Science.gov

Sample records for aav capsid proteins

  1. Mutants at the 2-Fold Interface of Adeno-associated Virus Type 2 (AAV2) Structural Proteins Suggest a Role in Viral Transcription for AAV Capsids

    PubMed Central

    Aydemir, Fikret; Salganik, Maxim; Resztak, Justyna; Singh, Jasbir; Bennett, Antonette; Agbandje-McKenna, Mavis

    2016-01-01

    ABSTRACT We previously reported that an amino acid substitution, Y704A, near the 2-fold interface of adeno-associated virus (AAV) was defective for transcription of the packaged genome (M. Salganik, F. Aydemir, H. J. Nam, R. McKenna, M. Agbandje-McKenna, and N. Muzyczka, J Virol 88:1071–1079, 2013, doi: http://dx.doi.org/10.1128/JVI.02093-13). In this report, we have characterized the defect in 6 additional capsid mutants located in a region ∼30 Å in diameter on the surface of the AAV type 2 (AAV2) capsid near the 2-fold interface. These mutants, which are highly conserved among primate serotypes, displayed a severe defect (3 to 6 logs) in infectivity. All of the mutants accumulated significant levels of uncoated DNA in the nucleus, but none of the mutants were able to accumulate significant amounts of genomic mRNA postinfection. In addition, wild-type (wt) capsids that were bound to the conformational antibody A20, which is known to bind the capsid surface in the region of the mutants, were also defective for transcription. In all cases, the mutant virus particles, as well as the antibody-bound wild-type capsids, were able to enter the cell, travel to the nucleus, uncoat, and synthesize a second strand but were unable to transcribe their genomes. Taken together, the phenotype of these mutants provides compelling evidence that the AAV capsid plays a role in the transcription of its genome, and the mutants map this functional region on the surface of the capsid near the 2-fold interface. This appears to be the first example of a viral structural protein that is also involved in the transcription of the viral genome that it delivers to the nucleus. IMPORTANCE Many viruses package enzymes within their capsids that assist in expressing their genomes postinfection, e.g., retroviruses. A number of nonenveloped viruses, including AAV, carry proteases that are needed for capsid maturation or for capsid modification during infection. We describe here what appears to

  2. Successful attenuation of humoral immunity to viral capsid and transgenic protein following AAV mediated gene transfer with a non-depleting CD4 antibody and cyclosporine

    PubMed Central

    McIntosh, Jenny; Cochrane, Melanie; Cobbold, Stephen; Waldmann, Herman; Davidoff, Andrew M.; Nathwani, Amit C.

    2012-01-01

    The ability of transient immunosuppression with a combination of a nondepleting anti-CD4 (NDCD4) antibody and Cyclosporine (CyA) to abrogate immune reactivity to both adeno-associated virus vector (AAV) and its transgene product was evaluated. This combination of immunosuppressants resulted in a 20-fold reduction in the resulting anti-AAV8 antibody titres, to levels in naïve mice, following intravenous administration of 2×1012 AAV8 vector particles/kg to immunocompetent mice. This allowed efficient transduction upon secondary challenge with vector pseudotyped with the same capsid. Persistent tolerance did not result, however, as an anti-AAV8 antibody response was elicited upon rechallenge with AAV8 without immunosuppression. The route of vector administration, vector dose, AAV serotype or the concomitant administration of adenoviral vector appeared to have little impact on the ability of the NDCD4 antibody and CyA combination to moderate the primary humoral response to AAV capsid proteins. The combination of NDCD4 and CyA also abrogated the humoral response to the transgene product, that otherwise invariably would occur, following intramuscular injection of AAV5, leading to stable transgene expression. These observations could significantly improve the prospects of using rAAV vectors for chronic disorders by allowing for repeated vector administration and avoiding the development of antibodies to the transgene product. PMID:21716299

  3. Titration of AAV-2 particles via a novel capsid ELISA: packaging of genomes can limit production of recombinant AAV-2.

    PubMed

    Grimm, D; Kern, A; Pawlita, M; Ferrari, F; Samulski, R; Kleinschmidt, J

    1999-07-01

    We demonstrate the rapid and reliable quantification of physical AAV-2 (adeno-associated virus type 2) particles via a novel ELISA based on a monoclonal antibody which selectively recognizes assembled AAV-2 capsids. Titration of a variety of recombinant AAV-2 (rAAV) preparations revealed that at least 80+percent of all particles were empty, compared with a maximum of 50percent in wild-type AAV-2 stocks, indicating that the recombinant genomes were less efficiently encapsidated. This finding was confirmed upon titration of CsCl gradient fractions from recombinant and wild-type AAV-2 stocks. ELISA-based measurement of capsid numbers revealed a large number of physical particles with low densities corresponding to empty capsids in the recombinant, but not in the wild-type AAV-2 preparations. Moreover, additional expression of VP proteins during rAAV production was found to result in an excessive capsid formation, whilst yielding only minor increases in DNA-containing or transducing rAAV particles. We conclude that encapsidation of viral genomes rather than capsid assembly can be limiting for rAAV production, provided that a critical level of VP expression is maintained. The feasibility of quantifying AAV-2 capsid numbers via the ELISA allows determination of physical to DNA-containing or infectious particle ratios. These are important parameters which should help to optimize and standardize the production and application of recombinant AAV-2.

  4. Microglia-specific targeting by novel capsid-modified AAV6 vectors

    PubMed Central

    Rosario, Awilda M; Cruz, Pedro E; Ceballos-Diaz, Carolina; Strickland, Michael R; Siemienski, Zoe; Pardo, Meghan; Schob, Keri-Lyn; Li, Andrew; Aslanidi, George V; Srivastava, Arun; Golde, Todd E; Chakrabarty, Paramita

    2016-01-01

    Recombinant adeno-associated viruses (rAAV) have been widely used in gene therapy applications for central nervous system diseases. Though rAAV can efficiently target neurons and astrocytes in mouse brains, microglia, the immune cells of the brain, are refractile to rAAV. To identify AAV capsids with microglia-specific transduction properties, we initially screened the most commonly used serotypes, AAV1–9 and rh10, on primary mouse microglia cultures. While these capsids were not permissive, we then tested the microglial targeting properties of a newly characterized set of modified rAAV6 capsid variants with high tropism for monocytes. Indeed, these newly characterized rAAV6 capsid variants, specially a triply mutated Y731F/Y705F/T492V form, carrying a self-complementary genome and microglia-specific promoters (F4/80 or CD68) could efficiently and selectively transduce microglia in vitro. Delivery of these constructs in mice brains resulted in microglia-specific expression of green fluorescent protein, albeit at modest levels. We further show that CD68 promoter–driven expression of the inflammatory cytokine, interleukin-6, using this capsid variant leads to increased astrogliosis in the brains of wild-type mice. Our study describes the first instance of AAV-targeted microglial gene expression leading to functional modulation of the innate immune system in mice brains. This provides the rationale for utilizing these unique capsid/promoter combinations for microglia-specific gene targeting for modeling or functional studies. PMID:27308302

  5. Comparative Study of Liver Gene Transfer With AAV Vectors Based on Natural and Engineered AAV Capsids.

    PubMed

    Wang, Lili; Bell, Peter; Somanathan, Suryanarayan; Wang, Qiang; He, Zhenning; Yu, Hongwei; McMenamin, Deirdre; Goode, Tamara; Calcedo, Roberto; Wilson, James M

    2015-12-01

    Vectors based on the clade E family member adeno-associated virus (AAV) serotype 8 have shown promise in patients with hemophilia B and have emerged as best in class for human liver gene therapies. We conducted a thorough evaluation of liver-directed gene therapy using vectors based on several natural and engineered capsids including the clade E AAVrh10 and the largely uncharacterized and phylogenically distinct AAV3B. Included in this study was a putatively superior hepatotropic capsid, AAVLK03, which is very similar to AAV3B. Vectors based on these capsids were benchmarked against AAV8 and AAV2 in a number of in vitro and in vivo model systems including C57BL/6 mice, immune-deficient mice that are partially repopulated with human hepatocytes, and nonhuman primates. Our studies in nonhuman primates and human hepatocytes demonstrated high level transduction of the clade E-derived vectors and equally high transduction with vectors based on AAV3B. In contrast to previous reports, AAVLK03 vectors are not superior to either AAV3B or AAV8. Vectors based on AAV3B should be considered for liver-directed gene therapy when administered following, or before, treatment with the serologically distinct clade E vectors.

  6. Adeno-Associated Virus Type 2 (AAV2) Capsid-Specific Cytotoxic T Lymphocytes Eliminate Only Vector-Transduced Cells Coexpressing the AAV2 Capsid In Vivo▿

    PubMed Central

    Li, Chengwen; Hirsch, Matthew; Asokan, Aravind; Zeithaml, Brian; Ma, Hong; Kafri, Tal; Samulski, R. Jude

    2007-01-01

    A recent clinical trial has suggested that recombinant adeno-associated virus (rAAV) vector transduction in humans induces a cytotoxic T-lymphocyte (CTL) response against the AAV2 capsid. To directly address the ability of AAV capsid-specific CTLs to eliminate rAAV-transduced cells in vitro and in vivo in mice, we first demonstrated that AAV2 capsid-specific CTLs could be induced by dendritic cells with endogenous AAV2 capsid expression or pulsed with AAV2 vectors. These CTLs were able to kill a cell line stable for capsid expression in vitro and also in a mouse tumor xenograft model in vivo. Parent colon carcinoma (CT26) cells transduced with a large amount of AAV2 vectors in vitro were also destroyed by these CTLs. To determine the effect of CTLs on the elimination of target cells transduced by AAV2 vectors in vivo, we carried out adoptive transfer experiments. CTLs eliminated liver cells with endogenous AAV2 capsid expression but not liver cells transduced by AAV2 vectors, regardless of the reporter genes. Similar results were obtained for rAAV2 transduction in muscle. Our data strongly suggest that AAV vector-transduced cells are rarely eliminated by AAV2 capsid-specific CTLs in vivo, even though the AAV capsid can induce a CTL response. In conclusion, AAV capsid-specific CTLs do not appear to play a role in elimination of rAAV-transduced cells in a mouse model. In addition, our data suggest that the mouse model may not mimic the immune response noted in humans and additional modification to AAV vectors may be required for further study in order to elicit a similar cellular immune response. PMID:17475652

  7. Adeno-associated virus type 2 (AAV2) capsid-specific cytotoxic T lymphocytes eliminate only vector-transduced cells coexpressing the AAV2 capsid in vivo.

    PubMed

    Li, Chengwen; Hirsch, Matthew; Asokan, Aravind; Zeithaml, Brian; Ma, Hong; Kafri, Tal; Samulski, R Jude

    2007-07-01

    A recent clinical trial has suggested that recombinant adeno-associated virus (rAAV) vector transduction in humans induces a cytotoxic T-lymphocyte (CTL) response against the AAV2 capsid. To directly address the ability of AAV capsid-specific CTLs to eliminate rAAV-transduced cells in vitro and in vivo in mice, we first demonstrated that AAV2 capsid-specific CTLs could be induced by dendritic cells with endogenous AAV2 capsid expression or pulsed with AAV2 vectors. These CTLs were able to kill a cell line stable for capsid expression in vitro and also in a mouse tumor xenograft model in vivo. Parent colon carcinoma (CT26) cells transduced with a large amount of AAV2 vectors in vitro were also destroyed by these CTLs. To determine the effect of CTLs on the elimination of target cells transduced by AAV2 vectors in vivo, we carried out adoptive transfer experiments. CTLs eliminated liver cells with endogenous AAV2 capsid expression but not liver cells transduced by AAV2 vectors, regardless of the reporter genes. Similar results were obtained for rAAV2 transduction in muscle. Our data strongly suggest that AAV vector-transduced cells are rarely eliminated by AAV2 capsid-specific CTLs in vivo, even though the AAV capsid can induce a CTL response. In conclusion, AAV capsid-specific CTLs do not appear to play a role in elimination of rAAV-transduced cells in a mouse model. In addition, our data suggest that the mouse model may not mimic the immune response noted in humans and additional modification to AAV vectors may be required for further study in order to elicit a similar cellular immune response.

  8. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    SciTech Connect

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M.

    2014-04-15

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8.

  9. Mapping the AAV Capsid Host Antibody Response toward the Development of Second Generation Gene Delivery Vectors

    PubMed Central

    Tseng, Yu-Shan; Agbandje-McKenna, Mavis

    2013-01-01

    The recombinant adeno-associated virus (rAAV) gene delivery system is entering a crucial and exciting phase with the promise of more than 20 years of intense research now realized in a number of successful human clinical trials. However, as a natural host to AAV infection, anti-AAV antibodies are prevalent in the human population. For example, ~70% of human sera samples are positive for AAV serotype 2 (AAV2). Furthermore, low levels of pre-existing neutralizing antibodies in the circulation are detrimental to the efficacy of corrective therapeutic AAV gene delivery. A key component to overcoming this obstacle is the identification of regions of the AAV capsid that participate in interactions with host immunity, especially neutralizing antibodies, to be modified for neutralization escape. Three main approaches have been utilized to map antigenic epitopes on AAV capsids. The first is directed evolution in which AAV variants are selected in the presence of monoclonal antibodies (MAbs) or pooled human sera. This results in AAV variants with mutations on important neutralizing epitopes. The second is epitope searching, achieved by peptide scanning, peptide insertion, or site-directed mutagenesis. The third, a structure biology-based approach, utilizes cryo-electron microscopy and image reconstruction of AAV capsids complexed to fragment antibodies, which are generated from MAbs, to directly visualize the epitopes. In this review, the contribution of these three approaches to the current knowledge of AAV epitopes and success in their use to create second generation vectors will be discussed. PMID:24523720

  10. Superior In vivo Transduction of Human Hepatocytes Using Engineered AAV3 Capsid.

    PubMed

    Vercauteren, Koen; Hoffman, Brad E; Zolotukhin, Irene; Keeler, Geoffrey D; Xiao, Jing W; Basner-Tschakarjan, Etiena; High, Katherine A; Ertl, Hildegund Cj; Rice, Charles M; Srivastava, Arun; de Jong, Ype P; Herzog, Roland W

    2016-06-01

    Adeno-associated viral (AAV) vectors are currently being tested in multiple clinical trials for liver-directed gene transfer to treat the bleeding disorders hemophilia A and B and metabolic disorders. The optimal viral capsid for transduction of human hepatocytes has been under active investigation, but results across various models are inconsistent. We tested in vivo transduction in "humanized" mice. Methods to quantitate percent AAV transduced human and murine hepatocytes in chimeric livers were optimized using flow cytometry and confocal microscopy with image analysis. Distinct transduction efficiencies were noted following peripheral vein administration of a self-complementary vector expressing a gfp reporter gene. An engineered AAV3 capsid with two amino acid changes, S663V+T492V (AAV3-ST), showed best efficiency for human hepatocytes (~3-times, ~8-times, and ~80-times higher than for AAV9, AAV8, and AAV5, respectively). AAV5, 8, and 9 were more efficient in transducing murine than human hepatocytes. AAV8 yielded the highest transduction rate of murine hepatocytes, which was 19-times higher than that for human hepatocytes. In summary, our data show substantial differences among AAV serotypes in transduction of human and mouse hepatocytes, are the first to report on AAV5 in humanized mice, and support the use of AAV3-based vectors for human liver gene transfer.

  11. Reprogramming Immune Response With Capsid-Optimized AAV6 Vectors for Immunotherapy of Cancer.

    PubMed

    Pandya, Munjal; Britt, Kellee; Hoffman, Brad; Ling, Chen; Aslanidi, George V

    2015-09-01

    In the current studies we generated novel capsid-optimized adeno-associated virus (AAV) serotype 6 (AAV6) vectors expressing a tumor-associated antigen, and assessed their ability to activate a protective T-cell response in an animal model. First, we showed that specific mutations in the AAV6 capsid increase the transduction efficiency of these vectors in mouse bone marrow-derived dendritic cells in vitro for approximately 5-fold compared with the wild-type (WT) AAV6 vectors. Next, we evaluated the ability of the mutant AAV6 vectors to initiate specific T-cell clone proliferation in vivo. Our data indicate that the intramuscular administration of AAV6-S663V+T492V vectors expressing ovalbumin (OVA) led to a strong activation (approximately 9%) of specific T cells in peripheral blood compared with AAV6-WT treated animals (<1%). These OVA-specific T cells have a superior killing ability against mouse prostate cancer cell line RM1 stably expressing the OVA antigen when propagated in vitro. Finally, we evaluated the ability of capsid-optimized AAV6-S663V+T492V vectors to initiate a protective anticancer immune response in vivo. Our results document the suppression of subcutaneous tumor growth in animals immunized with AAV6-S663V+T492V vectors expressing prostatic acid phosphatase (PAP) for approximately 4 weeks in comparison with 1 week and 2 weeks for the negative controls, AAV6-EGFP, and AAV6-WT-PAP treated mice, respectively. These studies suggest that successful inhibition of tumor growth in an animal model would set the stage for potential clinical application of the capsid-optimized AAV6-S663V+T492V vectors.

  12. Controlling AAV Tropism in the Nervous System with Natural and Engineered Capsids

    PubMed Central

    Castle, Michael J.; Turunen, Heikki T.; Vandenberghe, Luk H.; Wolfe, John H.

    2016-01-01

    More than one hundred naturally occurring variants of adeno-associated virus (AAV) have been identified, and this library has been further expanded by an array of techniques for modification of the viral capsid. AAV capsid variants possess unique antigenic profiles and demonstrate distinct cellular tropisms driven by differences in receptor binding. AAV capsids can be chemically modified to alter tropism, can be produced as hybrid vectors that combine the properties of multiple serotypes, and can carry peptide insertions that introduce novel receptor-binding activity. Furthermore, directed evolution of shuffled genome libraries can identify engineered variants with unique properties, and rational modification of the viral capsid can alter tropism, reduce blockage by neutralizing antibodies, or enhance transduction efficiency. This large number of AAV variants and engineered capsids provides a varied toolkit for gene delivery to the CNS and retina, with specialized vectors available for many applications, but selecting a capsid variant from the array of available vectors can be difficult. This chapter describes the unique properties of a range of AAV variants and engineered capsids, and provides a guide for selecting the appropriate vector for specific applications in the CNS and retina. PMID:26611584

  13. Engineering the AAV capsid to optimize vector-host-interactions.

    PubMed

    Büning, Hildegard; Huber, Anke; Zhang, Liang; Meumann, Nadja; Hacker, Ulrich

    2015-10-01

    Adeno-associated viral (AAV) vectors are the most widely used delivery system for in vivo gene therapy. Vectors developed from natural AAV isolates achieved clinical benefit for a number of patients suffering from monogenetic disorders. However, high vector doses were required and the presence of pre-existing neutralizing antibodies precluded a number of patients from participation. Further challenges are related to AAV's tropism that lacks cell type selectivity resulting in off-target transduction. Conversely, specific cell types representing important targets for gene therapy like stem cells or endothelial cells show low permissiveness. To overcome these limitations, elegant rational design- as well as directed evolution-based strategies were developed to optimize various steps of AAV's host interaction. These efforts resulted in next generation vectors with enhanced capabilities, that is increased efficiency of cell transduction, targeted transduction of previously non-permissive cell types, escape from antibody neutralization and off-target free in vivo delivery of vector genomes. These important achievements are expected to improve current and pave the way towards novel AAV-based applications in gene therapy and regenerative medicine.

  14. Successful target cell transduction of capsid-engineered rAAV vectors requires clathrin-dependent endocytosis.

    PubMed

    Uhrig, S; Coutelle, O; Wiehe, T; Perabo, L; Hallek, M; Büning, H

    2012-02-01

    Cell surface targeting of recombinant adeno-associated virus (rAAV) vectors is an attractive strategy to modify AAV's natural tropism. As modification of the capsid surface is likely to affect the mechanism of vector internalization and consequently the vector's intracellular fate, we investigated early steps in cell transduction of rAAV capsid insertion mutants. Mutants displaying peptides with neutral overall charge at position 587 transduced cells independently of AAV2's primary receptor heparan sulfate proteoglycan (HSPG), whereas mutants carrying positively charged insertions were capable of HSPG binding with affinities correlating with their net positive charge. Whereas rAAV2 is internalized via an HSPG- and clathrin-dependent pathway, HSPG-binding mutants used a clathrin- and caveolin-independent mechanism. Surprisingly, although this pathway was as efficient in mediating vector entry as the one used by rAAV2, successful cell transduction was hampered at a post-entry step, presumably caused by inefficient endosomal escape. In contrast, HSPG-independent, clathrin-dependent internalization used by non-HSPG-binding mutants correlated with efficient nuclear delivery of vector genomes and robust transgene expression. These findings indicate that cell surface targeting strategies should direct uptake of rAAV targeting vectors to clathrin-mediated endocytosis, the naturally evolved entry route of AAV, to promote successful intracellular processing and re-targeting of rAAV's tropism.

  15. In Vivo Selection Yields AAV-B1 Capsid for Central Nervous System and Muscle Gene Therapy.

    PubMed

    Choudhury, Sourav R; Fitzpatrick, Zachary; Harris, Anne F; Maitland, Stacy A; Ferreira, Jennifer S; Zhang, Yuanfan; Ma, Shan; Sharma, Rohit B; Gray-Edwards, Heather L; Johnson, Jacob A; Johnson, Aime K; Alonso, Laura C; Punzo, Claudio; Wagner, Kathryn R; Maguire, Casey A; Kotin, Robert M; Martin, Douglas R; Sena-Esteves, Miguel

    2016-08-01

    Adeno-associated viral (AAV) vectors have shown promise as a platform for gene therapy of neurological disorders. Achieving global gene delivery to the central nervous system (CNS) is key for development of effective therapies for many of these diseases. Here we report the isolation of a novel CNS tropic AAV capsid, AAV-B1, after a single round of in vivo selection from an AAV capsid library. Systemic injection of AAV-B1 vector in adult mice and cat resulted in widespread gene transfer throughout the CNS with transduction of multiple neuronal subpopulations. In addition, AAV-B1 transduces muscle, β-cells, pulmonary alveoli, and retinal vasculature at high efficiency. This vector is more efficient than AAV9 for gene delivery to mouse brain, spinal cord, muscle, pancreas, and lung. Together with reduced sensitivity to neutralization by antibodies in pooled human sera, the broad transduction profile of AAV-B1 represents an important improvement over AAV9 for CNS gene therapy. PMID:27117222

  16. Gene therapy using self-complementary Y733F capsid mutant AAV2/8 restores vision in a model of early onset Leber congenital amaurosis.

    PubMed

    Ku, Cristy A; Chiodo, Vince A; Boye, Sanford L; Goldberg, Andrew F X; Li, Tiansen; Hauswirth, William W; Ramamurthy, Visvanathan

    2011-12-01

    Defects in the photoreceptor-specific gene aryl hydrocarbon receptor interacting protein-like 1 (Aipl1) are associated with Leber congenital amaurosis (LCA), a childhood blinding disease with early-onset retinal degeneration and vision loss. Furthermore, Aipl1 defects are characterized at the most severe end of the LCA spectrum. The rapid photoreceptor degeneration and vision loss observed in the LCA patient population are mimicked in a mouse model lacking AIPL1. Using this model, we evaluated if gene replacement therapy using recent advancements in adeno-associated viral vectors (AAV) provides advantages in preventing rapid retinal degeneration. Specifically, we demonstrated that the novel self-complementary Y733F capsid mutant AAV2/8 (sc-Y733F-AAV) provided greater preservation of photoreceptors and functional vision in Aipl1 null mice compared with single-stranded AAV2/8. The benefits of sc-Y733F-AAV were evident following viral administration during the active phase of retinal degeneration, where only sc-Y733F-AAV treatment achieved functional vision rescue. This result was likely due to higher and earlier onset of Aipl1 expression. Based on our studies, we conclude that the sc-Y733F-AAV2/8 viral vector, to date, achieves the best rescue for rapid retinal degeneration in Aipl1 null mice. Our results provide important considerations for viral vectors to be used in future gene therapy clinical trials targeting a wider severity spectrum of inherited retinal dystrophies.

  17. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression

    SciTech Connect

    Zhong Li; Li Baozheng; Jayandharan, Giridhararao; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Herzog, Roland W.

    2008-11-25

    We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, their transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by {approx} 68% and {approx} 74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which results from ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy.

  18. Theoretical studies of viral capsid proteins.

    PubMed

    Phelps, D K; Speelman, B; Post, C B

    2000-04-01

    Recent results in structural biology and increases in computer power have prompted initial theoretical studies on capsids of nonenveloped icosahedral viruses. The macromolecular assembly of 60 to 180 protein copies into a protein shell results in a structure of considerable size for molecular dynamics simulations. Nonetheless, progress has been made in examining these capsid assemblies from molecular dynamics calculations and kinetic models. The goals of these studies are to understand capsid function and structural properties, including quarternary structural stability, effects of antiviral compounds that bind the capsid and the self-assembly process. The insight that can be gained from the detailed information provided by simulations is demonstrated in studies of human rhinovirus; an entropic basis for the antiviral activity of hydrophobic compounds, predicted from calculated compressibility values, has been corroborated by experimental measurements on poliovirus. PMID:10753813

  19. Nonstructural Protein NP1 of Human Bocavirus 1 Plays a Critical Role in the Expression of Viral Capsid Proteins

    PubMed Central

    Zou, Wei; Cheng, Fang; Shen, Weiran; Engelhardt, John F.; Yan, Ziying

    2016-01-01

    ABSTRACT A novel chimeric parvoviral vector, rAAV2/HBoV1, in which the recombinant adeno-associated virus 2 (rAAV2) genome is pseudopackaged by the human bocavirus 1 (HBoV1) capsid, has been shown to be highly efficient in gene delivery to human airway epithelia (Z. Yan et al., Mol Ther 21:2181–2194, 2013, http://dx.doi.org/10.1038/mt.2013.92). In this vector production system, we used an HBoV1 packaging plasmid, pHBoV1NSCap, that harbors HBoV1 nonstructural protein (NS) and capsid protein (Cap) genes. In order to simplify this packaging plasmid, we investigated the involvement of the HBoV1 NS proteins in capsid protein expression. We found that NP1, a small NS protein encoded by the middle open reading frame, is required for the expression of the viral capsid proteins (VP1, VP2, and VP3). We also found that the other NS proteins (NS1, NS2, NS3, and NS4) are not required for the expression of VP proteins. We performed systematic analyses of the HBoV1 mRNAs transcribed from the pHBoV1NSCap packaging plasmid and its derivatives in HEK 293 cells. Mechanistically, we found that NP1 is required for both the splicing and the read-through of the proximal polyadenylation site of the HBoV1 precursor mRNA, essential functions for the maturation of capsid protein-encoding mRNA. Thus, our study provides a unique example of how a small viral nonstructural protein facilitates the multifaceted regulation of capsid gene expression. IMPORTANCE A novel chimeric parvoviral vector, rAAV2/HBoV1, expressing a full-length cystic fibrosis transmembrane conductance regulator (CFTR) gene, is capable of correcting CFTR-dependent chloride transport in cystic fibrosis human airway epithelium. Previously, an HBoV1 nonstructural and capsid protein-expressing plasmid, pHBoV1NSCap, was used to package the rAAV2/HBoV1 vector, but yields remained low. In this study, we demonstrated that the nonstructural protein NP1 is required for the expression of capsid proteins. However, we found that the

  20. Adeno-associated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integration site in human DNA.

    PubMed Central

    Weitzman, M D; Kyöstiö, S R; Kotin, R M; Owens, R A

    1994-01-01

    AAV is unique among eukaryotic viruses in the ability of its DNA to integrate preferentially into a specific region of the human genome. Understanding AAV integration may aid in developing gene therapy systems with predictable integration sites. Using a gel mobility-shift assay, we have identified a DNA sequence within the AAV integration locus on human chromosome 19 which is specifically bound by the AAV Rep78 and Rep68 proteins. This Rep recognition sequence is a GCTC repeating motif very similar to sequences within the inverted terminal repeats of the AAV genome which are also bound by Rep78 and Rep68. Cloned oligonucleotides containing the recognition sequence can direct specific binding by Rep proteins. Binding assays with mutant Rep proteins show that the amino-terminal portion of Rep78 and Rep68 can direct binding to either the AAV terminal repeat hairpin DNA or chromosome 19. This human genomic DNA can be complexed with AAV DNA by Rep proteins as demonstrated by a dual-label (32P/biotin) assay. These results suggest a role for Rep in targeting viral integration. Images PMID:8016070

  1. Modeling virus capsids and their protein binding -- the search for weak regions within the HIV capsid

    NASA Astrophysics Data System (ADS)

    Sankey, Otto; Benson, Daryn

    2010-10-01

    Viruses remain a threat to the health of humans worldwide with 33 million infected with AIDS. Viruses are ubiquitous infecting animals, plants, and bacteria. Each virus infects in its own unique manner making the problem seem intractable. However, some general physical steps apply to many viruses and the application of basic physical modeling can potentially have great impact. The aim of this theoretical study is to investigate the stability of the HIV viral capsid (protein shell). The structural shell can be compromised by physical probes such as pulsed laser light. But what are the weakest regions of the capsid so that we can begin to understand vulnerabilities of these deadly materials? The atomic structure of HIV capsids is not precisely known and we begin by describing our work to model the capsid structure. Next we describe a course grained model to investigate protein interactions within the capsid.

  2. Viral Capsid Proteins Are Segregated in Structural Fold Space

    PubMed Central

    Cheng, Shanshan; Brooks, Charles L.

    2013-01-01

    Viral capsid proteins assemble into large, symmetrical architectures that are not found in complexes formed by their cellular counterparts. Given the prevalence of the signature jelly-roll topology in viral capsid proteins, we are interested in whether these functionally unique capsid proteins are also structurally unique in terms of folds. To explore this question, we applied a structure-alignment based clustering of all protein chains in VIPERdb filtered at 40% sequence identity to identify distinct capsid folds, and compared the cluster medoids with a non-redundant subset of protein domains in the SCOP database, not including the viral capsid entries. This comparison, using Template Modeling (TM)-score, identified 2078 structural “relatives” of capsid proteins from the non-capsid set, covering altogether 210 folds following the definition in SCOP. The statistical significance of the 210 folds shared by two sets of the same sizes, estimated from 10,000 permutation tests, is less than 0.0001, which is an upper bound on the p-value. We thus conclude that viral capsid proteins are segregated in structural fold space. Our result provides novel insight on how structural folds of capsid proteins, as opposed to their surface chemistry, might be constrained during evolution by requirement of the assembled cage-like architecture. Also importantly, our work highlights a guiding principle for virus-based nanoplatform design in a wide range of biomedical applications and materials science. PMID:23408879

  3. Rotavirus Capsid Protein VP5* Permeabilizes Membranes

    PubMed Central

    Denisova, Evgeniya; Dowling, William; LaMonica, Rachel; Shaw, Robert; Scarlata, Suzanne; Ruggeri, Franco; Mackow, Erich R.

    1999-01-01

    Proteolytic cleavage of the VP4 outer capsid spike protein into VP8* and VP5* proteins is required for rotavirus infectivity and for rotavirus-induced membrane permeability. In this study we addressed the function of the VP5* cleavage fragment in permeabilizing membranes. Expressed VP5* and truncated VP5* proteins were purified by nickel affinity chromatography and assayed for their ability to permeabilize large unilamellar vesicles (LUVs) preloaded with carboxyfluorescein (CF). VP5* and VP5* truncations, but not VP4 or VP8*, permeabilized LUVs as measured by fluorescence dequenching of released CF. Similar to virus-induced CF release, VP5*-induced CF release was concentration and temperature dependent, with a pH optimum of 7.35 at 37°C, but independent of the presence of divalent cations or cholesterol. VP5*-induced permeability was completely inhibited by VP5*-specific neutralizing monoclonal antibodies (2G4, M2, or M7) which recognize conformational epitopes on VP5* but was not inhibited by VP8*-specific neutralizing antibodies. In addition, N-terminal and C-terminal VP5* truncations including residues 265 to 474 are capable of permeabilizing LUVs. These findings demonstrate that VP5* permeabilizes membranes in the absence of other rotavirus proteins and that membrane-permeabilizing VP5* truncations contain the putative fusion region within predicted virion surface domains. The ability of recombinant expressed VP5* to permeabilize membranes should permit us to functionally define requirements for VP5*-membrane interactions. These findings indicate that VP5* is a specific membrane-permeabilizing capsid protein which is likely to play a role in the cellular entry of rotaviruses. PMID:10074166

  4. Modeling virus capsids and their protein binding -- the search for weak regions within the HIV capsid

    NASA Astrophysics Data System (ADS)

    Sankey, Otto F.; Benson, Daryn E.; Gilbert, C. Michael

    2011-03-01

    Viruses remain a threat to the health of humans worldwide with 33 million infected with HIV. Viruses are ubiquitous, infecting animals, plants, and bacteria. Each virus infects in its own unique manner making the problem seem intractable. However, some general physical steps apply to many viruses and the application of basic physical modeling can potentially have great impact. The aim of this theoretical study is to investigate the stability of the HIV viral capsid (protein shell). The structural shell can be compromised by physical probes such as pulsed laser light [1,2]. But, what are the weakest regions of the capsid so that we can begin to understand vulnerabilities of these deadly materials? The atomic structure of HIV capsids is not precisely known and we begin by describing our work to model the capsid structure. We have constructed three representative viral capsids of different CA protein number -- HIV-900, HIV-1260 and HIV-1740. The complexity of the assembly requires a course grained model to investigate protein interactions within the capsid which we will describe.

  5. Evidence for pH-Dependent Protease Activity in the Adeno-Associated Virus Capsid

    PubMed Central

    Salganik, Maxim; Venkatakrishnan, Balasubramanian; Bennett, Antonette; Lins, Bridget; Yarbrough, Joseph; Agbandje-McKenna, Mavis

    2012-01-01

    Incubation of highly purified adeno-associated virus (AAV) capsids in vitro at pH 5.5 induced significant autocleavage of capsid proteins at several amino acid positions. No autocleavage was seen at pH 7.5. Examination of other AAV serotypes showed at least two different pH-induced cleavage patterns, suggesting that different serotypes have evolved alternative protease cleavage sites. In contrast, incubation of AAV serotypes with an external protease substrate showed that purified AAV capsid preparations have robust protease activity at neutral pH but not at pH 5.5, opposite to what is seen with capsid protein autocleavage. Several lines of evidence suggested that protease activity is inherent in AAV capsids and is not due to contaminating proteins. Control virus preparations showed no protease activity on external substrates, and filtrates of AAV virus preparations also showed no protease activity contaminating the capsids. Further, N-terminal Edman sequencing identified unique autocleavage sites in AAV1 and AAV9, and mutagenesis of amino acids adjacent to these sites eliminated cleavage. Finally, mutation of an amino acid in AAV2 (E563A) that is in a conserved pH-sensitive structural region eliminated protease activity on an external substrate but did not seem to affect autocleavage. Taken together, our data suggested that AAV capsids have one or more protease active sites that are sensitive to pH induction. Further, it appears that acidic pHs comparable to those seen in late endosomes induce a structural change in the capsid that induces autolytic protease activity. The pH-dependent protease activity may have a role in viral infection. PMID:22915820

  6. A Comprehensive RNA Sequencing Analysis of the Adeno-Associated Virus (AAV) Type 2 Transcriptome Reveals Novel AAV Transcripts, Splice Variants, and Derived Proteins

    PubMed Central

    Stutika, Catrin; Gogol-Döring, Andreas; Botschen, Laura; Mietzsch, Mario; Weger, Stefan; Feldkamp, Mirjam; Chen, Wei

    2015-01-01

    ABSTRACT Adeno-associated virus (AAV) is recognized for its bipartite life cycle with productive replication dependent on coinfection with adenovirus (Ad) and AAV latency being established in the absence of a helper virus. The shift from latent to Ad-dependent AAV replication is mostly regulated at the transcriptional level. The current AAV transcription map displays highly expressed transcripts as found upon coinfection with Ad. So far, AAV transcripts have only been characterized on the plus strand of the AAV single-stranded DNA genome. The AAV minus strand is assumed not to be transcribed. Here, we apply Illumina-based RNA sequencing (RNA-Seq) to characterize the entire AAV2 transcriptome in the absence or presence of Ad. We find known and identify novel AAV transcripts, including additional splice variants, the most abundant of which leads to expression of a novel 18-kDa Rep/VP fusion protein. Furthermore, we identify for the first time transcription on the AAV minus strand with clustered reads upstream of the p5 promoter, confirmed by 5ˈ rapid amplification of cDNA ends and RNase protection assays. The p5 promoter displays considerable activity in both directions, a finding indicative of divergent transcription. Upon infection with AAV alone, low-level transcription of both AAV strands is detectable and is strongly stimulated upon coinfection with Ad. IMPORTANCE Next-generation sequencing (NGS) allows unbiased genome-wide analyses of transcription profiles, used here for an in depth analysis of the AAV2 transcriptome during latency and productive infection. RNA-Seq analysis led to the discovery of novel AAV transcripts and splice variants, including a derived, novel 18-kDa Rep/VP fusion protein. Unexpectedly, transcription from the AAV minus strand was discovered, indicative of divergent transcription from the p5 promoter. This finding opens the door for novel concepts of the switch between AAV latency and productive replication. In the absence of a suitable

  7. Comparative Analysis of Adeno-Associated Virus Capsid Stability and Dynamics

    PubMed Central

    Rayaprolu, Vamseedhar; Kruse, Shannon; Kant, Ravi; Venkatakrishnan, Balasubramanian; Movahed, Navid; Brooke, Dewey; Lins, Bridget; Bennett, Antonette; Potter, Timothy; McKenna, Robert; Agbandje-McKenna, Mavis

    2013-01-01

    Icosahedral viral capsids are obligated to perform a thermodynamic balancing act. Capsids must be stable enough to protect the genome until a suitable host cell is encountered yet be poised to bind receptor, initiate cell entry, navigate the cellular milieu, and release their genome in the appropriate replication compartment. In this study, serotypes of adeno-associated virus (AAV), AAV1, AAV2, AAV5, and AAV8, were compared with respect to the physical properties of their capsids that influence thermodynamic stability. Thermal stability measurements using differential scanning fluorimetry, differential scanning calorimetry, and electron microscopy showed that capsid melting temperatures differed by more than 20°C between the least and most stable serotypes, AAV2 and AAV5, respectively. Limited proteolysis and peptide mass mapping of intact particles were used to investigate capsid protein dynamics. Active hot spots mapped to the region surrounding the 3-fold axis of symmetry for all serotypes. Cleavages also mapped to the unique region of VP1 which contains a phospholipase domain, indicating transient exposure on the surface of the capsid. Data on the biophysical properties of the different AAV serotypes are important for understanding cellular trafficking and is critical to their production, storage, and use for gene therapy. The distinct differences reported here provide direction for future studies on entry and vector production. PMID:24067976

  8. Comparative analysis of adeno-associated virus capsid stability and dynamics.

    PubMed

    Rayaprolu, Vamseedhar; Kruse, Shannon; Kant, Ravi; Venkatakrishnan, Balasubramanian; Movahed, Navid; Brooke, Dewey; Lins, Bridget; Bennett, Antonette; Potter, Timothy; McKenna, Robert; Agbandje-McKenna, Mavis; Bothner, Brian

    2013-12-01

    Icosahedral viral capsids are obligated to perform a thermodynamic balancing act. Capsids must be stable enough to protect the genome until a suitable host cell is encountered yet be poised to bind receptor, initiate cell entry, navigate the cellular milieu, and release their genome in the appropriate replication compartment. In this study, serotypes of adeno-associated virus (AAV), AAV1, AAV2, AAV5, and AAV8, were compared with respect to the physical properties of their capsids that influence thermodynamic stability. Thermal stability measurements using differential scanning fluorimetry, differential scanning calorimetry, and electron microscopy showed that capsid melting temperatures differed by more than 20°C between the least and most stable serotypes, AAV2 and AAV5, respectively. Limited proteolysis and peptide mass mapping of intact particles were used to investigate capsid protein dynamics. Active hot spots mapped to the region surrounding the 3-fold axis of symmetry for all serotypes. Cleavages also mapped to the unique region of VP1 which contains a phospholipase domain, indicating transient exposure on the surface of the capsid. Data on the biophysical properties of the different AAV serotypes are important for understanding cellular trafficking and is critical to their production, storage, and use for gene therapy. The distinct differences reported here provide direction for future studies on entry and vector production. PMID:24067976

  9. SCHEMA computational design of virus capsid chimeras: calibrating how genome packaging, protection, and transduction correlate with calculated structural disruption.

    PubMed

    Ho, Michelle L; Adler, Benjamin A; Torre, Michael L; Silberg, Jonathan J; Suh, Junghae

    2013-12-20

    Adeno-associated virus (AAV) recombination can result in chimeric capsid protein subunits whose ability to assemble into an oligomeric capsid, package a genome, and transduce cells depends on the inheritance of sequence from different AAV parents. To develop quantitative design principles for guiding site-directed recombination of AAV capsids, we have examined how capsid structural perturbations predicted by the SCHEMA algorithm correlate with experimental measurements of disruption in seventeen chimeric capsid proteins. In our small chimera population, created by recombining AAV serotypes 2 and 4, we found that protection of viral genomes and cellular transduction were inversely related to calculated disruption of the capsid structure. Interestingly, however, we did not observe a correlation between genome packaging and calculated structural disruption; a majority of the chimeric capsid proteins formed at least partially assembled capsids and more than half packaged genomes, including those with the highest SCHEMA disruption. These results suggest that the sequence space accessed by recombination of divergent AAV serotypes is rich in capsid chimeras that assemble into 60-mer capsids and package viral genomes. Overall, the SCHEMA algorithm may be useful for delineating quantitative design principles to guide the creation of libraries enriched in genome-protecting virus nanoparticles that can effectively transduce cells. Such improvements to the virus design process may help advance not only gene therapy applications but also other bionanotechnologies dependent upon the development of viruses with new sequences and functions.

  10. A protein with simultaneous capsid scaffolding and dsRNA-binding activities enhances the birnavirus capsid mechanical stability

    PubMed Central

    Mertens, Johann; Casado, Santiago; Mata, Carlos P.; Hernando-Pérez, Mercedes; de Pablo, Pedro J.; Carrascosa, José L.; Castón, José R.

    2015-01-01

    Viral capsids are metastable structures that perform many essential processes; they also act as robust cages during the extracellular phase. Viruses can use multifunctional proteins to optimize resources (e.g., VP3 in avian infectious bursal disease virus, IBDV). The IBDV genome is organized as ribonucleoproteins (RNP) of dsRNA with VP3, which also acts as a scaffold during capsid assembly. We characterized mechanical properties of IBDV populations with different RNP content (ranging from none to four RNP). The IBDV population with the greatest RNP number (and best fitness) showed greatest capsid rigidity. When bound to dsRNA, VP3 reinforces virus stiffness. These contacts involve interactions with capsid structural subunits that differ from the initial interactions during capsid assembly. Our results suggest that RNP dimers are the basic stabilization units of the virion, provide better understanding of multifunctional proteins, and highlight the duality of RNP as capsid-stabilizing and genetic information platforms. PMID:26336920

  11. Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength

    NASA Astrophysics Data System (ADS)

    Michel, J. P.; Ivanovska, I. L.; Gibbons, M. M.; Klug, W. S.; Knobler, C. M.; Wuite, G. J. L.; Schmidt, C. F.

    2006-04-01

    The elastic properties of capsids of the cowpea chlorotic mottle virus have been examined at pH 4.8 by nanoindentation measurements with an atomic force microscope. Studies have been carried out on WT capsids, both empty and containing the RNA genome, and on full capsids of a salt-stable mutant and empty capsids of the subE mutant. Full capsids resisted indentation more than empty capsids, but all of the capsids were highly elastic. There was an initial reversible linear regime that persisted up to indentations varying between 20% and 30% of the diameter and applied forces of 0.6-1.0 nN; it was followed by a steep drop in force that is associated with irreversible deformation. A single point mutation in the capsid protein increased the capsid stiffness. The experiments are compared with calculations by finite element analysis of the deformation of a homogeneous elastic thick shell. These calculations capture the features of the reversible indentation region and allow Young's moduli and relative strengths to be estimated for the empty capsids. atomic force microscopy | cowpea chlorotic mottle virus | finite element analysis | biomechanics

  12. Analyzing Cellular Immunity to AAV in a Canine Model Using ELISpot Assay

    PubMed Central

    Wang, Zejing; Storb, Rainer; Tapscott, Stephen J; Riddell, Stanley

    2015-01-01

    Adeno-associated viral vector (AAV) mediated gene transfer represents a promising gene replacement strategy for treating various genetic diseases. One obstacle in using viral-derived vectors for in vivo gene delivery is the development of host immune responses to the vector. Recent studies have demonstrated cellular immune responses specific to capsid proteins of various AAV serotypes in animal models and in human trials for different diseases. We developed a canine specific ELISpot assay to detect such immunity in dogs received AAV treatment. Here, we describe in detail the use of a constructed panel of overlapping peptides spanning the entire VP1 sequence of AAV capsid protein to detect specific T cell responses in peripheral blood in dogs following intra-muscular injection of AAV. This high-throughput method allows the identification of T cell epitopes without the need for large cell numbers and the need for MHC matched cell lines. PMID:21956501

  13. Calibrating elastic parameters from molecular dynamics simulations of capsid proteins

    NASA Astrophysics Data System (ADS)

    Hicks, Stephen; Henley, Christopher

    2008-03-01

    Virus capsids are modeled with elastic network models in which a handful of parameters determine transitions in assembly [1] and morphology [2]. We introduce an approach to compute these parameters from the microscopic structure of the proteins involved. We consider each protein as one or a few rigid bodies with very general interactions, which we parameterize by fitting the simulated equilibrium fluctuations (relative translations and rotations) of a pair of proteins (or fragments) to a 6-dimensional Gaussian. We can then compose these generalized springs into the global capsid structure to determine the continuum elastic parameters. We demonstrate our approach on HIV capsid protein and compare our results with the observed lattice structure (from cryo-EM [3] and AFM indentation studies). [1] R. Zandi et al, PNAS 101 (2004) 15556. [2] J. Lidmar, L. Mirny, and D. R. Nelson, PRE 68 (2003) 051910. [3] B. K. Ganser-Pornillos et al, Cell 131 (2007) 70.

  14. CD8+ T cell recognition of epitopes within the capsid of adeno-associated virus 8-based gene transfer vectors depends on vectors' genome.

    PubMed

    Wu, Te-Lang; Li, Hua; Faust, Susan M; Chi, Emily; Zhou, Shangzhen; Wright, Fraser; High, Katherine A; Ertl, Hildegund C J

    2014-01-01

    Self-complementary adeno-associated viral (AAV) vectors expressing human factor IX (hF.IX) have achieved transient or sustained correction of hemophilia B in human volunteers. High doses of AAV2 or AAV8 vectors delivered to the liver caused in several patients an increase in transaminases accompanied by a rise in AAV capsid-specific T cells and a decrease in circulating hF.IX levels suggesting immune-mediated destruction of vector-transduced cells. Kinetics of these adverse events differed in patients receiving AAV2 or AAV8 vectors causing rise in transaminases at 3 versus 8 weeks after vector injection, respectively. To test if CD8+ T cells to AAV8 vectors, which are similar to AAV2 vectors are fully-gutted vectors and thereby fail to encode structural viral proteins, could cause damage at this late time point, we tested in a series of mouse studies how long major histocompatibility (MHC) class I epitopes within AAV8 capsid can be presented to CD8+ T cells. Our results clearly show that depending on the vectors' genome, CD8+ T cells can detect such epitopes on AAV8's capsid for up to 6 months indicating that the capsid of AAV8 degrades slowly in mice.

  15. AAV Vectors for FRET-Based Analysis of Protein-Protein Interactions in Photoreceptor Outer Segments

    PubMed Central

    Becirovic, Elvir; Böhm, Sybille; Nguyen, Ong N. P.; Riedmayr, Lisa M.; Hammelmann, Verena; Schön, Christian; Butz, Elisabeth S.; Wahl-Schott, Christian; Biel, Martin; Michalakis, Stylianos

    2016-01-01

    Fluorescence resonance energy transfer (FRET) is a powerful method for the detection and quantification of stationary and dynamic protein-protein interactions. Technical limitations have hampered systematic in vivo FRET experiments to study protein-protein interactions in their native environment. Here, we describe a rapid and robust protocol that combines adeno-associated virus (AAV) vector-mediated in vivo delivery of genetically encoded FRET partners with ex vivo FRET measurements. The method was established on acutely isolated outer segments of murine rod and cone photoreceptors and relies on the high co-transduction efficiency of retinal photoreceptors by co-delivered AAV vectors. The procedure can be used for the systematic analysis of protein-protein interactions of wild type or mutant outer segment proteins in their native environment. Conclusively, our protocol can help to characterize the physiological and pathophysiological relevance of photoreceptor specific proteins and, in principle, should also be transferable to other cell types. PMID:27516733

  16. AAV Vectors for FRET-Based Analysis of Protein-Protein Interactions in Photoreceptor Outer Segments.

    PubMed

    Becirovic, Elvir; Böhm, Sybille; Nguyen, Ong N P; Riedmayr, Lisa M; Hammelmann, Verena; Schön, Christian; Butz, Elisabeth S; Wahl-Schott, Christian; Biel, Martin; Michalakis, Stylianos

    2016-01-01

    Fluorescence resonance energy transfer (FRET) is a powerful method for the detection and quantification of stationary and dynamic protein-protein interactions. Technical limitations have hampered systematic in vivo FRET experiments to study protein-protein interactions in their native environment. Here, we describe a rapid and robust protocol that combines adeno-associated virus (AAV) vector-mediated in vivo delivery of genetically encoded FRET partners with ex vivo FRET measurements. The method was established on acutely isolated outer segments of murine rod and cone photoreceptors and relies on the high co-transduction efficiency of retinal photoreceptors by co-delivered AAV vectors. The procedure can be used for the systematic analysis of protein-protein interactions of wild type or mutant outer segment proteins in their native environment. Conclusively, our protocol can help to characterize the physiological and pathophysiological relevance of photoreceptor specific proteins and, in principle, should also be transferable to other cell types. PMID:27516733

  17. Structure of the Small Outer Capsid Protein, Soc: A Clamp for Stabilizing Capsids of T4-like Phages

    SciTech Connect

    Qin, Li; Fokine, Andrei; O'Donnell, Erin; Rao, Venigalla B.; Rossmann, Michael G.

    2010-07-22

    Many viruses need to stabilize their capsid structure against DNA pressure and for survival in hostile environments. The 9-kDa outer capsid protein (Soc) of bacteriophage T4, which stabilizes the virus, attaches to the capsid during the final stage of maturation. There are 870 Soc molecules that act as a 'glue' between neighboring hexameric capsomers, forming a 'cage' that stabilizes the T4 capsid against extremes of pH and temperature. Here we report a 1.9 {angstrom} resolution crystal structure of Soc from the bacteriophage RB69, a close relative of T4. The RB69 crystal structure and a homology model of T4 Soc were fitted into the cryoelectron microscopy reconstruction of the T4 capsid. This established the region of Soc that interacts with the major capsid protein and suggested a mechanism, verified by extensive mutational and biochemical studies, for stabilization of the capsid in which the Soc trimers act as clamps between neighboring capsomers. The results demonstrate the factors involved in stabilizing not only the capsids of T4-like bacteriophages but also many other virus capsids.

  18. Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles.

    PubMed Central

    Chiorini, J A; Yang, L; Liu, Y; Safer, B; Kotin, R M

    1997-01-01

    We have cloned and characterized the full-length genome of adeno-associated virus type 4 (AAV4). The genome of AAV4 is 4,767 nucleotides in length and contains an expanded p5 promoter region compared to AAV2 and AAV3. Within the inverted terminal repeat (ITR), several base changes were identified with respect to AAV2. However, these changes did not affect the ability of this region to fold into a hairpin structure. Within the ITR, the terminal resolution site and Rep binding sites were conserved; however, the Rep binding site was expanded from three GAGC repeats to four. The Rep gene product of AAV4 shows greater than 90% homology to the Rep products of serotypes 2 and 3, with none of the changes occurring in regions which had previously been shown to affect the known functions of Rep68 or Rep78. Most of the differences in the capsid proteins lie in regions which are thought to be on the exterior surface of the viral capsid. It is these unique regions which are most likely to be responsible for the lack of cross-reacting antibodies and the altered tissue tropism compared to AAV2. The results of our studies, performed with a recombinant version of AAV4 carrying a lacZ reporter gene, suggest that AAV4 can transduce human, monkey, and rat cells. Furthermore, comparison of transduction efficiencies in a number of cell lines, competition cotransduction experiments, and the effect of trypsin on transduction efficiency all suggest that the cellular receptor for AAV4 is distinct from that of AAV2. PMID:9261407

  19. RNA-binding region of Macrobrachium rosenbergii nodavirus capsid protein.

    PubMed

    Goh, Zee Hong; Mohd, Nur Azmina Syakirin; Tan, Soon Guan; Bhassu, Subha; Tan, Wen Siang

    2014-09-01

    White tail disease (WTD) kills prawn larvae and causes drastic losses to the freshwater prawn (Macrobrachium rosenbergii) industry. The main causative agent of WTD is Macrobrachium rosenbergii nodavirus (MrNV). The N-terminal end of the MrNV capsid protein is very rich in positively charged amino acids and is postulated to interact with RNA molecules. N-terminal and internal deletion mutagenesis revealed that the RNA-binding region is located at positions 20-29, where 80 % of amino acids are positively charged. Substitution of all these positively charged residues with alanine abolished the RNA binding. Mutants without the RNA-binding region still assembled into virus-like particles, suggesting that this region is not a part of the capsid assembly domain. This paper is, to the best of our knowledge, the first to report the specific RNA-binding region of MrNV capsid protein. PMID:24878641

  20. RNA-binding region of Macrobrachium rosenbergii nodavirus capsid protein.

    PubMed

    Goh, Zee Hong; Mohd, Nur Azmina Syakirin; Tan, Soon Guan; Bhassu, Subha; Tan, Wen Siang

    2014-09-01

    White tail disease (WTD) kills prawn larvae and causes drastic losses to the freshwater prawn (Macrobrachium rosenbergii) industry. The main causative agent of WTD is Macrobrachium rosenbergii nodavirus (MrNV). The N-terminal end of the MrNV capsid protein is very rich in positively charged amino acids and is postulated to interact with RNA molecules. N-terminal and internal deletion mutagenesis revealed that the RNA-binding region is located at positions 20-29, where 80 % of amino acids are positively charged. Substitution of all these positively charged residues with alanine abolished the RNA binding. Mutants without the RNA-binding region still assembled into virus-like particles, suggesting that this region is not a part of the capsid assembly domain. This paper is, to the best of our knowledge, the first to report the specific RNA-binding region of MrNV capsid protein.

  1. Elimination of contaminating cap genes in AAV vector virions reduces immune responses and improves transgene expression in a canine gene therapy model.

    PubMed

    Wang, Z; Halbert, C L; Lee, D; Butts, T; Tapscott, S J; Storb, R; Miller, A D

    2014-04-01

    Animal and human gene therapy studies utilizing AAV vectors have shown that immune responses to AAV capsid proteins can severely limit transgene expression. The main source of capsid antigen is that associated with the AAV vectors, which can be reduced by stringent vector purification. A second source of AAV capsid proteins is that expressed from cap genes aberrantly packaged into AAV virions during vector production. This antigen source can be eliminated by the use of a cap gene that is too large to be incorporated into an AAV capsid, such as a cap gene containing a large intron (captron gene). Here, we investigated the effects of elimination of cap gene transfer and of vector purification by CsCl gradient centrifugation on AAV vector immunogenicity and expression following intramuscular injection in dogs. We found that both approaches reduced vector immunogenicity and that combining the two produced the lowest immune responses and highest transgene expression. This combined approach enabled the use of a relatively mild immunosuppressive regimen to promote robust micro-dystrophin gene expression in Duchenne muscular dystrophy-affected dogs. Our study shows the importance of minimizing AAV cap gene impurities and indicates that this improvement in AAV vector production may benefit human applications.

  2. Antigenic properties of avian hepatitis E virus capsid protein.

    PubMed

    Zhao, Qin; Syed, Shahid Faraz; Zhou, En-Min

    2015-10-22

    Avian hepatitis E virus (HEV) is the main causative agent of big liver and spleen disease and hepatitis-splenomegaly syndrome in chickens, and is genetically and antigenically related to mammalian HEVs. HEV capsid protein contains immunodominant epitopes and induces a protective humoral immune response. A better understanding of the antigenic composition of this protein is critically important for the development of effective vaccine and sensitive and specific serological assays. To date, six linear antigenic domains (I-VI) have been characterized in avian HEV capsid protein and analyzed for their applications in the serological diagnosis and vaccine design. Domains I and V induce strong immune response in chickens and are common to avian, human, and swine HEVs, indicating that the shared epitopes hampering differential diagnosis of avian HEV infection. Domains III and IV are not immunodominant and elicit a weak immune response. Domain VI, located in the N-terminal region of the capsid protein, can also trigger an intense immune response, but the anti-domain VI antibodies are transient. The protection analysis showed that the truncated capsid protein containing the C-terminal 268 amino acid residues expressed by the bacterial system can provide protective immunity against avian HEV infection in chickens. However, the synthetic peptides incorporating the different linear antigenic domains (I-VI) and epitopes are non-protective. The antigenic composition of avian HEV capsid protein is altogether complex. To develop an effective vaccine and accurate serological diagnostic methods, more conformational antigenic domains or epitopes are to be characterized in detail. PMID:26340899

  3. Widespread Central Nervous System Gene Transfer and Silencing After Systemic Delivery of Novel AAV-AS Vector.

    PubMed

    Choudhury, Sourav R; Harris, Anne F; Cabral, Damien J; Keeler, Allison M; Sapp, Ellen; Ferreira, Jennifer S; Gray-Edwards, Heather L; Johnson, Jacob A; Johnson, Aime K; Su, Qin; Stoica, Lorelei; DiFiglia, Marian; Aronin, Neil; Martin, Douglas R; Gao, Guangping; Sena-Esteves, Miguel

    2016-04-01

    Effective gene delivery to the central nervous system (CNS) is vital for development of novel gene therapies for neurological diseases. Adeno-associated virus (AAV) vectors have emerged as an effective platform for in vivo gene transfer, but overall neuronal transduction efficiency of vectors derived from naturally occurring AAV capsids after systemic administration is relatively low. Here, we investigated the possibility of improving CNS transduction of existing AAV capsids by genetically fusing peptides to the N-terminus of VP2 capsid protein. A novel vector AAV-AS, generated by the insertion of a poly-alanine peptide, is capable of extensive gene transfer throughout the CNS after systemic administration in adult mice. AAV-AS is 6- and 15-fold more efficient than AAV9 in spinal cord and cerebrum, respectively. The neuronal transduction profile varies across brain regions but is particularly high in the striatum where AAV-AS transduces 36% of striatal neurons. Widespread neuronal gene transfer was also documented in cat brain and spinal cord. A single intravenous injection of an AAV-AS vector encoding an artificial microRNA targeting huntingtin (Htt) resulted in 33-50% knockdown of Htt across multiple CNS structures in adult mice. This novel AAV-AS vector is a promising platform to develop new gene therapies for neurodegenerative disorders.

  4. Crystal Structure of the Human Astrovirus Capsid Protein

    PubMed Central

    Toh, Yukimatsu; Harper, Justin; Dryden, Kelly A.; Yeager, Mark; Méndez, Ernesto

    2016-01-01

    ABSTRACT Human astrovirus (HAstV) is a leading cause of viral diarrhea in infants and young children worldwide. HAstV is a nonenveloped virus with a T=3 capsid and a positive-sense RNA genome. The capsid protein (CP) of HAstV is synthesized as a 90-kDa precursor (VP90) that can be divided into three linear domains: a conserved N-terminal domain, a hypervariable domain, and an acidic C-terminal domain. Maturation of HAstV requires proteolytic processing of the astrovirus CP both inside and outside the host cell, resulting in the removal of the C-terminal domain and the breakdown of the rest of the CP into three predominant protein species with molecular masses of ∼34, 27/29, and 25/26 kDa, respectively. We have now solved the crystal structure of VP9071–415 (amino acids [aa] 71 to 415 of VP90) of human astrovirus serotype 8 at a 2.15-Å resolution. VP9071–415 encompasses the conserved N-terminal domain of VP90 but lacks the hypervariable domain, which forms the capsid surface spikes. The structure of VP9071–415 is comprised of two domains: an S domain, which adopts the typical jelly-roll β-barrel fold, and a P1 domain, which forms a squashed β-barrel consisting of six antiparallel β-strands similar to what was observed in the hepatitis E virus (HEV) capsid structure. Fitting of the VP9071–415 structure into the cryo-electron microscopy (EM) maps of HAstV produced an atomic model for a continuous, T=3 icosahedral capsid shell. Our pseudoatomic model of the human HAstV capsid shell provides valuable insights into intermolecular interactions required for capsid assembly and trypsin-mediated proteolytic maturation needed for virus infectivity. Such information has potential applications in the development of a virus-like particle (VLP) vaccine as well as small-molecule drugs targeting astrovirus assembly/maturation. IMPORTANCE Human astrovirus (HAstV) is a leading cause of viral diarrhea in infants and young children worldwide. As a nonenveloped virus

  5. L2, the minor capsid protein of papillomavirus

    SciTech Connect

    Wang, Joshua W.; Roden, Richard B.S.

    2013-10-15

    The capsid protein L2 plays major roles in both papillomavirus assembly and the infectious process. While L1 forms the majority of the capsid and can self-assemble into empty virus-like particles (VLPs), L2 is a minor capsid component and lacks the capacity to form VLPs. However, L2 co-assembles with L1 into VLPs, enhancing their assembly. L2 also facilitates encapsidation of the ∼8 kbp circular and nucleosome-bound viral genome during assembly of the non-enveloped T=7d virions in the nucleus of terminally differentiated epithelial cells, although, like L1, L2 is not detectably expressed in infected basal cells. With respect to infection, L2 is not required for particles to bind to and enter cells. However L2 must be cleaved by furin for endosome escape. L2 then travels with the viral genome to the nucleus, wherein it accumulates at ND-10 domains. Here, we provide an overview of the biology of L2. - Highlights: • L2 is the minor antigen of the non-enveloped T=7d icosahedral Papillomavirus capsid. • L2 is a nuclear protein that can traffic to ND-10 and facilitate genome encapsidation. • L2 is critical for infection and must be cleaved by furin. • L2 is a broadly protective vaccine antigen recognized by neutralizing antibodies.

  6. CapsidMaps: Protein-protein interaction pattern discovery platform for the structural analysis of virus capsids using Google Maps

    PubMed Central

    Carrillo-Tripp, Mauricio; Montiel-García, Daniel Jorge; Brooks, Charles L.; Reddy, Vijay

    2016-01-01

    Structural analysis and visualization of protein-protein interactions is a challenging task since it is difficult to appreciate easily the extent of all contacts made by the residues forming the interfaces. In the case of viruses, structural analysis becomes even more demanding because several interfaces coexist and, in most cases, these are formed by hundreds of contacting residues that belong to multiple interacting coat proteins. CapsidMaps is an interactive analysis and visualization tool that is designed to benefit the structural virology community. Developed as an improved extension of the φ-ψ Explorer, here we describe the details of its design and implementation. We present results of analysis of a spherical virus to showcase the features and utility of the new tool. CapsidMaps also facilitates the comparison of quaternary interactions between two spherical virus particles by computing a similarity (S)-score. The tool can also be used to identify residues that are solvent exposed and in the process of locating antigenic epitope regions as well as residues forming the inside surface of the capsid that interact with the nucleic acid genome. CapsidMaps is part of the VIPERdb Science Gateway, and is freely available as a web-based and cross-browser compliant application at http://viperdb.scripps.edu. PMID:25697908

  7. CapsidMaps: protein-protein interaction pattern discovery platform for the structural analysis of virus capsids using Google Maps.

    PubMed

    Carrillo-Tripp, Mauricio; Montiel-García, Daniel Jorge; Brooks, Charles L; Reddy, Vijay S

    2015-04-01

    Structural analysis and visualization of protein-protein interactions is a challenging task since it is difficult to appreciate easily the extent of all contacts made by the residues forming the interfaces. In the case of viruses, structural analysis becomes even more demanding because several interfaces coexist and, in most cases, these are formed by hundreds of contacting residues that belong to multiple interacting coat proteins. CapsidMaps is an interactive analysis and visualization tool that is designed to benefit the structural virology community. Developed as an improved extension of the φ-ψ Explorer, here we describe the details of its design and implementation. We present results of analysis of a spherical virus to showcase the features and utility of the new tool. CapsidMaps also facilitates the comparison of quaternary interactions between two spherical virus particles by computing a similarity (S)-score. The tool can also be used to identify residues that are solvent exposed and in the process of locating antigenic epitope regions as well as residues forming the inside surface of the capsid that interact with the nucleic acid genome. CapsidMaps is part of the VIPERdb Science Gateway, and is freely available as a web-based and cross-browser compliant application at http://viperdb.scripps.edu.

  8. Capsid protein sequence diversity of avian nephritis virus.

    PubMed

    Todd, D; Trudgett, J; Smyth, V J; Donnelly, B; McBride, N; Welsh, M D

    2011-06-01

    The capsid gene sequences of 25 avian nephritis viruses (ANVs), collected in the UK, Germany and Belgium from the 1980s to 2008, were determined and compared with those of serotype 1 (ANV-1) and serotype 2 (ANV-2) ANV isolates. Amino acid identities as low as 51% were determined. Pairwise comparisons supported by phylogenetic analysis identified six ANVs, including ANV-1 and ANV-2, which shared<80% amino acid identities with one another, and which were selected to be representative of six groups. The ANVs were not distributed according to geographical location or year of sampling, and the detection of ANVs from five different groups in 11 samples sourced from six flocks belonging to the same UK organization within a 4-month period indicated that sequence-diverse ANVs were co-circulating. Amino acid alignments demonstrated the existence of variable regions throughout the capsid protein, nine of which were selected for detailed comparisons. With most ANVs, the variable region sequences were similar to those of one of the six representative ANVs, but some ANV capsids displayed novel variable region profiles, in which variable regions that were characteristic of more than one representative ANV were present. Phylogenetic analysis based on C-terminal sequences of approximately 260 amino acids and SimPlot analysis provided evidence that RNA recombination events located in the 1250 to 1350 nucleotide region resulted in new combinations of the N-terminal and C-terminal capsid regions. The high level of capsid sequence diversity observed in the present study has important implications for both the control and diagnosis of ANV infections.

  9. Chemical reactivity of brome mosaic virus capsid protein.

    PubMed

    Running, W E; Ni, P; Kao, C C; Reilly, J P

    2012-10-12

    Viral particles are biological machines that have evolved to package, protect, and deliver the viral genome into the host via regulated conformational changes of virions. We have developed a procedure to modify lysine residues with S-methylthioacetimidate across the pH range from 5.5 to 8.5. Lysine residues that are not completely modified are involved in tertiary or quaternary structural interactions, and their extent of modification can be quantified as a function of pH. This procedure was applied to the pH-dependent structural transitions of brome mosaic virus (BMV). As the reaction pH increases from 5.5 to 8.5, the average number of modified lysine residues in the BMV capsid protein increases from 6 to 12, correlating well with the known pH-dependent swelling behavior of BMV virions. The extent of reaction of each of the capsid protein's lysine residues has been quantified at eight pH values using coupled liquid chromatography-tandem mass spectrometry. Each lysine can be assigned to one of three structural classes identified by inspection of the BMV virion crystal structure. Several lysine residues display reactivity that indicates their involvement in dynamic interactions that are not obvious in the crystal structure. The influence of several capsid protein mutants on the pH-dependent structural transition of BMV has also been investigated. Mutant H75Q exhibits an altered swelling transition accompanying solution pH increases. The H75Q capsids show increased reactivity at lysine residues 64 and 130, residues distal from the dimer interface occupied by H75, across the entire pH range.

  10. Biophysical characterization of the feline immunodeficiency virus p24 capsid protein conformation and in vitro capsid assembly.

    PubMed

    Serrière, Jennifer; Fenel, Daphna; Schoehn, Guy; Gouet, Patrice; Guillon, Christophe

    2013-01-01

    The Feline Immunodeficiency Virus (FIV) capsid protein p24 oligomerizes to form a closed capsid that protects the viral genome. Because of its crucial role in the virion, FIV p24 is an interesting target for the development of therapeutic strategies, although little is known about its structure and assembly. We defined and optimized a protocol to overexpress recombinant FIV capsid protein in a bacterial system. Circular dichroism and isothermal titration calorimetry experiments showed that the structure of the purified FIV p24 protein was comprised mainly of α-helices. Dynamic light scattering (DLS) and cross-linking experiments demonstrated that p24 was monomeric at low concentration and dimeric at high concentration. We developed a protocol for the in vitro assembly of the FIV capsid. As with HIV, an increased ionic strength resulted in FIV p24 assembly in vitro. Assembly appeared to be dependent on temperature, salt concentration, and protein concentration. The FIV p24 assembly kinetics was monitored by DLS. A limit end-point diameter suggested assembly into objects of definite shapes. This was confirmed by electron microscopy, where FIV p24 assembled into spherical particles. Comparison of FIV p24 with other retroviral capsid proteins showed that FIV assembly is particular and requires further specific study.

  11. The capsid proteins of Aleutian mink disease virus activate caspases and are specifically cleaved during infection.

    PubMed

    Cheng, Fang; Chen, Aaron Yun; Best, Sonja M; Bloom, Marshall E; Pintel, David; Qiu, Jianming

    2010-03-01

    Aleutian mink disease virus (AMDV) is currently the only known member of the genus Amdovirus in the family Parvoviridae. It is the etiological agent of Aleutian disease of mink. We have previously shown that a small protein with a molecular mass of approximately 26 kDa was present during AMDV infection and following transfection of capsid expression constructs (J. Qiu, F. Cheng, L. R. Burger, and D. Pintel, J. Virol. 80:654-662, 2006). In this study, we report that the capsid proteins were specifically cleaved at aspartic acid residue 420 (D420) during virus infection, resulting in the previously observed cleavage product. Mutation of a single amino acid residue at D420 abolished the specific cleavage. Expression of the capsid proteins alone in Crandell feline kidney (CrFK) cells reproduced the cleavage of the capsid proteins in virus infection. More importantly, capsid protein expression alone induced active caspases, of which caspase-10 was the most active. Active caspases, in turn, cleaved capsid proteins in vivo. Our results also showed that active caspase-7 specifically cleaved capsid proteins at D420 in vitro. These results suggest that viral capsid proteins alone induce caspase activation, resulting in cleavage of capsid proteins. We also provide evidence that AMDV mutants resistant to caspase-mediated capsid cleavage increased virus production approximately 3- to 5-fold in CrFK cells compared to that produced from the parent virus AMDV-G at 37 degrees C but not at 31.8 degrees C. Collectively, our results indicate that caspase activity plays multiple roles in AMDV infection and that cleavage of the capsid proteins might have a role in regulating persistent infection of AMDV. PMID:20042496

  12. Modulation of a Pore in the Capsid of JC Polyomavirus Reduces Infectivity and Prevents Exposure of the Minor Capsid Proteins

    PubMed Central

    Nelson, Christian D. S.; Ströh, Luisa J.; Gee, Gretchen V.; O'Hara, Bethany A.; Stehle, Thilo

    2015-01-01

    ABSTRACT JC polyomavirus (JCPyV) infection of immunocompromised individuals results in the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). The viral capsid of JCPyV is composed primarily of the major capsid protein virus protein 1 (VP1), and pentameric arrangement of VP1 monomers results in the formation of a pore at the 5-fold axis of symmetry. While the presence of this pore is conserved among polyomaviruses, its functional role in infection or assembly is unknown. Here, we investigate the role of the 5-fold pore in assembly and infection of JCPyV by generating a panel of mutant viruses containing amino acid substitutions of the residues lining this pore. Multicycle growth assays demonstrated that the fitness of all mutants was reduced compared to that of the wild-type virus. Bacterial expression of VP1 pentamers containing substitutions to residues lining the 5-fold pore did not affect pentamer assembly or prevent association with the VP2 minor capsid protein. The X-ray crystal structures of selected pore mutants contained subtle changes to the 5-fold pore, and no other changes to VP1 were observed. Pore mutant pseudoviruses were not deficient in assembly, packaging of the minor capsid proteins, or binding to cells or in transport to the host cell endoplasmic reticulum. Instead, these mutant viruses were unable to expose VP2 upon arrival to the endoplasmic reticulum, a step that is critical for infection. This study demonstrated that the 5-fold pore is an important structural feature of JCPyV and that minor modifications to this structure have significant impacts on infectious entry. IMPORTANCE JCPyV is an important human pathogen that causes a severe neurological disease in immunocompromised individuals. While the high-resolution X-ray structure of the major capsid protein of JCPyV has been solved, the importance of a major structural feature of the capsid, the 5-fold pore, remains poorly understood. This pore is conserved across

  13. Structural analysis of membrane-bound retrovirus capsid proteins.

    PubMed Central

    Barklis, E; McDermott, J; Wilkens, S; Schabtach, E; Schmid, M F; Fuller, S; Karanjia, S; Love, Z; Jones, R; Rui, Y; Zhao, X; Thompson, D

    1997-01-01

    We have developed a system for analysis of histidine-tagged (His-tagged) retrovirus core (Gag) proteins, assembled in vitro on lipid monolayers consisting of egg phosphatidylcholine (PC) plus the novel lipid DHGN. DHGN was shown to chelate nickel by atomic absorption spectrometry, and DHGN-containing monolayers specifically bound gold conjugates of His-tagged proteins. Using PC + DHGN monolayers, we examined membrane-bound arrays of an N-terminal His-tagged Moloney murine leukemia virus (M-MuLV) capsid (CA) protein, His-MoCA, and in vivo studies suggest that in vitro-derived His-MoCA arrays reflect some of the Gag protein interactions which occur in assembling virus particles. The His-MoCA proteins formed extensive two-dimensional (2D) protein crystals, with reflections out to 9.5 A resolution. The image-analyzed 2D projection of His-MoCA arrays revealed a distinct cage-like network. The asymmetry of the individual building blocks of the network led to the formation of two types of hexamer rings, surrounding protein-free cage holes. These results predict that Gag hexamers constitute a retrovirus core substructure, and that cage hole sizes define an exclusion limit for entry of retrovirus envelope proteins, or other plasma membrane proteins, into virus particles. We believe that the 2D crystallization method will permit the detailed analysis of retroviral Gag proteins and other His-tagged proteins. PMID:9135137

  14. Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids

    PubMed Central

    Li, Yen-Li; Chandrasekaran, Viswanathan; Carter, Stephen D; Woodward, Cora L; Christensen, Devin E; Dryden, Kelly A; Pornillos, Owen; Yeager, Mark; Ganser-Pornillos, Barbie K; Jensen, Grant J; Sundquist, Wesley I

    2016-01-01

    TRIM5 proteins are restriction factors that block retroviral infections by binding viral capsids and preventing reverse transcription. Capsid recognition is mediated by C-terminal domains on TRIM5α (SPRY) or TRIMCyp (cyclophilin A), which interact weakly with capsids. Efficient capsid recognition also requires the conserved N-terminal tripartite motifs (TRIM), which mediate oligomerization and create avidity effects. To characterize how TRIM5 proteins recognize viral capsids, we developed methods for isolating native recombinant TRIM5 proteins and purifying stable HIV-1 capsids. Biochemical and EM analyses revealed that TRIM5 proteins assembled into hexagonal nets, both alone and on capsid surfaces. These nets comprised open hexameric rings, with the SPRY domains centered on the edges and the B-box and RING domains at the vertices. Thus, the principles of hexagonal TRIM5 assembly and capsid pattern recognition are conserved across primates, allowing TRIM5 assemblies to maintain the conformational plasticity necessary to recognize divergent and pleomorphic retroviral capsids. DOI: http://dx.doi.org/10.7554/eLife.16269.001 PMID:27253068

  15. Purification of recombinant budgerigar fledgling disease virus VP1 capsid protein and its ability for in vitro capsid assembly.

    PubMed Central

    Rodgers, R E; Chang, D; Cai, X; Consigli, R A

    1994-01-01

    A recombinant system for the major capsid VP1 protein of budgerigar fledgling disease virus has been established. The VP1 gene was inserted into a truncated form of the pFlag-1 vector and expressed in Escherichia coli. The budgerigar fledgling disease virus VP1 protein was purified to near homogeneity by immunoaffinity chromatography. Fractions containing highly purified VP1 were pooled and found to constitute 3.3% of the original E. coli-expressed VP1 protein. Electron microscopy revealed that the VP1 protein was isolated as pentameric capsomeres. Electron microscopy also revealed that capsid-like particles were formed in vitro from purified VP1 capsomeres with the addition of Ca2+ ions and the removal of chelating and reducing agents. Images PMID:8151798

  16. Purification of recombinant budgerigar fledgling disease virus VP1 capsid protein and its ability for in vitro capsid assembly

    NASA Technical Reports Server (NTRS)

    Rodgers, R. E.; Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A recombinant system for the major capsid VP1 protein of budgerigar fledgling disease virus has been established. The VP1 gene was inserted into a truncated form of the pFlag-1 vector and expressed in Escherichia coli. The budgerigar fledgling disease virus VP1 protein was purified to near homogeneity by immunoaffinity chromatography. Fractions containing highly purified VP1 were pooled and found to constitute 3.3% of the original E. coli-expressed VP1 protein. Electron microscopy revealed that the VP1 protein was isolated as pentameric capsomeres. Electron microscopy also revealed that capsid-like particles were formed in vitro from purified VP1 capsomeres with the addition of Ca2+ ions and the removal of chelating and reducing agents.

  17. CryoEM and mutagenesis reveal that the smallest capsid protein cements and stabilizes Kaposi's sarcoma-associated herpesvirus capsid.

    PubMed

    Dai, Xinghong; Gong, Danyang; Xiao, Yuchen; Wu, Ting-Ting; Sun, Ren; Zhou, Z Hong

    2015-02-17

    With just one eighth the size of the major capsid protein (MCP), the smallest capsid protein (SCP) of human tumor herpesviruses--Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV)--is vital to capsid assembly, yet its mechanism of action is unknown. Here, by cryoEM of KSHV at 6-Å resolution, we show that SCP forms a crown on each hexon and uses a kinked helix to cross-link neighboring MCP subunits. SCP-null mutation decreased viral titer by 1,000 times and impaired but did not fully abolish capsid assembly, indicating an important but nonessential role of SCP. By truncating the C-terminal half of SCP and performing cryoEM reconstruction, we demonstrate that SCP's N-terminal half is responsible for the observed structure and function whereas the C-terminal half is flexible and dispensable. Serial truncations further highlight the critical importance of the N-terminal 10 aa, and cryoEM reconstruction of the one with six residues truncated localizes the N terminus of SCP in the cryoEM density map and enables us to construct a pseudoatomic model of SCP. Fitting of this SCP model and a homology model for the MCP upper domain into the cryoEM map reveals that SCP binds MCP largely via hydrophobic interactions and the kinked helix of SCP bridges over neighboring MCPs to form noncovalent cross-links. These data support a mechanistic model that tumor herpesvirus SCP reinforces the capsid for genome packaging, thus acting as a cementing protein similar to those found in many bacteriophages.

