. We first summarize the small-scale issues surrounding cold dark matter and discuss the solutions explored by modern state-of-the-art numerical simulations including treatment of baryonic physics. We identify the too big to fail in field galaxies as among the best targets to study modifications to dark matter, and discuss the particular connection with sterile neutrino warm darkmore » matter. We also discuss how the recently detected anomalous 3.55 keV X-ray lines, when interpreted as sterile neutrino dark matter decay, provide a very good description of small-scale observations of the Local Group.« less

  13. Global Warming on Triton

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Hammel, H. B.; Wasserman, L. H.; Franz, O. G.; McDonald, S. W.; Person, M. J.; Olkin, C. B.; Dunham, E. J.; Spencer, J. R.; Stansberry, J. A.; hide

    1998-01-01

    Triton, Neptune's largest moon, has been predicted to undergo significant seasonal changes that would reveal themselves as changes in its mean frost temperature. But whether this temperature should at the present time be increasing, decreasing or constant depends on a number of parameters (such as the thermal properties of the surface, and frost migration patterns) that are unknown. Here we report observations of a recent stellar occultation by Triton which, when combined with earlier results, show that Triton has undergone a period of global warming since 1989. Our most conservative estimates of the rate of temperature and surface-pressure increase during this period imply that the atmosphere is doubling in bulk every 10 years, significantly faster than predicted by any published frost model for Triton. Our result suggests that permanent polar caps on Triton play a c dominant role in regulating seasonal atmospheric changes. Similar processes should also be active on Pluto.

  14. Warm waters, bleached corals

    SciTech Connect

    Roberts, L.

    1990-10-12

    Two researchers, Tom Goreau of the Discovery Laboratory in Jamaica and Raymond Hayes of Howard University, claim that they have evidence that nearly clinches the temperature connection to the bleached corals in the Caribbean and that the coral bleaching is an indication of Greenhouse warming. The incidents of scattered bleaching of corals, which have been reported for decades, are increasing in both intensity and frequency. The researchers based their theory on increased temperature of the seas measured by satellites. However, some other scientists feel that the satellites measure the temperature of only the top few millimeters of the water andmore » that since corals lie on reefs perhaps 60 to 100 feet below the ocean surface, the elevated temperatures are not significant.« less

  15. Local warming: daily temperature change influences belief in global warming.

    PubMed

    Li, Ye; Johnson, Eric J; Zaval, Lisa

    2011-04-01

    Although people are quite aware of global warming, their beliefs about it may be malleable; specifically, their beliefs may be constructed in response to questions about global warming. Beliefs may reflect irrelevant but salient information, such as the current day's temperature. This replacement of a more complex, less easily accessed judgment with a simple, more accessible one is known as attribute substitution. In three studies, we asked residents of the United States and Australia to report their opinions about global warming and whether the temperature on the day of the study was warmer or cooler than usual. Respondents who thought that day was warmer than usual believed more in and had greater concern about global warming than did respondents who thought that day was colder than usual. They also donated more money to a global-warming charity if they thought that day seemed warmer than usual. We used instrumental variable regression to rule out some alternative explanations.

  16. Committed warming inferred from observations

    NASA Astrophysics Data System (ADS)

    Mauritsen, Thorsten; Pincus, Robert

    2017-09-01

    Due to the lifetime of CO2, the thermal inertia of the oceans, and the temporary impacts of short-lived aerosols and reactive greenhouse gases, the Earth’s climate is not equilibrated with anthropogenic forcing. As a result, even if fossil-fuel emissions were to suddenly cease, some level of committed warming is expected due to past emissions as studied previously using climate models. Here, we provide an observational-based quantification of this committed warming using the instrument record of global-mean warming, recently improved estimates of Earth’s energy imbalance, and estimates of radiative forcing from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Compared with pre-industrial levels, we find a committed warming of 1.5 K (0.9-3.6, 5th-95th percentile) at equilibrium, and of 1.3 K (0.9-2.3) within this century. However, when assuming that ocean carbon uptake cancels remnant greenhouse gas-induced warming on centennial timescales, committed warming is reduced to 1.1 K (0.7-1.8). In the latter case there is a 13% risk that committed warming already exceeds the 1.5 K target set in Paris. Regular updates of these observationally constrained committed warming estimates, although simplistic, can provide transparent guidance as uncertainty regarding transient climate sensitivity inevitably narrows and the understanding of the limitations of the framework is advanced.

  17. Blodgett Forest Warming Experiment 1

    DOE Data Explorer

    Pries, Caitlin Hicks (ORCID:0000000308132211); Castanha, Cristina; Porras, Rachel; Torn, Margaret

    2017-03-24

    Carbon stocks and density fractions from soil pits used to characterize soils of the Blodgett warming experiment as well as gas well CO2, 13C, and 14C data from experimental plots. The experiment consisted of 3 control and heated plot pairs. The heated plots are warmed +4°C above the control from 10 to 100 cm.

  18. Enrichment and cultivation of prokaryotes associated with the sulphate-methane transition zone of diffusion-controlled sediments of Aarhus Bay, Denmark, under heterotrophic conditions.

    PubMed

    Webster, Gordon; Sass, Henrik; Cragg, Barry A; Gorra, Roberta; Knab, Nina J; Green, Christopher J; Mathes, Falko; Fry, John C; Weightman, Andrew J; Parkes, R John

    2011-08-01

    The prokaryotic activity, diversity and culturability of diffusion-controlled Aarhus Bay sediments, including the sulphate-methane transition zone (SMTZ), were determined using a combination of geochemical, molecular (16S rRNA and mcrA genes) and cultivation techniques. The SMTZ had elevated sulphate reduction and anaerobic oxidation of methane, and enhanced cell numbers, but no active methanogenesis. The prokaryotic population was similar to that in other SMTZs, with Deltaproteobacteria, Gammaproteobacteria, JS1, Planctomycetes, Chloroflexi, ANME-1, MBG-D and MCG. Many of these groups were maintained in a heterotrophic (10 mM glucose, acetate), sediment slurry with periodic low sulphate and acetate additions (~2 mM). Other prokaryotes were also enriched including methanogens, Firmicutes, Bacteroidetes, Synergistetes and TM6. This slurry was then inoculated into a matrix of substrate and sulphate concentrations for further selective enrichment. The results demonstrated that important SMTZ bacteria can be maintained in a long-term, anaerobic culture under specific conditions. For example, JS1 grew in a mixed culture with acetate or acetate/glucose plus sulphate. Chloroflexi occurred in a mixed culture, including in the presence of acetate, which had previously not been shown to be a Chloroflexi subphylum I substrate, and was more dominant in a medium with seawater salt concentrations. In contrast, archaeal diversity was reduced and limited to the orders Methanosarcinales and Methanomicrobiales. These results provide information about the physiology of a range of SMTZ prokaryotes and shows that many can be maintained and enriched under heterotrophic conditions, including those with few or no cultivated representatives. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Explaining Warm Coronal Loops

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.; Karpen, Judy T.; Patsourakos, Spiros

    2008-01-01

    One of the great mysteries of coronal physics that has come to light in the last few years is the discovery that warn (- 1 INK) coronal loops are much denser than expected for quasi-static equilibrium. Both the excess densities and relatively long lifetimes of the loops can be explained with bundles of unresolved strands that are heated impulsively to very high temperatures. Since neighboring strands are at different stages of cooling, the composite loop bundle is multi-thermal, with the distribution of temperatures depending on the details of the "nanoflare storm." Emission hotter than 2 MK is predicted, but it is not clear that such emission is always observed. We consider two possible explanations for the existence of over-dense warm loops without corresponding hot emission: (1) loops are bundles of nanoflare heated strands, but a significant fraction of the nanoflare energy takes the form of a nonthermal electron beam rather then direct plasma heating; (2) loops are bundles of strands that undergo thermal nonequilibrium that results when steady heating is sufficiently concentrated near the footpoints. We present numerical hydro simulations of both of these possibilities and explore the observational consequences, including the production of hard X-ray emission and absorption by cool material in the corona.

  20. Recent Warming of Lake Kivu

    PubMed Central

    Katsev, Sergei; Aaberg, Arthur A.; Crowe, Sean A.; Hecky, Robert E.

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient. PMID:25295730

  1. Recent warming of lake Kivu.

    PubMed

    Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  2. Amplified Arctic warming by phytoplankton under greenhouse warming.

    PubMed

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  3. Amplified Arctic warming by phytoplankton under greenhouse warming

    PubMed Central

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-01-01

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes. PMID:25902494

  4. Weird Warm Spot on Exoplanet

    NASA Image and Video Library

    2010-10-19

    This frame from an animation based on NASA Spitzer Space Telescope data illustrates an unexpected warm spot on the surface of a gaseous exoplanet.The bright orange patches are the hottest part of the planet.

  5. Authropogenic Warming in North Alaska?.

    NASA Astrophysics Data System (ADS)

    Michaels, Patrick J.; Sappington, David E.; Stooksbury, David E.

    1988-09-01

    Using permafrost boreholes, Lachenbruch and Marshall recently reported evidence for a 2°-4°C warming in North Alaska occurring at some undetermined time during the last century. Popular accounts suggest their findings are evidence for anthropogenic warming caused by trace gases. Analyses of North Alaskan 1000-500 mb thickness onwards back to 1948 indicate that the warming was prior to that date. Relatively sparse thermometric data for the early twentieth century from Jones et al. are too noisy to support any trend since the data record begins in 1910, or to apply to any subperiod of climatic significance. Any warming detected from the permafrost record therefore occurred before the major emissions of thermally active trace gases.

  6. Gravitational waves from warm inflation

    NASA Astrophysics Data System (ADS)

    Li, Xi-Bin; Wang, He; Zhu, Jian-Yang

    2018-03-01

    A fundamental prediction of inflation is a nearly scale-invariant spectrum of gravitational wave. The features of such a signal provide extremely important information about the physics of the early universe. In this paper, we focus on several topics about warm inflation. First, we discuss the stability property about warm inflation based on nonequilibrium statistical mechanics, which gives more fundamental physical illustrations to thermal property of such model. Then, we calculate the power spectrum of gravitational waves generated during warm inflation, in which there are three components contributing to such spectrum: thermal term, quantum term, and cross term combining the both. We also discuss some interesting properties about these terms and illustrate them in different panels. As a model different from cold inflation, warm inflation model has its individual properties in observational practice, so we finally give a discussion about the observational effect to distinguish it from cold inflation.

  7. Warm mix asphalt : final report.

    DOT National Transportation Integrated Search

    2014-11-01

    The performance of pavements constructed using warm mix asphalt (WMA) technology were : compared to the performance of conventional hot mix asphalt (HMA) pavements placed on the : same project. Measurements of friction resistance, rutting/wear, ride ...

  8. The Great Warming Brian Fagan

    NASA Astrophysics Data System (ADS)

    Fagan, B. M.

    2010-12-01

    The Great Warming is a journey back to the world of a thousand years ago, to the Medieval Warm Period. Five centuries of irregular warming from 800 to 1250 had beneficial effects in Europe and the North Atlantic, but brought prolonged droughts to much of the Americas and lands affected by the South Asian monsoon. The book describes these impacts of warming on medieval European societies, as well as the Norse and the Inuit of the far north, then analyzes the impact of harsh, lengthy droughts on hunting societies in western North America and the Ancestral Pueblo farmers of Chaco Canyon, New Mexico. These peoples reacted to drought by relocating entire communities. The Maya civilization was much more vulnerable that small-scale hunter-gatherer societies and subsistence farmers in North America. Maya rulers created huge water storage facilities, but their civilization partially collapsed under the stress of repeated multiyear droughts, while the Chimu lords of coastal Peru adapted with sophisticated irrigation works. The climatic villain was prolonged, cool La Niñalike conditions in the Pacific, which caused droughts from Venezuela to East Asia, and as far west as East Africa. The Great Warming argues that the warm centuries brought savage drought to much of humanity, from China to Peru. It also argues that drought is one of the most dangerous elements in today’s humanly created global warming, often ignored by preoccupied commentators, but with the potential to cause over a billion people to starve. Finally, I use the book to discuss the issues and problems of communicating multidisciplinary science to the general public.

  9. Warm Up to a Good Sound

    ERIC Educational Resources Information Center

    Tovey, David C.

    1977-01-01

    Most choral directors in schools today have been exposed to a variety of warm-up procedures. Yet, many do not use the warm-up time effectively as possible. Considers the factors appropriate to a warm-up exercise and three basic warm-up categories. (Author/RK)

  10. Active Movement Warm-Up Routines

    ERIC Educational Resources Information Center

    Walter, Teri; Quint, Ashleigh; Fischer, Kim; Kiger, Joy

    2011-01-01

    This article presents warm-ups that are designed to physiologically and psychologically prepare students for vigorous physical activity. An active movement warm-up routine is made up of three parts: (1) active warm-up movement exercises, (2) general preparation, and (3) the energy system. These warm-up routines can be used with all grade levels…

  11. How warm days increase belief in global warming

    NASA Astrophysics Data System (ADS)

    Zaval, Lisa; Keenan, Elizabeth A.; Johnson, Eric J.; Weber, Elke U.

    2014-02-01

    Climate change judgements can depend on whether today seems warmer or colder than usual, termed the local warming effect. Although previous research has demonstrated that this effect occurs, studies have yet to explain why or how temperature abnormalities influence global warming attitudes. A better understanding of the underlying psychology of this effect can help explain the public's reaction to climate change and inform approaches used to communicate the phenomenon. Across five studies, we find evidence of attribute substitution, whereby individuals use less relevant but available information (for example, today's temperature) in place of more diagnostic but less accessible information (for example, global climate change patterns) when making judgements. Moreover, we rule out alternative hypotheses involving climate change labelling and lay mental models. Ultimately, we show that present temperature abnormalities are given undue weight and lead to an overestimation of the frequency of similar past events, thereby increasing belief in and concern for global warming.

  12. Global warming at the summit

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    During the recent summit meeting between Russian President Vladimir Putin and U.S. President Bill Clinton, the two leaders reaffirmed their concerns about global warming and the need to continue to take actions to try to reduce the threat.In a June 4 joint statement, they stressed the need to develop flexibility mechanisms, including international emissions trading, under the Kyoto Protocol to the United Nations Framework Convention on Climate Change. They also noted that initiatives to reduce the risk of greenhouse warming, including specific mechanisms of the Kyoto Protocol, could potentially promote economic growth.

  13. Warming trends: Adapting to nonlinear change

    DOE PAGES

    Jonko, Alexandra K.

    2015-01-28

    As atmospheric carbon dioxide concentrations rise, some regions are expected to warm more than others. Research suggests that whether warming will intensify or slow down over time also depends on location.

  14. Documentation for the Waste Reduction Model (WARM)

    EPA Pesticide Factsheets

    This page describes the WARM documentation files and provides links to all documentation files associated with EPA’s Waste Reduction Model (WARM). The page includes a brief summary of the chapters documenting the greenhouse gas emission and energy factors.

  15. Global warming: Clouds cooled the Earth

    NASA Astrophysics Data System (ADS)

    Mauritsen, Thorsten

    2016-12-01

    The slow instrumental-record warming is consistent with lower-end climate sensitivity. Simulations and observations now show that changing sea surface temperature patterns could have affected cloudiness and thereby dampened the warming.

  16. Waste Reduction Model (WARM) Resources for Students

    EPA Pesticide Factsheets

    This page provides a brief overview of how EPA’s Waste Reduction Model (WARM) can be used by students. The page includes a brief summary of uses of WARM for the audience and links to other resources.

  17. Versions of the Waste Reduction Model (WARM)

    EPA Pesticide Factsheets

    This page provides a brief chronology of changes made to EPA’s Waste Reduction Model (WARM), organized by WARM version number. The page includes brief summaries of changes and updates since the previous version.

  18. Versions of the Waste Reduction Model (WARM)

    EPA Pesticide Factsheets

    2017-02-14

    This page provides a brief chronology of changes made to EPA’s Waste Reduction Model (WARM), organized by WARM version number. The page includes brief summaries of changes and updates since the previous version.

  19. Warm Debris Disks from WISE

    NASA Technical Reports Server (NTRS)

    Padgett, Deborah L.

    2011-01-01

    "The Wide Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky survey in photometric bands at 3.4, 4.6, 12, and 22 microns. We report on a preliminary investigation of main sequence Hipparcos and Tycho catalog stars with 22 micron emission in excess of photospheric levels. This warm excess emission traces material in the circumstellar region likely to host terrestrial planets and is preferentially found in young systems with ages < 1 Gyr. Nearly a hundred new warm debris disk candidates are detected among FGK stars and a similar number of A stars within 120 pc. We are in the process of obtaining spectra to determine spectral types and activity level of these stars and are using HST, Herschel and Keck to characterize the dust, multiplicity, and substellar companions of these systems. In this contribution, we will discuss source selection methods and individual examples from among the WISE debris disk candidates. "

  20. Multidecadal warming of Antarctic waters.

    PubMed

    Schmidtko, Sunke; Heywood, Karen J; Thompson, Andrew F; Aoki, Shigeru

    2014-12-05

    Decadal trends in the properties of seawater adjacent to Antarctica are poorly known, and the mechanisms responsible for such changes are uncertain. Antarctic ice sheet mass loss is largely driven by ice shelf basal melt, which is influenced by ocean-ice interactions and has been correlated with Antarctic Continental Shelf Bottom Water (ASBW) temperature. We document the spatial distribution of long-term large-scale trends in temperature, salinity, and core depth over the Antarctic continental shelf and slope. Warming at the seabed in the Bellingshausen and Amundsen seas is linked to increased heat content and to a shoaling of the mid-depth temperature maximum over the continental slope, allowing warmer, saltier water greater access to the shelf in recent years. Regions of ASBW warming are those exhibiting increased ice shelf melt. Copyright © 2014, American Association for the Advancement of Science.

  1. Lagrangian description of warm plasmas

    NASA Technical Reports Server (NTRS)

    Kim, H.

    1970-01-01

    Efforts are described to extend the averaged Lagrangian method of describing small signal wave propagation and nonlinear wave interaction, developed by earlier workers for cold plasmas, to the more general conditions of warm collisionless plasmas, and to demonstrate particularly the effectiveness of the method in analyzing wave-wave interactions. The theory is developed for both the microscopic description and the hydrodynamic approximation to plasma behavior. First, a microscopic Lagrangian is formulated rigorously, and expanded in terms of perturbations about equilibrium. Two methods are then described for deriving a hydrodynamic Lagrangian. In the first of these, the Lagrangian is obtained by velocity integration of the exact microscopic Lagrangian. In the second, the expanded hydrodynamic Lagrangian is obtained directly from the expanded microscopic Lagrangian. As applications of the microscopic Lagrangian, the small-signal dispersion relations and the coupled mode equations are derived for all possible waves in a warm infinite, weakly inhomogeneous magnetoplasma, and their interactions are examined.

  2. Analysis of data from spacecraft (stratospheric warmings)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The details of the stratospheric warming processes as to time, area, and intensity were established, and the warmings with other terrestrial and solar phenomena occurring at satellite platform altitudes, or observable from satellite platforms, were correlated. Links were sought between the perturbed upper atmosphere (mesosphere and thermosphere) and the stratosphere that might explain stratospheric warmings.

  3. [Narcotic abuse in Jylland. A study based on narcotics and deaths of addicts examined at the Institute of Forensic Medicine, University of Aarhus during the period 1981-1988. 1. Narcotics].

    PubMed

    Kaa, E

    1990-04-09

    On the basis of analysis of 1,879 samples of narcotics confiscated in Jutland and Funen during the period 1981-1988, the individual types of drugs are described as regards occurrence and quality. Cannabis and heroin were found in the illegal market during the entire period. Amphetamine was rarely observed prior to 1985 but comprised half of the illegal drugs examined in 1988. Cocaine was encountered in only 1% of the samples. Designer drugs were not seen. Heroin occurred relatively most frequently in Aarhus, Odense and Esbjerg while amphetamine and cannabis were found in all parts of Jutland and Funen. The samples of heroin and amphetamine varied greatly as regards strength and the types and quantities of cutting agents. The majority of the samples were adulterated and/or diluted with substances such as caffeine and phenazone and the sugars, glucose and lactose.

  4. The Discovery of Global Warming

    NASA Astrophysics Data System (ADS)

    MacCracken, Michael C.

    2004-07-01

    At the beginning of the twentieth century, the prospect of ``global warming'' as a result of human activities was thought to be far off, and in any case, likely to be beneficial. As we begin the twenty-first century, science adviser to the British government, Sir David King, has said that he considers global warming to be the world's most important problem, including terrorism. Yet, dealing with it has become the subject of a contentious international protocol, numerous conferences of international diplomats, and major scientific assessments and research programs. Spencer Weart, who is director of the Center for History of Physics of the American Institute of Physics, has taken on the challenge of explaining how this came to be. In the tradition of the Intergovernmental Panel on Climate Change (IPCC), which was established in 1988 to evaluate and assess the state of global warming science, this book is roughly equivalent to the Technical Summary, in terms of its technical level, being quite readable, but with substantive content about the main lines of evidence. Underpinning this relatively concise presentation, there is a well-developed-and still developing-Web site that, like the detailed chapters of the full IPCC assessment reports, provides vastly more information and linkages to a much wider set of reference materials (see http://www.aip.org/history/climate).

  5. Global warming and obesity: a systematic review.

    PubMed

    An, R; Ji, M; Zhang, S

    2018-02-01

    Global warming and the obesity epidemic are two unprecedented challenges mankind faces today. A literature search was conducted in the PubMed, Web of Science, EBSCO and Scopus for articles published until July 2017 that reported findings on the relationship between global warming and the obesity epidemic. Fifty studies were identified. Topic-wise, articles were classified into four relationships - global warming and the obesity epidemic are correlated because of common drivers (n = 21); global warming influences the obesity epidemic (n = 13); the obesity epidemic influences global warming (n = 13); and global warming and the obesity epidemic influence each other (n = 3). We constructed a conceptual model linking global warming and the obesity epidemic - the fossil fuel economy, population growth and industrialization impact land use and urbanization, motorized transportation and agricultural productivity and consequently influences global warming by excess greenhouse gas emission and the obesity epidemic by nutrition transition and physical inactivity; global warming also directly impacts obesity by food supply/price shock and adaptive thermogenesis, and the obesity epidemic impacts global warming by the elevated energy consumption. Policies that endorse deployment of clean and sustainable energy sources, and urban designs that promote active lifestyles, are likely to alleviate the societal burden of global warming and obesity. © 2017 World Obesity Federation.

  6. Global warming potential of pavements

    NASA Astrophysics Data System (ADS)

    Santero, Nicholas J.; Horvath, Arpad

    2009-09-01

    Pavements comprise an essential and vast infrastructure system supporting our transportation network, yet their impact on the environment is largely unquantified. Previous life-cycle assessments have only included a limited number of the applicable life-cycle components in their analysis. This research expands the current view to include eight different components: materials extraction and production, transportation, onsite equipment, traffic delay, carbonation, lighting, albedo, and rolling resistance. Using global warming potential as the environmental indicator, ranges of potential impact for each component are calculated and compared based on the information uncovered in the existing research. The relative impacts between components are found to be orders of magnitude different in some cases. Context-related factors, such as traffic level and location, are also important elements affecting the impacts of a given component. A strategic method for lowering the global warming potential of a pavement is developed based on the concept that environmental performance is improved most effectively by focusing on components with high impact potentials. This system takes advantage of the fact that small changes in high-impact components will have more effect than large changes in low-impact components.

  7. Accelerated increase in the Arctic tropospheric warming events surpassing stratospheric warming events during winter: Accelerated Increase in Arctic Warming

    SciTech Connect

    Wang, S. -Y. Simon; Lin, Yen-Heng; Lee, Ming-Ying

    In January 2016, a robust reversal of the Arctic Oscillation (AO) took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March-April. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as well as those documented in previous studies. Our results indicate a recent and accelerated increasemore » in the tropospheric warming type versus a flat trend in stratospheric warming type. Given that tropospheric warming events occur twice as fast than the stratospheric warming type, the noted increase in the former implies further intensification in midlatitude winter weather extremes similar to those experienced in early 2016. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated impact on the anomalously cold Siberia.« less

  8. Arctic Security in a Warming World

    DTIC Science & Technology

    2010-03-01

    2009). 3 Map based on: “Northwest Passage - Map of Arctic Sea Ice: Global Warming is Opening Canada’s Arctic” http://geology.com/articles/northwest...War College, February 17, 2009) 3. 5 Scott G. Borgerson, “Arctic Meltdown: the Economic and Security Implications of Global Warming ”, Foreign Affairs...april/kirkpatrick.pdf (accessed February 10, 2010). 45 Thomas R. McCarthy, Jr., Global Warming Threatens National Interests in the Arctic, Strategy

  9. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    NASA Astrophysics Data System (ADS)

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  10. Daytime warming has stronger negative effects on soil nematodes than night-time warming.

    PubMed

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-07

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  11. Daytime warming has stronger negative effects on soil nematodes than night-time warming.

    PubMed

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-20

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  12. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    PubMed Central

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-01-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming. PMID:28317914

  13. Extended brief intervention to address alcohol misuse in people with mild to moderate intellectual disabilities living in the community (EBI-ID): study protocol for a randomised controlled trial.

    PubMed

    Kouimtsidis, Christos; Fodor-Wynne, Lucy; Scior, Katrina; Hunter, Rachael; Baio, Gianluca; Pezzoni, Vittoria; Hassiotis, Angela

    2015-03-25

    There is some evidence that people with intellectual disabilities who live in the community are exposed to the same risks of alcohol use as the rest of the population. Various interventions have been evaluated in the general population to tackle hazardous or harmful drinking and alcohol dependence, but the literature evaluating interventions is very limited regarding intellectual disabilities. The National Institute for Health and Clinical Excellence recommends that brief and extended brief interventions be used to help young persons and adults who have screened as positive for hazardous and harmful drinking. The objective of this trial is to investigate the feasibility of adapting and delivering an extended brief intervention (EBI) to persons with mild/moderate intellectual disability who live in the community and whose level of drinking is harmful or hazardous. The study has three stages, which include the adaptation of the Extended Brief Intervention (EBI) for people with intellectual disability, a single blind, randomised controlled trial of an individual Extended Brief Intervention to test the feasibility of the intervention, and a qualitative study that will assess the perceived acceptability and usefulness of the intervention. Fifty participants in total will be recruited from community intellectual disability services and social care or third sector organisations. The main outcome is a reduction in alcohol consumption measured by the Alcohol Use Disorders Identification Test. Alcohol misuse is a relatively under-researched mental health problem in people with intellectual disabilities. Therefore, the study addresses both diagnostic issues and the delivery of a simple first stage intervention, which is available to the population of average intelligence and young persons in particular. The findings from the study will guide the preparation of a large-scale study to test whether this treatment is clinically and cost-effective in this population. ISRCTN

  14. Warming will alter water resources

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    Drastic changes in water resources in all regions of the United States will be the most severe effect of global warming, according to a study reported January 16 at the meeting of the American Association for the Advancement of Science in San Francisco. However, said the scientists on the AAAS panel on climate and U.S. water resources, strong governmental involvement can greatly reduce the water supply problems climate change will bring.The natural variability of present and future climate was the starting point for the AAAS study. The panel pointed out that it is difficult to identify the direction of potential change for many of the possible consequences of the greenhouse effect, partly because recent history provides little evidence of strong responses to such changes.

  15. Liquid Cooling/Warming Garment

    NASA Technical Reports Server (NTRS)

    Koscheyev, Victor S.; Leon, Gloria R.; Dancisak, Michael J.

    2010-01-01

    The NASA liquid cooling/ventilating garment (LCVG) currently in use was developed over 40 years ago. With the commencement of a greater number of extra-vehicular activity (EVA) procedures with the construction of the International Space Station, problems of astronaut comfort, as well as the reduction of the consumption of energy, became more salient. A shortened liquid cooling/warming garment (SLCWG) has been developed based on physiological principles comparing the efficacy of heat transfer of different body zones; the capability of blood to deliver heat; individual muscle and fat body composition as a basis for individual thermal profiles to customize the zonal sections of the garment; and the development of shunts to minimize or redirect the cooling/warming loop for different environmental conditions, physical activity levels, and emergency situations. The SLCWG has been designed and completed, based on extensive testing in rest, exercise, and antiorthostatic conditions. It is more energy efficient than the LCVG currently used by NASA. The total length of tubing in the SLCWG is approximately 35 percent less and the weight decreased by 20 percent compared to the LCVG. The novel features of the innovation are: 1. The efficiency of the SLCWG to maintain thermal status under extreme changes in body surface temperatures while using significantly less tubing than the LCVG. 2. The construction of the garment based on physiological principles of heat transfer. 3. The identification of the body areas that are most efficient in heat transfer. 4. The inclusion of a hood as part of the garment. 5. The lesser consumption of energy.

  16. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.

    PubMed

    Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B

    2015-06-01

    Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall). © 2015 John Wiley & Sons Ltd.

  17. Efficient Warm-ups: Creating a Warm-up That Works.

    ERIC Educational Resources Information Center

    Lauffenburger, Sandra Kay

    1992-01-01

    Proper warm-up is important for any activity, but designing an effective warm-up can be time consuming. An alternative approach is to take a cue from Laban Movement Analysis (LMA) and consider movement design from the perspective of space and planes of motion. Efficient warm-up exercises using LMA are described. (SM)

  18. Warming: mechanism and latitude dependence

    NASA Astrophysics Data System (ADS)

    Barkin, Yury

    2010-05-01

    Introduction. In the work it is shown, that in present warming of climate of the Earth and in style of its display a fundamental role the mechanism of the forced swing and relative oscillations of eccentric core of the Earth and its mantle plays. Relative displacements of the centers of mass of the core and the mantle are dictated by the features of orbital motions of bodies of solar system and nonineriality of the Earth reference frame (or ot the mantle) at the motion of the Earth with respect to a baricenter of solar system and at rotation of the planet. As a result in relative translational displacements of the core and the mantle the frequencies characteristic for orbital motion of all bodies of solar system, and also their combination are shown. Methods of a space geodesy, gravimetry, geophysics, etc. unequivocally and clearly confirm phenomenon of drift of the center of mass of the Earth in define northern direction. This drift is characterized by the significant velocity in about 5 mm/yr. The unique opportunity of its explanation consists in the natural assumption of existence of the unidirectional relative displacement (drift) the center of mass of the core and the center of mass of the mantle of the Earth. And this displacement (at superfluous mass of the core in 16.7 % from the mass of full the Earth) is characterized still more significant velocity in 2.6 cm/yr and occurs on our geodynamic studies in a direction to Taimyr peninsula. The dynamic explanation to century drift for today does not exist. It is possible to note, however, that data of observations of last years, indirectly testifying that similar drifts of the centers of mass in present epoch occur on other bodies of Solar system have been obtain: the Sun, Mars, the Titan, Enceladus, the Neptune, etc. We connect with mentioned phenomena the observed secular variations of natural processes on this celestial bodies. I.e. it is possible to assume, that observable eccentric positions of the centers

  19. Warming of Water in a Glass

    ERIC Educational Resources Information Center

    Paulins, Paulis; Krauze, Armands; Ozolinsh, Maris; Muiznieks, Andris

    2016-01-01

    The article focuses on the process of water warming from 0 °C in a glass. An experiment is performed that analyzes the temperature in the top and bottom layers of water during warming. The experimental equipment is very simple and can be easily set up using devices available in schools. The temperature curves obtained from the experiment help us…

  20. Global Warming: Understanding and Teaching the Forecast.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1995-01-01

    A resource for teaching about the consequences of global warming. Discusses feedback from the temperature increase, changes in the global precipitation pattern, effects on agriculture, weather extremes, effects on forests, effects on biodiversity, effects on sea levels, and actions which will help the global community cope with global warming. (LZ)

  1. Global Warming: How Much and Why?

    ERIC Educational Resources Information Center

    Lanouette, William

    1990-01-01

    Summarizes the history of the study of global warming and includes a discussion of the role of gases, like carbon dioxide, methane, and chlorofluorocarbon (CFC). Discusses modern research on the global warming, including computer modelling and the super-greenhouse effect. (YP)

  2. Global Warming: Understanding and Teaching the Forecast.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1994-01-01

    A resource for the teaching of the history and causes of climate change. Discusses evidence of climate change from the Viking era, early ice ages, the most recent ice age, natural causes of climate change, human-made causes of climate change, projections of global warming, and unequal warming. (LZ)

  3. Greenhouse warming and the tropical water budget

    NASA Technical Reports Server (NTRS)

    Betts, Alan K.

    1990-01-01

    The present work takes issue with some of the theses of Lindzen's (1990) work on global warming, arguing in particular that Lindzen's work is hampered by the use of oversimplified models. Lindzen then presents a detailed reply to these arguments, emphasizing the fundamental importance of the upper tropospheric water-vapor budget to the question of global warming.

  4. Global Warming: Lessons from Ozone Depletion

    ERIC Educational Resources Information Center

    Hobson, Art

    2010-01-01

    My teaching and textbook have always covered many physics-related social issues, including stratospheric ozone depletion and global warming. The ozone saga is an inspiring good-news story that's instructive for solving the similar but bigger problem of global warming. Thus, as soon as students in my physics literacy course at the University of…

  5. Turkish Students' Ideas about Global Warming

    ERIC Educational Resources Information Center

    Kilinc, Ahmet; Stanisstreet, Martin; Boyes, Edward

    2008-01-01

    A questionnaire was used to explore the prevalence of ideas about global warming in Year 10 (age 15-16 years) school students in Turkey. The frequencies of individual scientific ideas and misconceptions about the causes, consequences and "cures" of global warming were identified. In addition, several general findings emerged from this…

  6. Exploring the Sociopolitical Dimensions of Global Warming

    ERIC Educational Resources Information Center

    Sadler, Troy D.; Klosterman, Michelle L.

    2009-01-01

    The authors present an activity to help high school students conceptualize the sociopolitical complexity of global warming through an exploration of varied perspectives on the issue. They argue that socioscientific issues such as global warming present important contexts for learning science and that the social and political dimensions of these…

  7. National Security Implications of Global Warming Policy

    DTIC Science & Technology

    2010-03-01

    Although numerous historical examples demonstrate how actual climate change has contributed to the rise and fall of powers, global warming , in and of...become convinced that global warming is universally bad and humans are the primary cause, political leaders may develop ill-advised policies restricting

  8. Warm-up: A Psychophysiological Phenomenon.

    ERIC Educational Resources Information Center

    Lopez, Richard; Dausman, Cindy

    1981-01-01

    The effectiveness of warm-up as an aid to athletic performance is related to an interaction of both psychological and physiological factors. Benefits of warm-up include an increase in blood and muscle temperatures and an increased muscular endurance. (JN)

  9. Urban warming reduces aboveground carbon storage.

    PubMed

    Meineke, Emily; Youngsteadt, Elsa; Dunn, Robert R; Frank, Steven D

    2016-10-12

    A substantial amount of global carbon is stored in mature trees. However, no experiments to date test how warming affects mature tree carbon storage. Using a unique, citywide, factorial experiment, we investigated how warming and insect herbivory affected physiological function and carbon sequestration (carbon stored per year) of mature trees. Urban warming increased herbivorous arthropod abundance on trees, but these herbivores had negligible effects on tree carbon sequestration. Instead, urban warming was associated with an estimated 12% loss of carbon sequestration, in part because photosynthesis was reduced at hotter sites. Ecosystem service assessments that do not consider urban conditions may overestimate urban tree carbon storage. Because urban and global warming are becoming more intense, our results suggest that urban trees will sequester even less carbon in the future. © 2016 The Author(s).

  10. Mixing processes following the final stratospheric warming

    NASA Technical Reports Server (NTRS)

    Hess, Peter G.

    1991-01-01

    An investigation is made of the dynamics responsible for the mixing and dissolution of the polar vortex during the final stratospheric warmings. The dynamics and transport during a Northern Hemisphere final stratospheric warming are simulated via a GCM and an associated offline N2O transport model. The results are compared with those obtained from LIMS data for the final warming of 1979, with emphasis on the potential vorticity evolution in the two datasets, the modeled N2O evolution, and the observed O3 evolution. Following each warming, the remnants of the originally intact vortex are found to gradually homogenize with the atmosphere at large. Two processes leading to this homogenization are identified following the final warmings, namely, the potential vorticity field becomes decorrelated from that of the chemical tracer, and the vortex remnants begin to tilt dramatically in a vertical direction.

  11. Delayed warming hiatus over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    An, Wenling; Hou, Shugui; Hu, Yongyun; Wu, Shuangye

    2017-03-01

    A reduction in the warming rate for the global surface temperature since the late 1990s has attracted much attention and caused a great deal of controversy. During the same time period, however, most previous studies have reported enhanced warming over the Tibetan Plateau (TP). In this study we further examined the temperature trend of the TP and surrounding areas based on the homogenized temperature records for the period 1980-2014, we found that for the TP regions lower than 4000 m the warming rate has started to slow down since the late 1990s, a similar pattern consistent with the whole China and the global temperature trend. However, for the TP regions higher than 4000 m, this reduction in warming rate did not occur until the mid-2000s. This delayed warming hiatus could be related to changes in regional radiative, energy, and land surface processes in recent years.

  12. Warm Disks from Giant Impacts

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    In the process of searching for exoplanetary systems, weve discovered tens of debris disks close around distant stars that are especially bright in infrared wavelengths. New research suggests that we might be looking at the late stages of terrestrial planet formation in these systems.Forming Terrestrial PlanetsAccording to the widely-accepted formation model for our solar-system, protoplanets the size of Mars formed within a protoplanetary disk around our Sun. Eventually, the depletion of the gas in the disk led the orbits of these protoplanets to become chaotically unstable. Finally, in the giant impact stage, many of the protoplanets collided with each other ultimately leading to the formation of the terrestrial planets and their moons as we know them today.If giant impact stages occur in exoplanetary systems, too leading to the formation of terrestrial exoplanets how would we detect this process? According to a study led by Hidenori Genda of the Tokyo Institute of Technology, we might be already be witnessing this stage in observations of warm debris disks around other stars. To test this, Genda and collaborators model giant impact stages and determine what we would expect to see from a system undergoing this violent evolution.Modeling CollisionsSnapshots of a giant impact in one of the authors simulations. The collision causes roughly 0.05 Earth masses of protoplanetary material to be ejected from the system. Click for a closer look! [Genda et al. 2015]The collaborators run a series of simulations evolving protoplanetary bodies in a solar system. The simulations begin 10 Myr into the lifetime of the solar system, i.e., after the gas from the protoplanetary disk has had time to be cleared and the protoplanetary orbits begin to destabilize. The simulations end when the protoplanets are done smashing into each other and have again settled into stable orbits, typically after ~100 Myr.The authors find that, over an average giant impact stage, the total amount of

  13. Predator contributions to belowground responses to warming

    SciTech Connect

    Maran, A. M.; Pelini, S. L.

    Identifying the factors that control soil CO 2 emissions will improve our ability to predict the magnitude of climate change–soil ecosystem feedbacks. Despite the integral role of invertebrates in belowground systems, they are excluded from climate change models. Soil invertebrates have consumptive and nonconsumptive effects on microbes, whose respiration accounts for nearly half of soil CO 2 emissions. By altering the behavior and abundance of invertebrates that interact with microbes, invertebrate predators may have indirect effects on soil respiration. We examined the effects of a generalist arthropod predator on belowground respiration under different warming scenarios. Based on research suggesting invertebratesmore » may mediate soil CO 2 emission responses to warming, we predicted that predator presence would result in increased emissions by negatively affecting these invertebrates. We altered the presence of wolf spiders ( Pardosa spp.) in mesocosms containing a forest floor community. To simulate warming, we placed mesocosms of each treatment in ten open-top warming chambers ranging from 1.5° to 5.5°C above ambient at Harvard Forest, Massachusetts, USA. As expected, CO 2 emissions increased under warming and we found an interactive effect of predator presence and warming, although the effect was not consistent through time. The interaction between predator presence and warming was the inverse of our predictions: Mesocosms with predators had lower respiration at higher levels of warming than those without predators. Carbon dioxide emissions were not significantly associated with microbial biomass. Here, we did not find evidence of consumptive effects of predators on the invertebrate community, suggesting that predator presence mediates response of microbial respiration to warming through nonconsumptive means. In our system, we found a significant interaction between warming and predator presence that warrants further research into mechanism and

  14. Predator contributions to belowground responses to warming

    DOE PAGES

    Maran, A. M.; Pelini, S. L.

    2016-09-26

    Identifying the factors that control soil CO 2 emissions will improve our ability to predict the magnitude of climate change–soil ecosystem feedbacks. Despite the integral role of invertebrates in belowground systems, they are excluded from climate change models. Soil invertebrates have consumptive and nonconsumptive effects on microbes, whose respiration accounts for nearly half of soil CO 2 emissions. By altering the behavior and abundance of invertebrates that interact with microbes, invertebrate predators may have indirect effects on soil respiration. We examined the effects of a generalist arthropod predator on belowground respiration under different warming scenarios. Based on research suggesting invertebratesmore » may mediate soil CO 2 emission responses to warming, we predicted that predator presence would result in increased emissions by negatively affecting these invertebrates. We altered the presence of wolf spiders ( Pardosa spp.) in mesocosms containing a forest floor community. To simulate warming, we placed mesocosms of each treatment in ten open-top warming chambers ranging from 1.5° to 5.5°C above ambient at Harvard Forest, Massachusetts, USA. As expected, CO 2 emissions increased under warming and we found an interactive effect of predator presence and warming, although the effect was not consistent through time. The interaction between predator presence and warming was the inverse of our predictions: Mesocosms with predators had lower respiration at higher levels of warming than those without predators. Carbon dioxide emissions were not significantly associated with microbial biomass. Here, we did not find evidence of consumptive effects of predators on the invertebrate community, suggesting that predator presence mediates response of microbial respiration to warming through nonconsumptive means. In our system, we found a significant interaction between warming and predator presence that warrants further research into mechanism and

  15. Warm up I: potential mechanisms and the effects of passive warm up on exercise performance.

    PubMed

    Bishop, David

    2003-01-01

    Despite limited scientific evidence supporting their effectiveness, warm-up routines prior to exercise are a well-accepted practice. The majority of the effects of warm up have been attributed to temperature-related mechanisms (e.g. decreased stiffness, increased nerve-conduction rate, altered force-velocity relationship, increased anaerobic energy provision and increased thermoregulatory strain), although non-temperature-related mechanisms have also been proposed (e.g. effects of acidaemia, elevation of baseline oxygen consumption (.VO(2)) and increased postactivation potentiation). It has also been hypothesised that warm up may have a number of psychological effects (e.g. increased preparedness). Warm-up techniques can be broadly classified into two major categories: passive warm up or active warm up. Passive warm up involves raising muscle or core temperature by some external means, while active warm up utilises exercise. Passive heating allows one to obtain the increase in muscle or core temperature achieved by active warm up without depleting energy substrates. Passive warm up, although not practical for most athletes, also allows one to test the hypothesis that many of the performance changes associated with active warm up can be largely attributed to temperature-related mechanisms.

  16. Some economics of global warming

    SciTech Connect

    Schelling, T.C.

    1992-03-01

    The greenhouse effect itself is simple enough to understand and is not in any real dispute. What is in dispute is its magnitude over the coming century, its translation into changes in climates around the globe, and the impacts of those climate changes on human welfare and the natural environment. These are beyond the professional understanding of any single person. The sciences involved are too numerous and diverse. Demography, economics, biology, and the technology sciences are needed to project emissions; atmospheric chemistry, oceanography, biology, and meteorology are needed to translate emissions into climates; biology, agronomy, health sciences, economics, sociology, andmore » glaciology are needed to identify and assess impacts on human societies and natural ecosystems. And those are not all. There are expert judgments on large pieces of the subject, but no single person clothed in this panoply of disciplines has shown up or is likely to. This article makes an attempt to forecast the economic and social consequences of global warming due to anthropogenic greenhouse gases, and attempting to prevent it.« less

  17. Global warming and reproductive health.

    PubMed

    Potts, Malcolm; Henderson, Courtney E

    2012-10-01

    The largest absolute numbers of maternal deaths occur among the 40-50 million women who deliver annually without a skilled birth attendant. Most of these deaths occur in countries with a total fertility rate of greater than 4. The combination of global warming and rapid population growth in the Sahel and parts of the Middle East poses a serious threat to reproductive health and to food security. Poverty, lack of resources, and rapid population growth make it unlikely that most women in these countries will have access to skilled birth attendants or emergency obstetric care in the foreseeable future. Three strategies can be implemented to improve women's health and reproductive rights in high-fertility, low-resource settings: (1) make family planning accessible and remove non-evidenced-based barriers to contraception; (2) scale up community distribution of misoprostol for prevention of postpartum hemorrhage and, where it is legal, for medical abortion; and (3) eliminate child marriage and invest in girls and young women, thereby reducing early childbearing. Copyright © 2012 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Warm storage for arc magmas

    NASA Astrophysics Data System (ADS)

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K.; Harrison, T. Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-01

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the “cold storage” model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  19. Warm storage for arc magmas.

    PubMed

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K; Harrison, T Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-06

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the "cold storage" model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  20. Warm storage for arc magmas

    PubMed Central

    Barboni, Mélanie; Schmitt, Axel K.; Harrison, T. Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-01-01

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the “cold storage” model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes. PMID:27799558

  1. Global metabolic impacts of recent climate warming.

    PubMed

    Dillon, Michael E; Wang, George; Huey, Raymond B

    2010-10-07

    Documented shifts in geographical ranges, seasonal phenology, community interactions, genetics and extinctions have been attributed to recent global warming. Many such biotic shifts have been detected at mid- to high latitudes in the Northern Hemisphere-a latitudinal pattern that is expected because warming is fastest in these regions. In contrast, shifts in tropical regions are expected to be less marked because warming is less pronounced there. However, biotic impacts of warming are mediated through physiology, and metabolic rate, which is a fundamental measure of physiological activity and ecological impact, increases exponentially rather than linearly with temperature in ectotherms. Therefore, tropical ectotherms (with warm baseline temperatures) should experience larger absolute shifts in metabolic rate than the magnitude of tropical temperature change itself would suggest, but the impact of climate warming on metabolic rate has never been quantified on a global scale. Here we show that estimated changes in terrestrial metabolic rates in the tropics are large, are equivalent in magnitude to those in the north temperate-zone regions, and are in fact far greater than those in the Arctic, even though tropical temperature change has been relatively small. Because of temperature's nonlinear effects on metabolism, tropical organisms, which constitute much of Earth's biodiversity, should be profoundly affected by recent and projected climate warming.

  2. Climatic warming destabilizes forest ant communities

    PubMed Central

    Diamond, Sarah E.; Nichols, Lauren M.; Pelini, Shannon L.; Penick, Clint A.; Barber, Grace W.; Cahan, Sara Helms; Dunn, Robert R.; Ellison, Aaron M.; Sanders, Nathan J.; Gotelli, Nicholas J.

    2016-01-01

    How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable. PMID:27819044

  3. Climatic warming destabilizes forest ant communities.

    PubMed

    Diamond, Sarah E; Nichols, Lauren M; Pelini, Shannon L; Penick, Clint A; Barber, Grace W; Cahan, Sara Helms; Dunn, Robert R; Ellison, Aaron M; Sanders, Nathan J; Gotelli, Nicholas J

    2016-10-01

    How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable.

  4. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Tim

    2017-02-01

    Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.

  5. Global Warming Estimation from MSU

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, Robert; Yoo, Jung-Moon

    1998-01-01

    Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz) from sequential, sun-synchronous, polar-orbiting NOAA satellites contain small systematic errors. Some of these errors are time-dependent and some are time-independent. Small errors in Ch 2 data of successive satellites arise from calibration differences. Also, successive NOAA satellites tend to have different Local Equatorial Crossing Times (LECT), which introduce differences in Ch 2 data due to the diurnal cycle. These two sources of systematic error are largely time independent. However, because of atmospheric drag, there can be a drift in the LECT of a given satellite, which introduces time-dependent systematic errors. One of these errors is due to the progressive chance in the diurnal cycle and the other is due to associated chances in instrument heating by the sun. In order to infer global temperature trend from the these MSU data, we have eliminated explicitly the time-independent systematic errors. Both of the time-dependent errors cannot be assessed from each satellite. For this reason, their cumulative effect on the global temperature trend is evaluated implicitly. Christy et al. (1998) (CSL). based on their method of analysis of the MSU Ch 2 data, infer a global temperature cooling trend (-0.046 K per decade) from 1979 to 1997, although their near nadir measurements yield near zero trend (0.003 K/decade). Utilising an independent method of analysis, we infer global temperature warmed by 0.12 +/- 0.06 C per decade from the observations of the MSU Ch 2 during the period 1980 to 1997.

  6. Reconciling controversies about the 'global warming hiatus'.

    PubMed

    Medhaug, Iselin; Stolpe, Martin B; Fischer, Erich M; Knutti, Reto

    2017-05-03

    Between about 1998 and 2012, a time that coincided with political negotiations for preventing climate change, the surface of Earth seemed hardly to warm. This phenomenon, often termed the 'global warming hiatus', caused doubt in the public mind about how well anthropogenic climate change and natural variability are understood. Here we show that apparently contradictory conclusions stem from different definitions of 'hiatus' and from different datasets. A combination of changes in forcing, uptake of heat by the oceans, natural variability and incomplete observational coverage reconciles models and data. Combined with stronger recent warming trends in newer datasets, we are now more confident than ever that human influence is dominant in long-term warming.

