Science.gov

Sample records for aav rep protein

  1. Novel Mutant AAV2 Rep Proteins Support AAV2 Replication without Blocking HSV-1 Helpervirus Replication

    PubMed Central

    Seyffert, Michael; Glauser, Daniel L.; Schraner, Elisabeth M.; de Oliveira, Anna-Paula; Mansilla-Soto, Jorge; Vogt, Bernd; Büning, Hildegard; Linden, R. Michael; Ackermann, Mathias; Fraefel, Cornel

    2017-01-01

    As their names imply, parvoviruses of the genus Dependovirus rely for their efficient replication on the concurrent presence of a helpervirus, such as herpesvirus, adenovirus, or papilloma virus. Adeno-associated virus 2 (AAV2) is such an example, which in turn can efficiently inhibit the replication of each helpervirus by distinct mechanisms. In a previous study we have shown that expression of the AAV2 rep gene is not compatible with efficient replication of herpes simplex virus 1 (HSV-1). In particular, the combined DNA-binding and ATPase/helicase activities of the Rep68/78 proteins have been shown to exert opposite effects on the replication of AAV2 and HSV-1. While essential for AAV2 DNA replication these protein activities account for the Rep-mediated inhibition of HSV-1 replication. Here, we describe a novel Rep mutant (Rep-D371Y), which displayed an unexpected phenotype. Rep-D371Y did not block HSV-1 replication, but still supported efficient AAV2 replication, at least when a double-stranded AAV2 genome template was used. We also found that the capacity of Rep-D371Y to induce apoptosis and a Rep-specific DNA damage response was significantly reduced compared to wild-type Rep. These findings suggest that AAV2 Rep-helicase subdomains exert diverging activities, which contribute to distinct steps of the AAV2 life cycle. More important, the novel AAV2 mutant Rep-D371Y may allow deciphering yet unsolved activities of the AAV2 Rep proteins such as DNA second-strand synthesis, genomic integration or packaging, which all involve the Rep-helicase activity. PMID:28125695

  2. Adeno-associated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integration site in human DNA.

    PubMed Central

    Weitzman, M D; Kyöstiö, S R; Kotin, R M; Owens, R A

    1994-01-01

    AAV is unique among eukaryotic viruses in the ability of its DNA to integrate preferentially into a specific region of the human genome. Understanding AAV integration may aid in developing gene therapy systems with predictable integration sites. Using a gel mobility-shift assay, we have identified a DNA sequence within the AAV integration locus on human chromosome 19 which is specifically bound by the AAV Rep78 and Rep68 proteins. This Rep recognition sequence is a GCTC repeating motif very similar to sequences within the inverted terminal repeats of the AAV genome which are also bound by Rep78 and Rep68. Cloned oligonucleotides containing the recognition sequence can direct specific binding by Rep proteins. Binding assays with mutant Rep proteins show that the amino-terminal portion of Rep78 and Rep68 can direct binding to either the AAV terminal repeat hairpin DNA or chromosome 19. This human genomic DNA can be complexed with AAV DNA by Rep proteins as demonstrated by a dual-label (32P/biotin) assay. These results suggest a role for Rep in targeting viral integration. Images PMID:8016070

  3. Identification of a cytoplasmic interaction partner of the large regulatory proteins Rep78/Rep68 of adeno-associated virus type 2 (AAV-2)

    SciTech Connect

    Weger, Stefan . E-mail: stefan.weger@charite.de; Hammer, Eva; Goetz, Anne; Heilbronn, Regine

    2007-05-25

    Through yeast two-hybrid analysis and coimmunoprecipitation studies, we have identified a novel cellular AAV-2 Rep78/Rep68 interaction partner located predominantly in the cytoplasm. In public databases, it has been assigned as KCTD5, because of a region of high similarity to the cytoplasmic tetramerization domain of voltage-gated potassium channels. Whereas Rep/KCTD5 interaction relied on the region surrounding the Rep nuclear localization signal, nuclear accumulation of Rep was not required. Wildtype Rep78/Rep68 proteins induced the translocation of large portions of KCTD5 into the nucleus pointing to functional interactions both in the cytoplasm and the nucleus. In line with an anticipated functional interference in the cytoplasm, KCTD5 overexpression completely abrogated Rep68-mediated posttranscriptional activation of a HIV-LTR driven luciferase reporter gene. Our study expands the panel of already identified nuclear Rep interaction partners to a cytoplasmic protein, which raises the awareness that important steps in the AAV life cycle may be regulated in this compartment.

  4. Analysis of adeno-associated virus (AAV) wild-type and mutant Rep proteins for their abilities to negatively regulate AAV p5 and p19 mRNA levels.

    PubMed Central

    Kyöstiö, S R; Owens, R A; Weitzman, M D; Antoni, B A; Chejanovsky, N; Carter, B J

    1994-01-01

    The rep gene of adeno-associated virus type 2 (AAV) encodes four overlapping Rep proteins that are involved in gene regulation and replication of the virus. We studied here the regulation of mRNA transcribed from the AAV p5 and p19 promoters, using transient expression in human 293 cells followed by Northern (RNA) blot analysis of the mRNA. The p5 transcript encodes the larger Rep proteins, Rep78 and Rep68, while the p19 transcript encodes the smaller proteins, Rep52 and Rep40. A plasmid (pNTC3) containing the entire AAV genome with an amber mutation in the rep gene accumulated higher levels of p5 and p19 mRNA than a plasmid containing the wild-type AAV genome. Addition of increasing amounts of the wild-type rep gene in trans from a heterologous promoter inhibited p5 and p19 mRNA accumulation from pNTC3, indicating that the levels of both transcripts were decreased by the Rep proteins. Cotransfections with plasmids producing individual wild-type Rep proteins in trans showed that p5 and p19 mRNA accumulation was inhibited 5- to 10-fold by Rep78 and Rep68 and 2- to 3-fold by Rep52 and Rep40. Analysis of carboxyl-terminal truncation mutants of Rep78 showed that the ability of Rep78 to decrease p5 and p19 mRNA levels was lost when 159 or more amino acids were deleted. Rep78 and Rep68 mutants deleted for the methionine at residue 225 showed decreased abilities to down-regulate both p5 and p19 transcript levels, while mutants containing a substitution of glycine for the methionine resembled the wild-type Rep78. A Rep78 protein with a mutation in the putative nucleoside triphosphate binding site inhibited expression from p5 but not from p19, suggesting that the regulation of p5 transcript levels by Rep78 and Rep68 differs from that of p19. A deletion analysis of AAV cis sequences revealed that an intact terminal repeat was not required for negative regulation of p5 and p19 transcript levels and that the regulation of p19 mRNA levels by Rep78 did not require the presence

  5. Structural Insights into the Assembly of the Adeno-associated Virus Type 2 Rep68 Protein on the Integration Site AAVS1.

    PubMed

    Musayev, Faik N; Zarate-Perez, Francisco; Bishop, Clayton; Burgner, John W; Escalante, Carlos R

    2015-11-13

    Adeno-associated virus (AAV) is the only eukaryotic virus with the property of establishing latency by integrating site-specifically into the human genome. The integration site known as AAVS1 is located in chromosome 19 and contains multiple GCTC repeats that are recognized by the AAV non-structural Rep proteins. These proteins are multifunctional, with an N-terminal origin-binding domain (OBD) and a helicase domain joined together by a short linker. As a first step to understand the process of site-specific integration, we proceeded to characterize the recognition and assembly of Rep68 onto the AAVS1 site. We first determined the x-ray structure of AAV-2 Rep68 OBD in complex with the AAVS1 DNA site. Specificity is achieved through the interaction of a glycine-rich loop that binds the major groove and an α-helix that interacts with a downstream minor groove on the same face of the DNA. Although the structure shows a complex with three OBD molecules bound to the AAVS1 site, we show by using analytical centrifugation and electron microscopy that the full-length Rep68 forms a heptameric complex. Moreover, we determined that a minimum of two direct repeats is required to form a stable complex and to melt DNA. Finally, we show that although the individual domains bind DNA poorly, complex assembly requires oligomerization and cooperation between its OBD, helicase, and the linker domains.

  6. Structural Insights into the Assembly of the Adeno-associated Virus Type 2 Rep68 Protein on the Integration Site AAVS1*

    PubMed Central

    Musayev, Faik N.; Zarate-Perez, Francisco; Bishop, Clayton; Burgner, John W.; Escalante, Carlos R.

    2015-01-01

    Adeno-associated virus (AAV) is the only eukaryotic virus with the property of establishing latency by integrating site-specifically into the human genome. The integration site known as AAVS1 is located in chromosome 19 and contains multiple GCTC repeats that are recognized by the AAV non-structural Rep proteins. These proteins are multifunctional, with an N-terminal origin-binding domain (OBD) and a helicase domain joined together by a short linker. As a first step to understand the process of site-specific integration, we proceeded to characterize the recognition and assembly of Rep68 onto the AAVS1 site. We first determined the x-ray structure of AAV-2 Rep68 OBD in complex with the AAVS1 DNA site. Specificity is achieved through the interaction of a glycine-rich loop that binds the major groove and an α-helix that interacts with a downstream minor groove on the same face of the DNA. Although the structure shows a complex with three OBD molecules bound to the AAVS1 site, we show by using analytical centrifugation and electron microscopy that the full-length Rep68 forms a heptameric complex. Moreover, we determined that a minimum of two direct repeats is required to form a stable complex and to melt DNA. Finally, we show that although the individual domains bind DNA poorly, complex assembly requires oligomerization and cooperation between its OBD, helicase, and the linker domains. PMID:26370092

  7. Integration Preferences of Wildtype AAV-2 for Consensus Rep-Binding Sites at Numerous Loci in the Human Genome

    PubMed Central

    Hüser, Daniela; Gogol-Döring, Andreas; Lutter, Timo; Weger, Stefan; Winter, Kerstin; Hammer, Eva-Maria; Cathomen, Toni; Reinert, Knut; Heilbronn, Regine

    2010-01-01

    Adeno-associated virus type 2 (AAV) is known to establish latency by preferential integration in human chromosome 19q13.42. The AAV non-structural protein Rep appears to target a site called AAVS1 by simultaneously binding to Rep-binding sites (RBS) present on the AAV genome and within AAVS1. In the absence of Rep, as is the case with AAV vectors, chromosomal integration is rare and random. For a genome-wide survey of wildtype AAV integration a linker-selection-mediated (LSM)-PCR strategy was designed to retrieve AAV-chromosomal junctions. DNA sequence determination revealed wildtype AAV integration sites scattered over the entire human genome. The bioinformatic analysis of these integration sites compared to those of rep-deficient AAV vectors revealed a highly significant overrepresentation of integration events near to consensus RBS. Integration hotspots included AAVS1 with 10% of total events. Novel hotspots near consensus RBS were identified on chromosome 5p13.3 denoted AAVS2 and on chromsome 3p24.3 denoted AAVS3. AAVS2 displayed seven independent junctions clustered within only 14 bp of a consensus RBS which proved to bind Rep in vitro similar to the RBS in AAVS3. Expression of Rep in the presence of rep-deficient AAV vectors shifted targeting preferences from random integration back to the neighbourhood of consensus RBS at hotspots and numerous additional sites in the human genome. In summary, targeted AAV integration is not as specific for AAVS1 as previously assumed. Rather, Rep targets AAV to integrate into open chromatin regions in the reach of various, consensus RBS homologues in the human genome. PMID:20628575

  8. Structural Studies of AAV2 Rep68 Reveal a Partially Structured Linker and Compact Domain Conformation

    PubMed Central

    Musayev, Faik N.; Zarate-Perez, Francisco; Bardelli, Martino; Bishop, Clayton; Saniev, Emil F.; Linden, R. Michael; Henckaerts, Els; Escalante, Carlos R.

    2015-01-01

    Adeno-associated virus (AAV) nonstructural proteins Rep78 and Rep68 carry out all DNA transactions that regulate the AAV life cycle. They share two multifunctional domains: an N-terminal origin binding/nicking domain (OBD) from the HUH superfamily and a SF3 helicase domain. A short linker of ~20 amino acids that is critical for oligomerization and function connects the two domains. Although X-ray structures of the AAV5 OBD and AAV2 helicase domains have been determined, information about the full-length protein and linker conformation is not known. This article presents the solution structure of AAV2 Rep68 using small-angle X-ray scattering (SAXS). We first determined the X-ray structures of the minimal AAV2 Rep68 OBD and of the OBD with the linker region. These X-ray structures reveal novel features that include a long C-terminal α-helix that protrudes from the core of the protein at a 45° angle and a partially structured linker. SAXS studies corroborate that the linker is not extended, and we show that a proline residue in the linker is critical for Rep68 oligomerization and function. SAXS-based rigid-body modeling of Rep68 confirms these observations, showing a compact arrangement of the two domains in which they acquire a conformation that positions key residues in all domains on one face of the protein, poised to interact with DNA. PMID:26314310

  9. Structural Studies of AAV2 Rep68 Reveal a Partially Structured Linker and Compact Domain Conformation.

    PubMed

    Musayev, Faik N; Zarate-Perez, Francisco; Bardelli, Martino; Bishop, Clayton; Saniev, Emil F; Linden, R Michael; Henckaerts, Els; Escalante, Carlos R

    2015-09-29

    Adeno-associated virus (AAV) nonstructural proteins Rep78 and Rep68 carry out all DNA transactions that regulate the AAV life cycle. They share two multifunctional domains: an N-terminal origin binding/nicking domain (OBD) from the HUH superfamily and a SF3 helicase domain. A short linker of ∼20 amino acids that is critical for oligomerization and function connects the two domains. Although X-ray structures of the AAV5 OBD and AAV2 helicase domains have been determined, information about the full-length protein and linker conformation is not known. This article presents the solution structure of AAV2 Rep68 using small-angle X-ray scattering (SAXS). We first determined the X-ray structures of the minimal AAV2 Rep68 OBD and of the OBD with the linker region. These X-ray structures reveal novel features that include a long C-terminal α-helix that protrudes from the core of the protein at a 45° angle and a partially structured linker. SAXS studies corroborate that the linker is not extended, and we show that a proline residue in the linker is critical for Rep68 oligomerization and function. SAXS-based rigid-body modeling of Rep68 confirms these observations, showing a compact arrangement of the two domains in which they acquire a conformation that positions key residues in all domains on one face of the protein, poised to interact with DNA.

  10. Adeno-associated virus rep protein synthesis during productive infection

    SciTech Connect

    Redemann, B.E.; Mendelson, E.; Carter, B.J.

    1989-02-01

    Adeno-associated virus (AAV) Rep proteins mediate viral DNA replication and can regulate expression from AAV genes. The authors studied the kinetics of synthesis of the four Rep proteins, Rep78, Rep68, Rep52, and Rep40, during infection of human 293 or KB cells with AAV and helper adenovirus by in vivo labeling with (/sup 35/S)methionine, immunoprecipitation, and immunoblotting analyses. Rep78 and Rep52 were readily detected concomitantly with detection of viral monomer duplex DNA replicating about 10 to 12 h after infection, and Rep68 and Rep40 were detected 2 h later. Rep78 and Rep52 were more abundant than Rep68 and Rep40 owing to a higher synthesis rate throughout the infectious cycle. In some experiments, very low levels of Rep78 could be detected as early as 4 h after infection. The synthesis rates of Rep proteins were maximal between 14 and 24 h and then decreased later after infection. Isotopic pulse-chase experiments showed that each of the Rep proteins was synthesized independently and was stable for at least 15 h. A slower-migrating, modified form of Rep78 was identified late after infection. AAV capsid protein synthesis was detected at 10 to 12 h after infection and also exhibited synthesis kinetics similar to those of the Rep proteins. AAV DNA replication showed at least two clearly defined stages. Bulk duplex replicating DNA accumulation began around 10 to 12 h and reached a maximum level at about 20 h when Rep and capsid protein synthesis was maximal. Progeny single-stranded DNA accumulation began about 12 to 13 h, but most of this DNA accumulated after 24 h when Rep and capsid protein synthesis had decreased.

  11. The Rep78 gene product of adeno-associated virus (AAV) self-associates to form a hexameric complex in the presence of AAV ori sequences.

    PubMed Central

    Smith, R H; Spano, A J; Kotin, R M

    1997-01-01

    The Rep78 and Rep68 proteins of adeno-associated virus (AAV) are replication initiator proteins that bind the viral replicative-form origin of replication, nick the origin in a site- and strand-specific fashion, and mediate vectorial unwinding of the DNA duplex via an ATP-dependent helicase activity, thus initiating a strand displacement mechanism of viral DNA replication. Genetic and biochemical studies have identified Rep mutants that demonstrate a trans-dominant negative phenotype in vitro and in vivo, suggesting the possibility that multimerization of Rep is essential for certain replicative functions. In this study, we have investigated the ability of the largest of the Rep proteins, Rep78, to self-associate in vitro and in vivo. Self-association of Rep78 in vivo was demonstrated through the use of a mammalian two-hybrid system. Rep-Rep protein interaction was confirmed in vitro through coimmunoprecipitation experiments with a bacterially expressed maltose-binding protein-Rep78 fusion protein in combination with [35S]methionine-labeled Rep78 synthesized in a coupled in vitro transcription-translation system. Mapping studies with N- and C-terminal truncation mutant forms of Rep indicate that amino acid sequences required for maximal self-association occur between residues 164 and 484. Site-directed mutagenesis identified two essential motifs within this 321-amino-acid region: (i) a putative alpha-helix bearing a 3,4-hydrophobic heptad repeat reminiscent of those found in coiled-coil domains and (ii) a previously recognized nucleoside triphosphate-binding motif. Deletion of either of these regions from the full-length polypeptide resulted in severe impairment of Rep-Rep interaction. In addition, gel filtration chromatography and protein cross-linking experiments indicated that Rep78 forms a hexameric complex in the presence of AAV ori sequences. PMID:9151837

  12. The interdomain linker of AAV-2 Rep68 is an integral part of its oligomerization domain: role of a conserved SF3 helicase residue in oligomerization.

    PubMed

    Zarate-Perez, Francisco; Bardelli, Martino; Burgner, John W; Villamil-Jarauta, Maria; Das, Kanni; Kekilli, Demet; Mansilla-Soto, Jorge; Linden, R Michael; Escalante, Carlos R

    2012-01-01

    The four Rep proteins of adeno-associated virus (AAV) orchestrate all aspects of its viral life cycle, including transcription regulation, DNA replication, virus assembly, and site-specific integration of the viral genome into the human chromosome 19. All Rep proteins share a central SF3 superfamily helicase domain. In other SF3 members this domain is sufficient to induce oligomerization. However, the helicase domain in AAV Rep proteins (i.e. Rep40/Rep52) as shown by its monomeric characteristic, is not able to mediate stable oligomerization. This observation led us to hypothesize the existence of an as yet undefined structural determinant that regulates Rep oligomerization. In this document, we described a detailed structural comparison between the helicase domains of AAV-2 Rep proteins and those of the other SF3 members. This analysis shows a major structural difference residing in the small oligomerization sub-domain (OD) of Rep helicase domain. In addition, secondary structure prediction of the linker connecting the helicase domain to the origin-binding domain (OBD) indicates the potential to form α-helices. We demonstrate that mutant Rep40 constructs containing different lengths of the linker are able to form dimers, and in the presence of ATP/ADP, larger oligomers. We further identified an aromatic linker residue (Y224) that is critical for oligomerization, establishing it as a conserved signature motif in SF3 helicases. Mutation of this residue critically affects oligomerization as well as completely abolishes the ability to produce infectious virus. Taken together, our data support a model where the linker residues preceding the helicase domain fold into an α-helix that becomes an integral part of the helicase domain and is critical for the oligomerization and function of Rep68/78 proteins through cooperative interaction with the OBD and helicase domains.

  13. Differential Contribution of Adeno-Associated Virus Type 2 Rep Protein Expression and Nucleic Acid Elements to Inhibition of Adenoviral Replication in cis and in trans

    PubMed Central

    Hammer, Eva; Heilbronn, Regine

    2014-01-01

    ABSTRACT The helper-dependent adeno-associated virus type 2 (AAV-2) exhibits complex interactions with its helper adenovirus. Whereas AAV-2 is dependent on adenoviral functions for productive replication, it conversely inhibits adenoviral replication, both when its genome is present in trans after coinfection with both viruses and when it is present in cis, as in the production of recombinant adenovirus (rAd)/AAV-2 hybrid vectors. The notion that AAV-mediated inhibition of adenoviral replication is due predominantly to the expression of the AAV-2 Rep proteins was recently challenged by successful Rep78 expression in a rAd5 vector through recoding of the Rep open reading frame (ORF). We closely analyzed the relative contributions of AAV-2 nucleic acid elements and Rep protein expression to the inhibition of adenoviral replication in both of the above scenarios. When present in cis, a sequence element in the 3′ part of the rep gene, comprising only the AAV-2 p40 promoter and the AAV-2 intron sequence, which we termed the RIS-Ad, completely blocks adenoviral replication. p5/p19 promoter-driven Rep protein expression, on the other hand, only weakly inhibits rAd/AAV-2 vector propagation, and by inactivation of the RIS-Ad, it is feasible to generate first-generation rAd vectors expressing functional Rep proteins. The RIS-Ad plays no role in the inhibition of adenoviral replication in trans in a model closely mimicking AAV-2–Ad coinfection. In this case, expression of the Rep proteins is required, as well as the presence of an amplifiable inverted terminal repeat (ITR)-containing template. Thus, very different AAV-2 elements and mechanisms are involved in inhibition of adenoviral replication during rAd/AAV-2 vector propagation and after Ad-AAV coinfection. IMPORTANCE This is the first study to systematically compare the contributions of AAV-2 protein expression and AAV-2 nucleic acid elements to the inhibition of adenoviral replication in rAd/AAV-2 hybrid vector

  14. Intracellular route and biological activity of exogenously delivered Rep proteins from the adeno-associated virus type 2.

    PubMed

    Awedikian, Rafi; François, Achille; Guilbaud, Mickaël; Moullier, Philippe; Salvetti, Anna

    2005-05-10

    The two large Rep proteins, Rep78 and Rep68, from the adeno-associated virus type 2 (AAV-2) are required for AAV-2 DNA replication, site-specific integration, and for the regulation of viral gene expression. The study of their activities is dependent on the ability to deliver these proteins to the cells in a time and dose-dependent manner. We evaluated the ability of a protein transduction domain (PTD) derived from the human immunodeficiency virus 1 (HIV-1) TAT protein to drive the cellular internalization of exogenously delivered PTD-fused Rep68 proteins. This analysis unexpectedly revealed that recombinant Rep68 alone, in the absence of any PTD, could be endocytosed by the cells. Rep68 as the chimeric TAT-Rep68 proteins were internalized through endocytosis in clathrin-coated vesicles and retained in late endosomes/lysosomes with no detectable nuclear localization. In the presence of adenovirus, the Rep proteins could translocate into the nucleus where they displayed a biological activity. These findings support recent reports on the mechanism of entry of TAT-fused proteins and also revealed a new property of Rep68.

  15. Intracellular route and biological activity of exogenously delivered Rep proteins from the adeno-associated virus type 2

    SciTech Connect

    Awedikian, Rafi; Francois, Achille; Guilbaud, Mickael; Moullier, Philippe; Salvetti, Anna . E-mail: anna.salvetti@univ-nantes.fr

    2005-05-10

    The two large Rep proteins, Rep78 and Rep68, from the adeno-associated virus type 2 (AAV-2) are required for AAV-2 DNA replication, site-specific integration, and for the regulation of viral gene expression. The study of their activities is dependent on the ability to deliver these proteins to the cells in a time and dose-dependent manner. We evaluated the ability of a protein transduction domain (PTD) derived from the human immunodeficiency virus 1 (HIV-1) TAT protein to drive the cellular internalization of exogenously delivered PTD-fused Rep68 proteins. This analysis unexpectedly revealed that recombinant Rep68 alone, in the absence of any PTD, could be endocytosed by the cells. Rep68 as the chimeric TAT-Rep68 proteins were internalized through endocytosis in clathrin-coated vesicles and retained in late endosomes/lysosomes with no detectable nuclear localization. In the presence of adenovirus, the Rep proteins could translocate into the nucleus where they displayed a biological activity. These findings support recent reports on the mechanism of entry of TAT-fused proteins and also revealed a new property of Rep68.

  16. The cellular transcription factor SP1 and an unknown cellular protein are required to mediate Rep protein activation of the adeno-associated virus p19 promoter.

    PubMed Central

    Pereira, D J; Muzyczka, N

    1997-01-01

    Control of adeno-associated virus (AAV) transcription from the three AAV promoters (p5, p19, and p40) requires the adenovirus E1a protein and the AAV nonstructural (Rep) proteins. The Rep proteins have been shown to repress the AAV p5 promoter yet facilitate activation of the p19 and p40 promoters during a productive infection. To elucidate the mechanism of promoter regulation by the AAV Rep proteins, the cellular factors involved in mediating Rep activation of the p19 promoter were characterized. A series of protein-DNA binding experiments using extracts derived from uninfected HeLa cells was performed to identify cellular factors that bind to the p19 promoter. Electrophoretic mobility shift assays, DNase I protection analyses, and UV cross-linking experiments demonstrated specific interactions with the cellular factor SP1 (or an SP1-like protein) at positions -50 and -130 relative to the start of p19 transcription. Additionally, an unknown cellular protein (cellular AAV activating protein [cAAP]) with an approximate molecular mass of 34 kDa was found to interact with a CArG-like element at position -140. Mutational analysis of the p19 promoter suggested that the SP1 site at -50 and the cAAP site at -140 were necessary to mediate Rep activation of p19. Antibody precipitation experiments demonstrated that Rep-SP1 protein complexes can exist in vivo. Although Rep was demonstrated to interact with p19 DNA directly, the affinity of Rep binding was much lower than that seen for the Rep binding elements within the terminal repeat and the p5 promoter. Furthermore, the interaction of purified Rep68 with the p19 promoter in vitro was negligible unless purified SP1 was also added to the reaction. Thus, the ability of Rep to transactivate the p19 promoter is likely to involve SP1-Rep protein contacts that facilitate Rep interaction with p19 DNA. PMID:9032303

  17. Characterization of a nuclear localization signal in the C-terminus of the adeno-associated virus Rep68/78 proteins

    SciTech Connect

    Cassell, Geoffrey D.; Weitzman, Matthew D. . E-mail: weitzman@salk.edu

    2004-10-01

    Adeno-associated virus (AAV) replicates in the nucleus of infected cells, and therefore multiple nuclear import events are required for productive infection. We analyzed nuclear import of the viral Rep proteins and characterized a nuclear localization signal (NLS) in the C-terminus. We demonstrate that basic residues in this region constitute an NLS that is transferable and mediates interaction with the nuclear import receptor importin {alpha} in vitro. Mutant Rep proteins are predominantly cytoplasmic and are severely compromised for interactions with importin {alpha}, but retain their enzymatic functions in vitro. Interestingly, mutations of the NLS had significantly less effect on importin {alpha} interaction and replication in the context of Rep78 than when incorporated into the Rep68 protein. Together, our results demonstrate that a bipartite NLS exists in the shared part of Rep68 and Rep78, and suggest that an alternate entry mechanism may also contribute to nuclear localization of the Rep78 protein.

  18. Analysis of the subcellular localization of the proteins Rep, Rep' and Cap of porcine circovirus type 1

    SciTech Connect

    Finsterbusch, T. . E-mail: finsterbuscht@rki.de; Steinfeldt, T.; Caliskan, R.; Mankertz, A.

    2005-12-05

    Porcine circovirus type 1 (PCV1) encodes two major ORFs. The cap gene comprises the major structural protein of PCV, the rep gene specifies Rep and Rep', which are both essential for initiating the replication of the viral DNA. Rep corresponds to the full-length protein, whereas Rep' is a truncated splice product that is frame-shifted in its C-terminal sequence. In this study, the cellular localization of PCV1-encoded proteins was investigated by immune fluorescence techniques using antibodies against Rep, Rep' and Cap and by expression of viral proteins fused to green and red fluorescence proteins. Rep and Rep' protein co-localized in the nucleus of infected cells as well as in cells transfected with plasmids expressing Rep and Rep' fused to fluorescence proteins, but no signal was seen in the nucleoli. Rep and Rep' carry three potential nuclear localization signals in their identical N-termini, and the contribution of these motifs to nuclear import was experimentally dissected. In contrast to the rep gene products, the localization of the Cap protein varied. While the Cap protein was restricted to the nucleoli in plasmid-transfected cells and was also localized in the nucleoli at an early stage of PCV1 infection, it was seen in the nucleoplasm and the cytoplasm later in infection, suggesting that a shuttling between distinct cellular compartments occurs.

  19. Identification of a Functionally Relevant Adeno-Associated Virus Rep68 Oligomeric Interface

    PubMed Central

    Bardelli, Martino; Zárate-Pérez, Francisco; Agúndez, Leticia; Linden, R. Michael

    2016-01-01

    ABSTRACT The life cycle of the human parvovirus adeno-associated virus (AAV) is orchestrated by four Rep proteins. The large Rep proteins, Rep78 and Rep68, are remarkably multifunctional and display a range of biochemical activities, including DNA binding, nicking, and unwinding. Functionally, Rep78 and Rep68 are involved in transcriptional regulation, DNA replication, and genomic integration. Structurally, the Rep proteins share an AAA+ domain characteristic of superfamily 3 helicases, with the large Rep proteins additionally containing an N-terminal origin-binding domain (OBD) that specifically binds and nicks DNA. The combination of these domains, coupled with dynamic oligomerization properties, is the basis for the remarkable multifunctionality displayed by Rep68 and Rep78 during the AAV life cycle. In this report, we describe an oligomeric interface formed by Rep68 and demonstrate how disruption of this interface has drastic effects on both the oligomerization and functionality of the Rep proteins. Our results support a role for the four-helix bundle in the helicase domain of Rep68 as a bona fide oligomerization domain (OD). We have identified key residues in the OD that are critical for the stabilization of the Rep68-Rep68 interface; mutation of these key residues disrupts the enzymatic activities of Rep68, including DNA binding and nicking, and compromises viral DNA replication and transcriptional regulation of the viral promoters. Taken together, our data contribute to our understanding of the dynamic and substrate-responsive Rep78/68 oligomerization that is instrumental in the regulation of the DNA transitions that take place during the AAV life cycle. IMPORTANCE The limited genome size of small viruses has driven the evolution of highly multifunctional proteins that integrate different domains and enzymatic activities within a single polypeptide. The Rep68 protein from adeno-associated virus (AAV) combines a DNA binding and endonuclease domain with a

  20. Herpes simplex virus type 1 ICP0 protein mediates activation of adeno-associated virus type 2 rep gene expression from a latent integrated form.

    PubMed

    Geoffroy, Marie-Claude; Epstein, Alberto L; Toublanc, Estelle; Moullier, Philippe; Salvetti, Anna

    2004-10-01

    Adeno-associated virus type 2 (AAV-2) is a human parvovirus that requires the presence of a helper virus, such as the herpes simplex virus type 1 (HSV-1) to accomplish a complete productive cycle. In the absence of helper virus, AAV-2 can establish a latent infection that is characterized by the absence of expression of viral genes. So far, four HSV-1 early genes, UL5/8/52 (helicase primase complex) and UL29 (single-stranded DNA-binding protein), were defined as sufficient for AAV replication when cells were transfected with a plasmid carrying the wild-type AAV-2 genome. However, none of these viral products was shown to behave as a transcriptional factor able to activate AAV gene expression. Our study provides the first evidence that the immediate-early HSV-1 protein ICP0 can promote rep gene expression in cells latently infected with wild-type AAV-2. This ICP0-mediated effect occurs at the transcriptional level and involves the ubiquitin-proteasome pathway. Furthermore, using deletion mutants, we demonstrate that the localization of ICP0 to ND10 and their disruption is not required for the activation of the rep promoter, whereas binding of ICP0 to the ubiquitin-specific protease HAUSP makes a significant contribution to this effect.

  1. Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles.

    PubMed Central

    Chiorini, J A; Yang, L; Liu, Y; Safer, B; Kotin, R M

    1997-01-01

    We have cloned and characterized the full-length genome of adeno-associated virus type 4 (AAV4). The genome of AAV4 is 4,767 nucleotides in length and contains an expanded p5 promoter region compared to AAV2 and AAV3. Within the inverted terminal repeat (ITR), several base changes were identified with respect to AAV2. However, these changes did not affect the ability of this region to fold into a hairpin structure. Within the ITR, the terminal resolution site and Rep binding sites were conserved; however, the Rep binding site was expanded from three GAGC repeats to four. The Rep gene product of AAV4 shows greater than 90% homology to the Rep products of serotypes 2 and 3, with none of the changes occurring in regions which had previously been shown to affect the known functions of Rep68 or Rep78. Most of the differences in the capsid proteins lie in regions which are thought to be on the exterior surface of the viral capsid. It is these unique regions which are most likely to be responsible for the lack of cross-reacting antibodies and the altered tissue tropism compared to AAV2. The results of our studies, performed with a recombinant version of AAV4 carrying a lacZ reporter gene, suggest that AAV4 can transduce human, monkey, and rat cells. Furthermore, comparison of transduction efficiencies in a number of cell lines, competition cotransduction experiments, and the effect of trypsin on transduction efficiency all suggest that the cellular receptor for AAV4 is distinct from that of AAV2. PMID:9261407

  2. PepGMV Rep-Protein Expression in Mammalian Cells

    PubMed Central

    Chapa-Oliver, Angela María; Mejía-Teniente, Laura; García-Gasca, Teresa; Guevara-Gonzalez, Ramon Gerardo; Torres-Pacheco, Irineo

    2012-01-01

    The Geminiviruses genome is a small, single strand DNA that replicates in the plant cell nucleus. Analogous to animal DNA viruses, Geminiviruses depend on the host replication machinery to amplify their genomes and only supply the factors required to initiate their replication. Consequently, Geminiviruses remove the cell-cycle arrest and induce the host replication machinery using an endocycle process. They encode proteins, such as the conserved replication-associated proteins (Rep) that interact with retinoblastoma-like proteins in plants and alter the cell division cycle in yeasts. Therefore, the aim of this work is to analyze the impact of Pepper Golden Mosaic Virus (PepGMV) Rep protein in mammalian cells. Results indicate that the pTracer-SV40:Rep construction obtained in this work can be used to analyze the Rep protein effect in mammalian cells in order to compare the cell cycle regulation mechanisms in plants and animals. PMID:23170183

  3. Systemic elimination of de novo capsid protein synthesis from replication-competent AAV contamination in the liver.

    PubMed

    Lu, Hui; Qu, Guang; Yang, Xiao; Xu, Ruian; Xiao, Weidong

    2011-05-01

    The capsid protein synthesis in targeted tissues resulting from residual contaminating replication-competent adeno-associated virus particles (rcAAV) remains a concern for hazardous immune responses that shut down the factor IX expression in the hemophilia B clinical trial. To systematically reduce/eliminate the effects of potential contaminating rcAAV particles, we designed a novel adeno-associated virus (AAV) helper (pH22mir) with a microRNA binding cassette containing multiple copies of liver-specific (hsa-mir-122) and hematopoietic-specific (has-mir-142-3p) sequences to specifically control cap gene expression. In 293 cells, the rep and cap gene from pH22mir functioned similarly to that of conventional helper pH22. The vector yields and compositions from pH22mir and pH22 were indistinguishable. The performance of vector produced in this new system was comparable to that of similar vectors produced by conventional methods. In the human hepatic cell line, the capsid expression was reduced significantly from cap-mir cassette driven by a cytomegalovirus promoter. In the liver, 99.9% of capsid expression could be suppressed and no cap expression could be detected by western blot. In summary, we demonstrated a new concept in reducing de novo capsid synthesis in the targeted tissue. This strategy may not only help AAV vectors in controlling undesirable capsid gene expression, but can also be adopted for lentiviral or adenoviral vector production.

  4. Recombinant adeno-associated virus type 2 replication and packaging is entirely supported by a herpes simplex virus type 1 amplicon expressing Rep and Cap.

    PubMed Central

    Conway, J E; Zolotukhin, S; Muzyczka, N; Hayward, G S; Byrne, B J

    1997-01-01

    Recombinant adeno-associated virus (AAV) type 2 (rAAV) vectors have recently been shown to have great utility as gene transfer agents both in vitro and in vivo. One of the problems associated with the use of rAAV vectors has been the difficulty of large-scale vector production. Low-efficiency plasmid transfection of the rAAV vector and complementing AAV type 2 (AAV-2) functions (rep and cap) followed by superinfection with adenovirus has been the standard approach to rAAV production. The objectives of this study were to demonstrate the ability of a recombinant herpes simplex virus type 1 (HSV-1) amplicon expressing AAV-2 Rep and Cap to support replication and packaging of rAAV vectors. HSV-1 amplicon vectors were constructed which contain the AAV-2 rep and cap genes under control of their native promoters (p5, p19, and p40). An HSV-1 amplicon vector, HSV-RC/KOS or HSV-RC/d27, was generated by supplying helper functions with either wild-type HSV-1 (KOS strain) or the ICP27-deleted mutant of HSV-1, d27-1, respectively. Replication of the amplicon stocks is not inhibited by the presence of AAV-2 Rep proteins, which highlights important differences between HSV-1 and adenovirus replication and the mechanism of providing helper function for productive AAV infection. Coinfection of rAAV and HSV-RC/KOS resulted in the replication and amplification of rAAV genomes. Similarly, rescue and replication of rAAV genomes occurred when rAAV vector plasmids were transfected into cells followed by HSV-RC/KOS infection and when two rAAV proviral cell lines were infected with HSV-RC/KOS or HSV-RC/d27. Production of infectious rAAV by rescue from two rAAV proviral cell lines has also been achieved with HSV-RC/KOS and HSV-RC/d27. The particle titer of rAAV produced with HSV-RC/d27 is equal to that achieved by supplying rep and cap by transfection followed by adenovirus superinfection. Importantly, no detectable wild-type AAV-2 is generated with this approach. These results demonstrate

  5. Plasmid RSF1010 DNA replication in vitro promoted by purified RSF1010 RepA, RepB and RepC proteins.

    PubMed Central

    Scherzinger, E; Haring, V; Lurz, R; Otto, S

    1991-01-01

    We have constructed and analyzed an in vitro system that will efficiently replicate plasmid RSF1010 and its derivatives. The system contains a partially purified extract from E.coli cells and three purified RSF1010-encoded proteins, the products of genes repA, repB (or mobA/repB), and repC. Replication in this system mimics the in vivo mechanism in that it (i) is initiated at oriV, the origin of vegetative DNA replication, (ii) proceeds in a population of plasmid molecules in both directions from this 396-base-pair origin region, and (iii) is absolutely dependent on the presence of each of the three rep gene products. In addition, we find that E.coli DNA gyrase, DnaZ protein (gamma subunit of poIIII holoenzyme) and SSB are required for in vitro plasmid synthesis. The bacterial RNA polymerase, the initiation protein DnaA, and the primosomal proteins DnaB, DnaC, DnaG and DnaT are not required. Furthermore, the replicative intermediates seen in the electron microscope suggest that replication in vitro begins with the simultaneous or non-simultaneous formation of two displacement loops that expand for a short stretch of DNA toward each other, and form a theta-type structure when the two displacing strands pass each other. Images PMID:1851552

  6. AAV Vectors for FRET-Based Analysis of Protein-Protein Interactions in Photoreceptor Outer Segments

    PubMed Central

    Becirovic, Elvir; Böhm, Sybille; Nguyen, Ong N. P.; Riedmayr, Lisa M.; Hammelmann, Verena; Schön, Christian; Butz, Elisabeth S.; Wahl-Schott, Christian; Biel, Martin; Michalakis, Stylianos

    2016-01-01

    Fluorescence resonance energy transfer (FRET) is a powerful method for the detection and quantification of stationary and dynamic protein-protein interactions. Technical limitations have hampered systematic in vivo FRET experiments to study protein-protein interactions in their native environment. Here, we describe a rapid and robust protocol that combines adeno-associated virus (AAV) vector-mediated in vivo delivery of genetically encoded FRET partners with ex vivo FRET measurements. The method was established on acutely isolated outer segments of murine rod and cone photoreceptors and relies on the high co-transduction efficiency of retinal photoreceptors by co-delivered AAV vectors. The procedure can be used for the systematic analysis of protein-protein interactions of wild type or mutant outer segment proteins in their native environment. Conclusively, our protocol can help to characterize the physiological and pathophysiological relevance of photoreceptor specific proteins and, in principle, should also be transferable to other cell types. PMID:27516733

  7. Direct interaction of human serum proteins with AAV virions to enhance AAV transduction: immediate impact on clinical applications.

    PubMed

    Wang, M; Sun, J; Crosby, A; Woodard, K; Hirsch, M L; Samulski, R J; Li, C

    2017-01-01

    Recent hemophilia B clinical trials using adeno-associated virus (AAV) gene delivery have demonstrated much lower coagulation factor IX (FIX) production in patients compared with the high levels observed in animal models and AAV capsid-specific cytotoxic T lymphocyte response elicited at high doses of AAV vectors. These results emphasize the necessity to explore effective approaches for enhancement of AAV transduction. Initially, we found that incubation of all AAV vectors with human serum enhanced AAV transduction. Complementary analytical experiments demonstrated that human serum albumin (HSA) directly interacted with the AAV capsid and augmented AAV transduction. The enhanced transduction was observed with clinical grade HSA. Mechanistic studies suggest that HSA increases AAV binding to target cells, and that the interaction of HSA with AAV does not interfere with the AAV infection pathway. Importantly, HSA incubation during vector dialysis also increased transduction. Finally, HSA enhancement of AAV transduction in a model of hemophilia B displayed greater than a fivefold increase in vector-derived circulating FIX, which improved the bleeding phenotype correction. In conclusion, incubation of HSA with AAV vectors supports a universal augmentation of AAV transduction and, more importantly, this approach can be immediately transitioned to the clinic for the treatment of hemophilia and other diseases.

  8. Efficient neuronal gene transfer with AAV8 leads to neurotoxic levels of tau or green fluorescent proteins.

    PubMed

    Klein, Ronald L; Dayton, Robert D; Leidenheimer, Nancy J; Jansen, Karen; Golde, Todd E; Zweig, Richard M

    2006-03-01

    Adeno-associated virus (AAV) serotype 8 appears to be the strongest of the natural serotypes reported to date for gene transfer in liver and muscle. In this study, we evaluated AAV8 in the brain by several methods, including biophotonic imaging of green fluorescent protein (GFP). In the adult rat hippocampus, levels of GFP expressed were clearly greater with AAV8 than with AAV2 or AAV5 by Western blot and biophotonic imaging and slightly but significantly greater than AAV1 by Western blot. In the substantia nigra, the GFP expression conferred by AAV8 was toxic to dopamine neurons, although toxicity could be avoided with dose titration. At the low dose at which there was no GFP toxicity from the GFP vector, another AAV8 vector for a disease-related (P301L) form of the microtubule-associated protein tau caused a 78% loss of dopamine neurons and significant amphetamine-stimulated rotational behavior. The AAV8 tau vector-induced cell loss was greater than that from AAV2 or AAV5 tau vectors, demonstrating that the increased gene transfer was functional. While the toxicity observed with GFP expression warrants great caution, the efficient AAV8 is promising for animal models of neurodegenerative diseases and potentially as well for gene therapy of brain diseases.

  9. HPV-16 E1, E2 and E6 each complement the Ad5 helper gene set, increasing rAAV2 and wt AAV2 production.

    PubMed

    Cao, M; Zhu, H; Bandyopadhyay, S; You, H; Hermonat, P L

    2012-04-01

    Adeno-associated virus type 2 (AAV) is a popular vector for human gene therapy, because of its safety record and ability to express genes long term. Yet large-scale recombinant (r) AAV production remains problematic because of low particle yield. The adenovirus (Ad) and herpes (simplex) virus helper genes for AAV have been widely used and studied, but the helper genes of human papillomavirus (HPV) have not. HPV-16 E1, E2 and E6 help wild-type (wt) AAV productive infection in differentiating keratinocytes, however, HEK293 cells are the standard cell line used for generating rAAV. Here we demonstrate that the three HPV genes were unable to stimulate significant rAAV replication in HEK293 cells when used alone. However, when used in conjunction (complementation) with the standard Ad5 helper gene set, E1, E2 and E6 were each capable of significantly boosting rAAV DNA replication and virus particle yield. Moreover, wt AAV DNA replication and virion yield were also significantly boosted by each HPV gene along with wt Ad5 virus co-infection. Mild-to-moderate changes in rep- and cap-encoded protein levels were evident in the presence of the E1, E2 and E6 genes. Higher wt AAV DNA replication was not matched by similar increases in the levels of rep-encoded protein. Moreover, although rep mRNA was upregulated, cap mRNA was upregulated more. Higher virus yields did correlate most consistently with increased Rep52-, VP3- and VP-related 21/31 kDa species. The observed boost in wt and rAAV production by HPV genes was not unexpected, as the Ad and HPV helper gene sets do not seem to recapitulate each other. These results raise the possibility of generating improved helper gene sets derived from both the Ad and HPV helper gene sets.

  10. HPV-16 E1, E2 and E6 each complement the Ad5 helper gene set, increasing rAAV2 and wt AAV2 production

    PubMed Central

    Cao, M.; Zhu, H.; Bandyopadhyay, S; You, H; Hermonat, P.L.

    2011-01-01

    Adeno-associated virus type 2 (AAV) is a popular vector for human gene therapy, because of its safety record and ability to express genes long term. Yet large scale recombinant (r)AAV production remains problematic due to low particle yield. The adenovirus (Ad) and herpes (simplex) virus (HSV) helper genes for AAV have been widely used and studied, but the helper genes of human papillomavirus (HPV) have not. HPV-16 E1, E2 and E6 help wild type (wt) AAV productive infection in differentiating keratinocytes, however HEK293 cells are the standard cell line used for generating rAAV. Here we demonstrate that the three HPV genes were unable to stimulate significant rAAV replication in HEK293 cells when used alone. However, when used in conjunction (complementation) with the standard Ad5 helper gene set, E1, E2 and E6 were each capable of significantly boosting rAAV DNA replication and virus particle yield. Moreover, wt AAV DNA replication and virion yield were also significantly boosted by each HPV gene along with wt Ad5 virus co-infection. Mild to moderate changes in rep- and cap–encoded protein levels were evident in the presence of the E1, E2 and E6 genes. Higher wt AAV DNA replication was not matched by similar increases in the levels of rep-encoded protein. Moreover, while rep mRNA was up-regulated, cap mRNA was up-regulated more. Higher virus yields did correlate most consistently with increased Rep52, VP3 and VP-related 21/31 kDa species. The observed boost in wt and rAAV production by HPV genes was not unexpected, as the Ad and HPV helper gene sets do not seem to recapitulate each other. These results raise the possibility of generating improved helper gene sets derived from both the Ad and HPV helper gene sets. PMID:21850053

  11. Specific functions of the Rep and Rep' proteins of porcine circovirus during copy-release and rolling-circle DNA replication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The roles of two porcine circovirus replication initiator proteins, Rep and Rep', in generating copy-release and rolling-circle DNA replication intermediates were determined. Rep uses the supercoiled closed-circular genome (ccc) to initiate leading-strand synthesis (identical to copy-release replica...

  12. Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11.

    PubMed

    Earley, Lauriel F; Powers, John M; Adachi, Kei; Baumgart, Joshua T; Meyer, Nancy L; Xie, Qing; Chapman, Michael S; Nakai, Hiroyuki

    2017-02-01

    Adeno-associated virus (AAV) vectors have made great progress in their use for gene therapy; however, fundamental aspects of AAV's capsid assembly remain poorly characterized. In this regard, the discovery of assembly-activating protein (AAP) sheds new light on this crucial part of AAV biology and vector production. Previous studies have shown that AAP is essential for assembly; however, how its mechanistic roles in assembly might differ among AAV serotypes remains uncharacterized. Here, we show that biological properties of AAPs and capsid assembly processes are surprisingly distinct among AAV serotypes 1 to 12. In the study, we investigated subcellular localizations and assembly-promoting functions of AAP1 to -12 (i.e., AAPs derived from AAV1 to -12, respectively) and examined the AAP dependence of capsid assembly processes of these 12 serotypes using combinatorial approaches that involved immunofluorescence and transmission electron microscopy, barcode-Seq (i. e., a high-throughput quantitative method using DNA barcodes and a next-generation sequencing technology), and quantitative dot blot assays. This study revealed that AAP1 to -12 are all localized in the nucleus with serotype-specific differential patterns of nucleolar association; AAPs and assembled capsids do not necessarily colocalize; AAPs are promiscuous in promoting capsid assembly of other serotypes, with the exception of AAP4, -5, -11, and -12; assembled AAV5, -8, and -9 capsids are excluded from the nucleolus, in contrast to the nucleolar enrichment of assembled AAV2 capsids; and, surprisingly, AAV4, -5, and -11 capsids are not dependent on AAP for assembly. These observations highlight the serotype-dependent heterogeneity of the capsid assembly process and challenge current notions about the role of AAP and the nucleolus in capsid assembly.

  13. OneBac 2.0: Sf9 Cell Lines for Production of AAV5 Vectors with Enhanced Infectivity and Minimal Encapsidation of Foreign DNA

    PubMed Central

    Mietzsch, Mario; Casteleyn, Vincent; Weger, Stefan; Zolotukhin, Sergei; Heilbronn, Regine

    2015-01-01

    Scalable production of recombinant adeno-associated virus vectors (rAAV) in baculovirus-infected Sf9 cells yields high burst sizes but variable infectivity rates per packaged AAV vector genome depending on the chosen serotype. Infectivity rates are particularly low for rAAV5 vectors, based on the genetically most divergent AAV serotype. In this study we describe key improvements of the OneBac system for the generation of rAAV5 vectors, whose manufacturing has been unsatisfactory in all current insect cell-based production systems. The Sf9 cell-based expression strategy for AAV5 capsid proteins was modified to enhance relative AAV5 VP1 levels. This resulted in a 100-fold boost of infectivity per genomic AAV5 particle with undiminished burst sizes per producer cell. Furthermore, the issue of collateral packaging of helper DNA into AAV capsids was approached. By modifications of the AAV rep and cap expression constructs used for the generation of stable Sf9 cell lines, collateral packaging of helper DNA sequences during rAAV vector production was dramatically reduced down to 0.001% of packaged rAAV genomes, while AAV5 burst sizes and infectivity rates were maintained. OneBac 2.0 represents the first insect cell-based scalable production system for high per-particle AAV5 infectivity rates combined with minimal collateral packaging of helper DNA, allowing the manufacturing of safe AAV5-based gene therapies for clinical application. PMID:26134901

  14. OneBac 2.0: Sf9 Cell Lines for Production of AAV5 Vectors with Enhanced Infectivity and Minimal Encapsidation of Foreign DNA.

    PubMed

    Mietzsch, Mario; Casteleyn, Vincent; Weger, Stefan; Zolotukhin, Sergei; Heilbronn, Regine

    2015-10-01

    Scalable production of recombinant adeno-associated virus vectors (rAAV) in baculovirus-infected Sf9 cells yields high burst sizes but variable infectivity rates per packaged AAV vector genome depending on the chosen serotype. Infectivity rates are particularly low for rAAV5 vectors, based on the genetically most divergent AAV serotype. In this study we describe key improvements of the OneBac system for the generation of rAAV5 vectors, whose manufacturing has been unsatisfactory in all current insect cell-based production systems. The Sf9 cell-based expression strategy for AAV5 capsid proteins was modified to enhance relative AAV5 VP1 levels. This resulted in a 100-fold boost of infectivity per genomic AAV5 particle with undiminished burst sizes per producer cell. Furthermore, the issue of collateral packaging of helper DNA into AAV capsids was approached. By modifications of the AAV rep and cap expression constructs used for the generation of stable Sf9 cell lines, collateral packaging of helper DNA sequences during rAAV vector production was dramatically reduced down to 0.001% of packaged rAAV genomes, while AAV5 burst sizes and infectivity rates were maintained. OneBac 2.0 represents the first insect cell-based scalable production system for high per-particle AAV5 infectivity rates combined with minimal collateral packaging of helper DNA, allowing the manufacturing of safe AAV5-based gene therapies for clinical application.

  15. Production and Characterization of Vectors Based on the Cardiotropic AAV Serotype 9.

    PubMed

    Kohlbrenner, Erik; Weber, Thomas

    2017-01-01

    Vectors based on adeno-associated virus serotype 9 (AAV9) efficiently transduce cardiomyocytes in both rodents and large animal models upon either systemic or regional vector delivery. In this chapter, we describe the most widely used production and purification method of AAV9. This production approach does not depend on the use of a helpervirus but instead on transient transfection of HEK293T cells with a plasmid containing the recombinant AAV genome and a second plasmid encoding the AAV9 capsid proteins, the AAV Rep proteins and the adenoviral helper functions. The recombinant AAV is then purified by iodixanol density gradient centrifugation. This chapter also describes in detail the characterization and quality control methods required for assuring high quality vector preparations, which is of particular importance for experiments in large animal models.

  16. Specific functions of the Rep and Rep׳ proteins of porcine circovirus during copy-release and rolling-circle DNA replication.

    PubMed

    Cheung, Andrew K

    2015-07-01

    The roles of two porcine circovirus replication initiator proteins, Rep and Rep׳, in generating copy-release and rolling-circle DNA replication intermediates were determined. Rep uses the supercoiled closed-circular genome (ccc) to initiate leading-strand synthesis (identical to copy-release replication) and generates the single-stranded circular (ssc) genome from the displaced DNA strand. In the process, a minus-genome primer (MGP) necessary for complementary-strand synthesis, from ssc to ccc, is synthesized. Rep׳ cleaves the growing nascent-strand to regenerate the parent ccc molecule. In the process, a Rep׳-DNA hybrid containing the right palindromic sequence (at the origin of DNA replication) is generated. Analysis of the virus particle showed that it is composed of four components: ssc, MGP, capsid protein and a novel Rep-related protein (designated Protein-3).

  17. C-reactive protein (CRP) is essential for efficient systemic transduction of recombinant adeno-associated virus vector 1 (rAAV-1) and rAAV-6 in mice.

    PubMed

    Denard, Jerome; Marolleau, Beatrice; Jenny, Christine; Rao, Tata Nageswara; Fehling, Hans Jörg; Voit, Thomas; Svinartchouk, Fedor

    2013-10-01

    The clinical relevance of gene therapy using the recombinant adeno-associated virus (rAAV) vectors often requires widespread distribution of the vector, and in this case, systemic delivery is the optimal route of administration. Humoral blood factors, such as antibodies or complement, are the first barriers met by the vectors administered systemically. We have found that other blood proteins, galectin 3 binding protein (G3BP) and C-reactive protein (CRP), can interact with different AAV serotypes in a species-specific manner. While interactions of rAAV vectors with G3BP, antibodies, or complement lead to a decrease in vector efficacy, systemic transduction of the CRP-deficient mouse and its respective control clearly established that binding to mouse CRP (mCRP) boosts rAAV vector 1 (rAAV-1) and rAAV-6 transduction efficiency in skeletal muscles over 10 times. Notably, the high efficacy of rAAV-6 in CRP-deficient mice can be restored by reconstitution of the CRP-deficient mouse with mCRP. Human CRP (hCRP) does not interact with either rAAV-1 or rAAV-6, and, consequently, the high efficiency of mCRP-mediated muscle transduction by these serotypes in mice cannot be translated to humans. No interaction of mCRP or hCRP was observed with rAAV-8 and rAAV-9. We show, for the first time, that serum components can significantly enhance rAAV-mediated tissue transduction in a serotype- and species-specific manner. Bioprocessing in body fluids should be considered when transfer of a preclinical proof of concept for AAV-based gene therapy to humans is planned.

  18. Protein domains and conformational changes in the activation of RepA, a DNA replication initiator.

    PubMed Central

    Giraldo, R; Andreu, J M; Díaz-Orejas, R

    1998-01-01

    RepA is the DNA replication initiator protein of the Pseudomonas plasmid pPS10. RepA has a dual function: as a dimer, it binds to an inversely-repeated sequence acting as a repressor of its own synthesis; as a monomer, RepA binds to four directly-repeated sequences to constitute a specialized nucleoprotein complex responsible for the initiation of DNA replication. We have previously shown that a Leucine Zipper-like motif (LZ) at the N-terminus of RepA is responsible for protein dimerization. In this paper we characterize the existence in RepA of two protein globular domains C-terminal to the LZ. We propose that dissociation of RepA dimers into monomers results in a conformational change from a compact arrangement of both domains, competent for binding to the operator, to an extended species that is suited for iteron binding. This model establishes the structural basis for the activation of DNA replication initiators in plasmids from Gram-negative bacteria. PMID:9687517

  19. An efficient rHSV-based complementation system for the production of multiple rAAV vector serotypes.

    PubMed

    Kang, W; Wang, L; Harrell, H; Liu, J; Thomas, D L; Mayfield, T L; Scotti, M M; Ye, G J; Veres, G; Knop, D R

    2009-02-01

    Recombinant herpes simplex virus type 1 (rHSV)-assisted recombinant adeno-associated virus (rAAV) vector production provides a highly efficient and scalable method for manufacture of clinical grade rAAV vectors. Here, we present an rHSV co-infection system for rAAV production, which uses two ICP27-deficient rHSV constructs, one bearing the rep2 and cap (1, 2 or 9) genes of rAAV, and the second bearing an AAV2 ITR-gene of interest (GOI) cassette. The optimum rAAV production parameters were defined by producing rAAV2/GFP in HEK293 cells, yielding greater than 9000 infectious particles per cell with a 14:1 DNase resistance particle to infectious particle (DRP/ip) ratio. The optimized co-infection parameters were then used to generate large-scale stocks of rAAV1/AAT, which encode the human alpha-1-antitrypsin (hAAT) protein, and purified by column chromatography. The purified vector was extensively characterized by rAAV- and rHSV-specific assays and compared to transfection-made vector for in vivo efficacy in mice through intramuscular injection. The co-infection method was also used to produce rAAV9/AAT for comparison to rAAV1/AAT in vivo. Intramuscular administration of 1 x 10(11) DRP per animal of rHSV-produced rAAV1/AAT and rAAV9/AAT resulted in hAAT protein expression of 5.4 x 10(4) and 9.4 x 10(5) ng ml(-1) serum respectively, the latter being clinically relevant.

  20. A Regulatory Element Near the 3′ End of the Adeno-Associated Virus rep Gene Inhibits Adenovirus Replication in cis by Means of p40 Promoter-Associated Short Transcripts

    PubMed Central

    Hammer, Eva; Gonsior, Melanie; Stutika, Catrin; Heilbronn, Regine

    2016-01-01

    ABSTRACT Adeno-associated virus (AAV) has long been known to inhibit helper adenovirus (Ad) replication independently of AAV Rep protein expression. More recently, replication of Ad serotype 5 (Ad5)/AAV serotype 2 (AAV-2) hybrid vectors was shown to be inhibited in cis by a sequence near the 3′ end of AAV rep, termed the Rep inhibition sequence for adenoviral replication (RIS-Ad). RIS-Ad functions independently of Rep protein expression. Here we demonstrate that inhibition of adenoviral replication by RIS-Ad requires an active AAV p40 promoter and the 5′ half of the intron. In addition, Ad inhibition is critically dependent on the integrity of the p40 transcription start site (TSS) leading to short p40-associated transcripts. These do not give rise to effector molecules capable of inhibiting adenoviral replication in trans, like small polypeptides or microRNAs. Our data point to an inhibitory mechanism in which RNA polymerase II (Pol II) pauses directly downstream of the p40 promoter, leading to interference of the stalled Pol II transcription complex with the adenoviral replication machinery. Whereas inhibition by RIS-Ad is mediated exclusively in cis, it can be overcome by providing a replication-competent adenoviral genome in trans. Moreover, the inhibitory effect of RIS-Ad is not limited to AAV-2 but could also be shown for the corresponding regions of other AAV serotypes, including AAV-5. These findings have important implications for the future generation of Ad5/AAV hybrid vectors. IMPORTANCE Insertion of sequences from the 3′ part of the rep gene of adeno-associated virus (AAV) into the genome of its helper adenovirus strongly reduces adenoviral genome replication. We could show that this inhibition is mediated exclusively in cis without the involvement of trans-acting regulatory RNAs or polypeptides but nevertheless requires an active AAV-2 p40 promoter and p40-associated short transcripts. Our results suggest a novel inhibitory mechanism that has so

  1. Adeno-associated virus Rep-mediated targeting of integrase-defective retroviral vector DNA circles into human chromosome 19

    SciTech Connect

    Huang, Shuohao; Kawabe, Yoshinori; Ito, Akira; Kamihira, Masamichi

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Adeno-associated virus (AAV) is capable of targeted integration in human cells. Black-Right-Pointing-Pointer Integrase-defective retroviral vector (IDRV) enables a circular DNA delivery. Black-Right-Pointing-Pointer A targeted integration system of IDRV DNA using the AAV integration mechanism. Black-Right-Pointing-Pointer Targeted IDRV integration ameliorates the safety concerns for retroviral vectors. -- Abstract: Retroviral vectors have been employed in clinical trials for gene therapy owing to their relative large packaging capacity, alterable cell tropism, and chromosomal integration for stable transgene expression. However, uncontrollable integrations of transgenes are likely to cause safety issues, such as insertional mutagenesis. A targeted transgene integration system for retroviral vectors, therefore, is a straightforward way to address the insertional mutagenesis issue. Adeno-associated virus (AAV) is the only known virus capable of targeted integration in human cells. In the presence of AAV Rep proteins, plasmids possessing the p5 integration efficiency element (p5IEE) can be integrated into the AAV integration site (AAVS1) in the human genome. In this report, we describe a system that can target the circular DNA derived from non-integrating retroviral vectors to the AAVS1 site by utilizing the Rep/p5IEE integration mechanism. Our results showed that after G418 selection 30% of collected clones had retroviral DNA targeted at the AAVS1 site.

  2. Mini-F plasmid mutants able to replicate in the absence of sigma 32: mutations in the repE coding region producing hyperactive initiator protein.

    PubMed Central

    Kawasaki, Y; Wada, C; Yura, T

    1991-01-01

    Mini-F plasmids cannot replicate in Escherichia coli strains (delta rpoH) lacking sigma 32, presumably because transcription of the repE gene encoding the replication initiator protein (RepE protein) depends mostly on RNA polymerase containing sigma 32. We have isolated and characterized mini-F mutants able to replicate in delta rpoH cells. Contrary to the initial expectation, five mutants with mutations in the repE coding region that produce altered RepE proteins were obtained. The mutations caused replacement of a single amino acid: the 92nd glutamic acid was replaced by lysine (repE10, repE16, and repE25) or glycine (repE22) or the 109th glutamic acid was replaced by lysine (repE26). These plasmids overproduced RepE protein and exhibited very high copy numbers. Two major activities of mutated RepE proteins have been determined in vivo; the autogenous repressor activity was significantly reduced, whereas the initiator activity was much enhanced in all mutants. These results indicate the importance of a small central region of RepE protein for both initiator and repressor activities. Thus the decreased repE transcription in delta rpoH cells can be compensated for by an increased initiator activity and a decreased repressor activity of RepE, resulting in the increased synthesis of hyperactive RepE protein. Images PMID:1991708

  3. Oligomeric Properties of Adeno-Associated Virus Rep68 Reflect Its Multifunctionality

    PubMed Central

    Zarate-Perez, Francisco; Mansilla-Soto, Jorge; Bardelli, Martino; Burgner, John W.; Villamil-Jarauta, Maria; Kekilli, Demet; Samso, Monserrat

    2013-01-01

    The adeno-associated virus (AAV) encodes four regulatory proteins called Rep. The large AAV Rep proteins Rep68 and Rep78 are essential factors required in almost every step of the viral life cycle. Structurally, they share two domains: a modified version of the AAA+ domain that characterizes the SF3 family of helicases and an N-terminal domain that binds DNA specifically. The combination of these two domains imparts extraordinary multifunctionality to work as initiators of DNA replication and regulators of transcription, in addition to their essential role during site-specific integration. Although most members of the SF3 family form hexameric rings in vitro, the oligomeric nature of Rep68 is unclear due to its propensity to aggregate in solution. We report here a comprehensive study to determine the oligomeric character of Rep68 using a combination of methods that includes sedimentation velocity ultracentrifugation, electron microscopy, and hydrodynamic modeling. We have determined that residue Cys151 induces Rep68 to aggregate in vitro. We show that Rep68 displays a concentration-dependent dynamic oligomeric behavior characterized by the presence of two populations: one with monomers and dimers in slow equilibrium and a second one consisting of a mixture of multiple-ring structures of seven and eight members. The presence of either ATP or ADP induces formation of larger complexes formed by the stacking of multiple rings. Taken together, our results support the idea of a Rep68 molecule that exhibits the flexible oligomeric behavior needed to perform the wide range of functions occurring during the AAV life cycle. PMID:23152528

  4. The oligomeric Rep protein of Mungbean yellow mosaic India virus (MYMIV) is a likely replicative helicase.

    PubMed

    Choudhury, Nirupam Roy; Malik, Punjab Singh; Singh, Dharmendra Kumar; Islam, Mohammad Nurul; Kaliappan, Kosalai; Mukherjee, Sunil Kumar

    2006-01-01

    Geminiviruses replicate by rolling circle mode of replication (RCR) and the viral Rep protein initiates RCR by the site-specific nicking at a conserved nonamer (TAATATT downward arrow AC) sequence. The mechanism of subsequent steps of the replication process, e.g. helicase activity to drive fork-elongation, etc. has largely remained obscure. Here we show that Rep of a geminivirus, namely, Mungbean yellow mosaic India virus (MYMIV), acts as a replicative helicase. The Rep-helicase, requiring > or =6 nt space for its efficient activity, translocates in the 3'-->5' direction, and the presence of forked junction in the substrate does not influence the activity to any great extent. Rep forms a large oligomeric complex and the helicase activity is dependent on the oligomeric conformation ( approximately 24mer). The role of Rep as a replicative helicase has been demonstrated through ex vivo studies in Saccharomyces cerevisiae and in planta analyses in Nicotiana tabacum. We also establish that such helicase activity is not confined to the MYMIV system alone, but is also true with at least two other begomoviruses, viz., Mungbean yellow mosaic virus (MYMV) and Indian cassava mosaic virus (ICMV).