  18. Bioinformatics analysis of the epitope regions for norovirus capsid protein

    PubMed Central

    2013-01-01

    Background Norovirus is the major cause of nonbacterial epidemic gastroenteritis, being highly prevalent in both developing and developed countries. Despite of the available monoclonal antibodies (MAbs) for different sub-genogroups, a comprehensive epitope analysis based on various bioinformatics technology is highly desired for future potential antibody development in clinical diagonosis and treatment. Methods A total of 18 full-length human norovirus capsid protein sequences were downloaded from GenBank. Protein modeling was performed with program Modeller 9.9. The modeled 3D structures of capsid protein of norovirus were submitted to the protein antigen spatial epitope prediction webserver (SEPPA) for predicting the possible spatial epitopes with the default threshold. The results were processed using the Biosoftware. Results Compared with GI, we found that the GII genogroup had four deletions and two special insertions in the VP1 region. The predicted conformational epitope regions mainly concentrated on N-terminal (1~96), Middle Part (298~305, 355~375) and C-terminal (560~570). We find two common epitope regions on sequences for GI and GII genogroup, and also found an exclusive epitope region for GII genogroup. Conclusions The predicted conformational epitope regions of norovirus VP1 mainly concentrated on N-terminal, Middle Part and C-terminal. We find two common epitope regions on sequences for GI and GII genogroup, and also found an exclusive epitope region for GII genogroup. The overlapping with experimental epitopes indicates the important role of latest computational technologies. With the fast development of computational immunology tools, the bioinformatics pipeline will be more and more critical to vaccine design. PMID:23514273

  19. Targeted modifications in adeno-associated virus serotype 8 capsid improves its hepatic gene transfer efficiency in vivo.

    PubMed

    Sen, Dwaipayan; Gadkari, Rupali A; Sudha, Govindarajan; Gabriel, Nishanth; Kumar, Yesupatham Sathish; Selot, Ruchita; Samuel, Rekha; Rajalingam, Sumathi; Ramya, V; Nair, Sukesh C; Srinivasan, Narayanaswamy; Srivastava, Alok; Jayandharan, Giridhara R

    2013-04-01

    Recombinant adeno-associated virus vectors based on serotype 8 (AAV8) have shown significant promise for liver-directed gene therapy. However, to overcome the vector dose dependent immunotoxicity seen with AAV8 vectors, it is important to develop better AAV8 vectors that provide enhanced gene expression at significantly low vector doses. Since it is known that AAV vectors during intracellular trafficking are targeted for destruction in the cytoplasm by the host-cellular kinase/ubiquitination/proteasomal machinery, we modified specific serine/threonine kinase or ubiquitination targets on the AAV8 capsid to augment its transduction efficiency. Point mutations at specific serine (S)/threonine (T)/lysine (K) residues were introduced in the AAV8 capsid at the positions equivalent to that of the effective AAV2 mutants, generated successfully earlier. Extensive structure analysis was carried out subsequently to evaluate the structural equivalence between the two serotypes. scAAV8 vectors with the wild-type (WT) and each one of the S/T→Alanine (A) or K-Arginine (R) mutant capsids were evaluated for their liver transduction efficiency in C57BL/6 mice in vivo. Two of the AAV8-S→A mutants (S279A and S671A), and a K137R mutant vector, demonstrated significantly higher enhanced green fluorescent protein (EGFP) transcript levels (~9- to 46-fold) in the liver compared to animals that received WT-AAV8 vectors alone. The best performing AAV8 mutant (K137R) vector also had significantly reduced ubiquitination of the viral capsid, reduced activation of markers of innate immune response, and a concomitant two-fold reduction in the levels of neutralizing antibody formation in comparison to WT-AAV8 vectors. Vector biodistribution studies revealed that the K137R mutant had a significantly higher and preferential transduction of the liver (106 vs. 7.7 vector copies/mouse diploid genome) when compared to WT-AAV8 vectors. To further study the utility of the K137R-AAV8 mutant in

  20. Assembly of the Hv190S totivirus capsid is independent of posttranslational modification of the capsid protein.

    PubMed

    Soldevila, A I; Huang, S; Ghabrial1, S A

    1998-11-25

    The genome of Helminthosporium victoriae 190S totivirus (Hv190SV) consists of two large overlapping open reading frames (ORFs), encoding a capsid protein (CP) and an RNA-dependent RNA polymerase. The capsid of Hv190SV, even though encoded by a single gene, contains three closely related capsid polypeptides: p88, p83, and p78. p88 and p83 are phosphorylated, whereas p78, which is derived from p88 via proteolytic processing at the C terminus, is nonphosphorylated. In this study we expressed the CP ORF in bacteria and determined that a single product comigrating with virion p88 was generated. Evidence from in vivo phosphorylation studies indicated that the bacterially expressed p88 was unmodified, and thus autophosphorylation was ruled out. Enzymatic-dephosphorylation experiments using 32P-labeled p88 as a substrate demonstrated that the phosphorylated and nonphosphorylated forms of p88 could not be differentiated based on their mobilities in SDS gels and suggested that the two forms occur in purified virions. We also showed that the unmodified p88 is competent for assembly into virus-like particles, indicating that neither phosphorylation nor proteolytic processing of CP is required for capsid assembly. Posttranslational modification of CP, however, is proposed to play an important role in the life cycle of Hv190SV, including regulation of transcription/replication and/or packaging/release from virions of the viral (+) strand RNA transcript.

  1. Herpes Simplex Virus Replication: Roles of Viral Proteins and Nucleoporins in Capsid-Nucleus Attachment▿

    PubMed Central

    Copeland, Anna Maria; Newcomb, William W.; Brown, Jay C.

    2009-01-01

    Replication of herpes simplex virus type 1 (HSV-1) involves a step in which a parental capsid docks onto a host nuclear pore complex (NPC). The viral genome then translocates through the nuclear pore into the nucleoplasm, where it is transcribed and replicated to propagate infection. We investigated the roles of viral and cellular proteins in the process of capsid-nucleus attachment. Vero cells were preloaded with antibodies specific for proteins of interest and infected with HSV-1 containing a green fluorescent protein-labeled capsid, and capsids bound to the nuclear surface were quantified by fluorescence microscopy. Results showed that nuclear capsid attachment was attenuated by antibodies specific for the viral tegument protein VP1/2 (UL36 gene) but not by similar antibodies specific for UL37 (a tegument protein), the major capsid protein (VP5), or VP23 (a minor capsid protein). Similar studies with antibodies specific for nucleoporins demonstrated attenuation by antibodies specific for Nup358 but not Nup214. The role of nucleoporins was further investigated with the use of small interfering RNA (siRNA). Capsid attachment to the nucleus was attenuated in cells treated with siRNA specific for either Nup214 or Nup358 but not TPR. The results are interpreted to suggest that VP1/2 is involved in specific attachment to the NPC and/or in migration of capsids to the nuclear surface. Capsids are suggested to attach to the NPC by way of the complex of Nup358 and Nup214, with high-resolution immunofluorescence studies favoring binding to Nup358. PMID:19073727

  2. Efficient and Targeted Transduction of Nonhuman Primate Liver With Systemically Delivered Optimized AAV3B Vectors.

    PubMed

    Li, Shaoyong; Ling, Chen; Zhong, Li; Li, Mengxin; Su, Qin; He, Ran; Tang, Qiushi; Greiner, Dale L; Shultz, Leonard D; Brehm, Michael A; Flotte, Terence R; Mueller, Christian; Srivastava, Arun; Gao, Guangping

    2015-12-01

    Recombinant adeno-associated virus serotype 3B (rAAV3B) can transduce cultured human liver cancer cells and primary human hepatocytes efficiently. Serine (S)- and threonine (T)-directed capsid modifications further augment its transduction efficiency. Systemically delivered capsid-optimized rAAV3B vectors can specifically target cancer cells in a human liver cancer xenograft model, suggesting their potential use for human liver-directed gene therapy. Here, we compared transduction efficiencies of AAV3B and AAV8 vectors in cultured primary human hepatocytes and cancer cells as well as in human and mouse hepatocytes in a human liver xenograft NSG-PiZ mouse model. We also examined the safety and transduction efficacy of wild-type (WT) and capsid-optimized rAAV3B in the livers of nonhuman primates (NHPs). Intravenously delivered S663V+T492V (ST)-modified self-complementary (sc) AAV3B-EGFP vectors led to liver-targeted robust enhanced green fluorescence protein (EGFP) expression in NHPs without apparent hepatotoxicity. Intravenous injections of both WT and ST-modified rAAV3B.ST-rhCG vectors also generated stable super-physiological levels of rhesus chorionic gonadotropin (rhCG) in NHPs. The vector genome predominantly targeted the liver. Clinical chemistry and histopathology examinations showed no apparent vector-related toxicity. Our studies should be important and informative for clinical development of optimized AAV3B vectors for human liver-directed gene therapy.

  3. Characterization of the DNA binding properties of polyomavirus capsid protein

    NASA Technical Reports Server (NTRS)

    Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The DNA binding properties of the polyomavirus structural proteins VP1, VP2, and VP3 were studied by Southwestern analysis. The major viral structural protein VP1 and host-contributed histone proteins of polyomavirus virions were shown to exhibit DNA binding activity, but the minor capsid proteins VP2 and VP3 failed to bind DNA. The N-terminal first five amino acids (Ala-1 to Lys-5) were identified as the VP1 DNA binding domain by genetic and biochemical approaches. Wild-type VP1 expressed in Escherichia coli (RK1448) exhibited DNA binding activity, but the N-terminal truncated VP1 mutants (lacking Ala-1 to Lys-5 and Ala-1 to Cys-11) failed to bind DNA. The synthetic peptide (Ala-1 to Cys-11) was also shown to have an affinity for DNA binding. Site-directed mutagenesis of the VP1 gene showed that the point mutations at Pro-2, Lys-3, and Arg-4 on the VP1 molecule did not affect DNA binding properties but that the point mutation at Lys-5 drastically reduced DNA binding affinity. The N-terminal (Ala-1 to Lys-5) region of VP1 was found to be essential and specific for DNA binding, while the DNA appears to be non-sequence specific. The DNA binding domain and the nuclear localization signal are located in the same N-terminal region.

  4. Identification of the major capsid protein gene of human cytomegalovirus.

    PubMed Central

    Chee, M; Rudolph, S A; Plachter, B; Barrell, B; Jahn, G

    1989-01-01

    The coding region for the major capsid protein (MCP) of human cytomegalovirus (HCMV) was identified by comparing the protein sequence with the respective sequences of herpes simplex virus (HSV), Epstein-Barr virus, and varicella-zoster virus. The predicted length of the HCMV MCP was 1,370 amino acids. Comparison of the MCP sequences of the different human herpesviruses showed a homology of 25% to the MCP of HSV type 1, a homology of 29% to the MCP of Epstein-Barr virus, and a homology of 23% to the MCP of varicella-zoster virus. A subfragment of the HSV type 1 KpnI i fragment encoding the MCP VP5 cross-hybridized with the HCMV HindIII U fragment containing part of the MCP gene. Northern (RNA) blot analyses with subclones out of the coding region for the HCMV MCP detected one large transcript of about 8 kilobases. A portion of the open reading frame was expressed in Escherichia coli plasmid pBD2 IC2OH as a beta-galactosidase fusion protein and was used to generate polyclonal antibodies in New Zealand White rabbits. The obtained antisera reacted in Western immunoblots with the MCP of purified HCMV virions. A monoclonal antibody against the human MCP and a monospecific rabbit antiserum against strain Colburn of simian cytomegalovirus detected the fusion protein as well as the MCP of purified virions in immunoblots. Images PMID:2536837

  5. AAV-mediated RLBP1 gene therapy improves the rate of dark adaptation in Rlbp1 knockout mice.

    PubMed

    Choi, Vivian W; Bigelow, Chad E; McGee, Terri L; Gujar, Akshata N; Li, Hui; Hanks, Shawn M; Vrouvlianis, Joanna; Maker, Michael; Leehy, Barrett; Zhang, Yiqin; Aranda, Jorge; Bounoutas, George; Demirs, John T; Yang, Junzheng; Ornberg, Richard; Wang, Yu; Martin, Wendy; Stout, Kelly R; Argentieri, Gregory; Grosenstein, Paul; Diaz, Danielle; Turner, Oliver; Jaffee, Bruce D; Police, Seshidhar R; Dryja, Thaddeus P

    2015-01-01

    Recessive mutations in RLBP1 cause a form of retinitis pigmentosa in which the retina, before its degeneration leads to blindness, abnormally slowly recovers sensitivity after exposure to light. To develop a potential gene therapy for this condition, we tested multiple recombinant adeno-associated vectors (rAAVs) composed of different promoters, capsid serotypes, and genome conformations. We generated rAAVs in which sequences from the promoters of the human RLBP1, RPE65, or BEST1 genes drove the expression of a reporter gene (green fluorescent protein). A promoter derived from the RLBP1 gene mediated expression in the retinal pigment epithelium and Müller cells (the intended target cell types) at qualitatively higher levels than in other retinal cell types in wild-type mice and monkeys. With this promoter upstream of the coding sequence of the human RLBP1 gene, we compared the potencies of vectors with an AAV2 versus an AAV8 capsid in transducing mouse retinas, and we compared vectors with a self-complementary versus a single-stranded genome. The optimal vector (scAAV8-pRLBP1-hRLBP1) had serotype 8 capsid and a self-complementary genome. Subretinal injection of scAAV8-pRLBP1-hRLBP1 in Rlbp1 nullizygous mice improved the rate of dark adaptation based on scotopic (rod-plus-cone) and photopic (cone) electroretinograms (ERGs). The effect was still present after 1 year.

  6. AAV-mediated RLBP1 gene therapy improves the rate of dark adaptation in Rlbp1 knockout mice.

    PubMed

    Choi, Vivian W; Bigelow, Chad E; McGee, Terri L; Gujar, Akshata N; Li, Hui; Hanks, Shawn M; Vrouvlianis, Joanna; Maker, Michael; Leehy, Barrett; Zhang, Yiqin; Aranda, Jorge; Bounoutas, George; Demirs, John T; Yang, Junzheng; Ornberg, Richard; Wang, Yu; Martin, Wendy; Stout, Kelly R; Argentieri, Gregory; Grosenstein, Paul; Diaz, Danielle; Turner, Oliver; Jaffee, Bruce D; Police, Seshidhar R; Dryja, Thaddeus P

    2015-01-01

    Recessive mutations in RLBP1 cause a form of retinitis pigmentosa in which the retina, before its degeneration leads to blindness, abnormally slowly recovers sensitivity after exposure to light. To develop a potential gene therapy for this condition, we tested multiple recombinant adeno-associated vectors (rAAVs) composed of different promoters, capsid serotypes, and genome conformations. We generated rAAVs in which sequences from the promoters of the human RLBP1, RPE65, or BEST1 genes drove the expression of a reporter gene (green fluorescent protein). A promoter derived from the RLBP1 gene mediated expression in the retinal pigment epithelium and Müller cells (the intended target cell types) at qualitatively higher levels than in other retinal cell types in wild-type mice and monkeys. With this promoter upstream of the coding sequence of the human RLBP1 gene, we compared the potencies of vectors with an AAV2 versus an AAV8 capsid in transducing mouse retinas, and we compared vectors with a self-complementary versus a single-stranded genome. The optimal vector (scAAV8-pRLBP1-hRLBP1) had serotype 8 capsid and a self-complementary genome. Subretinal injection of scAAV8-pRLBP1-hRLBP1 in Rlbp1 nullizygous mice improved the rate of dark adaptation based on scotopic (rod-plus-cone) and photopic (cone) electroretinograms (ERGs). The effect was still present after 1 year. PMID:26199951

  7. AAV-mediated RLBP1 gene therapy improves the rate of dark adaptation in Rlbp1 knockout mice

    PubMed Central

    Choi, Vivian W; Bigelow, Chad E; McGee, Terri L; Gujar, Akshata N; Li, Hui; Hanks, Shawn M; Vrouvlianis, Joanna; Maker, Michael; Leehy, Barrett; Zhang, Yiqin; Aranda, Jorge; Bounoutas, George; Demirs, John T; Yang, Junzheng; Ornberg, Richard; Wang, Yu; Martin, Wendy; Stout, Kelly R; Argentieri, Gregory; Grosenstein, Paul; Diaz, Danielle; Turner, Oliver; Jaffee, Bruce D; Police, Seshidhar R; Dryja, Thaddeus P

    2015-01-01

    Recessive mutations in RLBP1 cause a form of retinitis pigmentosa in which the retina, before its degeneration leads to blindness, abnormally slowly recovers sensitivity after exposure to light. To develop a potential gene therapy for this condition, we tested multiple recombinant adeno-associated vectors (rAAVs) composed of different promoters, capsid serotypes, and genome conformations. We generated rAAVs in which sequences from the promoters of the human RLBP1, RPE65, or BEST1 genes drove the expression of a reporter gene (green fluorescent protein). A promoter derived from the RLBP1 gene mediated expression in the retinal pigment epithelium and Müller cells (the intended target cell types) at qualitatively higher levels than in other retinal cell types in wild-type mice and monkeys. With this promoter upstream of the coding sequence of the human RLBP1 gene, we compared the potencies of vectors with an AAV2 versus an AAV8 capsid in transducing mouse retinas, and we compared vectors with a self-complementary versus a single-stranded genome. The optimal vector (scAAV8-pRLBP1-hRLBP1) had serotype 8 capsid and a self-complementary genome. Subretinal injection of scAAV8-pRLBP1-hRLBP1 in Rlbp1 nullizygous mice improved the rate of dark adaptation based on scotopic (rod-plus-cone) and photopic (cone) electroretinograms (ERGs). The effect was still present after 1 year. PMID:26199951

  8. Multifaceted capsid proteins: multiple interactions suggest multiple roles for Pepino mosaic virus capsid protein.

    PubMed

    Mathioudakis, Matthaios M; Rodríguez-Moreno, Luis; Sempere, Raquel Navarro; Aranda, Miguel A; Livieratos, Ioannis

    2014-12-01

    Pepino mosaic virus (PepMV) (family Alphaflexiviridae, genus Potexvirus) is a mechanically transmitted tomato pathogen that, over the last decade, has evolved from emerging to endemic worldwide. Here, two heat-shock cognate (Hsc70) isoforms were identified as part of the coat protein (CP)/Hsc70 complex in vivo, following full-length PepMV and CP agroinoculation. PepMV accumulation was severely reduced in Hsp70 virus-induced gene silenced and in quercetin-treated Nicotiana benthamiana plants. Similarly, in vitro-transcribed as well as virion RNA input levels were reduced in quercetin-treated protoplasts, suggesting an essential role for Hsp70 in PepMV replication. As for Potato virus X, the PepMV CP and triple gene-block protein 1 (TGBp1) self-associate and interact with each other in vitro but, unlike in the prototype, both PepMV proteins represent suppressors of transgene-induced RNA silencing with different modes of action; CP is a more efficient suppressor of RNA silencing, sequesters the silencing signal by preventing its spread to neighboring cells and its systemic movement. Here, we provide evidence for additional roles of the PepMV CP and host-encoded Hsp70 in viral infection, the first as a truly multifunctional protein able to specifically bind to a host chaperone and to counterattack an RNA-based defense mechanism, and the latter as an essential factor for PepMV infection. PMID:25162316

  9. Multifaceted capsid proteins: multiple interactions suggest multiple roles for Pepino mosaic virus capsid protein.

    PubMed

    Mathioudakis, Matthaios M; Rodríguez-Moreno, Luis; Sempere, Raquel Navarro; Aranda, Miguel A; Livieratos, Ioannis

    2014-12-01

    Pepino mosaic virus (PepMV) (family Alphaflexiviridae, genus Potexvirus) is a mechanically transmitted tomato pathogen that, over the last decade, has evolved from emerging to endemic worldwide. Here, two heat-shock cognate (Hsc70) isoforms were identified as part of the coat protein (CP)/Hsc70 complex in vivo, following full-length PepMV and CP agroinoculation. PepMV accumulation was severely reduced in Hsp70 virus-induced gene silenced and in quercetin-treated Nicotiana benthamiana plants. Similarly, in vitro-transcribed as well as virion RNA input levels were reduced in quercetin-treated protoplasts, suggesting an essential role for Hsp70 in PepMV replication. As for Potato virus X, the PepMV CP and triple gene-block protein 1 (TGBp1) self-associate and interact with each other in vitro but, unlike in the prototype, both PepMV proteins represent suppressors of transgene-induced RNA silencing with different modes of action; CP is a more efficient suppressor of RNA silencing, sequesters the silencing signal by preventing its spread to neighboring cells and its systemic movement. Here, we provide evidence for additional roles of the PepMV CP and host-encoded Hsp70 in viral infection, the first as a truly multifunctional protein able to specifically bind to a host chaperone and to counterattack an RNA-based defense mechanism, and the latter as an essential factor for PepMV infection.

  10. Sequence analysis and structural implications of rotavirus capsid proteins.

    PubMed

    Parbhoo, N; Dewar, J B; Gildenhuys, S

    2016-01-01

    Rotavirus is the major cause of severe virus-associated gastroenteritis worldwide in children aged 5 and younger. Many children lose their lives annually due to this infection and the impact is particularly pronounced in developing countries. The mature rotavirus is a non-enveloped triple-layered nucleocapsid containing 11 double stranded RNA segments. Here a global view on the sequence and structure of the three main capsid proteins, VP2, VP6 and VP7 is shown by generating a consensus sequence for each of these rotavirus proteins, for each species obtained from published data of representative rotavirus genotypes from across the world and across species. Degree of conservation between species was represented on homology models for each of the proteins. VP7 shows the highest level of variation with 14-45 amino acids showing conservation of less than 60%. These changes are localised to the outer surface alluding to a possible mechanism in evading the immune system. The middle layer, VP6 shows lower variability with only 14-32 sites having lower than 70% conservation. The inner structural layer made up of VP2 showed the lowest variability with only 1-16 sites having less than 70% conservation across species. The results correlate with each protein's multiple structural roles in the infection cycle. Thus, although the nucleotide sequences vary due to the error-prone nature of replication and lack of proof reading, the corresponding amino acid sequence of VP2, 6 and 7 remain relatively conserved. Benefits of this knowledge about the conservation include the ability to target proteins at sites that cannot undergo mutational changes without influencing viral fitness; as well as possibility to study systems that are highly evolved for structure and function in order to determine how to generate and manipulate such systems for use in various biotechnological applications. PMID:27640436

  11. Structure and Dynamics of Adeno-Associated Virus Serotype 1 VP1-Unique N-Terminal Domain and Its Role in Capsid Trafficking

    PubMed Central

    Venkatakrishnan, Balasubramanian; Yarbrough, Joseph; Domsic, John; Bennett, Antonette; Bothner, Brian; Kozyreva, Olga G.; Samulski, R. Jude; Muzyczka, Nicholas

    2013-01-01

    The importance of the phospholipase A2 domain located within the unique N terminus of the capsid viral protein VP1 (VP1u) in parvovirus infection has been reported. This study used computational methods to characterize the VP1 sequence for adeno-associated virus (AAV) serotypes 1 to 12 and circular dichroism and electron microscopy to monitor conformational changes in the AAV1 capsid induced by temperature and the pHs encountered during trafficking through the endocytic pathway. Circular dichroism was also used to monitor conformational changes in AAV6 capsids assembled from VP2 and VP3 or VP1, VP2, and VP3 at pH 7.5. VP1u was predicted (computationally) and confirmed (in solution) to be structurally ordered. This VP domain was observed to undergo a reversible pH-induced unfolding/refolding process, a loss/gain of α-helical structure, which did not disrupt the capsid integrity and is likely facilitated by its difference in isoelectric point compared to the other VP sequences assembling the capsid. This study is the first to physically document conformational changes in the VP1u region that likely facilitate its externalization from the capsid interior during infection and establishes the order of events in the escape of the AAV capsid from the endosome en route to the nucleus. PMID:23427155

  12. Structure and dynamics of adeno-associated virus serotype 1 VP1-unique N-terminal domain and its role in capsid trafficking.

    PubMed

    Venkatakrishnan, Balasubramanian; Yarbrough, Joseph; Domsic, John; Bennett, Antonette; Bothner, Brian; Kozyreva, Olga G; Samulski, R Jude; Muzyczka, Nicholas; McKenna, Robert; Agbandje-McKenna, Mavis

    2013-05-01

    The importance of the phospholipase A2 domain located within the unique N terminus of the capsid viral protein VP1 (VP1u) in parvovirus infection has been reported. This study used computational methods to characterize the VP1 sequence for adeno-associated virus (AAV) serotypes 1 to 12 and circular dichroism and electron microscopy to monitor conformational changes in the AAV1 capsid induced by temperature and the pHs encountered during trafficking through the endocytic pathway. Circular dichroism was also used to monitor conformational changes in AAV6 capsids assembled from VP2 and VP3 or VP1, VP2, and VP3 at pH 7.5. VP1u was predicted (computationally) and confirmed (in solution) to be structurally ordered. This VP domain was observed to undergo a reversible pH-induced unfolding/refolding process, a loss/gain of α-helical structure, which did not disrupt the capsid integrity and is likely facilitated by its difference in isoelectric point compared to the other VP sequences assembling the capsid. This study is the first to physically document conformational changes in the VP1u region that likely facilitate its externalization from the capsid interior during infection and establishes the order of events in the escape of the AAV capsid from the endosome en route to the nucleus. PMID:23427155

  13. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly

    SciTech Connect

    Kim, Yoon Sik Seo, Hyun Wook Jung, Guhung

    2015-02-13

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H{sub 2}O{sub 2} and GSH modulate HBV capsid assembly. • H{sub 2}O{sub 2} facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H{sub 2}O{sub 2} and GSH induce conformation change of Hsp90.

  14. Shrimp laminin receptor binds with capsid proteins of two additional shrimp RNA viruses YHV and IMNV.

    PubMed

    Busayarat, Nattaphon; Senapin, Saengchan; Tonganunt, Moltira; Phiwsaiya, Kornsunee; Meemetta, Watcharachai; Unajak, Sasimanas; Jitrapakdee, Sarawut; Lo, Chu-Fang; Phongdara, Amornrat

    2011-07-01

    Laminin receptor (Lamr) in shrimp was previously proposed to be a potential receptor protein for Taura syndrome virus (TSV) based on yeast two-hybrid assays. Since shrimp Lamr bound to the VP1 capsid protein of TSV, we were interested to know whether capsid/envelope proteins from other shrimp viruses would also bind to Lamr. Thus, capsid/envelope encoding genes from 5 additional shrimp viruses were examined. These were Penaeus stylirostris densovirus (PstDNV), white spot syndrome virus (WSSV), infectious myonecrosis virus (IMNV), Macrobrachium rosenbergii nodavirus (MrNV), and yellow head virus (YHV). Protein interaction analysis using yeast two-hybrid assay revealed that Lamr specifically interacted with capsid/envelope proteins of RNA viruses IMNV and YHV but not MrNV and not with the capsid/envelope proteins of DNA viruses PstDNV and WSSV. In vitro pull-down assay also confirmed the interaction between Lamr and YHV gp116 envelope protein, and injection of recombinant Lamr (rLamr) protein produced in yeast cells protected shrimp against YHV in laboratory challenge tests. PMID:21414409

  15. Limited cross-reactivity of mouse monoclonal antibodies against Dengue virus capsid protein among four serotypes

    PubMed Central

    Noda, Megumi; Masrinoul, Promsin; Punkum, Chaweewan; Pipattanaboon, Chonlatip; Ramasoota, Pongrama; Setthapramote, Chayanee; Sasaki, Tadahiro; Sasayama, Mikiko; Yamashita, Akifumi; Kurosu, Takeshi; Ikuta, Kazuyoshi; Okabayashi, Tamaki

    2012-01-01

    Background Dengue illness is one of the important mosquito-borne viral diseases in tropical and subtropical regions. Four serotypes of dengue virus (DENV-1, DENV-2, DENV-3, and DENV-4) are classified in the Flavivirus genus of the family Flaviviridae. We prepared monoclonal antibodies against DENV capsid protein from mice immunized with DENV-2 and determined the cross-reactivity with each serotype of DENV and Japanese encephalitis virus. Methods and results To clarify the relationship between the cross-reactivity of monoclonal antibodies and the diversity of these viruses, we examined the situations of flaviviruses by analyses of phylogenetic trees. Among a total of 60 prepared monoclonal antibodies specific for DENV, five monoclonal antibodies stained the nuclei of infected cells and were found to be specific to the capsid protein. Three were specific to DENV-2, while the other two were cross-reactive with DENV-2 and DENV-4. No monoclonal antibodies were cross-reactive with all four serotypes. Phylogenetic analysis of DENV amino acid sequences of the capsid protein revealed that DENV-2 and DENV-4 were clustered in the same branch, while DENV-1 and DENV-3 were clustered in the other branch. However, these classifications of the capsid protein were different from those of the envelope and nonstructural 1 proteins. Phylogenetic distances between the four serotypes of DENV were as different as those of other flaviviruses, such as Japanese encephalitis virus and West Nile virus. Large variations in the DENV serotypes were comparable with the differences between species of flavivirus. Furthermore, the diversity of flavivirus capsid protein was much greater than that of envelope and nonstructural 1 proteins. Conclusion In this study, we produced specific monoclonal antibodies that can be used to detect DENV-2 capsid protein, but not a cross-reactive one with all serotypes of DENV capsid protein. The high diversity of the DENV capsid protein sequence by phylogenetic

  16. Coat as a Dagger: The Use of Capsid Proteins to Perforate Membranes during Non-Enveloped DNA Viruses Trafficking

    PubMed Central

    Bilkova, Eva; Forstova, Jitka; Abrahamyan, Levon

    2014-01-01

    To get access to the replication site, small non-enveloped DNA viruses have to cross the cell membrane using a limited number of capsid proteins, which also protect the viral genome in the extracellular environment. Most of DNA viruses have to reach the nucleus to replicate. The capsid proteins involved in transmembrane penetration are exposed or released during endosomal trafficking of the virus. Subsequently, the conserved domains of capsid proteins interact with cellular membranes and ensure their efficient permeabilization. This review summarizes our current knowledge concerning the role of capsid proteins of small non-enveloped DNA viruses in intracellular membrane perturbation in the early stages of infection. PMID:25055856

  17. Expression of Human α1-Antitrypsin in Mice and Dogs Following AAV6 Vector-mediated Gene Transfer to the Lungs

    PubMed Central

    Halbert, Christine L; Madtes, David K; Vaughan, Andrew E; Wang, Zejing; Storb, Rainer; Tapscott, Stephen J; Miller, A Dusty

    2010-01-01

    We evaluated the potential of lung-directed gene therapy for α1-antitrypsin (AAT) deficiency using an adeno-associated virus type 6 (AAV6) vector containing a human AAT (hAAT) complementary DNA (cDNA) delivered to the lungs of mice and dogs. The results in normal and immune-deficient mice showed that hAAT concentrations were much higher in lung fluid than in plasma, and therapeutic levels were obtained even in normal mice. However, in normal mice an immune response against the vector and/or transgene limited long-term gene expression. An AAV6 vector expressing a marker protein verified that AAV6 vectors efficiently transduced lung cells in dogs. Delivery of AAV6-hAAT resulted in low levels of hAAT in dog serum but therapeutic levels in the lung that persisted for at least 58 days to 4 months in three immunosuppressed dogs. Expression in the serum was not detectable after 45 days in one nonimmune suppressed dog. A lymphoproliferative response to AAV capsid but not to hAAT was detected even after immunosuppression. These results in mice and dogs show the feasibility of expression of therapeutic levels of AAT in the lungs after AAV vector delivery, and advocate for approaches to prevent cellular immune responses to AAV capsid proteins for persistence of gene expression in humans. PMID:20372105

  18. Identification of amino acid sequences in the polyomavirus capsid proteins that serve as nuclear localization signals

    NASA Technical Reports Server (NTRS)

    Chang, D.; Haynes, J. I. Jr; Brady, J. N.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The molecular mechanism participating in the transport of newly synthesized proteins from the cytoplasm to the nucleus in mammalian cells is poorly understood. Recently, the nuclear localization signal sequences (NLS) of many nuclear proteins have been identified, and most have been found to be composed of a highly basic amino acid stretch. A genetic "subtractive" and a biochemical "additive" approach were used in our studies to identify the NLS's of the polyomavirus structural capsid proteins. An NLS was identified at the N-terminus (Ala1-Pro-Lys-Arg-Lys-Ser-Gly-Val-Ser-Lys-Cys11) of the major capsid protein VP1 and at the C-terminus (Glu307 -Glu-Asp-Gly-Pro-Glu-Lys-Lys-Lys-Arg-Arg-Leu318) of the VP2/VP3 minor capsid proteins.

  19. Production and characterization of monoclonal antibodies to budgerigar fledgling disease virus major capsid protein VP

    NASA Technical Reports Server (NTRS)

    Fattaey, A.; Lenz, L.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Eleven hybridoma cell lines producing monoclonal antibodies (MAbs) against intact budgerigar fledgling disease (BFD) virions were produced and characterized. These antibodies were selected for their ability to react with BFD virions in an enzyme-linked immunosorbent assay. Each of these antibodies was reactive in the immunofluorescent detection of BFD virus-infected cells. These antibodies immunoprecipitated intact virions and specifically recognized the major capsid protein, VP1, of the dissociated virion. The MAbs were found to preferentially recognize native BFD virus capsid protein when compared with denatured virus protein. These MAbs were capable of detecting BFD virus protein in chicken embryonated cell-culture lysates by dot-blot analysis.

  20. Functional domains of the HK97 capsid maturation protease and the mechanisms of protein encapsidation

    PubMed Central

    Duda, Robert L.; Oh, Bonnie; Hendrix, Roger W.

    2013-01-01

    Tailed dsDNA bacteriophages and herpesviruses build capsids by co-assembling a major capsid protein with an internal scaffolding protein which then exits from the assembled structure either intact or after digestion in situ by a protease. In bacteriophage HK97, the 102 residue N-terminal delta domain of the major capsid protein is also removed by proteolysis after assembly and appears to perform the scaffolding function. We describe the HK97 protease that carries out these maturation cleavages. Insertion mutations at 7 sites in the protease gene produced mutant proteins that assemble into proheads, and those in the N-terminal two thirds were enzymatically inactive. Plasmid-expressed protease was rapidly cleaved in vivo, but was stabilized by co-expression with the delta domain. Purified protease was found to be active during the assembly of proheads in vitro. Heterologous fusions to the intact protease or to C-terminal fragments targeted fusion proteins into proheads. We confirm that the catalytic activity resides in the N-terminal 2/3 of the protease polypeptide and suggest that the C-terminal 1/5 of the protein contains a capsid targeting signal. The implications of this arrangement are compared to capsid targeting systems in other phages, herpesviruses, and encapsulins. PMID:23688818

  1. The Impact of Capsid Proteins on Virus Removal and Inactivation During Water Treatment Processes

    PubMed Central

    Mayer, Brooke K; Yang, Yu; Gerrity, Daniel W; Abbaszadegan, Morteza

    2015-01-01

    This study examined the effect of the amino acid composition of protein capsids on virus inactivation using ultraviolet (UV) irradiation and titanium dioxide photocatalysis, and physical removal via enhanced coagulation using ferric chloride. Although genomic damage is likely more extensive than protein damage for viruses treated using UV, proteins are still substantially degraded. All amino acids demonstrated significant correlations with UV susceptibility. The hydroxyl radicals produced during photocatalysis are considered nonspecific, but they likely cause greater overall damage to virus capsid proteins relative to the genome. Oxidizing chemicals, including hydroxyl radicals, preferentially degrade amino acids over nucleotides, and the amino acid tyrosine appears to strongly influence virus inactivation. Capsid composition did not correlate strongly to virus removal during physicochemical treatment, nor did virus size. Isoelectric point may play a role in virus removal, but additional factors are likely to contribute. PMID:26604779

  2. Tyrosine crosslinking reveals interfacial dynamics in adeno-associated viral capsids during infection

    PubMed Central

    Horowitz, Eric D.; Finn, M.G.; Asokan, Aravind

    2012-01-01

    Viral capsid dynamics are often observed during infectious events such as cell surface attachment, entry and genome release. Structural analysis of adeno-associated virus (AAV), a helper-dependent parvovirus, revealed a cluster of surface-exposed tyrosine residues at the icosahedral two-fold symmetry axis. We exploited the latter observation to carry out selective oxidation of Tyr residues, which yielded crosslinked viral protein (VP) subunit dimers, effectively “stitching” together the AAV capsid two-fold interface. Characterization of different Tyr-to-Phe mutants confirmed that the formation of crosslinked VP dimers is mediated by dityrosine adducts and requires the Tyr704 residue, which crosses over from one neighboring VP subunit to the other. When compared to unmodified capsids, Tyr-crosslinked AAV displayed decreased transduction efficiency in cell culture. Surprisingly, further biochemical and quantitative microscopy studies revealed that restraining the two-fold interface hinders externalization of buried VP N-termini, which contain a phospholipase A2 domain and nuclear localization sequences critical for infection. These adverse effects caused by tyrosine oxidation support the notion that interfacial dynamics at the AAV capsid two-fold symmetry axis play a role in externalization of VP N-termini during infection. PMID:22458529

  3. In Silico Studies of Medicinal Compounds Against Hepatitis C Capsid Protein from North India

    PubMed Central

    Mathew, Shilu; Faheem, Muhammad; Archunan, Govindaraju; Ilyas, Muhammad; Begum, Nargis; Jahangir, Syed; Qadri, Ishtiaq; Qahtani, Mohammad Al; Mathew, Shiny

    2014-01-01

    Hepatitis viral infection is a leading cause of chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). Over one million people are estimated to be persistently infected with hepatitis C virus (HCV) worldwide. As capsid core protein is the key element in spreading HCV; hence, it is considered to be the superlative target of antiviral compounds. Novel drug inhibitors of HCV are in need to complement or replace the current treatments such as pegylated interferon’s and ribavirin as they are partially booming and beset with various side effects. Our study was conducted to predict 3D structure of capsid core protein of HCV from northern part of India. Core, the capsid protein of HCV, handles the assembly and packaging of HCV RNA genome and is the least variable of all the ten HCV proteins among the six HCV genotypes. Therefore, we screened four phytochemicals inhibitors that are known to disrupt the interactions of core and other HCV proteins such as (a) epigallocatechin gallate (EGCG), (b) ladanein, (c) naringenin, and (d) silybin extracted from medicinal plants; targeted against active site of residues of HCV-genotype 3 (G3) (Q68867) and its subtypes 3b (Q68861) and 3g (Q68865) from north India. To study the inhibitory activity of the recruited flavonoids, we conducted a quantitative structure–activity relationship (QSAR). Furthermore, docking interaction suggests that EGCG showed a maximum number of hydrogen bond (H-bond) interactions with all the three modeled capsid proteins with high interaction energy followed by naringenin and silybin. Thus, our results strongly correlate the inhibitory activity of the selected bioflavonoid. Finally, the dynamic predicted capsid protein molecule of HCV virion provides a general avenue to target structure-based antiviral compounds that support the hypothesis that the screened inhibitors for viral capsid might constitute new class of potent agents but further confirmation is necessary using in vitro and in vivo

  4. In vitro assembly of polymorphic virus-like particles from the capsid protein of a nodavirus.

    PubMed

    Bajaj, Saumya; Banerjee, Manidipa

    2016-09-01

    Viral capsid proteins are programmed to assemble into homogeneous structures in native environments; but the molecular details of these assembly pathways are seldom clearly understood. In order to define the chain of events in the construction of a minimal system, we attempted controlled assembly of the capsid protein of a small insect nodavirus, Flock House Virus (FHV). Bacterial expression of the FHV capsid protein, and subsequent in vitro assembly, generated a heterogeneous population of closed particles. We show that in spite of the altered structure, these particles are capable of membrane disruption, like native viruses, and of incorporating and delivering foreign cargo to specific locations. The unique structure and characteristics of these particles extends our understanding of nodavirus assembly. Additionally, the establishment of a bacterial production system, and methods for in vitro assembly and packaging are of considerable benefit for biotechnological applications of FHV. PMID:27289029

  5. The Capsid Proteins of Aleutian Mink Disease Virus Activate Caspases and Are Specifically Cleaved during Infection ▿

    PubMed Central

    Cheng, Fang; Chen, Aaron Yun; Best, Sonja M.; Bloom, Marshall E.; Pintel, David; Qiu, Jianming

    2010-01-01

    Aleutian mink disease virus (AMDV) is currently the only known member of the genus Amdovirus in the family Parvoviridae. It is the etiological agent of Aleutian disease of mink. We have previously shown that a small protein with a molecular mass of approximately 26 kDa was present during AMDV infection and following transfection of capsid expression constructs (J. Qiu, F. Cheng, L. R. Burger, and D. Pintel, J. Virol. 80:654-662, 2006). In this study, we report that the capsid proteins were specifically cleaved at aspartic acid residue 420 (D420) during virus infection, resulting in the previously observed cleavage product. Mutation of a single amino acid residue at D420 abolished the specific cleavage. Expression of the capsid proteins alone in Crandell feline kidney (CrFK) cells reproduced the cleavage of the capsid proteins in virus infection. More importantly, capsid protein expression alone induced active caspases, of which caspase-10 was the most active. Active caspases, in turn, cleaved capsid proteins in vivo. Our results also showed that active caspase-7 specifically cleaved capsid proteins at D420 in vitro. These results suggest that viral capsid proteins alone induce caspase activation, resulting in cleavage of capsid proteins. We also provide evidence that AMDV mutants resistant to caspase-mediated capsid cleavage increased virus production approximately 3- to 5-fold in CrFK cells compared to that produced from the parent virus AMDV-G at 37°C but not at 31.8°C. Collectively, our results indicate that caspase activity plays multiple roles in AMDV infection and that cleavage of the capsid proteins might have a role in regulating persistent infection of AMDV. PMID:20042496

  6. [Interface domain of hepatitis E virus capsid protein homodimer].

    PubMed

    Li, Shao-Wei; He, Zhi-Qiang; Wang, Ying-Bin; Chen, Yi-Xin; Liu, Ru-Shi; Lin, Jian; Gu, Ying; Zhang, Jun; Xia, Ning-Shao

    2004-01-01

    Hepatitis E is a main cause of acute viral hepatitis in developing countries where it occurs as sporadic cases and in epidemics form. The causative agent, hepatitis E virus, is transmitted primarily by the fecal-oral route. The approximately 7.5 kb positive-sense single-strand RNA genome includes three open reading frames (ORFs), one of which (ORF2) is postulated to encode the major viral capsid protein (pORF2) of 660 amino acid residues. We earlier showed that a bacterially expressed peptide, designated as NE2, located from amino acid residues 394 to 606 of ORF2, was found to aggregate into homodimer to at least hexamer. To understand the interface domains within this peptide vital for dimerization and formation of major neutralizing epitopes, NE2 protein underwent terminal-truncated and site-directed mutation. The hydrophobic region, ORF2 aa597-aa602 (AVAVLA), played a key role in oligomerization. Any amino acid residue of this region replaced with glutamic acid residue, the peptide can not refold as homodimer and/or oligomer. The immunoreactivities of these mutant peptides, blotted with anti-HEV neutralizing monoclonal antibody (8C11) and convalescent human sera, show associated to the formation of homodimer. The intermolecular contact region on homodimer was investigated by chemical cross-linking of two site-directed cysteines. When the alanine on aa597 site mutated with cysteine, two different homodimers were found in SDS-PAGE analysis. One (42kD) can be disassociated with 8mol/L urea, which is postulated to form by virtue of hydrophobic interaction, and the other (60kD) falls apart with the reductant DTT present. The exact conformation, generating the cross-linking reaction of cysteines, was further investigated by induced-oxidation on monomer and hydrophobic homodimer of A597C protein with GSH/GSSG. And the results revealed, it is the conformation of hydrophobic homodimer that induces the disulfide bond come into being, instead of the one of monomer. So the

  7. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    SciTech Connect

    Walia, Rupali; Dardari, Rkia Chaiyakul, Mark; Czub, Markus

    2014-11-15

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.

  8. Role of RNA Branchedness in the Competition for Viral Capsid Proteins.

    PubMed

    Singaram, Surendra W; Garmann, Rees F; Knobler, Charles M; Gelbart, William M; Ben-Shaul, Avinoam

    2015-11-01

    To optimize binding-and packaging-by their capsid proteins (CP), single-stranded (ss) RNA viral genomes often have local secondary/tertiary structures with high CP affinity, with these "packaging signals" serving as heterogeneous nucleation sites for the formation of capsids. Under typical in vitro self-assembly conditions, however, and in particular for the case of many ssRNA viruses whose CP have cationic N-termini, the adsorption of CP by RNA is nonspecific because the CP concentration exceeds the largest dissociation constant for CP-RNA binding. Consequently, the RNA is saturated by bound protein before lateral interactions between CP drive the homogeneous nucleation of capsids. But, before capsids are formed, the binding of protein remains reversible and introduction of another RNA species-with a different length and/or sequence-is found experimentally to result in significant redistribution of protein. Here we argue that, for a given RNA mass, the sequence with the highest affinity for protein is the one with the most compact secondary structure arising from self-complementarity; similarly, a long RNA steals protein from an equal mass of shorter ones. In both cases, it is the lateral attractions between bound proteins that determines the relative CP affinities of the RNA templates, even though the individual binding sites are identical. We demonstrate this with Monte Carlo simulations, generalizing the Rosenbluth method for excluded-volume polymers to include branching of the polymers and their reversible binding by protein.

  9. Topography of the Human Papillomavirus Minor Capsid Protein L2 during Vesicular Trafficking of Infectious Entry

    PubMed Central

    DiGiuseppe, Stephen; Keiffer, Timothy R.; Bienkowska-Haba, Malgorzata; Luszczek, Wioleta; Guion, Lucile G. M.; Müller, Martin

    2015-01-01

    ABSTRACT The human papillomavirus (HPV) capsid is composed of the major capsid protein L1 and the minor capsid protein L2. During entry, the HPV capsid undergoes numerous conformational changes that result in endosomal uptake and subsequent trafficking of the L2 protein in complex with the viral DNA to the trans-Golgi network. To facilitate this transport, the L2 protein harbors a number of putative motifs that, if capable of direct interaction, would interact with cytosolic host cell factors. These data imply that a portion of L2 becomes cytosolic during infection. Using a low concentration of digitonin to selectively permeabilize the plasma membrane of infected cells, we mapped the topography of the L2 protein during infection. We observed that epitopes within amino acid residues 64 to 81 and 163 to 170 and a C-terminal tag of HPV16 L2 are exposed on the cytosolic side of intracellular membranes, whereas an epitope within residues 20 to 38, which are upstream of a putative transmembrane region, is luminal. Corroborating these findings, we also found that L2 protein is sensitive to trypsin digestion during infection. These data demonstrate that the majority of the L2 protein becomes accessible on the cytosolic side of intracellular membranes in order to interact with cytosolic factors to facilitate vesicular trafficking. IMPORTANCE In order to complete infectious entry, nonenveloped viruses have to pass cellular membranes. This is often achieved through the viral capsid protein associating with or integrating into intracellular membrane. Here, we determine the topography of HPV L2 protein in the endocytic vesicular compartment, suggesting that L2 becomes a transmembrane protein with a short luminal portion and with the majority facing the cytosolic side for interaction with host cell transport factors. PMID:26246568

  10. Residues of the UL25 protein of herpes simplex virus that are required for its stable interaction with capsids.

    PubMed

    Cockrell, Shelley K; Huffman, Jamie B; Toropova, Katerina; Conway, James F; Homa, Fred L

    2011-05-01

    The herpes simplex virus 1 (HSV-1) UL25 gene product is a minor capsid component that is required for encapsidation, but not cleavage, of replicated viral DNA. UL25 is located on the capsid surface in a proposed heterodimer with UL17, where five copies of the heterodimer are found at each of the capsid vertices. Previously, we demonstrated that amino acids 1 to 50 of UL25 are essential for its stable interaction with capsids. To further define the UL25 capsid binding domain, we generated recombinant viruses with either small truncations or amino acid substitutions in the UL25 N terminus. Studies of these mutants demonstrated that there are two important regions within the capsid binding domain. The first 27 amino acids are essential for capsid binding of UL25, while residues 26 to 39, which are highly conserved in the UL25 homologues of other alphaherpesviruses, were found to be critical for stable capsid binding. Cryo-electron microscopy reconstructions of capsids containing either a small tag on the N terminus of UL25 or the green fluorescent protein (GFP) fused between amino acids 50 and 51 of UL25 demonstrate that residues 1 to 27 of UL25 contact the hexon adjacent to the penton. A second region, most likely centered on amino acids 26 to 39, contacts the triplex that is one removed from the penton. Importantly, both of these UL25 capsid binding regions are essential for the stable packaging of full-length viral genomes.

  11. Genetic Economy of Polyoma Virus: Capsid Proteins Are Cleavage Products of Same Viral Gene

    PubMed Central

    Friedmann, Theodore

    1974-01-01

    Two-dimensional tryptic peptide maps of the nonhistone proteins of purified polyoma virus show marked similarities. Protein P1 is a nondisaggregated, possibly covalent, dimer of the major capsid protein P2, whereas P3 and P4 share several new peptides as well as many of the peptides derived from P2. Extensive use of this kind of processing of viral proteins during the biosynthesis of DNA-containing animal viruses has not been reported previously. Images PMID:4360936

  12. Production of monoclonal antibodies specific to Macrobrachium rosenbergii nodavirus using recombinant capsid protein.

    PubMed

    Wangman, Pradit; Senapin, Saengchan; Chaivisuthangkura, Parin; Longyant, Siwaporn; Rukpratanporn, Sombat; Sithigorngul, Paisarn

    2012-03-20

    The gene encoding the capsid protein of Macrobrachium rosenbergii nodavirus (MrNV) was cloned into pGEX-6P-1 expression vector and then transformed into the Escherichia coli strain BL21. After induction, capsid protein-glutathione-S-transferase (GST-MrNV; 64 kDa) was produced. The recombinant protein was separated using SDS-PAGE, excised from the gel, electro-eluted and then used for immunization for monoclonal antibody (MAb) production. Four MAbs specific to the capsid protein were selected and could be used to detect natural MrNV infections in M. rosenbergii by dot blotting, Western blotting and immunohistochemistry without cross-reaction with uninfected shrimp tissues or other common shrimp viruses. The detection sensitivity of the MAbs was 10 fmol µl-1 of the GST-MrNV, as determined using dot blotting. However, the sensitivity of the MAb on dot blotting with homogenate from naturally infected M. rosenbergii was approximately 200-fold lower than that of 1-step RT-PCR. Immunohistochemical analysis using these MAbs with infected shrimp tissues demonstrated staining in the muscles, nerve cord, gill, heart, loose connective tissue and inter-tubular tissue of the hepatopancreas. Although the positive reactions occurred in small focal areas, the immunoreactivity was clearly demonstrated. The MAbs targeted different epitopes of the capsid protein and will be used to develop a simple immunoassay strip test for rapid detection of MrNV. PMID:22436460

  13. HIV-1 capsid undergoes coupled binding and isomerization by the nuclear pore protein NUP358

    PubMed Central

    2013-01-01

    Background Lentiviruses such as HIV-1 can be distinguished from other retroviruses by the cyclophilin A-binding loop in their capsid and their ability to infect non-dividing cells. Infection of non-dividing cells requires transport through the nuclear pore but how this is mediated is unknown. Results Here we present the crystal structure of the N-terminal capsid domain of HIV-1 in complex with the cyclophilin domain of nuclear pore protein NUP358. The structure reveals that HIV-1 is positioned to allow single-bond resonance stabilisation of exposed capsid residue P90. NMR exchange experiments demonstrate that NUP358 is an active isomerase, which efficiently catalyzes cis-trans isomerization of the HIV-1 capsid. In contrast, the distantly related feline lentivirus FIV can bind NUP358 but is neither isomerized by it nor requires it for infection. Conclusion Isomerization by NUP358 may be preserved by HIV-1 to target the nuclear pore and synchronize nuclear entry with capsid uncoating. PMID:23902822

  14. Drosophila Nora virus capsid proteins differ from those of other picorna-like viruses.

    PubMed

    Ekström, Jens-Ola; Habayeb, Mazen S; Srivastava, Vaibhav; Kieselbach, Thomas; Wingsle, Gunnar; Hultmark, Dan

    2011-09-01

    The recently discovered Nora virus from Drosophila melanogaster is a single-stranded RNA virus. Its published genomic sequence encodes a typical picorna-like cassette of replicative enzymes, but no capsid proteins similar to those in other picorna-like viruses. We have now done additional sequencing at the termini of the viral genome, extending it by 455 nucleotides at the 5' end, but no more coding sequence was found. The completeness of the final 12,333-nucleotide sequence was verified by the production of infectious virus from the cloned genome. To identify the capsid proteins, we purified Nora virus particles and analyzed their proteins by mass spectrometry. Our results show that the capsid is built from three major proteins, VP4A, B and C, encoded in the fourth open reading frame of the viral genome. The viral particles also contain traces of a protein from the third open reading frame, VP3. VP4A and B are not closely related to other picorna-like virus capsid proteins in sequence, but may form similar jelly roll folds. VP4C differs from the others and is predicted to have an essentially α-helical conformation. In a related virus, identified from EST database sequences from Nasonia parasitoid wasps, VP4C is encoded in a separate open reading frame, separated from VP4A and B by a frame-shift. This opens a possibility that VP4C is produced in non-equimolar quantities. Altogether, our results suggest that the Nora virus capsid has a different protein organization compared to the order Picornavirales.

  15. Antibody recognition of porcine circovirus type 2 capsid protein epitopes after vaccination, infection, and disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Open reading frame 2 (ORF2) of porcine circovirus type 2 (PCV2) codes for the 233-amino-acid capsid protein (CP). Baculovirus-based vaccines that express only ORF2 are protective against clinical disease following experimental challenge or natural infection. The goal of this study was to identify re...

  16. Proof of concept study with an HER-2 mimotope anticancer vaccine deduced from a novel AAV-mimotope library platform

    PubMed Central

    Singer, Josef; Manzano-Szalai, Krisztina; Fazekas, Judit; Thell, Kathrin; Bentley-Lukschal, Anna; Stremnitzer, Caroline; Roth-Walter, Franziska; Weghofer, Margit; Ritter, Mirko; Pino Tossi, Kerstin; Hörer, Markus; Michaelis, Uwe; Jensen-Jarolim, Erika

    2016-01-01

    ABSTRACT Background: Anticancer vaccines could represent a valuable complementary strategy to established therapies, especially in settings of early stage and minimal residual disease. HER-2 is an important target for immunotherapy and addressed by the monoclonal antibody trastuzumab. We have previously generated HER-2 mimotope peptides from phage display libraries. The synthesized peptides were coupled to carriers and applied for epitope-specific induction of trastuzumab-like IgG. For simplification and to avoid methodological limitations of synthesis and coupling chemistry, we herewith present a novel and optimized approach by using adeno-associated viruses (AAV) as effective and high-density mimotope-display system, which can be directly used for vaccination. Methods: An AAV capsid display library was constructed by genetically incorporating random peptides in a plasmid encoding the wild-type AAV2 capsid protein. AAV clones, expressing peptides specifically reactive to trastuzumab, were employed to immunize BALB/c mice. Antibody titers against human HER-2 were determined, and the isotype composition and functional properties of these were tested. Finally, prophylactically immunized mice were challenged with human HER-2 transfected mouse D2F2/E2 cells. Results: HER-2 mimotope AAV-vaccines induced antibodies specific to human HER-2. Two clones were selected for immunization of mice, which were subsequently grafted D2F2/E2 cells. Both mimotope AAV clones delayed the growth of tumors significantly, as compared to controls. Conclusion: In this study, a novel mimotope AAV-based platform was created allowing the isolation of mimotopes, which can be directly used as anticancer vaccines. The example of trastuzumab AAV-mimotopes demonstrates that this vaccine strategy could help to establish active immunotherapy for breast-cancer patients. PMID:27622022

  17. Proof of concept study with an HER-2 mimotope anticancer vaccine deduced from a novel AAV-mimotope library platform

    PubMed Central

    Singer, Josef; Manzano-Szalai, Krisztina; Fazekas, Judit; Thell, Kathrin; Bentley-Lukschal, Anna; Stremnitzer, Caroline; Roth-Walter, Franziska; Weghofer, Margit; Ritter, Mirko; Pino Tossi, Kerstin; Hörer, Markus; Michaelis, Uwe; Jensen-Jarolim, Erika

    2016-01-01

    ABSTRACT Background: Anticancer vaccines could represent a valuable complementary strategy to established therapies, especially in settings of early stage and minimal residual disease. HER-2 is an important target for immunotherapy and addressed by the monoclonal antibody trastuzumab. We have previously generated HER-2 mimotope peptides from phage display libraries. The synthesized peptides were coupled to carriers and applied for epitope-specific induction of trastuzumab-like IgG. For simplification and to avoid methodological limitations of synthesis and coupling chemistry, we herewith present a novel and optimized approach by using adeno-associated viruses (AAV) as effective and high-density mimotope-display system, which can be directly used for vaccination. Methods: An AAV capsid display library was constructed by genetically incorporating random peptides in a plasmid encoding the wild-type AAV2 capsid protein. AAV clones, expressing peptides specifically reactive to trastuzumab, were employed to immunize BALB/c mice. Antibody titers against human HER-2 were determined, and the isotype composition and functional properties of these were tested. Finally, prophylactically immunized mice were challenged with human HER-2 transfected mouse D2F2/E2 cells. Results: HER-2 mimotope AAV-vaccines induced antibodies specific to human HER-2. Two clones were selected for immunization of mice, which were subsequently grafted D2F2/E2 cells. Both mimotope AAV clones delayed the growth of tumors significantly, as compared to controls. Conclusion: In this study, a novel mimotope AAV-based platform was created allowing the isolation of mimotopes, which can be directly used as anticancer vaccines. The example of trastuzumab AAV-mimotopes demonstrates that this vaccine strategy could help to establish active immunotherapy for breast-cancer patients.

  18. Improved dual AAV vectors with reduced expression of truncated proteins are safe and effective in the retina of a mouse model of Stargardt disease.

    PubMed

    Trapani, Ivana; Toriello, Elisabetta; de Simone, Sonia; Colella, Pasqualina; Iodice, Carolina; Polishchuk, Elena V; Sommella, Andrea; Colecchi, Linda; Rossi, Settimio; Simonelli, Francesca; Giunti, Massimo; Bacci, Maria L; Polishchuk, Roman S; Auricchio, Alberto

    2015-12-01

    Stargardt disease (STGD1) due to mutations in the large ABCA4 gene is the most common inherited macular degeneration in humans. We have shown that dual adeno-associated viral (AAV) vectors effectively transfer ABCA4 to the retina of Abca4-/- mice. However, they express both lower levels of transgene compared with a single AAV and truncated proteins. To increase productive dual AAV concatemerization, which would overcome these limitations, we have explored the use of either various regions of homology or heterologous inverted terminal repeats (ITR). In addition, we tested the ability of various degradation signals to decrease the expression of truncated proteins. We found the highest levels of transgene expression using regions of homology based on either alkaline phosphatase or the F1 phage (AK). The use of heterologous ITR does not decrease the levels of truncated proteins relative to full-length ABCA4 and impairs AAV vector production. Conversely, the inclusion of the CL1 degradation signal results in the selective degradation of truncated proteins from the 5'-half without affecting full-length protein production. Therefore, we developed dual AAV hybrid ABCA4 vectors including homologous ITR2, the photoreceptor-specific G protein-coupled receptor kinase 1 promoter, the AK region of homology and the CL1 degradation signal. We show that upon subretinal administration these vectors are both safe in pigs and effective in Abca4-/- mice. Our data support the use of improved dual AAV vectors for gene therapy of STGD1.

  19. Disassociation of the SV40 Genome from Capsid Proteins Prior to Nuclear Entry

    PubMed Central

    2012-01-01

    Background Previously, we demonstrated that input SV40 particles undergo a partial disassembly in the endoplasmic reticulum, which exposes internal capsid proteins VP2 and VP3 to immunostaining. Then, in the cytoplasm, disassembly progresses further to also make the genomic DNA accessible to immune detection, as well as to detection by an ethynyl-2-deoxyuridine (EdU)-based chemical reaction. The cytoplasmic partially disassembled SV40 particles retain some of the SV40 capsid proteins, VP1, VP2, and VP3, in addition to the viral genome. Findings In the current study, we asked where in the cell the SV40 genome might disassociate from capsid components. We observed partially disassembled input SV40 particles around the nucleus and, beginning at 12 hours post-infection, 5-Bromo-2-deoxyuridine (BrdU)-labeled parental SV40 DNA in the nucleus, as detected using anti-BrdU antibodies. However, among the more than 1500 cells examined, we never detected input VP2/VP3 in the nucleus. Upon translocation of the BrdU-labeled SV40 genomes into nuclei, they were transcribed and, thus, are representative of productive infection. Conclusions Our findings imply that the SV40 genome disassociates from the capsid proteins before or at the point of entry into the nucleus, and then enters the nucleus devoid of VP2/3. PMID:22882793

  20. Syngeneic AAV pseudo-vectors potentiates full vector transduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An excessive amount of empty capsids are generated during regular AAV vector production process. These pseudo-vectors often remain in final vectors used for animal studies or clinical trials. The potential effects of these pseudo-vectors on AAV transduction have been a major concern. In the current ...

  1. Herpes Simplex Virus Capsid-Organelle Association in the Absence of the Large Tegument Protein UL36p

    PubMed Central

    Kharkwal, Himanshu; Furgiuele, Sara Shanda; Smith, Caitlin G.

    2015-01-01

    ABSTRACT UL36p (VP1/2) is the largest protein encoded by herpes simplex virus 1 (HSV-1) and resides in the innermost layer of the viral tegument, lying between the capsid and the envelope. UL36p performs multiple functions in the HSV life cycle, including an essential role in cytoplasmic envelopment. We earlier described the isolation of a virion-associated cytoplasmic membrane fraction from HSV-infected cells. Biochemical and ultrastructural analyses showed that the organelles in this buoyant fraction contain enveloped infectious HSV particles in their lumens and naked capsids docked to their cytoplasmic surfaces. These organelles can also recruit molecular motors and transport their cargo virions along microtubules in vitro. Here we examine the properties of these HSV-associated organelles in the absence of UL36p. We find that while capsid envelopment is clearly defective, a subpopulation of capsids nevertheless still associate with the cytoplasmic faces of these organelles. The existence of these capsid-membrane structures was confirmed by subcellular fractionation, immunocytochemistry, lipophilic dye fluorescence microscopy, thin-section electron microscopy, and correlative light and electron microscopy. We conclude that capsid-membrane binding can occur in the absence of UL36p and propose that this association may precede the events of UL36p-driven envelopment. IMPORTANCE Membrane association and envelopment of the HSV capsid are essential for the assembly of an infectious virion. Envelopment involves the complex interplay of a large number of viral and cellular proteins; however, the function of most of them is unknown. One example of this is the viral protein UL36p, which is clearly essential for envelopment but plays a poorly understood role. Here we demonstrate that organelles utilized for HSV capsid envelopment still accumulate surface-bound capsids in the absence of UL36p. We propose that UL36p-independent binding of capsids to organelles occurs prior to

  2. A hydrophobic domain within the small capsid protein of Kaposi's sarcoma-associated herpesvirus is required for assembly.

    PubMed

    Capuano, Christopher M; Grzesik, Peter; Kreitler, Dale; Pryce, Erin N; Desai, Keshal V; Coombs, Gavin; McCaffery, J Michael; Desai, Prashant J

    2014-08-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) capsids can be produced in insect cells using recombinant baculoviruses for protein expression. All six capsid proteins are required for this process to occur and, unlike for alphaherpesviruses, the small capsid protein (SCP) ORF65 is essential for this process. This protein decorates the capsid shell by virtue of its interaction with the capsomeres. In this study, we have explored the SCP interaction with the major capsid protein (MCP) using GFP fusions. The assembly site within the nucleus of infected cells was visualized by light microscopy using fluorescence produced by the SCP-GFP polypeptide, and the relocalization of the SCP to these sites was evident only when the MCP and the scaffold protein were also present - indicative of an interaction between these proteins that ensures delivery of the SCP to assembly sites. Biochemical assays demonstrated a physical interaction between the SCP and MCP, and also between this complex and the scaffold protein. Self-assembly of capsids with the SCP-GFP polypeptide was evident. Potentially, this result can be used to engineer fluorescent KSHV particles. A similar SCP-His6 polypeptide was used to purify capsids from infected cell lysates using immobilized affinity chromatography and to directly label this protein in capsids using chemically derivatized gold particles. Additional studies with SCP-GFP polypeptide truncation mutants identified a domain residing between aa 50 and 60 of ORF65 that was required for the relocalization of SCP-GFP to nuclear assembly sites. Substitution of residues in this region and specifically at residue 54 with a polar amino acid (lysine) disrupted or abolished this localization as well as capsid assembly, whereas substitution with non-polar residues did not affect the interaction. Thus, this study identified a small conserved hydrophobic domain that is important for the SCP-MCP interaction.

  3. A hydrophobic domain within the small capsid protein of Kaposi's sarcoma-associated herpesvirus is required for assembly.

    PubMed

    Capuano, Christopher M; Grzesik, Peter; Kreitler, Dale; Pryce, Erin N; Desai, Keshal V; Coombs, Gavin; McCaffery, J Michael; Desai, Prashant J

    2014-08-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) capsids can be produced in insect cells using recombinant baculoviruses for protein expression. All six capsid proteins are required for this process to occur and, unlike for alphaherpesviruses, the small capsid protein (SCP) ORF65 is essential for this process. This protein decorates the capsid shell by virtue of its interaction with the capsomeres. In this study, we have explored the SCP interaction with the major capsid protein (MCP) using GFP fusions. The assembly site within the nucleus of infected cells was visualized by light microscopy using fluorescence produced by the SCP-GFP polypeptide, and the relocalization of the SCP to these sites was evident only when the MCP and the scaffold protein were also present - indicative of an interaction between these proteins that ensures delivery of the SCP to assembly sites. Biochemical assays demonstrated a physical interaction between the SCP and MCP, and also between this complex and the scaffold protein. Self-assembly of capsids with the SCP-GFP polypeptide was evident. Potentially, this result can be used to engineer fluorescent KSHV particles. A similar SCP-His6 polypeptide was used to purify capsids from infected cell lysates using immobilized affinity chromatography and to directly label this protein in capsids using chemically derivatized gold particles. Additional studies with SCP-GFP polypeptide truncation mutants identified a domain residing between aa 50 and 60 of ORF65 that was required for the relocalization of SCP-GFP to nuclear assembly sites. Substitution of residues in this region and specifically at residue 54 with a polar amino acid (lysine) disrupted or abolished this localization as well as capsid assembly, whereas substitution with non-polar residues did not affect the interaction. Thus, this study identified a small conserved hydrophobic domain that is important for the SCP-MCP interaction. PMID:24824860

  4. Thermodynamic origins of protein folding, allostery, and capsid formation in the human hepatitis B virus core protein.

    PubMed

    Alexander, Crispin G; Jürgens, Maike C; Shepherd, Dale A; Freund, Stefan M V; Ashcroft, Alison E; Ferguson, Neil

    2013-07-23

    HBc, the capsid-forming "core protein" of human hepatitis B virus (HBV), is a multidomain, α-helical homodimer that aggressively forms human HBV capsids. Structural plasticity has been proposed to be important to the myriad functions HBc mediates during viral replication. Here, we report detailed thermodynamic analyses of the folding of the dimeric HBc protomer under conditions that prevented capsid formation. Central to our success was the use of ion mobility spectrometry-mass spectrometry and microscale thermophoresis, which allowed folding mechanisms to be characterized using just micrograms of protein. HBc folds in a three-state transition with a stable, dimeric, α-helical intermediate. Extensive protein engineering showed thermodynamic linkage between different structural domains. Unusual effects associated with mutating some residues suggest structural strain, arising from frustrated contacts, is present in the native dimer. We found evidence of structural gatekeepers that, when mutated, alleviated native strain and prevented (or significantly attenuated) capsid formation by tuning the population of alternative native conformations. This strain is likely an evolved feature that helps HBc access the different structures associated with its diverse essential functions. The subtle balance between native and strained contacts may provide the means to tune conformational properties of HBc by molecular interactions or mutations, thereby conferring allosteric regulation of structure and function. The ability to trap HBc conformers thermodynamically by mutation, and thereby ablate HBV capsid formation, provides proof of principle for designing antivirals that elicit similar effects.

  5. Inhibition of chikungunya virus by picolinate that targets viral capsid protein.

    PubMed

    Sharma, Rajesh; Fatma, Benazir; Saha, Amrita; Bajpai, Sailesh; Sistla, Srinivas; Dash, Paban Kumar; Parida, Manmohan; Kumar, Pravindra; Tomar, Shailly

    2016-11-01

    The protein-protein interactions (PPIs) of the transmembrane glycoprotein E2 with the hydrophobic pocket on the surface of capsid protein (CP) plays a critical role in alphavirus life cycle. Dioxane based derivatives targeting PPIs have been reported to possess antiviral activity against Sindbis Virus (SINV), the prototype alphavirus. In this study, the binding of picolinic acid (PCA) to the conserved hydrophobic pocket of capsid protein was analyzed by molecular docking, isothermal titration calorimetry (ITC), surface plasmon resonance (SPR) and fluorescence spectroscopy. The binding constant KD obtained for PCA was 2.1×10(-7)M. Additionally, PCA significantly inhibited CHIKV replication in infected Vero cells, decreasing viral mRNA and viral load as assessed by qRT-PCR and plaque reduction assay, respectively. This study is suggestive of the potential of pyridine ring compounds as antivirals against alphaviruses and may serve as the basis for the development of PCA based drugs against alphaviral diseases.

  6. Inhibition of chikungunya virus by picolinate that targets viral capsid protein.

    PubMed

    Sharma, Rajesh; Fatma, Benazir; Saha, Amrita; Bajpai, Sailesh; Sistla, Srinivas; Dash, Paban Kumar; Parida, Manmohan; Kumar, Pravindra; Tomar, Shailly

    2016-11-01

    The protein-protein interactions (PPIs) of the transmembrane glycoprotein E2 with the hydrophobic pocket on the surface of capsid protein (CP) plays a critical role in alphavirus life cycle. Dioxane based derivatives targeting PPIs have been reported to possess antiviral activity against Sindbis Virus (SINV), the prototype alphavirus. In this study, the binding of picolinic acid (PCA) to the conserved hydrophobic pocket of capsid protein was analyzed by molecular docking, isothermal titration calorimetry (ITC), surface plasmon resonance (SPR) and fluorescence spectroscopy. The binding constant KD obtained for PCA was 2.1×10(-7)M. Additionally, PCA significantly inhibited CHIKV replication in infected Vero cells, decreasing viral mRNA and viral load as assessed by qRT-PCR and plaque reduction assay, respectively. This study is suggestive of the potential of pyridine ring compounds as antivirals against alphaviruses and may serve as the basis for the development of PCA based drugs against alphaviral diseases. PMID:27614702

  7. DNA condensates organized by the capsid protein VP15 in White Spot Syndrome Virus

    SciTech Connect

    Liu Yingjie; Wu Jinlu; Chen Hu; Hew, Choy Leong; Yan Jie

    2010-12-20

    The White Spot Syndrome Virus (WSSV) has a large circular double-stranded DNA genome of around 300 kb and it replicates in the nucleus of the host cells. The machinery of how the viral DNA is packaged has been remained unclear. VP15, a highly basic protein, is one of the major capsid proteins found in the virus. Previously, it was shown to be a DNA binding protein and was hypothesized to participate in the viral DNA packaging process. Using Atomic Force Microscopy imaging, we show that the viral DNA is associated with a (or more) capsid proteins. The organized viral DNA qualitatively resembles the conformations of VP15 induced DNA condensates in vitro. Furthermore, single-DNA manipulation experiments revealed that VP15 is able to condense single DNA against forces of a few pico Newtons. Our results suggest that VP15 may aid in the viral DNA packaging process by directly condensing DNA.

  8. High-Efficiency Transduction of Primary Human Hematopoietic Stem/Progenitor Cells by AAV6 Vectors: Strategies for Overcoming Donor-Variation and Implications in Genome Editing

    PubMed Central

    Ling, Chen; Bhukhai, Kanit; Yin, Zifei; Tan, Mengqun; Yoder, Mervin C.; Leboulch, Philippe; Payen, Emmanuel; Srivastava, Arun

    2016-01-01

    We have reported that of the 10 commonly used AAV serotype vectors, AAV6 is the most efficient in transducing primary human hematopoietic stem/progenitor cells (HSPCs). However, the transduction efficiency of the wild-type (WT) AAV6 vector varies greatly in HSPCs from different donors. Here we report two distinct strategies to further increase the transduction efficiency in HSPCs from donors that are transduced less efficiently with the WT AAV6 vectors. The first strategy involved modifications of the viral capsid proteins where specific surface-exposed tyrosine (Y) and threonine (T) residues were mutagenized to generate a triple-mutant (Y705 + Y731F + T492V) AAV6 vector. The second strategy involved the use of ex vivo transduction at high cell density. The combined use of these strategies resulted in transduction efficiency exceeding ~90% in HSPCs at significantly reduced vector doses. Our studies have significant implications in the optimal use of capsid-optimized AAV6 vectors in genome editing in HSPCs. PMID:27759036

  9. Synergistic inhibition of PARP-1 and NF-κB signaling downregulates immune response against recombinant AAV2 vectors during hepatic gene therapy.

    PubMed

    Hareendran, Sangeetha; Ramakrishna, Banumathi; Jayandharan, Giridhara R

    2016-01-01

    Host immune response remains a key obstacle to widespread application of adeno-associated virus (AAV) based gene therapy. Thus, targeted inhibition of the signaling pathways that trigger such immune responses will be beneficial. Previous studies have reported that DNA damage response proteins such as poly(ADP-ribose) polymerase-1 (PARP-1) negatively affect the integration of AAV in the host genome. However, the role of PARP-1 in regulating AAV transduction and the immune response against these vectors has not been elucidated. In this study, we demonstrate that repression of PARP-1 improves the transduction of single-stranded AAV vectors both in vitro (∼174%) and in vivo (two- to 3.4-fold). Inhibition of PARP-1, also significantly downregulated the expression of several proinflammatory and cytokine markers such as TLRs, ILs, NF-κB subunit proteins associated with the host innate response against self-complementary AAV2 vectors. The suppression of the inflammatory response targeted against these vectors was more effective upon combined inhibition of PARP-1 and NF-κB signaling. This strategy also effectively attenuated the AAV capsid-specific cytotoxic T-cell response, with minimal effect on vector transduction, as demonstrated in normal C57BL/6 and hemophilia B mice. These data suggest that targeting specific host cellular proteins could be useful to attenuate the immune barriers to AAV-mediated gene therapy. PMID:26443873

  10. Synergistic inhibition of PARP-1 and NF-κB signaling downregulates immune response against recombinant AAV2 vectors during hepatic gene therapy.

    PubMed

    Hareendran, Sangeetha; Ramakrishna, Banumathi; Jayandharan, Giridhara R

    2016-01-01

    Host immune response remains a key obstacle to widespread application of adeno-associated virus (AAV) based gene therapy. Thus, targeted inhibition of the signaling pathways that trigger such immune responses will be beneficial. Previous studies have reported that DNA damage response proteins such as poly(ADP-ribose) polymerase-1 (PARP-1) negatively affect the integration of AAV in the host genome. However, the role of PARP-1 in regulating AAV transduction and the immune response against these vectors has not been elucidated. In this study, we demonstrate that repression of PARP-1 improves the transduction of single-stranded AAV vectors both in vitro (∼174%) and in vivo (two- to 3.4-fold). Inhibition of PARP-1, also significantly downregulated the expression of several proinflammatory and cytokine markers such as TLRs, ILs, NF-κB subunit proteins associated with the host innate response against self-complementary AAV2 vectors. The suppression of the inflammatory response targeted against these vectors was more effective upon combined inhibition of PARP-1 and NF-κB signaling. This strategy also effectively attenuated the AAV capsid-specific cytotoxic T-cell response, with minimal effect on vector transduction, as demonstrated in normal C57BL/6 and hemophilia B mice. These data suggest that targeting specific host cellular proteins could be useful to attenuate the immune barriers to AAV-mediated gene therapy.

  11. Adeno-Associated Virus Capsid Proteins May Play a Role in Transcription and Second-Strand Synthesis of Recombinant Genomes

    PubMed Central

    Salganik, Maxim; Aydemir, Fikret; Nam, Hyun-Joo; McKenna, Robert; Agbandje-McKenna, Mavis

    2014-01-01

    A group of four interacting amino acids in adeno-associated virus type 8 (AAV8) called the pH quartet has been shown to undergo a structural change when subjected to acidic pH comparable to that seen in endosomal compartments. We examined the phenotypes of mutants with mutations in these amino acids as well as several nearby residues in the background of AAV2. We found that three of the mutations in this region (Y704A, E562A, and E564A) produce normal titers of mature capsids but are extremely defective for transduction (>107-fold). The remaining mutants were also defective for transduction, but the defect in these mutants (E563A, E561A, H526A, and R389A) is not as severe (3- to 22-fold). Two other mutants (Y700A and Y730A) were found to be defective for virus assembly. One of the extremely defective mutants (Y704A) was found to enter the cell, traffic to the nucleus, and uncoat its DNA nearly as efficiently as the wild type. This suggested that some step after nuclear entry and uncoating was defective. To see if the extremely defective mutants were impaired in second-strand synthesis, the Y704A, E562A, and E564A mutants containing self-complementary DNA were compared with virus containing single-stranded genomes. Two of the mutants (Y704A and E564A) showed 1-log and 3-log improvements in infectivity, respectively, while the third mutant (E562A) showed no change. This suggested that inhibition of second-strand synthesis was responsible for some but not most of the defect in these mutants. Comparison of Y704A mRNA synthesis with that of the wild-type capsid showed that accumulation of steady-state mRNA in the Y704A mutant was reduced 450-fold, even though equal genome numbers were uncoated. Our experiments have identified a novel capsid function. They suggest that AAV capsids may play a role in the initiation of both second-strand synthesis and transcription of the input genome. PMID:24198419

  12. Insight into the Assembly of Viruses with Vertical Single β-barrel Major Capsid Proteins.

    PubMed

    Gil-Carton, David; Jaakkola, Salla T; Charro, Diego; Peralta, Bibiana; Castaño-Díez, Daniel; Oksanen, Hanna M; Bamford, Dennis H; Abrescia, Nicola G A

    2015-10-01

    Archaeal viruses constitute the least explored niche within the virosphere. Structure-based approaches have revealed close relationships between viruses infecting organisms from different domains of life. Here, using biochemical and cryo-electron microscopy techniques, we solved the structure of euryarchaeal, halophilic, internal membrane-containing Haloarcula hispanica icosahedral virus 2 (HHIV-2). We show that the density of the two major capsid proteins (MCPs) recapitulates vertical single β-barrel proteins and that disulfide bridges stabilize the capsid. Below, ordered density is visible close to the membrane and at the five-fold vertices underneath the host-interacting vertex complex underpinning membrane-protein interactions. The HHIV-2 structure exemplifies the division of conserved architectural elements of a virion, such as the capsid, from those that evolve rapidly due to selective environmental pressure such as host-recognizing structures. We propose that in viruses with two vertical single β-barrel MCPs the vesicle is indispensable, and membrane-protein interactions serve as protein-railings for guiding the assembly. PMID:26320579

  13. Detection of major capsid protein of infectious myonecrosis virus in shrimps using monoclonal antibodies.

    PubMed

    Seibert, Caroline H; Borsa, Mariana; Rosa, Rafael D; Cargnin-Ferreira, Eduardo; Pereira, Alitiene M L; Grisard, Edmundo C; Zanetti, Carlos R; Pinto, Aguinaldo R

    2010-10-01

    Infectious myonecrosis virus (IMNV) has been causing a progressive disease in farm-reared shrimps in Brazil and Indonesia. Immunodiagnostic methods for IMNV detection, although reliable, are not employed currently because monoclonal antibodies (MAbs) against this virus are not available. In this study, a fragment of the IMNV major capsid protein gene, comprising amino acids 300-527 (IMNV(300-527)), was cloned and expressed in Escherichia coli. The nucleotide sequence of the recombinant IMNV(300-527) fragment displayed a high degree of identity to the major capsid protein of IMNV isolates from Brazil (99%) and Indonesia (98%). Ten MAbs were generated against the expressed fragment, and eight of these, mostly IgG(2a) or IgG(2b), were able to bind to IMNV in tissue extracts from shrimps infected naturally in immunodot-blot assays. Six of these MAbs recognized a approximately 100 kDa protein in a Western-blot, which is the predicted mass of IMNV major capsid protein, and also bound to viral inclusions present in muscle fibroses and in coagulative myonecrosis, as demonstrated by immunohistochemistry. Among all those MAbs created, four did not cross-react with non-infected shrimp tissues; this observation supports their applicability as a sensitive and specific immunodiagnosis of IMNV infection in shrimps.