  7. A review of warm mix asphalt.

    DOT National Transportation Integrated Search

    2008-12-01

    Warm Mix Asphalt (WMA) technology, recently developed in Europe, is gaining strong interest in the US. By : lowering the viscosity of asphalt binder and/or increasing the workability of mixture using minimal heat, WMA : technology allows the mixing, ...

  8. Teaching cases on transportation and global warming.

    DOT National Transportation Integrated Search

    2013-03-01

    This project developed a series of three teaching cases that explore the implications of global : warming for transportation policy in the United States. The cases are intended to be used in : graduate and undergraduate courses on transportation poli...

  9. What happens during vocal warm-up?

    PubMed

    Elliot, N; Sundberg, J; Gramming, P

    1995-03-01

    Most singers prefer to warm up their voices before performing. Although the subjective effect is often considerable, the underlying physiological effects are largely unknown. Because warm-up tends to increase blood flow in muscles, it seems likely that vocal warm-up might induce decreased viscosity in the vocal folds. According to the theory of vocal-fold vibration, such a decrease should lead to a lower phonation threshold pressure. In this investigation the effect of vocal warm-up on the phonation threshold pressure was examined in a group of male and female singers. The effect varied considerably between subjects, presumably because the vocal-fold viscosity was not a dominating factor for the phonation-threshold pressure.

  10. Observational constraints on monomial warm inflation

    SciTech Connect

    Visinelli, Luca, E-mail: Luca.Visinelli@studio.unibo.it

    Warm inflation is, as of today, one of the best motivated mechanisms for explaining an early inflationary period. In this paper, we derive and analyze the current bounds on warm inflation with a monomial potential U ∝ φ {sup p} , using the constraints from the PLANCK mission. In particular, we discuss the parameter space of the tensor-to-scalar ratio r and the potential coupling λ of the monomial warm inflation in terms of the number of e-folds. We obtain that the theoretical tensor-to-scalar ratio r ∼ 10{sup −8} is much smaller than the current observational constrain r ∼< 0.12, despitemore » a relatively large value of the field excursion Δ φ ∼ 0.1 M {sub Pl}. Warm inflation thus eludes the Lyth bound set on the tensor-to-scalar ratio by the field excursion.« less

  11. Global temperatures and the global warming ``debate''

    NASA Astrophysics Data System (ADS)

    Aubrecht, Gordon

    2009-04-01

    Many ordinary citizens listen to pronouncements on talk radio casting doubt on anthropogenic global warming. Some op-ed columnists likewise cast doubts, and are read by credulous citizens. For example, on 8 March 2009, the Boston Globe published a column by Jeff Jacoby, ``Where's global warming?'' According to Jacoby, ``But it isn't such hints of a planetary warming trend that have been piling up in profusion lately. Just the opposite.'' He goes on to write, ``the science of climate change is not nearly as important as the religion of climate change,'' and blamed Al Gore for getting his mistaken views accepted. George Will at the Washington Post also expressed denial. As a result, 44% of U.S. voters, according to the January 19 2009 Rasmussen Report, blame long-term planetary trends for global warming, not human beings. Is there global cooling, as skeptics claim? We examine the temperature record.

  12. The Tropical Western Hemisphere Warm Pool

    NASA Astrophysics Data System (ADS)

    Wang, C.; Enfield, D. B.

    2002-12-01

    The paper describes and examines variability of the tropical Western Hemisphere warm pool (WHWP) of water warmer than 28.5oC. The WHWP is the second-largest tropical warm pool on Earth. Unlike the Eastern Hemisphere warm pool in the western Pacific, which straddles the equator, the WHWP is entirely north of the equator. At various stages of development the WHWP extends over parts of the eastern North Pacific, the Gulf of Mexico, the Caribbean, and the western tropical North Atlantic. It has a large seasonal cycle and its interannual fluctuations of area and intensity are significant. Surface heat fluxes warm the WHWP through the boreal spring to an annual maximum of SST and WHWP area in the late summer/early fall, associated with eastern North Pacific and Atlantic hurricane activities and rainfall from northern South America to the southern tier of the United States. Observations suggest that a positive ocean-atmosphere feedback operating through longwave radiation and associated cloudiness seems to operate in the WHWP. During winter preceding large warm pool, there is an alteration of the Walker and Hadley circulation cells that serves as a "tropospheric bridge" for transferring Pacific ENSO effects to the Atlantic sector and inducing initial warming of warm pool. Associated with the warm SST anomalies is a decrease in sea level pressure anomalies and an anomalous increase in atmospheric convection and cloudiness. The increase in convective activity and cloudiness results in less net longwave radiation loss from the sea surface, which then reinforces SST anomalies.

  13. Scaling Potential Evapotranspiration with Greenhouse Warming (Invited)

    NASA Astrophysics Data System (ADS)

    Scheff, J.; Frierson, D. M.

    2013-12-01

    Potential evapotranspiration (PET) is a supply-independent measure of the evaporative demand of a terrestrial climate, of basic importance in climatology, hydrology, and agriculture. Future increases in PET from greenhouse warming are often cited as key drivers of global trends toward drought and aridity. The present work computes recent and business-as-usual-future Penman-Monteith (i.e. physically-based) PET fields at 3-hourly resolution in 14 modern global climate models. The %-change in local annual-mean PET over the upcoming century is almost always positive, modally low double-digit in magnitude, usually increasing with latitude, yet quite divergent between models. These patterns are understood as follows. In every model, the global field of PET %-change is found to be dominated by the direct, positive effects of constant-relative-humidity warming (via increasing vapor pressure deficit and increasing Clausius-Clapeyron slope.) This direct-warming term very accurately scales as the PET-weighted (warm-season daytime) local warming, times 5-6% per degree (related to the Clausius-Clapeyron equation), times an analytic factor ranging from about 0.25 in warm climates to 0.75 in cold climates, plus a small correction. With warming of several degrees, this product is of low double-digit magnitude, and the strong temperature dependence gives the latitude dependence. Similarly, the inter-model spread in the amount of warming gives most of the spread in this term. Additional spread in the total change comes from strong disagreement on radiation, relative-humidity, and windspeed changes, which make smaller yet substantial contributions to the full PET %-change fields.

  14. Global Warming, Africa and National Security

    DTIC Science & Technology

    2008-01-15

    African populations. This includes awareness from a global perspective in line with The Army Strategy for the Environment, the UN’s Intergovernmental...2 attention. At the time, computer models did not indicate a significant issue with global warming suggesting only a modest increase of 2°C9...projected climate changes. Current Science The science surrounding climate change and global warming was, until recently, a point of

  15. Could cirrus clouds have warmed early Mars?

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses M.; Kasting, James F.

    2017-01-01

    The presence of the ancient valley networks on Mars indicates that the climate at 3.8 Ga was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the mechanism for producing this warming continues to be debated. One hypothesis is that Mars could have been kept warm by global cirrus cloud decks in a CO2sbnd H2O atmosphere containing at least 0.25 bar of CO2 (Urata and Toon, 2013). Initial warming from some other process, e.g., impacts, would be required to make this model work. Those results were generated using the CAM 3-D global climate model. Here, we use a single-column radioactive-convective climate model to further investigate the cirrus cloud warming hypothesis. Our calculations indicate that cirrus cloud decks could have produced global mean surface temperatures above freezing, but only if cirrus cloud cover approaches ∼75 - 100% and if other cloud properties (e.g., height, optical depth, particle size) are chosen favorably. However, at more realistic cirrus cloud fractions, or if cloud parameters are not optimal, cirrus clouds do not provide the necessary warming, suggesting that other greenhouse mechanisms are needed.

  16. Warming shifts ‘worming': effects of experimental warming on invasive earthworms in northern North America

    PubMed Central

    Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A.; Rice, Karen; Rich, Roy; Reich, Peter B.

    2014-01-01

    Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration. PMID:25363633

  17. Warming shifts 'worming': effects of experimental warming on invasive earthworms in northern North America.

    PubMed

    Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A; Rice, Karen; Rich, Roy; Reich, Peter B

    2014-11-03

    Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration.

  18. Accelerated Increase in the Arctic Tropospheric Warming Events Surpassing StratosphericWarming Events During Winter

    SciTech Connect

    Wang, Simon; Lin, Yen-Heng; Lee, Ming-Ying

    2017-04-22

    In January 2016, a robust reversal of the Arctic Oscillation (AO) took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March-April. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as well as those documented in previous studies. Our results indicate a recent and accelerated increasemore » in the tropospheric warming type versus a flat trend in stratospheric warming type. Given that tropospheric warming events occur twice as fast than the stratospheric warming type, the noted increase in the former implies further intensification in midlatitude winter weather extremes similar to those experienced in early 2016. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated impact on the anomalously cold Siberia.« less

  19. Accelerated increase in the Arctic tropospheric warming events surpassing stratospheric warming events during winter

    NASA Astrophysics Data System (ADS)

    Wang, S.-Y. Simon; Lin, Yen-Heng; Lee, Ming-Ying; Yoon, Jin-Ho; Meyer, Jonathan D. D.; Rasch, Philip J.

    2017-04-01

    In January 2016, a robust reversal of the Arctic Oscillation took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as documented in previous studies. The analysis indicates a recent and seemingly accelerated increase in the tropospheric warming type versus a flat trend in stratospheric warming type. The shorter duration and more rapid transition of tropospheric warming events may connect to the documented increase in midlatitude weather extremes, more so than the route of stratospheric warming type. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated remarkable strengthening of the cold Siberian high manifest in 2016.

  20. The importance of warm season warming to western U.S. streamflow changes

    USGS Publications Warehouse

    Das, T.; Pierce, D.W.; Cayan, D.R.; Vano, J.A.; Lettenmaier, D.P.

    2011-01-01

    Warm season climate warming will be a key driver of annual streamflow changes in four major river basins of the western U.S., as shown by hydrological model simulations using fixed precipitation and idealized seasonal temperature changes based on climate projections with SRES A2 forcing. Warm season (April-September) warming reduces streamflow throughout the year; streamflow declines both immediately and in the subsequent cool season. Cool season (October-March) warming, by contrast, increases streamflow immediately, partially compensating for streamflow reductions during the subsequent warm season. A uniform warm season warming of 3C drives a wide range of annual flow declines across the basins: 13.3%, 7.2%, 1.8%, and 3.6% in the Colorado, Columbia, Northern and Southern Sierra basins, respectively. The same warming applied during the cool season gives annual declines of only 3.5%, 1.7%, 2.1%, and 3.1%, respectively. Copyright 2011 by the American Geophysical Union.

  1. The recent warming of permafrost in Alaska

    NASA Astrophysics Data System (ADS)

    Osterkamp, T. E.

    2005-12-01

    This paper reports results of an experiment initiated in 1977 to determine the effects of climate on permafrost in Alaska. Permafrost observatories with boreholes were established along a north-south transect of Alaska in undisturbed permafrost terrain. The analysis and interpretation of annual temperature measurements in the boreholes and daily temperature measurements of the air, ground and permafrost surfaces made with automated temperature loggers are reported. Permafrost temperatures warmed along this transect coincident with a statewide warming of air temperatures that began in 1977. At two sites on the Arctic Coastal Plain, the warming was seasonal, greatest during "winter" months (October through May) and least during "summer" months (June through September). Permafrost temperatures peaked in the early 1980s and then decreased in response to slightly cooler air temperatures and thinner snow covers. Arctic sites began warming again typically about 1986 and Interior Alaska sites about 1988. Gulkana, the southernmost site, has been warming slowly since it was drilled in 1983. Air temperatures were relatively warm and snow covers were thicker-than-normal from the late 1980s into the late 1990s allowing permafrost temperatures to continue to warm. Temperatures at some sites leveled off or cooled slightly at the turn of the century. Two sites (Yukon River Bridge and Livengood) cooled during the period of observations. The magnitude of the total warming at the surface of the permafrost (through 2003) was 3 to 4 °C for the Arctic Coastal Plain, 1 to 2 °C for the Brooks Range including its northern and southern foothills, and 0.3 to 1 °C south of the Yukon River. While the data are sparse, permafrost is warming throughout the region north of the Brooks Range, southward along the transect from the Brooks Range to the Chugach Mountains (except for Yukon River and Livengood), in Interior Alaska throughout the Tanana River region, and in the region south of the

  2. Can Global Warming be Stopped?

    NASA Astrophysics Data System (ADS)

    Luria, M.

    2013-12-01

    Earlier this year, the CO2 levels exceeded the 400 ppm level and there is no sign that the 1-2 ppm annual increase is going to slow down. Concerns regarding the danger of global warming have been reported in numerous occasions for more than a generation, ever since CO2 levels reached the 350 ppm range in the mid 1980's. Nevertheless, all efforts to slow down the increase have showed little if any effect. Mobile sources, including surface and marine transportation and aviation, consist of 20% of the global CO2 emission. The only realistic way to reduce the mobile sources' CO2 signature is by improved fuel efficiency. However, any progress in this direction is more than compensated by continuous increased demand. Stationary sources, mostly electric power generation, are responsible for the bulk of the global CO2 emission. The measurements have shown, that the effect of an increase in renewable sources, like solar wind and geothermal, combined with conversion from coal to natural gas where possible, conservation and efficiency improvement, did not compensate the increased demand mostly in developing countries. Increased usage of nuclear energy can provide some relief in carbon emission but has the potential of even greater environmental hazard. A major decrease in carbon emission can be obtained by either significant reduction in the cost of non-carbon based energy sources or by of carbon sequestration. The most economical way to make a significant decrease in carbon emission is to apply carbon sequestration technology at large point sources that use coal. Worldwide there are about 10,000 major sources that burn >7 billion metric tons of coal which generate the equivalent of 30 trillion kwh. There is a limited experience in CO2 sequestration of such huge quantities of CO2, however, it is estimated that the cost would be US$ 0.01-0.1 per kwh. The cost of eliminating this quantity can be estimated at an average of 1.5 trillion dollars annually. The major emitters, US

  3. 21 CFR 864.9205 - Blood and plasma warming device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...

  4. 21 CFR 864.9205 - Blood and plasma warming device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...

  5. 21 CFR 864.9205 - Blood and plasma warming device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...

  6. 21 CFR 864.9205 - Blood and plasma warming device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...

  7. 21 CFR 864.9205 - Blood and plasma warming device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...

  8. Warm Absorber Diagnostics of AGN Dynamics

    NASA Astrophysics Data System (ADS)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  9. Global warming without global mean precipitation increase?

    PubMed

    Salzmann, Marc

    2016-06-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K(-1) decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge.

  10. Detecting urban warming signals in climate records

    NASA Astrophysics Data System (ADS)

    He, Yuting; Jia, Gensuo; Hu, Yonghong; Zhou, Zijiang

    2013-07-01

    Determining whether air temperatures recorded at meteorological stations have been contaminated by the urbanization process is still a controversial issue at the global scale. With support of historical remote sensing data, this study examined the impacts of urban expansion on the trends of air temperature at 69 meteorological stations in Beijing, Tianjin, and Hebei Province over the last three decades. There were significant positive relations between the two factors at all stations. Stronger warming was detected at the meteorological stations that experienced greater urbanization, i.e., those with a higher urbanization rate. While the total urban area affects the absolute temperature values, the change of the urban area (urbanization rate) likely affects the temperature trend. Increases of approximately 10% in urban area around the meteorological stations likely contributed to the 0.13°C rise in air temperature records in addition to regional climate warming. This study also provides a new approach to selecting reference stations based on remotely sensed urban fractions. Generally, the urbanization-induced warming contributed to approximately 44.1% of the overall warming trends in the plain region of study area during the past 30 years, and the regional climate warming was 0.30°C (10 yr)-1 in the last three decades.

  11. Can Geoengineering Effectively Reduce the Land Warming?

    NASA Astrophysics Data System (ADS)

    Wang, W.; MacMartin, D.; Moore, J. C.; Ji, D.

    2017-12-01

    Permafrost, defined as ground that remains at or below 0 C for two or more consecutive years, underlies 24% of the land in the Northern Hemisphere. Under recent climate warming, permafrost has begun to thaw, causing changes in ecosystems and impacting northern communities. Using the multiple land model output from the Permafrost Carbon Network and applying 5 commonly used permafrost diagnostic methods, we assess the projected Northern Hemisphere permafrost area under RCP 8.5 scenario. Both the air and soil relative warming change is compared to highlight the soil warming pattern and intensity. Using the multiple Earth System Models output under abrupt 4×CO2, G1, PI-control, G3, G4, and RCP4.5 experiments, a preliminary attempt is also performed to examine the effectiveness of geoengineering schemes on reducing the land warming. Although there is uncertainty in the projected results due to model and method difference, the soil temperature based methods derived permafrost all present an intense decrease by 48% - 68% until 2100. The projected soil temperature by the more physically complicated model shows a different warming pattern compared with the air, which indicates that some potential land process intervene with the land response to atmospheric change. The simulated soil temperature can be effectively cooled down by 2 - 9 degree under G1 compared with abrupt 4×CO2, and by less than 4 degree under G3 and G4 compared with RCP4.5.

  12. Light accelerates plant responses to warming.

    PubMed

    De Frenne, Pieter; Rodríguez-Sánchez, Francisco; De Schrijver, An; Coomes, David A; Hermy, Martin; Vangansbeke, Pieter; Verheyen, Kris

    2015-08-17

    Competition for light has profound effects on plant performance in virtually all terrestrial ecosystems. Nowhere is this more evident than in forests, where trees create environmental heterogeneity that shapes the dynamics of forest-floor communities(1-3). Observational evidence suggests that biotic responses to both anthropogenic global warming and nitrogen pollution may be attenuated by the shading effects of trees and shrubs(4-9). Here we show experimentally that tree shade is slowing down changes in below-canopy communities due to warming. We manipulated levels of photosynthetically active radiation, temperature and nitrogen, alone and in combination, in a temperate forest understorey over a 3-year period, and monitored the composition of the understorey community. Light addition, but not nitrogen enrichment, accelerated directional plant community responses to warming, increasing the dominance of warmth-preferring taxa over cold-tolerant plants (a process described as thermophilization(6,10-12)). Tall, competitive plants took greatest advantage of the combination of elevated temperature and light. Warming of the forest floor did not result in strong community thermophilization unless light was also increased. Our findings suggest that the maintenance of locally closed canopy conditions could reduce, at least temporarily, warming-induced changes in forest floor plant communities.

  13. Global warming without global mean precipitation increase?

    PubMed Central

    Salzmann, Marc

    2016-01-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K−1 decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge. PMID:27386558

  14. Southern Ocean warming due to human influence

    NASA Astrophysics Data System (ADS)

    Fyfe, John C.

    2006-10-01

    I show that the latest series of climate models reproduce the observed mid-depth Southern Ocean warming since the 1950s if they include time-varying changes in anthropogenic greenhouse gases, sulphate aerosols and volcanic aerosols in the Earth's atmosphere. The remarkable agreement between observations and state-of-the art climate models suggests significant human influence on Southern Ocean temperatures. I also show that climate models that do not include volcanic aerosols produce mid-depth Southern Ocean warming that is nearly double that produced by climate models that do include volcanic aerosols. This implies that the full effect of human-induced warming of the Southern Ocean may yet to be realized.

  15. Stratospheric warmings during February and March 1993

    NASA Technical Reports Server (NTRS)

    Manney, G. L.; Zurek, R. W.; O'Neill, A.; Swinbank, R.; Kumer, J. B.; Mergenthaler, J. L.; Roche, A. E.

    1994-01-01

    Two stratospheric warmings during February and March 1993 are described using United Kingdom Meteorological Office (UKMO) analyses, calculated potential vorticity (PV) and diabetic heating, and N2O observed by the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument on the Upper Atmosphere Research Satellite (UARS). The first warming affected temperatures over a larger region, while the second produced a larger region of reversed zonal winds. Tilted baroclinic zones formed in the temperature field, and the polar vortex tilted westward with height. Narrow tongues of high PV and low N2O were drawn off the polar vortex, and irreversibly mixed. Tongues of material were drawn from low latitudes into the region between the polar vortex and the anticyclone; diabatic descent was also strongest in this region. Increased N2O over a broad region near the edge of the polar vortex indicates the importance of horizontal transport. N2O decreased in the vortex, consistent with enhanced diabatic descent during the warmings.

  16. Thyroid storm and warm autoimmune hemolytic anemia.

    PubMed

    Moore, Joseph A; Gliga, Louise; Nagalla, Srikanth

    2017-08-01

    Graves' disease is often associated with other autoimmune disorders, including rare associations with autoimmune hemolytic anemia (AIHA). We describe a unique presentation of thyroid storm and warm AIHA diagnosed concurrently in a young female with hyperthyroidism. The patient presented with nausea, vomiting, diarrhea and altered mental status. Laboratory studies revealed hemoglobin 3.9g/dL, platelets 171×10 9 L -1 , haptoglobin <5mg/dL, reticulocytosis, and positive direct antiglobulin test (IgG, C3d, warm). Additional workup revealed serum thyroid stimulating hormone (TSH) <0.01μIU/mL and serum free-T4 (FT4) level 7.8ng/dL. Our patient was diagnosed with concurrent thyroid storm and warm AIHA. She was started on glucocorticoids to treat both warm AIHA and thyroid storm, as well as antithyroid medications, propranolol and folic acid. Due to profound anemia and hemodynamic instability, the patient was transfused two units of uncrossmatched packed red blood cells slowly and tolerated this well. She was discharged on methimazole as well as a prolonged prednisone taper, and achieved complete resolution of the thyrotoxicosis and anemia at one month. Hyperthyroidism can affect all three blood cell lineages of the hematopoietic system. Anemia can be seen in 10-20% of patients with thyrotoxicosis. Several autoimmune processes can lead to anemia in Graves' disease, including pernicious anemia, celiac disease, and warm AIHA. This case illustrates a rarely described presentation of a patient with Graves' disease presenting with concurrent thyroid storm and warm AIHA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Vertical structure of recent Arctic warming.

    PubMed

    Graversen, Rune G; Mauritsen, Thorsten; Tjernström, Michael; Källén, Erland; Svensson, Gunilla

    2008-01-03

    Near-surface warming in the Arctic has been almost twice as large as the global average over recent decades-a phenomenon that is known as the 'Arctic amplification'. The underlying causes of this temperature amplification remain uncertain. The reduction in snow and ice cover that has occurred over recent decades may have played a role. Climate model experiments indicate that when global temperature rises, Arctic snow and ice cover retreats, causing excessive polar warming. Reduction of the snow and ice cover causes albedo changes, and increased refreezing of sea ice during the cold season and decreases in sea-ice thickness both increase heat flux from the ocean to the atmosphere. Changes in oceanic and atmospheric circulation, as well as cloud cover, have also been proposed to cause Arctic temperature amplification. Here we examine the vertical structure of temperature change in the Arctic during the late twentieth century using reanalysis data. We find evidence for temperature amplification well above the surface. Snow and ice feedbacks cannot be the main cause of the warming aloft during the greater part of the year, because these feedbacks are expected to primarily affect temperatures in the lowermost part of the atmosphere, resulting in a pattern of warming that we only observe in spring. A significant proportion of the observed temperature amplification must therefore be explained by mechanisms that induce warming above the lowermost part of the atmosphere. We regress the Arctic temperature field on the atmospheric energy transport into the Arctic and find that, in the summer half-year, a significant proportion of the vertical structure of warming can be explained by changes in this variable. We conclude that changes in atmospheric heat transport may be an important cause of the recent Arctic temperature amplification.

  18. Communicating the Dangers of Global Warming

    NASA Astrophysics Data System (ADS)

    Hansen, J. E.

    2006-12-01

    So far, in my opinion, we scientists have not done a good job of communicating the imminent threat posed by global warming, yet I believe there is still time for that if we work efficiently now to overcome existing obstacles. Several of those obstacles are illustrated by contrasting the roles of scientists, the media, special interests, politicians and the public in the ozone depletion and global warming crises. Scientists in America are further challenged by a decline in public science education, a perceived gap between science and religion, increasing politicization of public affairs offices in the government, and accumulation of power by a unitary executive. First order communication tasks are illustrated by a need for improved exchange and understanding, among scientists as well as with the public, of fundamental climate facts: (1) additional global warming exceeding 1C will yield large climate effects, (2) paleoclimate changes contain quantitatively specific information about climate sensitivity that is not widely appreciated, (3) carbon cycle facts, such as the substantial portion of carbon dioxide emissions that will remain in the air "forever", for practical purposes, (4) fossil fuel facts such as the dominant role of coal and unconventional fuels in all business-as-usual scenarios for future energy sources. The facts graphically illustrate the need for prompt actions to avoid disastrous climate change, yet they also reveal the feasibility of a course that minimizes global warming and yields other benefits. Perhaps the greatest challenge is posed by an inappropriate casting of the topic as a dichotomy between those who deny that there is a global warming problem and those who either are exceedingly pessimistic about the prospects for minimizing climate change or believe that solutions would be very expensive. Sensible evaluation of the situation, in my opinion, suggests a strategy for dealing with global warming that is not costly and has many subsidiary

  19. Winter warming from large volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  20. Global warming: a public health concern.

    PubMed

    Afzal, Brenda M

    2007-05-31

    Over the last 100 years the average temperature on the Earth has risen approximately 1ºFahrenheit (F), increasing at a rate twice as fast as has been noted for any period in the last 1,000 years. The Arctic ice cap is shrinking, glaciers are melting, and the Arctic permafrost is thawing. There is mounting evidence that these global climate changes are already affecting human health. This article provides a brief overview of global warming and climate changes, discusses effects of climate change on health, considers the factors which contribute to climate changes, and reviews individual and collective efforts related to reducing global warming.

  1. Analysis of data from spacecraft (stratospheric warmings)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Investigations involved a search through existing literature and data to obtain case histories for the six or more stratospheric warmings that occurred in April - May 1969, June - July 1969, August 1969, December 1969 - January 1970, December 1970 - January 1971, and January 1973 - February 1973. For each of these warmings the following steps have been taken in preparation for analysis: (1) defining the nature of the problem; (2) literature search of stratwarmings and solar-terrestrial phenomens; and (3) file of data sources, especially stratospheric temperatures (radiances) and geophysical indices.

  2. Global Warming - Are We on Thin Ice?

    NASA Technical Reports Server (NTRS)

    Tucker, Compton J.

    2007-01-01

    The evidence for global warming is very conclusive for the past 400-500 years. Prior to the 16th century, proxy surface temperature data are regionally good but lack a global distribution. The speaker will review surface temperature reconstruction based upon ice cores, coral cores, tree rings, deep sea sediments, and bore holes and discuss the controversy surrounding global warming. This will be contrasted with the excellent data we have from the satellite era of earth observations the past 30+ years that enables the quantitative study of climate across earth science disciplines.

  3. Winter warming from large volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95 percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  4. A real-time Global Warming Index.

    PubMed

    Haustein, K; Allen, M R; Forster, P M; Otto, F E L; Mitchell, D M; Matthews, H D; Frame, D J

    2017-11-13

    We propose a simple real-time index of global human-induced warming and assess its robustness to uncertainties in climate forcing and short-term climate fluctuations. This index provides improved scientific context for temperature stabilisation targets and has the potential to decrease the volatility of climate policy. We quantify uncertainties arising from temperature observations, climate radiative forcings, internal variability and the model response. Our index and the associated rate of human-induced warming is compatible with a range of other more sophisticated methods to estimate the human contribution to observed global temperature change.

  5. Methane Cycling in a Warming Wetland

    NASA Astrophysics Data System (ADS)

    Noyce, G. L.; Megonigal, P.; Rich, R.; Kirwan, M. L.; Herbert, E. R.

    2017-12-01

    Coastal wetlands are global hotspots of carbon (C) storage, but the future of these systems is uncertain. In June 2016, we initiated an in-situ, active, whole-ecosystem warming experiment in the Smithsonian's Global Change Research Wetland to quantify how warming and elevated CO2 affect the stability of coastal wetland soil C pools and contemporary rates of C sequestration. Transects are located in two plant communities, dominated by C3 sedges or C4 grasses. The experiment has a gradient design with air and soil warming treatments ranging from ambient to +5.1 °C and heated plots consistently maintain their target temperature year-round. In April 2017, an elevated CO2 treatment was crossed with temperature in the C3community. Ongoing measurements include soil elevation, C fluxes, porewater chemistry and redox potential, and above- and below-ground growth and biomass. In both years, warming increased methane (CH4) emissions (measured at 3-4 week intervals) from spring through fall at the C3 site, but had little effect on emissions from the C4 site. Winter (Dec-Mar) emissions showed no treatment effect. Stable isotope analysis of dissolved CH4 and DIC also indicated that warming had differing effects on CH4 pathways in the two vegetation communities. To better understand temperature effects on rates of CH4 production and oxidation, 1 m soil cores were collected from control areas of the marsh in summer 2017 and incubated at temperatures ranging from 4 °C to 35 °C. Warming increased CH4 production and oxidation rates in surface samples and oxidation rates in the rooting zone samples from both sites, but temperature responses in deep (1 m) soil samples were minimal. In the surface and rooting zone samples, production rates were also consistently higher in C3 soils compared to C4 soils, but, contrary to our expectations, the temperature response was stronger in the C4 soils. However, oxidation in C3 rooting zone samples did have a strong temperature response. The

  6. Climate change lessons from a warm world

    USGS Publications Warehouse

    Dowsett, Harry J.

    2010-01-01

    In the early 1970’s to early 1980’s Soviet climatologists were making comparisons to past intervals of warmth in the geologic record and suggesting that these intervals could be possible analogs for 21st century “greenhouse” conditions. Some saw regional warming as a benefit to the Soviet Union and made comments along the lines of “Set fire to the coal mines!” These sentiments were alarming to some, and the United States Geological Survey (USGS) leadership thought they could provide a more quantitative analysis of the data the Soviets were using for the most recent of these warm intervals, the Early Pliocene.

  7. Revisiting CMB constraints on warm inflation

    NASA Astrophysics Data System (ADS)

    Arya, Richa; Dasgupta, Arnab; Goswami, Gaurav; Prasad, Jayanti; Rangarajan, Raghavan

    2018-02-01

    We revisit the constraints that Planck 2015 temperature, polarization and lensing data impose on the parameters of warm inflation. To this end, we study warm inflation driven by a single scalar field with a quartic self interaction potential in the weak dissipative regime. We analyse the effect of the parameters of warm inflation, namely, the inflaton self coupling λ and the inflaton dissipation parameter QP on the CMB angular power spectrum. We constrain λ and QP for 50 and 60 number of e-foldings with the full Planck 2015 data (TT, TE, EE + lowP and lensing) by performing a Markov-Chain Monte Carlo analysis using the publicly available code CosmoMC and obtain the joint as well as marginalized distributions of those parameters. We present our results in the form of mean and 68 % confidence limits on the parameters and also highlight the degeneracy between λ and QP in our analysis. From this analysis we show how warm inflation parameters can be well constrained using the Planck 2015 data.

  8. Humid Heat Waves at different warming levels

    NASA Astrophysics Data System (ADS)

    Russo, S.; Sillmann, J.; Sterl, A.

    2017-12-01

    The co-occurrence of consecutive hot and humid days during a heat wave can strongly affect human health. Here, we quantify humid heat wave hazard in the recent past and at different levels of global warming.We find that the magnitude and apparent temperature peak of heat waves, such as the ones observed in Chicago in 1995 and China in 2003, have been strongly amplified by humidity. Climate model projections suggest that the percentage of area where heat wave magnitude and peak are amplified by humidity increases with increasing warming levels. Considering the effect of humidity at 1.5o and 2o global warming, highly populated regions, such as the Eastern US and China, could experience heat waves with magnitude greater than the one in Russia in 2010 (the most severe of the present era).The apparent temperature peak during such humid-heat waves can be greater than 55o. According to the US Weather Service, at this temperature humans are very likely to suffer from heat strokes. Humid-heat waves with these conditions were never exceeded in the present climate, but are expected to occur every other year at 4o global warming. This calls for respective adaptation measures in some key regions of the world along with international climate change mitigation efforts.

  9. Microclimate moderates plant responses to macroclimate warming.

    PubMed

    De Frenne, Pieter; Rodríguez-Sánchez, Francisco; Coomes, David Anthony; Baeten, Lander; Verstraeten, Gorik; Vellend, Mark; Bernhardt-Römermann, Markus; Brown, Carissa D; Brunet, Jörg; Cornelis, Johnny; Decocq, Guillaume M; Dierschke, Hartmut; Eriksson, Ove; Gilliam, Frank S; Hédl, Radim; Heinken, Thilo; Hermy, Martin; Hommel, Patrick; Jenkins, Michael A; Kelly, Daniel L; Kirby, Keith J; Mitchell, Fraser J G; Naaf, Tobias; Newman, Miles; Peterken, George; Petrík, Petr; Schultz, Jan; Sonnier, Grégory; Van Calster, Hans; Waller, Donald M; Walther, Gian-Reto; White, Peter S; Woods, Kerry D; Wulf, Monika; Graae, Bente Jessen; Verheyen, Kris

    2013-11-12

    Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., "thermophilization" of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that "climatic lags" may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12-67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass--e.g., for bioenergy--may open forest canopies and accelerate thermophilization of temperate forest biodiversity.

  10. Microclimate moderates plant responses to macroclimate warming

    PubMed Central

    De Frenne, Pieter; Rodríguez-Sánchez, Francisco; Coomes, David Anthony; Baeten, Lander; Verstraeten, Gorik; Vellend, Mark; Bernhardt-Römermann, Markus; Brown, Carissa D.; Brunet, Jörg; Cornelis, Johnny; Decocq, Guillaume M.; Dierschke, Hartmut; Eriksson, Ove; Gilliam, Frank S.; Hédl, Radim; Heinken, Thilo; Hermy, Martin; Hommel, Patrick; Jenkins, Michael A.; Kelly, Daniel L.; Kirby, Keith J.; Mitchell, Fraser J. G.; Naaf, Tobias; Newman, Miles; Peterken, George; Petřík, Petr; Schultz, Jan; Sonnier, Grégory; Van Calster, Hans; Waller, Donald M.; Walther, Gian-Reto; White, Peter S.; Woods, Kerry D.; Wulf, Monika; Graae, Bente Jessen; Verheyen, Kris

    2013-01-01

    Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., “thermophilization” of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that “climatic lags” may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12–67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass—e.g., for bioenergy—may open forest canopies and accelerate thermophilization of temperate forest biodiversity. PMID:24167287

  11. Laboratory evaluation of warm mix asphalt.

    DOT National Transportation Integrated Search

    2011-09-14

    "Hot Mix Asphalt (HMA) has been traditionally produced at a discharge temperature of between : 280F (138C) and 320 F (160C), resulting in high energy (fuel) costs and generation of greenhouse : gases. The goal for Warm Mix Asphalt (WMA) is to...

  12. Temperature Data Shows Warming in 2001

    NASA Technical Reports Server (NTRS)

    2002-01-01

    TThe figure above depicts how much air temperatures near the Earth's surface changed relative to the global mean temperature from 1951 to 1980. NASA researchers used maps of urban areas derived from city lights data to account for the 'heat island' effect of cities. The red and orange colors show that temperatures are warmer in most regions of the world when compared to the 1951 to 1980 'normal' temperatures. Warming around the world has been widespread, but it is not present everywhere. The largest warming is in Northern Canada, Alaska and Siberia, as indicated by the deeper red colors. The lower 48 United States have become warmer recently, but only enough to make the temperatures comparable to what they were in the 1930s. The scale on the bottom of these temperature anomaly images represent degrees in Celsius. The negative numbers represent cooling and the positive numbers depict warming. Overall, the air temperature near the Earth's surface has warmed by 1oF (0.6oC) globally, on average, over the last century. For more information and additional images, read Satellites Shed Light on a Warmer World. Image courtesy Goddard Institute for Space Studies (GISS).

  13. Desert Amplification in a Warming Climate

    PubMed Central

    Zhou, Liming

    2016-01-01

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950–2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor. PMID:27538725

  14. Global warming -- Science and anti-science

    SciTech Connect

    Preining, O.

    1995-06-01

    The global warming debate has sparked many facts activities in almost all sectors of human endeavors. There are the hard facts, the measurements of the greenhouse gases, the statistics of human activities responsible for emissions, the demographic figures. There are the soft facts, the interpretations of the hard facts requiring additional assumptions. There are the media, the press, television, for whom environmental problems make good stories, these can be used to rise emotions, to make heroes and antiheroes. There are politicians, the global warming debate can be used even in electron campaigns. Global warming is a topic within and beyondmore » science. The judgment (and hence use) of scientific facts is overwhelmingly influenced by the ``Weltbild`` (underlying beliefs how the world operates), and consequently opposing positions of well-known scientists arise. There are the attempts to invent futures of man on Earth: policies, regulations, laws on nation, international, and global levels shall facilitate a change in the basic behavior of all men. The global warming issue has many facets and cannot be successfully discussed without including, e.g., the North-South dialogue, world population, etc.« less

  15. Abrupt warming of the Red Sea

    NASA Astrophysics Data System (ADS)

    Raitsos, D. E.; Hoteit, I.; Prihartato, P. K.; Chronis, T.; Triantafyllou, G.; Abualnaja, Y.

    2011-07-01

    Coral reef ecosystems, often referred to as “marine rainforests,” concentrate the most diverse life in the oceans. Red Sea reef dwellers are adapted in a very warm environment, fact that makes them vulnerable to further and rapid warming. The detection and understanding of abrupt temperature changes is an important task, as ecosystems have more chances to adapt in a slowly rather than in a rapid changing environment. Using satellite derived sea surface and ground based air temperatures, it is shown that the Red Sea is going through an intense warming initiated in the mid-90s, with evidence for an abrupt increase after 1994 (0.7°C difference pre and post the shift). The air temperature is found to be a key parameter that influences the Red Sea marine temperature. The comparisons with Northern Hemisphere temperatures revealed that the observed warming is part of global climate change trends. The hitherto results also raise additional questions regarding other broader climatic impacts over the area.

  16. Is Europa's Subsurface Water Ocean Warm?

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.; Ekholm, A. G.; Showman, A. P.; Lorenz, R. D.

    2002-01-01

    Europa's subsurface water ocean may be warm: that is, at the temperature of water's maximum density. This provides a natural explanation of chaos melt-through events and leads to a correct estimate of the age of its surface. Additional information is contained in the original extended abstract.

  17. Global Warming, A Tragedy of the Commons

    NASA Astrophysics Data System (ADS)

    Philander, S. G.

    2016-12-01

    What is the appropriate balance between our responsibilities towards future generations, and our obligations to those who live in abject poverty today? Global warming, a tragedy of the commons, brings such ethical questions to the fore but, whether "matured" or not, is itself mute on ethical issues.

  18. Can Global Warming Heat Up Environmental Education?

    ERIC Educational Resources Information Center

    Mazzatenta, Claudio

    2008-01-01

    Bronx Community College (CUNY) launched "Global Warming Campus Awareness and Action Days" in celebration of Earth Day, 2007. The purpose of this program was to raise awareness of environmental issues in the college population, especially students. To let more students have a grasp of what Environmental Education (EE) is all about, the author…

  19. Global warming in the public sphere.

    PubMed

    Corfee-Morlot, Jan; Maslin, Mark; Burgess, Jacquelin

    2007-11-15

    Although the science of global warming has been in place for several decades if not more, only in the last decade and a half has the issue moved clearly into the public sphere as a public policy issue and a political priority. To understand how and why this has occurred, it is essential to consider the history of the scientific theory of the greenhouse effect, the evidence that supports it and the mechanisms through which science interacts with lay publics and other elite actors, such as politicians, policymakers and business decision makers. This article reviews why and how climate change has moved from the bottom to the top of the international political agenda. It traces the scientific discovery of global warming, political and institutional developments to manage it as well as other socially mediated pathways for understanding and promoting global warming as an issue in the public sphere. The article also places this historical overview of global warming as a public issue into a conceptual framework for understanding relationships between society and nature with emphasis on the co-construction of knowledge.

  20. Dynamical amplification of Arctic and global warming

    NASA Astrophysics Data System (ADS)

    Alekseev, Genrikh; Ivanov, Nikolai; Kharlanenkova, Natalia; Kuzmina, Svetlana; Bobylev, Leonid; Gnatiuk, Natalia; Urazgildeeva, Aleksandra

    2015-04-01

    The Arctic is coupled with global climate system by the atmosphere and ocean circulation that provides a major contribution to the Arctic energy budget. Therefore increase of meridional heat transport under global warming can impact on its Arctic amplification. Contribution of heat transport to the recent warming in the Arctic, Northern Hemisphere and the globe are estimated on base of reanalysis data, global climate model data and proposed special index. It is shown that significant part of linear trend during last four decades in average surface air temperature in these areas can be attributed to dynamical amplification. This attribution keeps until 400 mb height with progressive decreasing. The Arctic warming is amplified also due to an increase of humidity and cloudiness in the Arctic atmosphere that follow meridional transport gain. From October to January the Arctic warming trends are amplified as a result of ice edge retreat from the Siberian and Alaska coast and the heating of expanded volume of sea water. This investigation is supported with RFBR project 15-05-03512.

  1. Warm-mix asphalt : European practice.

    DOT National Transportation Integrated Search

    2008-02-01

    Warm-mix asphalt (WMA) is a group of technologies that allow a reduction in the temperatures at which : asphalt mixes are produced and placed. These technologies tend to reduce the viscosity of the asphalt and : provide for the complete coating of ag...

  2. Warm inflationary model in loop quantum cosmology

    SciTech Connect

    Herrera, Ramon

    A warm inflationary universe model in loop quantum cosmology is studied. In general we discuss the condition of inflation in this framework. By using a chaotic potential, V({phi}){proportional_to}{phi}{sup 2}, we develop a model where the dissipation coefficient {Gamma}={Gamma}{sub 0}=constant. We use recent astronomical observations for constraining the parameters appearing in our model.

  3. The recent warming trend in North Greenland

    USGS Publications Warehouse

    Orsi, Anais J.; Kawamura, Kenji; Masson-Delmotte, Valerie; Fettweis, Xavier; Box, Jason E.; Dahl-Jensen, Dorthe; Clow, Gary D.; Landais, Amaelle; Severinghaus, Jeffrey P.

    2017-01-01

    The Arctic is among the fastest warming regions on Earth, but it is also one with limited spatial coverage of multidecadal instrumental surface air temperature measurements. Consequently, atmospheric reanalyses are relatively unconstrained in this region, resulting in a large spread of estimated 30 year recent warming trends, which limits their use to investigate the mechanisms responsible for this trend. Here we present a surface temperature reconstruction over 1982–2011 at NEEM (North Greenland Eemian Ice Drilling Project, 51°W, 77°N), in North Greenland, based on the inversion of borehole temperature and inert gas isotope data. We find that NEEM has warmed by 2.7 ± 0.33°C over the past 30 years, from the long-term 1900–1970 average of −28.55 ± 0.29°C. The warming trend is principally caused by an increase in downward longwave heat flux. Atmospheric reanalyses underestimate this trend by 17%, underlining the need for more in situ observations to validate reanalyses.

  4. The global warming hiatus: Slowdown or redistribution?

    NASA Astrophysics Data System (ADS)

    Yan, Xiao-Hai; Boyer, Tim; Trenberth, Kevin; Karl, Thomas R.; Xie, Shang-Ping; Nieves, Veronica; Tung, Ka-Kit; Roemmich, Dean

    2016-11-01

    Global mean surface temperatures (GMST) exhibited a smaller rate of warming during 1998-2013, compared to the warming in the latter half of the 20th Century. Although, not a "true" hiatus in the strict definition of the word, this has been termed the "global warming hiatus" by IPCC (2013). There have been other periods that have also been defined as the "hiatus" depending on the analysis. There are a number of uncertainties and knowledge gaps regarding the "hiatus." This report reviews these issues and also posits insights from a collective set of diverse information that helps us understand what we do and do not know. One salient insight is that the GMST phenomenon is a surface characteristic that does not represent a slowdown in warming of the climate system but rather is an energy redistribution within the oceans. Improved understanding of the ocean distribution and redistribution of heat will help better monitor Earth's energy budget and its consequences. A review of recent scientific publications on the "hiatus" shows the difficulty and complexities in pinpointing the oceanic sink of the "missing heat" from the atmosphere and the upper layer of the oceans, which defines the "hiatus." Advances in "hiatus" research and outlooks (recommendations) are given in this report.

  5. Waste Reduction Model (WARM) Material Descriptions and ...

    EPA Pesticide Factsheets

    2017-02-14

    This page provides a summary of the materials included in EPA’s Waste Reduction Model (WARM). The page includes a list of materials, a description of the material as defined in the primary data source, and citations for primary data sources.

  6. Impact of warm winters on microbial growth

    NASA Astrophysics Data System (ADS)

    Birgander, Johanna; Rousk, Johannes; Axel Olsson, Pål

    2014-05-01

    Growth of soil bacteria has an asymmetrical response to higher temperature with a gradual increase with increasing temperatures until an optimum after which a steep decline occurs. In laboratory studies it has been shown that by exposing a soil bacterial community to a temperature above the community's optimum temperature for two months, the bacterial community grows warm-adapted, and the optimum temperature of bacterial growth shifts towards higher temperatures. This result suggests a change in the intrinsic temperature dependence of bacterial growth, as temperature influenced the bacterial growth even though all other factors were kept constant. An intrinsic temperature dependence could be explained by either a change in the bacterial community composition, exchanging less tolerant bacteria towards more tolerant ones, or it could be due to adaptation within the bacteria present. No matter what the shift in temperature tolerance is due to, the shift could have ecosystem scale implications, as winters in northern Europe are getting warmer. To address the question of how microbes and plants are affected by warmer winters, a winter-warming experiment was established in a South Swedish grassland. Results suggest a positive response in microbial growth rate in plots where winter soil temperatures were around 6 °C above ambient. Both bacterial and fungal growth (leucine incorporation, and acetate into ergosterol incorporation, respectively) appeared stimulated, and there are two candidate explanations for these results. Either (i) warming directly influence microbial communities by modulating their temperature adaptation, or (ii) warming indirectly affected the microbial communities via temperature induced changes in bacterial growth conditions. The first explanation is in accordance with what has been shown in laboratory conditions (explained above), where the differences in the intrinsic temperature relationships were examined. To test this explanation the

  7. Frequency of Deep Convective Clouds and Global Warming

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Teixeira, Joao

    2008-01-01

    This slide presentation reviews the effect of global warming on the formation of Deep Convective Clouds (DCC). It concludes that nature responds to global warming with an increase in strong convective activity. The frequency of DCC increases with global warming at the rate of 6%/decade. The increased frequency of DCC with global warming alone increases precipitation by 1.7%/decade. It compares the state of the art climate models' response to global warming, and concludes that the parametrization of climate models need to be tuned to more closely emulate the way nature responds to global warming.

  8. Physical Mechanisms of Rapid Lake Warming

    NASA Astrophysics Data System (ADS)

    Lenters, J. D.

    2016-12-01

    Recent studies have shown significant warming of inland water bodies around the world. Many lakes are warming more rapidly than the ambient surface air temperature, and this is counter to what is often expected based on the lake surface energy balance. A host of reasons have been proposed to explain these discrepancies, including changes in the onset of summer stratification, significant loss of ice cover, and concomitant changes in winter air temperature and/or summer cloud cover. A review of the literature suggests that no single physical mechanism is primarily responsible for the majority of these changes, but rather that the large heterogeneity in regional climate trends and lake geomorphometry results in a host of potential physical drivers. In this study, we discuss the variety of mechanisms that have been proposed to explain rapid lake warming and offer an assessment of the physical plausibility for each potential contributor. Lake Superior is presented as a case study to illustrate the "perfect storm" of factors that can cause a deep, dimictic lake to warm at rate that exceeds the rate of global air temperature warming by nearly an order of magnitude. In particular, we use a simple mixed-layer model to show that spatially variable trends in Lake Superior surface water temperature are determined, to first order, by variations in bathymetry and winter air temperature. Summer atmospheric conditions are often of less significance, and winter ice cover may simply be a correlate. The results highlight the importance of considering the full range of factors that can lead to trends in lake surface temperature, and that conventional wisdom may often not be the best guide.

  9. Increasing occurrence of cold and warm extremes during the recent global warming slowdown.

    PubMed

    Johnson, Nathaniel C; Xie, Shang-Ping; Kosaka, Yu; Li, Xichen

    2018-04-30

    The recent levelling of global mean temperatures after the late 1990s, the so-called global warming hiatus or slowdown, ignited a surge of scientific interest into natural global mean surface temperature variability, observed temperature biases, and climate communication, but many questions remain about how these findings relate to variations in more societally relevant temperature extremes. Here we show that both summertime warm and wintertime cold extreme occurrences increased over land during the so-called hiatus period, and that these increases occurred for distinct reasons. The increase in cold extremes is associated with an atmospheric circulation pattern resembling the warm Arctic-cold continents pattern, whereas the increase in warm extremes is tied to a pattern of sea surface temperatures resembling the Atlantic Multidecadal Oscillation. These findings indicate that large-scale factors responsible for the most societally relevant temperature variations over continents are distinct from those of global mean surface temperature.