  5. The oligomeric Rep protein of Mungbean yellow mosaic India virus (MYMIV) is a likely replicative helicase

    PubMed Central

    Choudhury, Nirupam Roy; Malik, Punjab Singh; Singh, Dharmendra Kumar; Islam, Mohammad Nurul; Kaliappan, Kosalai; Mukherjee, Sunil Kumar

    2006-01-01

    Geminiviruses replicate by rolling circle mode of replication (RCR) and the viral Rep protein initiates RCR by the site-specific nicking at a conserved nonamer (TAATATT↓ AC) sequence. The mechanism of subsequent steps of the replication process, e.g. helicase activity to drive fork-elongation, etc. has largely remained obscure. Here we show that Rep of a geminivirus, namely, Mungbean yellow mosaic India virus (MYMIV), acts as a replicative helicase. The Rep-helicase, requiring ≥6 nt space for its efficient activity, translocates in the 3′→5′ direction, and the presence of forked junction in the substrate does not influence the activity to any great extent. Rep forms a large oligomeric complex and the helicase activity is dependent on the oligomeric conformation (∼24mer). The role of Rep as a replicative helicase has been demonstrated through ex vivo studies in Saccharomyces cerevisiae and in planta analyses in Nicotiana tabacum. We also establish that such helicase activity is not confined to the MYMIV system alone, but is also true with at least two other begomoviruses, viz., Mungbean yellow mosaic virus (MYMV) and Indian cassava mosaic virus (ICMV). PMID:17142233

  6. Bean yellow dwarf virus RepA, but not rep, binds to maize retinoblastoma protein, and the virus tolerates mutations in the consensus binding motif.

    PubMed

    Liu, L; Saunders, K; Thomas, C L; Davies, J W; Stanley, J

    1999-04-10

    It has previously been reported that complementary-sense gene products of wheat dwarf virus (WDV), a geminivirus of the genus Mastrevirus that infects monocotyledonous plants, bind to human and maize retinoblastoma (Rb) protein. Rb proteins control cell-cycle progression by sequestering transcription factors required for entry into S-phase, suggesting that the virus modifies the cellular environment to produce conditions suitable for viral DNA replication. Using a yeast two-hybrid assay, we have investigated whether the complementary-sense gene products of bean yellow dwarf virus, a mastrevirus that is adapted to dicotyledonous plants, also bind maize Rb protein. We demonstrate that whereas RepA binds to Rb protein, Rep does not, suggesting that RepA alone regulates host gene expression and progression of cells to S-phase. RepA mutants containing L --> I, C --> S, C --> G, and E --> Q mutations within the consensus Rb protein binding motif LXCXE retained the ability to bind to Rb, but with reduced efficiency. Most notably, the E --> Q mutation reduced binding by approximately 95%. Nonetheless, all LXCXE mutants were able to replicate in tobacco protoplasts and to systemically infect Nicotiana benthamiana and bean, in which they produced wild-type symptoms.

  7. The treatment of hemophilia A: from protein replacement to AAV-mediated gene therapy.

    PubMed

    Youjin, Shen; Jun, Yin

    2009-03-01

    Factor VIII (FVIII) is an essential component in blood coagulation, a deficiency of which causes the serious bleeding disorder hemophilia A. Recently, with the development of purification level and recombinant techniques, protein replacement treatment to hemophiliacs is relatively safe and can prolong their life expectancy. However, because of the possibility of unknown contaminants in plasma-derived FVIII and recombinant FVIII, and high cost for hemophiliacs to use these products, gene therapy for hemophilia A is an attractive alternative to protein replacement therapy. Thus far, the adeno-associated virus (AAV) is a promising vector for gene therapy. Further improvement of the virus for clinical application depends on better understanding of the molecular structure and fate of the vector genome. It is likely that hemophilia will be the first genetic disease to be cured by somatic cell gene therapy.

  8. Successful attenuation of humoral immunity to viral capsid and transgenic protein following AAV-mediated gene transfer with a non-depleting CD4 antibody and cyclosporine.

    PubMed

    McIntosh, J H; Cochrane, M; Cobbold, S; Waldmann, H; Nathwani, S A; Davidoff, A M; Nathwani, A C

    2012-01-01

    The ability of transient immunosuppression with a combination of a non-depleting anti-CD4 (NDCD4) antibody and cyclosporine (CyA) to abrogate immune reactivity to both adeno-associated viral vector (AAV) and its transgene product was evaluated. This combination of immunosuppressants resulted in a 20-fold reduction in the resulting anti-AAV8 antibody titres, to levels in naïve mice, following intravenous administration of 2 × 10(12) AAV8 vector particles per kg to immunocompetent mice. This allowed efficient transduction upon secondary challenge with vector pseudotyped with the same capsid. Persistent tolerance did not result, however, as an anti-AAV8 antibody response was elicited upon rechallenge with AAV8 without immunosuppression. The route of vector administration, vector dose, AAV serotype or the concomitant administration of adenoviral vector appeared to have little impact on the ability of the NDCD4 antibody and CyA combination to moderate the primary humoral response to AAV capsid proteins. The combination of NDCD4 and CyA also abrogated the humoral response to the transgene product, that otherwise invariably would occur, following intramuscular injection of AAV5, leading to stable transgene expression. These observations could significantly improve the prospects of using rAAV vectors for chronic disorders by allowing for repeated vector administration and avoiding the development of antibodies to the transgene product.

  9. High capsid-genome correlation facilitates creation of AAV libraries for directed evolution.

    PubMed

    Nonnenmacher, Mathieu; van Bakel, Harm; Hajjar, Roger J; Weber, Thomas

    2015-04-01

    Directed evolution of adeno-associated virus (AAV) through successive rounds of phenotypic selection is a powerful method to isolate variants with improved properties from large libraries of capsid mutants. Importantly, AAV libraries used for directed evolution are based on the "natural" AAV genome organization where the capsid proteins are encoded in cis from replicating genomes. This is necessary to allow the recovery of the capsid DNA after each step of phenotypic selection. For directed evolution to be used successfully, it is essential to minimize the random mixing of capsomers and the encapsidation of nonmatching viral genomes during the production of the viral libraries. Here, we demonstrate that multiple AAV capsid variants expressed from Rep/Cap containing viral genomes result in near-homogeneous capsids that display an unexpectedly high capsid-DNA correlation. Next-generation sequencing of AAV progeny generated by bulk transfection of a semi-random peptide library showed a strong counter-selection of capsid variants encoding premature stop codons, which further supports a strong capsid-genome identity correlation. Overall, our observations demonstrate that production of "natural" AAVs results in low capsid mosaicism and high capsid-genome correlation. These unique properties allow the production of highly diverse AAV libraries in a one-step procedure with a minimal loss in phenotype-genotype correlation.

  10. High Capsid–Genome Correlation Facilitates Creation of AAV Libraries for Directed Evolution

    PubMed Central

    Nonnenmacher, Mathieu; van Bakel, Harm; Hajjar, Roger J; Weber, Thomas

    2015-01-01

    Directed evolution of adeno-associated virus (AAV) through successive rounds of phenotypic selection is a powerful method to isolate variants with improved properties from large libraries of capsid mutants. Importantly, AAV libraries used for directed evolution are based on the “natural” AAV genome organization where the capsid proteins are encoded in cis from replicating genomes. This is necessary to allow the recovery of the capsid DNA after each step of phenotypic selection. For directed evolution to be used successfully, it is essential to minimize the random mixing of capsomers and the encapsidation of nonmatching viral genomes during the production of the viral libraries. Here, we demonstrate that multiple AAV capsid variants expressed from Rep/Cap containing viral genomes result in near-homogeneous capsids that display an unexpectedly high capsid–DNA correlation. Next-generation sequencing of AAV progeny generated by bulk transfection of a semi-random peptide library showed a strong counter-selection of capsid variants encoding premature stop codons, which further supports a strong capsid–genome identity correlation. Overall, our observations demonstrate that production of “natural” AAVs results in low capsid mosaicism and high capsid–genome correlation. These unique properties allow the production of highly diverse AAV libraries in a one-step procedure with a minimal loss in phenotype–genotype correlation. PMID:25586687

  11. Terminal differentiation of cardiac and skeletal myocytes induces permissivity to AAV transduction by relieving inhibition imposed by DNA damage response proteins.

    PubMed

    Lovric, Jasmina; Mano, Miguel; Zentilin, Lorena; Eulalio, Ana; Zacchigna, Serena; Giacca, Mauro

    2012-11-01

    Gene therapy vectors based on the adeno-associated virus (AAV) are extremely efficient for gene transfer into post-mitotic cells of heart, muscle, brain, and retina. The reason for their exquisite tropism for these cells has long remained elusive. Here, we show that upon terminal differentiation, cardiac and skeletal myocytes downregulate proteins of the DNA damage response (DDR) and that this markedly induces permissivity to AAV transduction. We observed that expression of members of the MRN complex (Mre11, Rad50, Nbs1), which bind the incoming AAV genomes, faded in cardiomyocytes at ~2 weeks after birth, as well as upon myoblast differentiation in vitro; in both cases, withdrawal of the cells from the cell cycle coincided with increased AAV permissivity. Treatment of proliferating cells with short-interfering RNAs (siRNAs) against the MRN proteins, or with microRNA-24, which is normally upregulated upon terminal differentiation and negatively controls the Nbs1 levels, significantly increased permissivity to AAV transduction. Consistently, delivery of these small RNAs to the juvenile liver concomitant with AAV markedly improved in vivo hepatocyte transduction. Collectively, these findings support the conclusion that cellular DDR proteins inhibit AAV transduction and that terminal cell differentiation relieves this restriction.

  12. Modulation of pPS10 Host Range by Plasmid-Encoded RepA Initiator Protein

    PubMed Central

    Maestro, Beatriz; Sanz, Jesús M.; Díaz-Orejas, Ramón; Fernández-Tresguerres, Elena

    2003-01-01

    We report here the isolation and analysis of novel repA host range mutants of pPS10, a plasmid originally found in Pseudomonas savastanoi. Upon hydroxylamine treatment, five plasmid mutants were selected for their establishment in Escherichia coli at 37°C, a temperature at which the wild-type form cannot be established. The mutations were located in different functional regions of the plasmid RepA initiation protein, and the mutants differ in their stable maintenance, copy number, and ability to interact with sequences of the basic replicon. Four of them have broadened their host range, and one of them, unable to replicate in Pseudomonas, has therefore changed its host range. Moreover, the mutants also have increased their replication efficiency in strains other than E. coli such as Pseudomonas putida and Alcaligenes faecalis. None of these mutations drastically changed the structure or thermal stability of the wild-type RepA protein, but in all cases an enhanced interaction with host-encoded DnaA protein was detected by gel filtration chromatography. The effects of the mutations on the functionality of RepA protein are discussed in the framework of a three-dimensional model of the protein. We propose possible explanations for the host range effect of the different repA mutants, including the enhancement of limiting interactions of RepA with specific host replication factors such as DnaA. PMID:12562807

  13. Improved dual AAV vectors with reduced expression of truncated proteins are safe and effective in the retina of a mouse model of Stargardt disease.

    PubMed

    Trapani, Ivana; Toriello, Elisabetta; de Simone, Sonia; Colella, Pasqualina; Iodice, Carolina; Polishchuk, Elena V; Sommella, Andrea; Colecchi, Linda; Rossi, Settimio; Simonelli, Francesca; Giunti, Massimo; Bacci, Maria L; Polishchuk, Roman S; Auricchio, Alberto

    2015-12-01

    Stargardt disease (STGD1) due to mutations in the large ABCA4 gene is the most common inherited macular degeneration in humans. We have shown that dual adeno-associated viral (AAV) vectors effectively transfer ABCA4 to the retina of Abca4-/- mice. However, they express both lower levels of transgene compared with a single AAV and truncated proteins. To increase productive dual AAV concatemerization, which would overcome these limitations, we have explored the use of either various regions of homology or heterologous inverted terminal repeats (ITR). In addition, we tested the ability of various degradation signals to decrease the expression of truncated proteins. We found the highest levels of transgene expression using regions of homology based on either alkaline phosphatase or the F1 phage (AK). The use of heterologous ITR does not decrease the levels of truncated proteins relative to full-length ABCA4 and impairs AAV vector production. Conversely, the inclusion of the CL1 degradation signal results in the selective degradation of truncated proteins from the 5'-half without affecting full-length protein production. Therefore, we developed dual AAV hybrid ABCA4 vectors including homologous ITR2, the photoreceptor-specific G protein-coupled receptor kinase 1 promoter, the AK region of homology and the CL1 degradation signal. We show that upon subretinal administration these vectors are both safe in pigs and effective in Abca4-/- mice. Our data support the use of improved dual AAV vectors for gene therapy of STGD1.

  14. OneBac 2.0: Sf9 Cell Lines for Production of AAV1, AAV2, and AAV8 Vectors with Minimal Encapsidation of Foreign DNA.

    PubMed

    Mietzsch, Mario; Hering, Henrik; Hammer, Eva-Maria; Agbandje-McKenna, Mavis; Zolotukhin, Sergei; Heilbronn, Regine

    2017-02-01

    Recombinant adeno-associated viral (rAAV) vectors for human gene therapy require efficient and economical production methods to keep pace with the rapidly increasing clinical demand. In addition, the manufacturing process must ensure high vector quality and biological safety. The OneBac system offers easily scalable rAAV vector production in insect Sf9-derived AAV rep/cap-expressing producer cell lines infected with a single baculovirus that carries the rAAV backbone. For most AAV serotypes high burst sizes per cell were achieved, combined with high infectivity rates. OneBac 2.0 represents a 2-fold advancement: First, enhanced VP1 proportions in AAV5 capsids lead to vastly increased per-particle infectivity rates. Second, collateral packaging of foreign DNA is suppressed by removal of the Rep-binding element (RBE). In this study we show that this advancement of AAV5 packaging can be translated to OneBac 2.0-derived packaging systems for alternative AAV serotypes. By removal of the RBE, collateral packaging of nonvector DNA was drastically reduced in all newly tested serotypes (AAV1, AAV2, and AAV8). However, the splicing-based strategy to enhance VP1 expression in order to increase AAV5 infectivity hardly improved infectivity rates of AAV-1, -2, or -8 compared with the original OneBac cell lines. Our results emphasize that OneBac 2.0 represents an advancement for scalable, high-titer production of various AAV serotypes, leading to AAV particles with minimal packaging of foreign DNA.

  15. Specific GFP-binding artificial proteinsRep): a new tool for in vitro to live cell applications

    PubMed Central

    Chevrel, Anne; Urvoas, Agathe; de la Sierra-Gallay, Ines Li; Aumont-Nicaise, Magali; Moutel, Sandrine; Desmadril, Michel; Perez, Franck; Gautreau, Alexis; van Tilbeurgh, Herman; Minard, Philippe; Valerio-Lepiniec, Marie

    2015-01-01

    A family of artificial proteins, named αRep, based on a natural family of helical repeat was previously designed. αRep members are efficiently expressed, folded and extremely stable proteins. A large αRep library was constructed creating proteins with a randomized interaction surface. In the present study, we show that the αRep library is an efficient source of tailor-made specific proteins with direct applications in biochemistry and cell biology. From this library, we selected by phage display αRep binders with nanomolar dissociation constants against the GFP. The structures of two independent αRep binders in complex with the GFP target were solved by X-ray crystallography revealing two totally different binding modes. The affinity of the selected αReps for GFP proved sufficient for practically useful applications such as pull-down experiments. αReps are disulfide free proteins and are efficiently and functionally expressed in eukaryotic cells: GFP-specific αReps are clearly sequestrated by their cognate target protein addressed to various cell compartments. These results suggest that αRep proteins with tailor-made specificity can be selected and used in living cells to track, modulate or interfere with intracellular processes. PMID:26182430

  16. Hepatitis virus protein X-Phenylalanine Hydroxylase fusion proteins identified in PKU mice treated with AAV-WPRE vectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Utilizing the Pahenu2 mouse model for phenylketonuria (PKU), we developed an improved expression vector containing the Woodchuck Hepatitis Virus post-transcriptional regulatory element inserted into a rAAV-mPAH construct (rAAV-mPAH-WPRE) for treatment of PKU. Following portal vein delivery of these ...

  17. Excess intracellular concentration of the pSC101 RepA protein interferes with both plasmid DNA replication and partitioning.

    PubMed Central

    Ingmer, H; Cohen, S N

    1993-01-01

    RepA, a plasmid-encoded gene product required for pSC101 replication in Escherichia coli, is shown here to inhibit the replication of pSC101 in vivo when overproduced 4- to 20-fold in trans. Unlike plasmids whose replication is prevented by mutations in the repA gene, plasmids prevented from replicating by overproduction of the RepA protein were lost rapidly from the cell population instead of being partitioned evenly between daughter cells. Removal of the partition (par) locus increased the inhibitory effect of excess RepA on replication, while host and plasmid mutations that compensate for the absence of par, or overproduction of the E. coli DnaA protein, diminished it. A repA mutation (repA46) that elevates pSC101 copy number almost entirely eliminated the inhibitory effect of RepA at high concentration and stimulated replication when the protein was moderately overproduced. As the RepA protein can exist in both monomer and dimer forms, we suggest that overproduction promotes RepA dimerization, reducing the formation of replication initiation complexes that require the RepA monomer and DnaA; we propose that the repA46 mutation alters the ability of the mutant protein to dimerize. Our discovery that an elevated intracellular concentration of RepA specifically impedes plasmid partitioning implies that the RepA-containing complexes initiating pSC101 DNA replication participate also in the distribution of plasmids at cell division. Images PMID:8253672

  18. Functions of Rep and Rep' during porcine circovirus rolling-circle replication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PCV replicates its single-stranded (ss) DNA genome via the rolling-circle replication (RCR) mechanism. In contrast to other RCR biological systems which utilize only one multi-functional protein (Rep) to replicate their respective genomes, PCV requires two proteins (Rep and Rep'). Rep and Rep' are i...

  19. Packaging of an AAV vector encoding human acid alpha-glucosidase for gene therapy in glycogen storage disease type II with a modified hybrid adenovirus-AAV vector.

    PubMed

    Sun, Baodong; Chen, Y-T; Bird, Andrew; Xu, Fang; Hou, Yang-Xun; Amalfitano, Andrea; Koeberl, Dwight D

    2003-04-01

    We have developed an improved method for packaging adeno-associated virus (AAV) vectors with a replication-defective adenovirus-AAV (Ad-AAV) hybrid virus. The AAV vector encoding human acid alpha-glucosidase (hGAA) was cloned into an E1, polymerase/preterminal protein-deleted adenovirus, such that it is packaged as an Ad vector. Importantly, the Ad-AAV hybrid cannot replicate during AAV vector packaging in 293 cells, because of deletion of polymerase/preterminal protein. The residual Ad-AAV in the AAV vector stock was reduced to <1 infectious particle per 10(10) AAV vector particles. These modifications resulted in approximately 30-fold increased packaging of the AAV vector for the hybrid Ad-AAV vector method as compared with standard transfection-only methods. Similarly improved packaging was demonstrated for pseudotyping the AAV vector as AAV6, and for AAV vector packaging with a second Ad-AAV vector encoding canine glucose-6-phosphatase. Liver-targeted delivery of either the Ad-AAV hybrid or AAV vector particles in acid alpha-glucosidase-knockout (GAA-KO) mice revealed secretion of hGAA with the Ad-AAV vector, and sustained secretion of hGAA with an AAV vector in hGAA-tolerant GAA-KO mice. Further development of hybrid Ad-AAV vectors could offer distinct advantages for gene therapy in glycogen storage diseases.

  20. Inhibition of binding of tomato yellow leaf curl virus rep to its replication origin by artificial zinc-finger protein.

    PubMed

    Mori, Tomoaki; Takenaka, Kosuke; Domoto, Fumiya; Aoyama, Yasuhiro; Sera, Takashi

    2013-06-01

    Previously we demonstrated that inhibition of replication-associated protein (Rep) binding to its replication origin by artificial zinc-finger proteins (AZPs) is a powerful method to prevent plant virus infection in vivo. In the present study, we applied the AZP technology to Tomato yellow leaf curl virus (TYLCV), which is a limiting factor in tomato cultivation worldwide. First, we determined 5'-ATCGGTGT ATCGGTGT-3' in the 195-bp intergenic region of the TYLCV-Israel strain, a strain reported first among TYLCV strains, as the Rep-binding site by gel shift assays. We then constructed a 6-finger AZP that bound to a 19-bp DNA including the Rep-binding site. We demonstrated that the binding affinity of the AZP was >1,000-fold greater than that of Rep and that the AZP inhibited Rep binding completely in vitro. Because the binding capability of the AZP was same as that of the AZP previously designed for geminivirus-resistant Arabidopsis thaliana, we predict that the present AZP will prevent TYLCV infection in vivo.

  1. Improved dual AAV vectors with reduced expression of truncated proteins are safe and effective in the retina of a mouse model of Stargardt disease

    PubMed Central

    Trapani, Ivana; Toriello, Elisabetta; de Simone, Sonia; Colella, Pasqualina; Iodice, Carolina; Polishchuk, Elena V.; Sommella, Andrea; Colecchi, Linda; Rossi, Settimio; Simonelli, Francesca; Giunti, Massimo; Bacci, Maria L.; Polishchuk, Roman S.; Auricchio, Alberto

    2015-01-01

    Stargardt disease (STGD1) due to mutations in the large ABCA4 gene is the most common inherited macular degeneration in humans. We have shown that dual adeno-associated viral (AAV) vectors effectively transfer ABCA4 to the retina of Abca4−/− mice. However, they express both lower levels of transgene compared with a single AAV and truncated proteins. To increase productive dual AAV concatemerization, which would overcome these limitations, we have explored the use of either various regions of homology or heterologous inverted terminal repeats (ITR). In addition, we tested the ability of various degradation signals to decrease the expression of truncated proteins. We found the highest levels of transgene expression using regions of homology based on either alkaline phosphatase or the F1 phage (AK). The use of heterologous ITR does not decrease the levels of truncated proteins relative to full-length ABCA4 and impairs AAV vector production. Conversely, the inclusion of the CL1 degradation signal results in the selective degradation of truncated proteins from the 5′-half without affecting full-length protein production. Therefore, we developed dual AAV hybrid ABCA4 vectors including homologous ITR2, the photoreceptor-specific G protein-coupled receptor kinase 1 promoter, the AK region of homology and the CL1 degradation signal. We show that upon subretinal administration these vectors are both safe in pigs and effective in Abca4−/− mice. Our data support the use of improved dual AAV vectors for gene therapy of STGD1. PMID:26420842

  2. Vaccinia virus as a subhelper for AAV replication and packaging.

    PubMed

    Moore, Andrea R; Dong, Biao; Chen, Lingxia; Xiao, Weidong

    2015-01-01

    Adeno-associated virus (AAV) has been widely used as a gene therapy vector to treat a variety of disorders. While these vectors are increasingly popular and successful in the clinic, there is still much to learn about the viruses. Understanding the biology of these viruses is essential in engineering better vectors and generating vectors more efficiently for large-scale use. AAV requires a helper for production and replication making this aspect of the viral life cycle crucial. Vaccinia virus (VV) has been widely cited as a helper virus for AAV. However, to date, there are no detailed analyses of its helper function. Here, the helper role of VV was studied in detail. In contrast to common belief, we demonstrated that VV was not a sufficient helper virus for AAV replication. Vaccinia failed to produce rAAV and activate AAV promoters. While this virus could not support rAAV production, Vaccinia could initiate AAV replication and packaging when AAV promoter activation is not necessary. This activity is due to the ability of Vaccinia-driven Rep78 to transcribe in the cytoplasm and subsequently translate in the nucleus and undergo typical functions in the AAV life cycle. As such, VV is subhelper for AAV compared to complete helper functions of adenovirus.

  3. Enhanced nicking activity of Rep in presence of pre-coat protein of Mungbean yellow mosaic India virus.

    PubMed

    Rouhibakhsh, A; Choudhury, N R; Mukherjee, S K; Malathi, V G

    2012-04-01

    Yellow mosaic disease causes severe yield loss in grain legumes in Indian subcontinent and south east Asia. The disease is caused by two virus species, Mungbean yellow mosaic India virus (MYMIV) and Mungbean yellow mosaic virus (MYMV). They have genome organization typical of Old World begomoviruses, the unique feature being the presence of an open reading frame (ORF) AV2 upstream of coat protein gene. In order to elucidate its function, ORF AV2 of blackgram isolate, Mungbean yellow mosaic India virus-[India:New Delhi:Blackgram 3:1991] MYMIV-[IN:ND:Bg3:91] and cowpea isolate, Mungbean yellow mosaic India virus-[India:New Delhi:Cowpea7:1998] MYMIV-[IN:ND:Cp7:98], respectively, were over expressed in Escherichia coli in fusion with maltose binding protein (MBP). The recombinant protein did not show efficient binding to DNA. However, both MBP-BgAV2 and MBP-CpAV2 proteins modulated nicking and ATPase activity of replication initiation protein (Rep). Even low concentration, 20 ng of MBP-BgAV2 and MBP-CpAV2 could bring 20 folds increase in nicking activity of Rep. Similarly in the presence of AV2 protein, two to three fold increase in ATPase activity was observed. It is hypothesized that AV2 protein may play a role of accessory protein modulating Rep activities.

  4. Transcriptomics of tomato plants infected with TYLCSV or expressing the central TYLCSV Rep protein domain uncover changes impacting pathogen response and senescence.

    PubMed

    Lucioli, Alessandra; Perla, Carlo; Berardi, Alessandra; Gatti, Francesca; Spanò, Laura; Tavazza, Mario

    2016-06-01

    To establish a successful infection viruses need to overcome plant innate immune responses and redirect host gene expression for their multiplication and diffusion. Tomato yellow leaf curl Sardinia virus (TYLCSV) is a geminivirus, which causes significant economic losses in tomato. The multifunctional replication associated geminivirus protein (Rep) has an important role during viral infection. In particular, the Rep central domain spanning from aa 120 to 180 is known to interact with viral and host factors. In this study, we used long serial analysis of gene expression to analyse the transcriptional profiles of transgenic tomato plants expressing the first 210 amino acids of TYLCSV Rep (Rep210) and TYLCSV-infected wild-type tomato plants (Wt-Ty). Also, we compared these profiles with those of transgenic Rep130 tomatoes. Comparison of Wt-Ty and Rep210 libraries with the wild-type one identified 118 and 203 differentially expressed genes (DEGs), respectively. Importantly, 55% of Wt-Ty DEGs were in common with Rep210, and no ones showed opposite expression. Conversely, a negligible overlap was found between Rep130 DEGs and Wt-Ty and Rep210 ones. TYLCSV- and Rep210-repressed genes, but not induced ones, overlapped with the leaf senescence process. Interestingly, TYLCSV upregulates expression of genes involved in the negative regulation of programmed cell death (PCD), several of which were also regulated by the abscisic acid. Rep210 upregulated genes related to defence response, immune system processes and negative regulation of PCD. Collectively, our results support a model in which the Rep central domain has a pivotal role in redirecting host plant gene expression.

  5. Adeno-Associated Virus Rep Represses the Human Integration Site Promoter by Two Pathways That Are Similar to Those Required for the Regulation of the Viral p5 Promoter

    PubMed Central

    Dutheil, Nathalie; Smith, Sarah C.; Agúndez, Leticia; Vincent-Mistiaen, Zoé I.; Escalante, Carlos R.; Linden, R. Michael

    2014-01-01

    ABSTRACT Adeno-associated virus serotype 2 (AAV2) can efficiently replicate in cells that have been infected with helper viruses, such as adenovirus or herpesvirus. However, in the absence of helper virus infection, AAV2 establishes latency by integrating its genome site specifically into PPP1R12C, a gene located on chromosome 19. This integration target site falls into one of the most gene-dense regions of the human genome, thus inviting the question as to whether the virus has evolved mechanisms to control this complex transcriptional environment in order to facilitate integration, maintain an apparently innocuous latency, and/or establish conditions that are conducive to the rescue of the integrated viral genome. The viral replication (Rep) proteins control and direct every known aspect of the viral life cycle and have been shown to tightly control all AAV2 promoters. In addition, a number of heterologous promoters are repressed by the AAV2 Rep proteins. Here, we demonstrate that Rep proteins efficiently repress expression from the target site PPP1R12C promoter. We find evidence that this repression employs mechanisms similar to those described for Rep-mediated AAV2 p5 promoter regulation. Furthermore, we show that the repression of the cellular target site promoter is based on two distinct mechanisms, one relying on the presence of a functional Rep binding motif within the 5′ untranslated region (UTR) of PPP1R12C, whereas the second pathway requires only an intact nucleoside triphosphate (NTP) binding site within the Rep proteins, indicating the possible reliance of this pathway on interactions of the Rep proteins with cellular proteins that mediate or regulate cellular transcription. IMPORTANCE The observation that repression of transcription from the adeno-associated virus serotype 2 (AAV2) p5 and integration target site promoters is mediated by shared mechanisms highlights the possible coevolution of virus and host and could lead to the identification of

  6. DNA-binding domain of the RepE initiator protein of mini-F plasmid: involvement of the carboxyl-terminal region.

    PubMed Central

    Matsunaga, F; Kawasaki, Y; Ishiai, M; Nishikawa, K; Yura, T; Wada, C

    1995-01-01

    The RepE initiator protein (251 residues) is essential for mini-F replication in Escherichia coli and exhibits two major functions: initiation of DNA replication from ori2 and autogenous repression of repE transcription. Whereas the initiation is mediated by RepE monomers that bind to the ori2 iterons (direct repeats), the autogenous repression is mediated by dimers that bind to the repE operator, which contains an inverted repeat sequence related to the iterons. We now report that the binding of RepE to these DNA sites is primarily determined by the C-terminal region of this protein. The mutant RepE proteins lacking either the N-terminal 33 (or more) residues or the C-terminal 7 (or more) residues were first shown to be defective in binding to both the ori2 and the operator DNAs. However, direct screening and analysis of mutant RepEs which are specifically affected in binding to the ori2 iterons revealed that the mutations (mostly amino acid substitutions) occur exclusively in the C-terminal region (residues 168 to 242). These mutant proteins exhibited reduced binding to ori2 and no detectable binding to the operator. Thus, whereas truncation of either end of RepE can destroy the DNA-binding activities, the C-terminal region appears to represent a primary DNA-binding domain of RepE for both ori2 and the operator. Analogous DNA-binding domains seem to be conserved among the initiator proteins of certain related plasmids. PMID:7721691

  7. Interactions between the RepB initiator protein of plasmid pMV158 and two distant DNA regions within the origin of replication

    PubMed Central

    Ruiz-Masó, José A.; Lurz, Rudi; Espinosa, Manuel; del Solar, Gloria

    2007-01-01

    Plasmids replicating by the rolling circle mode usually possess a single site for binding of the initiator protein at the origin of replication. The origin of pMV158 is different in that it possesses two distant binding regions for the initiator RepB. One region was located close to the site where RepB introduces the replication-initiating nick, within the nic locus; the other, the bind locus, is 84 bp downstream from the nick site. Binding of RepB to the bind locus was of higher affinity and stability than to the nic locus. Contacts of RepB with the bind and nic loci were determined through high-resolution footprinting. Upon binding of RepB, the DNA of the bind locus follows a winding path in its contact with the protein, resulting in local distortion and bending of the double-helix. On supercoiled DNA, simultaneous interaction of RepB with both loci favoured extrusion of the hairpin structure harbouring the nick site while causing a strong DNA distortion around the bind locus. This suggests interplay between the two RepB binding sites, which could facilitate loading of the initiator protein to the nic locus and the acquisition of the appropriate configuration of the supercoiled DNA substrate. PMID:17267412

  8. The RXL motif of the African cassava mosaic virus Rep protein is necessary for rereplication of yeast DNA and viral infection in plants

    SciTech Connect

    Hipp, Katharina; Rau, Peter; Schäfer, Benjamin; Gronenborn, Bruno; Jeske, Holger

    2014-08-15

    Geminiviruses, single-stranded DNA plant viruses, encode a replication-initiator protein (Rep) that is indispensable for virus replication. A potential cyclin interaction motif (RXL) in the sequence of African cassava mosaic virus Rep may be an alternative link to cell cycle controls to the known interaction with plant homologs of retinoblastoma protein (pRBR). Mutation of this motif abrogated rereplication in fission yeast induced by expression of wildtype Rep suggesting that Rep interacts via its RXL motif with one or several yeast proteins. The RXL motif is essential for viral infection of Nicotiana benthamiana plants, since mutation of this motif in infectious clones prevented any symptomatic infection. The cell-cycle link (Clink) protein of a nanovirus (faba bean necrotic yellows virus) was investigated that activates the cell cycle by binding via its LXCXE motif to pRBR. Expression of wildtype Clink and a Clink mutant deficient in pRBR-binding did not trigger rereplication in fission yeast. - Highlights: • A potential cyclin interaction motif is conserved in geminivirus Rep proteins. • In ACMV Rep, this motif (RXL) is essential for rereplication of fission yeast DNA. • Mutating RXL abrogated viral infection completely in Nicotiana benthamiana. • Expression of a nanovirus Clink protein in yeast did not induce rereplication. • Plant viruses may have evolved multiple routes to exploit host DNA synthesis.

  9. RepA and RepB exert plasmid incompatibility repressing the transcription of the repABC operon.

    PubMed

    Pérez-Oseguera, Angeles; Cevallos, Miguel A

    2013-11-01

    Rhizobium etli CFN42 has a multipartite genome composed of one chromosome and six large plasmids with low copy numbers, all belonging to the repABC plasmid family. All elements essential for replication and segregation of these plasmids are encoded within the repABC operon. RepA and RepB direct plasmid segregation and are involved in the transcriptional regulation of the operon, and RepC is the initiator protein of the plasmid. Here we show that in addition to RepA (repressor) and RepB (corepressor), full transcriptional repression of the operon located in the symbiotic plasmid (pRetCFN42d) of this strain requires parS, the centromere-like sequence, and the operator sequence. However, the co-expression of RepA and RepB is sufficient to induce the displacement of the parental plasmid. RepA is a Walker-type ATPase that self associates in vivo and in vitro and binds specifically to the operator region in its RepA-ADP form. In contrast, RepA-ATP is capable of binding to non-specific DNA. RepA and RepB form high molecular weight DNA-protein complexes in the presence of ATP and ADP. RepA carrying ATP-pocket motif mutations induce full repression of the repABC operon without the participation of RepB and parS. These mutants specifically bind the operator sequence in their ATP or ADP bound forms. In addition, their expression in trans exerts plasmid incompatibility against the parental plasmid. RepA and RepB expressed in trans induce plasmid incompatibility because of their ability to repress the repABC operon and not only by their capacity to distort the plasmid segregation process.

  10. Stable enhanced green fluorescent protein expression after differentiation and transplantation of reporter human induced pluripotent stem cells generated by AAVS1 transcription activator-like effector nucleases.

    PubMed

    Luo, Yongquan; Liu, Chengyu; Cerbini, Trevor; San, Hong; Lin, Yongshun; Chen, Guokai; Rao, Mahendra S; Zou, Jizhong

    2014-07-01

    Human induced pluripotent stem (hiPS) cell lines with tissue-specific or ubiquitous reporter genes are extremely useful for optimizing in vitro differentiation conditions as well as for monitoring transplanted cells in vivo. The adeno-associated virus integration site 1 (AAVS1) locus has been used as a "safe harbor" locus for inserting transgenes because of its open chromatin structure, which permits transgene expression without insertional mutagenesis. However, it is not clear whether targeted transgene expression at the AAVS1 locus is always protected from silencing when driven by various promoters, especially after differentiation and transplantation from hiPS cells. In this paper, we describe a pair of transcription activator-like effector nucleases (TALENs) that enable more efficient genome editing than the commercially available zinc finger nuclease at the AAVS1 site. Using these TALENs for targeted gene addition, we find that the cytomegalovirus-immediate early enhancer/chicken β-actin/rabbit β-globin (CAG) promoter is better than cytomegalovirus 7 and elongation factor 1α short promoters in driving strong expression of the transgene. The two independent AAVS1, CAG, and enhanced green fluorescent protein (EGFP) hiPS cell reporter lines that we have developed do not show silencing of EGFP either in undifferentiated hiPS cells or in randomly and lineage-specifically differentiated cells or in teratomas. Transplanting cardiomyocytes from an engineered AAVS1-CAG-EGFP hiPS cell line in a myocardial infarcted mouse model showed persistent expression of the transgene for at least 7 weeks in vivo. Our results show that high-efficiency targeting can be obtained with open-source TALENs and that careful optimization of the reporter and transgene constructs results in stable and persistent expression in vitro and in vivo.

  11. A single amino acid change in a geminiviral Rep protein differentiates between triggering a plant defence response and initiating viral DNA replication.

    PubMed

    Jin, Mingfei; Li, Chunyang; Shi, Yan; Ryabov, Eugene; Huang, Jing; Wu, Zirong; Fan, Zaifeng; Hong, Yiguo

    2008-10-01

    We have devised an in planta system for functional analysis of the replication-associated protein (Rep) of African cassava mosaic virus (ACMV). Using this assay and PCR-based random mutagenesis, we have identified an ACMV Rep mutant that failed to trigger the hypersensitive response (HR), but had an enhanced ability to initiate DNA replication. The mutant Rep-green fluorescent protein (GFP) fusion protein was localized to the nucleus. Sequence analysis showed that the mutated Rep gene had three nucleotide changes (A6-->T, T375-->G and G852-->A); only the A6-->T transversion resulted in an amino acid substitution (Arg to Ser), which is at the second residue in the 358 amino acid ACMV Rep protein. Our results indicate that a single amino acid can alter the differential ability of ACMV Rep to trigger the host-mediated HR defence mechanism and to initiate viral DNA replication. The implications of this finding are discussed in the context of plant-virus interactions.

  12. A small plasmid, pCA2.4, from the cyanobacterium Synechocystis sp. strain PCC 6803 encodes a rep protein and replicates by a rolling circle mechanism.

    PubMed Central

    Yang, X; McFadden, B A

    1993-01-01

    Different cryptic plasmids are widely distributed in many strains of cyanobacteria. A small cryptic plasmid, pCA2.4, from Synechocystis strain PCC 6803 was completely sequenced, and its replication mode was determined. pCA2.4 contained 2,378 bp and encoded a replication (Rep) protein, designated RepA. An analysis of the deduced amino acid sequence revealed that RepA of pCA2.4 has significant homology with Rep proteins of pKYM from Shigella sonnei, a pUB110 plasmid family from gram-positive bacteria, and with a protein corresponding to an open reading frame in a Nostoc plasmid and open reading frame C of Plectonema plasmid pRF1. pKYM and pUB110 family plasmids replicate by a rolling circle mechanism in which a Rep protein nicks the origin of replication to allow the generation of a single-stranded plasmid as a replication intermediate. RepA encoded by pC2.4 was expressed in Escherichia coli cells harboring a vector, pCRP336, containing the entire repA gene. The observed molecular weight of RepA was consistent with the value of 39,200 calculated from its deduced amino acid sequence, as was the N-terminal sequence analysis done through the 12th residue. Single-stranded plasmid DNA of pCA2.4 that was specifically degraded by S1 nuclease was detected in Synechocystis cells by Southern hybridization. These observations suggest that pCA2.4 replicates by a rolling circle mechanism in Synechocystis cells. Images PMID:8320214

  13. Targeted gene delivery to the enteric nervous system using AAV: a comparison across serotypes and capsid mutants.

    PubMed

    Benskey, Matthew J; Kuhn, Nathan C; Galligan, James J; Garcia, Joanna; Boye, Shannon E; Hauswirth, William W; Mueller, Christian; Boye, Sanford L; Manfredsson, Fredric P

    2015-03-01

    Recombinant adeno-associated virus (AAV) vectors are one of the most widely used gene transfer systems in research and clinical trials. AAV can transduce a wide range of biological tissues, however to date, there has been no investigation on targeted AAV transduction of the enteric nervous system (ENS). Here, we examined the efficiency, tropism, spread, and immunogenicity of AAV transduction in the ENS. Rats received direct injections of various AAV serotypes expressing green fluorescent protein (GFP) into the descending colon. AAV serotypes tested included; AAV 1, 2, 5, 6, 8, or 9 and the AAV2 and AAV8 capsid mutants, AAV2-Y444F, AAV2-tripleY-F, AAV2-tripleY-F+T-V, AAV8-Y733F, and AAV8-doubeY-F+T-V. Transduction, as determined by GFP-positive cells, occurred in neurons and enteric glia within the myenteric and submucosal plexuses of the ENS. AAV6 and AAV9 showed the highest levels of transduction within the ENS. Transduction efficiency scaled with titer and time, was translated to the murine ENS, and produced no vector-related immune response. A single injection of AAV into the colon covered an area of ~47 mm(2). AAV9 primarily transduced neurons, while AAV6 transduced enteric glia and neurons. This is the first report on targeted AAV transduction of neurons and glia in the ENS.

  14. AAV-Mediated Liver-Directed Gene Therapy

    PubMed Central

    Sands, Mark S.

    2014-01-01

    The liver is directly or indirectly involved in many essential processes and is affected by numerous inherited diseases. Therefore, many inherited diseases could be effectively treated by targeting the liver using gene transfer approaches. The challenges associated with liver-directed gene therapy are efficient targeting of hepatocytes, stability of the vector genome, and persistent high level expression. Many of these obstacles can be overcome with adeno-associated viral (AAV) gene transfer vectors. The first AAV gene transfer vector developed for in vivo use was based on the AAV2 serotype. AAV2 has a broad tropism and transduces many cell types, including hepatocytes, relatively efficiently in vivo. The capsid protein confers the serological profile and at least 12 primate AAV serotypes have already been characterized. Importantly, pseudotyping a recombinant AAV vector with different capsid proteins can dramatically alter the tropism. Both AAV8 and AAV9 have higher affinities for hepatocytes when compared to AAV2. In particular, AAV8 can transduce 3–4 fold more hepatocytes and deliver 3–4 fold more genomes per transduced cell when compared to AAV2. Depending on the dose, AAV8 can transduce up to 90–95% of hepatocytes in the mouse liver following intraportal vein injection. Interestingly, comparable levels of transduction can be achieved following intravenous injection. Direct intraparenchymal injection of an AAV vector also mediates relatively high level long term expression. Additional specificity can be conferred by using liver-specific promoters in conjunction with AAV8 capsid proteins. In addition to treating primary hepatocyte defects, immune reactions to transgene products can be minimized by circumventing the fixed tissue macrophages of the liver, Kupffer cells, and limiting expression to hepatocytes. The ability to target hepatocytes by virtue of the AAV serotype and the use of liver-specific promoters allows investigators to test novel therapeutic

  15. Conformational plasticity of RepB, the replication initiator protein of promiscuous streptococcal plasmid pMV158

    NASA Astrophysics Data System (ADS)

    Boer, D. Roeland; Ruiz-Masó, José Angel; Rueda, Manuel; Petoukhov, Maxim V.; Machón, Cristina; Svergun, Dmitri I.; Orozco, Modesto; Del Solar, Gloria; Coll, Miquel

    2016-02-01

    DNA replication initiation is a vital and tightly regulated step in all replicons and requires an initiator factor that specifically recognizes the DNA replication origin and starts replication. RepB from the promiscuous streptococcal plasmid pMV158 is a hexameric ring protein evolutionary related to viral initiators. Here we explore the conformational plasticity of the RepB hexamer by i) SAXS, ii) sedimentation experiments, iii) molecular simulations and iv) X-ray crystallography. Combining these techniques, we derive an estimate of the conformational ensemble in solution showing that the C-terminal oligomerisation domains of the protein form a rigid cylindrical scaffold to which the N-terminal DNA-binding/catalytic domains are attached as highly flexible appendages, featuring multiple orientations. In addition, we show that the hinge region connecting both domains plays a pivotal role in the observed plasticity. Sequence comparisons and a literature survey show that this hinge region could exists in other initiators, suggesting that it is a common, crucial structural element for DNA binding and manipulation.

  16. Conformational plasticity of RepB, the replication initiator protein of promiscuous streptococcal plasmid pMV158

    PubMed Central

    Boer, D. Roeland; Ruiz-Masó, José Angel; Rueda, Manuel; Petoukhov, Maxim V.; Machón, Cristina; Svergun, Dmitri I.; Orozco, Modesto; del Solar, Gloria; Coll, Miquel

    2016-01-01

    DNA replication initiation is a vital and tightly regulated step in all replicons and requires an initiator factor that specifically recognizes the DNA replication origin and starts replication. RepB from the promiscuous streptococcal plasmid pMV158 is a hexameric ring protein evolutionary related to viral initiators. Here we explore the conformational plasticity of the RepB hexamer by i) SAXS, ii) sedimentation experiments, iii) molecular simulations and iv) X-ray crystallography. Combining these techniques, we derive an estimate of the conformational ensemble in solution showing that the C-terminal oligomerisation domains of the protein form a rigid cylindrical scaffold to which the N-terminal DNA-binding/catalytic domains are attached as highly flexible appendages, featuring multiple orientations. In addition, we show that the hinge region connecting both domains plays a pivotal role in the observed plasticity. Sequence comparisons and a literature survey show that this hinge region could exists in other initiators, suggesting that it is a common, crucial structural element for DNA binding and manipulation. PMID:26875695

  17. Using AAV vectors expressing the β2-adrenoceptor or associated Gα proteins to modulate skeletal muscle mass and muscle fibre size

    PubMed Central

    Hagg, Adam; Colgan, Timothy D.; Thomson, Rachel E.; Qian, Hongwei; Lynch, Gordon S.; Gregorevic, Paul

    2016-01-01

    Anabolic β2-adrenoceptor (β2-AR) agonists have been proposed as therapeutics for treating muscle wasting but concerns regarding possible off-target effects have hampered their use. We investigated whether β2-AR-mediated signalling could be modulated in skeletal muscle via gene delivery to the target tissue, thereby avoiding the risks of β2-AR agonists. In mice, intramuscular administration of a recombinant adeno-associated virus-based vector (rAAV vector) expressing the β2-AR increased muscle mass by >20% within 4 weeks. This hypertrophic response was comparable to that of 4 weeks’ treatment with the β2-AR agonist formoterol, and was not ablated by mTOR inhibition. Increasing expression of inhibitory (Gαi2) and stimulatory (GαsL) G-protein subunits produced minor atrophic and hypertrophic changes in muscle mass, respectively. Furthermore, Gαi2 over-expression prevented AAV:β2-AR mediated hypertrophy. Introduction of the non-muscle Gαs isoform, GαsXL elicited hypertrophy comparable to that achieved by AAV:β2-AR. Moreover, GαsXL gene delivery was found to be capable of inducing hypertrophy in the muscles of mice lacking functional β1- and β2-ARs. These findings demonstrate that gene therapy-based interventions targeting the β2-AR pathway can promote skeletal muscle hypertrophy independent of ligand administration, and highlight novel methods for potentially modulating muscle mass in settings of disease. PMID:26972746

  18. High-throughput screening and biophysical interrogation of hepatotropic AAV.

    PubMed

    Murphy, Samuel L; Bhagwat, Anand; Edmonson, Shyrie; Zhou, Shangzhen; High, Katherine A

    2008-12-01

    We set out to analyze the fundamental biological differences between AAV2 and AAV8 that may contribute to their different performances in vivo. High-throughput protein interaction screens were used to identify binding partners for each serotype. Of the >8,000 proteins probed, 115 and 134 proteins were identified that interact with AAV2 and AAV8, respectively. Notably, 76 of these protein interactions were shared between the two serotypes. CDK2/cyclinA kinase was identified as a binding partner for both serotypes in the screen. Subsequent analysis confirmed direct binding of CDK2/cyclinA by AAV2 and AAV8. Inhibition of CDK2/cyclinA resulted in increased levels of vector transduction. Biophysical study of vector particle stability and genome uncoating demonstrated slightly greater thermostability for AAV8 than for AAV2. Heat-induced genome uncoating occurred at the same temperature as particle degradation, suggesting that these two processes may be intrinsically related for adeno-associated virus (AAV). Together, these analyses provide insight into commonalities and divergences in the biology of functionally distinct hepatotropic AAV serotypes.

  19. Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi.

    PubMed

    Kaulich, Manuel; Lee, Yeon J; Lönn, Peter; Springer, Aaron D; Meade, Bryan R; Dowdy, Steven F

    2015-04-20

    Gene knockout strategies, RNAi and rescue experiments are all employed to study mammalian gene function. However, the disadvantages of these approaches include: loss of function adaptation, reduced viability and gene overexpression that rarely matches endogenous levels. Here, we developed an endogenous gene knockdown/rescue strategy that combines RNAi selectivity with a highly efficient CRISPR directed recombinant Adeno-Associated Virus (rAAV) mediated gene targeting approach to introduce allele-specific mutations plus an allele-selective siRNA Sensitive (siSN) site that allows for studying gene mutations while maintaining endogenous expression and regulation of the gene of interest. CRISPR/Cas9 plus rAAV targeted gene-replacement and introduction of allele-specific RNAi sensitivity mutations in the CDK2 and CDK1 genes resulted in a >85% site-specific recombination of Neo-resistant clones versus ∼8% for rAAV alone. RNAi knockdown of wild type (WT) Cdk2 with siWT in heterozygotic knockin cells resulted in the mutant Cdk2 phenotype cell cycle arrest, whereas allele specific knockdown of mutant CDK2 with siSN resulted in a wild type phenotype. Together, these observations demonstrate the ability of CRISPR plus rAAV to efficiently recombine a genomic locus and tag it with a selective siRNA sequence that allows for allele-selective phenotypic assays of the gene of interest while it remains expressed and regulated under endogenous control mechanisms.

  20. RepA Protein Encoded by Oat dwarf virus Elicits a Temperature-Sensitive Hypersensitive Response-Type Cell Death That Involves Jasmonic Acid-Dependent Signaling.

    PubMed

    Qian, Yajuan; Hou, Huwei; Shen, Qingtang; Cai, Xinzhong; Sunter, Garry; Zhou, Xueping

    2016-01-01

    The hypersensitive response (HR) is a component of disease resistance that is often induced by pathogen infection, but essentially no information is available for members of the destructive mastreviruses. We have investigated an HR-type response elicited in Nicotiana species by Oat dwarf virus (ODV) and have found that expression of the ODV RepA protein but not other ODV-encoded proteins elicits the HR-type cell death associated with a burst of H2O2. Deletion mutagenesis indicates that the first nine amino acids (aa) at the N terminus of RepA and the two regions located between aa residues 173 and 195 and between aa residues 241 and 260 near the C terminus are essential for HR-type cell-death elicitation. Confocal and electron microscopy showed that the RepA protein is localized in the nuclei of plant cells and might contain bipartite nuclear localization signals. The HR-like lesions mediated by RepA were inhibited by temperatures above 30°C and involvement of jasmonic acid (JA) in HR was identified by gain- and loss-of-function experiments. To our knowledge, this is the first report of an elicitor of HR-type cell death from mastreviruses.

  1. Formation of AAV single stranded DNA genome from a circular plasmid in Saccharomyces cerevisiae.

    PubMed

    Cervelli, Tiziana; Backovic, Ana; Galli, Alvaro

    2011-01-01

    Adeno-associated virus (AAV)-based vectors are promising tools for targeted transfer in gene therapy studies. Many efforts have been accomplished to improve production and purification methods. We thought to develop a simple eukaryotic system allowing AAV replication which could provide an excellent opportunity for studying AAV biology and, more importantly, for AAV vector production. It has been shown that yeast Saccharomyces cerevisiae is able to replicate and form the capsid of many viruses. We investigated the ability of the yeast Saccharomyces cerevisiae to carry out the replication of a recombinant AAV (rAAV). When a plasmid containing a rAAV genome in which the cap gene was replaced with the S. cerevisiae URA3 gene, was co-transformed in yeast with a plasmid expressing Rep68, a significant number of URA3(+) clones were scored (more than 30-fold over controls). Molecular analysis of low molecular weight DNA by Southern blotting revealed that single stranded DNA is formed and that the plasmid is entirely replicated. The ssDNA contains the ITRs, URA3 gene and also vector sequences suggesting the presence of two distinct molecules. Its formation was dependent on Rep68 expression and ITR. These data indicate that DNA is not obtained by the canonical AAV replication pathway.

  2. Formation of AAV Single Stranded DNA Genome from a Circular Plasmid in Saccharomyces cerevisiae

    PubMed Central

    Cervelli, Tiziana; Backovic, Ana; Galli, Alvaro

    2011-01-01

    Adeno-associated virus (AAV)-based vectors are promising tools for targeted transfer in gene therapy studies. Many efforts have been accomplished to improve production and purification methods. We thought to develop a simple eukaryotic system allowing AAV replication which could provide an excellent opportunity for studying AAV biology and, more importantly, for AAV vector production. It has been shown that yeast Saccharomyces cerevisiae is able to replicate and form the capsid of many viruses. We investigated the ability of the yeast Saccharomyces cerevisiae to carry out the replication of a recombinant AAV (rAAV). When a plasmid containing a rAAV genome in which the cap gene was replaced with the S. cerevisiae URA3 gene, was co-transformed in yeast with a plasmid expressing Rep68, a significant number of URA3+ clones were scored (more than 30-fold over controls). Molecular analysis of low molecular weight DNA by Southern blotting revealed that single stranded DNA is formed and that the plasmid is entirely replicated. The ssDNA contains the ITRs, URA3 gene and also vector sequences suggesting the presence of two distinct molecules. Its formation was dependent on Rep68 expression and ITR. These data indicate that DNA is not obtained by the canonical AAV replication pathway. PMID:21853137

  3. Preferred transduction with AAV8 and AAV9 via thalamic administration in the MPS IIIB model: A comparison of four rAAV serotypes

    PubMed Central

    Gilkes, J.A.; Bloom, M.D.; Heldermon, C.D.

    2015-01-01

    Sanfilippo syndrome type B (MPS IIIB) is a lysosomal storage disease caused by a deficiency of N-acetyl-glucosaminidase (NAGLU) activity. Since early therapeutic intervention is likely to yield the most efficacious results, we sought to determine the possible therapeutic utility of rAAV in early gene therapy based interventions. Currently, the application of recombinant adeno-associated virus (AAV) vectors is one of the most widely used gene transfer systems, and represents a promising approach in the treatment of MPS IIIB. From a translational standpoint, a minimally invasive, yet highly efficient method of vector administration is ideal. The thalamus is thought to be the switchboard for signal relay in the central nervous system (CNS) and therefore represents an attractive target. To identify an optimal AAV vector for early therapeutic intervention, and establish whether thalamic administration represents a feasible therapeutic approach, we performed a comprehensive assessment of transduction and biodistribution profiles of four green fluorescent protein (GFP) bearing rAAV serotypes, -5, -8, -9 and -rh10, administered bilaterally into the thalamus. Of the four serotypes compared, AAV8 and -9 proved superior to AAV5 and -rh10 both in biodistribution and transduction efficiency profiles. Genotype differences in transduction efficiency and biodistribution patterns were also observed. Importantly, we conclude that AAV8 and to a lesser extent, AAV9 represent preferable candidates for early gene therapy based intervention in the treatment of MPS IIIB. We also highlight the feasibility of thalamic rAAV administration, and conclude that this method results in moderate rAAV biodistribution with limited treatment capacity, thus suggesting a need for alternate methods of vector delivery. PMID:27014573

  4. Neutralizing antibodies against AAV2, AAV5 and AAV8 in healthy and HIV-1-infected subjects in China: implications for gene therapy using AAV vectors.

    PubMed

    Liu, Q; Huang, W; Zhang, H; Wang, Y; Zhao, J; Song, A; Xie, H; Zhao, C; Gao, D; Wang, Y

    2014-08-01

    Adeno-associated viruses (AAV) have attracted attention as potential vectors for gene therapy and vaccines against several diseases, including HIV-1 infection. However, the presence of neutralizing antibodies (NAbs) after natural AAV infections inhibits their transfection in re-exposed subjects. To identify candidate AAV vectors for therapeutic or prophylactic HIV vaccines, NAbs against AAV2, AAV5 and AAV8 were screened in the sera of healthy individuals in China and 10 developed countries and an HIV-1-infected Chinese population. Seroprevalence was higher for AAV2 (96.6%) and AAV8 (82.0%) than for AAV5 (40.2%) in normal Chinese subjects. Among individuals seropositive for AAV5, >80% had low NAb titers (<1:90). The prevalence and titers of NAbs against the three AAVs were significantly higher in China than in developed countries (P<0.01). The prevalence of NAbs against AAV5 did not differ significantly between healthy and HIV-1-infected Chinese subjects (P=0.39). Co-occurrence of NAbs against AAV2, AAV5, and AAV8 was observed in the healthy population, and 15, 41, and 41% of individuals were AAV2(+), AAV2(+)/AAV8(+), and AAV2(+)/AAV5(+)/AAV8(+), respectively. Therefore, AAV5 exposure is low in healthy and HIV-1-infected populations Chinese individuals, and vectors based on AAV5 may be appropriate for human gene therapy or vaccines.

  5. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression

    SciTech Connect

    Zhong Li; Li Baozheng; Jayandharan, Giridhararao; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Herzog, Roland W.

    2008-11-25

    We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, their transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by {approx} 68% and {approx} 74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which results from ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy.

  6. Humoral Immune Response to AAV

    PubMed Central

    Calcedo, Roberto; Wilson, James M.

    2013-01-01

    Adeno-associated virus (AAV) is a member of the family Parvoviridae that has been widely used as a vector for gene therapy because of its safety profile, its ability to transduce both dividing and non-dividing cells, and its low immunogenicity. AAV has been detected in many different tissues of several animal species but has not been associated with any disease. As a result of natural infections, antibodies to AAV can be found in many animals including humans. It has been shown that pre-existing AAV antibodies can modulate the safety and efficacy of AAV vector-mediated gene therapy by blocking vector transduction or by redirecting distribution of AAV vectors to tissues other than the target organ. This review will summarize antibody responses against natural AAV infections, as well as AAV gene therapy vectors and their impact in the clinical development of AAV vectors for gene therapy. We will also review and discuss the various methods used for AAV antibody detection and strategies to overcome neutralizing antibodies in AAV-mediated gene therapy. PMID:24151496

  7. Humoral Immune Response to AAV.

    PubMed

    Calcedo, Roberto; Wilson, James M

    2013-10-18

    Adeno-associated virus (AAV) is a member of the family Parvoviridae that has been widely used as a vector for gene therapy because of its safety profile, its ability to transduce both dividing and non-dividing cells, and its low immunogenicity. AAV has been detected in many different tissues of several animal species but has not been associated with any disease. As a result of natural infections, antibodies to AAV can be found in many animals including humans. It has been shown that pre-existing AAV antibodies can modulate the safety and efficacy of AAV vector-mediated gene therapy by blocking vector transduction or by redirecting distribution of AAV vectors to tissues other than the target organ. This review will summarize antibody responses against natural AAV infections, as well as AAV gene therapy vectors and their impact in the clinical development of AAV vectors for gene therapy. We will also review and discuss the various methods used for AAV antibody detection and strategies to overcome neutralizing antibodies in AAV-mediated gene therapy.

  8. Local administration of AAV-BDNF to subventricular zone induces functional recovery in stroke rats.

    PubMed

    Yu, Seong-Jin; Tseng, Kuan-Yin; Shen, Hui; Harvey, Brandon K; Airavaara, Mikko; Wang, Yun

    2013-01-01

    Migration of new neuroprogenitor cells (NPCs) from the subventricular zone (SVZ) plays an important role in neurorepair after injury. Previous studies have shown that brain derived neurotrophic factor (BDNF) enhances the migration of NPCs from SVZ explants in neonatal mice in vitro. The purpose of this study was to identify the role of BDNF in SVZ cells using AAV-BDNF in an animal model of stroke. BDNF protein production after AAV-BDNF infection was verified in primary neuronal culture. AAV-BDNF or AAV-RFP was injected into the left SVZ region of adult rats at 14 days prior to right middle cerebral artery occlusion (MCAo). SVZ tissues were collected from the brain and placed in Metrigel cultures 1 day after MCAo. Treatment with AAV-BDNF significantly increased the migration of SVZ cells in the stroke brain in vitro. In another set of animals, AAV-GFP was co-injected with AAV-BDNF or AAV-RFP to label cells in left SVZ prior to right MCAo. Local administration of AAV-BDNF significantly enhanced recovery of locomotor function and migration of GFP-positive cells from the SVZ toward the lesioned hemisphere in stroke rats. Our data suggest that focal administration of AAV-BDNF to the SVZ increases behavioral recovery post stroke, possibly through the enhancement of migration of cells from SVZ in stroke animals. Regional manipulation of BDNF expression through AAV may be a novel approach for neurorepair in stroke brains.

  9. Construction and packaging of herpes simplex virus/adeno-associated virus (HSV/AAV) Hybrid amplicon vectors.

    PubMed

    Saydam, Okay; Glauser, Daniel L; Fraefel, Cornel

    2012-03-01

    Herpes simplex virus type 1 (HSV-1)-based amplicon vectors conserve most properties of the parental virus: broad host range, the ability to transduce dividing and nondiving cells, and a large transgene capacity. This permits incorporation of genomic sequences as well as cDNA, large transcriptional regulatory sequences for cell-specific expression, multiple transgene cassettes, or genetic elements from other viruses. Hybrid vectors use elements from HSV-1 that allow replication and packaging of large-vector DNA into highly infectious particles, and elements from other viruses that confer genetic stability to vector DNA in the transduced cell. For example, adeno-associated virus (AAV) has the unique ability to integrate its genome into a specific site on human chromosome 19. The viral rep gene and the inverted terminal repeats (ITRs) that flank the AAV genome are sufficient for this process. However, AAV-based vectors have a very small transgene capacity and do not conventionally contain the rep gene to support site-specific genomic integration. HSV/AAV hybrid vectors contain both HSV-1 replication and packaging functions and the AAV rep gene and a transgene cassette flanked by the AAV ITRs. This combines the large transgene capacity of HSV-1 with the capability of site-specific genomic transgene integration and long-term transgene expression of AAV. This protocol describes the preparation of HSV/AAV hybrid vectors using a replication-competent/conditional, packaging-defective HSV-1 genome cloned as a bacterial artificial chromosome (BAC) to provide helper functions for vector replication and packaging. The advantages and limitations of such vectors compared to standard HSV-1 amplicon vectors are also discussed.

  10. Efficacy of codelivery of dual AAV2/5 vectors in the murine retina and hippocampus.

    PubMed

    Palfi, Arpad; Chadderton, Naomi; McKee, Alex G; Blanco Fernandez, Alfonso; Humphries, Peter; Kenna, Paul F; Farrar, G Jane

    2012-08-01

    Recombinant adeno-associated virus (AAV) represents an efficient system for neuronal transduction. However, a potential drawback of AAV is its restricted packaging capacity of approximately 5 kb. To bypass this limitation, a number of dual- and triple-vector strategies divide the transgene(s) between two or three AAVs. The success of these approaches relies directly on efficient cotransduction of the component AAVs. Although proof of concept for these stratagems has been demonstrated, the underlying cotransduction rate has not been analyzed quantitatively. In this study, cotransduction efficiencies in both retina and hippocampus have been investigated, using two reporter AAVs expressing either a green (GFP) or red (DsR) fluorescent protein. Transduction efficiencies were monitored via microscopy, flow cytometry, and quantitative PCR. After viral transduction with 1.5×10(9) viral particles of each of the reporter AAVs, approximately one-third of the retinal cells expressed one or both transgenes at levels detectable by native fluorescence. Notably, the majority of the remaining retinal cells were also transduced and expressed the reporters at lower levels, which were detectable only by immunolabeling. Flow cytometric analysis demonstrated cotransduction rates of up to 55% with the two reporter AAVs in retinal cells. Modifying the ratio of the two coadministered AAVs resulted in altered mRNA expression levels of the two reporter genes in cotransduced cell populations. The study suggests that codelivery of AAV is an efficient means of expanding the therapeutic application of AAV in neurons.

  11. Oversized AAV transductifon is mediated via a DNA-PKcs-independent, Rad51C-dependent repair pathway.

    PubMed

    Hirsch, Matthew L; Li, Chengwen; Bellon, Isabella; Yin, Chaoying; Chavala, Sai; Pryadkina, Marina; Richard, Isabelle; Samulski, Richard Jude

    2013-12-01

    A drawback of gene therapy using adeno-associated virus (AAV) is the DNA packaging restriction of the viral capsid (<4.7 kb). Recent observations demonstrate oversized AAV genome transduction through an unknown mechanism. Herein, AAV production using an oversized reporter (6.2 kb) resulted in chloroform and DNase-resistant particles harboring distinct "fragment" AAV (fAAV) genomes (5.0, 2.4, and 1.6 kb). Fractionation experiments determined that only the larger "fragments" mediated transduction in vitro, and relatively efficient transduction was also demonstrated in the muscle, the eye, and the liver. In contrast with concatemerization-dependent large-gene delivery by split AAV, fAAV transduction is independent of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) in vitro and in vivo while disproportionately reliant on the DNA strand-annealing protein Rad51C. Importantly, fAAV's unique dependence on DNA repair proteins, compared with intact AAV, strongly suggests that the majority of oversized AAV transduction is mediated by fragmented genomes. Although fAAV transduction is less efficient than intact AAV, it is enhanced fourfold in muscle and sevenfold in the retina compared with split AAV transduction. Furthermore, fAAV carrying codon-optimized therapeutic dysferlin cDNA in a 7.5 kb expression cassette restored dysferlin levels in a dystrophic model. Collectively, oversized AAV genome transduction requires unique DNA repair pathways and offers an alternative, more efficient strategy for large-gene therapy.

  12. Transendocardial delivery of AAV6 results in highly efficient and global cardiac gene transfer in rhesus macaques.

    PubMed

    Gao, Guangping; Bish, Lawrence T; Sleeper, Meg M; Mu, Xin; Sun, Lan; Lou, You; Duan, Jiachuan; Hu, Chunyan; Wang, Li; Sweeney, H Lee

    2011-08-01

    Heart disease is the leading cause of morbidity and mortality, and cardiac gene transfer has potential as a novel therapeutic approach. We previously demonstrated safe and efficient gene transfer to the canine heart using a percutaneous transendocardial injection procedure to deliver self-complementary (sc) adeno-associated virus 6 (AAV6) vector. In the present study, we proceed with our vertical translation study to evaluate cardiac gene transfer in nonhuman primates (NHPs). We screened approximately 30 adult male rhesus macaques for the presence of neutralizing antibodies against AAV6, AAV8, and AAV9, and then selected seven monkeys whose antibody titers against these three serotypes were lower than 1/5. The animals were then randomized to receive either scAAV6 (n=3), scAAV8 (n=1), or scAAV9 (n=3) vector expressing the enhanced green fluorescent protein (EGFP) reporter gene at a dose of 5.4×10(12) genome copies/kg, which was administered according to a modified version of our previously developed transendocardial injection procedure. One animal treated with scAAV6 died secondary to esophageal intubation. The remaining animals were euthanized 7 days after gene transfer, at which time tissue was collected for analysis of EGFP expression, histopathology, and biodistribution of the vector genome. We found that (i) transendocardial delivery of AAV is safe in the NHP, (ii) AAV6 and AAV8 provide efficient cardiac gene transfer at similar levels and are superior to AAV9, and (iii) AAV6 is more cardiac-specific than AAV8 and AAV9. The results of this NHP study may help guide the development AAV vectors for the treatment of cardiovascular disease in humans.