  14. Hepatitis virus protein X-Phenylalanine Hydroxylase fusion proteins identified in PKU mice treated with AAV-WPRE vectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Utilizing the Pahenu2 mouse model for phenylketonuria (PKU), we developed an improved expression vector containing the Woodchuck Hepatitis Virus post-transcriptional regulatory element inserted into a rAAV-mPAH construct (rAAV-mPAH-WPRE) for treatment of PKU. Following portal vein delivery of these ...

  15. Functional characterization of Kaposi's sarcoma-associated herpesvirus small capsid protein by bacterial artificial chromosome-based mutagenesis

    SciTech Connect

    Sathish, Narayanan; Yuan Yan

    2010-11-25

    A systematic investigation of interactions amongst KSHV capsid proteins was undertaken in this study to comprehend lesser known KSHV capsid assembly mechanisms. Interestingly the interaction patterns of the KSHV small capsid protein, ORF65 suggested its plausible role in viral capsid assembly pathways. Towards further understanding this, ORF65-null recombinant mutants (BAC-{Delta}65 and BAC-stop65) employing a bacterial artificial chromosome (BAC) system were generated. No significant difference was found in both overall viral gene expression and lytic DNA replication between stable monolayers of 293T-BAC36 (wild-type) and 293T-BAC-ORF65-null upon induction with 12-O-tetradecanoylphorbol-13-acetate, though the latter released 30-fold fewer virions to the medium than 293T-BAC36 cells. Sedimentation profiles of capsid proteins of ORF65-null recombinant mutants were non-reflective of their organization into the KSHV capsids and were also undetectable in cytoplasmic extracts compared to noticeable levels in nuclear extracts. These observations collectively suggested the pivotal role of ORF65 in the KSHV capsid assembly processes.

  16. Fusion of a fluorescent protein to the pUL25 minor capsid protein of pseudorabies virus allows live-cell capsid imaging with negligible impact on infection.

    PubMed

    Bohannon, Kevin P; Sollars, Patricia J; Pickard, Gary E; Smith, Gregory A

    2012-01-01

    In order to resolve the location and activity of submicroscopic viruses in living cells, viral proteins are often fused to fluorescent proteins (FPs) and visualized by microscopy. In this study, we describe the fusion of FPs to three proteins of pseudorabies virus (PRV) that allowed imaging of capsids in living cells. Included in this study are the first recombinant PRV strains expressing FP-pUL25 fusions based on a design applied to herpes simplex virus type 1 by Homa and colleagues. The properties of each reporter virus were compared in both in vitro and in vivo infection models. PRV strains expressing FP-pUL25 and FP-pUL36 preserved wild-type properties better than traditional FP-pUL35 isolates in assays of plaque size and virulence in mice. The utility of these strains in studies of axon transport, nuclear dynamics and viral particle composition are documented. PMID:21976610

  17. Derivation of a triple mosaic adenovirus based on modification of the minor capsid protein IX

    SciTech Connect

    Tang Yizhe; Le, Long P.; Matthews, Qiana L.; Han Tie; Wu Hongju; Curiel, David T.

    2008-08-01

    Adenoviral capsid protein IX (pIX) has been shown to be a potential locale to insert targeting, imaging-related and therapeutic modalities by genetic modification. Recent evidences suggested that capsid protein mosaicism could be a promising strategy for improving the utility of Ad vector. In this study, we explored a method to genetically generate triple pIX mosaic Ad serotype 5 (Ad5) displaying three types of pIX on a single virion. pIXs were modified at their carboxy termini with a Flag sequence, a hexahistidine sequence (His{sub 6}) or a monomeric red fluorescent protein (mRFP1), respectively. Western blotting analysis and fluorescence microscopy of the purified recombinant viruses indicated that all three modified pIXs were incorporated into the viral particles. Immuno-gold electron microscopy (EM) further confirmed that three types of pIX indeed co-existed on an individual virion. These results firstly validated a triple mosaic capsid configuration on pIX, and demonstrated the possibility of further radical design.

  18. Bioinformatic analysis of non-VP1 capsid protein of coxsackievirus A6.

    PubMed

    Liu, Hong-Bo; Yang, Guang-Fei; Liang, Si-Jia; Lin, Jun

    2016-08-01

    This study bioinformatically analyzed the non-VP1 capsid proteins (VP2-VP4) of Coxasckievirus A6 (CVA6), with an attempt to predict their basic physicochemical properties, structural/functional features and linear B cell eiptopes. The online tools SubLoc, TargetP and the others from ExPASy Bioinformatics Resource Portal, and SWISS-MODEL (an online protein structure modeling server), were utilized to analyze the amino acid (AA) sequences of VP2-VP4 proteins of CVA6. Our results showed that the VP proteins of CVA6 were all of hydrophilic nature, contained phosphorylation and glycosylation sites and harbored no signal peptide sequences and acetylation sites. Except VP3, the other proteins did not have transmembrane helix structure and nuclear localization signal sequences. Random coils were the major conformation of the secondary structure of the capsid proteins. Analysis of the linear B cell epitopes by employing Bepipred showed that the average antigenic indices (AI) of individual VP proteins were all greater than 0 and the average AI of VP4 was substantially higher than that of VP2 and VP3. The VP proteins all contained a number of potential B cell epitopes and some eiptopes were located at the internal side of the viral capsid or were buried. We successfully predicted the fundamental physicochemical properties, structural/functional features and the linear B cell eiptopes and found that different VP proteins share some common features and each has its unique attributes. These findings will help us understand the pathogenicity of CVA6 and develop related vaccines and immunodiagnostic reagents. PMID:27465341

  19. Generation and characterization of anti-Adeno-associated virus serotype 8 (AAV8) and anti-AAV9 monoclonal antibodies.

    PubMed

    Tseng, Yu-Shan; Vliet, Kim Van; Rao, Lavanya; McKenna, Robert; Byrne, Barry J; Asokan, Aravind; Agbandje-McKenna, Mavis

    2016-10-01

    Adeno-associated viruses (AAVs) are promising viral vectors for therapeutic gene delivery, and the approval of an AAV1 vector for the treatment of lipoprotein lipase deficiency has heralded a new and exciting era for this system. However, preclinical and clinical studies show that neutralization from pre-existing antibodies is detrimental for medical application and this hurdle must be overcome before full clinical realization can be achieved. Thus the binding sites for capsid antibodies must be identified and eliminated through capsid engineering. Towards this goal and to recapitulate patient polyclonal responses, a panel of six new mouse monoclonal antibodies (MAbs) has been generated against AAV8 and AAV9 capsids, two vectors being developed for therapeutic application. Native (capsid) dot blot assays confirmed the specificity of these antibodies for their parental serotypes, with the exception of one MAb, HL2372, selected to cross-react against both capsids. Furthermore, in vitro assays showed that these MAbs are capable of neutralizing virus infection. These MAbs will be utilized for structural mapping of antigenic footprints on their respective capsids to inform development of the next generation of rAAV vectors capable of evading antibody neutralization while retaining parental tropism. PMID:27424005

  20. AAV ancestral reconstruction library enables selection of broadly infectious viral variants.

    PubMed

    Santiago-Ortiz, J; Ojala, D S; Westesson, O; Weinstein, J R; Wong, S Y; Steinsapir, A; Kumar, S; Holmes, I; Schaffer, D V

    2015-12-01

    Adeno-associated virus (AAV) vectors have achieved clinical efficacy in treating several diseases. However, enhanced vectors are required to extend these landmark successes to other indications and protein engineering approaches may provide the necessary vector improvements to address such unmet medical needs. To generate new capsid variants with potentially enhanced infectious properties and to gain insights into AAV's evolutionary history, we computationally designed and experimentally constructed a putative ancestral AAV library. Combinatorial variations at 32 amino acid sites were introduced to account for uncertainty in their identities. We then analyzed the evolutionary flexibility of these residues, the majority of which have not been previously studied, by subjecting the library to iterative selection on a representative cell line panel. The resulting variants exhibited transduction efficiencies comparable to the most efficient extant serotypes and, in general, ancestral libraries were broadly infectious across the cell line panel, indicating that they favored promiscuity over specificity. Interestingly, putative ancestral AAVs were more thermostable than modern serotypes and did not use sialic acids, galactose or heparan sulfate proteoglycans for cellular entry. Finally, variants mediated 19- to 31-fold higher gene expression in the muscle compared with AAV1, a clinically used serotype for muscle delivery, highlighting their promise for gene therapy.

  1. Pepino mosaic virus capsid protein interacts with a tomato heat shock protein cognate 70.

    PubMed

    Mathioudakis, Matthaios M; Veiga, Rita; Ghita, Melania; Tsikou, Daniela; Medina, Vicente; Canto, Tomas; Makris, Antonios M; Livieratos, Ioannis C

    2012-01-01

    Plant viral capsid proteins (CP) can be involved in virus movement, replication and symptom development as a result of their interaction with host factors. The identification of such interactions may thus provide information about viral pathogenesis. In this study, Pepino mosaic virus (PepMV) CP was used as bait to screen a tomato (Solanum lycopersicum) cDNA library for potential interactors in yeast. Of seven independent interacting clones, six were predicted to encode the C-termini of the heat shock cognate 70 (Hsc70) proteins. Three full length tomato Hsc70s (named Hsc70.1, .2, .3) were used to confirm the interaction in the yeast two hybrid assay and bimolecular fluorescent complementation (BiFC) in planta. The PepMV CP-Hsc70 interaction was confirmed only in the case of Hsc70.3 for both assays. In BiFC, the interaction was visualized in the cytoplasm and nucleus of agroinfiltrated Nicotiana benthamiana epidermal cells. During PepMV infection, Hsc70.3 mRNA levels were induced and protein accumulation increased at 48 and 72 h post inoculation. In transmission electron microscopy using immunogold labelling techniques, Hsc70 was detected to co-localize with virions in the phloem of PepMV-infected tomato leaves. These observations, together with the co-purification of Hsc70 with PepMV virions further support the notion of a PepMV CP/Hsc70 interaction during virus infection. PMID:21884738

  2. Host Proteolytic Activity Is Necessary for Infectious Bursal Disease Virus Capsid Protein Assembly*

    PubMed Central

    Irigoyen, Nerea; Castón, José R.; Rodríguez, José F.

    2012-01-01

    In many viruses, a precursor particle, or procapsid, is assembled and undergoes massive chemical and physical modification to produce the infectious capsid. Capsid assembly and maturation are finely tuned processes in which viral and host factors participate. We show that the precursor of the VP2 capsid protein (pVP2) of the infectious bursal disease virus (IBDV), a double-stranded RNA virus, is processed at the C-terminal domain (CTD) by a host protease, the puromycin-sensitive aminopeptidase (PurSA). The pVP2 CTD (71 residues) has an important role in determining the various conformations of VP2 (441 residues) that build the T = 13 complex capsid. pVP2 CTD activity is controlled by co- and posttranslational proteolytic modifications of different targets by the VP4 viral protease and by VP2 itself to yield the mature VP2-441 species. Puromycin-sensitive aminopeptidase is responsible for the peptidase activity that cleaves the Arg-452-Arg-453 bond to generate the intermediate pVP2-452 polypeptide. A pVP2 R453A substitution abrogates PurSA activity. We used a baculovirus-based system to express the IBDV polyprotein in insect cells and found inefficient formation of virus-like particles similar to IBDV virions, which correlates with the absence of puromycin-sensitive aminopeptidase in these cells. Virus-like particle assembly was nonetheless rescued efficiently by coexpression of chicken PurSA or pVP2-452 protein. Silencing or pharmacological inhibition of puromycin-sensitive aminopeptidase activity in cell lines permissive for IBDV replication caused a major blockade in assembly and/or maturation of infectious IBDV particles, as virus yields were reduced markedly. PurSA activity is thus essential for IBDV replication. PMID:22619177

  3. Bacteriophage P23-77 capsid protein structures reveal the archetype of an ancient branch from a major virus lineage.

    PubMed

    Rissanen, Ilona; Grimes, Jonathan M; Pawlowski, Alice; Mäntynen, Sari; Harlos, Karl; Bamford, Jaana K H; Stuart, David I

    2013-05-01

    It has proved difficult to classify viruses unless they are closely related since their rapid evolution hinders detection of remote evolutionary relationships in their genetic sequences. However, structure varies more slowly than sequence, allowing deeper evolutionary relationships to be detected. Bacteriophage P23-77 is an example of a newly identified viral lineage, with members inhabiting extreme environments. We have solved multiple crystal structures of the major capsid proteins VP16 and VP17 of bacteriophage P23-77. They fit the 14 Å resolution cryo-electron microscopy reconstruction of the entire virus exquisitely well, allowing us to propose a model for both the capsid architecture and viral assembly, quite different from previously published models. The structures of the capsid proteins and their mode of association to form the viral capsid suggest that the P23-77-like and adeno-PRD1 lineages of viruses share an extremely ancient common ancestor.

  4. Bacteriophage P23-77 Capsid Protein Structures Reveal the Archetype of an Ancient Branch from a Major Virus Lineage

    PubMed Central

    Rissanen, Ilona; Grimes, Jonathan M.; Pawlowski, Alice; Mäntynen, Sari; Harlos, Karl; Bamford, Jaana K.H.; Stuart, David I.

    2013-01-01

    Summary It has proved difficult to classify viruses unless they are closely related since their rapid evolution hinders detection of remote evolutionary relationships in their genetic sequences. However, structure varies more slowly than sequence, allowing deeper evolutionary relationships to be detected. Bacteriophage P23-77 is an example of a newly identified viral lineage, with members inhabiting extreme environments. We have solved multiple crystal structures of the major capsid proteins VP16 and VP17 of bacteriophage P23-77. They fit the 14 Å resolution cryo-electron microscopy reconstruction of the entire virus exquisitely well, allowing us to propose a model for both the capsid architecture and viral assembly, quite different from previously published models. The structures of the capsid proteins and their mode of association to form the viral capsid suggest that the P23-77-like and adeno-PRD1 lineages of viruses share an extremely ancient common ancestor. PMID:23623731

  5. Specific interaction of capsid protein and importin-{alpha}/{beta} influences West Nile virus production

    SciTech Connect

    Bhuvanakantham, Raghavan; Chong, Mun-Keat; Ng, Mah-Lee

    2009-11-06

    West Nile virus (WNV) capsid (C) protein has been shown to enter the nucleus of infected cells. However, the mechanism by which C protein enters the nucleus is unknown. In this study, we have unveiled for the first time that nuclear transport of WNV and Dengue virus C protein is mediated by their direct association with importin-{alpha}. This interplay is mediated by the consensus sequences of bipartite nuclear localization signal located between amino acid residues 85-101 together with amino acid residues 42 and 43 of C protein. Elucidation of biological significance of importin-{alpha}/C protein interaction demonstrated that the binding efficiency of this association influenced the nuclear entry of C protein and virus production. Collectively, this study illustrated the molecular mechanism by which the C protein of arthropod-borne flavivirus enters the nucleus and showed the importance of importin-{alpha}/C protein interaction in the context of flavivirus life-cycle.

  6. Structural Organization of Pregenomic RNA and the Carboxy-Terminal Domain of the Capsid Protein of Hepatitis B Virus

    PubMed Central

    Wang, Joseph C.-Y.; Dhason, Mary S.; Zlotnick, Adam

    2012-01-01

    The Hepatitis B Virus (HBV) double-stranded DNA genome is reverse transcribed from its RNA pregenome (pgRNA) within the virus core (or capsid). Phosphorylation of the arginine-rich carboxy-terminal domain (CTD) of the HBV capsid protein (Cp183) is essential for pgRNA encapsidation and reverse transcription. However, the structure of the CTD remains poorly defined. Here we report sub-nanometer resolution cryo-EM structures of in vitro assembled empty and pgRNA-filled Cp183 capsids in unphosphorylated and phosphorylation-mimic states. In empty capsids, we found unexpected evidence of surface accessible CTD density partially occluding pores in the capsid surface. We also observed that CTD organization changed substantively as a function of phosphorylation. In RNA-filled capsids, unphosphorylated CTDs favored thick ropes of RNA, while the phosphorylation-mimic favored a mesh of thin, high-density strands suggestive of single stranded RNA. These results demonstrate that the CTD can regulate nucleic acid structure, supporting the hypothesis that the HBV capsid has a functional role as a nucleic acid chaperone. PMID:23028319

  7. Analysis of adeno-associated virus (AAV) wild-type and mutant Rep proteins for their abilities to negatively regulate AAV p5 and p19 mRNA levels.

    PubMed Central

    Kyöstiö, S R; Owens, R A; Weitzman, M D; Antoni, B A; Chejanovsky, N; Carter, B J

    1994-01-01

    The rep gene of adeno-associated virus type 2 (AAV) encodes four overlapping Rep proteins that are involved in gene regulation and replication of the virus. We studied here the regulation of mRNA transcribed from the AAV p5 and p19 promoters, using transient expression in human 293 cells followed by Northern (RNA) blot analysis of the mRNA. The p5 transcript encodes the larger Rep proteins, Rep78 and Rep68, while the p19 transcript encodes the smaller proteins, Rep52 and Rep40. A plasmid (pNTC3) containing the entire AAV genome with an amber mutation in the rep gene accumulated higher levels of p5 and p19 mRNA than a plasmid containing the wild-type AAV genome. Addition of increasing amounts of the wild-type rep gene in trans from a heterologous promoter inhibited p5 and p19 mRNA accumulation from pNTC3, indicating that the levels of both transcripts were decreased by the Rep proteins. Cotransfections with plasmids producing individual wild-type Rep proteins in trans showed that p5 and p19 mRNA accumulation was inhibited 5- to 10-fold by Rep78 and Rep68 and 2- to 3-fold by Rep52 and Rep40. Analysis of carboxyl-terminal truncation mutants of Rep78 showed that the ability of Rep78 to decrease p5 and p19 mRNA levels was lost when 159 or more amino acids were deleted. Rep78 and Rep68 mutants deleted for the methionine at residue 225 showed decreased abilities to down-regulate both p5 and p19 transcript levels, while mutants containing a substitution of glycine for the methionine resembled the wild-type Rep78. A Rep78 protein with a mutation in the putative nucleoside triphosphate binding site inhibited expression from p5 but not from p19, suggesting that the regulation of p5 transcript levels by Rep78 and Rep68 differs from that of p19. A deletion analysis of AAV cis sequences revealed that an intact terminal repeat was not required for negative regulation of p5 and p19 transcript levels and that the regulation of p19 mRNA levels by Rep78 did not require the presence

  8. Improved dual AAV vectors with reduced expression of truncated proteins are safe and effective in the retina of a mouse model of Stargardt disease

    PubMed Central

    Trapani, Ivana; Toriello, Elisabetta; de Simone, Sonia; Colella, Pasqualina; Iodice, Carolina; Polishchuk, Elena V.; Sommella, Andrea; Colecchi, Linda; Rossi, Settimio; Simonelli, Francesca; Giunti, Massimo; Bacci, Maria L.; Polishchuk, Roman S.; Auricchio, Alberto

    2015-01-01

    Stargardt disease (STGD1) due to mutations in the large ABCA4 gene is the most common inherited macular degeneration in humans. We have shown that dual adeno-associated viral (AAV) vectors effectively transfer ABCA4 to the retina of Abca4−/− mice. However, they express both lower levels of transgene compared with a single AAV and truncated proteins. To increase productive dual AAV concatemerization, which would overcome these limitations, we have explored the use of either various regions of homology or heterologous inverted terminal repeats (ITR). In addition, we tested the ability of various degradation signals to decrease the expression of truncated proteins. We found the highest levels of transgene expression using regions of homology based on either alkaline phosphatase or the F1 phage (AK). The use of heterologous ITR does not decrease the levels of truncated proteins relative to full-length ABCA4 and impairs AAV vector production. Conversely, the inclusion of the CL1 degradation signal results in the selective degradation of truncated proteins from the 5′-half without affecting full-length protein production. Therefore, we developed dual AAV hybrid ABCA4 vectors including homologous ITR2, the photoreceptor-specific G protein-coupled receptor kinase 1 promoter, the AK region of homology and the CL1 degradation signal. We show that upon subretinal administration these vectors are both safe in pigs and effective in Abca4−/− mice. Our data support the use of improved dual AAV vectors for gene therapy of STGD1. PMID:26420842

  9. Phosphorylation of the budgerigar fledgling disease virus major capsid protein VP1.

    PubMed Central

    Haynes, J I; Consigli, R A

    1992-01-01

    The structural proteins of the budgerigar fledgling disease virus, the first known nonmammalian polyomavirus, were analyzed by isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The major capsid protein VP1 was found to be composed of at least five distinct species having isoelectric points ranging from pH 6.45 to 5.85. By analogy with the murine polyomavirus, these species apparently result from different modifications of an initial translation product. Primary chicken embryo cells were infected in the presence of 32Pi to determine whether the virus structural proteins were modified by phosphorylation. SDS-PAGE of the purified virus structural proteins demonstrated that VP1 (along with both minor capsid proteins) was phosphorylated. Two-dimensional analysis of the radiolabeled virus showed phosphorylation of only the two most acidic isoelectric species of VP1, indicating that this posttranslational modification contributes to VP1 species heterogeneity. Phosphoamino acid analysis of 32P-labeled VP1 revealed that phosphoserine is the only phosphoamino acid present in the VP1 protein. Images PMID:1318417

  10. Phosphorylation of the budgerigar fledgling disease virus major capsid protein VP1

    NASA Technical Reports Server (NTRS)

    Haynes, J. I. 2nd; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The structural proteins of the budgerigar fledgling disease virus, the first known nonmammalian polyomavirus, were analyzed by isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The major capsid protein VP1 was found to be composed of at least five distinct species having isoelectric points ranging from pH 6.45 to 5.85. By analogy with the murine polyomavirus, these species apparently result from different modifications of an initial translation product. Primary chicken embryo cells were infected in the presence of 32Pi to determine whether the virus structural proteins were modified by phosphorylation. SDS-PAGE of the purified virus structural proteins demonstrated that VP1 (along with both minor capsid proteins) was phosphorylated. Two-dimensional analysis of the radiolabeled virus showed phosphorylation of only the two most acidic isoelectric species of VP1, indicating that this posttranslational modification contributes to VP1 species heterogeneity. Phosphoamino acid analysis of 32P-labeled VP1 revealed that phosphoserine is the only phosphoamino acid present in the VP1 protein.

  11. Recombinant AAV Vectors for Enhanced Expression of Authentic IgG.

    PubMed

    Fuchs, Sebastian P; Martinez-Navio, José M; Gao, Guangping; Desrosiers, Ronald C

    2016-01-01

    Adeno-associated virus (AAV) has become a vector of choice for the treatment of a variety of genetic diseases that require safe and long-term delivery of a missing protein. Muscle-directed gene transfer for delivery of protective antibodies against AIDS viruses and other pathogens has been used experimentally in mice and monkeys. Here we examined a number of variations to AAV vector design for the ability to produce authentic immunoglobulin G (IgG) molecules. Expression of rhesus IgG from a single single-stranded AAV (ssAAV) vector (one vector approach) was compared to expression from two self-complementary AAV (scAAV) vectors, one for heavy chain and one for light chain (two vector approach). Both the one vector and the two vector approaches yielded considerable levels of expressed full-length IgG. A number of modifications to the ssAAV expression system were then examined for their ability to increase the efficiency of IgG expression. Inclusion of a furin cleavage sequence with a linker peptide just upstream of the 2A self-cleaving sequence from foot-and-mouth disease virus (F2A) increased IgG expression approximately 2 fold. Inclusion of these sequences also helped to ensure a proper sequence at the C-terminal end of the heavy chain. Inclusion of the post-transcriptional regulatory element from woodchuck hepatitis virus (WPRE) further increased IgG expression 1.5-2.0 fold. IgG1 versions of the two rhesus IgGs that were examined consistently expressed better than the IgG2 forms. In contrast to what has been reported for AAV2-mediated expression of other proteins, introduction of capsid mutations Y445F and Y731F did not increase ssAAV1-mediated expression of IgG as determined by transduction experiments in cell culture. Our findings provide a rational basis for AAV vector design for expression of authentic IgG. PMID:27332822

  12. Recombinant AAV Vectors for Enhanced Expression of Authentic IgG

    PubMed Central

    Fuchs, Sebastian P.; Martinez-Navio, José M.; Gao, Guangping; Desrosiers, Ronald C.

    2016-01-01

    Adeno-associated virus (AAV) has become a vector of choice for the treatment of a variety of genetic diseases that require safe and long-term delivery of a missing protein. Muscle-directed gene transfer for delivery of protective antibodies against AIDS viruses and other pathogens has been used experimentally in mice and monkeys. Here we examined a number of variations to AAV vector design for the ability to produce authentic immunoglobulin G (IgG) molecules. Expression of rhesus IgG from a single single-stranded AAV (ssAAV) vector (one vector approach) was compared to expression from two self-complementary AAV (scAAV) vectors, one for heavy chain and one for light chain (two vector approach). Both the one vector and the two vector approaches yielded considerable levels of expressed full-length IgG. A number of modifications to the ssAAV expression system were then examined for their ability to increase the efficiency of IgG expression. Inclusion of a furin cleavage sequence with a linker peptide just upstream of the 2A self-cleaving sequence from foot-and-mouth disease virus (F2A) increased IgG expression approximately 2 fold. Inclusion of these sequences also helped to ensure a proper sequence at the C-terminal end of the heavy chain. Inclusion of the post-transcriptional regulatory element from woodchuck hepatitis virus (WPRE) further increased IgG expression 1.5–2.0 fold. IgG1 versions of the two rhesus IgGs that were examined consistently expressed better than the IgG2 forms. In contrast to what has been reported for AAV2-mediated expression of other proteins, introduction of capsid mutations Y445F and Y731F did not increase ssAAV1-mediated expression of IgG as determined by transduction experiments in cell culture. Our findings provide a rational basis for AAV vector design for expression of authentic IgG. PMID:27332822

  13. A functional nuclear localization sequence in the VP1 capsid protein of coxsackievirus B3

    SciTech Connect

    Wang, Tianying; Yu, Bohai; Lin, Lexun; Zhai, Xia; Han, Yelu; Qin, Ying; Guo, Zhiwei; Wu, Shuo; Zhong, Xiaoyan; Wang, Yan; Tong, Lei; Zhang, Fengmin; Si, Xiaoning; Zhao, Wenran; Zhong, Zhaohua

    2012-11-25

    The capsid proteins of some RNA viruses can translocate to the nucleus and interfere with cellular phenotypes. In this study we found that the VP1 capsid protein of coxsackievirus B3 (CVB3) was dominantly localized in the nucleus of the cells transfected with VP1-expressing plasmid. The VP1 nuclear localization also occurred in the cells infected with CVB3. Truncation analysis indicated that the VP1 nuclear localization sequence located near the C-terminal. The substitution of His220 with threonine completely abolished its translocation. The VP1 proteins of other CVB types might have the nuclear localization potential because this region was highly conserved. Moreover, the VP1 nuclear localization induced cell cycle deregulation, including a prolonged S phase and shortened G2-M phase. Besides these findings, we also found a domain between Ala72 and Phe106 that caused the VP1 truncates dotted distributed in the cytoplasm. Our results suggest a new pathogenic mechanism of CVB. - Highlights: Black-Right-Pointing-Pointer The VP1 protein of coxsackievirus B3 can specifically localize in the nucleus. Black-Right-Pointing-Pointer The nuclear localization signal of coxsackievirus B3 VP1 protein locates near its C-terminal. Black-Right-Pointing-Pointer The VP1 nuclear localization of coxsackievirus B3 can deregulate cell cycle. Black-Right-Pointing-Pointer There is a domain in the VP1 that determines it dotted distributed in the cytoplasm.

  14. Solid-State NMR Studies of HIV-1 Capsid Protein Assemblies

    SciTech Connect

    Han, Yun; Ahn, Jinwoo; Concel, Jason; Byeon, In-Ja L.; Gronenborn, Angela M.; Yang, Jun; Polenova, Tatyana E.

    2010-02-17

    In mature HIV-1 virions, the 26.6 kDa CA protein is assembled into a characteristic cone-shaped core (capsid) that encloses the RNA viral genome. The assembled capsid structure is best described by a fullerene cone model that is made up from a hexameric lattice containing a variable number of CA pentamers, thus allowing for closure of tubular or conical structures. In this paper, we present a solid-state NMR analysis of the wild-type HIV-1 CA protein, prepared as conical and spherical assemblies that are stable and are not affected by magic angle spinning of the samples at frequencies between 10 and 25 kHz. Multidimensional homo- and heteronuclear correlation spectra of CA assemblies of uniformly 13C,15Nlabeled CA exhibit narrow lines, indicative of the conformational homogeneity of the protein in these assemblies. For the conical assemblies, partial residue-specific resonance assignments were obtained. Analysis of the NMR spectra recorded for the conical and spherical assemblies indicates that the CA protein structure is not significantly different in the different morphologies. The present results demonstrate that the assemblies of CA protein are amenable to detailed structural analysis by solid-state NMR spectroscopy.

  15. Solid-State NMR Studies of HIV-1 Capsid Protein Assemblies

    PubMed Central

    Han, Yun; Ahn, Jinwoo; Concel, Jason; Byeon, In-Ja L.; Gronenborn, Angela M.; Yang, Jun; Polenova, Tatyana

    2010-01-01

    In mature HIV-1 virions, a 26.6 kDa CA protein is assembled into a characteristic cone shaped core (capsid) that encloses the RNA viral genome. The assembled capsid structure is best described by a fullerene cone model that is made up from a hexameric lattice containing a variable number of CA pentamers, thus allowing for closure of tubular or conical structures. In this report, we present a solid-state NMR analysis of the wild type HIV-1 CA protein, prepared as conical and spherical assemblies that are stable and are not affected by magic angle spinning of the samples at frequencies between 10 and 25 kHz. Multidimensional homo- and heteronuclear correlation spectra of CA assemblies of uniformly 13C,15N-labelled CA exhibit narrow lines, indicative of conformational homogeneity of the protein in these assemblies. For the conical assemblies, partial residue-specific resonance assignments were obtained. Analysis of the NMR spectra recorded for the conical and spherical assemblies indicates that the CA protein structure is not significantly different in the different morphologies. The present results demonstrate that the assemblies of CA protein are amenable to detailed structural analysis by solid-state NMR spectroscopy. PMID:20092249

  16. The Helminthosporium victoriae 190S mycovirus has two forms distinguishable by capsid protein composition and phosphorylation state.

    PubMed

    Ghabrial, S A; Havens, W M

    1992-06-01

    Purified preparations of the Helminthosporium victoriae 190S (Hv190S) virus contain two sedimenting components that differ in capsid structure. The slower sedimenting component (190S-1) contained p88 and p83 as the major capsid proteins; the faster component (190S-2) contained p88 and p78. Previous peptide-mapping studies have shown the three capsid proteins to be closely related. Analysis by SDS-PAGE of in vivo-radiolabeled Hv190S virions indicated that 32P was predominantly incorporated in p88. Significantly less was detected in p83 and none in p78. Similar results were obtained in in vitro phosphorylation studies using [gamma-32P]ATP and purified 190S-1 and 190S-2. The in vitro results suggest that the Hv190S virions copurify with a protein kinase activity that catalyzes the transfer of gamma-phosphate from ATP to a target protein, presumably p78 in the 190S-2 virions and p83 in the 190S-1 component. Selective chemical cleavage at tryptophan residues of in vitro 32P-labeled capsid proteins revealed four labeled peptides among the cleavage products of both p83 and p88. Radioiodination studies with intact Hv190S virions indicated that p88 and p83, but not the nonphosphorylated p78, were accessible to iodination, suggesting that capsid protein phosphorylation entailed conformational changes.

  17. Identification of two functional nuclear localization signals in the capsid protein of duck circovirus

    SciTech Connect

    Xiang, Qi-Wang; Zou, Jin-Feng; Wang, Xin; Sun, Ya-Ni; Gao, Ji-Ming; Xie, Zhi-Jing; Wang, Yu; Zhu, Yan-Li; Jiang, Shi-Jin

    2013-02-05

    The capsid protein (CP) of duck circovirus (DuCV) is the major immunogenic protein and has a high proportion of arginine residues concentrated at the N terminus of the protein, which inhibits efficient mRNA translation in prokaryotic expression systems. In this study, we investigated the subcellular distribution of DuCV CP expressed via recombinant baculoviruses in Sf9 cells and the DNA binding activities of the truncated recombinant DuCV CPs. The results showed that two independent bipartite nuclear localization signals (NLSs) situated at N-terminal 1-17 and 18-36 amino acid residue of the CP. Moreover, two expression level regulatory signals (ELRSs) and two DNA binding signals (DBSs) were also mapped to the N terminus of the protein and overlapped with the two NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome.

  18. Effect of internal cleavage site mutations in human immunodeficiency virus type 1 capsid protein on its structure and function.

    PubMed

    Tóth, Ferenc; Kádas, János; Mótyán, János András; Tőzsér, József

    2016-08-01

    The capsid protein of the human immunodeficiency virus type 1 has been found to be a substrate of the retroviral protease in vitro, and its processing was predicted to be strongly dependent on a pH-induced conformational change. Several protease cleavage sites have been identified within the capsid protein, but the importance of its cleavage by the viral protease at the early phase of infection is controversial. To confirm the relevance of this process, we aimed to design, produce, and characterize mutant capsid proteins, in which the protein susceptibility toward HIV-1 protease is altered without affecting other steps of the viral life cycle. Our results indicate that while the introduced mutations changed the cleavage rate at the mutated sites of the capsid protein by HIV-1 protease, some of them caused only negligible or moderate structural changes (A78V, L189F, and L189I). However, the effects of other mutations (W23A, A77P, and L189P) were dramatic, as assessed by secondary structure determination or cyclophilin A-binding assay. Based on our observations, the L189F mutant capsid remains structurally and functionally unchanged and may therefore be the best candidate for use in studies aimed at better understanding the role of the protease in the early postentry events of viral infection or retrovirus-mediated gene transduction. PMID:27516963

  19. A capsid protein of nonenveloped Bluetongue virus exhibits membrane fusion activity.

    PubMed

    Forzan, Mario; Wirblich, Christoph; Roy, Polly

    2004-02-17

    The outer capsid layer of Bluetongue virus, a member of the nonenveloped Reoviridae family, is composed of two proteins, a receptor-binding protein, VP2, and a second protein, VP5, which shares structural features with class I fusion proteins of enveloped viruses. In the replication cycle of Bluetongue virus VP5 acts as a membrane permeabilization protein that mediates release of viral particles from endosomal compartments into the cytoplasm. Here, we show that VP5 can also act as a fusion protein and induce syncytium formation when it is fused to a transmembrane anchor and expressed on the cell surface. Fusion activity is strictly pH-dependent and is triggered by short exposure to low pH. No cell-cell fusion is observed at neutral pH. Deletion of the first 40 amino acids, which can fold into two amphipathic helices, abolishes fusion activity. Syncytium formation by VP5 is inhibited in the presence of VP2 when it is expressed in a membrane-anchored form. The data indicate an interaction between the outer capsid protein VP2 and VP5 and show that VP5 undergoes pH-dependent conformational changes that render it capable of interacting with cellular membranes. More importantly, our data show that a membrane permeabilization protein of a nonenveloped virus can evolve into a fusion protein by the addition of an appropriate transmembrane anchor. The results strongly suggest that the mechanism of membrane permeabilization by VP5 and membrane fusion by viral fusion proteins require similar structural features and conformational changes.

  20. Stochastic Kinetics of Viral Capsid Assembly Based on Detailed Protein Structures

    PubMed Central

    Hemberg, Martin; Yaliraki, Sophia N.; Barahona, Mauricio

    2006-01-01

    We present a generic computational framework for the simulation of viral capsid assembly which is quantitative and specific. Starting from PDB files containing atomic coordinates, the algorithm builds a coarse-grained description of protein oligomers based on graph rigidity. These reduced protein descriptions are used in an extended Gillespie algorithm to investigate the stochastic kinetics of the assembly process. The association rates are obtained from a diffusive Smoluchowski equation for rapid coagulation, modified to account for water shielding and protein structure. The dissociation rates are derived by interpreting the splitting of oligomers as a process of graph partitioning akin to the escape from a multidimensional well. This modular framework is quantitative yet computationally tractable, with a small number of physically motivated parameters. The methodology is illustrated using two different viruses which are shown to follow quantitatively different assembly pathways. We also show how in this model the quasi-stationary kinetics of assembly can be described as a Markovian cascading process, in which only a few intermediates and a small proportion of pathways are present. The observed pathways and intermediates can be related a posteriori to structural and energetic properties of the capsid oligomers. PMID:16473916

  1. Identification of a Varicella-Zoster Virus Replication Inhibitor That Blocks Capsid Assembly by Interacting with the Floor Domain of the Major Capsid Protein

    PubMed Central

    Matsushita, Misato; Fukui, Yoshiko; Yamada, Souichi; Tsuda, Mihoko; Higashi, Chizuka; Kaneko, Keiko; Hasegawa, Hideki; Yamaguchi, Toyofumi

    2012-01-01

    A novel anti-varicella-zoster virus compound, a derivative of pyrazolo[1,5-c]1,3,5-triazin-4-one (coded as 35B2), was identified from a library of 9,600 random compounds. This compound inhibited both acyclovir (ACV)-resistant and -sensitive strains. In a plaque reduction assay under conditions in which the 50% effective concentration of ACV against the vaccine Oka strain (V-Oka) in human fibroblasts was 4.25 μM, the 50% effective concentration of 35B2 was 0.75 μM. The selective index of the compound was more than 200. Treatment with 35B2 inhibited neither immediate-early gene expression nor viral DNA synthesis. Twenty-four virus clones resistant to 35B2 were isolated, all of which had a mutation(s) in the amino acid sequence of open reading frame 40 (ORF40), which encodes the major capsid protein (MCP). Most of the mutations were located in the regions corresponding to the “floor” domain of the MCP of herpes simplex virus 1. Treatment with 35B2 changed the localization of MCP in the fibroblasts infected with V-Oka but not in the fibroblasts infected with the resistant clones, although it did not affect steady-state levels of MCP. Overexpression of the scaffold proteins restored the normal MCP localization in the 35B2-treated infected cells. The compound did not inhibit the scaffold protein-mediated translocation of MCP from the cytoplasm to the nucleus. Electron microscopic analysis demonstrated the lack of capsid formation in the 35B2-treated infected cells. These data indicate the feasibility of developing a new class of antivirals that target the herpesvirus MCPs and inhibit normal capsid formation by a mechanism that differs from those of the known protease and encapsidation inhibitors. Further biochemical studies are required to clarify the precise antiviral mechanism. PMID:22933294

  2. The Capsid Protein of Turnip Crinkle Virus Overcomes two Separate Defense Barriers to Facilitate Viral Systemic Movement in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The capsid protein (CP) of Turnip crinkle virus (TCV) is a multi-functional protein needed for virus assembly, suppression of RNA silencing-based antiviral defense, and long distance movement in infected plants. In this report, we have examined genetic requirements for the different functions of TCV...

  3. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain

    PubMed Central

    Deverman, Benjamin E.; Pravdo, Piers L.; Simpson, Bryan P.; Kumar, Sripriya Ravindra; Chan, Ken Y.; Banerjee, Abhik; Wu, Wei-Li; Yang, Bin; Huber, Nina; Pasca, Sergiu P.; Gradinaru, Viviana

    2015-01-01

    Recombinant adeno-associated viruses (rAAVs) are commonly used vehicles for in vivo gene transfer1-6. However, the tropism repertoire of naturally occurring AAVs is limited, prompting a search for novel AAV capsids with desired characteristics7-13. Here we describe a capsid selection method, called Cre-recombination-based AAV targeted evolution (CREATE), that enables the development of AAV capsids that more efficiently transduce defined Cre-expressing cell populations in vivo. We use CREATE to generate AAV variants that efficiently and widely transduce the adult mouse central nervous system (CNS) after intravenous injection. One variant, AAV-PHP.B, transfers genes throughout the CNS with an efficiency that is at least 40-fold greater than that of the current standard, AAV914-17, and transduces the majority of astrocytes and neurons across multiple CNS regions. In vitro, it transduces human neurons and astrocytes more efficiently than does AAV9, demonstrating the potential of CREATE to produce customized AAV vectors for biomedical applications. PMID:26829320

  4. RNase P Ribozymes Inhibit the Replication of Human Cytomegalovirus by Targeting Essential Viral Capsid Proteins

    PubMed Central

    Yang, Zhu; Reeves, Michael; Ye, Jun; Trang, Phong; Zhu, Li; Sheng, Jingxue; Wang, Yu; Zen, Ke; Wu, Jianguo; Liu, Fenyong

    2015-01-01

    An engineered RNase P-based ribozyme variant, which was generated using the in vitro selection procedure, was used to target the overlapping mRNA region of two proteins essential for human cytomegalovirus (HCMV) replication: capsid assembly protein (AP) and protease (PR). In vitro studies showed that the generated variant, V718-A, cleaved the target AP mRNA sequence efficiently and its activity was about 60-fold higher than that of wild type ribozyme M1-A. Furthermore, we observed a reduction of 98%–99% in AP/PR expression and an inhibition of 50,000 fold in viral growth in cells with V718-A, while a 75% reduction in AP/PR expression and a 500-fold inhibition in viral growth was found in cells with M1-A. Examination of the antiviral effects of the generated ribozyme on the HCMV replication cycle suggested that viral DNA encapsidation was inhibited and as a consequence, viral capsid assembly was blocked when the expression of AP and PR was inhibited by the ribozyme. Thus, our study indicates that the generated ribozyme variant is highly effective in inhibiting HCMV gene expression and blocking viral replication, and suggests that engineered RNase P ribozyme can be potentially developed as a promising gene-targeting agent for anti-HCMV therapy. PMID:26114473

  5. RNase P Ribozymes Inhibit the Replication of Human Cytomegalovirus by Targeting Essential Viral Capsid Proteins.

    PubMed

    Yang, Zhu; Reeves, Michael; Ye, Jun; Trang, Phong; Zhu, Li; Sheng, Jingxue; Wang, Yu; Zen, Ke; Wu, Jianguo; Liu, Fenyong

    2015-06-24

    An engineered RNase P-based ribozyme variant, which was generated using the in vitro selection procedure, was used to target the overlapping mRNA region of two proteins essential for human cytomegalovirus (HCMV) replication: capsid assembly protein (AP) and protease (PR). In vitro studies showed that the generated variant, V718-A, cleaved the target AP mRNA sequence efficiently and its activity was about 60-fold higher than that of wild type ribozyme M1-A. Furthermore, we observed a reduction of 98%-99% in AP/PR expression and an inhibition of 50,000 fold in viral growth in cells with V718-A, while a 75% reduction in AP/PR expression and a 500-fold inhibition in viral growth was found in cells with M1-A. Examination of the antiviral effects of the generated ribozyme on the HCMV replication cycle suggested that viral DNA encapsidation was inhibited and as a consequence, viral capsid assembly was blocked when the expression of AP and PR was inhibited by the ribozyme. Thus, our study indicates that the generated ribozyme variant is highly effective in inhibiting HCMV gene expression and blocking viral replication, and suggests that engineered RNase P ribozyme can be potentially developed as a promising gene-targeting agent for anti-HCMV therapy.

  6. Function of the Herpes Simplex Virus 1 Small Capsid Protein VP26 Is Regulated by Phosphorylation at a Specific Site

    PubMed Central

    Kobayashi, Ryosuke; Kato, Akihisa; Oda, Shinya; Koyanagi, Naoto; Oyama, Masaaki; Kozuka-Hata, Hiroko; Arii, Jun

    2015-01-01

    Replacement of the herpes simplex virus 1 small capsid protein VP26 phosphorylation site Thr-111 with alanine reduced viral replication and neurovirulence to levels observed with the VP26 null mutation. This mutation reduced VP26 expression and mislocalized VP26 and its binding partner, the major capsid protein VP5, in the nucleus. VP5 mislocalization was also observed with the VP26 null mutation. Thus, we postulate that phosphorylation of VP26 at Thr-111 regulates VP26 function in vitro and in vivo. PMID:25810545

  7. Biophysical Analysis of the MHR Motif in Folding and Domain Swapping of the HIV Capsid Protein C-Terminal Domain

    PubMed Central

    Bocanegra, Rebeca; Fuertes, Miguel Ángel; Rodríguez-Huete, Alicia; Neira, José Luis; Mateu, Mauricio G.

    2015-01-01

    Infection by human immunodeficiency virus (HIV) depends on the function, in virion morphogenesis and other stages of the viral cycle, of a highly conserved structural element, the major homology region (MHR), within the carboxyterminal domain (CTD) of the capsid protein. In a modified CTD dimer, MHR is swapped between monomers. While no evidence for MHR swapping has been provided by structural models of retroviral capsids, it is unknown whether it may occur transiently along the virus assembly pathway. Whatever the case, the MHR-swapped dimer does provide a novel target for the development of anti-HIV drugs based on the concept of trapping a nonnative capsid protein conformation. We have carried out a thermodynamic and kinetic characterization of the domain-swapped CTD dimer in solution. The analysis includes a dissection of the role of conserved MHR residues and other amino acids at the dimerization interface in CTD folding, stability, and dimerization by domain swapping. The results revealed some energetic hotspots at the domain-swapped interface. In addition, many MHR residues that are not in the protein hydrophobic core were nevertheless found to be critical for folding and stability of the CTD monomer, which may dramatically slow down the swapping reaction. Conservation of MHR residues in retroviruses did not correlate with their contribution to domain swapping, but it did correlate with their importance for stable CTD folding. Because folding is required for capsid protein function, this remarkable MHR-mediated conformational stabilization of CTD may help to explain the functional roles of MHR not only during immature capsid assembly but in other processes associated with retrovirus infection. This energetic dissection of the dimerization interface in MHR-swapped CTD may also facilitate the design of anti-HIV compounds that inhibit capsid assembly by conformational trapping of swapped CTD dimers. PMID:25606682

  8. Expression, assembly, and proteolytic processing of Helminthosporium victoriae 190S totivirus capsid protein in insect cells.

    PubMed

    Huang, S; Soldevila, A I; Webb, B A; Ghabrial, S A

    1997-07-21

    The dsRNA genome (5.2 kbp) of Helminthosporium victoriae 190S totivirus (Hv190SV) consists of two large overlapping open reading frames (ORFs). The 5' proximal ORF codes for the capsid protein (CP) and the 3' ORF codes for an RNA-dependent RNA polymerase. Although the capsid of Hv190SV is encoded by a single gene, it is composed of two major closely related polypeptides, either p88 and p83 or p88 and p78. Whereas p88 and p83 are phosphoproteins, p78 is nonphosphorylated. Expression of the CP ORF in insect cells generated both p78 and p88 which assembled into virus-like particles. The finding that p78, p83, and p88 share a common N-terminal amino acid sequence is consistent with the determination that N-terminal, but not C-terminal, CP deletions were incompetent for assembly. Evidence was obtained that p78 is derived from p88 via proteolytic cleavage at the C-terminus. Proteolytic processing may play a regulatory role in the virus life cycle since it leads to dephosphorylation of CP and a subsequent decrease in virion transcriptional activity.

  9. Identification of immunogenic hot spots within plum pox potyvirus capsid protein for efficient antigen presentation.

    PubMed

    Fernández-Fernández, M Rosario; Martínez-Torrecuadrada, Jorge L; Roncal, Fernando; Domínguez, Elvira; García, Juan Antonio

    2002-12-01

    PEPSCAN analysis has been used to characterize the immunogenic regions of the capsid protein (CP) in virions of plum pox potyvirus (PPV). In addition to the well-known highly immunogenic N- and C-terminal domains of CP, regions within the core domain of the protein have also shown high immunogenicity. Moreover, the N terminus of CP is not homogeneously immunogenic, alternatively showing regions frequently recognized by antibodies and others that are not recognized at all. These results have helped us to design efficient antigen presentation vectors based on PPV. As predicted by PEPSCAN analysis, a small displacement of the insertion site in a previously constructed vector, PPV-gamma, turned the derived chimeras into efficient immunogens. Vectors expressing foreign peptides at different positions within a highly immunogenic region (amino acids 43 to 52) in the N-terminal domain of CP were the most effective at inducing specific antibody responses against the foreign sequence.

  10. Role of cucumovirus capsid protein in long-distance movement within the infected plant.

    PubMed Central

    Taliansky, M E; García-Arenal, F

    1995-01-01

    Direct evidence is presented for a host-specific role of the cucumovirus capsid protein in long-distance movement within infected plants. Cucumber (Cucumis sativus L.) is a systemic host for cucumber mosaic cucumovirus (CMV). Tomato aspermy cucumovirus, strain 1 (1-TAV), multiplied to the levels of CMV (i.e., replicated, moved from cell to cell, and formed infectious particles) in the inoculated leaves of cucumbers but was completely unable to spread systemically. The defective long-distance systemic movement of 1-TAV was complemented by CMV in mixed infections. Coinfection of cucumbers with 1-TAV RNA with various combinations of transcripts from full-length cDNA clones of CMV genomic RNA 1, RNA2, and RNA3 showed that CMV RNA3 alone complemented 1-TAV long-distance movement. We obtained mutants containing mutations in the two open reading frames in CMV RNA3 encoding the 3a protein and the capsid protein (CP), both of which are necessary for cell-to-cell movement of CMV. Complementation experiments with mutant CMV RNA3 showed that only 3a protein mutants, i.e., those with an intact CP, complemented the long-distance movement of 1-TAV in cucumbers. Since CMV and TAV have common systemic host plants, the results presented here are strong evidence for an active, host-specific function of the CPs of these two cucumoviruses for long-distance spread in the phloem. The results also suggest that the plasmodesmata in the vascular system and/or at the boundary between the mesophyll and the vascular system, involved in long-distance movement through the phloem, and those in the mesophyll, involved in cell-to-cell movement, differ functionally. PMID:7815560

  11. Continuum Theory of Retroviral Capsids

    NASA Astrophysics Data System (ADS)

    Nguyen, T. T.; Bruinsma, R. F.; Gelbart, W. M.

    2006-02-01

    We present a self-assembly phase diagram for the shape of retroviral capsids, based on continuum elasticity theory. The spontaneous curvature of the capsid proteins drives a weakly first-order transition from spherical to spherocylindrical shapes. The conical capsid shape which characterizes the HIV-1 retrovirus is never stable under unconstrained energy minimization. Only under conditions of fixed volume and/or fixed spanning length can the conical shape be a minimum energy structure. Our results indicate that, unlike the capsids of small viruses, retrovirus capsids are not uniquely determined by the molecular structure of the constituent proteins but depend in an essential way on physical constraints present during assembly.

  12. Production and Application of Polyclonal Antibodies Against Recombinant Capsid Protein of Extra Small Virus of Macrobrachium rosenbergii.

    PubMed

    Neethi, V; Sivakumar, N; Kumar, Kundan; Rajendran, K V; Makesh, M

    2012-12-01

    Macrobrachium rosenbergii nodavirus along with a satellite virus, extra small virus (XSV) causes white tail disease (WTD) in the giant freshwater prawn M. rosenbergii. Infected M. rosenbergii postlarvae were collected from a hatchery in Kakinada, Andhra Pradesh. The gene coding the capsid protein of XSV was cloned in a bacterial expression vector pRSET A and the recombinant protein was expressed in Escherichia coli BL21(DE3)pLysS cells. The recombinant protein was purified by Nickel affinity chromatography. Polyclonal antibodies were produced in mice against the recombinant protein and the antibodies reacted specifically with the recombinant protein and XSV in WTD-infected tissues. This is the first report of detection of XSV using antibodies against recombinant capsid protein. PMID:24293828

  13. Production and Application of Polyclonal Antibodies Against Recombinant Capsid Protein of Extra Small Virus of Macrobrachium rosenbergii.

    PubMed

    Neethi, V; Sivakumar, N; Kumar, Kundan; Rajendran, K V; Makesh, M

    2012-12-01

    Macrobrachium rosenbergii nodavirus along with a satellite virus, extra small virus (XSV) causes white tail disease (WTD) in the giant freshwater prawn M. rosenbergii. Infected M. rosenbergii postlarvae were collected from a hatchery in Kakinada, Andhra Pradesh. The gene coding the capsid protein of XSV was cloned in a bacterial expression vector pRSET A and the recombinant protein was expressed in Escherichia coli BL21(DE3)pLysS cells. The recombinant protein was purified by Nickel affinity chromatography. Polyclonal antibodies were produced in mice against the recombinant protein and the antibodies reacted specifically with the recombinant protein and XSV in WTD-infected tissues. This is the first report of detection of XSV using antibodies against recombinant capsid protein.

  14. Genetic linkage of capsid protein-encoding RNA segments in group A equine rotaviruses.

    PubMed

    Miño, Samuel; Barrandeguy, María; Parreño, Viviana; Parra, Gabriel I

    2016-04-01

    Rotavirus virions are formed by three concentric protein layers that enclose the 11 dsRNA genome segments and the viral proteins VP1 and VP3. Interactions amongst the capsid proteins (VP2, VP6, VP7 and VP4) have been described to play a major role in viral fitness, whilst restricting the reassortment of the genomic segments during co-infection with different rotavirus strains. In this work we describe and characterize the linkage between VP6 and VP7 proteins based on structural and genomic analyses of group A rotavirus strains circulating in Argentinean horses. Strains with the VP7 genotype G3 showed a strong association with the VP6 genotype I6, whilst strains with G14 were associated with the I2 genotype. Most of the differences on the VP6 and VP7 proteins were observed in interactive regions between the two proteins, suggesting that VP6 : VP7 interactions may drive the co-evolution and co-segregation of their respective gene segments.

  15. Genetic linkage of capsid protein-encoding RNA segments in group A equine rotaviruses.

    PubMed

    Miño, Samuel; Barrandeguy, María; Parreño, Viviana; Parra, Gabriel I

    2016-04-01

    Rotavirus virions are formed by three concentric protein layers that enclose the 11 dsRNA genome segments and the viral proteins VP1 and VP3. Interactions amongst the capsid proteins (VP2, VP6, VP7 and VP4) have been described to play a major role in viral fitness, whilst restricting the reassortment of the genomic segments during co-infection with different rotavirus strains. In this work we describe and characterize the linkage between VP6 and VP7 proteins based on structural and genomic analyses of group A rotavirus strains circulating in Argentinean horses. Strains with the VP7 genotype G3 showed a strong association with the VP6 genotype I6, whilst strains with G14 were associated with the I2 genotype. Most of the differences on the VP6 and VP7 proteins were observed in interactive regions between the two proteins, suggesting that VP6 : VP7 interactions may drive the co-evolution and co-segregation of their respective gene segments. PMID:26758293

  16. Multiple functions of capsid proteins in (+) stranded RNA viruses during plant-virus interactions.

    PubMed

    Weber, Philipp H; Bujarski, Jozef J

    2015-01-22

    In addition to providing a protective shell for genomic RNA(s), the coat (capsid) proteins (CPs) of plus-stranded RNA viruses play a variety of other functions that condition the plant-virus relationship. In this review we outline the extensive research progress that has been made within the last decade on those CP characteristics that relate to virus infectivity, pathogenicity, symptom expression, interactions with host factors, virus movement, vector transmission, host range, as well as those used to study virus evolution. By discussing the examples among a variety of plant RNA viruses we show that in addition to general features and pathways, the involvement of CPs may assume very distinct tasks that depend on the particular virus life style. Research perspectives and potential applications are discussed at the end.

  17. Compensatory capsid protein mutations in cucumber mosaic virus confer systemic infectivity in squash (Cucurbita pepo).

    PubMed

    Thompson, Jeremy R; Doun, Stephanie; Perry, Keith L

    2006-08-01

    Cucumber mosaic virus (CMV) systemically infects both tobacco and zucchini squash. CMV capsid protein loop mutants with single-amino-acid substitutions are unable to systemically infect squash, but they revert to a wild-type phenotype in the presence of an additional, specific single-site substitution. The D118A, T120A, D192A, and D197A loop mutants reverted to a wild-type phenotype but did so in combination with P56S, P77L, A162V, and I53F or T124I mutations, respectively. The possible effect of these compensatory mutations on other, nonsystemically infecting loop mutants was tested with the F117A mutant and found to be neutral, thus indicating a specificity to the observed changes.

  18. The Autographa californica Multiple Nucleopolyhedrovirus ac54 Gene Is Crucial for Localization of the Major Capsid Protein VP39 at the Site of Nucleocapsid Assembly

    PubMed Central

    Guan, Zhanwen; Zhong, Ling; Li, Chunyan; Wu, Wenbi; Yuan, Meijin

    2016-01-01

    ABSTRACT Baculovirus DNAs are synthesized and inserted into preformed capsids to form nucleocapsids at a site in the infected cell nucleus, termed the virogenic stroma. Nucleocapsid assembly of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) requires the major capsid protein VP39 and nine minor capsid proteins, including VP1054. However, how VP1054 participates in nucleocapsid assembly remains elusive. In this study, the VP1054-encoding gene (ac54) was deleted to generate the ac54-knockout AcMNPV (vAc54KO). In vAc54KO-transfected cells, nucleocapsid assembly was disrupted, leading to the formation of abnormally elongated capsid structures. Interestingly, unlike cells transfected with AcMNPV mutants lacking other minor capsid proteins, in which capsid structures were distributed within the virogenic stroma, ac54 ablation resulted in a distinctive location of capsid structures and VP39 at the periphery of the nucleus. The altered distribution pattern of capsid structures was also observed in cells transfected with AcMNPV lacking BV/ODV-C42 or in cytochalasin d-treated AcMNPV-infected cells. BV/ODV-C42, along with PP78/83, has been shown to promote nuclear filamentous actin (F-actin) formation, which is another requisite for nucleocapsid assembly. Immunofluorescence using phalloidin indicated that the formation and distribution of nuclear F-actin were not affected by ac54 deletion. However, immunoelectron microscopy revealed that BV/ODV-C42, PP78/83, and 38K failed to integrate into capsid structures in the absence of VP1054, and immunoprecipitation further demonstrated that in transient expression assays, VP1054 interacted with BV/ODV-C42 and VP80 but not VP39. Our findings suggest that VP1054 plays an important role in the transport of capsid proteins to the nucleocapsid assembly site prior to the process of nucleocapsid assembly. IMPORTANCE Baculoviruses are large DNA viruses whose replication occurs within the host nucleus. The localization of

  19. Specific interaction between hnRNP H and HPV16 L1 proteins: Implications for late gene auto-regulation enabling rapid viral capsid protein production

    SciTech Connect

    Zheng, Zi-Zheng; Sun, Yuan-Yuan; Zhao, Min; Huang, Hui; Zhang, Jun; Xia, Ning-Shao; Miao, Ji; Zhao, Qinjian

    2013-01-18

    Highlights: ► The RNA-binding hnRNP H regulates late viral gene expression. ► hnRNP H activity was inhibited by a late viral protein. ► Specific interaction between HPV L1 and hnRNP H was demonstrated. ► Co-localization of HPV L1 and hnRNP H inside cells was observed. ► Viral capsid protein production, enabling rapid capsid assembly, was implicated. -- Abstract: Heterogeneous nuclear ribonucleoproteins (hnRNPs), including hnRNP H, are RNA-binding proteins that function as splicing factors and are involved in downstream gene regulation. hnRNP H, which binds to G triplet regions in RNA, has been shown to play an important role in regulating the staged expression of late proteins in viral systems. Here, we report that the specific association between hnRNP H and a late viral capsid protein, human papillomavirus (HPV) L1 protein, leads to the suppressed function of hnRNP H in the presence of the L1 protein. The direct interaction between the L1 protein and hnRNP H was demonstrated by complex formation in solution and intracellularly using a variety of biochemical and immunochemical methods, including peptide mapping, specific co-immunoprecipitation and confocal fluorescence microscopy. These results support a working hypothesis that a late viral protein HPV16 L1, which is down regulated by hnRNP H early in the viral life cycle may provide an auto-regulatory positive feedback loop that allows the rapid production of HPV capsid proteins through suppression of the function of hnRNP H at the late stage of the viral life cycle. In this positive feedback loop, the late viral gene products that were down regulated earlier themselves disable their suppressors, and this feedback mechanism could facilitate the rapid production of capsid proteins, allowing staged and efficient viral capsid assembly.

  20. Immune and antibody responses to an isolated capsid protein of foot-and-mouth disease virus.

    PubMed

    Bachrach, H L; Moore, D M; McKercher, P D; Polatnick, J

    1975-12-01

    The purified capsid proteins VP1, VP2, and VP3 of foot-and-mouth disease virus type A12 strain 119 emulsified with incomplete Freund's adjuvant were studied in swine and guinea pigs. Swine inoculated on days 0, 28, and 60 with 100-mug doses of VP3 were protected by day 82 against exposure to infected swine. Serums from animals inoculated with VP3 contained viral precipitating and neutralizing antibodies, but such serums recognized fewer viral antigenic determinants than did antiviral serums. Capsid proteins VP1 and VP2 did not produce detectable antiviral antibody in guinea pigs, and antiviral antibody responses in swine to a mixture of VP1, VP2, and VP3 were lower than the responses to VP3 alone. However, when swine were inoculated with VP1, VP2, and VP3 separately at different body sites, no interference with the response to VP3 was observed. Vaccine containing VP3 isolated from acetylethylenimine-treated virus appeared less protective for swine than vaccine containing VP3 from nontreated virus. Trypsinized virus, which contains the cleaved peptides VP3a and VP3b rather than intact VP3, produced approximately the same levels of antiviral antibody responses in guinea pigs as did virus. Conversely, an isolated mixture of VP3a and VP3b did not produce detectable antiviral antibody responses in guinea pigs. The VP3a-VP3b mixture did, however, sensitize guinea pigs to elicit such responses following reinoculation with a marginally effective dose of trypsinized virus. PMID:171309

  1. An extensive thermodynamic characterization of the dimerization domain of the HIV-1 capsid protein

    PubMed Central

    Lidón-Moya, María C.; Barrera, Francisco N.; Bueno, Marta; Pérez-Jiménez, Raúl; Sancho, Javier; Mateu, Mauricio G.; Neira, José L.

    2005-01-01

    The type 1 human immunodeficiency virus presents a conical capsid formed by several hundred units of the capsid protein, CA. Homodimerization of CA occurs via its C-terminal domain, CA-C. This self-association process, which is thought to be pH-dependent, seems to constitute a key step in virus assembly. CA-C isolated in solution is able to dimerize. An extensive thermodynamic characterization of the dimeric and monomeric species of CA-C at different pHs has been carried out by using fluorescence, circular dichroism (CD), absorbance, nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and size-exclusion chromatography (SEC). Thermal and chemical denaturation allowed the determination of the thermodynamic parameters describing the unfolding of both CA-C species. Three reversible thermal transitions were observed, depending on the technique employed. The first one was protein concentration-dependent; it was observed by FTIR and NMR, and consisted of a broad transition occurring between 290 and 315 K; this transition involves dimer dissociation. The second transition (Tm ~ 325 K) was observed by ANS-binding experiments, fluorescence anisotropy, and near-UV CD; it involves partial unfolding of the monomeric species. Finally, absorbance, far-UV CD, and NMR revealed a third transition occurring at Tm ~ 333 K, which involves global unfolding of the monomeric species. Thus, dimer dissociation and monomer unfolding were not coupled. At low pH, CA-C underwent a conformational transition, leading to a species displaying ANS binding, a low CD signal, a red-shifted fluorescence spectrum, and a change in compactness. These features are characteristic of molten globule-like conformations, and they resemble the properties of the second species observed in thermal unfolding. PMID:16131662

  2. In vitro binding of anthrax protective antigen on bacteriophage T4 capsid surface through Hoc-capsid interactions: A strategy for efficient display of large full-length proteins

    SciTech Connect

    Shivachandra, Sathish B.; Rao, Mangala; Janosi, Laszlo; Sathaliyawala, Taheri; Matyas, Gary R.; Alving, Carl R.; Leppla, Stephen H.; Rao, Venigalla B. . E-mail: rao@cua.edu

    2006-02-05

    An in vitro binding system is described to display large full-length proteins on bacteriophage T4 capsid surface at high density. The phage T4 icosahedral capsid features 155 copies of a nonessential highly antigenic outer capsid protein, Hoc, at the center of each major capsid protein hexon. Gene fusions were engineered to express the 83-kDa protective antigen (PA) from Bacillus anthracis fused to the N-terminus of Hoc and the 130-kDa PA-Hoc protein was expressed in Escherichia coli and purified. The purified PA-Hoc was assembled in vitro on hoc {sup -} phage particles. Binding was specific, stable, and of high affinity. This defined in vitro system allowed manipulation of the copy number of displayed PA and imposed no significant limitation on the size of the displayed antigen. In contrast to in vivo display systems, the in vitro approach allows all the capsid binding sites to be occupied by the 130-kDa PA-Hoc fusion protein. The PA-T4 particles were immunogenic in mice in the absence of an adjuvant, eliciting strong PA-specific antibodies and anthrax lethal toxin neutralizing antibodies. The in vitro display on phage T4 offers a novel platform for potential construction of customized vaccines against anthrax and other infectious diseases.

  3. P22 coat protein structures reveal a novel mechanism for capsid maturation: stability without auxiliary proteins or chemical crosslinks.

    PubMed

    Parent, Kristin N; Khayat, Reza; Tu, Long H; Suhanovsky, Margaret M; Cortines, Juliana R; Teschke, Carolyn M; Johnson, John E; Baker, Timothy S

    2010-03-10

    Viral capsid assembly and stability in tailed, dsDNA phage and Herpesviridae are achieved by various means including chemical crosslinks (unique to HK97), or auxiliary proteins (lambda, T4, phi29, and herpesviruses). All these viruses have coat proteins (CP) with a conserved, HK97-like core structure. We used a combination of trypsin digestion, gold labeling, cryo-electron microscopy, 3D image reconstruction, and comparative modeling to derive two independent, pseudoatomic models of bacteriophage P22 CP: before and after maturation. P22 capsid stabilization results from intersubunit interactions among N-terminal helices and an extensive "P loop," which obviate the need for crosslinks or auxiliary proteins. P22 CP also has a telokin-like Ig domain that likely stabilizes the monomer fold so that assembly may proceed via individual subunit addition rather than via preformed capsomers as occurs in HK97. Hence, the P22 CP structure may be a paradigm for understanding how monomers assemble in viruses like phi29 and HSV-1.

  4. Nuclear Export of the Nonenveloped Parvovirus Virion Is Directed by an Unordered Protein Signal Exposed on the Capsid Surface

    PubMed Central

    Maroto, Beatriz; Valle, Noelia; Saffrich, Rainer; Almendral, José M.

    2004-01-01

    It is uncertain whether nonenveloped karyophilic virus particles may actively traffic from the nucleus outward. The unordered amino-terminal domain of the VP2 major structural protein (2Nt) of the icosahedral parvovirus minute virus of mice (MVM) is internal in empty capsids, but it is exposed outside of the shell through the fivefold axis of symmetry in virions with an encapsidated single-stranded DNA genome, as well as in empty capsids subjected to a heat-induced structural transition. In productive infections of transformed and normal fibroblasts, mature MVM virions were found to efficiently exit from the nucleus prior to cell lysis, in contrast to the extended nuclear accumulation of empty capsids. Newly formed mutant viruses lacking the three phosphorylated serine residues of 2Nt were hampered in their exit from the human transformed NB324K nucleus, in correspondence with the capacity of 2Nt to drive microinjected phosphorylated heated capsids out of the nucleus. However, in normal mouse A9 fibroblasts, in which the MVM capsid was phosphorylated at similar sites but with a much lower rate, the nuclear exit of virions and microinjected capsids harboring exposed 2Nt required the infection process and was highly sensitive to inhibition of the exportin CRM1 in the absence of a demonstrable interaction. Thus, the MVM virion exits the nucleus by accessing nonconventional export pathways relying on cell physiology that can be intensified by infection but in which the exposure of 2Nt remains essential for transport. The flexible 2Nt nuclear transport signal may illustrate a common structural solution used by nonenveloped spherical viruses to propagate in undamaged host tissues. PMID:15367635

  5. Site-Specific Structural Variations Accompanying Tubular Assembly of the HIV-1 Capsid Protein

    PubMed Central

    Bayro, Marvin J.; Chen, Bo; Yau, Wai-Ming; Tycko, Robert

    2014-01-01

    The 231-residue capsid (CA) protein of HIV-1 spontaneously self-assembles into tubes with a hexagonal lattice that is believed to mimic the surface lattice of conical capsid cores within intact virions. We report the results of solid state nuclear magnetic resonance (NMR) measurements on HIV-1 CA tubes that provide new information regarding changes in molecular structure that accompany CA self-assembly, local dynamics within CA tubes, and possible mechanisms for the generation of lattice curvature. This information is contained in site-specific assignments of signals in two- and three-dimensional solid state NMR spectra, conformation-dependent 15N and 13C NMR chemical shifts, detection of highly dynamic residues under solution NMR conditions, measurements of local variations in transverse spin relaxation rates of amide 1H nuclei, and quantitative measurements of site-specific 15N-15N dipole-dipole couplings. Our data show that most of the CA sequence is conformationally ordered and relatively rigid in tubular assemblies and that the structures of N-terminal and C-terminal domains (NTD and CTD) observed in solution are largely retained. However, specific segments, including the N-terminal β-hairpin, the cyclophilin A binding loop, the inter-domain linker, segments involved in intermolecular NTD-CTD interactions, and the C-terminal tail, have substantial static or dynamical disorder in tubular assemblies. Other segments, including the 310-helical segment in CTD, undergo clear conformational changes. Structural variations associated with curvature of the CA lattice appear to be localized in the inter-domain linker and intermolecular NTD-CTD interface, while structural variations within NTD hexamers, around local three-fold symmetry axes, and in CTD-CTD dimerization interfaces are less significant. PMID:24370930

  6. Microvesicle-associated AAV Vector as a Novel Gene Delivery System

    PubMed Central

    Maguire, Casey A; Balaj, Leonora; Sivaraman, Sarada; Crommentuijn, Matheus HW; Ericsson, Maria; Mincheva-Nilsson, Lucia; Baranov, Vladimir; Gianni, Davide; Tannous, Bakhos A; Sena-Esteves, Miguel; Breakefield, Xandra O; Skog, Johan

    2012-01-01

    Adeno-associated virus (AAV) vectors have shown remarkable efficiency for gene delivery to cultured cells and in animal models of human disease. However, limitations to AAV vectored gene transfer exist after intravenous transfer, including off-target gene delivery (e.g., liver) and low transduction of target tissue. Here, we show that during production, a fraction of AAV vectors are associated with microvesicles/exosomes, termed vexosomes (vector-exosomes). AAV capsids associated with the surface and in the interior of microvesicles were visualized using electron microscopy. In cultured cells, vexosomes outperformed conventionally purified AAV vectors in transduction efficiency. We found that purified vexosomes were more resistant to a neutralizing anti-AAV antibody compared to conventionally purified AAV. Finally, we show that vexosomes bound to magnetic beads can be attracted to a magnetized area in cultured cells. Vexosomes represent a unique entity which offers a promising strategy to improve gene delivery. PMID:22314290

  7. IL12-mediated liver inflammation reduces the formation of AAV transcriptionally active forms but has no effect over preexisting AAV transgene expression.

    PubMed

    Gil-Fariña, Irene; Di Scala, Marianna; Vanrell, Lucia; Olagüe, Cristina; Vales, Africa; High, Katherine A; Prieto, Jesus; Mingozzi, Federico; Gonzalez-Aseguinolaza, Gloria

    2013-01-01

    Recombinant adenoassociated viral vectors (rAAV) have proven to be excellent candidates for gene therapy clinical applications. Recent results showed that cellular immunity to AAV represents a major challenge facing the clinical use of systemic administration of these vectors. Interestingly, no preclinical animal model has previously fully reproduced the clinical findings. The aim of the present work was to enhance the T cell immune response against AAV capsid in mice by the administration of a rAAV expressing the immunostimulatory cytokine IL-12. Our results indicate that although IL-12 expression enhanced the AAV capsid-specific immune response it failed to eliminate transduced hepatocytes and long-term expression was achieved. We found that AAV-mediated transgene expression is altered by IL-12-induced liver inflammation. However, IL-12 expression has no effect over preexisting AAV-mediated transgene expression. IL-12 down-regulates AAV mediated transgene expression via induction of IFN-γ production by NK and T cells, but without altering the transduction efficiency measured by viral genomes. Our results indicate that liver inflammation affects the formation of transcriptionally active AAV vector genomes through an unknown mechanism that can be avoided by the use of DNA-demethylating or anti-inflammatory agents. PMID:23844082

  8. IL12-Mediated Liver Inflammation Reduces the Formation of AAV Transcriptionally Active Forms but Has No Effect over Preexisting AAV Transgene Expression

    PubMed Central

    Gil-Fariña, Irene; Di Scala, Marianna; Vanrell, Lucia; Olagüe, Cristina; Vales, Africa; High, Katherine A.; Prieto, Jesus; Mingozzi, Federico; Gonzalez-Aseguinolaza, Gloria

    2013-01-01

    Recombinant adenoassociated viral vectors (rAAV) have proven to be excellent candidates for gene therapy clinical applications. Recent results showed that cellular immunity to AAV represents a major challenge facing the clinical use of systemic administration of these vectors. Interestingly, no preclinical animal model has previously fully reproduced the clinical findings. The aim of the present work was to enhance the T cell immune response against AAV capsid in mice by the administration of a rAAV expressing the immunostimulatory cytokine IL-12. Our results indicate that although IL-12 expression enhanced the AAV capsid-specific immune response it failed to eliminate transduced hepatocytes and long-term expression was achieved. We found that AAV-mediated transgene expression is altered by IL-12-induced liver inflammation. However, IL-12 expression has no effect over preexisting AAV-mediated transgene expression. IL-12 down-regulates AAV mediated transgene expression via induction of IFN-γ production by NK and T cells, but without altering the transduction efficiency measured by viral genomes. Our results indicate that liver inflammation affects the formation of transcriptionally active AAV vector genomes through an unknown mechanism that can be avoided by the use of DNA-demethylating or anti-inflammatory agents. PMID:23844082

  9. rAAV human trial experience.

    PubMed

    High, Katherine A; Aubourg, Patrick

    2011-01-01

    Recombinant AAV vectors have been used in clinical trials since the mid-1990s, with over 300 subjects enrolled in studies. Although there are not yet licensed AAV products, there are several clear examples of clinical efficacy, and recombinant AAV vectors have a strong safety record after administration both locally and systemically. This chapter provides a review of two types of studies that have shown efficacy, including studies for Leber's congenital amaurosis, a hereditary retinal degenerative disorder in which subretinal administration of AAV has shown efficacy in terms of improvement in multiple measures of visual/retinal function; and of Parkinson's disease which has also shown improvement in clinical and imaging studies after gene transfer to the CNS. The chapter also provides a detailed review of the results of studies of gene therapy for hemophilia, in which short-term efficacy was achieved, but expression of the donated gene failed to persist, likely due to an immune response to the vector. Safety issues relating to AAV-mediated gene transfer are discussed, including a detailed review of the single death to have occurred in an AAV gene therapy trial (likely unrelated to the AAV vector), and of issues related to integration and insertional mutagenesis, risk of germline transmission, and risks related to immune responses to either vector or transgene product. Finally, protocols for determining the presence of vector DNA in body fluids using real-time quantitative PCR, and for isolating, cryopreserving, and testing peripheral blood mononuclear cells for interferon-γ (IFN-γ) responses to capsid are described in detail. PMID:22034041

  10. A novel inhibitor of dengue virus replication that targets the capsid protein.

    PubMed

    Byrd, Chelsea M; Dai, Dongcheng; Grosenbach, Douglas W; Berhanu, Aklile; Jones, Kevin F; Cardwell, Kara B; Schneider, Christine; Wineinger, Kristin A; Page, Jessica M; Harver, Chris; Stavale, Eric; Tyavanagimatt, Shanthakumar; Stone, Melialani A; Bartenschlager, Ralf; Scaturro, Pietro; Hruby, Dennis E; Jordan, Robert

    2013-01-01

    Dengue viruses (DENV) infect 50 to 100 million people worldwide per year, of which 500,000 develop severe life-threatening disease. This mosquito-borne illness is endemic in most tropical and subtropical countries and has spread significantly over the last decade. While there are several promising vaccine candidates in clinical trials, there are currently no approved vaccines or therapeutics available for treatment of dengue infection. Here, we describe a novel small-molecule compound, ST-148, that is a potent inhibitor of all four serotypes of DENV in vitro. ST-148 significantly reduced viremia and viral load in vital organs and tended to lower cytokine levels in the plasma in a nonlethal model of DENV infection in AG129 mice. Compound resistance mapped to the DENV capsid (C) gene, and a direct interaction of ST-148 with C protein is suggested by alterations of the intrinsic fluorescence of the protein in the presence of compound. Thus, ST-148 appears to interact with the DENV C protein and inhibits a distinct step(s) of the viral replication cycle.