  10. Southern Hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming.

    PubMed

    Stott, Lowell; Timmermann, Axel; Thunell, Robert

    2007-10-19

    Establishing what caused Earth's largest climatic changes in the past requires a precise knowledge of both the forcing and the regional responses. We determined the chronology of high- and low-latitude climate change at the last glacial termination by radiocarbon dating benthic and planktonic foraminiferal stable isotope and magnesium/calcium records from a marine core collected in the western tropical Pacific. Deep-sea temperatures warmed by approximately 2 degrees C between 19 and 17 thousand years before the present (ky B.P.), leading the rise in atmospheric CO2 and tropical-surface-ocean warming by approximately 1000 years. The cause of this deglacial deep-water warming does not lie within the tropics, nor can its early onset between 19 and 17 ky B.P. be attributed to CO2 forcing. Increasing austral-spring insolation combined with sea-ice albedo feedbacks appear to be the key factors responsible for this warming.

  11. Respiratory muscle specific warm-up and elite swimming performance.

    PubMed

    Wilson, Emma E; McKeever, Tricia M; Lobb, Claire; Sherriff, Tom; Gupta, Luke; Hearson, Glenn; Martin, Neil; Lindley, Martin R; Shaw, Dominick E

    2014-05-01

    Inspiratory muscle training has been shown to improve performance in elite swimmers, when used as part of routine training, but its use as a respiratory warm-up has yet to be investigated. To determine the influence of inspiratory muscle exercise (IME) as a respiratory muscle warm-up in a randomised controlled cross-over trial. A total of 15 elite swimmers were assigned to four different warm-up protocols and the effects of IME on 100 m freestyle swimming times were assessed.Each swimmer completed four different IME warm-up protocols across four separate study visits: swimming-only warm-up; swimming warm-up plus IME warm-up (2 sets of 30 breaths with a 40% maximum inspiratory mouth pressure load using the Powerbreathe inspiratory muscle trainer); swimming warm-up plus sham IME warm-up (2 sets of 30 breaths with a 15% maximum inspiratory mouth pressure load using the Powerbreathe inspiratory muscle trainer); and IME-only warm-up. Swimmers performed a series of physiological tests and scales of perception (rate of perceived exertion and dyspnoea) at three time points (pre warm-up, post warm-up and post time trial). The combined standard swimming warm-up and IME warm-up were the fastest of the four protocols with a 100 m time of 57.05 s. This was significantly faster than the IME-only warm-up (mean difference=1.18 s, 95% CI 0.44 to 1.92, p<0.01) and the swim-only warm-up (mean difference=0.62 s, 95% CI 0.001 to 1.23, p=0.05). Using IME combined with a standard swimming warm-up significantly improves 100 m freestyle swimming performance in elite swimmers.

  12. Irrigation enhances local warming with greater nocturnal warming effects than daytime cooling effects

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Jeong, Su-Jong

    2018-02-01

    To meet the growing demand for food, land is being managed to be more productive using agricultural intensification practices, such as the use of irrigation. Understanding the specific environmental impacts of irrigation is a critical part of using it as a sustainable way to provide food security. However, our knowledge of irrigation effects on climate is still limited to daytime effects. This is a critical issue to define the effects of irrigation on warming related to greenhouse gases (GHGs). This study shows that irrigation led to an increasing temperature (0.002 °C year-1) by enhancing nighttime warming (0.009 °C year-1) more than daytime cooling (-0.007 °C year-1) during the dry season from 1961-2004 over the North China Plain (NCP), which is one of largest irrigated areas in the world. By implementing irrigation processes in regional climate model simulations, the consistent warming effect of irrigation on nighttime temperatures over the NCP was shown to match observations. The intensive nocturnal warming is attributed to energy storage in the wetter soil during the daytime, which contributed to the nighttime surface warming. Our results suggest that irrigation could locally amplify the warming related to GHGs, and this effect should be taken into account in future climate change projections.

  13. OVERVIEW OF GOLD HILL MILL, ROAD, AND WARM SPRINGS CAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF GOLD HILL MILL, ROAD, AND WARM SPRINGS CAMP BUILDINGS, LOOKING SOUTH SOUTHEAST. THE FUNCTION OF THE FLAT AREA AT CENTER RIGHT IS UNKNOWN. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  14. Warm Rivers Play Role in Arctic Sea Ice Melt Animation

    NASA Image and Video Library

    2014-03-05

    This frame from a NASA MODIS animation depicts warming sea surface temperatures in the Arctic Beaufort Sea after warm waters from Canada Mackenzie River broke through a shoreline sea ice barrier in summer 2012, enhancing the melting of sea ice.

  15. Alabama warm mix asphalt field study : final report.

    DOT National Transportation Integrated Search

    2010-05-01

    The Alabama Department of Transportation hosted a warm mix asphalt field demonstration in August 2007. The warm mix asphalt technology demonstrated was Evotherm Dispersed Asphalt Technology. The WMA and hot mix asphalt produced for the demonstration ...

  16. Warm-adapted microbial communities enhance their carbon-use efficiency in warmed soils

    NASA Astrophysics Data System (ADS)

    Rousk, Johannes; Frey, Serita

    2017-04-01

    Ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon (C), resulting in a positive feedback to increasing temperatures. The current generation of models assume that the temperature sensitivities of microbial processes do not respond to warming. However, recent studies have suggested that the ability of microbial communities to adapt to warming can lead both strengthened and weakened feedbacks. A further complication is that the balance between microbial C used for growth to that used for respiration - the microbial carbon-use efficiency (CUE) - also has been shown through both modelling and empirical study to respond to warming. In our study, we set out to assess how chronic warming (+5°C over ambient during 9 years) of a temperate hardwood forest floor (Harvard Forest LTER, USA) affected temperature sensitivities of microbial processes in soil. To do this, we first determined the temperature relationships for bacterial growth, fungal growth, and respiration in plots exposed to warmed or ambient conditions. Secondly, we parametrised the established temperature functions microbial growth and respiration with plot-specific measured soil temperature data at a hourly time-resolution over the course of 3 years to estimate the real-time variation of in situ microbial C production and respiration. To estimate the microbial CUE, we also divided the microbial C production with the sum of microbial C production and respiration as a proxy for substrate use. We found that warm-adapted bacterial and fungal communities both shifted their temperature relationships to grow at higher rates in warm conditions which coincided with reduced rates at cool conditions. As such, their optimal temperature (Topt), minimum temperature (Tmin) and temperature sensitivity (Q10) were all increased. The temperature relationship for temperature, in contrast, was only marginally shifted in the same direction, but at a much smaller effect size, with

  17. Was Early Mars Warmed by CH4?

    NASA Astrophysics Data System (ADS)

    Justh, H. L.; Kasting, J. F.

    2001-12-01

    Images from the Mariner, Viking and Mars Global Surveyor missions have shown geologic features on the Martian surface that seem to indicate an earlier period of hydrologic activity. Many researchers have suggested that the early Martian climate was more Earth-like with a Ts of 273 K or higher. The presence of liquid water would require a greenhouse effect much larger than needed at present since S0 is 25% lower 3.8 billion years ago when the channels are thought to have formed. Research into the effects of CO2 clouds upon the climate of early Mars have yielded results that would not effectively warm the surface to the temperature needed to account for the presence of liquid water. Forget and Pierrehumbert (Science, 1997) showed that large crystals of CO2 ice in clouds that form in the upper troposphere would produce a strong warming effect. Obtaining mean surface temperatures above 273 K would require 100% cloud cover, a condition that is unrealistic for early Mars. It has also been shown that any reduction in cloud cover makes it difficult to achieve warm Martian surface temperatures except at high pressures. CO2 clouds could also cool the Martian surface if they were low and optically thick. CO2 ice may be hard to nucleate, leading to the formation of very large particles (Glandorf, private communication). CH4 has been suggested as an important greenhouse gas on the early Earth. This has led us to look at CH4 as a potential solution to the early Mars climate issue. To investigate the possible warming effect of CH4, we utilized a modified, one-dimensional, radiative-convective climate model that has been used in previous studies of the early Martian climate. New calculations of the effects of CH4 upon the early Martian climate will be presented. The use of CH4 to warm the surface of early Mars does not necessarily imply the presence of life on Mars. Abiotic sources of CH4, such as serpentinization of ultramafic rocks, could supply the concentrations needed to warm

  18. Response of ocean ecosystems to climate warming

    NASA Astrophysics Data System (ADS)

    Sarmiento, J. L.; Slater, R.; Barber, R.; Bopp, L.; Doney, S. C.; Hirst, A. C.; Kleypas, J.; Matear, R.; Mikolajewicz, U.; Monfray, P.; Soldatov, V.; Spall, S. A.; Stouffer, R.

    2004-09-01

    We examine six different coupled climate model simulations to determine the ocean biological response to climate warming between the beginning of the industrial revolution and 2050. We use vertical velocity, maximum winter mixed layer depth, and sea ice cover to define six biomes. Climate warming leads to a contraction of the highly productive marginal sea ice biome by 42% in the Northern Hemisphere and 17% in the Southern Hemisphere, and leads to an expansion of the low productivity permanently stratified subtropical gyre biome by 4.0% in the Northern Hemisphere and 9.4% in the Southern Hemisphere. In between these, the subpolar gyre biome expands by 16% in the Northern Hemisphere and 7% in the Southern Hemisphere, and the seasonally stratified subtropical gyre contracts by 11% in both hemispheres. The low-latitude (mostly coastal) upwelling biome area changes only modestly. Vertical stratification increases, which would be expected to decrease nutrient supply everywhere, but increase the growing season length in high latitudes. We use satellite ocean color and climatological observations to develop an empirical model for predicting chlorophyll from the physical properties of the global warming simulations. Four features stand out in the response to global warming: (1) a drop in chlorophyll in the North Pacific due primarily to retreat of the marginal sea ice biome, (2) a tendency toward an increase in chlorophyll in the North Atlantic due to a complex combination of factors, (3) an increase in chlorophyll in the Southern Ocean due primarily to the retreat of and changes at the northern boundary of the marginal sea ice zone, and (4) a tendency toward a decrease in chlorophyll adjacent to the Antarctic continent due primarily to freshening within the marginal sea ice zone. We use three different primary production algorithms to estimate the response of primary production to climate warming based on our estimated chlorophyll concentrations. The three algorithms give

  19. Isolating the anthropogenic component of Arctic warming

    DOE PAGES

    Chylek, Petr; Hengartner, Nicholas; Lesins, Glen; ...

    2014-05-28

    Structural equation modeling is used in statistical applications as both confirmatory and exploratory modeling to test models and to suggest the most plausible explanation for a relationship between the independent and the dependent variables. Although structural analysis cannot prove causation, it can suggest the most plausible set of factors that influence the observed variable. Here, we apply structural model analysis to the annual mean Arctic surface air temperature from 1900 to 2012 to find the most effective set of predictors and to isolate the anthropogenic component of the recent Arctic warming by subtracting the effects of natural forcing and variabilitymore » from the observed temperature. We also find that anthropogenic greenhouse gases and aerosols radiative forcing and the Atlantic Multidecadal Oscillation internal mode dominate Arctic temperature variability. Finally, our structural model analysis of observational data suggests that about half of the recent Arctic warming of 0.64 K/decade may have anthropogenic causes.« less

  20. Viscous warm inflation: Hamilton-Jacobi formalism

    NASA Astrophysics Data System (ADS)

    Akhtari, L.; Mohammadi, A.; Sayar, K.; Saaidi, Kh.

    2017-04-01

    Using Hamilton-Jacobi formalism, the scenario of warm inflation with viscous pressure is considered. The formalism gives a way of computing the slow-rolling parameter without extra approximation, and it is well-known as a powerful method in cold inflation. The model is studied in detail for three different cases of the dissipation and bulk viscous pressure coefficients. In the first case where both coefficients are taken as constant, it is shown that the case could not portray warm inflationary scenario compatible with observational data even it is possible to restrict the model parameters. For other cases, the results shows that the model could properly predicts the perturbation parameters in which they stay in perfect agreement with Planck data. As a further argument, r -ns and αs -ns are drown that show the acquired result could stand in acceptable area expressing a compatibility with observational data.

  1. Was early Mars warmed by ammonia?

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Brown, L. L.; Acord, J. M.; Pollack, J. B.

    1992-01-01

    Runoff channels and valley networks present on ancient, heavily cratered Martian terrain suggests that the climate of Mars was originally warm and wet. One explanation for the formation of these channels is that the surface was warmed by the greenhouse effect of a dense, CO2 atmosphere. However, recent work shows that this theory is not consistent for the early period of the solar system. One way to increase the surface temperature predicted is to assume that other greenhouse gases were present in Mars' atmosphere in addition to CO2 and H2O. This possible gas is ammonia, NH3. If ammonia was present in sufficient quantities, it could have raised the surface temperature to 273 K. An adequate source would have been volcanic outgassing if the NH3 produced was shielded from photolysis by an ultraviolet light absorber.

  2. Warm Debris Disk Candidates from WISE

    NASA Technical Reports Server (NTRS)

    Padgett, Deborah; Stapelfeldt, Karl; Liu, Wilson; Leisawitz, David

    2011-01-01

    The Wide Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky survey in photometric bands at 3.4, 4.6, 12, and 22 microns. We report on a preliminary investigation of main sequence Hipparcos and Tycho catalog stars with 22 micron emission in excess of photospheric levels. This warm excess emission traces material in the circumstellar region likely to host terrestrial planets and is preferentially found in young systems with ages < 1 Gyr. Nearly a hundred new warm debris disk candidates are detected among FGK stars and 150 A stars within 120 pc. We are in the process of obtaining spectra to determine spectral types and activity level of these stars and are using HST, Herschel and Keck to characterize the dust, multiplicity, and substellar companions of these systems. In this contribution, we will discuss source selection methods and individual examples from among the WISE debris disk candidates.

  3. Indian Ocean warming modulates Pacific climate change.

    PubMed

    Luo, Jing-Jia; Sasaki, Wataru; Masumoto, Yukio

    2012-11-13

    It has been widely believed that the tropical Pacific trade winds weakened in the last century and would further decrease under a warmer climate in the 21st century. Recent high-quality observations, however, suggest that the tropical Pacific winds have actually strengthened in the past two decades. Precise causes of the recent Pacific climate shift are uncertain. Here we explore how the enhanced tropical Indian Ocean warming in recent decades favors stronger trade winds in the western Pacific via the atmosphere and hence is likely to have contributed to the La Niña-like state (with enhanced east-west Walker circulation) through the Pacific ocean-atmosphere interactions. Further analysis, based on 163 climate model simulations with centennial historical and projected external radiative forcing, suggests that the Indian Ocean warming relative to the Pacific's could play an important role in modulating the Pacific climate changes in the 20th and 21st centuries.

  4. Scientists' views about attribution of global warming.

    PubMed

    Verheggen, Bart; Strengers, Bart; Cook, John; van Dorland, Rob; Vringer, Kees; Peters, Jeroen; Visser, Hans; Meyer, Leo

    2014-08-19

    Results are presented from a survey held among 1868 scientists studying various aspects of climate change, including physical climate, climate impacts, and mitigation. The survey was unique in its size, broadness and level of detail. Consistent with other research, we found that, as the level of expertise in climate science grew, so too did the level of agreement on anthropogenic causation. 90% of respondents with more than 10 climate-related peer-reviewed publications (about half of all respondents), explicitly agreed with anthropogenic greenhouse gases (GHGs) being the dominant driver of recent global warming. The respondents' quantitative estimate of the GHG contribution appeared to strongly depend on their judgment or knowledge of the cooling effect of aerosols. The phrasing of the IPCC attribution statement in its fourth assessment report (AR4)-providing a lower limit for the isolated GHG contribution-may have led to an underestimation of the GHG influence on recent warming. The phrasing was improved in AR5. We also report on the respondents' views on other factors contributing to global warming; of these Land Use and Land Cover Change (LULCC) was considered the most important. Respondents who characterized human influence on climate as insignificant, reported having had the most frequent media coverage regarding their views on climate change.

  5. Global warming and allergy in Asia Minor.

    PubMed

    Bajin, Munir Demir; Cingi, Cemal; Oghan, Fatih; Gurbuz, Melek Kezban

    2013-01-01

    The earth is warming, and it is warming quickly. Epidemiological studies have demonstrated that global warming is correlated with the frequency of pollen-induced respiratory allergy and allergic diseases. There is a body of evidence suggesting that the prevalence of allergic diseases induced by pollens is increasing in developed countries, a trend that is also evident in the Mediterranean area. Because of its mild winters and sunny days with dry summers, the Mediterranean area is different from the areas of central and northern Europe. Classical examples of allergenic pollen-producing plants of the Mediterranean climate include Parietaria, Olea and Cupressaceae. Asia Minor is a Mediterranean region that connects Asia and Europe, and it includes considerable coastal areas. Gramineae pollens are the major cause of seasonal allergic rhinitis in Asia Minor, affecting 1.3-6.4 % of the population, in accordance with other European regions. This article emphasizes the importance of global climate change and anticipated increases in the prevalence and severity of allergic disease in Asia Minor, mediated through worsening air pollution and altered local and regional pollen production, from an otolaryngologic perspective.

  6. The phenology of Arctic Ocean surface warming.

    PubMed

    Steele, Michael; Dickinson, Suzanne

    2016-09-01

    In this work, we explore the seasonal relationships (i.e., the phenology) between sea ice retreat, sea surface temperature (SST), and atmospheric heat fluxes in the Pacific Sector of the Arctic Ocean, using satellite and reanalysis data. We find that where ice retreats early in most years, maximum summertime SSTs are usually warmer, relative to areas with later retreat. For any particular year, we find that anomalously early ice retreat generally leads to anomalously warm SSTs. However, this relationship is weak in the Chukchi Sea, where ocean advection plays a large role. It is also weak where retreat in a particular year happens earlier than usual, but still relatively late in the season, primarily because atmospheric heat fluxes are weak at that time. This result helps to explain the very different ocean warming responses found in two recent years with extreme ice retreat, 2007 and 2012. We also find that the timing of ice retreat impacts the date of maximum SST, owing to a change in the ocean surface buoyancy and momentum forcing that occurs in early August that we term the Late Summer Transition (LST). After the LST, enhanced mixing of the upper ocean leads to cooling of the ocean surface even while atmospheric heat fluxes are still weakly downward. Our results indicate that in the near-term, earlier ice retreat is likely to cause enhanced ocean surface warming in much of the Arctic Ocean, although not where ice retreat still occurs late in the season.

  7. Global Warming: Evidence from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R.; Yoo, J.-M.; Dalu, G.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Observations made in Channel 2 (53.74 GHz) of the Microwave Sounding Unit (MSU) radiometer, flown onboard sequential, sun-synchronous, polar-orbiting NOAA (National Oceanic and Atmospheric Administration) operational satellites, indicate that the mean temperature of the atmosphere over the globe increased during the period 1980 to 1999. In this study, we have minimized systematic errors in the time series introduced by satellite orbital drift in an objective manner. This is done with the help of the onboard warm-blackbody temperature, which is used in the calibration of the MSU radiometer. The corrected MSU Channel 2 observations of the NOAA satellite series reveal that the vertically-weighted global-mean temperature of the atmosphere, with a peak weight near the mid troposphere, warmed at the rate of 0.13 +/- 0.05 K/decade during 1980 to 1999. The global warming deduced from conventional meteorological data that have been corrected for urbanization effects agrees reasonably with this satellite-deduced result.

  8. Global Warming: Evidence from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.

    2001-01-01

    Observations made in Channel 2 (53.74 GHz) of the Microwave Sounding Unit (MSU) radiometer, flown on-board sequential, sun-synchronous, polar orbiting NOAA operational satellites, indicate that the mean temperature of the atmosphere over the globe increased during the period 1980 to 1999. In this study we have minimized systematic errors in the time series introduced by the satellite orbital drift in an objective manner. This is done with the help the onboard warm black body temperature, which is used in the calibration of the MSU radiometer. The corrected MSU Channel 2 observations of the NOAA satellite series reveal that the vertically weighted global mean temperature of the atmosphere, with a peak weight near the mid-troposphere, warmed at the rate of 0.13 K per decade (with an uncertainty of 0.05 K per decade) during 1980 to 1999. The global warming deduced from conventional meteorological data that have been corrected for urbanization effects agrees reasonably with this satellite deuced result.

  9. Effects of Global Warming on Vibrio Ecology.

    PubMed

    Vezzulli, Luigi; Pezzati, Elisabetta; Brettar, Ingrid; Höfle, Manfred; Pruzzo, Carla

    2015-06-01

    Vibrio-related infections are increasing worldwide both in humans and aquatic animals. Rise in global sea surface temperature (SST), which is approximately 1 °C higher now than 140 years ago and is one of the primary physical impacts of global warming, has been linked to such increases. In this chapter, major known effects of increasing SST on the biology and ecology of vibrios are described. They include the effects on bacterial growth rate, both in the field and in laboratory, culturability, expression of pathogenicity traits, and interactions with aquatic organisms and abiotic surfaces. Special emphasis is given to the effect of ocean warming on Vibrio interactions with zooplankters, which represent one of the most important aquatic reservoirs for these bacteria. The reported findings highlight the biocomplexity of the interactions between vibrios and their natural environment in a climate change scenario, posing the need for interdisciplinary studies to properly understand the connection between ocean warming and persistence and spread of vibrios in sea waters and the epidemiology of the diseases they cause.

  10. Atmospheric footprint of the recent warming slowdown

    PubMed Central

    Liu, Bo; Zhou, Tianjun

    2017-01-01

    Growing body of literature has developed to detect the role of ocean heat uptake and transport in the recent warming slowdown between 1998–2013; however, the atmospheric footprint of the slowdown in dynamical and physical processes remains unclear. Here, we divided recent decades into the recent hiatus period and the preceding warming period (1983–1998) to investigate the atmospheric footprint. We use a process-resolving analysis method to quantify the contributions of different processes to the total temperature changes. We show that the increasing rate of global mean tropospheric temperature was also reduced during the hiatus period. The decomposed trends due to physical processes, including surface albedo, water vapour, cloud, surface turbulent fluxes and atmospheric dynamics, reversed the patterns between the two periods. The changes in atmospheric heat transport are coupled with changes in the surface latent heat flux across the lower troposphere (below approximately 800 hPa) and with cloud-related processes in the upper troposphere (above approximately 600 hPa) and were underpinned by strengthening/weakening Hadley Circulation and Walker Circulation during the warming/hiatus period. This dynamical coupling experienced a phase transition between the two periods, reminding us of the importance of understanding the atmospheric footprint, which constitutes an essential part of internal climate variability. PMID:28084457

  11. Global Warming: Claims, Science, and Consequences

    NASA Astrophysics Data System (ADS)

    Gould, Laurence I.

    2007-04-01

    Widespread (and seemingly dominant) claims about the dire consequences of anthropogenic global warming (AGW) have been propagated by both scientists and politicians and have been prominently featured by much of the mass media. This talk will examine some of those claims --- such as those made in the popular pro-AGW film, An Inconvenient Truth^1 --- from the perspectives of science^2 and scientific methodology^3. Some of the issues considered will be: What are the major ``greenhouse gases''? To what extent is global warming a result of human influences through an increase of ``greenhouse gases''? Is an increase in (1) global temperature and (2) carbon dioxide bad/good? What are some meanings that can be given to the term ``consensus'' in science? What are the estimated financial and other costs of governments implementing the Kyoto accords? Links to readings and videos will be given at the conclusion of the talk. ^1Gore, Al, An Inconvenient Truth: The Planetary Emergency of Global Warming and What We Can Do About It -- (Rodale Press, May, 2006). ^2Marlo Lewis, ``A Skeptic's Guide to An Inconvenient Truth'' http://www.cei.org/pages/aitresponse-book.cfm ^3Aaron Wildavsky, But Is It True? A Citizen's Guide to Environmental Health and Safety Issues (Harvard University Press, 1995), Intro. and Chap. 11. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NES07.C1.6

  12. Radiative Cooling of Warm Molecular Gas

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Kaufman, Michael J.

    1993-01-01

    We consider the radiative cooling of warm (T >= 100 K), fully molecular astrophysical gas by rotational and vibrational transitions of the molecules H2O, CO, and H2. Using an escape probability method to solve for the molecular level populations, we have obtained the cooling rate for each molecule as a function of temperature, density, and an optical depth parameter. A four-parameter expression proves useful in fitting the run of cooling rate with density for any fixed values of the temperature and optical depth parameter. We identify the various cooling mechanisms which are dominant in different regions of the astrophysically relevant parameter space. Given the assumption that water is very abundant in warm regions of the interstellar medium, H2O rotational transitions are found to dominate the cooling of warm interstellar gas over a wide portion of the parameter space considered. While chemical models for the interstellar medium make the strong prediction that water will be produced copiously at temperatures above a few hundred degrees, our assumption of a high water abundance has yet to be tested observationally. The Infrared Space Observatory and the Submillimeter Wave Astronomy Satellite will prove ideal instruments for testing whether water is indeed an important coolant of interstellar and circumstellar gas.

  13. Seaweed communities in retreat from ocean warming.

    PubMed

    Wernberg, Thomas; Russell, Bayden D; Thomsen, Mads S; Gurgel, C Frederico D; Bradshaw, Corey J A; Poloczanska, Elvira S; Connell, Sean D

    2011-11-08

    In recent decades, global climate change [1] has caused profound biological changes across the planet [2-6]. However, there is a great disparity in the strength of evidence among different ecosystems and between hemispheres: changes on land have been well documented through long-term studies, but similar direct evidence for impacts of warming is virtually absent from the oceans [3, 7], where only a few studies on individual species of intertidal invertebrates, plankton, and commercially important fish in the North Atlantic and North Pacific exist. This disparity of evidence is precarious for biological conservation because of the critical role of the marine realm in regulating the Earth's environmental and ecological functions, and the associated socioeconomic well-being of humans [8]. We interrogated a database of >20,000 herbarium records of macroalgae collected in Australia since the 1940s and documented changes in communities and geographical distribution limits in both the Indian and Pacific Oceans, consistent with rapid warming over the past five decades [9, 10]. We show that continued warming might drive potentially hundreds of species toward and beyond the edge of the Australian continent where sustained retreat is impossible. The potential for global extinctions is profound considering the many endemic seaweeds and seaweed-dependent marine organisms in temperate Australia. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Warm-up and performance in competitive swimming.

    PubMed

    Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Marinho, Daniel A

    2014-03-01

    Warm-up before physical activity is commonly accepted to be fundamental, and any priming practices are usually thought to optimize performance. However, specifically in swimming, studies on the effects of warm-up are scarce, which may be due to the swimming pool environment, which has a high temperature and humidity, and to the complexity of warm-up procedures. The purpose of this study is to review and summarize the different studies on how warming up affects swimming performance, and to develop recommendations for improving the efficiency of warm-up before competition. Most of the main proposed effects of warm-up, such as elevated core and muscular temperatures, increased blood flow and oxygen delivery to muscle cells and higher efficiency of muscle contractions, support the hypothesis that warm-up enhances performance. However, while many researchers have reported improvements in performance after warm-up, others have found no benefits to warm-up. This lack of consensus emphasizes the need to evaluate the real effects of warm-up and optimize its design. Little is known about the effectiveness of warm-up in competitive swimming, and the variety of warm-up methods and swimming events studied makes it difficult to compare the published conclusions about the role of warm-up in swimming. Recent findings have shown that warm-up has a positive effect on the swimmer's performance, especially for distances greater than 200 m. We recommend that swimmers warm-up for a relatively moderate distance (between 1,000 and 1,500 m) with a proper intensity (a brief approach to race pace velocity) and recovery time sufficient to prevent the early onset of fatigue and to allow the restoration of energy reserves (8-20 min).

  15. Arctic Warming Signals from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2005-01-01

    Global warming signals are expected to be amplified in the Arctic primarily because of ice-albedo feedback associated with the high reflectivity of ice and snow that blankets much of the region. The Arctic had been a poorly explored territory basically because of its general inaccessibility on account of extremely harsh weather conditions and the dominant presence of thick perennial ice in the region. The advent of satellite remote sensing systems since the 1960s, however, enabled the acquisition of synoptic data that depict in good spatial detail the temporal changes of many Arctic surface parameters. Among the surface parameters that have been studied using space based systems are surface temperature, sea ice concentration, snow cover, surface albedo and phytoplankton concentration. Associated atmospheric parameters, such as cloud cover, temperature profile, ozone concentration, and aerosol have also been derived. Recent observational and phenomenological studies have indeed revealed progressively changing conditions in the Arctic during the last few decades (e g , Walsh et al. 1996; Serreze et al 2000; Comiso and Parkinson 2004). The changes included declines in the extent and area of surfaces covered by sea ice and snow, increases in melt area over the Greenland ice sheets, thawing of the permafrost, warming in the troposphere, and retreat of the glaciers. These observations are consistent with the observed global warming that has been associated with the increasing concentration of greenhouse gases in the atmosphere (Karl and Trenberth 2003) and confirmed by modeling studies (Holland and Bitz, 2003). The Arctic system, however, is still not well understood complicated by a largely fluctuating wind circulation and atmospheric conditions (Proshutinsky and Johnson 1997) and controlled by what is now known as the Arctic Oscillation (AO) which provides a measure of the strength of atmospheric activities in the region (Thompson and Wallace 1998). Meanwhile, the

  16. Can cirrus clouds warm early Mars?

    NASA Astrophysics Data System (ADS)

    Ramirez, R. M.

    2015-12-01

    The presence of the ancient valley networks on Mars indicates a climate 3.8 Ga that was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the origin of these enigmatic features is hotly debated and discussion of their formation has been focused on how warm such a climate may have been and for how long. Recent warm and wet solutions using single-column radiative convective models involve supplementing CO2-H2O atmospheres with other greenhouse gases, such as H2 (i.e. Ramirez et al., 2014; Batalha et al., 2015). An interesting recent proposal, using the CAM 3-D General Circulation model, argues that global cirrus cloud decks in CO2-H2O atmospheres with at least 0.25 bar of CO2 , consisting of 10-micron (and larger) sized particles, could have generated the above-freezing temperatures required to explain the early martian surface geology (Urata and Toon, 2013). Here, we use our single-column radiative convective climate model to check these 3-D results and analyze the likelihood that such warm atmospheres, with mean surface pressures of up to 3 bar, could have supported cirrus cloud decks at full and fractional cloud cover for sufficiently long durations to form the ancient valleys. Our results indicate that cirrus cloud decks could have provided the mean surface temperatures required, but only if cloud cover approaches 100%, in agreement with Urata and Toon (2013). However, even should cirrus cloud coverage approach 100%, we show that such atmospheres are likely to have been too short-lived to produce the volumes of water required to carve the ancient valleys. At more realistic early Mars cloud fractions (~50%, Forget et al., 2013), cirrus clouds do not provide the required warming. Batalha, N., Domagal-Goldman, S. D., Ramirez, R.M., & Kasting, J. F., 2015. Icarus, 258, 337-349. Forget, F., Wordsworth, R., Millour, E., Madeleine, J. B., Kerber, L., Leconte, J., ... & Haberle, R. M., 2013. Icarus, 222

  17. Experimental winter warming modifies thermal performance and primes acorn ants for warm weather.

    PubMed

    MacLean, Heidi J; Penick, Clint A; Dunn, Robert R; Diamond, Sarah E

    2017-07-01

    The frequency of warm winter days is increasing under global climate change, but how organisms respond to warmer winters is not well understood. Most studies focus on growing season responses to warming. Locomotor performance is often highly sensitive to temperature, and can determine fitness outcomes through a variety of mechanisms including resource acquisition and predator escape. As a consequence, locomotor performance, and its impacts on fitness, may be strongly affected by winter warming in winter-active species. Here we use the acorn ant, Temnothorax curvispinosus, to explore how thermal performance (temperature-driven plasticity) in running speed is influenced by experimental winter warming of 3-5°C above ambient in a field setting. We used running speed as a measure of performance as it is a common locomotor trait that influences acquisition of nest sites and food in acorn ants. Experimental winter warming significantly altered thermal performance for running speed at high (26 and 36°C) but not low test temperatures (6 and 16°C). Although we saw little differentiation in thermal performance at cooler test temperatures, we saw a marked increase in running speed at the hotter test temperatures for ants that experienced warmer winters compared with those that experienced cooler winters. Our results provide evidence that overwintering temperatures can substantially influence organismal performance, and suggest that we cannot ignore overwintering effects when forecasting organismal responses to environmental changes in temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Why tropical forest lizards are vulnerable to climate warming.

    PubMed

    Huey, Raymond B; Deutsch, Curtis A; Tewksbury, Joshua J; Vitt, Laurie J; Hertz, Paul E; Alvarez Pérez, Héctor J; Garland, Theodore

    2009-06-07

    Biological impacts of climate warming are predicted to increase with latitude, paralleling increases in warming. However, the magnitude of impacts depends not only on the degree of warming but also on the number of species at risk, their physiological sensitivity to warming and their options for behavioural and physiological compensation. Lizards are useful for evaluating risks of warming because their thermal biology is well studied. We conducted macrophysiological analyses of diurnal lizards from diverse latitudes plus focal species analyses of Puerto Rican Anolis and Sphaerodactyus. Although tropical lowland lizards live in environments that are warm all year, macrophysiological analyses indicate that some tropical lineages (thermoconformers that live in forests) are active at low body temperature and are intolerant of warm temperatures. Focal species analyses show that some tropical forest lizards were already experiencing stressful body temperatures in summer when studied several decades ago. Simulations suggest that warming will not only further depress their physiological performance in summer, but will also enable warm-adapted, open-habitat competitors and predators to invade forests. Forest lizards are key components of tropical ecosystems, but appear vulnerable to the cascading physiological and ecological effects of climate warming, even though rates of tropical warming may be relatively low.

  19. Why tropical forest lizards are vulnerable to climate warming

    PubMed Central

    Huey, Raymond B.; Deutsch, Curtis A.; Tewksbury, Joshua J.; Vitt, Laurie J.; Hertz, Paul E.; Álvarez Pérez, Héctor J.; Garland, Theodore

    2009-01-01

    Biological impacts of climate warming are predicted to increase with latitude, paralleling increases in warming. However, the magnitude of impacts depends not only on the degree of warming but also on the number of species at risk, their physiological sensitivity to warming and their options for behavioural and physiological compensation. Lizards are useful for evaluating risks of warming because their thermal biology is well studied. We conducted macrophysiological analyses of diurnal lizards from diverse latitudes plus focal species analyses of Puerto Rican Anolis and Sphaerodactyus. Although tropical lowland lizards live in environments that are warm all year, macrophysiological analyses indicate that some tropical lineages (thermoconformers that live in forests) are active at low body temperature and are intolerant of warm temperatures. Focal species analyses show that some tropical forest lizards were already experiencing stressful body temperatures in summer when studied several decades ago. Simulations suggest that warming will not only further depress their physiological performance in summer, but will also enable warm-adapted, open-habitat competitors and predators to invade forests. Forest lizards are key components of tropical ecosystems, but appear vulnerable to the cascading physiological and ecological effects of climate warming, even though rates of tropical warming may be relatively low. PMID:19324762

  20. Global warming 2007. An update to global warming: the balance of evidence and its policy implications.

    PubMed

    Keller, Charles F

    2007-03-09

    In the four years since my original review (Keller[25]; hereafter referred to as CFK03), research has clarified and strengthened our understanding of how humans are warming the planet. So many of the details highlighted in the IPCC's Third Assessment Report[21] and in CFK03 have been resolved that I expect many to be a bit overwhelmed, and I hope that, by treating just the most significant aspects of the research, this update may provide a road map through the expected maze of new information. In particular, while most of CFK03 remains current, there are important items that have changed: Most notable is the resolution of the conundrum that mid-tropospheric warming did not seem to match surface warming. Both satellite and radiosonde (balloon-borne sensors) data reduction showed little warming in the middle troposphere (4-8 km altitude). In the CFK03 I discussed potential solutions to this problem, but at that time there was no clear resolution. This problem has now been solved, and the middle troposphere is seen to be warming apace with the surface. There have also been advances in determinations of temperatures over the past 1,000 years showing a cooler Little Ice Age (LIA) but essentially the same warming during medieval times (not as large as recent warming). The recent uproar over the so-called "hockey stick" temperature determination is much overblown since at least seven other groups have made relatively independent determinations of northern hemisphere temperatures over the same time period and derived essentially the same results. They differ on how cold the LIA was but essentially agree with the Mann's hockey stick result that the Medieval Warm Period was not as warm as the last 25 years. The question of the sun's influence on climate continues to generate controversy. It appears there is a growing consensus that, while the sun was a major factor in earlier temperature variations, it is incapable of having caused observed warming in the past quarter

  1. Simulation of future global warming scenarios in rice paddies with an open-field warming facility

    PubMed Central

    2011-01-01

    To simulate expected future global warming, hexagonal arrays of infrared heaters have previously been used to warm open-field canopies of upland crops such as wheat. Through the use of concrete-anchored posts, improved software, overhead wires, extensive grounding, and monitoring with a thermal camera, the technology was safely and reliably extended to paddy rice fields. The system maintained canopy temperature increases within 0.5°C of daytime and nighttime set-point differences of 1.3 and 2.7°C 67% of the time. PMID:22145582

  2. Punishments and Prizes for Explaining Global Warming

    NASA Astrophysics Data System (ADS)

    Somerville, R. C.

    2006-12-01

    Some few gifted scientists, the late Carl Sagan being an iconic example, are superbly skilled at communicating science clearly and compellingly to non-scientists. Most scientists, however, have serious shortcomings as communicators. The common failings include being verbose, addicted to jargon, caveat- obsessed and focused on details. In addition, it is far easier for a scientist to scoff at the scientific illiteracy of modern society than to work at understanding the viewpoints and concerns of journalists, policymakers and the public. Obstacles await even those scientists with the desire and the talent to communicate science well. Peer pressure and career disincentives can act as powerful deterrents, discouraging especially younger scientists from spending time on non-traditional activities. Scientists often lack mentors and role models to help them develop skills in science communication. Journalists also face real difficulties in getting science stories approved by editors and other gatekeepers. Climate change science brings its own problems in communication. The science itself is unusually wide- ranging and complex. The contentious policies and politics of dealing with global warming are difficult to disentangle from the science. Misinformation and disinformation about climate change are widespread. Intimidation and censorship of scientists by some employers is a serious problem. Polls show that global warming ranks low on the public's list of important issues. Despite all the obstacles, communicating climate change science well is critically important today. It is an art that can be learned and that brings its own rewards and satisfactions. Academic institutions and research funding agencies increasingly value outreach by scientists, and they provide resources to facilitate it. Society needs scientists who can clearly and authoritatively explain the science of global warming and its implications, while remaining objective and policy-neutral. This need will

  3. Warming Early Mars With CH4

    NASA Astrophysics Data System (ADS)

    Justh, H. L.; Kasting, J. F.

    2002-12-01

    The nature of the ancient climate of Mars remains one of the fundamental unresolved problems in martian research. While the present environment is hostile to life, images from the Mariner, Viking and Mars Global Surveyor missions, have shown geologic features on the martian surface that seem to indicate an earlier period of hydrologic activity. The fact that ancient valley networks and degraded craters have been seen on the martian surface indicates that the early martian climate may have been more Earth-like, with a warmer surface temperature. The presence of liquid water would require a greenhouse effect much larger than needed at present, as the solar constant, S0, was 25% lower 3.8 billion years ago when the channels are thought to have formed (1,2). Previous calculations have shown that gaseous CO2 and H2O alone could not have warmed the martian surface to the temperature needed to account for the presence of liquid water (3). It has been hypothesized that a CO2-H2O atmosphere could keep early Mars warm if it was filled with CO2 ice clouds in the upper martian troposphere (4). Obtaining mean martian surface temperatures above 273 K would require nearly 100% cloud cover, a condition that is unrealistic for condensation clouds on early Mars. Any reduction in cloud cover makes it difficult to achieve warm martian surface temperatures except at high pressures and CO2 clouds could cool the martian surface if they were low and optically thick (5). CO2 and CH4 have been suggested as important greenhouse gases on the early Earth. Our research focuses on the effects of increased concentrations of atmospheric greenhouse gases on the surface temperature of early Mars, with emphasis on the reduced greenhouse gas, CH4. To investigate the possible warming effect of CH4, we modified a one-dimensional, radiative-convective climate model used in previous studies of the early martian climate (5). New cloud-free temperature profiles for various surface pressures and CH4 mixing

  4. Global warming and carbon dioxide through sciences.

    PubMed

    Florides, Georgios A; Christodoulides, Paul

    2009-02-01

    Increased atmospheric CO(2)-concentration is widely being considered as the main driving factor that causes the phenomenon of global warming. This paper attempts to shed more light on the role of atmospheric CO(2) in relation to temperature-increase and, more generally, in relation to Earth's life through the geological aeons, based on a review-assessment of existing related studies. It is pointed out that there has been a debate on the accuracy of temperature reconstructions as well as on the exact impact that CO(2) has on global warming. Moreover, using three independent sets of data (collected from ice-cores and chemistry) we perform a specific regression analysis which concludes that forecasts about the correlation between CO(2)-concentration and temperature rely heavily on the choice of data used, and one cannot be positive that indeed such a correlation exists (for chemistry data) or even, if existing (for ice-cores data), whether it leads to a "severe" or a "gentle" global warming. A very recent development on the greenhouse phenomenon is a validated adiabatic model, based on laws of physics, forecasting a maximum temperature-increase of 0.01-0.03 degrees C for a value doubling the present concentration of atmospheric CO(2). Through a further review of related studies and facts from disciplines like biology and geology, where CO(2)-change is viewed from a different perspective, it is suggested that CO(2)-change is not necessarily always a negative factor for the environment. In fact it is shown that CO(2)-increase has stimulated the growth of plants, while the CO(2)-change history has altered the physiology of plants. Moreover, data from palaeoclimatology show that the CO(2)-content in the atmosphere is at a minimum in this geological aeon. Finally it is stressed that the understanding of the functioning of Earth's complex climate system (especially for water, solar radiation and so forth) is still poor and, hence, scientific knowledge is not at a level to

  5. Scientists' Views about Attribution of Global Warming

    NASA Astrophysics Data System (ADS)

    Verheggen, Bart; Strengers, Bart; Cook, John; van Dorland, Rob; Vringer, Kees; Peters, Jeroen; Visser, Hans; Meyer, Leo

    2015-04-01

    What do scientists think? That is an important question when engaging in science communication, in which an attempt is made to communicate the scientific understanding to a lay audience. To address this question we undertook a large and detailed survey among scientists studying various aspects of climate change , dubbed "perhaps the most thorough survey of climate scientists ever" by well-known climate scientist and science communicator Gavin Schmidt. Among more than 1800 respondents we found widespread agreement that global warming is predominantly caused by human greenhouse gases. This consensus strengthens with increased expertise, as defined by the number of self-reported articles in the peer-reviewed literature. 90% of respondents with more than 10 climate-related peer-reviewed publications (about half of all respondents), agreed that anthropogenic greenhouse gases are the dominant cause of recent global warming, i.e. having contributed more than half of the observed warming. With this survey we specified what the consensus position entails with much greater specificity than previous studies. The relevance of this consensus for science communication will be discussed. Another important result from our survey is that the main attribution statement in IPCC's fourth assessment report (AR4) may lead to an underestimate of the greenhouse gas contribution to warming, because it implicitly includes the lesser known masking effect of cooling aerosols. This shows the importance of the exact wording in high-profile reports such as those from IPCC in how the statement is perceived, even by fellow scientists. The phrasing was improved in the most recent assessment report (AR5). Respondents who characterized the human influence on climate as insignificant, reported having the most frequent media coverage regarding their views on climate change. This shows that contrarian opinions are amplified in the media in relation to their prevalence in the scientific community. This

  6. Resource Letter: GW-1: Global warming

    NASA Astrophysics Data System (ADS)

    Firor, John W.

    1994-06-01

    This Resource Letter provides a guide to the literature on the possibility of a human-induced climate change—a global warming. Journal articles and books are cited for the following topics: the Greenhouse Effect, sources of infrared-trapping gases, climate models and their uncertainties, verification of climate models, past climate changes, and economics, ethics, and politics of policy responses to climate change. [The letter E after an item indicates elementary level or material of general interest to persons becoming informed in the field. The letter I, for intermediate level, indicates material of somewhat more specialized nature, and the letter A indicates rather specialized or advanced material.

  7. Atom Interferometry in a Warm Vapor

    DOE PAGES

    Biedermann, G. W.; McGuinness, H. J.; Rakholia, A. V.; ...

    2017-04-17

    Here, we demonstrate matter-wave interference in a warm vapor of rubidium atoms. Established approaches to light-pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical light pulse. In our experiment, we show that clear interference signals may be obtained without laser cooling. This effect relies on the Doppler selectivity of the atom interferometer resonance. Lastly, this interferometer may be configured to measure accelerations, and we demonstrate that multiple interferometers may be operated simultaneously by addressing multiple velocity classes.

  8. Cold and warm swelling of hydrophobic polymers

    NASA Astrophysics Data System (ADS)

    de Los Rios, Paolo; Caldarelli, Guido

    2001-03-01

    We introduce a polymer model where the transition from swollen to compact configurations is due to interactions between the monomers and the solvent. These interactions are the origin of the effective attractive interactions between hydrophobic amino acids in proteins. We find that in the low and high temperature phases polymers are swollen, and there is an intermediate phase where the most favorable configurations are compact. We argue that such a model captures in a single framework both the cold and the warm denaturation experimentally detected for thermosensitive polymers and for proteins.

  9. The Electron Beam Ion Source (EBIS)

    ScienceCinema

    Brookhaven Lab

    2017-12-09

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  10. Multi-species collapses at the warm edge of a warming sea

    PubMed Central

    Rilov, Gil

    2016-01-01

    Even during the current biodiversity crisis, reports on population collapses of highly abundant, non-harvested marine species were rare until very recently. This is starting to change, especially at the warm edge of species’ distributions where populations are more vulnerable to stress. The Levant basin is the southeastern edge of distribution of most Mediterranean species. Coastal water conditions are naturally extreme, and are fast warming, making it a potential hotspot for species collapses. Using multiple data sources, I found strong evidence for major, sustained, population collapses of two urchins, one large predatory gastropod and a reef-building gastropod. Furthermore, of 59 molluscan species once-described in the taxonomic literature as common on Levant reefs, 38 were not found in the present-day surveys, and there was a total domination of non-indigenous species in molluscan assemblages. Temperature trends indicate an exceptional warming of the coastal waters in the past three decades. Though speculative at this stage, the fast rise in SST may have helped pushing these invertebrates beyond their physiological tolerance limits leading to population collapses and possible extirpations. If so, these collapses may indicate the initiation of a multi-species range contraction at the Mediterranean southeastern edge that may spread westward with additional warming. PMID:27853237

  11. Recently amplified arctic warming has contributed to a continual global warming trend

    NASA Astrophysics Data System (ADS)

    Huang, Jianbin; Zhang, Xiangdong; Zhang, Qiyi; Lin, Yanluan; Hao, Mingju; Luo, Yong; Zhao, Zongci; Yao, Yao; Chen, Xin; Wang, Lei; Nie, Suping; Yin, Yizhou; Xu, Ying; Zhang, Jiansong

    2017-12-01

    The existence and magnitude of the recently suggested global warming hiatus, or slowdown, have been strongly debated1-3. Although various physical processes4-8 have been examined to elucidate this phenomenon, the accuracy and completeness of observational data that comprise global average surface air temperature (SAT) datasets is a concern9,10. In particular, these datasets lack either complete geographic coverage or in situ observations over the Arctic, owing to the sparse observational network in this area9. As a consequence, the contribution of Arctic warming to global SAT changes may have been underestimated, leading to an uncertainty in the hiatus debate. Here, we constructed a new Arctic SAT dataset using the most recently updated global SATs2 and a drifting buoys based Arctic SAT dataset11 through employing the `data interpolating empirical orthogonal functions' method12. Our estimate of global SAT rate of increase is around 0.112 °C per decade, instead of 0.05 °C per decade from IPCC AR51, for 1998-2012. Analysis of this dataset shows that the amplified Arctic warming over the past decade has significantly contributed to a continual global warming trend, rather than a hiatus or slowdown.

  12. Impact of biofuels on contrail warming

    NASA Astrophysics Data System (ADS)

    Caiazzo, Fabio; Agarwal, Akshat; Speth, Raymond L.; Barrett, Steven R. H.

    2017-11-01

    Contrails and contrail-cirrus may be the largest source of radiative forcing (RF) attributable to aviation. Biomass-derived alternative jet fuels are a potentially major way to mitigate the climate impacts of aviation by reducing lifecycle CO2 emissions. Given the up to 90% reduction in soot emissions from paraffinic biofuels, the potential for a significant impact on contrail RF due to the reduction in contrail-forming ice nuclei (IN) remains an open question. We simulate contrail formation and evolution to quantify RF over the United States under different emissions scenarios. Replacing conventional jet fuels with paraffinic biofuels generates two competing effects. First, the higher water emissions index results in an increase in contrail occurrence (~ +8%). On the other hand, these contrails are composed of larger diameter crystals (~ +58%) at lower number concentrations (~ -75%), reducing both contrail optical depth (~ -29%) and albedo (~ -32%). The net changes in contrail RF induced by switching to biofuels range from -4% to +18% among a range of assumed ice crystal habits (shapes). In comparison, cleaner burning engines (with no increase in water emissions index) result in changes to net contrail RF ranging between -13% and +5% depending on habit. Thus, we find that even 67% to 75% reductions in aircraft soot emissions are insufficient to substantially reduce warming from contrails, and that the use of biofuels may either increase or decrease contrail warming—contrary to previous expectations of a significant decrease in warming.