  13. Structural and functional studies of ReP1-NCXSQ, a protein regulating the squid nerve Na+/Ca2+ exchanger.

    PubMed

    Cousido-Siah, Alexandra; Ayoub, Daniel; Berberián, Graciela; Bollo, Mariana; Van Dorsselaer, Alain; Debaene, François; DiPolo, Reinaldo; Petrova, Tatiana; Schulze-Briese, Clemens; Olieric, Vincent; Esteves, Adriana; Mitschler, André; Sanglier-Cianférani, Sarah; Beaugé, Luis; Podjarny, Alberto

    2012-09-01

    The protein ReP1-NCXSQ was isolated from the cytosol of squid nerves and has been shown to be required for MgATP stimulation of the squid nerve Na(+)/Ca(2+) exchanger NCXSQ1. In order to determine its mode of action and the corresponding biologically active ligand, sequence analysis, crystal structures and mass-spectrometric studies of this protein and its Tyr128Phe mutant are reported. Sequence analysis suggests that it belongs to the CRABP family in the FABP superfamily. The X-ray structure at 1.28 Å resolution shows the FABP β-barrel fold, with a fatty acid inside the barrel that makes a relatively short hydrogen bond to Tyr128 and shows a double bond between C9 and C10 but that is disordered beyond C12. Mass-spectrometric studies identified this fatty acid as palmitoleic acid, confirming the double bond between C9 and C10 and establishing a length of 16 C atoms in the aliphatic chain. This acid was caught inside during the culture in Escherichia coli and therefore is not necessarily linked to the biological activity. The Tyr128Phe mutant was unable to activate the Na(+)/Ca(2+) exchanger and the corresponding crystal structure showed that without the hydrogen bond to Tyr128 the palmitoleic acid inside the barrel becomes disordered. Native mass-spectrometric analysis confirmed a lower occupancy of the fatty acid in the Tyr128Phe mutant. The correlation between (i) the lack of activity of the Tyr128Phe mutant, (ii) the lower occupancy/disorder of the bound palmitoleic acid and (iii) the mass-spectrometric studies of ReP1-NCXSQ suggests that the transport of a fatty acid is involved in regulation of the NCXSQ1 exchanger, providing a novel insight into the mechanism of its regulation. In order to identify the biologically active ligand, additional high-resolution mass-spectrometric studies of the ligands bound to ReP1-NCXSQ were performed after incubation with squid nerve vesicles both with and without MgATP. These studies clearly identified palmitic acid as the

  14. Using a fed-batch culture strategy to enhance rAAV production in the baculovirus/insect cell system.

    PubMed

    Liu, Yu-Kuo; Yang, Ching-Jen; Liu, Chao-Lin; Shen, Chia-Rui; Shiau, Lie-Ding

    2010-08-01

    Recombinant adeno-associated virus (rAAV) is one of the most promising vectors for human gene therapy. However, the production systems that are currently available have a limited capacity and cannot provide sufficient quantities of rAAV for preclinical or clinical trials. Many novel methods for improving rAAV production have been developed, but few researchers have focused on the culture process. In this study, we use a fed-batch culture system to enhance rAAV yield in the baculovirus/insect cell system. When the insect cells were co-infected with MOI=5 of Bac-GFP at a ratio of 1:9:9 (Bac-GFP: Bac-Rep: Bac-VP), the fed-batch culture achieved optimal rAAV yields. In batch culture, the optimal cell density for producing rAAV was found to be 1x10(6) cells/ml, and the highest rAAV yield (1.22x10(8) IVP/ml, 122 IVP/cell) occurred at day 5 post-infection. In the fed-batch culture, rAAV yield reached 2.13x10(8) IVP/ml at day 4 post-infection, and the highest rAAV yield was 2.40x10(8) IVP/ml (240 IVP/cell) at day 5 post-infection. The cost of the batch and fed-batch cultures is similar; however, the rAAV yield was 2.6-fold higher in the fed-batch culture system compared with that in the batch culture system. Therefore, here we demonstrated an economical and efficient strategy for rAAV production.

  15. Adeno-associated virus (AAV) vectors in gene therapy: immune challenges and strategies to circumvent them.

    PubMed

    Hareendran, Sangeetha; Balakrishnan, Balaji; Sen, Dwaipayan; Kumar, Sanjay; Srivastava, Alok; Jayandharan, Giridhara R

    2013-11-01

    AAV-based gene transfer protocols have shown remarkable success when directed to immune-privileged sites such as for retinal disorders like Lebers congenital amaurosis. In contrast, AAV-mediated gene transfer into liver or muscle tissue for diseases such as hemophilia B, α1 anti-trypsin deficiency and muscular dystrophy has demonstrated a decline in gene transfer efficacy over time. It is now known that in humans, AAV triggers specific pathways that recruit immune sensors. These factors initiate an immediate reaction against either the viral capsid or the vector encoded protein as part of innate immune response or to produce a more specific adaptive response that generates immunological memory. The vector-transduced cells are then rapidly destroyed due to this immune activation. However, unlike other viral vectors, AAV is not immunogenic in murine models. Its immunogenicity becomes apparent only in large animal models and human subjects. Moreover, humans are natural hosts to AAV and exhibit a high seroprevalence against AAV vectors. This limits the widespread application of AAV vectors into patients with pre-existing neutralising antibodies or memory T cells. To address these issues, various strategies are being tested. Alternate serotype vectors (AAV1-10), efficient expression cassettes, specific tissue targeting, immune-suppression and engineered capsid variants are some approaches proposed to minimise this immune stimulation. In this review, we have summarised the nature of the immune response documented against AAV in various pre-clinical and clinical settings and have further discussed the strategies to evade them.

  16. Proteasome Inhibitors Decrease AAV2 Capsid derived Peptide Epitope Presentation on MHC Class I Following Transduction

    PubMed Central

    Finn, Jonathan D; Hui, Daniel; Downey, Harre D; Dunn, Danielle; Pien, Gary C; Mingozzi, Federico; Zhou, Shangzhen; High, Katherine A

    2009-01-01

    Adeno-associated viral (AAV) vectors are an extensively studied and highly used vector platform for gene therapy applications. We hypothesize that in the first clinical trial using AAV to treat hemophilia B, AAV capsid proteins were presented on the surface of transduced hepatocytes, resulting in clearance by antigen-specific CD8+ T cells and consequent loss of therapeutic transgene expression. It has been previously shown that proteasome inhibitors can have a dramatic effect on AAV transduction in vitro and in vivo. Here, we describe using the US Food and Drug Administration-approved proteasome inhibitor, bortezomib, to decrease capsid antigen presentation on hepatocytes in vitro, whereas at the same time, enhancing gene expression in vivo. Using an AAV capsid-specific T-cell reporter (TCR) line to analyze the effect of proteasome inhibitors on antigen presentation, we demonstrate capsid antigen presentation at low multiplicities of infection (MOIs), and inhibition of antigen presentation at pharmacologic levels of bortezomib. We also demonstrate that bortezomib can enhance Factor IX (FIX) expression from an AAV2 vector in mice, although the same effect was not observed for AAV8 vectors. A pharmacological agent that can enhance AAV transduction, decrease T-cell activation/proliferation, and decrease capsid antigen presentation would be a promising solution to obstacles to successful AAV-mediated, liver-directed gene transfer in humans. PMID:19904235

  17. The impact of AAV capsid-specific T cell responses on design and outcome of clinical gene transfer trials with recombinant AAV vectors - an evolving controversy.

    PubMed

    Ertl, Hildegund Cj; High, Katherine A

    2017-01-02

    Recombinant adenovirus-associated (rAAV) vectors due to their ease of construction, wide tissue tropism and lack of pathogenicity remain at the forefront for long-term gene replacement therapy. In spite of very encouraging pre-clinical results, clinical trials were initially unsuccessful; expression of the rAAV vector-delivered therapeutic protein was transient. Loss of expression was linked to an expansion of AAV capsid-specific T cell responses, leading to the hypothesis that rAAV vectors recall pre-existing memory T cells that had been induced by natural infections with AAV together with a helper virus. Although this was hotly debated at first, AAV capsid-specific T cell responses were observed in several gene transfer trials that used high doses of rAAV vectors. Subsequent trials designed to circumvent these T cell responses through the use of immunosuppressive drugs, rAAV vectors based on rare serotypes or modified to allow for therapeutic levels of the transgene product at low, non-immunogenic vector doses are now successful in correcting debilitating diseases.

  18. Widespread AAV1- and AAV2-mediated transgene expression in the nonhuman primate brain: implications for Huntington’s disease

    PubMed Central

    Hadaczek, Piotr; Stanek, Lisa; Ciesielska, Agnieszka; Sudhakar, Vivek; Samaranch, Lluis; Pivirotto, Philip; Bringas, John; O’Riordan, Catherine; Mastis, Bryan; San Sebastian, Waldy; Forsayeth, John; Cheng, Seng H; Bankiewicz, Krystof S; Shihabuddin, Lamya S

    2016-01-01

    Huntington’s disease (HD) is caused by a toxic gain-of-function associated with the expression of the mutant huntingtin (htt) protein. Therefore, the use of RNA interference to inhibit Htt expression could represent a disease-modifying therapy. The potential of two recombinant adeno-associated viral vectors (AAV), AAV1 and AAV2, to transduce the cortico-striatal tissues that are predominantly affected in HD was explored. Green fluorescent protein was used as a reporter in each vector to show that both serotypes were broadly distributed in medium spiny neurons in the striatum and cortico-striatal neurons after infusion into the putamen and caudate nucleus of nonhuman primates (NHP), with AAV1-directed expression being slightly more robust than AAV2-driven expression. This study suggests that both serotypes are capable of targeting neurons that degenerate in HD, and it sets the stage for the advanced preclinical evaluation of an RNAi-based therapy for this disease. PMID:27408903

  19. Significant changes in endogenous retinal gene expression assessed 1 year after a single intraocular injection of AAV-CNTF or AAV-BDNF

    PubMed Central

    LeVaillant, Chrisna J; Sharma, Anil; Muhling, Jill; Wheeler, Lachlan PG; Cozens, Greg S; Hellström, Mats; Rodger, Jennifer; Harvey, Alan R

    2016-01-01

    Use of viral vectors to deliver therapeutic genes to the central nervous system holds promise for the treatment of neurodegenerative diseases and neurotrauma. Adeno-associated viral (AAV) vectors encoding brain-derived neurotrophic factor (BDNF) or ciliary derived neurotrophic factor (CNTF) promote the viability and regeneration of injured adult rat retinal ganglion cells. However, these growth-inducing transgenes are driven by a constitutively active promoter, thus we examined whether long-term AAV-mediated secretion of BDNF or CNTF affected endogenous retinal gene expression. One year after the intravitreal injection of AAV-green fluorescent protein (GFP), bi-cistronic AAV-BDNF-GFP or AAV-CNTF-GFP, mRNA was extracted and analyzed using custom 96 well polymerase chain reaction arrays. Of 93 test genes, 56% showed significantly altered expression in AAV-BDNF-GFP and/or AAV-CNTF-GFP retinas compared with AAV-GFP controls. Of these genes, 73% showed differential expression in AAV-BDNF versus AAV-CNTF injected eyes. To focus on retinal ganglion cell changes, quantitative polymerase chain reaction was undertaken on mRNA (16 genes) obtained from fixed retinal sections in which the ganglion cell layer was enriched. The sign and extent of fold changes in ganglion cell layer gene expression differed markedly from whole retinal samples. Sustained and global alteration in endogenous mRNA expression after gene therapy should be factored into any interpretation of experimental/clinical outcomes, particularly when introducing factors into the central nervous system that require secretion to evoke functionality. PMID:27933306

  20. Significant changes in endogenous retinal gene expression assessed 1 year after a single intraocular injection of AAV-CNTF or AAV-BDNF.

    PubMed

    LeVaillant, Chrisna J; Sharma, Anil; Muhling, Jill; Wheeler, Lachlan Pg; Cozens, Greg S; Hellström, Mats; Rodger, Jennifer; Harvey, Alan R

    2016-01-01

    Use of viral vectors to deliver therapeutic genes to the central nervous system holds promise for the treatment of neurodegenerative diseases and neurotrauma. Adeno-associated viral (AAV) vectors encoding brain-derived neurotrophic factor (BDNF) or ciliary derived neurotrophic factor (CNTF) promote the viability and regeneration of injured adult rat retinal ganglion cells. However, these growth-inducing transgenes are driven by a constitutively active promoter, thus we examined whether long-term AAV-mediated secretion of BDNF or CNTF affected endogenous retinal gene expression. One year after the intravitreal injection of AAV-green fluorescent protein (GFP), bi-cistronic AAV-BDNF-GFP or AAV-CNTF-GFP, mRNA was extracted and analyzed using custom 96 well polymerase chain reaction arrays. Of 93 test genes, 56% showed significantly altered expression in AAV-BDNF-GFP and/or AAV-CNTF-GFP retinas compared with AAV-GFP controls. Of these genes, 73% showed differential expression in AAV-BDNF versus AAV-CNTF injected eyes. To focus on retinal ganglion cell changes, quantitative polymerase chain reaction was undertaken on mRNA (16 genes) obtained from fixed retinal sections in which the ganglion cell layer was enriched. The sign and extent of fold changes in ganglion cell layer gene expression differed markedly from whole retinal samples. Sustained and global alteration in endogenous mRNA expression after gene therapy should be factored into any interpretation of experimental/clinical outcomes, particularly when introducing factors into the central nervous system that require secretion to evoke functionality.

  1. The 32 kDa subunit of replication protein A (RPA) participates in the DNA replication of Mung bean yellow mosaic India virus (MYMIV) by interacting with the viral Rep protein.

    PubMed

    Singh, Dharmendra Kumar; Islam, Mohammad Nurul; Choudhury, Nirupam Roy; Karjee, Sumona; Mukherjee, Sunil Kumar

    2007-01-01

    Mung bean yellow mosaic India virus (MYMIV) is a member of genus begomoviridae and its genome comprises of bipartite (two components, namely DNA-A and DNA-B), single-stranded, circular DNA of about 2.7 kb. During rolling circle replication (RCR) of the DNA, the stability of the genome and maintenance of the stem-loop structure of the replication origin is crucial. Hence the role of host single-stranded DNA-binding protein, Replication protein A (RPA), in the RCR of MYMIV was examined. Two RPA subunits, namely the RPA70 kDa and RPA32 kDa, were isolated from pea and their roles were validated in a yeast system in which MYMIV DNA replication has been modelled. Here, we present evidences that only the RPA32 kDa subunit directly interacted with the carboxy terminus of MYMIV-Rep both in vitro as well as in yeast two-hybrid system. RPA32 modulated the functions of Rep by enhancing its ATPase and down regulating its nicking and closing activities. The possible role of these modulations in the context of viral DNA replication has been discussed. Finally, we showed the positive involvement of RPA32 in transient replication of the plasmid DNA bearing MYMIV replication origin using an in planta based assay.

  2. RepA-WH1 prionoid

    PubMed Central

    de la Espina, Susana Moreno-Díaz; Fernández-Tresguerres, M Elena; Gasset-Rosa, Fátima

    2011-01-01

    The intricate complexity at the molecular and cellular levels of the processes leading to the development of amyloid proteinopathies is somehow counterbalanced by their common, universal structural basis. The later has fueled the quest for suitable model systems to study protein amyloidosis under quasi-physiological conditions in vitro and in simpler organisms in vivo. Yeast prions have provided several of such model systems, yielding invaluable insights on amyloid structure, dynamics and transmission. However, yeast prions, unlike mammalian PrP, do not elicit any proteinopathy. We have recently reported that engineering RepA-WH1, a bacterial DNA-toggled protein conformational switch (dWH1→mWH1) sharing some analogies with nucleic acid-promoted PrPC→PrPSc replication, enables control on protein amyloidogenesis in vitro. Furthermore, RepA-WH1 gives way to a non-infectious, vertically-transmissible (from mother to daughter cells) amyloid proteinopathy in Escherichia coli. RepA-WH1 amyloid aggregates efficiently promote aging in bacteria, which exhibit a drastic lengthening in generation time, a limited number of division cycles and reduced fitness. The RepA-WH1 prionoid opens a direct means to untangle the general pathway(s) for protein amyloidosis in a host with reduced genome and proteome. PMID:21293179

  3. Tyrosine triple mutated AAV2-BDNF gene therapy in a rat model of transient IOP elevation

    PubMed Central

    Igarashi, Tsutomu; Kobayashi, Maika; Kameya, Shuhei; Fujimoto, Chiaki; Nakamoto, Kenji; Takahashi, Hisatomo; Igarashi, Toru; Miyake, Noriko; Iijima, Osamu; Hirai, Yukihiko; Shimada, Takashi; Okada, Takashi; Takahashi, Hiroshi

    2016-01-01

    Purpose We examined the neuroprotective effects of exogenous brain-derived neurotrophic factor (BDNF), which provides protection to retinal ganglion cells (RGCs) in rodents, in a model of transient intraocular pressure (IOP) elevation using a mutant (triple Y-F) self-complementary adeno-associated virus type 2 vector encoding BDNF (tm-scAAV2-BDNF). Methods The tm-scAAV2-BDNF or control vector encoding green fluorescent protein (GFP; tm-scAAV2-GFP) was intravitreally administered to rats, which were then divided into four groups: control, ischemia/reperfusion (I/R) injury only, I/R injury with tm-scAAV2-GFP, and tm-scAAV2-BDNF. I/R injury was then induced by transiently increasing IOP, after which the rats were euthanized to measure the inner retinal thickness and cell counts in the RGC layer. Results Intravitreous injection of tm-scAAV2-BDNF resulted in high levels of BDNF expression in the neural retina. Histological analysis showed that the inner retinal thickness and cell numbers in the RGC layer were preserved after transient IOP elevation in eyes treated with tm-scAAV2-BDNF but not in the other I/R groups. Significantly reduced glial fibrillary acidic protein (GFAP) immunostaining after I/R injury in the rats that received tm-scAAV2-BDNF indicated reduced retinal stress, and electroretinogram (ERG) analysis confirmed preservation of retinal function in the tm-scAAV2-BDNF group. Conclusions These results demonstrate the feasibility and effectiveness of neuroprotective gene therapy using tm-scAAV2-BDNF to protect the inner retina from transiently high intraocular pressure. An in vivo gene therapeutic approach to the clinical management of retinal diseases in conditions such as glaucoma, retinal artery occlusion, hypertensive retinopathy, and diabetic retinopathy thus appears feasible. PMID:27440998

  4. Gene therapy for choroideremia using an adeno-associated viral (AAV) vector.

    PubMed

    Barnard, Alun R; Groppe, Markus; MacLaren, Robert E

    2014-10-30

    Choroideremia is an outer retinal degeneration with a characteristic clinical appearance that was first described in the nineteenth century. The disorder begins with reduction of night vision and gradually progresses to blindness by middle age. The appearance of the fundus in sufferers is recognizable by the characteristic pale color caused by the loss of the outer retina, retinal-pigmented epithelium, and choroidal vessels, leading to exposure of the underlying sclera. Choroideremia shows X-linked recessive inheritance and the choroideremia gene (CHM) was one of the first to be identified by positional cloning in 1990. Subsequent identification and characterization of the CHM gene, which encodes Rab escort protein 1 (REP1), has led to better comprehension of the disease and enabled advances in genetic diagnosis. Despite several decades of work to understand the exact pathogenesis, no established treatments currently exist to stop or even slow the progression of retinal degeneration in choroideremia. Encouragingly, several specific molecular and clinical features make choroideremia an ideal candidate for treatment with gene therapy. This work describes the considerations and challenges in the development of a new clinical trial using adeno-associated virus (AAV) encoding the CHM gene.

  5. Gene Therapy for Choroideremia Using an Adeno-Associated Viral (AAV) Vector

    PubMed Central

    Barnard, Alun R.; Groppe, Markus; MacLaren, Robert E.

    2015-01-01

    Choroideremia is an outer retinal degeneration with a characteristic clinical appearance that was first described in the nineteenth century. The disorder begins with reduction of night vision and gradually progresses to blindness by middle age. The appearance of the fundus in sufferers is recognizable by the characteristic pale color caused by the loss of the outer retina, retinal-pigmented epithelium, and choroidal vessels, leading to exposure of the underlying sclera. Choroideremia shows X-linked recessive inheritance and the choroideremia gene (CHM) was one of the first to be identified by positional cloning in 1990. Subsequent identification and characterization of the CHM gene, which encodes Rab escort protein 1 (REP1), has led to better comprehension of the disease and enabled advances in genetic diagnosis. Despite several decades of work to understand the exact pathogenesis, no established treatments currently exist to stop or even slow the progression of retinal degeneration in choroideremia. Encouragingly, several specific molecular and clinical features make choroideremia an ideal candidate for treatment with gene therapy. This work describes the considerations and challenges in the development of a new clinical trial using adeno-associated virus (AAV) encoding the CHM gene. PMID:25359548

  6. AAV retinal transduction in a large animal model species: Comparison of a self-complementary AAV2/5 with a single-stranded AAV2/5 vector

    PubMed Central

    Bartoe, J.T.; Fischer, A.J.; Scott, M.; Boye, S.L.; Chiodo, V.; Hauswirth, W.W.

    2009-01-01

    Purpose To compare self-complementary (sc) and single-stranded (ss) adeno-associated viral 2/5 (AAV2/5) vectors for retinal cell transduction in the dog when delivered by subretinal injection. Methods ScAAV2/5 and ssAAV2/5 vectors encoding enhanced green fluorescent protein (GFP) under control of the chicken beta actin promoter were prepared to the same titer. Equal amounts of viral particles were delivered into the subretinal spaces of both eyes of two dogs. In each dog, one eye received the scAAV2/5 and the other the ssAAV2/5. In vivo expression of GFP was monitored ophthalmoscopically. The dogs were sacrificed, and their retinas were examined by fluorescent microscopy and immunohistochemistry to determine GFP expression patterns and to assay for glial reactivity. Results GFP expression in the scAAV2/5 injected eyes was detectable at a much earlier time point than in the ssAAV2/5 injected eyes. Expression of GFP was also at higher levels in the scAAV2/5-injected eyes. Expression levels remained stable for the seven month duration of the study. The types of cells transduced by both vectors were similar; there was strong reporter gene expression in the RPE and photoreceptors, although not all cones in the transduced area expressed GFP. Some horizontal and Müller cells were also transduced. Conclusions When delivered by subretinal injection in the dog, scAAV2/5 induces faster and stronger transgene expression than ssAAV2/5. The spectrum of retinal neurons transduced is similar between the two vectors. These results confirm in a large animal model those previously reported in the mouse. ScAAV2/5 shows promise for use in the treatment of conditions where a rapid transgene expression is desirable. Furthermore, it may be possible to use a lower number of viral particles to achieve the same effect compared with ssAAV2/5 vectors. PMID:19756181

  7. Are the SSB-Interacting Proteins RecO, RecG, PriA and the DnaB-Interacting Protein Rep Bound to Progressing Replication Forks in Escherichia coli?

    PubMed Central

    Matelot, Mélody; Allemand, Jean-François; Michel, Bénédicte

    2015-01-01

    In all organisms several enzymes that are needed upon replication impediment are targeted to replication forks by interaction with a replication protein. In most cases these proteins interact with the polymerase clamp or with single-stranded DNA binding proteins (SSB). In Escherichia coli an accessory replicative helicase was also shown to interact with the DnaB replicative helicase. Here we have used cytological observation of Venus fluorescent fusion proteins expressed from their endogenous loci in live E. coli cells to determine whether DNA repair and replication restart proteins that interact with a replication protein travel with replication forks. A custom-made microscope that detects active replisome molecules provided that they are present in at least three copies was used. Neither the recombination proteins RecO and RecG, nor the replication accessory helicase Rep are detected specifically in replicating cells in our assay, indicating that either they are not present at progressing replication forks or they are present in less than three copies. The Venus-PriA fusion protein formed foci even in the absence of replication forks, which prevented us from reaching a conclusion. PMID:26244508

  8. Mucopolysaccharidosis IIIB confers enhanced neonatal intracranial transduction by AAV8 but not by 5, 9 or rh10

    PubMed Central

    Gilkes, J A; Bloom, M D; Heldermon, C D

    2016-01-01

    Sanfilippo syndrome type B (mucopolysaccharidosis IIIB, MPS IIIB) is a lysosomal storage disease resulting from deficiency of N-acetyl-glucosaminidase (NAGLU) activity. To determine the possible therapeutic utility of recombinant adeno-associated virus (rAAV) in early gene therapy-based interventions, we performed a comprehensive assessment of transduction and biodistribution profiles of four central nervous system (CNS) administered rAAV serotypes, -5, -8, -9 and -rh10. To simulate optimal earliest treatment of the disease, each rAAV serotype was injected into the CNS of neonatal MPS IIIB and control animals. We observed marked differences in biodistribution and transduction profiles between the serotypes and this differed in MPS IIIB compared with healthy control mice. Overall, in control mice, all serotypes performed comparably, although some differences were observed in certain focal areas. In MPS IIIB mice, AAV8 was more efficient than AAV5, -9 and -rh10 for gene delivery to most structures analyzed, including the cerebral cortex, hippocampus and thalamus. Noteworthy, the pattern of biodistribution within the CNS varied by serotype and genotype. Interestingly, AAV8 also produced the highest green fluorescent protein intensity levels compared with any other serotype and demonstrated improved transduction in NAGLU compared with control brains. Importantly, we also show leakage of AAV8, -9 and -rh10, but not AAV5, from CNS parenchyma to systemic organs. Overall, our data suggest that AAV8 represents the best therapeutic gene transfer vector for early intervention in MPS IIIB. PMID:26674264

  9. Widespread Central Nervous System Gene Transfer and Silencing After Systemic Delivery of Novel AAV-AS Vector.

    PubMed

    Choudhury, Sourav R; Harris, Anne F; Cabral, Damien J; Keeler, Allison M; Sapp, Ellen; Ferreira, Jennifer S; Gray-Edwards, Heather L; Johnson, Jacob A; Johnson, Aime K; Su, Qin; Stoica, Lorelei; DiFiglia, Marian; Aronin, Neil; Martin, Douglas R; Gao, Guangping; Sena-Esteves, Miguel

    2016-04-01

    Effective gene delivery to the central nervous system (CNS) is vital for development of novel gene therapies for neurological diseases. Adeno-associated virus (AAV) vectors have emerged as an effective platform for in vivo gene transfer, but overall neuronal transduction efficiency of vectors derived from naturally occurring AAV capsids after systemic administration is relatively low. Here, we investigated the possibility of improving CNS transduction of existing AAV capsids by genetically fusing peptides to the N-terminus of VP2 capsid protein. A novel vector AAV-AS, generated by the insertion of a poly-alanine peptide, is capable of extensive gene transfer throughout the CNS after systemic administration in adult mice. AAV-AS is 6- and 15-fold more efficient than AAV9 in spinal cord and cerebrum, respectively. The neuronal transduction profile varies across brain regions but is particularly high in the striatum where AAV-AS transduces 36% of striatal neurons. Widespread neuronal gene transfer was also documented in cat brain and spinal cord. A single intravenous injection of an AAV-AS vector encoding an artificial microRNA targeting huntingtin (Htt) resulted in 33-50% knockdown of Htt across multiple CNS structures in adult mice. This novel AAV-AS vector is a promising platform to develop new gene therapies for neurodegenerative disorders.

  10. Rescue of Hearing by Gene Delivery to Inner-Ear Hair Cells Using Exosome-Associated AAV.

    PubMed

    György, Bence; Sage, Cyrille; Indzhykulian, Artur A; Scheffer, Deborah I; Brisson, Alain R; Tan, Sisareuth; Wu, Xudong; Volak, Adrienn; Mu, Dakai; Tamvakologos, Panos I; Li, Yaqiao; Fitzpatrick, Zachary; Ericsson, Maria; Breakefield, Xandra O; Corey, David P; Maguire, Casey A

    2017-02-01

    Adeno-associated virus (AAV) is a safe and effective vector for gene therapy for retinal disorders. Gene therapy for hearing disorders is not as advanced, in part because gene delivery to sensory hair cells of the inner ear is inefficient. Although AAV transduces the inner hair cells of the mouse cochlea, outer hair cells remain refractory to transduction. Here, we demonstrate that a vector, exosome-associated AAV (exo-AAV), is a potent carrier of transgenes to all inner ear hair cells. Exo-AAV1-GFP is more efficient than conventional AAV1-GFP, both in mouse cochlear explants in vitro and with direct cochlear injection in vivo. Exo-AAV shows no toxicity in vivo, as assayed by tests of auditory and vestibular function. Finally, exo-AAV1 gene therapy partially rescues hearing in a mouse model of hereditary deafness (lipoma HMGIC fusion partner-like 5/tetraspan membrane protein of hair cell stereocilia [Lhfpl5/Tmhs(-/-)]). Exo-AAV is a powerful gene delivery system for hair cell research and may be useful for gene therapy for deafness.

  11. Intraocular route of AAV2 vector administration defines humoral immune response and therapeutic potential

    PubMed Central

    Miller, Rehae; Han, Ping-Yang; Pang, Jijing; Dinculescu, Astra; Chiodo, Vince; Hauswirth, William W.

    2008-01-01

    Purpose Safety and efficiency are critical for successful gene therapy. Adeno-associated viral (AAV) vectors are commonly used for gene transfer in both human and animal studies. However, administration of AAV vectors can lead to development of neutralizing antibodies against the vector capsid, thus decreasing the efficiency of therapeutic gene transfer and preventing effective vector readministration. We investigated immune responses to different routes of ocular administration and readministration of AAV vectors, and the effect of previous exposure of AAV vector in one eye on the transduction efficacy of subsequent intraocular AAV-mediated gene delivery to the partner eye. Methods We tested two vector systems. One contained a cDNA encoding a secreted pigment epithelial derived factor (PEDF) cDNA under the control of a Cytomegalovirus (CMV) enhancer and chicken β-actin promoter (CBA; AAV2-CBA-PEDF) and was tested in a murine model of laser-induced choroidal neovascularization (CNV). The other vector contained a cDNA encoding the intracellular reporter green fluorescent protein (GFP) under the control of the same promoter (AAV2-CBA-GFP). Animals were divided into groups and received sequential injections at different combinations of either intravitreal or subretinal routes. CNV was evaluated by fluorescein angiographic choroidal flat-mount image analysis. The expression of GFP was analyzed in retinal sections by direct fluorescence imaging. Antibodies against AAV2 capsid and transgenes were analyzed by ELISA using serum samples collected before injection and different time points after the injection. Neutralizing antibodies were characterized by in vitro assays. Results Various ocular compartments responded to AAV administration differently. Intravitreal administration of AAV vectors, which resulted in transduction of inner retina (primarily retinal ganglion cells), generated a humoral immune response against AAV capsid that blocked vector expression upon

  12. Engineering AAV receptor footprints for gene therapy.

    PubMed

    Madigan, Victoria J; Asokan, Aravind

    2016-06-01

    Adeno-associated viruses (AAV) are currently at the forefront of human gene therapy clinical trials as recombinant vectors. Significant progress has been made in elucidating the structure, biology and tropisms of different naturally occurring AAV isolates in the past decade. In particular, a spectrum of AAV capsid interactions with host receptors have been identified and characterized. These studies have enabled a better understanding of key determinants of AAV cell recognition and entry in different hosts. This knowledge is now being applied toward engineering new, lab-derived AAV capsids with favorable transduction profiles. The current review conveys a structural perspective of capsid-glycan interactions and provides a roadmap for generating synthetic strains by engineering AAV receptor footprints.

  13. Comparative Transduction Efficiency of AAV Vector Serotypes 1–6 in the Substantia Nigra and Striatum of the Primate Brain

    PubMed Central

    Markakis, Eleni A; Vives, Kenneth P; Bober, Jeremy; Leichtle, Stefan; Leranth, Csaba; Beecham, Jeff; Elsworth, John D; Roth, Robert H; Samulski, R Jude; Redmond, D Eugene

    2009-01-01

    Vectors derived from adeno-associated virus (AAV) are promising candidates for neural cell transduction in vivo because they are nonpathogenic and achieve long-term transduction in the central nervous system. AAV serotype 2 (AAV2) is the most widely used AAV vector in clinical trials based largely on its ability to transduce neural cells in the rodent and primate brain. Prior work in rodents suggests that other serotypes might be more efficient; however, a systematic evaluation of vector transduction efficiency has not yet been performed in the primate brain. In this study, AAV viral vectors of serotypes 1–6 with an enhanced green-fluorescent protein (GFP) reporter gene were generated at comparable titers, and injected in equal amounts into the brains of Chlorocebus sabaeus. Vector injections were placed in the substantia nigra (SN) and the caudate nucleus (CD). One month after injection, immunohistochemistry for GFP was performed and the total number of GFP+ cells was calculated using unbiased stereology. AAV5 was the most efficient vector, not only transducing significantly more cells than any other serotype, but also transducing both NeuN+ and glial-fibrillary-acidic protein positive (GFAP+) cells. These results suggest that AAV5 is a more effective vector than AAV2 at delivering potentially therapeutic transgenes to the nigrostriatal system of the primate brain. PMID:20010918

  14. Better Targeting, Better Efficiency for Wide-Scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B.

    PubMed

    Jackson, Kasey L; Dayton, Robert D; Deverman, Benjamin E; Klein, Ronald L

    2016-01-01

    Widespread genetic modification of cells in the central nervous system (CNS) with a viral vector has become possible and increasingly more efficient. We previously applied an AAV9 vector with the cytomegalovirus/chicken beta-actin (CBA) hybrid promoter and achieved wide-scale CNS transduction in neonatal and adult rats. However, this method transduces a variety of tissues in addition to the CNS. Thus we studied intravenous AAV9 gene transfer with a synapsin promoter to better target the neurons. We noted in systematic comparisons that the synapsin promoter drives lower level expression than does the CBA promoter. The engineered adeno-associated virus (AAV)-PHP.B serotype was compared with AAV9, and AAV-PHP.B did enhance the efficiency of expression. Combining the synapsin promoter with AAV-PHP.B could therefore be advantageous in terms of combining two refinements of targeting and efficiency. Wide-scale expression was used to model a disease with widespread pathology. Vectors encoding the amyotrophic lateral sclerosis (ALS)-related protein transactive response DNA-binding protein, 43 kDa (TDP-43) with the synapsin promoter and AAV-PHP.B were used for efficient CNS-targeted TDP-43 expression. Intracerebroventricular injections were also explored to limit TDP-43 expression to the CNS. The neuron-selective promoter and the AAV-PHP.B enhanced gene transfer and ALS disease modeling in adult rats.

  15. Better Targeting, Better Efficiency for Wide-Scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B

    PubMed Central

    Jackson, Kasey L.; Dayton, Robert D.; Deverman, Benjamin E.; Klein, Ronald L.

    2016-01-01

    Widespread genetic modification of cells in the central nervous system (CNS) with a viral vector has become possible and increasingly more efficient. We previously applied an AAV9 vector with the cytomegalovirus/chicken beta-actin (CBA) hybrid promoter and achieved wide-scale CNS transduction in neonatal and adult rats. However, this method transduces a variety of tissues in addition to the CNS. Thus we studied intravenous AAV9 gene transfer with a synapsin promoter to better target the neurons. We noted in systematic comparisons that the synapsin promoter drives lower level expression than does the CBA promoter. The engineered adeno-associated virus (AAV)-PHP.B serotype was compared with AAV9, and AAV-PHP.B did enhance the efficiency of expression. Combining the synapsin promoter with AAV-PHP.B could therefore be advantageous in terms of combining two refinements of targeting and efficiency. Wide-scale expression was used to model a disease with widespread pathology. Vectors encoding the amyotrophic lateral sclerosis (ALS)-related protein transactive response DNA-binding protein, 43 kDa (TDP-43) with the synapsin promoter and AAV-PHP.B were used for efficient CNS-targeted TDP-43 expression. Intracerebroventricular injections were also explored to limit TDP-43 expression to the CNS. The neuron-selective promoter and the AAV-PHP.B enhanced gene transfer and ALS disease modeling in adult rats. PMID:27867348

  16. Computational and molecular tools for scalable rAAV-mediated genome editing

    PubMed Central

    Stoimenov, Ivaylo; Ali, Muhammad Akhtar; Pandzic, Tatjana; Sjöblom, Tobias

    2015-01-01

    The rapid discovery of potential driver mutations through large-scale mutational analyses of human cancers generates a need to characterize their cellular phenotypes. Among the techniques for genome editing, recombinant adeno-associated virus (rAAV)-mediated gene targeting is suited for knock-in of single nucleotide substitutions and to a lesser degree for gene knock-outs. However, the generation of gene targeting constructs and the targeting process is time-consuming and labor-intense. To facilitate rAAV-mediated gene targeting, we developed the first software and complementary automation-friendly vector tools to generate optimized targeting constructs for editing human protein encoding genes. By computational approaches, rAAV constructs for editing ∼71% of bases in protein-coding exons were designed. Similarly, ∼81% of genes were predicted to be targetable by rAAV-mediated knock-out. A Gateway-based cloning system for facile generation of rAAV constructs suitable for robotic automation was developed and used in successful generation of targeting constructs. Together, these tools enable automated rAAV targeting construct design, generation as well as enrichment and expansion of targeted cells with desired integrations. PMID:25488813

  17. Inverse zonation of hepatocyte transduction with AAV vectors between mice and non-human primates

    PubMed Central

    Bell, Peter; Wang, Lili; Gao, Guangping; Haskins, Mark E.; Tarantal, Alice F.; McCarter, Robert J.; Zhu, Yanqing; Yu, Hongwei; Wilson, James M.

    2011-01-01

    Gene transfer vectors based on adeno-associated virus 8 (AAV8) are highly efficient in liver transduction and can be easily administered by intravenous injection. In mice, AAV8 transduces predominantly hepatocytes near central veins and yields lower transduction levels in hepatocytes in periportal regions. This transduction bias has important implications for gene therapy that aims to correct metabolic liver enzymes because metabolic zonation along the porto-central axis requires the expression of therapeutic proteins within the zone where they are normally localized. In the present study we compared the expression pattern of AAV8 expressing green fluorescent protein (GFP) in liver between mice, dogs, and non-human primates. We confirmed the pericentral dominance in transgene expression in mice with AAV8 when the liver-specific thyroid hormone-binding globulin (TBG) promoter was used but also observed the same expression pattern with the ubiquitous chicken β-actin (CB) and cytomegalovirus (CMV) promoters, suggesting that transduction zonation is not caused by promoter specificity. Predominantly pericentral expression was also found in dogs injected with AAV8. In contrast, in cynomolgus and rhesus macaques the expression pattern from AAV vectors was reversed, i.e. transgene expression was most intense around portal areas and less intense or absent around central veins. Infant rhesus macaques as well as newborn mice injected with AAV8 however showed a random distribution of transgene expression with neither portal nor central transduction bias. Based on the data in monkeys, adult humans treated with AAV vectors are predicted to also express transgenes predominantly in periportal regions whereas infants are likely to show a uniform transduction pattern in liver. PMID:21778099

  18. Exosome-associated AAV2 vector mediates robust gene delivery into the murine retina upon intravitreal injection.

    PubMed

    Wassmer, Sarah J; Carvalho, Livia S; György, Bence; Vandenberghe, Luk H; Maguire, Casey A

    2017-03-31

    Widespread gene transfer to the retina is challenging as it requires vector systems to overcome physical and biochemical barriers to enter and diffuse throughout retinal tissue. We investigated whether exosome-associated adeno-associated virus, (exo-AAV) enabled broad retinal targeting following intravitreal (IVT) injection, as exosomes have been shown to traverse biological barriers and mediate widespread distribution upon systemic injection. We packaged an AAV genome encoding green fluorescent protein (GFP) into conventional AAV2 and exo-AAV2 vectors. Vectors were IVT injected into the eyes of adult mice. GFP expression was noninvasively monitored by fundus imaging and retinal expression was analyzed 4 weeks post-injection by qRT-PCR and histology. Exo-AAV2 outperformed conventional AAV2 in GFP expression based on fundus image analysis and qRT-PCR. Exo-AAV2 demonstrated deeper penetration in the retina, efficiently reaching the inner nuclear and outer plexiform, and to a lesser extent the outer nuclear layer. Cell targets were ganglion cells, bipolar cells, Müller cells, and photoreceptors. Exo-AAV2 serves as a robust gene delivery tool for murine retina, and the simplicity of production and isolation should make it widely applicable to basic research of the eye.

  19. Exosome-associated AAV2 vector mediates robust gene delivery into the murine retina upon intravitreal injection

    PubMed Central

    Wassmer, Sarah J.; Carvalho, Livia S.; György, Bence; Vandenberghe, Luk H.; Maguire, Casey A.

    2017-01-01

    Widespread gene transfer to the retina is challenging as it requires vector systems to overcome physical and biochemical barriers to enter and diffuse throughout retinal tissue. We investigated whether exosome-associated adeno-associated virus, (exo-AAV) enabled broad retinal targeting following intravitreal (IVT) injection, as exosomes have been shown to traverse biological barriers and mediate widespread distribution upon systemic injection. We packaged an AAV genome encoding green fluorescent protein (GFP) into conventional AAV2 and exo-AAV2 vectors. Vectors were IVT injected into the eyes of adult mice. GFP expression was noninvasively monitored by fundus imaging and retinal expression was analyzed 4 weeks post-injection by qRT-PCR and histology. Exo-AAV2 outperformed conventional AAV2 in GFP expression based on fundus image analysis and qRT-PCR. Exo-AAV2 demonstrated deeper penetration in the retina, efficiently reaching the inner nuclear and outer plexiform, and to a lesser extent the outer nuclear layer. Cell targets were ganglion cells, bipolar cells, Müller cells, and photoreceptors. Exo-AAV2 serves as a robust gene delivery tool for murine retina, and the simplicity of production and isolation should make it widely applicable to basic research of the eye. PMID:28361998

  20. Enhancing Transgene Expression from Recombinant AAV8 Vectors in Different Tissues Using Woodchuck Hepatitis Virus Post-Transcriptional Regulatory Element

    PubMed Central

    Wang, Lizheng; Wang, Zixuan; Zhang, Fangfang; Zhu, Rui; Bi, Jinpeng; Wu, Jiaxin; Zhang, Haihong; Wu, Hui; Kong, Wei; Yu, Bin; Yu, Xianghui

    2016-01-01

    Adeno-associated virus (AAV) vectors have been utilized extensively in gene therapy and gene function studies, as strong transgene expression is a prerequisite for positive outcomes. AAV8 was reported as the most efficient AAV serotype for transduction of the liver, brain and muscle compared with other serotypes. However, AAV8-mediated transduction of human hepatocytes is rather poor with approximately 20-fold lower efficiency compared with that of mouse hepatocytes. Therefore, we applied the woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) to enhance AAV8-mediated transgene expression driven by a combination promoter (CAG promoter) with a CMV-IE enhancer and chicken beta-actin promoter for a more efficient viral vector. Transgene expression from recombinant AAV8 (rAAV8) vectors harboring a red fluorescent protein (RFP) reporter gene with or without WPRE were evaluated in vitro and in vivo. The results demonstrated that WPRE improved AAV8-mediated RFP expression in different cell lines with clear increases of transgene expression in the liver, brain or muscle of animals. The findings of this study will help to substantially reduce the quantity of viral particles that must be injected in order to reach a therapeutic level of transgene expression in gene therapy. Consequently, such dose reductions may lessen the potential risks associated with high doses of viral vectors. PMID:27076785

  1. Tailored transgene expression to specific cell types in the central nervous system after peripheral injection with AAV9

    PubMed Central

    Dashkoff, Jonathan; Lerner, Eli P; Truong, Nhi; Klickstein, Jacob A; Fan, Zhanyun; Mu, Dakai; Maguire, Casey A; Hyman, Bradley T; Hudry, Eloise

    2016-01-01

    The capacity of certain adeno-associated virus (AAV) vectors to cross the blood–brain barrier after intravenous delivery offers a unique opportunity for noninvasive brain delivery. However, without a well-tailored system, the use of a peripheral route injection may lead to undesirable transgene expression in nontarget cells or organs. To refine this approach, the present study characterizes the transduction profiles of new self-complementary AAV9 (scAAV9) expressing the green fluorescent protein (GFP) either under an astrocyte (glial fibrillary acidic (GFA) protein) or neuronal (Synapsin (Syn)) promoter, after intravenous injection of adult mice (2 × 1013 vg/kg). ScAAV9-GFA-GFP and scAAV9-Syn-GFP robustly transduce astrocytes (11%) and neurons (17%), respectively, without aberrant expression leakage. Interestingly, while the percentages of GFP-positive astrocytes with scAAV9-GFA-GFP are similar to the performances observed with scAAV9-CBA-GFP (broadly active promoter), significant higher percentages of neurons express GFP with scAAV9-Syn-GFP. GFP-positive excitatory as well as inhibitory neurons are observed, as well as motor neurons in the spinal cord. Additionally, both activated (GFAP-positive) and resting astrocytes (GFAP-negative) express the reporter gene after scAAV9-GFA-GFP injection. These data thoroughly characterize the gene expression specificity of AAVs fitted with neuronal and astrocyte-selective promoters after intravenous delivery, which will prove useful for central nervous system (CNS) gene therapy approaches in which peripheral expression of transgene is a concern. PMID:27933308

  2. Efficient and Targeted Transduction of Nonhuman Primate Liver With Systemically Delivered Optimized AAV3B Vectors.

    PubMed

    Li, Shaoyong; Ling, Chen; Zhong, Li; Li, Mengxin; Su, Qin; He, Ran; Tang, Qiushi; Greiner, Dale L; Shultz, Leonard D; Brehm, Michael A; Flotte, Terence R; Mueller, Christian; Srivastava, Arun; Gao, Guangping

    2015-12-01

    Recombinant adeno-associated virus serotype 3B (rAAV3B) can transduce cultured human liver cancer cells and primary human hepatocytes efficiently. Serine (S)- and threonine (T)-directed capsid modifications further augment its transduction efficiency. Systemically delivered capsid-optimized rAAV3B vectors can specifically target cancer cells in a human liver cancer xenograft model, suggesting their potential use for human liver-directed gene therapy. Here, we compared transduction efficiencies of AAV3B and AAV8 vectors in cultured primary human hepatocytes and cancer cells as well as in human and mouse hepatocytes in a human liver xenograft NSG-PiZ mouse model. We also examined the safety and transduction efficacy of wild-type (WT) and capsid-optimized rAAV3B in the livers of nonhuman primates (NHPs). Intravenously delivered S663V+T492V (ST)-modified self-complementary (sc) AAV3B-EGFP vectors led to liver-targeted robust enhanced green fluorescence protein (EGFP) expression in NHPs without apparent hepatotoxicity. Intravenous injections of both WT and ST-modified rAAV3B.ST-rhCG vectors also generated stable super-physiological levels of rhesus chorionic gonadotropin (rhCG) in NHPs. The vector genome predominantly targeted the liver. Clinical chemistry and histopathology examinations showed no apparent vector-related toxicity. Our studies should be important and informative for clinical development of optimized AAV3B vectors for human liver-directed gene therapy.

  3. Photoreceptor-targeted gene delivery using intravitreally administered AAV vectors in dogs

    PubMed Central

    Boyd, RF; Sledge, DG; Boye, SL; Boye, SE; Hauswirth, WW; Komáromy, AM; Petersen-Jones, SM; Bartoe, JT

    2016-01-01

    Delivery of therapeutic transgenes to retinal photoreceptors using adeno-associated virus (AAV) vectors has traditionally required subretinal injection. Recently, photoreceptor transduction efficiency following intravitreal injection (IVT) has improved in rodent models through use of capsid-mutant AAV vectors; but remains limited in large animal models. Thickness of the inner limiting membrane (ILM) in large animals is thought to impair retinal penetration by AAV. Our study compared two newly developed AAV vectors containing multiple capsid amino acid substitutions following IVT in dogs. The ability of two promoter constructs to restrict reporter transgene expression to photoreceptors was also evaluated. AAV vectors containing the interphotoreceptor-binding protein (IRBP) promoter drove expression exclusively in rod and cone photoreceptors, with transduction efficiencies of ~ 4% of cones and 2% of rods. Notably, in the central region containing the cone-rich visual streak, 15.6% of cones were transduced. Significant regional variation existed, with lower transduction efficiencies in the temporal regions of all eyes. This variation did not correlate with ILM thickness. Vectors carrying a cone-specific promoter failed to transduce a quantifiable percentage of cone photoreceptors. The newly developed AAV vectors containing the IRBP promoter were capable of producing photoreceptor-specific transgene expression following IVT in the dog. PMID:26467396

  4. Photoreceptor-targeted gene delivery using intravitreally administered AAV vectors in dogs.

    PubMed

    Boyd, R F; Sledge, D G; Boye, S L; Boye, S E; Hauswirth, W W; Komáromy, A M; Petersen-Jones, S M; Bartoe, J T

    2016-02-01

    Delivery of therapeutic transgenes to retinal photoreceptors using adeno-associated virus (AAV) vectors has traditionally required subretinal injection. Recently, photoreceptor transduction efficiency following intravitreal injection (IVT) has improved in rodent models through use of capsid-mutant AAV vectors; but remains limited in large animal models. Thickness of the inner limiting membrane (ILM) in large animals is thought to impair retinal penetration by AAV. Our study compared two newly developed AAV vectors containing multiple capsid amino acid substitutions following IVT in dogs. The ability of two promoter constructs to restrict reporter transgene expression to photoreceptors was also evaluated. AAV vectors containing the interphotoreceptor-binding protein (IRBP) promoter drove expression exclusively in rod and cone photoreceptors, with transduction efficiencies of ~4% of cones and 2% of rods. Notably, in the central region containing the cone-rich visual streak, 15.6% of cones were transduced. Significant regional variation existed, with lower transduction efficiencies in the temporal regions of all eyes. This variation did not correlate with ILM thickness. Vectors carrying a cone-specific promoter failed to transduce a quantifiable percentage of cone photoreceptors. The newly developed AAV vectors containing the IRBP promoter were capable of producing photoreceptor-specific transgene expression following IVT in the dog.

  5. Comprehensive Small RNA-Seq of Adeno-Associated Virus (AAV)-Infected Human Cells Detects Patterns of Novel, Non-Coding AAV RNAs in the Absence of Cellular miRNA Regulation

    PubMed Central

    Stutika, Catrin; Mietzsch, Mario; Gogol-Döring, Andreas; Weger, Stefan; Sohn, Madlen; Chen, Wei; Heilbronn, Regine

    2016-01-01

    Most DNA viruses express small regulatory RNAs, which interfere with viral or cellular gene expression. For adeno-associated virus (AAV), a small ssDNA virus with a complex biphasic life cycle miRNAs or other small regulatory RNAs have not yet been described. This is the first comprehensive Illumina-based RNA-Seq analysis of small RNAs expressed by AAV alone or upon co-infection with helper adenovirus or HSV. Several hotspots of AAV-specific small RNAs were detected mostly close to or within the AAV-ITR and apparently transcribed from the newly identified anti-p5 promoter. An additional small RNA hotspot was located downstream of the p40 promoter, from where transcription of non-coding RNAs associated with the inhibition of adenovirus replication were recently described. Parallel detection of known Ad and HSV miRNAs indirectly validated the newly identified small AAV RNA species. The predominant small RNAs were analyzed on Northern blots and by human argonaute protein-mediated co-immunoprecipitation. None of the small AAV RNAs showed characteristics of bona fide miRNAs, but characteristics of alternative RNA processing indicative of differentially regulated AAV promoter-associated small RNAs. Furthermore, the AAV-induced regulation of cellular miRNA levels was analyzed at different time points post infection. In contrast to other virus groups AAV infection had virtually no effect on the expression of cellular miRNA, which underscores the long-established concept that wild-type AAV infection is apathogenic. PMID:27611072

  6. Comprehensive Small RNA-Seq of Adeno-Associated Virus (AAV)-Infected Human Cells Detects Patterns of Novel, Non-Coding AAV RNAs in the Absence of Cellular miRNA Regulation.

    PubMed

    Stutika, Catrin; Mietzsch, Mario; Gogol-Döring, Andreas; Weger, Stefan; Sohn, Madlen; Chen, Wei; Heilbronn, Regine

    2016-01-01

    Most DNA viruses express small regulatory RNAs, which interfere with viral or cellular gene expression. For adeno-associated virus (AAV), a small ssDNA virus with a complex biphasic life cycle miRNAs or other small regulatory RNAs have not yet been described. This is the first comprehensive Illumina-based RNA-Seq analysis of small RNAs expressed by AAV alone or upon co-infection with helper adenovirus or HSV. Several hotspots of AAV-specific small RNAs were detected mostly close to or within the AAV-ITR and apparently transcribed from the newly identified anti-p5 promoter. An additional small RNA hotspot was located downstream of the p40 promoter, from where transcription of non-coding RNAs associated with the inhibition of adenovirus replication were recently described. Parallel detection of known Ad and HSV miRNAs indirectly validated the newly identified small AAV RNA species. The predominant small RNAs were analyzed on Northern blots and by human argonaute protein-mediated co-immunoprecipitation. None of the small AAV RNAs showed characteristics of bona fide miRNAs, but characteristics of alternative RNA processing indicative of differentially regulated AAV promoter-associated small RNAs. Furthermore, the AAV-induced regulation of cellular miRNA levels was analyzed at different time points post infection. In contrast to other virus groups AAV infection had virtually no effect on the expression of cellular miRNA, which underscores the long-established concept that wild-type AAV infection is apathogenic.

  7. RepA-WH1 prionoid: Clues from bacteria on factors governing phase transitions in amyloidogenesis

    PubMed Central

    Giraldo, Rafael; Fernández, Cristina; Moreno-del Álamo, María; Molina-García, Laura; Revilla-García, Aída; Sánchez-Martínez, María Cruz; Giménez-Abián, Juan F.; Moreno-Díaz de la Espina, Susana

    2016-01-01

    ABSTRACT In bacterial plasmids, Rep proteins initiate DNA replication by undergoing a structural transformation coupled to dimer dissociation. Amyloidogenesis of the ‘winged-helix’ N-terminal domain of RepA (WH1) is triggered in vitro upon binding to plasmid-specific DNA sequences, and occurs at the bacterial nucleoid in vivo. Amyloid fibers are made of distorted RepA-WH1 monomers that assemble as single or double intertwined tubular protofilaments. RepA-WH1 causes in E. coli an amyloid proteinopathy, which is transmissible from mother to daughter cells, but not infectious, and enables conformational imprinting in vitro and in vivo; i.e. RepA-WH1 is a ‘prionoid’. Microfluidics allow the assessment of the intracellular dynamics of RepA-WH1: bacterial lineages maintain two types (strains-like) of RepA-WH1 amyloids, either multiple compact cytotoxic particles or a single aggregate with the appearance of a fluidized hydrogel that it is mildly detrimental to growth. The Hsp70 chaperone DnaK governs the phase transition between both types of RepA-WH1 aggregates in vivo, thus modulating the vertical propagation of the prionoid. Engineering chimeras between the Sup35p/[PSI+] prion and RepA-WH1 generates [REP-PSI+], a synthetic prion exhibiting strong and weak phenotypic variants in yeast. These recent findings on a synthetic, self-contained bacterial prionoid illuminate central issues of protein amyloidogenesis. PMID:27040981

  8. Innate Immune Responses to AAV Vectors.

    PubMed

    Rogers, Geoffrey L; Martino, Ashley T; Aslanidi, George V; Jayandharan, Giridhara R; Srivastava, Arun; Herzog, Roland W

    2011-01-01

    Gene replacement therapy by in vivo delivery of adeno-associated virus (AAV) is attractive as a potential treatment for a variety of genetic disorders. However, while AAV has been used successfully in many models, other experiments in clinical trials and in animal models have been hampered by undesired responses from the immune system. Recent studies of AAV immunology have focused on the elimination of transgene-expressing cells by the adaptive immune system, yet the innate immune system also has a critical role, both in the initial response to the vector and in prompting a deleterious adaptive immune response. Responses to AAV vectors are primarily mediated by the TLR9-MyD88 pathway, which induces the production of pro-inflammatory cytokines by activating the NF-κB pathways and inducing type I IFN production; self-complementary AAV vectors enhance these inflammatory processes. Additionally, the alternative NF-κB pathway influences transgene expression in cells transduced by AAV. This review highlights these recent discoveries regarding innate immune responses to AAV and discusses strategies to ablate these potentially detrimental signaling pathways.

  9. Elimination of contaminating cap genes in AAV vector virions reduces immune responses and improves transgene expression in a canine gene therapy model.

    PubMed

    Wang, Z; Halbert, C L; Lee, D; Butts, T; Tapscott, S J; Storb, R; Miller, A D

    2014-04-01

    Animal and human gene therapy studies utilizing AAV vectors have shown that immune responses to AAV capsid proteins can severely limit transgene expression. The main source of capsid antigen is that associated with the AAV vectors, which can be reduced by stringent vector purification. A second source of AAV capsid proteins is that expressed from cap genes aberrantly packaged into AAV virions during vector production. This antigen source can be eliminated by the use of a cap gene that is too large to be incorporated into an AAV capsid, such as a cap gene containing a large intron (captron gene). Here, we investigated the effects of elimination of cap gene transfer and of vector purification by CsCl gradient centrifugation on AAV vector immunogenicity and expression following intramuscular injection in dogs. We found that both approaches reduced vector immunogenicity and that combining the two produced the lowest immune responses and highest transgene expression. This combined approach enabled the use of a relatively mild immunosuppressive regimen to promote robust micro-dystrophin gene expression in Duchenne muscular dystrophy-affected dogs. Our study shows the importance of minimizing AAV cap gene impurities and indicates that this improvement in AAV vector production may benefit human applications.

  10. The X gene of adeno-associated virus 2 (AAV2) is involved in viral DNA replication.

    PubMed

    Cao, Maohua; You, Hong; Hermonat, Paul L

    2014-01-01

    Adeno-associated virus (AAV) (type 2) is a popular human gene therapy vector with a long active transgene expression period and no reported vector-induced adverse reactions. Yet the basic molecular biology of this virus has not been fully addressed. One potential gene at the far 3' end of the AAV2 genome, previously referred to as X (nt 3929 to 4393), overlapping the 3' end of the cap gene, has never been characterized, although we did previously identify a promoter just up-stream (p81). Computer analysis suggested that X was involved in replication and transcription. The X protein was identified during active AAV2 replication using a polyclonal antibody against a peptide starting at amino acid 98. Reagents for the study of X included an AAV2 deletion mutant (dl78-91), a triple nucleotide substitution mutant that destroys all three 5' AUG-initiation products of X, with no effect on the cap coding sequence, and X-positive-293 cell lines. Here, we found that X up-regulated AAV2 DNA replication in differentiating keratinocytes (without helper virus, autonomous replication) and in various forms of 293 cell-based assays with help from wild type adenovirus type 5 (wt Ad5) or Ad5 helper plasmid (pHelper). The strongest contribution by X was seen in increasing wt AAV2 DNA replication in keratinocytes and dl78-91 in Ad5-infected X-positive-293 cell lines (both having multi-fold effects). Mutating the X gene in pAAV-RC (pAAV-RC-3Xneg) yielded approximately a ∼33% reduction in recombinant AAV vector DNA replication and virion production, but a larger effect was seen when using this same X-knockout AAV helper plasmid in X-positive-293 cell lines versus normal 293 cells (again, multi-fold). Taken together these data strongly suggest that AAV2 X encodes a protein involved in the AAV life cycle, particularly in increasing AAV2 DNA replication, and suggests that further studies are warranted.

  11. Comparative Study of Liver Gene Transfer With AAV Vectors Based on Natural and Engineered AAV Capsids

    PubMed Central

    Wang, Lili; Bell, Peter; Somanathan, Suryanarayan; Wang, Qiang; He, Zhenning; Yu, Hongwei; McMenamin, Deirdre; Goode, Tamara; Calcedo, Roberto; Wilson, James M

    2015-01-01

    Vectors based on the clade E family member adeno-associated virus (AAV) serotype 8 have shown promise in patients with hemophilia B and have emerged as best in class for human liver gene therapies. We conducted a thorough evaluation of liver-directed gene therapy using vectors based on several natural and engineered capsids including the clade E AAVrh10 and the largely uncharacterized and phylogenically distinct AAV3B. Included in this study was a putatively superior hepatotropic capsid, AAVLK03, which is very similar to AAV3B. Vectors based on these capsids were benchmarked against AAV8 and AAV2 in a number of in vitro and in vivo model systems including C57BL/6 mice, immune-deficient mice that are partially repopulated with human hepatocytes, and nonhuman primates. Our studies in nonhuman primates and human hepatocytes demonstrated high level transduction of the clade E-derived vectors and equally high transduction with vectors based on AAV3B. In contrast to previous reports, AAVLK03 vectors are not superior to either AAV3B or AAV8. Vectors based on AAV3B should be considered for liver-directed gene therapy when administered following, or before, treatment with the serologically distinct clade E vectors. PMID:26412589

  12. AAV-8 is more efficient than AAV-9 in transducing neonatal dog heart.

    PubMed

    Pan, Xiufang; Yue, Yongping; Zhang, Keqing; Hakim, Chady H; Kodippili, Kasun; McDonald, Thomas; Duan, Dongsheng

    2015-04-01

    Adeno-associated virus serotype-8 and 9 (AAV-8 and 9) are the leading candidate vectors to test bodywide neonatal muscle gene therapy in large mammals. We have previously shown that systemic injection of 2-2.5×10(14) viral genome (vg) particles/kg of AAV-9 resulted in widespread skeletal muscle gene transfer in newborn dogs. However, nominal transduction was observed in the heart. In contrast, robust expression was achieved in both skeletal muscle and heart in neonatal dogs with 7.14-9.06×10(14) vg particles/kg of AAV-8. To determine whether superior cardiac transduction of AAV-8 is because of the higher vector dose, we delivered 6.14×10(14) and 9.65×10(14) vg particles/kg of AAV-9 to newborn puppies via the jugular vein. Transduction was examined 2.5 months later. Consistent with our previous reports, we observed robust bodywide transduction in skeletal muscle. However, increased AAV dose only moderately improved heart transduction. It never reached the level achieved by AAV-8. Our results suggest that differential cardiac transduction by AAV-8 and AAV-9 is likely because of the intrinsic property of the viral capsid rather than the vector dose.

  13. AAV natural infection induces broad cross-neutralizing antibody responses to multiple AAV serotypes in chimpanzees.

    PubMed

    Calcedo, Roberto; Wilson, James M

    2016-06-01

    Cross-sectional studies of primates have revealed that natural neutralizing antibody (NAb) responses to adeno-associated viruses (AAV) span multiple serotypes. This differs from the phenotype of the NAb response to an AAV vector delivered to sero-negative nonhuman primates which is typically restricted to the administered AAV serotype. To better understand the mechanism by which natural AAV infections result in broad NAb responses, we conducted a longitudinal study spanning 10 years in which we evaluated serum-circulating AAV NAb levels in captive-housed chimpanzees. In a cohort of 25 chimpanzees we identified three distinct groups of animals: those which never sero-converted to AAV (naïve); those which were persistently seropositive (chronic); and those that seroconverted during the 10 year period (acute). For the chronic group we found a broad sero-response characterized by NAbs reacting to multiple AAV serotypes. A similar cross-neutralization pattern of NAbs was observed in the acute group. These data support our hypothesis that a single natural infection with AAV induces a broadly cross-reactive NAb response to multiple AAV serotypes.

  14. AAV Natural Infection Induces Broad Cross-Neutralizing Antibody Responses to Multiple AAV Serotypes in Chimpanzees.

    PubMed

    Calcedo, Roberto; Wilson, James M

    2016-06-01

    Cross-sectional studies of primates have revealed that natural neutralizing antibody (NAb) responses to adeno-associated viruses (AAV) span multiple serotypes. This differs from the phenotype of the NAb response to an AAV vector delivered to seronegative nonhuman primates that is typically restricted to the administered AAV serotype. To better understand the mechanism by which natural AAV infections result in broad NAb responses, we conducted a longitudinal study spanning 10 years in which we evaluated serum-circulating AAV NAb levels in captive-housed chimpanzees. In a cohort of 25 chimpanzees we identified 3 distinct groups of animals: those that never seroconverted to AAV (naïve), those that were persistently seropositive (chronic), and those that seroconverted during the 10-year period (acute). For the chronic group we found a broad seroresponse characterized by NAbs reacting to multiple AAV serotypes. A similar cross-neutralization pattern of NAbs was observed in the acute group. These data support our hypothesis that a single natural infection with AAV induces a broadly cross-reactive NAb response to multiple AAV serotypes.

  15. Comparative Study of Liver Gene Transfer With AAV Vectors Based on Natural and Engineered AAV Capsids.

    PubMed

    Wang, Lili; Bell, Peter; Somanathan, Suryanarayan; Wang, Qiang; He, Zhenning; Yu, Hongwei; McMenamin, Deirdre; Goode, Tamara; Calcedo, Roberto; Wilson, James M

    2015-12-01

    Vectors based on the clade E family member adeno-associated virus (AAV) serotype 8 have shown promise in patients with hemophilia B and have emerged as best in class for human liver gene therapies. We conducted a thorough evaluation of liver-directed gene therapy using vectors based on several natural and engineered capsids including the clade E AAVrh10 and the largely uncharacterized and phylogenically distinct AAV3B. Included in this study was a putatively superior hepatotropic capsid, AAVLK03, which is very similar to AAV3B. Vectors based on these capsids were benchmarked against AAV8 and AAV2 in a number of in vitro and in vivo model systems including C57BL/6 mice, immune-deficient mice that are partially repopulated with human hepatocytes, and nonhuman primates. Our studies in nonhuman primates and human hepatocytes demonstrated high level transduction of the clade E-derived vectors and equally high transduction with vectors based on AAV3B. In contrast to previous reports, AAVLK03 vectors are not superior to either AAV3B or AAV8. Vectors based on AAV3B should be considered for liver-directed gene therapy when administered following, or before, treatment with the serologically distinct clade E vectors.