  11. Properties of African Cassava Mosaic Virus Capsid Protein Expressed in Fission Yeast.

    PubMed

    Hipp, Katharina; Schäfer, Benjamin; Kepp, Gabi; Jeske, Holger

    2016-01-01

    The capsid proteins (CPs) of geminiviruses combine multiple functions for packaging the single-stranded viral genome, insect transmission and shuttling between the nucleus and the cytoplasm. African cassava mosaic virus (ACMV) CP was expressed in fission yeast, and purified by SDS gel electrophoresis. After tryptic digestion of this protein, mass spectrometry covered 85% of the amino acid sequence and detected three N-terminal phosphorylation sites (threonine 12, serines 25 and 62). Differential centrifugation of cell extracts separated the CP into two fractions, the supernatant and pellet. Upon isopycnic centrifugation of the supernatant, most of the CP accumulated at densities typical for free proteins, whereas the CP in the pellet fraction showed a partial binding to nucleic acids. Size-exclusion chromatography of the supernatant CP indicated high order complexes. In DNA binding assays, supernatant CP accelerated the migration of ssDNA in agarose gels, which is a first hint for particle formation. Correspondingly, CP shifted ssDNA to the expected densities of virus particles upon isopycnic centrifugation. Nevertheless, electron microscopy did not reveal any twin particles, which are characteristic for geminiviruses. PMID:27399762

  12. A novel inhibitor of dengue virus replication that targets the capsid protein.

    PubMed

    Byrd, Chelsea M; Dai, Dongcheng; Grosenbach, Douglas W; Berhanu, Aklile; Jones, Kevin F; Cardwell, Kara B; Schneider, Christine; Wineinger, Kristin A; Page, Jessica M; Harver, Chris; Stavale, Eric; Tyavanagimatt, Shanthakumar; Stone, Melialani A; Bartenschlager, Ralf; Scaturro, Pietro; Hruby, Dennis E; Jordan, Robert

    2013-01-01

    Dengue viruses (DENV) infect 50 to 100 million people worldwide per year, of which 500,000 develop severe life-threatening disease. This mosquito-borne illness is endemic in most tropical and subtropical countries and has spread significantly over the last decade. While there are several promising vaccine candidates in clinical trials, there are currently no approved vaccines or therapeutics available for treatment of dengue infection. Here, we describe a novel small-molecule compound, ST-148, that is a potent inhibitor of all four serotypes of DENV in vitro. ST-148 significantly reduced viremia and viral load in vital organs and tended to lower cytokine levels in the plasma in a nonlethal model of DENV infection in AG129 mice. Compound resistance mapped to the DENV capsid (C) gene, and a direct interaction of ST-148 with C protein is suggested by alterations of the intrinsic fluorescence of the protein in the presence of compound. Thus, ST-148 appears to interact with the DENV C protein and inhibits a distinct step(s) of the viral replication cycle. PMID:23070172

  13. Several recombinant capsid proteins of equine rhinitis a virus show potential as diagnostic antigens.

    PubMed

    Li, Fan; Stevenson, Rachel A; Crabb, Brendan S; Studdert, Michael J; Hartley, Carol A

    2005-06-01

    Equine rhinitis A virus (ERAV) is a significant pathogen of horses and is also closely related to Foot-and-mouth disease virus (FMDV). Despite these facts, knowledge of the prevalence and importance of ERAV infections remains limited, largely due to the absence of a simple, robust diagnostic assay. In this study, we compared the antigenicities of recombinant full-length and fragmented ERAV capsid proteins expressed in Escherichia coli by using sera from experimentally infected and naturally exposed horses. We found that, from the range of antigens tested, recombinant proteins encompassing the C-terminal region of VP1, full-length VP2, and the N-terminal region of VP2 reacted specifically with antibodies present in sera from each of the five experimentally infected horses examined. Antibodies to epitopes on VP2 (both native and recombinant forms) persisted longer postinfection (>105 days) than antibodies specific for epitopes on other fragments. Our data also suggest that B-cell epitopes within the C terminus of VP1 and N terminus of VP2 contribute to a large proportion of the total reactivity of recombinant VP1 and VP2, respectively. Importantly, the reactivity of these VP1 and VP2 recombinant proteins in enzyme-linked immunosorbent assays (ELISAs) correlated well with the results from a range of native antigen-based serological assays using sera from 12 field horses. This study provides promising candidates for development of a diagnostic ERAV ELISA.

  14. Crystal Structure of the Avian Reovirus Inner Capsid Protein σA▿

    PubMed Central

    Guardado-Calvo, Pablo; Vazquez-Iglesias, Lorena; Martinez-Costas, José; Llamas-Saiz, Antonio L.; Schoehn, Guy; Fox, Gavin C.; Hermo-Parrado, X. Lois; Benavente, Javier; van Raaij, Mark J.

    2008-01-01

    Avian reovirus, an important avian pathogen, expresses eight structural and four nonstructural proteins. The structural σA protein is a major component of the inner capsid, clamping together λA building blocks. σA has also been implicated in the resistance of avian reovirus to the antiviral action of interferon by strongly binding double-stranded RNA in the host cell cytoplasm and thus inhibiting activation of the double-stranded RNA-dependent protein kinase. We have solved the structure of bacterially expressed σA by molecular replacement and refined it using data to 2.3-Å resolution. Twelve σA molecules are present in the P1 unit cell, arranged as two short double helical hexamers. A positively charged patch is apparent on the surface of σA on the inside of this helix and mutation of either of two key arginine residues (Arg155 and Arg273) within this patch abolishes double-stranded RNA binding. The structural data, together with gel shift assay, electron microscopy, and sedimentation velocity centrifugation results, provide evidence for cooperative binding of σA to double-stranded RNA. The minimal length of double-stranded RNA required for σA binding was observed to be 14 to 18 bp. PMID:18799570

  15. Properties of African Cassava Mosaic Virus Capsid Protein Expressed in Fission Yeast

    PubMed Central

    Hipp, Katharina; Schäfer, Benjamin; Kepp, Gabi; Jeske, Holger

    2016-01-01

    The capsid proteins (CPs) of geminiviruses combine multiple functions for packaging the single-stranded viral genome, insect transmission and shuttling between the nucleus and the cytoplasm. African cassava mosaic virus (ACMV) CP was expressed in fission yeast, and purified by SDS gel electrophoresis. After tryptic digestion of this protein, mass spectrometry covered 85% of the amino acid sequence and detected three N-terminal phosphorylation sites (threonine 12, serines 25 and 62). Differential centrifugation of cell extracts separated the CP into two fractions, the supernatant and pellet. Upon isopycnic centrifugation of the supernatant, most of the CP accumulated at densities typical for free proteins, whereas the CP in the pellet fraction showed a partial binding to nucleic acids. Size-exclusion chromatography of the supernatant CP indicated high order complexes. In DNA binding assays, supernatant CP accelerated the migration of ssDNA in agarose gels, which is a first hint for particle formation. Correspondingly, CP shifted ssDNA to the expected densities of virus particles upon isopycnic centrifugation. Nevertheless, electron microscopy did not reveal any twin particles, which are characteristic for geminiviruses. PMID:27399762

  16. Rubella virus capsid protein modulation of viral genomic and subgenomic RNA synthesis

    SciTech Connect

    Tzeng, W.-P.; Frey, Teryl K. . E-mail: tfrey@gsu.edu

    2005-07-05

    The ratio of the subgenomic (SG) to genome RNA synthesized by rubella virus (RUB) replicons expressing the green fluorescent protein reporter gene (RUBrep/GFP) is substantially higher than the ratio of these species synthesized by RUB (4.3 for RUBrep/GFP vs. 1.3-1.4 for RUB). It was hypothesized that this modulation of the viral RNA synthesis was by one of the virus structural protein genes and it was found that introduction of the capsid (C) protein gene into the replicons as an in-frame fusion with GFP resulted in an increase of genomic RNA production (reducing the SG/genome RNA ratio), confirming the hypothesis and showing that the C gene was the moiety responsible for the modulation effect. The N-terminal one-third of the C gene was required for the effect of be exhibited. A similar phenomenon was not observed with the replicons of Sindbis virus, a related Alphavirus. Interestingly, modulation was not observed when RUBrep/GFP was co-transfected with either other RUBrep or plasmid constructs expressing the C gene, demonstrating that modulation could occur only when the C gene was provided in cis. Mutations that prevented translation of the C protein failed to modulate RNA synthesis, indicating that the C protein was the moiety responsible for modulation; consistent with this conclusion, modulation of RNA synthesis was maintained when synonymous codon mutations were introduced at the 5' end of the C gene that changed the C gene sequence without altering the amino acid sequence of the C protein. These results indicate that C protein translated in proximity of viral replication complexes, possibly from newly synthesized SG RNA, participate in regulating the replication of viral RNA.

  17. Detection of subtle differences in analogous viral capsid proteins by allowing unrestricted specific interaction in solution competition ELISA.

    PubMed

    Cao, Lu; Wang, Xin; Fang, Mujin; Xia, Ningshao; Zhao, Qinjian

    2016-10-01

    Assay artifacts were reported in plate-based immuoassays during the assessment of specific molecular interactions owing to the surface induced aggregation/conformational changes. To circumvent surface adsorption and associated artifacts, we used a solution competition ELISA by allowing unrestricted interaction between binding partners to occur in solution for better discrimination between epitopes with subtle differences. A difference of two orders of magnitude in binding to neutralizing antibodies for two truncated versions of the hepatitis E virus capsid protein was observed, while other assays showed comparable antigenicity with the same monoclonal antibodies. Discrimination of epitopes with high degree resemblance in analogous viral capsid proteins was demonstrated quantitatively based on their specific interactions. Therefore, the solution competition ELISA is a method of choice when the detection of subtle differences of two highly analogous proteins is desired. PMID:27321427

  18. Identification of a nuclear localization sequence in the polyomavirus capsid protein VP2

    NASA Technical Reports Server (NTRS)

    Chang, D.; Haynes, J. I. 2nd; Brady, J. N.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    A nuclear localization signal (NLS) has been identified in the C-terminal (Glu307-Glu-Asp-Gly-Pro-Gln-Lys-Lys-Lys-Arg-Arg-Leu318) amino acid sequence of the polyomavirus minor capsid protein VP2. The importance of this amino acid sequence for nuclear transport of newly synthesized VP2 was demonstrated by a genetic "subtractive" study using the constructs pSG5VP2 (expressing full-length VP2) and pSG5 delta 3VP2 (expressing truncated VP2, lacking amino acids Glu307-Leu318). These constructs were transfected into COS-7 cells, and the intracellular localization of the VP2 protein was determined by indirect immunofluorescence. These studies revealed that the full-length VP2 was localized in the nucleus, while the truncated VP2 protein was localized in the cytoplasm and not transported to the nucleus. A biochemical "additive" approach was also used to determine whether this sequence could target nonnuclear proteins to the nucleus. A synthetic peptide identical to VP2 amino acids Glu307-Leu318 was cross-linked to the nonnuclear proteins bovine serum albumin (BSA) or immunoglobulin G (IgG). The conjugates were then labeled with fluorescein isothiocyanate and microinjected into the cytoplasm of NIH 3T6 cells. Both conjugates localized in the nucleus of the microinjected cells, whereas unconjugated BSA and IgG remained in the cytoplasm. Taken together, these genetic subtractive and biochemical additive approaches have identified the C-terminal sequence of polyoma-virus VP2 (containing amino acids Glu307-Leu318) as the NLS of this protein.

  19. Synthesis and characterization of different immunogenic viral nanoconstructs from rotavirus VP6 inner capsid protein

    PubMed Central

    Bugli, Francesca; Caprettini, Valeria; Cacaci, Margherita; Martini, Cecilia; Paroni Sterbini, Francesco; Torelli, Riccardo; Della Longa, Stefano; Papi, Massimiliano; Palmieri, Valentina; Giardina, Bruno; Posteraro, Brunella; Sanguinetti, Maurizio; Arcovito, Alessandro

    2014-01-01

    In order to deliver low-cost viral capsomeres from a large amount of soluble viral VP6 protein from human rotavirus, we developed and optimized a biotechnological platform in Escherichia coli. Specifically, three different expression protocols were compared, differing in their genetic constructs, ie, a simple native histidine-tagged VP6 sequence, VP6 fused to thioredoxin, and VP6 obtained with the newly described small ubiquitin-like modifier (SUMO) fusion system. Our results demonstrate that the histidine-tagged protein does not escape the accumulation in the inclusion bodies, and that SUMO is largely superior to the thioredoxin-fusion tag in enhancing the expression and solubility of VP6 protein. Moreover, the VP6 protein produced according to the SUMO fusion tag displays well-known assembly properties, as observed in both transmission electron microscopy and atomic force microscopy images, giving rise to either VP6 trimers, 60 nm spherical virus-like particles, or nanotubes a few microns long. This different quaternary organization of VP6 shows a higher level of immunogenicity for the elongated structures with respect to the spheres or the protein trimers. Therefore, the expression and purification strategy presented here – providing a large amount of the viral capsid protein in the native form with relatively simple, rapid, and economical procedures – opens a new route toward large-scale production of a more efficient antigenic compound to be used as a vaccination tool or as an adjuvant, and also represents a top-quality biomaterial to be further modified for biotechnological purposes. PMID:24936129

  20. Subcellular localization and rearrangement of endoplasmic reticulum by Brome mosaic virus capsid protein.

    PubMed

    Bamunusinghe, Devinka; Seo, Jang-Kyun; Rao, A L N

    2011-03-01

    Genome packaging in the plant-infecting Brome mosaic virus (BMV), a member of the alphavirus-like superfamily, as well as in other positive-strand RNA viruses pathogenic to humans (e.g., poliovirus) and animals (e.g., Flock House virus), is functionally coupled to replication. Although the subcellular localization site of BMV replication has been identified, that of the capsid protein (CP) has remained elusive. In this study, the application of immunofluorescence confocal microscopy to Nicotiana benthamiana leaves expressing replication-derived BMV CP as a green fluorescent protein (GFP) fusion, in conjunction with antibodies to the CP and double-stranded RNA, a presumed marker of RNA replication, revealed that the subcellular localization sites of replication and CP overlap. Our temporal analysis by transmission electron microscopy of ultrastructural modifications induced in BMV-infected N. benthamiana leaves revealed a reticulovesicular network of modified endoplasmic reticulum (ER) incorporating large assemblies of vesicles derived from ER accumulated in the cytoplasm during BMV infection. Additionally, for the first time, we have found by ectopic expression experiments that BMV CP itself has the intrinsic property of modifying ER to induce vesicles similar to those present in BMV infections. The significance of CP-induced vesicles in relation to CP-organized viral functions that are linked to replication-coupled packaging is discussed.

  1. Relationships amongst bluetongue viruses revealed by comparisons of capsid and outer coat protein nucleotide sequences.

    PubMed

    Gould, A R; Pritchard, L I

    1990-08-01

    Sequence data from the gene segments coding for the capsid protein. VP3, of all eight Australian bluetongue virus serotypes were compared. The high degree of nucleotide sequence homology for VP3 genes amongst BTV isolates from the same geographic region supported previous studies (Gould, 1987; 1988b, c; Gould et al., 1988b) and was proposed as a basis for "topotyping" a bluetongue virus isolate (Gould et al., 1989). The complete nucleotide sequences which coded for the VP2 outer coat proteins of South African BTV serotypes 1 and 3 (vaccine strains) were determined and compared to cognate gene sequences from North American and Australian BTVs. These VP2 comparisons demonstrated that BTVs of the same serotype, but from different geographical regions, were closely related at the nucleotide and amino acid levels. However, close inter-relationships were also demonstrated amongst other BTVs irrespective of serotype or geographic origin. These data enabled phylogenic relationships of the BTV serotypes to be analysed using VP2 nucleotide sequences as a determinant.

  2. The T=1 Capsid Protein of Penicillium chrysogenum Virus Is Formed by a Repeated Helix-Rich Core Indicative of Gene Duplication▿ †

    PubMed Central

    Luque, Daniel; González, José M.; Garriga, Damiá; Ghabrial, Said A.; Havens, Wendy M.; Trus, Benes; Verdaguer, Nuria; Carrascosa, José L.; Castón, José R.

    2010-01-01

    Penicillium chrysogenum virus (PcV), a member of the Chrysoviridae family, is a double-stranded RNA (dsRNA) fungal virus with a multipartite genome, with each RNA molecule encapsidated in a separate particle. Chrysoviruses lack an extracellular route and are transmitted during sporogenesis and cell fusion. The PcV capsid, based on a T=1 lattice containing 60 subunits of the 982-amino-acid capsid protein, remains structurally undisturbed throughout the viral cycle, participates in genome metabolism, and isolates the virus genome from host defense mechanisms. Using three-dimensional cryoelectron microscopy, we determined the structure of the PcV virion at 8.0 Å resolution. The capsid protein has a high content of rod-like densities characteristic of α-helices, forming a repeated α-helical core indicative of gene duplication. Whereas the PcV capsid protein has two motifs with the same fold, most dsRNA virus capsid subunits consist of dimers of a single protein with similar folds. The spatial arrangement of the α-helical core resembles that found in the capsid protein of the L-A virus, a fungal totivirus with an undivided genome, suggesting a conserved basic fold. The encapsidated genome is organized in concentric shells; whereas the inner dsRNA shells are well defined, the outermost layer is dense due to numerous interactions with the inner capsid surface, specifically, six interacting areas per monomer. The outermost genome layer is arranged in an icosahedral cage, sufficiently well ordered to allow for modeling of an A-form dsRNA. The genome ordering might constitute a framework for dsRNA transcription at the capsid interior and/or have a structural role for capsid stability. PMID:20463071

  3. The T=1 capsid protein of Penicillium chrysogenum virus is formed by a repeated helix-rich core indicative of gene duplication.

    PubMed

    Luque, Daniel; González, José M; Garriga, Damiá; Ghabrial, Said A; Havens, Wendy M; Trus, Benes; Verdaguer, Nuria; Carrascosa, José L; Castón, José R

    2010-07-01

    Penicillium chrysogenum virus (PcV), a member of the Chrysoviridae family, is a double-stranded RNA (dsRNA) fungal virus with a multipartite genome, with each RNA molecule encapsidated in a separate particle. Chrysoviruses lack an extracellular route and are transmitted during sporogenesis and cell fusion. The PcV capsid, based on a T=1 lattice containing 60 subunits of the 982-amino-acid capsid protein, remains structurally undisturbed throughout the viral cycle, participates in genome metabolism, and isolates the virus genome from host defense mechanisms. Using three-dimensional cryoelectron microscopy, we determined the structure of the PcV virion at 8.0 A resolution. The capsid protein has a high content of rod-like densities characteristic of alpha-helices, forming a repeated alpha-helical core indicative of gene duplication. Whereas the PcV capsid protein has two motifs with the same fold, most dsRNA virus capsid subunits consist of dimers of a single protein with similar folds. The spatial arrangement of the alpha-helical core resembles that found in the capsid protein of the L-A virus, a fungal totivirus with an undivided genome, suggesting a conserved basic fold. The encapsidated genome is organized in concentric shells; whereas the inner dsRNA shells are well defined, the outermost layer is dense due to numerous interactions with the inner capsid surface, specifically, six interacting areas per monomer. The outermost genome layer is arranged in an icosahedral cage, sufficiently well ordered to allow for modeling of an A-form dsRNA. The genome ordering might constitute a framework for dsRNA transcription at the capsid interior and/or have a structural role for capsid stability.

  4. Nature’s favorite building block: Deciphering folding and capsid assembly of proteins with the HK97-fold

    PubMed Central

    Suhanovsky, Margaret M.; Teschke, Carolyn M.

    2015-01-01

    Summary For many (if not all) bacterial and archaeal tailed viruses and eukaryotic Herpesvirdae the HK97-fold serves as the major architectural element in icosahedral capsid formation while still enabling the conformational flexibility required during assembly and maturation. Auxiliary proteins or Δ-domains strictly control assembly of multiple, identical, HK97-like subunits into procapsids with specific icosahedral symmetries, rather than aberrant non-icosahedral structures. Procapsids are precursor structures that mature into capsids in a process involving release of auxiliary proteins (or cleavage of Δ-domains), dsDNA packaging, and conformational rearrangement of the HK97-like subunits. Some coat proteins built on the ubiquitous HK97-fold also have accessory domains or loops that impart specific functions, such as increased monomer, procapsid, or capsid stability. In this review, we analyze the numerous HK97-like coat protein structures that are emerging in the literature (over 40 at time of writing) by comparing their topology, additional domains, and their assembly and misassembly reactions. PMID:25864106

  5. Use of Cre/loxP recombination to swap cell binding motifs on the adenoviral capsid protein IX

    SciTech Connect

    Poulin, Kathy L.; Tong, Grace; Vorobyova, Olga; Pool, Madeline; Kothary, Rashmi; Parks, Robin J.

    2011-11-25

    We used Cre/loxP recombination to swap targeting ligands present on the adenoviral capsid protein IX (pIX). A loxP-flanked sequence encoding poly-lysine (pK-binds heparan sulfate proteoglycans) was engineered onto the 3'-terminus of pIX, and the resulting fusion protein allowed for routine virus propagation. Growth of this virus on Cre-expressing cells removed the pK coding sequence, generating virus that could only infect through alternative ligands, such as a tyrosine kinase receptor A (TrkA)-binding motif engineered into the capsid fibre protein for enhanced infection of neuronal cells. We used a similar approach to swap the pK motif on pIX for a sequence encoding a single-domain antibody directed towards CD66c for targeted infection of cancer cells; Cre-mediated removal of the pK-coding sequence simultaneously placed the single-domain antibody coding sequence in frame with pIX. Thus, we have developed a simple method to propagate virus lacking native viral tropism but containing cell-specific binding ligands. - Highlights: > We describe a method to grow virus lacking native tropism but containing novel cell-binding ligands. > Cre/loxP recombination was used to modify the adenovirus genome. > A targeting ligand present on capsid protein IX was removed or replaced using recombination. > Cre-loxP was also used to 'swap' the identity of the targeting ligand present on pIX.

  6. Transgenic tomato plants expressing the tomato yellow leaf curl virus capsid protein are resistant to the virus.

    PubMed

    Kunik, T; Salomon, R; Zamir, D; Navot, N; Zeidan, M; Michelson, I; Gafni, Y; Czosnek, H

    1994-05-01

    The tomato yellow leaf curl virus (TYLCV) gene that encodes the capsid protein (V1) was placed under transcriptional control of the cauliflower mosaic virus 35S promoter and cloned into an Agrobacterium Ti-derived plasmid and used to transform plants from an interspecific tomato hybrid, Lycopersicon esculentum X L. pennellii (F1), sensitive to the TYLCV disease. When transgenic F1 plants, expressing the V1 gene, were inoculated with TYLCV using whiteflies fed on TYLCV-infected plants, they responded either as untransformed tomato or showed expression of delayed disease symptoms and recovery from the disease with increasingly more resistance upon repeated inoculation. Transformed plants that were as sensitive to inoculation as untransformed controls expressed the V1 gene at the RNA level only. All the transformed plants that recovered from disease expressed the TYLCV capsid protein. PMID:7764709

  7. The herpes simplex virus 1 UL17 protein is the second constituent of the capsid vertex-specific component required for DNA packaging and retention.

    PubMed

    Toropova, Katerina; Huffman, Jamie B; Homa, Fred L; Conway, James F

    2011-08-01

    The herpes simplex virus (HSV) UL17 and UL25 minor capsid proteins are essential for DNA packaging. They are thought to comprise a molecule arrayed in five copies around each of the capsid vertices. This molecule was initially termed the "C-capsid-specific component" (CCSC) (B. L. Trus et al., Mol. Cell 26:479-489, 2007), but as we have subsequently observed this feature on reconstructions of A, B, and C capsids, we now refer to it more generally as the "capsid vertex-specific component" (CVSC) (S. K. Cockrell et al., J. Virol. 85:4875-4887, 2011). We previously confirmed that UL25 occupies the vertex-distal region of the CVSC density by visualizing a large UL25-specific tag in reconstructions calculated from cryo-electron microscopy (cryo-EM) images. We have pursued the same strategy to determine the capsid location of the UL17 protein. Recombinant viruses were generated that contained either a small tandem affinity purification (TAP) tag or the green fluorescent protein (GFP) attached to the C terminus of UL17. Purification of the TAP-tagged UL17 or a similarly TAP-tagged UL25 protein clearly demonstrated that the two proteins interact. A cryo-EM reconstruction of capsids containing the UL17-GFP protein reveals that UL17 is the second component of the CVSC and suggests that UL17 interfaces with the other CVSC component, UL25, through its C terminus. The portion of UL17 nearest the vertex appears to be poorly constrained, which may provide flexibility in interacting with tegument proteins or the DNA-packaging machinery at the portal vertex. The exposed locations of the UL17 and UL25 proteins on the HSV-1 capsid exterior suggest that they may be attractive targets for highly specific antivirals.

  8. Leader of the Capsid Protein in Feline Calicivirus Promotes Replication of Norwalk Virus in Cell Culture▿

    PubMed Central

    Chang, Kyeong-Ok; George, David W.; Patton, John B.; Green, Kim Y.; Sosnovtsev, Stanislav V.

    2008-01-01

    The inability to grow human noroviruses in cell culture has greatly impeded the studies of their pathogenesis and immunity. Vesiviruses, in the family Caliciviridae, grow efficiently in cell culture and encode a unique protein in the subgenomic region designated as leader of the capsid protein (LC). We hypothesized that LC might be associated with the efficient replication of vesiviruses in cell culture and promote the replication of human norovirus in cells. To test this hypothesis, a recombinant plasmid was engineered in which the LC region of feline calicivirus (FCV) was placed under the control of the cytomegalovirus promoter (pCI-LC) so that the LC protein could be provided in trans to replicating calicivirus genomes bearing a reporter gene. We constructed pNV-GFP, a recombinant plasmid containing a full-length NV genome with a green fluorescent protein (GFP) in the place of VP1. The transfection of pNV-GFP in MVA-T7-infected cells produced few GFP-positive cells detected by fluorescence microscopy and flow cytometry analysis. When pNV-GFP was cotransfected with pCI-LC in MVA-T7-infected cells, we observed an increase in the number of GFP-positive cells (ca. 3% of the whole-cell population). Using this cotransfection method with mutagenesis study, we identified potential cis-acting elements at the start of subgenomic RNA and the 3′ end of NV genome for the virus replication. We conclude that LC may be a viral factor which promotes the replication of NV in cells, which could provide a clue to growing the fastidious human noroviruses in cell culture. PMID:18632864

  9. [Hepatitis E virus capsid protein production by high cell density culture of recombinant Escherichia coli].

    PubMed

    Liu, Ru-Shi; He, Zhi-Qiang; Li, Shao-Wei; Yang, Kun-Yu; Xian, Yang-Ling; Pang, Shu-Qiang; Zhang, Jun; Li, Yi-Min; Xia, Ning-Shao

    2004-05-01

    Production of Hepatitis E Virus capsid protein by high cell density culture in recombinant E. coli has been studied in 10L and 30L fermentors. The effects of different factors on growth and producing recombinant protein of E. coli have been studied by batch culture, such as different media, the ratio of phosphate and Magnesium sulfate. Comparison of fermentation performance for recombinant E. coli in different fed-methods culture has been investigated by fed-batch culture. The effects of inducing at different stages of growth and time of inducing on growth and producing recombinant protein, also obtained by fed-batch culture. At last, the solubility of inclusion body in different urea concentrations also has been obtained by fed-batch culture. The results show that the concentration of phosphate and Magnesium sulfate in the optimal media is 80mmol/L and 20mmol/L in batch culture respectively, that induction with 1.0mmol/L IPTG at mid log phase (about 45 OD at 600nm) is suitable for growth and recombinant protein expression, the cells were approaching stationary growth phase and the maximum cell OD at 600nm of 80 was achieved in 5h of fed-batch culture, and the expression level is 29.74%. The results also indicate that the solubility of inclusion body in 4mol/L urea solution induced at 37 degrees C reaches 14mg/mL, over 80% inclusion body was resolved. The culture process achieved in 10L fermentor could be successfully scaled up to 30L fenmentor with good reproducibility. PMID:15971623

  10. Nuclear import strategies of high-risk HPV18 L2 minor capsid protein

    SciTech Connect

    Klucevsek, K.; Daley, J.; Darshan, M.S.; Bordeaux, J.; Moroianu, J. . E-mail: moroianu@bc.edu

    2006-08-15

    We have investigated the nuclear import strategies of high-risk HPV18 L2 minor capsid protein. HPV18 L2 interacts with Kap {alpha}{sub 2} adapter, and Kap {beta}{sub 2} and Kap {beta}{sub 3} nuclear import receptors. Moreover, binding of RanGTP to either Kap {beta}{sub 2} or Kap {beta}{sub 3} inhibits their interaction with L2, suggesting that these Kap {beta}/L2 complexes are import competent. Mapping studies show that HPV18 L2 contains two NLSs: in the N-terminus (nNLS) and in the C-terminus (cNLS), both of which can independently mediate nuclear import. Both nNLS and cNLS form a complex with Kap {alpha}{sub 2}{beta}{sub 1} heterodimer and mediate nuclear import via a classical pathway. The nNLS is also essential for the interaction of HPV18 L2 with Kap {beta}{sub 2} and Kap {beta}{sub 3}. Interestingly, both nNLS and cNLS interact with the viral DNA and this DNA binding occurs without nucleotide sequence specificity. Together, the data suggest that HPV18 L2 can interact via its NLSs with several Kaps and the viral DNA and may enter the nucleus via multiple import pathways mediated by Kap {alpha}{sub 2}{beta}{sub 1} heterodimers, Kap {beta}{sub 2} and Kap {beta}{sub 3}.

  11. Serotypic characterization of outer capsid spike protein VP4 of vervet monkey rotavirus SA11 strain.

    PubMed

    Hoshino, Y; Jones, R W; Kapikian, A Z

    1998-01-01

    The vervet monkey rotavirus SA11, a prototype strain of group A rotaviruses, has been shown to possess VP7 serotype 3 specificity but its neutralization specificity with regard to the other outer capsid protein VP4 has not been elucidated. We thus determined its VP4 specificity by two-way cross-neutralization with guinea pig antiserum prepared with a single gene substitution reassortant that had only the VP4-encoding gene from the simian rotavirus SA11 strain and remaining ten genes from human rotavirus DS-1 strain (G serotype 2). The SA11 VP4 was related antigenically in a one-way fashion to rhesus monkey rotavirus MMU18006 VP4 (a P5B strain) and marginally to human and canine rotavirus VP4s with P serotype 5A specificity. In addition, the SA11 VP4 was shown to be distinct antigenically from those of other known P serotypes (1-4, and 6-11) as well as those of uncharacterized equine, lapine, and avian rotavirus strains. The SA11 VP4 is thus proposed for classification as a P5B serotype. PMID:9687880

  12. Structural polymorphism of the major capsid protein of a double-stranded RNA virus: an amphipathic alpha helix as a molecular switch.

    PubMed

    Saugar, Irene; Luque, Daniel; Oña, Ana; Rodríguez, José F; Carrascosa, José L; Trus, Benes L; Castón, José R

    2005-07-01

    The infectious bursal disease virus T=13 viral particle is composed of two major proteins, VP2 and VP3. Here, we show that the molecular basis of the conformational flexibility of the major capsid protein precursor, pVP2, is an amphipatic alpha helix formed by the sequence GFKDIIRAIR. VP2 containing this alpha helix is able to assemble into the T=13 capsid only when expressed as a chimeric protein with an N-terminal His tag. An amphiphilic alpha helix, which acts as a conformational switch, is thus responsible for the inherent structural polymorphism of VP2. The His tag mimics the VP3 C-terminal region closely and acts as a molecular triggering factor. Using cryo-electron microscopy difference imaging, both polypeptide elements were detected on the capsid inner surface. We propose that electrostatic interactions between these two morphogenic elements are transmitted to VP2 to acquire the competent conformations for capsid assembly.

  13. Using AAV vectors expressing the β2-adrenoceptor or associated Gα proteins to modulate skeletal muscle mass and muscle fibre size

    PubMed Central

    Hagg, Adam; Colgan, Timothy D.; Thomson, Rachel E.; Qian, Hongwei; Lynch, Gordon S.; Gregorevic, Paul

    2016-01-01

    Anabolic β2-adrenoceptor (β2-AR) agonists have been proposed as therapeutics for treating muscle wasting but concerns regarding possible off-target effects have hampered their use. We investigated whether β2-AR-mediated signalling could be modulated in skeletal muscle via gene delivery to the target tissue, thereby avoiding the risks of β2-AR agonists. In mice, intramuscular administration of a recombinant adeno-associated virus-based vector (rAAV vector) expressing the β2-AR increased muscle mass by >20% within 4 weeks. This hypertrophic response was comparable to that of 4 weeks’ treatment with the β2-AR agonist formoterol, and was not ablated by mTOR inhibition. Increasing expression of inhibitory (Gαi2) and stimulatory (GαsL) G-protein subunits produced minor atrophic and hypertrophic changes in muscle mass, respectively. Furthermore, Gαi2 over-expression prevented AAV:β2-AR mediated hypertrophy. Introduction of the non-muscle Gαs isoform, GαsXL elicited hypertrophy comparable to that achieved by AAV:β2-AR. Moreover, GαsXL gene delivery was found to be capable of inducing hypertrophy in the muscles of mice lacking functional β1- and β2-ARs. These findings demonstrate that gene therapy-based interventions targeting the β2-AR pathway can promote skeletal muscle hypertrophy independent of ligand administration, and highlight novel methods for potentially modulating muscle mass in settings of disease. PMID:26972746

  14. Bacteria expressed hepatitis E virus capsid proteins maintain virion-like epitopes.

    PubMed

    Wei, Minxi; Zhang, Xiao; Yu, Hai; Tang, Zi-Min; Wang, Kaihang; Li, Zhongyi; Zheng, Zizheng; Li, Shaowei; Zhang, Jun; Xia, Ningshao; Zhao, Qinjian

    2014-05-19

    The protein encoded by ORF2 in hepatitis E virus (HEV) is the only capsid protein for this single-stranded RNA virus. It was previously shown that 148 aa (aa 459-606) was needed for dimer formation, whereas 239 aa (aa 368-606) was necessary to form virus-like particles (VLPs). The self-assembled VLPs of p239 were characterized with a series of methods including high performance size-exclusion chromatography to demonstrate the particulate nature of purified and properly refolded p239. A neutralizing and protective mouse monoclonal antibody (mAb) 8C11 was previously shown to bind three discontinuous peptide segments in the dimer. In addition to the good binding activity to recombinant dimeric form, E2s or E2, and VLP form p239, we demonstrated that 8C11 was able to capture the authentic HEV virions. The capability of virus capturing was demonstrated with a titration curve from 10(5) to 10(7) HEV genome copies, making binding activity to 8C11 a surrogate marker of virion-like epitopes on recombinant VLPs as well as vaccine efficacy in eliciting protective and neutralizing antibodies. Taken together, it was demonstrated that Escherichia coli expressed pORF2 proteins, p239 in particular, maintain the virion-like epitopes on VLP surface. This is consistent with the fact that p239 was demonstrated to be an effective prophylactic vaccine (recently licensed as Hecolin(®) in China) against HEV-induced hepatitis in a large scale clinical trial.

  15. Engineering Bacterial Surface Displayed Human Norovirus Capsid Proteins: A Novel System to Explore Interaction Between Norovirus and Ligands.

    PubMed

    Niu, Mengya; Yu, Qianqian; Tian, Peng; Gao, Zhiyong; Wang, Dapeng; Shi, Xianming

    2015-01-01

    Human noroviruses (HuNoVs) are major contributors to acute nonbacterial gastroenteritis outbreaks. Many aspects of HuNoVs are poorly understood due to both the current inability to culture HuNoVs, and the lack of efficient small animal models. Surrogates for HuNoVs, such as recombinant viral like particles (VLPs) expressed in eukaryotic system or P particles expressed in prokaryotic system, have been used for studies in immunology and interaction between the virus and its receptors. However, it is difficult to use VLPs or P particles to collect or isolate potential ligands binding to these recombinant capsid proteins. In this study, a new strategy was used to collect HuNoVs binding ligands through the use of ice nucleation protein (INP) to display recombinant capsid proteins of HuNoVs on bacterial surfaces. The viral protein-ligand complex could be easily separated by a low speed centrifugation step. This system was also used to explore interaction between recombinant capsid proteins of HuNoVs and their receptors. In this system, the VP1 capsid encoding gene (ORF2) and the protruding domain (P domain) encoding gene (3' terminal fragment of ORF2) of HuNoVs GI.1 and GII.4 were fused with 5' terminal fragment of INP encoding gene (inaQn). The results demonstrated that the recombinant VP1 and P domains of HuNoVs were expressed and anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with the corresponding plasmids. Both cell surface displayed VP1 and P domains could be recognized by HuNoVs specific antibodies and interact with the viral histo-blood group antigens receptors. In both cases, displayed P domains had better binding abilities than VP1. This new strategy of using displayed HuNoVs capsid proteins on the bacterial surface could be utilized to separate HuNoVs binding components from complex samples, to investigate interaction between the virus and its receptors, as well as to develop an oral vaccine for HuNoVs. PMID:26733983

  16. Engineering Bacterial Surface Displayed Human Norovirus Capsid Proteins: A Novel System to Explore Interaction Between Norovirus and Ligands

    PubMed Central

    Niu, Mengya; Yu, Qianqian; Tian, Peng; Gao, Zhiyong; Wang, Dapeng; Shi, Xianming

    2015-01-01

    Human noroviruses (HuNoVs) are major contributors to acute nonbacterial gastroenteritis outbreaks. Many aspects of HuNoVs are poorly understood due to both the current inability to culture HuNoVs, and the lack of efficient small animal models. Surrogates for HuNoVs, such as recombinant viral like particles (VLPs) expressed in eukaryotic system or P particles expressed in prokaryotic system, have been used for studies in immunology and interaction between the virus and its receptors. However, it is difficult to use VLPs or P particles to collect or isolate potential ligands binding to these recombinant capsid proteins. In this study, a new strategy was used to collect HuNoVs binding ligands through the use of ice nucleation protein (INP) to display recombinant capsid proteins of HuNoVs on bacterial surfaces. The viral protein-ligand complex could be easily separated by a low speed centrifugation step. This system was also used to explore interaction between recombinant capsid proteins of HuNoVs and their receptors. In this system, the VP1 capsid encoding gene (ORF2) and the protruding domain (P domain) encoding gene (3′ terminal fragment of ORF2) of HuNoVs GI.1 and GII.4 were fused with 5′ terminal fragment of INP encoding gene (inaQn). The results demonstrated that the recombinant VP1 and P domains of HuNoVs were expressed and anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with the corresponding plasmids. Both cell surface displayed VP1 and P domains could be recognized by HuNoVs specific antibodies and interact with the viral histo-blood group antigens receptors. In both cases, displayed P domains had better binding abilities than VP1. This new strategy of using displayed HuNoVs capsid proteins on the bacterial surface could be utilized to separate HuNoVs binding components from complex samples, to investigate interaction between the virus and its receptors, as well as to develop an oral vaccine for HuNoVs. PMID

  17. Serotype-specific Binding Properties and Nanoparticle Characteristics Contribute to the Immunogenicity of rAAV1 Vectors.

    PubMed

    Ferrand, Maxime; Da Rocha, Sylvie; Corre, Guillaume; Galy, Anne; Boisgerault, Florence

    2015-06-01

    The immunogenic properties of recombinant adeno-associated virus (rAAV) gene transfer vectors remain incompletely characterized in spite of their usage as gene therapy vectors or as vaccines. Molecular interactions between rAAV and various types of antigen-presenting cells (APCs), as well as the impact of these interactions on transgene or capsid-specific immunization remain unclear. We herein show that binding motifs recognized by the capsid and which determine the vector tissue tropism are also critical for key immune activation processes. Using rAAV capsid serotype 1 (rAAV1) vectors which primary receptors on target cells are α2,3 and α2,6 N-linked sialic acids, we show that sialic acid-dependent binding of rAAV1 on APCs is essential to trigger CD4(+) T-cell responses by increasing rAAV1 uptake and contributing to antigenic presentation of both the capsid and transgene product although this involves different APCs. In addition, the nanoparticulate structure of the vector in itself appears to be sufficient to trigger mobilization and activation of some APCs. Therefore, combinations of structural and of serotype-specific cell-targeting properties of rAAV1 determine its complex immunogenicity. These findings may be useful to guide a selection of rAAV variants depending on the intended level of immunogenicity for either gene therapy or vaccination applications.

  18. Structural studies of adeno-associated virus serotype 8 capsid transitions associated with endosomal trafficking.

    PubMed

    Nam, Hyun-Joo; Gurda, Brittney L; McKenna, Robert; Potter, Mark; Byrne, Barry; Salganik, Maxim; Muzyczka, Nicholas; Agbandje-McKenna, Mavis

    2011-11-01

    The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pH 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.

  19. Structural Studies of Adeno-Associated Virus Serotype 8 Capsid Transitions Associated with Endosomal Trafficking

    SciTech Connect

    Nam, Hyun-Joo; Gurda, Brittney L.; McKenna, Robert; Potter, Mark; Byrne, Barry; Salganik, Maxim; Muzyczka, Nicholas; Agbandje-McKenna, Mavis

    2012-09-17

    The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pH 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.

  20. Brome mosaic virus capsid protein regulates accumulation of viral replication proteins by binding to the replicase assembly RNA element.

    PubMed

    Yi, Guanghui; Letteney, Ester; Kim, Chul-Hyun; Kao, C Cheng

    2009-04-01

    Viruses provide valuable insights into the regulation of molecular processes. Brome mosaic virus (BMV) is one of the simplest entities with four viral proteins and three genomic RNAs. Here we report that the BMV capsid protein (CP), which functions in RNA encapsidation and virus trafficking, also represses viral RNA replication in a concentration-dependent manner by inhibiting the accumulation of the RNA replication proteins. Expression of the replication protein 2a in trans can partially rescue BMV RNA accumulation. A mutation in the CP can decrease the repression of translation. Translation repression by the CP requires a hairpin RNA motif named the B Box that contains seven loop nucleotides (nt) within the 5' untranslated regions (UTR) of BMV RNA1 and RNA2. Purified CP can bind directly to the B Box RNA with a K (d) of 450 nM. The secondary structure of the B Box RNA was determined to contain a highly flexible 7-nt loop using NMR spectroscopy, native gel analysis, and thermal denaturation studies. The B Box is also recognized by the BMV 1a protein to assemble the BMV replicase, suggesting that the BMV CP can act to regulate several viral infection processes.

  1. Identification of the neutralizing epitopes of Merkel cell polyomavirus major capsid protein within the BC and EF surface loops.

    PubMed

    Fleury, Maxime J J; Nicol, Jérôme T J; Samimi, Mahtab; Arnold, Françoise; Cazal, Raphael; Ballaire, Raphaelle; Mercey, Olivier; Gonneville, Hélène; Combelas, Nicolas; Vautherot, Jean-Francois; Moreau, Thierry; Lorette, Gérard; Coursaget, Pierre; Touzé, Antoine

    2015-01-01

    Merkel cell polyomavirus (MCPyV) is the first polyomavirus clearly associated with a human cancer, i.e. the Merkel cell carcinoma (MCC). Polyomaviruses are small naked DNA viruses that induce a robust polyclonal antibody response against the major capsid protein (VP1). However, the polyomavirus VP1 capsid protein epitopes have not been identified to date. The aim of this study was to identify the neutralizing epitopes of the MCPyV capsid. For this goal, four VP1 mutants were generated by insertional mutagenesis in the BC, DE, EF and HI loops between amino acids 88-89, 150-151, 189-190, and 296-297, respectively. The reactivity of these mutants and wild-type VLPs was then investigated with anti-VP1 monoclonal antibodies and anti-MCPyV positive human sera. The findings together suggest that immunodominant conformational neutralizing epitopes are present at the surface of the MCPyV VLPs and are clustered within BC and EF loops. PMID:25812141

  2. Intravenous delivery of AAV9 vector mediates effective gene expression in ischemic stroke lesion and brain angiogenic foci

    PubMed Central

    Shen, Fanxia; Kuo, Robert; Milon-Camus, Marine; Han, Zhenying; Jiang, Lidan; Young, William L.; Su, Hua

    2012-01-01

    Background and Purpose Adeno-associated viral vector (AAV) is a powerful tool for delivering genes to treat brain diseases. Intravenous delivery of a self-complementary, but not single-stranded, AAV9 vector (ssAAV9) mediates robust gene expression in the adult brain. We tested if ssAAV9 effectively mediates gene expression in the ischemic stroke lesion and angiogenic foci. Methods Focal ischemic stroke was induced by permanent occlusion of the left middle cerebral artery (MCAO), and focal angiogenesis, by injecting an AAV vector expressing vascular endothelial growth factor (AAV-VEGF) into the basal ganglia. ssAAV vectors that have CMV promoter driving (AAV-CMVLacZ) or hypoxia response elements controlling (AAV-H9LacZ) LacZ expression were packaged in AAV9 or AAV1 capsid, and injected into mice through the jugular vein one hour after MCAO or four weeks after the induction of angiogenesis. LacZ gene expression was analyzed in the brain and other organs five days post LacZ vector-injection. Results LacZ expression was detected in the peri-infarct region of AAV9-CMVLacZ and AAV9-H9LacZ-injected MCAO mice, and the brain angiogenic foci of AAV9-CMVLacZ-injected mice. Minimum LacZ expression was detected in the brain of AAV1-CMVLacZ-injected mice. Robust LacZ expression was found in the liver and heart of AAV-CMVLacZ-injected mice, but not AAV9-H9LacZ-injected mice. Conclusion ssAAV9 vector could be a useful tool to deliver therapeutic genes to the ischemic stroke lesion or brain angiogenic foci. PMID:23250995

  3. Delivering Transgenic DNA Exceeding the Carrying Capacity of AAV Vectors.

    PubMed

    Hirsch, Matthew L; Wolf, Sonya J; Samulski, R J

    2016-01-01

    Gene delivery using recombinant adeno-associated virus (rAAV) has emerged to the forefront demonstrating safe and effective phenotypic correction of diverse diseases including hemophilia B and Leber's congenital amaurosis. In addition to rAAV's high efficiency of transduction and the capacity for long-term transgene expression, the safety profile of rAAV remains unsoiled in humans with no deleterious vector-related consequences observed thus far. Despite these favorable attributes, rAAV vectors have a major disadvantage preventing widespread therapeutic applications; as the AAV capsid is the smallest described to date, it cannot package "large" genomes. Currently, the packaging capacity of rAAV has yet to be definitively defined but is approximately 5 kb, which has served as a limitation for large gene transfer. There are two main approaches that have been developed to overcome this limitation, split AAV vectors, and fragment AAV (fAAV) genome reassembly (Hirsch et al., Mol Ther 18(1):6-8, 2010). Split rAAV vector applications were developed based upon the finding that rAAV genomes naturally concatemerize in the cell post-transduction and are substrates for enhanced homologous recombination (HR) (Hirsch et al., Mol Ther 18(1):6-8, 2010; Duan et al., J Virol 73(1):161-169, 1999; Duan et al., J Virol 72(11):8568-8577, 1998; Duan et al., Mol Ther 4(4):383-391, 2001; Halbert et al., Nat Biotechnol 20(7):697-701, 2002). This method involves "splitting" the large transgene into two separate vectors and upon co-transduction, intracellular large gene reconstruction via vector genome concatemerization occurs via HR or nonhomologous end joining (NHEJ). Within the split rAAV approaches there currently exist three strategies: overlapping, trans-splicing, and hybrid trans-splicing (Duan et al., Mol Ther 4(4):383-391, 2001; Halbert et al., Nat Biotechnol 20(7):697-701, 2002; Ghosh et al., Mol Ther 16(1):124-130, 2008; Ghosh et al., Mol Ther 15(4):750-755, 2007). The other major

  4. Location of the bacteriophage P22 coat protein C-terminus provides opportunities for the design of capsid-based materials.

    PubMed

    Servid, Amy; Jordan, Paul; O'Neil, Alison; Prevelige, Peter; Douglas, Trevor

    2013-09-01

    Rational design of modifications to the interior and exterior surfaces of virus-like particles (VLPs) for future therapeutic and materials applications is based on structural information about the capsid. Existing cryo-electron microscopy-based models suggest that the C-terminus of the bacteriophage P22 coat protein (CP) extends toward the capsid exterior. Our biochemical analysis through genetic manipulations of the C-terminus supports the model where the CP C-terminus is exposed on the exterior of the P22 capsid. Capsids displaying a 6xHis tag appended to the CP C-terminus bind to a Ni affinity column, and the addition of positively or negatively charged coiled coil peptides to the capsid results in association of these capsids upon mixing. Additionally, a single cysteine appended to the CP C-terminus results in the formation of intercapsid disulfide bonds and can serve as a site for chemical modifications. Thus, the C-terminus is a powerful location for multivalent display of peptides that facilitate nanoscale assembly and capsid modification.

  5. Dosage Thresholds for AAV2 and AAV8 Photoreceptor Gene Therapy in Monkey

    PubMed Central

    Vandenberghe, Luk H.; Bell, Peter; Maguire, Albert M.; Cearley, Cassia N.; Xiao, Ru; Calcedo, Roberto; Wang, Lili; Castle, Michael J.; Maguire, Alexandra C.; Grant, Rebecca; Wolfe, John H.; Wilson, James M.; Bennett, Jean

    2016-01-01

    Gene therapy is emerging as a therapeutic modality for treating disorders of the retina. Photoreceptor cells are the primary cell type affected in many inherited diseases of retinal degeneration. Successfully treating these diseases with gene therapy requires the identification of efficient and safe targeting vectors that can transduce photoreceptor cells. One serotype of adeno-associated virus, AAV2, has been used successfully in clinical trials to treat a form of congenital blindness that requires transduction of the supporting cells of the retina in the retinal pigment epithelium (RPE). Here, we determined the dose required to achieve targeting of AAV2 and AAV8 vectors to photoreceptors in nonhuman primates. Transgene expression in animals injected subretinally with various doses of AAV2 or AAV8 vectors carrying a green fluorescent protein transgene was correlated with surgical, clinical, and immunological observations. Both AAV2 and AAV8 demonstrated efficient transduction of RPE, but AAV8 was markedly better at targeting photoreceptor cells. These preclinical results provide guidance for optimal vector and dose selection in future human gene therapy trials to treat retinal diseases caused by loss of photoreceptors. PMID:21697530

  6. Motions on the Millisecond Timescale and Multiple Conformations of HIV-1 Capsid Protein: Implications for Structural Polymorphism of CA Assemblies

    PubMed Central

    Byeon, In-Ja L.; Hou, Guangjin; Han, Yun; Suiter, Christopher L.; Ahn, Jinwoo; Jung, Jinwon; Byeon, Chang-Hyeock; Gronenborn, Angela M.; Polenova, Tatyana

    2012-01-01

    The capsid protein (CA) of human immunodeficiency virus 1 (HIV-1) assembles into a cone-like structure that encloses the viral RNA genome. Interestingly, significant heterogeneity in shape and organization of capsids can be observed in mature HIV-1 virions. In vitro, CA also exhibits structural polymorphism and can assemble into various morphologies, such as cones, tubes and spheres. Many intermolecular contacts that are critical for CA assembly are formed by its C-terminal domain (CTD), a dimerization domain, which was found to adopt different orientations in several X-ray and NMR structures of the the CTD dimer and full-length CA proteins. Tyr145 (Y145), residue two in our CTD construct used for NMR structure determination, but not present in the crystallographic constructs, was found to be crucial for infectivity and engaged in numerous interactions at the CTD dimer interface. Here we investigate the origin of CA structural plasticity using solid-state and solution NMR spectroscopy. In the solid-state, the hinge region connecting the NTD and CTD is flexible on the millisecond timescale, as evidenced by the backbone motions of Y145 in CA conical assemblies and in two CTD constructs (137–231 and 142–231), allowing the protein to access multiple conformations essential for pleimorphic capsid assemblies. In solution, the CTD dimer exists as two major conformers, whose relative populations differ for the different CTD constructs. In the longer CTD (144–231) construct that contains the hinge region between the NTD and CTD, the populations of the two conformers are likely determined by the protonation state of the E175 side chain that is located at the dimer interface and within hydrogen bonding distance of the W184 side chain on the other monomer. At pH 6.5, the major conformer exhibits the same dimer interface as full-length CA. In the short CTD (150–231) construct, no pH-dependent conformational shift is observed. These findings suggest that the presence of

  7. Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein.

    PubMed Central

    Bertagnoli, S; Gelfi, J; Le Gall, G; Boilletot, E; Vautherot, J F; Rasschaert, D; Laurent, S; Petit, F; Boucraut-Baralon, C; Milon, A

    1996-01-01

    Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma virus-specific antibodies in rabbits after immunization. Inoculations by the intradermal route protected animals against virulent RHDV and myxoma virus challenges. PMID:8764013

  8. Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi

    PubMed Central

    Kaulich, Manuel; Lee, Yeon J.; Lönn, Peter; Springer, Aaron D.; Meade, Bryan R.; Dowdy, Steven F.

    2015-01-01

    Gene knockout strategies, RNAi and rescue experiments are all employed to study mammalian gene function. However, the disadvantages of these approaches include: loss of function adaptation, reduced viability and gene overexpression that rarely matches endogenous levels. Here, we developed an endogenous gene knockdown/rescue strategy that combines RNAi selectivity with a highly efficient CRISPR directed recombinant Adeno-Associated Virus (rAAV) mediated gene targeting approach to introduce allele-specific mutations plus an allele-selective siRNA Sensitive (siSN) site that allows for studying gene mutations while maintaining endogenous expression and regulation of the gene of interest. CRISPR/Cas9 plus rAAV targeted gene-replacement and introduction of allele-specific RNAi sensitivity mutations in the CDK2 and CDK1 genes resulted in a >85% site-specific recombination of Neo-resistant clones versus ∼8% for rAAV alone. RNAi knockdown of wild type (WT) Cdk2 with siWT in heterozygotic knockin cells resulted in the mutant Cdk2 phenotype cell cycle arrest, whereas allele specific knockdown of mutant CDK2 with siSN resulted in a wild type phenotype. Together, these observations demonstrate the ability of CRISPR plus rAAV to efficiently recombine a genomic locus and tag it with a selective siRNA sequence that allows for allele-selective phenotypic assays of the gene of interest while it remains expressed and regulated under endogenous control mechanisms. PMID:25586224

  9. Serum antibody response to recombinant major inner capsid protein following human infection with group B rotavirus.

    PubMed Central

    Eiden, J J; Mouzinho, A; Lindsay, D A; Glass, R I; Fang, Z Y; Taylor, J L

    1994-01-01

    Recombinant major inner capsid protein (VP6) of the IDIR strain of group B rotavirus (GBR) was incorporated in a solid-phase immunoassay to access antibody response to infection in humans. Expression of VP6 in insect cells permitted design of a highly sensitive assay that avoided the contaminants present in GBR antigens obtained from fecal specimens. Among patients infected with the ADRV strain of GBR in China, increased reactivity with recombinant VP6 was observed in convalescent-phase sera in comparison with sera obtained shortly after infection (P = 0.0084). Anti-VP6 antibodies were detectable as soon as 7 days after onset of gastrointestinal symptoms, and serum reactivity persisted in specimens drawn more than 1 year after infection. Solid-phase immunoassay with recombinant VP6 was next employed in order to assess anti-GBR antibody in 513 serum specimens obtained from 423 Maryland residents (ages, 7 months to 96 years; median age, 42 years). Four individuals (< 1%) exhibited serum antibodies directed against the recombinant VP6 (ages, 54 to 95 years; mean age, 77 years). Examination of 129 additional serum specimens including some from other geographic regions of the United States failed to reveal the presence of anti-GBR antibody. Anti-GBR antibody was also not detected in any of 131 serum specimens from 60 staff and residents of a nursing home in Switzerland. While infection of humans with GBR has been uncommon in these locations outside of China, the detection of serum antibodies in older individuals in the United States either indicated an unknown, age-related risk factor or may have indicated infection in the more distant past. The availability of these reagents should allow surveys for GBR infection among additional populations that have not previously been investigated. PMID:8077413

  10. A sequence of basic residues in the porcine circovirus type 2 capsid protein is crucial for its co-expression and co-localization with the replication protein.

    PubMed

    Huang, Liping; Renne, Nicolaas Van; Liu, Changming; Nauwynck, Hans J

    2015-12-01

    Porcine circovirus type 2 (PCV2) encodes two major proteins: the replication protein (Rep) and the capsid protein (Cap). Cap displays a conserved stretch of basic residues situated on the inside of the capsid, whose role is so far unknown. We used a reverse-genetics approach to investigate its function and found that mutations in these amino acids hindered Cap mRNA translation and hampered Cap/Rep co-localization, yielding unfit viruses. Intriguingly, co-transfection with a WT PCV2 of a different genotype partially rescued mutant Cap expression, showing the importance of this basic pattern for efficient translation of Cap mRNA into protein. Our results show that Cap and Rep are expressed independently of each other, and that this amino acid sequence of Cap is vital for virus propagation. This study provides a method for studying unfit PCV2 virions and offers new insights into the intracellular modus vivendi of PCV2. PMID:26415571

  11. Pre-clinical immunogenicity of human papillomavirus alpha-7 and alpha-9 major capsid proteins.

    PubMed

    Bissett, Sara L; Mattiuzzo, Giada; Draper, Eve; Godi, Anna; Wilkinson, Dianna E; Minor, Philip; Page, Mark; Beddows, Simon

    2014-11-12

    Human papillomavirus (HPV) vaccines confer protection against the oncogenic genotypes HPV16 and HPV18 through the generation of type-specific neutralizing antibodies raised against the constituent virus-like particles (VLP) based upon the major capsid proteins (L1) of these genotypes. The vaccines also confer a degree of cross-protection against some genetically related types from the Alpha-9 (HPV16-like: HPV31, HPV33, HPV35, HPV52, HPV58) and Alpha-7 (HPV18-like: HPV39, HPV45, HPV59, HPV68) species groups. The mechanism of cross-protection is unclear but may involve antibodies capable of recognizing shared inter-genotype epitopes. The relationship(s) between the genetic and antigenic diversity of the L1 protein, particularly for non-vaccine genotypes, is poorly understood. We carried out a comprehensive evaluation of the immunogenicity of L1 VLP derived from genotypes within the Alpha-7 and Alpha-9 species groups in New Zealand White rabbits and used L1L2 pseudoviruses as the target antigens in neutralization assays. The majority antibody response against L1 VLP was type-specific, as expected, but several instances of robust cross-neutralization were nevertheless observed including between HPV33 and HPV58 within the Alpha-9 species and between HPV39, HPV59 and HPV68 in the Alpha-7 species. Immunization with an experimental tetravalent preparation comprising VLP based upon HPV16, HPV18, HPV39 and HPV58 was capable of generating neutralizing antibodies against all the Alpha-7 and Alpha-9 genotypes. Competition of HPV31 and HPV33 cross-neutralizing antibodies in the tetravalent sera confirmed that these antibodies originated from HPV16 and HPV58 VLP, respectively, and suggested that they represent minority specificities within the antibody repertoire generated by the immunizing antigen. These data improve our understanding of the antigenic diversity of the L1 protein per se and may inform the rational design of a next generation vaccine formulation based upon

  12. Pre-clinical immunogenicity of human papillomavirus alpha-7 and alpha-9 major capsid proteins

    PubMed Central

    Bissett, Sara L.; Mattiuzzo, Giada; Draper, Eve; Godi, Anna; Wilkinson, Dianna E.; Minor, Philip; Page, Mark; Beddows, Simon

    2014-01-01

    Human papillomavirus (HPV) vaccines confer protection against the oncogenic genotypes HPV16 and HPV18 through the generation of type-specific neutralizing antibodies raised against the constituent virus-like particles (VLP) based upon the major capsid proteins (L1) of these genotypes. The vaccines also confer a degree of cross-protection against some genetically related types from the Alpha-9 (HPV16-like: HPV31, HPV33, HPV35, HPV52, HPV58) and Alpha-7 (HPV18-like: HPV39, HPV45, HPV59, HPV68) species groups. The mechanism of cross-protection is unclear but may involve antibodies capable of recognizing shared inter-genotype epitopes. The relationship(s) between the genetic and antigenic diversity of the L1 protein, particularly for non-vaccine genotypes, is poorly understood. We carried out a comprehensive evaluation of the immunogenicity of L1 VLP derived from genotypes within the Alpha-7 and Alpha-9 species groups in New Zealand White rabbits and used L1L2 pseudoviruses as the target antigens in neutralization assays. The majority antibody response against L1 VLP was type-specific, as expected, but several instances of robust cross-neutralization were nevertheless observed including between HPV33 and HPV58 within the Alpha-9 species and between HPV39, HPV59 and HPV68 in the Alpha-7 species. Immunization with an experimental tetravalent preparation comprising VLP based upon HPV16, HPV18, HPV39 and HPV58 was capable of generating neutralizing antibodies against all the Alpha-7 and Alpha-9 genotypes. Competition of HPV31 and HPV33 cross-neutralizing antibodies in the tetravalent sera confirmed that these antibodies originated from HPV16 and HPV58 VLP, respectively, and suggested that they represent minority specificities within the antibody repertoire generated by the immunizing antigen. These data improve our understanding of the antigenic diversity of the L1 protein per se and may inform the rational design of a next generation vaccine formulation based upon

  13. Characterization of a protein kinase activity associated with purified capsids of the granulosis virus infecting Plodia interpunctella.

    PubMed

    Wilson, M E; Consigli, R A

    1985-06-01

    A cyclic-nucleotide independent protein kinase activity has been demonstrated in highly purified preparations of the granulosis virus infecting the Indian meal moth, Plodia interpunctella. A divalent cation was required for activity. Manganese was the preferred cation and a pH of 8.0 resulted in optimal incorporation of 32P radiolabel into acid-precipitable protein. Although both ATP and GTP could serve as phosphate donors, ATP was utilized more efficiently by the enzyme. The kinase activity was localized to purified capsids; and the basic, internal core protein, VP12, was found to be the predominant viral acceptor. Histones and protamine sulfate could also serve as acceptors for the capsid-associated kinase activity. Using acid hydrolysis and phosphoamino acid analysis of phosphorylated nucleocapsid protein and nuclear magnetic resonance of phosphorylated VP12, it was determined that the enzyme catalyzes the transfer of phosphate to both serine and arginine residues of acceptor proteins. We believe this kinase activity may play a significant role in the viral replication cycle.

  14. Characterization of virus-like particles produced by the expression of rotavirus capsid proteins in insect cells.

    PubMed Central

    Crawford, S E; Labbé, M; Cohen, J; Burroughs, M H; Zhou, Y J; Estes, M K

    1994-01-01

    Rotaviruses are triple-layered particles that contain four major capsid proteins, VP2, VP4, VP6, and VP7, and two minor proteins, VP1 and VP3. We have cloned each of the rotavirus genes coding for a major capsid protein into the baculovirus expression system and expressed each protein in insect cells. Coexpression of different combinations of the rotavirus major structural proteins resulted in the formation of stable virus-like particles (VLPs). The coexpression of VP2 and VP6 alone or with VP4 resulted in the production of VP2/6 or VP2/4/6 VLPs, which were similar to double-layered rotavirus particles. Coexpression of VP2, VP6, and VP7, with or without VP4, produced triple-layered VP2/6/7 or VP2/4/6/7 VLPs, which were similar to native infectious rotavirus particles. The VLPs maintained the structural and functional characteristics of native particles, as determined by electron microscopic examination of the particles, the presence of nonneutralizing and neutralizing epitopes on VP4 and VP7, and hemagglutination activity of the VP2/4/6/7 VLPs. The production of VP2/4/6 particles indicated that VP4 interacts with VP6. Cell binding assays performed with each of the VLPs indicated that VP4 is the viral attachment protein. Chimeric particles containing VP7 from two different G serotypes also were obtained. The ability to express individual proteins or to coexpress different subsets of proteins provides a system with which to examine the interactions of the rotavirus structural proteins, the role of individual proteins in virus morphogenesis, and the feasibility of a subunit vaccine. Images PMID:8057471

  15. The concentration of Ca2+ that solubilizes outer capsid proteins from rotavirus particles is dependent on the strain.

    PubMed

    Ruiz, M C; Charpilienne, A; Liprandi, F; Gajardo, R; Michelangeli, F; Cohen, J

    1996-08-01

    It has been previously shown that rotavirus maturation and stability of the outer capsid are calcium-dependent processes. More recently, it has been hypothesized that penetration of the cell membrane is also affected by conformational changes of the capsid induced by Ca2+. In this study, we determined quantitatively the critical concentration of calcium ion that leads to solubilization of the outer capsid proteins VP4 and VP7. Since this critical concentration is below or close to trace levels of Ca2+, we have used buffered solutions based on ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and Ca-EGTA. This method allowed us to show a very high variability of the free [Ca2+] needed to stabilize, at room temperature, the outer capsid of several rotavirus strains. This concentration is about 600 nM for the two bovine strains tested (RF and UK), 100 nM for the porcine strain OSU, and only 10 to 20 nM for the simian strain SA11. Titration of viral infectivity after incubation in buffer of defined [Ca2+] confirmed that the loss of infectivity occurs at different [Ca2+] for these three strains. For the bovine strain, the cleavage of VP4 by trypsin has no significant effect on the [Ca2+] that solubilizes outer shell proteins. The outer layer (VP7) of virus-like particles (VLP) made of recombinant proteins VP2, VP6, and VP7 (VLP2/6/7) was also solubilized by lowering the [Ca2+]. The critical concentration of Ca2+ needed to solubilize VP7 from VLP2/6/7 made of protein from the bovine strain is close to the concentration needed for the corresponding virus. Genetic analysis of this phenotype in a set of reassortant viruses from two parental strains having the phenotypes of strains OSU (porcine) and UK (bovine) confirmed that this property of viral particles is probably associated with the gene coding for VP7. The analysis of VLP by reverse genetics might allow the identification of the region(s) essential for calcium binding.

  16. The concentration of Ca2+ that solubilizes outer capsid proteins from rotavirus particles is dependent on the strain.

    PubMed Central

    Ruiz, M C; Charpilienne, A; Liprandi, F; Gajardo, R; Michelangeli, F; Cohen, J

    1996-01-01

    It has been previously shown that rotavirus maturation and stability of the outer capsid are calcium-dependent processes. More recently, it has been hypothesized that penetration of the cell membrane is also affected by conformational changes of the capsid induced by Ca2+. In this study, we determined quantitatively the critical concentration of calcium ion that leads to solubilization of the outer capsid proteins VP4 and VP7. Since this critical concentration is below or close to trace levels of Ca2+, we have used buffered solutions based on ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and Ca-EGTA. This method allowed us to show a very high variability of the free [Ca2+] needed to stabilize, at room temperature, the outer capsid of several rotavirus strains. This concentration is about 600 nM for the two bovine strains tested (RF and UK), 100 nM for the porcine strain OSU, and only 10 to 20 nM for the simian strain SA11. Titration of viral infectivity after incubation in buffer of defined [Ca2+] confirmed that the loss of infectivity occurs at different [Ca2+] for these three strains. For the bovine strain, the cleavage of VP4 by trypsin has no significant effect on the [Ca2+] that solubilizes outer shell proteins. The outer layer (VP7) of virus-like particles (VLP) made of recombinant proteins VP2, VP6, and VP7 (VLP2/6/7) was also solubilized by lowering the [Ca2+]. The critical concentration of Ca2+ needed to solubilize VP7 from VLP2/6/7 made of protein from the bovine strain is close to the concentration needed for the corresponding virus. Genetic analysis of this phenotype in a set of reassortant viruses from two parental strains having the phenotypes of strains OSU (porcine) and UK (bovine) confirmed that this property of viral particles is probably associated with the gene coding for VP7. The analysis of VLP by reverse genetics might allow the identification of the region(s) essential for calcium binding. PMID:8763990

  17. Identification of residues in the hepatitis C virus core protein that are critical for capsid assembly in a cell-free system.

    PubMed

    Klein, Kevin C; Dellos, Sheri R; Lingappa, Jaisri R

    2005-06-01

    Significant advances have been made in understanding hepatitis C virus (HCV) replication through development of replicon systems. However, neither replicon systems nor standard cell culture systems support significant assembly of HCV capsids, leaving a large gap in our knowledge of HCV virion formation. Recently, we established a cell-free system in which over 60% of full-length HCV core protein synthesized de novo in cell extracts assembles into HCV capsids by biochemical and morphological criteria. Here we used mutational analysis to identify residues in HCV core that are important for capsid assembly in this highly reproducible cell-free system. We found that basic residues present in two clusters within the N-terminal 68 amino acids of HCV core played a critical role, while the uncharged linker domain between them was not. Furthermore, the aspartate at position 111, the region spanning amino acids 82 to 102, and three serines that are thought to be sites of phosphorylation do not appear to be critical for HCV capsid formation in this system. Mutation of prolines important for targeting of core to lipid droplets also failed to alter HCV capsid assembly in the cell-free system. In addition, wild-type HCV core did not rescue assembly-defective mutants. These data constitute the first systematic and quantitative analysis of the roles of specific residues and domains of HCV core in capsid formation. PMID:15890921

  18. A Molecular Dynamics Investigation of the Physical-Chemical Properties of Calicivirus Capsid Protein Adsorption to Fomites

    NASA Astrophysics Data System (ADS)

    Peeler, David; Matysiak, Silvina

    2013-03-01

    Any inanimate object with an exposed surface bears the possibility of hosting a virus and may therefore be labeled a fomite. This research hopes to distinguish which chemical-physical differences in fomite surface and virus capsid protein characteristics cause variations in virus adsorption through an alignment of in silico molecular dynamics simulations with in vitro measurements. The impact of surface chemistry on the adsorption of the human norovirus (HNV)-surrogate calicivirus capsid protein 2MS2 has been simulated for monomer and trimer structures and is reported in terms of protein-self assembled monolayer (SAM) binding free energy. The coarse-grained MARTINI forcefield was used to maximize spatial and temporal resolution while minimizing computational load. Future work will investigate the FCVF5 and SMSVS4 calicivirus trimers and will extend beyond hydrophobic and hydrophilic SAM surface chemistry to charged SAM surfaces in varying ionic concentrations. These results will be confirmed by quartz crystal microbalance experiments conducted by Dr. Wigginton at the University of Michigan. This should provide a novel method for predicting the transferability of viruses that cannot be studied in vitro such as dangerous foodborne and nosocomially-acquired viruses like HNV.

  19. Expression in tobacco and purification of beak and feather disease virus capsid protein fused to elastin-like polypeptides.

    PubMed

    Duvenage, Lucian; Hitzeroth, Inga I; Meyers, Ann E; Rybicki, Edward P

    2013-07-01

    Psittacine beak and feather disease, caused by beak and feather disease virus (BFDV), is a threat to endangered psittacine species. There is currently no vaccine against BFDV, which necessitates the development of safe and affordable vaccine candidates. A subunit vaccine based on BFDV capsid protein (CP), the major antigenic determinant, expressed in the inexpensive and highly scalable plant expression system could satisfy these requirements. Full-length CP and a truncated CP (ΔN40 CP) were transiently expressed in tobacco (Nicotiana benthamiana) as fusions to elastin-like polypeptide (ELP). These two proteins were fused to ELPs of different lengths in order to increase expression levels and to provide a simple means of purification. The ELP fusion proteins were purified by inverse transition cycling (ITC) and it was found that a membrane filtration-based ITC method improved the recovery of ΔN40 CP-ELP51 fusion protein relative to a centrifugation-based method.

  20. Structure of the Dimerization Interface in the Mature HIV-1 Capsid Protein Lattice from Solid State NMR of Tubular Assemblies.

    PubMed

    Bayro, Marvin J; Tycko, Robert

    2016-07-13

    The HIV-1 capsid protein (CA) forms the capsid shell that encloses RNA within a mature HIV-1 virion. Previous studies by electron microscopy have shown that the capsid shell is primarily a triangular lattice of CA hexamers, with variable curvature that destroys the ideal symmetry of a planar lattice. The mature CA lattice depends on CA dimerization, which occurs through interactions between helix 9 segments of the C-terminal domain (CTD) of CA. Several high-resolution structures of the CTD-CTD dimerization interface have been reported, based on X-ray crystallography and multidimensional solution nuclear magnetic resonance (NMR), with significant differences in amino acid side chain conformations and helix 9-helix 9 orientations. In a structural model for tubular CA assemblies based on cryogenic electron microscopy (cryoEM) [Zhao et al. Nature, 2013, 497, 643-646], the dimerization interface is substantially disordered. The dimerization interface structure in noncrystalline CA assemblies and the extent to which this interface is structurally ordered within a curved lattice have therefore been unclear. Here we describe solid state NMR measurements on the dimerization interface in tubular CA assemblies, which contain the curved triangular lattice of a mature virion, including quantitative measurements of intermolecular and intramolecular distances using dipolar recoupling techniques, solid state NMR chemical shifts, and long-range side chain-side chain contacts. When combined with restraints on the distance and orientation between helix 9 segments from the cryoEM study, the solid state NMR data lead to a unique high-resolution structure for the dimerization interface in the noncrystalline lattice of CA tubes. These results demonstrate that CA lattice curvature is not dependent on disorder or variability in the dimerization interface. This work also demonstrates the feasibility of local structure determination within large noncrystalline assemblies formed by high

  1. Identification of a cytoplasmic interaction partner of the large regulatory proteins Rep78/Rep68 of adeno-associated virus type 2 (AAV-2)

    SciTech Connect

    Weger, Stefan . E-mail: stefan.weger@charite.de; Hammer, Eva; Goetz, Anne; Heilbronn, Regine

    2007-05-25

    Through yeast two-hybrid analysis and coimmunoprecipitation studies, we have identified a novel cellular AAV-2 Rep78/Rep68 interaction partner located predominantly in the cytoplasm. In public databases, it has been assigned as KCTD5, because of a region of high similarity to the cytoplasmic tetramerization domain of voltage-gated potassium channels. Whereas Rep/KCTD5 interaction relied on the region surrounding the Rep nuclear localization signal, nuclear accumulation of Rep was not required. Wildtype Rep78/Rep68 proteins induced the translocation of large portions of KCTD5 into the nucleus pointing to functional interactions both in the cytoplasm and the nucleus. In line with an anticipated functional interference in the cytoplasm, KCTD5 overexpression completely abrogated Rep68-mediated posttranscriptional activation of a HIV-LTR driven luciferase reporter gene. Our study expands the panel of already identified nuclear Rep interaction partners to a cytoplasmic protein, which raises the awareness that important steps in the AAV life cycle may be regulated in this compartment.

  2. Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy.

    PubMed

    Nance, Michael E; Duan, Dongsheng

    2015-12-01

    Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy.

  3. The 45-kilodalton protein of cytomegalovirus (Colburn) B-capsids is an amino-terminal extension form of the assembly protein.

    PubMed Central

    Schenk, P; Woods, A S; Gibson, W

    1991-01-01

    Intranuclear B-capsids from cytomegalovirus (strain Colburn)-infected cells contain an abundant 37-kDa assembly protein, thought to be involved in capsid formation, and three minor protein constituents (i.e., 45, 39, and 38 kDa) that are immunologically and structurally related to the assembly protein. In the experiments reported here, antisera produced against synthetic peptides were used in conjunction with chemical protein cleavage to examine the structural relationship of these proteins in more detail. Results of these experiments verify that the carboxyl end of the 39-kDa assembly protein precursor is lost during maturation and suggest that the 38-kDa protein may be a processing intermediate. It is shown that the 45-kDa protein is coterminal with the mature assembly protein at its carboxyl end but differs by a predicted 115-amino-acid extension at its amino terminus. In addition, evidence is presented that the 45-kDa protein has a 48-kDa precursor and a 47-kDa putative processing intermediate which have the same carboxy-terminal sequences and undergo the same maturational events as those of the assembly protein. A working model considering the structural relationship of these proteins is presented. Images PMID:1847469

  4. Orthogonal labeling of M13 minor capsid proteins with DNA to self-assemble end-to-end multi-phage structures

    PubMed Central

    Hess, Gaelen T.; Guimaraes, Carla P.; Spooner, Eric; Ploegh, Hidde L.; Belcher, Angela M.

    2014-01-01

    M13 bacteriophage has been used as a scaffold to organize materials for various applications. Building more complex multi-phage devices requires precise control of interactions between the M13 capsid proteins. Towards this end, we engineered a loop structure onto the pIII capsid protein of M13 bacteriophage to enable sortase-mediated labeling reactions for C-terminal display. Combining this with N-terminal sortase-mediated labeling, we thus created a phage scaffold that can be labeled orthogonally on three capsid proteins: the body and both ends. We show that covalent attachment of different DNA oligonucleotides at the ends of the new phage structure enables formation of multi-phage particles oriented in a specific order. These have potential as nanoscale scaffolds for multi–material devices. PMID:23713956

  5. Structure of the Three N-Terminal Immunoglobulin Domains of the Highly Immunogenic Outer Capsid Protein from a T4-Like Bacteriophage

    SciTech Connect

    Fokine, Andrei; Islam, Mohammad Z.; Zhang, Zhihong; Bowman, Valorie D.; Rao, Venigalla B.; Rossmann, Michael G.

    2011-09-16

    The head of bacteriophage T4 is decorated with 155 copies of the highly antigenic outer capsid protein (Hoc). One Hoc molecule binds near the center of each hexameric capsomer. Hoc is dispensable for capsid assembly and has been used to display pathogenic antigens on the surface of T4. Here we report the crystal structure of a protein containing the first three of four domains of Hoc from bacteriophage RB49, a close relative of T4. The structure shows an approximately linear arrangement of the protein domains. Each of these domains has an immunoglobulin-like fold, frequently found in cell attachment molecules. In addition, we report biochemical data suggesting that Hoc can bind to Escherichia coli, supporting the hypothesis that Hoc could attach the phage capsids to bacterial surfaces and perhaps also to other organisms. The capacity for such reversible adhesion probably provides survival advantages to the bacteriophage.

  6. Role of a nuclear localization signal on the minor capsid proteins VP2 and VP3 in BKPyV nuclear entry.

    PubMed

    Bennett, Shauna M; Zhao, Linbo; Bosard, Catherine; Imperiale, Michael J

    2015-01-01

    BK Polyomavirus (BKPyV) is a ubiquitous nonenveloped human virus that can cause severe disease in immunocompromised populations. After internalization into renal proximal tubule epithelial cells, BKPyV traffics through the ER and enters the cytosol. However, it is unclear how the virus enters the nucleus. In this study, we elucidate a role for the nuclear localization signal located on the minor capsid proteins VP2 and VP3 during infection. Site-directed mutagenesis of a single lysine in the basic region of the C-terminus of the minor capsid proteins abrogated their nuclear localization, and the analogous genomic mutation reduced infectivity. Additionally, through use of the inhibitor ivermectin and knockdown of importin β1, we found that the importin α/β pathway is involved during infection. Overall these data are the first to show the significance of the NLS of the BKPyV minor capsid proteins during infection in a natural host cell.

  7. Structure of the Three N-Terminal Immunoglobulin Domains of the Highly Immunogenic Outer Capsid Protein from a T4-Like Bacteriophage▿

    PubMed Central

    Fokine, Andrei; Islam, Mohammad Z.; Zhang, Zhihong; Bowman, Valorie D.; Rao, Venigalla B.; Rossmann, Michael G.