  13. Identifying the Molecular Origin of Global Warming

    NASA Technical Reports Server (NTRS)

    Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2009-01-01

    We have investigated the physical characteristics of greenhouse gases (GHGs) to assess which properties are most important in determining the efficiency of a GHG. Chlorofluorcarbons (CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), nitrogen fluorides, and various other known atmospheric trace molecules have been included in this study. Compounds containing the halogens F or Cl have in common very polar X-F or X-Cl bonds, particularly the X-F bonds. It is shown that as more F atoms bond to the same central atom, the bond dipoles become larger as a result of the central atom becoming more positive. This leads to a linear increase in the total or integrated XF bond dipole derivatives for the molecule, which leads to a non-linear (quadratic) increase in infrared (IR) intensity. Moreover, virtually all of the X-F bond stretches occur in the atmospheric IR window as opposed to X-H stretches, which do not occur in the atmospheric window. It is concluded that molecules possessing several F atoms will always have a large radiative forcing parameter in the calculation of their global warming potential. Some of the implications for global warming and climate change are discussed.

  14. Anthropogenic warming exacerbates European soil moisture droughts

    NASA Astrophysics Data System (ADS)

    Samaniego, L.; Thober, S.; Kumar, R.; Wanders, N.; Rakovec, O.; Pan, M.; Zink, M.; Sheffield, J.; Wood, E. F.; Marx, A.

    2018-05-01

    Anthropogenic warming is anticipated to increase soil moisture drought in the future. However, projections are accompanied by large uncertainty due to varying estimates of future warming. Here, using an ensemble of hydrological and land-surface models, forced with bias-corrected downscaled general circulation model output, we estimate the impacts of 1-3 K global mean temperature increases on soil moisture droughts in Europe. Compared to the 1.5 K Paris target, an increase of 3 K—which represents current projected temperature change—is found to increase drought area by 40% (±24%), affecting up to 42% (±22%) more of the population. Furthermore, an event similar to the 2003 drought is shown to become twice as frequent; thus, due to their increased occurrence, events of this magnitude will no longer be classified as extreme. In the absence of effective mitigation, Europe will therefore face unprecedented increases in soil moisture drought, presenting new challenges for adaptation across the continent.

  15. Multicompartment Liquid-Cooling/Warming Protective Garments

    NASA Technical Reports Server (NTRS)

    Koscheyev, Victor S.; Leon, Gloria R.; Dancisak, Michael J.

    2005-01-01

    Shortened, multicompartment liquid-cooling / warming garments (LCWGs) for protecting astronauts, firefighters, and others at risk of exposure to extremes of temperature are undergoing development. Unlike prior liquid-circulation thermal-protection suits that provide either cooling or warming but not both, an LCWG as envisioned would provide cooling at some body locations and/or heating at other locations, as needed: For example, sometimes there is a need to cool the body core and to heat the extremities simultaneously. An LCWG garment of the type to be developed is said to be shortened because the liquid-cooling and - heating zones would not cover the whole body and, instead, would cover reduced areas selected for maximum heating and cooling effectiveness. Physiological research is under way to provide a rational basis for selection of the liquid-cooling and -heating areas. In addition to enabling better (relative to prior liquid-circulation garments) balancing of heat among different body regions, the use of selective heating and cooling in zones would contribute to a reduction in the amount of energy needed to operate a thermal-protection suit.

  16. Soil crusts to warm the planet

    NASA Astrophysics Data System (ADS)

    Garcia-Pichel, Ferran; Couradeau, Estelle; Karaoz, Ulas; da Rocha Ulisses, Nunes; Lim Hsiao, Chiem; Northen, Trent; Brodie, Eoin

    2016-04-01

    Soil surface temperature, an important driver of terrestrial biogeochemical processes, depends strongly on soil albedo, which can be significantly modified by factors such as plant cover. In sparsely vegetated lands, the soil surface can also be colonized by photosynthetic microbes that build biocrust communities. We used concurrent physical, biochemical and microbiological analyses to show that mature biocrusts can increase surface soil temperature by as much as 10 °C through the accumulation of large quantities of a secondary metabolite, the microbial sunscreen scytonemin, produced by a group of late-successional cyanobacteria. Scytonemin accumulation decreases soil albedo significantly. Such localized warming had apparent and immediate consequences for the crust soil microbiome, inducing the replacement of thermosensitive bacterial species with more thermotolerant forms. These results reveal that not only vegetation but also microorganisms are a factor in modifying terrestrial albedo, potentially impacting biosphere feedbacks on past and future climate, and call for a direct assessment of such effects at larger scales. Based on estimates of the global biomass of cyanobacteria in soil biocrusts, one can easily calculate that there must currently exist about 15 million metric tons of scytonemin at work, warming soil surfaces worldwide

  17. Warming ancient Mars with water clouds

    NASA Astrophysics Data System (ADS)

    Hartwick, V.; Toon, B.

    2017-12-01

    High clouds in the present day Mars atmosphere nucleate on interplanetary dust particles (IDPs) that burn up on entry into the Mars atmosphere. Clouds form when superstaturated water vapor condenses on suspended aerosols. Radiatively active water ice clouds may play a crucial role in warming the early Mars climate. Urata and Toon (2011) simulate a stable warm paleo-climate for Mars if clouds form high in the atmosphere and if particles are sufficiently large (r > 10 μm). The annual fluence of micrometeoroids at Mars was larger early on in the evolution of our solar system. Additionally, the water vapor budget throughout the middle and high atmosphere was likely heightened . Both factors should contribute to enhanced nucleation and growth of water ice cloud particles at high altitudes. Here, we use the MarsCAM-CARMA general circulation model (GCM) to examine the radiative impact of high altitude water ice clouds on the early Mars climate and as a possible solution to the faint young sun problem for Mars.

  18. Environmental refugees in a globally warmed world

    SciTech Connect

    Myers, N.

    1993-12-01

    This paper examines the complex problem of environmental refugees as among the most serious of all the effects of global warming. Shoreline erosion, coastal flooding, and agricultural disruption from drought, soil erosion and desertification are factors now and in the future in creating a group of environmental refugees. Estimates are that at least 10 million such refugees exist today. A preliminary analysis is presented here as a first attempt to understand the full character and extent of the problem. Countries with large delta and coastal areas and large populations are at particular risk from sea-level rise of as little asmore » .5 - 1 meter, compounded by storm surge and salt water intrusions. Bangladesh, Egypt, China, and India are discussed in detail along with Island states at risk. Other global warming effects such as shifts in monsoon systems and severe and persistent droughts make agriculture particularly vulnerable. Lack of soil moisture is during the growing season will probably be the primary problem. Additional and compounding environmental problems are discussed, and an overview of the economic, sociocultural and political consequences is given. 96 refs., 1 tab.« less

  19. The Tropical Western Hemisphere Warm Pool

    NASA Astrophysics Data System (ADS)

    Wang, Chunzai; Enfield, David B.

    The Western Hemisphere warm pool (WHWP) of water warmer than 28.5°C extends from the eastern North Pacific to the Gulf of Mexico and the Caribbean, and at its peak, overlaps with the tropical North Atlantic. It has a large seasonal cycle and its interannual fluctuations of area and intensity are significant. Surface heat fluxes warm the WHWP through the boreal spring to an annual maximum of SST and areal extent in the late summer/early fall, associated with eastern North Pacific and Atlantic hurricane activities and rainfall from northern South America to the southern tier of the United States. SST and area anomalies occur at high temperatures where small changes can have a large impact on tropical convection. Observations suggest that a positive ocean-atmosphere feedback operating through longwave radiation and associated cloudiness is responsible for the WHWP SST anomalies. Associated with an increase in SST anomalies is a decrease in atmospheric sea level pressure anomalies and an anomalous increase in atmospheric convection and cloudiness. The increase in convective activity and cloudiness results in less longwave radiation loss from the surface, which then reinforces SST anomalies.

  20. Warming Seas and Melting Ice Sheets

    NASA Image and Video Library

    2017-12-08

    Sea level rise is a natural consequence of the warming of our planet. We know this from basic physics. When water heats up, it expands. So when the ocean warms, sea level rises. When ice is exposed to heat, it melts. And when ice on land melts and water runs into the ocean, sea level rises. For thousands of years, sea level has remained relatively stable and human communities have settled along the planet’s coastlines. But now Earth’s seas are rising. Globally, sea level has risen about eight inches since the beginning of the 20th century and more than two inches in the last 20 years alone. All signs suggest that this rise is accelerating. Read more: go.nasa.gov/1heZn29 Caption: An iceberg floats in Disko Bay, near Ilulissat, Greenland, on July 24, 2015. The massive Greenland ice sheet is shedding about 300 gigatons of ice a year into the ocean, making it the single largest source of sea level rise from melting ice. Credits: NASA/Saskia Madlener NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Acting green elicits a literal warm glow

    NASA Astrophysics Data System (ADS)

    Taufik, Danny; Bolderdijk, Jan Willem; Steg, Linda

    2015-01-01

    Environmental policies are often based on the assumption that people only act environmentally friendly if some extrinsic reward is implicated, usually money. We argue that people might also be motivated by intrinsic rewards: doing the right thing (such as acting environmentally friendly) elicits psychological rewards in the form of positive feelings, a phenomenon known as warm glow. Given the fact that people's psychological state may affect their thermal state, we expected that this warm glow could express itself quite literally: people who act environmentally friendly may perceive the temperature to be higher. In two studies, we found that people who learned they acted environmentally friendly perceived a higher temperature than people who learned they acted environmentally unfriendly. The underlying psychological mechanism pertains to the self-concept: learning you acted environmentally friendly signals to yourself that you are a good person. Together, our studies show that acting environmentally friendly can be psychologically rewarding, suggesting that appealing to intrinsic rewards can be an alternative way to encourage pro-environmental actions.

  2. Timing the warm absorber in NGC4051

    NASA Astrophysics Data System (ADS)

    Silva, C.; Uttley, P.; Costantini, E.

    2015-07-01

    In this work we have combined spectral and timing analysis in the characterization of highly ionized outflows in Seyfert galaxies, the so-called warm absorbers. Here, we present our results on the extensive ˜600ks of XMM-Newton archival observations of the bright and highly variable Seyfert 1 galaxy NGC4051, whose spectrum has revealed a complex multi-component wind. Working simultaneously with RGS and PN data, we have performed a detailed analysis using a time-dependent photoionization code in combination with spectral and Fourier timing techniques. This method allows us to study in detail the response of the gas due to variations in the ionizing flux of the central source. As a result, we will show the contribution of the recombining gas to the time delays of the most highly absorbed energy bands relative to the continuum (Silva, Uttley & Costantini in prep.), which is also vital information for interpreting the continuum lags associated with propagation and reverberation effects in the inner emitting regions. Furthermore, we will illustrate how this powerful method can be applied to other sources and warm-absorber configurations, allowing for a wide range of studies.

  3. Warming alters the metabolic balance of ecosystems

    PubMed Central

    Yvon-Durocher, Gabriel; Jones, J. Iwan; Trimmer, Mark; Woodward, Guy; Montoya, Jose M.

    2010-01-01

    The carbon cycle modulates climate change, via the regulation of atmospheric CO2, and it represents one of the most important services provided by ecosystems. However, considerable uncertainties remain concerning potential feedback between the biota and the climate. In particular, it is unclear how global warming will affect the metabolic balance between the photosynthetic fixation and respiratory release of CO2 at the ecosystem scale. Here, we present a combination of experimental field data from freshwater mesocosms, and theoretical predictions derived from the metabolic theory of ecology to investigate whether warming will alter the capacity of ecosystems to absorb CO2. Our manipulative experiment simulated the temperature increases predicted for the end of the century and revealed that ecosystem respiration increased at a faster rate than primary production, reducing carbon sequestration by 13 per cent. These results confirmed our theoretical predictions based on the differential activation energies of these two processes. Using only the activation energies for whole ecosystem photosynthesis and respiration we provide a theoretical prediction that accurately quantified the precise magnitude of the reduction in carbon sequestration observed experimentally. We suggest the combination of whole-ecosystem manipulative experiments and ecological theory is one of the most promising and fruitful research areas to predict the impacts of climate change on key ecosystem services. PMID:20513719

  4. Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4

    DOE PAGES

    Sejas, Sergio A.; Albert, Oriene S.; Cai, Ming; ...

    2014-12-02

    One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heatmore » flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Furthermore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea.« less

  5. Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4

    SciTech Connect

    Sejas, Sergio A.; Albert, Oriene S.; Cai, Ming

    One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heatmore » flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Furthermore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea.« less

  6. Comparison of Distal Limb Warming With Fluidotherapy and Warm Water Immersion for Mild Hypothermia Rewarming.

    PubMed

    Kumar, Parveen; McDonald, Gerren K; Chitkara, Radhika; Steinman, Alan M; Gardiner, Phillip F; Giesbrecht, Gordon G

    2015-09-01

    The purpose of the study was to determine the effectiveness of Fluidotherapy rewarming through the distal extremities for mildly hypothermic, vigorously shivering subjects. Fluidotherapy is a dry heat modality in which cellulose particles are suspended by warm air circulation. Seven subjects (2 female) were cooled on 3 occasions in 8˚C water for 60 minutes, or to a core temperature of 35°C. They were then dried and rewarmed in a seated position by 1) shivering only; 2) Fluidotherapy applied to the distal extremities (46 ± 1°C, mean ± SD); or 3) water immersion of the distal extremities (44 ± 1°C). The order of rewarming followed a balanced design. Esophageal temperature, skin temperature, heart rate, oxygen consumption, and heat flux were measured. The warm water produced the highest rewarming rate, 6.1°C·h(-1), 95% CI: 5.3-6.9, compared with Fluidotherapy, 2.2°C·h(-1), 95% CI: 1.4-3.0, and shivering only, 2.0°C·h(-1), 95% CI: 1.2-2.8. The Fluidotherapy and warm water conditions increased skin temperature and inhibited shivering heat production, thus reducing metabolic heat production (166 ± 42 W and 181 ± 45 W, respectively), compared with shivering only (322 ± 142 W). Warm water provided a significantly higher net heat gain (398.0 ± 52 W) than shivering only (288.4 ± 115 W). Fluidotherapy was not as effective as warm water for rewarming mildly hypothermic subjects. Although Fluidotherapy is more portable and technically simpler, it provides a lower rate of rewarming that is similar to shivering only. It does help decrease shivering heat production, lowering energy expenditure and cardiac work, and could be considered in a hospital setting, if convenient. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  7. The whole-soil carbon flux in response to warming

    NASA Astrophysics Data System (ADS)

    Hicks Pries, Caitlin E.; Castanha, C.; Porras, R. C.; Torn, M. S.

    2017-03-01

    Soil organic carbon harbors three times as much carbon as Earth’s atmosphere, and its decomposition is a potentially large climate change feedback and major source of uncertainty in climate projections. The response of whole-soil profiles to warming has not been tested in situ. In a deep warming experiment in mineral soil, we found that CO2 production from all soil depths increased with 4°C warming; annual soil respiration increased by 34 to 37%. All depths responded to warming with similar temperature sensitivities, driven by decomposition of decadal-aged carbon. Whole-soil warming reveals a larger soil respiration response than many in situ experiments (most of which only warm the surface soil) and models.

  8. Ocean acidification ameliorates harmful effects of warming in primary consumer.

    PubMed

    Pedersen, Sindre Andre; Hanssen, Anja Elise

    2018-01-01

    Climate change-induced warming and ocean acidification are considered two imminent threats to marine biodiversity and current ecosystem structures. Here, we have for the first time examined an animal's response to a complete life cycle of exposure to co-occurring warming (+3°C) and ocean acidification (+1,600 μatm CO 2 ), using the key subarctic planktonic copepod, Calanus finmarchicus , as a model species. The animals were generally negatively affected by warming, which significantly reduced the females' energy status and reproductive parameters (respectively, 95% and 69%-87% vs. control). Unexpectedly, simultaneous acidification partially offset the negative effect of warming in an antagonistic manner, significantly improving reproductive parameters and hatching success (233%-340% improvement vs. single warming exposure). The results provide proof of concept that ocean acidification may partially offset negative effects caused by warming in some species. Possible explanations and ecological implications for the observed antagonistic effect are discussed.

  9. [Startup mechanism of moxibustion warming and dredging function].

    PubMed

    Huang, Kaiyu; Liang, Shuang; Sun, Zheng; Zhang, Jianbin

    2017-09-12

    With "moxibustion" and "warm stimulation" as the keywords, the literature on moxibustion mechanism of warming and dredging from June 1st, 1995 to June 1st, 2016 was collected from PubMed, China National Knowledge Infrastructure (CNKI) and Wanfang database. The startup mechanism of moxibustion warming and dredging function was analyzed in terms of moxibustion warming stimulation. The results were found that moxibustion was based on local rising temperature of acupoint. It activated local specific receptors, heat sensitive immune cells, heat shock proteins and so on to start the warming and dredging function and produce various local effects. The warming stimulation signals as well as subsequent effects through nerve and body fluid pathways induced the effects of further specific target organs and body systems.

  10. The impact of global warming on Mount Everest.

    PubMed

    Moore, G W K; Semple, John L

    2009-01-01

    Global warming impacts a wide range of human activities and ecosystems. One unanticipated consequence of the warming is an increase in barometric pressure throughout the troposphere. Mount Everest's extreme height and resulting low barometric pressure places humans near its summit in an extreme state of hypoxia. Here we quantify the degree with which this warming is increasing the barometric pressure near Everest's summit and argue that it is of such a magnitude as to make the mountain, over time, easier to climb.

  11. Temperature and size variabilities of the Western Pacific Warm Pool

    NASA Technical Reports Server (NTRS)

    Yan, Xiao-Hai; Ho, Chung-Ru; Zheng, Quanan; Klemas, Vic

    1992-01-01

    Variabilities in sea-surface temperature and size of the Western Pacific Warm Pool were tracked with 10 years of satellite multichannel sea-surface temperature observations from 1982 to 1991. The results show that both annual mean sea-surface temperature and the size of the warm pool increased from 1983 to 1987 and fluctuated after 1987. Possible causes of these variations include solar irradiance variabilities, El Nino-Southern Oscillaton events, volcanic activities, and global warming.

  12. Causes of Warming and Thawing Permafrost in Alaska

    NASA Astrophysics Data System (ADS)

    Osterkamp, T. E.

    2007-11-01

    There is a perception that climatic warming was the cause of the twentieth-century global warming and thawing of permafrost and associated terrain instability (thermokarst) [>Gore, 2006; Perkins, 2007; Zielinski, 2007; Delisle, 2007]. While pertinent data are sparse, published results do not support this viewpoint [Zhang et al., 2001; Osterkamp, 2007]. This brief report reviews the warming of permafrost in Alaska during the twentieth century and shows that snow cover has played a significant role in it.

  13. Global warming and neurodegenerative disorders: speculations on their linkage.

    PubMed

    Habibi, Laleh; Perry, George; Mahmoudi, Morteza

    2014-01-01

    Climate change is having considerable impact on biological systems. Eras of ice ages and warming shaped the contemporary earth and origin of creatures including humans. Warming forces stress conditions on cells. Therefore, cells evolved elaborate defense mechanisms, such as creation of heat shock proteins, to combat heat stress. Global warming is becoming a crisis and this process would yield an undefined increasing rate of neurodegenerative disorders in future decades. Since heat stress is known to have a degenerative effects on neurons and, conversely, cold conditions have protective effect on these cells, we hypothesize that persistent heat stress forced by global warming might play a crucial role in increasing neurodegenerative disorders.

  14. Recent climate extremes associated with the West Pacific Warming Mode

    USGS Publications Warehouse

    Funk, Chris; Hoell, Andrew

    2017-01-01

    Here we analyze empirical orthogonal functions (EOFs) of observations and a 30 member ensemble of Community Earth System Model version 1 (CESM1) simulations, and suggest that precipitation declines in the Greater Horn of Africa (GHA) and the northern Middle East/Southwestern Asia (NME/SWE: Iran, Iraq, Kuwait, Syria, Saudi Arabia north of 25°N, Israel, Jordan, and Lebanon) may be interpreted as an interaction between La Niña-like decadal variability and the West Pacific Warming Mode (WPWM). While they exhibit different SST patterns, warming of the Pacific cold tongue (ENSO) and warming of the western Pacific (WPWM) produce similar warm pool diabatic forcing, Walker circulation anomalies, and terrestrial teleconnections. CESM1 SST EOFs indicate that both La Niña-like WPWM warming and El Niño-like east Pacific warming will be produced by climate change. The temporal frequency of these changes, however, are distinct. WPWM varies decadally, while ENSO is dominated by interannual variability. Future WPWM and ENSO warming may manifest as a tendency toward warm West Pacific SST, punctuated by extreme warm East Pacific events. WPWM EOFs from Global Precipitation Climatology Project (GPCP) precipitation also identify dramatic WPWM-related declines in the Greater Horn of Africa and NME/SWE.

  15. Plant community responses to experimental warming across the tundra biome

    PubMed Central

    Walker, Marilyn D.; Wahren, C. Henrik; Hollister, Robert D.; Henry, Greg H. R.; Ahlquist, Lorraine E.; Alatalo, Juha M.; Bret-Harte, M. Syndonia; Calef, Monika P.; Callaghan, Terry V.; Carroll, Amy B.; Epstein, Howard E.; Jónsdóttir, Ingibjörg S.; Klein, Julia A.; Magnússon, Borgþór; Molau, Ulf; Oberbauer, Steven F.; Rewa, Steven P.; Robinson, Clare H.; Shaver, Gaius R.; Suding, Katharine N.; Thompson, Catharine C.; Tolvanen, Anne; Totland, Ørjan; Turner, P. Lee; Tweedie, Craig E.; Webber, Patrick J.; Wookey, Philip A.

    2006-01-01

    Recent observations of changes in some tundra ecosystems appear to be responses to a warming climate. Several experimental studies have shown that tundra plants and ecosystems can respond strongly to environmental change, including warming; however, most studies were limited to a single location and were of short duration and based on a variety of experimental designs. In addition, comparisons among studies are difficult because a variety of techniques have been used to achieve experimental warming and different measurements have been used to assess responses. We used metaanalysis on plant community measurements from standardized warming experiments at 11 locations across the tundra biome involved in the International Tundra Experiment. The passive warming treatment increased plant-level air temperature by 1-3°C, which is in the range of predicted and observed warming for tundra regions. Responses were rapid and detected in whole plant communities after only two growing seasons. Overall, warming increased height and cover of deciduous shrubs and graminoids, decreased cover of mosses and lichens, and decreased species diversity and evenness. These results predict that warming will cause a decline in biodiversity across a wide variety of tundra, at least in the short term. They also provide rigorous experimental evidence that recently observed increases in shrub cover in many tundra regions are in response to climate warming. These changes have important implications for processes and interactions within tundra ecosystems and between tundra and the atmosphere. PMID:16428292

  16. Precompetition warm-up in elite and subelite rhythmic gymnastics.

    PubMed

    Guidetti, Laura; Di Cagno, Alessandra; Gallotta, Maria Chiara; Battaglia, Claudia; Piazza, Marina; Baldari, Carlo

    2009-09-01

    The aim of this study was to investigate which precompetition warm-up methodologies resulted in the best overall performance in rhythmic gymnastics. The coaches of national and international clubs (60 elite and 90 subelite) were interviewed. The relationship between sport performance and precompetition warm-up routines was examined. A total of 49% of the coaches interviewed spent more than 1 hour to prepare their athletes for the competition, including 45 minutes dedicated to warm-up exercises. In spite of previous studies' suggestions, the time between the end of warm-up and the beginning of competition was more than 5 minutes for 68% of those interviewed. A slow run was the activity of choice used to begin the warm-up (96%). Significant differences between elite and subelite gymnasts were found concerning the total duration of warm-up, duration of slow running, utilization of rhythmic steps and leaps during the warm-up, the use of dynamic flexibility exercises, competition performances repetition (p < 0.01), and utilization of imagery (p < 0.05). A precompetition warm-up in rhythmic gymnastics would include static stretching exercises at least 60 minutes prior to the competition starting time and the active stretching exercises alternated with analytic muscle strengthening aimed at increasing muscle temperature. Rhythmic gymnastics coaches at all levels can use this data as a review of precompetition warm-up practices and a possible source of new ideas.

  17. Deglacial Warming and Wetting of Northern Alaska

    NASA Astrophysics Data System (ADS)

    Daniels, W.; Russell, J. M.; Longo, W. M.; Giblin, A. E.; Holland-Stergar, P.; Morrill, C.; Huang, Y.

    2015-12-01

    Aeolian sand dunes swept across northern Alaska during the last glacial maximum. Today, summer temperatures are moderate and soils can remain waterlogged all summer long. How did the transition from a cold and dry glacial to a warm and wet interglacial take place? To answer this question we reconstructed temperature and precipitation changes during the last deglaciation using biomarker hydrogen isotopes from a new 28,000 year-long sediment core from Lake E5, located in the central Brooks Range of Alaska. We use terrestrial leaf waxes (dDterr, C28-acid), informed by dD measurements of modern vegetation, to infer dD of precipitation, an indicator of relative temperature change. Biomarkers from aquatic organisms (dDaq, C18-acid) are used as a proxy for lake water isotopes. The offset between the two (eterr-aq) is used to infer relative changes in evaporative enrichment of lake water, and by extension, moisture balance. dDterr during the last glacial period was -282‰ compared to -258‰ during the Holocene, suggesting a 5.6 ± 2.7 °C increase in summer temperature using the modern local temperature-dD relationship. Gradual warming began at ~18.5 ka, and temperature increased abruptly at 11.5 ka, at the end of the Younger Dryas. Warming peaked in the early Holocene from 11.5 to 9.1 ka, indicating a Holocene thermal maximum associated with peak summer insolation. The eterr-aq supports a dry LGM and moist Holocene. Other sediment proxies (TIC, TOC, redox-sensitive elements) support the eterr-aq, and reveal a shift to more positive P-E beginning around 17 ka, suggesting rising temperature led increases in precipitation during the last deglaciation. Moreover, differing patterns of dDterr and eterr-aq during the deglaciation suggest that the relationship between temperature and precipitation changed through time. Such decoupling, likely due to regional atmospheric reorganization as the Laurentide ice sheet waned, illustrates the importance of atmospheric dynamics in

  18. The Warm-Hot Intergalactic Medium

    NASA Technical Reports Server (NTRS)

    Hayes, Jeffrey (Technical Monitor)

    2005-01-01

    This grant is associated to a 5-year LTSA grant, on "Studying the Largest Reservoir of Baryons in the Universe: The Warm-Hot Intergalactic Medium". The first year of work within this program has been very rich, and has already produced several important results, as detailed in this paper. Table 2 of our original proposal justification, listed the planned year-by-year program, divided into two sub-fields: (A) the study of the z=0 (or Local Group WHIM) system, and (B) the study of the z greater than 0 (i.e- intervening WHIM) systems. For each of the two sub-fields we had planned to analyze, in the first year, a number of archival (Chandra, XMM and FUSE) and new (if observed) sightlines. Moreover, the plan for the z=0 system included the search for new interesting sightlines. We have accomplished all these tasks.

  19. Microwave sounding units and global warming

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L.; Keihm, Stephen J.

    1991-01-01

    A recent work of Spencer and Christy (1990) on precise monitoring of global temperature trends from satellites is critically examined. It is tentatively concluded in the present comment that remote sensing using satellite microwave radiometers can in fact provide a means for the monitoring of troposphere-averaged air temperature. However, for this to be successful more than one decade of data will be required to overcome the apparent inherent variability of global average air temperature. It is argued that the data set reported by Spencer and Christy should be subjected to careful review before it is interpreted as evidence of the presence or absence of global warming. In a reply, Christy provides specific responses to the commenters' objections.

  20. Slow coolant phaseout could worsen warming

    NASA Astrophysics Data System (ADS)

    Reese, April

    2018-03-01

    In the summer of 2016, temperatures in Phalodi, an old caravan town on a dry plain in northwestern India, reached a blistering 51°C—a record high during a heat wave that claimed more than 1600 lives across the country. Wider access to air conditioning (AC) could have prevented many deaths—but only 8% of India's 249 million households have AC. As the nation's economy booms, that figure could rise to 50% by 2050. And that presents a dilemma: As India expands access to a life-saving technology, it must comply with international mandates—the most recent imposed just last fall—to eliminate coolants that harm stratospheric ozone or warm the atmosphere.

  1. Seasonal flows on warm Martian slopes

    USGS Publications Warehouse

    McEwen, Alfred S.; Ojha, Lujendra; Dundas, Colin M.; Mattson, Sarah S.; Byrne, Shane; Wray, James J.; Cull, Selby C.; Murchie, Scott L.; Thomas, Nicolas; Gulick, Virginia C.

    2011-01-01

    Water probably flowed across ancient Mars, but whether it ever exists as a liquid on the surface today remains debatable. Recurring slope lineae (RSL) are narrow (0.5 to 5 meters), relatively dark markings on steep (25° to 40°) slopes; repeat images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment show them to appear and incrementally grow during warm seasons and fade in cold seasons. They extend downslope from bedrock outcrops, often associated with small channels, and hundreds of them form in some rare locations. RSL appear and lengthen in the late southern spring and summer from 48°S to 32°S latitudes favoring equator-facing slopes, which are times and places with peak surface temperatures from ~250 to 300 kelvin. Liquid brines near the surface might explain this activity, but the exact mechanism and source of water are not understood.

  2. Seasonal flows on warm Martian slopes

    USGS Publications Warehouse

    McEwen, A.S.; Ojha, L.; Dundas, C.M.; Mattson, S.S.; Byrne, S.; Wray, J.J.; Cull, S.C.; Murchie, S.L.; Thomas, N.; Gulick, V.C.

    2011-01-01

    Water probably flowed across ancient Mars, but whether it ever exists as a liquid on the surface today remains debatable. Recurring slope lineae (RSL) are narrow (0.5 to 5 meters), relatively dark markings on steep (25?? to 40??) slopes; repeat images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment show them to appear and incrementally grow during warm seasons and fade in cold seasons. They extend downslope from bedrock outcrops, often associated with small channels, and hundreds of them form in some rare locations. RSL appear and lengthen in the late southern spring and summer from 48??S to 32??S latitudes favoring equator-facing slopes, which are times and places with peak surface temperatures from ???250 to 300 kelvin. Liquid brines near the surface might explain this activity, but the exact mechanism and source of water are not understood.

  3. Seasonal flows on warm Martian slopes.

    PubMed

    McEwen, Alfred S; Ojha, Lujendra; Dundas, Colin M; Mattson, Sarah S; Byrne, Shane; Wray, James J; Cull, Selby C; Murchie, Scott L; Thomas, Nicolas; Gulick, Virginia C

    2011-08-05

    Water probably flowed across ancient Mars, but whether it ever exists as a liquid on the surface today remains debatable. Recurring slope lineae (RSL) are narrow (0.5 to 5 meters), relatively dark markings on steep (25° to 40°) slopes; repeat images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment show them to appear and incrementally grow during warm seasons and fade in cold seasons. They extend downslope from bedrock outcrops, often associated with small channels, and hundreds of them form in some rare locations. RSL appear and lengthen in the late southern spring and summer from 48°S to 32°S latitudes favoring equator-facing slopes, which are times and places with peak surface temperatures from ~250 to 300 kelvin. Liquid brines near the surface might explain this activity, but the exact mechanism and source of water are not understood.

  4. High Efficiency Low Global Warming Potential Compressor

    SciTech Connect

    Cogswell, Frederick; Verma, Parmesh

    During this project UTRC designed a novel compressor for use with new low Global-Warming-Potential (GWP) refrigerants. Through two design and testing iterations, UTRC advanced the compressor technology from TRL3 to TRL5. The target application was a 5 Tons of Refrigeration (TR) capacity Roof-Top Unit (RTU), although this technology may be applied to other low-capacity systems such as residential. The prototype unit met all design goals at the ARI-A rating condition and requires high efficiency motor to meet high performance targets at the ARI-B condition. This technology may be used in high efficiency units and with seasonal energy efficiency rating (SEER)more » exceeding 20. A preliminary cost analysis estimated that there would be less than $25/kbtuh cost impact to the customer.« less

  5. Ocean deoxygenation in a warming world.

    PubMed

    Keeling, Ralph E; Körtzinger, Arne; Gruber, Nicolas

    2010-01-01

    Ocean warming and increased stratification of the upper ocean caused by global climate change will likely lead to declines in dissolved O2 in the ocean interior (ocean deoxygenation) with implications for ocean productivity, nutrient cycling, carbon cycling, and marine habitat. Ocean models predict declines of 1 to 7% in the global ocean O2 inventory over the next century, with declines continuing for a thousand years or more into the future. An important consequence may be an expansion in the area and volume of so-called oxygen minimum zones, where O2 levels are too low to support many macrofauna and profound changes in biogeochemical cycling occur. Significant deoxygenation has occurred over the past 50 years in the North Pacific and tropical oceans, suggesting larger changes are looming. The potential for larger O2 declines in the future suggests the need for an improved observing system for tracking ocean 02 changes.

  6. Warm Anomaly Effects on California Current Phytoplankton

    NASA Astrophysics Data System (ADS)

    Gomez Ocampo, E.; Gaxiola-Castro, G.; Beier, E.; Durazo, R.

    2016-02-01

    Positive temperature anomalies were reported in the NE Pacific Ocean since the boreal winter of 2013-2014. Previous studies showed that these anomalies were caused by lower than normal rates of heat loss from the ocean to the atmosphere and by relatively weak cold water advection to the upper ocean. Anomalous Sea Surface Temperature (SST), Absolute Dynamic Topography (ADT), and Chlorophyll (CHL) obtained from monthly remote sensing data were registered in the California Current region during August 2014. Anomalies appeared around the coastal and oceanic zones, particularly in the onshore zone between Monterey Bay, California and Magdalena Bay, Baja California. High positive SST anomalous values up to 4ºC above the long-term mean, 20 cm in ADT, and less of 4.5 mg m-3 of CHL were registered. Changes of 20 cm in ADT above the average are equivalent to 50 m thermocline deepening considering typical values of stratification for the area, which in turn influenced the availability of nutrients and light for phytoplankton growth in the euphotic zone. To examine the influence of the warm anomaly on phytoplankton production, we fitted with Generalized Additive Models the relationship between monthly primary production satellite data and ADT. Primary production inferred from the model, showed during August 2014 high negative anomalies (up to 0.5 gC m-2 d1) in the coastal zone. The first empirical orthogonal function of ADT and PP revealed that the highest ADT anomalies and the lowest primary production occurred off the Baja California Peninsula, between Punta Eugenia and Cabo San Lucas. Preliminary conclusions showed that warm anomaly affected negatively to phytoplankton organisms during August 2014, being this evident by low biomass and negative primary production anomalies as result of pycnocline deepens.

  7. Mesoamerican Nephropathy or Global Warming Nephropathy?

    PubMed

    Roncal-Jimenez, Carlos A; García-Trabanino, Ramon; Wesseling, Catharina; Johnson, Richard J

    2016-01-01

    An epidemic of chronic kidney disease (CKD) of unknown cause has emerged along the Pacific Coast of Central America. The disease primarily affects men working manually outdoors, and the major group affected is sugarcane workers. The disease presents with an asymptomatic rise in serum creatinine that progresses to end-stage renal disease over several years. Renal biopsies show chronic tubulointerstitial disease. While the cause remains unknown, recent studies suggest that it is driven by recurrent dehydration in the hot climate. Potential mechanisms include the development of hyperosmolarity with the activation of the aldose reductase-fructokinase pathway in the proximal tubule leading to local injury and inflammation, and the possibility that renal injury may be the consequence of repeated uricosuria and urate crystal formation as a consequence of both increased generation and urinary concentration, similar to a chronic tumor lysis syndrome. The epidemic is postulated to be increasing due to the effects of global warming. An epidemic of CKD has led to the death of more than 20,000 lives in Central America. The cause is unknown, but appears to be due to recurrent dehydration. Potential mechanisms for injury are renal damage as a consequence of recurrent hyperosmolarity and/or injury to the tubules from repeated episodes of uricosuria. The epidemic of CKD in Mesoamerica may be due to chronic recurrent dehydration as a consequence of global warming and working conditions. This entity may be one of the first major diseases attributed to climate change and the greenhouse effect. © 2016 S. Karger AG, Basel.

  8. Competitive advantage on a warming planet.

    PubMed

    Lash, Jonathan; Wellington, Fred

    2007-03-01

    Whether you're in a traditional smokestack industry or a "clean" business like investment banking, your company will increasingly feel the effects of climate change. Even people skeptical about global warming's dangers are recognizing that, simply because so many others are concerned, the phenomenon has wide-ranging implications. Investors already are discounting share prices of companies poorly positioned to compete in a warming world. Many businesses face higher raw material and energy costs as more and more governments enact policies placing a cost on emissions. Consumers are taking into account a company's environmental record when making purchasing decisions. There's also a burgeoning market in greenhouse gas emission allowances (the carbon market), with annual trading in these assets valued at tens of billions of dollars. Companies that manage and mitigate their exposure to the risks associated with climate change while seeking new opportunities for profit will generate a competitive advantage over rivals in a carbon-constrained future. This article offers a systematic approach to mapping and responding to climate change risks. According to Jonathan Lash and Fred Wellington of the World Resources Institute, an environmental think tank, the risks can be divided into six categories: regulatory (policies such as new emissions standards), products and technology (the development and marketing of climate-friendly products and services), litigation (lawsuits alleging environmental harm), reputational (how a company's environmental policies affect its brand), supply chain (potentially higher raw material and energy costs), and physical (such as an increase in the incidence of hurricanes). The authors propose a four-step process for responding to climate change risk: Quantify your company's carbon footprint; identify the risks and opportunities you face; adapt your business in response; and do it better than your competitors.

  9. Does global warming amplify interannual climate variability?

    NASA Astrophysics Data System (ADS)

    He, Chao; Li, Tim

    2018-06-01

    Based on the outputs of 30 models from Coupled Model Intercomparison Project Phase 5 (CMIP5), the fractional changes in the amplitude interannual variability (σ) for precipitation (P') and vertical velocity (ω') are assessed, and simple theoretical models are constructed to quantitatively understand the changes in σ(P') and σ(ω'). Both RCP8.5 and RCP4.5 scenarios show similar results in term of the fractional change per degree of warming, with slightly lower inter-model uncertainty under RCP8.5. Based on the multi-model median, σ(P') generally increases but σ(ω') generally decreases under global warming but both are characterized by non-uniform spatial patterns. The σ(P') decrease over subtropical subsidence regions but increase elsewhere, with a regional averaged value of 1.4% K- 1 over 20°S-50°N under RCP8.5. Diagnoses show that the mechanisms for the change in σ(P') are different for climatological ascending and descending regions. Over ascending regions, the increase of mean state specific humidity contributes to a general increase of σ(P') but the change of σ(ω') dominates its spatial pattern and inter-model uncertainty. But over descending regions, the change of σ(P') and its inter-model uncertainty are constrained by the change of mean state precipitation. The σ(ω') is projected to be weakened almost everywhere except over equatorial Pacific, with a regional averaged fractional change of - 3.4% K- 1 at 500 hPa. The overall reduction of σ(ω') results from the increased mean state static stability, while the substantially increased σ(ω') at the mid-upper troposphere over equatorial Pacific and the inter-model uncertainty of the changes in σ(ω') are dominated by the change in the interannual variability of diabatic heating.

  10. Are Claims of Global Warming Being Suppressed?

    NASA Astrophysics Data System (ADS)

    Crowley, Thomas J.

    2006-02-01

    Over the last few years, I have heard many rumors that climate science relevant to the global warming discussion is being suppressed by the Bush Administration. One cannot do much about third-hand information. However, on 29 January, the New York Times published a front page article on NASA efforts to suppress statements about global warming by James Hansen, director of the NASA Goddard Institute for Space Studies. A claim by one government scientist, though, no matter how distinguished, still requires examples from other scientists before a general conclusion can be drawn about the overall scope of the problem. But if the charges are more widespread, then some government scientists might be reluctant to make such claims, because they might feel that their positions were jeopardized. Therefore, an alternate way may be needed to determine the scope of the issue, while still safeguarding government workers from possible retaliation. -On 30 January, Rep. Sherwood Boehlert (R-N.Y.), chairman of the U.S. House of Representatives Committee on Science, wrote a letter to NASA Administrator Michael Griffin addressing many of the concerns Crowley has raised. Boehlert wrote,``It ought to go without saying that government scientists must be free to describe their scientific conclusions and the implications of those conclusions to their fellow scientists, policymakers and the general public.'' He continued,``Good science cannot long persist in an atmosphere of intimidation. Political figures ought to be reviewing their public statements to make sure they are consistent with the best available science; scientists should not be reviewing their statements to make sure they are consistent with the current political orthodoxy.'' I commend Rep. Boehlert for his quick and clear statement of the importance of unfettered communication of science. -FRED SPILHAUS, Editor

  11. Change of ENSO characteristics in response to global warming

    NASA Astrophysics Data System (ADS)

    Sun, X.; Xia, Y.; Yan, Y.; Feng, W.; Huang, F.; Yang, X. Q.

    2017-12-01

    By using datasets of HadISST monthly SST from 1895 to 2014 and 600-year simulations of two CESM model experiments with/without doubling of CO2 concentration, ENSO characteristics are compared pre- and post- global warming. The main results are as follows. Due to global warming, the maximum climatological SST warming occurs in the tropical western Pacific (La Niña-like background warming) and the tropical eastern Pacific (El Niño-like background warming) for observations and model, respectively, resulting in opposite zonal SST gradient anomalies in the tropical Pacific. The La Niña-like background warming induces intense surface divergence in the tropical central Pacific, which enhances the easterly trade winds in the tropical central-western Pacific and shifts the strongest ocean-atmosphere coupling westward, correspondingly. On the contrary, the El Niño-like background warming causes westerly winds in the whole tropical Pacific and moves the strongest ocean-atmosphere coupling eastward. Under the La Niña-like background warming, ENSO tends to develop and mature in the tropical central Pacific, because the background easterly wind anomaly weakens the ENSO-induced westerly wind anomaly in the tropical western Pacific, leading to the so-called "Central Pacific ENSO (CP ENSO)". However, the so-called "Eastern Pacific ENSO (EP ENSO)" is likely formed due to increased westerly wind anomaly by the El Niño-like background warming. ENSO lifetime is significantly extended under both the El Niño-like and the La Niña-like background warmings, and especially, it can be prolonged by up to 3 months in the situation of El Niño-like background warming. The prolonged El Nino lifetime mainly applies to extreme El Niño events, which is caused by earlier outbreak of the westerly wind bursts, shallower climatological thermocline depth and weaker "discharge" rate of the ENSO warm signal in response to global warming. Results from both observations and the model also show that

  12. Exploration of warm-up period in conceptual hydrological modelling

    NASA Astrophysics Data System (ADS)

    Kim, Kue Bum; Kwon, Hyun-Han; Han, Dawei

    2018-01-01

    One of the important issues in hydrological modelling is to specify the initial conditions of the catchment since it has a major impact on the response of the model. Although this issue should be a high priority among modelers, it has remained unaddressed by the community. The typical suggested warm-up period for the hydrological models has ranged from one to several years, which may lead to an underuse of data. The model warm-up is an adjustment process for the model to reach an 'optimal' state, where internal stores (e.g., soil moisture) move from the estimated initial condition to an 'optimal' state. This study explores the warm-up period of two conceptual hydrological models, HYMOD and IHACRES, in a southwestern England catchment. A series of hydrologic simulations were performed for different initial soil moisture conditions and different rainfall amounts to evaluate the sensitivity of the warm-up period. Evaluation of the results indicates that both initial wetness and rainfall amount affect the time required for model warm up, although it depends on the structure of the hydrological model. Approximately one and a half months are required for the model to warm up in HYMOD for our study catchment and climatic conditions. In addition, it requires less time to warm up under wetter initial conditions (i.e., saturated initial conditions). On the other hand, approximately six months is required for warm-up in IHACRES, and the wet or dry initial conditions have little effect on the warm-up period. Instead, the initial values that are close to the optimal value result in less warm-up time. These findings have implications for hydrologic model development, specifically in determining soil moisture initial conditions and warm-up periods to make full use of the available data, which is very important for catchments with short hydrological records.

  13. Human Milk Warming Temperatures Using a Simulation of Currently Available Storage and Warming Methods

    PubMed Central

    Bransburg-Zabary, Sharron; Virozub, Alexander; Mimouni, Francis B.

    2015-01-01

    Human milk handling guidelines are very demanding, based upon solid scientific evidence that handling methods can make a real difference in infant health and nutrition. Indeed, properly stored milk maintains many of its unique qualities and continues to be the second and third best infant feeding alternatives, much superior to artificial feeding. Container type and shape, mode of steering, amount of air exposure and storage temperature may adversely affect milk stability and composition. Heating above physiological temperatures significantly impacts nutritional and immunological properties of milk. In spite of this knowledge, there are no strict guidelines regarding milk warming. Human milk is often heated in electrical-based bottle warmers that can exceed 80°C, a temperature at which many beneficial human milk properties disappear. High temperatures can also induce fat profile variations as compared with fresh human milk. In this manuscript we estimate the amount of damage due to overheating during warming using a heat flow simulation of a regular water based bottle warmer. To do so, we carried out a series of warming simulations which provided us with dynamic temperature fields within bottled milk. We simulated the use of a hot water-bath at 80°C to heat bottled refrigerated milk (60ml and 178 ml) to demonstrate that large milk portions are overheated (above 40°C). It seems that the contemporary storage method (upright feeding tool, i.e. bottle) and bottle warming device, are not optimize to preserve the unique properties of human milk. Health workers and parents should be aware of this problem especially when it relates to sick neonates and preemies that cannot be directly fed at the breast. PMID:26061694

  14. Continuously amplified warming in the Alaskan Arctic: Implications for estimating global warming hiatus

    USGS Publications Warehouse

    Wang, Kang; Zhang, Tingjun; Zhang, Xiangdong; Clow, Gary D.; Jafarov, Elchin E.; Overeem, Irina; Romanovsky, Vladimir; Peng, Xiaoqing; Cao, Bin

    2017-01-01

    Historically, in situ measurements have been notoriously sparse over the Arctic. As a consequence, the existing gridded data of surface air temperature (SAT) may have large biases in estimating the warming trend in this region. Using data from an expanded monitoring network with 31 stations in the Alaskan Arctic, we demonstrate that the SAT has increased by 2.19°C in this region, or at a rate of 0.23°C/decade during 1921–2015. Meanwhile, we found that the SAT warmed at 0.71°C/decade over 1998–2015, which is 2 to 3 times faster than the rate established from the gridded data sets. Focusing on the “hiatus” period 1998–2012 as identified by the Intergovernmental Panel on Climate Change (IPCC) report, the SAT has increased at 0.45°C/decade, which captures more than 90% of the regional trend for 1951–2012. We suggest that sparse in situ measurements are responsible for underestimation of the SAT change in the gridded data sets. It is likely that enhanced climate warming may also have happened in the other regions of the Arctic since the late 1990s but left undetected because of incomplete observational coverage.

  15. Design and performance of B4WarmED, an aboveground and belowground free-air warming experiment at the temperate-boreal forest ecotone

    USDA-ARS?s Scientific Manuscript database

    Conducting manipulative climate change experiments in forests is challenging, given their spatial heterogeneity and canopy complexity. One specific challenge involves warming both plants and soils to depth in ecosystems without much bare ground. We describe the design, implementation, and performanc...

  16. Synergy of a warm spring and dry summer

    Treesearch

    Yude Pan; David Schimel

    2016-01-01

    An analysis suggests that high carbon uptake by US land ecosystems during the warm spring of 2012 offset the carbon loss that resulted from severe drought over the summer — and hints that the warm spring could have worsened the drought.

  17. Situational Influences upon Children's Beliefs about Global Warming and Energy

    ERIC Educational Resources Information Center

    Devine-Wright, Patrick; Devine-Wright, Hannah; Fleming, Paul

    2004-01-01

    This paper explores children's beliefs about global warming and energy sources from a psychological perspective, focusing upon situational influences upon subjective beliefs, including perceived self-efficacy. The context of the research is one of growing concern at the potential impacts of global warming, yet demonstrably low levels of…

  18. Effects of Warm-Up Stretching Exercises on Sprint Performance

    ERIC Educational Resources Information Center

    Makaruk, Hubert; Makaruk, Beata; Kedra, Stanislaw

    2008-01-01

    Study aim: To assess direct effects of warm-up consisting of static and dynamic stretching exercises on sprint results attained by students differing in sprint performance. Material and methods: A group of 24 male and 19 female physical education students, including 12 and 9 sprinters, respectively. They performed warm-ups consisting of dynamic…

  19. Decomposition of recalcitrant carbon under experimental warming in boreal forest

    PubMed Central

    Allison, Steven D.; Treseder, Kathleen K.