  16. Recombinant AAV Vectors for Enhanced Expression of Authentic IgG

    PubMed Central

    Fuchs, Sebastian P.; Martinez-Navio, José M.; Gao, Guangping; Desrosiers, Ronald C.

    2016-01-01

    Adeno-associated virus (AAV) has become a vector of choice for the treatment of a variety of genetic diseases that require safe and long-term delivery of a missing protein. Muscle-directed gene transfer for delivery of protective antibodies against AIDS viruses and other pathogens has been used experimentally in mice and monkeys. Here we examined a number of variations to AAV vector design for the ability to produce authentic immunoglobulin G (IgG) molecules. Expression of rhesus IgG from a single single-stranded AAV (ssAAV) vector (one vector approach) was compared to expression from two self-complementary AAV (scAAV) vectors, one for heavy chain and one for light chain (two vector approach). Both the one vector and the two vector approaches yielded considerable levels of expressed full-length IgG. A number of modifications to the ssAAV expression system were then examined for their ability to increase the efficiency of IgG expression. Inclusion of a furin cleavage sequence with a linker peptide just upstream of the 2A self-cleaving sequence from foot-and-mouth disease virus (F2A) increased IgG expression approximately 2 fold. Inclusion of these sequences also helped to ensure a proper sequence at the C-terminal end of the heavy chain. Inclusion of the post-transcriptional regulatory element from woodchuck hepatitis virus (WPRE) further increased IgG expression 1.5–2.0 fold. IgG1 versions of the two rhesus IgGs that were examined consistently expressed better than the IgG2 forms. In contrast to what has been reported for AAV2-mediated expression of other proteins, introduction of capsid mutations Y445F and Y731F did not increase ssAAV1-mediated expression of IgG as determined by transduction experiments in cell culture. Our findings provide a rational basis for AAV vector design for expression of authentic IgG. PMID:27332822

  17. Recombinant AAV Vectors for Enhanced Expression of Authentic IgG.

    PubMed

    Fuchs, Sebastian P; Martinez-Navio, José M; Gao, Guangping; Desrosiers, Ronald C

    2016-01-01

    Adeno-associated virus (AAV) has become a vector of choice for the treatment of a variety of genetic diseases that require safe and long-term delivery of a missing protein. Muscle-directed gene transfer for delivery of protective antibodies against AIDS viruses and other pathogens has been used experimentally in mice and monkeys. Here we examined a number of variations to AAV vector design for the ability to produce authentic immunoglobulin G (IgG) molecules. Expression of rhesus IgG from a single single-stranded AAV (ssAAV) vector (one vector approach) was compared to expression from two self-complementary AAV (scAAV) vectors, one for heavy chain and one for light chain (two vector approach). Both the one vector and the two vector approaches yielded considerable levels of expressed full-length IgG. A number of modifications to the ssAAV expression system were then examined for their ability to increase the efficiency of IgG expression. Inclusion of a furin cleavage sequence with a linker peptide just upstream of the 2A self-cleaving sequence from foot-and-mouth disease virus (F2A) increased IgG expression approximately 2 fold. Inclusion of these sequences also helped to ensure a proper sequence at the C-terminal end of the heavy chain. Inclusion of the post-transcriptional regulatory element from woodchuck hepatitis virus (WPRE) further increased IgG expression 1.5-2.0 fold. IgG1 versions of the two rhesus IgGs that were examined consistently expressed better than the IgG2 forms. In contrast to what has been reported for AAV2-mediated expression of other proteins, introduction of capsid mutations Y445F and Y731F did not increase ssAAV1-mediated expression of IgG as determined by transduction experiments in cell culture. Our findings provide a rational basis for AAV vector design for expression of authentic IgG.

  18. AAV-mediated transfer of RhoA shRNA and CNTF promotes retinal ganglion cell survival and axon regeneration.

    PubMed

    Cen, Ling-Ping; Liang, Jia-Jian; Chen, Jian-Huan; Harvey, Alan R; Ng, Tsz Kin; Zhang, Mingzhi; Pang, Chi Pui; Cui, Qi; Fan, You-Ming

    2017-02-20

    The aim of the present study was to determine whether adeno-associated viral vector (AAV) mediated transfer of ciliary neurotrophic factor (CNTF) and RhoA shRNA has additive effects on promoting the survival and axon regeneration of retinal ganglion cells (RGCs) after optic nerve crush (ONC). Silencing effects of AAV-RhoA shRNA were confirmed by examining neurite outgrowth in PC12 cells, and by quantifying RhoA expression levels with western blotting. Young adult Fischer rats received an intravitreal injection of (i) saline, (ii) AAV green fluorescent protein (GFP), (iii) AAV-CNTF, (iv) AAV-RhoA shRNA, or (v) a combination of both AAV-CNTF and AAV-RhoA shRNA. Two weeks later, the ON was completely crushed. Three weeks after ONC, RGC survival was estimated by counting βIII-tubulin-positive neurons in retinal whole mounts. Axon regeneration was evaluated by counting GAP-43-positive axons in the crushed ON. It was found that AAV-RhoA shRNA decreased RhoA expression levels and promoted neurite outgrowth in vitro. In the ONC model, AAV-RhoA shRNA by itself had only weak beneficial effects on RGC axon regeneration. However, when combined with AAV-CNTF, AAV-RhoA shRNA significantly improved the therapeutic effect of AAV-CNTF on axon regeneration by nearly two fold, even though there was no significant change in RGC viability. In sum, this combination of vectors increases the regenerative response and can lead to more successful therapeutic outcomes following neurotrauma.

  19. The ANCA Vasculitis Questionnaire (AAV-PRO©)

    ClinicalTrials.gov

    2016-05-10

    Eosinophilic Granulomatosis With Polyangiitis (Churg-Strauss) (EGPA); Churg-Strauss Syndrome (CSS); Granulomatosis With Polyangiitis (Wegener's) (GPA); Wegener Granulomatosis (WG); Microscopic Polyangiitis (MPA); ANCA-Associated Vasculitis (AAV); Vasculitis

  20. Efficient intrathymic gene transfer following in situ administration of a rAAV serotype 8 vector in mice and nonhuman primates.

    PubMed

    Moreau, Aurélie; Vicente, Rita; Dubreil, Laurence; Adjali, Oumeya; Podevin, Guillaume; Jacquet, Chantal; Deschamps, Jack Yves; Klatzmann, David; Cherel, Yan; Taylor, Naomi; Moullier, Philippe; Zimmermann, Valérie S

    2009-03-01

    The thymus is the primary site of T-cell development and plays a key role in the induction of self-tolerance. We previously showed that the intrathymic (i.t.) injection of a transgene-expressing lentiviral vector (LV) in mice can result in the correction of a T cell-specific genetic defect. Nevertheless, the efficiency of thymocyte transduction did not exceed 0.1-0.3% and we were unable to detect any thymus transduction in macaques. As such, we initiated studies to assess the capacity of recombinant adeno-associated virus (rAAV) vectors to transduce murine and primate thymic cells. In vivo administration of AAV serotype 2-derived single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors pseudotyped with capsid proteins of serotypes 1, 2, 4, 5, and 8 demonstrated that murine thymus transduction was significantly enhanced by scAAV2/8. Transgene expression was detected in 5% of thymocytes and, notably, transduced cells represented 1% of peripheral T lymphocytes. Moreover, i.t. administration of scAAV2/8 particles in macaques, by endoscopic-mediated guidance, resulted in significant gene transfer. Thus, in healthy animals, where thymic gene transfer does not provide a selective advantage, scAAV2/8 is a unique tool promoting the in situ transduction of thymocytes with the subsequent export of gene-modified lymphocytes to the periphery.

  1. Intratumoral decorin gene delivery by AAV vector inhibits brain glioblastomas and prolongs survival of animals by inducing cell differentiation.

    PubMed

    Ma, Hsin-I; Hueng, Dueng-Yuan; Shui, Hao-Ai; Han, Jun-Ming; Wang, Chi-Hsien; Lai, Ying-Hsiu; Cheng, Shi-Yuan; Xiao, Xiao; Chen, Ming-Teh; Yang, Yi-Ping

    2014-03-12

    Glioblastoma multiforme (GBM) is the most malignant cancer in the central nervous system with poor clinical prognosis. In this study, we investigated the therapeutic effect of an anti-cancer protein, decorin, by delivering it into a xenograft U87MG glioma tumor in the brain of nude mice through an adeno-associated viral (AAV2) gene delivery system. Decorin expression from the AAV vector in vitro inhibited cultured U87MG cell growth by induction of cell differentiation. Intracranial injection of AAV-decorin vector to the glioma-bearing nude mice in vivo significantly suppressed brain tumor growth and prolonged survival when compared to control non-treated mice bearing the same U87MG tumors. Proteomics analysis on protein expression profiles in the U87MG glioma cells after AAV-mediated decorin gene transfer revealed up- and down-regulation of important proteins. Differentially expressed proteins between control and AAV-decorin-transduced cells were identified through MALDI-TOF MS and database mining. We found that a number of important proteins that are involved in apoptosis, transcription, chemotherapy resistance, mitosis, and fatty acid metabolism have been altered as a result of decorin overexpression. These findings offer valuable insight into the mechanisms of the anti-glioblastoma effects of decorin. In addition, AAV-mediated decorin gene delivery warrants further investigation as a potential therapeutic approach for brain tumors.

  2. Convection-Enhanced Delivery of AAV2-PrPshRNA in Prion-Infected Mice

    PubMed Central

    Ahn, Misol; Bajsarowicz, Krystyna; Oehler, Abby; Lemus, Azucena; Bankiewicz, Krystof; DeArmond, Stephen J.

    2014-01-01

    Prion disease is caused by a single pathogenic protein (PrPSc), an abnormal conformer of the normal cellular prion protein PrPC. Depletion of PrPC in prion knockout mice makes them resistant to prion disease. Thus, gene silencing of the Prnp gene is a promising effective therapeutic approach. Here, we examined adeno-associated virus vector type 2 encoding a short hairpin RNA targeting Prnp mRNA (AAV2-PrP-shRNA) to suppress PrPC expression both in vitro and in vivo. AAV2-PrP-shRNA treatment suppressed PrP levels and prevented dendritic degeneration in RML-infected brain aggregate cultures. Infusion of AAV2-PrP-shRNA-eGFP into the thalamus of CD-1 mice showed that eGFP was transported to the cerebral cortex via anterograde transport and the overall PrPC levels were reduced by ∼70% within 4 weeks. For therapeutic purposes, we treated RML-infected CD-1 mice with AAV2-PrP-shRNA beginning at 50 days post inoculation. Although AAV2-PrP-shRNA focally suppressed PrPSc formation in the thalamic infusion site by ∼75%, it did not suppress PrPSc formation efficiently in other regions of the brain. Survival of mice was not extended compared to the untreated controls. Global suppression of PrPC in the brain is required for successful therapy of prion diseases. PMID:24866748

  3. Data set for comparison of cellular dynamics between human AAVS1 locus-modified and wild-type cells

    PubMed Central

    Mizutani, Takeomi; Haga, Hisashi; Kawabata, Kazushige

    2016-01-01

    This data article describes cellular dynamics, such as migration speed and mobility of the cytoskeletal protein, of wild-type human fibroblast cells and cells with a modified adeno-associated virus integration site 1 (AAVS1) locus on human chromosome 19. Insertion of exogenous gene into the AAVS1 locus has been conducted in recent biological researches. Previously, our data showed that the AAVS1-modification changes cellular contractile force (Mizutani et al., 2015 [1]). To assess if this AAVS1-modification affects cell migration, we compared cellular migration speed and turnover of cytoskeletal protein in human fibroblasts and fibroblasts with a green fluorescent protein gene knocked-in at the AAVS1 locus in this data article. Cell nuclei were stained and changes in their position attributable to cell migration were analyzed. Fluorescence recovery was observed after photobleaching for the fluorescent protein-tagged myosin regulatory light chain. Data here are related to the research article “Transgene Integration into the Human AAVS1 Locus Enhances Myosin II-Dependent Contractile Force by Reducing Expression of Myosin Binding Subunit 85” [1]. PMID:26937449

  4. Covering the Plane with Rep-Tiles.

    ERIC Educational Resources Information Center

    Fosnaugh, Linda S.; Harrell, Marvin E.

    1996-01-01

    Presents an activity in which students use geometric figures, rep-tiles, to design a tile floor. Rep-tiles are geometric figures of which copies can fit together to form a larger similar figure. Includes reproducible student worksheet. (MKR)

  5. Structure and Function of REP34 Implicates Carboxypeptidase Activity in Francisella tularensis Host Cell Invasion*

    PubMed Central

    Feld, Geoffrey K.; El-Etr, Sahar; Corzett, Michele H.; Hunter, Mark S.; Belhocine, Kamila; Monack, Denise M.; Frank, Matthias; Segelke, Brent W.; Rasley, Amy

    2014-01-01

    Francisella tularensis is the etiological agent of tularemia, or rabbit fever. Although F. tularensis is a recognized biothreat agent with broad and expanding geographical range, its mechanism of infection and environmental persistence remain poorly understood. Previously, we identified seven F. tularensis proteins that induce a rapid encystment phenotype (REP) in the free-living amoeba, Acanthamoeba castellanii. Encystment is essential to the pathogen's long term intracellular survival in the amoeba. Here, we characterize the cellular and molecular function of REP34, a REP protein with a mass of 34 kDa. A REP34 knock-out strain of F. tularensis has a reduced ability to both induce encystment in A. castellanii and invade human macrophages. We determined the crystal structure of REP34 to 2.05-Å resolution and demonstrate robust carboxypeptidase B-like activity for the enzyme. REP34 is a zinc-containing monomeric protein with close structural homology to the metallocarboxypeptidase family of peptidases. REP34 possesses a novel topology and substrate binding pocket that deviates from the canonical funnelin structure of carboxypeptidases, putatively resulting in a catalytic role for a conserved tyrosine and distinct S1′ recognition site. Taken together, these results identify REP34 as an active carboxypeptidase, implicate the enzyme as a potential key F. tularensis effector protein, and may help elucidate a mechanistic understanding of F. tularensis infection of phagocytic cells. PMID:25231992

  6. Recombinant adeno-associated viral (rAAV) vectors mediate efficient gene transduction in cultured neonatal and adult microglia.

    PubMed

    Su, Wei; Kang, John; Sopher, Bryce; Gillespie, James; Aloi, Macarena S; Odom, Guy L; Hopkins, Stephanie; Case, Amanda; Wang, David B; Chamberlain, Jeffrey S; Garden, Gwenn A

    2016-01-01

    Microglia are a specialized population of myeloid cells that mediate CNS innate immune responses. Efforts to identify the cellular and molecular mechanisms that regulate microglia behaviors have been hampered by the lack of effective tools for manipulating gene expression. Cultured microglia are refractory to most chemical and electrical transfection methods, yielding little or no gene delivery and causing toxicity and/or inflammatory activation. Recombinant adeno-associated viral (rAAVs) vectors are non-enveloped, single-stranded DNA vectors commonly used to transduce many primary cell types and tissues. In this study, we evaluated the feasibility and efficiency of utilizing rAAV serotype 2 (rAAV2) to modulate gene expression in cultured microglia. rAAV2 yields high transduction and causes minimal toxicity or inflammatory response in both neonatal and adult microglia. To demonstrate that rAAV transduction can induce functional protein expression, we used rAAV2 expressing Cre recombinase to successfully excise a LoxP-flanked miR155 gene in cultured microglia. We further evaluated rAAV serotypes 5, 6, 8, and 9, and observed that all efficiently transduced cultured microglia to varying degrees of success and caused little or no alteration in inflammatory gene expression. These results provide strong encouragement for the application of rAAV-mediated gene expression in microglia for mechanistic and therapeutic purposes. Neonatal microglia are functionally distinct from adult microglia, although the majority of in vitro studies utilize rodent neonatal microglia cultures because of difficulties of culturing adult cells. In addition, cultured microglia are refractory to most methods for modifying gene expression. Here, we developed a novel protocol for culturing adult microglia and evaluated the feasibility and efficiency of utilizing Recombinant Adeno-Associated Virus (rAAV) to modulate gene expression in cultured microglia.

  7. Distinct immune responses to transgene products from rAAV1 and rAAV8 vectors.

    PubMed

    Lu, Yuanqing; Song, Sihong

    2009-10-06

    Recently developed serotypes of recombinant adeno-associated virus (rAAV) vectors have significantly enhanced the use of rAAV vectors for gene therapy. However, host immune responses to the transgene products from different serotypes remain uncharacterized. In the present study, we evaluated the differential immune responses to the transgene products from rAAV1 and rAAV8 vectors. In non-obese diabetic (NOD) mice, which have a hypersensitive immunity, rAAV serotype 1 vector (rAAV1-hAAT) induced high levels of both humoral and cellular responses, while rAAV8-hAAT did not. In vitro studies showed that rAAV1, but not rAAV8 vector transduced dendritic cells (DCs) efficiently. In vivo studies indicated that vector transduction of DCs was essential for the immune responses; while the presence of a transgene product (or foreign gene product produced by host cells) was not immunogenic. Intriguingly, preimmunization with rAAV8-hAAT vector or with serum of hAAT transgenic NOD mouse induced immune tolerance to rAAV1-hAAT injection. These results demonstrate the immunogenic differences of rAAV1 and rAAV8 and imply tremendous potential for these vectors in different applications, where an immune response to transgene is to be either elicited or avoided.

  8. Gene delivery to adipose tissue using transcriptionally targeted rAAV8 vectors.

    PubMed

    Uhrig-Schmidt, Silke; Geiger, Matthias; Luippold, Gerd; Birk, Gerald; Mennerich, Detlev; Neubauer, Heike; Grimm, Dirk; Wolfrum, Christian; Kreuz, Sebastian

    2014-01-01

    In recent years, the increasing prevalence of obesity and obesity-related co-morbidities fostered intensive research in the field of adipose tissue biology. To further unravel molecular mechanisms of adipose tissue function, genetic tools enabling functional studies in vitro and in vivo are essential. While the use of transgenic animals is well established, attempts using viral and non-viral vectors to genetically modify adipocytes in vivo are rare. Therefore, we here characterized recombinant Adeno-associated virus (rAAV) vectors regarding their potency as gene transfer vehicles for adipose tissue. Our results demonstrate that a single dose of systemically applied rAAV8-CMV-eGFP can give rise to remarkable transgene expression in murine adipose tissues. Upon transcriptional targeting of the rAAV8 vector to adipocytes using a 2.2 kb fragment of the murine adiponectin (mAP2.2) promoter, eGFP expression was significantly decreased in off-target tissues while efficient transduction was maintained in subcutaneous and visceral fat depots. Moreover, rAAV8-mAP2.2-mediated expression of perilipin A - a lipid-droplet-associated protein - resulted in significant changes in metabolic parameters only three weeks post vector administration. Taken together, our findings indicate that rAAV vector technology is applicable as a flexible tool to genetically modify adipocytes for functional proof-of-concept studies and the assessment of putative therapeutic targets in vivo.

  9. AAV vector-mediated secretion of chondroitinase provides a sensitive tracer for axonal arborisations.

    PubMed

    Alves, João Nuno; Muir, Elizabeth M; Andrews, Melissa R; Ward, Anneliese; Michelmore, Nicholas; Dasgupta, Debayan; Verhaagen, Joost; Moloney, Elizabeth B; Keynes, Roger J; Fawcett, James W; Rogers, John H

    2014-04-30

    As part of a project to express chondroitinase ABC (ChABC) in neurons of the central nervous system, we have inserted a modified ChABC gene into an adeno-associated viral (AAV) vector and injected it into the vibrissal motor cortex in adult rats to determine the extent and distribution of expression of the enzyme. A similar vector for expression of green fluorescent protein (GFP) was injected into the same location. For each vector, two versions with minor differences were used, giving similar results. After 4 weeks, the brains were stained to show GFP and products of chondroitinase digestion. Chondroitinase was widely expressed, and the AAV-ChABC and AAV-GFP vectors gave similar expression patterns in many respects, consistent with the known projections from the directly transduced neurons in vibrissal motor cortex and adjacent cingulate cortex. In addition, diffusion of vector to deeper neuronal populations led to labelling of remote projection fields which was much more extensive with AAV-ChABC than with AAV-GFP. The most notable of these populations are inferred to be neurons of cortical layer 6, projecting widely in the thalamus, and neurons of the anterior pole of the hippocampus, projecting through most of the hippocampus. We conclude that, whereas GFP does not label the thinnest axonal branches of some neuronal types, chondroitinase is efficiently secreted from these arborisations and enables their extent to be sensitively visualised. After 12 weeks, chondroitinase expression was undiminished.

  10. Establishment of an AAV Reverse Infection-Based Array

    PubMed Central

    Wang, Gang; Dong, Zheyue; Shen, Wei; Zheng, Gang; Wu, Xiaobing; Xue, Jinglun; Wang, Yue; Chen, Jinzhong

    2010-01-01

    Background The development of a convenient high-throughput gene transduction approach is critical for biological screening. Adeno-associated virus (AAV) vectors are broadly used in gene therapy studies, yet their applications in in vitro high-throughput gene transduction are limited. Principal Findings We established an AAV reverse infection (RI)-based method in which cells were transduced by quantified recombinant AAVs (rAAVs) pre-coated onto 96-well plates. The number of pre-coated rAAV particles and number of cells loaded per well, as well as the temperature stability of the rAAVs on the plates, were evaluated. As the first application of this method, six serotypes or hybrid serotypes of rAAVs (AAV1, AAV2, AAV5/5, AAV8, AAV25 m, AAV28 m) were compared for their transduction efficiencies using various cell lines, including BHK21, HEK293, BEAS-2BS, HeLaS3, Huh7, Hepa1-6, and A549. AAV2 and AAV1 displayed high transduction efficiency; thus, they were deemed to be suitable candidate vectors for the RI-based array. We next evaluated the impact of sodium butyrate (NaB) treatment on rAAV vector-mediated reporter gene expression and found it was significantly enhanced, suggesting that our system reflected the biological response of target cells to specific treatments. Conclusions/Significance Our study provides a novel method for establishing a highly efficient gene transduction array that may be developed into a platform for cell biological assays. PMID:20976058

  11. Transduction efficiency of neurons and glial cells by AAV-1, -5, -9, -rh10 and -hu11 serotypes in rat spinal cord following contusion injury.

    PubMed

    Petrosyan, H A; Alessi, V; Singh, V; Hunanyan, A S; Levine, J M; Arvanian, V L

    2014-12-01

    Adeno-associated viruses (AAVs) are a promising system for therapeutic gene delivery to neurons in a number of neurodegenerative conditions including spinal cord injuries (SCIs). Considering the role of macrophages and glia in the progression of 'secondary damage', we searched for the optimal vectors for gene transfer to both neurons and glia following contusion SCI in adult rats. Contusion models share many similarities to most human spinal cord traumas. Several AAV serotypes known for their neuronal tropism expressing enhanced green-fluorescent protein (GFP) were injected intraspinally following thoracic T10 contusion. We systematically compared the transduction efficacy and cellular tropism of these vectors for neurons, macrophages/microglia, oligodendrocytes, astrocytes and NG2-positive glial cells following contusion SCI. No additional changes in inflammatory responses or behavioral performance were observed for any of the vectors. We identified that AAV-rh10 induced robust transduction of both neuronal and glial cells. Even though efficacy to transduce neurons was comparable to already established AAV-1, AAV-5 and AAV-9, AAV-rh10 transduced significantly higher number of macrophages/microglia and oligodendrocytes in damaged spinal cord compared with other serotypes tested. Thus, AAV-rh10 carries promising potential as a gene therapy vector, particularly if both the neuronal and glial cell populations in damaged spinal cord are targeted.

  12. Synergistic inhibition of PARP-1 and NF-κB signaling downregulates immune response against recombinant AAV2 vectors during hepatic gene therapy.

    PubMed

    Hareendran, Sangeetha; Ramakrishna, Banumathi; Jayandharan, Giridhara R

    2016-01-01

    Host immune response remains a key obstacle to widespread application of adeno-associated virus (AAV) based gene therapy. Thus, targeted inhibition of the signaling pathways that trigger such immune responses will be beneficial. Previous studies have reported that DNA damage response proteins such as poly(ADP-ribose) polymerase-1 (PARP-1) negatively affect the integration of AAV in the host genome. However, the role of PARP-1 in regulating AAV transduction and the immune response against these vectors has not been elucidated. In this study, we demonstrate that repression of PARP-1 improves the transduction of single-stranded AAV vectors both in vitro (∼174%) and in vivo (two- to 3.4-fold). Inhibition of PARP-1, also significantly downregulated the expression of several proinflammatory and cytokine markers such as TLRs, ILs, NF-κB subunit proteins associated with the host innate response against self-complementary AAV2 vectors. The suppression of the inflammatory response targeted against these vectors was more effective upon combined inhibition of PARP-1 and NF-κB signaling. This strategy also effectively attenuated the AAV capsid-specific cytotoxic T-cell response, with minimal effect on vector transduction, as demonstrated in normal C57BL/6 and hemophilia B mice. These data suggest that targeting specific host cellular proteins could be useful to attenuate the immune barriers to AAV-mediated gene therapy.

  13. Proof of concept study with an HER-2 mimotope anticancer vaccine deduced from a novel AAV-mimotope library platform

    PubMed Central

    Singer, Josef; Manzano-Szalai, Krisztina; Fazekas, Judit; Thell, Kathrin; Bentley-Lukschal, Anna; Stremnitzer, Caroline; Roth-Walter, Franziska; Weghofer, Margit; Ritter, Mirko; Pino Tossi, Kerstin; Hörer, Markus; Michaelis, Uwe; Jensen-Jarolim, Erika

    2016-01-01

    ABSTRACT Background: Anticancer vaccines could represent a valuable complementary strategy to established therapies, especially in settings of early stage and minimal residual disease. HER-2 is an important target for immunotherapy and addressed by the monoclonal antibody trastuzumab. We have previously generated HER-2 mimotope peptides from phage display libraries. The synthesized peptides were coupled to carriers and applied for epitope-specific induction of trastuzumab-like IgG. For simplification and to avoid methodological limitations of synthesis and coupling chemistry, we herewith present a novel and optimized approach by using adeno-associated viruses (AAV) as effective and high-density mimotope-display system, which can be directly used for vaccination. Methods: An AAV capsid display library was constructed by genetically incorporating random peptides in a plasmid encoding the wild-type AAV2 capsid protein. AAV clones, expressing peptides specifically reactive to trastuzumab, were employed to immunize BALB/c mice. Antibody titers against human HER-2 were determined, and the isotype composition and functional properties of these were tested. Finally, prophylactically immunized mice were challenged with human HER-2 transfected mouse D2F2/E2 cells. Results: HER-2 mimotope AAV-vaccines induced antibodies specific to human HER-2. Two clones were selected for immunization of mice, which were subsequently grafted D2F2/E2 cells. Both mimotope AAV clones delayed the growth of tumors significantly, as compared to controls. Conclusion: In this study, a novel mimotope AAV-based platform was created allowing the isolation of mimotopes, which can be directly used as anticancer vaccines. The example of trastuzumab AAV-mimotopes demonstrates that this vaccine strategy could help to establish active immunotherapy for breast-cancer patients. PMID:27622022

  14. Targeted AAV5-Smad7 gene therapy inhibits corneal scarring in vivo

    PubMed Central

    Gupta, Suneel; Rodier, Jason T.; Sharma, Ajay; Giuliano, Elizabeth A.; Sinha, Prashant R.; Hesemann, Nathan P.; Ghosh, Arkasubhra; Mohan, Rajiv R.

    2017-01-01

    Corneal scarring is due to aberrant activity of the transforming growth factor β (TGFβ) signaling pathway following traumatic, mechanical, infectious, or surgical injury. Altered TGFβ signaling cascade leads to downstream Smad (Suppressor of mothers against decapentaplegic) protein-mediated signaling events that regulate expression of extracellular matrix and myogenic proteins. These events lead to transdifferentiation of keratocytes into myofibroblasts through fibroblasts and often results in permanent corneal scarring. Hence, therapeutic targets that reduce transdifferentiation of fibroblasts into myofibroblasts may provide a clinically relevant approach to treat corneal fibrosis and improve long-term visual outcomes. Smad7 protein regulates the functional effects of TGFβ signaling during corneal wound healing. We tested that targeted delivery of Smad7 using recombinant adeno-associated virus serotype 5 (AAV5-Smad7) delivered to the corneal stroma can inhibit corneal haze post photorefractive keratectomy (PRK) in vivo in a rabbit corneal injury model. We demonstrate that a single topical application of AAV5-Smad7 in rabbit cornea post-PRK led to a significant decrease in corneal haze and corneal fibrosis. Further, histopathology revealed lack of immune cell infiltration following AAV5-Smad7 gene transfer into the corneal stroma. Our data demonstrates that AAV5-Smad7 gene therapy is relatively safe with significant potential for the treatment of corneal disease currently resulting in fibrosis and impaired vision. PMID:28339457

  15. AAV-mediated RLBP1 gene therapy improves the rate of dark adaptation in Rlbp1 knockout mice

    PubMed Central

    Choi, Vivian W; Bigelow, Chad E; McGee, Terri L; Gujar, Akshata N; Li, Hui; Hanks, Shawn M; Vrouvlianis, Joanna; Maker, Michael; Leehy, Barrett; Zhang, Yiqin; Aranda, Jorge; Bounoutas, George; Demirs, John T; Yang, Junzheng; Ornberg, Richard; Wang, Yu; Martin, Wendy; Stout, Kelly R; Argentieri, Gregory; Grosenstein, Paul; Diaz, Danielle; Turner, Oliver; Jaffee, Bruce D; Police, Seshidhar R; Dryja, Thaddeus P

    2015-01-01

    Recessive mutations in RLBP1 cause a form of retinitis pigmentosa in which the retina, before its degeneration leads to blindness, abnormally slowly recovers sensitivity after exposure to light. To develop a potential gene therapy for this condition, we tested multiple recombinant adeno-associated vectors (rAAVs) composed of different promoters, capsid serotypes, and genome conformations. We generated rAAVs in which sequences from the promoters of the human RLBP1, RPE65, or BEST1 genes drove the expression of a reporter gene (green fluorescent protein). A promoter derived from the RLBP1 gene mediated expression in the retinal pigment epithelium and Müller cells (the intended target cell types) at qualitatively higher levels than in other retinal cell types in wild-type mice and monkeys. With this promoter upstream of the coding sequence of the human RLBP1 gene, we compared the potencies of vectors with an AAV2 versus an AAV8 capsid in transducing mouse retinas, and we compared vectors with a self-complementary versus a single-stranded genome. The optimal vector (scAAV8-pRLBP1-hRLBP1) had serotype 8 capsid and a self-complementary genome. Subretinal injection of scAAV8-pRLBP1-hRLBP1 in Rlbp1 nullizygous mice improved the rate of dark adaptation based on scotopic (rod-plus-cone) and photopic (cone) electroretinograms (ERGs). The effect was still present after 1 year. PMID:26199951

  16. Reversal of blindness in animal models of leber congenital amaurosis using optimized AAV2-mediated gene transfer.

    PubMed

    Bennicelli, Jeannette; Wright, John Fraser; Komaromy, Andras; Jacobs, Jonathan B; Hauck, Bernd; Zelenaia, Olga; Mingozzi, Federico; Hui, Daniel; Chung, Daniel; Rex, Tonia S; Wei, Zhangyong; Qu, Guang; Zhou, Shangzhen; Zeiss, Caroline; Arruda, Valder R; Acland, Gregory M; Dell'Osso, Lou F; High, Katherine A; Maguire, Albert M; Bennett, Jean

    2008-03-01

    We evaluated the safety and efficacy of an optimized adeno-associated virus (AAV; AAV2.RPE65) in animal models of the RPE65 form of Leber congenital amaurosis (LCA). Protein expression was optimized by addition of a modified Kozak sequence at the translational start site of hRPE65. Modifications in AAV production and delivery included use of a long stuffer sequence to prevent reverse packaging from the AAV inverted-terminal repeats, and co-injection with a surfactant. The latter allows consistent and predictable delivery of a given dose of vector. We observed improved electroretinograms (ERGs) and visual acuity in Rpe65 mutant mice. This has not been reported previously using AAV2 vectors. Subretinal delivery of 8.25 x 10(10) vector genomes in affected dogs was well tolerated both locally and systemically, and treated animals showed improved visual behavior and pupillary responses, and reduced nystagmus within 2 weeks of injection. ERG responses confirmed the reversal of visual deficit. Immunohistochemistry confirmed transduction of retinal pigment epithelium cells and there was minimal toxicity to the retina as judged by histopathologic analysis. The data demonstrate that AAV2.RPE65 delivers the RPE65 transgene efficiently and quickly to the appropriate target cells in vivo in animal models. This vector holds great promise for treatment of LCA due to RPE65 mutations.

  17. Reversal of Blindness in Animal Models of Leber Congenital Amaurosis Using Optimized AAV2-mediated Gene Transfer

    PubMed Central

    Bennicelli, Jeannette; Wright, John Fraser; Komaromy, Andras; Jacobs, Jonathan B; Hauck, Bernd; Zelenaia, Olga; Mingozzi, Federico; Hui, Daniel; Chung, Daniel; Rex, Tonia S; Wei, Zhangyong; Qu, Guang; Zhou, Shangzhen; Zeiss, Caroline; Arruda, Valder R; Acland, Gregory M; Dell’Osso, Lou F; High, Katherine A; Maguire, Albert M; Bennett, Jean

    2010-01-01

    We evaluated the safety and efficacy of an optimized adeno-associated virus (AAV; AAV2.RPE65) in animal models of the RPE65 form of Leber congenital amaurosis (LCA). Protein expression was optimized by addition of a modified Kozak sequence at the translational start site of hRPE65. Modifications in AAV production and delivery included use of a long stuffer sequence to prevent reverse packaging from the AAV inverted-terminal repeats, and co-injection with a surfactant. The latter allows consistent and predictable delivery of a given dose of vector. We observed improved electroretinograms (ERGs) and visual acuity in Rpe65 mutant mice. This has not been reported previously using AAV2 vectors. Subretinal delivery of 8.25 × 1010 vector genomes in affected dogs was well tolerated both locally and systemically, and treated animals showed improved visual behavior and pupillary responses, and reduced nystagmus within 2 weeks of injection. ERG responses confirmed the reversal of visual deficit. Immunohistochemistry confirmed transduction of retinal pigment epithelium cells and there was minimal toxicity to the retina as judged by histopathologic analysis. The data demonstrate that AAV2.RPE65 delivers the RPE65 transgene efficiently and quickly to the appropriate target cells in vivo in animal models. This vector holds great promise for treatment of LCA due to RPE65 mutations. PMID:18209734

  18. Copackaged AAV9 Vectors Promote Simultaneous Immune Tolerance and Phenotypic Correction of Pompe Disease

    PubMed Central

    Doerfler, Phillip A.; Todd, Adrian G.; Clément, Nathalie; Falk, Darin J.; Nayak, Sushrusha; Herzog, Roland W.; Byrne, Barry J.

    2016-01-01

    Pompe disease is a progressive neuromuscular disorder caused by lysosomal accumulation of glycogen from a deficiency in acid alpha-glucosidase (GAA). Replacement of the missing enzyme is available by repeated protein infusions; however, efficacy is limited by immune response and inability to restore enzymatic function in the central nervous system. An alternative therapeutic option is adeno-associated virus (AAV)-mediated gene therapy, which results in widespread gene transfer and prolonged transgene expression. Both enzyme replacement therapy (ERT) and gene therapy can elicit anti-GAA immune reactions that dampen their effectiveness and pose life-threatening risks to patient safety. To modulate the immune responses related to gene therapy, we show that a human codon-optimized GAA (coGAA) driven by a liver-specific promoter (LSP) using AAV9 is capable of promoting immune tolerance in a Gaa−/− mouse model. Copackaging AAV9-LSP-coGAA with the tissue-restricted desmin promoter (AAV9-DES-coGAA) demonstrates the necessary cell autonomous expression in cardiac muscle, skeletal muscle, peripheral nerve, and the spinal cord. Simultaneous high-level expression in liver led to the expansion of GAA-specific regulatory T-cells (Tregs) and induction of immune tolerance. Transfer of Tregs into naïve recipients prevented pathogenic allergic reactions after repeated ERT challenges. Copackaged AAV9 also attenuated preexisting humoral and cellular immune responses, which enhanced the biochemical correction. Our data present a therapeutic design in which simultaneous administration of two copackaged AAV constructs may provide therapeutic benefit and resolve immune reactions in the treatment of multisystem disorders. PMID:26603344

  19. Force and twist dependence of RepC nicking activity on torsionally-constrained DNA molecules

    PubMed Central

    Pastrana, Cesar L.; Carrasco, Carolina; Akhtar, Parvez; Leuba, Sanford H.; Khan, Saleem A.; Moreno-Herrero, Fernando

    2016-01-01

    Many bacterial plasmids replicate by an asymmetric rolling-circle mechanism that requires sequence-specific recognition for initiation, nicking of one of the template DNA strands and unwinding of the duplex prior to subsequent leading strand DNA synthesis. Nicking is performed by a replication-initiation protein (Rep) that directly binds to the plasmid double-stranded origin and remains covalently bound to its substrate 5′-end via a phosphotyrosine linkage. It has been proposed that the inverted DNA sequences at the nick site form a cruciform structure that facilitates DNA cleavage. However, the role of Rep proteins in the formation of this cruciform and the implication for its nicking and religation functions is unclear. Here, we have used magnetic tweezers to directly measure the DNA nicking and religation activities of RepC, the replication initiator protein of plasmid pT181, in plasmid sized and torsionally-constrained linear DNA molecules. Nicking by RepC occurred only in negatively supercoiled DNA and was force- and twist-dependent. Comparison with a type IB topoisomerase in similar experiments highlighted a relatively inefficient religation activity of RepC. Based on the structural modeling of RepC and on our experimental evidence, we propose a model where RepC nicking activity is passive and dependent upon the supercoiling degree of the DNA substrate. PMID:27488190

  20. AAV Vector-Mediated Gene Delivery to Substantia Nigra Dopamine Neurons: Implications for Gene Therapy and Disease Models.

    PubMed

    Albert, Katrina; Voutilainen, Merja H; Domanskyi, Andrii; Airavaara, Mikko

    2017-02-08

    Gene delivery using adeno-associated virus (AAV) vectors is a widely used method to transduce neurons in the brain, especially due to its safety, efficacy, and long-lasting expression. In addition, by varying AAV serotype, promotor, and titer, it is possible to affect the cell specificity of expression or the expression levels of the protein of interest. Dopamine neurons in the substantia nigra projecting to the striatum, comprising the nigrostriatal pathway, are involved in movement control and degenerate in Parkinson's disease. AAV-based gene targeting to the projection area of these neurons in the striatum has been studied extensively to induce the production of neurotrophic factors for disease-modifying therapies for Parkinson's disease. Much less emphasis has been put on AAV-based gene therapy targeting dopamine neurons in substantia nigra. We will review the literature related to targeting striatum and/or substantia nigra dopamine neurons using AAVs in order to express neuroprotective and neurorestorative molecules, as well as produce animal disease models of Parkinson's disease. We discuss difficulties in targeting substantia nigra dopamine neurons and their vulnerability to stress in general. Therefore, choosing a proper control for experimental work is not trivial. Since the axons along the nigrostriatal tract are the first to degenerate in Parkinson's disease, the location to deliver the therapy must be carefully considered. We also review studies using AAV-a-synuclein (a-syn) to target substantia nigra dopamine neurons to produce an α-syn overexpression disease model in rats. Though these studies are able to produce mild dopamine system degeneration in the striatum and substantia nigra and some behavioural effects, there are studies pointing to the toxicity of AAV-carrying green fluorescent protein (GFP), which is often used as a control. Therefore, we discuss the potential difficulties in overexpressing proteins in general in the substantia nigra.

  1. AAV Vector-Mediated Gene Delivery to Substantia Nigra Dopamine Neurons: Implications for Gene Therapy and Disease Models

    PubMed Central

    Albert, Katrina; Voutilainen, Merja H.; Domanskyi, Andrii; Airavaara, Mikko

    2017-01-01

    Gene delivery using adeno-associated virus (AAV) vectors is a widely used method to transduce neurons in the brain, especially due to its safety, efficacy, and long-lasting expression. In addition, by varying AAV serotype, promotor, and titer, it is possible to affect the cell specificity of expression or the expression levels of the protein of interest. Dopamine neurons in the substantia nigra projecting to the striatum, comprising the nigrostriatal pathway, are involved in movement control and degenerate in Parkinson’s disease. AAV-based gene targeting to the projection area of these neurons in the striatum has been studied extensively to induce the production of neurotrophic factors for disease-modifying therapies for Parkinson’s disease. Much less emphasis has been put on AAV-based gene therapy targeting dopamine neurons in substantia nigra. We will review the literature related to targeting striatum and/or substantia nigra dopamine neurons using AAVs in order to express neuroprotective and neurorestorative molecules, as well as produce animal disease models of Parkinson’s disease. We discuss difficulties in targeting substantia nigra dopamine neurons and their vulnerability to stress in general. Therefore, choosing a proper control for experimental work is not trivial. Since the axons along the nigrostriatal tract are the first to degenerate in Parkinson’s disease, the location to deliver the therapy must be carefully considered. We also review studies using AAV-α-synuclein (α-syn) to target substantia nigra dopamine neurons to produce an α-syn overexpression disease model in rats. Though these studies are able to produce mild dopamine system degeneration in the striatum and substantia nigra and some behavioural effects, there are studies pointing to the toxicity of AAV-carrying green fluorescent protein (GFP), which is often used as a control. Therefore, we discuss the potential difficulties in overexpressing proteins in general in the substantia

  2. Evaluation of lateral spread of transgene expression following subretinal AAV-mediated gene delivery in dogs.

    PubMed

    Bruewer, Ashlee R; Mowat, Freya M; Bartoe, Joshua T; Boye, Sanford L; Hauswirth, William W; Petersen-Jones, Simon M

    2013-01-01

    Dog models with spontaneously occurring mutations in retinal dystrophy genes are an invaluable resource for preclinical development of retinal gene therapy. Adeno-associated virus (AAV) vectors have been most successful; to target the outer retina and RPE they are delivered by subretinal injection, causing a temporary retinal detachment with some potential for retinal morbidity. A recent reporter gene study using an AAV2/8 vector in dogs reported transgene expression beyond the boundary of the subretinal bleb. This could be a desirable feature which increases the area of retina treated while minimizing the retinal detachment and any associated morbidity. We performed a detailed study of the lateral spread of transgene expression beyond the subretinal injection site following subretinally delivered AAV vectors in normal dogs. Vectors expressed green fluorescent protein (GFP) using a small chicken beta-actin promoter. AAV2/2 (quadruple tyrosine to phenylalanine (Y-F) capsid mutant), self-complementary (sc) AAV2/8 (single Y-F capsid mutant) and a scAAV2/5 were used. We found that in all eyes GFP expression involved retina beyond the initial post-injection subretinal bleb boundary. In all eyes there was post-injection spread of the retinal detachment within the first 3 days post procedure and prior to retinal reattachment. In 11/16 eyes this accounted for the entire "lateral spread" of GFP expression while in 5/16 eyes a very slight extension of GFP expression beyond the final boundary of the subretinal bleb could be detected. All 3 AAV constructs induced GFP expression in the nerve fiber layer with spread to the optic nerve. Patients treated by subretinal injection should be monitored for possible expansion of the subretinal injection bleb prior to reattachment. Injections in the para-foveal region may expand to lead to a foveal detachment that may be undesirable. Cell-specific promoters may be required to limit spread of expressed transgene to the brain with these

  3. Expression of human alpha1-antitrypsin in mice and dogs following AAV6 vector-mediated gene transfer to the lungs.

    PubMed

    Halbert, Christine L; Madtes, David K; Vaughan, Andrew E; Wang, Zejing; Storb, Rainer; Tapscott, Stephen J; Miller, A Dusty

    2010-06-01

    We evaluated the potential of lung-directed gene therapy for alpha1-antitrypsin (AAT) deficiency using an adeno-associated virus type 6 (AAV6) vector containing a human AAT (hAAT) complementary DNA (cDNA) delivered to the lungs of mice and dogs. The results in normal and immune-deficient mice showed that hAAT concentrations were much higher in lung fluid than in plasma, and therapeutic levels were obtained even in normal mice. However, in normal mice an immune response against the vector and/or transgene limited long-term gene expression. An AAV6 vector expressing a marker protein verified that AAV6 vectors efficiently transduced lung cells in dogs. Delivery of AAV6-hAAT resulted in low levels of hAAT in dog serum but therapeutic levels in the lung that persisted for at least 58 days to 4 months in three immunosuppressed dogs. Expression in the serum was not detectable after 45 days in one nonimmune suppressed dog. A lymphoproliferative response to AAV capsid but not to hAAT was detected even after immunosuppression. These results in mice and dogs show the feasibility of expression of therapeutic levels of AAT in the lungs after AAV vector delivery, and advocate for approaches to prevent cellular immune responses to AAV capsid proteins for persistence of gene expression in humans.

  4. Kinetics of adeno-associated virus serotype 2 (AAV2) and AAV8 capsid antigen presentation in vivo are identical.

    PubMed

    He, Yi; Weinberg, Marc S; Hirsch, Matt; Johnson, Mark C; Tisch, Roland; Samulski, R Jude; Li, Chengwen

    2013-05-01

    Adeno-associated viral (AAV) vectors 2 and 8 have been used in clinical trials for patients with hemophilia, and data suggest that the capsid-specific CD8⁺ T cell response has had a negative impact on therapeutic success. To date the pattern of capsid cross-presentation from AAV2 and AAV8 transduction in vivo has not been elucidated. Previously, we have demonstrated that an engineered AAV2 virus carrying the immune-dominant SIINFEKL peptide in the capsid backbone was indistinguishable from wild type with respect to titer, tropism, and the ability to induce capsid-specific CD8⁺ T cell responses in vivo. In this study, we used the same strategy to engineer an AAV8 vector and demonstrated that antigen from SIINFEKL peptide-integrated AAV8 capsid was effectively presented via either plasmid transfection or AAV8 transduction in vitro. The tissue tropism and transgene expression kinetics of the engineered AAV8 vector in vivo were identical to that of wild-type AAV8. Animal studies show that capsid antigen presentation from AAV transduction was dose dependent, and more importantly, the proliferation of capsid-specific CD8⁺ T cells had similar kinetics (detectable before 30 days and undetectable after 40 days) for both AAV2 and AAV8 vectors. Elucidation of the kinetics of capsid antigen presentation from AAV transduction by various serotypes provides new insight into the potential impact CD8⁺ T cells can have during clinical trials and may help with rational design of effective strategies to prevent capsid-specific CD8⁺ T cell-mediated elimination of AAV-transduced target cells.

  5. Rational plasmid design and bioprocess optimization to enhance recombinant adeno-associated virus (AAV) productivity in mammalian cells.

    PubMed

    Emmerling, Verena V; Pegel, Antje; Milian, Ernest G; Venereo-Sanchez, Alina; Kunz, Marion; Wegele, Jessica; Kamen, Amine A; Kochanek, Stefan; Hoerer, Markus

    2016-02-01

    Viral vectors used for gene and oncolytic therapy belong to the most promising biological products for future therapeutics. Clinical success of recombinant adeno-associated virus (rAAV) based therapies raises considerable demand for viral vectors, which cannot be met by current manufacturing strategies. Addressing existing bottlenecks, we improved a plasmid system termed rep/cap split packaging and designed a minimal plasmid encoding adenoviral helper function. Plasmid modifications led to a 12-fold increase in rAAV vector titers compared to the widely used pDG standard system. Evaluation of different production approaches revealed superiority of processes based on anchorage- and serum-dependent HEK293T cells, exhibiting about 15-fold higher specific and volumetric productivity compared to well-established suspension cells cultivated in serum-free medium. As for most other viral vectors, classical stirred-tank bioreactor production is thus still not capable of providing drug product of sufficient amount. We show that manufacturing strategies employing classical surface-providing culture systems can be successfully transferred to the new fully-controlled, single-use bioreactor system Integrity(TM) iCELLis(TM) . In summary, we demonstrate substantial bioprocess optimizations leading to more efficient and scalable production processes suggesting a promising way for flexible large-scale rAAV manufacturing.

  6. High Prevalence of Infectious Adeno-associated Virus (AAV) in Human Peripheral Blood Mononuclear Cells Indicative of T Lymphocytes as Sites of AAV Persistence.

    PubMed

    Hüser, Daniela; Khalid, Dina; Lutter, Timo; Hammer, Eva-Maria; Weger, Stefan; Heßler, Melanie; Kalus, Ulrich; Tauchmann, Yvonne; Hensel-Wiegel, Karin; Lassner, Dirk; Heilbronn, Regine

    2017-02-15

    Seroepidemiology shows that infections with adeno-associated virus (AAV) are widespread, but diverse AAV serotypes isolated from humans or nonhuman primates have so far not been proven to be causes of human disease. In view of the increasing success of AAV-derived vectors in human gene therapy, definition of the in vivo sites of wild-type AAV persistence and the clinical consequences of its reactivation is becoming increasingly urgent. Here, we identify the presumed cell type for AAV persistence in the human host by highly sensitive AAV PCRs developed for the full spectrum of human AAV serotypes. In genomic-DNA samples from leukocytes of 243 healthy blood donors, 34% were found to be AAV positive, predominantly AAV type 2 (AAV2) (77%), AAV5 (19%), and additional serotypes. Roughly 11% of the blood donors had mixed AAV infections. AAV prevalence was dramatically increased in immunosuppressed patients, 76% of whom were AAV positive. Of these, at least 45% displayed mixed infections. Follow-up of single blood donors over 2 years allowed repeated detection of the initial and/or additional AAV serotypes, suggestive of fluctuating, persistent infection. Leukocyte separation revealed that AAV resided in CD3(+) T lymphocytes, perceived as the putative in vivo site of AAV persistence. Moreover, infectious AAVs of various serotypes could be rescued and propagated from numerous samples. The high prevalence and broad spectrum of human AAVs in leukocytes closely follow AAV seroepidemiology. Immunosuppression obviously enhances AAV replication in parallel with activation of human cytomegalovirus (HCMV) and human herpesvirus 6 (HHV-6), reminiscent of herpesvirus-induced AAV activation.

  7. Recombinant Adeno-Associated Virus Serotype 6 (rAAV6) Potently and Preferentially Transduces Rat Astrocytes In vitro and In vivo

    PubMed Central

    Schober, Alexandra L.; Gagarkin, Dmitriy A.; Chen, Ying; Gao, Guangping; Jacobson, Lauren; Mongin, Alexander A.

    2016-01-01

    Recombinant adeno-associated virus vectors are an increasingly popular tool for gene delivery to the CNS because of their non-pathological nature, low immunogenicity, and ability to stably transduce dividing and non-dividing cells. One of the limitations of rAAVs is their preferential tropism for neuronal cells. Glial cells, specifically astrocytes, appear to be infected at low rates. To overcome this limitation, previous studies utilized rAAVs with astrocyte-specific promoters or assorted rAAV serotypes and pseudotypes with purported selectivity for astrocytes. Yet, the reported glial infection rates are not consistent from study to study. In the present work, we tested seven commercially available recombinant serotypes– rAAV1, 2, and 5 through 9, for their ability to transduce primary rat astrocytes [visualized via viral expression of green fluorescent protein (GFP)]. In cell cultures, rAAV6 consistently demonstrated the highest infection rates, while rAAV2 showed astrocytic transduction in some, but not all, of the tested viral batches. To verify that all rAAV constructs utilized by us were viable and effective, we confirmed high infectivity rates in retinal pigmented epithelial cells (ARPE-19), which are known to be transduced by numerous rAAV serotypes. Based on the in vitro results, we next tested the cell type tropism of rAAV6 and rAAV2 in vivo, which were both injected in the barrel cortex at approximately equal doses. Three weeks later, the brains were sectioned and immunostained for viral GFP and the neuronal marker NeuN or the astrocytic marker GFAP. We found that rAAV6 strongly and preferentially transduced astrocytes (>90% of cells in the virus-infected areas), but not neurons (∼10% infection rate). On the contrary, rAAV2 preferentially infected neurons (∼65%), but not astrocytes (∼20%). Overall, our results suggest that rAAV6 can be used as a tool for manipulating gene expression (either delivery or knockdown) in rat astrocytes in vivo. PMID

  8. Recombinant AAV-PR39-mediated hypoxia-inducible factor 1α gene expression attenuates myocardial infarction.

    PubMed

    Sun, Lijun; Hao, Yuewen; Nie, Xiaowei; Xu, Jian; Li, Zhenwu; Zhang, Wei; Liu, Ying; Zhang, Xuexin

    2014-01-01

    PR39 is an angiogenic masterswitch protein, belonging to the second generation of angiogenic growth factors. However, the role of recombinant adeno-associated virus (AAV) carrying the PR39 fusion gene (AAV-PR39) in acute myocardial infarction remains unclear. Therefore, in this study, we investigated the role of AAV-PR39 in an experimental animal model of acute myocardial infarction. The PR39 gene was fused with the transmembrane peptide, TAT, 6xHis‑tag and NT4 signal sequences. AAV-PR39 was then obtained by calcium phosphate co-precipitation. A total of 18 healthy Chinese mini pigs were randomly divided into an experimental groups (the AAV-PR39-treated group) and a control group [phosphated-buffered saline (PBS)-treated group]. Following the induction of myocardial infarction, enhanced 3.0T MR imaging was performed to observe the changes in myocardial signal intensity at 0 h, 1, 2 and 3 weeks. The expression of hypoxia-inducible factor‑1α (HIF-1α) in the myocardial tissues was determined by SABC immunohistochemistry. In addition, in vitro experiments using CRL-1730 endothelial cells transfected with AAV vector containing NT4-TAT-His-PR39 revealed that the AAV-PR39-treated group had a significantly higher expression of HIF-1α compared with the control group. Moreover, PR39 regulated the HIF-1α-induced expression of angiogenic growth factors. Under hypoxic conditions, the anti-apoptotic effects in the AAV-PR39 group were more pronounced than those observed in the control (PBS-treated) group. In vivo, the enforced expression of recombinant PR39 elevated the level of HIF-1α under hypoxic conditions and decreased the size of the infarcted areas by upregulating the expression of HIF-1α in the areas surrounding the infarct area. Taken together, our data demonstrate that the recombinant AAV-PR39-mediated HIF-1α expression attenuates myocardial infarction, indicating that AAV-PR39 may serve as a novel therapeutic agent for the treatment of myocardial infarction.

  9. Distribution of AAV8 particles in cell lysates and culture media changes with time and is dependent on the recombinant vector

    PubMed Central

    Piras, Bryan A; Drury, Jason E; Morton, Christopher L; Spence, Yunyu; Lockey, Timothy D; Nathwani, Amit C; Davidoff, Andrew M; Meagher, Michael M

    2016-01-01

    With clinical trials ongoing, efficient clinical production of adeno-associated virus (AAV) to treat large numbers of patients remains a challenge. We compared distribution of AAV8 packaged with Factor VIII (FVIII) in cell culture media and lysates on days 3, 5, 6, and 7 post-transfection and found increasing viral production through day 6, with the proportion of viral particles in the media increasing from 76% at day 3 to 94% by day 7. Compared to FVIII, AAV8 packaged with Factor IX and Protective Protein/Cathepsin A vectors demonstrated a greater shift from lysate towards media from day 3 to 6, implying that particle distribution is dependent on recombinant vector. Larger-scale productions showed that the ratio of full-to-empty AAV particles is similar in media and lysate, and that AAV harvested on day 6 post-transfection provides equivalent function in mice compared to AAV harvested on day 3. This demonstrates that AAV8 production can be optimized by prolonging the duration of culture post-transfection, and simplified by allowing harvest of media only, with disposal of cells that contain 10% or less of total vector yield. Additionally, the difference in particle distribution with different expression cassettes implies a recombinant vector-dependent processing mechanism which should be taken into account during process development. PMID:27069949

  10. AAV ANCESTRAL RECONSTRUCTION LIBRARY ENABLES SELECTION OF BROADLY INFECTIOUS VIRAL VARIANTS

    PubMed Central

    Santiago-Ortiz, Jorge; Ojala, David S.; Westesson, Oscar; Weinstein, John R.; Wong, Sophie Y.; Steinsapir, Andrew; Kumar, Sanjay; Holmes, Ian; Schaffer, David V.

    2015-01-01

    Adeno-associated virus (AAV) vectors have achieved clinical efficacy in treating several diseases. Enhanced vectors are required to extend these landmark successes to other indications, however, and protein engineering approaches may provide the necessary vector improvements to address such unmet medical needs. To generate new capsid variants with potentially enhanced infectious properties, and to gain insights into AAV’s evolutionary history, we computationally designed and experimentally constructed a putative ancestral AAV library. Combinatorial variations at 32 amino acid sites were introduced to account for uncertainty in their identities. We then analyzed the evolutionary flexibility of these residues, the majority of which have not been previously studied, by subjecting the library to iterative selection on a representative cell line panel. The resulting variants exhibited transduction efficiencies comparable to the most efficient extant serotypes, and in general ancestral libraries were broadly infectious across the cell line panel, indicating that they favored promiscuity over specificity. Interestingly, putative ancestral AAVs were more thermostable than modern serotypes and did not utilize sialic acids, galactose, or heparan sulfate proteoglycans for cellular entry. Finally, variants mediated 19–31 fold higher gene expression in muscle compared to AAV1, a clinically utilized serotype for muscle delivery, highlighting their promise for gene therapy. PMID:26186661

  11. Adeno-associated virus (AAV) vectors in cancer gene therapy.

    PubMed

    Santiago-Ortiz, Jorge L; Schaffer, David V

    2016-10-28

    Gene delivery vectors based on adeno-associated virus (AAV) have been utilized in a large number of gene therapy clinical trials, which have demonstrated their strong safety profile and increasingly their therapeutic efficacy for treating monogenic diseases. For cancer applications, AAV vectors have been harnessed for delivery of an extensive repertoire of transgenes to preclinical models and, more recently, clinical trials involving certain cancers. This review describes the applications of AAV vectors to cancer models and presents developments in vector engineering and payload design aimed at tailoring AAV vectors for transduction and treatment of cancer cells. We also discuss the current status of AAV clinical development in oncology and future directions for AAV in this field.

  12. Assaying the Stability and Inactivation of AAV Serotype 1 Vectors.

    PubMed

    Howard, Douglas B; Harvey, Brandon K

    2017-02-01

    Adeno-associated virus (AAV) vectors are a commonplace tool for gene delivery ranging from cell culture to human gene therapy. One feature that makes AAV a desirable vector is its stability, in regard to both the duration of transgene expression and retention of infectivity as a viral particle. This study examined the stability of AAV serotype 1 (AAV1) vectors under different conditions. First, transducibility after storage at 4°C decreased 20% over 7 weeks. Over 10 freeze-thaw cycles, the resulting transduction efficiency became variable at 60-120% of a single thaw. Using small stainless steel slugs to mimic a biosafety cabinet or metal lab bench surface, it was found that an AAV1 vector can be reconstituted after 6 days of storage at room temperature. The stability of AAV is a desired feature, but effective decontamination procedures must be available for safety and experimental integrity. Multiple disinfectants commonly used in the laboratory for ability to inactivate an AAV1 vector were tested, and it was found that autoclaving, 0.25% peracetic acid, iodine, or 10% Clorox bleach completely prevented AAV-mediated transgene expression. These data suggest that peracetic acid should be used for inactivating AAV1 vectors on metal-based surfaces or instruments in order to avoid inadvertent transgene expression in human cells or cross-contamination of instruments.

  13. Long-term suppression of experimental arthritis following intramuscular administration of a pseudotyped AAV2/1-TNFR:Fc Vector.

    PubMed

    Sandalon, Ziv; Bruckheimer, Elizabeth M; Lustig, Kurt H; Burstein, Haim

    2007-02-01

    We previously reported that administration of an adeno-associated virus 2 (AAV2) vector encoding a rat tumor necrosis factor (TNF) receptor-immunoglobulin Fc (TNFR:Fc) fusion gene to rats with streptococcal cell wall-induced arthritis resulted in suppression of joint inflammation and cartilage and bone destruction, as well as expression of joint proinflammatory cytokines. In this study, we used an alternate rat model of arthritis to compare the serum levels and duration of TNFR:Fc protein expression following intramuscular administration of pseudotyped AAV-TNFR:Fc vectors based on serotypes 1, 2, and 5. All three pseudotyped AAV-TNFR:Fc vectors led to sustained expression of serum TNFR:Fc protein for at least one year. Serum TNFR:Fc protein levels in rats administered intramuscularly with AAV2/1-TNFR:Fc vector were up to 100- and 10-fold higher than in rats administered the AAV2-TNFR:Fc or AAV2/5-TNFR:Fc vectors, respectively. A single intramuscular administration of AAV2/1-TNFR:Fc vector at vector doses ranging from 10(10) to 10(12) DNase-resistant particles (DRP) per animal, resulted in complete and long-term suppression of recurrent joint inflammation for at least 150 days. Our results establish a proof of concept for administration of an AAV2/1-TNFR:Fc vector to the muscle to achieve long-term, sustained and therapeutically relevant levels of TNFR:Fc protein to treat chronic systemic inflammatory joint diseases.

  14. Efficient transduction of vascular smooth muscle cells with a translational AAV2.5 vector: a new perspective for in-stent restenosis gene therapy.

    PubMed

    Lompré, A-M; Hadri, L; Merlet, E; Keuylian, Z; Mougenot, N; Karakikes, I; Chen, J; Atassi, F; Marchand, A; Blaise, R; Limon, I; McPhee, S W J; Samulski, R J; Hajjar, R J; Lipskaia, L

    2013-09-01

    Coronary artery disease represents the leading cause of mortality in the developed world. Percutaneous coronary intervention involving stent placement remains disadvantaged by restenosis or thrombosis. Vascular gene therapy-based methods may be approached, but lack a vascular gene delivery vector. We report a safe and efficient long-term transduction of rat carotid vessels after balloon injury intervention with a translational optimized AAV2.5 vector. Compared with other known adeno-associated virus (AAV) serotypes, AAV2.5 demonstrated the highest transduction efficiency of human coronary artery vascular smooth muscle cells (VSMCs) in vitro. Local delivery of AAV2.5-driven transgenes in injured carotid arteries resulted in transduction as soon as day 2 after surgery and persisted for at least 30 days. In contrast to adenovirus 5 vector, inflammation was not detected in AAV2.5-transduced vessels. The functional effects of AAV2.5-mediated gene transfer on neointimal thickening were assessed using the sarco/endoplasmic reticulum Ca(2+) ATPase isoform 2a (SERCA2a) human gene, known to inhibit VSMC proliferation. At 30 days, human SERCA2a messenger RNA was detected in transduced arteries. Morphometric analysis revealed a significant decrease in neointimal hyperplasia in AAV2.5-SERCA2a-transduced arteries: 28.36±11.30 (n=8) vs 77.96±24.60 (n=10) μm(2), in AAV2.5-green fluorescent protein-infected, P<0.05. In conclusion, AAV2.5 vector can be considered as a promising safe and effective vector for vascular gene therapy.

  15. Metal-Induced Stabilization and Activation of Plasmid Replication Initiator RepB

    PubMed Central

    Ruiz-Masó, José A.; Bordanaba-Ruiseco, Lorena; Sanz, Marta; Menéndez, Margarita; del Solar, Gloria

    2016-01-01

    Initiation of plasmid rolling circle replication (RCR) is catalyzed by a plasmid-encoded Rep protein that performs a Tyr- and metal-dependent site-specific cleavage of one DNA strand within the double-strand origin (dso) of replication. The crystal structure of RepB, the initiator protein of the streptococcal plasmid pMV158, constitutes the first example of a Rep protein structure from RCR plasmids. It forms a toroidal homohexameric ring where each RepB protomer consists of two domains: the C-terminal domain involved in oligomerization and the N-terminal domain containing the DNA-binding and endonuclease activities. Binding of Mn2+ to the active site is essential for the catalytic activity of RepB. In this work, we have studied the effects of metal binding on the structure and thermostability of full-length hexameric RepB and each of its separate domains by using different biophysical approaches. The analysis of the temperature-induced changes in RepB shows that the first thermal transition, which occurs at a range of temperatures physiologically relevant for the pMV158 pneumococcal host, represents an irreversible conformational change that affects the secondary and tertiary structure of the protein, which becomes prone to self-associate. This transition, which is also shown to result in loss of DNA binding capacity and catalytic activity of RepB, is confined to its N-terminal domain. Mn2+ protects the protein from undergoing this detrimental conformational change and the observed protection correlates well with the high-affinity binding of the cation to the active site, as substituting one of the metal-ligands at this site impairs both the protein affinity for Mn2+and the Mn2+-driven thermostabilization effect. The level of catalytic activity of the protein, especially in the case of full-length RepB, cannot be explained based only on the high-affinity binding of Mn2+ at the active site and suggests the existence of additional, lower-affinity metal binding site

  16. AAV1/2-mediated BDNF gene therapy in a transgenic rat model of Huntington's disease.

    PubMed

    Connor, B; Sun, Y; von Hieber, D; Tang, S K; Jones, K S; Maucksch, C

    2016-03-01

    Reduced expression and disrupted corticostriatal transportation of brain-derived neurotrophic factor (BDNF) is proposed to contribute to the selective vulnerability of medium spiny striatal projection neurons (MSNs) in Huntington's disease (HD). We have previously demonstrated that BDNF overexpression in the quinolinic acid lesioned rat striatum attenuates motor impairment and reduces the extent of MSN cell loss. To further investigate the potential therapeutic properties of BDNF for HD, the current study examines the effect of bilateral AAV1/2-mediated BDNF expression in the striatum of a transgenic rat model of HD. Transfer of the BDNF gene to striatal neurons using an AAV1/2 serotype vector enhanced BDNF protein levels in the striatum. Bilateral BDNF expression attenuated the impairment of both motor and cognitive function when compared with AAV1/2-vehicle- or YFP-treated transgenic HD rats. Interestingly, a gender effect was apparent with female transgenic HD rats exhibiting less functional impairment than males. Quantification of NeuN and DARRP32 immunoreactivity and striatal volume revealed limited disease phenotype between wild type and transgenic HD animals. However, AAV1/2-BDNF-treated transgenic HD rats showed evidence of greater striatal volume and increased NeuN+ cell numbers compared with wild-type vehicle- and AAV1/2-vehicle- or YFP-treated transgenic HD rats. We propose BDNF holds considerable therapeutic potential for alleviating behavioral dysfunction and neuronal degeneration in HD, with further work required to examine the role of BDNF-TrkB signaling and the preservation of axonal and synaptic function.