    2011-01-01

    The head of bacteriophage T4 is decorated with 155 copies of the highly antigenic outer capsid protein (Hoc). One Hoc molecule binds near the center of each hexameric capsomer. Hoc is dispensable for capsid assembly and has been used to display pathogenic antigens on the surface of T4. Here we report the crystal structure of a protein containing the first three of four domains of Hoc from bacteriophage RB49, a close relative of T4. The structure shows an approximately linear arrangement of the protein domains. Each of these domains has an immunoglobulin-like fold, frequently found in cell attachment molecules. In addition, we report biochemical data suggesting that Hoc can bind to Escherichia coli, supporting the hypothesis that Hoc could attach the phage capsids to bacterial surfaces and perhaps also to other organisms. The capacity for such reversible adhesion probably provides survival advantages to the bacteriophage. PMID:21632759

  8. Safety and liver transduction efficacy of rAAV5-cohPBGD in nonhuman primates: a potential therapy for acute intermittent porphyria.

    PubMed

    Pañeda, Astrid; Lopez-Franco, Esperanza; Kaeppel, Christine; Unzu, Carmen; Gil-Royo, Ana Gloria; D'Avola, Delia; Beattie, Stuart G; Olagüe, Cristina; Ferrero, Roberto; Sampedro, Ana; Mauleon, Itsaso; Hermening, Stephan; Salmon, Florence; Benito, Alberto; Gavira, Juan Jose; Cornet, María Eugenia; del Mar Municio, María; von Kalle, Christof; Petry, Harald; Prieto, Jesus; Schmidt, Manfred; Fontanellas, Antonio; González-Aseguinolaza, Gloria

    2013-12-01

    Acute intermittent porphyria (AIP) results from haplo-insufficient activity of porphobilinogen deaminase (PBGD) and is characterized clinically by life-threatening, acute neurovisceral attacks. To date, liver transplantation is the only curative option for AIP. The aim of the present preclinical nonhuman primate study was to determine the safety and transduction efficacy of an adeno-associated viral vector encoding PBGD (recombinant AAV serotype 5-codon-optimized human porphobilinogen deaminase, rAAV5-cohPBGD) administered intravenously as part of a safety program to start a clinical study in patients with AIP. Macaques injected with either 1 × 10(13) or 5 × 10(13) vector genomes/kg of clinical-grade rAAV5-cohPBGD were monitored by standardized clinical parameters, and vector shedding was analyzed. Liver transduction efficacy, biodistribution, vector integration, and histopathology at day 30 postvector administration were determined. There was no evidence of acute toxicity, and no adverse effects were observed. The vector achieved efficient and homogenous hepatocellular transduction, reaching transgenic PBGD expression levels equivalent to 50% of the naturally expressed PBGD mRNA. No cellular immune response was detected against the human PBGD or AAV capsid proteins. Integration site analysis in transduced liver cells revealed an almost random integration pattern supporting the good safety profile of rAAV5-cohPBGD. Together, data obtained in nonhuman primates indicate that rAAV5-cohPBGD represents a safe therapy to correct the metabolic defect present in AIP patients. PMID:24070415

  9. Preliminary crystallographic analysis of the major capsid protein P2 of the lipid-containing bacteriophage PM2

    SciTech Connect

    Abrescia, Nicola G. A.; Kivelä, Hanna M.; Grimes, Jonathan M.; Bamford, Jaana K. H.; Bamford, Dennis H.; Stuart, David I.

    2005-08-01

    The viral capsid protein P2 of bacteriophage PM2 has been crystallized. Preliminary X-ray analysis demonstrates the position and orientation of the two trimers in the asymmetric unit. PM2 (Corticoviridae) is a dsDNA bacteriophage which contains a lipid membrane beneath its icosahedral capsid. In this respect it resembles bacteriophage PRD1 (Tectiviridae), although it is not known whether the similarity extends to the detailed molecular architecture of the virus, for instance the fold of the major coat protein P2. Structural analysis of PM2 has been initiated and virus-derived P2 has been crystallized by sitting-nanodrop vapour diffusion. Crystals of P2 have been obtained in space group P2{sub 1}2{sub 1}2, with two trimers in the asymmetric unit and unit-cell parameters a = 171.1, b = 78.7, c = 130.1 Å. The crystals diffract to 4 Å resolution at the ESRF BM14 beamline (Grenoble, France) and the orientation of the non-crystallographic threefold axes, the spatial relationship between the two trimers and the packing of the trimers within the unit cell have been determined. The trimers form tightly packed layers consistent with the crystal morphology, possibly recapitulating aspects of the arrangement of subunits in the virus.

  10. Characterization of the antibody response against EV71 capsid proteins in Chinese individuals by NEIBM-ELISA

    PubMed Central

    Ding, Yingying; Chen, Xuguang; Qian, Baohua; Wu, Guorong; He, Ting; Feng, Jiaojiao; Gao, Caixia; Wang, Lili; Wang, Jinhong; Li, Xiangyu; Cao, Mingmei; Peng, Heng; Zhao, Chunyan; Pan, Wei

    2015-01-01

    Human enterovirus 71 (EV71) has become the major pathogen of hand, foot, and mouth disease (HFMD) worldwide, while the anti-EV71 antibody responses other than neutralizing epitopes have not been characterized. In this study, EV71 capsid proteins VP1, VP3, VP0 and various VP1 antigens were constructed to analyze anti-EV71 response in severe HFMD cases, non-HFMD outpatient children and normal adults using a novel evolved immunoglobulin-binding molecule (NEIBM)-based ELISA. The high prevalence of antibody responses against all three capsid proteins was demonstrated, and anti-EV71 VP1 showed the main antibody response. Anti-EV71 VP1 antibody response was found to predominantly target to epitopes based on the common enterovirus cross-reactive sequence. Moreover, inhibition pattern against anti-EV71 VP1 reactions in three groups was obviously different. Taken together, these results firstly characterized the anti-EV71 antibody responses which are predominantly against VP1 epitopes based on common enterovirus cross-reactive sequence. This finding could be helpful for the better understanding of anti-EV71 humoral immunity and useful for seroepidemiological surveillance. PMID:26023863

  11. Laminin receptor is an interacting partner for viral outer capsid protein VP5 in grass carp reovirus infection.

    PubMed

    Wang, Hao; Yu, Fei; Li, Jiale; Lu, Liqun

    2016-03-01

    Grass carp reovirus (GCRV) is responsible for viral hemorrhagic disease in cultured grass carp Ctenopharyngon idellus. Through yeast two-hybrid screen, laminin receptor (LamR) was identified as a potential interacting partner for the outer capsid protein VP5 of GCRV. We cloned and sequenced the gene encoding grass carp LamR. Viral attachment assay demonstrated the involvement of membrane-associated LamR in GCRV infection. Solid-phase overlay assays demonstrated that GCRV interacted with GST-tagged LamR in vitro. In contrast to VP7, GST-tagged VP5 was shown to associate with LamR in both pull-down and solid-phase blot overlay assays. With the reduction of LamR expression in CIK cells achieved by RNAi, remarkably reduced infection efficiency of GCRV was observed. CIK cells pretreated with polyclonal antibody against LamR resulted in dose-dependent inhibition of GCRV infection. These results collectively indicated that grass carp LamR was involved in GCRV infection by interacting with viral outer capsid protein VP5.

  12. Characterization of the antibody response against EV71 capsid proteins in Chinese individuals by NEIBM-ELISA.

    PubMed

    Ding, Yingying; Chen, Xuguang; Qian, Baohua; Wu, Guorong; He, Ting; Feng, Jiaojiao; Gao, Caixia; Wang, Lili; Wang, Jinhong; Li, Xiangyu; Cao, Mingmei; Peng, Heng; Zhao, Chunyan; Pan, Wei

    2015-01-01

    Human enterovirus 71 (EV71) has become the major pathogen of hand, foot, and mouth disease (HFMD) worldwide, while the anti-EV71 antibody responses other than neutralizing epitopes have not been characterized. In this study, EV71 capsid proteins VP1, VP3, VP0 and various VP1 antigens were constructed to analyze anti-EV71 response in severe HFMD cases, non-HFMD outpatient children and normal adults using a novel evolved immunoglobulin-binding molecule (NEIBM)-based ELISA. The high prevalence of antibody responses against all three capsid proteins was demonstrated, and anti-EV71 VP1 showed the main antibody response. Anti-EV71 VP1 antibody response was found to predominantly target to epitopes based on the common enterovirus cross-reactive sequence. Moreover, inhibition pattern against anti-EV71 VP1 reactions in three groups was obviously different. Taken together, these results firstly characterized the anti-EV71 antibody responses which are predominantly against VP1 epitopes based on common enterovirus cross-reactive sequence. This finding could be helpful for the better understanding of anti-EV71 humoral immunity and useful for seroepidemiological surveillance.

  13. Measuring Immune Responses to recombinant AAV Gene Transfer

    PubMed Central

    Martino, Ashley T.; Herzog, Roland W.; Anegon, Ignacio; Adjali, Oumeya

    2013-01-01

    Following AAV-based gene transfer, the occurrence of adaptive immune responses specific to the vector or the transgene product is a major roadblock to successful clinical translation. These responses include antibodies against the AAV capsid, which can be neutralizing and therefore prevent the ability to repeatedly administer the vector, and CD8+ cytotoxic T lymphocytes, which can eliminate transduced cells. In addition, humans may have both humoral and cellular pre-existing immunity, as a result from natural infection with parent virus or related serotypes. The need for assays to detect and measure these anti-capsid immune responses in humans and in experimental animals is profound. Here, ELISPOT, immunocapture (ELISA), and neutralization assays are explained and provided in detail. Furthermore, such techniques can readily be adapted to monitor and quantify immune responses against therapeutic transgene products encoded by the vector genome. PMID:22034034

  14. Mutant canine oral papillomavirus L1 capsid proteins which form virus-like particles but lack native conformational epitopes.

    PubMed

    Chen, Y; Ghim, S J; Jenson, A B; Schlegel, R

    1998-09-01

    Recently, the L1 capsid protein of canine oral papillomavirus (COPV) has been used as an effective systemic vaccine that prevents viral infections of the oral mucosa. The efficacy of this vaccine is critically dependent upon native L1 conformation and, when purified from Sf9 insect cells, the L1 protein not only displays type-specific, conformation-dependent epitopes but it also assembles spontaneously into virus-like particles (VLPs). To determine whether VLP formation was coupled to the expression of conformation-dependent epitopes, we generated a series of N- and C-terminal L1 deletion mutants and evaluated their ability to form VLPs (by electron microscopy) and to react with conformation-dependent antibodies (by immunofluorescence microscopy). We found that (a) deletion of the 26 C-terminal residues generated a mutant protein which formed VLPs efficiently and folded correctly both in the cytoplasm and in the nucleus; (b) further truncation of the L1 C terminus (67 amino acids) resulted in a capsid protein which formed VLPs but which failed to express conformational epitopes; (c) deletion of the first 25 N-terminal amino acids also abolished expression of conformational epitopes (without altering VLP formation) but the native conformation of this deletion mutant could be restored by the addition of the human papillomavirus type 11 N terminus. These results demonstrate that VLP formation and conformational epitope expression can be dissociated and that the L1 N terminus has a critical role in protein folding. In addition, it appears that correct L1 protein folding is not dependent upon the nucleoplasmic environment. PMID:9747722

  15. Viral and Cellular Components of AAV2 Replication Compartments

    PubMed Central

    Vogel, Rebecca; Seyffert, Michael; Pereira, Bruna de Andrade; Fraefel, Cornel

    2013-01-01

    Adeno-associated virus 2 (AAV2) is a helpervirus-dependent parvovirus with a bi-phasic life cycle comprising latency in absence and lytic replication in presence of a helpervirus, such as adenovirus (Ad) or herpes simplex virus type 1 (HSV-1). Helpervirus-supported AAV2 replication takes place in replication compartments (RCs) in the cell nucleus where virus DNA replication and transcription occur. RCs consist of a defined set of helper virus-, AAV2-, and cellular proteins. Here we compare the profile of cellular proteins recruited into AAV2 RCs or identified in Rep78-associated complexes when either Ad or HSV-1 is the helpervirus, and we discuss the potential roles of some of these proteins in AAV2 and helpervirus infection. PMID:24222808

  16. Viral and Cellular Components of AAV2 Replication Compartments.

    PubMed

    Vogel, Rebecca; Seyffert, Michael; Pereira, Bruna de Andrade; Fraefel, Cornel

    2013-01-01

    Adeno-associated virus 2 (AAV2) is a helpervirus-dependent parvovirus with a bi-phasic life cycle comprising latency in absence and lytic replication in presence of a helpervirus, such as adenovirus (Ad) or herpes simplex virus type 1 (HSV-1). Helpervirus-supported AAV2 replication takes place in replication compartments (RCs) in the cell nucleus where virus DNA replication and transcription occur. RCs consist of a defined set of helper virus-, AAV2-, and cellular proteins. Here we compare the profile of cellular proteins recruited into AAV2 RCs or identified in Rep78-associated complexes when either Ad or HSV-1 is the helpervirus, and we discuss the potential roles of some of these proteins in AAV2 and helpervirus infection. PMID:24222808

  17. Interaction study of a novel Macrobrachium rosenbergii effector caspase with B2 and capsid proteins of M. rosenbergii nodavirus reveals their roles in apoptosis.

    PubMed

    Youngcharoen, Supak; Senapin, Saengchan; Lertwimol, Tareerat; Longyant, Siwaporn; Sithigorngul, Paisarn; Flegel, Timothy W; Chaivisuthangkura, Parin

    2015-08-01

    Apoptosis is an essential immune response to protect invertebrates from virus infected cells. In shrimp, virus infection has been reported to induce apoptosis. Macrobrachium rosenbergii (Mr) was considered to be a disease-resistant host when compared to penaeid shrimps. Caspase-3 was classified as an executioner caspase which played a key role in virus-induced apoptosis. In this study, an effector caspase gene of M. rosenbergii (Mrcasp) was cloned and characterized. The open reading frame (ORF) of Mrcasp was 957 nucleotide encoding 318 amino acid with a deduced molecular mass of 35.87 kDa. RT-PCR analysis showed the presence of Mrcasp in all examined tissues. The phylogenetic tree indicated that Mrcasp was closely related with caspase 3 of shrimp. The functions of the Mrcasp, B2 and capsid proteins of M. rosenbergii nodavirus (MrNV) were assayed in Sf-9 cells. The results showed that Mrcasp induce apoptotic morphology cells; however, capsid protein of MrNV could inhibit apoptotic cells whereas B2 could neither induce nor inhibit apoptotic cells by DAPI staining. The protein interaction between Mrcasp and viral MrNV structure revealed that Mrcasp did not bind to B2 or capsid protein whereas B2 and capsid proteins could bind directly to each other. This study reported a novel sequence of a full-length Mrcasp and its functional studies indicated that Mrcasp could induce apoptotic cells. Our data is the first report demonstrating the direct protein-protein interaction between capsid protein and B2 protein of MrNV. PMID:25982399

  18. Interaction study of a novel Macrobrachium rosenbergii effector caspase with B2 and capsid proteins of M. rosenbergii nodavirus reveals their roles in apoptosis.

    PubMed

    Youngcharoen, Supak; Senapin, Saengchan; Lertwimol, Tareerat; Longyant, Siwaporn; Sithigorngul, Paisarn; Flegel, Timothy W; Chaivisuthangkura, Parin

    2015-08-01

    Apoptosis is an essential immune response to protect invertebrates from virus infected cells. In shrimp, virus infection has been reported to induce apoptosis. Macrobrachium rosenbergii (Mr) was considered to be a disease-resistant host when compared to penaeid shrimps. Caspase-3 was classified as an executioner caspase which played a key role in virus-induced apoptosis. In this study, an effector caspase gene of M. rosenbergii (Mrcasp) was cloned and characterized. The open reading frame (ORF) of Mrcasp was 957 nucleotide encoding 318 amino acid with a deduced molecular mass of 35.87 kDa. RT-PCR analysis showed the presence of Mrcasp in all examined tissues. The phylogenetic tree indicated that Mrcasp was closely related with caspase 3 of shrimp. The functions of the Mrcasp, B2 and capsid proteins of M. rosenbergii nodavirus (MrNV) were assayed in Sf-9 cells. The results showed that Mrcasp induce apoptotic morphology cells; however, capsid protein of MrNV could inhibit apoptotic cells whereas B2 could neither induce nor inhibit apoptotic cells by DAPI staining. The protein interaction between Mrcasp and viral MrNV structure revealed that Mrcasp did not bind to B2 or capsid protein whereas B2 and capsid proteins could bind directly to each other. This study reported a novel sequence of a full-length Mrcasp and its functional studies indicated that Mrcasp could induce apoptotic cells. Our data is the first report demonstrating the direct protein-protein interaction between capsid protein and B2 protein of MrNV.

  19. Tabulation as a high-resolution alternative to coarse-graining protein interactions: Initial application to virus capsid subunits

    NASA Astrophysics Data System (ADS)

    Spiriti, Justin; Zuckerman, Daniel M.

    2015-12-01

    Traditional coarse-graining based on a reduced number of interaction sites often entails a significant sacrifice of chemical accuracy. As an alternative, we present a method for simulating large systems composed of interacting macromolecules using an energy tabulation strategy previously devised for small rigid molecules or molecular fragments [S. Lettieri and D. M. Zuckerman, J. Comput. Chem. 33, 268-275 (2012); J. Spiriti and D. M. Zuckerman, J. Chem. Theory Comput. 10, 5161-5177 (2014)]. We treat proteins as rigid and construct distance and orientation-dependent tables of the interaction energy between them. Arbitrarily detailed interactions may be incorporated into the tables, but as a proof-of-principle, we tabulate a simple α-carbon Gō-like model for interactions between dimeric subunits of the hepatitis B viral capsid. This model is significantly more structurally realistic than previous models used in capsid assembly studies. We are able to increase the speed of Monte Carlo simulations by a factor of up to 6700 compared to simulations without tables, with only minimal further loss in accuracy. To obtain further enhancement of sampling, we combine tabulation with the weighted ensemble (WE) method, in which multiple parallel simulations are occasionally replicated or pruned in order to sample targeted regions of a reaction coordinate space. In the initial study reported here, WE is able to yield pathways of the final ˜25% of the assembly process.

  20. Electrophoretic mobility of the capsid protein of the Plum pox virus strain PPV-Rec indicates its partial phosphorylation.

    PubMed

    Subr, Z; Ryslava, H; Kollerova, E

    2007-01-01

    A double-band SDS-PAGE profile was found reproducible for capsid protein (CP) of Plum pox virus (PPV) isolates belonging to the strain PPV-Rec. The double-band was also present in the virus population multiplied in various plants. A single-lesion passage in a hypersensitive host Chenopodium foetidum showed that its presence was not a result of a mixed infection. We found that the two electrophoretic forms of CP shared identical N-terminus. Therefore, they did not originate from an alternative proteolytic processing, but were different in their posttranslational modification. The slower band of CP could be converted to the faster one by the phosphatase treatment. We assumed that CP protein was present in both phosphorylated and dephosphorylated forms in the infected plants.

  1. Development of novel AAV serotype 6 based vectors with selective tropism for human cancer cells.

    PubMed

    Sayroo, R; Nolasco, D; Yin, Z; Colon-Cortes, Y; Pandya, M; Ling, C; Aslanidi, G

    2016-01-01

    Viral vectors-based gene therapy is an attractive alternative to common anti-cancer treatments. In the present studies, AAV serotype 6 vectors were identified to be particularly effective in the transduction of human prostate (PC3), breast (T47D) and liver (Huh7) cancer cells. Next, we developed chimeric AAV vectors with Arg-Gly-Asp (RGD) peptide incorporated into the viral capsid to enable specific targeting of integrin-overexpressing malignant cells. These AAV6-RGD vectors improved transduction efficiency approximately 3-fold compared with wild-type AAV6 vectors by enhancing the viral entry into the cells. We also observed that transduction efficiency significantly improved, up to approximately 5-fold, by the mutagenesis of surface-exposed tyrosine and threonine residues involved in the intracellular trafficking of AAV vectors. Therefore, in our study, the AAV6-Y705-731F+T492V vector was identified as the most efficient. The combination of RGD peptide, tyrosine and threonine mutations on the same AAV6 capsid further increased the transduction efficiency, approximately 8-fold in vitro. In addition, we mutated lysine (K531E) to impair the affinity of AAV6 vectors to heparan sulfate proteoglycan. Finally, we showed a significant increase in both specificity and efficiency of AAV6-RGD-Y705-731F+T492V+K531E vectors in a xenograft animal model in vivo. In summary, the approach described here can lead to the development of AAV vectors with selective tropism to human cancer cells.

  2. Processing of the intracellular form of the west Nile virus capsid protein by the viral NS2B-NS3 protease: an in vitro study.

    PubMed Central

    Yamshchikov, V F; Compans, R W

    1994-01-01

    According to the existing model of flavivirus polyprotein processing, one of the cleavages in the amino-terminal part of the flavivirus polyprotein by host cell signalases results in formation of prM (precursor to one of the structural proteins, M) and the membrane-bound intracellular form of the viral capsid protein (Cint) retaining the prM signal sequence at its carboxy terminus. This hydrophobic anchor is subsequently removed by the viral protease, resulting in formation of the mature viral capsid protein found in virions (Cvir). We have prepared in vitro expression cassettes coding for both forms of the capsid protein, for the prM protein, for the C-prM precursor, and for the viral protease components of West Nile flavivirus and characterized their translation products. Using Cint and Cvir translation products as molecular markers, we have observed processing of the intracellular form of the West Nile capsid protein by the viral protease in vitro both upon cotranslation of the C-prM precursor and the viral protease-encoding cassette and by incubation of C-prM translation products with a detergent-solubilized extract of cells infected with a recombinant vaccinia virus expressing the active viral protease. The cleavage of Cint by the viral protease at the predicted dibasic site was verified by introduction of point mutations into the cleavage site and an adjacent region. These studies provide the first direct demonstration of processing of the intracellular form of the flavivirus capsid protein by the viral protease. Images PMID:8057458

  3. Optimized sequential purification protocol for in vivo site-specific biotinylated full-length dengue virus capsid protein.

    PubMed

    Chong, Mun Keat; Parthasarathy, Krupakar; Yeo, Hui Yu; Ng, Mah Lee

    2013-05-01

    Dengue virus (DENV) capsid (C) protein is one of the three structural proteins that form a mature virus. The main challenge impeding the study of this protein is to generate pure non-truncated, full-length C proteins for structural and functional studies. This is mainly due to its small molecular weight, highly positively charged, stability and solubility properties. Here, we report a strategy to construct, express, biotinylate and purify non-truncated, full-length DENV C protein. A 6× His tag and a biotin acceptor peptide (BAP) were cloned at the N-terminus of C protein using overlapping extension-polymerase chain reaction method for site-specific biotinylation. The final construct was inserted into pET28a plasmid and BL-21 (CodonPlus) expression competent cell strain was selected as there are 12% rare codons in the C protein sequence. Strikingly, we found that our recombinant proteins with BAP were biotinylated endogenously with high efficiency in Escherichia coli BL-21 strains. To purify this His-tagged C protein, nickel-nitriloacetic acid affinity chromatography was first carried out under denaturing condition. After stepwise dialysis and concurrent refolding, ion exchange-fast protein liquid chromatography was performed to further separate the residual contaminants. To obtain C protein with high purity, a final round of purification with size exclusion chromatography was carried out and a single peak corresponding to C protein was attained. With this optimized sequential purification protocol, we successfully generated pure biotinylated full-length DENV C protein. The functionality of this purified non-truncated DENV C protein was examined and it was suitable for structural and molecular studies.

  4. Adeno-Associated Virus Serotype 1 (AAV1)- and AAV5-Antibody Complex Structures Reveal Evolutionary Commonalities in Parvovirus Antigenic Reactivity

    PubMed Central

    Tseng, Yu-Shan; Gurda, Brittney L.; Chipman, Paul; McKenna, Robert; Afione, Sandra; Chiorini, John A.; Muzyczka, Nicholas; Olson, Norman H.; Baker, Timothy S.; Kleinschmidt, Jürgen

    2014-01-01

    ABSTRACT The clinical utility of the adeno-associated virus (AAV) gene delivery system has been validated by the regulatory approval of an AAV serotype 1 (AAV1) vector for the treatment of lipoprotein lipase deficiency. However, neutralization from preexisting antibodies is detrimental to AAV transduction efficiency. Hence, mapping of AAV antigenic sites and engineering of neutralization-escaping vectors are important for improving clinical efficacy. We report the structures of four AAV-monoclonal antibody fragment complexes, AAV1-ADK1a, AAV1-ADK1b, AAV5-ADK5a, and AAV5-ADK5b, determined by cryo-electron microscopy and image reconstruction to a resolution of ∼11 to 12 Å. Pseudoatomic modeling mapped the ADK1a epitope to the protrusions surrounding the icosahedral 3-fold axis and the ADK1b and ADK5a epitopes, which overlap, to the wall between depressions at the 2- and 5-fold axes (2/5-fold wall), and the ADK5b epitope spans both the 5-fold axis-facing wall of the 3-fold protrusion and portions of the 2/5-fold wall of the capsid. Combined with the six antigenic sites previously elucidated for different AAV serotypes through structural approaches, including AAV1 and AAV5, this study identified two common AAV epitopes: one on the 3-fold protrusions and one on the 2/5-fold wall. These epitopes coincide with regions with the highest sequence and structure diversity between AAV serotypes and correspond to regions determining receptor recognition and transduction phenotypes. Significantly, these locations overlap the two dominant epitopes reported for autonomous parvoviruses. Thus, rather than the amino acid sequence alone, the antigenic sites of parvoviruses appear to be dictated by structural features evolved to enable specific infectious functions. IMPORTANCE The adeno-associated viruses (AAVs) are promising vectors for in vivo therapeutic gene delivery, with more than 20 years of intense research now realized in a number of successful human clinical trials that

  5. Structures of Adenovirus Incomplete Particles Clarify Capsid Architecture and Show Maturation Changes of Packaging Protein L1 52/55k

    PubMed Central

    Condezo, Gabriela N.; Marabini, Roberto; Ayora, Silvia; Carazo, José M.; Alba, Raúl; Chillón, Miguel

    2015-01-01

    ABSTRACT Adenovirus is one of the most complex icosahedral, nonenveloped viruses. Even after its structure was solved at near-atomic resolution by both cryo-electron microscopy and X-ray crystallography, the location of minor coat proteins is still a subject of debate. The elaborated capsid architecture is the product of a correspondingly complex assembly process, about which many aspects remain unknown. Genome encapsidation involves the concerted action of five virus proteins, and proteolytic processing by the virus protease is needed to prime the virion for sequential uncoating. Protein L1 52/55k is required for packaging, and multiple cleavages by the maturation protease facilitate its release from the nascent virion. Light-density particles are routinely produced in adenovirus infections and are thought to represent assembly intermediates. Here, we present the molecular and structural characterization of two different types of human adenovirus light particles produced by a mutant with delayed packaging. We show that these particles lack core polypeptide V but do not lack the density corresponding to this protein in the X-ray structure, thereby adding support to the adenovirus cryo-electron microscopy model. The two types of light particles present different degrees of proteolytic processing. Their structures provide the first glimpse of the organization of L1 52/55k protein inside the capsid shell and of how this organization changes upon partial maturation. Immature, full-length L1 52/55k is poised beneath the vertices to engage the virus genome. Upon proteolytic processing, L1 52/55k disengages from the capsid shell, facilitating genome release during uncoating. IMPORTANCE Adenoviruses have been extensively characterized as experimental systems in molecular biology, as human pathogens, and as therapeutic vectors. However, a clear picture of many aspects of their basic biology is still lacking. Two of these aspects are the location of minor coat proteins in

  6. Recognition of the different structural forms of the capsid protein determines the outcome following infection with porcine circovirus type 2.

    PubMed

    Trible, Benjamin R; Suddith, Andrew W; Kerrigan, Maureen A; Cino-Ozuna, Ada G; Hesse, Richard A; Rowland, Raymond R R

    2012-12-01

    Porcine circovirus type 2 (PCV2) capsid protein (CP) is the only protein necessary for the formation of the virion capsid, and recombinant CP spontaneously forms virus-like particles (VLPs). Located within a single CP subunit is an immunodominant epitope consisting of residues 169 to 180 [CP(169-180)], which is exposed on the surface of the subunit, but, in the structural context of the VLP, the epitope is buried and inaccessible to antibody. High levels of anti-CP(169-180) activity are associated with porcine circovirus-associated disease (PCVAD). The purpose of this study was to investigate the role of the immune response to monomer CP in the development of PCVAD. The approach was to immunize pigs with CP monomer, followed by challenge with PCV2 and porcine reproductive and respiratory syndrome virus (PRRSV). To maintain the CP immunogen as a stable monomer, CP(43-233) was fused to ubiquitin (Ub-CP). Size exclusion chromatography showed that Ub-CP was present as a single 33-kDa protein. Pigs immunized with Ub-CP developed a strong antibody response to PCV2, including antibodies against CP(169-180). However, only low levels of virus neutralizing activity were detected, and viremia levels were similar to those of nonimmunized pigs. As a positive control, immunization with baculovirus-expressed CP (Bac-CP) resulted in high levels of virus neutralizing activity, small amounts of anti-CP(169-180) activity, and the absence of viremia in pigs following virus challenge. The data support the role of CP(169-180) as an immunological decoy and illustrate the importance of the structural form of the CP immunogen in determining the outcome following infection.

  7. Role of a nuclear localization signal on the minor capsid Proteins VP2 and VP3 in BKPyV nuclear entry

    SciTech Connect

    Bennett, Shauna M.; Zhao, Linbo; Bosard, Catherine; Imperiale, Michael J.

    2015-01-01

    BK Polyomavirus (BKPyV) is a ubiquitous nonenveloped human virus that can cause severe disease in immunocompromised populations. After internalization into renal proximal tubule epithelial cells, BKPyV traffics through the ER and enters the cytosol. However, it is unclear how the virus enters the nucleus. In this study, we elucidate a role for the nuclear localization signal located on the minor capsid proteins VP2 and VP3 during infection. Site-directed mutagenesis of a single lysine in the basic region of the C-terminus of the minor capsid proteins abrogated their nuclear localization, and the analogous genomic mutation reduced infectivity. Additionally, through use of the inhibitor ivermectin and knockdown of importin β1, we found that the importin α/β pathway is involved during infection. Overall these data are the first to show the significance of the NLS of the BKPyV minor capsid proteins during infection in a natural host cell. - Highlights: • Polyomaviruses must deliver their genome to the nucleus to replicate. • The minor capsid proteins have a well-conserved nuclear localization signal. • Mutation of this NLS diminishes, but does not completely inhibit, infection.

  8. C-Terminal Amino Acids 471-507 of Avian Hepatitis E Virus Capsid Protein Are Crucial for Binding to Avian and Human Cells

    PubMed Central

    Zhang, Xinquan; Bilic, Ivana; Marek, Ana; Glösmann, Martin; Hess, Michael

    2016-01-01

    The infection of chickens with avian Hepatitis E virus (avian HEV) can be asymptomatic or induces clinical signs characterized by increased mortality and decreased egg production in adult birds. Due to the lack of an efficient cell culture system for avian HEV, the interaction between virus and host cells is still barely understood. In this study, four truncated avian HEV capsid proteins (ORF2-1 – ORF2-4) with an identical 338aa deletion at the N-terminus and gradual deletions from 0, 42, 99 and 136aa at the C-terminus, respectively, were expressed and used to map the possible binding site within avian HEV capsid protein. Results from the binding assay showed that three truncated capsid proteins attached to avian LMH cells, but did not penetrate into cells. However, the shortest construct, ORF2-4, lost the capability of binding to cells suggesting that the presence of amino acids 471 to 507 of the capsid protein is crucial for the attachment. The construct ORF2-3 (aa339-507) was used to study the potential binding of avian HEV capsid protein to human and other avian species. It could be demonstrated that ORF2-3 was capable of binding to QT-35 cells from Japanese quail and human HepG2 cells but failed to bind to P815 cells. Additionally, chicken serum raised against ORF2-3 successfully blocked the binding to LMH cells. Treatment with heparin sodium salt or sodium chlorate significantly reduced binding of ORF2-3 to LMH cells. However, heparinase II treatment of LMH cells had no effect on binding of the ORF2-3 construct, suggesting a possible distinct attachment mechanism of avian as compared to human HEV. For the first time, interactions between avian HEV capsid protein and host cells were investigated demonstrating that aa471 to 507 of the capsid protein are needed to facilitate interaction with different kind of cells from different species. PMID:27073893

  9. Widespread AAV1- and AAV2-mediated transgene expression in the nonhuman primate brain: implications for Huntington's disease.

    PubMed

    Hadaczek, Piotr; Stanek, Lisa; Ciesielska, Agnieszka; Sudhakar, Vivek; Samaranch, Lluis; Pivirotto, Philip; Bringas, John; O'Riordan, Catherine; Mastis, Bryan; San Sebastian, Waldy; Forsayeth, John; Cheng, Seng H; Bankiewicz, Krystof S; Shihabuddin, Lamya S

    2016-01-01

    Huntington's disease (HD) is caused by a toxic gain-of-function associated with the expression of the mutant huntingtin (htt) protein. Therefore, the use of RNA interference to inhibit Htt expression could represent a disease-modifying therapy. The potential of two recombinant adeno-associated viral vectors (AAV), AAV1 and AAV2, to transduce the cortico-striatal tissues that are predominantly affected in HD was explored. Green fluorescent protein was used as a reporter in each vector to show that both serotypes were broadly distributed in medium spiny neurons in the striatum and cortico-striatal neurons after infusion into the putamen and caudate nucleus of nonhuman primates (NHP), with AAV1-directed expression being slightly more robust than AAV2-driven expression. This study suggests that both serotypes are capable of targeting neurons that degenerate in HD, and it sets the stage for the advanced preclinical evaluation of an RNAi-based therapy for this disease. PMID:27408903

  10. Effect of capsid proteins to ICG mass ratio on fluorescent quantum yield of virus-resembling optical nano-materials

    NASA Astrophysics Data System (ADS)

    Gupta, Sharad; Ico, Gerardo; Matsumura, Paul; Rao, A. L. N.; Vullev, Valentine; Anvari, Bahman

    2012-03-01

    We recently reported construction of a new type of optical nano-construct composed of genome-depleted plant infecting brome mosaic virus (BMV) doped with Indocyanine green (ICG), an FDA-approved chromophore. We refer to these constructs as optical viral ghosts (OVGs) since only the capsid protein (CP) subunits of BMV remain to encapsulate ICG. To utilize OVGs as effective nano-probes in fluorescence imaging applications, their fluorescence quantum yield needs to be maximized. In this study, we investigate the effect of altering the CP to ICG mass ratio on the fluorescent quantum yield of OVGs. Results of this study provide the basis for construction of OVGs with optimal amounts of CP and ICG to yield maximal fluorescence quantum yield.

  11. AAV Gene Therapy for MPS1-associated Corneal Blindness

    PubMed Central

    Vance, Melisa; Llanga, Telmo; Bennett, Will; Woodard, Kenton; Murlidharan, Giridhar; Chungfat, Neil; Asokan, Aravind; Gilger, Brian; Kurtzberg, Joanne; Samulski, R. Jude; Hirsch, Matthew L.

    2016-01-01

    Although cord blood transplantation has significantly extended the lifespan of mucopolysaccharidosis type 1 (MPS1) patients, over 95% manifest cornea clouding with about 50% progressing to blindness. As corneal transplants are met with high rejection rates in MPS1 children, there remains no treatment to prevent blindness or restore vision in MPS1 children. Since MPS1 is caused by mutations in idua, which encodes alpha-L-iduronidase, a gene addition strategy to prevent, and potentially reverse, MPS1-associated corneal blindness was investigated. Initially, a codon optimized idua cDNA expression cassette (opt-IDUA) was validated for IDUA production and function following adeno-associated virus (AAV) vector transduction of MPS1 patient fibroblasts. Then, an AAV serotype evaluation in human cornea explants identified an AAV8 and 9 chimeric capsid (8G9) as most efficient for transduction. AAV8G9-opt-IDUA administered to human corneas via intrastromal injection demonstrated widespread transduction, which included cells that naturally produce IDUA, and resulted in a >10-fold supraphysiological increase in IDUA activity. No significant apoptosis related to AAV vectors or IDUA was observed under any conditions in both human corneas and MPS1 patient fibroblasts. The collective preclinical data demonstrate safe and efficient IDUA delivery to human corneas, which may prevent and potentially reverse MPS1-associated cornea blindness. PMID:26899286

  12. The A, B, Cs of Herpesvirus Capsids

    PubMed Central

    Tandon, Ritesh; Mocarski, Edward S.; Conway, James F.

    2015-01-01

    Assembly of herpesvirus nucleocapsids shares significant similarities with the assembly of tailed dsDNA bacteriophages; however, important differences exist. A unique feature of herpesviruses is the presence of different mature capsid forms in the host cell nucleus during infection. These capsid forms, referred to as A-, B-, and C-capsids, represent empty capsids, scaffold containing capsids and viral DNA containing capsids, respectively. The C-capsids are the closest in form to those encapsidated into mature virions and are considered precursors to infectious virus. The evidence supporting A- and B-capsids as either abortive forms or assembly intermediates has been lacking. Interaction of specific capsid forms with viral tegument proteins has been proposed to be a mechanism for quality control at the point of nuclear egress of mature particles. Here, we will review the available literature on these capsid forms and present data to debate whether A- and B-capsids play an important or an extraneous role in the herpesvirus life cycle. PMID:25730559

  13. Assessment of Tropism and Effectiveness of New Primate-Derived Hybrid Recombinant AAV Serotypes in the Mouse and Primate Retina

    PubMed Central

    Lipinski, Daniel M.; Singh, Mandeep S.; Mouravlev, Alexandre; You, Qisheng; Barnard, Alun R.; Hankins, Mark W.; During, Matthew J.; MacLaren, Robert E.

    2013-01-01

    Adeno-associated viral vectors (AAV) have been shown to be safe in the treatment of retinal degenerations in clinical trials. Thus, improving the efficiency of viral gene delivery has become increasingly important to increase the success of clinical trials. In this study, structural domains of different rAAV serotypes isolated from primate brain were combined to create novel hybrid recombinant AAV serotypes, rAAV2/rec2 and rAAV2/rec3. The efficacy of these novel serotypes were assessed in wild type mice and in two models of retinal degeneration (the Abca4−/− mouse which is a model for Stargardt disease and in the Pde6brd1/rd1 mouse) in vivo, in primate tissue ex-vivo, and in the human-derived SH-SY5Y cell line, using an identical AAV2 expression cassette. We show that these novel hybrid serotypes can transduce retinal tissue in mice and primates efficiently, although no more than AAV2/2 and rAAV2/5 serotypes. Transduction efficiency appeared lower in the Abca4−/− mouse compared to wild type with all vectors tested, suggesting an effect of specific retinal diseases on the efficiency of gene delivery. Shuffling of AAV capsid domains may have clinical applications for patients who develop T-cell immune responses following AAV gene therapy, as specific peptide antigen sequences could be substituted using this technique prior to vector re-treatments. PMID:23593201

  14. Characterization of the invariable residue 51 mutations of human immunodeficiency virus type 1 capsid protein on in vitro CA assembly and infectivity

    PubMed Central

    Abdurahman, Samir; Youssefi, Masoud; Höglund, Stefan; Vahlne, Anders

    2007-01-01

    Background The mature HIV-1 conical core formation proceeds through highly regulated protease cleavage of the Gag precursor, which ultimately leads to substantial rearrangements of the capsid (CAp24) molecule involving both inter- and intra-molecular contacts of the CAp24 molecules. In this aspect, Asp51 which is located in the N-terminal domain of HIV-1 CAp24 plays an important role by forming a salt-bridge with the free imino terminus Pro1 following proteolytic cleavage and liberation of the CAp24 protein from the Pr55Gag precursor. Thus, previous substitution mutation of Asp51 to alanine (D51A) has shown to be lethal and that this invariable residue was found essential for tube formation in vitro, virus replication and virus capsid formation. Results We extended the above investigation by introducing three different D51 substitution mutations (D51N, D51E, and D51Q) into both prokaryotic and eukaryotic expression systems and studied their effects on in vitro capsid assembly and virus infectivity. Two substitution mutations (D51E and D51N) had no substantial effect on in vitro capsid assembly, yet they impaired viral infectivity and particle production. In contrast, the D51Q mutant was defective both for in vitro capsid assembly and for virus replication in cell culture. Conclusion These results show that substitutions of D51 with glutamate, glutamine, or asparagine, three amino acid residues that are structurally related to aspartate, could partially rescue both in vitro capsid assembly and intra-cellular CAp24 production but not replication of the virus in cultured cells. PMID:17903253

  15. Formation of AAV Single Stranded DNA Genome from a Circular Plasmid in Saccharomyces cerevisiae

    PubMed Central

    Cervelli, Tiziana; Backovic, Ana; Galli, Alvaro

    2011-01-01

    Adeno-associated virus (AAV)-based vectors are promising tools for targeted transfer in gene therapy studies. Many efforts have been accomplished to improve production and purification methods. We thought to develop a simple eukaryotic system allowing AAV replication which could provide an excellent opportunity for studying AAV biology and, more importantly, for AAV vector production. It has been shown that yeast Saccharomyces cerevisiae is able to replicate and form the capsid of many viruses. We investigated the ability of the yeast Saccharomyces cerevisiae to carry out the replication of a recombinant AAV (rAAV). When a plasmid containing a rAAV genome in which the cap gene was replaced with the S. cerevisiae URA3 gene, was co-transformed in yeast with a plasmid expressing Rep68, a significant number of URA3+ clones were scored (more than 30-fold over controls). Molecular analysis of low molecular weight DNA by Southern blotting revealed that single stranded DNA is formed and that the plasmid is entirely replicated. The ssDNA contains the ITRs, URA3 gene and also vector sequences suggesting the presence of two distinct molecules. Its formation was dependent on Rep68 expression and ITR. These data indicate that DNA is not obtained by the canonical AAV replication pathway. PMID:21853137

  16. Integration Preferences of Wildtype AAV-2 for Consensus Rep-Binding Sites at Numerous Loci in the Human Genome

    PubMed Central

    Hüser, Daniela; Gogol-Döring, Andreas; Lutter, Timo; Weger, Stefan; Winter, Kerstin; Hammer, Eva-Maria; Cathomen, Toni; Reinert, Knut; Heilbronn, Regine

    2010-01-01

    Adeno-associated virus type 2 (AAV) is known to establish latency by preferential integration in human chromosome 19q13.42. The AAV non-structural protein Rep appears to target a site called AAVS1 by simultaneously binding to Rep-binding sites (RBS) present on the AAV genome and within AAVS1. In the absence of Rep, as is the case with AAV vectors, chromosomal integration is rare and random. For a genome-wide survey of wildtype AAV integration a linker-selection-mediated (LSM)-PCR strategy was designed to retrieve AAV-chromosomal junctions. DNA sequence determination revealed wildtype AAV integration sites scattered over the entire human genome. The bioinformatic analysis of these integration sites compared to those of rep-deficient AAV vectors revealed a highly significant overrepresentation of integration events near to consensus RBS. Integration hotspots included AAVS1 with 10% of total events. Novel hotspots near consensus RBS were identified on chromosome 5p13.3 denoted AAVS2 and on chromsome 3p24.3 denoted AAVS3. AAVS2 displayed seven independent junctions clustered within only 14 bp of a consensus RBS which proved to bind Rep in vitro similar to the RBS in AAVS3. Expression of Rep in the presence of rep-deficient AAV vectors shifted targeting preferences from random integration back to the neighbourhood of consensus RBS at hotspots and numerous additional sites in the human genome. In summary, targeted AAV integration is not as specific for AAVS1 as previously assumed. Rather, Rep targets AAV to integrate into open chromatin regions in the reach of various, consensus RBS homologues in the human genome. PMID:20628575

  17. Encapsidation of poliovirus replicons encoding the complete human immunodeficiency virus type 1 gag gene by using a complementation system which provides the P1 capsid protein in trans.

    PubMed

    Porter, D C; Ansardi, D C; Morrow, C D

    1995-03-01

    Poliovirus genomes which contain small regions of the human immunodeficiency virus type 1 (HIV-1) gag, pol, and env genes substituted in frame for the P1 capsid region replicate and express HIV-1 proteins as fusion proteins with the P1 capsid precursor protein upon transfection into cells (W. S. Choi, R. Pal-Ghosh, and C. D. Morrow, J. Virol. 65:2875-2883, 1991). Since these genomes, referred to as replicons, do not express capsid proteins, a complementation system was developed to encapsidate the genomes by providing P1 capsid proteins in trans from a recombinant vaccinia virus, VV-P1. Virus stocks of encapsidated replicons were generated after serial passage of the replicon genomes into cells previously infected with VV-P1 (D. C. Porter, D. C. Ansardi, W. S. Choi, and C. D. Morrow, J. Virol. 67:3712-3719, 1993). Using this system, we have further defined the role of the P1 region in viral protein expression and RNA encapsidation. In the present study, we constructed poliovirus replicons which contain the complete 1,492-bp gag gene of HIV-1 substituted for the entire P1 region of poliovirus. To investigate whether the VP4 coding region was required for the replication and encapsidation of poliovirus RNA, a second replicon in which the complete gag gene was substituted for the VP2, VP3, and VP1 capsid sequences was constructed. Transfection of replicon RNA with and without the VP4 coding region into cells resulted in similar levels of expression of the HIV-1 Gag protein and poliovirus 3CD protein, as indicated by immunoprecipitation using specific antibodies. Northern (RNA) blot analysis of RNA from transfected cells demonstrated comparable levels of RNA replication for each replicon. Transfection of the replicon genomes into cells infected with VV-P1 resulted in the encapsidation of the genomes; serial passage in the presence of VV-P1 resulted in the generation of virus stocks of encapsidated replicons. Analysis of the levels of protein expression and encapsidated

  18. Expressing Transgenes That Exceed the Packaging Capacity of Adeno-Associated Virus Capsids.

    PubMed

    Chamberlain, Kyle; Riyad, Jalish Mahmud; Weber, Thomas

    2016-02-01

    Recombinant adeno-associated virus vectors (rAAV) are being explored as gene delivery vehicles for the treatment of various inherited and acquired disorders. rAAVs are attractive vectors for several reasons: wild-type AAVs are nonpathogenic, and rAAVs can trigger long-term transgene expression even in the absence of genome integration-at least in postmitotic tissues. Moreover, rAAVs have a low immunogenic profile, and the various AAV serotypes and variants display broad but distinct tropisms. One limitation of rAAVs is that their genome-packaging capacity is only ∼5 kb. For most applications this is not of major concern because the median human protein size is 375 amino acids. Excluding the ITRs, for a protein of typical length, this allows the incorporation of ∼3.5 kb of DNA for the promoter, polyadenylation sequence, and other regulatory elements into a single AAV vector. Nonetheless, for certain diseases the packaging limit of AAV does not allow the delivery of a full-length therapeutic protein by a single AAV vector. Hence, approaches to overcome this limitation have become an important area of research for AAV gene therapy. Among the most promising approaches to overcome the limitation imposed by the packaging capacity of AAV is the use of dual-vector approaches, whereby a transgene is split across two separate AAV vectors. Coinfection of a cell with these two rAAVs will then-through a variety of mechanisms-result in the transcription of an assembled mRNA that could not be encoded by a single AAV vector because of the DNA packaging limits of AAV. The main purpose of this review is to assess the current literature with respect to dual-AAV-vector design, to highlight the effectiveness of the different methodologies and to briefly discuss future areas of research to improve the efficiency of dual-AAV-vector transduction. PMID:26757051

  19. The C-Terminal Arm of the Human Papillomavirus Major Capsid Protein Is Immunogenic and Involved in Virus-Host Interaction.

    PubMed

    Li, Zhihai; Yan, Xiaodong; Yu, Hai; Wang, Daning; Song, Shuo; Li, Yunbing; He, Maozhou; Hong, Qiyang; Zheng, Qingbing; Zhao, Qinjian; Gu, Ying; Zhang, Jun; Janssen, Mandy E W; Cardone, Giovanni; Olson, Norman H; Baker, Timothy S; Li, Shaowei; Xia, Ningshao

    2016-06-01

    Cervical cancer is the second most prevalent malignant tumor among women worldwide. High-risk human papillomaviruses (HPVs) are believed to be the major causative pathogens of mucosal epithelial cancers including cervical cancer. The HPV capsid is made up of 360 copies of major (L1) and 72 copies of minor (L2) capsid proteins. To date, limited high-resolution structural information about the HPV capsid has hindered attempts to understand details concerning the mechanisms by which HPV assembles and infects cells. In this study, we have constructed a pseudo-atomic model of the HPV59 L1-only capsid and demonstrate that the C-terminal arm of L1 participates in virus-host interactions. Moreover, when conjugated to a scaffold protein, keyhole limpet hemocyanin (KLH), this arm is immunogenic in vivo. These results provide new insights that will help elucidate HPV biology, and hence pave a way for the design of next-generation HPV vaccines. PMID:27276427

  20. Quantification and modification of the equilibrium dynamics and mechanics of a viral capsid lattice self-assembled as a protein nanocoating

    NASA Astrophysics Data System (ADS)

    Valbuena, Alejandro; Mateu, Mauricio G.

    2015-09-01

    Self-assembling, protein-based bidimensional lattices are being developed as functionalizable, highly ordered biocoatings for multiple applications in nanotechnology and nanomedicine. Unfortunately, protein assemblies are soft materials that may be too sensitive to mechanical disruption, and their intrinsic conformational dynamism may also influence their applicability. Thus, it may be critically important to characterize, understand and manipulate the mechanical features and dynamic behavior of protein assemblies in order to improve their suitability as nanomaterials. In this study, the capsid protein of the human immunodeficiency virus was induced to self-assemble as a continuous, single layered, ordered nanocoating onto an inorganic substrate. Atomic force microscopy (AFM) was used to quantify the mechanical behavior and the equilibrium dynamics (``breathing'') of this virus-based, self-assembled protein lattice in close to physiological conditions. The results uniquely provided: (i) evidence that AFM can be used to directly visualize in real time and quantify slow breathing motions leading to dynamic disorder in protein nanocoatings and viral capsid lattices; (ii) characterization of the dynamics and mechanics of a viral capsid lattice and protein-based nanocoating, including flexibility, mechanical strength and remarkable self-repair capacity after mechanical damage; (iii) proof of principle that chemical additives can modify the dynamics and mechanics of a viral capsid lattice or protein-based nanocoating, and improve their applied potential by increasing their mechanical strength and elasticity. We discuss the implications for the development of mechanically resistant and compliant biocoatings precisely organized at the nanoscale, and of novel antiviral agents acting on fundamental physical properties of viruses.Self-assembling, protein-based bidimensional lattices are being developed as functionalizable, highly ordered biocoatings for multiple applications

  1. Humoral and Cell-Mediated Immune Response, and Growth Factor Synthesis After Direct Intraarticular Injection of rAAV2-IGF-I and rAAV5-IGF-I in the Equine Middle Carpal Joint

    PubMed Central

    Wagner, Bettina; Calcedo, Roberto; Wilson, James; Schaefer, Deanna; Nixon, Alan

    2015-01-01

    Abstract Intraarticular (IA) administration of viral vectors expressing a therapeutic transgene is an attractive treatment modality for osteoarthritis (OA) as the joint can be treated as a contained unit. Humoral and cell-mediated immune responses in vivo can limit vector effectiveness. Transduction of articular tissues has been investigated; however, the immune response to IA vectors remains largely unknown. We hypothesized that IA rAAV2 and rAAV5 overexpressing insulin-like growth factor-I (IGF-I) would result in long-term IGF-I formation but would also induce neutralizing antibodies (NAb) and anti-capsid effector T cells. Twelve healthy horses were assigned to treatment (rAAV2 or rAAV5) or control (saline) groups. Middle carpal joints were injected with 5×1011 vector genomes/joint. Synovial fluid was analyzed for changes in composition, NAb titers, immunoglobulin isotypes, proinflammatory cytokines, and IGF-I. Serum was analyzed for antibody titers and cytokines. A T cell restimulation assay was used to assess T cell responses. Injection of rAAV2- or rAAV5-IGF-I did not induce greater inflammation compared with saline. Synovial fluid IGF-I was significantly increased in both rAAV2- and rAAV5-IGF-I joints by day 14 and remained elevated until day 56; however, rAAV5 achieved the highest concentrations. A capsid-specific T cell response was not noted although all virus-treated horses had increased NAbs in serum and synovial fluid after treatment. Taken together, our data show that IA injection of rAAV2- or rAAV5-IGF-I does not incite a clinically detectable inflammatory or cell-mediated immune response and that IA gene therapy using minimally immunogenic vectors represents a clinically relevant tool for treating articular disorders including OA. PMID:25705927

  2. AAV's Anatomy: Roadmap for Optimizing Vectors for Translational Success

    PubMed Central

    Samulski, R. Jude

    2014-01-01

    Adeno-Associated Virus based vectors (rAAV) are advantageous for human gene therapy due to low inflammatory responses, lack of toxicity, natural persistence, and ability to transencapsidate the genome allowing large variations in vector biology and tropism. Over sixty clinical trials have been conducted using rAAV serotype 2 for gene delivery with a number demonstrating success in immunoprivileged sites, including the retina and the CNS. Furthermore, an increasing number of trials have been initiated utilizing other serotypes of AAV to exploit vector tropism, trafficking, and expression efficiency. While these trials have demonstrated success in safety with emerging success in clinical outcomes, one benefit has been identification of issues associated with vector administration in humans (e.g. the role of pre-existing antibody responses, loss of transgene expression in non-immunoprivileged sites, and low transgene expression levels). For these reasons, several strategies are being used to optimize rAAV vectors, ranging from addition of exogenous agents for immune evasion to optimization of the transgene cassette for enhanced therapeutic output. By far, the vast majority of approaches have focused on genetic manipulation of the viral capsid. These methods include rational mutagenesis, engineering of targeting peptides, generation of chimeric particles, library and directed evolution approaches, as well as immune evasion modifications. Overall, these modifications have created a new repertoire of AAV vectors with improved targeting, transgene expression, and immune evasion. Continued work in these areas should synergize strategies to improve capsids and transgene cassettes that will eventually lead to optimized vectors ideally suited for translational success. PMID:20712583

  3. CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes

    PubMed Central

    Steines, Benjamin; Dickey, David D.; Bergen, Jamie; Excoffon, Katherine J.D.A.; Weinstein, John R.; Li, Xiaopeng; Yan, Ziying; Alaiwa, Mahmoud H. Abou; Shah, Viral S.; Bouzek, Drake C.; Powers, Linda S.; Gansemer, Nicholas D.; Ostedgaard, Lynda S.; Engelhardt, John F.; Stoltz, David A.; Welsh, Michael J.; Sinn, Patrick L.; Schaffer, David V.

    2016-01-01

    The physiological components that contribute to cystic fibrosis (CF) lung disease are steadily being elucidated. Gene therapy could potentially correct these defects. CFTR-null pigs provide a relevant model to test gene therapy vectors. Using an in vivo selection strategy that amplifies successful capsids by replicating their genomes with helper adenovirus coinfection, we selected an adeno-associated virus (AAV) with tropism for pig airway epithelia. The evolved capsid, termed AAV2H22, is based on AAV2 with 5 point mutations that result in a 240-fold increased infection efficiency. In contrast to AAV2, AAV2H22 binds specifically to pig airway epithelia and is less reliant on heparan sulfate for transduction. We administer AAV2H22-CFTR expressing the CF transmembrane conductance regulator (CFTR) cDNA to the airways of CF pigs. The transduced airways expressed CFTR on ciliated and nonciliated cells, induced anion transport, and improved the airway surface liquid pH and bacterial killing. Most gene therapy studies to date focus solely on Cl– transport as the primary metric of phenotypic correction. Here, we describe a gene therapy experiment where we not only correct defective anion transport, but also restore bacterial killing in CFTR-null pig airways. PMID:27699238

  4. CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes

    PubMed Central

    Steines, Benjamin; Dickey, David D.; Bergen, Jamie; Excoffon, Katherine J.D.A.; Weinstein, John R.; Li, Xiaopeng; Yan, Ziying; Alaiwa, Mahmoud H. Abou; Shah, Viral S.; Bouzek, Drake C.; Powers, Linda S.; Gansemer, Nicholas D.; Ostedgaard, Lynda S.; Engelhardt, John F.; Stoltz, David A.; Welsh, Michael J.; Sinn, Patrick L.; Schaffer, David V.

    2016-01-01

    The physiological components that contribute to cystic fibrosis (CF) lung disease are steadily being elucidated. Gene therapy could potentially correct these defects. CFTR-null pigs provide a relevant model to test gene therapy vectors. Using an in vivo selection strategy that amplifies successful capsids by replicating their genomes with helper adenovirus coinfection, we selected an adeno-associated virus (AAV) with tropism for pig airway epithelia. The evolved capsid, termed AAV2H22, is based on AAV2 with 5 point mutations that result in a 240-fold increased infection efficiency. In contrast to AAV2, AAV2H22 binds specifically to pig airway epithelia and is less reliant on heparan sulfate for transduction. We administer AAV2H22-CFTR expressing the CF transmembrane conductance regulator (CFTR) cDNA to the airways of CF pigs. The transduced airways expressed CFTR on ciliated and nonciliated cells, induced anion transport, and improved the airway surface liquid pH and bacterial killing. Most gene therapy studies to date focus solely on Cl– transport as the primary metric of phenotypic correction. Here, we describe a gene therapy experiment where we not only correct defective anion transport, but also restore bacterial killing in CFTR-null pig airways.

  5. Quantification and modification of the equilibrium dynamics and mechanics of a viral capsid lattice self-assembled as a protein nanocoating.

    PubMed

    Valbuena, Alejandro; Mateu, Mauricio G

    2015-09-28

    Self-assembling, protein-based bidimensional lattices are being developed as functionalizable, highly ordered biocoatings for multiple applications in nanotechnology and nanomedicine. Unfortunately, protein assemblies are soft materials that may be too sensitive to mechanical disruption, and their intrinsic conformational dynamism may also influence their applicability. Thus, it may be critically important to characterize, understand and manipulate the mechanical features and dynamic behavior of protein assemblies in order to improve their suitability as nanomaterials. In this study, the capsid protein of the human immunodeficiency virus was induced to self-assemble as a continuous, single layered, ordered nanocoating onto an inorganic substrate. Atomic force microscopy (AFM) was used to quantify the mechanical behavior and the equilibrium dynamics ("breathing") of this virus-based, self-assembled protein lattice in close to physiological conditions. The results uniquely provided: (i) evidence that AFM can be used to directly visualize in real time and quantify slow breathing motions leading to dynamic disorder in protein nanocoatings and viral capsid lattices; (ii) characterization of the dynamics and mechanics of a viral capsid lattice and protein-based nanocoating, including flexibility, mechanical strength and remarkable self-repair capacity after mechanical damage; (iii) proof of principle that chemical additives can modify the dynamics and mechanics of a viral capsid lattice or protein-based nanocoating, and improve their applied potential by increasing their mechanical strength and elasticity. We discuss the implications for the development of mechanically resistant and compliant biocoatings precisely organized at the nanoscale, and of novel antiviral agents acting on fundamental physical properties of viruses.

  6. New Structural Insights into the Genome and Minor Capsid Proteins of BK Polyomavirus using Cryo-Electron Microscopy.

    PubMed

    Hurdiss, Daniel L; Morgan, Ethan L; Thompson, Rebecca F; Prescott, Emma L; Panou, Margarita M; Macdonald, Andrew; Ranson, Neil A

    2016-04-01

    BK polyomavirus is the causative agent of several diseases in transplant patients and the immunosuppressed. In order to better understand the structure and life cycle of BK, we produced infectious virions and VP1-only virus-like particles in cell culture, and determined their three-dimensional structures using cryo-electron microscopy (EM) and single-particle image processing. The resulting 7.6-Å resolution structure of BK and 9.1-Å resolution of the virus-like particles are the highest-resolution cryo-EM structures of any polyomavirus. These structures confirm that the architecture of the major structural protein components of these human polyomaviruses are similar to previous structures from other hosts, but give new insight into the location and role of the enigmatic minor structural proteins, VP2 and VP3. We also observe two shells of electron density, which we attribute to a structurally ordered part of the viral genome, and discrete contacts between this density and both VP1 and the minor capsid proteins.

  7. Purification of recombinant virus-like particles of porcine circovirus type 2 capsid protein using ion-exchange monolith chromatography.

    PubMed

    Zaveckas, Mindaugas; Snipaitis, Simas; Pesliakas, Henrikas; Nainys, Juozas; Gedvilaite, Alma

    2015-06-01

    Diseases associated with porcine circovirus type 2 (PCV2) infection are having a severe economic impact on swine-producing countries. The PCV2 capsid (Cap) protein expressed in eukaryotic systems self-assemble into virus-like particles (VLPs) which can serve as antigens for diagnostics or/and as vaccine candidates. In this work, conventional adsorbents as well as a monolithic support with large pore sizes were examined for the chromatographic purification of PCV2 Cap VLPs from clarified yeast lysate. Q Sepharose XL was used for the initial separation of VLPs from residual host nucleic acids and some host cell proteins. For the further purification of PCV2 Cap VLPs, SP Sepharose XL, Heparin Sepharose CL-6B and CIMmultus SO3 monolith were tested. VLPs were not retained on SP Sepharose XL. The purity of VLPs after chromatography on Heparin Sepharose CL-6B was only 4-7% and the recovery of VLPs was 5-7%. Using ion-exchange chromatography on the CIMmultus SO3 monolith, PCV2 Cap VLPs with the purity of about 40% were obtained. The recovery of VLPs after chromatography on the CIMmultus SO3 monolith was 15-18%. The self-assembly of purified PCV2 Cap protein into VLPs was confirmed by electron microscopy. Two-step chromatographic purification procedure of PCV2 Cap VLPs from yeast lysate was developed using Q Sepharose XL and cation-exchange CIMmultus SO3 monolith.

  8. Conservation of major and minor jelly-roll capsid proteins in Polinton (Maverick) transposons suggests that they are bona fide viruses

    PubMed Central

    2014-01-01

    Reviewers This article was reviewed by Lakshminarayan M. Iyer and I. King Jordan. For complete reviews, see the Reviewers’ Reports section. Polintons (also known as Mavericks) and Tlr elements of Tetrahymena thermophila represent two families of large DNA transposons widespread in eukaryotes. Here, we show that both Polintons and Tlr elements encode two key virion proteins, the major capsid protein with the double jelly-roll fold and the minor capsid protein, known as the penton, with the single jelly-roll topology. This observation along with the previously noted conservation of the genes for viral genome packaging ATPase and adenovirus-like protease strongly suggests that Polintons and Tlr elements combine features of bona fide viruses and transposons. We propose the name ‘Polintoviruses’ to denote these putative viruses that could have played a central role in the evolution of several groups of DNA viruses of eukaryotes. PMID:24773695

  9. Expression of Aleutian mink disease parvovirus capsid proteins in defined segments: localization of immunoreactive sites and neutralizing epitopes to specific regions.

    PubMed Central

    Bloom, M E; Martin, D A; Oie, K L; Huhtanen, M E; Costello, F; Wolfinbarger, J B; Hayes, S F; Agbandje-McKenna, M

    1997-01-01

    The capsid proteins of the ADV-G isolate of Aleutian mink disease parvovirus (ADV) were expressed in 10 nonoverlapping segments as fusions with maltose-binding protein in pMAL-C2 (pVP1, pVP2a through pVP2i). The constructs were designed to capture the VP1 unique sequence and the portions analogous to the four variable surface loops of canine parvovirus (CPV) in individual fragments (pVP2b, pVP2d, pVP2e, and pVP2g, respectively). The panel of fusion proteins was immunoblotted with sera from mink infected with ADV. Seropositive mink infected with either ADV-TR, ADV-Utah, or ADV-Pullman reacted preferentially against certain segments, regardless of mink genotype or virus inoculum. The most consistently immunoreactive regions were pVP2g, pVP2e, and pVP2f, the segments that encompassed the analogs of CPV surface loops 3 and 4. The VP1 unique region was also consistently immunoreactive. These findings indicated that infected mink recognize linear epitopes that localized to certain regions of the capsid protein sequence. The segment containing the hypervariable region (pVP2d), corresponding to CPV loop 2, was also expressed from ADV-Utah. An anti-ADV-G monoclonal antibody and a rabbit anti-ADV-G capsid antibody reacted exclusively with the ADV-G pVP2d segment but not with the corresponding segment from ADV-Utah. Mink infected with ADV-TR or ADV-Utah also preferentially reacted with the pVP2d sequence characteristic of that virus. These results suggested that the loop 2 region may contain a type-specific linear epitope and that the epitope may also be specifically recognized by infected mink. Heterologous antisera were prepared against the VP1 unique region and the four segments capturing the variable surface loops of CPV. The antisera against the proteins containing loop 3 or loop 4, as well as the anticapsid antibody, neutralized ADV-G infectivity in vitro and bound to capsids in immune electron microscopy. These results suggested that regions of the ADV capsid proteins

  10. Cyclin-dependent kinase 2 phosphorylates s/t-p sites in the hepadnavirus core protein C-terminal domain and is incorporated into viral capsids.

    PubMed

    Ludgate, Laurie; Ning, Xiaojun; Nguyen, David H; Adams, Christina; Mentzer, Laura; Hu, Jianming

    2012-11-01

    Phosphorylation of the hepadnavirus core protein C-terminal domain (CTD) is important for viral RNA packaging, reverse transcription, and subcellular localization. Hepadnavirus capsids also package a cellular kinase. The identity of the host kinase that phosphorylates the core CTD or gets packaged remains to be resolved. In particular, both the human hepatitis B virus (HBV) and duck hepatitis B virus (DHBV) core CTDs harbor several conserved serine/threonine-proline (S/T-P) sites whose phosphorylation state is known to regulate CTD functions. We report here that the endogenous kinase in the HBV capsids was blocked by chemical inhibitors of the cyclin-dependent kinases (CDKs), in particular, CDK2 inhibitors. The kinase phosphorylated the HBV CTD at the serine-proline (S-P) sites. Furthermore, we were able to detect CDK2 in purified HBV capsids by immunoblotting. Purified CDK2 phosphorylated the S/T-P sites of the HBV and DHBV CTD in vitro. Inhibitors of CDKs, of CDK2 in particular, decreased both HBV and DHBV CTD phosphorylation in vivo. Moreover, CDK2 inhibitors blocked DHBV CTD phosphorylation, specifically at the S/T-P sites, in a mammalian cell lysate. These results indicate that cellular CDK2 phosphorylates the functionally critical S/T-P sites of the hepadnavirus core CTD and is incorporated into viral capsids.

  11. Stabilising the Herpes Simplex Virus capsid by DNA packaging

    NASA Astrophysics Data System (ADS)

    Wuite, Gijs; Radtke, Kerstin; Sodeik, Beate; Roos, Wouter

    2009-03-01

    Three different types of Herpes Simplex Virus type 1 (HSV-1) nuclear capsids can be distinguished, A, B and C capsids. These capsids types are, respectively, empty, contain scaffold proteins, or hold DNA. We investigate the physical properties of these three capsids by combining biochemical and nanoindentation techniques. Atomic Force Microscopy (AFM) experiments show that A and C capsids are mechanically indistinguishable whereas B capsids already break at much lower forces. By extracting the pentamers with 2.0 M GuHCl or 6.0 M Urea we demonstrate an increased flexibility of all three capsid types. Remarkably, the breaking force of the B capsids without pentamers does not change, while the modified A and C capsids show a large drop in their breaking force to approximately the value of the B capsids. This result indicates that upon DNA packaging a structural change at or near the pentamers occurs which mechanically reinforces the capsids structure. The reported binding of proteins UL17/UL25 to the pentamers of the A and C capsids seems the most likely candidate for such capsids strengthening. Finally, the data supports the view that initiation of DNA packaging triggers the maturation of HSV-1 capsids.

  12. Modified recombinant adenoviruses increase porcine circovirus 2 capsid protein expression and induce enhanced immune responses in mice.

    PubMed

    Li, D L; Huang, Y; Chang, L L; DU, Q; Chen, Y; Wang, T T; Luo, X M; Zhao, X M; Tong, D W

    2016-01-01

    Porcine circovirus type 2 (PCV2) is the primary viral pathogen of porcine circovirus associated disease (PCVAD) and vaccination is an important method to prevent and control the disease. The expression of PCV2 capsid protein (Cap) in adenovirus vector system has been investigated, but the poor immune responses limit its application. In this study, transcriptional enhancer element largest intron of the human cytomegalovirus (Intron A) and woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) were applied to increase the immunogenicity of PCV2 Cap adenovirus-based vaccine. Western blot and indirect immunofluorescence assay (IFA) analysis showed that modified adenoviruses with Intron A and WPRE alone or both could significantly increase the expression of Cap compared to the unmodified adenoviruses. Furthermore, the humoral and cellular immune responses of the constructed recombinant adenoviruses were evaluated in mice. Indirect ELISA, virus neutralizing test and western blot showed that modified adenoviruses elicited higher humoral immune responses than unmodified adenovirus, and Intron A-WPRE-modified virus immunized group had better immune response than the others. Besides, the results of lymphocyte proliferation response and cytokines release assay showed that enhanced cellular immune responses were induced by modified adenoviruses. These results demonstrated that Intron A and WPRE significantly improved the expression of the Cap protein in adenovirus vector system and enhanced the immune responses in mice, making the adenovirus vector system more applicable against PCV2. PMID:27640437

  13. Bioprocessing of plant-derived virus-like particles of Norwalk virus capsid protein under current Good Manufacture Practice regulations

    PubMed Central

    Lai, Huafang; Chen, Qiang

    2012-01-01

    Despite the success in expressing a variety of subunit vaccine proteins in plants and the recent stride in improving vaccine accumulation levels by transient expression systems, there is still no plant-derived vaccine that has been licensed for human use. The lack of commercial success of plant-made vaccines lies in several technical and regulatory barriers that remain to be overcome. These challenges include the lack of scalable downstream processing procedures, the uncertainty of regulatory compliance of production processes, and the lack of demonstration of plant-derived products that meet the required standards of regulatory agencies in identity, purity, potency and safety. In this study, we addressed these remaining challenges and successfully demonstrate the ability of using plants to produce a pharmaceutical grade Norwalk virus (NV) vaccine under current Good Manufacture Practice (cGMP) guidelines at multiple gram scales. Our results demonstrate that an efficient and scalable extraction and purification scheme can established for processing virus-like particles (VLP) of NV capsid protein (NVCP). We successfully operated the upstream and downstream NVCP production processes under cGMP regulations. Furthermore, plant-derived NVCP VLP demonstrates the identity, purity, potency and safety that meet the preset release specifications. This material is being tested in a Phase I human clinical trial. This research provides the first report of producing a plant-derived vaccine at scale under cGMP regulations in an academic setting and an important step for plant-produced vaccines to become a commercial reality. PMID:22134876

  14. Distinct binding sites for zinc and double-stranded RNA in the reovirus outer capsid protein sigma 3.

    PubMed Central

    Schiff, L A; Nibert, M L; Co, M S; Brown, E G; Fields, B N

    1988-01-01

    By atomic absorption analysis, we determined that the reovirus outer capsid protein sigma 3, which binds double-stranded RNA (dsRNA), is a zinc metalloprotein. Using Northwestern blots and a novel zinc blotting technique, we localized the zinc- and dsRNA-binding activities of sigma 3 to distinct V8 protease-generated fragments. Zinc-binding activity was contained within an amino-terminal fragment that contained a transcription factor IIIA-like zinc-binding sequence, and dsRNA-binding activity was associated with a carboxy-terminal fragment. By these techniques, new zinc- and dsRNA-binding activities were also detected in reovirus core proteins. A sequence similarity was observed between the catalytic site of the picornavirus proteases and the transcription factor IIIA-like zinc-binding site within sigma 3. We suggest that the zinc- and dsRNA-binding activities of sigma 3 may be important for its proposed regulatory effects on viral and host cell transcription and translation. Images PMID:3275869

  15. Major Variations in HIV-1 Capsid Assembly Morphologies Involve Minor Variations in Molecular Structures of Structurally Ordered Protein Segments.

    PubMed

    Lu, Jun-Xia; Bayro, Marvin J; Tycko, Robert

    2016-06-17

    We present the results of solid state nuclear magnetic resonance (NMR) experiments on HIV-1 capsid protein (CA) assemblies with three different morphologies, namely wild-type CA (WT-CA) tubes with 35-60 nm diameters, planar sheets formed by the Arg(18)-Leu mutant (R18L-CA), and R18L-CA spheres with 20-100 nm diameters. The experiments are intended to elucidate molecular structural variations that underlie these variations in CA assembly morphology. We find that multidimensional solid state NMR spectra of (15)N,(13)C-labeled CA assemblies are remarkably similar for the three morphologies, with only small differences in (15)N and (13)C chemical shifts, no significant differences in NMR line widths, and few differences in the number of detectable NMR cross-peaks. Thus, the pronounced differences in morphology do not involve major differences in the conformations and identities of structurally ordered protein segments. Instead, morphological variations are attributable to variations in conformational distributions within disordered segments, which do not contribute to the solid state NMR spectra. Variations in solid state NMR signals from certain amino acid side chains are also observed, suggesting differences in the intermolecular dimerization interface between curved and planar CA lattices, as well as possible differences in intramolecular helix-helix packing. PMID:27129282

  16. The structure of alfalfa mosaic virus capsid protein assembled as a T=1 icosahedral particle at 4.0-A resolution.

    PubMed Central

    Kumar, A; Reddy, V S; Yusibov, V; Chipman, P R; Hata, Y; Fita, I; Fukuyama, K; Rossmann, M G; Loesch-Fries, L S; Baker, T S; Johnson, J E

    1997-01-01

    K. Fukuyama, S. S. Abdel-Meguid, J. E. Johnson, and M. G. Rossmann (J. Mol. Biol. 167:873-984, 1983) reported the structure of alfalfa mosaic virus assembled from the capsid protein as a T=1 icosahedral empty particle at 4.5-A resolution. The information contained in the structure included the particle size, protein shell thickness, presence of wide holes at the icosahedral fivefold axes, and a proposal that the capsid protein adopts a beta-barrel structure. In the present work, the X-ray diffraction data of Fukuyama et al. as well as the data subsequently collected by I. Fita, Y. Hata, and M. G. Rossmann (unpublished) were reprocessed to 4.0-A resolution, and the structure was solved by molecular replacement. The current structure allowed the tracing of the polypeptide chain of the capsid protein confirming the beta-sandwich fold and provides information on intersubunit interactions in the particle. However, it was not possible to definitively assign the amino acid sequence to the side chain density at 4-A resolution. The particle structure was also determined by cryoelectron microscopy and image reconstruction methods and found to be in excellent agreement with the X-ray model. PMID:9311881

  17. Distinct Effects of Two HIV-1 Capsid Assembly Inhibitor Families That Bind the Same Site within the N-Terminal Domain of the Viral CA Protein

    PubMed Central

    Titolo, Steve; von Schwedler, Uta; Goudreau, Nathalie; Mercier, Jean-François; Wardrop, Elizabeth; Faucher, Anne-Marie; Coulombe, René; Banik, Soma S. R.; Fader, Lee; Gagnon, Alexandre; Kawai, Stephen H.; Rancourt, Jean; Tremblay, Martin; Yoakim, Christiane; Simoneau, Bruno; Archambault, Jacques; Sundquist, Wesley I.

    2012-01-01

    The emergence of resistance to existing classes of antiretroviral drugs necessitates finding new HIV-1 targets for drug discovery. The viral capsid (CA) protein represents one such potential new target. CA is sufficient to form mature HIV-1 capsids in vitro, and extensive structure-function and mutational analyses of CA have shown that the proper assembly, morphology, and stability of the mature capsid core are essential for the infectivity of HIV-1 virions. Here we describe the development of an in vitro capsid assembly assay based on the association of CA-NC subunits on immobilized oligonucleotides. This assay was used to screen a compound library, yielding several different families of compounds that inhibited capsid assembly. Optimization of two chemical series, termed the benzodiazepines (BD) and the benzimidazoles (BM), resulted in compounds with potent antiviral activity against wild-type and drug-resistant HIV-1. Nuclear magnetic resonance (NMR) spectroscopic and X-ray crystallographic analyses showed that both series of inhibitors bound to the N-terminal domain of CA. These inhibitors induce the formation of a pocket that overlaps with the binding site for the previously reported CAP inhibitors but is expanded significantly by these new, more potent CA inhibitors. Virus release and electron microscopic (EM) studies showed that the BD compounds prevented virion release, whereas the BM compounds inhibited the formation of the mature capsid. Passage of virus in the presence of the inhibitors selected for resistance mutations that mapped to highly conserved residues surrounding the inhibitor binding pocket, but also to the C-terminal domain of CA. The resistance mutations selected by the two series differed, consistent with differences in their interactions within the pocket, and most also impaired virus replicative capacity. Resistance mutations had two modes of action, either directly impacting inhibitor binding affinity or apparently increasing the overall

  18. The presence of Chlamydia phage PhiCPG1 capsid protein VP1 genes and antibodies in patients infected with Chlamydia trachomatis.

    PubMed

    Ma, Jingyue; Liu, Yuan; Liu, Yuanjun; Li, Lingjie; Hou, Shuping; Gao, Xibo; Qi, Manli; Liu, Quanzhong

    2016-01-01

    Chlamydia phage PhiCPG1 has been found in Chlamydia caviae in a guinea pig model for inclusion conjunctivitis, raising the possibility that Chlamydia phage is also present in patients infected with C. trachomatis (Ct). In the present study, we assayed for presence of Chlamydia phage capsid protein VP1 genes and antibodies in 84 non-Ct controls and 206 Ct patients using an enzyme-linked immunoassay (ELISA), followed by verification with Western blot. None of the subjects were exposed to an antibiotic treatment or had a C. pneumoniae infection. The VP1 antibody test was positive in both, the ELISA and Western blot assay, in 4 Ct patients. PCR amplification experiments revealed presence of the VP1 gene in 5 Ct patients. The results suggest that Chlamydia phage capsid protein VP1 may exist in some Ct patients. PMID:27213552

  19. Vaccination with Aleutian mink disease parvovirus (AMDV) capsid proteins enhances disease, while vaccination with the major non-structural AMDV protein causes partial protection from disease.