    2017-01-01

    Over the long term, soil carbon (C) storage is partly determined by decomposition rate of carbon that is slow to decompose (i.e., recalcitrant C). According to thermodynamic theory, decomposition rates of recalcitrant C might differ from those of non-recalcitrant C in their sensitivities to global warming. We decomposed leaf litter in a warming experiment in Alaskan boreal forest, and measured mass loss of recalcitrant C (lignin) vs. non-recalcitrant C (cellulose, hemicellulose, and sugars) throughout 16 months. We found that these C fractions responded differently to warming. Specifically, after one year of decomposition, the ratio of recalcitrant C to non-recalcitrant C remaining in litter declined in the warmed plots compared to control. Consistent with this pattern, potential activities of enzymes targeting recalcitrant C increased with warming, relative to those targeting non-recalcitrant C. Even so, mass loss of individual C fractions showed that non-recalcitrant C is preferentially decomposed under control conditions whereas recalcitrant C losses remain unchanged between control and warmed plots. Moreover, overall mass loss was greater under control conditions. Our results imply that direct warming effects, as well as indirect warming effects (e.g. drying), may serve to maintain decomposition rates of recalcitrant C compared to non-recalcitrant C despite negative effects on overall decomposition. PMID:28622366

  20. Seagrass ecophysiological performance under ocean warming and acidification.

    PubMed

    Repolho, Tiago; Duarte, Bernardo; Dionísio, Gisela; Paula, José Ricardo; Lopes, Ana R; Rosa, Inês C; Grilo, Tiago F; Caçador, Isabel; Calado, Ricardo; Rosa, Rui

    2017-02-01

    Seagrasses play an essential ecological role within coastal habitats and their worldwide population decline has been linked to different types of anthropogenic forces. We investigated, for the first time, the combined effects of future ocean warming and acidification on fundamental biological processes of Zostera noltii, including shoot density, leaf coloration, photophysiology (electron transport rate, ETR; maximum PSII quantum yield, F v /F m ) and photosynthetic pigments. Shoot density was severely affected under warming conditions, with a concomitant increase in the frequency of brownish colored leaves (seagrass die-off). Warming was responsible for a significant decrease in ETR and F v /F m (particularly under control pH conditions), while promoting the highest ETR variability (among experimental treatments). Warming also elicited a significant increase in pheophytin and carotenoid levels, alongside an increase in carotenoid/chlorophyll ratio and De-Epoxidation State (DES). Acidification significantly affected photosynthetic pigments content (antheraxanthin, β-carotene, violaxanthin and zeaxanthin), with a significant decrease being recorded under the warming scenario. No significant interaction between ocean acidification and warming was observed. Our findings suggest that future ocean warming will be a foremost determinant stressor influencing Z. noltii survival and physiological performance. Additionally, acidification conditions to occur in the future will be unable to counteract deleterious effects posed by ocean warming.

  1. Artificial warming of arctic meadow under pollution stress: Experimental design

    USDA-ARS?s Scientific Manuscript database

    Boreal and arctic terrestrial ecosystems are central to the climate change debate, notably because future warming is expected to be disproportionate as compared to world averages. Likewise, greenhouse gas (GHG) release from terrestrial ecosystems exposed to climate warming is expected to be the larg...

  2. Native temperature regime influences soil response to simulated warming

    Treesearch

    Timothy G. Whitby; Michael D. Madritch

    2013-01-01

    Anthropogenic climate change is expected to increase global temperatures and potentially increase soil carbon (C) mineralization, which could lead to a positive feedback between global warming and soil respiration. However the magnitude and spatial variability of belowground responses to warming are not yet fully understood. Some of the variability may depend...

  3. Global Warming Threatens National Interests in the Arctic

    DTIC Science & Technology

    2009-03-26

    Global warming has impacted the Arctic Ocean by significantly reducing the extent of the summer ice cover allowing greater access to the region...increased operations in the Arctic region, and DoD must continue to research and develop new and alternate energy sources for its forces. Global warming is

  4. Waste Reduction Model (WARM) Resources for Small Businesses and Organizations

    EPA Pesticide Factsheets

    This page provides a brief overview of how EPA’s Waste Reduction Model (WARM) can be used by small businesses and organizations. The page includes a brief summary of uses of WARM for the audience and links to other resources.

  5. Seagrass ecophysiological performance under ocean warming and acidification

    PubMed Central

    Repolho, Tiago; Duarte, Bernardo; Dionísio, Gisela; Paula, José Ricardo; Lopes, Ana R.; Rosa, Inês C.; Grilo, Tiago F.; Caçador, Isabel; Calado, Ricardo; Rosa, Rui

    2017-01-01

    Seagrasses play an essential ecological role within coastal habitats and their worldwide population decline has been linked to different types of anthropogenic forces. We investigated, for the first time, the combined effects of future ocean warming and acidification on fundamental biological processes of Zostera noltii, including shoot density, leaf coloration, photophysiology (electron transport rate, ETR; maximum PSII quantum yield, Fv/Fm) and photosynthetic pigments. Shoot density was severely affected under warming conditions, with a concomitant increase in the frequency of brownish colored leaves (seagrass die-off). Warming was responsible for a significant decrease in ETR and Fv/Fm (particularly under control pH conditions), while promoting the highest ETR variability (among experimental treatments). Warming also elicited a significant increase in pheophytin and carotenoid levels, alongside an increase in carotenoid/chlorophyll ratio and De-Epoxidation State (DES). Acidification significantly affected photosynthetic pigments content (antheraxanthin, β-carotene, violaxanthin and zeaxanthin), with a significant decrease being recorded under the warming scenario. No significant interaction between ocean acidification and warming was observed. Our findings suggest that future ocean warming will be a foremost determinant stressor influencing Z. noltii survival and physiological performance. Additionally, acidification conditions to occur in the future will be unable to counteract deleterious effects posed by ocean warming. PMID:28145531

  6. Cellulosic ethanol production from warm-season perennial grasses

    USDA-ARS?s Scientific Manuscript database

    Warm-season (C4) perennial grasses are able to produce large quantities of biomass, and will play a key role in bioenergy production, particularly in areas with long warm growing seasons. Several different grass species have been studied as candidate bioenergy crops for the Southeast USA, and each ...

  7. An aftereffect of global warming on tropical Pacific decadal variability

    NASA Astrophysics Data System (ADS)

    Zheng, Jian; Liu, Qinyu; Wang, Chuanyang

    2018-03-01

    Studies have shown that global warming over the past six decades can weaken the tropical Pacific Walker circulation and maintain the positive phase of the Interdecadal Pacific Oscillation (IPO). Based on observations and model simulations, another aftereffect of global warming on IPO is found. After removing linear trends (global warming signals) from observations, however, the tropical Pacific climate still exhibited some obvious differences between two IPO negative phases. The boreal winter (DJF) equatorial central-eastern Pacific sea surface temperature (SST) was colder during the 1999-2014 period (P2) than that during 1961-1976 (P1). This difference may have been a result of global warming nonlinear modulation of precipitation; i.e., in the climatological rainy region, the core area of the tropical Indo-western Pacific warm pool receives more precipitation through the "wet-get-wetter" mechanism. Positive precipitation anomalies in the warm pool during P2 are much stronger than those during P1, even after subtracting the linear trend. Corresponding to the differences of precipitation, the Pacific Walker circulation is stronger in P2 than in P1. Consequent easterly winds over the equatorial Pacific led to a colder equatorial eastern-central Pacific during P2. Therefore, tropical Pacific climate differences between the two negative IPO phases are aftereffects of global warming. These aftereffects are supported by the results of coupled climate model experiments, with and without global warming.

  8. Soil warming, carbon–nitrogen interactions, and forest carbon budgets

    PubMed Central

    Melillo, Jerry M.; Butler, Sarah; Johnson, Jennifer; Mohan, Jacqueline; Steudler, Paul; Lux, Heidi; Burrows, Elizabeth; Bowles, Francis; Smith, Rose; Scott, Lindsay; Vario, Chelsea; Hill, Troy; Burton, Andrew; Zhou, Yu-Mei; Tang, Jim

    2011-01-01

    Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observed increases in plant carbon storage. Although soil warming has resulted in a cumulative net loss of carbon from a New England forest relative to a control area over the 7-y study, the annual net losses generally decreased over time as plant carbon storage increased. In the seventh year, warming-induced soil carbon losses were almost totally compensated for by plant carbon gains in response to warming. We attribute the plant gains primarily to warming-induced increases in nitrogen availability. This study underscores the importance of incorporating carbon–nitrogen interactions in atmosphere–ocean–land earth system models to accurately simulate land feedbacks to the climate system. PMID:21606374

  9. Committed warming inferred from observations and an energy balance model

    NASA Astrophysics Data System (ADS)

    Pincus, R.; Mauritsen, T.

    2017-12-01

    Due to the lifetime of CO2 and thermal inertia of the ocean, the Earth's climate is not equilibrated with anthropogenic forcing. As a result, even if fossil fuel emissions were to suddenly cease, some level of committed warming is expected due to past emissions. Here, we provide an observational-based quantification of this committed warming using the instrument record of global-mean warming, recently-improved estimates of Earth's energy imbalance, and estimates of radiative forcing from the fifth IPCC assessment report. Compared to pre-industrial levels, we find a committed warming of 1.5K [0.9-3.6, 5-95 percentile] at equilibrium, and of 1.3K [0.9-2.3] within this century. However, when assuming that ocean carbon uptake cancels remnant greenhouse gas-induced warming on centennial timescales, committed warming is reduced to 1.1K [0.7-1.8]. Conservatively, there is a 32% risk that committed warming already exceeds the 1.5K target set in Paris, and that this will likely be crossed prior to 2053. Regular updates of these observationally-constrained committed warming estimates, though simplistic, can provide transparent guidance as uncertainty regarding transient climate sensitivity inevitably narrows and understanding the limitations of the framework is advanced.

  10. Warming slowdown over the Tibetan plateau in recent decades

    NASA Astrophysics Data System (ADS)

    Liu, Yaojie; Zhang, Yangjian; Zhu, Juntao; Huang, Ke; Zu, Jiaxing; Chen, Ning; Cong, Nan; Stegehuis, Annemiek Irene

    2018-03-01

    As the recent global warming hiatus and the warming on high elevations are attracting worldwide attention, this study examined the robustness of the warming slowdown over the Tibetan plateau (TP) and its related driving forces. By integrating multiple-source data from 1982 to 2015 and using trend analysis, we found that the mean temperature (T mean), maximum temperature (T max) and minimum temperature (T min) showed a slowdown of the warming trend around 1998, during the period of the global warming hiatus. This was found over both the growing season (GS) and non-growing season (NGS) and suggested a robust warming hiatus over the TP. Due to the differences in trends of T max and T min, the trend of diurnal temperature range (DTR) also shifted after 1998, especially during the GS temperature. The warming rate was spatially heterogeneous. The northern TP (NTP) experienced more warming than the southern TP (STP) in all seasons from 1982 to 1998, while the pattern was reversed in the period from 1998 to 2015. Water vapour was found to be the main driving force for the trend in T mean and T min by influencing downward long wave radiation. Sunshine duration was the main driving force behind the trend in T max and DTR through a change in downward shortwave radiation that altered the energy source of daytime temperature. Water vapour was the major driving force for temperature change over the NTP, while over the STP, sunshine duration dominated the temperature trend.

  11. Water Availability in a Warming World

    NASA Astrophysics Data System (ADS)

    Aminzade, Jennifer

    As climate warms during the 21st century, the resultant changes in water availability are a vital issue for society, perhaps even more important than the magnitude of warming itself. Yet our climate models disagree in their forecasts of water availability, limiting our ability to plan accordingly. This thesis investigates future water availability projections from Coupled Ocean-Atmosphere General Circulation Models (GCMs), primarily using two water availability measures: soil moisture and the Supply Demand Drought Index (SDDI). Chapter One introduces methods of measuring water availability and explores some of the fundamental differences between soil moisture, SDDI and the Palmer Drought Severity Index (PDSI). SDDI and PDSI tend to predict more severe future drought conditions than soil moisture; 21st century projections of SDDI show conditions rivaling North American historic mega-droughts. We compare multiple potential evapotranspiration (EP) methods in New York using input from the GISS Model ER GCM and local station data from Rochester, NY, and find that they compare favorably with local pan evaporation measurements. We calculate SDDI and PDSI values using various EP methods, and show that changes in future projections are largest when using EP methods most sensitive to global warming, not necessarily methods producing EP values with the largest magnitudes. Chapter Two explores the characteristics and biases of the five GCMs and their 20th and 21st century climate projections. We compare atmospheric variables that drive water availability changes globally, zonally, and geographically among models. All models show increases in both dry and wet extremes for SDDI and soil moisture, but increases are largest for extreme drying conditions using SDDI. The percentage of gridboxes that agree on the sign of change of soil moisture and SDDI between models is very low, but does increase in the 21st century. Still, differences between models are smaller than differences

  12. The effects of warmed intravenous fluids, combined warming (warmed intravenous fluids with humid-warm oxygen), and pethidine on the severity of shivering in general anesthesia patients in the recovery room

    PubMed Central

    Nasiri, Ahmad; Akbari, Ayob; Sharifzade, GholamReza; Derakhshan, Pooya

    2015-01-01

    Background: Shivering is a common complication of general and epidural anesthesia. Warming methods and many drugs are used for control of shivering in the recovery room. The present study is a randomized clinical trial aimed to investigate the effects of two interventions in comparison with pethidine which is the routine treatment on shivering in patients undergoing abdominal surgery with general anesthesia. Materials and Methods: Eighty-seven patients undergoing abdominal surgery by general anesthesia were randomly assigned to three groups (two intervention groups in comparison with pethidine as routine). Patients in warmed intravenous fluids group received pre-warmed Ringer serum (38°C), patients in combined warming group received pre-warmed Ringer serum (38°C) accompanied by humid-warm oxygen, and patients in pethidine group received intravenous pethidine routinely. The elapsed time of shivering and some hemodynamic parameters of the participants were assessed for 20 min postoperatively in the recovery room. Then the collected data were analyzed by software SPSS (v. 16) with the significance level being P < 0.05. Results: The mean of elapsed time in the warmed intravenous serum group, the combined warming group, and the pethidine group were 7 (1.5) min, 6 (1.5) min, and 2.8 (0.7) min, respectively, which was statistically significant (P < 0.05). The body temperatures in both combined warming and pethidine groups were increased significantly (P < 0.05). Conclusions: Combined warming can be effective in controlling postoperative shivering and body temperature increase. PMID:26793258

  13. Phenological sequences reveal aggregate life history response to climatic warming.

    PubMed

    Post, Eric S; Pedersen, Christian; Wilmers, Christopher C; Forchhammer, Mads C

    2008-02-01

    Climatic warming is associated with organisms breeding earlier in the season than is typical for their species. In some species, however, response to warming is more complex than a simple advance in the timing of all life history events preceding reproduction. Disparities in the extent to which different components of the reproductive phenology of organisms vary with climatic warming indicate that not all life history events are equally responsive to environmental variation. Here, we propose that our understanding of phenological response to climate change can be improved by considering entire sequences of events comprising the aggregate life histories of organisms preceding reproduction. We present results of a two-year warming experiment conducted on 33 individuals of three plant species inhabiting a low-arctic site. Analysis of phenological sequences of three key events for each species revealed how the aggregate life histories preceding reproduction responded to warming, and which individual events exerted the greatest influence on aggregate life history variation. For alpine chickweed (Cerastium alpinum), warming elicited a shortening of the duration of the emergence stage by 2.5 days on average, but the aggregate life history did not differ between warmed and ambient plots. For gray willow (Salix glauca), however, all phenological events monitored occurred earlier on warmed than on ambient plots, and warming reduced the aggregate life history of this species by 22 days on average. Similarly, in dwarf birch (Betula nana), warming advanced flower bud set, blooming, and fruit set and reduced the aggregate life history by 27 days on average. Our approach provides important insight into life history responses of many organisms to climate change and other forms of environmental variation. Such insight may be compromised by considering changes in individual phenological events in isolation.

  14. Global Warming and Its Health Impact.

    PubMed

    Rossati, Antonella

    2017-01-01

    Since the mid-19th century, human activities have increased greenhouse gases such as carbon dioxide, methane, and nitrous oxide in the Earth's atmosphere that resulted in increased average temperature. The effects of rising temperature include soil degradation, loss of productivity of agricultural land, desertification, loss of biodiversity, degradation of ecosystems, reduced fresh-water resources, acidification of the oceans, and the disruption and depletion of stratospheric ozone. All these have an impact on human health, causing non-communicable diseases such as injuries during natural disasters, malnutrition during famine, and increased mortality during heat waves due to complications in chronically ill patients. Direct exposure to natural disasters has also an impact on mental health and, although too complex to be quantified, a link has even been established between climate and civil violence. Over time, climate change can reduce agricultural resources through reduced availability of water, alterations and shrinking arable land, increased pollution, accumulation of toxic substances in the food chain, and creation of habitats suitable to the transmission of human and animal pathogens. People living in low-income countries are particularly vulnerable. Climate change scenarios include a change in distribution of infectious diseases with warming and changes in outbreaks associated with weather extreme events. After floods, increased cases of leptospirosis, campylobacter infections and cryptosporidiosis are reported. Global warming affects water heating, rising the transmission of water-borne pathogens. Pathogens transmitted by vectors are particularly sensitive to climate change because they spend a good part of their life cycle in a cold-blooded host invertebrate whose temperature is similar to the environment. A warmer climate presents more favorable conditions for the survival and the completion of the life cycle of the vector, going as far as to speed it up

  15. North Greenland's Ice Shelves and Ocean Warming

    NASA Astrophysics Data System (ADS)

    Muenchow, A.; Schauer, U.; Padman, L.; Melling, H.; Fricker, H. A.

    2014-12-01

    Rapid disintegration of ice shelves (the floating extensions of marine-terminating glaciers) can lead to increasing ice discharge, thinning upstream ice sheets, rising sea level. Pine Island Glacier, Antarctica, and Jacobshavn Isbrae, Greenland, provide prominent examples of these processes which evolve at decadal time scales. We here focus on three glacier systems north of 78 N in Greenland, each of which discharges more than 10 Gt per year of ice and had an extensive ice shelf a decade ago; Petermann Gletscher (PG), Niogshalvfjerdsfjorden (79N), and Zachariae Isstrom (ZI). We summarize and discuss direct observations of ocean and glacier properties for these systems as they have evolved in the northwest (PG) and northeast (79N and ZI) of Greenland over the last two decades. We use a combination of modern and historical snapshots of ocean temperature and salinity (PG, 79N, ZI), moored observations in Nares Strait (PG), and snapshots of temperature and velocity fields on the broad continental shelf off northeast Greenland (79N, ZI) collected between 1993 and 2014. Ocean warming adjacent to PG has been small relative to the ocean warming adjacent to 79N and ZI; however, ZI lost its entire ice shelf during the last decade while 79N, less than 70 km to the north of ZI, remained stable. In contrast, PG has thinned by about 10 m/y just prior to shedding two ice islands representing almost half its ice shelf area or a fifth by volume. At PG advective ice flux divergence explains about half of the dominantly basal melting while response to non-steady external forcing explains the other half. The observations at PG,79N, and ZI suggest that remotely sensed ambient surface ocean temperatures are poor proxies to explain ice shelf thinning and retreat. We posit that local dynamics of the subsurface ocean heat flux matters most. Ocean heat must first be delivered over the sill into the fjord and then within the ice shelf cavity to the base of the shelf near the grounding line

  16. Global Warming and 21st Century Drying

    NASA Technical Reports Server (NTRS)

    Cook, Benjamin I.; Smerdun, Jason E.; Seager, Richard; Coats, Sloan

    2014-01-01

    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twentyfirst century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman- Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both

  17. Talking about Climate Change and Global Warming.

    PubMed

    Lineman, Maurice; Do, Yuno; Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined.

  18. Title: Freshwater phytoplankton responses to global warming.

    PubMed

    Wagner, Heiko; Fanesi, Andrea; Wilhelm, Christian

    2016-09-20

    Global warming alters species composition and function of freshwater ecosystems. However, the impact of temperature on primary productivity is not sufficiently understood and water quality models need to be improved in order to assess the quantitative and qualitative changes of aquatic communities. On the basis of experimental data, we demonstrate that the commonly used photosynthetic and water chemistry parameters alone are not sufficient for modeling phytoplankton growth under changing temperature regimes. We present some new aspects of the acclimation process with respect to temperature and how contrasting responses may be explained by a more complete physiological knowledge of the energy flow from photons to new biomass. We further suggest including additional bio-markers/traits for algal growth such as carbon allocation patterns to increase the explanatory power of such models. Although carbon allocation patterns are promising and functional cellular traits for growth prediction under different nutrient and light conditions, their predictive power still waits to be tested with respect to temperature. A great challenge for the near future will be the prediction of primary production efficiencies under the global change scenario using a uniform model for phytoplankton assemblages. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Halocarbon ozone depletion and global warming potentials

    NASA Technical Reports Server (NTRS)

    Cox, Richard A.; Wuebbles, D.; Atkinson, R.; Connell, Peter S.; Dorn, H. P.; Derudder, A.; Derwent, Richard G.; Fehsenfeld, F. C.; Fisher, D.; Isaksen, Ivar S. A.

    1990-01-01

    Concern over the global environmental consequences of fully halogenated chlorofluorocarbons (CFCs) has created a need to determine the potential impacts of other halogenated organic compounds on stratospheric ozone and climate. The CFCs, which do not contain an H atom, are not oxidized or photolyzed in the troposphere. These compounds are transported into the stratosphere where they decompose and can lead to chlorine catalyzed ozone depletion. The hydrochlorofluorocarbons (HCFCs or HFCs), in particular those proposed as substitutes for CFCs, contain at least one hydrogen atom in the molecule, which confers on these compounds a much greater sensitivity toward oxidation by hydroxyl radicals in the troposphere, resulting in much shorter atmospheric lifetimes than CFCs, and consequently lower potential for depleting ozone. The available information is reviewed which relates to the lifetime of these compounds (HCFCs and HFCs) in the troposphere, and up-to-date assessments are reported of the potential relative effects of CFCs, HCFCs, HFCs, and halons on stratospheric ozone and global climate (through 'greenhouse' global warming).

  20. Talking about Climate Change and Global Warming

    PubMed Central

    Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined. PMID:26418127

  1. Is obesity associated with global warming?

    PubMed

    Squalli, J

    2014-12-01

    Obesity is a national epidemic that imposes direct medical and indirect economic costs on society. Recent scholarly inquiries contend that obesity also contributes to global warming. The paper investigates the relationship between greenhouse gas emissions and obesity. Cross-sectional state-level data for the year 2010. Multiple regression analysis using least squares with bootstrapped standard errors and quantile regression. States with higher rates of obesity are associated with higher CO2 and CH4 emissions (p < 0.05) and marginally associated with higher N2O emissions (p < 0.10), net of other factors. Reverting to the obesity rates of the year 2000 across the entire United States could decrease greenhouse gas emissions by about two percent, representing more than 136 million metric tons of CO2 equivalent. Future studies should establish clear causality between obesity and emissions by using longitudinal data while controlling for other relevant factors. They should also consider identifying means to net out the potential effects of carbon sinks, conversion of CH4 to energy, cross-state diversion, disposal, and transfer of municipal solid waste, and potentially lower energy consumption from increased sedentariness. Copyright © 2014 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  2. Global Warming: The Complete Briefing (Second Edition)

    NASA Astrophysics Data System (ADS)

    Hartmann, Dennis L.

    Enough coal exists to sustain world energy consumption growth through at least the end of the next century. If fossil carbon fuel consumption continues to increase at current rates, however, atmospheric carbon dioxide concentrations will likely more than double, probably leading to significant warming of global climate, shifts in regional climates, and sea-level rise. Scientists and citizens throughout the world are discussing what should be done about the effects of our energy economy on the global environment.The issue is very broad and engaging, ranging from basic issues of geoscience to economics to fundamental value systems, and it has mobilized great economic interests and concern for our global environment. We live in an interesting time when human activities have begun to compete with the global capacities of Earth to recycle the elements of life. In the coming years, we will see how the world community reacts to this challenge, and what combination of conservation, technological development, and adaptation is ultimately adopted.

  3. Warm Dark Matter and Cosmic Reionization

    DOE PAGES

    Villanueva-Domingo, Pablo; Gnedin, Nickolay Y.; Mena, Olga

    2018-01-10

    In models with dark matter made of particles with keV masses, such as a sterile neutrino, small-scale density perturbations are suppressed, delaying the period at which the lowest mass galaxies are formed and therefore shifting the reionization processes to later epochs. In this study, focusing on Warm Dark Matter (WDM) with masses close to its present lower bound, i.e., around the 3 keV region, we derive constraints from galaxy luminosity functions, the ionization history and the Gunn–Peterson effect. We show that even if star formation efficiency in the simulations is adjusted to match the observed UV galaxy luminosity functions in bothmore » CDM and WDM models, the full distribution of Gunn–Peterson optical depth retains the strong signature of delayed reionization in the WDM model. Furthermore, until the star formation and stellar feedback model used in modern galaxy formation simulations is constrained better, any conclusions on the nature of dark matter derived from reionization observables remain model-dependent.« less

  4. Warming set stage for deadly heat wave

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-04-01

    In the summer of 2010, soaring temperatures and widespread forest fires ravaged western Russia, killing 55,000 and causing $15 billion in economic losses. In the wake of the record-setting heat wave, two studies sought to identify the contribution that human activities made to the event. One showed that temperatures seen during the deadly heat wave fell within the bounds of natural variability, while another attributed the heat wave to human activity, arguing that anthropogenic warming increased the chance of record-breaking temperatures occurring. Merging the stances of both studies, Otto et al. sought to show that while human contributions to climate change did not necessarily cause the deadly heat wave, they did play a role in setting the stage for its occurrence. Using an ensemble of climate simulations, the authors assessed the expected magnitude and frequency of an event like the 2010 heat wave under both 1960s and 2000s environmental conditions. The authors found that although the average temperature in July 2010 was 5°C higher than the average July temperature from the past half decade, the deadly heat wave was within the natural variability of 1960s, as well as 2000s, climate conditions

  5. Warm Dark Matter and Cosmic Reionization

    SciTech Connect

    Villanueva-Domingo, Pablo; Gnedin, Nickolay Y.; Mena, Olga

    In models with dark matter made of particles with keV masses, such as a sterile neutrino, small-scale density perturbations are suppressed, delaying the period at which the lowest mass galaxies are formed and therefore shifting the reionization processes to later epochs. In this study, focusing on Warm Dark Matter (WDM) with masses close to its present lower bound, i.e., around the 3 keV region, we derive constraints from galaxy luminosity functions, the ionization history and the Gunn–Peterson effect. We show that even if star formation efficiency in the simulations is adjusted to match the observed UV galaxy luminosity functions in bothmore » CDM and WDM models, the full distribution of Gunn–Peterson optical depth retains the strong signature of delayed reionization in the WDM model. Furthermore, until the star formation and stellar feedback model used in modern galaxy formation simulations is constrained better, any conclusions on the nature of dark matter derived from reionization observables remain model-dependent.« less

  6. Potential effects on health of global warming

    SciTech Connect

    Haines, A.; Parry, M.

    1993-12-01

    Prediction of the impacts of global climate change on health is complicated by a number of factors. These include: the difficulty in predicting regional changes in climate, the capacity for adaptation to climate change, the interactions between the effects of global climate change and a number of other key determinants of health, including population growth and poverty, and the availability of adequate preventive and curative facilities for diseases that may be effected by climate change. Nevertheless, it is of importance to consider the potential health impacts of global climate change for a number of reasons. It is also important tomore » monitor diseases which could be effected by climate change in order to detect changes in incidence as early as possible and study possible interactions with other factors. It seems likely that the possible impacts on health of climate change will be a major determinant of the degree to which policies aimed at reducing global warming are followed, as perceptions of the effect of climate change to human health and well-being are particularly likely to influence public opinion. The potential health impacts of climate change can be divided into direct (primary) and indirect (secondary and tertiary) effects. Primary effects are those related to the effect of temperature on human well-being and disease. Secondary effects include the impacts on health of changes in food production, availability of water and of sea level rise. A tertiary level of impacts can also be hypothesized.« less

  7. Warm Dark Matter and Cosmic Reionization

    NASA Astrophysics Data System (ADS)

    Villanueva-Domingo, Pablo; Gnedin, Nickolay Y.; Mena, Olga

    2018-01-01

    In models with dark matter made of particles with keV masses, such as a sterile neutrino, small-scale density perturbations are suppressed, delaying the period at which the lowest mass galaxies are formed and therefore shifting the reionization processes to later epochs. In this study, focusing on Warm Dark Matter (WDM) with masses close to its present lower bound, i.e., around the 3 keV region, we derive constraints from galaxy luminosity functions, the ionization history and the Gunn–Peterson effect. We show that even if star formation efficiency in the simulations is adjusted to match the observed UV galaxy luminosity functions in both CDM and WDM models, the full distribution of Gunn–Peterson optical depth retains the strong signature of delayed reionization in the WDM model. However, until the star formation and stellar feedback model used in modern galaxy formation simulations is constrained better, any conclusions on the nature of dark matter derived from reionization observables remain model-dependent.

  8. Abrupt climate warming in East Antarctica during the early Holocene

    NASA Astrophysics Data System (ADS)

    Cremer, Holger; Heiri, Oliver; Wagner, Bernd; Wagner-Cremer, Friederike

    2007-08-01

    We report a centennial-scale warming event between 8600 and 8400 cal BP from Amery Oasis, East Antarctica, that is documented by the geochemical record in a lacustrine sediment sequence. The organic carbon content, the C/S ratio, and the sedimentation rate in this core have distinctly elevated values around 8500 y ago reflecting relatively warm and ice-free conditions that led to well-ventilated conditions in the lake and considerable sedimentation of both autochthonous and allochthonous organic matter on the lake bottom. This abrupt warming event occurred concurrently with reported warm climatic conditions in the Southern Ocean while the climate in central East Antarctic remained cold. The comparison of the spatial and temporal variability of warm climatic periods documented in various terrestrial, marine, and glacial archives from East Antarctica elucidates the uniqueness of the centennial-scale warming event in the Amery Oasis. We also discuss a possible correlation of the Amery warming event with the abrupt climatic deterioration around 8200 cal BP on the Northern Hemisphere.

  9. Continental warming preceding the Palaeocene-Eocene thermal maximum.

    PubMed

    Secord, Ross; Gingerich, Philip D; Lohmann, Kyger C; Macleod, Kenneth G

    2010-10-21

    Marine and continental records show an abrupt negative shift in carbon isotope values at ∼55.8 Myr ago. This carbon isotope excursion (CIE) is consistent with the release of a massive amount of isotopically light carbon into the atmosphere and was associated with a dramatic rise in global temperatures termed the Palaeocene-Eocene thermal maximum (PETM). Greenhouse gases released during the CIE, probably including methane, have often been considered the main cause of PETM warming. However, some evidence from the marine record suggests that warming directly preceded the CIE, raising the possibility that the CIE and PETM may have been linked to earlier warming with different origins. Yet pre-CIE warming is still uncertain. Disentangling the sequence of events before and during the CIE and PETM is important for understanding the causes of, and Earth system responses to, abrupt climate change. Here we show that continental warming of about 5 °C preceded the CIE in the Bighorn Basin, Wyoming. Our evidence, based on oxygen isotopes in mammal teeth (which reflect temperature-sensitive fractionation processes) and other proxies, reveals a marked temperature increase directly below the CIE, and again in the CIE. Pre-CIE warming is also supported by a negative amplification of δ(13)C values in soil carbonates below the CIE. Our results suggest that at least two sources of warming-the earlier of which is unlikely to have been methane-contributed to the PETM.

  10. Singer and listener perception of vocal warm-up.

    PubMed

    Moorcroft, Lynda; Kenny, Dianna T

    2013-03-01

    This study investigated changes perceived by singers and listeners after the singers had vocally warmed up. The study used a repeated measures within-subject design to assess changes in vibrato quality from pre (nonwarmed-up voice) to post (warmed-up voice) test. Intraclass correlation coefficients were calculated to assess singers' self-ratings pre- and posttest and intra- and interlistener rater reliability. Twelve classically trained female singers recorded and self-rated their performance of an eight bar solo before and after 25 minutes of vocal warm-up exercises. Six experienced listeners assessed the vocal samples for pre- to posttest differences in tone quality and for each singer's warm-up condition. Perceptual judgements were also compared with pre- to posttest changes in vibrato. All singers perceived significant changes in tone quality, psychophysiological factors, proprioceptive feedback and technical command. Significant pre- to posttest differences in tone quality and correct appraisal of the singer's warm-up condition from most of the listeners were only observed for singers who moderated extremely fast or extremely slow vibrato after warming up. The findings reveal the divide between listeners' and singers' perceptions of the warmed-up voice and highlight the importance of enhanced vibrato quality to listener perception of an improvement in vocal quality. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  11. Nonlinear regional warming with increasing CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Good, Peter; Lowe, Jason A.; Andrews, Timothy; Wiltshire, Andrew; Chadwick, Robin; Ridley, Jeff K.; Menary, Matthew B.; Bouttes, Nathaelle; Dufresne, Jean Louis; Gregory, Jonathan M.; Schaller, Nathalie; Shiogama, Hideo

    2015-02-01

    When considering adaptation measures and global climate mitigation goals, stakeholders need regional-scale climate projections, including the range of plausible warming rates. To assist these stakeholders, it is important to understand whether some locations may see disproportionately high or low warming from additional forcing above targets such as 2 K (ref. ). There is a need to narrow uncertainty in this nonlinear warming, which requires understanding how climate changes as forcings increase from medium to high levels. However, quantifying and understanding regional nonlinear processes is challenging. Here we show that regional-scale warming can be strongly superlinear to successive CO2 doublings, using five different climate models. Ensemble-mean warming is superlinear over most land locations. Further, the inter-model spread tends to be amplified at higher forcing levels, as nonlinearities grow--especially when considering changes per kelvin of global warming. Regional nonlinearities in surface warming arise from nonlinearities in global-mean radiative balance, the Atlantic meridional overturning circulation, surface snow/ice cover and evapotranspiration. For robust adaptation and mitigation advice, therefore, potentially avoidable climate change (the difference between business-as-usual and mitigation scenarios) and unavoidable climate change (change under strong mitigation scenarios) may need different analysis methods.

  12. Global warming /climate change: Involving students using local example.

    NASA Astrophysics Data System (ADS)

    Isiorho, S. A.

    2016-12-01

    The current political climate has made it apparent that the general public does not believe in global warming. Also, there appears to be some confusion between global warming and climate change; global warming is one aspect of climate change. Most scientists believe there is climate change and global warming, although, there is still doubt among students on global warming. Some upper level undergraduate students are required to conduct water level/temperature measurements as part of their course grade. In addition to students having their individual projects, the various classes also utilize a well field within a wetland on campus to conduct group projects. Twelve wells in the well field on campus are used regularly by students to measure the depth of groundwater, the temperature of the waters and other basic water chemistry parameters like pH, conductivity and total dissolved solid (TDS) as part of the class group project. The data collected by each class is added to data from previous classes. Students work together as a group to interpret the data. More than 100 students have participated in this venture for more than 10 years of the four upper level courses: hydrogeology, environmental and urban geology, environmental conservation and wetlands. The temperature trend shows the seasonal variation as one would expect, but it also shows an upward trend (warming). These data demonstrate a change in climate and warming. Thus, the students participated in data collection, learn to write report and present their result to their peers in the classrooms.

  13. Does the climate warming hiatus exist over the Tibetan Plateau?

    PubMed Central

    Duan, Anmin; Xiao, Zhixiang

    2015-01-01

    The surface air temperature change over the Tibetan Plateau is determined based on historical observations from 1980 to 2013. In contrast to the cooling trend in the rest of China, and the global warming hiatus post-1990s, an accelerated warming trend has appeared over the Tibetan Plateau during 1998–2013 (0.25 °C decade−1), compared with that during 1980–1997 (0.21 °C decade−1). Further results indicate that, to some degree, such an accelerated warming trend might be attributable to cloud–radiation feedback. The increased nocturnal cloud over the northern Tibetan Plateau would warm the nighttime temperature via enhanced atmospheric back-radiation, while the decreased daytime cloud over the southern Tibetan Plateau would induce the daytime sunshine duration to increase, resulting in surface air temperature warming. Meanwhile, the in situ surface wind speed has recovered gradually since 1998, and thus the energy concentration cannot explain the accelerated warming trend over the Tibetan Plateau after the 1990s. It is suggested that cloud–radiation feedback may play an important role in modulating the recent accelerated warming trend over the Tibetan Plateau. PMID:26329678

  14. Does the climate warming hiatus exist over the Tibetan Plateau?

    PubMed

    Duan, Anmin; Xiao, Zhixiang

    2015-09-02

    The surface air temperature change over the Tibetan Plateau is determined based on historical observations from 1980 to 2013. In contrast to the cooling trend in the rest of China, and the global warming hiatus post-1990s, an accelerated warming trend has appeared over the Tibetan Plateau during 1998-2013 (0.25 °C decade(-1)), compared with that during 1980-1997 (0.21 °C decade(-1)). Further results indicate that, to some degree, such an accelerated warming trend might be attributable to cloud-radiation feedback. The increased nocturnal cloud over the northern Tibetan Plateau would warm the nighttime temperature via enhanced atmospheric back-radiation, while the decreased daytime cloud over the southern Tibetan Plateau would induce the daytime sunshine duration to increase, resulting in surface air temperature warming. Meanwhile, the in situ surface wind speed has recovered gradually since 1998, and thus the energy concentration cannot explain the accelerated warming trend over the Tibetan Plateau after the 1990s. It is suggested that cloud-radiation feedback may play an important role in modulating the recent accelerated warming trend over the Tibetan Plateau.

  15. Experimental warming effects on the bacterial community structure and diversity

    NASA Astrophysics Data System (ADS)

    Kim, W.; Han, S.; Adams, J.; Son, Y.

    2014-12-01

    The objective of this study is to investigate the responses of soil bacterial community to future temperature increase by conducting open-field warming experiment. We conducted an open-field experimental warming system using infra-red heater in 2011 and regulated the temperature of warmed plots by 3oC higher than that of control plots constantly. The seeds of Pinus densiflora, Abies holophylla, Abies koreana, Betula costata, Quercus variabilis, Fraxinus rhynchophylla, and Zelkova serrata were planted in each 1 m × 1 m plot (n=3) in April, 2012. We collected soil samples from the rhizosphere of 7 tree species. DNA was extracted and PCR-amplified for the bacterial 16S gene targeting V1-V3 region. The paired-end sequencing was performed at Beijing Genome Institute (BGI, Hong Kong, China) using 2× 100 bp Hiseq2000 (Illumina). This study aimed to answer the following prediction/hypothesis: 1) Experimental warming will change the structure of soil bacterial community, 2) There will be distinct 'indicator group' which response to warming treatment relatively more sensitive than other groups. 3) Warming treatment will enhance the microbial activity in terms of soil respiration. 4) The rhizoplane bacterial communities for each of 7 tree species will show different response pattern to warming treatment. Since the sequence data does not arrive before the submission deadline, therefore, we would like to present the results and discussions on December 2014, AGU Fall Meeting.

  16. Quantifying global soil carbon losses in response to warming.

    PubMed

    Crowther, T W; Todd-Brown, K E O; Rowe, C W; Wieder, W R; Carey, J C; Machmuller, M B; Snoek, B L; Fang, S; Zhou, G; Allison, S D; Blair, J M; Bridgham, S D; Burton, A J; Carrillo, Y; Reich, P B; Clark, J S; Classen, A T; Dijkstra, F A; Elberling, B; Emmett, B A; Estiarte, M; Frey, S D; Guo, J; Harte, J; Jiang, L; Johnson, B R; Kröel-Dulay, G; Larsen, K S; Laudon, H; Lavallee, J M; Luo, Y; Lupascu, M; Ma, L N; Marhan, S; Michelsen, A; Mohan, J; Niu, S; Pendall, E; Peñuelas, J; Pfeifer-Meister, L; Poll, C; Reinsch, S; Reynolds, L L; Schmidt, I K; Sistla, S; Sokol, N W; Templer, P H; Treseder, K K; Welker, J M; Bradford, M A

    2016-11-30

    The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.

  17. Establishing native warm season grasses on Eastern Kentucky strip mines

    SciTech Connect

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B.

    1998-12-31

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomassmore » samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife

  18. Quantifying global soil carbon losses in response to warming

    NASA Astrophysics Data System (ADS)

    Crowther, T. W.; Todd-Brown, K. E. O.; Rowe, C. W.; Wieder, W. R.; Carey, J. C.; Machmuller, M. B.; Snoek, B. L.; Fang, S.; Zhou, G.; Allison, S. D.; Blair, J. M.; Bridgham, S. D.; Burton, A. J.; Carrillo, Y.; Reich, P. B.; Clark, J. S.; Classen, A. T.; Dijkstra, F. A.; Elberling, B.; Emmett, B. A.; Estiarte, M.; Frey, S. D.; Guo, J.; Harte, J.; Jiang, L.; Johnson, B. R.; Kröel-Dulay, G.; Larsen, K. S.; Laudon, H.; Lavallee, J. M.; Luo, Y.; Lupascu, M.; Ma, L. N.; Marhan, S.; Michelsen, A.; Mohan, J.; Niu, S.; Pendall, E.; Peñuelas, J.; Pfeifer-Meister, L.; Poll, C.; Reinsch, S.; Reynolds, L. L.; Schmidt, I. K.; Sistla, S.; Sokol, N. W.; Templer, P. H.; Treseder, K. K.; Welker, J. M.; Bradford, M. A.

    2016-12-01

    The majority of the Earth’s terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.

  19. Soil warming opens the nitrogen cycle at the alpine treeline.

    PubMed

    Dawes, Melissa A; Schleppi, Patrick; Hättenschwiler, Stephan; Rixen, Christian; Hagedorn, Frank

    2017-01-01

    Climate warming may alter ecosystem nitrogen (N) cycling by accelerating N transformations in the soil, and changes may be especially pronounced in cold regions characterized by N-poor ecosystems. We investigated N dynamics across the plant-soil continuum during 6 years of experimental soil warming (2007-2012; +4 °C) at a Swiss high-elevation treeline site (Stillberg, Davos; 2180 m a.s.l.) featuring Larix decidua and Pinus uncinata. In the soil, we observed considerable increases in the NH4+ pool size in the first years of warming (by >50%), but this effect declined over time. In contrast, dissolved organic nitrogen (DON) concentrations in soil solutions from the organic layer increased under warming, especially in later years (maximum of +45% in 2012), suggesting enhanced DON leaching from the main rooting zone. Throughout the experimental period, foliar N concentrations showed species-specific but small warming effects, whereas δ 15 N values showed a sustained increase in warmed plots that was consistent for all species analysed. The estimated total plant N pool size at the end of the study was greater (+17%) in warmed plots with Pinus but not in those containing Larix, with responses driven by trees. Irrespective of plot tree species identity, warming led to an enhanced N pool size of Vaccinium dwarf shrubs, no change in that of Empetrum hermaphroditum (dwarf shrub) and forbs, and a reduction in that of grasses, nonvascular plants, and fine roots. In combination, higher foliar δ 15 N values and the transient response in soil inorganic N indicate a persistent increase in plant-available N and greater cumulative plant N uptake in warmer soils. Overall, greater N availability and increased DON concentrations suggest an opening of the N cycle with global warming, which might contribute to growth stimulation of some plant species while simultaneously leading to greater N losses from treeline ecosystems and possibly other cold biomes. © 2016 John Wiley & Sons

  20. HS 1603+3820 and its Warm Absorber

    NASA Astrophysics Data System (ADS)

    Nikołajuk, M.; Różańska, A.; Czerny, B.; Dobrzycki, A.

    2009-07-01

    We use photoionization codes CLOUDY and TITAN to obtain physical conditions in the absorbing medium close to the nucleus of a distant quasar (z = 2.54) HS 1603+3820. We found that the total column density of this Warm Absorber is 2 x 1022 cm-2. Due to the softness of the quasars spectrum the modelling allowed us also to determine uniquely the volume hydrogen density of this warm gas (n = 1010 cm-3) which combined with the other quasar parameters leads to a distance determination to the Warm Absorber from the central source which is ~ 1.5 x 1016 cm.

  1. Population risk perceptions of global warming in Australia.

    PubMed

    Agho, Kingsley; Stevens, Garry; Taylor, Mel; Barr, Margo; Raphael, Beverley

    2010-11-01

    According to the World Health Organisation (WHO), global warming has the potential to dramatically disrupt some of life's essential requirements for health, water, air and food. Understanding how Australians perceive the risk of global warming is essential for climate change policy and planning. The aim of this study was to determine the prevalence of, and socio-demographic factors associated with, high levels of perceived likelihood that global warming would worsen, concern for self and family and reported behaviour changes. A module of questions on global warming was incorporated into the New South Wales Population Health Survey in the second quarter of 2007. This Computer Assisted Telephone Interview (CATI) was completed by a representative sample of 2004 adults. The weighted sample was comparable to the Australian population. Bivariate and multivariate statistical analyses were conducted to examine the socio-demographic and general health factors. Overall 62.1% perceived that global warming was likely to worsen; 56.3% were very or extremely concerned that they or their family would be directly affected by global warming; and 77.6% stated that they had made some level of change to the way they lived their lives, because of the possibility of global warming. After controlling for confounding factors, multivariate analyses revealed that those with high levels of psychological distress were 2.17 (Adjusted Odds Ratio (AOR)=2.17; CI: 1.16-4.03; P=0.015) times more likely to be concerned about global warming than those with low psychological distress levels. Those with a University degree or equivalent and those who lived in urban areas were significantly more likely to think that global warming would worsen compared to those without a University degree or equivalent and those who lived in the rural areas. Females were significantly (AOR=1.69; CI: 1.23-2.33; P=0.001) more likely to report they had made changes to the way they lived their lives due to the risk of

  2. Global Warming in the 21st Century: An Alternate Scenario

    NASA Technical Reports Server (NTRS)

    Hansen, James E.

    2000-01-01

    Evidence on a broad range of time scales, from Proterozoic to the most recent periods, shows that the Earth's climate responds sensitively to global forcings. In the past few decades the Earth's surface has warmed rapidly, apparently in response to increasing anthropogenic greenhouse gases in the atmosphere. The conventional view is that the current global warming rate will continue or accelerate in the 21st century. I will describe an alternate scenario that would slow the rate of global warming and reduce the danger of dramatic climate change. But reliable prediction of future climate change requires improved knowledge of the carbon cycle and global observations that allow interpretation of ongoing climate change.

  3. Polar bears in a warming climate.

    PubMed

    Derocher, Andrew E; Lunn, Nicholas J; Stirling, Ian

    2004-04-01

    Polar bears (Ursus maritimus) live throughout the ice-covered waters of the circumpolar Arctic, particularly in near shore annual ice over the continental shelf where biological productivity is highest. However, to a large degree under scenarios predicted by climate change models, these preferred sea ice habitats will be substantially altered. Spatial and temporal sea ice changes will lead to shifts in trophic interactions involving polar bears through reduced availability and abundance of their main prey: seals. In the short term, climatic warming may improve bear and seal habitats in higher latitudes over continental shelves if currently thick multiyear ice is replaced by annual ice with more leads, making it more suitable for seals. A cascade of impacts beginning with reduced sea ice will be manifested in reduced adipose stores leading to lowered reproductive rates because females will have less fat to invest in cubs during the winter fast. Non-pregnant bears may have to fast on land or offshore on the remaining multiyear ice through progressively longer periods of open water while they await freeze-up and a return to hunting seals. As sea ice thins, and becomes more fractured and labile, it is likely to move more in response to winds and currents so that polar bears will need to walk or swim more and thus use greater amounts of energy to maintain contact with the remaining preferred habitats. The effects of climate change are likely to show large geographic, temporal and even individual differences and be highly variable, making it difficult to develop adequate monitoring and research programs. All ursids show behavioural plasticity but given the rapid pace of ecological change in the Arctic, the long generation time, and the highly specialised nature of polar bears, it is unlikely that polar bears will survive as a species if the sea ice disappears completely as has been predicted by some.

  4. Global Warming Estimation From Microwave Sounding Unit

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Dalu, G.