  17. AAV genome loss from dystrophic mouse muscles during AAV-U7 snRNA-mediated exon-skipping therapy.

    PubMed

    Le Hir, Maëva; Goyenvalle, Aurélie; Peccate, Cécile; Précigout, Guillaume; Davies, Kay E; Voit, Thomas; Garcia, Luis; Lorain, Stéphanie

    2013-08-01

    In the context of future adeno-associated viral (AAV)-based clinical trials for Duchenne myopathy, AAV genome fate in dystrophic muscles is of importance considering the viral capsid immunogenicity that prohibits recurring treatments. We showed that AAV genomes encoding non-therapeutic U7 were lost from mdx dystrophic muscles within 3 weeks after intramuscular injection. In contrast, AAV genomes encoding U7ex23 restoring expression of a slightly shortened dystrophin were maintained endorsing that the arrest of the dystrophic process is crucial for maintaining viral genomes in transduced fibers. Indeed, muscles treated with low doses of AAV-U7ex23, resulting in sub-optimal exon skipping, displayed much lower titers of viral genomes, showing that sub-optimal dystrophin restoration does not prevent AAV genome loss. We also followed therapeutic viral genomes in severe dystrophic dKO mice over time after systemic treatment with scAAV9-U7ex23. Dystrophin restoration decreased significantly between 3 and 12 months in various skeletal muscles, which was correlated with important viral genome loss, except in the heart. Altogether, these data show that the success of future AAV-U7 therapy for Duchenne patients would require optimal doses of AAV-U7 to induce substantial levels of dystrophin to stabilize the treated fibers and maintain the long lasting effect of the treatment.

  18. Characterization of naturally-occurring humoral immunity to AAV in sheep.

    PubMed

    Tellez, Joseph; Van Vliet, Kim; Tseng, Yu-Shan; Finn, Jonathan D; Tschernia, Nick; Almeida-Porada, Graça; Arruda, Valder R; Agbandje-McKenna, Mavis; Porada, Christopher D

    2013-01-01

    AAV vectors have shown great promise for clinical gene therapy (GT), but pre-existing human immunity against the AAV capsid often limits transduction. Thus, testing promising AAV-based GT approaches in an animal model with similar pre-existing immunity could better predict clinical outcome. Sheep have long been used for basic biological and preclinical studies. Moreover, we have re-established a line of sheep with severe hemophilia A (HA). Given the impetus to use AAV-based GT to treat hemophilia, we characterized the pre-existing ovine humoral immunity to AAV. ELISA revealed naturally-occurring antibodies to AAV1, AAV2, AAV5, AAV6, AAV8, and AAV9. For AAV2, AAV8, and AAV9 these inhibit transduction in a luciferase-based neutralization assay. Epitope mapping identified peptides that were common to the capsids of all AAV serotypes tested (AAV2, AAV5, AAV8 and AAV9), with each animal harboring antibodies to unique and common capsid epitopes. Mapping using X-ray crystallographic AAV capsid structures demonstrated that these antibodies recognized both surface epitopes and epitopes located within regions of the capsid that are internal or buried in the capsid structure. These results suggest that sheep harbor endogenous AAV, which induces immunity to both intact capsid and to capsid epitopes presented following proteolysis during the course of infection. In conclusion, their clinically relevant physiology and the presence of naturally-occurring antibodies to multiple AAV serotypes collectively make sheep a unique model in which to study GT for HA, and other diseases, and develop strategies to circumvent the clinically important barrier of pre-existing AAV immunity.

  19. Characterization of Naturally-Occurring Humoral Immunity to AAV in Sheep

    PubMed Central

    Tellez, Joseph; Van Vliet, Kim; Tseng, Yu-Shan; Finn, Jonathan D.; Tschernia, Nick; Almeida-Porada, Graça; Arruda, Valder R.; Agbandje-McKenna, Mavis; Porada, Christopher D.

    2013-01-01

    AAV vectors have shown great promise for clinical gene therapy (GT), but pre-existing human immunity against the AAV capsid often limits transduction. Thus, testing promising AAV-based GT approaches in an animal model with similar pre-existing immunity could better predict clinical outcome. Sheep have long been used for basic biological and preclinical studies. Moreover, we have re-established a line of sheep with severe hemophilia A (HA). Given the impetus to use AAV-based GT to treat hemophilia, we characterized the pre-existing ovine humoral immunity to AAV. ELISA revealed naturally-occurring antibodies to AAV1, AAV2, AAV5, AAV6, AAV8, and AAV9. For AAV2, AAV8, and AAV9 these inhibit transduction in a luciferase-based neutralization assay. Epitope mapping identified peptides that were common to the capsids of all AAV serotypes tested (AAV2, AAV5, AAV8 and AAV9), with each animal harboring antibodies to unique and common capsid epitopes. Mapping using X-ray crystallographic AAV capsid structures demonstrated that these antibodies recognized both surface epitopes and epitopes located within regions of the capsid that are internal or buried in the capsid structure. These results suggest that sheep harbor endogenous AAV, which induces immunity to both intact capsid and to capsid epitopes presented following proteolysis during the course of infection. In conclusion, their clinically relevant physiology and the presence of naturally-occurring antibodies to multiple AAV serotypes collectively make sheep a unique model in which to study GT for HA, and other diseases, and develop strategies to circumvent the clinically important barrier of pre-existing AAV immunity. PMID:24086458

  20. Systemic gene delivery following intravenous administration of AAV9 to fetal and neonatal mice and late-gestation nonhuman primates.

    PubMed

    Mattar, Citra N; Wong, Andrew M S; Hoefer, Klemens; Alonso-Ferrero, Maria E; Buckley, Suzanne M K; Howe, Steven J; Cooper, Jonathan D; Waddington, Simon N; Chan, Jerry K Y; Rahim, Ahad A

    2015-09-01

    Several acute monogenic diseases affect multiple body systems, causing death in childhood. The development of novel therapies for such conditions is challenging. However, improvements in gene delivery technology mean that gene therapy has the potential to treat such disorders. We evaluated the ability of the AAV9 vector to mediate systemic gene delivery after intravenous administration to perinatal mice and late-gestation nonhuman primates (NHPs). Titer-matched single-stranded (ss) and self-complementary (sc) AAV9 carrying the green fluorescent protein (GFP) reporter gene were intravenously administered to fetal and neonatal mice, with noninjected age-matched mice used as the control. Extensive GFP expression was observed in organs throughout the body, with the epithelial and muscle cells being particularly well transduced. ssAAV9 carrying the WPRE sequence mediated significantly more gene expression than its sc counterpart, which lacked the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) sequence. To examine a realistic scale-up to larger models or potentially patients for such an approach, AAV9 was intravenously administered to late-gestation NHPs by using a clinically relevant protocol. Widespread systemic gene expression was measured throughout the body, with cellular tropisms similar to those observed in the mouse studies and no observable adverse events. This study confirms that AAV9 can safely mediate systemic gene delivery in small and large animal models and supports its potential use in clinical systemic gene therapy protocols.

  1. CRISPR/Cas9-AAV Mediated Knock-in at NRL Locus in Human Embryonic Stem Cells.

    PubMed

    Ge, Xianglian; Xi, Haitao; Yang, Fayu; Zhi, Xiao; Fu, Yanghua; Chen, Ding; Xu, Ren-He; Lin, Ge; Qu, Jia; Zhao, Junzhao; Gu, Feng

    2016-01-01

    Clustered interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome engineering technologies are sparking a new revolution in biological research. This technology efficiently induces DNA double strand breaks at the targeted genomic sequence and results in indel mutations by the error-prone process of nonhomologous end joining DNA repair or homologous recombination with a DNA repair template. The efficiency of genome editing with CRISPR/Cas9 alone in human embryonic stem cells is still low. Gene targeting with adeno-associated virus (AAV) vectors has been demonstrated in multiple human cell types with maximal targeting frequencies without engineered nucleases. However, whether CRISPR/Cas9-mediated double strand breaks and AAV based donor DNA mediated homologous recombination approaches could be combined to create a novel CRISPR/Cas9-AAV genetic tool for highly specific gene editing is not clear. Here we demonstrate that using CRISPR/Cas9-AAV, we could successfully knock-in a DsRed reporter gene at the basic motifleucine zipper transcription factor (NRL) locus in human embryonic stem cells. For the first time, this study provides the proof of principle that these two technologies can be used together. CRISPR/Cas9-AAV, a new genome editing tool, offers a platform for the manipulation of human genome.

  2. CRISPR/Cas9-AAV Mediated Knock-in at NRL Locus in Human Embryonic Stem Cells.

    PubMed

    Ge, Xianglian; Xi, Haitao; Yang, Fayu; Zhi, Xiao; Fu, Yanghua; Chen, Ding; Xu, Ren-He; Lin, Ge; Qu, Jia; Zhao, Junzhao; Gu, Feng

    2016-11-29

    Clustered interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome engineering technologies are sparking a new revolution in biological research. This technology efficiently induces DNA double strand breaks at the targeted genomic sequence and results in indel mutations by the error-prone process of nonhomologous end joining DNA repair or homologous recombination with a DNA repair template. The efficiency of genome editing with CRISPR/Cas9 alone in human embryonic stem cells is still low. Gene targeting with adeno-associated virus (AAV) vectors has been demonstrated in multiple human cell types with maximal targeting frequencies without engineered nucleases. However, whether CRISPR/Cas9-mediated double strand breaks and AAV based donor DNA mediated homologous recombination approaches could be combined to create a novel CRISPR/Cas9-AAV genetic tool for highly specific gene editing is not clear. Here we demonstrate that using CRISPR/Cas9-AAV, we could successfully knock-in a DsRed reporter gene at the basic motifleucine zipper transcription factor (NRL) locus in human embryonic stem cells. For the first time, this study provides the proof of principle that these two technologies can be used together. CRISPR/Cas9-AAV, a new genome editing tool, offers a platform for the manipulation of human genome.

  3. Sustained transgene expression despite T lymphocyte responses in a clinical trial of rAAV1-AAT gene therapy.

    PubMed

    Brantly, Mark L; Chulay, Jeffrey D; Wang, Lili; Mueller, Christian; Humphries, Margaret; Spencer, L Terry; Rouhani, Farshid; Conlon, Thomas J; Calcedo, Roberto; Betts, Michael R; Spencer, Carolyn; Byrne, Barry J; Wilson, James M; Flotte, Terence R

    2009-09-22

    Alpha-1 antitrypsin (AAT) deficiency is well-suited as a target for human gene transfer. We performed a phase 1, open-label, dose-escalation clinical trial of a recombinant adeno-associated virus (rAAV) vector expressing normal (M) AAT packaged into serotype 1 AAV capsids delivered by i.m. injection. Nine AAT-deficient subjects were enrolled sequentially in cohorts of 3 each at doses of 6.9 x 10(12), 2.2 x 10(13), and 6.0 x 10(13) vector genome particles per patient. Four subjects receiving AAT protein augmentation discontinued therapy 28 or 56 days before vector administration. Vector administration was well tolerated, with only mild local reactions and 1 unrelated serious adverse event (bacterial epididymitis). There were no changes in hematology or clinical chemistry parameters. M-specific AAT was expressed above background in all subjects in cohorts 2 and 3 and was sustained at levels 0.1% of normal for at least 1 year in the highest dosage level cohort, despite development of neutralizing antibody and IFN-gamma enzyme-linked immunospot responses to AAV1 capsid at day 14 in all subjects. These findings suggest that immune responses to AAV capsid that develop after i.m. injection of a serotype 1 rAAV vector expressing AAT do not completely eliminate transduced cells in this context.

  4. Preclinical safety evaluation of AAV2-sFLT01- a gene therapy for age-related macular degeneration.

    PubMed

    Maclachlan, Timothy K; Lukason, Michael; Collins, Margaret; Munger, Robert; Isenberger, Elisabete; Rogers, Cindy; Malatos, Shana; Dufresne, Elizabeth; Morris, James; Calcedo, Roberto; Veres, Gabor; Scaria, Abraham; Andrews, Laura; Wadsworth, Samuel

    2011-02-01

    AAV2-sFLT01 is a vector that expresses a modified soluble Flt1 receptor designed to neutralize the proangiogenic activities of vascular endothelial growth factor (VEGF) for treatment of age-related macular degeneration (AMD) via an intravitreal injection. Owing to minimal data available for the intravitreal route of administration for adeno-associated virus (AAV), we initiated a 12-month safety study of AAV2-sFLT01 administered intravitreally at doses of 2.4 × 10(9) vector genomes (vg) and 2.4 × 10(10) vg to cynomolgus monkeys. Expression of sFlt01 protein peaked at ~1-month postadministration and remained relatively constant for the remainder of the study. Electroretinograms, fluorescein angiograms, and tonometry were assessed every 3 months, with no test article-related findings observed in any group. Indirect ophthalmoscopy and slit lamp exams performed monthly revealed a mild to moderate but self-resolving vitreal inflammation in the high-dose group only, which follow-up studies suggest was directed against the AAV2 capsid. Histological evaluation revealed no structural changes in any part of the eye and occasional inflammatory cells in the trabecular meshwork, vitreous and retina in the high-dose group. Biodistribution analysis in rats and monkeys found only trace amounts of vector outside the injected eye. In summary, these studies found AAV2-sFLT01 to be well-tolerated, localized, and capable of long-term expression.

  5. CRISPR/Cas9-AAV Mediated Knock-in at NRL Locus in Human Embryonic Stem Cells

    PubMed Central

    Ge, Xianglian; Xi, Haitao; Yang, Fayu; Zhi, Xiao; Fu, Yanghua; Chen, Ding; Xu, Ren-He; Lin, Ge; Qu, Jia; Zhao, Junzhao; Gu, Feng

    2016-01-01

    Clustered interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome engineering technologies are sparking a new revolution in biological research. This technology efficiently induces DNA double strand breaks at the targeted genomic sequence and results in indel mutations by the error-prone process of nonhomologous end joining DNA repair or homologous recombination with a DNA repair template. The efficiency of genome editing with CRISPR/Cas9 alone in human embryonic stem cells is still low. Gene targeting with adeno-associated virus (AAV) vectors has been demonstrated in multiple human cell types with maximal targeting frequencies without engineered nucleases. However, whether CRISPR/Cas9-mediated double strand breaks and AAV based donor DNA mediated homologous recombination approaches could be combined to create a novel CRISPR/Cas9-AAV genetic tool for highly specific gene editing is not clear. Here we demonstrate that using CRISPR/Cas9-AAV, we could successfully knock-in a DsRed reporter gene at the basic motifleucine zipper transcription factor (NRL) locus in human embryonic stem cells. For the first time, this study provides the proof of principle that these two technologies can be used together. CRISPR/Cas9-AAV, a new genome editing tool, offers a platform for the manipulation of human genome. PMID:27898094

  6. Multilineage transduction of resident lung cells in vivo by AAV2/8 for α1-antitrypsin gene therapy

    PubMed Central

    Payne, Julia G; Takahashi, Ayuko; Higgins, Michelle I; Porter, Emily L; Suki, Bela; Balazs, Alejandro; Wilson, Andrew A

    2016-01-01

    In vivo gene delivery has long represented an appealing potential treatment approach for monogenic diseases such as α1-antitrypsin deficiency (AATD) but has proven challenging to achieve in practice. Alternate pseudotyping of recombinant adeno-associated virus (AAV) vectors is producing vectors with increasingly heterogeneous tropic specificity, giving researchers the ability to target numerous end-organs affected by disease. Herein, we describe sustained pulmonary transgene expression for at least 52 weeks after a single intratracheal instillation of AAV2/8 and characterize the multiple cell types transduced within the lung utilizing this approach. We demonstrate that lung-directed AAV2/8 is able to achieve therapeutic α-1 antitrypsin (AAT) protein levels within the lung epithelial lining fluid and that AAT gene delivery ameliorates the severity of experimental emphysema in mice. We find that AAV2/8 efficiently transduces hepatocytes in vivo after intratracheal administration, a finding that may have significance for AAV-based human gene therapy studies. These results support direct transgene delivery to the lung as a potential alternative approach to achieve the goal of developing a gene therapy for AATD. PMID:27408904

  7. Multilineage transduction of resident lung cells in vivo by AAV2/8 for α1-antitrypsin gene therapy.

    PubMed

    Payne, Julia G; Takahashi, Ayuko; Higgins, Michelle I; Porter, Emily L; Suki, Bela; Balazs, Alejandro; Wilson, Andrew A

    2016-01-01

    In vivo gene delivery has long represented an appealing potential treatment approach for monogenic diseases such as α1-antitrypsin deficiency (AATD) but has proven challenging to achieve in practice. Alternate pseudotyping of recombinant adeno-associated virus (AAV) vectors is producing vectors with increasingly heterogeneous tropic specificity, giving researchers the ability to target numerous end-organs affected by disease. Herein, we describe sustained pulmonary transgene expression for at least 52 weeks after a single intratracheal instillation of AAV2/8 and characterize the multiple cell types transduced within the lung utilizing this approach. We demonstrate that lung-directed AAV2/8 is able to achieve therapeutic α-1 antitrypsin (AAT) protein levels within the lung epithelial lining fluid and that AAT gene delivery ameliorates the severity of experimental emphysema in mice. We find that AAV2/8 efficiently transduces hepatocytes in vivo after intratracheal administration, a finding that may have significance for AAV-based human gene therapy studies. These results support direct transgene delivery to the lung as a potential alternative approach to achieve the goal of developing a gene therapy for AATD.

  8. Properly scaled and targeted AAV2-NRTN (neurturin) to the substantia nigra is safe, effective and causes no weight loss: support for nigral targeting in Parkinson's disease.

    PubMed

    Bartus, Raymond T; Brown, Lamar; Wilson, Alistair; Kruegel, Brian; Siffert, Joao; Johnson, Eugene M; Kordower, Jeffrey H; Herzog, Christopher D

    2011-10-01

    Recent analyses of autopsied brains from subjects previously administered AAV2-neurturin (NRTN) gene transfer argues that optimizing the effects of neurotrophic factors in Parkinson's disease (PD) likely requires delivery to both the degenerating cell bodies (in substantia nigra) and their terminals (in striatum). Prior to implementing this novel dosing paradigm in humans, we conducted eight nonclinical experiments with three general objectives: (1) evaluate the feasibility, safety and effectiveness of targeting the substantia nigra (SN) with AAV2-NRTN, (2) better understand and appraise recent warnings of serious weight loss that might occur with targeting the SN with neurotrophic factors, and (3) define an appropriate dose of AAV2-NRTN that should safely and effectively cover the SN in PD patients. Toward these ends, we first determined SN volume for rats, monkeys and humans, and employed these values to calculate comparable dose equivalents for each species by scaling each dose, based on relative SN volume. Using this information, we next injected AAV2-GFP to monkey SN to quantify AAV2-vector distribution and confirm reasonable SN coverage. We then selected and administered a ~200-fold range of AAV2-NRTN doses (and a single AAV2-GDNF dose) to rat SN, producing a wide range of protein expression. In contrast to recent warnings regarding nigra targeting, no dose produced any serious side effects or toxicity, though we replicated the modest reduction in weight gain reported by others with the highest AAV2-NRTN and the AAV2-GDNF dose. A dose-related increase in NRTN expression was seen, with the lower doses limiting NRTN to the peri-SN and the highest dose producing mistargeted NRTN well outside the SN. We then demonstrated that the reduction in weight gain following excessive-doses can be dissociated from NRTN in the targeted SN, and is linked to mistargeted NRTN in the diencephalon. We also showed that prior destruction of the dopaminergic SN neurons via 6-OHDA

  9. Liver-specific microRNA-122 target sequences incorporated in AAV vectors efficiently inhibits transgene expression in the liver.

    PubMed

    Qiao, C; Yuan, Z; Li, J; He, B; Zheng, H; Mayer, C; Li, J; Xiao, X

    2011-04-01

    Vectors based on adeno-associated virus (AAV) are effective in gene delivery in vivo. Tissue-specific gene expression is often needed to minimize ectopic expression in unintended cells and undesirable consequences. Here, we investigated whether incorporation of target sequences of tissue-specific microRNA (miRNA) into AAV vectors could inhibit ectopic expression in tissues such as the liver and hematopoietic cells. First we inserted liver-specific miR-122 target sequences (miR-122T) into the 3'-untranslated region (UTR) of a number of AAV vectors. After intravenous delivery in mice, we found that five copies of the 20mer miR-122T reduced liver expression of luciferase by 50-fold and β-galactosidase (LacZ) by 70-fold. Five copies of miR-122T also reduced mRNA levels of a secretable protein (myostatin propeptide) from the AAV vector plasmid by 23-fold in the liver. However, gene expression in other tissues, including the heart was not inhibited. Similarly, we inserted four copies of miR-142-3pT or miR-142-5pT, both hematopoietic lineage-specific, into the 3'-UTR of the AAV-luciferase vector. We wished to see whether they could prolong transgene expression by inhibiting expression in antigen-presenting cells. However, in vivo luciferase gene expression in major tissues declined with time, regardless of the miR-142 target sequences used. Quantitative analysis of the vector DNA in various tissues revealed that the decline of transgene expression in vivo was mainly because of promoter shut-off other than loss of AAV-transduced cells by immune destruction. Moreover, transgene expression was not detected in circulating mononuclear cells after delivering AAV9 vector with or without miR142T. These results demonstrate that liver-specific miR-122 target sequence in AAV vectors was highly efficient in reducing liver expression, whereas hematopoietic miR-142 target sequences were ineffective in preventing decline of AAV vector gene expression in nonhematopoietic tissues

  10. Syngeneic AAV pseudo-vectors potentiates full vector transduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An excessive amount of empty capsids are generated during regular AAV vector production process. These pseudo-vectors often remain in final vectors used for animal studies or clinical trials. The potential effects of these pseudo-vectors on AAV transduction have been a major concern. In the current ...

  11. The AAV Vector Toolkit: Poised at the Clinical Crossroads.

    PubMed

    Asokan, Aravind; Schaffer, David V; Jude Samulski, R

    2012-04-01

    The discovery of naturally occurring adeno-associated virus (AAV) isolates in different animal species and the generation of engineered AAV strains using molecular genetics tools have yielded a versatile AAV vector toolkit. Promising results in preclinical animal models of human disease spurred the much awaited transition toward clinical application, and early successes in phase I/II clinical trials for a broad spectrum of genetic diseases have recently been reported. As the gene therapy community forges ahead with cautious optimism, both preclinical and clinical studies using first generation AAV vectors have highlighted potential challenges. These include cross-species variation in vector tissue tropism and gene transfer efficiency, pre-existing humoral immunity to AAV capsids and vector dose-dependent toxicity in patients. A battery of second generation AAV vectors, engineered through rational and combinatorial approaches to address the aforementioned concerns, are now available. This review will provide an overview of preclinical studies with the ever-expanding AAV vector portfolio in large animal models and an update on new lead AAV vector candidates poised for clinical translation.

  12. The AAV vector toolkit: poised at the clinical crossroads.

    PubMed

    Asokan, Aravind; Schaffer, David V; Samulski, R Jude

    2012-04-01

    The discovery of naturally occurring adeno-associated virus (AAV) isolates in different animal species and the generation of engineered AAV strains using molecular genetics tools have yielded a versatile AAV vector toolkit. Promising results in preclinical animal models of human disease spurred the much awaited transition toward clinical application, and early successes in phase I/II clinical trials for a broad spectrum of genetic diseases have recently been reported. As the gene therapy community forges ahead with cautious optimism, both preclinical and clinical studies using first generation AAV vectors have highlighted potential challenges. These include cross-species variation in vector tissue tropism and gene transfer efficiency, pre-existing humoral immunity to AAV capsids and vector dose-dependent toxicity in patients. A battery of second generation AAV vectors, engineered through rational and combinatorial approaches to address the aforementioned concerns, are now available. This review will provide an overview of preclinical studies with the ever-expanding AAV vector portfolio in large animal models and an update on new lead AAV vector candidates poised for clinical translation.

  13. AAV2/1 CD74 Gene Transfer Reduces β-amyloidosis and Improves Learning and Memory in a Mouse Model of Alzheimer's Disease.

    PubMed

    Kiyota, Tomomi; Zhang, Gang; Morrison, Christine M; Bosch, Megan E; Weir, Robert A; Lu, Yaman; Dong, Weiguo; Gendelman, Howard E

    2015-11-01

    Modulation of the amyloid-β (Aβ) trafficking pathway heralds a new therapeutic frontier for Alzheimer's disease (AD). As CD74 binds to the amyloid-β precursor protein (APP) and can suppresses Aβ processing, we investigated whether recombinant adeno-associated virus (AAV) delivery of CD74 could reduce Aβ production and affect disease outcomes. This idea was tested in a mouse AD model. Cotransduction of AAV-tetracycline-controlled transactivator (tTA) and AAV-tet-response element (TRE)-CD74 resulted in CD74 expression, reduced Aβ production in mouse neurons containing the human APP with familial AD-linked mutations. Stereotaxic injection of AAV-TRE-GFP or CD74 into the hippocampi of an AD mouse, defined as a TgCRND8 × calmodulin-dependent protein kinase II derived promoter-tTA double-transgenic, reduced Aβ loads and pyramidal neuronal Aβ accumulation in the hippocampus. Immunofluorescent studies showed that APP colocalization with Lamp1 was increased in CD74-expressing neurons. Moreover, Morris water maze tasks demonstrated that mice treated with AAV-TRE-CD74 showed improved learning and memory compared to AAV-TRE-GFP control animals. These results support the idea that CD74-induced alteration of Aβ processing could improve AD-associated memory deficits as shown in mouse models of human disease.

  14. The Human Rhodopsin Kinase Promoter in an AAV5 Vector Confers Rod- and Cone-Specific Expression in the Primate Retina

    PubMed Central

    Alexander, John J.; Boye, Sanford L.; Witherspoon, Clark D.; Sandefer, Kristen J.; Conlon, Thomas J.; Erger, Kirsten; Sun, Jingfen; Ryals, Renee; Chiodo, Vince A.; Clark, Mark E.; Girkin, Christopher A.; Hauswirth, William W.; Gamlin, Paul D.

    2012-01-01

    Abstract Adeno-associated virus (AAV) has proven an effective gene delivery vehicle for the treatment of retinal disease. Ongoing clinical trials using a serotype 2 AAV vector to express RPE65 in the retinal pigment epithelium have proven safe and effective. While many proof-of-concept studies in animal models of retinal disease have suggested that gene transfer to the neural retina will also be effective, a photoreceptor-targeting AAV vector has yet to be used in the clinic, principally because a vector that efficiently but exclusively targets all primate photoreceptors has yet to be demonstrated. Here, we evaluate a serotype 5 AAV vector containing the human rhodopsin kinase (hGRK1) promoter for its ability to target transgene expression to rod and cone photoreceptors when delivered subretinally in a nonhuman primate (NHP). In vivo fluorescent fundus imaging confirmed that AAV5-hGRK1-mediated green fluorescent protein (GFP) expression was restricted to the injection blebs of treated eyes. Optical coherence tomography (OCT) revealed a lack of gross pathology after injection. Neutralizing antibodies against AAV5 were undetectable in post-injection serum samples from subjects receiving uncomplicated subretinal injections (i.e., no hemorrhage). Immunohistochemistry of retinal sections confirmed hGRK1 was active in, and specific for, both rods and cones of NHP retina. Biodistribution studies revealed minimal spread of vector genomes to peripheral tissues. These results suggest that AAV5-hGRK1 is a safe and effective AAV serotype/promoter combination for targeting therapeutic transgene expression protein to rods and cones in a clinical setting. PMID:22845794

  15. The human rhodopsin kinase promoter in an AAV5 vector confers rod- and cone-specific expression in the primate retina.

    PubMed

    Boye, Shannon E; Alexander, John J; Boye, Sanford L; Witherspoon, Clark D; Sandefer, Kristen J; Conlon, Thomas J; Erger, Kirsten; Sun, Jingfen; Ryals, Renee; Chiodo, Vince A; Clark, Mark E; Girkin, Christopher A; Hauswirth, William W; Gamlin, Paul D

    2012-10-01

    Adeno-associated virus (AAV) has proven an effective gene delivery vehicle for the treatment of retinal disease. Ongoing clinical trials using a serotype 2 AAV vector to express RPE65 in the retinal pigment epithelium have proven safe and effective. While many proof-of-concept studies in animal models of retinal disease have suggested that gene transfer to the neural retina will also be effective, a photoreceptor-targeting AAV vector has yet to be used in the clinic, principally because a vector that efficiently but exclusively targets all primate photoreceptors has yet to be demonstrated. Here, we evaluate a serotype 5 AAV vector containing the human rhodopsin kinase (hGRK1) promoter for its ability to target transgene expression to rod and cone photoreceptors when delivered subretinally in a nonhuman primate (NHP). In vivo fluorescent fundus imaging confirmed that AAV5-hGRK1-mediated green fluorescent protein (GFP) expression was restricted to the injection blebs of treated eyes. Optical coherence tomography (OCT) revealed a lack of gross pathology after injection. Neutralizing antibodies against AAV5 were undetectable in post-injection serum samples from subjects receiving uncomplicated subretinal injections (i.e., no hemorrhage). Immunohistochemistry of retinal sections confirmed hGRK1 was active in, and specific for, both rods and cones of NHP retina. Biodistribution studies revealed minimal spread of vector genomes to peripheral tissues. These results suggest that AAV5-hGRK1 is a safe and effective AAV serotype/promoter combination for targeting therapeutic transgene expression protein to rods and cones in a clinical setting.

  16. Delivering Transgenic DNA Exceeding the Carrying Capacity of AAV Vectors.

    PubMed

    Hirsch, Matthew L; Wolf, Sonya J; Samulski, R J

    2016-01-01

    Gene delivery using recombinant adeno-associated virus (rAAV) has emerged to the forefront demonstrating safe and effective phenotypic correction of diverse diseases including hemophilia B and Leber's congenital amaurosis. In addition to rAAV's high efficiency of transduction and the capacity for long-term transgene expression, the safety profile of rAAV remains unsoiled in humans with no deleterious vector-related consequences observed thus far. Despite these favorable attributes, rAAV vectors have a major disadvantage preventing widespread therapeutic applications; as the AAV capsid is the smallest described to date, it cannot package "large" genomes. Currently, the packaging capacity of rAAV has yet to be definitively defined but is approximately 5 kb, which has served as a limitation for large gene transfer. There are two main approaches that have been developed to overcome this limitation, split AAV vectors, and fragment AAV (fAAV) genome reassembly (Hirsch et al., Mol Ther 18(1):6-8, 2010). Split rAAV vector applications were developed based upon the finding that rAAV genomes naturally concatemerize in the cell post-transduction and are substrates for enhanced homologous recombination (HR) (Hirsch et al., Mol Ther 18(1):6-8, 2010; Duan et al., J Virol 73(1):161-169, 1999; Duan et al., J Virol 72(11):8568-8577, 1998; Duan et al., Mol Ther 4(4):383-391, 2001; Halbert et al., Nat Biotechnol 20(7):697-701, 2002). This method involves "splitting" the large transgene into two separate vectors and upon co-transduction, intracellular large gene reconstruction via vector genome concatemerization occurs via HR or nonhomologous end joining (NHEJ). Within the split rAAV approaches there currently exist three strategies: overlapping, trans-splicing, and hybrid trans-splicing (Duan et al., Mol Ther 4(4):383-391, 2001; Halbert et al., Nat Biotechnol 20(7):697-701, 2002; Ghosh et al., Mol Ther 16(1):124-130, 2008; Ghosh et al., Mol Ther 15(4):750-755, 2007). The other major

  17. Mutational Analysis of the Adeno-Associated Virus Type 2 (AAV2) Capsid Gene and Construction of AAV2 Vectors with Altered Tropism

    PubMed Central

    Wu, Pei; Xiao, Wu; Conlon, Thomas; Hughes, Jeffrey; Agbandje-McKenna, Mavis; Ferkol, Thomas; Flotte, Terence; Muzyczka, Nicholas

    2000-01-01

    Adeno-associated virus type 2 (AAV2) has proven to be a valuable vector for gene therapy. Characterization of the functional domains of the AAV capsid proteins can facilitate our understanding of viral tissue tropism, immunoreactivity, viral entry, and DNA packaging, all of which are important issues for generating improved vectors. To obtain a comprehensive genetic map of the AAV capsid gene, we have constructed 93 mutants at 59 different positions in the AAV capsid gene by site-directed mutagenesis. Several types of mutants were studied, including epitope tag or ligand insertion mutants, alanine scanning mutants, and epitope substitution mutants. Analysis of these mutants revealed eight separate phenotypes. Infectious titers of the mutants revealed four classes. Class 1 mutants were viable, class 2 mutants were partially defective, class 3 mutants were temperature sensitive, and class 4 mutants were noninfectious. Further analysis revealed some of the defects in the class 2, 3, and 4 mutants. Among the class 4 mutants, a subset completely abolished capsid formation. These mutants were located predominantly, but not exclusively, in what are likely to be β-barrel structures in the capsid protein VP3. Two of these mutants were insertions at the N and C termini of VP3, suggesting that both ends of VP3 play a role that is important for capsid assembly or stability. Several class 2 and 3 mutants produced capsids that were unstable during purification of viral particles. One mutant, R432A, made only empty capsids, presumably due to a defect in packaging viral DNA. Additionally, five mutants were defective in heparan binding, a step that is believed to be essential for viral entry. These were distributed into two amino acid clusters in what is likely to be a cell surface loop in the capsid protein VP3. The first cluster spanned amino acids 509 to 522; the second was between amino acids 561 and 591. In addition to the heparan binding clusters, hemagglutinin epitope tag

  18. Prolonged expression of an anti-HIV-1 gp120 minibody to the female rhesus macaque lower genital tract by AAV gene transfer.

    PubMed

    Abdel-Motal, U M; Harbison, C; Han, T; Pudney, J; Anderson, D J; Zhu, Q; Westmoreland, S; Marasco, W A

    2014-09-01

    Topical microbicides are a leading strategy for prevention of HIV mucosal infection to women; however, numerous pharmacokinetic limitations associated with coitally related dosing strategy have contributed to their limited success. Here we test the hypothesis that adeno-associated virus (AAV) mediated delivery of the b12 human anti-HIV-1 gp120 minibody gene to the lower genital tract of female rhesus macaques (Rh) can provide prolonged expression of b12 minibodies in the cervical-vaginal secretions. Gene transfer studies demonstrated that, of various green fluorescent protein (GFP)-expressing AAV serotypes, AAV-6 most efficiently transduced freshly immortalized and primary genital epithelial cells (PGECs) of female Rh in vitro. In addition, AAV-6-b12 minibody transduction of Rh PGECs led to inhibition of SHIV162p4 transmigration and virus infectivity in vitro. AAV-6-GFP could also successfully transduce vaginal epithelial cells of Rh when applied intravaginally, including p63+ epithelial stem cells. Moreover, intravaginal application of AAV-6-b12 to female Rh resulted in prolonged minibody detection in their vaginal secretions throughout the 79-day study period. These data provide proof of principle that AAV-6-mediated delivery of anti-HIV broadly neutralizing antibody (BnAb) genes to the lower genital tract of female Rh results in persistent minibody detection for several months. This strategy offers promise that an anti-HIV-1 genetic microbicide strategy may be possible in which topical application of AAV vector, with periodic reapplication as needed, may provide sustained local BnAb expression and protection.

  19. Self-complementary AAV2.5-BMP2-coated Femoral Allografts Mediated Superior Bone Healing Versus Live Autografts in Mice With Equivalent Biomechanics to Unfractured Femur

    PubMed Central

    Yazici, Cemal; Takahata, Masahiko; Reynolds, David G; Xie, Chao; Samulski, R Jude; Samulski, Jade; Beecham, E Jeffrey; Gertzman, Arthur A; Spilker, Mark; Zhang, Xinping; O'Keefe, Regis J; Awad, Hani A; Schwarz, Edward M

    2011-01-01

    Structural allografts used for critical bone defects have limited osteogenic properties for biointegration. Although ex vivo tissue-engineered constructs expressing bone morphogenetic protein-2 (BMP2) have demonstrated efficacy in critical defect models, similar success has not been achieved with off-the-shelf acellular approaches, including allografts coated with freeze-dried single-stranded adeno-associated virus (ssAAV-BMP2). To see whether the self-complementary AAV serotype 2.5 vector (scAAV2.5-BMP2) could overcome this, we performed side-by-side comparisons in vitro and in the murine femoral allograft model. Although ssAAV-BMP2 was unable to induce BMP2 expression and differentiation of C3H10T1/2 cells in culture, scAAV2.5-BMP2 transduction led to dose-dependent BMP2 expression and alkaline phosphatase activity, and displayed a 25-fold increased transduction efficiency in vivo. After 6 weeks, the ssAAV-BMP2 coating failed to demonstrate any significant effects. However, all allografts coated with 1010 scAAV2.5-BMP2 formed a new cortical shell that was indistinguishable to that formed by live autografts. Additionally, coated allografts experienced reduced resorption resulting in a threefold increase in graft bone volume versus autograft. This led to biomechanical superiority versus both allografts and autografts, and equivalent torsional rigidity to unfractured femur. Collectively, these results demonstrate that scAAV2.5-BMP2 coating overcomes the major limitations of structural allografts, which can be used to heal critical defects of any size. PMID:21206485

  20. Enzyme replacement in the CSF to treat metachromatic leukodystrophy in mouse model using single intracerebroventricular injection of self-complementary AAV1 vector.

    PubMed

    Hironaka, Kohei; Yamazaki, Yoshiyuki; Hirai, Yukihiko; Yamamoto, Motoko; Miyake, Noriko; Miyake, Koichi; Okada, Takashi; Morita, Akio; Shimada, Takashi

    2015-08-18

    Metachromatic leukodystrophy (MLD) is a lysosomal storage disease caused by a functional deficiency in human arylsulfatase A (hASA). We recently reported that ependymal cells and the choroid plexus are selectively transduced by intracerebroventricular (ICV) injection of adeno-associated virus serotype 1 (AAV1) vector and serve as a biological reservoir for the secretion of lysosomal enzymes into the cerebrospinal fluid (CSF). In the present study, we examined the feasibility of this AAV-mediated gene therapy to treat MLD model mice. Preliminary experiments showed that the hASA level in the CSF after ICV injection of self-complementary (sc) AAV1 was much higher than in mice injected with single-stranded AAV1 or scAAV9. However, when 18-week-old MLD mice were treated with ICV injection of scAAV1, the concentration of hASA in the CSF gradually decreased and was not detectable at 12 weeks after injection, probably due to the development of anti-hASA antibodies. As a result, the sulfatide levels in brain tissues of treated MLD mice were only slightly reduced compared with those of untreated MLD mice. These results suggest that this approach is potentially promising for treating MLD, but that controlling the immune response appears to be crucial for long-term expression of therapeutic proteins in the CSF.

  1. High-Efficiency Transduction of Primary Human Hematopoietic Stem/Progenitor Cells by AAV6 Vectors: Strategies for Overcoming Donor-Variation and Implications in Genome Editing

    PubMed Central

    Ling, Chen; Bhukhai, Kanit; Yin, Zifei; Tan, Mengqun; Yoder, Mervin C.; Leboulch, Philippe; Payen, Emmanuel; Srivastava, Arun

    2016-01-01

    We have reported that of the 10 commonly used AAV serotype vectors, AAV6 is the most efficient in transducing primary human hematopoietic stem/progenitor cells (HSPCs). However, the transduction efficiency of the wild-type (WT) AAV6 vector varies greatly in HSPCs from different donors. Here we report two distinct strategies to further increase the transduction efficiency in HSPCs from donors that are transduced less efficiently with the WT AAV6 vectors. The first strategy involved modifications of the viral capsid proteins where specific surface-exposed tyrosine (Y) and threonine (T) residues were mutagenized to generate a triple-mutant (Y705 + Y731F + T492V) AAV6 vector. The second strategy involved the use of ex vivo transduction at high cell density. The combined use of these strategies resulted in transduction efficiency exceeding ~90% in HSPCs at significantly reduced vector doses. Our studies have significant implications in the optimal use of capsid-optimized AAV6 vectors in genome editing in HSPCs. PMID:27759036

  2. Stability and Safety of an AAV Vector for Treating RPGR-ORF15 X-Linked Retinitis Pigmentosa.

    PubMed

    Deng, Wen-Tao; Dyka, Frank M; Dinculescu, Astra; Li, Jie; Zhu, Ping; Chiodo, Vince A; Boye, Sanford L; Conlon, Thomas J; Erger, Kirsten; Cossette, Travis; Hauswirth, William W

    2015-09-01

    Our collaborative successful gene replacement therapy using AAV vectors expressing a variant of human RPGR-ORF15 in two canine models provided therapeutic proof of concept for translation into human treatment. The ORF15 sequence contained within this AAV vector, however, has ORF15 DNA sequence variations compared to the published sequence that are likely due to its unusual composition of repetitive purine nucleotides. This mutability is a concern for AAV vector production and safety when contemplating a human trial. In this study, we establish the safety profile of AAV-hIRBP-hRPGR and AAV-hGRK1-hRPGR vectors used in the initial canine proof-of-principle experiments by demonstrating hRPGR-ORF15 sequence stability during all phases of manipulation, from plasmid propagation to vector production to its stability in vivo after subretinal administration to animals. We also evaluate potential toxicity in vivo by investigating protein expression, retinal structure and function, and vector biodistribution. Expression of hRPGR is detected in the inner segments and synaptic terminals of photoreceptors and is restricted to the connecting cilium when the vector is further diluted. Treated eyes exhibit no toxicity as assessed by retinal histopathology, immunocytochemistry, optical coherence tomography, fundoscopy, electroretinogram, and vector biodistribution. Therefore, the hRPGR-ORF15 variant in our AAV vectors appears to be a more stable form than the endogenous hRPGR cDNA when propagated in vitro. Its safety profile presented here in combination with its proven efficacy supports future gene therapy clinical trials.

  3. Retinal pigment epithelial cell expression of active Rap 1a by scAAV2 inhibits choroidal neovascularization

    PubMed Central

    Wang, Haibo; Han, Xiaokun; Bretz, Colin A; Becker, Silke; Gambhir, Deeksha; Smith, George W; Samulski, R Jude; Wittchen, Erika S; Quilliam, Lawrence A; Chrzanowska-Wodnicka, Magdalena; Hartnett, M Elizabeth

    2016-01-01

    To test the hypothesis that increased Rap1a activity specifically in retinal pigment epithelial cells resists choroidal neovascularization (CNV), self-complementary adeno-associated virus 2 (scAAV2) with RPE65-promoter-driven GFP vectors were generated and introduced subretinally into Rap1b-deficient mice. Six-week-old mice that received subretinal control (scAAV2-Con) or constitutively active Rap1a (scAAV2-CARap1a) showed strong GFP at the 5 × 108 viral particle/µl dose 5 weeks later without altering retinal morphology or function. Compared to scAAV2-Con- or phosphate-buffered saline (PBS)-injected, eyes injected with scAAV2-CARap1a had increased Rap1 in retinal pigment epithelial (RPE)/choroidal lysates and a significant reduction in CNV volume 7 days after laser, comparable to eyes that received intravitreal anti-VEGF versus IgG control. scAAV2-CARap1a-, but not anti-VEGF-, injected eyes had increased pan-cadherin in RPE/choroids. In cultured RPE cells, increased active Rap1a inhibited TNFα-induced disassociation of junctional pan-cadherin/β-catenin complexes, increased transepithelial electrical resistance through an interaction of β-catenin with phosphorylated scaffold protein, IQGAP1, and inhibited choroidal endothelial cell (CEC) transmigration of an RPE monolayer. This evidence shows that increased Rap1a activity specifically in RPE cells is sufficient to reduce CEC transmigration and CNV and involves IQGAP1-mediated protection of RPE junctional complexes. PMID:27606349

  4. Improved adeno-associated virus (AAV) serotype 1 and 5 vectors for gene therapy.

    PubMed

    Sen, Dwaipayan; Balakrishnan, Balaji; Gabriel, Nishanth; Agrawal, Prachi; Roshini, Vaani; Samuel, Rekha; Srivastava, Alok; Jayandharan, Giridhara R

    2013-01-01

    Despite significant advancements with recombinant AAV2 or AAV8 vectors for liver directed gene therapy in humans, it is well-recognized that host and vector-related immune challenges need to be overcome for long-term gene transfer. To overcome these limitations, alternate AAV serotypes (1-10) are being rigorously evaluated. AAV5 is the most divergent (55% similarity vs. other serotypes) and like AAV1 vector is known to transduce liver efficiently. AAV1 and AAV5 vectors are also immunologically distinct by virtue of their low seroprevalence and minimal cross reactivity against pre-existing AAV2 neutralizing antibodies. Here, we demonstrate that targeted bio-engineering of these vectors, augment their gene expression in murine hepatocytes in vivo (up to 16-fold). These studies demonstrate the feasibility of the use of these novel AAV1 and AAV5 vectors for potential gene therapy of diseases like hemophilia.

  5. AAV Vectorization of DSB-mediated Gene Editing Technologies.

    PubMed

    Moser, Rachel J; Hirsch, Matthew L

    2016-01-01

    Recent work both at the bench and the bedside demonstrate zinc-finger nucleases (ZFNs), CRISPR/Cas9, and other programmable site-specific endonuclease technologies are being successfully utilized within and alongside AAV vectors to induce therapeutically relevant levels of directed gene editing within the human chromosome. Studies from past decades acknowledge that AAV vector genomes are enhanced substrates for homology-directed repair in the presence or absence of targeted DNA damage within the host genome. Additionally, AAV vectors are currently the most efficient format for in vivo gene delivery with no vector related complications in >100 clinical trials for diverse diseases. At the same time, advancements in the design of custom-engineered site-specific endonucleases and the utilization of elucidated endonuclease formats have resulted in efficient and facile genetic engineering for basic science and for clinical therapies. AAV vectors and gene editing technologies are an obvious marriage, using AAV for the delivery of repair substrate and/or a gene encoding a designer endonuclease; however, while efficient delivery and enhanced gene targeting by vector genomes are advantageous, other attributes of AAV vectors are less desirable for gene editing technologies. This review summarizes the various roles that AAV vectors play in gene editing technologies and provides insight into its trending applications for the treatment of genetic diseases.

  6. Footprinting studies of specific complexes formed by RepA, a replication initiator of plasmid pCU1, and its binding site.

    PubMed

    Papp, P P; Elö, P; Semsey, S; Orosz, L

    2000-10-01

    The basic replicon of plasmid pCU1 contains three different replication origins. Replication initiated from the oriB origin requires pCU1-encoded protein RepA. Previously, information analysis of 19 natural RepA binding sequences predicted a 20-bp sequence as a RepA binding site. Guanines contacting RepA in the major groove of DNA have also been determined. In this study, we used the missing-nucleoside method to determine all of the bases relevant to RepA binding. The importance of some thymine bases was also confirmed by a missing-thymine site interference assay. Participation of the 5-methyl groups of two thymines (at positions -6 and 7) in RepA binding was pointed out by a missing-thymine methyl site interference assay. Phosphate groups of the DNA backbone which strongly interfered with RepA binding upon ethylation were also identified. The pattern of contacting positions mapped by hydroxyl radical protection footprinting indicates that RepA binds to one face of B-form DNA. The length of the binding site was found to be 20 bp by dissociation rate measurement of complexes formed between RepA and a variety of binding sequences. The symmetry of the binding site and that of the contacting bases, particularly the reacting 5-methyl groups of two thymines, suggest that pCU1-encoded RepA may contact its site as a homodimer.

  7. RepD-mediated recruitment of PcrA helicase at the Staphylococcus aureus pC221 plasmid replication origin, oriD

    PubMed Central

    Machón, C.; Lynch, G. P.; Thomson, N. H.; Scott, D. J.; Thomas, C. D.; Soultanas, P.

    2010-01-01

    Plasmid encoded replication initiation (Rep) proteins recruit host helicases to plasmid replication origins. Previously, we showed that RepD recruits directionally the PcrA helicase to the pC221 oriD, remains associated with it, and increases its processivity during plasmid unwinding. Here we show that RepD forms a complex extending upstream and downstream of the core oriD. Binding of RepD causes remodelling of a region upstream from the core oriD forming a ‘landing pad’ for the PcrA. PcrA is recruited by this extended RepD–DNA complex via an interaction with RepD at this upstream site. PcrA appears to have weak affinity for this region even in the absence of RepD. Upon binding of ADPNP (non-hydrolysable analogue of ATP), by PcrA, a conformational rearrangement of the RepD–PcrA–ATP initiation complex confines it strictly within the boundaries of the core oriD. We conclude that RepD-mediated recruitment of PcrA at oriD is a three step process. First, an extended RepD–oriD complex includes a region upstream from the core oriD; second, the PcrA is recruited to this upstream region and thirdly upon ATP-binding PcrA relocates within the core oriD. PMID:20044350

  8. AAV-Mediated Clarin-1 Expression in the Mouse Retina: Implications for USH3A Gene Therapy.

    PubMed

    Dinculescu, Astra; Stupay, Rachel M; Deng, Wen-Tao; Dyka, Frank M; Min, Seok-Hong; Boye, Sanford L; Chiodo, Vince A; Abrahan, Carolina E; Zhu, Ping; Li, Qiuhong; Strettoi, Enrica; Novelli, Elena; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe; Smith, W Clay; Hauswirth, William W

    2016-01-01

    Usher syndrome type III (USH3A) is an autosomal recessive disorder caused by mutations in clarin-1 (CLRN1) gene, leading to progressive retinal degeneration and sensorineural deafness. Efforts to develop therapies for preventing photoreceptor cell loss are hampered by the lack of a retinal phenotype in the existing USH3 mouse models and by conflicting reports regarding the endogenous retinal localization of clarin-1, a transmembrane protein of unknown function. In this study, we used an AAV-based approach to express CLRN1 in the mouse retina in order to determine the pattern of its subcellular localization in different cell types. We found that all major classes of retinal cells express AAV-delivered CLRN1 driven by the ubiquitous, constitutive small chicken β-actin promoter, which has important implications for the design of future USH3 gene therapy studies. Within photoreceptor cells, AAV-expressed CLRN1 is mainly localized at the inner segment region and outer plexiform layer, similar to the endogenous expression of other usher proteins. Subretinal delivery using a full strength viral titer led to significant loss of retinal function as evidenced by ERG analysis, suggesting that there is a critical limit for CLRN1 expression in photoreceptor cells. Taken together, these results suggest that CLRN1 expression is potentially supported by a variety of retinal cells, and the right combination of AAV vector dose, promoter, and delivery method needs to be selected to develop safe therapies for USH3 disorder.

  9. AAV-mediated gene delivery attenuates neuroinflammation in feline Sandhoff disease.

    PubMed

    Bradbury, Allison M; Peterson, Tiffany A; Gross, Amanda L; Wells, Stephen Z; McCurdy, Victoria J; Wolfe, Karen G; Dennis, John C; Brunson, Brandon L; Gray-Edwards, Heather; Randle, Ashley N; Johnson, Aime K; Morrison, Edward E; Cox, Nancy R; Baker, Henry J; Sena-Esteves, Miguel; Martin, Douglas R

    2017-01-06

    Sandhoff disease (SD) is a lysosomal storage disorder characterized by the absence of hydrolytic enzyme β-N-acetylhexosaminidase (Hex), which results in storage of GM2 ganglioside in neurons and unremitting neurodegeneration. Neuron loss initially affects fine motor skills, but rapidly progresses to loss of all body faculties, a vegetative state, and death by five years of age in humans. A well-established feline model of SD allows characterization of the disease in a large animal model and provides a means to test the safety and efficacy of therapeutic interventions before initiating clinical trials. In this study, we demonstrate a robust central nervous system (CNS) inflammatory response in feline SD, primarily marked by expansion and activation of the microglial cell population. Quantification of major histocompatibility complex II (MHC-II) labeling revealed significant up-regulation throughout the CNS with areas rich in white matter most severely affected. Expression of the leukocyte chemokine macrophage inflammatory protein-1 alpha (MIP-1α) was also up-regulated in the brain. SD cats were treated with intracranial delivery of adeno-associated viral (AAV) vectors expressing feline Hex, with a study endpoint 16weeks post treatment. AAV-mediated gene delivery repressed the expansion and activation of microglia and normalized MHC-II and MIP-1α levels. These data reiterate the profound inflammatory response in SD and show that neuroinflammation is abrogated after AAV-mediated restoration of enzymatic activity.

  10. Pre-amyloid oligomers of the proteotoxic RepA-WH1 prionoid assemble at the bacterial nucleoid

    PubMed Central

    Moreno-del Álamo, María; de la Espina, Susana Moreno-Díaz; Fernández-Tresguerres, M. Elena; Giraldo, Rafael

    2015-01-01

    Upon binding to short specific dsDNA sequences in vitro, the N-terminal WH1 domain of the plasmid DNA replication initiator RepA assembles as amyloid fibres. These are bundles of single or double twisted tubular filaments in which distorted RepA-WH1 monomers are the building blocks. When expressed in Escherichia coli, RepA-WH1 triggers the first synthetic amyloid proteinopathy in bacteria, recapitulating some of the features of mammalian prion diseases: it is vertically transmissible, albeit non-infectious, showing up in at least two phenotypically distinct and interconvertible strains. Here we report B3h7, a monoclonal antibody specific for oligomers of RepA-WH1, but which does not recognize the mature amyloid fibres. Unlike a control polyclonal antibody generated against the soluble protein, B3h7 interferes in vitro with DNA-promoted or amyloid-seeded assembly of RepA-WH1 fibres, thus the targeted oligomers are on-pathway amyloidogenic intermediates. Immuno-electron microscopy with B3h7 on thin sections of E. coli cells expressing RepA-WH1 consistently labels the bacterial nucleoid, but not the large cytoplasmic aggregates of the protein. This observation points to the nucleoid as the place where oligomeric amyloid precursors of RepA-WH1 are generated, and suggests that, once nucleated by DNA, further growth must continue in the cytoplasm due to entropic exclusion. PMID:26423724

  11. Recombinant Human Myelin-Associated Glycoprotein Promoter Drives Selective AAV-Mediated Transgene Expression in Oligodendrocytes

    PubMed Central

    von Jonquieres, Georg; Fröhlich, Dominik; Klugmann, Claudia B.; Wen, Xin; Harasta, Anne E.; Ramkumar, Roshini; Spencer, Ziggy H. T.; Housley, Gary D.; Klugmann, Matthias

    2016-01-01

    Leukodystrophies are hereditary central white matter disorders caused by oligodendrocyte dysfunction. Recent clinical trials for some of these devastating neurological conditions have employed an ex vivo gene therapy approach that showed improved endpoints because cross-correction of affected myelin-forming cells occurred following secretion of therapeutic proteins by transduced autologous grafts. However, direct gene transfer to oligodendrocytes is required for the majority of leukodystrophies with underlying mutations in genes encoding non-secreted oligodendroglial proteins. Recombinant adeno-associated viral (AAV) vectors are versatile tools for gene transfer to the central nervous system (CNS) and proof-of-concept studies in rodents have shown that the use of cellular promoters is sufficient to target AAV-mediated transgene expression to glia. The potential of this strategy has not been exploited. The major caveat of the AAV system is its limited packaging capacity of ~5 kb, providing the rationale for identifying small yet selective recombinant promoters. Here, we characterize the human myelin associated glycoprotein (MAG) promoter for reliable targeting of AAV-mediated transgene expression to oligodendrocytes in vivo. A homology screen revealed highly conserved genomic regions among mammalian species upstream of the transcription start site. Recombinant AAV expression cassettes carrying the cDNA encoding enhanced green fluorescent protein (GFP) driven by truncated versions of the recombinant MAG promoter (2.2, 1.5 and 0.3 kb in size) were packaged as cy5 vectors and delivered into the dorsal striatum of mice. At 3 weeks post-injection, oligodendrocytes, neurons and astrocytes expressing the reporter were quantified by immunohistochemical staining. Our results revealed that both 2.2 and 1.5 kb MAG promoters targeted more than 95% of transgene expression to oligodendrocytes. Even the short 0.3 kb fragment conveyed high oligodendroglial specific transgene

  12. Recombinant Human Myelin-Associated Glycoprotein Promoter Drives Selective AAV-Mediated Transgene Expression in Oligodendrocytes.

    PubMed

    von Jonquieres, Georg; Fröhlich, Dominik; Klugmann, Claudia B; Wen, Xin; Harasta, Anne E; Ramkumar, Roshini; Spencer, Ziggy H T; Housley, Gary D; Klugmann, Matthias

    2016-01-01

    Leukodystrophies are hereditary central white matter disorders caused by oligodendrocyte dysfunction. Recent clinical trials for some of these devastating neurological conditions have employed an ex vivo gene therapy approach that showed improved endpoints because cross-correction of affected myelin-forming cells occurred following secretion of therapeutic proteins by transduced autologous grafts. However, direct gene transfer to oligodendrocytes is required for the majority of leukodystrophies with underlying mutations in genes encoding non-secreted oligodendroglial proteins. Recombinant adeno-associated viral (AAV) vectors are versatile tools for gene transfer to the central nervous system (CNS) and proof-of-concept studies in rodents have shown that the use of cellular promoters is sufficient to target AAV-mediated transgene expression to glia. The potential of this strategy has not been exploited. The major caveat of the AAV system is its limited packaging capacity of ~5 kb, providing the rationale for identifying small yet selective recombinant promoters. Here, we characterize the human myelin associated glycoprotein (MAG) promoter for reliable targeting of AAV-mediated transgene expression to oligodendrocytes in vivo. A homology screen revealed highly conserved genomic regions among mammalian species upstream of the transcription start site. Recombinant AAV expression cassettes carrying the cDNA encoding enhanced green fluorescent protein (GFP) driven by truncated versions of the recombinant MAG promoter (2.2, 1.5 and 0.3 kb in size) were packaged as cy5 vectors and delivered into the dorsal striatum of mice. At 3 weeks post-injection, oligodendrocytes, neurons and astrocytes expressing the reporter were quantified by immunohistochemical staining. Our results revealed that both 2.2 and 1.5 kb MAG promoters targeted more than 95% of transgene expression to oligodendrocytes. Even the short 0.3 kb fragment conveyed high oligodendroglial specific transgene

  13. Immunology of AAV-Mediated Gene Transfer in the Eye

    PubMed Central

    Willett, Keirnan; Bennett, Jean

    2013-01-01

    The eye has been at the forefront of translational gene therapy largely owing to suitable disease targets, anatomic accessibility, and well-studied immunologic privilege. These advantages have fostered research culminating in several clinical trials and adeno-associated virus (AAV) has emerged as the vector of choice for many ocular therapies. Pre-clinical and clinical investigations have assessed the humoral and cellular immune responses to a variety of naturally occurring and engineered AAV serotypes as well as their delivered transgenes and these data have been correlated to potential clinical sequelae. Encouragingly, AAV appears safe and effective with clinical follow-up surpassing 5 years in some studies. As disease targets continue to expand for AAV in the eye, thorough and deliberate assessment of immunologic safety is critical. With careful study, the development of these technologies should concurrently inform the biology of the ocular immune response. PMID:24009613

  14. Analysis of the Mechanism of Action of the Antisense RNA That Controls the Replication of the repABC Plasmid p42d ▿ †

    PubMed Central

    Cervantes-Rivera, Ramón; Romero-López, Cristina; Berzal-Herranz, Alfredo; Cevallos, Miguel A.

    2010-01-01

    Replication and segregation of the Rhizobium etli symbiotic plasmid (pRetCFN42d) depend on the presence of a repABC operon, which carries all the plasmid-encoded elements required for these functions. All repABC operons share three protein-encoding genes (repA, repB, and repC), an antisense RNA (ctRNA) coding gene, and at least one centromere-like region (parS). The products of repA and repB, in conjunction with the parS region, make up the segregation system, and they negatively regulate operon transcription. The last gene of the operon, repC, encodes the initiator protein. The ctRNA is a negative posttranscriptional regulator of repC. In this work, we analyzed the secondary structures of the ctRNA and its target and mapped the motifs involved in the complex formed between them. Essential residues for the effective interaction localize at the unpaired 5′ end of the antisense molecule and the loop of the target mRNA. In light of our results, we propose a model explaining the mechanism of action of this ctRNA in the regulation of plasmid replication in R. etli. PMID:20435728

  15. Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy.

    PubMed

    Louis Jeune, Vedell; Joergensen, Jakob A; Hajjar, Roger J; Weber, Thomas

    2013-04-01

    Adeno-associated virus (AAV)-based vectors are promising tools for gene therapeutic applications, in part because AAVs are nonpathogenic viruses, and vectors derived from them can drive long-term transgene expression without integration of the vector DNA into the host genome. AAVs are not strongly immunogenic, but they can, nonetheless, give rise to both a cellular and humoral immune response. As a result, a significant fraction of potential patients for AAV-based gene therapy harbors pre-existing antibodies against AAV. Because even very low levels of antibodies can prevent successful transduction, antecedent anti-AAV antibodies pose a serious obstacle to the universal application of AAV gene therapy. In this review, we discuss the current knowledge of the role of anti-AAV antibodies in AAV-based gene therapy with a particular emphasis on approaches to overcome the hurdle that they pose.

  16. Retinal gene delivery by adeno-associated virus (AAV) vectors: Strategies and applications.

    PubMed

    Schön, Christian; Biel, Martin; Michalakis, Stylianos

    2015-09-01

    Adeno-associated virus (AAV) vectors are the most widely used vehicle systems for neuronal gene transfer. This popularity is based on the non-pathogenic nature of AAVs and their versatility making them a multifunctional vector system for basic research and clinical applications. AAVs are successfully applied in clinical and pre-clinical gene therapy studies for inherited retinal disorders. Their excellent transduction profile and efficiency also boosted the use of AAV vectors in basic research. The AAV vector system can be easily modified and adjusted at multiple levels to allow for optimized and specific gene expression in target cells. Here, we will provide an overview on the AAV vector system and its applications focusing on gene transfer into retinal cells. Furthermore, we will outline and discuss strategies for the optimization of AAV gene transfer by modifications to the AAV vector expression cassette, the AAV capsid or the routes of vector administration.

  17. AAV8-mediated Sirt1 gene transfer to the liver prevents high carbohydrate diet-induced nonalcoholic fatty liver disease

    PubMed Central

    Vilà, Laia; Elias, Ivet; Roca, Carles; Ribera, Albert; Ferré, Tura; Casellas, Alba; Lage, Ricardo; Franckhauser, Sylvie; Bosch, Fatima

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common hepatic disease worldwide, and evidence suggests that it promotes insulin resistance and type 2 diabetes. Caloric restriction (CR) is the only available strategy for NAFLD treatment. The protein deacetylase Sirtuin1 (SIRT1), which is activated by CR, increases catabolic metabolism and decreases lipogenesis and inflammation, both involved in the development of NAFLD. Here we show that adeno-associated viral vectors of serotype 8 (AAV8)-mediated liver-specific Sirt1 gene transfer prevents the development of NAFLD induced by a high carbohydrate (HC) diet. Long-term hepatic SIRT1 overexpression led to upregulation of key hepatic genes involved in β-oxidation, prevented HC diet-induced lipid accumulation and reduced liver inflammation. AAV8-Sirt1–treated mice showed improved insulin sensitivity, increased oxidative capacity in skeletal muscle and reduced white adipose tissue inflammation. Moreover, HC feeding induced leptin resistance, which was also attenuated in AAV8-Sirt1–treated mice. Therefore, AAV-mediated gene transfer to overexpress SIRT1 specifically in the liver may represent a new gene therapy strategy to counteract NAFLD and related diseases such as type 2 diabetes. PMID:26015978

  18. AAV-based neonatal gene therapy for hemophilia A: long-term correction and avoidance of immune responses in mice.

    PubMed

    Hu, C; Lipshutz, G S

    2012-12-01

    Hemophilia A gene therapy has been hampered by immune responses to vector-associated antigens and by neutralizing antibodies or inhibitors against the factor VIII (FVIII) protein; these 'inhibitors' more commonly affect hemophilia A patients than those with hemophilia B. A gene replacement strategy beginning in the neonatal period may avoid the development of these immune responses and lead to prolonged expression with correction of phenotype, thereby avoiding long-term consequences. A serotype rh10 adeno-associated virus (AAV) was developed splitting the FVIII coding sequence into heavy and light chains with the chicken β-actin promoter/CMV enhancer for dual recombinant adeno-associated viral vector delivery. Virions of each FVIII chain were co-injected intravenously into mice on the second day of life. Mice express sustained levels of FVIII antigen ≥5% up to 22 months of life without development of antibodies against FVIII. Phenotypic correction was manifest in all AAV-FVIII-treated mice as demonstrated by functional assay and reduction in bleeding time. This study demonstrates the use of AAV in a gene replacement strategy in neonatal mice that establishes both long-term phenotypic correction of hemophilia A and lack of antibody development against FVIII in this disease model where AAV is administered shortly after birth. These studies support the consideration of gene replacement therapy for diseases that are diagnosed in utero or in the early neonatal period.

  19. Expression of full-length and truncated Rep genes from Mungbean yellow mosaic virus-Vigna inhibits viral replication in transgenic tobacco.

    PubMed

    Shivaprasad, Padubidri V; Thillaichidambaram, P; Balaji, Vasudevan; Veluthambi, Karuppannan

    2006-12-01

    Mungbean yellow mosaic virus-Vigna (MYMV-Vig) is a bipartite geminivirus that causes a severe yellow mosaic disease in blackgram. An assay was developed to study MYMV-Vig replication by agroinoculation of tobacco leaf discs with partial dimers of the virus. This assay, in a non-host model plant, was used to evaluate pathogen-derived resistance contributed by MYMV-Vig genes in transgenic plants. Viral DNA accumulation was optimum in tobacco leaf discs cultured for 10 days after infection with Agrobacterium tumefaciens strain Ach5 containing partial dimers of both DNA A and DNA B of MYMV-Vig. Transgenic tobacco plants with MYMV-Vig genes for coat protein (CP), replication-associated protein (Rep)-sense, Rep-antisense, truncated Rep (T-Rep), nuclear shuttle protein (NSP) and movement protein (MP) were generated. Leaf discs from transgenic tobacco plants, harbouring MYMV-Vig genes, were agroinoculated with partial dimers of MYMV-Vig and analyzed for viral DNA accumulation. The leaf discs from transgenic tobacco plants harbouring CP and MP genes supported the accumulation of higher levels of MYMV-Vig DNA. However, MYMV-Vig accumulation was inhibited in one transgenic plant harbouring the Rep-sense gene and in two plants harbouring the T-Rep gene. Northern analysis of these plants revealed a good correlation between expression of Rep or T-Rep genes and inhibition of MYMV-Vig accumulation.