    PubMed

    Aasted, B; Alexandersen, S; Christensen, J

    1998-07-01

    Vaccination studies were performed with partially purified recombinant AMDV VP1/2 capsids as well as with the major AMDV non-structural protein (NS1). All vaccine constructs induced an antibody response, but did not prevent infection upon challenge with AMDV. The severity of Aleutian disease (AD) was judged by the serum gammaglobulin level, the quantity of peripheral blood CD8 lymphocytes, antibody titers to VP1/2 and NS1 proteins and mink death rates. The VP1/2 vaccine constructs enhanced the disease process with drastic death rates for the vaccinated mink. On the contrary, the NS1 vaccine constructs resulted in milder AD than seen in the non-vaccinated mink. PMID:9682374

  20. Effective delivery of large genes to the retina by dual AAV vectors

    PubMed Central

    Trapani, Ivana; Colella, Pasqualina; Sommella, Andrea; Iodice, Carolina; Cesi, Giulia; de Simone, Sonia; Marrocco, Elena; Rossi, Settimio; Giunti, Massimo; Palfi, Arpad; Farrar, Gwyneth J; Polishchuk, Roman; Auricchio, Alberto

    2014-01-01

    Retinal gene therapy with adeno-associated viral (AAV) vectors is safe and effective in humans. However, AAV's limited cargo capacity prevents its application to therapies of inherited retinal diseases due to mutations of genes over 5 kb, like Stargardt's disease (STGD) and Usher syndrome type IB (USH1B). Previous methods based on ‘forced’ packaging of large genes into AAV capsids may not be easily translated to the clinic due to the generation of genomes of heterogeneous size which raise safety concerns. Taking advantage of AAV's ability to concatemerize, we generated dual AAV vectors which reconstitute a large gene by either splicing (trans-splicing), homologous recombination (overlapping), or a combination of the two (hybrid). We found that dual trans-splicing and hybrid vectors transduce efficiently mouse and pig photoreceptors to levels that, albeit lower than those achieved with a single AAV, resulted in significant improvement of the retinal phenotype of mouse models of STGD and USH1B. Thus, dual AAV trans-splicing or hybrid vectors are an attractive strategy for gene therapy of retinal diseases that require delivery of large genes. PMID:24150896

  1. Chlamydiaphage φCPG1 Capsid Protein Vp1 Inhibits Chlamydia trachomatis Growth via the Mitogen-Activated Protein Kinase Pathway.

    PubMed

    Guo, Yuanli; Guo, Rui; Zhou, Quan; Sun, Changgui; Zhang, Xinmei; Liu, Yuanjun; Liu, Quanzhong

    2016-04-01

    Chlamydia trachomatis is the most common cause of curable bacterial sexually transmitted infections worldwide. Although the pathogen is well established, the pathogenic mechanisms remain unclear. Given the current challenges of antibiotic resistance and blocked processes of vaccine development, the use of a specific chlamydiaphage may be a new treatment solution. φCPG1 is a lytic phage specific for Chlamydia caviae, and shows over 90% nucleotide sequence identity with other chlamydiaphages. Vp1 is the major capsid protein of φCPG1. Purified Vp1 was previously confirmed to inhibit Chlamydia trachomatis growth. We here report the first attempt at exploring the relationship between Vp1-treated C. trachomatis and the protein and gene levels of the mitogen-activated/extracellular regulated protein kinase (MAPK/ERK) pathway by Western blotting and real-time PCR, respectively. Moreover, we evaluated the levels of pro-inflammatory cytokines interleukin (IL)-8 and IL-1 by enzyme-linked immunosorbent assay after Vp1 treatment. After 48 h of incubation, the p-ERK level of the Vp1-treated group decreased compared with that of the Chlamydia infection group. Accordingly, ERK1 and ERK2 mRNA expression levels of the Vp1-treated group also decreased compared with the Chlamydia infection group. IL-8 and IL-1 levels were also decreased after Vp1 treatment compared with the untreated group. Our results demonstrate that the inhibition effect of the chlamydiaphage φCPG1 capsid protein Vp1 on C. trachomatis is associated with the MAPK pathway, and inhibits production of the pro-inflammatory cytokines IL-8 and IL-1. The bacteriophages may provide insight into a new signaling transduction mechanism to influence their hosts, in addition to bacteriolysis. PMID:27089359

  2. Chlamydiaphage φCPG1 Capsid Protein Vp1 Inhibits Chlamydia trachomatis Growth via the Mitogen-Activated Protein Kinase Pathway

    PubMed Central

    Guo, Yuanli; Guo, Rui; Zhou, Quan; Sun, Changgui; Zhang, Xinmei; Liu, Yuanjun; Liu, Quanzhong

    2016-01-01

    Chlamydia trachomatis is the most common cause of curable bacterial sexually transmitted infections worldwide. Although the pathogen is well established, the pathogenic mechanisms remain unclear. Given the current challenges of antibiotic resistance and blocked processes of vaccine development, the use of a specific chlamydiaphage may be a new treatment solution. φCPG1 is a lytic phage specific for Chlamydia caviae, and shows over 90% nucleotide sequence identity with other chlamydiaphages. Vp1 is the major capsid protein of φCPG1. Purified Vp1 was previously confirmed to inhibit Chlamydia trachomatis growth. We here report the first attempt at exploring the relationship between Vp1-treated C. trachomatis and the protein and gene levels of the mitogen-activated/extracellular regulated protein kinase (MAPK/ERK) pathway by Western blotting and real-time PCR, respectively. Moreover, we evaluated the levels of pro-inflammatory cytokines interleukin (IL)-8 and IL-1 by enzyme-linked immunosorbent assay after Vp1 treatment. After 48 h of incubation, the p-ERK level of the Vp1-treated group decreased compared with that of the Chlamydia infection group. Accordingly, ERK1 and ERK2 mRNA expression levels of the Vp1-treated group also decreased compared with the Chlamydia infection group. IL-8 and IL-1 levels were also decreased after Vp1 treatment compared with the untreated group. Our results demonstrate that the inhibition effect of the chlamydiaphage φCPG1 capsid protein Vp1 on C. trachomatis is associated with the MAPK pathway, and inhibits production of the pro-inflammatory cytokines IL-8 and IL-1. The bacteriophages may provide insight into a new signaling transduction mechanism to influence their hosts, in addition to bacteriolysis. PMID:27089359

  3. Alteration of amino acid 101 within capsid protein VP-1 changes the pathogenicity of Theiler's murine encephalomyelitis virus

    PubMed Central

    1989-01-01

    Chronic Theiler's murine encephalomyelitis virus infection of susceptible mice is an animal model for human demyelinating diseases. Previously we described an altered and diminished pattern of central nervous system disease in immunocompetent SJL/J mice infected with a variant virus. This variant virus H7A6-2 was selected with a neutralizing mAb recognizing the capsid protein VP-1 of Theiler's virus. Here we characterize the variant virus by ELISA and neutralization assays and by sequencing selected regions of the viral RNA genome and relate the alteration to disease. The variant virus contains one single point mutation within a neutralizing epitope of VP- 1. This nucleotide change lead to an amino acid replacement at amino acid 101 of VP-1, a threonine (wild type) to an isoleucine (variant). Model building based on sequence alignments and the known structure of the related Mengo virus indicates that the altered amino acid is located in an exposed loop on the surface of the virus at the periphery of a site that has been proposed to be the receptor binding site. The results of ELISA, neutralization assay, and direct RNA sequencing provide for the first time an opportunity to precisely map an important structural determinant of neurovirulence. PMID:2479706

  4. Alteration of amino acid 101 within capsid protein VP-1 changes the pathogenicity of Theiler's murine encephalomyelitis virus.

    PubMed

    Zurbriggen, A; Hogle, J M; Fujinami, R S

    1989-12-01

    Chronic Theiler's murine encephalomyelitis virus infection of susceptible mice is an animal model for human demyelinating diseases. Previously we described an altered and diminished pattern of central nervous system disease in immunocompetent SJL/J mice infected with a variant virus. This variant virus H7A6-2 was selected with a neutralizing mAb recognizing the capsid protein VP-1 of Theiler's virus. Here we characterize the variant virus by ELISA and neutralization assays and by sequencing selected regions of the viral RNA genome and relate the alteration to disease. The variant virus contains one single point mutation within a neutralizing epitope of VP-1. This nucleotide change lead to an amino acid replacement at amino acid 101 of VP-1, a threonine (wild type) to an isoleucine (variant). Model building based on sequence alignments and the known structure of the related Mengo virus indicates that the altered amino acid is located in an exposed loop on the surface of the virus at the periphery of a site that has been proposed to be the receptor binding site. The results of ELISA, neutralization assay, and direct RNA sequencing provide for the first time an opportunity to precisely map an important structural determinant of neurovirulence.

  5. Phylogenetic Distribution of the Capsid Assembly Protein Gene (g20) of Cyanophages in Paddy Floodwaters in Northeast China

    PubMed Central

    Jing, Ruiyong; Liu, Junjie; Yu, Zhenhua; Liu, Xiaobing; Wang, Guanghua

    2014-01-01

    Numerous studies have revealed the high diversity of cyanophages in marine and freshwater environments, but little is currently known about the diversity of cyanophages in paddy fields, particularly in Northeast (NE) China. To elucidate the genetic diversity of cyanophages in paddy floodwaters in NE China, viral capsid assembly protein gene (g20) sequences from five floodwater samples were amplified with the primers CPS1 and CPS8. Denaturing gradient gel electrophoresis (DGGE) was applied to distinguish different g20 clones. In total, 54 clones differing in g20 nucleotide sequences were obtained in this study. Phylogenetic analysis showed that the distribution of g20 sequences in this study was different from that in Japanese paddy fields, and all the sequences were grouped into Clusters α, β, γ and ε. Within Clusters α and β, three new small clusters (PFW-VII∼-IX) were identified. UniFrac analysis of g20 clone assemblages demonstrated that the community compositions of cyanophage varied among marine, lake and paddy field environments. In paddy floodwater, community compositions of cyanophage were also different between NE China and Japan. PMID:24533125

  6. Singapore grouper iridovirus (SGIV) encoded SGIV-miR-13 attenuates viral infection via modulating major capsid protein expression.

    PubMed

    Yan, Yang; Guo, Chuanyu; Ni, Songwei; Wei, Jingguang; Li, Pengfei; Wei, Shina; Cui, Huachun; Qin, Qiwei

    2015-07-01

    Singapore grouper iridovirus (SGIV) encodes a number of microRNAs (miRNAs) during infection. Among these, SGIV-miR-13 has robust expression at early stage after SGIV inoculation, raising a huge possibility that it participates in the viral infection. In the present study, we found that SGIV-miR-13 overexpression led to a significant reduction in viral load in cultured fish cells with SGIV infection, as demonstrated by less level of viral transcripts, viral-induced cytopathic effect (CPE) and assembled viral particles. In silico analysis showed that SGIV-miR-13 maps antisense to the coding region of SGIV major capsid protein (SGIV-MCP), suggesting it to be a potential target of SGIV-miR-13. Coincidently, SGIV-miR-13 showed an inverted expression profile with SGIV-MCP during SGIV infection, and luciferase reporter assay further demonstrated SGIV-MCP as the direct target of SGIV-miR-13. Functionally, overexpression of SGIV-miR-13 inhibited, whereas knockdown of SGIV-miR-13 restored the expression of SGIV-MCP during viral infection, resulting in altered viral progeny emergences. In conclusion, our data suggest that SGIV-miR-13 functions in a negative regulatory mechanism to restrict early viral replication, and thus prevents excessive cellular antiviral responses during SGIV infection. The detailed investigation of SGIV encoded miRNAs may provide new insights into the mechanism of iridovirus pathogenesis.

  7. Variable internal flexibility characterizes the helical capsid formed by agrobacterium VirE2 protein on single-stranded DNA.

    PubMed

    Bharat, Tanmay A M; Zbaida, David; Eisenstein, Miriam; Frankenstein, Ziv; Mehlman, Tevie; Weiner, Lev; Sorzano, Carlos Oscar S; Barak, Yoav; Albeck, Shira; Briggs, John A G; Wolf, Sharon G; Elbaum, Michael

    2013-07-01

    Agrobacterium is known for gene transfer to plants. In addition to a linear ssDNA oligonucleotide, Agrobacterium tumefaciens secretes an abundant ssDNA-binding effector, VirE2. In many ways VirE2 adapts the conjugation mechanism to transform the eukaryotic host. The crystal structure of VirE2 shows two compact domains joined by a flexible linker. Bound to ssDNA, VirE2 forms an ordered solenoidal shell, or capsid known as the T-complex. Here, we present a three-dimensional reconstruction of the VirE2-ssDNA complex using cryo-electron microscopy and iterative helical real-space reconstruction. High-resolution refinement was not possible due to inherent heterogeneity in the protein structure. By a combination of computational modeling, chemical modifications, mass spectroscopy, and electron paramagnetic resonance, we found that the N-terminal domain is tightly constrained by both tangential and longitudinal links, while the C terminus is weakly constrained. The quaternary structure is thus rigidly assembled while remaining locally flexible. This flexibility may be important in accommodating substrates without sequence specificity. PMID:23769668

  8. Variable internal flexibility characterizes the helical capsid formed by agrobacterium VirE2 protein on single-stranded DNA.

    PubMed

    Bharat, Tanmay A M; Zbaida, David; Eisenstein, Miriam; Frankenstein, Ziv; Mehlman, Tevie; Weiner, Lev; Sorzano, Carlos Oscar S; Barak, Yoav; Albeck, Shira; Briggs, John A G; Wolf, Sharon G; Elbaum, Michael

    2013-07-01

    Agrobacterium is known for gene transfer to plants. In addition to a linear ssDNA oligonucleotide, Agrobacterium tumefaciens secretes an abundant ssDNA-binding effector, VirE2. In many ways VirE2 adapts the conjugation mechanism to transform the eukaryotic host. The crystal structure of VirE2 shows two compact domains joined by a flexible linker. Bound to ssDNA, VirE2 forms an ordered solenoidal shell, or capsid known as the T-complex. Here, we present a three-dimensional reconstruction of the VirE2-ssDNA complex using cryo-electron microscopy and iterative helical real-space reconstruction. High-resolution refinement was not possible due to inherent heterogeneity in the protein structure. By a combination of computational modeling, chemical modifications, mass spectroscopy, and electron paramagnetic resonance, we found that the N-terminal domain is tightly constrained by both tangential and longitudinal links, while the C terminus is weakly constrained. The quaternary structure is thus rigidly assembled while remaining locally flexible. This flexibility may be important in accommodating substrates without sequence specificity.

  9. Absolute quantification of norovirus capsid protein in food, water, and soil using synthetic peptides with electrospray and MALDI mass spectrometry.

    PubMed

    Hartmann, Erica M; Colquhoun, David R; Schwab, Kellogg J; Halden, Rolf U

    2015-04-01

    Norovirus infections are one of the most prominent public health problems of microbial origin in the U.S. and other industrialized countries. Surveillance is necessary to prevent secondary infection, confirm successful cleanup after outbreaks, and track the causative agent. Quantitative mass spectrometry, based on absolute quantitation with stable-isotope labeled peptides, is a promising tool for norovirus monitoring because of its speed, sensitivity, and robustness in the face of environmental inhibitors. In the current study, we present two new methods for the detection of the norovirus genogroup I capsid protein using electrospray and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The peptide TLDPIEVPLEDVR was used to quantify norovirus-like particles down to 500 attomoles with electrospray and 100 attomoles with MALDI. With MALDI, we also demonstrate a detection limit of 1 femtomole and a quantitative dynamic range of 5 orders of magnitude in the presence of an environmental matrix effect. Due to the rapid processing time and applicability to a wide range of environmental sample types (bacterial lysate, produce, milk, soil, and groundwater), mass spectrometry-based absolute quantitation has a strong potential for use in public health and environmental sciences.

  10. Packaging and structural phenotype of brome mosaic virus capsid protein with altered N-terminal {beta}-hexamer structure

    SciTech Connect

    Wispelaere, Melissanne de; Chaturvedi, Sonali; Wilkens, Stephan; Rao, A.L.N.

    2011-10-10

    The first 45 amino acid region of brome mosaic virus (BMV) capsid protein (CP) contains RNA binding and structural domains that are implicated in the assembly of infectious virions. One such important structural domain encompassing amino acids {sup 28}QPVIV{sup 32}, highly conserved between BMV and cowpea chlorotic mottle virus (CCMV), exhibits a {beta}-hexamer structure. In this study we report that alteration of the {beta}-hexamer structure by mutating {sup 28}QPVIV{sup 32} to {sup 28}AAAAA{sup 32} had no effect either on symptom phenotype, local and systemic movement in Chenopodium quinoa and RNA profile of in vivo assembled virions. However, sensitivity to RNase and assembly phenotypes distinguished virions assembled with CP subunits having {beta}-hexamer from those of wild type. A comparison of 3-D models obtained by cryo electron microscopy revealed overall similar structural features for wild type and mutant virions, with small but significant differences near the 3-fold axes of symmetry.

  11. Absolute Quantification of Norovirus Capsid Protein in Food, Water, and Soil Using Synthetic Peptides with Electrospray and MALDI Mass Spectrometry

    PubMed Central

    Hartmann, Erica M.; Colquhoun, David R.; Schwab, Kellogg J.; Halden, Rolf U.

    2015-01-01

    Norovirus infections are one of the most prominent public health problems of microbial origin in the U.S. and other industrialized countries. Surveillance is necessary to prevent secondary infection, confirm successful cleanup after outbreaks, and track the causative agent. Quantitative mass spectrometry, based on absolute quantitation with stable-isotope labeled peptides, is a promising tool for norovirus monitoring because of its speed, sensitivity, and robustness in the face of environmental inhibitors. In the current study, we present two new methods for the detection of the norovirus genogroup I capsid protein using electrospray and matrixassisted laser desorption/ionization (MALDI) mass spectrometry. The peptide TLDPIEVPLEDVR was used to quantify norovirus-like particles down to 500 attomoles with electrospray and 100 attomoles with MALDI. With MALDI, we also demonstrate a detection limit of 1 femtomole and a quantitative dynamic range of 5 orders of magnitude in the presence of an environmental matrix effect. Due to the rapid processing time and applicability to a wide range of environmental sample types (bacterial lysate, produce, milk, soil, and groundwater), mass spectrometry-based absolute quantitation has a strong potential for use in public health and environmental sciences. PMID:25603302

  12. Reduced retinal transduction and enhanced transgene-directed immunogenicity with intravitreal delivery of rAAV following posterior vitrectomy in dogs

    PubMed Central

    Boyd, RF; Boye, SL; Conlon, TJ; Erger, KE; Sledge, DG; Langohr, IM; Hauswirth, WW; Komáromy, AM; Boye, SE; Petersen-Jones, SM; Bartoe, JT

    2016-01-01

    Adeno-associated virus (AAV) vector-based gene therapy is a promising treatment strategy for delivery of neurotrophic transgenes to retinal ganglion cells (RGCs) in glaucoma patients. Retinal distribution of transgene expression following intravitreal injection (IVT) of AAV is variable in animal models and the vitreous humor may represent a barrier to initial vector penetration. The primary goal of our study was to investigate the effect of prior core vitrectomy with posterior hyaloid membrane peeling on pattern and efficiency of transduction of a capsid amino acid substituted AAV2 vector, carrying the green fluorescent protein (GFP) reporter transgene following IVT in dogs. When progressive intraocular inflammation developed starting 4 weeks post IVT, the study plan was modified to allow detailed characterization of the etiology as a secondary goal. Unexpectedly, surgical vitrectomy was found to significantly limit transduction, whereas in non-vitrectomized eyes transduction efficiency reached upwards to 37.3% of RGC layer cells. The developing retinitis was characterized by mononuclear cell infiltrates resulting from a delayed-type hypersensitivity reaction, which we suspect was directed at the GFP transgene. Our results, in a canine large animal model, support caution when considering surgical vitrectomy before IVT for retinal gene therapy in patients, as prior vitrectomy appears to significantly reduce transduction efficiency and may predispose the patient to development of vector-induced immune reactions. PMID:27052802

  13. Local and systemic responses following intravitreous injection of AAV2-encoded modified Volvox channelrhodopsin-1 in a genetically blind rat model.

    PubMed

    Sugano, E; Tabata, K; Takahashi, M; Nishiyama, F; Shimizu, H; Sato, M; Tamai, M; Tomita, H

    2016-02-01

    We previously designed a modified channelrhodopsin-1 (mVChR1) protein chimera with a broader action than that of Chlamydomonas channelrhodopsin-2 and reported that its transduction into retinal ganglion cells can restore visual function in genetically blind, dystrophic Royal College of Surgeons (RCS) rats, with photostimuli ranging from 486 to 640 nm. In the current study, we sought to investigate the safety and influence of mVChR1 transgene expression. Adeno-associated virus type 2 encoding mVChR1 was administered by intravitreous injection into dystrophic RCS rats. Reverse-transcription PCR was used to monitor virus and transgene dissemination and the results demonstrated that their expression was restricted specifically within the eye tissues, and not in non-target organs. Moreover, examination of the blood, plasma and serum revealed that no excess immunoreactivity was present, as determined using standard clinical hematological parameters. Serum antibodies targeting the recombinant adeno-associated virus (rAAV) capsid increased after the injection; however, no increase in mVChR1 antibody was detected during the observation period. In addition, retinal histological examination showed no signs of inflammation in rAAV-injected rats. In conclusion, our results demonstrate that mVChR1 can be exogenously expressed without harmful immunological reactions in vivo. These findings will aid in studies of AAV gene transfer to restore vision in late-stage retinitis pigmentosa. PMID:26440056

  14. An efficient approach for recombinant expression and purification of the viral capsid protein from beak and feather disease virus (BFDV) in Escherichia coli.

    PubMed

    Sarker, Subir; Ghorashi, Seyed A; Swarbrick, Crystall M D; Khandokar, Yogesh B; Himiari, Zainab; Forwood, Jade K; Raidal, Shane R

    2015-04-01

    Structural insights into the biology of viruses such as beak and feather disease virus (BFDV) which do not replicate in cell cultures are increasingly reliant on recombinant methods for protein production and purification. Development of efficient methods for homogenous production of BFDV capsid protein is also essential for vaccine development and diagnostic purposes. In this study, two different plasmids (pMCSG21 and pMCSG24), three homologous BFDV capsid proteins, and two unique expression media (auto-induction and IPTG-induced expression) were trialled for over-expression of the BFDV in Escherichia coli. Over-expression was observed for all three recombinant targets of BFDV capsid protein using E. coli BL21 (DE3) Rosetta 2 cell lines under IPTG induction. These proteins could be purified using an optimized, two-step purification process using a buffer containing 20mM N-cyclohexyl-3-aminopropanesulfonic acid (CAPS), 500 mM NaCl and supplemented with 200 mM L-arginine at pH 10.5, to yield a soluble and stable protein of greater than 95% purity. The final concentration of purified protein was approximately fourteen-to-eighteen fold greater than that reported previously. Initial crystallization and X-ray diffraction confirm that the protein is structured in a manner consistent with icosahedral symmetry. Antigenicity of recombinant Cap was confirmed by immunoassay, verifying its validity for use in continued experimentation as a potential DNA vaccine, a reagent in diagnostic assays, and purified concentrated protein for structural and functional biology.

  15. High-Resolution X-Ray Structure and Functional Analysis of the Murine Norovirus 1 Capsid Protein Protruding Domain▿

    PubMed Central

    Taube, Stefan; Rubin, John R.; Katpally, Umesh; Smith, Thomas J.; Kendall, Ann; Stuckey, Jeanne A.; Wobus, Christiane E.

    2010-01-01

    Murine noroviruses (MNV) are closely related to the human noroviruses (HuNoV), which cause the majority of nonbacterial gastroenteritis. Unlike HuNoV, MNV grow in culture and in a small-animal model that represents a tractable model to study norovirus biology. To begin a detailed investigation of molecular events that occur during norovirus binding to cells, the crystallographic structure of the murine norovirus 1 (MNV-1) capsid protein protruding (P) domain has been determined. Crystallization of the bacterially expressed protein yielded two different crystal forms (Protein Data Bank identifiers [PDB ID], 3LQ6 and 3LQE). Comparison of the structures indicated a large degree of structural mobility in loops on the surface of the P2 subdomain. Specifically, the A′-B′ and E′-F′ loops were found in open and closed conformations. These regions of high mobility include the known escape mutation site for the neutralizing antibody A6.2 and an attenuation mutation site, which arose after serial passaging in culture and led to a loss in lethality in STAT1−/− mice, respectively. Modeling of a Fab fragment and crystal structures of the P dimer into the cryoelectron microscopy three-dimensional (3D) image reconstruction of the A6.2/MNV-1 complex indicated that the closed conformation is most likely bound to the Fab fragment and that the antibody contact is localized to the A′-B′ and E′-F′ loops. Therefore, we hypothesize that these loop regions and the flexibility of the P domains play important roles during MNV-1 binding to the cell surface. PMID:20335262

  16. Cloning and expression of a truncated pigeon circovirus capsid protein suitable for antibody detection in infected pigeons.

    PubMed

    Daum, Iris; Finsterbusch, Tim; Härtle, Stefan; Göbel, Thomas W; Mankertz, Annette; Korbel, Rüdiger; Grund, Christian

    2009-04-01

    Infections with pigeon circovirus (PiCV) (also termed columbid circovirus) occur in meat and racing pigeons (Columba livia) of all ages and have been reported worldwide. A PiCV infection is associated with immunosuppression and the development of young pigeon disease syndrome. An indirect enzyme-linked immunosorbent assay (ELISA) for the detection of virus-specific serum antibody was developed for research purposes. In the absence of a method to propagate PiCV in cell culture, the assay was based on a recombinant truncated capsid protein (rCapPiCV) produced by overexpression in Escherichia coli. A 6xHis-Tag was fused to the N-terminus of the protein to facilitate purification by metal affinity chromatography and detection by anti-His antibody. PiCV-negative and PiCV-positive control sera were generated by inoculation of pigeons with tissue homogenate containing PiCV, followed by five weekly blood sample collections. Western blotting of the immune serum revealed a specific protein band of approximately 32 kDa, which was absent in the pre-immune sera. Using rCapPiCV as antigen in an indirect ELISA, PiCV-specific antibody was detected in sera of the experimentally PiCV-infected pigeons collected at 1 to 5 weeks post infection. By testing 118 field sera collected in the years 1989, 1991, 1994 and 2008 in the rCapPiCV ELISA, virus-specific antibody was detected in 89 (75%) of the sera. The results obtained demonstrate that the rCapPiCV-based indirect ELISA is able to detect PiCV-specific antibodies in pigeon sera and may be a useful tool for PiCV serodiagnosis.

  17. Controlling viral capsid assembly with templating

    NASA Astrophysics Data System (ADS)

    Hagan, Michael F.

    2008-05-01

    We develop coarse-grained models that describe the dynamic encapsidation of functionalized nanoparticles by viral capsid proteins. We find that some forms of cooperative interactions between protein subunits and nanoparticles can dramatically enhance rates and robustness of assembly, as compared to the spontaneous assembly of subunits into empty capsids. For large core-subunit interactions, subunits adsorb onto core surfaces en masse in a disordered manner, and then undergo a cooperative rearrangement into an ordered capsid structure. These assembly pathways are unlike any identified for empty capsid formation. Our models can be directly applied to recent experiments in which viral capsid proteins assemble around functionalized inorganic nanoparticles [Sun , Proc. Natl. Acad. Sci. U.S.A. 104, 1354 (2007)]. In addition, we discuss broader implications for understanding the dynamic encapsidation of single-stranded genomic molecules during viral replication and for developing multicomponent nanostructured materials.

  18. NP1 Protein of the Bocaparvovirus Minute Virus of Canines Controls Access to the Viral Capsid Genes via Its Role in RNA Processing

    PubMed Central

    Fasina, Olufemi O.; Dong, Yanming

    2015-01-01

    ABSTRACT Minute virus of canines (MVC) is an autonomous parvovirus in the genus Bocaparvovirus. It has a single promoter that generates a single pre-mRNA processed via alternative splicing and alternative polyadenylation to produce at least 8 mRNA transcripts. MVC contains two polyadenylation sites, one at the right-hand end of the genome, (pA)d, and another complex site, (pA)p, within the capsid-coding region. During viral infection, the mRNAs must extend through (pA)p and undergo additional splicing of the immediately upstream 3D∕3A intron to access the capsid gene. MVC NP1 is a 22-kDa nuclear phosphoprotein unique to the genus Bocaparvovirus of the Parvovirinae which we have shown governs suppression of (pA)p independently of viral genome replication. We show here that in addition to suppression of (pA)p, NP1 is also required for the excision of the MVC 3D∕3A intron, independently of its effect on alternative polyadenylation. Mutations of the arginine∕serine (SR) di-repeats within the intrinsically disordered amino terminus of NP1 are required for splicing of the capsid transcript but not suppression of polyadenylation at (pA)p. 3′-end processing of MVC mRNAs at (pA)p is critical for viral genome replication and the optimal expression of NP1 and NS1. Thus, a finely tuned balance between (pA)p suppression and usage is necessary for efficient virus replication. NP1 is the first parvovirus protein implicated in RNA processing. Its characterization reveals another way that parvoviruses govern access to their capsid protein genes, namely, at the RNA level, by regulating the essential splicing of an intron and the suppression of an internal polyadenylation site. IMPORTANCE The Parvovirinae are small nonenveloped icosahedral viruses that are important pathogens in many animal species, including humans. Although parvoviruses have only subtle early-to-late expression shifts, they all regulate access to their capsid genes. Minute virus of canines (MVC) is an

  19. A nuclear fraction of turnip crinkle virus capsid protein is important for elicitation of the host resistance response.

    PubMed

    Kang, Sung-Hwan; Qu, Feng; Morris, T Jack

    2015-12-01

    The N-terminal 25 amino acids (AAs) of turnip crinkle virus (TCV) capsid protein (CP) are recognized by the resistance protein HRT to trigger a hypersensitive response (HR) and systemic resistance to TCV infection. This same region of TCV CP also contains a motif that interacts with the transcription factor TIP, as well as a nuclear localization signal (NLS). However, it is not yet known whether nuclear localization of TCV CP is needed for the induction of HRT-mediated HR and resistance. Here we present new evidence suggesting a tight correlation between nuclear inclusions formed by CP and the manifestation of HR. We show that a fraction of TCV CP localized to cell nuclei to form discrete inclusion-like structures, and a mutated CP (R6A) known to abolish HR failed to form nuclear inclusions. Notably, TIP-CP interaction augments the inclusion-forming activity of CP by tethering inclusions to the nuclear membrane. This TIP-mediated augmentation is also critical for HR resistance, as another CP mutant (R8A) known to elicit a less restrictive HR, though still self-associated into nuclear inclusions, failed to direct inclusions to the nuclear membrane due to its inability to interact with TIP. Finally, exclusion of CP from cell nuclei abolished induction of HR. Together, these results uncovered a strong correlation between nuclear localization and nuclear inclusion formation by TCV CP and induction of HR, and suggest that CP nuclear inclusions could be the key trigger of the HRT-dependent, yet TIP-reinforced, resistance to TCV.

  20. Preclinical refinements of a broadly protective VLP-based HPV vaccine targeting the minor capsid protein, L2.

    PubMed

    Tumban, Ebenezer; Muttil, Pavan; Escobar, Carolina Andrea A; Peabody, Julianne; Wafula, Denis; Peabody, David S; Chackerian, Bryce

    2015-06-26

    An ideal prophylactic human papillomavirus (HPV) vaccine would provide broadly protective and long-lasting immune responses against all high-risk HPV types, would be effective after a single dose, and would be formulated in such a manner to allow for long-term storage without the necessity for refrigeration. We have developed candidate HPV vaccines consisting of bacteriophage virus-like particles (VLPs) that display a broadly neutralizing epitope derived from the HPV16 minor capsid protein, L2. Immunization with 16L2 VLPs elicited high titer and broadly cross-reactive and cross-neutralizing antibodies against diverse HPV types. In this study we introduce two refinements for our candidate vaccines, with an eye towards enhancing efficacy and clinical applicability in the developing world. First, we assessed the role of antigen dose and boosting on immunogenicity. Mice immunized with 16L2-MS2 VLPs at doses ranging from 2 to 25 μg with or without alum were highly immunogenic at all doses; alum appeared to have an adjuvant effect at the lowest dose. Although boosting enhanced antibody titers, even a single immunization could elicit strong and long-lasting antibody responses. We also developed a method to enhance vaccine stability. Using a spray dry apparatus and a combination of sugars & an amino acid as protein stabilizers, we generated dry powder vaccine formulations of our L2 VLPs. Spray drying of our L2 VLPs did not affect the integrity or immunogenicity of VLPs upon reconstitution. Spray dried VLPs were stable at room temperature and at 37 °C for over one month and the VLPs were highly immunogenic. Taken together, these enhancements are designed to facilitate implementation of a next-generation VLP-based HPV vaccine which addresses U.S. and global disparities in vaccine affordability and access in rural/remote populations. PMID:26003490

  1. Evaluation of the immune response elicited by vaccination with viral vectors encoding FMDV capsid proteins and boosted with inactivated virus.

    PubMed

    Romanutti, Carina; D'Antuono, Alejandra; Palacios, Carlos; Quattrocchi, Valeria; Zamorano, Patricia; La Torre, Jose; Mattion, Nora

    2013-08-30

    The aim of the present study was to assess the effect of introducing a priming step with replication-defective viral vectors encoding the capsid proteins of FMDV, followed by a boost with killed virus vaccines, using a suitable BALB/c mice model. Additionally, the immune response to other combined vector immunization regimens was studied. For this purpose, we analyzed different prime-boost immunizations with recombinant adenovirus (Ad), herpesvirus amplicons (Hs) and/or killed virus (KV) vaccines. The highest antibody titers were found in the group that received two doses of adjuvanted KV (P<0.002). Antibody titers were higher in those groups receiving a mixed regimen of vectors, compared to immunization with either vector alone (P<0.0001). Priming with any of the viral vectors induced a shift of the cytokine balance toward a Th1 type immune response regardless of the delivery system used for boosting. The highest IgG1 titer was induced by two doses of adjuvanted KV (P=0.0002) and the highest IgG2a titer corresponded to the group primed with Ad and boosted with KV (P=0.01). Re-stimulation of all groups of mice with 0.5 μg of inactivated virus five months later resulted in a fast increase of antibody titers in all the groups tested. After virus stimulation, antibody titers in the groups that received KV alone or Ad prime-KV boost, were indistinguishable (P=0.800). Protection from challenge was similar (75%) in the groups of animals that received Ad prime-Hs boost or Ad prime-KV boost, or two doses of oil-adjuvanted KV. The data presented in this study suggest that sequential immunization with viral vectors-based vaccines combined with protein-based vaccines have the potential to enhance the quality of the immune response against FMDV. PMID:23683999

  2. Evaluation of the immune response elicited by vaccination with viral vectors encoding FMDV capsid proteins and boosted with inactivated virus.

    PubMed

    Romanutti, Carina; D'Antuono, Alejandra; Palacios, Carlos; Quattrocchi, Valeria; Zamorano, Patricia; La Torre, Jose; Mattion, Nora

    2013-08-30

    The aim of the present study was to assess the effect of introducing a priming step with replication-defective viral vectors encoding the capsid proteins of FMDV, followed by a boost with killed virus vaccines, using a suitable BALB/c mice model. Additionally, the immune response to other combined vector immunization regimens was studied. For this purpose, we analyzed different prime-boost immunizations with recombinant adenovirus (Ad), herpesvirus amplicons (Hs) and/or killed virus (KV) vaccines. The highest antibody titers were found in the group that received two doses of adjuvanted KV (P<0.002). Antibody titers were higher in those groups receiving a mixed regimen of vectors, compared to immunization with either vector alone (P<0.0001). Priming with any of the viral vectors induced a shift of the cytokine balance toward a Th1 type immune response regardless of the delivery system used for boosting. The highest IgG1 titer was induced by two doses of adjuvanted KV (P=0.0002) and the highest IgG2a titer corresponded to the group primed with Ad and boosted with KV (P=0.01). Re-stimulation of all groups of mice with 0.5 μg of inactivated virus five months later resulted in a fast increase of antibody titers in all the groups tested. After virus stimulation, antibody titers in the groups that received KV alone or Ad prime-KV boost, were indistinguishable (P=0.800). Protection from challenge was similar (75%) in the groups of animals that received Ad prime-Hs boost or Ad prime-KV boost, or two doses of oil-adjuvanted KV. The data presented in this study suggest that sequential immunization with viral vectors-based vaccines combined with protein-based vaccines have the potential to enhance the quality of the immune response against FMDV.

  3. Preclinical Refinements of a Broadly Protective VLP-based HPV Vaccine Targeting the Minor Capsid Protein, L2

    PubMed Central

    Tumban, Ebenezer; Muttil, Pavan; Escobar, Carolina Andrea A.; Peabody, Julianne; Wafula, Denis; Peabody, David S.; Chackerian, Bryce

    2015-01-01

    An ideal prophylactic human papillomavirus (HPV) vaccine would provide broadly protective and long-lasting immune responses against all high-risk HPV types, would be effective after a single dose, and would be formulated in such a manner to allow for long-term storage without the necessity for refrigeration. We have developed candidate HPV vaccines consisting of bacteriophage virus-like particles (VLPs) that display a broadly neutralizing epitope derived from the HPV16 minor capsid protein, L2. Immunization with 16L2 VLPs elicited high titer and broadly cross-reactive and cross-neutralizing antibodies against diverse HPV types. In this study we introduce two refinements for our candidate vaccines, with an eye towards enhancing efficacy and clinical applicability in the developing world. First, we assessed the role of antigen dose and boosting on immunogenicity. Mice immunized with 16L2-MS2 VLPs at doses ranging from 2–25 μg with or without alum were highly immunogenic at all doses; alum appeared to have an adjuvant effect at the lowest dose. Although boosting enhanced antibody titers, even a single immunization could elicit strong and long-lasting antibody responses. We also developed a method to enhance vaccine stability. Using a spray dry apparatus and a combination of sugars & an amino acid as protein stabilizers, we generated dry powder vaccine formulations of our L2 VLPs. Spray drying of our L2 VLPs did not affect the integrity or immunogenicity of VLPs upon reconstitution. Spray dried VLPs were stable at room temperature and at 37°C for over one month and the VLPs were highly immunogenic. Taken together, these enhancements are designed to facilitate implementation of a next-generation VLP-based HPV vaccine which addresses U.S. and global disparities in vaccine affordability and access in rural/remote populations. PMID:26003490

  4. A novel finding for enterovirus virulence from the capsid protein VP1 of EV71 circulating in mainland China.

    PubMed

    Liu, Yongjuan; Fu, Chong; Wu, Suying; Chen, Xiong; Shi, Yingying; Zhou, Bingfei; Zhang, Lianglu; Zhang, Fengfeng; Wang, Zhihao; Zhang, Yingying; Fan, Chengpeng; Han, Song; Yin, Jun; Peng, Biwen; Liu, Wanhong; He, Xiaohua

    2014-04-01

    Enterovirus 71 (EV71) is a neurotropic virus that causes various clinical manifestations in young children, ranging from asymptomatic to fatal. Different pathotypes of EV71 notably differ in virulence. Several virulence determinants of EV71 have been predicted. However, these reported virulence determinants could not be used to identify the EV71 strains of subgenotype C4, which mainly circulate in China. In this study, VP1 sequences of 37 EV71 strains from severe cases (SC-EV71) and 192 EV71 strains from mild cases (MC-EV71) in mainland China were analyzed to determine the potential virulence determinants in the capsid protein VP1 of EV71. Although most SC-EV71 strains belonged to subgenotype C4a, no specific genetic lineages in C4a were correlated with EV71 virulence. Interestingly, amino acid substitutions at nine positions (H22Q, P27S, N31S/D, E98K, E145G/Q, D164E, T240A/S, V249I, and A289T) were detected by aligning the VP1 sequences of the SC-EV71 and MC-EV71 strains. Moreover, both the constituent ratios of the conservative or mutated residues in the MC-EV71 and SC-EV71 strains and the changes in the VP1 3D structure resulting from these mutations confirmed that the conservative residues (22H, 249V, and 289A) and the mutated residues (27S, 31S/D, 98K, 145G/Q, 164E, and 240A/S) might be potential virulence determinants in VP1 of EV71. Furthermore, these results led to the hypothesis that VP1 acts as a sandwich switch for viral particle stabilization and cellular receptors attachment, and specific mutations in this protein can convert mild cases into severe cases. These findings highlight new opportunities for diagnostic and therapeutic interventions.

  5. A nuclear fraction of turnip crinkle virus capsid protein is important for elicitation of the host resistance response.

    PubMed

    Kang, Sung-Hwan; Qu, Feng; Morris, T Jack

    2015-12-01

    The N-terminal 25 amino acids (AAs) of turnip crinkle virus (TCV) capsid protein (CP) are recognized by the resistance protein HRT to trigger a hypersensitive response (HR) and systemic resistance to TCV infection. This same region of TCV CP also contains a motif that interacts with the transcription factor TIP, as well as a nuclear localization signal (NLS). However, it is not yet known whether nuclear localization of TCV CP is needed for the induction of HRT-mediated HR and resistance. Here we present new evidence suggesting a tight correlation between nuclear inclusions formed by CP and the manifestation of HR. We show that a fraction of TCV CP localized to cell nuclei to form discrete inclusion-like structures, and a mutated CP (R6A) known to abolish HR failed to form nuclear inclusions. Notably, TIP-CP interaction augments the inclusion-forming activity of CP by tethering inclusions to the nuclear membrane. This TIP-mediated augmentation is also critical for HR resistance, as another CP mutant (R8A) known to elicit a less restrictive HR, though still self-associated into nuclear inclusions, failed to direct inclusions to the nuclear membrane due to its inability to interact with TIP. Finally, exclusion of CP from cell nuclei abolished induction of HR. Together, these results uncovered a strong correlation between nuclear localization and nuclear inclusion formation by TCV CP and induction of HR, and suggest that CP nuclear inclusions could be the key trigger of the HRT-dependent, yet TIP-reinforced, resistance to TCV. PMID:26299399

  6. Preclinical refinements of a broadly protective VLP-based HPV vaccine targeting the minor capsid protein, L2.

    PubMed

    Tumban, Ebenezer; Muttil, Pavan; Escobar, Carolina Andrea A; Peabody, Julianne; Wafula, Denis; Peabody, David S; Chackerian, Bryce

    2015-06-26

    An ideal prophylactic human papillomavirus (HPV) vaccine would provide broadly protective and long-lasting immune responses against all high-risk HPV types, would be effective after a single dose, and would be formulated in such a manner to allow for long-term storage without the necessity for refrigeration. We have developed candidate HPV vaccines consisting of bacteriophage virus-like particles (VLPs) that display a broadly neutralizing epitope derived from the HPV16 minor capsid protein, L2. Immunization with 16L2 VLPs elicited high titer and broadly cross-reactive and cross-neutralizing antibodies against diverse HPV types. In this study we introduce two refinements for our candidate vaccines, with an eye towards enhancing efficacy and clinical applicability in the developing world. First, we assessed the role of antigen dose and boosting on immunogenicity. Mice immunized with 16L2-MS2 VLPs at doses ranging from 2 to 25 μg with or without alum were highly immunogenic at all doses; alum appeared to have an adjuvant effect at the lowest dose. Although boosting enhanced antibody titers, even a single immunization could elicit strong and long-lasting antibody responses. We also developed a method to enhance vaccine stability. Using a spray dry apparatus and a combination of sugars & an amino acid as protein stabilizers, we generated dry powder vaccine formulations of our L2 VLPs. Spray drying of our L2 VLPs did not affect the integrity or immunogenicity of VLPs upon reconstitution. Spray dried VLPs were stable at room temperature and at 37 °C for over one month and the VLPs were highly immunogenic. Taken together, these enhancements are designed to facilitate implementation of a next-generation VLP-based HPV vaccine which addresses U.S. and global disparities in vaccine affordability and access in rural/remote populations.

  7. Self-assembly of in vitro-translated human papillomavirus type 16 L1 capsid protein into virus-like particles and antigenic reactivity of the protein.

    PubMed Central

    Iyengar, S; Shah, K V; Kotloff, K L; Ghim, S J; Viscidi, R P

    1996-01-01

    The human papillomavirus type 16 (HPV-16) L1 capsid protein is the major component of the HPV virion. We prepared L1 protein of HPV-16 in a cell-free system. The L1 gene was cloned in an expression plasmid and transcribed and translated in vitro in a rabbit reticulocyte lysate. The expressed protein had the molecular mass (55 kDa) expected for the L1 protein, and it assembled into virus-like particles that closely resembled papillomavirus virions. The protein retained conformational epitopes, as evidenced by its reactivity with monoclonal antibodies which recognize only intact viral particles. In radioimmunoprecipitation assays with sera from college women grouped by their genital tract HPV DNA status, high reactivity was found in 68% of HPV-16 DNA-positive women, in 23% of women with other HPVs, and in 19% of HPV-negative women. In comparison, none of the sera of children were reactive. The results of the radioimmunoprecipitation assays showed a significant correlation with results obtained with the same sera in an enzyme-linked immunosorbent assay with virus-like particles produced in baculovirus (chi-square test for linear trend, P = 0.0023). Although the amounts of L1 protein obtained are small, the ability to produce virus-like particles by in vitro translation may be useful in the study of virus assembly, virus binding, and the immunological response to HPV infection. PMID:8914767

  8. Production of recombinant capsid protein of Macrobrachium rosenbergii nodavirus (r-MCP43) of giant freshwater prawn, M. rosenbergii (de Man) for immunological diagnostic methods.

    PubMed

    Farook, M A; Madan, N; Taju, G; Majeed, S Abdul; Nambi, K S N; Raj, N Sundar; Vimal, S; Hameed, A S Sahul

    2014-08-01

    White tail disease (WTD) caused by Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV) is a serious problem in prawn hatcheries. The gene for capsid protein of MrNV (MCP43) was cloned into pRSET B expression vector. The MCP43 protein was expressed as a protein with a 6-histidine tag in Escherichia coli GJ1158 with NaCl induction. This recombinant protein, which was used to raise the antiserum in rabbits, recognized capsid protein in different WTD-infected post-larvae and adult prawn. Various immunological methods such as Western blot, dot blot and ELISA techniques were employed to detect MrNV in infected samples using the antiserum raised against recombinant MCP43 of MrNV. The dot blot assay using anti-rMCP43 was found to be capable of detecting MrNV in WTD-infected post-larvae as early as at 24 h post-infection. The antiserum raised against r-MCP43 could detect the MrNV in the infected samples at the level of 100 pg of total protein. The capsid protein of MrNV estimated by ELISA using anti-rMCP43 and pure r-MCP43 as a standard was found to increase gradually during the course of infection from 24 h p.i. to moribund stage. The results of immunological diagnostic methods employed in this study were compared with that of RT-PCR to test the efficiency of antiserum raised against r-MCP43 for the detection of MrNV. The Western blot, dot blot and ELISA detected all MrNV-positive coded samples as detected by RT-PCR. PMID:23952017

  9. Production of recombinant capsid protein of Macrobrachium rosenbergii nodavirus (r-MCP43) of giant freshwater prawn, M. rosenbergii (de Man) for immunological diagnostic methods.

    PubMed

    Farook, M A; Madan, N; Taju, G; Majeed, S Abdul; Nambi, K S N; Raj, N Sundar; Vimal, S; Hameed, A S Sahul

    2014-08-01

    White tail disease (WTD) caused by Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV) is a serious problem in prawn hatcheries. The gene for capsid protein of MrNV (MCP43) was cloned into pRSET B expression vector. The MCP43 protein was expressed as a protein with a 6-histidine tag in Escherichia coli GJ1158 with NaCl induction. This recombinant protein, which was used to raise the antiserum in rabbits, recognized capsid protein in different WTD-infected post-larvae and adult prawn. Various immunological methods such as Western blot, dot blot and ELISA techniques were employed to detect MrNV in infected samples using the antiserum raised against recombinant MCP43 of MrNV. The dot blot assay using anti-rMCP43 was found to be capable of detecting MrNV in WTD-infected post-larvae as early as at 24 h post-infection. The antiserum raised against r-MCP43 could detect the MrNV in the infected samples at the level of 100 pg of total protein. The capsid protein of MrNV estimated by ELISA using anti-rMCP43 and pure r-MCP43 as a standard was found to increase gradually during the course of infection from 24 h p.i. to moribund stage. The results of immunological diagnostic methods employed in this study were compared with that of RT-PCR to test the efficiency of antiserum raised against r-MCP43 for the detection of MrNV. The Western blot, dot blot and ELISA detected all MrNV-positive coded samples as detected by RT-PCR.

  10. Protective immunity of a Pichia pastoris expressed recombinant iridovirus major capsid protein in the Chinese giant salamander, Andrias davidianus.

    PubMed

    Zhou, Yong; Fan, Yuding; LaPatra, Scott E; Ma, Jie; Xu, Jin; Meng, Yan; Jiang, Nan; Zeng, Lingbing

    2015-10-13

    The major capsid protein (MCP) is the main immunogenic protein of iridoviruses, that has been widely used as an immunogen in vaccination trials. In this study, the codon-optimized giant salamander iridovirus (GSIV) MCP gene (O-MCP) was synthesized and cloned into a pPICZα B vector for secretory expression in the methylotrophic yeast Pichia pastoris after methanol induction. The expression of the O-MCP protein was detected by the Bradford protein assay, SDS-PAGE, Western blotting and electron microscopy. The Bradford protein assay indicated that the concentration of the O-MCP expressed was about 40 μg/ml in culture supernatants. SDS-PAGE analysis revealed that the O-MCP had a molecular weight of about 66 kDa and reacted with a His-specific MAb that was confirmed by Western blotting. Electron microscopy observations revealed that the purified O-MCP could self-assemble into virus-like particles. Healthy giant salamanders were vaccinated by intramuscular injection with the O-MCP antigen at a dose of 20 μg/individual. The numbers of erythrocytes and leukocytes in the peripheral blood of immunized Chinese giant salamanders increased significantly at day 3 and reached a peak at day 5 post-immunization. Meanwhile, the differential leukocyte counts of monocytes and neutrophils increased significantly at day 5 post-immunization compared to that of the control group. The percentage of lymphocytes was 71.33 ± 3.57% at day 21 post-immunization. The neutralization assay showed that the serum neutralizing antibody titer reached 321 at day 21 post-immunization. The GSIV challenge test revealed that the relative percent survival of Chinese giant salamanders vaccinated with O-MCP was 78%. These results indicated that the O-MCP antigen expressed by the Pichia pastoris system elicited significant immune response in the Chinese giant salamander against GSIV and might represent a potential yeast-derived vaccine candidate that could be used for the control of disease caused by the

  11. Time-resolved spectroscopy of self-assembly of CCMV protein capsids

    NASA Astrophysics Data System (ADS)

    Moore, Jelyn; Aronzon, Dina; Manoharan, V. N.

    2008-10-01

    In order to gain a deeper understanding of the process a virus undergoes to assemble; the purpose of this study to time resolve the self-assembly of a virus. Cowpea Chlorotic Mottle virus (CCMV), an icosahedral type virus, can assemble without its genetic code (RNA) depending on its chemical and physical surroundings. The surface plasmon resonance (SPR) of colloidal gold particles is known to display a shift when the gold interacts with the proteins of a virus. Surface plasmon resonance is the free electron oscillation occurring at the surface of the gold particle resulting in a characteristic peak location at maximal absorbance and peak width. The shift results from the change in the refractive index of the particles as induced by the presence of the proteins. We hope to detect this shift through total internal reflection microscopy (TIRM). The accomplishments of this research are the completion of the TIR setup and the purification of the virus and its proteins.

  12. Identification of Positively Charged Residues in Enterovirus 71 Capsid Protein VP1 Essential for Production of Infectious Particles

    PubMed Central

    Yuan, Shilin; Li, Guiming; Wang, Ying; Gao, Qianqian; Wang, Yizhuo; Cui, Rui

    2015-01-01

    ABSTRACT Enterovirus 71 (EV71), a positive-stranded RNA virus, is the major cause of hand, foot, and mouth disease (HFMD) in children, which can cause severe central nervous system disease and death. The capsids of EV71 consist of 60 copies of each of four viral structural proteins (VP1 to VP4), with VP1, VP2, and VP3 exposed on the surface and VP4 arranged internally. VP1 plays a central role in particle assembly and cell entry. To gain insight into the role of positively charged residues in VP1 function in these processes, a charged-to-alanine scanning analysis was performed using an infectious cDNA clone of EV71. Twenty-seven mutants containing single charged-to-alanine changes were tested. Sixteen of them were not viable, seven mutants were replication defective, and the remaining four mutants were replication competent. By selecting revertants, second-site mutations which could at least partially restore viral infectivity were identified within VP1 for four defective mutations and two lethal mutations. The resulting residue pairs represent a network of intra- and intermolecular interactions of the VP1 protein which could serve as a potential novel drug target. Interestingly, mutation K215A in the VP1 GH loop led to a significant increase in thermal stability, demonstrating that conditional thermostable mutants can be generated by altering the charge characteristics of VP1. Moreover, all mutants were sensitive to the EV71 entry inhibitor suramin, which binds to the virus particle via the negatively charged naphthalenetrisulfonic acid group, suggesting that single charged-to-alanine mutation is not sufficient for suramin resistance. Taken together, these data highlight the importance of positively charged residues in VP1 for production of infectious particles. IMPORTANCE Infection with EV71 is more often associated with neurological complications in children and is responsible for the majority of fatalities. No licensed vaccines or antiviral therapies are

  13. Identification of a minimal hydrophobic domain in the herpes simplex virus type 1 scaffolding protein which is required for interaction with the major capsid protein.

    PubMed

    Hong, Z; Beaudet-Miller, M; Durkin, J; Zhang, R; Kwong, A D

    1996-01-01

    Recent biochemical and genetic studies have demonstrated that an essential step of the herpes simplex virus type 1 capsid assembly pathway involves the interaction of the major capsid protein (VP5) with either the C terminus of the scaffolding protein (VP22a, ICP35) or that of the protease (Pra, product of UL26). To better understand the nature of the interaction and to further map the sequence motif, we expressed the C-terminal 30-amino-acid peptide of ICP35 in Escherichia coli as a glutathione S-transferase fusion protein (GST/CT). Purified GST/CT fusion proteins were then incubated with 35S-labeled herpes simplex virus type 1-infected cell lysates containing VP5. The interaction between GST/CT and VP5 was determined by coprecipitation of the two proteins with glutathione Sepharose beads. Our results revealed that the GST/CT fusion protein specifically interacts with VP5, suggesting that the C-terminal domain alone is sufficient for interaction with VP5. Deletion analysis of the GST/CT binding domain mapped the interaction to a minimal 12-amino-acid motif. Substitution mutations further revealed that the replacement of hydrophobic residues with charged residues in the core region of the motif abolished the interaction, suggesting that the interaction is a hydrophobic one. A chaotropic detergent, 0.1% Nonidet P-40, also abolished the interaction, further supporting the hydrophobic nature of the interaction. Computer analysis predicted that the minimal binding motif could form a strong alpha-helix structure. Most interestingly, the alpha-helix model maximizes the hydropathicity of the minimal domain so that all of the hydrophobic residues are centered around a Phe residue on one side of the alpha-helix. Mutation analysis revealed that the Phe residue is absolutely critical for the binding, since changes to Ala, Tyr, or Trp abrogated the interaction. Finally, in a peptide competition experiment, the C-terminal 25-amino-acid peptide, as well as a minimal peptide

  14. Identification of a minimal hydrophobic domain in the herpes simplex virus type 1 scaffolding protein which is required for interaction with the major capsid protein.

    PubMed

    Hong, Z; Beaudet-Miller, M; Durkin, J; Zhang, R; Kwong, A D

    1996-01-01

    Recent biochemical and genetic studies have demonstrated that an essential step of the herpes simplex virus type 1 capsid assembly pathway involves the interaction of the major capsid protein (VP5) with either the C terminus of the scaffolding protein (VP22a, ICP35) or that of the protease (Pra, product of UL26). To better understand the nature of the interaction and to further map the sequence motif, we expressed the C-terminal 30-amino-acid peptide of ICP35 in Escherichia coli as a glutathione S-transferase fusion protein (GST/CT). Purified GST/CT fusion proteins were then incubated with 35S-labeled herpes simplex virus type 1-infected cell lysates containing VP5. The interaction between GST/CT and VP5 was determined by coprecipitation of the two proteins with glutathione Sepharose beads. Our results revealed that the GST/CT fusion protein specifically interacts with VP5, suggesting that the C-terminal domain alone is sufficient for interaction with VP5. Deletion analysis of the GST/CT binding domain mapped the interaction to a minimal 12-amino-acid motif. Substitution mutations further revealed that the replacement of hydrophobic residues with charged residues in the core region of the motif abolished the interaction, suggesting that the interaction is a hydrophobic one. A chaotropic detergent, 0.1% Nonidet P-40, also abolished the interaction, further supporting the hydrophobic nature of the interaction. Computer analysis predicted that the minimal binding motif could form a strong alpha-helix structure. Most interestingly, the alpha-helix model maximizes the hydropathicity of the minimal domain so that all of the hydrophobic residues are centered around a Phe residue on one side of the alpha-helix. Mutation analysis revealed that the Phe residue is absolutely critical for the binding, since changes to Ala, Tyr, or Trp abrogated the interaction. Finally, in a peptide competition experiment, the C-terminal 25-amino-acid peptide, as well as a minimal peptide

  15. Interaction between Simian Virus 40 Major Capsid Protein VP1 and Cell Surface Ganglioside GM1 Triggers Vacuole Formation

    PubMed Central

    Luo, Yong; Motamedi, Nasim; Magaldi, Thomas G.; Gee, Gretchen V.; Atwood, Walter J.

    2016-01-01

    ABSTRACT Simian virus 40 (SV40), a polyomavirus that has served as an important model to understand many aspects of biology, induces dramatic cytoplasmic vacuolization late during productive infection of monkey host cells. Although this activity led to the discovery of the virus in 1960, the mechanism of vacuolization is still not known. Pentamers of the major SV40 capsid protein VP1 bind to the ganglioside GM1, which serves as the cellular receptor for the virus. In this report, we show that binding of VP1 to cell surface GM1 plays a key role in SV40 infection-induced vacuolization. We previously showed that SV40 VP1 mutants defective for GM1 binding fail to induce vacuolization, even though they replicate efficiently. Here, we show that interfering with GM1-VP1 binding by knockdown of GM1 after infection is established abrogates vacuolization by wild-type SV40. Vacuole formation during permissive infection requires efficient virus release, and conditioned medium harvested late during SV40 infection rapidly induces vacuoles in a VP1- and GM1-dependent fashion. Furthermore, vacuolization can also be induced by a nonreplicating SV40 pseudovirus in a GM1-dependent manner, and a mutation in BK pseudovirus VP1 that generates GM1 binding confers vacuole-inducing activity. Vacuolization can also be triggered by purified pentamers of wild-type SV40 VP1, but not by GM1 binding-defective pentamers or by intracellular expression of VP1. These results demonstrate that SV40 infection-induced vacuolization is caused by the binding of released progeny viruses to GM1, thereby identifying the molecular trigger for the activity that led to the discovery of SV40. PMID:27006465

  16. Construction and immunogenicity of a recombinant pseudorabies virus co-expressing porcine circovirus type 2 capsid protein and interleukin 18.

    PubMed

    Zheng, Lan-lan; Guo, Xiao-qing; Zhu, Qian-lei; Chao, An-jun; Fu, Peng-fei; Wei, Zhan-yong; Wang, Shu-juan; Chen, Hong-ying; Cui, Bao-an

    2015-04-01

    A novel recombinant pseudorabies virus (PRV) expressing porcine circovirus type 2 (PCV2) capsid protein and IL-18 was constructed. The PCV2 open reading frame 2 (ORF2) and porcine IL-18 genes were amplified by PCR and then inserted into the PRV transfer vector (pG) to produce a recombinant plasmid (pGO18). Plasmid pGO18 was transfected into porcine kidney cell (PK15) pre-infected with PRV HB98 vaccine strain to generate a recombinant virus. The recombinant virus PRV-ORF2-IL18 was purified by green fluorescent plaque purification and the inserts were confirmed by PCR, enzyme digestion, sequencing, and Western blot. The humoral and cellular responses induced by the recombinant virus were assessed in mice. Mice (n=10) were immunized with PRV-ORF2-IL18, PRV-ORF2, PRV HB98, or inactivated PCV2. PRV-ORF2-IL18 elicited high titers of ELISA and serum neutralizing antibodies and strong cell-mediated immune responses in mice as indicated by anti-PCV2 ELISA, PRV-neutralizing assay, PCV2 specific lymphocyte proliferation assay, CD3(+), CD4(+) and CD8(+) T lymphocytes analysis, respectively. And PRV-ORF2-IL18 immunization protected mice against a lethal challenge of a virulent PRV Fa strain and significantly reduced the amount of PCV2 viremia. These results suggest an adjuvant effect of IL-18 on cellular immune responses. The recombinant virus might be an attractive candidate vaccine for preventing PCV2 and PRV infections in pigs.

  17. A novel tetravalent formulation combining the four aggregated domain III-capsid proteins from dengue viruses induces a functional immune response in mice and monkeys.

    PubMed

    Suzarte, Edith; Gil, Lázaro; Valdés, Iris; Marcos, Ernesto; Lazo, Laura; Izquierdo, Alienys; García, Angélica; López, Lázaro; Álvarez, Maylin; Pérez, Yusleydis; Castro, Jorge; Romero, Yaremis; Guzmán, María G; Guillén, Gerardo; Hermida, Lisset

    2015-08-01

    Our group developed a subunit vaccine candidate against dengue virus based on two different viral regions: the domain III of the envelope protein and the capsid protein. The novel chimeric protein from dengue-2 virus [domain III-capsid (DIIIC-2)], when presented as aggregated incorporating oligodeoxynucleotides, induced anti-viral and neutralizing antibodies, a cellular immune response and conferred significant protection to mice and monkeys. The remaining constructs were already obtained and properly characterized. Based on this evidence, this work was aimed at assessing the immune response in mice of the chimeric proteins DIIIC of each serotype, as monovalent and tetravalent formulations. Here, we demonstrated the immunogenicity of each protein in terms of humoral and cell-mediated immunity, without antigen competition on the mixture forming the formulation tetra DIIIC. Accordingly, significant protection was afforded as measured by the limited viral load in the mouse encephalitis model. The assessment of the tetravalent formulation in non-human primates was also conducted. In this animal model, it was demonstrated that the formulation induced neutralizing antibodies and memory cell-mediated immune response with IFN-γ-secreting and cytotoxic capacity, regardless the route of immunization used. Taken together, we can assert that the tetravalent formulation of DIIIC proteins constitutes a promising vaccine candidate against dengue virus, and propose it for further efficacy experiments in monkeys or in the dengue human infection model, as it has been recently proposed.

  18. Characterization of Mus musculus Papillomavirus 1 Infection In Situ Reveals an Unusual Pattern of Late Gene Expression and Capsid Protein Localization

    PubMed Central

    Handisurya, Alessandra; Day, Patricia M.; Thompson, Cynthia D.; Buck, Christopher B.; Pang, Yuk-Ying S.; Lowy, Douglas R.

    2013-01-01

    Full-length genomic DNA of the recently identified laboratory mouse papillomavirus 1 (MusPV1) was synthesized in vitro and was used to establish and characterize a mouse model of papillomavirus pathobiology. MusPV1 DNA, whether naked or encapsidated by MusPV1 or human papillomavirus 16 (HPV 16) capsids, efficiently induced the outgrowth of papillomas as early as 3 weeks after application to abraded skin on the muzzles and tails of athymic NCr nude mice. High concentrations of virions were extracted from homogenized papillomatous tissues and were serially passaged for >10 generations. Neutralization by L1 antisera confirmed that infectious transmission was capsid mediated. Unexpectedly, the skin of the murine back was much less susceptible to virion-induced papillomas than the muzzle or tail. Although reporter pseudovirions readily transduced the skin of the back, infection with native MusPV1 resulted in less viral genome amplification and gene expression on the back, including reduced expression of the L1 protein and very low expression of the L2 protein, results that imply skin region-specific control of postentry aspects of the viral life cycle. Unexpectedly, L1 protein on the back was predominantly cytoplasmic, while on the tail the abundant L1 was cytoplasmic in the lower epithelial layers and nuclear in the upper layers. Nuclear localization of L1 occurred only in cells that coexpressed the minor capsid protein, L2. The pattern of L1 protein staining in the infected epithelium suggests that L1 expression occurs earlier in the MusPV1 life cycle than in the life cycle of high-risk HPV and that virion assembly is regulated by a previously undescribed mechanism. PMID:24067981

  19. Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins.

    PubMed

    Carvalho, Filomena A; Carneiro, Fabiana A; Martins, Ivo C; Assunção-Miranda, Iranaia; Faustino, André F; Pereira, Renata M; Bozza, Patricia T; Castanho, Miguel A R B; Mohana-Borges, Ronaldo; Da Poian, Andrea T; Santos, Nuno C

    2012-02-01

    Dengue virus (DENV) affects millions of people, causing more than 20,000 deaths annually. No effective treatment for the disease caused by DENV infection is currently available, partially due to the lack of knowledge on the basic aspects of the viral life cycle, including the molecular basis of the interaction between viral components and cellular compartments. Here, we characterized the properties of the interaction between the DENV capsid (C) protein and hepatic lipid droplets (LDs), which was recently shown to be essential for the virus replication cycle. Zeta potential analysis revealed a negative surface charge of LDs, with an average surface charge of -19 mV. The titration of LDs with C protein led to an increase of the surface charge, which reached a plateau at +13.7 mV, suggesting that the viral protein-LD interaction exposes the protein cationic surface to the aqueous environment. Atomic force microscopy (AFM)-based force spectroscopy measurements were performed by using C protein-functionalized AFM tips. The C protein-LD interaction was found to be strong, with a single (un)binding force of 33.6 pN. This binding was dependent on high intracellular concentrations of potassium ions but not sodium. The inhibition of Na(+)/K(+)-ATPase in DENV-infected cells resulted in the dissociation of C protein from LDs and a 50-fold inhibition of infectious virus production but not of RNA replication, indicating a biological relevance for the potassium-dependent interaction. Limited proteolysis of the LD surface impaired the C protein-LD interaction, and force measurements in the presence of specific antibodies indicated that perilipin 3 (TIP47) is the major DENV C protein ligand on the surface of LDs.

  20. Dengue Virus Capsid Protein Binding to Hepatic Lipid Droplets (LD) Is Potassium Ion Dependent and Is Mediated by LD Surface Proteins

    PubMed Central

    Carvalho, Filomena A.; Carneiro, Fabiana A.; Martins, Ivo C.; Assunção-Miranda, Iranaia; Faustino, André F.; Pereira, Renata M.; Bozza, Patricia T.; Castanho, Miguel A. R. B.; Mohana-Borges, Ronaldo; Da Poian, Andrea T.

    2012-01-01

    Dengue virus (DENV) affects millions of people, causing more than 20,000 deaths annually. No effective treatment for the disease caused by DENV infection is currently available, partially due to the lack of knowledge on the basic aspects of the viral life cycle, including the molecular basis of the interaction between viral components and cellular compartments. Here, we characterized the properties of the interaction between the DENV capsid (C) protein and hepatic lipid droplets (LDs), which was recently shown to be essential for the virus replication cycle. Zeta potential analysis revealed a negative surface charge of LDs, with an average surface charge of −19 mV. The titration of LDs with C protein led to an increase of the surface charge, which reached a plateau at +13.7 mV, suggesting that the viral protein-LD interaction exposes the protein cationic surface to the aqueous environment. Atomic force microscopy (AFM)-based force spectroscopy measurements were performed by using C protein-functionalized AFM tips. The C protein-LD interaction was found to be strong, with a single (un)binding force of 33.6 pN. This binding was dependent on high intracellular concentrations of potassium ions but not sodium. The inhibition of Na+/K+-ATPase in DENV-infected cells resulted in the dissociation of C protein from LDs and a 50-fold inhibition of infectious virus production but not of RNA replication, indicating a biological relevance for the potassium-dependent interaction. Limited proteolysis of the LD surface impaired the C protein-LD interaction, and force measurements in the presence of specific antibodies indicated that perilipin 3 (TIP47) is the major DENV C protein ligand on the surface of LDs. PMID:22130547

  1. Nonicosahedral pathways for capsid expansion

    NASA Astrophysics Data System (ADS)

    Cermelli, Paolo; Indelicato, Giuliana; Twarock, Reidun

    2013-09-01

    For a significant number of viruses a structural transition of the protein container that encapsulates the viral genome forms an important part of the life cycle and is a prerequisite for the particle becoming infectious. Despite many recent efforts the mechanism of this process is still not fully understood, and a complete characterization of the expansion pathways is still lacking. We present here a coarse-grained model that captures the essential features of the expansion process and allows us to investigate the conditions under which a viral capsid becomes unstable. Based on this model we demonstrate that the structural transitions in icosahedral viral capsids are likely to occur through a low-symmetry cascade of local expansion events spreading in a wavelike manner over the capsid surface.

  2. Hepatitis C Virus Capsid Protein and Intracellular Lipids Interplay and its Association With Hepatic Steatosis

    PubMed Central

    Afzal, Muhammad Sohail; Zaidi, Najam Us Sahar Sadaf; Dubuisson, Jean; Rouille, Yves

    2014-01-01

    Background: Hepatitis C Virus (HCV) is a major causative agent for chronic liver disease worldwide. Hepatic steatosis is a frequent histological feature in patients with chronic HCV. Both host and viral factors are involved in steatosis development. It results from uncontrolled growth of cytoplasmic lipid droplets (LDs) in hepatocytes. LDs are intracellular organelles playing key role in the HCV life cycle. HCV core protein localizes at the LD surface and this localization is crucial for virion production. Objectives: We explored in vitro interplay of core and LDs to investigate the role of core in steatosis. Materials and Methods: Core expression vectors were transfected in Huh-7 cells. The effect of core protein on LDs content and distribution in the cells was monitored by confocal microscopy. Cells were treated with oleic acid to analyze the effect of increased intracellular LDs on core expression. Core protein expression was monitored by western blot analysis. Results: Core expression altered the intracellular lipid metabolism, which resulted in a change in LDs morphology. Core LDs interaction was required for this effect since the mutation of two prolines (P138A, P143A), which impair LDs localization, had no impact on LDs morphology. Conversely, oleic acid induced intracellular LD content resulted in increased core expression. Conclusions: Core-LDs interaction may be an underlying molecular mechanism to induce liver steatosis in patients with HCV infection. This interaction is also crucial for efficient viral replication and persistence in infected cells. Steatosis can also interfere with efficient standard interferon therapy treatment. Management of steatosis should be considered along with standard care for achieving higher sustained virological response (SVR) in patients receiving interferon regimen. PMID:25237371

  3. Intranasal Vaccination with AAV5 and 9 Vectors Against Human Papillomavirus Type 16 in Rhesus Macaques

    PubMed Central

    Nieto, Karen; Stahl-Hennig, Christiane; Leuchs, Barbara; Müller, Martin; Gissmann, Lutz

    2012-01-01

    Abstract Cervical cancer is the second most common cancer in women worldwide. Persistent high-risk human papillomavirus (HPV) infection has been identified as the causative event for the development of this type of cancer. Recombinant adeno-associated viruses (rAAVs) are currently being developed and evaluated as vaccine vector. In previous work, we demonstrated that rAAVs administered intranasally in mice induced high titers and long-lasting neutralizing antibodies against HPV type 16 (HPV16). To extend this approach to a more human-related species, we immunized rhesus macaques (Macaca mulatta) with AAVs expressing an HPV16 L1 protein using rAAV5 and 9 vectors in an intranasal prophylactic setting. An rAAV5-L1 vector followed by a boost with rAAV9-L1 induced higher titers of L1-specific serum antibodies than a single rAAV5-L1 immunization. L1-specific antibodies elicited by AAV9 vector neutralized HPV16 pseudovirions and persisted for at least 7 months post immunization. Interestingly, nasal application of rAAV9 was immunogenic even in the presence of high AAV9 antibody titers, allowing reimmunization with the same serotype without prevention of the transgene expression. Two of six animals did not respond to AAV-mediated intranasal vaccination, although they were not tolerant, as both developed antibodies after intramuscular vaccination with HPV16 virus-like particles. These data clearly show the efficacy of an intranasal immunization using rAAV9-L1 vectors without the need of an adjuvant. We conclude from our results that rAAV9 vector is a promising candidate for a noninvasive nasal vaccination strategy. PMID:22401308

  4. Formation of newly synthesized adeno-associated virus capsids in the cell nucleus.

    PubMed

    Bell, Peter; Vandenberghe, Luk H; Wilson, James M

    2014-06-01

    Adeno-associated virus (AAV) particles inside the nucleus of a HEK 293 cell are shown by electron microscopy. Cells have been triple-transfected for vector production and were analyzed for capsid formation three days later. Newly assembled particle are visible as seemingly unstructured conglomerates or crystal-like arrays.

  5. Detection of infectious myonecrosis virus using monoclonal antibody specific to N and C fragments of the capsid protein expressed heterologously.

    PubMed

    Kunanopparat, Areerat; Chaivisuthangkura, Parin; Senapin, Saengchan; Longyant, Siwaporn; Rukpratanporn, Sombat; Flegel, Timothy W; Sithigorngul, Paisarn

    2011-01-01

    The gene encoding the capsid protein in ORF1 of the genome of infectious myonecrosis virus (IMNV) (GenBank AY570982) was amplified into three parts named CP-N (nucleotides 2248-3045), CP-I (nucleotides 3046-3954) and CP-C (nucleotides 3955-4953). The CP-N fragment was inserted into expression vector pTYB1 while CP-I and CP-C were each inserted into expression vector pGEX-6P-1 for transformation of BL21 E. coli strain. After induction, intein-CP-N (84 kDa), glutathione-S-transferase (GST)-CP-I (60 kDa) and GST-CP-C (62 kDa) fusion proteins were produced. They were separated by SDS-PAGE and electroeluted before immunization of Swiss mice for monoclonal antibody (MAb) production. Two MAbs specific to CP-N and one MAb specific to CP-C were selected for use for detection of natural IMNV infections in Penaeus vannamei by dot blotting, Western blotting and immunohistochemistry. There was no cross-reaction with shrimp tissues or common shrimp viruses including white spot syndrome virus (WSSV), yellow head virus (YHV), Taura syndrome virus (TSV), Penaeus monodon nucleopolyhedrovirus (PemoNPV), Penaeus stylirostris densovirus (PstDNV) and Penaeus monodon densovirus (PmDNV). The detection sensitivities of the MAbs were approximately 6 fmol/spot of purified recombinant intein-CP-N protein and 8 fmol/spot of GST-CP-C as determined by dot blotting. A combination of all three MAbs resulted in a twofold increase in sensitivity over use of any single MAb. However, this sensitivity was approximately 10 times lower than that of one-step RT-PCR using the same sample. Immunohistochemical analysis using MAbs specific to CP-N and CP-C in IMNV-infected shrimp revealed intense staining patterns in muscles, the lymphoid organ, gills, the heart, hemocytes and connective tissue.

  6. Magnetic Resonance Imaging Revealed Splenic Targeting of Canine Parvovirus Capsid Protein VP2

    PubMed Central

    Ma, Yufei; Wang, Haiming; Yan, Dan; Wei, Yanquan; Cao, Yuhua; Yi, Peiwei; Zhang, Hailu; Deng, Zongwu; Dai, Jianwu; Liu, Xiangtao; Luo, Jianxun; Zhang, Zhijun; Sun, Shiqi; Guo, Huichen

    2016-01-01

    Canine parvovirus (CPV) is a highly contagious infectious virus, whose infectious mechanism remains unclear because of acute gastroenteritis and the lack of an efficient tool to visualize the virus in real time during virology research. In this study, we developed an iron oxide nanoparticle supported by graphene quantum dots (GQD), namely, FeGQD. In this composite material, GQD acts as a stabilizer; thus, vacancies are retained on the surface for further physical adsorption of the CPV VP2 protein. The FeGQD@VP2 nanocomposite product showed largely enhanced colloidal stability in comparison with bare FeGQD, as well as negligible toxicity both in vitro and in vivo. The composite displayed high uptake into transferrin receptor (TfR) positive cells, which are distinguishable from FeGQD or TfR negative cells. In addition, the composite developed a significant accumulation in spleen rather than in liver, where bare FeGQD or most iron oxide nanoparticles gather. As these evident targeting abilities of FeGQD@VP2 strongly suggested, the biological activity of CPV VP2 was retained in our study, and its biological functions might correspond to CPV when the rare splenic targeting ability is considered. This approach can be applied to numerous other biomedical studies that require a simple yet efficient approach to track proteins in vivo while retaining biological function and may facilitate virus-related research. PMID:26996514

  7. Magnetic Resonance Imaging Revealed Splenic Targeting of Canine Parvovirus Capsid Protein VP2

    NASA Astrophysics Data System (ADS)

    Ma, Yufei; Wang, Haiming; Yan, Dan; Wei, Yanquan; Cao, Yuhua; Yi, Peiwei; Zhang, Hailu; Deng, Zongwu; Dai, Jianwu; Liu, Xiangtao; Luo, Jianxun; Zhang, Zhijun; Sun, Shiqi; Guo, Huichen

    2016-03-01

    Canine parvovirus (CPV) is a highly contagious infectious virus, whose infectious mechanism remains unclear because of acute gastroenteritis and the lack of an efficient tool to visualize the virus in real time during virology research. In this study, we developed an iron oxide nanoparticle supported by graphene quantum dots (GQD), namely, FeGQD. In this composite material, GQD acts as a stabilizer; thus, vacancies are retained on the surface for further physical adsorption of the CPV VP2 protein. The FeGQD@VP2 nanocomposite product showed largely enhanced colloidal stability in comparison with bare FeGQD, as well as negligible toxicity both in vitro and in vivo. The composite displayed high uptake into transferrin receptor (TfR) positive cells, which are distinguishable from FeGQD or TfR negative cells. In addition, the composite developed a significant accumulation in spleen rather than in liver, where bare FeGQD or most iron oxide nanoparticles gather. As these evident targeting abilities of FeGQD@VP2 strongly suggested, the biological activity of CPV VP2 was retained in our study, and its biological functions might correspond to CPV when the rare splenic targeting ability is considered. This approach can be applied to numerous other biomedical studies that require a simple yet efficient approach to track proteins in vivo while retaining biological function and may facilitate virus-related research.

  8. Magnetic Resonance Imaging Revealed Splenic Targeting of Canine Parvovirus Capsid Protein VP2.

    PubMed

    Ma, Yufei; Wang, Haiming; Yan, Dan; Wei, Yanquan; Cao, Yuhua; Yi, Peiwei; Zhang, Hailu; Deng, Zongwu; Dai, Jianwu; Liu, Xiangtao; Luo, Jianxun; Zhang, Zhijun; Sun, Shiqi; Guo, Huichen

    2016-01-01

    Canine parvovirus (CPV) is a highly contagious infectious virus, whose infectious mechanism remains unclear because of acute gastroenteritis and the lack of an efficient tool to visualize the virus in real time during virology research. In this study, we developed an iron oxide nanoparticle supported by graphene quantum dots (GQD), namely, FeGQD. In this composite material, GQD acts as a stabilizer; thus, vacancies are retained on the surface for further physical adsorption of the CPV VP2 protein. The FeGQD@VP2 nanocomposite product showed largely enhanced colloidal stability in comparison with bare FeGQD, as well as negligible toxicity both in vitro and in vivo. The composite displayed high uptake into transferrin receptor (TfR) positive cells, which are distinguishable from FeGQD or TfR negative cells. In addition, the composite developed a significant accumulation in spleen rather than in liver, where bare FeGQD or most iron oxide nanoparticles gather. As these evident targeting abilities of FeGQD@VP2 strongly suggested, the biological activity of CPV VP2 was retained in our study, and its biological functions might correspond to CPV when the rare splenic targeting ability is considered. This approach can be applied to numerous other biomedical studies that require a simple yet efficient approach to track proteins in vivo while retaining biological function and may facilitate virus-related research. PMID:26996514

  9. Translocation of Incoming Pseudorabies Virus Capsids to the Cell Nucleus Is Delayed in the Absence of Tegument Protein pUL37▿

    PubMed Central

    Krautwald, Mirjam; Fuchs, Walter; Klupp, Barbara G.; Mettenleiter, Thomas C.