    1998-01-01

    Microwave Sounding Unit (MSU) Ch 2 data sets, collected from sequential, polar-orbiting, Sun-synchronous National Oceanic and Atmospheric Administration operational satellites, contain systematic calibration errors that are coupled to the diurnal temperature cycle over the globe. Since these coupled errors in MSU data differ between successive satellites, it is necessary to make compensatory adjustments to these multisatellite data sets in order to determine long-term global temperature change. With the aid of the observations during overlapping periods of successive satellites, we can determine such adjustments and use them to account for the coupled errors in the long-term time series of MSU Ch 2 global temperature. In turn, these adjusted MSU Ch 2 data sets can be used to yield global temperature trend. In a pioneering study, Spencer and Christy (SC) (1990) developed a procedure to derive the global temperature trend from MSU Ch 2 data. Such a procedure can leave unaccounted residual errors in the time series of the temperature anomalies deduced by SC, which could lead to a spurious long-term temperature trend derived from their analysis. In the present study, we have developed a method that avoids the shortcomings of the SC procedure, the magnitude of the coupled errors is not determined explicitly. Furthermore, based on some assumptions, these coupled errors are eliminated in three separate steps. Such a procedure can leave unaccounted residual errors in the time series of the temperature anomalies deduced by SC, which could lead to a spurious long-term temperature trend derived from their analysis. In the present study, we have developed a method that avoids the shortcomings of the SC procedures. Based on our analysis, we find there is a global warming of 0.23+/-0.12 K between 1980 and 1991. Also, in this study, the time series of global temperature anomalies constructed by removing the global mean annual temperature cycle compares favorably with a similar

  5. Heat waves and warm periods in Slovakia

    NASA Astrophysics Data System (ADS)

    Faško, Pavel; Bochníček, Oliver; Markovič, Ladislav; Švec, Marek

    2016-04-01

    The scenarios of climate change caused by human activity show that frequency of occurrence and extent of heat waves in the interior of Europe is increasing. Among the most exposed regions in this regard should the area of southeastern and eastern Austria and south-western Slovakia. The relatively faster increase in the number of heat waves in this area is related also to potential desertification in this region just east of the Alps, since during summer, weather fronts advancing from the west are consequently losing their original features and moderating influence. Summer weather patterns for this area should in the future more closely remind climate typical for some inland areas of southwestern, southern and southeastern Europe. A certain shift of climate zones from south to north should thus modify future climate and Slovakia. Despite the complex natural conditions the existing trends derived from results of meteorological measurements and observations are clear and they confirm warming of climate in this region. Observations and measurements in the recent years of the 21st century confirm, that heat waves are no longer rare phenomenon during summer, but are systematically appearing even in colder regions of northern Slovakia. What is very remarkable and will be necessary to pay more attention to, is the fact that these heat waves are expanding into previously unaffected areas, associated with the lack of rainfall and drought, on larger regional scale. In this study heat wave periods and individual heat events and days are statistically identified in the time series characteristics of air temperature at selected meteorological stations for the period from the mid-20th century until 2015, in case of available historical data even for longer period.

  6. Report nixes Geritol fix for global warming

    SciTech Connect

    Roberts, L.

    1991-09-27

    Several years ago John Martin of the Moss Landing Marine Laboratory in California suggested a quick fix to the greenhouse problem: dump iron into the Southern Ocean near Antarctica. That, he said, would trigger a massive bloom of the ocean's microscopic plants, which in turn would suck carbon dioxide out of the atmosphere and help reduce global warming. His idea ignited a firestorm of controversy that rages on today. While the idea quickly won supporters - including some prominent members of the National Academy of Sciences - much of the oceanographic community was incensed, arguing that you don't tinker withmore » a perfectly health ecosystem to clean up humanity's mess. Now the American Society of Limnology and Oceanography (ASLO) has a report that represents the views of much of the oceanographic community. In the report, released in late summer, ASLO trounces the idea of fertilizing the oceans with iron as a greenhouse fix, as expected. But in an unexpected twist, the society endorses a small-scale experiment in which iron would be added to the open ocean. The idea isn't to engineer the oceans, but to test the hypothesis that might answer one of the longstanding puzzles in biological oceanography: why do the phytoplankton of the Southern Ocean, as well as those in parts of the subarctic and equatorial Pacific, grow so poorly, even though the waters are rich in nutrients such as phosphorus and nitrogen The answer could shed light not only on how the food web operates, but on the global carbon cycle as well.« less

  7. Global warming transforms coral reef assemblages.

    PubMed

    Hughes, Terry P; Kerry, James T; Baird, Andrew H; Connolly, Sean R; Dietzel, Andreas; Eakin, C Mark; Heron, Scott F; Hoey, Andrew S; Hoogenboom, Mia O; Liu, Gang; McWilliam, Michael J; Pears, Rachel J; Pratchett, Morgan S; Skirving, William J; Stella, Jessica S; Torda, Gergely

    2018-04-01

    Global warming is rapidly emerging as a universal threat to ecological integrity and function, highlighting the urgent need for a better understanding of the impact of heat exposure on the resilience of ecosystems and the people who depend on them 1 . Here we show that in the aftermath of the record-breaking marine heatwave on the Great Barrier Reef in 2016 2 , corals began to die immediately on reefs where the accumulated heat exposure exceeded a critical threshold of degree heating weeks, which was 3-4 °C-weeks. After eight months, an exposure of 6 °C-weeks or more drove an unprecedented, regional-scale shift in the composition of coral assemblages, reflecting markedly divergent responses to heat stress by different taxa. Fast-growing staghorn and tabular corals suffered a catastrophic die-off, transforming the three-dimensionality and ecological functioning of 29% of the 3,863 reefs comprising the world's largest coral reef system. Our study bridges the gap between the theory and practice of assessing the risk of ecosystem collapse, under the emerging framework for the International Union for Conservation of Nature (IUCN) Red List of Ecosystems 3 , by rigorously defining both the initial and collapsed states, identifying the major driver of change, and establishing quantitative collapse thresholds. The increasing prevalence of post-bleaching mass mortality of corals represents a radical shift in the disturbance regimes of tropical reefs, both adding to and far exceeding the influence of recurrent cyclones and other local pulse events, presenting a fundamental challenge to the long-term future of these iconic ecosystems.

  8. On the Seasonality of Sudden Stratospheric Warmings

    NASA Astrophysics Data System (ADS)

    Reichler, T.; Horan, M.

    2017-12-01

    The downward influence of sudden stratospheric warmings (SSWs) creates significant tropospheric circulation anomalies that last for weeks. It is therefore of theoretical and practical interest to understand the time when SSWs are most likely to occur and the controlling factors for the temporal distribution of SSWs. Conceivably, the distribution between mid-winter and late-winter is controlled by the interplay between decreasing eddy convergence in the region of the polar vortex and the weakening strength of the polar vortex. General circulation models (GCMs) tend to produce SSW maxima later in winter than observations, which has been considered as a model deficiency. However, the observed record is short, suggesting that under-sampling of SSWs may contribute to this discrepancy. Here, we study the climatological frequency distribution of SSWs and related events in a long control simulation with a stratosphere resolving GCM. We also create a simple statistical model to determine the primary factors controlling the SSW distribution. The statistical model is based on the daily climatological mean, standard deviation, and autocorrelation of stratospheric winds, and assumes that the winds follow a normal distribution. We find that the null hypothesis, that model and observations stem from the same distribution, cannot be rejected, suggesting that the mid-winter SSW maximum seen in the observations is due to sampling uncertainty. We also find that the statistical model faithfully reproduces the seasonal distribution of SSWs, and that the decreasing climatological strength of the polar vortex is the primary factor for it. We conclude that the late-winter SSW maximum seen in most models is realistic and that late events will be more prominent in future observations. We further conclude that SSWs simply form the tail of normally distributed stratospheric winds, suggesting that there is a continuum of weak polar vortex states and that statistically there is nothing special

  9. Reconciling controversies about the ‘global warming hiatus’

    NASA Astrophysics Data System (ADS)

    Medhaug, Iselin; Stolpe, Martin B.; Fischer, Erich M.; Knutti, Reto

    2017-05-01

    Between about 1998 and 2012, a time that coincided with political negotiations for preventing climate change, the surface of Earth seemed hardly to warm. This phenomenon, often termed the ‘global warming hiatus’, caused doubt in the public mind about how well anthropogenic climate change and natural variability are understood. Here we show that apparently contradictory conclusions stem from different definitions of ‘hiatus’ and from different datasets. A combination of changes in forcing, uptake of heat by the oceans, natural variability and incomplete observational coverage reconciles models and data. Combined with stronger recent warming trends in newer datasets, we are now more confident than ever that human influence is dominant in long-term warming.

  10. Performance of Virginia's warm-mix asphalt trial sections.

    DOT National Transportation Integrated Search

    2010-02-01

    Three trial sections using two warm-mix asphalt (WMA) technologies were constructed in various locations in Virginia in 2006, and experiences with these trial sections were used in the development of the Virginia Department of Transportation's specia...

  11. Coastal warming and wind-driven upwelling: A global analysis.

    PubMed

    Varela, Rubén; Lima, Fernando P; Seabra, Rui; Meneghesso, Claudia; Gómez-Gesteira, Moncho

    2018-10-15

    Long-term sea surface temperature (SST) warming trends are far from being homogeneous, especially when coastal and ocean locations are compared. Using data from NOAA's AVHRR OISST, we have analyzed sea surface temperature trends over the period 1982-2015 at around 3500 worldwide coastal points and their oceanic counterparts with a spatial resolution of 0.25 arc-degrees. Significant warming was observed at most locations although with important differences between oceanic and coastal points. This is especially patent for upwelling regions, where 92% of the coastal locations showed lower warming trends than at neighboring ocean locations. This result strongly suggests that upwelling has the potential to buffer the effects of global warming nearshore, with wide oceanographic, climatic, and biogeographic implications. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Optimal Detection of Global Warming using Temperature Profiles

    NASA Technical Reports Server (NTRS)

    Leroy, Stephen S.

    1997-01-01

    Optimal fingerprinting is applied to estimate the amount of time it would take to detect warming by increased concentrations of carbon dioxide in monthly averages of temperature profiles over the Indian Ocean.

  13. The Warm-Blooded Plant of the Swamps.

    ERIC Educational Resources Information Center

    Camazine, Scott

    1986-01-01

    Describes remarkable characteristics of the skunk cabbage (Symplocarpus foetidus) which make it an interesting swamp plant to study in February and March: its warm-blooded nature, unpleasant skunky odor, and peculiar root system. (NEC)

  14. Comparative Life Cycle Assessment between Warm SMA and Conventional SMA

    DOT National Transportation Integrated Search

    2011-09-01

    This report presents the comparative life cycle assessment (LCA) between warm stone mastic asphalt (SMA) and conventional : SMA. Specifically, the study evaluated and compared the life cycle environmental and economic performances of two mixtures: a ...

  15. Warming and Resource Availability Shift Food Web Structure and Metabolism

    PubMed Central

    O'Connor, Mary I.; Piehler, Michael F.; Leech, Dina M.; Anton, Andrea; Bruno, John F.

    2009-01-01

    Climate change disrupts ecological systems in many ways. Many documented responses depend on species' life histories, contributing to the view that climate change effects are important but difficult to characterize generally. However, systematic variation in metabolic effects of temperature across trophic levels suggests that warming may lead to predictable shifts in food web structure and productivity. We experimentally tested the effects of warming on food web structure and productivity under two resource supply scenarios. Consistent with predictions based on universal metabolic responses to temperature, we found that warming strengthened consumer control of primary production when resources were augmented. Warming shifted food web structure and reduced total biomass despite increases in primary productivity in a marine food web. In contrast, at lower resource levels, food web production was constrained at all temperatures. These results demonstrate that small temperature changes could dramatically shift food web dynamics and provide a general, species-independent mechanism for ecological response to environmental temperature change. PMID:19707271

  16. Warm Rivers Play Role in Arctic Sea Ice Melt

    NASA Image and Video Library

    2014-03-05

    Beaufort Sea surface temperatures where Canada Mackenzie River discharges into the Arctic Ocean, measured by NASA MODIS instrument; warm river waters had broken through a shoreline sea ice barrier to enhance sea ice melt.

  17. Installation of warm mix asphalt projects in Virginia.

    DOT National Transportation Integrated Search

    2007-01-01

    Several processes have been developed to reduce the mixing and compaction temperatures of hot mix asphalt (HMA) without sacrificing the quality of the resulting pavement. The purpose of this study was to evaluate the installation of warm mix asphalt ...

  18. Performance Assessment of Warm Mix Asphalt (WMA) Pavements

    DOT National Transportation Integrated Search

    2009-09-01

    Abstract : Warm Mix Asphalt (WMA) is a new technology that was introduced in Europe in 1995. WMA offers several advantages over : conventional asphalt concrete mixtures, including: reduced energy consumption, reduced emissions, improved or more unifo...

  19. Investigation of warm-mix asphalt using Iowa aggregates.

    DOT National Transportation Integrated Search

    2011-04-01

    The implementation of warm-mix asphalt (WMA) is becoming more widespread with a growing number of contractors utilizing various WMA technologies. Early research suggests WMA may be more susceptible to moisture damage than traditional hot-mix asphalt ...

  20. Performance assessment of warm mix asphalt (WMA) pavements.

    DOT National Transportation Integrated Search

    2009-09-01

    Warm Mix Asphalt (WMA) is a new technology that was introduced in Europe in 1995. WMA offers several advantages over : conventional asphalt concrete mixtures, including: reduced energy consumption, reduced emissions, improved or more uniform : binder...

  1. Investigation of warm-mix asphalt for Iowa roadways.

    DOT National Transportation Integrated Search

    2013-09-01

    Phase II of this study further evaluated the performance of plant-produced warm-mix asphalt (WMA) mixes by conducting : additional mixture performance tests at a broader range of temperatures, adding additional pavements to the study, comparing : vir...

  2. Investigation of warm-mix asphalt using Iowa aggregates.

    DOT National Transportation Integrated Search

    2011-04-01

    The implementation of warm-mix asphalt (WMA) is becoming more widespread with a growing number of contractors utilizing various : WMA technologies. Early research suggests WMA may be more susceptible to moisture damage than traditional hot-mix asphal...

  3. Early age rutting potential of warm mix asphalt (WMA).

    DOT National Transportation Integrated Search

    2012-12-01

    Various plant produced Warm Mix Asphalt (WMA) mixtures were evaluated and compared to identical : plant produced Hot Mix Asphalt to assess their early life rutting potential. Along with laboratory permanent : deformation testing, fatigue and moisture...

  4. Early age rutting potential of warm mix asphalt (WMA).

    DOT National Transportation Integrated Search

    2012-12-01

    Various plant produced Warm Mix Asphalt (WMA) mixtures were evaluated and compared to identical plant produced Hot Mix Asphalt to assess their early life rutting potential. Along with laboratory permanent deformation testing, fatigue and moisture dam...

  5. Electron-ion temperature equilibration in warm dense tantalum

    DOE PAGES

    Doppner, T; LePape, S.; Ma, T.; ...

    2014-11-05

    We present measurements of electron-ion temperature equilibration in proton-heated tantalum, under warm dense matter conditions. Our results agree with theoretical predictions for metals calculated using input data from ab initio simulations. Furthermore, the fast relaxation observed in the experiment contrasts with much longer equilibration times found in proton heated carbon, indicating that the energy flow pathways in warm dense matter are far from being fully understood.

  6. Plausible rice yield losses under future climate warming.

    PubMed

    Zhao, Chuang; Piao, Shilong; Wang, Xuhui; Huang, Yao; Ciais, Philippe; Elliott, Joshua; Huang, Mengtian; Janssens, Ivan A; Li, Tao; Lian, Xu; Liu, Yongwen; Müller, Christoph; Peng, Shushi; Wang, Tao; Zeng, Zhenzhong; Peñuelas, Josep

    2016-12-19

    Rice is the staple food for more than 50% of the world's population 1-3 . Reliable prediction of changes in rice yield is thus central for maintaining global food security. This is an extraordinary challenge. Here, we compare the sensitivity of rice yield to temperature increase derived from field warming experiments and three modelling approaches: statistical models, local crop models and global gridded crop models. Field warming experiments produce a substantial rice yield loss under warming, with an average temperature sensitivity of -5.2 ± 1.4% K -1 . Local crop models give a similar sensitivity (-6.3 ± 0.4% K -1 ), but statistical and global gridded crop models both suggest less negative impacts of warming on yields (-0.8 ± 0.3% and -2.4 ± 3.7% K -1 , respectively). Using data from field warming experiments, we further propose a conditional probability approach to constrain the large range of global gridded crop model results for the future yield changes in response to warming by the end of the century (from -1.3% to -9.3% K -1 ). The constraint implies a more negative response to warming (-8.3 ± 1.4% K -1 ) and reduces the spread of the model ensemble by 33%. This yield reduction exceeds that estimated by the International Food Policy Research Institute assessment (-4.2 to -6.4% K -1 ) (ref. 4). Our study suggests that without CO 2 fertilization, effective adaptation and genetic improvement, severe rice yield losses are plausible under intensive climate warming scenarios.

  7. Global Warming and Energy Transition: A Public Policy Imperative

    NASA Astrophysics Data System (ADS)

    Stone, G. T.

    2006-12-01

    The historic transition from fossil fuels to alternative energy resources has begun. This development is commonly attributed to increasing energy costs and the need for energy security. Looming ever larger, however, is the issue that will soon drive the third energy revolution: global warming. A preponderance of evidence documents accelerating warming, enlarging impacts, and human causes -- principally combustion of fossil fuels. The carbon dioxide (C02) content of Earth's atmosphere has increased more than 35 percent since the beginning of the industrial revolution and is the highest in 650,000 years. This dramatic rise of C02 and attendant positive feedbacks are already forcing significant impacts worldwide. These include atmospheric warming with shifting climatic and habitat zones, spreading tropical disease, and more extreme weather events; rapid ice loss at high latitude and high altitude; ocean warming and acidification with coral reef bleaching and intensifying tropical storms; rising sea level; and accelerating extinction rates. The 2007 draft report of the Intergovernmental Panel on Climate Change (IPCC) predicts greater warming than in previous models. A tipping point to abrupt climate change may be imminent. It is incumbent upon geoscientists and geoscience educators to assume leadership in addressing this challenge through public outreach and general education. The following topics should be integrated into all appropriate courses: the evidence of global warming and its causes; observed present and predicted future impacts of global warming; mitigation and adaptation strategies; and implications for energy policies and economic opportunities. New entry-level science and general education courses -- such as Climate Change Fundamentals and Energy in Nature, Technology, and Society -- are proving to be effective should be widely developed In addition, by workshops and presentations to civic and business organizations and by demonstrated examples of

  8. Designing connected marine reserves in the face of global warming.

    PubMed

    Álvarez-Romero, Jorge G; Munguía-Vega, Adrián; Beger, Maria; Del Mar Mancha-Cisneros, Maria; Suárez-Castillo, Alvin N; Gurney, Georgina G; Pressey, Robert L; Gerber, Leah R; Morzaria-Luna, Hem Nalini; Reyes-Bonilla, Héctor; Adams, Vanessa M; Kolb, Melanie; Graham, Erin M; VanDerWal, Jeremy; Castillo-López, Alejandro; Hinojosa-Arango, Gustavo; Petatán-Ramírez, David; Moreno-Baez, Marcia; Godínez-Reyes, Carlos R; Torre, Jorge

    2018-02-01

    Marine reserves are widely used to protect species important for conservation and fisheries and to help maintain ecological processes that sustain their populations, including recruitment and dispersal. Achieving these goals requires well-connected networks of marine reserves that maximize larval connectivity, thus allowing exchanges between populations and recolonization after local disturbances. However, global warming can disrupt connectivity by shortening potential dispersal pathways through changes in larval physiology. These changes can compromise the performance of marine reserve networks, thus requiring adjusting their design to account for ocean warming. To date, empirical approaches to marine prioritization have not considered larval connectivity as affected by global warming. Here, we develop a framework for designing marine reserve networks that integrates graph theory and changes in larval connectivity due to potential reductions in planktonic larval duration (PLD) associated with ocean warming, given current socioeconomic constraints. Using the Gulf of California as case study, we assess the benefits and costs of adjusting networks to account for connectivity, with and without ocean warming. We compare reserve networks designed to achieve representation of species and ecosystems with networks designed to also maximize connectivity under current and future ocean-warming scenarios. Our results indicate that current larval connectivity could be reduced significantly under ocean warming because of shortened PLDs. Given the potential changes in connectivity, we show that our graph-theoretical approach based on centrality (eigenvector and distance-weighted fragmentation) of habitat patches can help design better-connected marine reserve networks for the future with equivalent costs. We found that maintaining dispersal connectivity incidentally through representation-only reserve design is unlikely, particularly in regions with strong asymmetric patterns of

  9. Evaluating Arctic warming mechanisms in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Franzke, Christian L. E.; Lee, Sukyoung; Feldstein, Steven B.

    2017-05-01

    Arctic warming is one of the most striking signals of global warming. The Arctic is one of the fastest warming regions on Earth and constitutes, thus, a good test bed to evaluate the ability of climate models to reproduce the physics and dynamics involved in Arctic warming. Different physical and dynamical mechanisms have been proposed to explain Arctic amplification. These mechanisms include the surface albedo feedback and poleward sensible and latent heat transport processes. During the winter season when Arctic amplification is most pronounced, the first mechanism relies on an enhancement in upward surface heat flux, while the second mechanism does not. In these mechanisms, it has been proposed that downward infrared radiation (IR) plays a role to a varying degree. Here, we show that the current generation of CMIP5 climate models all reproduce Arctic warming and there are high pattern correlations—typically greater than 0.9—between the surface air temperature (SAT) trend and the downward IR trend. However, we find that there are two groups of CMIP5 models: one with small pattern correlations between the Arctic SAT trend and the surface vertical heat flux trend (Group 1), and the other with large correlations (Group 2) between the same two variables. The Group 1 models exhibit higher pattern correlations between Arctic SAT and 500 hPa geopotential height trends, than do the Group 2 models. These findings suggest that Arctic warming in Group 1 models is more closely related to changes in the large-scale atmospheric circulation, whereas in Group 2, the albedo feedback effect plays a more important role. Interestingly, while Group 1 models have a warm or weak bias in their Arctic SAT, Group 2 models show large cold biases. This stark difference in model bias leads us to hypothesize that for a given model, the dominant Arctic warming mechanism and trend may be dependent on the bias of the model mean state.

  10. Extreme warm temperatures alter forest phenology and productivity in Europe.

    PubMed

    Crabbe, Richard A; Dash, Jadu; Rodriguez-Galiano, Victor F; Janous, Dalibor; Pavelka, Marian; Marek, Michal V

    2016-09-01

    Recent climate warming has shifted the timing of spring and autumn vegetation phenological events in the temperate and boreal forest ecosystems of Europe. In many areas spring phenological events start earlier and autumn events switch between earlier and later onset. Consequently, the length of growing season in mid and high latitudes of European forest is extended. However, the lagged effects (i.e. the impact of a warm spring or autumn on the subsequent phenological events) on vegetation phenology and productivity are less explored. In this study, we have (1) characterised extreme warm spring and extreme warm autumn events in Europe during 2003-2011, and (2) investigated if direct impact on forest phenology and productivity due to a specific warm event translated to a lagged effect in subsequent phenological events. We found that warmer events in spring occurred extensively in high latitude Europe producing a significant earlier onset of greening (OG) in broadleaf deciduous forest (BLDF) and mixed forest (MF). However, this earlier OG did not show any significant lagged effects on autumnal senescence. Needleleaf evergreen forest (NLEF), BLDF and MF showed a significantly delayed end of senescence (EOS) as a result of extreme warm autumn events; and in the following year's spring phenological events, OG started significantly earlier. Extreme warm spring events directly led to significant (p=0.0189) increases in the productivity of BLDF. In order to have a complete understanding of ecosystems response to warm temperature during key phenological events, particularly autumn events, the lagged effect on the next growing season should be considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Warm fresh whole blood and thoracic traumain iraq and afghanistan.

    PubMed

    Keneally, Ryan J; Parsons, Andrew M; Willett, Peter B

    2015-01-01

    Thoracic trauma occurred in 10% of the patients seen at US military treatment facilities in Iraq and Afghanistan and 52% of those patients were transfused. Among those transfused, 281 patients received warm fresh whole blood. A previous report documented improved survival with warm fresh whole blood in patients injured in combat without stratification by injury pattern. A later report described an increase in acute lung injuries after its administration. Survivorship and warm fresh whole blood have never been analyzed in a subpopulation at highest risk for lung injuries, such as patients with thoracic trauma. There may be a heterogeneous relationship between whole blood and survival based on likelihood of a concomitant pulmonary injury. In this report, the relationship between warm fresh whole blood and survivorship was analyzed among patients at highest risk for concomitant pulmonary injuries. Patients with thoracic trauma who received a transfusion were identified in the Joint Theater Trauma Registry. Gross mortality rates were compared between whole blood recipients and patients transfused with component therapy only. The association between each blood component and mortality was determined in a regression model. The overall mortality risk was compared between warm fresh whole blood recipients and non-recipients. Patients transfused with warm fresh whole blood in addition to component therapy had a higher mortality rate than patients transfused only separated blood components (21.3% vs. 12.8%, P < 0.001). When controlling for covariates, transfusion of warm fresh whole blood in addition to component therapy was not associated with increased mortality risk compared with the transfusion of component therapy only (OR 1.247 [95% CI 0.760-2.048], P = 0.382). Patients with combat related thoracic trauma transfused with warm fresh whole blood were not at increased risk for mortality compared to those who received component therapy alone when controlling for covariates.

  12. Warm-up before laparoscopic surgery is not essential.

    PubMed

    Weston, Maree K; Stephens, Jacqueline H; Schafer, Amy; Hewett, Peter J

    2014-03-01

    Several recent studies have suggested that warming up prior to surgery may improve surgical performance. The purpose of this study was to investigate whether warming up prior to laparoscopic surgery improves surgical performance or reduces surgery duration. Between August 2011 and January 2012, a randomized controlled trial was conducted to compare two warm-up modalities to no warm-up. The study was conducted at a single site, with nine surgeons performing 72 laparoscopic cholecystectomies and 37 laparoscopic appendicectomies. Prior to surgery, surgeons were randomized to either laparoscopic trainer box warm-up, PlayStation 2 warm-up or no warm-up. The activity was performed within 30 min of surgery commencing. Patients provided informed consent for the surgery to be digitally recorded. Digital videodiscs (DVDs) were reviewed by an independent and blinded assessor. Data were collected on duration of surgery, level of training and perceived surgical difficulty. Surgical performance was graded using a validated scoring system. From the 109 operations performed, there were 75 usable DVDs. Overall, there were no statistical differences in the demographics of patients and surgeons in the three treatment groups, nor in the subset that had useable DVDs. There were no statistical differences in the duration of surgery or surgeon's perceived surgical difficulty. There was no statistical difference in surgical performance. This study suggests that warm-up prior to laparoscopic cholecystectomy or appendicectomy is not essential, acknowledging that there are several study limitations that preclude definitive conclusion. © 2012 The Authors. ANZ Journal of Surgery © 2012 Royal Australasian College of Surgeons.

  13. Warming and drought reduce temperature sensitivity of nitrogen transformations.

    PubMed

    Novem Auyeung, Dolaporn S; Suseela, Vidya; Dukes, Jeffrey S

    2013-02-01

    Shifts in nitrogen (N) mineralization and nitrification rates due to global changes can influence nutrient availability, which can affect terrestrial productivity and climate change feedbacks. While many single-factor studies have examined the effects of environmental changes on N mineralization and nitrification, few have examined these effects in a multifactor context or recorded how these effects vary seasonally. In an old-field ecosystem in Massachusetts, USA, we investigated the combined effects of four levels of warming (up to 4 °C) and three levels of precipitation (drought, ambient, and wet) on net N mineralization, net nitrification, and potential nitrification. We also examined the treatment effects on the temperature sensitivity of net N mineralization and net nitrification and on the ratio of C mineralization to net N mineralization. During winter, freeze-thaw events, snow depth, and soil freezing depth explained little of the variation in net nitrification and N mineralization rates among treatments. During two years of treatments, warming and altered precipitation rarely influenced the rates of N cycling, and there was no evidence of a seasonal pattern in the responses. In contrast, warming and drought dramatically decreased the apparent Q10 of net N mineralization and net nitrification, and the warming-induced decrease in apparent Q10 was more pronounced in ambient and wet treatments than the drought treatment. The ratio of C mineralization to net N mineralization varied over time and was sensitive to the interactive effects of warming and altered precipitation. Although many studies have found that warming tends to accelerate N cycling, our results suggest that warming can have little to no effect on N cycling in some ecosystems. Thus, ecosystem models that assume that warming will consistently increase N mineralization rates and inputs of plant-available N may overestimate the increase in terrestrial productivity and the magnitude of an important

  14. Anthropogenic warming has increased drought risk in California.

    PubMed

    Diffenbaugh, Noah S; Swain, Daniel L; Touma, Danielle

    2015-03-31

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼ 100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm-dry conditions like those that have created the acute human and ecosystem impacts associated with the "exceptional" 2012-2014 drought in California.

  15. Unabated global surface temperature warming: evaluating the evidence

    NASA Astrophysics Data System (ADS)

    Karl, T. R.; Arguez, A.

    2015-12-01

    New insights related to time-dependent bias corrections in global surface temperatures have led to higher rates of warming over the past few decades than previously reported in the IPCC Fifth Assessment Report (2014). Record high global temperatures in the past few years have also contributed to larger trends. The combination of these factors and new analyses of the rate of temperature change show unabated global warming since at least the mid-Twentieth Century. New time-dependent bias corrections account for: (1) differences in temperatures measured from ships and drifting buoys; (2) improved corrections to ship measured temperatures; and (3) the larger rates of warming in polar regions (particularly the Arctic). Since 1951, the period over which IPCC (2014) attributes over half of the observed global warming to human causes, it is shown that there has been a remarkably robust and sustained warming, punctuated with inter-annual and decadal variability. This finding is confirmed through simple trend analysis and Empirical Mode Decomposition (EMD). Trend analysis however, especially for decadal trends, is sensitive to selection bias of beginning and ending dates. EMD has no selection bias. Additionally, it can highlight both short- and long-term processes affecting the global temperature times series since it addresses both non-linear and non-stationary processes. For the new NOAA global temperature data set, our analyses do not support the notion of a hiatus or slowing of long-term global warming. However, sub-decadal periods of little (or no warming) and rapid warming can also be found, clearly showing the impact of inter-annual and decadal variability that previously has been attributed to both natural and human-induced non-greenhouse forcings.

  16. Experimental whole-stream warming alters community size structure.

    PubMed

    Nelson, Daniel; Benstead, Jonathan P; Huryn, Alexander D; Cross, Wyatt F; Hood, James M; Johnson, Philip W; Junker, James R; Gíslason, Gísli M; Ólafsson, Jón S

    2017-07-01

    How ecological communities respond to predicted increases in temperature will determine the extent to which Earth's biodiversity and ecosystem functioning can be maintained into a warmer future. Warming is predicted to alter the structure of natural communities, but robust tests of such predictions require appropriate large-scale manipulations of intact, natural habitat that is open to dispersal processes via exchange with regional species pools. Here, we report results of a two-year whole-stream warming experiment that shifted invertebrate assemblage structure via unanticipated mechanisms, while still conforming to community-level metabolic theory. While warming by 3.8 °C decreased invertebrate abundance in the experimental stream by 60% relative to a reference stream, total invertebrate biomass was unchanged. Associated shifts in invertebrate assemblage structure were driven by the arrival of new taxa and a higher proportion of large, warm-adapted species (i.e., snails and predatory dipterans) relative to small-bodied, cold-adapted taxa (e.g., chironomids and oligochaetes). Experimental warming consequently shifted assemblage size spectra in ways that were unexpected, but consistent with thermal optima of taxa in the regional species pool. Higher temperatures increased community-level energy demand, which was presumably satisfied by higher primary production after warming. Our experiment demonstrates how warming reassembles communities within the constraints of energy supply via regional exchange of species that differ in thermal physiological traits. Similar responses will likely mediate impacts of anthropogenic warming on biodiversity and ecosystem function across all ecological communities. © 2016 John Wiley & Sons Ltd.

  17. Measurement of electron-ion relaxation in warm dense copper

    DOE PAGES

    Cho, B. I.; Ogitsu, T.; Engelhorn, K.; ...

    2016-01-06

    Experimental investigation of electron-ion coupling and electron heat capacity of copper in warm and dense states are presented. From time-resolved x-ray absorption spectroscopy, the temporal evolution of electron temperature is obtained for non-equilibrium warm dense copper heated by an intense femtosecond laser pulse. Electron heat capacity and electron-ion coupling are inferred from the initial electron temperature and its decrease over 10 ps. As a result, data are compared with various theoretical models.

  18. Indirect aerosol effect increases CMIP5 models projected Arctic warming

    DOE PAGES

    Chylek, Petr; Vogelsang, Timothy J.; Klett, James D.; ...

    2016-02-20

    Phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models’ projections of the 2014–2100 Arctic warming under radiative forcing from representative concentration pathway 4.5 (RCP4.5) vary from 0.9° to 6.7°C. Climate models with or without a full indirect aerosol effect are both equally successful in reproducing the observed (1900–2014) Arctic warming and its trends. However, the 2014–2100 Arctic warming and the warming trends projected by models that include a full indirect aerosol effect (denoted here as AA models) are significantly higher (mean projected Arctic warming is about 1.5°C higher) than those projected by models without a full indirect aerosolmore » effect (denoted here as NAA models). The suggestion is that, within models including full indirect aerosol effects, those projecting stronger future changes are not necessarily distinguishable historically because any stronger past warming may have been partially offset by stronger historical aerosol cooling. In conclusion, the CMIP5 models that include a full indirect aerosol effect follow an inverse radiative forcing to equilibrium climate sensitivity relationship, while models without it do not.« less

  19. Stronger warming effects on microbial abundances in colder regions

    DOE PAGES

    Chen, Ji; Luo, Yiqi; Xia, Jianyang; ...

    2015-12-10

    Soil microbes play critical roles in regulating terrestrial carbon (C) cycle and its feedback to climate change. However, it is still unclear how the soil microbial community and abundance respond to future climate change scenarios. In this meta-analysis, we synthesized the responses of microbial community and abundance to experimental warming from 64 published field studies. Our results showed that warming significantly increased soil microbial abundance by 7.6% on average. When grouped by vegetation or soil types, tundras and histosols had the strongest microbial responses to warming with increased microbial, fungal, and bacterial abundances by 15.0%, 9.5% and 37.0% in tundra,more » and 16.5%, 13.2% and 13.3% in histosols, respectively. We found significant negative relationships of the response ratios of microbial, fungal and bacterial abundances with the mean annual temperature, indicating that warming had stronger effects in colder than warmer regions. Moreover, the response ratios of microbial abundance to warming were positively correlated with those of soil respiration. Our results therefore indicate that the large quantities of C stored in colder regions are likely to be more vulnerable to climate warming than the soil C stored in other warmer regions.« less

  20. Soil warming alters microbial substrate use in alpine soils.

    PubMed

    Streit, Kathrin; Hagedorn, Frank; Hiltbrunner, David; Portmann, Magdalena; Saurer, Matthias; Buchmann, Nina; Wild, Birgit; Richter, Andreas; Wipf, Sonja; Siegwolf, Rolf T W

    2014-04-01

    Will warming lead to an increased use of older soil organic carbon (SOC) by microbial communities, thereby inducing C losses from C-rich alpine soils? We studied soil microbial community composition, activity, and substrate use after 3 and 4 years of soil warming (+4 °C, 2007-2010) at the alpine treeline in Switzerland. The warming experiment was nested in a free air CO2 enrichment experiment using depleted (13)CO2 (δ(13)C = -30‰, 2001-2009). We traced this depleted (13)C label in phospholipid fatty acids (PLFA) of the organic layer (0-5 cm soil depth) and in C mineralized from root-free soils to distinguish substrate ages used by soil microorganisms: fixed before 2001 ('old'), from 2001 to 2009 ('new') or in 2010 ('recent'). Warming induced a sustained stimulation of soil respiration (+38%) without decline in mineralizable SOC. PLFA concentrations did not reveal changes in microbial community composition due to soil warming, but soil microbial metabolic activity was stimulated (+66%). Warming decreased the amount of new and recent C in the fungal biomarker 18:2ω6,9 and the amount of new C mineralized from root-free soils, implying a shift in microbial substrate use toward a greater use of old SOC. This shift in substrate use could indicate an imbalance between C inputs and outputs, which could eventually decrease SOC storage in this alpine ecosystem. © 2013 John Wiley & Sons Ltd.

  1. Greater future global warming inferred from Earth's recent energy budget.

    PubMed

    Brown, Patrick T; Caldeira, Ken

    2017-12-06

    Climate models provide the principal means of projecting global warming over the remainder of the twenty-first century but modelled estimates of warming vary by a factor of approximately two even under the same radiative forcing scenarios. Across-model relationships between currently observable attributes of the climate system and the simulated magnitude of future warming have the potential to inform projections. Here we show that robust across-model relationships exist between the global spatial patterns of several fundamental attributes of Earth's top-of-atmosphere energy budget and the magnitude of projected global warming. When we constrain the model projections with observations, we obtain greater means and narrower ranges of future global warming across the major radiative forcing scenarios, in general. In particular, we find that the observationally informed warming projection for the end of the twenty-first century for the steepest radiative forcing scenario is about 15 per cent warmer (+0.5 degrees Celsius) with a reduction of about a third in the two-standard-deviation spread (-1.2 degrees Celsius) relative to the raw model projections reported by the Intergovernmental Panel on Climate Change. Our results suggest that achieving any given global temperature stabilization target will require steeper greenhouse gas emissions reductions than previously calculated.

  2. Indirect aerosol effect increases CMIP5 models projected Arctic warming

    SciTech Connect

    Chylek, Petr; Vogelsang, Timothy J.; Klett, James D.

    Phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models’ projections of the 2014–2100 Arctic warming under radiative forcing from representative concentration pathway 4.5 (RCP4.5) vary from 0.9° to 6.7°C. Climate models with or without a full indirect aerosol effect are both equally successful in reproducing the observed (1900–2014) Arctic warming and its trends. However, the 2014–2100 Arctic warming and the warming trends projected by models that include a full indirect aerosol effect (denoted here as AA models) are significantly higher (mean projected Arctic warming is about 1.5°C higher) than those projected by models without a full indirect aerosolmore » effect (denoted here as NAA models). The suggestion is that, within models including full indirect aerosol effects, those projecting stronger future changes are not necessarily distinguishable historically because any stronger past warming may have been partially offset by stronger historical aerosol cooling. In conclusion, the CMIP5 models that include a full indirect aerosol effect follow an inverse radiative forcing to equilibrium climate sensitivity relationship, while models without it do not.« less

  3. The effect of global warming on infectious diseases.

    PubMed

    Kurane, Ichiro

    2010-12-01

    Global warming has various effects on human health. The main indirect effects are on infectious diseases. Although the effects on infectious diseases will be detected worldwide, the degree and types of the effect are different, depending on the location of the respective countries and socioeconomical situations. Among infectious diseases, water- and foodborne infectious diseases and vector-borne infectious diseases are two main categories that are forecasted to be most affected. The effect on vector-borne infectious diseases such as malaria and dengue fever is mainly because of the expansion of the infested areas of vector mosquitoes and increase in the number and feeding activity of infected mosquitoes. There will be increase in the number of cases with water- and foodborne diarrhoeal diseases. Even with the strongest mitigation procedures, global warming cannot be avoided for decades. Therefore, implementation of adaptation measures to the effect of global warming is the most practical action we can take. It is generally accepted that the impacts of global warming on infectious diseases have not been apparent at this point yet in East Asia. However, these impacts will appear in one form or another if global warming continues to progress in future. Further research on the impacts of global warming on infectious diseases and on future prospects should be conducted.

  4. Stronger warming effects on microbial abundances in colder regions

    PubMed Central

    Chen, Ji; Luo, Yiqi; Xia, Jianyang; Jiang, Lifen; Zhou, Xuhui; Lu, Meng; Liang, Junyi; Shi, Zheng; Shelton, Shelby; Cao, Junji

    2015-01-01

    Soil microbes play critical roles in regulating terrestrial carbon (C) cycle and its feedback to climate change. However, it is still unclear how the soil microbial community and abundance respond to future climate change scenarios. In this meta-analysis, we synthesized the responses of microbial community and abundance to experimental warming from 64 published field studies. Our results showed that warming significantly increased soil microbial abundance by 7.6% on average. When grouped by vegetation or soil types, tundras and histosols had the strongest microbial responses to warming with increased microbial, fungal, and bacterial abundances by 15.0%, 9.5% and 37.0% in tundra, and 16.5%, 13.2% and 13.3% in histosols, respectively. We found significant negative relationships of the response ratios of microbial, fungal and bacterial abundances with the mean annual temperature, indicating that warming had stronger effects in colder than warmer regions. Moreover, the response ratios of microbial abundance to warming were positively correlated with those of soil respiration. Our findings therefore indicate that the large quantities of C stored in colder regions are likely to be more vulnerable to climate warming than the soil C stored in other warmer regions. PMID:26658882

  5. Consistency of the tachyon warm inflationary universe models

    SciTech Connect

    Zhang, Xiao-Min; Zhu, Jian-Yang, E-mail: zhangxm@mail.bnu.edu.cn, E-mail: zhujy@bnu.edu.cn

    2014-02-01

    This study concerns the consistency of the tachyon warm inflationary models. A linear stability analysis is performed to find the slow-roll conditions, characterized by the potential slow-roll (PSR) parameters, for the existence of a tachyon warm inflationary attractor in the system. The PSR parameters in the tachyon warm inflationary models are redefined. Two cases, an exponential potential and an inverse power-law potential, are studied, when the dissipative coefficient Γ = Γ{sub 0} and Γ = Γ(φ), respectively. A crucial condition is obtained for a tachyon warm inflationary model characterized by the Hubble slow-roll (HSR) parameter ε{sub H}, and the conditionmore » is extendable to some other inflationary models as well. A proper number of e-folds is obtained in both cases of the tachyon warm inflation, in contrast to existing works. It is also found that a constant dissipative coefficient (Γ = Γ{sub 0}) is usually not a suitable assumption for a warm inflationary model.« less

  6. Terrestrial carbon cycle affected by non-uniform climate warming

    NASA Astrophysics Data System (ADS)

    Xia, Jianyang; Chen, Jiquan; Piao, Shilong; Ciais, Philippe; Luo, Yiqi; Wan, Shiqiang

    2014-03-01

    Feedbacks between the terrestrial carbon cycle and climate change could affect many ecosystem functions and services, such as food production, carbon sequestration and climate regulation. The rate of climate warming varies on diurnal and seasonal timescales. A synthesis of global air temperature data reveals a greater rate of warming in winter than in summer in northern mid and high latitudes, and the inverse pattern in some tropical regions. The data also reveal a decline in the diurnal temperature range over 51% of the global land area and an increase over only 13%, because night-time temperatures in most locations have risen faster than daytime temperatures. Analyses of satellite data, model simulations and in situ observations suggest that the impact of seasonal warming varies between regions. For example, spring warming has largely stimulated ecosystem productivity at latitudes between 30° and 90° N, but suppressed productivity in other regions. Contrasting impacts of day- and night-time warming on plant carbon gain and loss are apparent in many regions. We argue that ascertaining the effects of non-uniform climate warming on terrestrial ecosystems is a key challenge in carbon cycle research.

  7. Australia's Unprecedented Future Temperature Extremes Under Paris Limits to Warming

    NASA Astrophysics Data System (ADS)

    Lewis, Sophie C.; King, Andrew D.; Mitchell, Daniel M.

    2017-10-01

    Record-breaking temperatures can detrimentally impact ecosystems, infrastructure, and human health. Previous studies show that climate change has influenced some observed extremes, which are expected to become more frequent under enhanced future warming. Understanding the magnitude, as a well as frequency, of such future extremes is critical for limiting detrimental impacts. We focus on temperature changes in Australian regions, including over a major coral reef-building area, and assess the potential magnitude of future extreme temperatures under Paris Agreement global warming targets (1.5°C and 2°C). Under these limits to global mean warming, we determine a set of projected high-magnitude unprecedented Australian temperature extremes. These include extremes unexpected based on observational temperatures, including current record-breaking events. For example, while the difference in global-average warming during the hottest Australian summer and the 2°C Paris target is 1.1°C, extremes of 2.4°C above the observed summer record are simulated. This example represents a more than doubling of the magnitude of extremes, compared with global mean change, and such temperatures are unexpected based on the observed record alone. Projected extremes do not necessarily scale linearly with mean global warming, and this effect demonstrates the significant potential benefits of limiting warming to 1.5°C, compared to 2°C or warmer.

  8. Experimental warming increased soil nitrogen sink in the Tibetan permafrost

    NASA Astrophysics Data System (ADS)

    Chang, Ruiying; Wang, Genxu; Yang, Yuanhe; Chen, Xiaopeng

    2017-07-01

    In permafrost soil, warming regulates the nitrogen (N) cycle either by stimulating N transformation or by enhancing cryoturbation, the mixture of soil layers due to repeated freeze thaw. Here N isotopic values (δ15N) of plants and the soil were investigated in a 7 year warming experiment in a permafrost-affected alpine meadow on the Qinghai-Tibetan Plateau. The results revealed that warming significantly decreased the δ15N in the plant (aboveground and belowground parts) and different soil fractions (clay and silt fraction, aggregate, and bulk soil). The decreased soil δ15N was associated with an increase in soil N stock due to greater N fixation. The incremental N retention in plants and soil mineral-associated fractions from warming resulted in a decrease in soil inorganic N, which constrains the role of nitrification/denitrification in soil δ15N, suggesting a restrained rather than an open N cycle. Furthermore, enhanced cryoturbation under warming, identified by a downward redistribution of 137Cs into deeper layers, promoted N protection from transformation. Overall, the decrease in soil δ15N indicated higher rates of N input through fixation relative to N loss through nitrification and denitrification in permafrost-affected ecosystems under warming conditions.

  9. Rationale for Implementation of Warm Cardiac Surgery in Pediatrics

    PubMed Central

    Durandy, Yves

    2016-01-01

    Cardiac surgery was developed thanks to the introduction of hypothermia and cardiopulmonary bypass in the early 1950s. The deep hypothermia protective effect has been essential to circulatory arrest complex cases repair. During the early times of open-heart surgery, a major concern was to decrease mortality and to improve short-term outcomes. Both mortality and morbidity dramatically decreased over a few decades. As a consequence, the drawbacks of deep hypothermia, with or without circulatory arrest, became more and more apparent. The limitation of hypothermia was particularly evident for the brain and regional perfusion was introduced as a response to this problem. Despite a gain in popularity, the results of regional perfusion were not fully convincing. In the 1990s, warm surgery was introduced in adults and proved to be safe and reliable. This option eliminates the deleterious effect of ischemia–reperfusion injuries through a continuous, systemic coronary perfusion with warm oxygenated blood. Intermittent warm blood cardioplegia was introduced later, with impressive results. We were convinced by the easiness, safety, and efficiency of warm surgery and shifted to warm pediatric surgery in a two-step program. This article outlines the limitations of hypothermic protection and the basic reasons that led us to implement pediatric warm surgery. After tens of thousands of cases performed across several centers, this reproducible technique proved a valuable alternative to hypothermic surgery. PMID:27200324

  10. Rationale for Implementation of Warm Cardiac Surgery in Pediatrics.

    PubMed

    Durandy, Yves

    2016-01-01

    Cardiac surgery was developed thanks to the introduction of hypothermia and cardiopulmonary bypass in the early 1950s. The deep hypothermia protective effect has been essential to circulatory arrest complex cases repair. During the early times of open-heart surgery, a major concern was to decrease mortality and to improve short-term outcomes. Both mortality and morbidity dramatically decreased over a few decades. As a consequence, the drawbacks of deep hypothermia, with or without circulatory arrest, became more and more apparent. The limitation of hypothermia was particularly evident for the brain and regional perfusion was introduced as a response to this problem. Despite a gain in popularity, the results of regional perfusion were not fully convincing. In the 1990s, warm surgery was introduced in adults and proved to be safe and reliable. This option eliminates the deleterious effect of ischemia-reperfusion injuries through a continuous, systemic coronary perfusion with warm oxygenated blood. Intermittent warm blood cardioplegia was introduced later, with impressive results. We were convinced by the easiness, safety, and efficiency of warm surgery and shifted to warm pediatric surgery in a two-step program. This article outlines the limitations of hypothermic protection and the basic reasons that led us to implement pediatric warm surgery. After tens of thousands of cases performed across several centers, this reproducible technique proved a valuable alternative to hypothermic surgery.

  11. Global lake response to the recent warming hiatus

    NASA Astrophysics Data System (ADS)

    Winslow, Luke A.; Leach, Taylor H.; Rose, Kevin C.

    2018-05-01

    Understanding temporal variability in lake warming rates over decadal scales is important for understanding observed change in aquatic systems. We analyzed a global dataset of lake surface water temperature observations (1985‑2009) to examine how lake temperatures responded to a recent global air temperature warming hiatus (1998‑2012). Prior to the hiatus (1985‑1998), surface water temperatures significantly increased at an average rate of 0.532 °C decade‑1 (±0.214). In contrast, water temperatures did not change significantly during the hiatus (average rate ‑0.087 °C decade‑1 ±0.223). Overall, 83% of lakes in our dataset (129 of 155) had faster warming rates during the pre-hiatus period than during the hiatus period. These results demonstrate that lakes have exhibited decadal-scale variability in warming rates coherent with global air temperatures and represent an independent line of evidence for the recent warming hiatus. Our analyses provide evidence that lakes are sentinels of broader climatological processes and indicate that warming rates based on datasets where a large proportion of observations were collected during the hiatus period may underestimate longer-term trends.