  20. Cardiac AAV9-S100A1 gene therapy rescues postischemic heart failure in a preclinical large animal model

    PubMed Central

    Pleger, Sven T.; Shan, Changguang; Ksienzyk, Jan; Bekeredjian, Raffi; Boekstegers, Peter; Hinkel, Rabea; Schinkel, Stefanie; Leuchs, Barbara; Ludwig, Jochen; Qiu, Gang; Weber, Christophe; Kleinschmidt, Jürgen A.; Raake, Philip; Koch, Walter J.; Katus, Hugo A.; Müller, Oliver J.; Most, Patrick

    2014-01-01

    As a prerequisite to clinical application, we determined the long-term therapeutic effectiveness and safety of adeno-associated viral (AAV) S100A1 gene therapy in a preclinical, large animal model of heart failure. S100A1, a positive inotropic regulator of myocardial contractility, becomes depleted in failing cardiomyocytes in humans and various animal models, and myocardial-targeted S100A1 gene transfer rescues cardiac contractile function by restoring sarcoplasmic reticulum calcium Ca2+ handling in acutely and chronically failing hearts in small animal models. We induced heart failure in domestic pigs by balloon-occlusion of the left circumflex coronary artery, resulting in myocardial infarction. After 2 weeks, when the pigs displayed significant left ventricular contractile dysfunction, we administered through retrograde coronary venous delivery, AAV9-S100A1 to the left ventricular non-infarcted myocardium. AAV9-luciferase and saline treatment served as control. At 14 weeks, both control groups showed significantly decreased myocardial S100A1 protein expression along with progressive deterioration of cardiac performance and left ventricular remodeling. AAV9-S100A1 treatment prevented and reversed this phenotype by restoring cardiac S100A1 protein levels. S100A1 treatment normalized cardiomyocyte Ca2+ cycling, sarcoplasmic reticulum calcium handling and energy homeostasis. Transgene expression was restricted to cardiac tissue and extra-cardiac organ function was uncompromised indicating a favorable safety profile. This translational study shows the pre-clinical feasibility, long-term therapeutic effectiveness and a favorable safety profile of cardiac AAV9-S100A1 gene therapy in a preclinical model of heart failure. Our study presents a strong rational for a clinical trial of S100A1 gene therapy for human heart failure that could potentially complement current strategies to treat end-stage heart failure. PMID:21775667

  1. Adeno-Associated Virus-2 (AAV-2) Causes Trophoblast Dysfunction, and Placental AAV-2 Infection Is Associated with Preeclampsia

    PubMed Central

    Arechavaleta-Velasco, Fabian; Ma, Yujie; Zhang, Jian; McGrath, Cindy M.; Parry, Samuel

    2006-01-01

    Shallow invasion by extravillous trophoblast cells into the uterine wall reduces placental perfusion and causes placental dysfunction, but the one or more causes of shallow placental invasion are unknown. We hypothesized that infection with adeno-associated virus-2 (AAV-2) inhibits trophoblast invasion and is associated with preeclampsia, which is a common obstetric complication resulting from placental dysfunction. We determined that transformed extravillous trophoblast (HTR-8/SVneo) cells were susceptible to AAV-2 infection in the presence or absence of adenovirus, which provides helper function for AAV-2 replication, and that AAV-2 infection reduced invasion of HTR-8/SVneo cells through an extracellular matrix before cytopathic effects were detected. In a case-control study, AAV-2 DNA was found more frequently in trophoblast cells from cases of severe preeclampsia (22/40) than from normal term deliveries (5/27, P = 0.002). These results indicate that AAV-2 infection is a previously unidentified cause of placental dysfunction. Additional studies to determine the susceptibility of extravillous trophoblast to other viruses, and the mechanisms by which viral infection impairs placental function, are warranted. PMID:16723710

  2. Preclinical toxicity evaluation of AAV for pain: evidence from human AAV studies and from the pharmacology of analgesic drugs.

    PubMed

    Pleticha, Josef; Heilmann, Lukas F; Evans, Christopher H; Asokan, Aravind; Samulski, Richard Jude; Beutler, Andreas S

    2014-09-02

    Gene therapy with adeno-associated virus (AAV) has advanced in the last few years from promising results in animal models to >100 clinical trials (reported or under way). While vector availability was a substantial hurdle a decade ago, innovative new production methods now routinely match the scale of AAV doses required for clinical testing. These advances may become relevant to translational research in the chronic pain field. AAV for pain targeting the peripheral nervous system was proven to be efficacious in rodent models several years ago, but has not yet been tested in humans. The present review addresses the steps needed for translation of AAV for pain from the bench to the bedside focusing on pre-clinical toxicology. We break the potential toxicities into three conceptual categories of risk: First, risks related to the delivery procedure used to administer the vector. Second, risks related to AAV biology, i.e., effects of the vector itself that may occur independently of the transgene. Third, risks related to the effects of the therapeutic transgene. To identify potential toxicities, we consulted the existing evidence from AAV gene therapy for other nervous system disorders (animal toxicology and human studies) and from the clinical pharmacology of conventional analgesic drugs. Thereby, we identified required preclinical studies and charted a hypothetical path towards a future phase I/II clinical trial in the oncology-palliative care setting.

  3. Preclinical toxicity evaluation of AAV for pain: evidence from human AAV studies and from the pharmacology of analgesic drugs

    PubMed Central

    2014-01-01

    Gene therapy with adeno-associated virus (AAV) has advanced in the last few years from promising results in animal models to >100 clinical trials (reported or under way). While vector availability was a substantial hurdle a decade ago, innovative new production methods now routinely match the scale of AAV doses required for clinical testing. These advances may become relevant to translational research in the chronic pain field. AAV for pain targeting the peripheral nervous system was proven to be efficacious in rodent models several years ago, but has not yet been tested in humans. The present review addresses the steps needed for translation of AAV for pain from the bench to the bedside focusing on pre-clinical toxicology. We break the potential toxicities into three conceptual categories of risk: First, risks related to the delivery procedure used to administer the vector. Second, risks related to AAV biology, i.e., effects of the vector itself that may occur independently of the transgene. Third, risks related to the effects of the therapeutic transgene. To identify potential toxicities, we consulted the existing evidence from AAV gene therapy for other nervous system disorders (animal toxicology and human studies) and from the clinical pharmacology of conventional analgesic drugs. Thereby, we identified required preclinical studies and charted a hypothetical path towards a future phase I/II clinical trial in the oncology-palliative care setting. PMID:25183392

  4. [Gene expression of AAV-ITR ssDNA mini vector in skeletal muscle of mice].

    PubMed

    Zhu, Dongqin; Zhang, Yun; Liu, Xiaomei; Zhang, Chun

    2014-11-01

    AAV-ITR single strand DNA mini vector (AAV-ITR ssDNA mini vector) is a novel gene expression vector based on AAV-ITR. We have shown efficient gene expression of AAV-ITR ssDNA mini vector in HEK 293T. Here, we studied the efficacy of gene expression of AAV-ITR ssDNA mini vector in vivo. We injected the skeletal muscle of ICR mice separately with equal molars of AAV-ITR ssDNA mini vector, ITR mutated AAV-ITR single strand DNA mini vector (AAV-ITRmm ssDNA mutant vector), AAV-ITR dsDNA and pUC57-minivector-GFP, combined with TurboFect. Florescence microscope analysis of skeletal muscle section shows that AAV-ITR ssDNA mini vector had higher expression efficiency and longer expression period. We extracted DNA from the muscle three months after injection and quantified three vectors by Real-time PCR. RT-PCR analysis shows that there were highest copy numbers of AAV-ITR ssDNA mini vector existing in muscle. Stable existing of AAV- TR ssDNA mini vector in muscle could be the molecular basis of long term gene expression of the vector. The results suggest that AAV-ITR ssDNA mini vector might be a promising vector for gene therapy.

  5. Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector.

    PubMed

    Bowles, Dawn E; McPhee, Scott W J; Li, Chengwen; Gray, Steven J; Samulski, Jade J; Camp, Angelique S; Li, Juan; Wang, Bing; Monahan, Paul E; Rabinowitz, Joseph E; Grieger, Joshua C; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Xiao, Xiao; Samulski, R Jude

    2012-02-01

    Efficient and widespread gene transfer is required for successful treatment of Duchenne muscular dystrophy (DMD). Here, we performed the first clinical trial using a chimeric adeno-associated virus (AAV) capsid variant (designated AAV2.5) derived from a rational design strategy. AAV2.5 was generated from the AAV2 capsid with five mutations from AAV1. The novel chimeric vector combines the improved muscle transduction capacity of AAV1 with reduced antigenic crossreactivity against both parental serotypes, while keeping the AAV2 receptor binding. In a randomized double-blind placebo-controlled phase I clinical study in DMD boys, AAV2.5 vector was injected into the bicep muscle in one arm, with saline control in the contralateral arm. A subset of patients received AAV empty capsid instead of saline in an effort to distinguish an immune response to vector versus minidystrophin transgene. Recombinant AAV genomes were detected in all patients with up to 2.56 vector copies per diploid genome. There was no cellular immune response to AAV2.5 capsid. This trial established that rationally designed AAV2.5 vector was safe and well tolerated, lays the foundation of customizing AAV vectors that best suit the clinical objective (e.g., limb infusion gene delivery) and should usher in the next generation of viral delivery systems for human gene transfer.

  6. AAV delivered artificial microRNA extends survival and delays paralysis in an Amyotrophic Lateral Sclerosis mouse model

    PubMed Central

    Stoica, Lorelei; Todeasa, Sophia H.; Cabrera, Gabriela Toro; Salameh, Johnny S.; ElMallah, Mai K.; Mueller, Christian; Brown, Robert H.; Miguel, Sena-Esteves

    2017-01-01

    Objectives Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of motor neurons, resulting in progressive muscle weakness, paralysis and death within five years of diagnosis. About 10% of cases are inherited, of which 20% are due to mutations in the superoxide dismutase 1 (SOD1) gene. Riluzole, the only FDA approved ALS drug, prolongs survival by only a few months. Experiments in transgenic ALS mouse models have shown decreasing levels of mutant SOD1 protein as a potential therapeutic approach. We sought to develop an efficient AAV mediated RNAi gene therapy for ALS. Methods A single stranded AAV9 vector encoding an artificial microRNA against human SOD1 was injected into the cerebral lateral ventricles of neonatal SOD1G93A mice and impact on disease progression and survival assessed. Results This therapy extended median survival by 50% and delayed hindlimb paralysis, with animals remaining ambulatory until the humane endpoint, which was due to rapid body weight loss. AAV9-treated SOD1G93A mice showed reduction of mutant human SOD1 mRNA levels in upper and lower motor neurons and significant improvements in multiple parameters including the numbers of spinal motor neurons, diameter of ventral root axons, and extent of neuroinflammation in the SOD1G93A spinal cord. Mice also showed previously unexplored changes in pulmonary function, with AAV9-treated SOD1G93A mice displaying a phenotype reminiscent of patient pathophysiology. Interpretation These studies clearly demonstrate that an AAV9-delivered SOD1-specific artificial microRNA is an effective and translatable therapeutic approach for ALS. PMID:26891182

  7. Systemic Delivery of shRNA by AAV9 Provides Highly Efficient Knockdown of Ubiquitously Expressed GFP in Mouse Heart, but Not Liver

    PubMed Central

    Piras, Bryan A.; O’Connor, Daniel M.; French, Brent A.

    2013-01-01

    AAV9 is a powerful gene delivery vehicle capable of providing long-term gene expression in a variety of cell types, particularly cardiomyocytes. The use of AAV-delivery for RNA interference is an intense area of research, but a comprehensive analysis of knockdown in cardiac and liver tissues after systemic delivery of AAV9 has yet to be reported. We sought to address this question by using AAV9 to deliver a short-hairpin RNA targeting the enhanced green fluorescent protein (GFP) in transgenic mice that constitutively overexpress GFP in all tissues. The expression cassette was initially tested in vitro and we demonstrated a 61% reduction in mRNA and a 90% reduction in GFP protein in dual-transfected 293 cells. Next, the expression cassette was packaged as single-stranded genomes in AAV9 capsids to test cardiac GFP knockdown with several doses ranging from 1.8×1010 to 1.8×1011 viral genomes per mouse and a dose-dependent response was obtained. We then analyzed GFP expression in both heart and liver after delivery of 4.4×1011 viral genomes per mouse. We found that while cardiac knockdown was highly efficient, with a 77% reduction in GFP mRNA and a 71% reduction in protein versus control-treated mice, there was no change in liver expression. This was despite a 4.5-fold greater number of viral genomes in the liver than in the heart. This study demonstrates that single-stranded AAV9 vectors expressing shRNA can be used to achieve highly efficient cardiac-selective knockdown of GFP expression that is sustained for at least 7 weeks after the systemic injection of 8 day old mice, with no change in liver expression and no evidence of liver damage despite high viral genome presence in the liver. PMID:24086659

  8. Engineering the AAV capsid to optimize vector-host-interactions.

    PubMed

    Büning, Hildegard; Huber, Anke; Zhang, Liang; Meumann, Nadja; Hacker, Ulrich

    2015-10-01

    Adeno-associated viral (AAV) vectors are the most widely used delivery system for in vivo gene therapy. Vectors developed from natural AAV isolates achieved clinical benefit for a number of patients suffering from monogenetic disorders. However, high vector doses were required and the presence of pre-existing neutralizing antibodies precluded a number of patients from participation. Further challenges are related to AAV's tropism that lacks cell type selectivity resulting in off-target transduction. Conversely, specific cell types representing important targets for gene therapy like stem cells or endothelial cells show low permissiveness. To overcome these limitations, elegant rational design- as well as directed evolution-based strategies were developed to optimize various steps of AAV's host interaction. These efforts resulted in next generation vectors with enhanced capabilities, that is increased efficiency of cell transduction, targeted transduction of previously non-permissive cell types, escape from antibody neutralization and off-target free in vivo delivery of vector genomes. These important achievements are expected to improve current and pave the way towards novel AAV-based applications in gene therapy and regenerative medicine.

  9. AAV Gene Therapy for MPS1-associated Corneal Blindness.

    PubMed

    Vance, Melisa; Llanga, Telmo; Bennett, Will; Woodard, Kenton; Murlidharan, Giridhar; Chungfat, Neil; Asokan, Aravind; Gilger, Brian; Kurtzberg, Joanne; Samulski, R Jude; Hirsch, Matthew L

    2016-02-22

    Although cord blood transplantation has significantly extended the lifespan of mucopolysaccharidosis type 1 (MPS1) patients, over 95% manifest cornea clouding with about 50% progressing to blindness. As corneal transplants are met with high rejection rates in MPS1 children, there remains no treatment to prevent blindness or restore vision in MPS1 children. Since MPS1 is caused by mutations in idua, which encodes alpha-L-iduronidase, a gene addition strategy to prevent, and potentially reverse, MPS1-associated corneal blindness was investigated. Initially, a codon optimized idua cDNA expression cassette (opt-IDUA) was validated for IDUA production and function following adeno-associated virus (AAV) vector transduction of MPS1 patient fibroblasts. Then, an AAV serotype evaluation in human cornea explants identified an AAV8 and 9 chimeric capsid (8G9) as most efficient for transduction. AAV8G9-opt-IDUA administered to human corneas via intrastromal injection demonstrated widespread transduction, which included cells that naturally produce IDUA, and resulted in a >10-fold supraphysiological increase in IDUA activity. No significant apoptosis related to AAV vectors or IDUA was observed under any conditions in both human corneas and MPS1 patient fibroblasts. The collective preclinical data demonstrate safe and efficient IDUA delivery to human corneas, which may prevent and potentially reverse MPS1-associated cornea blindness.

  10. Superior In vivo Transduction of Human Hepatocytes Using Engineered AAV3 Capsid.

    PubMed

    Vercauteren, Koen; Hoffman, Brad E; Zolotukhin, Irene; Keeler, Geoffrey D; Xiao, Jing W; Basner-Tschakarjan, Etiena; High, Katherine A; Ertl, Hildegund Cj; Rice, Charles M; Srivastava, Arun; de Jong, Ype P; Herzog, Roland W

    2016-06-01

    Adeno-associated viral (AAV) vectors are currently being tested in multiple clinical trials for liver-directed gene transfer to treat the bleeding disorders hemophilia A and B and metabolic disorders. The optimal viral capsid for transduction of human hepatocytes has been under active investigation, but results across various models are inconsistent. We tested in vivo transduction in "humanized" mice. Methods to quantitate percent AAV transduced human and murine hepatocytes in chimeric livers were optimized using flow cytometry and confocal microscopy with image analysis. Distinct transduction efficiencies were noted following peripheral vein administration of a self-complementary vector expressing a gfp reporter gene. An engineered AAV3 capsid with two amino acid changes, S663V+T492V (AAV3-ST), showed best efficiency for human hepatocytes (~3-times, ~8-times, and ~80-times higher than for AAV9, AAV8, and AAV5, respectively). AAV5, 8, and 9 were more efficient in transducing murine than human hepatocytes. AAV8 yielded the highest transduction rate of murine hepatocytes, which was 19-times higher than that for human hepatocytes. In summary, our data show substantial differences among AAV serotypes in transduction of human and mouse hepatocytes, are the first to report on AAV5 in humanized mice, and support the use of AAV3-based vectors for human liver gene transfer.

  11. Mapping the AAV Capsid Host Antibody Response toward the Development of Second Generation Gene Delivery Vectors.

    PubMed

    Tseng, Yu-Shan; Agbandje-McKenna, Mavis

    2014-01-01

    The recombinant adeno-associated virus (rAAV) gene delivery system is entering a crucial and exciting phase with the promise of more than 20 years of intense research now realized in a number of successful human clinical trials. However, as a natural host to AAV infection, anti-AAV antibodies are prevalent in the human population. For example, ~70% of human sera samples are positive for AAV serotype 2 (AAV2). Furthermore, low levels of pre-existing neutralizing antibodies in the circulation are detrimental to the efficacy of corrective therapeutic AAV gene delivery. A key component to overcoming this obstacle is the identification of regions of the AAV capsid that participate in interactions with host immunity, especially neutralizing antibodies, to be modified for neutralization escape. Three main approaches have been utilized to map antigenic epitopes on AAV capsids. The first is directed evolution in which AAV variants are selected in the presence of monoclonal antibodies (MAbs) or pooled human sera. This results in AAV variants with mutations on important neutralizing epitopes. The second is epitope searching, achieved by peptide scanning, peptide insertion, or site-directed mutagenesis. The third, a structure biology-based approach, utilizes cryo-electron microscopy and image reconstruction of AAV capsids complexed to fragment antibodies, which are generated from MAbs, to directly visualize the epitopes. In this review, the contribution of these three approaches to the current knowledge of AAV epitopes and success in their use to create second generation vectors will be discussed.

  12. Mapping the AAV Capsid Host Antibody Response toward the Development of Second Generation Gene Delivery Vectors

    PubMed Central

    Tseng, Yu-Shan; Agbandje-McKenna, Mavis

    2013-01-01

    The recombinant adeno-associated virus (rAAV) gene delivery system is entering a crucial and exciting phase with the promise of more than 20 years of intense research now realized in a number of successful human clinical trials. However, as a natural host to AAV infection, anti-AAV antibodies are prevalent in the human population. For example, ~70% of human sera samples are positive for AAV serotype 2 (AAV2). Furthermore, low levels of pre-existing neutralizing antibodies in the circulation are detrimental to the efficacy of corrective therapeutic AAV gene delivery. A key component to overcoming this obstacle is the identification of regions of the AAV capsid that participate in interactions with host immunity, especially neutralizing antibodies, to be modified for neutralization escape. Three main approaches have been utilized to map antigenic epitopes on AAV capsids. The first is directed evolution in which AAV variants are selected in the presence of monoclonal antibodies (MAbs) or pooled human sera. This results in AAV variants with mutations on important neutralizing epitopes. The second is epitope searching, achieved by peptide scanning, peptide insertion, or site-directed mutagenesis. The third, a structure biology-based approach, utilizes cryo-electron microscopy and image reconstruction of AAV capsids complexed to fragment antibodies, which are generated from MAbs, to directly visualize the epitopes. In this review, the contribution of these three approaches to the current knowledge of AAV epitopes and success in their use to create second generation vectors will be discussed. PMID:24523720

  13. Naturally enveloped AAV vectors for shielding neutralizing antibodies and robust gene delivery in vivo.

    PubMed

    György, Bence; Fitzpatrick, Zachary; Crommentuijn, Matheus H W; Mu, Dakai; Maguire, Casey A

    2014-08-01

    Recently adeno-associated virus (AAV) became the first clinically approved gene therapy product in the western world. To develop AAV for future clinical application in a widespread patient base, particularly in therapies which require intravenous (i.v.) administration of vector, the virus must be able to evade pre-existing antibodies to the wild type virus. Here we demonstrate that in mice, AAV vectors associated with extracellular vesicles (EVs) can evade human anti-AAV neutralizing antibodies. We observed different antibody evasion and gene transfer abilities with populations of EVs isolated by different centrifugal forces. EV-associated AAV vector (ev-AAV) was up to 136-fold more resistant over a range of neutralizing antibody concentrations relative to standard AAV vector in vitro. Importantly in mice, at a concentration of passively transferred human antibodies which decreased i.v. administered standard AAV transduction of brain by 80%, transduction of ev-AAV transduction was not reduced and was 4000-fold higher. Finally, we show that expressing a brain targeting peptide on the EV surface allowed significant enhancement of transduction compared to untargeted ev-AAV. Using ev-AAV represents an effective, clinically relevant approach to evade human neutralizing anti-AAV antibodies after systemic administration of vector.

  14. AAV-Mediated Gene Transfer to Dorsal Root Ganglion.

    PubMed

    Yu, Hongwei; Fischer, Gregory; Hogan, Quinn H

    2016-01-01

    Transferring genetic molecules into the peripheral sensory nervous system to manipulate nociceptive pathophysiology is a powerful approach for experimental modulation of sensory signaling and potentially for translation into therapy for chronic pain. This can be efficiently achieved by the use of recombinant adeno-associated virus (rAAV) in conjunction with nociceptor-specific regulatory transgene cassettes. Among different routes of delivery, direct injection into the dorsal root ganglia (DRGs) offers the most efficient AAV-mediated gene transfer selectively into the peripheral sensory nervous system. Here, we briefly discuss the advantages and applications of intraganglionic microinjection, and then provide a detailed approach for DRG injection, including a list of the necessary materials and description of a method for performing DRG microinjection experiments. We also discuss our experience with several adeno-associated virus (AAV) options for in vivo transgene expression in DRG neurons.

  15. Delivering Transgenic DNA Exceeding the Carrying Capacity of AAV Vectors

    PubMed Central

    Hirsch, Matthew L.; Wolf, Sonya J.; Samulski, R.J.

    2016-01-01

    Gene delivery using recombinant adeno-associated virus (rAAV) has emerged to the forefront demonstrating safe and effective phenotypic correction of diverse diseases including hemophilia B and Leber’s congenital amaurosis. In addition to rAAV’s high efficiency of transduction and the capacity for long-term transgene expression, the safety profile of rAAV remains unsoiled in humans with no deleterious vector-related consequences observed thus far. Despite these favorable attributes, rAAV vectors have a major disadvantage preventing widespread therapeutic applications; as the AAV capsid is the smallest described to date, it cannot package “large” genomes. Currently, the packaging capacity of rAAV has yet to be definitively defined but is approximately 5 kb, which has served as a limitation for large gene transfer. There are two main approaches that have been developed to overcome this limitation, split AAV vectors, and fragment AAV (fAAV) genome reassembly (Hirsch et al., Mol Ther 18(1):6–8, 2010). Split rAAV vector applications were developed based upon the finding that rAAV genomes naturally concatemerize in the cell post-transduction and are substrates for enhanced homologous recombination (HR) (Hirsch et al., Mol Ther 18(1):6–8, 2010; Duan et al., J Virol 73(1):161–169, 1999; Duan et al., J Virol 72(11):8568–8577, 1998; Duan et al., Mol Ther 4(4):383–391, 2001; Halbert et al., Nat Biotechnol 20(7):697–701, 2002). This method involves “splitting” the large transgene into two separate vectors and upon co-transduction, intracellular large gene reconstruction via vector genome concatemerization occurs via HR or nonhomologous end joining (NHEJ). Within the split rAAV approaches there currently exist three strategies: overlapping, trans-splicing, and hybrid trans-splicing (Duan et al., Mol Ther 4(4):383–391, 2001; Halbert et al., Nat Biotechnol 20(7):697–701, 2002; Ghosh et al., Mol Ther 16(1):124–130, 2008; Ghosh et al., Mol Ther 15

  16. Diabetes enhances the efficacy of AAV2 vectors in the retina: therapeutic effect of AAV2 encoding vasoinhibin and soluble VEGF receptor 1.

    PubMed

    Díaz-Lezama, Nundehui; Wu, Zhijian; Adán-Castro, Elva; Arnold, Edith; Vázquez-Membrillo, Miguel; Arredondo-Zamarripa, David; Ledesma-Colunga, Maria G; Moreno-Carranza, Bibiana; Martinez de la Escalera, Gonzalo; Colosi, Peter; Clapp, Carmen

    2016-03-01

    Adeno-associated virus (AAV) vector-mediated delivery of inhibitors of blood-retinal barrier breakdown (BRBB) offers promise for the treatment of diabetic macular edema. Here, we demonstrated a reversal of blood-retinal barrier pathology mediated by AAV type 2 (AAV2) vectors encoding vasoinhibin or soluble VEGF receptor 1 (sFlt-1) when administered intravitreally to diabetic rats. Efficacy and safety of the AAV2 vasoinhibin vector were tested by monitoring its effect on diabetes-induced changes in the retinal vascular bed and thickness, and in the electroretinogram (ERG). Also, the transduction of AAV2 vectors and expression of AAV2 receptors and co-receptors were compared between the diabetic and the non-diabetic rat retinas. AAV2 vasoinhibin or AAV2 sFlt-1 vectors were injected intravitreally before or after enhanced BRBB due to diabetes induced by streptozotocin. The BRBB was examined by the Evans blue method, the vascular bed by fluorescein angiography, expression of the AAV2 EGFP reporter vector by confocal microscopy, and the AAV2 genome, expression of transgenes, receptors, and co-receptors by quantitative PCR. AAV2 vasoinhibin and sFlt-1 vectors inhibited the diabetes-mediated increase in BRBB when injected after, but not before, diabetes was induced. The AAV2 vasoinhibin vector decreased retinal microvascular abnormalities and the diabetes-induced reduction of the B-wave of the ERG, but it had no effect in non-diabetic controls. Also, retinal thickness was not altered by diabetes or by the AAV2 vasoinhibin vector. The AAV2 genome, vasoinhibin and sFlt-1 transgenes, and EGFP levels were higher in the retinas from diabetic rats and were associated with an elevated expression of AAV2 receptors (syndecan, glypican, and perlecan) and co-receptors (fibroblast growth factor receptor 1, αvβ5 integrin, and hepatocyte growth factor receptor). We conclude that retinal transduction and efficacy of AAV2 vectors are enhanced in diabetes, possibly due to their elevated

  17. Exosome-associated AAV vector as a robust and convenient neuroscience tool.

    PubMed

    Hudry, E; Martin, C; Gandhi, S; György, B; Scheffer, D I; Mu, D; Merkel, S F; Mingozzi, F; Fitzpatrick, Z; Dimant, H; Masek, M; Ragan, T; Tan, S; Brisson, A R; Ramirez, S H; Hyman, B T; Maguire, C A

    2016-04-01

    Adeno-associated virus (AAV) vectors are showing promise in gene therapy trials and have proven to be extremely efficient biological tools in basic neuroscience research. One major limitation to their widespread use in the neuroscience laboratory is the cost, labor, skill and time-intense purification process of AAV. We have recently shown that AAV can associate with exosomes (exo-AAV) when the vector is isolated from conditioned media of producer cells, and the exo-AAV is more resistant to neutralizing anti-AAV antibodies compared with standard AAV. Here, we demonstrate that simple pelleting of exo-AAV from media via ultracentrifugation results in high-titer vector preparations capable of efficient transduction of central nervous system (CNS) cells after systemic injection in mice. We observed that exo-AAV is more efficient at gene delivery to the brain at low vector doses relative to conventional AAV, even when derived from a serotype that does not normally efficiently cross the blood-brain barrier. Similar cell types were transduced by exo-AAV and conventionally purified vector. Importantly, no cellular toxicity was noted in exo-AAV-transduced cells. We demonstrated the utility and robustness of exo-AAV-mediated gene delivery by detecting direct GFP fluorescence after systemic injection, allowing three-dimensional reconstruction of transduced Purkinje cells in the cerebellum using ex vivo serial two-photon tomography. The ease of isolation combined with the high efficiency of transgene expression in the CNS, may enable the widespread use of exo-AAV as a neuroscience research tool. Furthermore, the ability of exo-AAV to evade neutralizing antibodies while still transducing CNS after peripheral delivery is clinically relevant.

  18. Exosome-associated AAV vector as a robust and convenient neuroscience tool

    PubMed Central

    Hudry, Eloise; Martin, Courtney; Gandhi, Sheetal; György, Bence; Scheffer, Deborah I.; Mu, Dakai; Merkel, Steven F.; Mingozzi, Federico; Fitzpatrick, Zachary; Dimant, Hemi; Masek, Marissa; Ragan, Tim; Tan, Sisareuth; Brisson, Alain R.; Ramirez, Servio H.; Hyman, Bradley T.; Maguire, Casey A.

    2016-01-01

    Adeno-associated virus (AAV) vectors are showing promise in gene therapy trials and have proven to be extremely efficient biological tools in basic neuroscience research. One major limitation to their widespread use in the neuroscience laboratory is the cost, labor, skill, and time intense purification process of AAV. We have recently shown that AAV can associate with exosomes (exo-AAV) when vector is isolated from conditioned media of producer cells, and the exo-AAV is more resistant to neutralizing anti-AAV antibodies compared to standard AAV. Here we demonstrate that simple pelleting of exo-AAV from media via ultracentrifugation, results in high-titer vector preparations capable of efficient transduction of central nervous system (CNS) cells after systemic injection in mice. We observed that exo-AAV is more efficient at gene delivery to the brain at low vector doses relative to conventional AAV, even when derived from a serotype that does not normally efficiently cross the blood brain barrier. Similar cell types were transduced by exo-AAV and conventionally purified vector. Importantly, no cellular toxicity was noted in exo-AAV transduced cells. We demonstrated the utility and robustness of exo-AAV-mediated gene delivery by detecting direct GFP fluorescence after systemic injection, allowing 3-dimensional reconstruction of transduced Purkinje cells in the cerebellum using ex-vivo serial 2-photon tomography. The ease of isolation combined with the high efficiency of transgene expression in the CNS, may enable widespread use of exo-AAV as a neuroscience research tool. Furthermore, the ability of exo-AAV to evade neutralizing antibodies while still transducing CNS after peripheral delivery is clinically relevant. PMID:26836117

  19. Muscle function recovery in golden retriever muscular dystrophy after AAV1-U7 exon skipping.

    PubMed

    Vulin, Adeline; Barthélémy, Inès; Goyenvalle, Aurélie; Thibaud, Jean-Laurent; Beley, Cyriaque; Griffith, Graziella; Benchaouir, Rachid; le Hir, Maëva; Unterfinger, Yves; Lorain, Stéphanie; Dreyfus, Patrick; Voit, Thomas; Carlier, Pierre; Blot, Stéphane; Garcia, Luis

    2012-11-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder resulting from lesions of the gene encoding dystrophin. These usually consist of large genomic deletions, the extents of which are not correlated with the severity of the phenotype. Out-of-frame deletions give rise to dystrophin deficiency and severe DMD phenotypes, while internal deletions that produce in-frame mRNAs encoding truncated proteins can lead to a milder myopathy known as Becker muscular dystrophy (BMD). Widespread restoration of dystrophin expression via adeno-associated virus (AAV)-mediated exon skipping has been successfully demonstrated in the mdx mouse model and in cardiac muscle after percutaneous transendocardial delivery in the golden retriever muscular dystrophy dog (GRMD) model. Here, a set of optimized U7snRNAs carrying antisense sequences designed to rescue dystrophin were delivered into GRMD skeletal muscles by AAV1 gene transfer using intramuscular injection or forelimb perfusion. We show sustained correction of the dystrophic phenotype in extended muscle areas and partial recovery of muscle strength. Muscle architecture was improved and fibers displayed the hallmarks of mature and functional units. A 5-year follow-up ruled out immune rejection drawbacks but showed a progressive decline in the number of corrected muscle fibers, likely due to the persistence of a mild dystrophic process such as occurs in BMD phenotypes. Although AAV-mediated exon skipping was shown safe and efficient to rescue a truncated dystrophin, it appears that recurrent treatments would be required to maintain therapeutic benefit ahead of the progression of the disease.

  20. Role of cellular FKBP52 protein in intracellular trafficking of recombinant adeno-associated virus 2 vectors

    SciTech Connect

    Zhao Weihong; Wu Jianqing ||; Zhong Li; Chen Linyuan; Weigel-Kelley, Kirsten A. |; Qing Keyun; Larsen, Steven H.; Shou Weinian; Warrington, Kenneth H. |; Srivastava, Arun |. E-mail: asrivastava@gtc.ufl.edu

    2006-09-30

    We have reported that tyrosine-phosphorylated forms of a cellular protein, FKBP52, inhibit the second-strand DNA synthesis of adeno-associated virus 2 (AAV), leading to inefficient transgene expression from recombinant AAV vectors. To further explore the role of FKBP52 in AAV-mediated transduction, we established murine embryo fibroblasts (MEFs) cultures from FKBP52 wild-type (WT), heterozygous (HE), and knockout (KO) mice. Conventional AAV vectors failed to transduce WT MEFs efficiently, and the transduction efficiency was not significantly increased in HE or KO MEFs. AAV vectors failed to traffic efficiently to the nucleus in these cells. Treatment with hydroxyurea (HU) increased the transduction efficiency of conventional AAV vectors by {approx}25-fold in WT MEFs, but only by {approx}4-fold in KO MEFs. The use of self-complementary AAV (scAAV) vectors, which bypass the requirement of viral second-strand DNA synthesis, revealed that HU treatment increased the transduction efficiency {approx}23-fold in WT MEFs, but only {approx}4-fold in KO MEFs, indicating that the lack of HU treatment-mediated increase in KO MEFs was not due to failure of AAV to undergo viral second-strand DNA synthesis. Following HU treatment, {approx}59% of AAV genomes were present in the nuclear fraction from WT MEFs, but only {approx}28% in KO MEFs, indicating that the pathway by which HU treatment mediates nuclear transport of AAV was impaired in KO MEFs. When KO MEFs were stably transfected with an FKBP52 expression plasmid, HU treatment-mediated increase in the transduction efficiency was restored in these cells, which correlated directly with improved intracellular trafficking. Intact AAV particles were also shown to interact with FKBP52 as well as with dynein, a known cellular protein involved in AAV trafficking. These studies suggest that FKBP52, being a cellular chaperone protein, facilitates intracellular trafficking of AAV, which has implications in the optimal use of recombinant

  1. Modulation of CD8+ T cell responses to AAV vectors with IgG-derived MHC class II epitopes.

    PubMed

    Hui, Daniel J; Basner-Tschakarjan, Etiena; Chen, Yifeng; Davidson, Robert J; Buchlis, George; Yazicioglu, Mustafa; Pien, Gary C; Finn, Jonathan D; Haurigot, Virginia; Tai, Alex; Scott, David W; Cousens, Leslie P; Zhou, Shangzhen; De Groot, Anne S; Mingozzi, Federico

    2013-09-01

    Immune responses directed against viral capsid proteins constitute a main safety concern in the use of adeno-associated virus (AAV) as gene transfer vectors in humans. Pharmacological immunosuppression has been proposed as a solution to the problem; however, the approach suffers from several potential limitations. Using MHC class II epitopes initially identified within human IgG, named Tregitopes, we showed that it is possible to modulate CD8+ T cell responses to several viral antigens in vitro. We showed that incubation of peripheral blood mononuclear cells with these epitopes triggers proliferation of CD4+CD25+FoxP3+ T cells that suppress killing of target cells loaded with MHC class I antigens in an antigen-specific fashion, through a mechanism that seems to require cell-to-cell contact. Expression of a construct encoding for the AAV capsid structural protein fused to Tregitopes resulted in reduction of CD8+ T cell reactivity against the AAV capsid following immunization with an adenoviral vector expressing capsid. This was accompanied by an increase in frequency of CD4+CD25+FoxP3+ T cells in spleens and lower levels of inflammatory infiltrates in injected tissues. This proof-of-concept study demonstrates modulation of CD8+ T cell reactivity to an antigen using regulatory T cell epitopes is possible.

  2. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice

    PubMed Central

    Yang, Yang; Wang, Lili; Bell, Peter; McMenamin, Deirdre; He, Zhenning; White, John; Yu, Hongwei; Xu, Chenyu; Morizono, Hiroki; Musunuru, Kiran; Batshaw, Mark L.; Wilson, James M.

    2016-01-01

    Many genetic liver diseases present in newborns with repeated, often lethal, metabolic crises. Gene therapy using non-integrating viruses such as AAV is not optimal in this setting because the non-integrating genome is lost as developing hepatocytes proliferate1,2. We reasoned that newborn liver may be an ideal setting for AAV-mediated gene correction using CRISPR/Cas9. Here we intravenously infuse two AAVs, one expressing Cas9 and the other expressing a guide RNA and the donor DNA, into newborn mice with a partial deficiency in the urea cycle disorder enzyme, ornithine transcarbamylase (OTC). This resulted in reversion of the mutation in 10% (6.7% – 20.1%) of hepatocytes and increased survival in mice challenged with a high-protein diet, which exacerbates disease. Gene correction in adult OTC-deficient mice was lower and accompanied by larger deletions that ablated residual expression from the endogenous OTC gene, leading to diminished protein tolerance and lethal hyperammonemia on a chow diet. PMID:26829317

  3. AAV-mediated Sirt1 overexpression in skeletal muscle activates oxidative capacity but does not prevent insulin resistance

    PubMed Central

    Vilà, Laia; Roca, Carles; Elias, Ivet; Casellas, Alba; Lage, Ricardo; Franckhauser, Sylvie; Bosch, Fatima

    2016-01-01

    Type 2 diabetes is characterized by triglyceride accumulation and reduced lipid oxidation capacity in skeletal muscle. SIRT1 is a key protein in the regulation of lipid oxidation and its expression is reduced in the skeletal muscle of insulin resistant mice. In this tissue, Sirt1 up-regulates the expression of genes involved in oxidative metabolism and improves mitochondrial function mainly through PPARGC1 deacetylation. Here we examined whether Sirt1 overexpression mediated by adeno-associated viral vectors of serotype 1 (AAV1) specifically in skeletal muscle can counteract the development of insulin resistance induced by a high fat diet in mice. AAV1-Sirt1-treated mice showed up-regulated expression of key genes related to β-oxidation together with increased levels of phosphorylated AMP protein kinase. Moreover, SIRT1 overexpression in skeletal muscle also increased basal phosphorylated levels of AKT. However, AAV1-Sirt1 treatment was not enough to prevent high fat diet-induced obesity and insulin resistance. Although Sirt1 gene transfer to skeletal muscle induced changes at the muscular level related with lipid and glucose homeostasis, our data indicate that overexpression of SIRT1 in skeletal muscle is not enough to improve whole-body insulin resistance and that suggests that SIRT1 has to be increased in other metabolic tissues to prevent insulin resistance. PMID:27909699

  4. IL12-mediated liver inflammation reduces the formation of AAV transcriptionally active forms but has no effect over preexisting AAV transgene expression.

    PubMed

    Gil-Fariña, Irene; Di Scala, Marianna; Vanrell, Lucia; Olagüe, Cristina; Vales, Africa; High, Katherine A; Prieto, Jesus; Mingozzi, Federico; Gonzalez-Aseguinolaza, Gloria

    2013-01-01

    Recombinant adenoassociated viral vectors (rAAV) have proven to be excellent candidates for gene therapy clinical applications. Recent results showed that cellular immunity to AAV represents a major challenge facing the clinical use of systemic administration of these vectors. Interestingly, no preclinical animal model has previously fully reproduced the clinical findings. The aim of the present work was to enhance the T cell immune response against AAV capsid in mice by the administration of a rAAV expressing the immunostimulatory cytokine IL-12. Our results indicate that although IL-12 expression enhanced the AAV capsid-specific immune response it failed to eliminate transduced hepatocytes and long-term expression was achieved. We found that AAV-mediated transgene expression is altered by IL-12-induced liver inflammation. However, IL-12 expression has no effect over preexisting AAV-mediated transgene expression. IL-12 down-regulates AAV mediated transgene expression via induction of IFN-γ production by NK and T cells, but without altering the transduction efficiency measured by viral genomes. Our results indicate that liver inflammation affects the formation of transcriptionally active AAV vector genomes through an unknown mechanism that can be avoided by the use of DNA-demethylating or anti-inflammatory agents.

  5. Widespread neuron-specific transgene expression in brain and spinal cord following synapsin promoter-driven AAV9 neonatal intracerebroventricular injection.

    PubMed

    McLean, Jesse R; Smith, Gaynor A; Rocha, Emily M; Hayes, Melissa A; Beagan, Jonathan A; Hallett, Penelope J; Isacson, Ole

    2014-07-25

    Adeno-associated viral (AAV) gene transfer holds great promise for treating a wide-range of neurodegenerative disorders. The AAV9 serotype crosses the blood-brain barrier and shows enhanced transduction efficiency compared to other serotypes, thus offering advantageous targeting when global transgene expression is required. Neonatal intravenous or intracerebroventricular (i.c.v.) delivery of recombinant AAV9 (rAAV9) have recently proven effective for modeling and treating several rodent models of neurodegenerative disease, however, the technique is associated with variable cellular tropism, making tailored gene transfer a challenge. In the current study, we employ the human synapsin 1 (hSYN1) gene promoter to drive neuron-specific expression of green fluorescent protein (GFP) after neonatal i.c.v. injection of rAAV9 in mice. We observed widespread GFP expression in neurons throughout the brain, spinal cord, and peripheral nerves and ganglia at 6 weeks-of-age. Region-specific quantification of GFP expression showed high neuronal transduction rates in substantia nigra pars reticulata (43.9±5.4%), motor cortex (43.5±3.3%), hippocampus (43.1±2.7%), cerebellum (29.6±2.3%), cervical spinal cord (24.9±3.9%), and ventromedial striatum (16.9±4.3%), among others. We found that 14.6±2.2% of neuromuscular junctions innervating the gastrocnemius muscle displayed GFP immunoreactivity. GFP expression was identified in several neuronal sub-types, including nigral tyrosine hydroxylase (TH)-positive dopaminergic cells, striatal dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32)-positive neurons, and choline acetyltransferase (ChAT)-positive motor neurons. These results build on contemporary gene transfer techniques, demonstrating that the hSYN1 promoter can be used with rAAV9 to drive robust neuron-specific transgene expression throughout the nervous system.

  6. Development of Optimized AAV Serotype Vectors for High-Efficiency Transduction at Further Reduced Doses.

    PubMed

    Ling, Chen; Li, Baozheng; Ma, Wenqin; Srivastava, Arun

    2016-08-01

    We have described the development of capsid-modified next-generation AAV vectors for both AAV2 and AAV3 serotypes, in which specific surface-exposed tyrosine (Y), serine (S), threonine (T), and lysine (K) residues on viral capsids were modified to achieve high-efficiency transduction at lower doses. We have also described the development of genome-modified AAV vectors, in which the transcriptionally inactive, single-stranded AAV genome was modified to achieve improved transgene expression. Here, we describe that combination of capsid modifications and genome modifications leads to the generation of optimized AAV serotype vectors, which transduce cells and tissues more efficiently, both in vitro and in vivo, at ∼20-30-fold reduced doses. These studies have significant implications in the potential use of the optimized AAV serotype vectors in human gene therapy.

  7. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    SciTech Connect

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M.

    2014-04-15

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8.

  8. AAV's Anatomy: Roadmap for Optimizing Vectors for Translational Success

    PubMed Central

    Samulski, R. Jude

    2014-01-01

    Adeno-Associated Virus based vectors (rAAV) are advantageous for human gene therapy due to low inflammatory responses, lack of toxicity, natural persistence, and ability to transencapsidate the genome allowing large variations in vector biology and tropism. Over sixty clinical trials have been conducted using rAAV serotype 2 for gene delivery with a number demonstrating success in immunoprivileged sites, including the retina and the CNS. Furthermore, an increasing number of trials have been initiated utilizing other serotypes of AAV to exploit vector tropism, trafficking, and expression efficiency. While these trials have demonstrated success in safety with emerging success in clinical outcomes, one benefit has been identification of issues associated with vector administration in humans (e.g. the role of pre-existing antibody responses, loss of transgene expression in non-immunoprivileged sites, and low transgene expression levels). For these reasons, several strategies are being used to optimize rAAV vectors, ranging from addition of exogenous agents for immune evasion to optimization of the transgene cassette for enhanced therapeutic output. By far, the vast majority of approaches have focused on genetic manipulation of the viral capsid. These methods include rational mutagenesis, engineering of targeting peptides, generation of chimeric particles, library and directed evolution approaches, as well as immune evasion modifications. Overall, these modifications have created a new repertoire of AAV vectors with improved targeting, transgene expression, and immune evasion. Continued work in these areas should synergize strategies to improve capsids and transgene cassettes that will eventually lead to optimized vectors ideally suited for translational success. PMID:20712583

  9. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness.

    PubMed

    Acland, Gregory M; Aguirre, Gustavo D; Bennett, Jean; Aleman, Tomas S; Cideciyan, Artur V; Bennicelli, Jeannette; Dejneka, Nadine S; Pearce-Kelling, Susan E; Maguire, Albert M; Palczewski, Krzysztof; Hauswirth, William W; Jacobson, Samuel G

    2005-12-01

    The short- and long-term effects of gene therapy using AAV-mediated RPE65 transfer to canine retinal pigment epithelium were investigated in dogs affected with disease caused by RPE65 deficiency. Results with AAV 2/2, 2/1, and 2/5 vector pseudotypes, human or canine RPE65 cDNA, and constitutive or tissue-specific promoters were similar. Subretinally administered vectors restored retinal function in 23 of 26 eyes, but intravitreal injections consistently did not. Photoreceptoral and postreceptoral function in both rod and cone systems improved with therapy. In dogs followed electroretinographically for 3 years, responses remained stable. Biochemical analysis of retinal retinoids indicates that mutant dogs have no detectable 11-cis-retinal, but markedly elevated retinyl esters. Subretinal AAV-RPE65 treatment resulted in detectable 11-cis-retinal expression, limited to treated areas. RPE65 protein expression was limited to retinal pigment epithelium of treated areas. Subretinal AAV-RPE65 vector is well tolerated and does not elicit high antibody levels to the vector or the protein in ocular fluids or serum. In long-term studies, wild-type cDNA is expressed only in target cells. Successful, stable restoration of rod and cone photoreceptor function in these dogs has important implications for treatment of human patients affected with Leber congenital amaurosis caused by RPE65 mutations.

  10. Long-Term Restoration of Rod and Cone Vision by Single Dose rAAV-Mediated Gene Transfer to the Retina in a Canine Model of Childhood Blindness

    PubMed Central

    Acland, Gregory M.; Aguirre, Gustavo D.; Bennett, Jean; Aleman, Tomas S.; Cideciyan, Artur V.; Bennicelli, Jeannette; Dejneka, Nadine S.; Pearce-Kelling, Susan E.; Maguire, Albert M.; Palczewski, Krzysztof; Hauswirth, William W.; Jacobson, Samuel G.

    2010-01-01

    The short- and long-term effects of gene therapy using AAV-mediated RPE65 transfer to canine retinal pigment epithelium were investigated in dogs affected with disease caused by RPE65 deficiency. Results with AAV 2/2, 2/1, and 2/5 vector pseudotypes, human or canine RPE65 cDNA, and constitutive or tissue-specific promoters were similar. Subretinally administered vectors restored retinal function in 23 of 26 eyes, but intravitreal injections consistently did not. Photoreceptoral and postreceptoral function in both rod and cone systems improved with therapy. In dogs followed electroretinographically for 3 years, responses remained stable. Biochemical analysis of retinal retinoids indicates that mutant dogs have no detectable 11-cis-retinal, but markedly elevated retinyl esters. Subretinal AAV-RPE65 treatment resulted in detectable 11-cis-retinal expression, limited to treated areas. RPE65 protein expression was limited to retinal pigment epithelium of treated areas. Subretinal AAV-RPE65 vector is well tolerated and does not elicit high antibody levels to the vector or the protein in ocular fluids or serum. In long-term studies, wild-type cDNA is expressed only in target cells. Successful, stable restoration of rod and cone photoreceptor function in these dogs has important implications for treatment of human patients affected with Leber congenital amaurosis caused by RPE65 mutations. PMID:16226919

  11. AAV gene transfer delays disease onset in a TPP1-deficient canine model of the late infantile form of Batten disease

    PubMed Central

    Katz, Martin L.; Tecedor, Luis; Chen, Yonghong; Williamson, Baye G.; Lysenko, Elena; Wininger, Fred A.; Young, Whitney M.; Johnson, Gayle C.; Whiting, Rebecca E. H.; Coates, Joan R.; Davidson, Beverly L.

    2016-01-01

    The most common form of the childhood neurodegenerative disease late infantile neuronal ceroid lipofuscinosis (also called Batten disease) is caused by deficiency of the soluble lysosomal enzyme tripeptidyl peptidase 1 (TPP1) resulting from mutations in the TPP1 gene. We tested whether TPP1 gene transfer to the ependyma, the epithelial lining of the brain ventricular system, in TPP1-deficient dogs would be therapeutically beneficial. A one-time administration of recombinant adeno-associated virus (rAAV) expressing canine TPP1 (rAAV.caTPP1) resulted in high expression of TPP1 predominantly in ependymal cells and secretion of the enzyme into the cerebrospinal fluid leading to clinical benefit. Diseased dogs treated with rAAV.caTPP1 showed delays in onset of clinical signs and disease progression, protection from cognitive decline, and extension of life span. By immunostaining and enzyme assay, recombinant protein was evident throughout the brain and spinal cord, with correction of the neuropathology characteristic of the disease. This study in a naturally occurring canine model of TPP1 deficiency highlights the utility of AAV transduction of ventricular lining cells to accomplish stable secretion of recombinant protein for broad distribution in the central nervous system and therapeutic benefit. PMID:26560358

  12. The prevalence of neutralizing antibodies against AAV serotype 1 in healthy subjects in China: implications for gene therapy and vaccines using AAV1 vector.

    PubMed

    Liu, Qiang; Huang, Weijin; Zhao, Chenyan; Zhang, Li; Meng, Shufang; Gao, Dongying; Wang, Youchun

    2013-09-01

    Recombinant adeno-associated virus serotype 1 (AAV1) has attracted tremendous interest as a promising vector for gene therapy and vaccine applications. However, the presence of AAV1 neutralizing antibodies as a consequence of exposure to wild type AAV1 can limit significantly effective gene transfer for biologics based AAV1 vector. Prior studies have reported that a prevalence of AAV1 neutralizing antibodies ranged from 10% to 50% in different countries around the world, and up to 79% in Dutch subjects. However, few studies have reported on the AAV1 neutralizing antibody prevalence in Chinese subjects. In this study, a high-throughput luciferase-based virus neutralization assay was established and standardized for critical parameters, including the appropriate cell line, and the optimal viral infection dose, and the infection time with homologous AAV1 vaccinated mice and guinea pig sera. Then, a total of 500 healthy individual serum samples from two separate regions of China were screened for the AAV1 neutralizing antibodies by conducting a non-randomized, cross-sectional analysis. Interestingly, a high prevalence of AAV1 neutralizing antibody (69.8%) was found in all individuals. There was significant difference observed for prevalence by gender (P = 0.042), age range (P = 0.011) and geographic origin (P < 0.001). The percentage of positive AAV1 neutralizing antibodies (NT50  > 10) in teenagers (year <18, as of 2012) was significant lower than that of adults (19-56, as of 2012) (P = 0.011), indicating the optimal vaccination period of childhood. The current study provides a useful insight for the future development of AAV1-based vaccination and gene therapy strategies in Beijing and Anhui provinces of China.

  13. Impact of intravenous infusion time on AAV8 vector pharmacokinetics, safety, and liver transduction in cynomolgus macaques.

    PubMed

    Greig, Jenny A; Nordin, Jayme Ml; Bote, Erin; Makaron, Leah; Garnett, Mason E; Kattenhorn, Lisa M; Bell, Peter; Goode, Tamara; Wilson, James M

    2016-01-01

    Systemically delivered adeno-associated viral (AAV) vectors are now in early-phase clinical trials for a variety of diseases. While there is a general consensus on inclusion and exclusion criteria for each of these trials, the conditions under which vectors are infused vary significantly. In this study, we evaluated the impact of intravenous infusion rate of AAV8 vector in cynomolgus macaques on transgene expression, vector clearance from the circulation, and potential activation of the innate immune system. The dose of AAV8 vector in terms of genome copies per kilogram body weight and its concentration were fixed, while the rate of infusion varied to deliver the entire dose over different time periods, including 1, 10, or 90 minutes. Analyses during the in-life phase of the experiment included sequential evaluation of whole blood for vector genomes and appearance of proinflammatory cytokines. Liver tissues were analyzed at the time of necropsy for enhanced green fluorescent protein (eGFP) expression and vector genomes. The data were remarkable with a relative absence of any statistically significant effect of infusion time on vector transduction, safety, and clearance. However, some interesting and unexpected trends did emerge.

  14. Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction

    PubMed Central

    Suzuki, Jun; Hashimoto, Ken; Xiao, Ru; Vandenberghe, Luk H.; Liberman, M. Charles

    2017-01-01

    The use of viral vectors for inner ear gene therapy is receiving increased attention for treatment of genetic hearing disorders. Most animal studies to date have injected viral suspensions into neonatal ears, via the round window membrane. Achieving transduction of hair cells, or sensory neurons, throughout the cochlea has proven difficult, and no studies have been able to efficiently transduce sensory cells in adult ears while maintaining normal cochlear function. Here, we show, for the first time, successful transduction of all inner hair cells and the majority of outer hair cells in an adult cochlea via virus injection into the posterior semicircular canal. We used a “designer” AAV, AAV2/Anc80L65, in which the main capsid proteins approximate the ancestral sequence state of AAV1, 2, 8, and 9. Our injections also transduced ~10% of spiral ganglion cells and a much larger fraction of their satellite cells. In the vestibular sensory epithelia, the virus transduced large numbers of hair cells and virtually all the supporting cells, along with close to half of the vestibular ganglion cells. We conclude that this viral vector and this delivery route hold great promise for gene therapy applications in both cochlear and vestibular sense organs. PMID:28367981

  15. Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction.

    PubMed

    Suzuki, Jun; Hashimoto, Ken; Xiao, Ru; Vandenberghe, Luk H; Liberman, M Charles

    2017-04-03

    The use of viral vectors for inner ear gene therapy is receiving increased attention for treatment of genetic hearing disorders. Most animal studies to date have injected viral suspensions into neonatal ears, via the round window membrane. Achieving transduction of hair cells, or sensory neurons, throughout the cochlea has proven difficult, and no studies have been able to efficiently transduce sensory cells in adult ears while maintaining normal cochlear function. Here, we show, for the first time, successful transduction of all inner hair cells and the majority of outer hair cells in an adult cochlea via virus injection into the posterior semicircular canal. We used a "designer" AAV, AAV2/Anc80L65, in which the main capsid proteins approximate the ancestral sequence state of AAV1, 2, 8, and 9. Our injections also transduced ~10% of spiral ganglion cells and a much larger fraction of their satellite cells. In the vestibular sensory epithelia, the virus transduced large numbers of hair cells and virtually all the supporting cells, along with close to half of the vestibular ganglion cells. We conclude that this viral vector and this delivery route hold great promise for gene therapy applications in both cochlear and vestibular sense organs.

  16. Impact of intravenous infusion time on AAV8 vector pharmacokinetics, safety, and liver transduction in cynomolgus macaques

    PubMed Central

    Greig, Jenny A; Nordin, Jayme ML; Bote, Erin; Makaron, Leah; Garnett, Mason E; Kattenhorn, Lisa M; Bell, Peter; Goode, Tamara; Wilson, James M

    2016-01-01

    Systemically delivered adeno-associated viral (AAV) vectors are now in early-phase clinical trials for a variety of diseases. While there is a general consensus on inclusion and exclusion criteria for each of these trials, the conditions under which vectors are infused vary significantly. In this study, we evaluated the impact of intravenous infusion rate of AAV8 vector in cynomolgus macaques on transgene expression, vector clearance from the circulation, and potential activation of the innate immune system. The dose of AAV8 vector in terms of genome copies per kilogram body weight and its concentration were fixed, while the rate of infusion varied to deliver the entire dose over different time periods, including 1, 10, or 90 minutes. Analyses during the in-life phase of the experiment included sequential evaluation of whole blood for vector genomes and appearance of proinflammatory cytokines. Liver tissues were analyzed at the time of necropsy for enhanced green fluorescent protein (eGFP) expression and vector genomes. The data were remarkable with a relative absence of any statistically significant effect of infusion time on vector transduction, safety, and clearance. However, some interesting and unexpected trends did emerge. PMID:27933307

  17. Targeted introduction and effective expression of hFIX at the AAVS1 locus in mesenchymal stem cells

    PubMed Central

    Li, Shu-Jun; Luo, Ying; Zhang, Le-Meng; Yang, Wei; Zhang, Guo-Gang

    2017-01-01

    Hemophilia B occurs due to a deficiency in human blood coagulation factor IX (hFIX). Currently, no effective treatment for hemophilia B has been identified, and gene therapy has been considered the most appropriate treatment. Mesenchymal stem cells (MSCs) have homing abilities and low immunogenicity, and therefore they may be potential cell carriers for targeted drug delivery to lesional tissues. The present study constructed an adeno-associated virus integration site 1 (AAVS1)-targeted vector termed AAVS1-green fluorescent protein (GFP)-hFIX and a zinc finger nuclease (ZFN) expression vector. Nucleofection was used to co-transfect the targeting vector and the ZFN expression vector into human MSCs. The GFP-positive cells were selected using flow cytometry. Site-specific integration clones were obtained following the monoclonal culture, subsequent detections were performed using polymerase chain reaction and Southern blotting. Following the confirmation of stem cell traits of the site-specific integration MSCs, the in vivo and in vitro expression levels of hFIX were detected. The results demonstrated that the hFIX gene was successfully transfected into the AAVS1 locus in human MSCs. The clones with the site-specific integration retained stem cell traits of the MSCs. In addition, hFIX was effectively expressed in vivo and in vitro. No significant differences in expression levels were identified among the individual clones. In conclusion, the present study demonstrated that the exogenous gene hFIX was effectively expressed following site-specific targeting into the AAVS1 locus in MSCs; therefore, MSCs may be used as potential cell carriers for gene therapy of hemophilia B. PMID:28112377

  18. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain.

    PubMed

    Deverman, Benjamin E; Pravdo, Piers L; Simpson, Bryan P; Kumar, Sripriya Ravindra; Chan, Ken Y; Banerjee, Abhik; Wu, Wei-Li; Yang, Bin; Huber, Nina; Pasca, Sergiu P; Gradinaru, Viviana

    2016-02-01

    Recombinant adeno-associated viruses (rAAVs) are commonly used vehicles for in vivo gene transfer. However, the tropism repertoire of naturally occurring AAVs is limited, prompting a search for novel AAV capsids with desired characteristics. Here we describe a capsid selection method, called Cre recombination-based AAV targeted evolution (CREATE), that enables the development of AAV capsids that more efficiently transduce defined Cre-expressing cell populations in vivo. We use CREATE to generate AAV variants that efficiently and widely transduce the adult mouse central nervous system (CNS) after intravenous injection. One variant, AAV-PHP.B, transfers genes throughout the CNS with an efficiency that is at least 40-fold greater than that of the current standard, AAV9 (refs. 14,15,16,17), and transduces the majority of astrocytes and neurons across multiple CNS regions. In vitro, it transduces human neurons and astrocytes more efficiently than does AAV9, demonstrating the potential of CREATE to produce customized AAV vectors for biomedical applications.

  19. Development of Patient-specific AAV Vectors After Neutralizing Antibody Selection for Enhanced Muscle Gene Transfer.

    PubMed

    Li, Chengwen; Wu, Shuqing; Albright, Blake; Hirsch, Matthew; Li, Wuping; Tseng, Yu-Shan; Agbandje-McKenna, Mavis; McPhee, Scott; Asokan, Aravind; Samulski, R Jude

    2016-02-01

    A major hindrance in gene therapy trials with adeno-associated virus (AAV) vectors is the presence of neutralizing antibodies (NAbs) that inhibit AAV transduction. In this study, we used directed evolution techniques in vitro and in mouse muscle to select novel NAb escape AAV chimeric capsid mutants in the presence of individual patient serum. AAV mutants isolated in vitro escaped broad patient-specific NAb activity but had poor transduction ability in vivo. AAV mutants isolated in vivo had enhanced NAb evasion from cognate serum and had high muscle transduction ability. More importantly, structural modeling identified a 100 amino acid motif from AAV6 in variable region (VR) III that confers this enhanced muscle tropism. In addition, a predominantly AAV8 capsid beta barrel template with a specific preference for AAV1/AAV9 in VR VII located at threefold symmetry axis facilitates NAb escape. Our data strongly support that chimeric AAV capsids composed of modular and nonoverlapping domains from various serotypes are capable of evading patient-specific NAbs and have enhanced muscle transduction.

  20. A muscle-targeting peptide displayed on AAV2 improves muscle tropism on systemic delivery.

    PubMed

    Yu, C-Y; Yuan, Z; Cao, Z; Wang, B; Qiao, C; Li, J; Xiao, X

    2009-08-01

    Adeno-associated virus (AAV) has become a leading gene transfer vector for striated muscles. However, the AAV vectors also exhibit broad tropisms after systemic delivery. In an attempt to improve muscle tropism, we inserted a 7-amino-acid (ASSLNIA) muscle-targeting peptide (MTP) in the capsids of AAV2 at residue 587 or 588, generating AAV(587)MTP and AAV(588)MTP. In vitro studies showed that both viruses diminished their infectivity on non-muscle cell lines as well as on un-differentiated myoblasts; however, preserved or enhanced their infectivity on differentiated myotubes. AAV(587)MTP, but not AAV(588)MTP, also abolished its heparin-binding capacity and infected myotubes in a heparin-independent manner. Furthermore, in vivo studies by intravenous vector administration in mice showed that AAV(587)MTP enhanced its tropism to various muscles and particularly to the heart (24.3-fold of unmodified AAV2), whereas reduced its tropism to the non-muscle tissues such as the liver, lungs, spleen and so on. This alteration of tissue tropism is not simply because of the loss of heparin-binding, as a mutant AAV2 (AAVHBSMut) containing heparin-binding site mutations lost infectivity on both non-muscle and muscle cells. Furthermore, free MTP peptide, but not the scrambled control peptide, competitively inhibited AAV(587)MTP infection on myotubes. These results suggest that AAV2 could be re-targeted to the striated muscles by a MTP inserted after residue 587 of the capsids. This proof of principle study showed first evidence of peptide-directed muscle targeting on systemic administration of AAV vectors.

  1. RepA-WH1, the agent of an amyloid proteinopathy in bacteria, builds oligomeric pores through lipid vesicles

    PubMed Central

    Fernández, Cristina; Núñez-Ramírez, Rafael; Jiménez, Mercedes; Rivas, Germán; Giraldo, Rafael

    2016-01-01

    RepA-WH1 is a disease-unrelated protein that recapitulates in bacteria key aspects of human amyloid proteinopathies: i) It undergoes ligand-promoted amyloidogenesis in vitro; ii) its aggregates are able to seed/template amyloidosis on soluble protein molecules; iii) its conformation is modulated by Hsp70 chaperones in vivo, generating transmissible amyloid strains; and iv) causes proliferative senescence. Membrane disruption by amyloidogenic oligomers has been found for most proteins causing human neurodegenerative diseases. Here we report that, as for PrP prion and α-synuclein, acidic phospholipids also promote RepA-WH1 amyloidogenesis in vitro. RepA-WH1 molecules bind to liposomes, where the protein assembles oligomeric membrane pores. Fluorescent tracer molecules entrapped in the lumen of the vesicles leak through these pores and RepA-WH1 can then form large aggregates on the surface of the vesicles without inducing their lysis. These findings prove that it is feasible to generate in vitro a synthetic proteinopathy with a minimal set of cytomimetic components and support the view that cell membranes are primary targets in protein amyloidoses. PMID:26984374

  2. Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase

    NASA Astrophysics Data System (ADS)

    Ha, Taekjip; Rasnik, Ivan; Cheng, Wei; Babcock, Hazen P.; Gauss, George H.; Lohman, Timothy M.; Chu, Steven

    2002-10-01

    Helicases are motor proteins that couple conformational changes induced by ATP binding and hydrolysis with unwinding of duplex nucleic acid, and are involved in several human diseases. Some function as hexameric rings, but the functional form of non-hexameric helicases has been debated. Here we use a combination of a surface immobilization scheme and single-molecule fluorescence assays-which do not interfere with biological activity-to probe DNA unwinding by the Escherichia coli Rep helicase. Our studies indicate that a Rep monomer uses ATP hydrolysis to move toward the junction between single-stranded and double-stranded DNA but then displays conformational fluctuations that do not lead to DNA unwinding. DNA unwinding initiates only if a functional helicase is formed via additional protein binding. Partial dissociation of the functional complex during unwinding results in interruptions (`stalls') that lead either to duplex rewinding upon complete dissociation of the complex, or to re-initiation of unwinding upon re-formation of the functional helicase. These results suggest that the low unwinding processivity observed in vitro for Rep is due to the relative instability of the functional complex. We expect that these techniques will be useful for dynamic studies of other helicases and protein-DNA interactions.

  3. Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase.