    2009-01-01

    After fusion of the envelope of herpesvirus particles with the host cell plasma membrane, incoming nucleocapsids are transported to nuclear pores. Inner tegument proteins pUL36, pUL37, and pUS3 remain attached to the nucleocapsid after entry and therefore might mediate interactions between the nucleocapsid and cellular microtubule-associated motor proteins during transport. To assay for the role of pUL37 in this process, we constructed a pUL37-deleted pseudorabies virus mutant, PrV-ΔUL37/UL35GFP, which expresses a fusion protein of green fluorescent protein (GFP) and the nonessential small capsid protein pUL35, resulting in the formation of fluorescently labeled capsids. Confocal laser-scanning microscopy of rabbit kidney cells infected with PrV-ΔUL37/UL35GFP revealed that, whereas penetration was not affected in the absence of pUL37, nuclear translocation of incoming particles was delayed by approximately 1 h compared to PrV-UL35GFP, but not abolished. In contrast, phenotypically complemented pUL37-containing virions of PrV-ΔUL37/UL35GFP exhibited wild type-like entry kinetics. Thus, the presence of pUL37 is required for rapid nuclear translocation of incoming nucleocapsids. PMID:19144717

  10. Translocation of incoming pseudorabies virus capsids to the cell nucleus is delayed in the absence of tegument protein pUL37.

    PubMed

    Krautwald, Mirjam; Fuchs, Walter; Klupp, Barbara G; Mettenleiter, Thomas C

    2009-04-01

    After fusion of the envelope of herpesvirus particles with the host cell plasma membrane, incoming nucleocapsids are transported to nuclear pores. Inner tegument proteins pUL36, pUL37, and pUS3 remain attached to the nucleocapsid after entry and therefore might mediate interactions between the nucleocapsid and cellular microtubule-associated motor proteins during transport. To assay for the role of pUL37 in this process, we constructed a pUL37-deleted pseudorabies virus mutant, PrV-DeltaUL37/UL35GFP, which expresses a fusion protein of green fluorescent protein (GFP) and the nonessential small capsid protein pUL35, resulting in the formation of fluorescently labeled capsids. Confocal laser-scanning microscopy of rabbit kidney cells infected with PrV-DeltaUL37/UL35GFP revealed that, whereas penetration was not affected in the absence of pUL37, nuclear translocation of incoming particles was delayed by approximately 1 h compared to PrV-UL35GFP, but not abolished. In contrast, phenotypically complemented pUL37-containing virions of PrV-DeltaUL37/UL35GFP exhibited wild type-like entry kinetics. Thus, the presence of pUL37 is required for rapid nuclear translocation of incoming nucleocapsids. PMID:19144717

  11. A novel fusion protein domain III-capsid from dengue-2, in a highly aggregated form, induces a functional immune response and protection in mice

    SciTech Connect

    Valdes, Iris; Bernardo, Lidice; Pavon, Alekis; Guzman, Maria G.

    2009-11-25

    Based on the immunogenicity of domain III from the Envelope protein of dengue virus as well as the proven protective capacity of the capsid antigen, we have designed a novel domain III-capsid chimeric protein with the goal of obtaining a molecule potentially able to induce both humoral and cell-mediated immunity (CMI). After expression of the recombinant gene in Escherichia coli, the domain III moiety retained its antigenicity as evaluated with anti-dengue sera. In order to explore alternatives for modulating the immunogenicity of the protein, it was mixed with oligodeoxynucleotides in order to obtain particulated aggregates and then immunologically evaluated in mice in comparison with non-aggregated controls. Although the humoral immune response induced by both forms of the protein was equivalent, the aggregated variant resulted in a much stronger CMI as measured by in vitro IFN-gamma secretion and protection experiments, mediated by CD4{sup +} and CD8{sup +} cells. The present work provides additional evidence in support for a crucial role of CMI in protection against dengue virus and describes a novel vaccine candidate against the disease based on a recombinant protein that can stimulate both arms of the acquired immune system.

  12. Exploiting the Yeast L-A Viral Capsid for the In Vivo Assembly of Chimeric VLPs as Platform in Vaccine Development and Foreign Protein Expression

    PubMed Central

    Powilleit, Frank; Breinig, Tanja; Schmitt, Manfred J.

    2007-01-01

    A novel expression system based on engineered variants of the yeast (Saccharomyces cerevisiae) dsRNA virus L-A was developed allowing the in vivo assembly of chimeric virus-like particles (VLPs) as a unique platform for a wide range of applications. We show that polypeptides fused to the viral capsid protein Gag self-assemble into isometric VLP chimeras carrying their cargo inside the capsid, thereby not only effectively preventing proteolytic degradation in the host cell cytosol, but also allowing the expression of a per se cytotoxic protein. Carboxyterminal extension of Gag by T cell epitopes from human cytomegalovirus pp65 resulted in the formation of hybrid VLPs that strongly activated antigen-specific CD8+ memory T cells ex vivo. Besides being a carrier for polypeptides inducing antigen-specific immune responses in vivo, VLP chimeras were also shown to be effective in the expression and purification of (i) a heterologous model protein (GFP), (ii) a per se toxic protein (K28 α-subunit), and (iii) a particle-associated and fully recyclable biotechnologically relevant enzyme (esterase A). Thus, yeast viral Gag represents a unique platform for the in vivo assembly of chimeric VLPs, equally attractive and useful in vaccine development and recombinant protein production. PMID:17476337

  13. Cell culture adaptation mutations in foot-and-mouth disease virus serotype A capsid proteins: implications for receptor interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study we describe the adaptive changes fixed on the capsid of several foot-and-mouth disease virus serotype A strains during propagation in cell monolayers. Viruses passaged extensively in three cell lines (BHK-21, LFBK and IB-RS-2), consistently gained several positively charged amino acids...

  14. Capsid protein oxidation in feline calicivirus using an electrochemical inactivation treatment.

    PubMed

    Shionoiri, Nozomi; Nogariya, Osamu; Tanaka, Masayoshi; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2015-01-01

    Pathogenic viral infections are an international public health concern, and viral disinfection has received increasing attention. Electrochemical treatment has been used for treatment of water contaminated by bacteria for several decades, and although in recent years several reports have investigated viral inactivation kinetics, the mode of action of viral inactivation by electrochemical treatment remains unclear. Here, we demonstrated the inactivation of feline calicivirus (FCV), a surrogate for human noroviruses, by electrochemical treatment in a developed flow-cell equipped with a screen-printed electrode. The viral infectivity titer was reduced by over 5 orders of magnitude after 15 min of treatment at 0.9V vs. Ag/AgCl. Proteomic study of electrochemically inactivated virus revealed oxidation of peptides located in the viral particles; oxidation was not observed in the non-treated sample. Furthermore, transmission electron microscopy revealed that viral particles in the treated sample had irregular structures. These results suggest that electrochemical treatment inactivates FCV via oxidation of peptides in the structural region, causing structural deformation of virus particles. This first report of viral protein damage through electrochemical treatment will contribute to broadening the understanding of viral inactivation mechanisms.

  15. Antigenic composition and immunoreactivity differences between HEV recombinant capsid proteins generated from different genotypes.

    PubMed

    Behloul, Nouredine; Wen, Jiyue; Dai, Xing; Dong, Chen; Meng, Jihong

    2015-08-01

    Appreciable variability has been observed in hepatitis E virus (HEV) serological diagnostics. Four recombinant proteins (p166s) were generated from position 452 to 617 aa of ORF2 of different HEV genotypes and used in an indirect ELISA to detect anti-HEV IgMs and IgGs in serially diluted sera of patients infected with different HEV genotypes (genotype 1, n=15; genotype 3, n=12; genotype 4, n=17). To evaluate the differences at a conformational level, 3D-structure models of p166s were predicted, and different bioinformatics tools were used to analyze the antigenic composition. With both anti-HEV IgMs and IgGs antibodies, there was a considerable variability between the four antigens immunoreactivities. In silico results revealed the region 483-533 aa with the highest antigenic potential and contains six key aa at positions 488, 489, 512, 533, 483 and 530. This immunoreactivity variation could affect diagnosis results and seroprevalence estimations and the identification in silico of a region highly antigenic would guide the development of efficient serological assays and epitope-based vaccines. PMID:26122075

  16. Fibroblasts express OvHV-2 capsid protein in vasculitis lesions of American bison (Bison bison) with experimental sheep-associated malignant catarrhal fever.

    PubMed

    Nelson, Danielle D; Taus, Naomi S; Schneider, David A; Cunha, Cristina W; Davis, William C; Brown, Wendy C; Li, Hong; O'Toole, Donal; Oaks, J Lindsay

    2013-10-25

    American bison (Bison bison) are particularly susceptible to developing fatal sheep-associated malignant catarrhal fever (SA-MCF) caused by ovine herpesvirus-2 (OvHV-2), a γ-herpesvirus in the Macavirus genus. This generally fatal disease is characterized by lymphoproliferation, vasculitis, and mucosal ulceration in American bison, domestic cattle (Bos taurus), and other clinically susceptible species which are considered non-adapted, dead-end hosts. The pathogenesis and cellular tropism of OvHV-2 infection have not been fully defined. An earlier study detected OvHV-2 open reading frame 25 (ORF25) transcripts encoding the viral major capsid protein in tissues of bison with SA-MCF, and levels of viral transcript expression positively correlated with lesion severity. To further define the cellular tropism and replication of OvHV-2 infection in vascular lesions of bison, immunofluorescence studies were performed to identify cell type(s) expressing ORF25 protein within tissues. Cytoplasmic and not nuclear ORF25 protein was demonstrated in predominantly perivascular fibroblasts in six bison with experimentally-induced SA-MCF, and there was no evidence of immunoreactivity in vascular endothelium, smooth muscle, or infiltrating leukocytes. The cytoplasmic distribution of viral major capsid protein suggests that viral replication in perivascular fibroblasts may be abortive in this dead-end host. These findings provide a novel foundation for defining the pathogenesis of vasculitis in non-adapted hosts with SA-MCF.

  17. Magic angle spinning NMR reveals sequence-dependent structural plasticity, dynamics, and the spacer peptide 1 conformation in HIV-1 capsid protein assemblies.

    PubMed

    Han, Yun; Hou, Guangjin; Suiter, Christopher L; Ahn, Jinwoo; Byeon, In-Ja L; Lipton, Andrew S; Burton, Sarah; Hung, Ivan; Gor'kov, Peter L; Gan, Zhehong; Brey, William; Rice, David; Gronenborn, Angela M; Polenova, Tatyana

    2013-11-27

    A key stage in HIV-1 maturation toward an infectious virion requires sequential proteolytic cleavage of the Gag polyprotein leading to the formation of a conical capsid core that encloses the viral RNA genome and a small complement of proteins. The final step of this process involves severing the SP1 peptide from the CA-SP1 maturation intermediate, which triggers the condensation of the CA protein into the capsid shell. The details of the overall mechanism, including the conformation of the SP1 peptide in CA-SP1, are still under intense debate. In this report, we examine tubular assemblies of CA and the CA-SP1 maturation intermediate using magic angle spinning (MAS) NMR spectroscopy. At magnetic fields of 19.9 T and above, outstanding quality 2D and 3D MAS NMR spectra were obtained for tubular CA and CA-SP1 assemblies, permitting resonance assignments for subsequent detailed structural characterization. Dipolar- and scalar-based correlation experiments unequivocally indicate that SP1 peptide is in a random coil conformation and mobile in the assembled CA-SP1. Analysis of two CA protein sequence variants reveals that, unexpectedly, the conformations of the SP1 tail, the functionally important CypA loop, and the loop preceding helix 8 are modulated by residue variations at distal sites. These findings provide support for the role of SP1 as a trigger of the disassembly of the immature CA capsid for its subsequent de novo reassembly into mature cores and establish the importance of sequence-dependent conformational plasticity in CA assembly.

  18. Magic Angle Spinning NMR Reveals Sequence-Dependent Structural Plasticity, Dynamics, and the Spacer Peptide 1 Conformation in HIV-1 Capsid Protein Assemblies

    PubMed Central

    Han, Yun; Hou, Guangjin; Suiter, Christopher L.; Ahn, Jinwoo; Byeon, In-Ja L.; Lipton, Andrew S.; Burton, Sarah; Hung, Ivan; Gor’kov, Peter L.; Gan, Zhehong; Brey, William; Rice, David; Gronenborn, Angela M.; Polenova, Tatyana

    2013-01-01

    A key stage in HIV-1 maturation towards an infectious virion requires sequential proteolytic cleavage of the Gag polyprotein leading to the formation of a conical capsid core that encloses the viral RNA genome and a small complement of proteins. The final step of this process involves severing the SP1 peptide from the CA-SP1 maturation intermediate, which triggers the condensation of the CA protein into the capsid shell. The details of the overall mechanism, including the conformation of the SP1 peptide in CA-SP1, are still under intense debate. In this report, we examine tubular assemblies of CA and the CA-SP1 maturation intermediates using Magic Angle Spinning NMR spectroscopy. At magnetic fields of 19.9 T and above, outstanding-quality 2D and 3D MAS NMR spectra were obtained for tubular CA and CA-SP1 assemblies yield, permitting resonance assignments for subsequent detailed structural characterization. Dipolar- and scalar-based correlation experiments unequivocally indicate that SP1 peptide is in a random coil conformation and mobile in the assembled CA-SP1. Analysis of two CA protein sequence variants reveals that, unexpectedly, the conformations of the SP1 tail, the functionally important CypA loop, and the loop preceding helix 8 are modulated by residue variations at distal sites. These findings provide support for the role of SP1 as a trigger of the disassembly of the immature CA capsid for its subsequent de novo reassembly into mature cores, and establish the importance of sequence-dependent conformational plasticity in CA assembly. PMID:24164646

  19. Enteroviruses and the pathogenesis of type 1 diabetes revisited: cross-reactivity of enterovirus capsid protein (VP1) antibodies with human mitochondrial proteins.

    PubMed

    Hansson, Sara F; Korsgren, Stella; Pontén, Fredrik; Korsgren, Olle

    2013-04-01

    Current or recent enteroviral infections show an association with type 1 diabetes. However, evidence for this has mainly been generated using a particular mouse monoclonal antibody (clone 5-D8/1) which binds the viral capsid protein VP1. Difficulty in confirming these findings using other independent methods has led to the concern that this might be artefactual. To address this, we examined the potential cross-reactivity of clone 5-D8/1 with normal islet proteins. Western blotting, two-dimensional gel electrophoresis, and mass spectrometry were used to identify human islet proteins bound by the clone 5-D8/1. We found a distinct reactivity with two mitochondrial proteins, creatine kinase B-type and ATP synthase beta subunit. Immunohistochemistry using the clone 5-D8/1 revealed a granular cytoplasmic staining pattern in mitochondria-rich cells, ie hepatocytes, ductal epithelial cells, vascular endothelial cells, skeletal muscle cells, and the neoplastic salivary gland oncocytoma cells, whereas connective tissue and infiltrating immune cells were negative. Staining on islets of Langerhans from subjects with recent-onset type 1 diabetes, but not on isolated human islets infected in vitro with enteroviruses, could be blocked after mixing the clone 5-D8/1 with the mitochondrial proteins. Collectively, our data show that the clone 5-D8/1 detects two human mitochondrial enzymes in addition to enteroviral VP1. The notion that the previously reported VP1 positivity in islets of recent-onset type 1 diabetes patients could reflect cross-reactivity to native islet proteins and not the presence of EV is supported by difficulties in demonstrating EV infection by independent techniques such as PCR or in situ hybridization. These findings call for revisiting the presence of enteroviruses in pancreatic islets of patients with type 1 diabetes.

  20. Virion-associated viral proteins of a Chinese giant salamander (Andrias davidianus) iridovirus (genus Ranavirus) and functional study of the major capsid protein (MCP).

    PubMed

    Li, Wei; Zhang, Xin; Weng, Shaoping; Zhao, Gaoxiang; He, Jianguo; Dong, Chuanfu

    2014-08-01

    Chinese giant salamander iridovirus (CGSIV) is the emerging causative agent to farmed Chinese giant salamanders in nationwide China. CGSIV is a member of the common midwife toad ranavirus (CMTV) subset of the amphibian-like ranavirus (ALRV) in the genus Ranavirus of Iridoviridae family. However, viral protein information on ALRV is lacking. In this first proteomic analysis of ALRV, 40 CGSIV viral proteins were detected from purified virus particles by liquid chromatography-tandem mass spectrometry analysis. The transcription products of all 40 identified virion proteins were confirmed by reverse transcription polymerase chain reaction analysis. Temporal expression pattern analysis combined with drug inhibition assay indicated that 37 transcripts of the 40 virion protein genes could be classified into three temporal kinetic classes, namely, 5 immediate early, 12 delayed early, and 20 late genes. The presence of major capsid proteins (MCP, ORF019L) and a proliferating cell nuclear antigen (ORF025L) was further confirmed by Western blot analysis. The functions of MCP were also determined by small interfering RNA (siRNA)-based knockdown assay and anti-recombinant MCP serum-based neutralization testing. At low dosages of CGSIV, siRNA-based knockdown of the MCP gene effectively inhibited CGSIV replication in fathead minnow cells. The antiviral effect observed in the anti-MCP serum-based neutralization test confirms the crucial function of the MCP gene in CGSIV replication. Taken together, detailed information on the virion-associated viral proteins of ALRV is presented for the first time. Our results also provide evidence that MCP is essential for CGSIV replication in vitro.

  1. Production of a recombinant capsid protein VP1 from a newly described polyomavirus (RacPyV) for downstream use in virus characterization.

    PubMed

    Church, Molly E; Dela Cruz, Florante N; Kim, Kevin; Persiani, Michele; Woods, Leslie W; Pesavento, Patricia A; Woolard, Kevin D

    2016-06-01

    Here we describe the methods for production of a recombinant viral capsid protein and subsequent use in an indirect enzyme linked immunosorbent assay (ELISA), and for use in production of a rabbit polyclonal antibody. These reagents were utilized in development and optimization of an ELISA, which established the extent of exposure of free ranging raccoons to a newly described polyomavirus (RacPyV) [1]. Production of a polyclonal antibody has allowed for further characterization of RacPyV, including immunohistochemistry and immunocytochemistry techniques, in order to answer questions about pathogenesis of this virus. PMID:26955649

  2. Phylogenetic analysis of members of the Phycodnaviridae virus family, using amplified fragments of the major capsid protein gene.

    PubMed

    Larsen, J B; Larsen, A; Bratbak, G; Sandaa, R-A

    2008-05-01

    Algal viruses are considered ecologically important by affecting host population dynamics and nutrient flow in aquatic food webs. Members of the family Phycodnaviridae are also interesting due to their extraordinary genome size. Few algal viruses in the Phycodnaviridae family have been sequenced, and those that have been have few genes in common and low gene homology. It has hence been difficult to design general PCR primers that allow further studies of their ecology and diversity. In this study, we screened the nine type I core genes of the nucleocytoplasmic large DNA viruses for sequences suitable for designing a general set of primers. Sequence comparison between members of the Phycodnaviridae family, including three partly sequenced viruses infecting the prymnesiophyte Pyramimonas orientalis and the haptophytes Phaeocystis pouchetii and Chrysochromulina ericina (Pyramimonas orientalis virus 01B [PoV-01B], Phaeocystis pouchetii virus 01 [PpV-01], and Chrysochromulina ericina virus 01B [CeV-01B], respectively), revealed eight conserved regions in the major capsid protein (MCP). Two of these regions also showed conservation at the nucleotide level, and this allowed us to design degenerate PCR primers. The primers produced 347- to 518-bp amplicons when applied to lysates from algal viruses kept in culture and from natural viral communities. The aim of this work was to use the MCP as a proxy to infer phylogenetic relationships and genetic diversity among members of the Phycodnaviridae family and to determine the occurrence and diversity of this gene in natural viral communities. The results support the current legitimate genera in the Phycodnaviridae based on alga host species. However, while placing the mimivirus in close proximity to the type species, PBCV-1, of Phycodnaviridae along with the three new viruses assigned to the family (PoV-01B, PpV-01, and CeV-01B), the results also indicate that the coccolithoviruses and phaeoviruses are more diverged from this

  3. Amino acid sequence diversity of the major human papillomavirus capsid protein: implications for current and next generation vaccines.

    PubMed

    Ahmed, Amina I; Bissett, Sara L; Beddows, Simon

    2013-08-01

    Despite the fidelity of host cell polymerases, the human papillomavirus (HPV) displays a degree of genomic polymorphism resulting in distinct genotypes and intra-type variants. The current HPV vaccines target the most prevalent genotypes associated with cervical cancer (HPV16/18) and genital warts (HPV6/11). Although these vaccines confer some measure of cross-protection, a multivalent HPV vaccine is in the pipeline that aims to broaden vaccine protection against other cervical cancer-associated genotypes including HPV31, HPV33, HPV45, HPV52 and HPV58. Both current and next generation vaccines comprise virus-like particles, based upon the major capsid protein, L1, and vaccine-induced, type-specific protection is likely mediated by neutralizing antibodies targeting L1 surface-exposed domains. The aim of this study was to perform an in silico analysis of existing full length L1 sequences representing vaccine-relevant HPV genotypes in order to address the degree of naturally-occurring, intra-type polymorphisms. In total, 1281 sequences from the Americas, Africa, Asia and Europe were assembled. Intra-type entropy was low and/or limited to non-surface-exposed residues for HPV6, HPV11 and HPV52 suggesting a minimal effect on vaccine antibodies for these genotypes. For HPV16, intra-type entropy was high but the present analysis did not reveal any significant polymorphisms not previously identified. For HPV31, HPV33, HPV58, however, intra-type entropy was high, mostly mapped to surface-exposed domains and in some cases within known neutralizing antibody epitopes. For HPV18 and HPV45 there were too few sequences for a definitive analysis, but HPV45 displayed some degree of surface-exposed residue diversity. In most cases, the reference sequence for each genotype represented a minority variant and the consensus L1 sequences for HPV18, HPV31, HPV45 and HPV58 did not reflect the L1 sequence of the currently available HPV pseudoviruses. These data highlight a number of variant

  4. [Expression of cDNA of the Gene for the Capsid Protein VP2 of German Cockroach Densovirus in the Transgenic Strain of Drosophila melanogaster].

    PubMed

    Kozlov, E N; Martynova, E U; Roshina, N V; Karakozova, M V; Mukha, D V

    2016-04-01

    Transgenic strains of Drosophila melanogaster capable of expressing a cDNA fragment corresponding to open reading frame (ORF) of the gene for the German cockroach densonucleosis virus capsid protein VP2 (ORF VP2) in specific tissues and at a certain stage of development depending on the type of chosen driver strains (GAL-UAS system) were obtained. The ORF VP2 transcription was examined at the imago stage after crossing the obtained transgenic Drosophila with the driver line expressing the inducer protein (GAL4) under control of actin promoter (the ORF VP2 expression is induced in all tissues of the first-generation Drosophila). It was demonstrated that the greater part of transcribed foreign RNA was represented by three spliced variants in which RNA fragments either between nucleotides 137 and 353 or between nucleotides 609 and 1925 were excised; the third spliced variant was represented by RNA lacking both introns. Using the next-generation sequencing (NGS) technique, the proportion of unspliced form relative to spliced variants of the analyzed RNA was assessed. It was shown that the ratio of unspliced form to the identified spliced variants of the analyzed RNA was approximately 1:6. It is suggested that splicing of viral RNA foreign to Drosophila can be a sort of defense mechanism preventing the large-scale production of the capsid protein, potentially hazardous to the host organism.

  5. Detection of infectious myonecrosis virus in penaeid shrimps using immunoassays: usefulness of monoclonal antibodies directed to the viral major capsid protein.

    PubMed

    Borsa, Mariana; Seibert, Caroline H; Rosa, Rafael D; Stoco, Patrícia H; Cargnin-Ferreira, Eduardo; Pereira, Alitiene M L; Grisard, Edmundo C; Zanetti, Carlos R; Pinto, Aguinaldo R

    2011-01-01

    Despite the economic impact of the infectious myonecrosis virus (IMNV) on shrimp farms in several countries, no method for immunological detection is currently available. With the aim of developing immunodiagnostic methods for IMNV detection in infected shrimps, a recombinant fragment of the IMNV major capsid protein gene encoding amino acids 105-297 (rIMNV₁₀₅₋₂₉₇ was heterologously expressed in Escherichia coli and used to immunize Balb/c mice, generating monoclonal antibodies (MAbs). Six hybridomas were obtained, and four of these recognized the presence of IMNV in tissue homogenates from naturally infected shrimps by immunodot blot assay. Among these MAbs, three were able to detect a ~100-kDa protein, which corresponds to the predicted mass of the IMNV major capsid protein, as well as viral inclusion bodies in muscle fibroses by western blot and immunohistochemistry. Two MAbs showed high specificity and sensitivity, showing no cross-reaction with healthy shrimp tissues in any assays, indicating their usefulness for IMNV detection.

  6. [Expression of cDNA of the Gene for the Capsid Protein VP2 of German Cockroach Densovirus in the Transgenic Strain of Drosophila melanogaster].

    PubMed

    Kozlov, E N; Martynova, E U; Roshina, N V; Karakozova, M V; Mukha, D V

    2016-04-01

    Transgenic strains of Drosophila melanogaster capable of expressing a cDNA fragment corresponding to open reading frame (ORF) of the gene for the German cockroach densonucleosis virus capsid protein VP2 (ORF VP2) in specific tissues and at a certain stage of development depending on the type of chosen driver strains (GAL-UAS system) were obtained. The ORF VP2 transcription was examined at the imago stage after crossing the obtained transgenic Drosophila with the driver line expressing the inducer protein (GAL4) under control of actin promoter (the ORF VP2 expression is induced in all tissues of the first-generation Drosophila). It was demonstrated that the greater part of transcribed foreign RNA was represented by three spliced variants in which RNA fragments either between nucleotides 137 and 353 or between nucleotides 609 and 1925 were excised; the third spliced variant was represented by RNA lacking both introns. Using the next-generation sequencing (NGS) technique, the proportion of unspliced form relative to spliced variants of the analyzed RNA was assessed. It was shown that the ratio of unspliced form to the identified spliced variants of the analyzed RNA was approximately 1:6. It is suggested that splicing of viral RNA foreign to Drosophila can be a sort of defense mechanism preventing the large-scale production of the capsid protein, potentially hazardous to the host organism. PMID:27529987

  7. Structural insights into the stabilization of the human immunodeficiency virus type 1 capsid protein by the cyclophilin-binding domain and implications on the virus cycle.

    PubMed

    Cortines, Juliana R; Lima, Luís Mauricio T R; Mohana-Borges, Ronaldo; Millen, Thiago de A; Gaspar, Luciane Pinto; Lanman, Jason K; Prevelige, Peter E; Silva, Jerson L

    2015-05-01

    During infection, human immunodeficiency virus type 1 (HIV-1) interacts with the cellular host factor cyclophilin A (CypA) through residues 85-93 of the N-terminal domain of HIV-1's capsid protein (CA). The role of the CA:CypA interaction is still unclear. Previous studies showed that a CypA-binding loop mutant, Δ87-97, has increased ability to assemble in vitro. We used this mutant to infer whether the CypA-binding region has an overall effect on CA stability, as measured by pressure and chemical perturbation. We built a SAXS-based envelope model for the dimer of both WT and Δ87-97. A new conformational arrangement of the dimers is described, showing the structural plasticity that CA can adopt. In protein folding studies, the deletion of the loop drastically reduces CA stability, as assayed by high hydrostatic pressure and urea. We hypothesize that the deletion promotes a rearrangement of helix 4, which may enhance the heterotypic interaction between the N- and C-terminal domains of CA dimers. In addition, we propose that the cyclophilin-binding loop may modulate capsid assembly during infection, either in the cytoplasm or near the nucleus by binding to the nuclear protein Nup385. PMID:25526889

  8. An unexpected twist in viral capsid maturation

    SciTech Connect

    Gertsman, Ilya; Gan, Lu; Guttman, Miklos; Lee, Kelly; Speir, Jeffrey A.; Duda, Robert L.; Hendrix, Roger W.; Komives, Elizabeth A.; Johnson, John E.

    2009-04-14

    Lambda-like double-stranded (ds) DNA bacteriophage undergo massive conformational changes in their capsid shell during the packaging of their viral genomes. Capsid shells are complex organizations of hundreds of protein subunits that assemble into intricate quaternary complexes that ultimately are able to withstand over 50 atm of pressure during genome packaging. The extensive integration between subunits in capsids requires the formation of an intermediate complex, termed a procapsid, from which individual subunits can undergo the necessary refolding and structural rearrangements needed to transition to the more stable capsid. Although various mature capsids have been characterized at atomic resolution, no such procapsid structure is available for a dsDNA virus or bacteriophage. Here we present a procapsid X-ray structure at 3.65 {angstrom} resolution, termed prohead II, of the lambda-like bacteriophage HK97, the mature capsid structure of which was previously solved to 3.44 {angstrom}. A comparison of the two largely different capsid forms has unveiled an unprecedented expansion mechanism that describes the transition. Crystallographic and hydrogen/deuterium exchange data presented here demonstrate that the subunit tertiary structures are significantly different between the two states, with twisting and bending motions occurring in both helical and -sheet regions. We also identified subunit interactions at each three-fold axis of the capsid that are maintained throughout maturation. The interactions sustain capsid integrity during subunit refolding and provide a fixed hinge from which subunits undergo rotational and translational motions during maturation. Previously published calorimetric data of a closely related bacteriophage, P22, showed that capsid maturation was an exothermic process that resulted in a release of 90 kJ mol{sup -1} of energy. We propose that the major tertiary changes presented in this study reveal a structural basis for an exothermic

  9. Viral capsid assembly as a model for protein aggregation diseases: Active processes catalyzed by cellular assembly machines comprising novel drug targets.

    PubMed

    Marreiros, Rita; Müller-Schiffmann, Andreas; Bader, Verian; Selvarajah, Suganya; Dey, Debendranath; Lingappa, Vishwanath R; Korth, Carsten

    2015-09-01

    Viruses can be conceptualized as self-replicating multiprotein assemblies, containing coding nucleic acids. Viruses have evolved to exploit host cellular components including enzymes to ensure their replicative life cycle. New findings indicate that also viral capsid proteins recruit host factors to accelerate their assembly. These assembly machines are RNA-containing multiprotein complexes whose composition is governed by allosteric sites. In the event of viral infection, the assembly machines are recruited to support the virus over the host and are modified to achieve that goal. Stress granules and processing bodies may represent collections of such assembly machines, readily visible by microscopy but biochemically labile and difficult to isolate by fractionation. We hypothesize that the assembly of protein multimers such as encountered in neurodegenerative or other protein conformational diseases, is also catalyzed by assembly machines. In the case of viral infection, the assembly machines have been modified by the virus to meet the virus' need for rapid capsid assembly rather than host homeostasis. In the case of the neurodegenerative diseases, it is the monomers and/or low n oligomers of the so-called aggregated proteins that are substrates of assembly machines. Examples for substrates are amyloid β peptide (Aβ) and tau in Alzheimer's disease, α-synuclein in Parkinson's disease, prions in the prion diseases, Disrupted-in-schizophrenia 1 (DISC1) in subsets of chronic mental illnesses, and others. A likely continuum between virus capsid assembly and cell-to-cell transmissibility of aggregated proteins is remarkable. Protein aggregation diseases may represent dysfunction and dysregulation of these assembly machines analogous to the aberrations induced by viral infection in which cellular homeostasis is pathologically reprogrammed. In this view, as for viral infection, reset of assembly machines to normal homeostasis should be the goal of protein aggregation

  10. Vaccination of horses with a recombinant modified vaccinia Ankara virus (MVA) expressing African horse sickness (AHS) virus major capsid protein VP2 provides complete clinical protection against challenge

    PubMed Central

    Alberca, Berta; Bachanek-Bankowska, Katarzyna; Cabana, Marta; Calvo-Pinilla, Eva; Viaplana, Elisenda; Frost, Lorraine; Gubbins, Simon; Urniza, Alicia; Mertens, Peter; Castillo-Olivares, Javier

    2014-01-01

    African horse sickness virus (AHSV) is an arthropod-borne pathogen that infects all species of equidae and causes high mortality in horses. Previously, a recombinant modified vaccinia Ankara (MVA) virus expressing the protein VP2 of AHSV serotype 4 was shown to induce virus neutralising antibodies in horses and protected interferon alpha receptor gene knock-out mice (IFNAR −/−) against virulent AHSV challenge. This study builds on the previous work, examining the protective efficacy of MVA-VP2 vaccination in the natural host of AHSV infection. A study group of 4 horses was vaccinated twice with a recombinant MVA virus expressing the major capsid protein (VP2) of AHSV serotype 9. Vaccinated animals and a control group of unvaccinated horses were then challenged with a virulent strain of AHSV-9. The vaccinated animals were completely protected against clinical disease and also against viraemia as measured by standard end-point dilution assays. In contrast, all control horses presented viraemia after challenge and succumbed to the infection. These results demonstrate the potential of recombinant MVA viruses expressing the outer capsid VP2 of AHSV as a protective vaccine against AHSV infection in the field. PMID:24837765

  11. Structural and mechanistic basis of anti-termination of Rho-dependent transcription termination by bacteriophage P4 capsid protein Psu

    PubMed Central

    Ranjan, Amitabh; Sharma, Savita; Banerjee, Ramanuj; Sen, Udayaditya; Sen, Ranjan

    2013-01-01

    The conserved bacterial transcription terminator, Rho, is a potent target for bactericidal agents. Psu, a bacteriophage P4 capsid protein, is capable of inducing anti-termination to the Rho-dependent transcription termination. Knowledge of structural and mechanistic basis of this anti-termination is required to design peptide-inhibitor(s) of Rho from Psu. Using suppressor genetics, cross-linking, protein foot-printing and FRET analyses, we describe a conserved disordered structure, encompassing 139–153 amino acids of Rho, as the primary docking site for Psu. Also a neighbouring helical structure, comprising 347–354 amino acids, lining its central channel, plays a supportive role in the Rho–Psu complex formation. Based on the crystal structure of Psu, its conformation in the capsid of the P4 phage, and its interacting regions on Rho, we build an energy-minimized structural model of the Rho:Psu complex. In this model, a V-shaped dimer of Psu interacts with the two diagonally opposite subunits of a hexameric Rho, enabling Psu to form a ‘lid’ on the central channel of the latter. We show that this configuration of Psu makes the central channel of Rho inaccessible, and it causes a mechanical impediment to its translocase activity. PMID:23703205

  12. Progressive Multifocal Leukoencephalopathy (PML) Development Is Associated With Mutations in JC Virus Capsid Protein VP1 That Change Its Receptor Specificity

    PubMed Central

    Reid, Carl; Testa, Manuela; Brickelmaier, Margot; Bossolasco, Simona; Pazzi, Annamaria; Bestetti, Arabella; Carmillo, Paul; Wilson, Ewa; McAuliffe, Michele; Tonkin, Christopher; Carulli, John P.; Lugovskoy, Alexey; Lazzarin, Adriano; Sunyaev, Shamil; Simon, Kenneth; Cinque, Paola

    2011-01-01

    Progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease caused by JC virus (JCV) infection of oligodendrocytes, may develop in patients with immune disorders following reactivation of chronic benign infection. Mutations of JCV capsid viral protein 1 (VP1), the capsid protein involved in binding to sialic acid cell receptors, might favor PML onset. Cerebrospinal fluid sequences from 37/40 PML patients contained one of several JCV VP1 amino acid mutations, which were also present in paired plasma but not urine sequences despite the same viral genetic background. VP1-derived virus-like particles (VLPs) carrying these mutations lost hemagglutination ability, showed different ganglioside specificity, and abolished binding to different peripheral cell types compared with wild-type VLPs. However, mutants still bound brain-derived cells, and binding was not affected by sialic acid removal by neuraminidase. JCV VP1 substitutions are acquired intrapatient and might favor JCV brain invasion through abrogation of sialic acid binding with peripheral cells, while maintaining sialic acid–independent binding with brain cells. PMID:21628664

  13. Magic Angle Spinning NMR Reveals Sequence-Dependent Structural Plasticity, Dynamics, and the Spacer Peptide 1 Conformation in HIV-1 Capsid Protein Assemblies

    SciTech Connect

    Han, Yun; Hou, Guangjin; Suiter, Christopher L.; Ahn, Jinwoo; Byeon, In-Ja L.; Lipton, Andrew S.; Burton, Sarah D.; Hung, Ivan; Gorkov, Peter L.; Gan, Zhehong; Brey, William W.; Rice, David M.; Gronenborn, Angela M.; Polenova, Tatyana E.

    2013-11-27

    Maturation of HIV-1 virus into an infectious virion requires cleavage of the Gag polyprotein into its constituent domains and formation of a conical capsid core that encloses viral RNA and a small complement of proteins for replication. The final step of this process is the cleavage of the SP1 peptide from the CA-SP1 maturation intermediate, which triggers the condensation of the CA protein into a conical capsid. The mechanism of this step, including the conformation of the SP1 peptide in CA-SP1, is under intense debate. In this report, we examine the tubular assemblies of CA and the CA-SP1 maturation intermediate using Magic Angle Spinning NMR spectroscopy. At the magnetic fields of 19.9 T and above, tubular CA and CA-SP1 assemblies yield outstanding-quality 2D and 3D MAS NMR spectra, which are amenable to resonance assignments and detailed structural characterization. Dipolar- and scalar-based correlation experiments unequivocally indicate that SP1 peptide is in a random coil conformation and mobile in the assembled CA-SP1. Analysis of two sequence variants reveals that remarkably, the conformation of SP1 tail, of the functionally important CypA loop, and of the loop preceding helix 8 are sequence dependent and modulated by the residue variations at distal sites. These findings challenge the role of SP1 as a conformational switch in the maturation process and establish sequence-dependent conformational plasticity in CA.

  14. Vaccination of horses with a recombinant modified vaccinia Ankara virus (MVA) expressing African horse sickness (AHS) virus major capsid protein VP2 provides complete clinical protection against challenge.

    PubMed

    Alberca, Berta; Bachanek-Bankowska, Katarzyna; Cabana, Marta; Calvo-Pinilla, Eva; Viaplana, Elisenda; Frost, Lorraine; Gubbins, Simon; Urniza, Alicia; Mertens, Peter; Castillo-Olivares, Javier

    2014-06-17

    African horse sickness virus (AHSV) is an arthropod-borne pathogen that infects all species of equidae and causes high mortality in horses. Previously, a recombinant modified vaccinia Ankara (MVA) virus expressing the protein VP2 of AHSV serotype 4 was shown to induce virus neutralising antibodies in horses and protected interferon alpha receptor gene knock-out mice (IFNAR -/-) against virulent AHSV challenge. This study builds on the previous work, examining the protective efficacy of MVA-VP2 vaccination in the natural host of AHSV infection. A study group of 4 horses was vaccinated twice with a recombinant MVA virus expressing the major capsid protein (VP2) of AHSV serotype 9. Vaccinated animals and a control group of unvaccinated horses were then challenged with a virulent strain of AHSV-9. The vaccinated animals were completely protected against clinical disease and also against viraemia as measured by standard end-point dilution assays. In contrast, all control horses presented viraemia after challenge and succumbed to the infection. These results demonstrate the potential of recombinant MVA viruses expressing the outer capsid VP2 of AHSV as a protective vaccine against AHSV infection in the field.

  15. Selective In Vivo Targeting of Human Liver Tumors by Optimized AAV3 Vectors in a Murine Xenograft Model

    PubMed Central

    Wang, Yuan; Zhang, Yuanhui; Ejjigani, Anila; Yin, Zifei; Lu, Yuan; Wang, Lina; Wang, Meng; Li, Jun; Hu, Zhongbo; Aslanidi, George V.; Zhong, Li; Gao, Guangping

    2014-01-01

    Abstract Current challenges for recombinant adeno-associated virus (rAAV) vector–based cancer treatment include the low efficiency and the lack of specificity in vivo. rAAV serotype 3 (rAAV3) vectors have previously been shown to be ineffective in normal mouse tissues following systemic administration. In the present study, we report that rAAV3 vectors can efficiently target and transduce various human liver cancer cells in vivo. Elimination of specific surface-exposed serine and threonine residues on rAAV3 capsids results in further augmentation in the transduction efficiency of these vectors, without any change in the viral tropism and cellular receptor interactions. In addition, we have identified a potential chemotherapy drug, shikonin, as a multifunctional compound to inhibit liver tumor growth as well as to significantly enhance the efficacy of rAAV vector-based gene therapy in vivo. Furthermore, we also document that suppression of tumorigenesis in a human liver cancer xenograft model can be achieved through systemic administration of the optimized rAAV3 vectors carrying a therapeutic gene, and shikonin at a dose that does not lead to liver damage. Our research provides a novel means to achieve not only targeted delivery but also the potential for gene therapy of human liver cancer. PMID:25296041

  16. Selective in vivo targeting of human liver tumors by optimized AAV3 vectors in a murine xenograft model.

    PubMed

    Ling, Chen; Wang, Yuan; Zhang, Yuanhui; Ejjigani, Anila; Yin, Zifei; Lu, Yuan; Wang, Lina; Wang, Meng; Li, Jun; Hu, Zhongbo; Aslanidi, George V; Zhong, Li; Gao, Guangping; Srivastava, Arun; Ling, Changquan

    2014-12-01

    Current challenges for recombinant adeno-associated virus (rAAV) vector-based cancer treatment include the low efficiency and the lack of specificity in vivo. rAAV serotype 3 (rAAV3) vectors have previously been shown to be ineffective in normal mouse tissues following systemic administration. In the present study, we report that rAAV3 vectors can efficiently target and transduce various human liver cancer cells in vivo. Elimination of specific surface-exposed serine and threonine residues on rAAV3 capsids results in further augmentation in the transduction efficiency of these vectors, without any change in the viral tropism and cellular receptor interactions. In addition, we have identified a potential chemotherapy drug, shikonin, as a multifunctional compound to inhibit liver tumor growth as well as to significantly enhance the efficacy of rAAV vector-based gene therapy in vivo. Furthermore, we also document that suppression of tumorigenesis in a human liver cancer xenograft model can be achieved through systemic administration of the optimized rAAV3 vectors carrying a therapeutic gene, and shikonin at a dose that does not lead to liver damage. Our research provides a novel means to achieve not only targeted delivery but also the potential for gene therapy of human liver cancer.

  17. Detection of restricted predominant epitopes of Theiler's murine encephalomyelitis virus capsid proteins expressed in the lambda gt11 system: differential patterns of antibody reactivity among different mouse strains.

    PubMed

    Crane, M A; Jue, C; Mitchell, M; Lipton, H; Kim, B S

    1990-05-01

    Intracerebral injection of mice with Theiler's murine encephalomyelitis virus results in chronic demyelination in susceptible strains, and serves as a model system for the study of multiple sclerosis. The role of individual epitopes in the disease process remains to be elucidated. Random fragments of DNA from the viral capsid protein genome covering the coding regions from VP1, VP2, and VP3 have been expressed in the lambda gt11 vector system. Fusion proteins from the clones were expressed and probed with antibodies from both resistant and susceptible strains of mice. Each strain displays a distinctive pattern with certain fusion proteins recognized by all of the strains and others recognized uniquely by either the susceptible or the resistant strains.

  18. Immunogenicity of Newcastle disease virus vectors expressing Norwalk virus capsid protein in the presence or absence of VP2 protein.

    PubMed

    Kim, Shin-Hee; Chen, Shun; Jiang, Xi; Green, Kim Y; Samal, Siba K

    2015-10-01

    Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirus-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans.

  19. Widespread AAV1- and AAV2-mediated transgene expression in the nonhuman primate brain: implications for Huntington’s disease

    PubMed Central

    Hadaczek, Piotr; Stanek, Lisa; Ciesielska, Agnieszka; Sudhakar, Vivek; Samaranch, Lluis; Pivirotto, Philip; Bringas, John; O’Riordan, Catherine; Mastis, Bryan; San Sebastian, Waldy; Forsayeth, John; Cheng, Seng H; Bankiewicz, Krystof S; Shihabuddin, Lamya S

    2016-01-01

    Huntington’s disease (HD) is caused by a toxic gain-of-function associated with the expression of the mutant huntingtin (htt) protein. Therefore, the use of RNA interference to inhibit Htt expression could represent a disease-modifying therapy. The potential of two recombinant adeno-associated viral vectors (AAV), AAV1 and AAV2, to transduce the cortico-striatal tissues that are predominantly affected in HD was explored. Green fluorescent protein was used as a reporter in each vector to show that both serotypes were broadly distributed in medium spiny neurons in the striatum and cortico-striatal neurons after infusion into the putamen and caudate nucleus of nonhuman primates (NHP), with AAV1-directed expression being slightly more robust than AAV2-driven expression. This study suggests that both serotypes are capable of targeting neurons that degenerate in HD, and it sets the stage for the advanced preclinical evaluation of an RNAi-based therapy for this disease. PMID:27408903

  20. Analysis of SAT Type Foot-And-Mouth Disease Virus Capsid Proteins and the Identification of Putative Amino Acid Residues Affecting Virus Stability

    PubMed Central

    Maree, Francois F.; Blignaut, Belinda; de Beer, Tjaart A. P.; Rieder, Elizabeth

    2013-01-01

    Foot-and-mouth disease virus (FMDV) initiates infection by adhering to integrin receptors on target cells, followed by cell entry and disassembly of the virion through acidification within endosomes. Mild heating of the virions also leads to irreversible dissociation into pentamers, a characteristic linked to reduced vaccine efficacy. In this study, the structural stability of intra- and inter-serotype chimeric SAT2 and SAT3 virus particles to various conditions including low pH, mild temperatures or high ionic strength, was compared. Our results demonstrated that while both the SAT2 and SAT3 infectious capsids displayed different sensitivities in a series of low pH buffers, their stability profiles were comparable at high temperatures or high ionic strength conditions. Recombinant vSAT2 and intra-serotype chimeric viruses were used to map the amino acid differences in the capsid proteins of viruses with disparate low pH stabilities. Four His residues at the inter-pentamer interface were identified that change protonation states at pH 6.0. Of these, the H145 of VP3 appears to be involved in interactions with A141 in VP3 and K63 in VP2, and may be involved in orientating H142 of VP3 for interaction at the inter-pentamer interfaces. PMID:23717387

  1. Analysis of SAT type foot-and-mouth disease virus capsid proteins and the identification of putative amino acid residues affecting virus stability.

    PubMed

    Maree, Francois F; Blignaut, Belinda; de Beer, Tjaart A P; Rieder, Elizabeth

    2013-01-01

    Foot-and-mouth disease virus (FMDV) initiates infection by adhering to integrin receptors on target cells, followed by cell entry and disassembly of the virion through acidification within endosomes. Mild heating of the virions also leads to irreversible dissociation into pentamers, a characteristic linked to reduced vaccine efficacy. In this study, the structural stability of intra- and inter-serotype chimeric SAT2 and SAT3 virus particles to various conditions including low pH, mild temperatures or high ionic strength, was compared. Our results demonstrated that while both the SAT2 and SAT3 infectious capsids displayed different sensitivities in a series of low pH buffers, their stability profiles were comparable at high temperatures or high ionic strength conditions. Recombinant vSAT2 and intra-serotype chimeric viruses were used to map the amino acid differences in the capsid proteins of viruses with disparate low pH stabilities. Four His residues at the inter-pentamer interface were identified that change protonation states at pH 6.0. Of these, the H145 of VP3 appears to be involved in interactions with A141 in VP3 and K63 in VP2, and may be involved in orientating H142 of VP3 for interaction at the inter-pentamer interfaces. PMID:23717387

  2. Crystallization and X-ray analysis of the T = 4 particle of hepatitis B capsid protein with an N-terminal extension

    SciTech Connect

    Tan, Wen Siang; McNae, Iain W.; Ho, Kok Lian; Walkinshaw, Malcolm D.

    2007-08-01

    Hepatitis B virus capsids have significant potential as carriers for immunogenic peptides. The crystal structure of the T = 4 particle of hepatitis B core protein containing an N-terminal extension reveals that the fusion peptide is exposed on the exterior of the particle. Hepatitis B core (HBc) particles have been extensively exploited as carriers for foreign immunological epitopes in the development of multicomponent vaccines and diagnostic reagents. Crystals of the T = 4 HBc particle were grown in PEG 20 000, ammonium sulfate and various types of alcohols. A temperature jump from 277 or 283 to 290 K was found to enhance crystal growth. A crystal grown using MPD as a cryoprotectant diffracted X-rays to 7.7 Å resolution and data were collected to 99.6% completeness at 8.9 Å. The crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 352.3, b = 465.5, c = 645.0 Å. The electron-density map reveals a protrusion that is consistent with the N-terminus extending out from the surface of the capsid. The structure presented here supports the idea that N-terminal insertions can be exploited in the development of diagnostic reagents, multicomponent vaccines and delivery vehicles into mammalian cells.

  3. Sulfolobus Spindle-Shaped Virus 1 Contains Glycosylated Capsid Proteins, a Cellular Chromatin Protein, and Host-Derived Lipids

    PubMed Central

    Quemin, Emmanuelle R. J.; Pietilä, Maija K.; Oksanen, Hanna M.; Forterre, Patrick; Rijpstra, W. Irene C.; Schouten, Stefan; Bamford, Dennis H.; Prangishvili, David

    2015-01-01

    ABSTRACT Geothermal and hypersaline environments are rich in virus-like particles, among which spindle-shaped morphotypes dominate. Currently, viruses with spindle- or lemon-shaped virions are exclusive to Archaea and belong to two distinct viral families. The larger of the two families, the Fuselloviridae, comprises tail-less, spindle-shaped viruses, which infect hosts from phylogenetically distant archaeal lineages. Sulfolobus spindle-shaped virus 1 (SSV1) is the best known member of the family and was one of the first hyperthermophilic archaeal viruses to be isolated. SSV1 is an attractive model for understanding virus-host interactions in Archaea; however, the constituents and architecture of SSV1 particles remain only partially characterized. Here, we have conducted an extensive biochemical characterization of highly purified SSV1 virions and identified four virus-encoded structural proteins, VP1 to VP4, as well as one DNA-binding protein of cellular origin. The virion proteins VP1, VP3, and VP4 undergo posttranslational modification by glycosylation, seemingly at multiple sites. VP1 is also proteolytically processed. In addition to the viral DNA-binding protein VP2, we show that viral particles contain the Sulfolobus solfataricus chromatin protein Sso7d. Finally, we provide evidence indicating that SSV1 virions contain glycerol dibiphytanyl glycerol tetraether (GDGT) lipids, resolving a long-standing debate on the presence of lipids within SSV1 virions. A comparison of the contents of lipids isolated from the virus and its host cell suggests that GDGTs are acquired by the virus in a selective manner from the host cytoplasmic membrane, likely during progeny egress. IMPORTANCE Although spindle-shaped viruses represent one of the most prominent viral groups in Archaea, structural data on their virion constituents and architecture still are scarce. The comprehensive biochemical characterization of the hyperthermophilic virus SSV1 presented here brings novel and

  4. The Oligomerization Domain of VP3, the Scaffolding Protein of Infectious Bursal Disease Virus, Plays a Critical Role in Capsid Assembly

    PubMed Central

    Maraver, Antonio; Oña, Ana; Abaitua, Fernando; González, Dolores; Clemente, Roberto; Ruiz-Díaz, Jose A.; Castón, Jose R.; Pazos, Florencio; Rodriguez, Jose F.

    2003-01-01

    Infectious bursal disease virus (IBDV) capsids are formed by a single protein layer containing three polypeptides, pVP2, VP2, and VP3. Here, we show that the VP3 protein synthesized in insect cells, either after expression of the complete polyprotein or from a VP3 gene construct, is proteolytically degraded, leading to the accumulation of product lacking the 13 C-terminal residues. This finding led to identification of the VP3 oligomerization domain within a 24-amino-acid stretch near the C-terminal end of the polypeptide, partially overlapping the VP1 binding domain. Inactivation of the VP3 oligomerization domain, by either proteolysis or deletion of the polyprotein gene, abolishes viruslike particle formation. Formation of VP3-VP1 complexes in cells infected with a dual recombinant baculovirus simultaneously expressing the polyprotein and VP1 prevented VP3 proteolysis and led to efficient virus-like particle formation in insect cells. PMID:12743301

  5. Recombinant rabbit hemorrhagic disease virus capsid protein expressed in baculovirus self-assembles into viruslike particles and induces protection.

    PubMed Central

    Laurent, S; Vautherot, J F; Madelaine, M F; Le Gall, G; Rasschaert, D

    1994-01-01

    VP60, the unique component of rabbit hemorrhagic disease virus capsid, was expressed in the baculovirus system. The recombinant VP60, released in the supernatant of infected insect cells, assembled without the need of any other viral component to form viruslike particles (VLPs), structurally and immunologically indistinguishable from the rabbit hemorrhagic disease virion. Intramuscular vaccination of rabbits with the VLPs conferred complete protection in 15 days; this protection was found to be effective from the fifth day after VLP injection and was accompanied by a strong humoral response. Images PMID:8084017

  6. AAV Vectors for Cardiac Gene Transfer: Experimental Tools and Clinical Opportunities

    PubMed Central

    Pacak, Christina A; Byrne, Barry J

    2011-01-01

    Since the first demonstration of in vivo gene transfer into myocardium there have been a series of advancements that have driven the evolution of cardiac gene delivery from an experimental tool into a therapy currently at the threshold of becoming a viable clinical option. Innovative methods have been established to address practical challenges related to tissue-type specificity, choice of delivery vehicle, potency of the delivered material, and delivery route. Most importantly for therapeutic purposes, these strategies are being thoroughly tested to ensure safety of the delivery system and the delivered genetic material. This review focuses on the development of recombinant adeno-associated virus (rAAV) as one of the most valuable cardiac gene transfer agents available today. Various forms of rAAV have been used to deliver “pre-event” cardiac protection and to temper the severity of hypertrophy, cardiac ischemia, or infarct size. Adeno-associated virus (AAV) vectors have also been functional delivery tools for cardiac gene expression knockdown studies and successfully improving the cardiac aspects of several metabolic and neuromuscular diseases. Viral capsid manipulations along with the development of tissue-specific and regulated promoters have greatly increased the utility of rAAV-mediated gene transfer. Important clinical studies are currently underway to evaluate AAV-based cardiac gene delivery in humans. PMID:21792180

  7. Activation of synoviocytes by the secreted phospholipase A2 motif in the VP1-unique region of parvovirus B19 minor capsid protein.

    PubMed

    Lu, Jun; Zhi, Ning; Wong, Susan; Brown, Kevin E

    2006-02-15

    Parvovirus B19 infection in adults is often associated with acute symmetrical polyarthropathy, but the mechanism is unknown. Recently, a secreted phospholipase A(2) (sPLA(2)) motif was identified in the VP1-unique region (VP1u) of the B19 minor capsid protein. To investigate the role of this motif, we expressed VP1u with and without point mutations in the critical amino acids of sPLA(2). Although high concentrations of B19 did not infect human fibroblast-like synoviocytes (HFLSs), there was a >3-fold increase in synoviocyte migration that could be blocked by phospholipase inhibitors. Recombinant proteins with intact VP1u demonstrated sPLA(2) activity and induced cell migration, whereas proteins with mutated VP1u were nonfunctional in both assays. The incubation of HFLSs with proteins that had intact VP1u, but not with proteins with mutated VP1u, increased the production of prostaglandin E(2) >100-fold. Expression of cyclooxygenase (COX)-2 mRNA transcripts, as determined by real-time reverse-transcription polymerase chain reaction, and COX-2 protein expression were both significantly increased after incubation with protein that had intact VP1u. Proteins with VP1u in noninfectious B19 may participate in the inflammatory response in the synovial compartment.

  8. Hepatitis E virus (HEV) protease: a chymotrypsin-like enzyme that processes both non-structural (pORF1) and capsid (pORF2) protein.

    PubMed

    Paliwal, Daizy; Panda, Subrat Kumar; Kapur, Neeraj; Varma, Satya Pavan Kumar; Durgapal, Hemlata

    2014-08-01

    Hepatitis E virus (HEV), a major cause of acute viral hepatitis across the world, is a non-enveloped, plus-strand RNA virus. Its genome codes three proteins, pORF1 (multifunctional polyprotein), pORF2 (capsid protein) and pORF3 (multi-regulatory protein). pORF1 encodes methyltransferase, putative papain-like cysteine protease, helicase and replicase enzymes. Of these, the protease domain has not been characterized. On the basis of sequence analysis, we cloned and expressed a protein covering aa 440-610 of pORF1, expression of which led to cell death in Escherichia coli BL-21 and Huh7 hepatoma cells. Finally, we expressed and purified this protein from E. coli C43 cells (resistant to toxic proteins). The refolded form of this protein showed protease activity in gelatin zymography. Digestion assays showed cleavage of both pORF1 and pORF2 as observed previously. MS revealed digestion of capsid protein at both the N and C termini. N-terminal sequencing of the ~35 kDa methyltransferase, ~35 kDa replicase and ~56 kDa pORF2 proteins released by protease digestion revealed that the cleavage sites were alanine15/isoleucine16, alanine1364/valine1365 in pORF1 and leucine197/valine198 in pORF2. Specificity of these cleavage sites was validated by site-directed mutagenesis. Further characterization of the HEV protease, carried out using twelve inhibitors, showed chymostatin and PMSF to be the most efficient inhibitors, indicating this protein as a chymotrypsin-like protease. The specificity was further confirmed by cleavage of the chymotrypsin-specific fluorogenic peptide N-succinyl-Leu-Leu-Val-Tyr-7-amido-4-methylcoumarin. Mutational analysis of the conserved serine/cysteine/histidine residues suggested that H443 and C472/C481/C483 are possibly the active site residues. To our knowledge, this is the first direct demonstration of HEV protease and its function.

  9. Analysis of self-association of West Nile virus capsid protein and the crucial role played by Trp 69 in homodimerization.

    PubMed

    Bhuvanakantham, Raghavan; Ng, Mah-Lee

    2005-04-01

    The understanding of capsid (C) protein interactions with itself would provide important data on how the core is organized in flaviviruses during assembly. In this study, West Nile (WN) virus C protein was shown to form homodimers using yeast two-hybrid analysis in conjunction with mammalian two-hybrid and in vivo co-immunoprecipitation assays. To delineate the region on the C protein which mediates C-C dimerization, truncation studies were carried out. The results obtained clearly showed that the internal hydrophobic segment flanked by helix I and helix III of WN virus C protein is essential for the self-association of C protein. The crucial role played by Trp 69 in stabilizing the self-association of C protein was also demonstrated by mutating Trp to Gly/Arg/Phe. Substitution of the Trp residue with Gly/Arg abolished the dimerization, whereas substitution with Phe decreased the self-association significantly. The results of this study pinpoint a critical residue in the C protein that potentially plays a role in stabilizing the homotypic interaction. PMID:15721300

  10. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: Implications for replication and genome packaging

    SciTech Connect

    Chaturvedi, Sonali; Rao, A.L.N.

    2014-09-15

    In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein–protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed. - Highlights: • YFP fusion proteins of BMV p1a and p2a are biologically active. • Self-interaction was observed for p1a, p2a and CP. • CP interacts with p2a but not p1a. • Majority of reconstituted YFP resulting from bona fide fusion protein partners localized on ER.

  11. Cyclophilins Facilitate Dissociation of the Human Papillomavirus Type 16 Capsid Protein L1 from the L2/DNA Complex following Virus Entry

    PubMed Central

    Bienkowska-Haba, Malgorzata; Williams, Carlyn; Kim, Seong Man; Garcea, Robert L.

    2012-01-01

    Human papillomaviruses (HPV) are composed of the major and minor capsid proteins, L1 and L2, that encapsidate a chromatinized, circular double-stranded DNA genome. At the outset of infection, the interaction of HPV type 16 (HPV16) (pseudo)virions with heparan sulfate proteoglycans triggers a conformational change in L2 that is facilitated by the host cell chaperone cyclophilin B (CyPB). This conformational change results in exposure of the L2 N terminus, which is required for infectious internalization. Following internalization, L2 facilitates egress of the viral genome from acidified endosomes, and the L2/DNA complex accumulates at PML nuclear bodies. We recently described a mutant virus that bypasses the requirement for cell surface CyPB but remains sensitive to cyclosporine for infection, indicating an additional role for CyP following endocytic uptake of virions. We now report that the L1 protein dissociates from the L2/DNA complex following infectious internalization. Inhibition and small interfering RNA (siRNA)-mediated knockdown of CyPs blocked dissociation of L1 from the L2/DNA complex. In vitro, purified CyPs facilitated the dissociation of L1 pentamers from recombinant HPV11 L1/L2 complexes in a pH-dependent manner. Furthermore, CyPs released L1 capsomeres from partially disassembled HPV16 pseudovirions at slightly acidic pH. Taken together, these data suggest that CyPs mediate the dissociation of HPV L1 and L2 capsid proteins following acidification of endocytic vesicles. PMID:22761365

  12. Phylogenetic analysis of a frog virus 3-like ranavirus found at a site with recurrent mortality and morbidity events in southeastern Ontario, Canada: partial major capsid protein sequence alone is not sufficient for fine-scale differentiation.

    PubMed

    Duffus, Amanda L J; Andrews, Abby M

    2013-04-01

    Ranaviruses are emerging pathogens of amphibians. We examined the phylogenetic relationship of ranaviruses from infected Lithobates sylvaticus tadpoles 2001-2004 from Oliver Pond, Ontario, Canada. The isolates sequenced are primarily frog virus 3-like, but because of sequence convergence, finer-scale analysis based on the major capsid protein was uninformative.

  13. An application of capsid-specific artificial ankyrin repeat protein produced in E. coli for immunochromatographic assay as a surrogate for antibody.

    PubMed

    Nangola, Sawitree; Thongkum, Weeraya; Saoin, Somphot; Ansari, Aftab A; Tayapiwatana, Chatchai

    2014-07-01

    Immunochromatographic strip test is a unique type of rapid test that has been developed for use as part of a diagnostic kit for the rapid detection of antibodies and/or other proteins of interest. For the detection of target proteins, most of the commercial tests are assembled based on the conjugation of colloidal gold particles to monoclonal antibodies embedded within the conjugate pad of a strip test. In this study, we tested the novel concept of using an artificial non-antibody structure for generating a colloidal gold conjugate (CGC). We exploited the property of an ankyrin repeat protein that specifically binds to the HIV-1 capsid protein termed Ank(GAG)1D4. This construct was applied as a model structure to create Ank1D4-CGC and used as a new type of visible detector system and termed it ankyrin-based immunochromatographic strip (ABIS) test. The ABIS test was shown to be highly sensitive with a lower limit of detection of the target protein at 0.1 μg/ml. Moreover, the ABIS test was not only highly sensitive but also shared a level of specificity within the same range of the commercial test kit. The results of the studies presented herein therefore demonstrate the novel application of an artificial non-immunoglobulin structure (ankyrin repeat protein) as the new line of a visible detector using a rapid diagnostic test with characteristics that have the potential to be superior to those that utilize antibody-based tests.

  14. A single amino acid mutation alters the capsid protein electrophoretic double-band phenotype of the Plum pox virus strain PPV-Rec.

    PubMed

    Subr, Z W; Kamencayová, M; Nováková, S; Nagyová, A; Nosek, J; Glasa, M

    2010-07-01

    Plum pox virus (PPV) isolates differ by their capsid protein (CP) mobility in SDS-PAGE. These electrophoretic phenotypes are likely to result from post-translational modifications of the CP. We demonstrated that the CP mobility was solely determined by the CP N-terminal region. Sequence comparison pinpointed a possible role of mutations at position 66 in determining the CP phenotype of PPV-Rec isolates. Site-directed mutagenesis of a chimeric clone demonstrated that Gly(66) in the CP resulted in the double-band phenotype, while Arg(66) led to a single-band CP pattern, possibly by preventing the phosphorylation of a nearby Ser residue by steric hindrance.

  15. Cloning of the Major Capsid Protein (MCP) of Grouper Iridovirus of Taiwan (TGIV) and Preliminary Evaluation of a Recombinant MCP Vaccine against TGIV

    PubMed Central

    Liu, Hsin-I; Chiou, Pinwen Peter; Gong, Hong-Yi; Chou, Hsin-Yiu

    2015-01-01

    Fish iridoviruses cause systemic diseases with high mortality in various species of wild and farm-raised fish, resulting in severe economic losses. In 1998, we isolated a new epizootic iridovirus in cultured grouper (Epinephelus sp.) in Taiwan, thus named as grouper iridovirus of Taiwan (TGIV). We report here the cloning of TGIV major capsid protein (MCP). Phylogenetic analysis of the iridoviral MCPs confirmed the classification of TGIV into the Megalocytivirus genus. Recombinant TGIV MCP and GIV MCP were then generated to produce polyclonal antibodies. Western blot analysis revealed that the two antisera were species-specific, indicating no common epitope shared by the MCPs of the two viruses. We further assayed the potency of a subunit vaccine containing recombinant TGIV MCP. The vaccine effectively protected grouper from TGIV infection. The result demonstrated that MCP is a suitable antigen for anti-TGIV vaccines. PMID:26633384

  16. Tyrosine triple mutated AAV2-BDNF gene therapy in a rat model of transient IOP elevation

    PubMed Central

    Igarashi, Tsutomu; Kobayashi, Maika; Kameya, Shuhei; Fujimoto, Chiaki; Nakamoto, Kenji; Takahashi, Hisatomo; Igarashi, Toru; Miyake, Noriko; Iijima, Osamu; Hirai, Yukihiko; Shimada, Takashi; Okada, Takashi; Takahashi, Hiroshi

    2016-01-01

    Purpose We examined the neuroprotective effects of exogenous brain-derived neurotrophic factor (BDNF), which provides protection to retinal ganglion cells (RGCs) in rodents, in a model of transient intraocular pressure (IOP) elevation using a mutant (triple Y-F) self-complementary adeno-associated virus type 2 vector encoding BDNF (tm-scAAV2-BDNF). Methods The tm-scAAV2-BDNF or control vector encoding green fluorescent protein (GFP; tm-scAAV2-GFP) was intravitreally administered to rats, which were then divided into four groups: control, ischemia/reperfusion (I/R) injury only, I/R injury with tm-scAAV2-GFP, and tm-scAAV2-BDNF. I/R injury was then induced by transiently increasing IOP, after which the rats were euthanized to measure the inner retinal thickness and cell counts in the RGC layer. Results Intravitreous injection of tm-scAAV2-BDNF resulted in high levels of BDNF expression in the neural retina. Histological analysis showed that the inner retinal thickness and cell numbers in the RGC layer were preserved after transient IOP elevation in eyes treated with tm-scAAV2-BDNF but not in the other I/R groups. Significantly reduced glial fibrillary acidic protein (GFAP) immunostaining after I/R injury in the rats that received tm-scAAV2-BDNF indicated reduced retinal stress, and electroretinogram (ERG) analysis confirmed preservation of retinal function in the tm-scAAV2-BDNF group. Conclusions These results demonstrate the feasibility and effectiveness of neuroprotective gene therapy using tm-scAAV2-BDNF to protect the inner retina from transiently high intraocular pressure. An in vivo gene therapeutic approach to the clinical management of retinal diseases in conditions such as glaucoma, retinal artery occlusion, hypertensive retinopathy, and diabetic retinopathy thus appears feasible. PMID:27440998

  17. Phospholipase A2 Activity-Dependent Stimulation of Ca2+ Entry by Human Parvovirus B19 Capsid Protein VP1▿

    PubMed Central

    Lupescu, Adrian; Bock, C.-Thomas; Lang, Philipp A.; Aberle, Susanne; Kaiser, Heike; Kandolf, Reinhard; Lang, Florian

    2006-01-01

    Recent reports demonstrated an association of human parvovirus B19 with inflammatory cardiomyopathy (iCMP), which is accompanied by endothelial dysfunction. As intracellular Ca2+ activity is a key regulator of cell function and participates in mechanisms leading to endothelial dysfunction, the present experiments explored the effects of the B19 capsid proteins VP1 and VP2. A secreted phospholipase A2 (PLA2)-like activity has been located in the VP1 unique region of the B19 minor capsid protein. As PLA2 has recently been shown to activate the store-operated or capacitative Ca2+ channel ICRAC, we analyzed the impact of the viral PLA2 motif on Ca2+ entry. We cloned the VP1 and VP2 genes isolated from a patient suffering from fatal B19 iCMP into eukaryotic expression vectors. We also generated a B19 replication-competent plasmid to demonstrate PLA2 activity under the control of the complete B19 genome. After the transfection of human endothelial cells (HMEC-1), cytosolic Ca2+ activity was determined by utilizing Fura-2 fluorescence. VP1 and VP2 expression did not significantly modify basal cytosolic Ca2+ activity or the decline of cytosolic Ca2+ activity following the removal of extracellular Ca2+. However, expression of VP1 and of the full-length B19 clone, but not of VP2, significantly accelerated the increase of cytosolic Ca2+ activity following the readdition of extracellular Ca2+ in the presence of thapsigargin, indicating an activation of ICRAC. The effect of VP1 was mimicked by the PLA2 product lysophosphatidylcholine and abolished by an inactivating mutation of the PLA2-encoding region of the VP1 gene. Our observations point to the activation of Ca2+ entry by VP1 PLA2 activity, an effect likely participating in the pathophysiology of B19 infection. PMID:16956939

  18. Deletion or green fluorescent protein tagging of the pUL35 capsid component of pseudorabies virus impairs virus replication in cell culture and neuroinvasion in mice.

    PubMed

    Krautwald, Mirjam; Maresch, Christina; Klupp, Barbara G; Fuchs, Walter; Mettenleiter, Thomas C

    2008-06-01

    To facilitate tracing of virion movement, the non-essential capsid proteins pUL35 of herpes simplex virus type 1 and pseudorabies virus (PrV) have been tagged with green fluorescent protein (GFP). However, the biological relevance of PrV pUL35 and the functionality of the fusion proteins have not yet been investigated in detail. We generated PrV mutants either lacking the 12 kDa UL35 gene product, or expressing GFP fused to the N terminus of pUL35. Remarkably, both mutants exhibited significant replication defects in rabbit kidney cells, which could be corrected in pUL35-expressing cells. After intranasal infection of mice both mutants showed delayed neuroinvasion, and survival times of the animals were extended to 3 days, compared with 2 days after wild-type infection. Thus, fusion of pUL35 with GFP resulted in a non-functional protein, which has to be considered for the use of corresponding mutants in tracing studies. PMID:18474549

  19. Identification of the cleavage sites of the RNA2-encoded polyproteins for two members of the genus Torradovirus by N-terminal sequencing of the virion capsid proteins.

    PubMed

    Ferriol, I; Silva Junior, D M; Nigg, J C; Zamora-Macorra, E J; Falk, B W

    2016-11-01

    Torradoviruses, family Secoviridae, are emergent bipartite RNA plant viruses. RNA1 is ca. 7kb and has one open reading frame (ORF) encoding for the protease, helicase and RNA-dependent RNA polymerase (RdRp). RNA2 is ca. 5kb and has two ORFs. RNA2-ORF1 encodes for a putative protein with unknown function(s). RNA2-ORF2 encodes for a putative movement protein and three capsid proteins. Little is known about the replication and polyprotein processing strategies of torradoviruses. Here, the cleavage sites in the RNA2-ORF2-encoded polyproteins of two torradoviruses, Tomato marchitez virus isolate M (ToMarV-M) and tomato chocolate spot virus, were determined by N-terminal sequencing, revealing that the amino acid (aa) at the -1 position of the cleavage sites is a glutamine. Multiple aa sequence comparison confirmed that this glutamine is conserved among other torradoviruses. Finally, site-directed mutagenesis of conserved aas in the ToMarV-M RdRp and protease prevented substantial accumulation of viral coat proteins or RNAs.

  20. Production of rotavirus-like particles in tomato (Lycopersicon esculentum L.) fruit by expression of capsid proteins VP2 and VP6 and immunological studies.

    PubMed

    Saldaña, Sergio; Esquivel Guadarrama, Fernando; Olivera Flores, Teresa De Jesús; Arias, Nancy; López, Susana; Arias, Carlos; Ruiz-Medrano, Roberto; Mason, Hugh; Mor, Tsafrir; Richter, Liz; Arntzen, Charles J; Gómez Lim, Miguel A

    2006-01-01

    A number of different antigens have been successfully expressed in transgenic plants, and some are currently being evaluated as orally delivered vaccines. Here we report the successful expression of rotavirus capsid proteins VP2 and VP6 in fruits of transgenic tomato plants. By western blot analysis, using specific antibodies, we determined that the VP2 and VP6 produced in plants have molecular weights similar to those found in native rotavirus. The plant-synthesized VP6 protein retained the capacity to form trimers. We were able to recover rotavirus virus-like particles from tomato fruit (i.e., tomatoes) by centrifugation on a sucrose cushion and to visualize them by electron microscopy. This result indicated that VP2/VP6 can self-assemble into virus-like particles (VLPs) in plant cells, even though only a small proportion of VP2/VP6 assembled into VLPs. To investigate immunogenicity, adult mice were immunized intraperitoneally (i.p.) three times with a protein extract from a transgenic tomatoes in adjuvant. We found that the transgenic tomato extract induced detectable levels of anti-rotavirus antibodies in serum; however, we did not determine the contribution of either the free rotavirus proteins or the VLPs to the induction of the antibody response. These results suggest the potential of plant-based rotavirus VLPs for the development of a vaccine against rotavirus infection.

  1. Unique amino acid substitutions in the capsid proteins of foot-and-mouth disease virus from a persistent infection in cell culture.

    PubMed Central

    Díez, J; Dávila, M; Escarmís, C; Mateu, M G; Dominguez, J; Pérez, J J; Giralt, E; Melero, J A; Domingo, E

    1990-01-01

    Maintenance of a persistent foot-and-mouth disease virus (FMDV) infection in BHK-21 cells involves a coevolution of cells and virus (J. C. de la Torre, E. Martínez-Salas, J. Díez, A. Villaverde, F. Gebauer, E. Rocha, M. Dávila, and E. Domingo, J. Virol. 62:2050-2058, 1988). The resident FMDV undergoes a number of phenotypic changes, including a gradual decrease in virion stability. Here we report the nucleotide sequence of the P1 genomic segment of the virus rescued after 100 passages of the carrier cells (R100). Only 5 of 15 mutations in P1 of R100 were silent. Nine amino acid substitutions were fixed on the viral capsid during persistence, and three of the variant amino acids are not represented in the corresponding position of any picornavirus sequenced to date. Cysteine at position 7 of VP3, that provides disulfide bridges at the FMDV fivefold axis, was substituted by valine, as determined by RNA, cDNA, and protein sequencing. The modified virus shows high buoyant density in cesium chloride and depicts the same sensitivity to photoinactivation by intercalating dyes as the parental FMDV C-S8c1. Amino acid substitutions fixed in VP1 resulted in altered antigenicity, as revealed by reactivity with monoclonal antibodies. In addition to defining at the molecular level the alterations the FMDV capsid underwent during persistence, the results show that positions which are highly invariant in an RNA genome may change when viral replication occurs in a modified environment. Images PMID:2170684

  2. Structure of the HIV-1 Full-Length Capsid Protein in a Conformationally Trapped Unassembled State Induced by Small-Molecule Binding

    SciTech Connect

    Du, Shoucheng; Betts, Laurie; Yang, Ruifeng; Shi, Haibin; Concel, Jason; Ahn, Jinwoo; Aiken, Christopher; Zhang, Peijun; Yeh, Joanne I.

    2012-11-26

    The capsid (CA) protein plays crucial roles in HIV infection and replication, essential to viral maturation. The absence of high-resolution structural data on unassembled CA hinders the development of antivirals effective in inhibiting assembly. Unlike enzymes that have targetable, functional substrate-binding sites, the CA does not have a known site that affects catalytic or other innate activity, which can be more readily targeted in drug development efforts. We report the crystal structure of the HIV-1 CA, revealing the domain organization in the context of the wild-type full-length (FL) unassembled CA. The FL CA adopts an antiparallel dimer configuration, exhibiting a domain organization sterically incompatible with capsid assembly. A small compound, generated in situ during crystallization, is bound tightly at a hinge site ('H site'), indicating that binding at this interdomain region stabilizes the ADP conformation. Electron microscopy studies on nascent crystals reveal both dimeric and hexameric lattices coexisting within a single condition, in agreement with the interconvertibility of oligomeric forms and supporting the feasibility of promoting assembly-incompetent dimeric states. Solution characterization in the presence of the H-site ligand shows predominantly unassembled dimeric CA, even under conditions that promote assembly. Our structure elucidation of the HIV-1 FL CA and characterization of a potential allosteric binding site provides three-dimensional views of an assembly-defective conformation, a state targeted in, and thus directly relevant to, inhibitor development. Based on our findings, we propose an unprecedented means of preventing CA assembly, by 'conformationally trapping' CA in assembly-incompetent conformational states induced by H-site binding.

  3. Production and purification of polymerization-competent HIV-1 capsid protein p24 (CA) in NiCo21(DE3) Escherichia coli

    PubMed Central

    2013-01-01

    Background HIV genome is packaged and organized in a conical capsid, which is made up of ~1,500 copies of the viral capsid protein p24 (CA). Being a primary structural component and due to its critical roles in both late and early stages of the HIV replication cycle, CA has attracted increased interest as a drug discovery target in recent years. Drug discovery studies require large amounts of highly pure and biologically active protein. It is therefore desirable to establish a simple and reproducible process for efficient production of HIV-1 CA. Result In this work, 6-His-tagged wild type CA from HIV-1 (NL4.3) was expressed in rare tRNA-supplemented NiCo21(DE3) Escherichia coli, and its production was studied in shake flask culture condition of expression. Influences of various key cultivation parameters were examined to identify optimal conditions for HIV-1 CA production. It was found that a culture temperature of 22°C and induction with 0.05 mM IPTG at the early stage of growth were ideal, leading to a maximum biomass yield when grown in Super broth supplemented with 1% glucose. With optimized culture conditions, a final biomass concentration of ~27.7 g L-1 (based on optical density) was obtained in 12 hours post-induction, leading to a yield of about ~170 mg L-1 HIV-1 CA. A two-step purification strategy (chitin beads + IMAC) was employed, which efficiently removed metal affinity resin-binding bacterial proteins that contaminate recombinant His-tagged protein preparation, and resulted in highly pure HIV-1 CA. The purified protein was capable of polymerization when tested in an in vitro polymerization assay. Conclusions By using this optimized expression and purification procedure, milligram amounts of highly pure and polymerization-competent recombinant HIV-1 CA can be produced at the lab-scale and thus used for further biochemical studies. PMID:24304876

  4. The capsid protein of Turnip crinkle virus overcomes two separate defense barriers to facilitate systemic movement of the virus in Arabidopsis.