  12. Recent warming trend in the coastal region of Qatar

    NASA Astrophysics Data System (ADS)

    Cheng, Way Lee; Saleem, Ayman; Sadr, Reza

    2017-04-01

    The objective of this study was to analyze long-term temperature-related phenomena in the eastern portion of the Middle East, focusing on the coastal region of Qatar. Extreme temperature indices were examined, which were defined by the Expert Team on Climate Change Detection and Indices, for Doha, Qatar; these indices were then compared with those from neighboring countries. The trends were calculated for a 30-year period (1983-2012), using hourly data obtained from the National Climatic Data Center. The results showed spatially consistent warming trends throughout the region. For Doha, 11 of the 12 indices studied showed significant warming trends. In particular, the warming trends were represented by an increase in the number of warm days and nights and a decrease in the number of cool nights and days. The high-temperature extremes during the night have risen at more than twice the rate of their corresponding daytime extremes. The intensity and frequency of hot days have increased, and the minimum temperature indices exhibited a higher rate of warming. The climatic changes in Doha are consistent with the region-wide heat-up in recent decades across the Middle East. However, the rapid economic expansion, increase of population since the 1990s, and urban effects in the region are thought to have intensified the rapidly warming climate pattern observed in Doha since the turn of the century.

  13. How does climate warming affect plant-pollinator interactions?

    PubMed

    Hegland, Stein Joar; Nielsen, Anders; Lázaro, Amparo; Bjerknes, Anne-Line; Totland, Ørjan

    2009-02-01

    Climate warming affects the phenology, local abundance and large-scale distribution of plants and pollinators. Despite this, there is still limited knowledge of how elevated temperatures affect plant-pollinator mutualisms and how changed availability of mutualistic partners influences the persistence of interacting species. Here we review the evidence of climate warming effects on plants and pollinators and discuss how their interactions may be affected by increased temperatures. The onset of flowering in plants and first appearance dates of pollinators in several cases appear to advance linearly in response to recent temperature increases. Phenological responses to climate warming may therefore occur at parallel magnitudes in plants and pollinators, although considerable variation in responses across species should be expected. Despite the overall similarities in responses, a few studies have shown that climate warming may generate temporal mismatches among the mutualistic partners. Mismatches in pollination interactions are still rarely explored and their demographic consequences are largely unknown. Studies on multi-species plant-pollinator assemblages indicate that the overall structure of pollination networks probably are robust against perturbations caused by climate warming. We suggest potential ways of studying warming-caused mismatches and their consequences for plant-pollinator interactions, and highlight the strengths and limitations of such approaches.

  14. What Sets the Radial Locations of Warm Debris Disks?

    SciTech Connect

    Ballering, Nicholas P.; Rieke, George H.; Su, Kate Y. L.

    The architectures of debris disks encode the history of planet formation in these systems. Studies of debris disks via their spectral energy distributions (SEDs) have found infrared excesses arising from cold dust, warm dust, or a combination of the two. The cold outer belts of many systems have been imaged, facilitating their study in great detail. Far less is known about the warm components, including the origin of the dust. The regularity of the disk temperatures indicates an underlying structure that may be linked to the water snow line. If the dust is generated from collisions in an exo-asteroid belt,more » the dust will likely trace the location of the water snow line in the primordial protoplanetary disk where planetesimal growth was enhanced. If instead the warm dust arises from the inward transport from a reservoir of icy material farther out in the system, the dust location is expected to be set by the current snow line. We analyze the SEDs of a large sample of debris disks with warm components. We find that warm components in single-component systems (those without detectable cold components) follow the primordial snow line rather than the current snow line, so they likely arise from exo-asteroid belts. While the locations of many warm components in two-component systems are also consistent with the primordial snow line, there is more diversity among these systems, suggesting additional effects play a role.« less

  15. Regional seasonal warming anomalies and land-surface feedbacks

    NASA Astrophysics Data System (ADS)

    Coffel, E.; Horton, R. M.

    2017-12-01

    Significant seasonal variations in warming are projected in some regions, especially central Europe, the southeastern U.S., and central South America. Europe in particular may experience up to 2°C more warming during June, July, and August than in the annual mean, enhancing the risk of extreme summertime heat. Previous research has shown that heat waves in Europe and other regions are tied to seasonal soil moisture variations, and that in general land-surface feedbacks have a strong effect on seasonal temperature anomalies. In this study, we show that the seasonal anomalies in warming are also due in part to land-surface feedbacks. We find that in regions with amplified warming during the hot season, surface soil moisture levels generally decline and Bowen ratios increase as a result of a preferential partitioning of incoming energy into sensible vs. latent. The CMIP5 model suite shows significant variability in the strength of land-atmosphere coupling and in projections of future precipitation and soil moisture. Due to the dependence of seasonal warming on land-surface processes, these inter-model variations influence the projected summertime warming amplification and contribute to the uncertainty in projections of future extreme heat.

  16. Global warming, energy use, and economic growth

    NASA Astrophysics Data System (ADS)

    Khanna, Neha

    The dissertation comprises four papers that explore the interactions between global warming, energy use, and economic growth. While the papers are separate entities, they share the underlying theme of highlighting national differences in the growth experience and their implications for long-term energy use and climate change. The first paper provides an overview of some key economic issues in the climate change literature. In doing so, the paper critically appraises the 1995 draft report of Working Group III of the Intergovernmental Panel on Climate Change. The focus is the choice of a pure rate of time preference in the economic modeling of climate change, abatement costs differentials between developed and developing countries, and contrasting implications of standard discount rates and value of life estimates for these two country groups. The second paper develops a global model that takes account of the depletion of oil resources in the context of a geo-economic model for climate change. It is found that in the presence of non-decreasing carbon and energy intensities and declining petroleum availability, the carbon emissions trajectory is much higher than that typically projected by other models of this genre. Furthermore, by introducing price and income sensitive demand functions for fossil fuels, the model provides a framework to assess the effectiveness of fuel specific carbon taxes in reducing the COsb2 emissions trajectory. Cross-price substitution effects necessitate unrealistically high tax rates in order to lower the projected emissions trajectory to the optimal level. The economic structure of five integrated assessment models for climate change is reviewed in the third paper, with a special focus on the macroeconomic and damage assessment modules. The final paper undertakes an econometric estimation of the changing shares of capital, labour, energy, and technical change in explaining the growth patterns of 38 countries. Production elasticities vary by

  17. The Enigma of Io's Warm Polar Regions

    NASA Astrophysics Data System (ADS)

    Matson, D. L.; Veeder, G. J.; Davies, A. G.; Johnson, T. V.; Blaney, D. L.

    Io's polar temperatures are higher than expected for any passive surface. Data from the Galileo Photopolarimeter (PPR) show that minimum nighttime temperatures are in the range of 90 -95 K virtually everywhere [1]. This is particularly striking at high latitudes, within the polar regions. Furthermore, the distribution of minimum night- time temperatures across the surface of Io (away from the sunset terminator) shows little variation with latitude and/or time of night [1,2,3,4]. We consider suggested mechanisms for this elevated-minimum-temperature effect: 1) Polar terrain is warmer than expected because it is rough, 2) Higher latitudes have lower albedos, 3) Thermal inertia increases with latitude, and 4) Cooling lava controls nighttime temperatures. We find that the passive mechanisms fail. This leads to the suggestion that most of Io is covered by cooling lavas. In this context, lava cools to the observed temperature range on time scales of ten to ten thousand years depending upon the nature of the eruption scenario(s). Separately, analysis of thermal anomalies reveals that the trend of the data (log-cumulative-surface-area versus log-temperature) extrapolated to the entire surface area of Io predicts large- scale, ambient, temperatures in the 90-95 K range. Recent Galileo observations showing a myriad of small volcanic hot spots [7] provide strong support for the paradigm of ubiquitous volcanic activity with global, cooling-lava fields on Io. While explaining the high nighttime polar temperatures, this model displaces the previous explaination for Io's anomalously low 20 micron daytime emission. Explaining this emission is an important focus for current work. Warm polar regions appear to require some heat flow through very large areas in addition to the small, hot anomalies already known. This has implications for raising Io's global heat flow. Presently, the heat flow is constrained between a lower bound of ~2.5 W m -2[5] and an upper bound of ~13 W m -2

  18. Direct Imaging of Warm Extrasolar Planets

    SciTech Connect

    Macintosh, B

    2005-04-11

    One of the most exciting scientific discoveries in the last decade of the twentieth century was the first detection of planets orbiting a star other than our own. By now more than 130 extrasolar planets have been discovered indirectly, by observing the gravitational effects of the planet on the radial velocity of its parent star. This technique has fundamental limitations: it is most sensitive to planets close to their star, and it determines only a planet's orbital period and a lower limit on the planet's mass. As a result, all the planetary systems found so far are very different frommore » our own--they have giant Jupiter-sized planets orbiting close to their star, where the terrestrial planets are found in our solar system. Such systems have overturned the conventional paradigm of planet formation, but have no room in them for habitable Earth-like planets. A powerful complement to radial velocity detections of extrasolar planets will be direct imaging--seeing photons from the planet itself. Such a detection would allow photometric measurements to determine the temperature and radius of a planet. Also, direct detection is most sensitive to planets in wide orbits, and hence more capable of seeing solar systems resembling our own, since a giant planet in a wide orbit does not preclude the presence of an Earth-like planet closer to the star. Direct detection, however, is extremely challenging. Jupiter is roughly a billion times fainter than our sun. Two techniques allowed us to overcome this formidable contrast and attempt to see giant planets directly. The first is adaptive optics (AO) which allows giant earth-based telescopes, such as the 10 meter W.M. Keck telescope, to partially overcome the blurring effects of atmospheric turbulence. The second is looking for young planets: by searching in the infrared for companions to young stars, we can see thermal emission from planets that are still warm with the heat of their formation. Together with a UCLA team that

  19. Warming rays in cluster cool cores

    NASA Astrophysics Data System (ADS)

    Colafrancesco, S.; Marchegiani, P.

    2008-06-01

    Context: Cosmic rays are confined in the atmospheres of galaxy clusters and, therefore, they can play a crucial role in the heating of their cool cores. Aims: We discuss here the thermal and non-thermal features of a model of cosmic ray heating of cluster cores that can provide a solution to the cooling-flow problems. To this aim, we generalize a model originally proposed by Colafrancesco, Dar & DeRujula (2004) and we show that our model predicts specific correlations between the thermal and non-thermal properties of galaxy clusters and enables various observational tests. Methods: The model reproduces the observed temperature distribution in clusters by using an energy balance condition in which the X-ray energy emitted by clusters is supplied, in a quasi-steady state, by the hadronic cosmic rays, which act as “warming rays” (WRs). The temperature profile of the intracluster (IC) gas is strictly correlated with the pressure distribution of the WRs and, consequently, with the non-thermal emission (radio, hard X-ray and gamma-ray) induced by the interaction of the WRs with the IC gas and the IC magnetic field. Results: The temperature distribution of the IC gas in both cool-core and non cool-core clusters is successfully predicted from the measured IC plasma density distribution. Under this contraint, the WR model is also able to reproduce the thermal and non-thermal pressure distribution in clusters, as well as their radial entropy distribution, as shown by the analysis of three clusters studied in detail: Perseus, A2199 and Hydra. The WR model provides other observable features of galaxy clusters: a correlation of the pressure ratio (WRs to thermal IC gas) with the inner cluster temperature (P_WR/P_th) ˜ (kT_inner)-2/3, a correlation of the gamma-ray luminosity with the inner cluster temperature Lγ ˜ (kT_inner)4/3, a substantial number of cool-core clusters observable with the GLAST-LAT experiment, a surface brightness of radio halos in cool-core clusters

  20. Temperature response of soil respiration largely unaltered with experimental warming

    USGS Publications Warehouse

    Carey, Joanna C.; Tang, Jianwu; Templer, Pamela H.; Kroeger, Kevin D.; Crowther, Thomas W.; Burton, Andrew J.; Dukes, Jeffrey S.; Emmett, Bridget; Frey, Serita D.; Heskel, Mary A.; Jiang, Lifen; Machmuller, Megan B.; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B.; Reinsch, Sabine; Wang, Xin; Allison, Steven D.; Bamminger, Chris; Bridgham, Scott; Collins, Scott L.; de Dato, Giovanbattista; Eddy, William C.; Enquist, Brian J.; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R.; Steenberg Larsen, Klaus; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M.; Penuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward B.; Reinmann, Andrew B.; Reynolds, Lorien L.; Schmidt, Inger K.; Shaver, Gaius R.; Strong, Aaron L.; Suseela, Vidya; Tietema, Albert

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  1. Temperature response of soil respiration largely unaltered with experimental warming

    PubMed Central

    Carey, Joanna C.; Tang, Jianwu; Templer, Pamela H.; Kroeger, Kevin D.; Crowther, Thomas W.; Burton, Andrew J.; Dukes, Jeffrey S.; Emmett, Bridget; Frey, Serita D.; Heskel, Mary A.; Jiang, Lifen; Machmuller, Megan B.; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B.; Reinsch, Sabine; Wang, Xin; Allison, Steven D.; Bamminger, Chris; Bridgham, Scott; de Dato, Giovanbattista; Eddy, William C.; Enquist, Brian J.; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R.; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M.; Peñuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward; Reinmann, Andrew B.; Reynolds, Lorien L.; Schmidt, Inger K.; Shaver, Gaius R.; Strong, Aaron L.; Suseela, Vidya; Tietema, Albert

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming. PMID:27849609

  2. Changes in ENSO amplitude under climate warming and cooling

    NASA Astrophysics Data System (ADS)

    Wang, Yingying; Luo, Yiyong; Lu, Jian; Liu, Fukai

    2018-05-01

    The response of ENSO amplitude to climate warming and cooling is investigated using the Community Earth System Model (CESM), in which the warming and cooling scenarios are designed by adding heat fluxes of equal amplitude but opposite sign onto the ocean surface, respectively. Results show that the warming induces an increase of the ENSO amplitude but the cooling gives rise to a decrease of the ENSO amplitude, and these changes are robust in statistics. A mixed layer heat budget analysis finds that the increasing (decreasing) SST tendency under climate warming (cooling) is mainly due to an enhancement (weakening) of dynamical feedback processes over the equatorial Pacific, including zonal advective (ZA) feedback, meridional advective (MA) feedback, thermocline (TH) feedback, and Ekman (EK) feedback. As the climate warms, a wind anomaly of the same magnitude across the equatorial Pacific can induce a stronger zonal current change in the east (i.e., a stronger ZA feedback), which in turn produces a greater weakening of upwelling (i.e., a stronger EK feedback) and thus a larger thermocline change (i.e., a stronger TH feedback). In response to the climate warming, in addition, the MA feedback is also strengthened due to an enhancement of the meridional SST gradient around the equator resulting from a weakening of the subtropical cells (STCs). It should be noted that the weakened STCs itself has a negative contribution to the change of the MA feedback which, however, appears to be secondary. And vice versa for the cooling case. Bjerknes linear stability (BJ) index is also evaluated for the linear stability of ENSO, with remarkably larger (smaller) BJ index found for the warming (cooling) case.

  3. Thermal adaptation of decomposer communities in warming soils

    PubMed Central

    Bradford, Mark A.

    2013-01-01

    Temperature regulates the rate of biogeochemical cycles. One way it does so is through control of microbial metabolism. Warming effects on metabolism change with time as physiology adjusts to the new temperature. I here propose that such thermal adaptation is observed in soil microbial respiration and growth, as the result of universal evolutionary trade-offs between the structure and function of both enzymes and membranes. I review the basis for these trade-offs and show that they, like substrate depletion, are plausible mechanisms explaining soil respiration responses to warming. I argue that controversies over whether soil microbes adapt to warming stem from disregarding the evolutionary physiology of cellular metabolism, and confusion arising from the term thermal acclimation to represent phenomena at the organism- and ecosystem-levels with different underlying mechanisms. Measurable physiological adjustments of the soil microbial biomass reflect shifts from colder- to warmer-adapted taxa. Hypothesized declines in the growth efficiency of soil microbial biomass under warming are controversial given limited data and a weak theoretical basis. I suggest that energy spilling (aka waste metabolism) is a more plausible mechanism for efficiency declines than the commonly invoked increase in maintenance-energy demands. Energy spilling has many fitness benefits for microbes and its response to climate warming is uncertain. Modeled responses of soil carbon to warming are sensitive to microbial growth efficiency, but declines in efficiency mitigate warming-induced carbon losses in microbial models and exacerbate them in conventional models. Both modeling structures assume that microbes regulate soil carbon turnover, highlighting the need for a third structure where microbes are not regulators. I conclude that microbial physiology must be considered if we are to have confidence in projected feedbacks between soil carbon stocks, atmospheric CO2, and climate change. PMID

  4. Increasing frequency and duration of Arctic winter warming events

    NASA Astrophysics Data System (ADS)

    Graham, R. M.; Cohen, L.; Petty, A.; Boisvert, L.; Rinke, A.; Hudson, S. R.; Nicolaus, M.; Granskog, M. A.

    2017-12-01

    Record low Arctic sea ice extents were observed during the last three winter seasons (March). During each of these winters, near-surface air temperatures close to 0°C were observed, in situ, over sea ice in the central Arctic. Recent media reports and scientific studies suggest that such winter warming events were unprecedented for the Arctic. Here we use in situ winter (December-March) temperature observations, such as those from Soviet North Pole drifting stations and ocean buoys, to determine how common Arctic winter warming events are. The earliest record we find of a winter warming event was in March 1896, where a temperature of -3.7˚C was observed at 84˚N during the Fram expedition. Observations of winter warming events exist over most of the Arctic Basin. Despite a limited observational network, temperatures exceeding -5°C were measured in situ during more than 30% of winters from 1954 to 2010, by either North Pole drifting stations or ocean buoys. Correlation coefficients between the atmospheric reanalysis, ERA-Interim, and these in-situ temperature records are shown to be on the order of 0.90. This suggests that ERA-Interim is a suitable tool for studying Arctic winter warming events. Using the ERA-Interim record (1979-2016), we show that the North Pole (NP) region typically experiences 10 warming events (T2m > -10°C) per winter, compared with only five in the Pacific Central Arctic (PCA). We find a positive trend in the overall duration of winter warming events for both the NP region (4.25 days/decade) and PCA (1.16 days/decade), due to an increased number of events of longer duration.

  5. Evaluating the Dominant Components of Warming in Pliocene Climate Simulations

    NASA Technical Reports Server (NTRS)

    Hill, D. J.; Haywood, A. M.; Lunt, D. J.; Hunter, S. J.; Bragg, F. J.; Contoux, C.; Stepanek, C.; Sohl, L.; Rosenbloom, N. A.; Chan, W.-L.; hide

    2014-01-01

    The Pliocene Model Intercomparison Project (PlioMIP) is the first coordinated climate model comparison for a warmer palaeoclimate with atmospheric CO2 significantly higher than pre-industrial concentrations. The simulations of the mid-Pliocene warm period show global warming of between 1.8 and 3.6 C above pre-industrial surface air temperatures, with significant polar amplification. Here we perform energy balance calculations on all eight of the coupled ocean-atmosphere simulations within PlioMIP Experiment 2 to evaluate the causes of the increased temperatures and differences between the models. In the tropics simulated warming is dominated by greenhouse gas increases, with the cloud component of planetary albedo enhancing the warming in most of the models, but by widely varying amounts. The responses to mid-Pliocene climate forcing in the Northern Hemisphere midlatitudes are substantially different between the climate models, with the only consistent response being a warming due to increased greenhouse gases. In the high latitudes all the energy balance components become important, but the dominant warming influence comes from the clear sky albedo, only partially offset by the increases in the cooling impact of cloud albedo. This demonstrates the importance of specified ice sheet and high latitude vegetation boundary conditions and simulated sea ice and snow albedo feedbacks. The largest components in the overall uncertainty are associated with clouds in the tropics and polar clear sky albedo, particularly in sea ice regions. These simulations show that albedo feedbacks, particularly those of sea ice and ice sheets, provide the most significant enhancements to high latitude warming in the Pliocene.

  6. Do thawing and warming affect the integrity of human milk?

    PubMed

    Handa, D; Ahrabi, A F; Codipilly, C N; Shah, S; Ruff, S; Potak, D; Williams, J E; McGuire, M A; Schanler, R J

    2014-11-01

    To evaluate the integrity of the human milk (pH, bacterial counts, host defense factors and nutrients) subjected to thawing, warming, refrigeration and maintenance at room temperature. Mothers in the neonatal intensive care unit donated freshly expressed milk. A baseline sample was stored at -80 °C and the remainder of the milk was divided and stored for 7 days at -20 °C. The milk was then subjected to two methods of thawing and warming: tepid water and waterless warmer. Thawed milk also was refrigerated for 24 h prior to warming. Lastly, warmed milk was maintained at room temperature for 4 h to simulate a feeding session. Samples were analyzed for pH, bacterial colony counts, total fat and free fatty acids, and the content of protein, secretory IgA and lactoferrin. Data were analyzed by repeated-measures analysis of variance and paired t test. There were no differences between processing methods and no changes in fat, protein, lactoferrin and secretory immunoglobulin A with processing steps. Milk pH and bacterial colony counts declined while free fatty acids rose with processing. Refrigeration of thawed milk resulted in greater declines in pH and bacteria and increases in free fatty acids. Bacterial colony counts and free fatty acids increased with maintenance at room temperature. The integrity of the milk was affected similarly by the two thawing and warming methods. Thawing and warming change the integrity of previously frozen human milk, but not adversely. Concerns about maintaining warmed milk at room temperature need to be explored.

  7. Temperature response of soil respiration largely unaltered with experimental warming.

    PubMed

    Carey, Joanna C; Tang, Jianwu; Templer, Pamela H; Kroeger, Kevin D; Crowther, Thomas W; Burton, Andrew J; Dukes, Jeffrey S; Emmett, Bridget; Frey, Serita D; Heskel, Mary A; Jiang, Lifen; Machmuller, Megan B; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B; Reinsch, Sabine; Wang, Xin; Allison, Steven D; Bamminger, Chris; Bridgham, Scott; Collins, Scott L; de Dato, Giovanbattista; Eddy, William C; Enquist, Brian J; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R; Larsen, Klaus Steenberg; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M; Peñuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward; Reinmann, Andrew B; Reynolds, Lorien L; Schmidt, Inger K; Shaver, Gaius R; Strong, Aaron L; Suseela, Vidya; Tietema, Albert

    2016-11-29

    The respiratory release of carbon dioxide (CO 2 ) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  8. [Warming up with endotrainer prior to laparoscopic cholecystectomy].

    PubMed

    Troncoso-Bacelis, Alicia; Soto-Amaro, Jaime; Ramírez-Velázquez, Carlos

    Laparoscopic cholecystectomy is a safe and effective treatment and remains the gold standard in patients with benign disease. However it presents difficulties such as: the limited movement range of the instruments, the loss of depth perception, haptic feedback and the fulcrum effect. Previous training can optimize surgical performance in patients to master basic skills. Assess the effectiveness of surgeons warming up with an endotrainer before performing laparoscopic cholecystectomy. Single-blind controlled clinical trial with 16 surgeons who performed 2 laparoscopic cholecystectomies, the first according to standard practice and the second with warm-up comprising 5 MISTELS system exercises. Patient and surgeon demographics were recorded, in addition to findings and complications during and after surgery for each procedured. We found a decrease in surgical time of 76.88 (±18.87) minutes in the group that did not warm up to prior to surgery compared with 72.81 (±35.5) minutes in the group with warm-up (p=0.0196). In addition, increased bleeding occurred in the procedures performed with warm-up 31.25 (±30.85) ml compared with the group that had no warm-up 23.94 (±15.9) (p=0.0146). Performing warm up on a MISTELS system endotrainer before performing laparoscopic cholecystectomy reduces the operating time of surgery for all surgeons. Surgery bleeding increases in operations performed by surgeons with less experience in laparoscopic surgery. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  9. Anthropogenic warming has increased drought risk in California

    PubMed Central

    Diffenbaugh, Noah S.; Swain, Daniel L.; Touma, Danielle

    2015-01-01

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm–dry conditions like those that have created the acute human and ecosystem impacts associated with the “exceptional” 2012–2014 drought in California. PMID:25733875

  10. Temperature adaptation of bacterial communities in experimentally warmed forest soils.

    PubMed

    Rousk, Johannes; Frey, Serita D; Bååth, Erland

    2012-10-01

    A detailed understanding of the influence of temperature on soil microbial activity is critical to predict future atmospheric CO 2 concentrations and feedbacks to anthropogenic warming. We investigated soils exposed to 3-4 years of continuous 5 °C-warming in a field experiment in a temperate forest. We found that an index for the temperature adaptation of the microbial community, T min for bacterial growth, increased by 0.19 °C per 1 °C rise in temperature, showing a community shift towards one adapted to higher temperature with a higher temperature sensitivity (Q 10(5-15 °C) increased by 0.08 units per 1 °C). Using continuously measured temperature data from the field experiment we modelled in situ bacterial growth. Assuming that warming did not affect resource availability, bacterial growth was modelled to become 60% higher in warmed compared to the control plots, with the effect of temperature adaptation of the community only having a small effect on overall bacterial growth (<5%). However, 3 years of warming decreased bacterial growth, most likely due to substrate depletion because of the initially higher growth in warmed plots. When this was factored in, the result was similar rates of modelled in situ bacterial growth in warmed and control plots after 3 years, despite the temperature difference. We conclude that although temperature adaptation for bacterial growth to higher temperatures was detectable, its influence on annual bacterial growth was minor, and overshadowed by the direct temperature effect on growth rates. © 2012 Blackwell Publishing Ltd.

  11. Global Changes in Drought Conditions Under Different Levels of Warming

    NASA Astrophysics Data System (ADS)

    Naumann, G.; Alfieri, L.; Wyser, K.; Mentaschi, L.; Betts, R. A.; Carrao, H.; Spinoni, J.; Vogt, J.; Feyen, L.

    2018-04-01

    Higher evaporative demands and more frequent and persistent dry spells associated with rising temperatures suggest that drought conditions could worsen in many regions of the world. In this study, we assess how drought conditions may develop across the globe for 1.5, 2, and 3°C warming compared to preindustrial temperatures. Results show that two thirds of global population will experience a progressive increase in drought conditions with warming. For drying areas, drought durations are projected to rise at rapidly increasing rates with warming, averaged globally from 2.0 month/°C below 1.5°C to 4.2 month/°C when approaching 3°C. Drought magnitudes could double for 30% of global landmass under stringent mitigation. If contemporary warming rates continue, water supply-demand deficits could become fivefold in size for most of Africa, Australia, southern Europe, southern and central states of the United States, Central America, the Caribbean, north-west China, and parts of Southern America. In approximately 20% of the global land surface, drought magnitude will halve with warming of 1.5°C and higher levels, mainly most land areas north of latitude 55°N, but also parts of South America and Eastern and South-eastern Asia. A progressive and significant increase in frequency of droughts is projected with warming in the Mediterranean basin, most of Africa, West and Southern Asia, Central America, and Oceania, where droughts are projected to happen 5 to 10 times more frequent even under ambitious mitigation targets and current 100-year events could occur every two to five years under 3°C of warming.

  12. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials Global Warming Potentials [100-Year Time Horizon] Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1...

  13. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials Global Warming Potentials [100-Year Time Horizon] Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1...

  14. Thai Youths and Global Warming: Media Information, Awareness, and Lifestyle Activities

    ERIC Educational Resources Information Center

    Chokriensukchai, Kanchana; Tamang, Ritendra

    2010-01-01

    This study examines the exposure of Thai youths to media information on global warming, the relationship between exposure to global warming information and awareness of global warming, and the relationship between that awareness and lifestyle activities that contribute to global warming. A focus group of eight Thai youths provided information that…

  15. Plant inputs, microbial carbon use in soil and decomposition under warming: effects of warming are depth dependent

    NASA Astrophysics Data System (ADS)

    Pendall, E.; Carrillo, Y.; Dijkstra, F. A.

    2017-12-01

    Future climate will include warmer conditions but impacts on soil C cycling remain uncertain and so are the potential warming-driven feedbacks. Net impacts will depend on the balance of effects on microbial activity and plant inputs. Soil depth is likely to be a critical factor driving this balance as it integrates gradients in belowground biomass, microbial activity and environmental variables. Most empirical studies focus on one soil layer and soil C forecasting relies on broad assumptions about effects of depth. Our limited understanding of the use of available C by soil microbes under climate change across depths is a critical source of uncertainty. Long-term labelling of plant biomass with C isotopic tracers in intact systems allows us to follow the dynamics of different soil C pools including the net accumulation of newly fixed C and the net loss of native C. These can be combined with concurrent observations of microbial use of C pools to explore the impacts of depth on the relationships between plant inputs and microbial C use. We evaluated belowground biomass, in-situ root decomposition and incorporation of plant-derived C into soil C and microbial C at 0-5 cm and 5-15 cmover 7 years at the Prairie Heating And CO2 Enrichment experiment. PHACE was a factorial manipulation of CO2 and warming in a native mixed grass prairie in Wyoming, USA. We used the continuous fumigation with labelled CO2 in the elevated CO2 treatments to study the C dynamics under unwarmed and warmed conditions. Shallower soils had three times the density of biomass as deeper soils. Warming increased biomass in both depths but this effect was weaker in deeper soils. Root litter mass loss in deeper soil was one third that of the shallow and was not affected by warming. Consistent with biomass distribution, incorporation of plant-derived C into soil and microbial C was lower in deeper soils and higher with warming. However, in contrast to the effect of warming on biomass, the effect of

  16. Forced-Air Warming During Pediatric Surgery: A Randomized Comparison of a Compressible with a Noncompressible Warming System.

    PubMed

    Triffterer, Lydia; Marhofer, Peter; Sulyok, Irene; Keplinger, Maya; Mair, Stefan; Steinberger, Markus; Klug, Wolfgang; Kimberger, Oliver

    2016-01-01

    Perioperative hypothermia is a common problem, challenging the anesthesiologist and influencing patient outcome. Efficient and safe perioperative active warming is therefore paramount; yet, it can be particularly challenging in pediatric patients. Forced-air warming technology is the most widespread patient-warming option, with most forced-air warming systems consisting of a forced-air blower connected to a compressible, double layer plastic and/or a paper blanket with air holes on the patient side. We compared an alternative, forced-air, noncompressible, under-body patient-warming mattress (Baby/Kleinkinddecke of MoeckWarmingSystems, Moeck und Moeck GmbH; group MM) with a standard, compressible warming mattress system (Pediatric Underbody, Bair Hugger, 3M; group BH). The study included 80 patients aged <2 years, scheduled for elective surgery. After a preoperative core temperature measurement, the patients were placed on the randomized mattress in the operation theater and 4 temperature probes were applied rectally and to the patients' skin. The warming devices were turned on as soon as possible to the level for pediatric patients as recommended by the manufacturer (MM = 40°C, BH = 43°C). There was a distinct difference of temperature slope between the 2 groups: core temperatures of patients in the group MM remained stable and mean of the core temperature of patients in the group BH increased significantly (difference: +1.48°C/h; 95% confidence interval, 0.82-2.15°C/h; P = 0.0001). The need for temperature downregulation occurred more often in the BH group, with 22 vs 7 incidences (RR, 3.14; 95% confidence interval, 1.52-6.52; P = 0.0006). Skin temperatures were all lower in the MM group. Perioperatively, no side effects related to a warming device were observed in any group. Both devices are feasible choices for active pediatric patient warming, with the compressible mattress system being better suited to increase core temperature. The use of lower pediatric

  17. Artificial Warming of Arctic Meadow under Pollution Stress: Experimental design

    NASA Astrophysics Data System (ADS)

    Moni, Christophe; Silvennoinen, Hanna; Fjelldal, Erling; Brenden, Marius; Kimball, Bruce; Rasse, Daniel

    2014-05-01

    Boreal and arctic terrestrial ecosystems are central to the climate change debate, notably because future warming is expected to be disproportionate as compared to world averages. Likewise, greenhouse gas (GHG) release from terrestrial ecosystems exposed to climate warming is expected to be the largest in the arctic. Artic agriculture, in the form of cultivated grasslands, is a unique and economically relevant feature of Northern Norway (e.g. Finnmark Province). In Eastern Finnmark, these agro-ecosystems are under the additional stressor of heavy metal and sulfur pollution generated by metal smelters of NW Russia. Warming and its interaction with heavy metal dynamics will influence meadow productivity, species composition and GHG emissions, as mediated by responses of soil microbial communities. Adaptation and mitigation measurements will be needed. Biochar application, which immobilizes heavy metal, is a promising adaptation method to promote positive growth response in arctic meadows exposed to a warming climate. In the MeadoWarm project we conduct an ecosystem warming experiment combined to biochar adaptation treatments in the heavy-metal polluted meadows of Eastern Finnmark. In summary, the general objective of this study is twofold: 1) to determine the response of arctic agricultural ecosystems under environmental stress to increased temperatures, both in terms of plant growth, soil organisms and GHG emissions, and 2) to determine if biochar application can serve as a positive adaptation (plant growth) and mitigation (GHG emission) strategy for these ecosystems under warming conditions. Here, we present the experimental site and the designed open-field warming facility. The selected site is an arctic meadow located at the Svanhovd Research station less than 10km west from the Russian mining city of Nikel. A splitplot design with 5 replicates for each treatment is used to test the effect of biochar amendment and a 3oC warming on the Arctic meadow. Ten circular

  18. Is cold or warm blood cardioplegia superior for myocardial protection?

    PubMed Central

    Abah, Udo; Roberts, Patrick Garfjeld; Ishaq, Muhammad; De Silva, Ravi

    2012-01-01

    A best evidence topic in cardiac surgery was written according to a structured protocol. The question addressed was whether the use of warm or cold blood cardioplegia has superior myocardial protection. More than 192 papers were found using the reported search, of which 20 represented the best evidence to answer the clinical question. The authors, journal, date, country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. A good breadth of high-level evidence addressing this clinical dilemma is available, including a recent meta-analysis and multiple large randomized clinical trials. Yet despite this level of evidence, no clear significant clinical benefit has been demonstrated by warm or cold blood cardioplegia. This suggests that neither method is significantly superior and that both provide similar efficacy of myocardial protection. The meta-analysis, including 41 randomized control trials (5879 patients in total), concluded that although a lower cardiac enzyme release and improved postoperative cardiac index was demonstrated in the warm cardioplegia group, this benefit was not reflected in clinical outcomes, which were similar in both groups. This theme of benefit in biochemical markers, physiological metrics and non-fatal postoperative events in the warm cardioplegia group ran throughout the literature, in particular the ‘Warm Heart investigators’ who conducted a randomized trial of 1732 patients, demonstrated a reduction in postoperative low output syndrome (6.1 versus 9.3%, P = 0.01) in the warm cardioplegia group, but no significant drop in 30-day all-cause mortality (1.4 versus 2.5%, P = 0.12). However, their later follow-up indicates non-fatal postoperative events predict reduced late survival, independent of cardioplegia. A minority of studies suggested a benefit of cold cardioplegia over warm in particular patient subgroups: One group conducted a retrospective study of 520 patients who

  19. Climate warming enhances snow avalanche risk in the Western Himalayas

    PubMed Central

    Ballesteros-Cánovas, J. A.; Trappmann, D.; Madrigal-González, J.; Eckert, N.; Stoffel, M.

    2018-01-01

    Ongoing climate warming has been demonstrated to impact the cryosphere in the Indian Himalayas, with substantial consequences for the risk of disasters, human well-being, and terrestrial ecosystems. Here, we present evidence that the warming observed in recent decades has been accompanied by increased snow avalanche frequency in the Western Indian Himalayas. Using dendrogeomorphic techniques, we reconstruct the longest time series (150 y) of the occurrence and runout distances of snow avalanches that is currently available for the Himalayas. We apply a generalized linear autoregressive moving average model to demonstrate linkages between climate warming and the observed increase in the incidence of snow avalanches. Warming air temperatures in winter and early spring have indeed favored the wetting of snow and the formation of wet snow avalanches, which are now able to reach down to subalpine slopes, where they have high potential to cause damage. These findings contradict the intuitive notion that warming results in less snow, and thus lower avalanche activity, and have major implications for the Western Himalayan region, an area where human pressure is constantly increasing. Specifically, increasing traffic on a steadily expanding road network is calling for an immediate design of risk mitigation strategies and disaster risk policies to enhance climate change adaption in the wider study region. PMID:29535224

  20. Tracking ocean heat uptake during the surface warming hiatus

    SciTech Connect

    Liu, Wei; Xie, Shang -Ping; Lu, Jian

    Ocean heat uptake is observed to penetrate deep during the recent hiatus1,2,3 of global warming in the Atlantic and Southern Ocean. This has been suggested to indicate that the two regions are the driver of the surface warming hiatus4. We show that the deep heat penetration in the Atlantic and Southern Ocean is not unique to the hiatus but common to the past four decades including the 1970s-90s epoch of accelerated surface warming. Our analyses of a large ensemble simulation5 confirm the deep heat penetration in the Atlantic and Southern Ocean in ensemble members with or without surface warming hiatusmore » in the early 21th century. During the past four decades, the global ocean heat content (OHC) of upper 1500m is dominated by a warming trend, and the depth of anthropogenic heat penetration merely reflects the depth of the mean meridional overturning circulation in the basin. Furthermore, the heat penetration depth is not a valid basis to infer the hiatus mechanism.« less

  1. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection.

    PubMed

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-02-03

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection.

  2. Impacts of climate warming on terrestrial ectotherms across latitude.

    PubMed

    Deutsch, Curtis A; Tewksbury, Joshua J; Huey, Raymond B; Sheldon, Kimberly S; Ghalambor, Cameron K; Haak, David C; Martin, Paul R

    2008-05-06

    The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest.

  3. Further studies on rapid dilution and warming of boar semen.

    PubMed

    Bamba, K; Cran, D G

    1988-03-01

    Studies have been carried out to investigate factors related to the induction of warm shock in boar spermatozoa. Rapid dilution per se caused visible damage to acrosomes when the sample contained 7.5% or more glycerol. This dilution effect was greater at lower temperatures. Acrosomal damage was greatly reduced by raising the dilution temperature from 15 to 25 degrees C, suggesting that a change in the physico-chemical characteristics of the acrosomal membrane occurred between these temperatures. During rapid dilution with warming, the dilution rate, the magnitude of the temperature change and the terminal temperature had a significant influence on acrosomal integrity; a terminal temperature of 35 degrees C was much more detrimental than one of 25 degrees C. The first sign of acrosomal damage was observed 15 sec after rapid dilution + warming and the damage was nearly maximal by 60 sec. An antioxidant, butylated hydroxytoluene (BHT), was effective against both rapid cooling and warming, while glycerol, dimethylsulphoxide and propylene glycol were ineffective in preventing warm shock.

  4. Tracking ocean heat uptake during the surface warming hiatus

    DOE PAGES

    Liu, Wei; Xie, Shang -Ping; Lu, Jian

    2016-03-30

    Ocean heat uptake is observed to penetrate deep during the recent hiatus1,2,3 of global warming in the Atlantic and Southern Ocean. This has been suggested to indicate that the two regions are the driver of the surface warming hiatus4. We show that the deep heat penetration in the Atlantic and Southern Ocean is not unique to the hiatus but common to the past four decades including the 1970s-90s epoch of accelerated surface warming. Our analyses of a large ensemble simulation5 confirm the deep heat penetration in the Atlantic and Southern Ocean in ensemble members with or without surface warming hiatusmore » in the early 21th century. During the past four decades, the global ocean heat content (OHC) of upper 1500m is dominated by a warming trend, and the depth of anthropogenic heat penetration merely reflects the depth of the mean meridional overturning circulation in the basin. Furthermore, the heat penetration depth is not a valid basis to infer the hiatus mechanism.« less

  5. Enhanced seasonal forecast skill following stratospheric sudden warmings

    NASA Astrophysics Data System (ADS)

    Sigmond, M.; Scinocca, J. F.; Kharin, V. V.; Shepherd, T. G.

    2013-02-01

    Advances in seasonal forecasting have brought widespread socio-economic benefits. However, seasonal forecast skill in the extratropics is relatively modest, prompting the seasonal forecasting community to search for additional sources of predictability. For over a decade it has been suggested that knowledge of the state of the stratosphere can act as a source of enhanced seasonal predictability; long-lived circulation anomalies in the lower stratosphere that follow stratospheric sudden warmings are associated with circulation anomalies in the troposphere that can last up to two months. Here, we show by performing retrospective ensemble model forecasts that such enhanced predictability can be realized in a dynamical seasonal forecast system with a good representation of the stratosphere. When initialized at the onset date of stratospheric sudden warmings, the model forecasts faithfully reproduce the observed mean tropospheric conditions in the months following the stratospheric sudden warmings. Compared with an equivalent set of forecasts that are not initialized during stratospheric sudden warmings, we document enhanced forecast skill for atmospheric circulation patterns, surface temperatures over northern Russia and eastern Canada and North Atlantic precipitation. We suggest that seasonal forecast systems initialized during stratospheric sudden warmings are likely to yield significantly greater forecast skill in some regions.

  6. Repetitive mammalian dwarfing during ancient greenhouse warming events

    PubMed Central

    D’Ambrosia, Abigail R.; Clyde, William C.; Fricke, Henry C.; Gingerich, Philip D.; Abels, Hemmo A.

    2017-01-01

    Abrupt perturbations of the global carbon cycle during the early Eocene are associated with rapid global warming events, which are analogous in many ways to present greenhouse warming. Mammal dwarfing has been observed, along with other changes in community structure, during the largest of these ancient global warming events, known as the Paleocene-Eocene Thermal Maximum [PETM; ~56 million years ago (Ma)]. We show that mammalian dwarfing accompanied the subsequent, smaller-magnitude warming event known as Eocene Thermal Maximum 2 [ETM2 (~53 Ma)]. Statistically significant decrease in body size during ETM2 is observed in two of four taxonomic groups analyzed in this study and is most clearly observed in early equids (horses). During ETM2, the best-sampled lineage of equids decreased in size by ~14%, as opposed to ~30% during the PETM. Thus, dwarfing appears to be a common evolutionary response of some mammals during past global warming events, and the extent of dwarfing seems related to the magnitude of the event. PMID:28345031

  7. Global warming induced hybrid rainy seasons in the Sahel

    NASA Astrophysics Data System (ADS)

    Salack, Seyni; Klein, Cornelia; Giannini, Alessandra; Sarr, Benoit; Worou, Omonlola N.; Belko, Nouhoun; Bliefernicht, Jan; Kunstman, Harald

    2016-10-01

    The small rainfall recovery observed over the Sahel, concomitant with a regional climate warming, conceals some drought features that exacerbate food security. The new rainfall features include false start and early cessation of rainy seasons, increased frequency of intense daily rainfall, increasing number of hot nights and warm days and a decreasing trend in diurnal temperature range. Here, we explain these mixed dry/wet seasonal rainfall features which are called hybrid rainy seasons by delving into observed data consensus on the reduction in rainfall amount, its spatial coverage, timing and erratic distribution of events, and other atmospheric variables crucial in agro-climatic monitoring and seasonal forecasting. Further composite investigations of seasonal droughts, oceans warming and the regional atmospheric circulation nexus reveal that the low-to-mid-level atmospheric winds pattern, often stationary relative to either strong or neutral El-Niño-Southern-Oscillations drought patterns, associates to basin warmings in the North Atlantic and the Mediterranean Sea to trigger hybrid rainy seasons in the Sahel. More challenging to rain-fed farming systems, our results suggest that these new rainfall conditions will most likely be sustained by global warming, reshaping thereby our understanding of food insecurity in this region.

  8. Warming caused by cumulative carbon emissions towards the trillionth tonne.

    PubMed

    Allen, Myles R; Frame, David J; Huntingford, Chris; Jones, Chris D; Lowe, Jason A; Meinshausen, Malte; Meinshausen, Nicolai

    2009-04-30

    Global efforts to mitigate climate change are guided by projections of future temperatures. But the eventual equilibrium global mean temperature associated with a given stabilization level of atmospheric greenhouse gas concentrations remains uncertain, complicating the setting of stabilization targets to avoid potentially dangerous levels of global warming. Similar problems apply to the carbon cycle: observations currently provide only a weak constraint on the response to future emissions. Here we use ensemble simulations of simple climate-carbon-cycle models constrained by observations and projections from more comprehensive models to simulate the temperature response to a broad range of carbon dioxide emission pathways. We find that the peak warming caused by a given cumulative carbon dioxide emission is better constrained than the warming response to a stabilization scenario. Furthermore, the relationship between cumulative emissions and peak warming is remarkably insensitive to the emission pathway (timing of emissions or peak emission rate). Hence policy targets based on limiting cumulative emissions of carbon dioxide are likely to be more robust to scientific uncertainty than emission-rate or concentration targets. Total anthropogenic emissions of one trillion tonnes of carbon (3.67 trillion tonnes of CO(2)), about half of which has already been emitted since industrialization began, results in a most likely peak carbon-dioxide-induced warming of 2 degrees C above pre-industrial temperatures, with a 5-95% confidence interval of 1.3-3.9 degrees C.

  9. Forced-air patient warming blankets disrupt unidirectional airflow.

    PubMed

    Legg, A J; Hamer, A J

    2013-03-01

    We have recently shown that waste heat from forced-air warming blankets can increase the temperature and concentration of airborne particles over the surgical site. The mechanism for the increased concentration of particles and their site of origin remained unclear. We therefore attempted to visualise the airflow in theatre over a simulated total knee replacement using neutral-buoyancy helium bubbles. Particles were created using a Rocket PS23 smoke machine positioned below the operating table, a potential area of contamination. The same theatre set-up, warming devices and controls were used as in our previous study. This demonstrated that waste heat from the poorly insulated forced-air warming blanket increased the air temperature on the surgical side of the drape by > 5°C. This created convection currents that rose against the downward unidirectional airflow, causing turbulence over the patient. The convection currents increased the particle concentration 1000-fold (2 174 000 particles/m(3) for forced-air warming vs 1000 particles/m(3) for radiant warming and 2000 particles/m(3) for the control) by drawing potentially contaminated particles from below the operating table into the surgical site. Cite this article: Bone Joint J 2013;95-B:407-10.

  10. Elevated CO2 further lengthens growing season under warming conditions.

    PubMed

    Reyes-Fox, Melissa; Steltzer, Heidi; Trlica, M J; McMaster, Gregory S; Andales, Allan A; LeCain, Dan R; Morgan, Jack A

    2014-06-12

    Observations of a longer growing season through earlier plant growth in temperate to polar regions have been thought to be a response to climate warming. However, data from experimental warming studies indicate that many species that initiate leaf growth and flowering earlier also reach seed maturation and senesce earlier, shortening their active and reproductive periods. A conceptual model to explain this apparent contradiction, and an analysis of the effect of elevated CO2--which can delay annual life cycle events--on changing season length, have not been tested. Here we show that experimental warming in a temperate grassland led to a longer growing season through earlier leaf emergence by the first species to leaf, often a grass, and constant or delayed senescence by other species that were the last to senesce, supporting the conceptual model. Elevated CO2 further extended growing, but not reproductive, season length in the warmed grassland by conserving water, which enabled most species to remain active longer. Our results suggest that a longer growing season, especially in years or biomes where water is a limiting factor, is not due to warming alone, but also to higher atmospheric CO2 concentrations that extend the active period of plant annual life cycles.

  11. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection

    PubMed Central

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-01-01

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection. PMID:26838053

  12. Constraining the trigger for an ancient warming episode

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-08-01

    The Paleocene epoch (˜66-56 million years ago) was sandwiched between sudden climate shifts and mass extinctions. The boundary between the end of the Paleocene and the beginning of the Eocene (the P-E boundary) saw the global average temperature soar by 5°C over a few thousand years, leading to a pronounced reorganization of both terrestrial and oceanic plant and animal communities. The P-E boundary warming was triggered by an influx of atmospheric carbon dioxide, but the influx's ultimate trigger is still being debated. Other prominent warming events within the Paleogene (˜66-23 million years ago), the broad time span that encompasses the Paleocene and Eocene, have been linked to regularly recurring changes in the eccentricity of the Earth's orbit that take place on 100,000- and 405,000-year cycles. Proponents of this view suggest that an alignment of the two cycles could lead to the warming of deep ocean waters, melting frozen methane and triggering an increase in atmospheric carbon dioxide. However, some studies have suggested that the P-E boundary warming was instead the product of geological processes, where carbon-rich rocks were baked by injected magma, which eventually liberated the carbon to the atmosphere. Deciding between proposed explanations for the cause of the P-E warming, whether they are astronomical or geological, depends on accurately pinning the event in time. (Geochemistry, Geophysics, Geosystems, doi:10.1029/2010GC003426, 2011)

  13. Impacts of climate warming on terrestrial ectotherms across latitude

    PubMed Central

    Deutsch, Curtis A.; Tewksbury, Joshua J.; Huey, Raymond B.; Sheldon, Kimberly S.; Ghalambor, Cameron K.; Haak, David C.; Martin, Paul R.