    PubMed

    Ha, Taekjip; Rasnik, Ivan; Cheng, Wei; Babcock, Hazen P; Gauss, George H; Lohman, Timothy M; Chu, Steven

    2002-10-10

    Helicases are motor proteins that couple conformational changes induced by ATP binding and hydrolysis with unwinding of duplex nucleic acid, and are involved in several human diseases. Some function as hexameric rings, but the functional form of non-hexameric helicases has been debated. Here we use a combination of a surface immobilization scheme and single-molecule fluorescence assays--which do not interfere with biological activity--to probe DNA unwinding by the Escherichia coli Rep helicase. Our studies indicate that a Rep monomer uses ATP hydrolysis to move toward the junction between single-stranded and double-stranded DNA but then displays conformational fluctuations that do not lead to DNA unwinding. DNA unwinding initiates only if a functional helicase is formed via additional protein binding. Partial dissociation of the functional complex during unwinding results in interruptions ('stalls') that lead either to duplex rewinding upon complete dissociation of the complex, or to re-initiation of unwinding upon re-formation of the functional helicase. These results suggest that the low unwinding processivity observed in vitro for Rep is due to the relative instability of the functional complex. We expect that these techniques will be useful for dynamic studies of other helicases and protein-DNA interactions.

  4. Inhibition of pathological brain angiogenesis through systemic delivery of AAV vector expressing soluble FLT1.

    PubMed

    Shen, F; Mao, L; Zhu, W; Lawton, M T; Pechan, P; Colosi, P; Wu, Z; Scaria, A; Su, H

    2015-11-01

    The soluble vascular endothelial growth factor (VEGF) receptor 1 (sFLT1) has been tested in both animals and humans for anti-angiogenic therapies, for example, age-related macular degeneration. We hypothesized that adeno-associated viral vector (AAV)-mediated sFLT1 expression could be used to inhibit abnormal brain angiogenesis. We tested the anti-angiogenic effect of sFLT1 and the feasibility of using AAV serotype 9 to deliver sFLT1 through intravenous injection (IV) to the brain angiogenic region. AAVs were packaged in AAV serotypes 1 and 2 (stereotactic injection) and 9 (IV injection). Brain angiogenesis was induced in adult mice through stereotactic injection of AAV1-VEGF. AAV2-sFLT02 containing sFLT1 VEGF-binding domain (domain 2) was injected into the brain angiogenic region, and AAV9-sFLT1 was injected into the jugular vein at the time of or 4 weeks after AAV1-VEGF injection. We showed that AAV2-sFLT02 inhibited brain angiogenesis at both time points. IV injection of AAV9-sFLT1 inhibited angiogenesis only when the vector was injected 4 weeks after angiogenic induction. Neither lymphocyte infiltration nor neuron loss was observed in AAV9-sFLT1-treated mice. Our data show that systemically delivered AAV9-sFLT1 inhibits angiogenesis in the mouse brain, which could be utilized to treat brain angiogenic diseases such as brain arteriovenous malformation.

  5. Inhibition of pathological brain angiogenesis through systemic delivery of AAV vector expressing soluble FLT1

    PubMed Central

    Shen, Fanxia; Mao, Lei; Zhu, Wan; Lawton, Michael T.; Pechan, Peter; Colosi, Peter; Wu, Zhijian; Scaria, Abraham; Su, Hua

    2015-01-01

    The soluble vascular endothelial growth factor (VEGF) receptor 1 (sFLT1) has been tested in both animals and humans for anti-angiogenic therapies, e.g., age-related macular degeneration. We hypothesized that adeno-associated viral vector (AAV)-mediated sFLT1 expression could be used to inhibit abnormal brain angiogenesis. We tested the anti-angiogenic effect of sFLT1 and the feasibility of using AAV serotype 9 to deliver sFLT1 through intravenous injection (IV) to the brain angiogenic region. AAV vectors were packaged in AAV serotypes 1 and 2 (stereotactic injection) and 9 (IV-injection). Brain angiogenesis was induced in adult mice through stereotactic injection of AAV1-VEGF. AAV2-sFLT02 containing sFLT1 VEGF-binding domain (domain 2) was injected into the brain angiogenic region, and AAV9-sFLT1 was injected into the jugular vein at the time of or 4 weeks after AAV1-VEGF injection. We showed that AAV2-sFLT02 inhibited brain angiogenesis at both time points. Intravenous injection of AAV9-sFLT1 inhibited angiogenesis only when the vector was injected 4 weeks after angiogenic induction. Neither lymphocyte infiltration nor neuron loss was observed in AAV9-sFLT1-treated mice. Our data show that systemically delivered AAV9-sFLT1 inhibits angiogenesis in the mouse brain, which could be utilized to treat brain angiogenic diseases such as brain arteriovenous malformation. PMID:26090874

  6. AAV-mediated photoreceptor transduction of the pig cone-enriched retina

    PubMed Central

    Mussolino, C; della Corte, M; Rossi, S; Viola, F; Di Vicino, U; Marrocco, E; Neglia, S; Doria, M; Testa, F; Giovannoni, R; Crasta, M; Giunti, M; Villani, E; Lavitrano, M; Bacci, M L; Ratiglia, R; Simonelli, F; Auricchio, A; Surace, E M

    2011-01-01

    Recent success in clinical trials supports the use of adeno-associated viral (AAV) vectors for gene therapy of retinal diseases caused by defects in the retinal pigment epithelium (RPE). In contrast, evidence of the efficacy of AAV-mediated gene transfer to retinal photoreceptors, the major site of inherited retinal diseases, is less robust. In addition, although AAV-mediated RPE transduction appears efficient, independently of the serotype used and species treated, AAV-mediated photoreceptor gene transfer has not been systematically investigated thus so far in large animal models, which also may allow identifying relevant species-specific differences in AAV-mediated retinal transduction. In the present study, we used the porcine retina, which has a high cone/rod ratio. This feature allows to properly evaluate both cone and rod photoreceptors transduction and compare the transduction characteristics of AAV2/5 and 2/8, the two most efficient AAV vector serotypes for photoreceptor targeting. Here we show that AAV2/5 and 2/8 transduces both RPE and photoreceptors. AAV2/8 infects and transduces photoreceptor more efficiently than AAV2/5, similarly to what we have observed in the murine retina. The use of the photoreceptor-specific rhodopsin promoter restricts transgene expression to porcine rods and cones, and results in photoreceptor transduction levels similar to those obtained with the ubiquitous promoters tested. Finally, immunological, toxicological and biodistribution studies support the safety of AAV subretinal administration to the large porcine retina. The data presented here on AAV-mediated transduction of the cone-enriched porcine retina may affect the development of gene-based therapies for rare and common severe photoreceptor diseases. PMID:21412286

  7. Reprogramming Immune Response With Capsid-Optimized AAV6 Vectors for Immunotherapy of Cancer.

    PubMed

    Pandya, Munjal; Britt, Kellee; Hoffman, Brad; Ling, Chen; Aslanidi, George V

    2015-09-01

    In the current studies we generated novel capsid-optimized adeno-associated virus (AAV) serotype 6 (AAV6) vectors expressing a tumor-associated antigen, and assessed their ability to activate a protective T-cell response in an animal model. First, we showed that specific mutations in the AAV6 capsid increase the transduction efficiency of these vectors in mouse bone marrow-derived dendritic cells in vitro for approximately 5-fold compared with the wild-type (WT) AAV6 vectors. Next, we evaluated the ability of the mutant AAV6 vectors to initiate specific T-cell clone proliferation in vivo. Our data indicate that the intramuscular administration of AAV6-S663V+T492V vectors expressing ovalbumin (OVA) led to a strong activation (approximately 9%) of specific T cells in peripheral blood compared with AAV6-WT treated animals (<1%). These OVA-specific T cells have a superior killing ability against mouse prostate cancer cell line RM1 stably expressing the OVA antigen when propagated in vitro. Finally, we evaluated the ability of capsid-optimized AAV6-S663V+T492V vectors to initiate a protective anticancer immune response in vivo. Our results document the suppression of subcutaneous tumor growth in animals immunized with AAV6-S663V+T492V vectors expressing prostatic acid phosphatase (PAP) for approximately 4 weeks in comparison with 1 week and 2 weeks for the negative controls, AAV6-EGFP, and AAV6-WT-PAP treated mice, respectively. These studies suggest that successful inhibition of tumor growth in an animal model would set the stage for potential clinical application of the capsid-optimized AAV6-S663V+T492V vectors.

  8. rAAV vector product characterization and stability studies.

    PubMed

    Snyder, Richard O; Audit, Muriel; Francis, Joyce D

    2011-01-01

    Recombinant adeno-associated viral (rAAV) vectors mediate the safe and long-term correction of genetic diseases following a single administration. Preclinical studies in animal models and human trials have shown rAAV vector persistence and safety. In some trials, sustained or transient transgene expression has been demonstrated in humans treated for alpha-1 antitrypsin deficiency, LPL deficiency, hemophilia B and cystic fibrosis, and sustained correction of inherited blindness has been reported by three groups. For human use, rAAV vectors are manufactured and tested in compliance with current Good Manufacturing Practices as outlined in the Code of Federal Regulations (21CFR) or European Good Manufacturing Practices (Eudralex, Volume 4, GMP Guidelines, 2003/94/CE and 91/356/EEC). Manufacturing control, as well as product quality is evaluated by quality control testing and all manufacturing, facilities, and testing activities are reviewed by the quality assurance department. In-process specifications are set and in-process testing is conducted to confirm that the manufacturing process is controlled, aseptic, and performs consistently. Final product is tested to ensure release specifications are met for identity, safety, purity, potency, and stability.

  9. AAV Hybrid Serotypes: Improved Vectors for Gene Delivery

    PubMed Central

    Choi, Vivian W.; McCarty, Douglas M.; Samulski, R. Jude

    2006-01-01

    In recent years, significant efforts have been made on studying and engineering adeno-associated virus (AAV) capsid, in order to increase efficiency in targeting specific cell types that are non-permissive to wild type (wt) viruses and to improve efficacy in infecting only the cell type of interest. With our previous knowledge of the viral properties of the naturally occurring serotypes and the elucidation of their capsid structures, we can now generate capsid mutants, or hybrid serotypes, by various methods and strategies. In this review, we summarize the studies performed on AAV retargeting, and categorize the available hybrid serotypes to date, based on the type of modification: 1) transcapsidation, 2) adsorption of bi-specific antibody to capsid surface, 3) mosaic capsid, and 4) chimeric capsid. Not only these hybrid serotypes could achieve high efficiency of gene delivery to a specific targeted cell type, which can be better-tailored for a particular clinical application, but also serve as a tool for studying AAV biology such as receptor binding, trafficking and genome delivery into the nucleus. PMID:15975007

  10. Potent spinal parenchymal AAV9-mediated gene delivery by subpial injection in adult rats and pigs

    PubMed Central

    Miyanohara, Atsushi; Kamizato, Kota; Juhas, Stefan; Juhasova, Jana; Navarro, Michael; Marsala, Silvia; Lukacova, Nada; Hruska-Plochan, Marian; Curtis, Erik; Gabel, Brandon; Ciacci, Joseph; Ahrens, Eric T; Kaspar, Brian K; Cleveland, Don; Marsala, Martin

    2016-01-01

    Effective in vivo use of adeno-associated virus (AAV)-based vectors to achieve gene-specific silencing or upregulation in the central nervous system has been limited by the inability to provide more than limited deep parenchymal expression in adult animals using delivery routes with the most clinical relevance (intravenous or intrathecal). Here, we demonstrate that the spinal pia membrane represents the primary barrier limiting effective AAV9 penetration into the spinal parenchyma after intrathecal AAV9 delivery. We develop a novel subpial AAV9 delivery technique and AAV9-dextran formulation. We use these in adult rats and pigs to show (i) potent spinal parenchymal transgene expression in white and gray matter including neurons, glial and endothelial cells after single bolus subpial AAV9 delivery; (ii) delivery to almost all apparent descending motor axons throughout the length of the spinal cord after cervical or thoracic subpial AAV9 injection; (iii) potent retrograde transgene expression in brain motor centers (motor cortex and brain stem); and (iv) the relative safety of this approach by defining normal neurological function for up to 6 months after AAV9 delivery. Thus, subpial delivery of AAV9 enables gene-based therapies with a wide range of potential experimental and clinical utilizations in adult animals and human patients. PMID:27462649

  11. Advances in AAV vector development for gene therapy in the retina.

    PubMed

    Day, Timothy P; Byrne, Leah C; Schaffer, David V; Flannery, John G

    2014-01-01

    Adeno-associated virus (AAV) is a small, non-pathogenic dependovirus that has shown great potential for safe and long-term expression of a genetic payload in the retina. AAV has been used to treat a growing number of animal models of inherited retinal degeneration, though drawbacks-including a limited carrying capacity, slow onset of expression, and a limited ability to transduce some retinal cell types from the vitreous-restrict the utility of AAV for treating some forms of inherited eye disease. Next generation AAV vectors are being created to address these needs, through rational design efforts such as the creation of self-complementary AAV vectors for faster onset of expression and specific mutations of surface-exposed residues to increase transduction of viral particles. Furthermore, directed evolution has been used to create, through an iterative process of selection, novel variants of AAV with newly acquired, advantageous characteristics. These novel AAV variants have been shown to improve the therapeutic potential of AAV vectors, and further improvements may be achieved through rational design, directed evolution, or a combination of these approaches, leading to broader applicability of AAV and improved treatments for inherited retinal degeneration.

  12. Modulation of feeding by chronic rAAV expression of a relaxin-3 peptide agonist in rat hypothalamus.

    PubMed

    Ganella, D E; Callander, G E; Ma, S; Bye, C R; Gundlach, A L; Bathgate, R A D

    2013-07-01

    Relaxin-3 is a neuropeptide that is abundantly expressed by discrete brainstem neuron populations that broadly innervate forebrain areas rich in the relaxin-3 G-protein-coupled-receptor, RXFP3. Acute and subchronic central administration of synthetic relaxin-3 or an RXFP3-selective agonist peptide, R3/I5, increase feeding and body weight in rats. Intrahypothalamic injection of relaxin-3 also increases feeding. In this study, we developed a recombinant adeno-associated virus 1/2 (rAAV1/2) vector that drives expression and constitutive secretion of bioactive R3/I5 and assessed the effect of intrahypothalamic injections on daily food intake and body weight gain in adult male rats over 8 weeks. In vitro testing revealed that the vector rAAV1/2-fibronectin (FIB)-R3/I5 directs the constitutive secretion of bioactive R3/I5 peptide. Bilateral injection of rAAV1/2-FIB-R3/I5 vector into the paraventricular nucleus produced an increase in daily food intake and body weight gain (P<0.01, ~23%, respectively), relative to control treatment. In a separate cohort of rats, quantitative polymerase chain reaction analysis of hypothalamic mRNA revealed strong expression of R3/I5 transgene at 3 months post-rAAV1/2-FIB-R3/I5 infusion. Levels of mRNA transcripts for the relaxin-3 receptor RXFP3, the hypothalamic 'feeding' peptides neuropeptide Y, AgRP and POMC, and the reproductive hormone, GnRH, were all similar to control, whereas vasopressin and oxytocin (OT) mRNA levels were reduced by ~25% (P=0.051) and ~50% (P<0.005), respectively, in rAAV1/2-FIB-R3/I5-treated rats (at 12 weeks, n=9/8 rats per group). These data demonstrate for the first time that R3/I5 is effective in modulating feeding in the rat by chronic hypothalamic RXFP3 activation and suggest a potential underlying mechanism involving altered OT signalling. Importantly, there was no desensitization of the feeding response over the treatment period and no apparent deleterious health effects, indicating that targeting the

  13. Induction of Immune Tolerance to Foreign Protein via Adeno-Associated Viral Vector Gene Transfer in Mid-Gestation Fetal Sheep

    PubMed Central

    Davey, Marcus G.; Riley, John S.; Andrews, Abigail; Tyminski, Alec; Limberis, Maria; Pogoriler, Jennifer E.; Partridge, Emily; Olive, Aliza; Hedrick, Holly L.; Flake, Alan W.; Peranteau, William H.

    2017-01-01

    A major limitation to adeno-associated virus (AAV) gene therapy is the generation of host immune responses to viral vector antigens and the transgene product. The ability to induce immune tolerance to foreign protein has the potential to overcome this host immunity. Acquisition and maintenance of tolerance to viral vector antigens and transgene products may also permit repeat administration thereby enhancing therapeutic efficacy. In utero gene transfer (IUGT) takes advantage of the immunologic immaturity of the fetus to induce immune tolerance to foreign antigens. In this large animal study, in utero administration of AAV6.2, AAV8 and AAV9 expressing green fluorescent protein (GFP) to ~60 day fetal sheep (term: ~150 days) was performed. Transgene expression and postnatal immune tolerance to GFP and viral antigens were assessed. We demonstrate 1) hepatic expression of GFP 1 month following in utero administration of AAV6.2.GFP and AAV8.GFP, 2) in utero recipients of either AAV6.2.GFP or AAV8.GFP fail to mount an anti-GFP antibody response following postnatal GFP challenge and lack inflammatory cellular infiltrates at the intramuscular site of immunization, 3) a serotype specific anti-AAV neutralizing antibody response is elicited following postnatal challenge of in utero recipients of AAV6.2 or AAV8 with the corresponding AAV serotype, and 4) durable hepatic GFP expression was observed up to 6 months after birth in recipients of AAV8.GFP but expression was lost between 1 and 6 months of age in recipients of AAV6.2.GFP. The current study demonstrates, in a preclinical large animal model, the potential of IUGT to achieve host immune tolerance to the viral vector transgene product but also suggests that a single exposure to the vector capsid proteins at the time of IUGT is inadequate to induce tolerance to viral vector antigens. PMID:28141818

  14. Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice.

    PubMed

    Yu, Wenhan; Mookherjee, Suddhasil; Chaitankar, Vijender; Hiriyanna, Suja; Kim, Jung-Woong; Brooks, Matthew; Ataeijannati, Yasaman; Sun, Xun; Dong, Lijin; Li, Tiansen; Swaroop, Anand; Wu, Zhijian

    2017-03-14

    In retinitis pigmentosa, loss of cone photoreceptors leads to blindness, and preservation of cone function is a major therapeutic goal. However, cone loss is thought to occur as a secondary event resulting from degeneration of rod photoreceptors. Here we report a genome editing approach in which adeno-associated virus (AAV)-mediated CRISPR/Cas9 delivery to postmitotic photoreceptors is used to target the Nrl gene, encoding for Neural retina-specific leucine zipper protein, a rod fate determinant during photoreceptor development. Following Nrl disruption, rods gain partial features of cones and present with improved survival in the presence of mutations in rod-specific genes, consequently preventing secondary cone degeneration. In three different mouse models of retinal degeneration, the treatment substantially improves rod survival and preserves cone function. Our data suggest that CRISPR/Cas9-mediated NRL disruption in rods may be a promising treatment option for patients with retinitis pigmentosa.

  15. Efficiency and Safety of AAV-Mediated Gene Delivery of the Human ND4 Complex I Subunit in the Mouse Visual System

    PubMed Central

    Guy, John; Qi, Xiaoping; Koilkonda, Rajeshwari D.; Arguello, Tania; Chou, Tsung-Han; Ruggeri, Marco; Porciatti, Vittorio; Lewin, Alfred S.; Hauswirth, William W.

    2009-01-01

    PURPOSE To evaluate the efficiency and safety of AAV-mediated gene delivery of a normal human ND4 complex I subunit in the mouse visual system. METHODS A nuclear encoded human ND4 subunit fused to the ATPc mitochondrial targeting sequence and FLAG epitope were packaged in AAV2 capsids that were injected into the right eyes of mice. AAV-GFP was injected into the left eyes. One month later, pattern electroretinography (PERG), rate of ATP synthesis, gene expression, and incorporation of the human ND4 subunit into the murine complex I were evaluated. Quantitative analysis of ND4FLAG-injected eyes was assessed compared with green fluorescent protein (GFP)-injected eyes. RESULTS Rates of ATP synthesis and PERG amplitudes were similar in ND4FLAG- and GFP-inoculated eyes. PERG latency was shorter in eyes that received ND4FLAG. Immunoprecipitated murine complex I gave the expected 52-kDa band of processed human ND4FLAG. Confocal microscopy revealed perinuclear expression of FLAG colocalized with mitochondria-specific fluorescent dye. Transmission electron microscopy revealed FLAG immunogold within mitochondria. Compared with Thy1.2-positive retinal ganglion cells (RGCs), quantification was 38% for FLAG-positive RGCs and 65% for GFP-positive RGCs. Thy1.2 positive-RGC counts in AAV-ND4FLAG were similar to counts in control eyes injected with AAV-GFP. CONCLUSIONS Human ND4 was properly processed and imported into the mitochondria of RGCs and axons of mouse optic nerve after intravitreal injection. Although it had approximately two-thirds the efficiency of GFP, the expression of normal human ND4 in murine mitochondria did not induce the loss of RGCs, ATP synthesis, or PERG amplitude, suggesting that allotopic ND4 may be safe for the treatment of patients with Leber hereditary optic neuropathy. PMID:19387075

  16. REPS: REscaled Power Spectra for initial conditions with massive neutrinos

    NASA Astrophysics Data System (ADS)

    Zennaro, Matteo; Bel, Julien; Villaescusa-Navarro, Francisco; Carbone, Carmelita; Sefusatti, Emiliano; Guzzo, Luigi

    2016-12-01

    REPS (REscaled Power Spectra) provides accurate, one-percent level, numerical simulations of the initial conditions for massive neutrino cosmologies, rescaling the late-time linear power spectra to the simulation initial redshift.

  17. Radioisotope Electric Propulsion (REP) for Selected Interplanetary Science Missions

    NASA Technical Reports Server (NTRS)

    Oh, David; Bonfiglio, Eugene; Cupples, Mike; Belcher, Jeremy; Witzberger, Kevin; Fiehler, Douglas; Artis, Gwen

    2005-01-01

    This viewgraph presentation analyzes small body targets (Trojan Asteroids), Medium Outer Planet Class (Jupiter Polar Orbiter with Probes), and Main Belt Asteroids and Comets (Comet Surface Sample Return), for Radioisotope Electric Propulsion (REP).

  18. High density recombinant AAV particles are competent vectors for in vivo transduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant adeno-associated viral (rAAV) vectors have recently achieved clinical successes in human gene therapy. However, the commonly observed heavier particles found in AAV preparations have traditionally been ignored due to its low in vitro infectivity. In this study, we systemically compared t...

  19. Efficient gene delivery to the cone-enriched pig retina by dual AAV vectors.

    PubMed

    Colella, P; Trapani, I; Cesi, G; Sommella, A; Manfredi, A; Puppo, A; Iodice, C; Rossi, S; Simonelli, F; Giunti, M; Bacci, M L; Auricchio, A

    2014-04-01

    Gene therapy with adeno-associated viral (AAV) vectors is limited by AAV cargo capacity that prevents their application to the inherited retinal diseases (IRDs), such as Stargardt disease (STGD) or Usher syndrome type IB (USH1B), which are due to mutations in genes larger than 5 kb. Trans-splicing or hybrid dual AAV vectors have been successfully exploited to reconstitute large gene expression in the mouse retina. Here, we tested them in the large cone-enriched pig retina that closely mimics the human retina. We found that dual AAV trans-splicing and hybrid vectors transduce pig photoreceptors, the major cell targets for treatment of IRDs, to levels that were about two- to threefold lower than those obtained with a single AAV vector of normal size. This efficiency is significantly higher than that in mice, and is potentially due to the high levels of dual AAV co-transduction we observe in pigs. We also show that subretinal delivery in pigs of dual AAV trans-splicing and hybrid vectors successfully reconstitute, albeit at variable levels, the expression of the large genes ABCA4 and MYO7A mutated in STGD and USH1B, respectively. Our data support the potential of dual AAV vectors for large gene reconstitution in the cone-enriched pig retina that is a relevant preclinical model.

  20. Gene transfer properties and structural modeling of human stem cell-derived AAV.

    PubMed

    Smith, Laura J; Ul-Hasan, Taihra; Carvaines, Sarah K; Van Vliet, Kim; Yang, Ethel; Wong, Kamehameha K; Agbandje-McKenna, Mavis; Chatterjee, Saswati

    2014-09-01

    Adeno-associated virus (AAV) vectors are proving to be remarkably successful for in vivo gene delivery. Based upon reports of abundant AAV in the human marrow, we tested CD34(+) hematopoietic stem cells for the presence of natural AAV. Here, we report for the first time, the presence of novel AAV variants in healthy CD34(+) human peripheral blood stem cells. The majority of healthy peripheral blood stem cell donors were found to harbor AAV in their CD34(+) cells. Every AAV isolated from CD34(+) cells mapped to AAV Clade F. Gene transfer vectors derived from these novel AAVs efficiently underwent entry and postentry processing in human cord blood stem cells and supported stable gene transfer into long-term, in vivo engrafting human HSCs significantly better than other serotypes. AAVHSC-transduced human CD34(+) cells engrafted in vivo and gave rise to differentiated transgene-expressing progeny. Importantly, gene-marked CD34(+) stem cells persisted long term in xenograft recipients, indicating transduction of primitive progenitors. Notably, correlation of structure with function permitted identification of potential capsid components important for HSC transduction. Thus, AAVHSCs represent a new class of genetic vectors for the manipulation of HSC genomes.

  1. Prevalence and pharmacological modulation of humoral immunity to AAV vectors in gene transfer to synovial tissue.

    PubMed

    Mingozzi, F; Chen, Y; Edmonson, S C; Zhou, S; Thurlings, R M; Tak, P P; High, K A; Vervoordeldonk, M J

    2013-04-01

    Antibodies against adeno-associated viral (AAV) vectors are highly prevalent in humans. Both preclinical and clinical studies showed that antibodies against AAV block transduction even at low titers, particularly when the vector is introduced into the bloodstream. Here we measured the neutralizing antibody (NAb) titer against AAV serotypes 2, 5, 6 and 8 in the serum and matched synovial fluid (SF) from rheumatoid arthritis patients. The titer in the SF was lower than that in the matched plasma samples, indicating a difference in distribution of NAb to AAV depending on the body fluid compartment. This difference was more evident for AAV2, against which higher titers were measured. Of all serotypes, anti-AAV5 antibodies were the least prevalent in both the serum and SF. We next evaluated the impact of B-cell depletion on anti-AAV antibodies in rheumatoid arthritis patients who received one or two courses of the anti-CD20 antibody rituximab as part of their disease management. A drop of NAb titer was observed in a subset of those subjects carrying NAb titers ≤1:1000; however, only in a minority of subjects titers dropped below 1:5. This work provides insights into strategies to overcome the limitation of pre-existing humoral immunity to AAV vectors.

  2. Plasmapheresis eliminates the negative impact of AAV antibodies on microdystrophin gene expression following vascular delivery.

    PubMed

    Chicoine, L G; Montgomery, C L; Bremer, W G; Shontz, K M; Griffin, D A; Heller, K N; Lewis, S; Malik, V; Grose, W E; Shilling, C J; Campbell, K J; Preston, T J; Coley, B D; Martin, P T; Walker, C M; Clark, K R; Sahenk, Z; Mendell, J R; Rodino-Klapac, L R

    2014-02-01

    Duchenne muscular dystrophy is a monogenic disease potentially treatable by gene replacement. Use of recombinant adeno-associated virus (AAV) will ultimately require a vascular approach to broadly transduce muscle cells. We tested the impact of preexisting AAV antibodies on microdystrophin expression following vascular delivery to nonhuman primates. Rhesus macaques were treated by isolated limb perfusion using a fluoroscopically guided catheter. In addition to serostatus stratification, the animals were placed into one of the three immune suppression groups: no immune suppression, prednisone, and triple immune suppression (prednisone, tacrolimus, and mycophenolate mofetil). The animals were analyzed for transgene expression at 3 or 6 months. Microdystrophin expression was visualized in AAV, rhesus serotype 74 sero-negative animals (mean: 48.0 ± 20.8%) that was attenuated in sero-positive animals (19.6 ± 18.7%). Immunosuppression did not affect transgene expression. Importantly, removal of AAV binding antibodies by plasmapheresis in AAV sero-positive animals resulted in high-level transduction (60.8 ± 18.0%), which is comparable with that of AAV sero-negative animals (53.7 ± 7.6%), whereas non-pheresed sero-positive animals demonstrated significantly lower transduction levels (10.1 ± 6.0%). These data support the hypothesis that removal of AAV binding antibodies by plasmapheresis permits successful and sustained gene transfer in the presence of preexisting immunity (natural infection) to AAV.

  3. AAV Vectors Expressing LDLR Gain-of-Function Variants Demonstrate Increased Efficacy in Mouse Models of Familial Hypercholesterolemia

    PubMed Central

    Somanathan, Suryanarayan; Jacobs, Frank; Wang, Qiang; Hanlon, Alexandra L; Wilson, James M; Rader, Daniel J

    2014-01-01

    Rationale Familial hypercholesterolemia (FH) is a genetic disorder that arises due to loss-of-function mutations in the low-density lipoprotein receptor (LDLR) and homozygous FH (hoFH) is a candidate for gene therapy using adeno-associated viral (AAV) vectors. Proprotein convertase subtilisin/kexin type 9 (PCSK9) and inducible degrader of LDLR (IDOL) negatively regulate LDLR protein and could dampen AAV encoded LDLR expression. Objective We sought to create vectors expressing gain-of-function human LDLR variants that are resistant to degradation by human PCSK9 and IDOL and thereby enhance hepatic LDLR protein abundance and plasma LDL cholesterol reduction. Methods and Results Amino acid substitutions were introduced into the coding sequence of human LDLR cDNA to reduce interaction with hPCSK9 and hIDOL. A panel of mutant hLDLRs was initially screened in vitro for escape from PCSK9. The variant hLDLR-L318D was further evaluated using a mouse model of hoFH lacking endogenous LDLR and apolipoprotein B mRNA editing enzyme, APOBEC-1 (DKO). Administration of wild type hLDLR to DKO mice, expressing hPCSK9, led to diminished LDLR activity. However, LDLR-L318D was resistant to hPCSK9 mediated degradation and effectively reduced cholesterol levels. Similarly, the LDLR-K809R\\C818A construct avoided hIDOL regulation and achieved stable reductions in serum cholesterol. An AAV8.LDLR-L318D\\K809R\\C818A vector that carried all three amino acid substitutions conferred partial resistance to both hPCSK9 and hIDOL mediated degradation. Conclusion Amino acid substitutions in the human LDLR confer partial resistance to PCSK9 and IDOL regulatory pathways with improved reduction in cholesterol levels and improve upon a potential gene therapeutic approach to treat homozygous FH subjects. PMID:25023731

  4. 75 FR 55808 - Prospective Grant of Exclusive License: Development of AAV5 Based Therapeutics To Treat Human...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-14

    ... Thereof'' ; and U.S. Patent 6, 855, 314 entitled ``AAV5 Vector for Transducing Brain Cells and Lung Cells... sale of AAV5 based therapeutic products to be delivered to the brain, eyes and liver for treatment of... particles. The specific brain cells that are targeted by AAV5 belong to both non-neuronal/glial cells...

  5. Chondroitin Sulfate is the Primary Receptor for a Peptide-Modified AAV That Targets Brain Vascular Endothelium In Vivo.

    PubMed

    Geoghegan, James C; Keiser, Nicholas W; Okulist, Anna; Martins, Inês; Wilson, Matthew S; Davidson, Beverly L

    2014-10-14

    Recently, we described a peptide-modified AAV2 vector (AAV-GMN) containing a capsid-displayed peptide that directs in vivo brain vascular targeting and transduction when delivered intravenously. In this study, we sought to identify the receptor that mediates transduction by AAV-GMN. We found that AAV-GMN, but not AAV2, readily transduces the murine brain endothelial cell line bEnd.3, a result that mirrors previously observed in vivo transduction profiles of brain vasculature. Studies in vitro revealed that the glycosaminoglycan, chondroitin sulfate C, acts as the primary receptor for AAV-GMN. Unlike AAV2, chondroitin sulfate expression is required for cell transduction by AAV-GMN, and soluble chondroitin sulfate C can robustly inhibit AAV-GMN transduction of brain endothelial cells. Interestingly, AAV-GMN retains heparin-binding properties, though in contrast to AAV2, it poorly transduces cells that express heparan sulfate but not chondroitin sulfate, indicating that the peptide insertion negatively impacts heparan-mediated transduction. Lastly, when delivered directly, this modified virus can transduce multiple brain regions, indicating that the potential of AAV-GMN as a therapeutic gene delivery vector for central nervous system disorders is not restricted to brain vascular endothelium.

  6. Prevalence of AAV1 neutralizing antibodies and consequences for a clinical trial of gene transfer for advanced heart failure.

    PubMed

    Greenberg, B; Butler, J; Felker, G M; Ponikowski, P; Voors, A A; Pogoda, J M; Provost, R; Guerrero, J; Hajjar, R J; Zsebo, K M

    2016-03-01

    Adeno-associated virus serotype 1 (AAV1) has many advantages as a gene therapy vector, but the presence of pre-existing neutralizing antibodies (NAbs) is an important limitation. This study was designed to determine: (1) characteristics of AAV NAbs in human subjects, (2) prevalence of AAV1 NAbs in heart failure patients and (3) utility of aggressive immunosuppressive therapy in reducing NAb seroconversion in an animal model. NAb titers were assessed in a cohort of heart failure patients and in patients screened for a clinical trial of gene therapy with AAV1 carrying the sarcoplasmic reticulum calcium ATPase gene (AAV1/SERCA2a). AAV1 NAbs were found in 59.5% of 1552 heart failure patients. NAb prevalence increased with age (P=0.001) and varied geographically. The pattern of NAb titers suggested that exposure is against AAV2, with AAV1 NAb seropositivity due to crossreactivity. The effects of immunosuppression on NAb formation were tested in mini-pigs treated with immunosuppressant therapy before, during and after a single AAV1/SERCA2a infusion. Aggressive immunosuppression did not prevent formation of AAV1 NAbs. We conclude that immunosuppression is unlikely to be a viable solution for repeat AAV1 dosing. Strategies to reduce NAbs in heart failure patients are needed to increase eligibility for gene transfer using AAV vectors.

  7. Expansion of the Parkinson disease-associated SNCA-Rep1 allele upregulates human alpha-synuclein in transgenic mouse brain.

    PubMed

    Cronin, Kenneth D; Ge, Dongliang; Manninger, Paul; Linnertz, Colton; Rossoshek, Anna; Orrison, Bonnie M; Bernard, David J; El-Agnaf, Omar M A; Schlossmacher, Michael G; Nussbaum, Robert L; Chiba-Falek, Ornit

    2009-09-01

    Alpha-synuclein (SNCA) gene has been implicated in the development of rare forms of familial Parkinson disease (PD). Recently, it was shown that an increase in SNCA copy numbers leads to elevated levels of wild-type SNCA-mRNA and protein and is sufficient to cause early-onset, familial PD. A critical question concerning the molecular pathogenesis of PD is what contributory role, if any, is played by the SNCA gene in sporadic PD. The expansion of SNCA-Rep1, an upstream, polymorphic microsatellite of the SNCA gene, is associated with elevated risk for sporadic PD. However, whether SNCA-Rep1 is the causal variant and the underlying mechanism with which its effect is mediated by remained elusive. We report here the effects of three distinct SNCA-Rep1 variants in the brains of 72 mice transgenic for the entire human SNCA locus. Human SNCA-mRNA and protein levels were increased 1.7- and 1.25-fold, respectively, in homozygotes for the expanded, PD risk-conferring allele compared with homozygotes for the shorter, protective allele. When adjusting for the total SNCA-protein concentration (endogenous mouse and transgenic human) expressed in each brain, the expanded risk allele contributed 2.6-fold more to the SNCA steady-state than the shorter allele. Furthermore, targeted deletion of Rep1 resulted in the lowest human SNCA-mRNA and protein concentrations in murine brain. In contrast, the Rep1 effect was not observed in blood lysates from the same mice. These results demonstrate that Rep1 regulates human SNCA expression by enhancing its transcription in the adult nervous system and suggest that homozygosity for the expanded Rep1 allele may mimic locus multiplication, thereby elevating PD risk.

  8. Enhanced athletic performance on multisite AAV-IGF1 gene transfer coincides with massive modification of the muscle proteome.

    PubMed

    Macedo, Antero; Moriggi, Manuela; Vasso, Michele; De Palma, Sara; Sturnega, Mauro; Friso, Giorgio; Gelfi, Cecilia; Giacca, Mauro; Zacchigna, Serena

    2012-02-01

    Progress in gene therapy has hinted at the potential misuse of gene transfer in sports to achieve better athletic performance, while escaping from traditional doping detection methods. Suitable animal models are therefore required in order to better define the potential effects and risks of gene doping. Here we describe a mouse model of gene doping based on adeno-associated virus (AAV)-mediated delivery of the insulin-like growth factor-I (IGF-I) cDNA to multiple muscles. This treatment determined marked muscle hypertrophy, neovascularization, and fast-to-slow fiber type transition, similar to endurance exercise. In functional terms, treated mice showed impressive endurance gain, as determined by an exhaustive swimming test. The proteomic profile of the transduced muscles at 15 and 30 days after gene delivery revealed induction of key proteins controlling energy metabolism. At the earlier time point, enzymes controlling glycogen mobilization and anaerobic glycolysis were induced, whereas they were later replaced by proteins required for aerobic metabolism, including enzymes related to the Krebs cycle and oxidative phosphorylation. These modifications coincided with the induction of several structural and contractile proteins, in agreement with the observed histological and functional changes. Collectively, these results give important insights into the biological response of muscles to continuous IGF-I expression in vivo and warn against the potential misuse of AAV-IGF1 as a doping agent.

  9. AAV9-NPC1 significantly ameliorates Purkinje cell death and behavioral abnormalities in mouse NPC disease.

    PubMed

    Xie, Chang; Gong, Xue-Min; Luo, Jie; Li, Bo-Liang; Song, Bao-Liang

    2017-03-01

    Niemann-Pick type C (NPC) disease is a fatal inherited neurodegenerative disorder caused by loss-of-function mutations in the NPC1 or NPC2 gene. There is no effective way to treat NPC disease. In this study, we used adeno-associated virus (AAV) serotype 9 (AAV9) to deliver a functional NPC1 gene systemically into NPC1(-/-) mice at postnatal day 4. One single AAV9-NPC1 injection resulted in robust NPC1 expression in various tissues, including brain, heart, and lung. Strikingly, AAV9-mediated NPC1 delivery significantly promoted Purkinje cell survival, restored locomotor activity and coordination, and increased the lifespan of NPC1(-/-) mice. Our work suggests that AAV-based gene therapy is a promising means to treat NPC disease.

  10. AAV2 gene therapy readministration in three adults with congenital blindness.

    PubMed

    Bennett, Jean; Ashtari, Manzar; Wellman, Jennifer; Marshall, Kathleen A; Cyckowski, Laura L; Chung, Daniel C; McCague, Sarah; Pierce, Eric A; Chen, Yifeng; Bennicelli, Jeannette L; Zhu, Xiaosong; Ying, Gui-Shuang; Sun, Junwei; Wright, J Fraser; Auricchio, Alberto; Simonelli, Francesca; Shindler, Kenneth S; Mingozzi, Federico; High, Katherine A; Maguire, Albert M

    2012-02-08

    Demonstration of safe and stable reversal of blindness after a single unilateral subretinal injection of a recombinant adeno-associated virus (AAV) carrying the RPE65 gene (AAV2-hRPE65v2) prompted us to determine whether it was possible to obtain additional benefit through a second administration of the AAV vector to the contralateral eye. Readministration of vector to the second eye was carried out in three adults with Leber congenital amaurosis due to mutations in the RPE65 gene 1.7 to 3.3 years after they had received their initial subretinal injection of AAV2-hRPE65v2. Results (through 6 months) including evaluations of immune response, retinal and visual function testing, and functional magnetic resonance imaging indicate that readministration is both safe and efficacious after previous exposure to AAV2-hRPE65v2.

  11. Site-Directed Mutagenesis of Surface-Exposed Lysine Residues Leads to Improved Transduction by AAV2, But Not AAV8, Vectors in Murine Hepatocytes In Vivo

    PubMed Central

    Li, Baozheng; Ma, Wenqin; Ling, Chen; Van Vliet, Kim; Huang, Lin-Ya; Agbandje-McKenna, Mavis; Srivastava, Arun; Aslanidi, George V.

    2015-01-01

    The ubiquitin–proteasome pathway plays a critical role in the intracellular trafficking of recombinant adeno-associated virus 2 (AAV2) vectors, which negatively impacts the transduction efficiency of these vectors. Because ubiquitination occurs on lysine (K) residues, we performed site-directed mutagenesis where we replaced each of 10 surface-exposed K residues (K258, K490, K507, K527, K532, K544, K549, K556, K665, and K706) with glutamic acid (E) because of similarity of size and lack of recognition by modifying enzymes. The transduction efficiency of K490E, K544E, K549E, and K556E scAAV2 vectors increased in HeLa cells in vitro up to 5-fold compared with wild-type (WT) AAV2 vectors, with the K556E mutant being the most efficient. Intravenous delivery of WT and K-mutant ssAAV2 vectors further corroborated these results in murine hepatocytes in vivo. Because AAV8 vectors transduce murine hepatocytes exceedingly well, and because some of the surface-exposed K residues are conserved between these serotypes, we generated and tested two single mutants (K547E and K569E), and one double-mutant (K547 + 569E) AAV8 vector. However, no significant increase in the transduction efficiency of any of these mutant AAV8 vectors was observed in murine hepatocytes in vivo. These studies suggest that although targeting the surface-exposed K residues is yet another strategy to improve the transduction efficiency of AAV vectors, phenotypic outcome is serotype specific. PMID:26421998

  12. Site-Directed Mutagenesis of Surface-Exposed Lysine Residues Leads to Improved Transduction by AAV2, But Not AAV8, Vectors in Murine Hepatocytes In Vivo.

    PubMed

    Li, Baozheng; Ma, Wenqin; Ling, Chen; Van Vliet, Kim; Huang, Lin-Ya; Agbandje-McKenna, Mavis; Srivastava, Arun; Aslanidi, George V

    2015-12-01

    The ubiquitin-proteasome pathway plays a critical role in the intracellular trafficking of recombinant adeno-associated virus 2 (AAV2) vectors, which negatively impacts the transduction efficiency of these vectors. Because ubiquitination occurs on lysine (K) residues, we performed site-directed mutagenesis where we replaced each of 10 surface-exposed K residues (K258, K490, K507, K527, K532, K544, K549, K556, K665, and K706) with glutamic acid (E) because of similarity of size and lack of recognition by modifying enzymes. The transduction efficiency of K490E, K544E, K549E, and K556E scAAV2 vectors increased in HeLa cells in vitro up to 5-fold compared with wild-type (WT) AAV2 vectors, with the K556E mutant being the most efficient. Intravenous delivery of WT and K-mutant ssAAV2 vectors further corroborated these results in murine hepatocytes in vivo. Because AAV8 vectors transduce murine hepatocytes exceedingly well, and because some of the surface-exposed K residues are conserved between these serotypes, we generated and tested two single mutants (K547E and K569E), and one double-mutant (K547 + 569E) AAV8 vector. However, no significant increase in the transduction efficiency of any of these mutant AAV8 vectors was observed in murine hepatocytes in vivo. These studies suggest that although targeting the surface-exposed K residues is yet another strategy to improve the transduction efficiency of AAV vectors, phenotypic outcome is serotype specific.

  13. Predictors of Poor Outcome in ANCA-Associated Vasculitis (AAV).

    PubMed

    Vega, Luis E; Espinoza, Luis R

    2016-12-01

    It is important to recognize factors that might predict poor outcome and prognosis in patients with AAV. The predictors reported in the literature encompass genetic, histopathological, and clinical ones. Genetic studies (genetic predictors) have found genes that are associated with prediction of poor response to treatment, deterioration of renal function, and risk of mortality. Histopathological studies (histopathological predictors) have shown that sclerotic renal lesions are associated with increased risk of progression to end-stage renal disease and death. Lastly, scores (clinical predictors) obtained with tool as FFS, Maldini risk score, VDI, and emerging new biomarkers could potentially be helpful in assessment of prognosis in the future.

  14. Mechanistic aspects of DnaA–RepA interaction as revealed by yeast forward and reverse two-hybrid analysis

    PubMed Central

    Sharma, Rahul; Kachroo, Aardra; Bastia, Deepak

    2001-01-01

    Using yeast forward and reverse two-hybrid analysis and biochemical techniques, we present novel and definitive in vivo and in vitro evidence that both the N-terminal domain I and C-terminal domain IV of the host-encoded DnaA initiator protein of Escherichia coli interact physically with plasmid-encoded RepA initiator of pSC101. The N-terminal, but not the C-terminal, region of RepA interacted with DnaA in vitro. These protein–protein interactions are critical for two very early steps of replication initiation, namely origin unwinding and helicase loading. Neither domain I nor IV of DnaA could individually collaborate with RepA to promote pSC101 replication. However, when the two domains are co-expressed within a common cell milieu and allowed to associate non-covalently with each other via a pair of leucine zippers, replication of the plasmid was supported in vivo. Thus, the result shows that physical tethering, either non-covalent or covalent, of domain I and IV of DnaA and interaction of both domains with RepA, are critical for replication initiation. The results also provide the molecular basis for a novel, potential, replication-based bacterial two-hybrid system. PMID:11500384

  15. Synaptic pathology and therapeutic repair in adult retinoschisis mouse by AAV-RS1 transfer

    PubMed Central

    Ou, Jingxing; Vijayasarathy, Camasamudram; Ziccardi, Lucia; Chen, Shan; Zeng, Yong; Marangoni, Dario; Pope, Jodie G.; Bush, Ronald A.; Wu, Zhijian; Li, Wei; Sieving, Paul A.

    2015-01-01

    Strategies aimed at invoking synaptic plasticity have therapeutic potential for several neurological conditions. The human retinal synaptic disease X-linked retinoschisis (XLRS) is characterized by impaired visual signal transmission through the retina and progressive visual acuity loss, and mice lacking retinoschisin (RS1) recapitulate human disease. Here, we demonstrate that restoration of RS1 via retina-specific delivery of adeno-associated virus type 8-RS1 (AAV8-RS1) vector rescues molecular pathology at the photoreceptor–depolarizing bipolar cell (photoreceptor-DBC) synapse and restores function in adult Rs1-KO animals. Initial development of the photoreceptor-DBC synapse was normal in the Rs1-KO retina; however, the metabotropic glutamate receptor 6/transient receptor potential melastatin subfamily M member 1–signaling (mGluR6/TRPM1-signaling) cascade was not properly maintained. Specifically, the TRPM1 channel and G proteins Gαo, Gβ5, and RGS11 were progressively lost from postsynaptic DBC dendritic tips, whereas the mGluR6 receptor and RGS7 maintained proper synaptic position. This postsynaptic disruption differed from other murine night-blindness models with an electronegative electroretinogram response, which is also characteristic of murine and human XLRS disease. Upon AAV8-RS1 gene transfer to the retina of adult XLRS mice, TRPM1 and the signaling molecules returned to their proper dendritic tip location, and the DBC resting membrane potential was restored. These findings provide insight into the molecular plasticity of a critical synapse in the visual system and demonstrate potential therapeutic avenues for some diseases involving synaptic pathology. PMID:26098217

  16. Humoral immunity to AAV vectors in gene therapy: challenges and potential solutions.

    PubMed

    Masat, Elisa; Pavani, Giulia; Mingozzi, Federico

    2013-06-01

    Gene transfer trials with adeno-associated virus (AAV) vectors have initiated to unveil the therapeutic potential of this approach, with some of the most exciting results coming from clinical studies of gene transfer for hemophilia B, congenital blindness, and the recent market approval of the first AAV-based gene therapy in Europe. With clinical development, however, some of the limitations of in vivo gene transfer have emerged; in particular the host immune system represents an important obstacle to be overcome in terms of both safety and efficacy of gene transfer in vivo with AAV vectors. Results in humans undergoing gene transfer indicate that capsid-specific T cell responses directed against transduced cells may limit the duration of transgene expression following AAV gene transfer, and similarly anti-AAV neutralizing antibodies can completely prevent transduction of a target tissue, resulting in lack of efficacy. Anti-AAV neutralizing antibodies are highly prevalent in humans, and the frequency of subjects with detectable titers can reach up to two thirds of the population. The approach to the problem of preexisting humoral immunity to AAV so far has been the exclusion of seropositive subjects, but this solution is far from being optimal. Several additional strategies have been proposed and tested in a variety of preclinical animal models. Future studies will help defining the optimal strategy, or combination of strategies, to successfully treat subjects with preexisting antibodies to AAV due to natural infection or to prior administration of AAV vectors. These advancements will likely have a significant impact on the field of gene transfer with AAV vectors.

  17. Development of novel AAV serotype 6 based vectors with selective tropism for human cancer cells.

    PubMed

    Sayroo, R; Nolasco, D; Yin, Z; Colon-Cortes, Y; Pandya, M; Ling, C; Aslanidi, G

    2016-01-01

    Viral vectors-based gene therapy is an attractive alternative to common anti-cancer treatments. In the present studies, AAV serotype 6 vectors were identified to be particularly effective in the transduction of human prostate (PC3), breast (T47D) and liver (Huh7) cancer cells. Next, we developed chimeric AAV vectors with Arg-Gly-Asp (RGD) peptide incorporated into the viral capsid to enable specific targeting of integrin-overexpressing malignant cells. These AAV6-RGD vectors improved transduction efficiency approximately 3-fold compared with wild-type AAV6 vectors by enhancing the viral entry into the cells. We also observed that transduction efficiency significantly improved, up to approximately 5-fold, by the mutagenesis of surface-exposed tyrosine and threonine residues involved in the intracellular trafficking of AAV vectors. Therefore, in our study, the AAV6-Y705-731F+T492V vector was identified as the most efficient. The combination of RGD peptide, tyrosine and threonine mutations on the same AAV6 capsid further increased the transduction efficiency, approximately 8-fold in vitro. In addition, we mutated lysine (K531E) to impair the affinity of AAV6 vectors to heparan sulfate proteoglycan. Finally, we showed a significant increase in both specificity and efficiency of AAV6-RGD-Y705-731F+T492V+K531E vectors in a xenograft animal model in vivo. In summary, the approach described here can lead to the development of AAV vectors with selective tropism to human cancer cells.

  18. A repA-based ELISA for discriminating cattle vaccinated with Brucella suis 2 from those naturally infected with Brucella abortus and Brucella melitensis.

    PubMed

    Wang, Jing-Yu; Wu, Ning; Liu, Wan-Hua; Ren, Juan-Juan; Tang, Pan; Qiu, Yuan-Hao; Wang, Chi-Young; Chang, Ching-Dong; Liu, Hung-Jen

    2014-01-01

    The commonest ways of diagnosing brucellosis in animals include the Rose-Bengal plate agglutination test, the buffered plate agglutination test (BPA), the slide agglutination test, the complement fixation test, and the indirect enzyme linked immunosorbent assay (I-ELISA). However, these methods cannot discriminate the Brucella vaccine strain (Brucella suis strain 2; B. suis S2) from naturally acquired virulent strains. Of the six common Brucella species, Brucella melitensis, Brucella abortus, and B. suis are the commonest species occurring in China. To develop an ELISA assay that can differentiate between cows inoculated with B. suis S2 and naturally infected with B. abortus and B. melitensis, genomic sequences from six Brucella spp. (B. melitensis, B. abortus, B. suis, Brucella canis, Brucella neotomae and Brucella ovis) were compared using Basic Local Alignment Search Tool software. One particular gene, the repA-related gene, was found to be a marker that can differentiate B. suis from B. abortus and B. melitensis. The repA-related gene of B. suis was PCR amplified and subcloned into the pET-32a vector. Expressed repA-related protein was purified and used as an antigen. The repA-based ELISA was optimized and used as specific tests. In the present study, serum from animals inoculated with the B. suis S2 vaccine strain had positive repA-based ELISA results. In contrast, the test-positive reference sera against B. abortus and B. melitensis had negative repA-based ELISA results. The concordance rate between B. abortus antibody-negative (based on the repA-based ELISA) and the Brucella gene-positive (based on the 'Bruce ladder' multiplex PCR) was 100%. Therefore, the findings suggest that the repA-based ELISA is a useful tool for differentiating cows vaccinated with the B. suis S2 and naturally infected with B. abortus and B. melitensis.

  19. Potential of AAV vectors in the treatment of metabolic disease.

    PubMed

    Alexander, I E; Cunningham, S C; Logan, G J; Christodoulou, J

    2008-06-01

    Inborn errors of metabolism are collectively common, frequently severe and in many instances difficult or impossible to treat. Accordingly, there is a compelling need to explore novel therapeutic modalities, including gene therapy, and examine multiple phenotypes where the risks of experimental therapy are outweighed by potential benefits to trial participants. Among available gene delivery systems recombinant AAV shows special promise for the treatment of metabolic disease given the unprecedented efficiencies achieved in transducing key target tissues, such as liver and muscle, in small animal models. To date over 30 metabolic disease phenotypes have been investigated in small animal studies with complete phenotype correction being achieved in a substantial proportion. Achieving adequately widespread transduction within the central nervous system, however, remains a major challenge, and will be critical to realization of the therapeutic potential of gene therapy for many of the most clinically troubling metabolic disease phenotypes. Despite the relatively low immunogenicity of AAV vectors, immune responses are also emerging as a factor requiring special attention as efforts accelerate toward human clinical translation. Four metabolic disease phenotypes have reached phase I or I/II trials with one, targeting lipoprotein lipase deficiency, showing exciting early evidence of efficacy.

  20. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD.

    PubMed

    Wang, Jing-Zhang; Wu, Peng; Shi, Zhi-Min; Xu, Yan-Li; Liu, Zhi-Jun

    2017-04-05

    Mutations in the dystrophin gene (Dmd) result in Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD), which afflict many newborn boys. In 2016, Brain and Development published several interesting articles on DMD treatment with antisense oligonucleotide, kinase inhibitor, and prednisolone. Even more strikingly, three articles in the issue 6271 of Science in 2016 provide new insights into gene therapy of DMD and BMD via the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). In brief, adeno-associated virus (AAV) vectors transport guided RNAs (gRNAs) and Cas9 into mdx mouse model, gRNAs recognize the mutated Dmd exon 23 (having a stop codon), and Cas9 cut the mutated exon 23 off the Dmd gene. These manipulations restored expression of truncated but partially functional dystrophin, improved skeletal and cardiac muscle function, and increased survival of mdx mice significantly. This review concisely summarized the related advancements and discussed their primary implications in the future gene therapy of DMD, including AAV-vector selection, gRNA designing, Cas9 optimization, dystrophin-restoration efficiency, administration routes, and systemic and long-term therapeutic efficacy. Future orientations, including off-target effects, safety concerns, immune responses, precision medicine, and Dmd-editing in the brain (potentially blocked by the blood-brain barrier) were also elucidated briefly. Collectively, the AAV-mediated and RNA-guided CRISPR/Cas9 system has major superiorities compared with traditional gene therapy, and might contribute to the treatment of DMD and BMD substantially in the near future.

  1. Preclinical dose-finding study with a liver-tropic, recombinant AAV-2/8 vector in the mouse model of galactosialidosis.

    PubMed

    Hu, Huimin; Gomero, Elida; Bonten, Erik; Gray, John T; Allay, Jim; Wu, Yanan; Wu, Jianrong; Calabrese, Christopher; Nienhuis, Arthur; d'Azzo, Alessandra

    2012-02-01

    Galactosialidosis (GS) is a lysosomal storage disease linked to deficiency of the protective protein/cathepsin A (PPCA). Similarly to GS patients, Ppca-null mice develop a systemic disease of the reticuloendothelial system, affecting most visceral organs and the nervous system. Symptoms include severe nephropathy, visceromegaly, infertility, progressive ataxia, and shortened life span. Here, we have conducted a preclinical, dose-finding study on a large cohort of GS mice injected intravenously at 1 month of age with increasing doses of a GMP-grade rAAV2/8 vector, expressing PPCA under the control of a liver-specific promoter. Treated mice, monitored for 16 weeks post-treatment, had normal physical appearance and behavior without discernable side effects. Despite the restricted expression of the transgene in the liver, immunohistochemical and biochemical analyses of other systemic organs, serum, and urine showed a dose-dependent, widespread correction of the disease phenotype, suggestive of a protein-mediated mechanism of cross-correction. A notable finding was that rAAV-treated GS mice showed high expression of PPCA in the reproductive organs, which resulted in reversal of their infertility. Together these results support the use of this rAAV-PPCA vector as a viable and safe method of gene delivery for the treatment of systemic disease in non-neuropathic GS patients.

  2. Neutralizing Antibodies Against AAV Serotypes 1, 2, 6, and 9 in Sera of Commonly Used Animal Models

    PubMed Central

    Rapti, Kleopatra; Louis-Jeune, Vedell; Kohlbrenner, Erik; Ishikawa, Kiyotake; Ladage, Dennis; Zolotukhin, Sergei; Hajjar, Roger J; Weber, Thomas

    2012-01-01

    Adeno-associated virus (AAV)-based vectors are promising gene delivery vehicles for human gene transfer. One significant obstacle to AAV-based gene therapy is the high prevalence of neutralizing antibodies in humans. Until now, it was thought that, except for nonhuman primates, pre-existing neutralizing antibodies are not a problem in small or large animal models for gene therapy. Here, we demonstrate that sera of several animal models of cardiovascular diseases harbor pre-existing antibodies against the cardiotropic AAV serotypes AAV1, AAV6, and AAV9 and against AAV2. The neutralizing antibody titers vary widely both between species and between serotypes. Of all species tested, rats displayed the lowest levels of neutralizing antibodies. Surprisingly, naive mice obtained directly from commercial vendors harbored neutralizing antibodies. Of the large animal models tested, the neutralization of AAV6 transduction by dog sera was especially pronounced. Sera of sheep and rabbits showed modest neutralization of AAV transduction whereas porcine sera strongly inhibited transduction by all AAV serotypes and displayed the largest variation between individual animals. Importantly, neutralizing antibody titers as low as 1/4 completely prevented in vivo transduction by AAV9 in rats. Our results suggest that prescreening of animals for neutralizing antibodies will be important for future gene transfer experiments in these animal models. PMID:21915102

  3. Systemic gene transfer reveals distinctive muscle transduction profile of tyrosine mutant AAV-1, -6, and -9 in neonatal dogs.

    PubMed

    Hakim, Chady H; Yue, Yongping; Shin, Jin-Hong; Williams, Regina R; Zhang, Keqing; Smith, Bruce F; Duan, Dongsheng

    2014-03-05

    The muscular dystrophies are a group of devastating genetic disorders that affect both skeletal and cardiac muscle. An effective gene therapy for these diseases requires bodywide muscle delivery. Tyrosine mutant adeno-associated virus (AAV) has been considered as a class of highly potent gene transfer vectors. Here, we tested the hypothesis that systemic delivery of tyrosine mutant AAV can result in bodywide muscle transduction in newborn dogs. Three tyrosine mutant AAV vectors (Y445F/Y731F AAV-1, Y445F AAV-6, and Y731F AAV-9) were evaluated. These vectors expressed the alkaline phosphatase reporter gene under transcriptional regulation of either the muscle-specific Spc5-12 promoter or the ubiquitous Rous sarcoma virus promoter. Robust skeletal and cardiac muscle transduction was achieved with Y445F/Y731F AAV-1. However, Y731F AAV-9 only transduced skeletal muscle. Surprisingly, Y445F AAV-6 resulted in minimal muscle transduction. Serological study suggests that the preexisting neutralization antibody may underlie the limited transduction of Y445F AAV-6. In summary, we have identified Y445F/Y731F AAV-1 as a potentially excellent systemic gene transfer vehicle to target both skeletal muscle and the heart in neonatal puppies. Our findings have important implications in exploring systemic neonatal gene therapy in canine models of muscular dystrophy.

  4. Gene therapy for retinitis pigmentosa and Leber congenital amaurosis caused by defects in AIPL1: effective rescue of mouse models of partial and complete Aipl1 deficiency using AAV2/2 and AAV2/8 vectors

    PubMed Central

    Tan, Mei Hong; Smith, Alexander J.; Pawlyk, Basil; Xu, Xiaoyun; Liu, Xiaoqing; Bainbridge, James B.; Basche, Mark; McIntosh, Jenny; Tran, Hoai Viet; Nathwani, Amit; Li, Tiansen; Ali, Robin R.

    2009-01-01

    Defects in the photoreceptor-specific gene encoding aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) are clinically heterogeneous and present as Leber Congenital Amaurosis, the severest form of early-onset retinal dystrophy and milder forms of retinal dystrophies such as juvenile retinitis pigmentosa and dominant cone-rod dystrophy. [Perrault, I., Rozet, J.M., Gerber, S., Ghazi, I., Leowski, C., Ducroq, D., Souied, E., Dufier, J.L., Munnich, A. and Kaplan, J. (1999) Leber congenital amaurosis. Mol. Genet. Metab., 68, 200–208.] Although not yet fully elucidated, AIPL1 is likely to function as a specialized chaperone for rod phosphodiesterase (PDE). We evaluate whether AAV-mediated gene replacement therapy is able to improve photoreceptor function and survival in retinal degeneration associated with AIPL1 defects. We used two mouse models of AIPL1 deficiency simulating three different rates of photoreceptor degeneration. The Aipl1 hypomorphic (h/h) mouse has reduced Aipl1 levels and a relatively slow degeneration. Under light acceleration, the rate of degeneration in the Aipl1 h/h mouse is increased by 2–3-fold. The Aipl1−/− mouse has no functional Aipl1 and has a very rapid retinal degeneration. To treat the different rates of degeneration, two pseudotypes of recombinant adeno-associated virus (AAV) exhibiting different transduction kinetics are used for gene transfer. We demonstrate restoration of cellular function and preservation of photoreceptor cells and retinal function in Aipl1 h/h mice following gene replacement therapy using an AAV2/2 vector and in the light accelerated Aipl1 h/h model and Aipl1−/− mice using an AAV2/8 vector. We have thus established the potential of gene replacement therapy in varying rates of degeneration that reflect the clinical spectrum of disease. This is the first gene replacement study to report long-term rescue of a photoreceptor-specific defect and to demonstrate effective rescue of a rapid photoreceptor

  5. The MRI contrast agent gadoteridol enhances distribution of rAAV1 in the rat hippocampus.

    PubMed

    Hullinger, R; Ugalde, J; Purón-Sierra, L; Osting, S; Burger, C

    2013-12-01

    Contrast agents are commonly used in combination with magnetic resonance imaging (MRI) to monitor the distribution of molecules in the brain. Recent experiments conducted in our laboratory have shown that co-infusion of recombinant Adeno-associated virus serotype 5 (rAAV5) and the MRI contrast agent gadoteridol (Gd) enhances vector transduction in the rat striatum. The goal of this study was to determine whether gadoteridol may also be used as a tool to enhance transduction efficiency of rAAV1 and rAAV5 within the rat hippocampus. We show that Gd/rAAV1-GFP but not Gd/rAAV5-GFP co-infusion results in significantly higher distribution of the transgene both in the injected hemisphere as well as in the contralateral side and adjacent areas of cortex along the injection track. We also show that Gd/rAAV1-GFP co-infusion has no deleterious effect on hippocampal function as assessed by two tests of spatial memory formation. This work indicates that Gd can be exploited as a method to increase transduction efficiency of AAV1 in the hippocampus for animal studies.

  6. U.S. Rep. Bill Nelson of Florida during medical tests at JSC's Clinic

    NASA Technical Reports Server (NTRS)

    1985-01-01

    U.S. Rep. Bill Nelson of Florida during medical tests at JSC's Clinic. Photos include Rep. Nelson talking to Sharon Briceno (center) and Betty Lord before the tests begin. The congressman's torso bears a number of sensors for the testing (40835); Portrait view of Rep. Nelson with sensors attached to his chest (40836); Rep. Nelson gets some assistance from nurses at the clinic as he prepares to participate in medical tests. Help is provided by Betty Lord, right, and Sharon Briceno (40837); Rep. Nelson is being assisted to don 'halo' device for tests (40838); Rep. Nelson runs in place on a treadmill device (40839).

  7. Systemic Correction of Murine Glycogen Storage Disease Type IV by an AAV-Mediated Gene Therapy.

    PubMed

    Yi, Haiqing; Zhang, Quan; Brooks, Elizabeth D; Yang, Chunyu; Thurberg, Beth L; Kishnani, Priya S; Sun, Baodong

    2016-11-10

    Deficiency of glycogen branching enzyme (GBE) causes glycogen storage disease type IV (GSD IV), which is characterized by the accumulation of a less branched, poorly soluble form of glycogen called polyglucosan (PG) in multiple tissues. This study evaluates the efficacy of gene therapy with an adeno-associated viral (AAV) vector in a mouse model of adult form of GSD IV (Gbe1(ys/ys)). An AAV serotype 9 (AAV9) vector containing a human GBE expression cassette (AAV-GBE) was intravenously injected into 14-day-old Gbe1(ys/ys) mice at a dose of 5 × 10(11) vector genomes per mouse. Mice were euthanized at 3 and 9 months of age. In the AAV-treated mice at 3 months of age, GBE enzyme activity was highly elevated in heart, which is consistent with the high copy number of the viral vector genome detected. GBE activity also increased significantly in skeletal muscles and the brain, but not in the liver. The glycogen content was reduced to wild-type levels in muscles and significantly reduced in the liver and brain. At 9 months of age, though GBE activity was only significantly elevated in the heart, glycogen levels were significantly reduced in the liver, brain, and skeletal muscles of the AAV-treated mice. In addition, the AAV treatment resulted in an overall decrease in plasma activities of alanine transaminase, aspartate transaminase, and creatine kinase, and a significant increase in fasting plasma glucose concentration at 9 months of age. This suggests an alleviation of damage and improvement of function in the liver and muscles by the AAV treatment. This study demonstrated a long-term benefit of a systemic injection of an AAV-GBE vector in Gbe1(ys/ys) mice.