    PubMed

    Cao, Mingxia; Ye, Xiaohong; Willie, Kristen; Lin, Junyan; Zhang, Xiuchun; Redinbaugh, Margaret G; Simon, Anne E; Morris, T Jack; Qu, Feng

    2010-08-01

    The capsid protein (CP) of Turnip crinkle virus (TCV) is a multifunctional protein needed for virus assembly, suppression of RNA silencing-based antiviral defense, and long-distance movement in infected plants. In this report, we have examined genetic requirements for the different functions of TCV CP and evaluated the interdependence of these functions. A series of TCV mutants containing alterations in the CP coding region were generated. These alterations range from single-amino-acid substitutions and domain truncations to knockouts of CP translation. The latter category also contained two constructs in which the CP coding region was replaced by either the cDNA of a silencing suppressor of a different virus or that of green fluorescent protein. These mutants were used to infect Arabidopsis plants with diminished antiviral silencing capability (dcl2 dcl3 dcl4 plants). There was a strong correlation between the ability of mutants to reach systemic leaves and the silencing suppressor activity of mutant CP. Virus particles were not essential for entry of the viral genome into vascular bundles in the inoculated leaves in the absence of antiviral silencing. However, virus particles were necessary for egress of the viral genome from the vasculature of systemic leaves. Our experiments demonstrate that TCV CP not only allows the viral genome to access the systemic movement channel through silencing suppression but also ensures its smooth egress by way of assembled virus particles. These results illustrate that efficient long-distance movement of TCV requires both functions afforded by the CP.

  5. Mucopolysaccharidosis IIIB confers enhanced neonatal intracranial transduction by AAV8 but not by 5, 9 or rh10

    PubMed Central

    Gilkes, J A; Bloom, M D; Heldermon, C D

    2016-01-01

    Sanfilippo syndrome type B (mucopolysaccharidosis IIIB, MPS IIIB) is a lysosomal storage disease resulting from deficiency of N-acetyl-glucosaminidase (NAGLU) activity. To determine the possible therapeutic utility of recombinant adeno-associated virus (rAAV) in early gene therapy-based interventions, we performed a comprehensive assessment of transduction and biodistribution profiles of four central nervous system (CNS) administered rAAV serotypes, -5, -8, -9 and -rh10. To simulate optimal earliest treatment of the disease, each rAAV serotype was injected into the CNS of neonatal MPS IIIB and control animals. We observed marked differences in biodistribution and transduction profiles between the serotypes and this differed in MPS IIIB compared with healthy control mice. Overall, in control mice, all serotypes performed comparably, although some differences were observed in certain focal areas. In MPS IIIB mice, AAV8 was more efficient than AAV5, -9 and -rh10 for gene delivery to most structures analyzed, including the cerebral cortex, hippocampus and thalamus. Noteworthy, the pattern of biodistribution within the CNS varied by serotype and genotype. Interestingly, AAV8 also produced the highest green fluorescent protein intensity levels compared with any other serotype and demonstrated improved transduction in NAGLU compared with control brains. Importantly, we also show leakage of AAV8, -9 and -rh10, but not AAV5, from CNS parenchyma to systemic organs. Overall, our data suggest that AAV8 represents the best therapeutic gene transfer vector for early intervention in MPS IIIB. PMID:26674264

  6. The semipermeability of simple spherical virus capsids.

    PubMed

    Durham, A C; Witz, J; Bancroft, J B

    1984-02-01

    Hydrogen-ion titration curves are reported for tomato bushy stunt virus, two strains of cowpea chlorotic mottle virus, and turnip crinkle virus, with particular attention to the hysteresis loops associated with the swelling and contraction of virions. There appears to be an archetypal shape of hysteresis loops, which is shared by viruses in several groups, suggestive of many intermediate states in the swelling of any one particle. In contrast, eggplant mosaic virus behaves as if its protein capsid is impermeable to small ions in mild conditions; its cation-binding sites were revealed by treatment with high concentrations of salt or urea, or at raised temperatures. Putting these observations together with the fact that a spherical virus capsid is a closed, holey, charged surface leads to a theory of titration hysteresis: its key feature is that the protein capsids of simple viruses are inherently semipermeable, with many of the ion-handling properties usually attributed only to complex lipid membranes.

  7. Crosslinking in viral capsids via tiling theory.

    PubMed

    Twarock, R; Hendrix, R W

    2006-06-01

    A vital part of a virus is its protein shell, called the viral capsid, that encapsulates and hence protects the viral genome. It has been shown in Twarock [2004. A tiling approach to vius capsids assembly explaining a structural puzzle in virology. J. Theor. Biol. 226, 477-482] that the surface structures of viruses with icosahedrally symmetric capsids can be modelled in terms of tilings that encode the locations of the protein subunits. This theory is extended here to multi-level tilings in order to model crosslinking structures. The new framework is demonstrated for the case of bacteriophage HK97, and it is shown, how the theory can be used in general to decide if crosslinking, and what type of crosslinking, is compatible from a mathematical point of view with the geometrical surface structure of a virus.

  8. Diversity of in-vivo assembled HIV-1 capsids

    NASA Astrophysics Data System (ADS)

    Lee, Se Il; Nguyen, Toan

    2008-03-01

    Understanding the capsid assembly process of Human Immunodeficiency Virus (HIV), the causative agent of Acute Immuno Deficiency Syndrom (AIDS), is very important because of recent intense interest in capsid-oriented viral therapy. The unique conical shapes of mature HIV-1 capsid have drawn significant interests in the biological community and started to attract attention from the physics community. Previous studies showed that in a free assembly process, the HIV-1 conical shape is not thermodynamically stable. However, if the volume of the capsid is constrained during assembly and the capsid protein shell has high spontaneous curvature, the conical shape is stable. In this work, we focus on in-vivo HIV-1 capsid assembly. For this case, the viral envelope membrane present during assembly imposes constraint on the length of the capsid. We use an elastic continuum shell theory to approximate the energies of various HIV-1 capsid shapes (spherical, cylindrical and conical). We show that for certain range of viral membrane diameter, the conical and cylindrical shapes are both thermodynamically stable. This result is supported by experimental observation that in-vivo assembled HIV-1 capsids are very heterogeneous in shapes and sizes. Numerical calculation is also performed to improve theoretical approximation.

  9. Induction of robust immunity response in mice by dual-expression-system-based recombinant baculovirus expressing the capsid protein of porcine circovirus type 2

    PubMed Central

    2013-01-01

    Background Porcine circovirus type 2 (PCV2) is associated with post-weaning multisystemic wasting syndrome (PMWS), an emerging swine disease that causes progressive weight loss, dyspnea, tachypnea, anemia, jaundice, and diarrhea in piglets. Although baculovirus is an enveloped virus that infects insects in nature, it has emerged as a vaccine vector, and we used it to develop a novel candidate vaccine for a preventive or therapeutic strategy to control PCV2 infections. Methods Immunoblotting analysis of recombinant baculovirus and immunofluorescent staining of baculovirus-infected cells were followed using anti-ORF2 monoclonal antibodies. The BALB/c mice were immunized intramuscularly with this baculovirus. The titers of antibodies were mensurated with a Cap-protein-specific enzyme-linked immunosorbent assay (ELISA) and a serum neutralization assay. The IFN-γ response in splenocytes harvested from immunized mice was measured by ELISA. Student's t-test was used to compare immune responses of different groups. Results In this study, we successfully constructed a dual-expression-system-based recombinant baculovirus BV-GD-ORF2, which can display the PCV2 capsid (Cap) protein and VSV-G protein on the viral envelope and also expressing Cap protein on transduced mammalian cells, thereby functioning as both a subunit and a DNA vaccine. After infection, the Cap protein was expressed and displayed on the viral surface, as demonstrated with an indirect fluorescence assay and immunoblotting. The vaccination of mice with recombinant baculovirus BV-GD-ORF2 successfully induced robust Cap-protein-specific humoral and cellular immune responses. Conclusions Our findings collectively demonstrate that the recombinant baculovirus BV-GD-ORF2 is a potential vaccine against PCV2 infections. PMID:24161107

  10. HIV-1 capsid protein forms spherical (immature-like) and tubular (mature-like) particles in vitro: structure switching by pH-induced conformational changes.

    PubMed

    Ehrlich, L S; Liu, T; Scarlata, S; Chu, B; Carter, C A

    2001-07-01

    The viral genome and replicative enzymes of the human immunodeficiency virus are encased in a shell consisting of assembled mature capsid protein (CA). The core shell is a stable, effective protective barrier, but is also poised for dissolution on cue to allow transmission of the viral genome into its new host. In this study, static light scattering (SLS) and dynamic light scattering (DLS) were used to examine the entire range of the CA protein response to an environmental cue (pH). The CA protein assembled tubular structures as previously reported but also was capable of assembling spheres, depending on the pH of the protein solution. The switch from formation of one to the other occurred within a very narrow physiological pH range (i.e., pH 7.0 to pH 6.8). Below this range, only dimers were detected. Above this range, the previously described tubular structures were detected. The ability of the CA protein to form a spherical structure that is detectable by DLS but not by electron microscopy indicates that some assemblages are inherently sensitive to perturbation. The dimers in equilibrium with these assemblages exhibited distinct conformations: Dimers in equilibrium with the spherical form exhibited a compact conformation. Dimers in equilibrium with the rod-like form had an extended conformation. Thus, the CA protein possesses the inherent ability to form metastable structures, the morphology of which is regulated by an environmentally-sensitive molecular switch. Such metastable structures may exist as transient intermediates during the assembly and/or disassembly of the virus core.

  11. Tilable nature of virus capsids and the role of topological constraints in natural capsid design

    NASA Astrophysics Data System (ADS)

    Mannige, Ranjan V.; Brooks, Charles L., III

    2008-05-01

    Virus capsids are highly specific assemblies that are formed from a large number of often chemically identical capsid subunits. In the present paper we ask to what extent these structures can be viewed as mathematically tilable objects using a single two-dimensional tile. We find that spherical viruses from a large number of families—eight out of the twelve studied—qualitatively possess properties that allow their representation as two-dimensional monohedral tilings of a bound surface, where each tile represents a subunit. This we did by characterizing the extent to which individual spherical capsids display subunit-subunit (1) holes, (2) overlaps, and (3) gross structural variability. All capsids with T numbers greater than 1 from the Protein Data Bank, with homogeneous protein composition, were used in the study. These monohedral tilings, called canonical capsids due to their platonic (mathematical) form, offer a mathematical segue into the structural and dynamical understanding of not one, but a large number of virus capsids. From our data, it appears as though one may only break the long-standing rules of quasiequivalence by the introduction of subunit-subunit structural variability, holes, and gross overlaps into the shell. To explore the utility of canonical capsids in understanding structural aspects of such assemblies, we used graph theory and discrete geometry to enumerate the types of shapes that the tiles (and hence the subunits) must possess. We show that topology restricts the shape of the face to a limited number of five-sided prototiles, one of which is the “bisected trapezoid” that is a platonic representation of the most ubiquitous capsid subunit shape seen in nature (the trapezoidal jelly-roll motif). This motif is found in a majority of seemingly unrelated virus families that share little to no host, size, or amino acid sequence similarity. This suggests that topological constraints may exhibit dominant roles in the natural design of

  12. The relationship between capsid protein (VP2) sequence and pathogenicity of Aleutian mink disease parvovirus (ADV): a possible role for raccoons in the transmission of ADV infections.

    PubMed Central

    Oie, K L; Durrant, G; Wolfinbarger, J B; Martin, D; Costello, F; Perryman, S; Hogan, D; Hadlow, W J; Bloom, M E

    1996-01-01

    Aleutian mink disease parvovirus (ADV) DNA was identified by PCR in samples from mink and raccoons on commercial ranches during an outbreak of Aleutian disease (AD). Comparison of DNA sequences of the hypervariable portion of VP2, the major capsid protein of ADV, indicated that both mink and raccoons were infected by a new isolate of ADV, designated ADV-TR. Because the capsid proteins of other parvoviruses play a prominent role in the determination of viral pathogenicity and host range, we decided to examine the relationship between the capsid protein sequences and pathogenicity of ADV. Comparison of the ADV-TR hypervariable region sequence with sequences of other isolates of ADV revealed that ADV-TR was 94 to 100% related to the nonpathogenic type 1 ADV-G at both the DNA and amino acid levels but less than 90% related to other pathogenic ADVs like the type 2 ADV-Utah, the type 3 ADV-ZK8, or ADV-Pullman. This finding indicated that a virus with a type 1 hypervariable region could be pathogenic. To perform a more comprehensive analysis, the complete VP2 sequence of ADV-TR was obtained and compared with that of the 647-amino-acid VP2 of ADV-G and the corresponding VP2 sequences of the pathogenic ADV-Utah, ADV-Pullman, and ADV-ZK8. Although the hypervariable region amino acid sequence of ADV-TR was identical to that of ADV-G, there were 12 amino acid differences between ADV-G and ADV-TR. Each of these differences was at a position where other pathogenic isolates also differed from ADV-G. Thus, although ADV-TR had the hypervariable sequence of the nonpathogenic type 1 ADV-G, the remainder of the VP2 sequence resembled sequences of other pathogenic ADVs. Under experimental conditions, ADV-TR and ADV-Utah were highly pathogenic and induced typical AD in trios of both Aleutian and non-Aleutian mink, whereas ADV-Pullman was pathogenic only for Aleutian mink and ADV-G was noninfectious. Trios of raccoons experimentally inoculated with ADV-TR and ADV-Utah all became infected

  13. Inhibition of iridovirus protein synthesis and virus replication by antisense morpholino oligonucleotides targeted to the major capsid protein, the 18 kDa immediate-early protein, and a viral homolog of RNA polymerase II

    SciTech Connect

    Sample, Robert; Bryan, Locke; Long, Scott; Majji, Sai; Hoskins, Glenn; Sinning, Allan; Olivier, Jake; Chinchar, V. Gregory . E-mail: vchinchar@microbio.umsmed.edu

    2007-02-20

    Frog virus 3 (FV3) is a large DNA virus that encodes {approx} 100 proteins. Although the general features of FV3 replication are known, the specific roles that most viral proteins play in the virus life cycle have not yet been elucidated. To address the question of viral gene function, antisense morpholino oligonucleotides (asMOs) were used to transiently knock-down expression of specific viral genes and thus infer their role in virus replication. We designed asMOs directed against the major capsid protein (MCP), an 18 kDa immediate-early protein (18K) that was thought to be a viral regulatory protein, and the viral homologue of the largest subunit of RNA polymerase II (vPol-II{alpha}). All three asMOs successfully inhibited translation of the targeted protein, and two of the three asMOs resulted in marked phenotypic changes. Knock-down of the MCP resulted in a marked reduction in viral titer without a corresponding drop in the synthesis of other late viral proteins. Transmission electron microscopy (TEM) showed that in cells treated with the anti-MCP MO assembly sites were devoid of viral particles and contained numerous aberrant structures. In contrast, inhibition of 18K synthesis did not block virion formation, suggesting that the 18K protein was not essential for replication of FV3 in fathead minnow (FHM) cells. Finally, consistent with the view that late viral gene expression is catalyzed by a virus-encoded or virus-modified Pol-II-like protein, knock-down of vPol-II{alpha} triggered a global decline in late gene expression and virus yields without affecting the synthesis of early viral genes. Collectively, these results demonstrate the utility of using asMOs to elucidate the function of FV3 proteins.

  14. Cleavage of the HPV16 Minor Capsid Protein L2 during Virion Morphogenesis Ablates the Requirement for Cellular Furin during De Novo Infection

    PubMed Central

    Cruz, Linda; Biryukov, Jennifer; Conway, Michael J.; Meyers, Craig

    2015-01-01

    Infections by high-risk human papillomaviruses (HPV) are the causative agents for the development of cervical cancer. As with other non-enveloped viruses, HPVs are taken up by the cell through endocytosis following primary attachment to the host cell. Through studies using recombinant pseudovirus particles (PsV), many host cellular proteins have been implicated in the process. The proprotein convertase furin has been demonstrated to cleave the minor capsid protein, L2, post-attachment to host cells and is required for infectious entry by HPV16 PsV. In contrast, using biochemical inhibition by a furin inhibitor and furin-negative cells, we show that tissue-derived HPV16 native virus (NV) initiates infection independent of cellular furin. We show that HPV16 L2 is cleaved during virion morphogenesis in differentiated tissue. In addition, HPV45 is also not dependent on cellular furin, but two other alpha papillomaviruses, HPV18 and HPV31, are dependent on the activity of cellular furin for infection. PMID:26569287

  15. A Cell Internalizing Antibody Targeting Capsid Protein (p24) Inhibits the Replication of HIV-1 in T Cells Lines and PBMCs: A Proof of Concept Study

    PubMed Central

    Ali, Syed A.; Teow, Sin-Yeang; Omar, Tasyriq Che; Khoo, Alan Soo-Beng; Choon, Tan Soo; Yusoff, Narazah Mohd

    2016-01-01

    There remains a need for newer therapeutic approaches to combat HIV/AIDS. Viral capsid protein p24 plays important roles in HIV pathogenesis. Peptides and small molecule inhibitors targeting p24 have shown to inhibit virus replication in treated cell. High specificity and biological stability of monoclonal antibodies (mAbs) make them an attractive contender for in vivo treatments. However, mAbs do not enter into cells, thus are restricted to target surface molecules. This also makes targeting intracellular HIV-1 p24 a challenge. A mAb specific to p24 that can internalize into the HIV-infected cells is hypothesized to inhibit the virus replication. We selected a mAb that has previously shown to inhibit p24 polymerization in an in vitro assay and chemically conjugated it with cell penetrating peptides (CPP) to generate cell internalizing anti-p24 mAbs. Out of 8 CPPs tested, κFGF-MTS -conjugated mAbs internalized T cells most efficiently. At nontoxic concentration, the κFGF-MTS-anti-p24-mAbs reduced the HIV-1 replication up to 73 and 49% in T-lymphocyte and PBMCs respectively. Marked inhibition of HIV-1 replication in relevant cells by κFGF-MTS-anti-p24-mAbs represents a viable strategy to target HIV proteins present inside the cells. PMID:26741963

  16. Yeast Surface Display of Capsid Protein VP7 of Grass Carp Reovirus: Fundamental Investigation for the Development of Vaccine Against Hemorrhagic Disease.

    PubMed

    Luo, Shaoxiang; Yan, Liming; Zhang, Xiaohua; Yuan, Li; Fang, Qin; Zhang, Yong-An; Dai, Heping

    2015-12-28

    VP7, an outer capsid protein of grass carp reovirus (GCRV), was expressed and displayed on the surface of Saccharomyces cerevisiae for developing an efficient vaccine against hemorrhagic disease of grass carp. The result of flow cytometry analysis indicated that protein VP7 could be displayed on the surface of yeast cells after inducing with galactose. The expression of VP7 was confirmed by western blot analysis and further visualized with confocal microscopy. The specific antibodies against VP7 generated from mice were detectable from all immune groups except the control group, which was immunized with untransformed yeast cells. The displaying VP7 on glycosylation-deficient strain EBYΔMnn9 was detected to induce a relatively low level of specific antibody amongst the three strains. However, the antiserum of EBYΔM9-VP7 showed relative high capacity to neutralize GCRV. Further neutralization testing assays indicated that the neutralizing ability of antiserum of the EBYΔM9-VP7 group appeared concentration dependent, and could be up to 66.7% when the antiserum was diluted to 1:50. This result indicates that appropriate gene modification of glycosylation in a yeast strain has essential effect on the immunogenicity of a yeast-based vaccine. PMID:26282690

  17. Self-assembly of virus-like particles of canine parvovirus capsid protein expressed from Escherichia coli and application as virus-like particle vaccine.

    PubMed

    Xu, Jin; Guo, Hui-Chen; Wei, Yan-Quan; Dong, Hu; Han, Shi-Chong; Ao, Da; Sun, De-Hui; Wang, Hai-Ming; Cao, Sui-Zhong; Sun, Shi-Qi

    2014-04-01

    Canine parvovirus disease is an acute infectious disease caused by canine parvovirus (CPV). Current commercial vaccines are mainly attenuated and inactivated; as such, problems concerning safety may occur. To resolve this problem, researchers developed virus-like particles (VLPs) as biological nanoparticles resembling natural virions and showing high bio-safety. This property allows the use of VLPs for vaccine development and mechanism studies of viral infections. Tissue-specific drug delivery also employs VLPs as biological nanomaterials. Therefore, VLPs derived from CPV have a great potential in medicine and diagnostics. In this study, small ubiquitin-like modifier (SUMO) fusion motif was utilized to express a whole, naturalVP2 protein of CPV in Escherichia coli. After the cleavage of the fusion motif, the CPV VP2 protein has self-assembled into VLPs. The VLPs had a size and shape that resembled the authentic virus capsid. However, the self-assembly efficiency of VLPs can be affected by different pH levels and ionic strengths. The mice vaccinated subcutaneously with CPV VLPs and CPV-specific immune responses were compared with those immunized with the natural virus. This result showed that VLPs can effectively induce anti-CPV specific antibody and lymphocyte proliferation as a whole virus. This result further suggested that the antigen epitope of CPV was correctly present on VLPs, thereby showing the potential application of a VLP-based CPV vaccine. PMID:24413974

  18. Molecular cloning, sequencing and expression in Escherichia coli of the capsid protein gene from rabbit haemorrhagic disease virus (Spanish isolate AST/89).

    PubMed

    Boga, J A; Casais, R; Marin, M S; Martin-Alonso, J M; Carmenes, R S; Prieto, M; Parra, F

    1994-09-01

    We describe the cloning, nucleotide sequencing and expression in Escherichia coli of the major capsid component (VP60) from the Spanish field isolate AST/89 of rabbit haemorrhagic disease virus (RHDV). The sequence of the 3'-terminal 2483 nucleotides of the genome was found to be 95.4% identical to the German RHDV strain, showing ten changes in the deduced VP60 amino acid sequence. The gene coding for this structural polypeptide has been expressed in bacteria as a beta-galactosidase fusion protein or using a T7 RNA polymerase-based system. The VP60 fusion protein showed only partial antigenic similarity with native VP60 and did not confer protective immunity. The recombinant VP60 produced in the T7 RNA polymerase-based system was antigenically similar to the viral polypeptide as determined using polyclonal and monoclonal antibodies. When used to immunize rabbits the recombinant VP60 was able to protect the animals against a lethal challenge using purified RHDV.

  19. Self-assembly of virus-like particles of canine parvovirus capsid protein expressed from Escherichia coli and application as virus-like particle vaccine.

    PubMed

    Xu, Jin; Guo, Hui-Chen; Wei, Yan-Quan; Dong, Hu; Han, Shi-Chong; Ao, Da; Sun, De-Hui; Wang, Hai-Ming; Cao, Sui-Zhong; Sun, Shi-Qi

    2014-04-01

    Canine parvovirus disease is an acute infectious disease caused by canine parvovirus (CPV). Current commercial vaccines are mainly attenuated and inactivated; as such, problems concerning safety may occur. To resolve this problem, researchers developed virus-like particles (VLPs) as biological nanoparticles resembling natural virions and showing high bio-safety. This property allows the use of VLPs for vaccine development and mechanism studies of viral infections. Tissue-specific drug delivery also employs VLPs as biological nanomaterials. Therefore, VLPs derived from CPV have a great potential in medicine and diagnostics. In this study, small ubiquitin-like modifier (SUMO) fusion motif was utilized to express a whole, naturalVP2 protein of CPV in Escherichia coli. After the cleavage of the fusion motif, the CPV VP2 protein has self-assembled into VLPs. The VLPs had a size and shape that resembled the authentic virus capsid. However, the self-assembly efficiency of VLPs can be affected by different pH levels and ionic strengths. The mice vaccinated subcutaneously with CPV VLPs and CPV-specific immune responses were compared with those immunized with the natural virus. This result showed that VLPs can effectively induce anti-CPV specific antibody and lymphocyte proliferation as a whole virus. This result further suggested that the antigen epitope of CPV was correctly present on VLPs, thereby showing the potential application of a VLP-based CPV vaccine.

  20. Recombinant viral capsid protein VP1 suppresses migration and invasion of human cervical cancer by modulating phosphorylated prohibitin in lipid rafts.

    PubMed

    Chiu, Ching-Feng; Peng, Jei-Ming; Hung, Shao-Wen; Liang, Chi-Ming; Liang, Shu-Mei

    2012-07-28

    Recombinant capsid protein VP1 (rVP1) of foot-and-mouth disease virus inhibits invasion/metastasis of cancer cells. Here we studied its mechanism of action on human cervical cancer cells. The inhibition of cell invasion by rVP1 was accompanied with reduction in phosphatidylinositol (3,4,5)-triphosphate (PIP3), phospho-Akt S473, phosphorylated prohibitin (phospho-PHB) T258 in lipid rafts, dissociation of phospho-PHB T258 with Raf-1 and the inactivation of Raf-1/ERK. Addition of PIP3 or overexpression of constitutively active Akt and raft-anchored PHB T258 but not PHB T258I mutant protein reversed the inhibitory effects of rVP1. rVP1 inhibited cervical tumor growth and metastasis, and prolonged survival in xenograft mouse models. These results suggest that rVP1 inhibits cancer metastasis via de-phosphorylation of Akt and PHB T258 in lipid rafts to downregulate Raf/ERK signaling.

  1. Mandarin Fish Caveolin 1 Interaction with Major Capsid Protein of Infectious Spleen and Kidney Necrosis Virus and Its Role in Early Stages of Infection

    PubMed Central

    Jia, Kun-Tong; Wu, Yan-Yan; Liu, Zhao-Yu; Mi, Shu; Zheng, Yi-Wen; He, Jian; Weng, Shao-Ping; Li, Shengwen Calvin

    2013-01-01

    Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the genus Megalocytivirus from the family Iridoviridae. ISKNV is one of the major agents that cause mortality and economic losses to the freshwater fish culture industry in Asian countries, particularly for mandarin fish (Siniperca chuatsi). In the present study, we report that the interaction of mandarin fish caveolin 1 (mCav-1) with the ISKNV major capsid protein (MCP) was detected by using a virus overlay assay and confirmed by pulldown assay and coimmunoprecipitation. This interaction was independent of the classic caveolin 1 scaffolding domain (CSD), which is responsible for interacting with several signaling proteins and receptors. Confocal immunofluorescence microscopy showed that ISKNV MCP colocalized with mCav-1 in the perinuclear region of virus-infected mandarin fish fry (MFF-1) cells, which appeared as soon as 4 h postinfection. Subcellular fractionation analysis showed that ISKNV MCP was associated with caveolae in the early stages of viral infection. RNA interference silencing of mCav-1 did not change virus-cell binding but efficiently inhibited the entry of virions into the cell. Taken together, these results suggested that mCav-1 plays an important role in the early stages of ISKNV infection. PMID:23283951

  2. Phylogeography of circulating populations of human echovirus 30 over 50 years: nucleotide polymorphism and signature of purifying selection in the VP1 capsid protein gene.

    PubMed

    Bailly, J-L; Mirand, A; Henquell, C; Archimbaud, C; Chambon, M; Charbonné, F; Traoré, O; Peigue-Lafeuille, H

    2009-07-01

    A comprehensive set of 443 1D gene sequences (encoding the VP1 capsid protein) was analyzed to investigate the phylogenetic relationships and evolutionary patterns among strains of human echovirus 30 (E30; genus Enterovirus, family Picornaviridae) characterized over 50 years. Maximum-likelihood (ML) phylogenetic trees of complete and nonredundant 1D gene sequences (total length=876 nucleotides) showed evidence of distinct lineages related to the isolation period of virus strains. Virus transportation was confirmed as a major epidemiological factor in the appearance of epidemics since recurrence of aseptic meningitis outbreaks in a given geographic area was associated with distinct E30 variants detected earlier in distant regions. Detection of the codon changes associated with E30 evolution was investigated with methods implemented in the Datamonkey web server. Evolution of the 1D gene was dominated by continual negative (purifying) selection against nonsynonymous substitutions at most codon sites, as determined by dN/dS ratio. Amino acid polymorphism was maintained at a limited number of sites (10/292) in the VP1 protein (within loops connecting beta strands and C-terminus). Amino acid changes are allowed at these sites because they are likely exposed on the virion particle and nonsynonymous substitutions are observed in the corresponding codons because negative selection is relaxed.

  3. Whole-Chain Tick Saliva Proteins Presented on Hepatitis B Virus Capsid-Like Particles Induce High-Titered Antibodies with Neutralizing Potential.

    PubMed

    Kolb, Philipp; Wallich, Reinhard; Nassal, Michael

    2015-01-01

    Ticks are vectors for various, including pathogenic, microbes. Tick saliva contains multiple anti-host defense factors that enable ticks their bloodmeals yet also facilitate microbe transmission. Lyme disease-causing borreliae profit specifically from the broadly conserved tick histamine release factor (tHRF), and from cysteine-rich glycoproteins represented by Salp15 from Ixodes scapularis and Iric-1 from Ixodes ricinus ticks which they recruit to their outer surface protein C (OspC). Hence these tick proteins are attractive targets for anti-tick vaccines that simultaneously impair borrelia transmission. Main obstacles are the tick proteins´ immunosuppressive activities, and for Salp15 orthologs, the lack of efficient recombinant expression systems. Here, we exploited the immune-enhancing properties of hepatitis B virus core protein (HBc) derived capsid-like particles (CLPs) to generate, in E. coli, nanoparticulate vaccines presenting tHRF and, as surrogates for the barely soluble wild-type proteins, cysteine-free Salp15 and Iric-1 variants. The latter CLPs were exclusively accessible in the less sterically constrained SplitCore system. Mice immunized with tHRF CLPs mounted a strong anti-tHRF antibody response. CLPs presenting cysteine-free Salp15 and Iric-1 induced antibodies to wild-type, including glycosylated, Salp15 and Iric-1. The broadly distributed epitopes included the OspC interaction sites. In vitro, the anti-Salp15 antibodies interfered with OspC binding and enhanced human complement-mediated killing of Salp15 decorated borreliae. A mixture of all three CLPs induced high titered antibodies against all three targets, suggesting the feasibility of combination vaccines. These data warrant in vivo validation of the new candidate vaccines´ protective potential against tick infestation and Borrelia transmission.

  4. Whole-Chain Tick Saliva Proteins Presented on Hepatitis B Virus Capsid-Like Particles Induce High-Titered Antibodies with Neutralizing Potential

    PubMed Central

    Kolb, Philipp; Wallich, Reinhard; Nassal, Michael

    2015-01-01

    Ticks are vectors for various, including pathogenic, microbes. Tick saliva contains multiple anti-host defense factors that enable ticks their bloodmeals yet also facilitate microbe transmission. Lyme disease-causing borreliae profit specifically from the broadly conserved tick histamine release factor (tHRF), and from cysteine-rich glycoproteins represented by Salp15 from Ixodes scapularis and Iric-1 from Ixodes ricinus ticks which they recruit to their outer surface protein C (OspC). Hence these tick proteins are attractive targets for anti-tick vaccines that simultaneously impair borrelia transmission. Main obstacles are the tick proteins´ immunosuppressive activities, and for Salp15 orthologs, the lack of efficient recombinant expression systems. Here, we exploited the immune-enhancing properties of hepatitis B virus core protein (HBc) derived capsid-like particles (CLPs) to generate, in E. coli, nanoparticulate vaccines presenting tHRF and, as surrogates for the barely soluble wild-type proteins, cysteine-free Salp15 and Iric-1 variants. The latter CLPs were exclusively accessible in the less sterically constrained SplitCore system. Mice immunized with tHRF CLPs mounted a strong anti-tHRF antibody response. CLPs presenting cysteine-free Salp15 and Iric-1 induced antibodies to wild-type, including glycosylated, Salp15 and Iric-1. The broadly distributed epitopes included the OspC interaction sites. In vitro, the anti-Salp15 antibodies interfered with OspC binding and enhanced human complement-mediated killing of Salp15 decorated borreliae. A mixture of all three CLPs induced high titered antibodies against all three targets, suggesting the feasibility of combination vaccines. These data warrant in vivo validation of the new candidate vaccines´ protective potential against tick infestation and Borrelia transmission. PMID:26352137

  5. HPV E1 up-regulates replication-related biochemistries of AAV Rep78.

    PubMed

    Bandyopadhyay, Sarmistha; Cao, Maohua; Liu, Yong; Hermonat, Paul L

    2010-06-20

    Human papillomavirus type 16 (HPV) E1 protein provides helper function for the adeno-associated virus type 2 (AAV) life cycle. E1 is the replication protein of HPV, analogous to AAV Rep78, but without the endonuclease/covalent attachment activity of Rep78. Previously we have shown that E1 and Rep78 interact in vitro. Here we investigated E1's effects on Rep78 interaction with AAV's inverted terminal repeat (ITR) DNA in vitro, using purified Rep78 and E1 proteins from bacteria. E1 enhanced Rep78-ITR binding, ATPase activity, Rep78-ITR-covalent linkage and Rep78-ITR-endonuclease activity (central to AAV replication). These enhancements occurred in a dose-dependent manner whenever assayed. However, overall Rep78-plus-E1 helicase activity was lower than Rep78's helicase activity. These data suggest that E1's broad-based helper function for the AAV life cycle (AAV DNA, mRNA, and protein levels are up-regulated by E1) is likely through its ability to enhance Rep78's critical replication-required biochemistries on ITR DNA.

  6. Reengineered AAV vectors: old dog, new tricks.

    PubMed

    Asokan, Aravind

    2010-05-01

    Adeno-associated viral (AAV) vectors have emerged in recent years as powerful tools for therapeutic gene transfer. Successes in clinical trials and the discovery of several hundreds of naturally occurring AAV isolates have triggered efforts to understand and manipulate this deceptively simple parvovirus for a myriad of gene therapy applications. Exciting breakthroughs based on directed evolution of novel tissue-specific variants from combinatorial AAV libraries have been reported. Recent approaches driven by the availability of structural information have yielded a new generation of reengineered AAV vectors. PMID:20515607

  7. No tumour-initiating risk associated with scAAV transduction in newborn rat liver.

    PubMed

    Gauttier, V; Pichard, V; Aubert, D; Kaeppel, C; Schmidt, M; Ferry, N; Conchon, S

    2013-07-01

    Delivery of recombinant adeno-associated virus (rAAV) vectors to the newborn liver is followed by a rapid loss of episomal vector copies because of hepatocyte proliferation. In selected hepatocytes, integration of rAAV genomes can lead to a sustained expression of the transgene. The safety of in vivo gene therapy with single-stranded AAV vectors has been questioned in a study reporting a high incidence of hepatocellular carcinoma, associated with provirus integration events in mice that receive an single-stranded AAV injection at birth. To investigate the tumour-initiating potential of the newly established self-complementary AAV (scAAV) vectors in the liver, groups of newborn rats received intravenous injection of a scAAV vector encoding the green fluorescent protein (GFP), or were injected with phosphate-buffered saline (PBS) or diethylnitrosamine (DEN), a well-known liver tumour initiator. The rats were fed on a diet containing 2-acetylaminofluorene, a potent liver tumour-promoting agent to accelerate the carcinogenic process. After 2 months, the animals were killed and their livers analysed. Preneoplastic nodules were identified by glutathion S-transferase-p (GSTp) staining, and GFP expression was detected by immunohistochemistry. Vector genome integration events were analysed. The numbers of GSTp-positive foci were comparable in the PBS and the scAAV-GFP groups and significantly higher in the DEN group. The proportion of GSTp-positive foci that also expressed GFP was low and in the range expected for random occurrence. No specific integration hot spots were detected by linear amplification-mediated-PCR in transduced liver. In conclusion, scAAV transduction of newborn rat liver does not trigger preneoplastic lesions suggesting an absence of liver tumourigenesis.

  8. Membrane-mediated interaction between retroviral capsids

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Nguyen, Toan

    2012-02-01

    A retrovirus is an RNA virus that is replicated through a unique strategy of reverse transcription. Unlike regular enveloped viruses which are assembled inside the host cells, the assembly of retroviral capsids happens right on the cell membrane. During the assembly process, the partially formed capsids deform the membrane, giving rise to an elastic energy. When two such partial capsids approach each other, this elastic energy changes. Or in other words, the two partial capsids interact with each other via the membrane. This membrane mediated interaction between partial capsids plays an important role in the kinetics of the assembly process. In this work, this membrane mediated interaction is calculated both analytically and numerically. It is worth noting that the diferential equation determining the membrane shape in general nonlinear and cannot be solved analytically,except in the linear region of small deformations. And it is exactly the nonlinear regime that is important for the assembly kinetics of retroviruses as it provides a large energy barrier. The theory developed here is applicable to more generic cases of membrane mediated interactions between two membrane-embedded proteins.

  9. Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly

    NASA Astrophysics Data System (ADS)

    Grime, John M. A.; Dama, James F.; Ganser-Pornillos, Barbie K.; Woodward, Cora L.; Jensen, Grant J.; Yeager, Mark; Voth, Gregory A.

    2016-05-01

    The maturation of HIV-1 viral particles is essential for viral infectivity. During maturation, many copies of the capsid protein (CA) self-assemble into a capsid shell to enclose the viral RNA. The mechanistic details of the initiation and early stages of capsid assembly remain to be delineated. We present coarse-grained simulations of capsid assembly under various conditions, considering not only capsid lattice self-assembly but also the potential disassembly of capsid upon delivery to the cytoplasm of a target cell. The effects of CA concentration, molecular crowding, and the conformational variability of CA are described, with results indicating that capsid nucleation and growth is a multi-stage process requiring well-defined metastable intermediates. Generation of the mature capsid lattice is sensitive to local conditions, with relatively subtle changes in CA concentration and molecular crowding influencing self-assembly and the ensemble of structural morphologies.

  10. Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly

    PubMed Central

    Grime, John M. A.; Dama, James F.; Ganser-Pornillos, Barbie K.; Woodward, Cora L.; Jensen, Grant J.; Yeager, Mark; Voth, Gregory A.

    2016-01-01

    The maturation of HIV-1 viral particles is essential for viral infectivity. During maturation, many copies of the capsid protein (CA) self-assemble into a capsid shell to enclose the viral RNA. The mechanistic details of the initiation and early stages of capsid assembly remain to be delineated. We present coarse-grained simulations of capsid assembly under various conditions, considering not only capsid lattice self-assembly but also the potential disassembly of capsid upon delivery to the cytoplasm of a target cell. The effects of CA concentration, molecular crowding, and the conformational variability of CA are described, with results indicating that capsid nucleation and growth is a multi-stage process requiring well-defined metastable intermediates. Generation of the mature capsid lattice is sensitive to local conditions, with relatively subtle changes in CA concentration and molecular crowding influencing self-assembly and the ensemble of structural morphologies. PMID:27174390

  11. Rubella virus-like replicon particles: analysis of encapsidation determinants and non-structural roles of capsid protein in early post-entry replication.

    PubMed

    Claus, Claudia; Tzeng, Wen-Pin; Liebert, U G; Frey, Teryl K

    2012-03-01

    Rubella virus (RUBV) contains a plus-strand RNA genome with two ORFs, one encoding the non-structural replicase proteins (NS-ORF) and the second encoding the virion structural proteins (SP-ORF). This study describes development and use of a trans-encapsidation system for the assembly of infectious RUBV-like replicon particles (VRPs) containing RUBV replicons (self replicating genomes with the SP-ORF replaced with a reporter gene). First, this system was used to map signals within the RUBV genome that mediate packaging of viral RNA. Mutations within a proposed packaging signal did not significantly affect relative packaging efficiency. The insertion of various fragments derived from the RUBV genome into Sindbis virus replicons revealed that there are several regions within the RUBV genome capable of enhancing encapsidation of heterologous replicon RNAs. Secondly, the trans-encapsidation system was used to analyse the effect of alterations within the capsid protein (CP) on release of VRPs and subsequent initiation of replication in newly infected cells. Deletion of the N-terminal eight amino acids of the CP reduced VRP titre significantly, which could be partially complemented by native CP provided in trans, indicating that this mutation affected an entry or post-entry event in the replication cycle. To test this hypothesis, the trans-encapsidation system was used to demonstrate the rescue of a lethal deletion within P150, one of the virus replicase proteins, by CP contained within the virus particle. This novel finding substantiated the functional role of CP in early post-entry replication. PMID:22113006

  12. The use of additive and subtractive approaches to examine the nuclear localization sequence of the polyomavirus major capsid protein VP1

    NASA Technical Reports Server (NTRS)

    Chang, D.; Haynes, J. I. 2nd; Brady, J. N.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    A nuclear localization signal (NLS) has been identified in the N-terminal (Ala1-Pro-Lys-Arg-Lys-Ser-Gly-Val-Ser-Lys-Cys11) amino acid sequence of the polyomavirus major capsid protein VP1. The importance of this amino acid sequence for nuclear transport of VP1 protein was demonstrated by a genetic "subtractive" study using the constructs pSG5VP1 (full-length VP1) and pSG5 delta 5'VP1 (truncated VP1, lacking amino acids Ala1-Cys11). These constructs were used to transfect COS-7 cells, and expression and intracellular localization of the VP1 protein was visualized by indirect immunofluorescence. These studies revealed that the full-length VP1 was expressed and localized in the nucleus, while the truncated VP1 protein was localized in the cytoplasm and not transported to the nucleus. These findings were substantiated by an "additive" approach using FITC-labeled conjugates of synthetic peptides homologous to the NLS of VP1 cross-linked to bovine serum albumin or immunoglobulin G. Both conjugates localized in the nucleus after microinjection into the cytoplasm of 3T6 cells. The importance of individual amino acids found in the basic sequence (Lys3-Arg-Lys5) of the NLS was also investigated. This was accomplished by synthesizing three additional peptides in which lysine-3 was substituted with threonine, arginine-4 was substituted with threonine, or lysine-5 was substituted with threonine. It was found that lysine-3 was crucial for nuclear transport, since substitution of this amino acid with threonine prevented nuclear localization of the microinjected, FITC-labeled conjugate.

  13. Mechanical oscillations of a viral capsid

    NASA Astrophysics Data System (ADS)

    Benson, Daryn; Sankey, Otto; Dykeman, Eric

    2010-03-01

    Viruses are sub-microscopic infectious agents that infect almost every living creature on Earth. They are unable to grow or reproduce outside of a host cell and are therefore parasitic in nature. A virus' internal genetic material is protected by an external protein coat (capsid). We developed a theoretical model which uses the interaction of light with a viral capsid to create large amplitude motions within the capsid. This work displays the results of the model on the tobacco mosaic virus (TMV) with attached RNA genome. The development of this model was motivated by the experimental work of Tsen et. al. [1] who used ultra-short laser pulses to inactivate viruses. [1] K-T. Tsen et al., J. of Physics -- Cond. Mat. 19, 472201 (2007).

  14. High cerebrospinal fluid levels of interleukin-10 attained by AAV in dogs.

    PubMed

    Pleticha, J; Malkmus, S A; Heilmann, L F; Veesart, S L; Rezek, R; Xu, Q; Yaksh, T L; Beutler, A S

    2015-02-01

    Intrathecal (IT) gene transfer using adeno-associated virus (AAV) may be clinically promising as a treatment for chronic pain if it can produce sufficiently high levels of a transgene product in the cerebrospinal fluid (CSF). Although this strategy was developed in rodents, no studies investigating CSF levels of an analgesic or antiallodynic protein delivered by IT AAV have been performed in large animals. Interleukin-10 (IL-10) is an antiallodynic cytokine for which target therapeutic levels have been established in rats. The present study tested IT AAV8 encoding either human IL-10 (hIL-10) or enhanced green fluorescent protein (EGFP) in a dog model of IT drug delivery. AAV8/hIL-10 at a dose of 3.5 × 10(12) genome copies induced high hIL-10 levels in the CSF, exceeding the target concentration previously found to be antiallodynic in rodents by >1000-fold. AAV8/EGFP targeted the primary sensory and motor neurons and the meninges. hIL-10, a xenogeneic protein in dogs, induced anti-hIL-10 antibodies detectable in the CSF and serum of dogs. The high hIL-10 levels demonstrate the efficacy of AAV for delivery of secreted transgenes into the IT space of large animals, suggesting a strong case for further development toward clinical testing.

  15. High cerebrospinal fluid levels of interleukin-10 attained by AAV in dogs

    PubMed Central

    Pleticha, Josef; Malkmus, Shelle A.; Heilmann, Lukas F.; Veesart, Samantha L.; Rezek, Rahaf; Xu, Qinghao; Yaksh, Tony L.; Beutler, Andreas S.

    2016-01-01

    Intrathecal (IT) gene transfer using adeno-associated virus (AAV) may be clinically promising as a treatment for chronic pain if it can produce sufficiently high levels of a transgene product in the cerebrospinal fluid (CSF). While this strategy was developed in rodents, no studies investigating CSF levels of an analgesic or anti-allodynic protein delivered by IT AAV have been performed in large animals. Interleukin-10 (IL-10) is an anti-allodynic cytokine, for which target therapeutic levels have been established in rats. The present study tested IT AAV8 encoding either human IL-10 (hIL-10) or enhanced green fluorescent protein (EGFP) in a dog model of IT drug delivery. AAV8/hIL-10 at a dose of 3.5×1012 genome copies induced high hIL-10 levels in the CSF, exceeding the target concentration previously found to be anti-allodynic in rodents by >1000-fold. AAV8/EGFP targeted the primary sensory and motor neurons and the meninges. hIL-10, a xenogeneic protein in dogs, induced anti-hIL-10 antibodies detectable in the dogs’ CSF and serum. The high hIL-10 levels demonstrate the efficacy of AAV for delivery of secreted transgenes into the IT space of large animals suggesting a strong case for further development towards clinical testing. PMID:25354684

  16. Development of an in process control filtration-assisted chemiluminometric immunoassay to quantify foot and mouth disease virus (FMDV) non-capsid proteins in vaccine-antigen batches.

    PubMed

    Capozzo, Alejandra Victoria; Martínez, Manuel Rosendo; Schielen, Wilhelmus Joseph Gerardus

    2010-09-14

    In many countries, foot and mouth disease (FMD) is controlled by vaccination and surveillance against non-capsid proteins (NCP); therefore vaccines are required not to induce antibodies against NCP. Vaccine purity is evaluated by repeated inoculation of naïve cattle, an expensive and time consuming protocol that raises several animal welfare concerns. We have developed an in process control filtration-assisted chemiluminometric immunoassay (FAL-ELISA), to detect and quantify NCP in vaccine-antigen batches regardless of its volume and composition. Samples are filtered through PVDF-filter microplates pre-coated with a monoclonal antibody against NCP. Filtration removes all unbound components in the sample and captured NCP are detected by anti-NCP conjugate followed by incubation with the substrate, luminol/peroxide. Analytical detection limit was 2 ng for purified NCP and 4 ng for vaccine-antigen batches spiked with NCP, which makes this assay sensitive enough to be applied to purity control of FMD vaccines. Vaccine components did not interfere with the antibody and substrate reactions in the assay. FAL-ELISA is an alternative for the in vivo tests, observing the objective to Replace, Reduce and Refine the use of animals for quality control of immunobiologicals. PMID:20685600

  17. Mutations in the capsid protein of Brome mosaic virus affecting encapsidation eliminate vesicle induction in planta: implications for virus cell-to-cell spread.

    PubMed

    Bamunusinghe, Devinka; Chaturvedi, Sonali; Seo, Jang-Kyun; Rao, A L N

    2013-08-01

    Positive-strand RNA viruses are known to rearrange the endomembrane network to make it more conducive for replication, maturation, or egress. Our previous transmission electron microscopic (TEM) analysis showed that ectopic expression of wild-type (wt) capsid protein (CP) of Brome mosaic virus (BMV) has an intrinsic property of modifying the endoplasmic reticulum (ER) to induce vesicles similar to those present in wt BMV infection. In this study, we evaluated the functional significance of CP-mediated vesicle induction to the BMV infection cycle in planta. Consequently, the cytopathologic changes induced by wt CP or its mutants defective in virion assembly due to mutations engineered in either N- or C-proximal domains were comparatively analyzed by TEM in two susceptible (Nicotiana benthamiana and Chenopodium quinoa) and one nonhost (N. clevelandii) plant species. The results showed that in susceptible hosts, CP-mediated ER-derived vesicle induction is contingent on the expression of encapsidation-competent CP. In contrast, unlike in N. benthamiana and C. quinoa, transient expression of wt CP in nonhost N. clevelandii plants eliminated vesicle induction. Additionally, comparative source-to-sink analysis of virus spread in leaves of N. benthamiana and N. clevelandii coexpressing wt BMV and Cucumber mosaic virus (CMV) showed that despite trans-encapsidation, CMV failed to complement the defective cell-to-cell movement of BMV. The significance and relation of CP-mediated vesicle induction to virus cell-to-cell movement are discussed.

  18. Functional analysis of the N-terminal basic motif of a eukaryotic satellite RNA virus capsid protein in replication and packaging

    PubMed Central

    Sivanandam, Venkatesh; Mathews, Deborah; Garmann, Rees; Erdemci-Tandogan, Gonca; Zandi, Roya; Rao, A. L. N.

    2016-01-01

    Efficient replication and assembly of virus particles are integral to the establishment of infection. In addition to the primary role of the capsid protein (CP) in encapsidating the RNA progeny, experimental evidence on positive sense single-stranded RNA viruses suggests that the CP also regulates RNA synthesis. Here, we demonstrate that replication of Satellite tobacco mosaic virus (STMV) is controlled by the cooperative interaction between STMV CP and the helper virus (HV) Tobacco mosaic virus (TMV) replicase. We identified that the STMV CP-HV replicase interaction requires a positively charged residue at the third position (3R) in the N-terminal 13 amino acid (aa) motif. Far-Northwestern blotting showed that STMV CP promotes binding between HV-replicase and STMV RNA. An STMV CP variant having an arginine to alanine substitution at position 3 in the N-terminal 13aa motif abolished replicase-CP binding. The N-terminal 13aa motif of the CP bearing alanine substitutions for positively charged residues located at positions 5, 7, 10 and 11 are defective in packaging full-length STMV, but can package a truncated STMV RNA lacking the 3′ terminal 150 nt region. These findings provide insights into the mechanism underlying the regulation of STMV replication and packaging. PMID:27193742

  19. Identification of the major capsid protein of erythrocytic necrosis virus (ENV) and development of quantitative real-time PCR assays for quantification of ENV DNA

    USGS Publications Warehouse

    Purcell, Maureen K.; Pearman-Gillman, Schuyler; Thompson, Rachel L.; Gregg, Jacob L.; Hart, Lucas M.; Winton, James R.; Emmenegger, Eveline J.; Hershberger, Paul K.

    2016-01-01

    Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene. Phylogenetic analysis of the MCP gene sequence supported the conclusion that ENV does not group with any of the currently described iridovirus genera. Because there is no information regarding genetic variation of the MCP gene across the reported host and geographic range for ENV, we also developed a second qPCR assay for a more conserved ATPase-like gene region. The MCP and ATPase qPCR assays demonstrated good analytical and diagnostic sensitivity and specificity based on samples from laboratory challenges of Pacific herring Clupea pallasii. The qPCR assays had similar diagnostic sensitivity and specificity as light microscopy of stained blood smears for the presence of intraerythrocytic inclusion bodies. However, the qPCR assays may detect viral DNA early in infection prior to the formation of inclusion bodies. Both qPCR assays appear suitable for viral surveillance or as a confirmatory test for ENV in Pacific herring from the Salish Sea.

  20. Identification of the major capsid protein of erythrocytic necrosis virus (ENV) and development of quantitative real-time PCR assays for quantification of ENV DNA.

    PubMed

    Purcell, Maureen K; Pearman-Gillman, Schuyler; Thompson, Rachel L; Gregg, Jacob L; Hart, Lucas M; Winton, James R; Emmenegger, Eveline J; Hershberger, Paul K

    2016-07-01

    Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene. Phylogenetic analysis of the MCP gene sequence supported the conclusion that ENV does not group with any of the currently described iridovirus genera. Because there is no information regarding genetic variation of the MCP gene across the reported host and geographic range for ENV, we also developed a second qPCR assay for a more conserved ATPase-like gene region. The MCP and ATPase qPCR assays demonstrated good analytical and diagnostic sensitivity and specificity based on samples from laboratory challenges of Pacific herring Clupea pallasii The qPCR assays had similar diagnostic sensitivity and specificity as light microscopy of stained blood smears for the presence of intraerythrocytic inclusion bodies. However, the qPCR assays may detect viral DNA early in infection prior to the formation of inclusion bodies. Both qPCR assays appear suitable for viral surveillance or as a confirmatory test for ENV in Pacific herring from the Salish Sea. PMID:27154315

  1. Development of an in process control filtration-assisted chemiluminometric immunoassay to quantify foot and mouth disease virus (FMDV) non-capsid proteins in vaccine-antigen batches.

    PubMed

    Capozzo, Alejandra Victoria; Martínez, Manuel Rosendo; Schielen, Wilhelmus Joseph Gerardus

    2010-09-14

    In many countries, foot and mouth disease (FMD) is controlled by vaccination and surveillance against non-capsid proteins (NCP); therefore vaccines are required not to induce antibodies against NCP. Vaccine purity is evaluated by repeated inoculation of naïve cattle, an expensive and time consuming protocol that raises several animal welfare concerns. We have developed an in process control filtration-assisted chemiluminometric immunoassay (FAL-ELISA), to detect and quantify NCP in vaccine-antigen batches regardless of its volume and composition. Samples are filtered through PVDF-filter microplates pre-coated with a monoclonal antibody against NCP. Filtration removes all unbound components in the sample and captured NCP are detected by anti-NCP conjugate followed by incubation with the substrate, luminol/peroxide. Analytical detection limit was 2 ng for purified NCP and 4 ng for vaccine-antigen batches spiked with NCP, which makes this assay sensitive enough to be applied to purity control of FMD vaccines. Vaccine components did not interfere with the antibody and substrate reactions in the assay. FAL-ELISA is an alternative for the in vivo tests, observing the objective to Replace, Reduce and Refine the use of animals for quality control of immunobiologicals.

  2. Functional analysis of the N-terminal basic motif of a eukaryotic satellite RNA virus capsid protein in replication and packaging.

    PubMed

    Sivanandam, Venkatesh; Mathews, Deborah; Garmann, Rees; Erdemci-Tandogan, Gonca; Zandi, Roya; Rao, A L N

    2016-01-01

    Efficient replication and assembly of virus particles are integral to the establishment of infection. In addition to the primary role of the capsid protein (CP) in encapsidating the RNA progeny, experimental evidence on positive sense single-stranded RNA viruses suggests that the CP also regulates RNA synthesis. Here, we demonstrate that replication of Satellite tobacco mosaic virus (STMV) is controlled by the cooperative interaction between STMV CP and the helper virus (HV) Tobacco mosaic virus (TMV) replicase. We identified that the STMV CP-HV replicase interaction requires a positively charged residue at the third position (3R) in the N-terminal 13 amino acid (aa) motif. Far-Northwestern blotting showed that STMV CP promotes binding between HV-replicase and STMV RNA. An STMV CP variant having an arginine to alanine substitution at position 3 in the N-terminal 13aa motif abolished replicase-CP binding. The N-terminal 13aa motif of the CP bearing alanine substitutions for positively charged residues located at positions 5, 7, 10 and 11 are defective in packaging full-length STMV, but can package a truncated STMV RNA lacking the 3' terminal 150 nt region. These findings provide insights into the mechanism underlying the regulation of STMV replication and packaging. PMID:27193742

  3. Mutational analysis of sequences downstream of the TATA box of the herpes simplex virus type 1 major capsid protein (VP5/UL19) promoter.

    PubMed Central

    Huang, C J; Goodart, S A; Rice, M K; Guzowski, J F; Wagner, E K

    1993-01-01

    Transient expression assays with the herpes simplex virus type 1 (HSV-1) promoter/leader controlling the beta gamma (leaky-late) VP5 (UL19) mRNA encoding the major capsid protein showed that no more than 36 to 72 bases of VP5 leader are required for full-level expression. Constructs lacking the viral leader and the transcription initiation site expressed the reporter gene at about 20% of the maximum level. We confirmed this observation by using recombinant viruses in which VP5 promoter/leader deletions controlling the bacterial beta-galactosidase gene were inserted into the nonessential glycoprotein C (UL44) locus of the genome. Sequences within +36 are required for full-level expression, and removal of all leader sequences including the cap site resulted in a 10-fold decrease in reporter mRNA accumulation. The removal of the leader sequence had a measurable effect upon the kinetics of reporter mRNA accumulation, but insertion of the entire VP5 leader and cap site into a construct in which the reporter gene was controlled by the kinetically early (beta) dUTPase (UL50) promoter did not result in any significant change in the kinetics of dUTPase promoter expression. These results suggest that DNA sequences both 5' and 3' of the TATA box are important determinants of the beta gamma kinetics and levels of VP5 mRNA accumulation in the infected cell. Images PMID:8394439

  4. Virus-Binding Proteins Recovered from Bacterial Culture Derived from Activated Sludge by Affinity Chromatography Assay Using a Viral Capsid Peptide

    PubMed Central

    Sano, Daisuke; Matsuo, Takahiro; Omura, Tatsuo

    2004-01-01

    The contamination of water environments by pathogenic viruses has raised concerns about outbreaks of viral infectious diseases in our society. Because conventional water and wastewater treatment systems are not effective enough to inactivate or remove pathogenic viruses, a new technology for virus removal needs to be developed. In this study, the virus-binding proteins (VBPs) in a bacterial culture derived from activated sludge were successfully recovered. The recovery of VBPs was achieved by applying extracted crude proteins from a bacterial culture to an affinity column in which a custom-made peptide of capsid protein from the poliovirus type 1 (PV1) Mahoney strain (H2N-DNPASTTNKDKL-COOH) was immobilized as a ligand. VBPs exhibited the ability to adsorb infectious particles of PV1 Sabin 1 as determined by enzyme-linked immunosorbent assay. The evaluation of surface charges of VBPs with ion-exchange chromatography found that a majority of VBP molecules had a net negative charge under the conditions of affinity chromatography. On the other hand, a calculated isoelectric point implied that the viral peptide in the affinity column was also charged negatively. As a result, the adsorption of the VBPs to the viral peptide in the affinity column occurred with a strong attractive force that was able to overcome the electrostatic repulsive force. Two-dimensional electrophoresis revealed that the isolated VBPs include a number of proteins, and their molecular masses were widely distributed but smaller than 100 kDa. Amino acid sequences of N termini of five VBPs were determined. Homology searches for the N termini against all protein sequences in the National Center for Biotechnology Information (NCBI) database showed that the isolated VBPs in this study were newly discovered proteins. These VBPs that originated with bacteria in activated sludge might be stable, because they are existing in the environment of wastewater treatments. Therefore, a virus removal technology

  5. Elasticity theory of the maturation of viral capsids

    NASA Astrophysics Data System (ADS)

    Perotti, Luigi E.; Aggarwal, Ankush; Rudnick, Joseph; Bruinsma, Robijn; Klug, William S.

    2015-04-01

    Many viral capsids undergo a series of significant structural changes following assembly, a process known as maturation. The driving mechanisms for maturation usually are chemical reactions taking place inside the proteins that constitute the capsid ("subunits") that produce structural changes of the subunits. The resulting alterations of the subunits may be directly visible from the capsid structures, as observed by electron microscopy, in the form of a shear shape change and/or a rotation of groups of subunits. The existing thin shell elasticity theory for viral shells does not take account of the internal structure of the subunits and hence cannot describe displacement patterns of the capsid during maturation. Recently, it was proposed for the case of a particular virus (HK97) that thin shell elasticity theory could in fact be generalized to include transformations of the constituent proteins by including such a transformations as a change of the stress-free reference state for the deformation free energy. In this study, we adopt that approach and illustrate its validity in more generality by describing shape changes occurring during maturation across different T-numbers in terms of subunit shearing. Using phase diagrams, we determine the shear directions of the subunits that are most effective to produce capsid shape changes, such as transitions from spherical to facetted capsid shape. We further propose an equivalent stretching mechanism offering a unifying view under which capsid symmetry can be analyzed. We conclude by showing that hexamer shearing not only drives the shape change of the viral capsid during maturation but also is capable of lowering the capsid elastic energy in particular for chiral capsids (e.g., T = 7) and give rise to pre-shear patterns. These additional mechanisms may provide a driving force and an organizational principle for virus assembly.

  6. Enhancing Transgene Expression from Recombinant AAV8 Vectors in Different Tissues Using Woodchuck Hepatitis Virus Post-Transcriptional Regulatory Element

    PubMed Central

    Wang, Lizheng; Wang, Zixuan; Zhang, Fangfang; Zhu, Rui; Bi, Jinpeng; Wu, Jiaxin; Zhang, Haihong; Wu, Hui; Kong, Wei; Yu, Bin; Yu, Xianghui

    2016-01-01

    Adeno-associated virus (AAV) vectors have been utilized extensively in gene therapy and gene function studies, as strong transgene expression is a prerequisite for positive outcomes. AAV8 was reported as the most efficient AAV serotype for transduction of the liver, brain and muscle compared with other serotypes. However, AAV8-mediated transduction of human hepatocytes is rather poor with approximately 20-fold lower efficiency compared with that of mouse hepatocytes. Therefore, we applied the woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) to enhance AAV8-mediated transgene expression driven by a combination promoter (CAG promoter) with a CMV-IE enhancer and chicken beta-actin promoter for a more efficient viral vector. Transgene expression from recombinant AAV8 (rAAV8) vectors harboring a red fluorescent protein (RFP) reporter gene with or without WPRE were evaluated in vitro and in vivo. The results demonstrated that WPRE improved AAV8-mediated RFP expression in different cell lines with clear increases of transgene expression in the liver, brain or muscle of animals. The findings of this study will help to substantially reduce the quantity of viral particles that must be injected in order to reach a therapeutic level of transgene expression in gene therapy. Consequently, such dose reductions may lessen the potential risks associated with high doses of viral vectors. PMID:27076785

  7. All-Atom Molecular Dynamics of Virus Capsids as Drug Targets

    PubMed Central

    2016-01-01

    Virus capsids are protein shells that package the viral genome. Although their morphology and biological functions can vary markedly, capsids often play critical roles in regulating viral infection pathways. A detailed knowledge of virus capsids, including their dynamic structure, interactions with cellular factors, and the specific roles that they play in the replication cycle, is imperative for the development of antiviral therapeutics. The following Perspective introduces an emerging area of computational biology that focuses on the dynamics of virus capsids and capsid–protein assemblies, with particular emphasis on the effects of small-molecule drug binding on capsid structure, stability, and allosteric pathways. When performed at chemical detail, molecular dynamics simulations can reveal subtle changes in virus capsids induced by drug molecules a fraction of their size. Here, the current challenges of performing all-atom capsid–drug simulations are discussed, along with an outlook on the applicability of virus capsid simulations to reveal novel drug targets. PMID:27128262

  8. Lentiviral Gag Assembly Analyzed through the Functional Characterization of Chimeric Simian Immunodeficiency Viruses Expressing Different Domains of the Feline Immunodeficiency Virus Capsid Protein

    PubMed Central

    Esteva, María J.; Affranchino, José L.; González, Silvia A.

    2014-01-01

    To gain insight into the functional relationship between the capsid (CA) domains of the Gag polyproteins of simian and feline immunodeficiency viruses (SIV and FIV, respectively), we constructed chimeric SIVs in which the CA-coding region was partially or totally replaced by the equivalent region of the FIV CA. The phenotypic characterization of the chimeras allowed us to group them into three categories: the chimeric viruses that, while being assembly-competent, exhibit a virion-associated unstable FIV CA; a second group represented only by the chimeric SIV carrying the N-terminal domain (NTD) of the FIV CA which proved to be assembly-defective; and a third group constituted by the chimeric viruses that produce virions exhibiting a mature and stable FIV CA protein, and which incorporate the envelope glycoprotein and contain wild-type levels of viral genome RNA and reverse transcriptase. Further analysis of the latter group of chimeric SIVs demonstrated that they are non-infectious due to a post-entry impairment, such as uncoating of the viral core, reverse transcription or nuclear import of the preintegration complex. Furthermore, we show here that the carboxyl-terminus domain (CTD) of the FIV CA has an intrinsic ability to dimerize in vitro and form high-molecular-weight oligomers, which, together with our finding that the FIV CA-CTD is sufficient to confer assembly competence to the resulting chimeric SIV Gag polyprotein, provides evidence that the CA-CTD exhibits more functional plasticity than the CA-NTD. Taken together, our results provide relevant information on the biological relationship between the CA proteins of primate and nonprimate lentiviruses. PMID:25462889

  9. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution

    SciTech Connect

    Andoh, Y.; Yoshii, N.; Yamada, A.; Kojima, H.; Mizutani, K.; Okazaki, S.; Fujimoto, K.; Nakagawa, A.; Nomoto, A.

    2014-10-28

    Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 10{sup 6} all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.

  10. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution

    NASA Astrophysics Data System (ADS)

    Andoh, Y.; Yoshii, N.; Yamada, A.; Fujimoto, K.; Kojima, H.; Mizutani, K.; Nakagawa, A.; Nomoto, A.; Okazaki, S.

    2014-10-01

    Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 106 all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.

  11. HIV-1 Capsid Stabilization Assay.

    PubMed

    Fricke, Thomas; Diaz-Griffero, Felipe

    2016-01-01

    The stability of the HIV-1 core in the cytoplasm is crucial for productive HIV-1 infection. Mutations that stabilize or destabilize the core showed defects in HIV-1 reverse transcription and infection. We developed a novel and simple assay to measure stability of in vitro-assembled HIV-1 CA-NC complexes. This assay allowed us to demonstrate that cytosolic extracts strongly stabilize the HIV-1 core (Fricke et al., J Virol 87:10587-10597, 2013). By using our novel assay, one can measure the ability of different drugs to modulate the stability of in vitro-assembled HIV-1 CA-NC complexes, such as PF74, CAP-1, IXN-053, cyclosporine A, Bi2, and the peptide CAI. We also found that purified CPSF6 (1-321) protein stabilizes in vitro-assembled HIV-1 CA-NC complexes (Fricke et al., J Virol 87:10587-10597, 2013). Here we describe in detail the use of this capsid stability assay. We believe that our assay can be a powerful tool to assess HIV-1 capsid stability in vitro.

  12. Structural insights into the assembly and regulation of distinct viral capsid complexes

    PubMed Central

    Sarker, Subir; Terrón, María C.; Khandokar, Yogesh; Aragão, David; Hardy, Joshua M.; Radjainia, Mazdak; Jiménez-Zaragoza, Manuel; de Pablo, Pedro J.; Coulibaly, Fasséli; Luque, Daniel; Raidal, Shane R.; Forwood, Jade K.

    2016-01-01

    The assembly and regulation of viral capsid proteins into highly ordered macromolecular complexes is essential for viral replication. Here, we utilize crystal structures of the capsid protein from the smallest and simplest known viruses capable of autonomously replicating in animal cells, circoviruses, to establish structural and mechanistic insights into capsid morphogenesis and regulation. The beak and feather disease virus, like many circoviruses, encode only two genes: a capsid protein and a replication initiation protein. The capsid protein forms distinct macromolecular assemblies during replication and here we elucidate these structures at high resolution, showing that these complexes reverse the exposure of the N-terminal arginine rich domain responsible for DNA binding and nuclear localization. We show that assembly of these complexes is regulated by single-stranded DNA (ssDNA), and provide a structural basis of capsid assembly around single-stranded DNA, highlighting novel binding interfaces distinct from the highly positively charged N-terminal ARM domain. PMID:27698405

  13. Biochemical and Physiological Improvement in a Mouse Model of Smith-Lemli-Opitz Syndrome (SLOS) Following Gene Transfer with AAV Vectors.

    PubMed

    Ying, Lee; Matabosch, Xavier; Serra, Montserrat; Watson, Berna; Shackleton, Cedric; Watson, Gordon

    2014-01-01

    Smith-Lemli-Opitz syndrome (SLOS) is an inborn error of cholesterol synthesis resulting from a defect in 7-dehydrocholesterol reductase (DHCR7), the enzyme that produces cholesterol from its immediate precursor 7-dehydrocholesterol. Current therapy employing dietary cholesterol is inadequate. As SLOS is caused by a defect in a single gene, restoring enzyme functionality through gene therapy may be a direct approach for treating this debilitating disorder. In the present study, we first packaged a human DHCR7 construct into adeno-associated virus (AAV) vectors having either type-2 (AAV2) or type-8 (AAV2/8) capsid, and administered treatment to juvenile mice. While a positive response (assessed by increases in serum and liver cholesterol) was seen in both groups, the improvement was greater in the AAV2/8-DHCR7 treated mice. Newborn mice were then treated with AAV2/8-DHCR7 and these mice, compared to mice treated as juveniles, showed higher DHCR7 mRNA expression in liver and a greater improvement in serum and liver cholesterol levels. Systemic treatment did not affect brain cholesterol in any of the experimental groups. Both juvenile and newborn treatments with AAV2/8-DHCR7 resulted in increased rates of weight gain indicating that gene transfer had a positive physiological effect.

  14. Comprehensive Small RNA-Seq of Adeno-Associated Virus (AAV)-Infected Human Cells Detects Patterns of Novel, Non-Coding AAV RNAs in the Absence of Cellular miRNA Regulation.

    PubMed

    Stutika, Catrin; Mietzsch, Mario; Gogol-Döring, Andreas; Weger, Stefan; Sohn, Madlen; Chen, Wei; Heilbronn, Regine

    2016-01-01

    Most DNA viruses express small regulatory RNAs, which interfere with viral or cellular gene expression. For adeno-associated virus (AAV), a small ssDNA virus with a complex biphasic life cycle miRNAs or other small regulatory RNAs have not yet been described. This is the first comprehensive Illumina-based RNA-Seq analysis of small RNAs expressed by AAV alone or upon co-infection with helper adenovirus or HSV. Several hotspots of AAV-specific small RNAs were detected mostly close to or within the AAV-ITR and apparently transcribed from the newly identified anti-p5 promoter. An additional small RNA hotspot was located downstream of the p40 promoter, from where transcription of non-coding RNAs associated with the inhibition of adenovirus replication were recently described. Parallel detection of known Ad and HSV miRNAs indirectly validated the newly identified small AAV RNA species. The predominant small RNAs were analyzed on Northern blots and by human argonaute protein-mediated co-immunoprecipitation. None of the small AAV RNAs showed characteristics of bona fide miRNAs, but characteristics of alternative RNA processing indicative of differentially regulated AAV promoter-associated small RNAs. Furthermore, the AAV-induced regulation of cellular miRNA levels was analyzed at different time points post infection. In contrast to other virus groups AAV infection had virtually no effect on the expression of cellular miRNA, which underscores the long-established concept that wild-type AAV infection is apathogenic. PMID:27611072

  15. Comprehensive Small RNA-Seq of Adeno-Associated Virus (AAV)-Infected Human Cells Detects Patterns of Novel, Non-Coding AAV RNAs in the Absence of Cellular miRNA Regulation

    PubMed Central

    Stutika, Catrin; Mietzsch, Mario; Gogol-Döring, Andreas; Weger, Stefan; Sohn, Madlen; Chen, Wei; Heilbronn, Regine

    2016-01-01

    Most DNA viruses express small regulatory RNAs, which interfere with viral or cellular gene expression. For adeno-associated virus (AAV), a small ssDNA virus with a complex biphasic life cycle miRNAs or other small regulatory RNAs have not yet been described. This is the first comprehensive Illumina-based RNA-Seq analysis of small RNAs expressed by AAV alone or upon co-infection with helper adenovirus or HSV. Several hotspots of AAV-specific small RNAs were detected mostly close to or within the AAV-ITR and apparently transcribed from the newly identified anti-p5 promoter. An additional small RNA hotspot was located downstream of the p40 promoter, from where transcription of non-coding RNAs associated with the inhibition of adenovirus replication were recently described. Parallel detection of known Ad and HSV miRNAs indirectly validated the newly identified small AAV RNA species. The predominant small RNAs were analyzed on Northern blots and by human argonaute protein-mediated co-immunoprecipitation. None of the small AAV RNAs showed characteristics of bona fide miRNAs, but characteristics of alternative RNA processing indicative of differentially regulated AAV promoter-associated small RNAs. Furthermore, the AAV-induced regulation of cellular miRNA levels was analyzed at different time points post infection. In contrast to other virus groups AAV infection had virtually no effect on the expression of cellular miRNA, which underscores the long-established concept that wild-type AAV infection is apathogenic. PMID:27611072

  16. Foot-and-mouth disease virus: immunogenicity and structure of fragments derived from capsid protein VP and of virus containing cleaved VP.

    PubMed

    Bachrach, H L; Morgan, D O; McKercher, P D; Moore, D M; Robertson, B H

    1982-05-01

    Peptide fragments were obtained from the immunogenic capsid protein VP3, ca. 24 kilodaltons (kd), of foot-and-mouth disease virus type A12 119ab by three procedures: (1) spontaneous proteolysis of in virion VP3 in tissue cultures to produce a 15 kd peptide, designated S fragment; (2) trypsin treatment of purified virus to produce a 16 kg peptide, designated T fragment; and (3) cyanogen bromide cleavage of purified VP3 to produce a 13 kd fragment. Following isolation and purification by gel electrophoresis, VP3 and each of the three fragments were immunogenic for livestock. Lyophilization appeared to impair the immunogenicity of VP3. In addition, viruses containing VP3 fragments produced either by the spontaneous- or trypsin-induced proteolysis were as immunogenic as virus with its VP3 intact. Amino acid sequencing of N-terminal regions revealed that the S fragment was homologous with the N-terminus of VP3, whereas the 13 kd fragment possessed a unique N-terminus. Thus, putative common immunogenic amino acid sequences would appear to reside within an overlap region of the 15 kd S and 13 kd fragments. Sequencing of cDNA prepared to viral genome RNA provided three kinds of information: it (1) placed the above overlap region in the second and third quarters of VP3; (2) demonstrated that the codons for the C-terminus of VP1 and N-terminus of VP3 are contiguous; and (3) supported earlier evidence that these same codons program a chain reversal where VP1 and VP3 are joined in the precursor polyprotein. PMID:6287701

  17. Protective immunization of horses with a recombinant canarypox virus vectored vaccine co-expressing genes encoding the outer capsid proteins of African horse sickness virus.

    PubMed

    Guthrie, Alan J; Quan, Melvyn; Lourens, Carina W; Audonnet, Jean-Christophe; Minke, Jules M; Yao, Jiansheng; He, Ling; Nordgren, Robert; Gardner, Ian A; Maclachlan, N James

    2009-07-16

    We describe the development and preliminary characterization of a recombinant canarypox virus vectored (ALVAC) vaccine for protective immunization of equids against African horse sickness virus (AHSV) infection. Horses (n=8) immunized with either of two concentrations of recombinant canarypox virus vector (ALVAC-AHSV) co-expressing synthetic genes encoding the outer capsid proteins (VP2 and VP5) of AHSV serotype 4 (AHSV-4) developed variable titres (<10-80) of virus-specific neutralizing antibodies and were completely resistant to challenge infection with a virulent strain of AHSV-4. In contrast, a horse immunized with a commercial recombinant canarypox virus vectored vaccine expressing the haemagglutinin genes of two equine influenza H3N8 viruses was seronegative to AHSV and following infection with virulent AHSV-4 developed pyrexia, thrombocytopenia and marked oedema of the supraorbital fossae typical of the "dikkop" or cardiac form of African horse sickness. AHSV was detected by virus isolation and quantitative reverse transcriptase polymerase chain reaction in the blood of the control horse from 8 days onwards after challenge infection whereas AHSV was not detected at any time in the blood of the ALVAC-AHSV vaccinated horses. The control horse seroconverted to AHSV by 2 weeks after challenge infection as determined by both virus neutralization and ELISA assays, whereas six of eight of the ALVAC-AHSV vaccinated horses did not seroconvert by either assay following challenge infection with virulent AHSV-4. These data confirm that the ALVAC-AHSV vaccine will be useful for the protective immunization of equids against African horse sickness, and avoids many of the problems inherent to live-attenuated AHSV vaccines.

  18. Production of Monoclonal Antibodies against the Major Capsid Protein of the Lactococcus Bacteriophage ul36 and Development of an Enzyme-Linked Immunosorbent Assay for Direct Phage Detection in Whey and Milk

    PubMed Central

    Moineau, Sylvain; Bernier, Denis; Jobin, Marie; Hébert, Jacques; Klaenhammer, Todd R.; Pandian, Sithian

    1993-01-01

    The only major structural protein (35 kDa) of the lactococcal small isometric-headed bacteriophage ul36, a member of the P335 species, was isolated from a preparative sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Monoclonal antibodies (MAbs) were raised against the denatured 35-kDa protein. Six MAbs were selected and characterized. Western blots (immunoblots) showed that all MAbs recognized the 35 kDa but also a 45 kDa that is in lower concentration in the phage structure. Binding inhibition assays identified five families of MAbs that recognized nonoverlapping epitopes of the 35- and 45-kDa proteins. Immunoelectron microscopy showed that these two proteins are localized within the phage head, therefore indicating that the 35 kDa is a major capsid protein of ul36 and that the 45 kDa is a minor capsid protein. With two MAbs, a sandwich enzyme-linked immunosorbent assay (ELISA) was developed for direct detection of lactococcal phages in whey and milk samples. Whey and milk components, however, interfered with the conduct of the assay. Partial denaturation of milk samples by heat treatment in the presence of SDS and β-mercaptoethanol removed the masking effect and increased the sensitivity of the assay by 100-fold. With the method used here, 107 PFU/ml were detected by the ELISA within 2 h without any steps to enrich or isolate bacteriophages. Images PMID:16348980

  19. Molecular studies on bromovirus capsid protein. VII. Selective packaging on BMV RNA4 by specific N-terminal arginine residuals.

    PubMed

    Choi, Y G; Rao, A L

    2000-09-15

    An arginine-rich RNA-binding motif (ARM) found at the N-proximal region of Brome mosaic virus (BMV) coat protein (CP) adopts alpha-helical conformation and shares homology with CPs of plant and insect RNA viruses, HIV-Rev and Tat proteins, bacterial antiterminators, and ribosomal splicing factors. The ARM of BMV CP, consisting of amino acids 9 through 21 with six arginine residues, is essential for RNA binding and subsequent packaging. In this study analysis of the alpha-helical contents of wild-type and mutant peptides by circular dichroism spectra identified protein determinants required for such conformation. Electrophoretic mobility-shift assays between viral RNA and BMV CP peptides with either proline or alanine substitutions revealed that the interaction is nonspecific. Expression in vivo of mature full-length BMV CP subunits, having the same substitutions for each arginine within the ARM, derived from biologically active clones was found to be competent to assemble into infectious virions and cause visible symptom phenotypes in whole plants. However, analysis of virion progeny RNA profiles of CP variants and subsequent in vitro reassembly assays between mutant CP and four BMV RNAs unveiled the ability of arginine residues at positions 10, 13, or 14 of the ARM to confer selective packaging of BMV RNA4. Thus, BMV