    2008-01-01

    The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest. PMID:18458348

  14. Long-term sensitivity of soil carbon turnover to warming.

    PubMed

    Knorr, W; Prentice, I C; House, J I; Holland, E A

    2005-01-20

    The sensitivity of soil carbon to warming is a major uncertainty in projections of carbon dioxide concentration and climate. Experimental studies overwhelmingly indicate increased soil organic carbon (SOC) decomposition at higher temperatures, resulting in increased carbon dioxide emissions from soils. However, recent findings have been cited as evidence against increased soil carbon emissions in a warmer world. In soil warming experiments, the initially increased carbon dioxide efflux returns to pre-warming rates within one to three years, and apparent carbon pool turnover times are insensitive to temperature. It has already been suggested that the apparent lack of temperature dependence could be an artefact due to neglecting the extreme heterogeneity of soil carbon, but no explicit model has yet been presented that can reconcile all the above findings. Here we present a simple three-pool model that partitions SOC into components with different intrinsic turnover rates. Using this model, we show that the results of all the soil-warming experiments are compatible with long-term temperature sensitivity of SOC turnover: they can be explained by rapid depletion of labile SOC combined with the negligible response of non-labile SOC on experimental timescales. Furthermore, we present evidence that non-labile SOC is more sensitive to temperature than labile SOC, implying that the long-term positive feedback of soil decomposition in a warming world may be even stronger than predicted by global models.

  15. Liquid Film Migration in Warm Formed Aluminum Brazing Sheet

    NASA Astrophysics Data System (ADS)

    Benoit, M. J.; Whitney, M. A.; Wells, M. A.; Jin, H.; Winkler, S.

    2017-10-01

    Warm forming has previously proven to be a promising manufacturing route to improve formability of Al brazing sheets used in automotive heat exchanger production; however, the impact of warm forming on subsequent brazing has not previously been studied. In particular, the interaction between liquid clad and solid core alloys during brazing through the process of liquid film migration (LFM) requires further understanding. Al brazing sheet comprised of an AA3003 core and AA4045 clad alloy, supplied in O and H24 tempers, was stretched between 0 and 12 pct strain, at room temperature and 523K (250 °C), to simulate warm forming. Brazeability was predicted through thermal and microstructure analysis. The rate of solid-liquid interactions was quantified using thermal analysis, while microstructure analysis was used to investigate the opposing processes of LFM and core alloy recrystallization during brazing. In general, liquid clad was consumed relatively rapidly and LFM occurred in forming conditions where the core alloy did not recrystallize during brazing. The results showed that warm forming could potentially impair brazeability of O temper sheet by extending the regime over which LFM occurs during brazing. No change in microstructure or thermal data was found for H24 sheet when the forming temperature was increased, and thus warm forming was not predicted to adversely affect the brazing performance of H24 sheet.

  16. Warm summers during the Younger Dryas cold reversal.

    PubMed

    Schenk, Frederik; Väliranta, Minna; Muschitiello, Francesco; Tarasov, Lev; Heikkilä, Maija; Björck, Svante; Brandefelt, Jenny; Johansson, Arne V; Näslund, Jens-Ove; Wohlfarth, Barbara

    2018-04-24

    The Younger Dryas (YD) cold reversal interrupts the warming climate of the deglaciation with global climatic impacts. The sudden cooling is typically linked to an abrupt slowdown of the Atlantic Meridional Overturning Circulation (AMOC) in response to meltwater discharges from ice sheets. However, inconsistencies regarding the YD-response of European summer temperatures have cast doubt whether the concept provides a sufficient explanation. Here we present results from a high-resolution global climate simulation together with a new July temperature compilation based on plant indicator species and show that European summers remain warm during the YD. Our climate simulation provides robust physical evidence that atmospheric blocking of cold westerly winds over Fennoscandia is a key mechanism counteracting the cooling impact of an AMOC-slowdown during summer. Despite the persistence of short warm summers, the YD is dominated by a shift to a continental climate with extreme winter to spring cooling and short growing seasons.

  17. Stratospheric warmings: Synoptic, dynamic and general-circulation aspects

    NASA Technical Reports Server (NTRS)

    Mcinturff, R. M. (Editor)

    1978-01-01

    Synoptic descriptions consist largely of case studies, which involve a distinction between major and minor warmings. Results of energetics studies show the importance of tropospheric-stratospheric interaction, and the significance of the pressure-work term near the tropopause. Theoretical studies have suggested the role of wave-zonal flow interaction as well as nonlinear interaction between eddies, chemical and photochemical reactions, boundary forcing, and other factors. Numerical models have been based on such considerations, and these are discussed under various categories. Some indication is given as to why some of the models have been more successful than others in simulating warnings. The question of ozone and its role in warmings is briefly discussed. Finally, a broad view is taken of stratospheric warmings in relation to man's activities.

  18. Climate warming drives local extinction: Evidence from observation and experimentation.

    PubMed

    Panetta, Anne Marie; Stanton, Maureen L; Harte, John

    2018-02-01

    Despite increasing concern about elevated extinction risk as global temperatures rise, it is difficult to confirm causal links between climate change and extinction. By coupling 25 years of in situ climate manipulation with experimental seed introductions and both historical and current plant surveys, we identify causal, mechanistic links between climate change and the local extinction of a widespread mountain plant ( Androsace septentrionalis ). Climate warming causes precipitous declines in population size by reducing fecundity and survival across multiple life stages. Climate warming also purges belowground seed banks, limiting the potential for the future recovery of at-risk populations under ameliorated conditions. Bolstered by previous reports of plant community shifts in this experiment and in other habitats, our findings not only support the hypothesis that climate change can drive local extinction but also foreshadow potentially widespread species losses in subalpine meadows as climate warming continues.

  19. Recent decrease in typhoon destructive potential and global warming implications.

    PubMed

    Lin, I-I; Chan, Johnny C L

    2015-05-20

    Typhoons (tropical cyclones) severely impact the half-billion population of the Asian Pacific. Intriguingly, during the recent decade, typhoon destructive potential (Power Dissipation Index, PDI) has decreased considerably (by ∼ 35%). This decrease, paradoxically, has occurred despite the increase in typhoon intensity and ocean warming. Using the method proposed by Emanuel (in 2007), we show that the stronger negative contributions from typhoon frequency and duration, decrease to cancel the positive contribution from the increasing intensity, controlling the PDI. Examining the typhoons' environmental conditions, we find that although the ocean condition became more favourable (warming) in the recent decade, the atmospheric condition 'worsened' at the same time. The 'worsened' atmospheric condition appears to effectively overpower the 'better' ocean conditions to suppress PDI. This stronger negative contribution from reduced typhoon frequency over the increased intensity is also present under the global warming scenario, based on analysis of the simulated typhoon data from high-resolution modelling.

  20. Climate warming drives local extinction: Evidence from observation and experimentation

    PubMed Central

    Panetta, Anne Marie; Stanton, Maureen L.; Harte, John

    2018-01-01

    Despite increasing concern about elevated extinction risk as global temperatures rise, it is difficult to confirm causal links between climate change and extinction. By coupling 25 years of in situ climate manipulation with experimental seed introductions and both historical and current plant surveys, we identify causal, mechanistic links between climate change and the local extinction of a widespread mountain plant (Androsace septentrionalis). Climate warming causes precipitous declines in population size by reducing fecundity and survival across multiple life stages. Climate warming also purges belowground seed banks, limiting the potential for the future recovery of at-risk populations under ameliorated conditions. Bolstered by previous reports of plant community shifts in this experiment and in other habitats, our findings not only support the hypothesis that climate change can drive local extinction but also foreshadow potentially widespread species losses in subalpine meadows as climate warming continues. PMID:29507884

  1. [Design of warm-acupuncture technique training evaluation device].

    PubMed

    Gao, Ming; Xu, Gang; Yang, Huayuan; Liu, Tangyi; Tang, Wenchao

    2017-01-12

    To design a warm-acupuncture teaching instrument to train and evaluate its manipulation. We refer to the principle and technical operation characteristics of traditional warm-acupuncture, as well as the mechanical design and single-chip microcomputer technology. The device is consisted of device noumenon, universal acupoints simulator, vibration reset system and circuit control system, including frame, platform framework, the swing framework, universal acupoints simulator, vibration reset outfit, operation time circuit, acupuncture sensation display, and vibration control circuit, etc. It can be used to train needle inserting with different angles and moxa rubbing and loading. It displays whether a needle point meets the location required. We determine whether the moxa group on a needle handle is easy to fall off through vibration test, and operation time is showed. The device can objectively help warm-acupuncture training and evaluation so as to promote its clinical standardization manipulation.

  2. Chondromalacia patellae treated by warming needle and rehabilitation training.

    PubMed

    Qiu, Ling; Zhang, Min; Zhang, Ji; Gao, Le-Nv; Chen, Da-wei; Liu, Jun; She, Jia-yi; Wang, Ling; Yu, Jin-yan; Huang, Le-ping; Bai, Yang

    2009-06-01

    To observe the effect of warming needle combined with rehabilitation training on chondromalacia patellae in a randomized controlled trial. The 92 cases were randomly divided into a treatment group treated by warming needle plus rehabilitation training (47 cases) and a control group treated by medication plus rehabilitation training (45 cases), and the therapeutic effect was compared after 20 sessions. The pain was relieved more obviously in the treatment group than in the control group (P < 0.05), and the total effective rate was 91.8% and 71.1% respectively (P < 0.01). Warming needle plus rehabilitation training was superior in the therapeutic effect and duration of producing relief of pain to medication plus rehabilitation training in treating chondromalacia patellae.

  3. Warm partner contact is related to lower cardiovascular reactivity.

    PubMed

    Grewen, Karen M; Anderson, Bobbi J; Girdler, Susan S; Light, Kathleen C

    2003-01-01

    The authors investigated the relationship between brief warm social and physical contact among cohabitating couples and blood pressure (BP) reactivity to stress in a sample of healthy adults (66 African American, 117 Caucasian; 74 women, 109 men). Prior to stress, the warm contact group underwent a 10-minute period of handholding while viewing a romantic video. Followed by a 20-second hug with their partner, while the no contact group rested quietly for 10 minutes and 20 seconds. In response to a public speaking task, individuals receiving prestress partner contact demonstrated lower systolic BP diastolic BP, and heart rate increases compared with the no contact group. The effects of warm contact were comparable for men and women and were greater for African Americans compared with Caucasians. These findings suggest that affectionate relationships with a supportive partner may contribute to lower reactivity to stressful life events and may partially mediate the benefit of marital support on better cardiovascular health.

  4. Structural Evolution of a Warm Frontal Precipitation Band During GCPEx

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Naeger, Aaron; Molthan, Andrew; Nesbitt, Stephen

    2015-01-01

    A warm frontal precipitation band developed over a few hours 50-100 km to the north of a surface warm front. The 3-km WRF was able to realistically simulate band development, although the model is somewhat too weak. Band genesis was associated with weak frontogenesis (deformation) in the presence of weak potential and conditional instability feeding into the band region, while it was closer to moist neutral within the band. As the band matured, frontogenesis increased, while the stability gradually increased in the banding region. Cloud top generating cells were prevalent, but not in WRF (too stable). The band decayed as the stability increased upstream and the frontogenesis (deformation) with the warm front weakened. The WRF may have been too weak and short-lived with the band because too stable and forcing too weak (some micro issues as well).

  5. Propagational characteristics in a warm hybrid plasmonic waveguide

    NASA Astrophysics Data System (ADS)

    Mahmodi Moghadam, M.; Shahmansouri, M.; Farokhi, B.

    2017-12-01

    We theoretically analyze the properties of guided modes in a warm planar conductor-gap-dielectric (CGD) system. The latter consists of a high index dielectric, separated from a warm metallic plasma with a low index nano-sized dielectric layer (gap) by using the hydrodynamic model coupled to Maxwell's equations. The effects of thermal pressure on the confinement and the propagation losses of Hybrid Plasmon Polariton (HPP) modes are studied. We found that the thermal effect leads to a reduction in the effective refractive index as well as in the propagation losses of the HPP mode. Furthermore, the cutoff thickness in the warm CGD waveguide is found to be smaller than that in a cold CGD waveguide. The results may be useful in understanding the essential physics of active/passive Plasmonic devices and chip-scale systems.

  6. Forced-Air Warming Discontinued: Periprosthetic Joint Infection Rates Drop.

    PubMed

    Augustine, Scott D

    2017-06-23

    Several studies have shown that the waste heat from forced-air warming (FAW) escapes near the floor and warms the contaminated air resident near the floor. The waste heat then forms into convection currents that rise up and contaminate the sterile field above the surgical table. It has been shown that a single airborne bacterium can cause a periprosthetic joint infection (PJI) following joint replacement surgery. We retrospectively compared PJI rates during a period of FAW to a period of air-free conductive fabric electric warming (CFW) at three hospitals. Surgical and antibiotic protocols were held constant. The pooled multicenter data showed a decreased PJI rate of 78% following the discontinuation of FAW and a switch to air-free CFW (n=2034; P=0.002). The 78% reduction in joint implant infections observed when FAW was discontinued suggests that there is a link between the waste FAW heat and PJIs.

  7. Forced-Air Warming Discontinued: Periprosthetic Joint Infection Rates Drop

    PubMed Central

    Augustine, Scott D.

    2017-01-01

    Several studies have shown that the waste heat from forced-air warming (FAW) escapes near the floor and warms the contaminated air resident near the floor. The waste heat then forms into convection currents that rise up and contaminate the sterile field above the surgical table. It has been shown that a single airborne bacterium can cause a periprosthetic joint infection (PJI) following joint replacement surgery. We retrospectively compared PJI rates during a period of FAW to a period of air-free conductive fabric electric warming (CFW) at three hospitals. Surgical and antibiotic protocols were held constant. The pooled multicenter data showed a decreased PJI rate of 78% following the discontinuation of FAW and a switch to air-free CFW (n=2034; P=0.002). The 78% reduction in joint implant infections observed when FAW was discontinued suggests that there is a link between the waste FAW heat and PJIs. PMID:28713524

  8. Climate warming and disease risks for terrestrial and marine biota

    USGS Publications Warehouse

    Harvell, C.D.; Mitchell, C.E.; Ward, J.R.; Altizer, S.; Dobson, A.P.; Ostfeld, R.S.; Samuel, M.D.

    2002-01-01

    Infectious diseases can cause rapid population declines or species extinctions. Many pathogens of terrestrial and marine taxa are sensitive to temperature, rainfall, and humidity, creating synergisms that could affect biodiversity. Climate warming can increase pathogen development and survival rates, disease transmission, and host susceptibility. Although most host-parasite systems are predicted to experience more frequent or severe disease impacts with warming, a subset of pathogens might decline with warming, releasing hosts from disease. Recently, changes in El Niño–Southern Oscillation events have had a detectable influence on marine and terrestrial pathogens, including coral diseases, oyster pathogens, crop pathogens, Rift Valley fever, and human cholera. To improve our ability to predict epidemics in wild populations, it will be necessary to separate the independent and interactive effects of multiple climate drivers on disease impact.

  9. Climate Warming and Disease Risks for Terrestrial and Marine Biota

    NASA Astrophysics Data System (ADS)

    Harvell, C. Drew; Mitchell, Charles E.; Ward, Jessica R.; Altizer, Sonia; Dobson, Andrew P.; Ostfeld, Richard S.; Samuel, Michael D.

    2002-06-01

    Infectious diseases can cause rapid population declines or species extinctions. Many pathogens of terrestrial and marine taxa are sensitive to temperature, rainfall, and humidity, creating synergisms that could affect biodiversity. Climate warming can increase pathogen development and survival rates, disease transmission, and host susceptibility. Although most host-parasite systems are predicted to experience more frequent or severe disease impacts with warming, a subset of pathogens might decline with warming, releasing hosts from disease. Recently, changes in El Niño-Southern Oscillation events have had a detectable influence on marine and terrestrial pathogens, including coral diseases, oyster pathogens, crop pathogens, Rift Valley fever, and human cholera. To improve our ability to predict epidemics in wild populations, it will be necessary to separate the independent and interactive effects of multiple climate drivers on disease impact.

  10. Ion-ion dynamic structure factor of warm dense mixtures

    DOE PAGES

    Gill, N. M.; Heinonen, R. A.; Starrett, C. E.; ...

    2015-06-25

    In this study, the ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ionmore » dynamical structure factor and sound speed of a warm dense mixture—equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.« less

  11. Warming experiments underpredict plant phenological responses to climate change

    USGS Publications Warehouse

    Wolkovich, Elizabeth M.; Cook, Benjamin I.; Allen, Jenica M.; Crimmins, Theresa M.; Betancourt, Julio L.; Travers, Steven E.; Pau, Stephanie; Regetz, James; Davies, T. Jonathan; Kraft, Nathan J.B.; Ault, Toby R.; Bolmgren, Kjell; Mazer, Susan J.; McCabe, Gregory J.; McGill, Brian J.; Parmesan, Camille; Salamin, Nicolas; Schwartz, Mark D.; Cleland, Elsa E.

    2012-01-01

    Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

  12. Changes in South Pacific rainfall bands in a warming climate

    NASA Astrophysics Data System (ADS)

    Widlansky, M. J.; Timmermann, A.; Stein, K.; McGregor, S.; Schneider, N.; England, M. H.; Lengaigne, M.; Cai, W.

    2012-12-01

    The South Pacific Convergence Zone (SPCZ) is the largest rainband in the Southern Hemisphere and provides most of the rainfall to Southwest Pacific island nations. In spite of various modeling efforts, it remains uncertain how the SPCZ will respond to greenhouse warming. A multi-model ensemble average of 21st century climate change projections from the current-generation of Coupled General Circulation Models (CGCMs) suggests a slightly wetter Southwest Pacific; however, inter-model uncertainty is greater than projected rainfall changes in the SPCZ region. Using a hierarchy of climate models we show that the uncertainty of SPCZ rainfall projections in the Southwest Pacific can be explained as a result of two competing mechanisms. Higher tropical sea surface temperatures (SST) lead to an overall increase of atmospheric moisture and rainfall while weaker SST gradients dynamically shift the SPCZ northeastward (see illustration) and promote summer drying in areas of the Southwest Pacific, similar to the response to strong El Niño events. Based on a multi-model ensemble of 55 greenhouse warming experiments and for moderate tropical warming of 2-3°C we estimate a 5% decrease of SPCZ rainfall, although uncertainty exceeds ±30% among CGCMs. For stronger tropical warming, a tendency for a wetter SPCZ region is identified.; Illustration of the "warmest gets wetter" response to projected 21st century greenhouse warming. Green shading depicts observed (1982-2009) rainfall during DJF (contour interval: 2 mm/day; starting at 1 mm/day). Blue (red) contours depict warming less (more) than the tropical mean (42.5°N/S) 21st century multi-model trend (contour interval: 0.2°C; starting at ±0.1°C).

  13. Functional Recovery From Extended Warm Ischemia Associated With Partial Nephrectomy.

    PubMed

    Zhang, Zhiling; Zhao, Juping; Velet, Lily; Ercole, Cesar E; Remer, Erick M; Mir, Carme M; Li, Jianbo; Takagi, Toshio; Demirjian, Sevag; Campbell, Steven C

    2016-01-01

    To evaluate the impact of extended warm ischemia on incidence of acute kidney injury (AKI) and ultimate functional recovery after partial nephrectomy (PN), incorporating rigorous control for loss of parenchymal mass, and embedded within comparison to cohorts of patients managed with hypothermia or limited warm ischemia. From 2007 to 2014, 277 patients managed with PN had appropriate studies to evaluate changes in function/mass specifically within the operated kidney. Recovery from ischemia was defined as %function saved/%parenchymal mass saved. AKI was based on global renal function and defined as a ≥1.5-fold increase in serum creatinine above the preoperative level. Hypothermia was utilized in 112 patients (median = 27 minutes) and warm ischemia in 165 (median = 21 minutes). AKI strongly correlated with solitary kidney (P < .001) and duration (P < .001) but not type (P = .49) of ischemia. Median recovery from ischemia in the operated kidney was 100% (interquartile range [IQR] = 88%-109%) for cold ischemia, with 6 (5%) noted to have <80% recovery from ischemia. For the warm ischemia group, median recovery from ischemia was 91% (IQR = 82%-101%, P < .001 compared with hypothermia), and 34 (21%) had recovery from ischemia <80% (P < .001). For warm ischemia subgrouped by duration <25 minutes (n = 114), 25-35 minutes (n = 35), and >35 minutes (n = 16), median recovery from ischemia was 92% (IQR = 86%-100%), 90% (IQR = 78%-104%), and 91% (IQR = 80%-96%), respectively (P = .77). Our results suggest that AKI after PN correlates with duration but not with type of ischemia. However, subsequent recovery, which ultimately defines the new baseline glomerular filtration rate, is most reliable with hypothermia. However, most patients undergoing PN with warm ischemia still recover relatively strongly from ischemia, even if extended to 35-45 minutes. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. In-vivo heat retention comparison of eyelid warming masks.

    PubMed

    Bitton, Etty; Lacroix, Zoé; Léger, Stéphanie

    2016-08-01

    Meibomian gland dysfunction (MGD) is one of the most common causes of evaporative dry eye. Warm compresses (WC) are recommended as adjunct therapy to slowly transfer heat to the meibomian glands to melt or soften the stagnant meibum with targeted temperatures of 40-45°C. This clinical study evaluated the heat retention profiles of commercially available eyelid warming masks over a 12-min interval. Five eyelid-warming masks (MGDRx Eyebag(®), EyeDoctor(®), Bruder(®), Tranquileyes XR™, Thera°Pearl(®)) were heated following manufacturer's instructions and heat retention was assessed at 1-min intervals for 12min. A facecloth warmed with hot tap water was used as comparison. Twelve (n=12) subjects participated in the study (10F:2M, ranging in age from 21 to 30 with an average of 23.2±3.8years). Each mask demonstrated a unique heat retention profile, reaching maximum temperature at different times and having a different final temperature at the end of the 12-min evaluation. After heating, all eyelid warming masks reached a temperature near 37°C within the first minute. The facecloth was significantly cooler than all other masks as of the 2-min mark (p<0.05). Reusability, availability and heat retention profiles should be considered when selecting an eyelid warming masks for adjunct WC therapy in the management of MGD. All masks tested, with the exception of the facecloth, demonstrated stable heat retention throughout the 12min, bringing further awareness that patient education is required to discuss the shortcomings of the heat retention of the facecloth, if only heated once. Copyright © 2016 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  15. Root and Shoot Phenology May Respond Differently to Warming

    NASA Astrophysics Data System (ADS)

    Radville, L.; Eissenstat, D. M.; Post, E.

    2015-12-01

    Climate change is increasing temperatures and extending the growing season for many organisms. Shifts in phenology have been widely reported in response to global warming and have strong effects on ecosystem processes and greenhouse gas emissions. It is well understood that warming generally advances aboveground plant phenology, but the influence of temperature on root phenology is unclear. Most terrestrial biosphere models assume that root and shoot growth occur at the same time and are influenced by warming in the same way, but recent studies suggest that this may not be the case. Testing this assumption is particularly important in the Arctic where over 70% of plant biomass can be belowground and warming is happening faster than in other ecosystems. In 2013 and 2014 we examined the timing of root growth in the Arctic in plots that had been warmed or unwarmed for 10 years. We found that peak root growth occurred about one month before leaf growth, suggesting that spring root phenology is not controlled by carbon produced during spring photosynthesis. If root phenology is not controlled by photosynthate early in the season, earlier spring leaf growth may not cause earlier spring root growth. In support of this, we found that warming advanced spring leaf cover but did not significantly affect root phenology. Root growth was not significantly correlated with soil temperature and did not appear to be limited by near-freezing temperatures above the permafrost. These results suggest that although shoots are influenced by temperature, roots in this system may be more influenced by photosynthesis and carbon storage. Aboveground phenology, one of the most widely measured aspects of climate change, may not represent whole-plant phenology and may be a poor indicator of the timing of whole-plant carbon fluxes. Additionally, climate model assumptions that roots and shoots grow at the same time may need to be revised.

  16. Conservation Planning for Coral Reefs Accounting for Climate Warming Disturbances.

    PubMed

    Magris, Rafael A; Heron, Scott F; Pressey, Robert L

    2015-01-01

    Incorporating warming disturbances into the design of marine protected areas (MPAs) is fundamental to developing appropriate conservation actions that confer coral reef resilience. We propose an MPA design approach that includes spatially- and temporally-varying sea-surface temperature (SST) data, integrating both observed (1985-2009) and projected (2010-2099) time-series. We derived indices of acute (time under reduced ecosystem function following short-term events) and chronic thermal stress (rate of warming) and combined them to delineate thermal-stress regimes. Coral reefs located on the Brazilian coast were used as a case study because they are considered a conservation priority in the southwestern Atlantic Ocean. We show that all coral reef areas in Brazil have experienced and are projected to continue to experience chronic warming, while acute events are expected to increase in frequency and intensity. We formulated quantitative conservation objectives for regimes of thermal stress. Based on these objectives, we then evaluated if/how they are achieved in existing Brazilian MPAs and identified priority areas where additional protection would reinforce resilience. Our results show that, although the current system of MPAs incorporates locations within some of our thermal-stress regimes, historical and future thermal refugia along the central coast are completely unprotected. Our approach is applicable to other marine ecosystems and adds to previous marine planning for climate change in two ways: (i) by demonstrating how to spatially configure MPAs that meet conservation objectives for warming disturbance using spatially- and temporally-explicit data; and (ii) by strategically allocating different forms of spatial management (MPA types) intended to mitigate warming impacts and also enhance future resistance to climate warming.

  17. Conservation Planning for Coral Reefs Accounting for Climate Warming Disturbances

    PubMed Central

    Magris, Rafael A.; Heron, Scott F.; Pressey, Robert L.

    2015-01-01

    Incorporating warming disturbances into the design of marine protected areas (MPAs) is fundamental to developing appropriate conservation actions that confer coral reef resilience. We propose an MPA design approach that includes spatially- and temporally-varying sea-surface temperature (SST) data, integrating both observed (1985–2009) and projected (2010–2099) time-series. We derived indices of acute (time under reduced ecosystem function following short-term events) and chronic thermal stress (rate of warming) and combined them to delineate thermal-stress regimes. Coral reefs located on the Brazilian coast were used as a case study because they are considered a conservation priority in the southwestern Atlantic Ocean. We show that all coral reef areas in Brazil have experienced and are projected to continue to experience chronic warming, while acute events are expected to increase in frequency and intensity. We formulated quantitative conservation objectives for regimes of thermal stress. Based on these objectives, we then evaluated if/how they are achieved in existing Brazilian MPAs and identified priority areas where additional protection would reinforce resilience. Our results show that, although the current system of MPAs incorporates locations within some of our thermal-stress regimes, historical and future thermal refugia along the central coast are completely unprotected. Our approach is applicable to other marine ecosystems and adds to previous marine planning for climate change in two ways: (i) by demonstrating how to spatially configure MPAs that meet conservation objectives for warming disturbance using spatially- and temporally-explicit data; and (ii) by strategically allocating different forms of spatial management (MPA types) intended to mitigate warming impacts and also enhance future resistance to climate warming. PMID:26535586

  18. Warming Experiments Underpredict Plant Phenological Responses to Climate Change

    NASA Technical Reports Server (NTRS)

    Wolkovich, E. M.; Cook, B. I.; Allen, J. M.; Crimmins, T. M.; Betancourt, J. L.; Travers, S. E.; Pau, S.; Regetz, J.; Davies, T. J.; Kraft, N. J. B.; hide

    2012-01-01

    Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

  19. [Unintended cooling, active warming, and microcirculation in cardiosurgical patients].

    PubMed

    Aksel'rod, B A; Trekova, N A; Guleshov, V A; Tolstova, I A; Gus'kov, D A; Babaev, M A

    2010-01-01

    The study was undertaken to compare various methods to maintain a patient's body temperature and to evaluate their impact on microcirculation during myocardial revascularization under normothermal extracorporeal circulation (NTEC). The study enrolled 50 patients with NYHA Functional Classes III-IV coronary heart disease, who underwent aortocoronary bypass surgery under NTEC. A HICO-AQUATHERM 660 water-warming unit (Hirtz, Germany) was used in Group 1 patients (n=30). A Bair Hugger air-warming unit (Arizant, U.S.A.) with a mattress located under a patient was employed in Group 2 (n=20). Intraoperative microcirculation monitoring was carried out by a laser analyzer (Lazma, Moscow).

  20. SPRUCE Whole Ecosystems Warming (WEW) Environmental Data Beginning August 2015

    DOE Data Explorer

    Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Riggs, J. S. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Nettles, W. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Krassovski, M. B. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hook, L. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.

    2016-01-01

    This data set provides the environmental measurements collected during the implementation of operational methods to achieve both deep soil heating (0-3 m) and whole-ecosystem warming (WEW) appropriate to the scale of tall-stature, high-carbon, boreal forest peatlands. The methods were developed to allow scientists to provide a plausible set of ecosystem warming scenarios within which immediate and longer term (one decade) responses of organisms (microbes to trees) and ecosystem functions (carbon, water and nutrient cycles) could be measured. Elevated CO2 was also incorporated to test how temperature responses may be modified by atmospheric CO2 effects on carbon cycle processes.

  1. Global Warming - Myth or Reality?, The Erring Ways of Climatology

    NASA Astrophysics Data System (ADS)

    Leroux, Marcel

    In the global-warming debate, definitive answers to questions about ultimate causes and effects remain elusive. In Global Warming: Myth or Reality? Marcel Leroux seeks to separate fact from fiction in this critical debate from a climatological perspective. Beginning with a review of the dire hypotheses for climate trends, the author describes the history of the 1998 Intergovernmental Panel on Climate Change (IPCC) and many subsequent conferences. He discusses the main conclusions of the three IPCC reports and the predicted impact on global temperatures, rainfall, weather and climate, while highlighting the mounting confusion and sensationalism of reports in the media.

  2. The influence of the equatorial QBO on sudden stratospheric warmings

    NASA Technical Reports Server (NTRS)

    Holton, James R.; Austin, John

    1991-01-01

    A global primitive-equation model of the stratosphere and mesosphere is integrated for specified planetary-wave forcing at the 100-mb level with mean zonal flow conditions corresponding to the westerly and easterly phases of the equatorial QBO, respectively. The responses in the two QBO phases were compared for integrations with wavenumber-1 forcing-amplitude maxima at 100 mb and 60 deg N varying from 100 to 400 m. The phase of the QBO had little effect on the results in the weak-wave (100-m) cases, which did not produce warmings, and strong-wave (400-m) cases, which produced major sudden warmings.

  3. Investigation of Transmission Warming Technologies at Various Ambient Conditions

    SciTech Connect

    Jehlik, Forrest; Iliev, Simeon; Wood, Eric

    This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a 2011 Ford Fusion. The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the Fusion was tested cold and with the transmission pre-heated prior to completing themore » test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions. For the Taurus, the fuel consumption variability within one standard deviation was shown to be under 0.5% for eight repeat Urban Dynamometer Driving Cycles (UDDS). These results were valid with the transmission warming system active or passive. Using the transmission warming system under 22 degrees C ambient temperature, fuel consumption reduction was shown to be 1.4%. For the Fusion, pre-warming the transmission reduced fuel consumption 2.5% for an urban drive cycle at -7 degrees C ambient temperature, with 1.5% of the 2.5% gain associated with the transmission, while consumption for the US06 test was shown to be reduced by 7% with 5.5% of the 7% gain associated with the transmission. It was found that engine warming due to conduction between the pre-heated transmission and the engine resulted in the remainder of the benefit. For +22 degrees C ambient tests, the pre-heated transmission was shown to reduce fuel consumption approximately 1% on an urban cycle, while no benefit was seen for the US06 cycle. The simplified modeling results showed gains in efficiency ranging from 0-1.5% depending on the ambient

  4. A note on antenna models in a warm isotropic plasma

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1980-01-01

    The electron-transparent and electron-reflecting models of antennas in a warm isotropic plasma are reexamined. It is shown that a purely electrical treatment of both the models without an explicit use of the boundary condition on electron velocity yields the same results as those previously obtained through an electromechanical treatment. The essential difference between the two models is that for the electron-reflecting model, fields are nonzero only in the exterior region, while for the electron-transparent model, they are nonzero both in the exterior and interior regions of the antenna. This distinction helps in clarifying some misconceptions about these models of antennas in warm isotropic plasma.

  5. Quantifying global warming from the retreat of glaciers.

    PubMed

    Oerlemans, J

    1994-04-08

    Records of glacier fluctuations compiled by the World Glacier Monitoring Service can be used to derive an independent estimate of global warming during the last 100 years. Records of different glaciers are made comparable by a two-step scaling procedure: one allowing for differences in glacier geometry, the other for differences in climate sensitivity. The retreat of glaciers during the last 100 years appears to be coherent over the globe. On the basis of modeling of the climate sensitivity of glaciers, the observed glacier retreat can be explained by a linear warming trend of 0.66 kelvin per century.

  6. Research on Al-alloy sheet forming formability during warm/hot sheet hydroforming based on elliptical warm bulging test

    NASA Astrophysics Data System (ADS)

    Cai, Gaoshen; Wu, Chuanyu; Gao, Zepu; Lang, Lihui; Alexandrov, Sergei

    2018-05-01

    An elliptical warm/hot sheet bulging test under different temperatures and pressure rates was carried out to predict Al-alloy sheet forming limit during warm/hot sheet hydroforming. Using relevant formulas of ultimate strain to calculate and dispose experimental data, forming limit curves (FLCS) in tension-tension state of strain (TTSS) area are obtained. Combining with the basic experimental data obtained by uniaxial tensile test under the equivalent condition with bulging test, complete forming limit diagrams (FLDS) of Al-alloy are established. Using a quadratic polynomial curve fitting method, material constants of fitting function are calculated and a prediction model equation for sheet metal forming limit is established, by which the corresponding forming limit curves in TTSS area can be obtained. The bulging test and fitting results indicated that the sheet metal FLCS obtained were very accurate. Also, the model equation can be used to instruct warm/hot sheet bulging test.

  7. Warm water and cool nests are best. How global warming might influence hatchling green turtle swimming performance.

    PubMed

    Booth, David T; Evans, Andrew

    2011-01-01

    For sea turtles nesting on beaches surrounded by coral reefs, the most important element of hatchling recruitment is escaping predation by fish as they swim across the fringing reef, and as a consequence hatchlings that minimize their exposure to fish predation by minimizing the time spent crossing the fringing reef have a greater chance of surviving the reef crossing. One way to decrease the time required to cross the fringing reef is to maximize swimming speed. We found that both water temperature and nest temperature influence swimming performance of hatchling green turtles, but in opposite directions. Warm water increases swimming ability, with hatchling turtles swimming in warm water having a faster stroke rate, while an increase in nest temperature decreases swimming ability with hatchlings from warm nests producing less thrust per stroke.

  8. Enhanced greenhouse gas emissions from the Arctic with experimental warming

    NASA Astrophysics Data System (ADS)

    Voigt, Carolina; Lamprecht, Richard E.; Marushchak, Maija E.; Lind, Saara E.; Novakovskiy, Alexander; Aurela, Mika; Martikainen, Pertti J.; Biasi, Christina

    2017-04-01

    Temperatures in the Arctic are projected to increase more rapidly than in lower latitudes. With temperature being a key factor for regulating biogeochemical processes in ecosystems, even a subtle temperature increase might promote the release of greenhouse gases (GHGs) to the atmosphere. Usually, carbon dioxide (CO2) and methane (CH4) are the GHGs dominating the climatic impact of tundra. However, bare, patterned ground features in the Arctic have recently been identified as hot spots for nitrous oxide (N2O). N2O is a potent greenhouse gas, which is almost 300 times more effective in its global warming potential than CO2; but studies on arctic N2O fluxes are rare. In this study we examined the impact of temperature increase on the seasonal GHG balance of all three important GHGs (CO2, CH4 and N2O) from three tundra surface types (vegetated peat soils, unvegetated peat soils, upland mineral soils) in the Russian Arctic (67˚ 03' N 62˚ 55' E), during the course of two growing seasons. We deployed open-top chambers (OTCs), inducing air and soil surface warming, thus mimicking predicted warming scenarios. We combined detailed CO2, CH4 and N2O flux studies with concentration measurements of these gases within the soil profile down to the active layer-permafrost interface, and complemented these GHG measurements with detailed soil nutrient (nitrate and ammonium) and dissolved organic carbon (DOC) measurements in the soil pore water profile. In our study, gentle air warming (˜1.0 ˚ C) increased the seasonal GHG release of all dominant surface types: the GHG budget of vegetated peat and mineral soils, which together cover more than 80 % of the land area in our study region, shifted from a sink to a source of -300 to 144 g CO2-eq m-2 and from -198 to 105 g CO2-eq m-2, respectively. While the positive warming response was governed by CO2, we provide here the first in situ evidence that warming increases arctic N2O emissions: Warming did not only enhance N2O emissions from

  9. Responses of microbial biomass carbon and nitrogen to experimental warming: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Xu, W.; Yuan, W.

    2017-12-01

    Soil microbes play important roles in regulating terrestrial carbon and nitrogen cycling and strongly influence feedbacks of ecosystem to global warming. However, the inconsistent responses of microbial biomass carbon (MBC) and nitrogen (MBN) to experimental warming have been observed, and the response on ratio between MBC and MBN (MBC:MBN) has not been identified. This meta-analysis synthesized the warming experiments at 58 sites globally to investigate the responses of MBC:MBN to climate warming. Our results showed that warming significantly increased MBC by 3.61 ± 0.80% and MBN by 5.85 ± 0.90% and thus decreased the MBC:MBN by 3.34 ± 0.66%. MBC showed positive responses to warming but MBN exhibited negative responses to warming at low warming magnitude (<1°C); however, at high warming magnitude (>2°C) the results were inverted. The different effects of warming magnitude on microbial biomass resulted from the warming-induced decline in soil moisture and substrate supply. Moreover, MBC and MBN had strong positive responses to warming at the mid-term (3-4 years) or short-term (1-2 years) duration, but the responses tended to decrease at long-term (≥ 5 years) warming duration. This study fills the knowledge gap on the responses of MBC:MBN to warming and may benefit the development of coupled carbon and nitrogen models.

  10. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability

    PubMed Central

    Tokinaga, Hiroki; Xie, Shang-Ping; Mukougawa, Hitoshi

    2017-01-01

    With amplified warming and record sea ice loss, the Arctic is the canary of global warming. The historical Arctic warming is poorly understood, limiting our confidence in model projections. Specifically, Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing. Here, we show that the concurrent phase shift of Pacific and Atlantic interdecadal variability modes is the major driver for the rapid early 20th-century Arctic warming. Atmospheric model simulations successfully reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early 20th-century Arctic warming is associated with positive SST anomalies over the tropical and North Atlantic and a Pacific SST pattern reminiscent of the positive phase of the Pacific decadal oscillation. Atmospheric circulation changes are important for the early 20th-century Arctic warming. The equatorial Pacific warming deepens the Aleutian low, advecting warm air into the North American Arctic. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. Coupled ocean–atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, negative-to-positive phase shift of the Pacific and Atlantic interdecadal modes. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region. PMID:28559341

  11. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability

    NASA Astrophysics Data System (ADS)

    Tokinaga, Hiroki; Xie, Shang-Ping; Mukougawa, Hitoshi

    2017-06-01

    With amplified warming and record sea ice loss, the Arctic is the canary of global warming. The historical Arctic warming is poorly understood, limiting our confidence in model projections. Specifically, Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing. Here, we show that the concurrent phase shift of Pacific and Atlantic interdecadal variability modes is the major driver for the rapid early 20th-century Arctic warming. Atmospheric model simulations successfully reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early 20th-century Arctic warming is associated with positive SST anomalies over the tropical and North Atlantic and a Pacific SST pattern reminiscent of the positive phase of the Pacific decadal oscillation. Atmospheric circulation changes are important for the early 20th-century Arctic warming. The equatorial Pacific warming deepens the Aleutian low, advecting warm air into the North American Arctic. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. Coupled ocean-atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, negative-to-positive phase shift of the Pacific and Atlantic interdecadal modes. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region.

  12. Sustained acceleration of soil carbon decomposition observed in a 6-year warming experiment in a warm-temperate forest in southern Japan.

    PubMed

    Teramoto, Munemasa; Liang, Naishen; Takagi, Masahiro; Zeng, Jiye; Grace, John

    2016-10-17

    To examine global warming's effect on soil organic carbon (SOC) decomposition in Asian monsoon forests, we conducted a soil warming experiment with a multichannel automated chamber system in a 55-year-old warm-temperate evergreen broadleaved forest in southern Japan. We established three treatments: control chambers for total soil respiration, trenched chambers for heterotrophic respiration (R h ), and warmed trenched chambers to examine warming effect on R h . The soil was warmed with an infrared heater above each chamber to increase soil temperature at 5 cm depth by about 2.5 °C. The warming treatment lasted from January 2009 to the end of 2014. The annual warming effect on R h (an increase per °C) ranged from 7.1 to17.8% °C -1 . Although the warming effect varied among the years, it averaged 9.4% °C -1 over 6 years, which was close to the value of 10.1 to 10.9% °C -1 that we calculated using the annual temperature-efflux response model of Lloyd and Taylor. The interannual warming effect was positively related to the total precipitation in the summer period, indicating that summer precipitation and the resulting soil moisture level also strongly influenced the soil warming effect in this forest.

  13. Decadal evolution of the surface energy budget during the fast warming and global warming hiatus periods in the ERA-interim

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoming; Sejas, Sergio A.; Cai, Ming; Taylor, Patrick C.; Deng, Yi; Yang, Song

    2018-05-01

    The global-mean surface temperature has experienced a rapid warming from the 1980s to early-2000s but a muted warming since, referred to as the global warming hiatus in the literature. Decadal changes in deep ocean heat uptake are thought to primarily account for the rapid warming and subsequent slowdown. Here, we examine the role of ocean heat uptake in establishing the fast warming and warming hiatus periods in the ERA-Interim through a decomposition of the global-mean surface energy budget. We find the increase of carbon dioxide alone yields a nearly steady increase of the downward longwave radiation at the surface from the 1980s to the present, but neither accounts for the fast warming nor warming hiatus periods. During the global warming hiatus period, the transfer of latent heat energy from the ocean to atmosphere increases and the total downward radiative energy flux to the surface decreases due to a reduction of solar absorption caused primarily by an increase of clouds. The reduction of radiative energy into the ocean and the surface latent heat flux increase cause the ocean heat uptake to decrease and thus contribute to the slowdown of the global-mean surface warming. Our analysis also finds that in addition to a reduction of deep ocean heat uptake, the fast warming period is also driven by enhanced solar absorption due predominantly to a decrease of clouds and by enhanced longwave absorption mainly attributed to the air temperature feedback.

  14. Nonlinear climate sensitivity and its implications for future greenhouse warming.

    PubMed

    Friedrich, Tobias; Timmermann, Axel; Tigchelaar, Michelle; Elison Timm, Oliver; Ganopolski, Andrey

    2016-11-01

    Global mean surface temperatures are rising in response to anthropogenic greenhouse gas emissions. The magnitude of this warming at equilibrium for a given radiative forcing-referred to as specific equilibrium climate sensitivity ( S )-is still subject to uncertainties. We estimate global mean temperature variations and S using a 784,000-year-long field reconstruction of sea surface temperatures and a transient paleoclimate model simulation. Our results reveal that S is strongly dependent on the climate background state, with significantly larger values attained during warm phases. Using the Representative Concentration Pathway 8.5 for future greenhouse radiative forcing, we find that the range of paleo-based estimates of Earth's future warming by 2100 CE overlaps with the upper range of climate simulations conducted as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Furthermore, we find that within the 21st century, global mean temperatures will very likely exceed maximum levels reconstructed for the last 784,000 years. On the basis of temperature data from eight glacial cycles, our results provide an independent validation of the magnitude of current CMIP5 warming projections.

  15. Nonlinear climate sensitivity and its implications for future greenhouse warming

    PubMed Central

    Friedrich, Tobias; Timmermann, Axel; Tigchelaar, Michelle; Elison Timm, Oliver; Ganopolski, Andrey

    2016-01-01

    Global mean surface temperatures are rising in response to anthropogenic greenhouse gas emissions. The magnitude of this warming at equilibrium for a given radiative forcing—referred to as specific equilibrium climate sensitivity (S)—is still subject to uncertainties. We estimate global mean temperature variations and S using a 784,000-year-long field reconstruction of sea surface temperatures and a transient paleoclimate model simulation. Our results reveal that S is strongly dependent on the climate background state, with significantly larger values attained during warm phases. Using the Representative Concentration Pathway 8.5 for future greenhouse radiative forcing, we find that the range of paleo-based estimates of Earth’s future warming by 2100 CE overlaps with the upper range of climate simulations conducted as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Furthermore, we find that within the 21st century, global mean temperatures will very likely exceed maximum levels reconstructed for the last 784,000 years. On the basis of temperature data from eight glacial cycles, our results provide an independent validation of the magnitude of current CMIP5 warming projections. PMID:28861462

  16. Policy on global warming: fiddling while the globe burns?

    PubMed

    Weston, Del

    2009-08-01

    To assess the extent that the health consequences of global warming and the responses to it take due account of its impact on poverty and inequality. Reviewing the relevant literature on global warming, proposed solutions and the impact. To date, too little attention has been paid to the health consequences arising from the increased poverty and inequality that global warming will bring. When these are combined with issues arising from the economic melt-down, food shortages, peak oil, etc. we are heading for a global public health crisis of immeasurable magnitude. Solutions lie in rethinking the global economic system that we have relied upon over the past several decades and the global institutions that have led and fed off that global system - the IMF, the World Bank and so on. Public health practitioners need to look and act globally more often. They need to better recognise the links between global warming and the global financial crisis. How the latter is dealt with will determine whether the former can be resolved. It is in this global political economy arena that future action in public health lies.

  17. Global Warming on the International Agenda. Teaching Strategy.

    ERIC Educational Resources Information Center

    Keenan-Byrne, Patricia; Malkasian, Mark

    1997-01-01

    Presents a lesson plan that teaches students the links between industrialization and global warming, and analyzes the conflicting values and priorities involved in the debate between economic development and environmental concerns. Students role play delegates from countries attending an environmental conference. Handouts provide background…

  18. Global Warming: If You Can't Stand the Heat

    ERIC Educational Resources Information Center

    Baird, Stephen L.

    2005-01-01

    Global warming is the progressive, gradual rise of the earth's average surface temperature, thought to be caused in part by increased concentrations of "greenhouse" gases (GHGs) in the atmosphere. According to the National Academy of Sciences, the Earth's temperature has risen by about one degree Fahrenheit in the past century, with accelerated…

  19. Ant-mediated seed dispersal in a warmed world

    PubMed Central

    Patterson, Courtney M.; Rodriguez-Cabal, Mariano A.; Ribbons, Relena R.; Dunn, Robert R.; Sanders, Nathan J.

    2014-01-01

    Climate change affects communities both directly and indirectly via changes in interspecific interactions. One such interaction that may be altered under climate change is the ant-plant seed dispersal mutualism common in deciduous forests of eastern North America. As climatic warming alters the abundance and activity levels of ants, the potential exists for shifts in rates of ant-mediated seed dispersal. We used an experimental temperature manipulation at two sites in the eastern US (Harvard Forest in Massachusetts and Duke Forest in North Carolina) to examine the potential impacts of climatic warming on overall rates of seed dispersal (using Asarum canadense seeds) as well as species-specific rates of seed dispersal at the Duke Forest site. We also examined the relationship between ant critical thermal maxima (CTmax) and the mean seed removal temperature for each ant species. We found that seed removal rates did not change as a result of experimental warming at either study site, nor were there any changes in species-specific rates of seed dispersal. There was, however, a positive relationship between CTmax and mean seed removal temperature, whereby species with higher CTmax removed more seeds at hotter temperatures. The temperature at which seeds were removed was influenced by experimental warming as well as diurnal and day-to-day fluctuations in temperature. Taken together, our results suggest that while temperature may play a role in regulating seed removal by ants, ant plant seed-dispersal mutualisms may be more robust to climate change than currently assumed. PMID:24688863

  20. Seasonal warming of the Middle Atlantic Bight Cold Pool

    NASA Astrophysics Data System (ADS)

    Lentz, S. J.

    2017-02-01

    The Cold Pool is a 20-60 m thick band of cold, near-bottom water that persists from spring to fall over the midshelf and outer shelf of the Middle Atlantic Bight (MAB) and Southern Flank of Georges Bank. The Cold Pool is remnant winter water bounded above by the seasonal thermocline and offshore by warmer slope water. Historical temperature profiles are used to characterize the average annual evolution and spatial structure of the Cold Pool. The Cold Pool gradually warms from spring to summer at a rate of order 1°C month-1. The warming rate is faster in shallower water where the Cold Pool is thinner, consistent with a vertical turbulent heat flux from the thermocline to the Cold Pool. The Cold Pool warming rate also varies along the shelf; it is larger over Georges Bank and smaller in the southern MAB. The mean turbulent diffusivities at the top of the Cold Pool, estimated from the spring to summer mean heat balance, are an order of magnitude larger over Georges Bank than in the southern MAB, consistent with much stronger tidal mixing over Georges Bank than in the southern MAB. The stronger tidal mixing causes the Cold Pool to warm more rapidly over Georges Bank and the eastern New England shelf than in the New York Bight or southern MAB. Consequently, the coldest Cold Pool water is located in the New York Bight from late spring to summer.