  8. Outer Plexiform Layer Structures Are Not Altered Following AAV-Mediated Gene Transfer in Healthy Rat Retina

    PubMed Central

    Giers, Bert C.; Klein, Daniela; Mendes-Madeira, Alexandra; Isiegas, Carolina; Lorenz, Birgit; Haverkamp, Silke; Stieger, Knut

    2017-01-01

    Ocular gene therapy approaches have been developed for a variety of different diseases. In particular, clinical gene therapy trials for RPE65 mutations, X-linked retinoschisis, and choroideremia have been conducted at different centers in recent years, showing that adeno-associated virus (AAV)-mediated gene therapy is safe, but limitations exist as to the therapeutic benefit and long-term duration of the treatment. The technique of vector delivery to retinal cells relies on subretinal injection of the vector solution, causing a transient retinal detachment. Although retinal detachments are known to cause remodeling of retinal neuronal structures as well as significant cell loss, the possible effects of this short-term therapeutic retinal detachment on retinal structure and circuitry have not yet been studied in detail. In this study, retinal morphology and apoptotic status were examined in healthy rat retinas following AAV-mediated gene transfer via subretinal injection with AAV2/5.CMV.d2GFP or sham injection with fluorescein. Outer plexiform layer (OPL) morphology was assessed by immunohistochemical labeling, laser scanning confocal microscopy, and electron microscopy. The number of synaptic contacts in the OPL was quantified after labeling with structural markers. To assess the apoptotic status, inflammatory and pro-apoptotic markers were tested and TUNEL assay for the detection of apoptotic nuclei was performed. Pre- and postsynaptic structures in the OPL, such as synaptic ribbons or horizontal and bipolar cell processes, did not differ in size or shape in injected versus non-injected areas and control retinas. Absolute numbers of synaptic ribbons were not altered. No signs of relevant gliosis were detected. TUNEL labeling of retinal cells did not vary between injected and non-injected areas, and apoptosis-inducing factor was not delocalized to the nucleus in transduced areas. The neuronal circuits in the OPL of healthy rat retinas undergoing AAV-mediated gene

  9. Outer Plexiform Layer Structures Are Not Altered Following AAV-Mediated Gene Transfer in Healthy Rat Retina.

    PubMed

    Giers, Bert C; Klein, Daniela; Mendes-Madeira, Alexandra; Isiegas, Carolina; Lorenz, Birgit; Haverkamp, Silke; Stieger, Knut

    2017-01-01

    Ocular gene therapy approaches have been developed for a variety of different diseases. In particular, clinical gene therapy trials for RPE65 mutations, X-linked retinoschisis, and choroideremia have been conducted at different centers in recent years, showing that adeno-associated virus (AAV)-mediated gene therapy is safe, but limitations exist as to the therapeutic benefit and long-term duration of the treatment. The technique of vector delivery to retinal cells relies on subretinal injection of the vector solution, causing a transient retinal detachment. Although retinal detachments are known to cause remodeling of retinal neuronal structures as well as significant cell loss, the possible effects of this short-term therapeutic retinal detachment on retinal structure and circuitry have not yet been studied in detail. In this study, retinal morphology and apoptotic status were examined in healthy rat retinas following AAV-mediated gene transfer via subretinal injection with AAV2/5.CMV.d2GFP or sham injection with fluorescein. Outer plexiform layer (OPL) morphology was assessed by immunohistochemical labeling, laser scanning confocal microscopy, and electron microscopy. The number of synaptic contacts in the OPL was quantified after labeling with structural markers. To assess the apoptotic status, inflammatory and pro-apoptotic markers were tested and TUNEL assay for the detection of apoptotic nuclei was performed. Pre- and postsynaptic structures in the OPL, such as synaptic ribbons or horizontal and bipolar cell processes, did not differ in size or shape in injected versus non-injected areas and control retinas. Absolute numbers of synaptic ribbons were not altered. No signs of relevant gliosis were detected. TUNEL labeling of retinal cells did not vary between injected and non-injected areas, and apoptosis-inducing factor was not delocalized to the nucleus in transduced areas. The neuronal circuits in the OPL of healthy rat retinas undergoing AAV-mediated gene

  10. Systematic Evaluation of AAV Vectors for Liver directed Gene Transfer in Murine Models

    PubMed Central

    Wang, Lili; Wang, Huan; Bell, Peter; McCarter, Robert J; He, Jianping; Calcedo, Roberto; Vandenberghe, Luk H; Morizono, Hiroki; Batshaw, Mark L; Wilson, James M

    2009-01-01

    Vectors based on adeno-associated viruses (AAVs) are being evaluated for use in liver-directed gene therapy. Candidates have been preselected on the basis of capsid structure that plays an important role in determining performance profiles. We describe a comprehensive and statistically powered set of mouse studies designed to compare the performance of vectors based on seven novel AAV capsids. The key criteria used to select candidates for successful gene therapy are high level and stable transgene expression in the absence of toxicity. Based on these criteria, the best performing vectors, AAV8, AAVhu.37, and AAVrh.8, will be further evaluated in nonhuman primates (NHPs). PMID:19861950

  11. Cloning and characterization of Rep-8 (D8S2298E) in the human chromosome 8p11.2-p12

    SciTech Connect

    Yamabe, Yukako; Ichikawa, Koji; Sugawara, Kahori

    1997-01-15

    A novel human gene referred to as the Rep-8 gene (D8S2298E) was cloned by a combination of exon trapping, thermal asymmetric interlaced-PCR, and screening of a cDNA library. It is located in human chromosome 8p.11.2-p12. The gene consists of eight exons and spans about 20 kb between the glutathione S-reductase and the protein phosphatase 2A beta subunit genes. The full-length Rep-8 gene contains 1483 nucleotides and codes for a protein of 270 amino acids. Southern blot experiments showed that the Rep-8 gene exists as a single copy per haploid. With a zoo blot analysis, human Rep-8 DNA hybridized strongly with the monkey DNA, but only weakly with the DNAs of species other than Homo sapiens. Northern blot analysis showed that it is expressed abundantly in the testis and ovary, suggesting that the Rep-8 gene product may play a role in reproduction. 16 refs., 5 figs., 1 tab.

  12. Decreasing disease severity in symptomatic, Smn(-/-);SMN2(+/+), spinal muscular atrophy mice following scAAV9-SMN delivery.

    PubMed

    Glascock, Jacqueline J; Osman, Erkan Y; Wetz, Mary J; Krogman, Megan M; Shababi, Monir; Lorson, Christian L

    2012-03-01

    Spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disorder, is the leading genetic cause of infant mortality. SMA is caused by the homozygous loss of Survival Motor Neuron-1 (SMN1). In humans, a nearly identical copy gene is present, SMN2. SMN2 is retained in all SMA patients and encodes the same protein as SMN1. However, SMN1 and SMN2 differ by a silent C-to-T transition at the 5' end of exon 7, causing alternative splicing of SMN2 transcripts and low levels of full-length SMN. SMA is monogenic and therefore well suited for gene-replacement strategies. Recently, self-complementary adeno-associated virus (scAAV) vectors have been used to deliver the SMN cDNA to an animal model of disease, the SMNΔ7 mouse. In this study, we examine a severe model of SMA, Smn(-/-);SMN2(+/+), to determine whether gene replacement is viable in a model in which disease development begins in utero. Using two delivery paradigms, intracerebroventricular injections and intravenous injections, we delivered scAAV9-SMN and demonstrated a two to four fold increase in survival, in addition to improving many of the phenotypic parameters of the model. This represents the longest extension in survival for this severe model for any therapeutic intervention and suggests that postsymptomatic treatment of SMA may lead to significant improvement of disease severity.

  13. TGF-β gene transfer and overexpression via rAAV vectors stimulates chondrogenic events in human bone marrow aspirates.

    PubMed

    Frisch, Janina; Rey-Rico, Ana; Venkatesan, Jagadeesh Kumar; Schmitt, Gertrud; Madry, Henning; Cucchiarini, Magali

    2016-03-01

    Genetic modification of marrow concentrates may provide convenient approaches to enhance the chondrogenic differentiation processes and improve the repair capacities in sites of cartilage defects following administration in the lesions. Here, we provided clinically adapted recombinant adeno-associated virus (rAAV) vectors to human bone marrow aspirates to promote the expression of the potent transforming growth factor beta (TGF-β) as a means to regulate the biological and chondrogenic activities in the samples in vitro. Successful TGF-β gene transfer and expression via rAAV was reached relative to control (lacZ) treatment (from 511.1 to 16.1 pg rhTGF-β/mg total proteins after 21 days), allowing to durably enhance the levels of cell proliferation, matrix synthesis, and chondrogenic differentiation. Strikingly, in the conditions applied here, application of the candidate TGF-β vector was also capable of reducing the hypertrophic and osteogenic differentiation processes in the aspirates, showing the potential benefits of using this particular vector to directly modify marrow concentrates to generate single-step, effective approaches that aim at improving articular cartilage repair in vivo.

  14. Replication-specific conversion of the Staphylococcus aureus pT181 initiator protein from an active homodimer to an inactive heterodimer.

    PubMed Central

    Rasooly, A; Wang, P Z; Novick, R P

    1994-01-01

    The Staphylococcus aureus rolling circle plasmid pT181 regulates its replication by controlling the synthesis of its initiator protein RepC. RepC is inactivated during pT181 replication by the addition of an oligodeoxynucleotide, giving rise to a new form, RepC*. We analyzed RepC and RepC* in four classes of mutants: plasmid copy number mutants, two classes of RepC mutants affecting different portions of the protein and oriC (origin) mutants. We have found that in the cell with wild-type RepC there are similar relative amounts of RepC and RepC*, regardless of copy number, and that the conversion of RepC to RepC* is replication dependent. Genetic and biochemical evidence is presented that RepC functions as a dimer and that during replication the RepC homodimer is converted to the RepC/RepC* heterodimer. Images PMID:7957090

  15. Local and systemic responses following intravitreous injection of AAV2-encoded modified Volvox channelrhodopsin-1 in a genetically blind rat model.

    PubMed

    Sugano, E; Tabata, K; Takahashi, M; Nishiyama, F; Shimizu, H; Sato, M; Tamai, M; Tomita, H

    2016-02-01

    We previously designed a modified channelrhodopsin-1 (mVChR1) protein chimera with a broader action than that of Chlamydomonas channelrhodopsin-2 and reported that its transduction into retinal ganglion cells can restore visual function in genetically blind, dystrophic Royal College of Surgeons (RCS) rats, with photostimuli ranging from 486 to 640 nm. In the current study, we sought to investigate the safety and influence of mVChR1 transgene expression. Adeno-associated virus type 2 encoding mVChR1 was administered by intravitreous injection into dystrophic RCS rats. Reverse-transcription PCR was used to monitor virus and transgene dissemination and the results demonstrated that their expression was restricted specifically within the eye tissues, and not in non-target organs. Moreover, examination of the blood, plasma and serum revealed that no excess immunoreactivity was present, as determined using standard clinical hematological parameters. Serum antibodies targeting the recombinant adeno-associated virus (rAAV) capsid increased after the injection; however, no increase in mVChR1 antibody was detected during the observation period. In addition, retinal histological examination showed no signs of inflammation in rAAV-injected rats. In conclusion, our results demonstrate that mVChR1 can be exogenously expressed without harmful immunological reactions in vivo. These findings will aid in studies of AAV gene transfer to restore vision in late-stage retinitis pigmentosa.

  16. rAAV8-733-Mediated Gene Transfer of CHIP/Stub-1 Prevents Hippocampal Neuronal Death in Experimental Brain Ischemia.

    PubMed

    Cabral-Miranda, Felipe; Nicoloso-Simões, Elisa; Adão-Novaes, Juliana; Chiodo, Vince; Hauswirth, William W; Linden, Rafael; Chiarini, Luciana Barreto; Petrs-Silva, Hilda

    2017-02-01

    Brain ischemia is a major cause of adult disability and death, and it represents a worldwide health problem with significant economic burden for modern society. The identification of the molecular pathways activated after brain ischemia, together with efficient technologies of gene delivery to the CNS, may lead to novel treatments based on gene therapy. Recombinant adeno-associated virus (rAAV) is an effective platform for gene transfer to the CNS. Here, we used a serotype 8 rAAV bearing the Y733F mutation (rAAV8-733) to overexpress co-chaperone E3 ligase CHIP (also known as Stub-1) in rat hippocampal neurons, both in an oxygen and glucose deprivation model in vitro and in a four-vessel occlusion model of ischemia in vivo. We show that CHIP overexpression prevented neuronal degeneration in both cases and led to a decrease of both eIF2α (serine 51) and AKT (serine 473) phosphorylation, as well as reduced amounts of ubiquitinated proteins following hypoxia or ischemia. These data add to current knowledge of ischemia-related signaling in the brain and suggest that gene therapy based on the role of CHIP in proteostasis may provide a new venue for brain ischemia treatment.

  17. Efficacy and biodistribution analysis of intracerebroventricular administration of an optimized scAAV9-SMN1 vector in a mouse model of spinal muscular atrophy.

    PubMed

    Armbruster, Nicole; Lattanzi, Annalisa; Jeavons, Matthieu; Van Wittenberghe, Laetitia; Gjata, Bernard; Marais, Thibaut; Martin, Samia; Vignaud, Alban; Voit, Thomas; Mavilio, Fulvio; Barkats, Martine; Buj-Bello, Ana

    2016-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disease of variable severity caused by mutations in the SMN1 gene. Deficiency of the ubiquitous SMN function results in spinal cord α-motor neuron degeneration and proximal muscle weakness. Gene replacement therapy with recombinant adeno-associated viral (AAV) vectors showed therapeutic efficacy in several animal models of SMA. Here, we report a study aimed at analyzing the efficacy and biodistribution of a serotype-9, self-complementary AAV vector expressing a codon-optimized human SMN1 coding sequence (coSMN1) under the control of the constitutive phosphoglycerate kinase (PGK) promoter in neonatal SMNΔ7 mice, a severe animal model of the disease. We administered the scAAV9-coSMN1 vector in the intracerebroventricular (ICV) space in a dose-escalating mode, and analyzed survival, vector biodistribution and SMN protein expression in the spinal cord and peripheral tissues. All treated mice showed a significant, dose-dependent rescue of lifespan and growth with a median survival of 346 days. Additional administration of vector by an intravenous route (ICV+IV) did not improve survival, and vector biodistribution analysis 90 days postinjection indicated that diffusion from the cerebrospinal fluid to the periphery was sufficient to rescue the SMA phenotype. These results support the preclinical development of SMN1 gene therapy by CSF vector delivery.

  18. Targeted gene transfer into ependymal cells through intraventricular injection of AAV1 vector and long-term enzyme replacement via the CSF.

    PubMed

    Yamazaki, Yoshiyuki; Hirai, Yukihiko; Miyake, Koichi; Shimada, Takashi

    2014-07-01

    Enzyme replacement via the cerebrospinal fluid (CSF) has been shown to ameliorate neurological symptoms in model animals with neuropathic metabolic disorders. Gene therapy via the CSF offers a means to achieve a long-term sustainable supply of therapeutic proteins within the central nervous system (CNS) by setting up a continuous source of transgenic products. In the present study, a serotype 1 adeno-associated virus (AAV1) vector was injected into a lateral cerebral ventricle in adult mice to transduce the gene encoding human lysosomal enzyme arylsulfatase A (hASA) into the cells of the CNS. Widespread transduction and stable expression of hASA in the choroid plexus and ependymal cells was observed throughout the ventricles for more than 1 year after vector injection. Although humoral immunity to hASA developed after 6 weeks, which diminished the hASA levels detected in CSF from AAV1-injected mice, hASA levels in CSF were maintained for at least 12 weeks when the mice were tolerized to hASA prior of vector injection. Our results suggest that the cells lining the ventricles could potentially serve as a biological reservoir for long-term continuous secretion of lysosomal enzymes into the CSF following intracerebroventricular injection of an AAV1 vector.

  19. Codon and mRNA sequence optimization of microdystrophin transgenes improves expression and physiological outcome in dystrophic mdx mice following AAV2/8 gene transfer.

    PubMed

    Foster, Helen; Sharp, Paul S; Athanasopoulos, Takis; Trollet, Capucine; Graham, Ian R; Foster, Keith; Wells, Dominic J; Dickson, George

    2008-11-01

    Duchenne muscular dystrophy is a fatal muscle-wasting disorder. Lack of dystrophin compromises the integrity of the sarcolemma and results in myofibers that are highly prone to contraction-induced injury. Recombinant adeno-associated virus (rAAV)-mediated dystrophin gene transfer strategies to muscle for the treatment of Duchenne muscular dystrophy (DMD) have been limited by the small cloning capacity of rAAV vectors and high titers necessary to achieve efficient systemic gene transfer. In this study, we assess the impact of codon optimization on microdystrophin (DeltaAB/R3-R18/DeltaCT) expression and function in the mdx mouse and compare the function of two different configurations of codon-optimized microdystrophin genes (DeltaAB/R3-R18/DeltaCT and DeltaR4-R23/DeltaCT) under the control of a muscle-restrictive promoter (Spc5-12). Codon optimization of microdystrophin significantly increases levels of microdystrophin mRNA and protein after intramuscular and systemic administration of plasmid DNA or rAAV2/8. Physiological assessment demonstrates that codon optimization of DeltaAB/R3-R18/DeltaCT results in significant improvement in specific force, but does not improve resistance to eccentric contractions compared with noncodon-optimized DeltaAB/R3-R18/DeltaCT. However, codon-optimized microdystrophin DeltaR4-R23/DeltaCT completely restored specific force generation and provided substantial protection from contraction-induced injury. These results demonstrate that codon optimization of microdystrophin under the control of a muscle-specific promoter can significantly improve expression levels such that reduced titers of rAAV vectors will be required for efficient systemic administration.

  20. Robust Cardiomyocyte-Specific Gene Expression Following Systemic Injection of AAV: In Vivo Gene Delivery Follows a Poisson Distribution

    PubMed Central

    Prasad, Konkal-Matt R.; Xu, Yaqin; Yang, Zequan; Acton, Scott T.; French, Brent A

    2010-01-01

    Newly-isolated serotypes of AAV readily cross the endothelial barrier to provide efficient transgene delivery throughout the body. However, tissue-specific expression is preferred in most experimental studies and gene therapy protocols. Previous efforts to restrict gene expression to the myocardium often relied on direct injection into heart muscle or intracoronary perfusion. Here, we report an AAV vector system employing the cardiac troponin T promoter (cTnT). Using luciferase and eGFP, the efficiency and specificity of cardiac reporter gene expression using AAV serotype capsids: AAV-1, 2, 6, 8 or 9 were tested after systemic administration to 1 week old mice. Luciferase assays showed that the cTnT promoter worked in combination with each of the AAV serotype capsids to provide cardiomyocyte-specific gene expression, but AAV-9 followed closely by AAV-8 was the most efficient. AAV9-mediated gene expression from the cTnT promoter was 640-fold greater in the heart compared to the next highest tissue (liver). eGFP fluorescence indicated a transduction efficiency of 96% using AAV-9 at a dose of only 3.15×1010 viral particles per mouse. Moreover, the intensity of cardiomyocyte eGFP fluorescence measured on a cell-by-cell basis revealed that AAV-mediated gene expression in the heart can be modeled as a Poisson distribution; requiring an average of nearly two vector genomes per cell to attain an 85% transduction efficiency. PMID:20703310

  1. Gene Therapy for Mucopolysaccharidosis Type VI Is Effective in Cats Without Pre-Existing Immunity to AAV8

    PubMed Central

    Ferla, Rita; O'Malley, Thomas; Calcedo, Roberto; O'Donnell, Patricia; Wang, Ping; Cotugno, Gabriella; Claudiani, Pamela; Wilson, James M.; Haskins, Mark

    2013-01-01

    Abstract Liver gene transfer with adeno-associated viral (AAV) 2/8 vectors is being considered for therapy of systemic diseases like mucopolysaccharidosis type VI (MPS VI), a lysosomal storage disease due to deficiency of arylsulfatase B (ARSB). We have previously reported that liver gene transfer with AAV2/8 results in sustained yet variable expression of ARSB. We hypothesized that the variability we observed could be due to pre-existing immunity to wild-type AAV8. To test this, we compared the levels of AAV2/8-mediated transduction in MPS VI cats with and without pre-existing immunity to AAV8. In addition, since levels of lysosomal enzymes as low as 5% of normal are expected to be therapeutic, we evaluated the impact of pre-existing immunity on MPS VI phenotypic rescue. AAV2/8 administration to MPS VI cats without pre-existing neutralizing antibodies to AAV8 resulted in consistent and dose-dependent expression of ARSB, urinary glycosaminoglycan (GAG) reduction, and femur length amelioration. Conversely, animals with pre-existing immunity to AAV8 showed low levels of ARSB expression and limited phenotypic improvement. Our data support the use of AAV2/8-mediated gene transfer for MPS VI and other systemic diseases, and highlight that pre-existing immunity to AAV8 should be considered in determining subject eligibility for therapy. PMID:23194248

  2. A multi-functional AAV-CRISPR-Cas9 and its host response

    PubMed Central

    Chew, Wei Leong; Tabebordbar, Mohammadsharif; Cheng, Jason K.W.; Mali, Prashant; Wu, Elizabeth Y.; Ng, Alex H.M.; Zhu, Kexian; Wagers, Amy J.; Church, George M.

    2017-01-01

    CRISPR-Cas9 delivery by AAV holds promise for gene therapy but faces critical barriers due to its potential immunogenicity and limited payload capacity. Here, we demonstrate genome engineering in postnatal mice using AAV-split-Cas9, a multi-functional platform customizable for genome-editing, transcriptional regulation, and other previously impracticable AAV-CRISPR-Cas9 applications. We identify crucial parameters that impact efficacy and clinical translation of our platform, including viral biodistribution, editing efficiencies in various organs, antigenicity, immunological reactions, and physiological outcomes. These results reveal that AAV-CRISPR-Cas9 evokes host responses with distinct cellular and molecular signatures, but unlike alternative delivery methods, does not induce extensive cellular damage in vivo. Our study provides a foundation for developing effective genome therapeutics. PMID:27595405

  3. A 5' Noncoding Exon Containing Engineered Intron Enhances Transgene Expression from Recombinant AAV Vectors in vivo.

    PubMed

    Lu, Jiamiao; Williams, James A; Luke, Jeremy; Zhang, Feijie; Chu, Kirk; Kay, Mark A

    2017-01-01

    We previously developed a mini-intronic plasmid (MIP) expression system in which the essential bacterial elements for plasmid replication and selection are placed within an engineered intron contained within a universal 5' UTR noncoding exon. Like minicircle DNA plasmids (devoid of bacterial backbone sequences), MIP plasmids overcome transcriptional silencing of the transgene. However, in addition MIP plasmids increase transgene expression by 2 and often >10 times higher than minicircle vectors in vivo and in vitro. Based on these findings, we examined the effects of the MIP intronic sequences in a recombinant adeno-associated virus (AAV) vector system. Recombinant AAV vectors containing an intron with a bacterial replication origin and bacterial selectable marker increased transgene expression by 40 to 100 times in vivo when compared with conventional AAV vectors. Therefore, inclusion of this noncoding exon/intron sequence upstream of the coding region can substantially enhance AAV-mediated gene expression in vivo.

  4. Plectin-1 Targeted AAV Vector for the Molecular Imaging of Pancreatic Cancer.

    PubMed

    Konkalmatt, Prasad R; Deng, Defeng; Thomas, Stephanie; Wu, Michael T; Logsdon, Craig D; French, Brent A; Kelly, Kimberly A

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is highly malignant disease that is the fourth leading cause of cancer-related death in the US. Gene therapy using AAV vectors to selectively deliver genes to PDAC cells is an attractive treatment option for pancreatic cancer. However, most AAV serotypes display a broad spectrum of tissue tropism and none of the existing serotypes specifically target PDAC cells. This study tests the hypothesis that AAV2 can be genetically re-engineered to specifically target PDAC cells by modifying the capsid surface to display a peptide that has previously been shown to bind plectin-1. Toward this end, a Plectin-1 Targeting Peptide (PTP) was inserted into the loop IV region of the AAV2 capsid, and the resulting capsid (AAV-PTP) was used in a series of in vitro and in vivo experiments. In vitro, AAV-PTP was found to target all five human PDAC cell lines tested (PANC-1, MIA PaCa-2, HPAC, MPanc-96, and BxPC-3) preferentially over two non-neoplastic human pancreatic cell lines (human pancreatic ductal epithelial and human pancreatic stellate cells). In vivo, mice bearing subcutaneous tumor xenografts were generated using the PANC-1 cell line. Once tumors reached a size of ∼1-2 mm in diameter, the mice were injected intravenously with luciferase reporter vectors packaged in the either AAV-PTP or wild type AAV2 capsids. Luciferase expression was then monitored by bioluminescence imaging on days 3, 7, and 14 after vector injection. The results indicate that the AAV-PTP capsid displays a 37-fold preference for PANC-1 tumor xenographs over liver and other tissues; whereas the wild type AAV2 capsid displays a complementary preference for liver over tumors and other tissues. Together, these results establish proof-of-principle for the ability of PTP-modified AAV capsids to selectively target gene delivery to PDAC cells in vivo, which opens promising new avenues for the early detection, diagnosis, and treatment of pancreatic cancer.

  5. Adeno-Associated Virus (AAV) Mediated Dystrophin Gene Transfer Studies and Exon Skipping Strategies for Duchenne Muscular Dystrophy (DMD).

    PubMed

    Kawecka, Klaudia; Theodoulides, Michael; Hasoglu, Yalin; Jarmin, Susan; Kymalainen, Hanna; Le-Heron, Anita; Popplewell, Linda; Malerba, Alberto; Dickson, George; Athanasopoulos, Takis

    2015-01-01

    Duchenne muscular dystrophy (DMD), an X-linked inherited musclewasting disease primarily affecting young boys with prevalence of between1:3,500- 1:5,000, is a rare genetic disease caused by defects in the gene for dystrophin. Dystrophin protein is critical to the stability of myofibers in skeletal and cardiac muscle. There is currently no cure available to ameliorate DMD and/or its patho-physiology. A number of therapeutic strategies including molecular-based therapeutics that replace or correct the missing or nonfunctional dystrophin protein have been devised to correct the patho-physiological consequences induced by dystrophin absence. We will review the current in vivo experimentation status (including preclinical models and clinical trials) for two of these approaches, namely: 1) Adeno-associated virus (AAV) mediated (micro) dystrophin gene augmentation/ supplementation and 2) Antisense oligonucleotide (AON)-mediated exon skipping strategies.

  6. AAV vector-mediated reversal of hypoglycemia in canine and murine glycogen storage disease type Ia.

    PubMed

    Koeberl, Dwight D; Pinto, Carlos; Sun, Baodong; Li, Songtao; Kozink, Daniel M; Benjamin, Daniel K; Demaster, Amanda K; Kruse, Meghan A; Vaughn, Valerie; Hillman, Steven; Bird, Andrew; Jackson, Mark; Brown, Talmage; Kishnani, Priya S; Chen, Yuan-Tsong

    2008-04-01

    Glycogen storage disease type Ia (GSD-Ia) profoundly impairs glucose release by the liver due to glucose-6-phosphatase (G6Pase) deficiency. An adeno-associated virus (AAV) containing a small human G6Pase transgene was pseudotyped with AAV8 (AAV2/8) to optimize liver tropism. Survival was prolonged in 2-week-old G6Pase (-/-) mice by 600-fold fewer AAV2/8 vector particles (vp), in comparison to previous experiments involving this model (2 x 10(9) vp; 3 x 10(11) vp/kg). When the vector was pseudotyped with AAV1, survival was prolonged only at a higher dose (3 x 10(13) vp/kg). The AAV2/8 vector uniquely prevented hypoglycemia during fasting and fully corrected liver G6Pase deficiency in GSD-Ia mice and dogs. The AAV2/8 vector has prolonged survival in three GSD-Ia dogs to >11 months, which validated this strategy in the large animal model for GSD-Ia. Urinary biomarkers, including lactate and 3-hydroxybutyrate, were corrected by G6Pase expression solely in the liver. Glycogen accumulation in the liver was reduced almost to the normal level in vector-treated GSD-Ia mice and dogs, as was the hepatocyte growth factor (HGF) in GSD-Ia mice. These preclinical data demonstrated the efficacy of correcting hepatic G6Pase deficiency, and support the further preclinical development of AAV vector-mediated gene therapy for GSD-Ia.

  7. Glymphatic fluid transport controls paravascular clearance of AAV vectors from the brain

    PubMed Central

    Murlidharan, Giridhar; Crowther, Andrew; Reardon, Rebecca A.; Song, Juan

    2016-01-01

    Adeno-associated viruses (AAV) are currently being evaluated in clinical trials for gene therapy of CNS disorders. However, host factors that influence the spread, clearance, and transduction efficiency of AAV vectors in the brain are not well understood. Recent studies have demonstrated that fluid flow mediated by aquaporin-4 (AQP4) channels located on astroglial end feet is essential for exchange of solutes between interstitial and cerebrospinal fluid. This phenomenon, which is essential for interstitial clearance of solutes from the CNS, has been termed glial-associated lymphatic transport or glymphatic transport. In the current study, we demonstrate that glymphatic transport profoundly affects various aspects of AAV gene transfer in the CNS. Altered localization of AQP4 in aged mouse brains correlated with significantly increased retention of AAV vectors in the parenchyma and reduced systemic leakage following ventricular administration. We observed a similar increase in AAV retention and transgene expression upon i.c.v. administration in AQP4–/– mice. Consistent with this observation, fluorophore-labeled AAV vectors showed markedly reduced flux from the ventricles of AQP4–/– mice compared with WT mice. These results were further corroborated by reduced AAV clearance from the AQP4-null brain, as demonstrated by reduced transgene expression and vector genome accumulation in systemic organs. We postulate that deregulation of glymphatic transport in aged and diseased brains could markedly affect the parenchymal spread, clearance, and gene transfer efficiency of AAV vectors. Assessment of biomarkers that report the kinetics of CSF flux in prospective gene therapy patients might inform variable treatment outcomes and guide future clinical trial design. PMID:27699236

  8. Glymphatic fluid transport controls paravascular clearance of AAV vectors from the brain.

    PubMed

    Murlidharan, Giridhar; Crowther, Andrew; Reardon, Rebecca A; Song, Juan; Asokan, Aravind

    2016-09-08

    Adeno-associated viruses (AAV) are currently being evaluated in clinical trials for gene therapy of CNS disorders. However, host factors that influence the spread, clearance, and transduction efficiency of AAV vectors in the brain are not well understood. Recent studies have demonstrated that fluid flow mediated by aquaporin-4 (AQP4) channels located on astroglial end feet is essential for exchange of solutes between interstitial and cerebrospinal fluid. This phenomenon, which is essential for interstitial clearance of solutes from the CNS, has been termed glial-associated lymphatic transport or glymphatic transport. In the current study, we demonstrate that glymphatic transport profoundly affects various aspects of AAV gene transfer in the CNS. Altered localization of AQP4 in aged mouse brains correlated with significantly increased retention of AAV vectors in the parenchyma and reduced systemic leakage following ventricular administration. We observed a similar increase in AAV retention and transgene expression upon i.c.v. administration in AQP4(-/-) mice. Consistent with this observation, fluorophore-labeled AAV vectors showed markedly reduced flux from the ventricles of AQP4(-/-) mice compared with WT mice. These results were further corroborated by reduced AAV clearance from the AQP4-null brain, as demonstrated by reduced transgene expression and vector genome accumulation in systemic organs. We postulate that deregulation of glymphatic transport in aged and diseased brains could markedly affect the parenchymal spread, clearance, and gene transfer efficiency of AAV vectors. Assessment of biomarkers that report the kinetics of CSF flux in prospective gene therapy patients might inform variable treatment outcomes and guide future clinical trial design.

  9. Intramuscular administration of AAV overcomes pre-existing neutralizing antibodies in rhesus macaques.

    PubMed

    Greig, Jenny A; Calcedo, Roberto; Grant, Rebecca L; Peng, Hui; Medina-Jaszek, C Angelica; Ahonkhai, Omua; Qin, Qiuyue; Roy, Soumitra; Tretiakova, Anna P; Wilson, James M

    2016-12-07

    The seroprevalence of neutralizing antibodies (NAbs) to adeno-associated viral (AAV) vector capsids may preclude a percentage of the population from receiving gene therapy, particularly following systemic vector administration. We hypothesized that the use of intramuscular (IM) administration of AAV vectors might circumvent this issue. IM injections were used to administer AAV8 vectors expressing either secreted or non-secreted transgenes into mice and the influence of NAbs supplied by pre-administration of pooled human IgG on transgene expression was evaluated. We then studied the impact of naturally occurring pre-existing AAV8 NAbs on expression of a secreted transgene following IM vector delivery in rhesus macaques. Finally, we evaluated the ability to readminister AAV vectors via IM injections in rhesus macaques. In mice, the presence of AAV8 NAbs had no effect on gene expression in the injected skeletal muscle. However, liver transgene expression following hepatic distribution of the vector was ablated. In rhesus macaques, naturally occurring pre-existing AAV8 NAb titers of ⩽1:160 had no effect on expression levels of a secreted transgene after IM delivery of the vector. Additionally, readministration of AAV vectors was possible by IM injection into the previously injected muscle groups, with no effect on transgene expression by the original vector. Therefore, the presence of pre-existing NAbs in the human population should not preclude subjects from receiving gene therapy by IM administration of the vector so long as sufficient levels of secreted transgene expression can be produced without the involvement of liver.

  10. CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes

    PubMed Central

    Steines, Benjamin; Dickey, David D.; Bergen, Jamie; Excoffon, Katherine J.D.A.; Weinstein, John R.; Li, Xiaopeng; Yan, Ziying; Abou Alaiwa, Mahmoud H.; Shah, Viral S.; Bouzek, Drake C.; Powers, Linda S.; Gansemer, Nicholas D.; Ostedgaard, Lynda S.; Engelhardt, John F.; Stoltz, David A.; Welsh, Michael J.; Sinn, Patrick L.; Schaffer, David V.

    2016-01-01

    The physiological components that contribute to cystic fibrosis (CF) lung disease are steadily being elucidated. Gene therapy could potentially correct these defects. CFTR-null pigs provide a relevant model to test gene therapy vectors. Using an in vivo selection strategy that amplifies successful capsids by replicating their genomes with helper adenovirus coinfection, we selected an adeno-associated virus (AAV) with tropism for pig airway epithelia. The evolved capsid, termed AAV2H22, is based on AAV2 with 5 point mutations that result in a 240-fold increased infection efficiency. In contrast to AAV2, AAV2H22 binds specifically to pig airway epithelia and is less reliant on heparan sulfate for transduction. We administer AAV2H22-CFTR expressing the CF transmembrane conductance regulator (CFTR) cDNA to the airways of CF pigs. The transduced airways expressed CFTR on ciliated and nonciliated cells, induced anion transport, and improved the airway surface liquid pH and bacterial killing. Most gene therapy studies to date focus solely on Cl– transport as the primary metric of phenotypic correction. Here, we describe a gene therapy experiment where we not only correct defective anion transport, but also restore bacterial killing in CFTR-null pig airways. PMID:27699238

  11. Triptolide T10 enhances AAV-mediated gene transfer in mice striatum.

    PubMed

    Ren, Xinmiao; Zhang, Ting; Hu, Jing; Ding, Wei; Wang, Xiaomin

    2010-08-02

    Adeno-associated virus (AAV) mediated gene transfer has been demonstrated to be an effective approach for treating Parkinson's disease (PD). Triptolide T10 is a monomeric compound isolated from tripterygium wilfordii Hook.f. (Thunder God vine), a traditional Chinese herb for anti-inflammatory medications. In the present study, we co-administered T10 with recombinant AAV2 in SH-SY5Y human neuroblastoma cells and in the striatum of C57BL/6 mice, and then evaluated the AAV-mediated gene expression levels. The results have shown that T10 significantly augmented the expression of AAV-mediated gene in a dose-dependent fashion without detectable cytotoxicity. As growing evidence indicated that inflammation contributed to the progression of PD, and the anti-inflammatory effect of T10 was shown in our previous studies, our data of T10 to enhance AAV transduction suggest that T10 might be potentially used as a facilitating reagent for the AAV gene therapy applications in neurodegenerative diseases.

  12. Recombinant AAV-directed gene therapy for type I glycogen storage diseases

    PubMed Central

    Chou, JY; Mansfield, BC

    2011-01-01

    Introduction Glycogen storage disease (GSD) type Ia and Ib are disorders of impaired glucose homeostasis affecting the liver and kidney. GSD-Ib also affects neutrophils. Current dietary therapies cannot prevent long-term complications. In animal studies, recombinant adeno-associated virus (rAAV) vector-mediated gene therapy can correct or minimize multiple aspects of the disorders, offering hope for human gene therapy. Areas covered A summary of recent progress in rAAV-mediated gene therapy for GSD-I; strategies to improve rAAV-mediated gene delivery, transduction efficiency and immune avoidance; and vector refinements that improve expression. Expert opinion rAAV-mediated gene delivery to the liver can restore glucose homeostasis in preclinical models of GSD-I, but some long-term complications of the liver and kidney remain. Gene therapy for GSD-Ib is less advanced than for GSD-Ia and only transient correction of myeloid dysfunction has been achieved. A question remains whether a single rAAV vector can meet the expression efficiency and tropism required to treat all aspects of GSD-I, or if a multi-prong approach is needed. An understanding of the strengths and weaknesses of rAAV vectors in the context of strategies to achieve efficient transduction of the liver, kidney, and hematopoietic stem cells is required for treating GSD-I. PMID:21504389

  13. AAV-mediated delivery of optogenetic constructs to the macaque brain triggers humoral immune responses.

    PubMed

    Mendoza, Skyler D; El-Shamayleh, Yasmine; Horwitz, Gregory D

    2017-02-15

    Gene delivery to the primate central nervous system via recombinant adeno-associated viral vectors (AAV) allows neurophysiologists to control and observe neural activity precisely. A current limitation of this approach is variability in vector transduction efficiency. Low levels of transduction can foil experimental manipulations, prompting vector readministration. The ability to make multiple vector injections into the same animal, even in cases where successful vector transduction has already been achieved, is also desirable. However, vector readministration has consequences for humoral immunity and gene delivery that depend on vector dosage and route of administration in complex ways. As part of optogenetic experiments in rhesus monkeys, we analyzed blood sera collected before and after AAV injections into the brain and quantified neutralizing antibodies to AAV using an in vitro assay. We found that injections of AAV1 and AAV9 vectors elevated neutralizing antibody titers consistently. These immune responses were specific to the serotype injected and were long lasting. These results demonstrate that optogenetic manipulations in monkeys trigger immune responses to AAV capsids, suggesting that vector readministration may have a higher likelihood of success by avoiding serotypes injected previously.

  14. Locally Targeted Cardiac Gene Delivery by AAV Microbubble Destruction in a Large Animal Model.

    PubMed

    Schlegel, Philipp; Huditz, Regina; Meinhardt, Eric; Rapti, Kleopatra; Geis, Nicolas; Most, Patrick; Katus, Hugo A; Müller, Oliver J; Bekeredjian, Raffi; Raake, Philip W

    2016-04-01

    Cardiac gene therapy is a promising approach for treating heart diseases. Although clinical studies are ongoing, effective and targeted transgene delivery is still a major obstacle. We sought to improve and direct transgene expression in myocardium by ultrasound-targeted microbubble destruction (UTMD). In pigs, adeno-associated virus-derived (AAV) vectors harboring the luciferase reporter gene were delivered via retroinfusion into the anterior interventricular coronary vein (AIV). AAV vectors were either loaded to lipid microbubbles before injection or injected unmodified. Upon injection of AAV/microbubble solution, UTMD was performed. After 4 weeks, reporter gene expression levels in the anterior wall (target area), in the posterior wall (control area), and in noncardiac organs were analyzed. Retroinfusion of AAV-luciferase vectors loaded to lipid microbubbles led to a significant increase in transgene expression, with an increase in UTMD targeted areas of the anterior wall. Moreover, off-target expression was reduced in comparison to control animals, receiving AAV-luciferase without microbubbles. Besides an increase in overall target area transgene expression, UTMD alters the spatial expression of the luciferase transgene, focusing expression to ultrasound-targeted left ventricular wall. These data suggest UTMD as a promising approach for directing AAV to specific cardiac segments.

  15. Genome-wide RNAi screening identifies host restriction factors critical for in vivo AAV transduction.

    PubMed

    Mano, Miguel; Ippodrino, Rudy; Zentilin, Lorena; Zacchigna, Serena; Giacca, Mauro

    2015-09-08

    Viral vectors based on the adeno-associated virus (AAV) hold great promise for in vivo gene transfer; several unknowns, however, still limit the vectors' broader and more efficient application. Here, we report the results of a high-throughput, whole-genome siRNA screening aimed at identifying cellular factors regulating AAV transduction. We identified 1,483 genes affecting vector efficiency more than 4-fold and up to 50-fold, either negatively or positively. Most of these factors have not previously been associated to AAV infection. The most effective siRNAs were independent from the virus serotype or analyzed cell type and were equally evident for single-stranded and self-complementary AAV vectors. A common characteristic of the most effective siRNAs was the induction of cellular DNA damage and activation of a cell cycle checkpoint. This information can be exploited for the development of more efficient AAV-based gene delivery procedures. Administration of the most effective siRNAs identified by the screening to the liver significantly improved in vivo AAV transduction efficiency.

  16. A simplified purification method for AAV variant by polyethylene glycol aqueous two-phase partitioning.

    PubMed

    Guo, Ping; Xiao, Xiangwei; El-Gohary, Yousef; Paredes, Jose; Prasadan, Krishna; Shiota, Chiyo; Wiersch, John; Welsh, Carey; Gittes, George K

    2013-01-01

    Adeno-Associated Virus (AAV) has been widely used for in vivo study and preclinical therapy due to its ability to mediate long-term transgene expression, its lack of pathogenicity and low immunogenicity. It has been found that AAV has more than ten serotypes, which each transfect certain types of cells in the viral infected organ. Current methods for purification of different AAV serotypes utilize CsCl or Iodixanol ultrahigh speed density gradient centrifugation, which is expensive and time consuming. We recently developed a simplified method, PEG/(NH(4))(2)SO(4) aqueous two phase partitioning, for purification of AAV serotype 2 and 8. The method does not require ultrahigh speed gradient centrifugation or chromatography. Here we further explore the simplified method for purification of other serotypes of AAV, serotype 6 and 9. This simplified method not only can be used to purify serotype 2 and 8, but also serotype 6 and 9, indicating that a variety of AAV serotypes can be purified by this method.

  17. AAV8-mediated hepatic gene transfer in infant rhesus monkeys (Macaca mulatta).

    PubMed

    Wang, Lili; Bell, Peter; Lin, Jianping; Calcedo, Roberto; Tarantal, Alice F; Wilson, James M

    2011-11-01

    Many genetic metabolic diseases manifest in infancy, therefore, it is important to develop effective treatments that could be implemented at this time. Adeno-associated virus serotype 8 (AAV8) gene transfer has been studied in neonatal mouse, cat, and dog models and shown some efficacy with a single hepatic injection at birth. AAV8-mediated liver gene transfer has also generated sustained therapeutic effects in feline and canine models of lysosomal storage disorders. In these models, delaying the age of vector treatment increased gene transfer stability. The growth rate of infant nonhuman primates is more similar to the growth trajectory of humans, thus infant monkeys provide an excellent model to study AAV gene transfer efficiency, stability, and safety. In this study, we report for the first time that AAV8-mediated hepatic gene transfer in infant monkeys is safe and efficient but less stable when compared to adolescent animals. Infant monkeys administered AAV8 intravenously at 1 week postnatal age achieved up to 98% transduction of hepatocytes within 7 days of injection; however, there was significant dilution of genomes and loss of transgene expression 35 days postadministration. Delaying the injection to 1 month postnatal age did not improve stability of transduction but decreased the antibody response to AAV8 capsid.

  18. Rapidly expanding genetic diversity and host range of the Circoviridae viral family and other Rep encoding small circular ssDNA genomes

    PubMed Central

    Delwart, Eric; Li, Linlin

    2011-01-01

    The genomes of numerous circoviruses and distantly related circular DNA viruses encoding a rolling circle replication initiator protein (Rep) have been characterized from the tissues of mammals, fish, insects, and plants (geminivirus and nanovirus), human and animal feces, in an algae cell, and in diverse environmental samples. We review the genome organization, phylogenetic relationships and initial prevalence studies of cycloviruses, a proposed new genus in the Circoviridae family. Viral fossil rep sequences were also identified integrated on the chromosomes of mammals, frogs, lancelets, crustaceans, mites, gastropods, roundworms, placozoans, hydrozoans, protozoans, land plants, fungi, algae, and phytoplasma bacterias and their plasmids, reflecting their past host range. An ancient origin for viruses with rep-encoding single stranded small circular genomes, predating the diversification of eukaryotes, is discussed. The cellular hosts and pathogenicity of many recently described rep-containing circular genomes remain to be determined. Future studies of the virome of single cell and multi-cellular eukaryotes are likely to further extend the known diversity and host-range of small rep-containing circular viral genomes. PMID:22155583

  19. CNS-restricted Transduction and CRISPR/Cas9-mediated Gene Deletion with an Engineered AAV Vector

    PubMed Central

    Murlidharan, Giridhar; Sakamoto, Kensuke; Rao, Lavanya; Corriher, Travis; Wang, Dan; Gao, Guangping; Sullivan, Patrick; Asokan, Aravind

    2016-01-01

    Gene therapy using recombinant adeno-associated viral (AAV) vectors is emerging as a promising approach to treat central nervous system disorders such as Spinal muscular atrophy, Batten, Parkinson and Alzheimer disease amongst others. A critical remaining challenge for central nervous system-targeted gene therapy, silencing or gene editing is to limit potential vector dose-related toxicity in off-target cells and organs. Here, we characterize a lab-derived AAV chimeric (AAV2g9), which displays favorable central nervous system attributes derived from both parental counterparts, AAV2 and AAV9. This synthetic AAV strain displays preferential, robust, and widespread neuronal transduction within the brain and decreased glial tropism. Importantly, we observed minimal systemic leakage, decreased sequestration and gene transfer in off-target organs with AAV2g9, when administered into the cerebrospinal fluid. A single intracranial injection of AAV2g9 vectors encoding guide RNAs targeting the schizophrenia risk gene MIR137 (encoding MIR137) in CRISPR/Cas9 knockin mice resulted in brain-specific gene deletion with no detectable events in the liver. This engineered AAV vector is a promising platform for treating neurological disorders through gene therapy, silencing or editing modalities. PMID:27434683

  20. AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease.

    PubMed

    Kells, Adrian P; Fong, Dahna M; Dragunow, Mike; During, Matthew J; Young, Deborah; Connor, Bronwen

    2004-05-01

    Huntington disease (HD) is a neurodegenerative disorder that results in the progressive loss of GABAergic medium spiny projection neurons in the striatum. Neurotrophic factors have demonstrated neuroprotective actions on striatal neurons, suggesting that increased neurotrophic factor expression may prevent or reduce neuronal loss in the HD brain. We investigated whether enhanced expression of brain-derived neurotrophic factor (BDNF) or glial cell line-derived neurotrophic factor (GDNF), achieved by adeno-associated viral (AAV) vector-mediated gene delivery, could protect striatal neurons in the quinolinic acid (QA) rodent model of HD. Adult Wistar rats received unilateral intrastriatal injections of AAV-BDNF, AAV-GDNF, AAV-GFP, or PBS. Three weeks later, the rats were lesioned with QA, a toxin that induces striatal neuron death by an excitotoxic process. Both AAV-BDNF and AAV-GDNF significantly reduced the loss of both NeuN- and calbindin-immunopositive striatal neurons 2 weeks after lesion compared to controls. AAV-BDNF also provided significant neurotrophic support to NOS-immunopositive striatal interneurons, while AAV-GDNF-treated rats demonstrated significant protection of parvalbumin-immunopositive striatal interneurons compared to controls. These results indicate that AAV-mediated gene transfer of BDNF or GDNF into the striatum provides neuronal protection in a rodent model of HD.

  1. A concept of eliminating nonhomologous recombination for scalable and safe AAV vector generation for human gene therapy.

    PubMed

    Dong, Biao; Moore, Andrea R; Dai, Jihong; Roberts, Sean; Chu, Kirk; Kapranov, Philipp; Moss, Bernard; Xiao, Weidong

    2013-07-01

    Scalable and efficient production of high-quality recombinant adeno-associated virus (rAAV) for gene therapy remains a challenge despite recent clinical successes. We developed a new strategy for scalable and efficient rAAV production by sequestering the AAV helper genes and the rAAV vector DNA in two different subcellular compartments, made possible by using cytoplasmic vaccinia virus as a carrier for the AAV helper genes. For the first time, the contamination of replication-competent AAV particles (rcAAV) can be completely eliminated in theory by avoiding ubiquitous nonhomologous recombination. Vector DNA can be integrated into the host genomes or delivered by a nuclear targeting vector such as adenovirus. In suspension HeLa cells, the achieved vector yield per cell is similar to that from traditional triple-plasmid transfection method. The rcAAV contamination was undetectable at the limit of our assay. Furthermore, this new concept can be used not only for production of rAAV, but also for other DNA vectors.

  2. In Vivo Selection Yields AAV-B1 Capsid for Central Nervous System and Muscle Gene Therapy.

    PubMed

    Choudhury, Sourav R; Fitzpatrick, Zachary; Harris, Anne F; Maitland, Stacy A; Ferreira, Jennifer S; Zhang, Yuanfan; Ma, Shan; Sharma, Rohit B; Gray-Edwards, Heather L; Johnson, Jacob A; Johnson, Aime K; Alonso, Laura C; Punzo, Claudio; Wagner, Kathryn R; Maguire, Casey A; Kotin, Robert M; Martin, Douglas R; Sena-Esteves, Miguel

    2016-08-01

    Adeno-associated viral (AAV) vectors have shown promise as a platform for gene therapy of neurological disorders. Achieving global gene delivery to the central nervous system (CNS) is key for development of effective therapies for many of these diseases. Here we report the isolation of a novel CNS tropic AAV capsid, AAV-B1, after a single round of in vivo selection from an AAV capsid library. Systemic injection of AAV-B1 vector in adult mice and cat resulted in widespread gene transfer throughout the CNS with transduction of multiple neuronal subpopulations. In addition, AAV-B1 transduces muscle, β-cells, pulmonary alveoli, and retinal vasculature at high efficiency. This vector is more efficient than AAV9 for gene delivery to mouse brain, spinal cord, muscle, pancreas, and lung. Together with reduced sensitivity to neutralization by antibodies in pooled human sera, the broad transduction profile of AAV-B1 represents an important improvement over AAV9 for CNS gene therapy.

  3. A microRNA embedded AAV alpha-synuclein gene silencing vector for dopaminergic neurons

    PubMed Central

    Han, Ye; Khodr, Christina E.; Sapru, Mohan K.; Pedapati, Jyothi; Bohn, Martha C.

    2011-01-01

    Alpha-synuclein (SNCA), an abundantly expressed presynaptic protein, is implicated in Parkinson disease (PD). Since over-expression of human SNCA (hSNCA) leads to death of dopaminergic (DA) neurons in human, rodent and fly brain, hSNCA gene silencing may reduce levels of toxic forms of SNCA and ameliorate degeneration of DA neurons in PD. To begin to develop a gene therapy for PD based on hSNCA gene silencing, two AAV gene silencing vectors were designed, and tested for efficiency and specificity of silencing, as well as toxicity in vitro. The same hSNCA silencing sequence (shRNA) was used in both vectors, but in one vector, the shRNA was embedded in a microRNA backbone and driven by a pol II promoter, and in the other the shRNA was not embedded in a microRNA and was driven by a pol III promoter. Both vectors silenced hSNCA to the same extent in 293T cells transfected with hSNCA. In DA PC12 cells, neither vector decreased expression of rat SNCA, tyrosine hydroxylase (TH), dopamine transporter (DAT) or the vesicular monoamine transporter (VMAT). However, the mir30 embedded vector was significantly less toxic to both PC12 and SH-SY5Y cells. Our in vitro data suggest that this miRNA-embedded silencing vector may be ideal for chronic in vivo SNCA gene silencing in DA neurons. PMID:21338582

  4. Characterization of human herpesvirus 6A/B U94 as ATPase, helicase, exonuclease and DNA-binding proteins

    PubMed Central

    Trempe, Frédéric; Gravel, Annie; Dubuc, Isabelle; Wallaschek, Nina; Collin, Vanessa; Gilbert-Girard, Shella; Morissette, Guillaume; Kaufer, Benedikt B.; Flamand, Louis

    2015-01-01

    Human herpesvirus-6A (HHV-6A) and HHV-6B integrate their genomes into the telomeres of human chromosomes, however, the mechanisms leading to integration remain unknown. HHV-6A/B encode a protein that has been proposed to be involved in integration termed U94, an ortholog of adeno-associated virus type 2 (AAV-2) Rep68 integrase. In this report, we addressed whether purified recombinant maltose-binding protein (MBP)-U94 fusion proteins of HHV-6A/B possess biological functions compatible with viral integration. We could demonstrate that MBP-U94 efficiently binds both dsDNA and ssDNA containing telomeric repeats using gel shift assay and surface plasmon resonance. MBP-U94 is also able to hydrolyze adenosine triphosphate (ATP) to ADP, providing the energy for further catalytic activities. In addition, U94 displays a 3′ to 5′ exonuclease activity on dsDNA with a preference for 3′-recessed ends. Once the DNA strand reaches 8–10 nt in length, the enzyme dissociates it from the complementary strand. Lastly, MBP-U94 compromises the integrity of a synthetic telomeric D-loop through exonuclease attack at the 3′ end of the invading strand. The preferential DNA binding of MBP-U94 to telomeric sequences, its ability to hydrolyze ATP and its exonuclease/helicase activities suggest that U94 possesses all functions required for HHV-6A/B chromosomal integration. PMID:25999342

  5. A leucine zipper motif determines different functions in a DNA replication protein.

    PubMed Central

    Garcia de Viedma, D; Giraldo, R; Rivas, G; Fernández-Tresguerres, E; Diaz-Orejas, R

    1996-01-01

    RepA is the replication initiator protein of the Pseudomonas plasmid pPS10 and is also able to autoregulate its own synthesis. Here we report a genetic and functional analysis of a leucine zipper-like (LZ) motif located at the N-terminus of RepA. It is shown that the LZ motif modulates the equilibrium between monomeric and dimeric forms of the protein and that monomers of RepA interact with sequences at the origin of replication, oriV, while dimers are required for interactions of RepA at the repA promoter. Further, different residues of the LZ motif are seen to have different functional roles. Leucines at the d positions of the putative alpha-helix are relevant in the formation of RepA dimers required for transcriptional autoregulation. They also modulate other RepA-RepA interactions that result in cooperative binding of protein monomers to the origin of replication. The residues at the b/f positions of the putative helix play no relevant role in RepA-RepA interactions. These residues do not affect RepA autoregulation but do influence replication, as demonstrated by mutants that, without affecting binding to oriV, either increase the host range of the plasmid or are inactive in replication. It is proposed that residues in b/f positions play a relevant role in interactions between RepA and host replication factors. Images PMID:8631313

  6. Pre-Clinical Assessment of Immune Responses to Adeno-Associated Virus (AAV) Vectors.

    PubMed

    Basner-Tschakarjan, Etiena; Bijjiga, Enoch; Martino, Ashley T

    2014-01-01

    Transitioning to human trials from pre-clinical models resulted in the emergence of inhibitory AAV vector immune responses which has become a hurdle for sustained correction. Early animal studies did not predict the full range of host immunity to the AAV vector in human studies. While pre-existing antibody titers against AAV vectors has been a lingering concern, cytotoxic T-cell (CTL) responses against the input capsid can prevent long-term therapy in humans. These discoveries spawned more thorough profiling of immune response to rAAV in pre-clinical models, which have assessed both innate and adaptive immunity and explored methods for bypassing these responses. Many efforts toward measuring innate immunity have utilized Toll-like receptor deficient models and have focused on differential responses to viral capsid and genome. From adaptive studies, it is clear that humoral responses are relevant for initial vector transduction efficiency while cellular responses impact long-term outcomes of gene transfer. Measuring humoral responses to AAV vectors has utilized in vitro neutralizing antibody assays and transfer of seropositive serum to immunodeficient mice. Overcoming antibodies using CD20 inhibitors, plasmapheresis, altering route of delivery and using different capsids have been explored. CTL responses were measured using in vitro and in vivo models. In in vitro assays expansion of antigen-specific T-cells as well as cytotoxicity toward AAV transduced cells can be shown. Many groups have successfully mimicked antigen-specific T-cell proliferation, but actual transgene level reduction and parameters of cytotoxicity toward transduced target cells have only been shown in one model. The model utilized adoptive transfer of capsid-specific in vitro expanded T-cells isolated from immunized mice with LPS as an adjuvant. Finally, the development of immune tolerance to AAV vectors by enriching regulatory T-cells as well as modulating the response pharmacologically has also

  7. Cell-Mediated Immunity to AAV Vectors, Evolving Concepts and Potential Solutions.

    PubMed

    Basner-Tschakarjan, Etiena; Mingozzi, Federico

    2014-01-01

    Adeno-associated virus (AAV) vectors are one of the most efficient in vivo gene delivery platforms. Over the past decade, clinical trials of AAV vector-mediated gene transfer led to some of the most exciting results in the field of gene therapy and, recently, to the market approval of an AAV-based drug in Europe. With clinical development, however, it became obvious that the host immune system represents an important obstacle to successful gene transfer with AAV vectors. In this review article, we will discuss the issue of cytotoxic T cell responses directed against the AAV capsid encountered on human studies. While over the past several years the field has acquired a tremendous amount of information on the interactions of AAV vectors with the immune system, a lot of questions are still unanswered. Novel concepts are emerging, such as the relationship between the total capsid dose and the T cell-mediated clearance of transduced cells, the potential role of innate immunity in vector immunogenicity highlighted in preclinical studies, and the cross talk between regulatory and effector T cells in the determination of the outcome of gene transfer. There is still a lot to learn about immune responses in AAV gene transfer, for example, it is not well understood what are the determinants of the kinetics of activation of T cells in response to vector administration, why not all subjects develop detrimental T cell responses following gene transfer, and whether the intervention strategies currently in use to block T cell-mediated clearance of transduced cells will be safe and effective for all gene therapy indications. Results from novel preclinical models and clinical studies will help to address these points and to reach the important goal of developing safe and effective gene therapy protocols to treat human diseases.

  8. Conversations with Rep. Ken Calvert. Interview by Frank Sietzen Jr.

    PubMed

    Calvert, Ken

    2005-07-01

    Rep. Calvert, chair of the House aeronautics and space subcommittee of the Science Committee, answers questions related to priorities for space in the current congressional session: the Vision for Space Exploration, development of the Crew Exploration Vehicle (CEV) and other heavy-lift launch vehicles, entrepreneurial alliances in the space transportation industry, the U.S. aerospace industry, space tourism, entrepreneurs and NASA, U.S. aeronautics research, a service mission to the Hubble Space Telescope, and priority military space programs.

  9. AAV micro-dystrophin gene therapy alleviates stress-induced cardiac death but not myocardial fibrosis in >21-m-old mdx mice, an end-stage model of Duchenne muscular dystrophy cardiomyopathy.

    PubMed

    Bostick, Brian; Shin, Jin-Hong; Yue, Yongping; Wasala, Nalinda B; Lai, Yi; Duan, Dongsheng

    2012-08-01

    Duchenne muscular dystrophy (DMD) is a fatal genetic disease caused by the absence of the sarcolemmal protein dystrophin. Dilated cardiomyopathy leading to heart failure is a significant source of morbidity and mortality in DMD. We recently demonstrated amelioration of DMD heart disease in 16 to 20-m-old dystrophin-null mdx mice using adeno-associated virus (AAV) mediated micro-dystrophin gene therapy. DMD patients show severe heart disease near the end of their life expectancy. Similarly, mdx mice exhibit profoundly worsening heart disease when they reach beyond 21 months of age. To more rigorously test micro-dystrophin therapy, we treated mdx mice that were between 21.2 and 22.7-m-old (average, 22.1 ± 0.2 months; N=8). The ∆R4-23/∆C micro-dystrophin gene was packaged in the cardiotropic AAV-9 virus. 5×10(12) viral genome particles/mouse were delivered to mdx mice via the tail vein. AAV transduction, myocardial fibrosis and heart function were examined 1.7 ± 0.2 months after gene therapy. Efficient micro-dystrophin expression was observed in the myocardium of treated mice. Despite the robust dystrophin expression, myocardial fibrosis was not mitigated. Most hemodynamic parameters were not improved either. However, ECG abnormalities were partially corrected. Importantly, treated mice became more resistant to dobutamine-induced cardiac death. In summary, we have revealed for the first time the potential benefits and limitations of AAV micro-dystrophin therapy in end-stage Duchenne dilated cardiomyopathy. Our findings have important implications for the use of AAV gene therapy in dilated cardiomyopathy and heart failure.

  10. AAV2-mediated CLN2 gene transfer to rodent and non-human primate brain results in long-term TPP-I expression compatible with therapy for LINCL.

    PubMed

    Sondhi, D; Peterson, D A; Giannaris, E L; Sanders, C T; Mendez, B S; De, B; Rostkowski, A B; Blanchard, B; Bjugstad, K; Sladek, J R; Redmond, D E; Leopold, P L; Kaminsky, S M; Hackett, N R; Crystal, R G

    2005-11-01

    Late infantile neuronal ceroid lipofuscinosis (LINCL) is a fatal, autosomal recessive disease resulting from mutations in the CLN2 gene with consequent deficiency in its product tripeptidyl peptidase I (TPP-I). In the central nervous system (CNS), the deficiency of TPP-I results in the accumulation of proteins in lysosomes leading to a loss of neurons causing progressive neurological decline, and death by ages 10-12 years. To establish the feasibility of treating the CNS manifestations of LINCL by gene transfer, an adeno-associated virus 2 (AAV2) vector encoding the human CLN2 cDNA (AAV2CUhCLN2) was assessed for its ability to establish therapeutic levels of TPP-I in the brain. In vitro studies demonstrated that AAV2CUhCLN2 expressed CLN2 and produced biologically active TPP-I protein of which a fraction was secreted as the pro-TPP-I precursor and was taken up by nontransduced cells (ie, cross-correction). Following AAV2-mediated CLN2 delivery to the rat striatum, enzymatically active TPP-I protein was detected. By immunohistochemistry TPP-I protein was detected in striatal neurons (encompassing nearly half of the target structure) for up to 18 months. At the longer time points following striatal administration, TPP-I-positive cell bodies were also observed in the substantia nigra, frontal cerebral cortex and thalamus of the injected hemisphere, and the frontal cerebral cortex of the noninjected hemisphere. These areas of the brain contain neurons that extend axons into the striatum, suggesting that CNS circuitry may aid the distribution of the gene product. To assess the feasibility of human CNS delivery, a total of 3.6 x 10(11) particle units of AAV2CUhCLN2 was administered to the CNS of African green monkeys in 12 distributed doses. Assessment at 5 and 13 weeks demonstrated widespread detection of TPP-I in neurons, but not glial cells, at all regions of injection. The distribution of TPP-I-positive cells was similar between the two time points at all injection

  11. The recombinant adeno-associated virus vector (rAAV2)-mediated apolipoprotein B mRNA-specific hammerhead ribozyme: a self-complementary AAV2 vector improves the gene expression

    PubMed Central

    Zhong, Shumei; Sun, Shihua; Teng, Ba-Bie

    2004-01-01

    Background In humans, overproduction of apolipoprotein B (apoB) is positively associated with premature coronary artery diseases. To reduce the levels of apoB mRNA, we have designed an apoB mRNA-specific hammerhead ribozyme targeted at nucleotide sequences GUA6679 (RB15) mediated by adenovirus, which efficiently cleaves and decreases apoB mRNA by 80% in mouse liver and attenuates the hyperlipidemic condition. In the current study, we used an adeno-associated virus vector, serotype 2 (AAV2) and a self-complementary AAV2 vector (scAAV2) to demonstrate the effect of long-term tissue-specific gene expression of RB15 on the regulation apoB mRNA in vivo. Methods We constructed a hammerhead ribozyme RB15 driven by a liver-specific transthyretin (TTR) promoter using an AAV2 vector (rAAV2-TTR-RB15). HepG2 cells and hyperlipidemic mice deficient in both the low density lipoprotein receptor and the apoB mRNA editing enzyme genes (LDLR-/-Apobec1-/-; LDb) were transduced with rAAV2-TTR-RB15 and a control vector rAAV-TTR-RB15-mutant (inactive ribozyme). The effects of ribozyme RB15 on apoB metabolism and atherosclerosis development were determined in LDb mice at 5-month after transduction. A self-complementary AAV2 vector expressing ribozyme RB15 (scAAV2-TTR-RB15) was also engineered and used to transduce HepG2 cells. Studies were designed to compare the gene expression efficiency between rAAV2-TTR-RB15 and scAAV2-TTR-RB15. Results The effect of ribozyme RB15 RNA on reducing apoB mRNA levels in HepG2 cells was observed only on day-7 after rAAV2-TTR-RB15 transduction. And, at 5-month after rAAV2-TTR-RB15 treatment, the apoB mRNA levels in LDb mice were significantly decreased by 43%, compared to LDb mice treated with control vector rAAV2-TTR-RB15-mutant. Moreover, both the rAAV2-TTR-RB15 viral DNA and ribozyme RB15 RNA were still detectable in mice livers at 5-month after treatment. However, this rAAV2-TTR-RB15 vector mediated a prolonged but low level of ribozyme RB15 gene

  12. Biodistribution and safety assessment of AAV2-GAD following intrasubthalamic injection in the rat

    PubMed Central

    Fitzsimons, Helen L.; Riban, Veronique; Bland, Ross J.; Wendelken, Jennifer L.; Sapan, Christine V.; During, Matthew J.

    2010-01-01

    Background The steps necessary to translate promising new biological therapies to the clinic are poorly documented. For gene therapy there are unique aspects that need to be addressed in biodistribution studies. Notably, spread of the vector beyond the intended target cells or tissue may result in persistent unwanted biological activity or unpredictable biological events, thus it is critical to evaluate risks associated with viral vector-mediated gene transfer prior to embarking on human clinical trials. Methods Here we present a rodent study comprising of a comprehensive assessment of vector biodistribution through the brain, blood and major organs of rats injected into the subthalamic nucleus with recombinant adeno-associated virus (AAV) expressing glutamic acid decarboxylase (GAD). In addition, behavioral and histological analyses were also performed. Results AAV genomes were not detected in blood or CSF, and did not disseminate to organs outside of the brain in the majority of animals. In the brain, an average 97.3% of AAV2-GAD genomes were restricted to the area of the ipsilateral STN. There were no discernable effects of AAV2-GAD on general health and behavioral assessment of the animals did not reveal any alteration in general behavior, exploration, locomotion or motor symmetry. Conclusions This study met FDA requirements, in addition to efficacy and toxicity studies in rodents and non-human primates, to support and supplement a Phase II clinical trial for gene transfer of AAV2-GAD to the human STN for the potential therapy of Parkinson’s disease. PMID:20352617

  13. Controlling AAV Tropism in the Nervous System with Natural and Engineered Capsids.

    PubMed

    Castle, Michael J; Turunen, Heikki T; Vandenberghe, Luk H; Wolfe, John H

    2016-01-01

    More than one hundred naturally occurring variants of adeno-associated virus (AAV) have been identified, and this library has been further expanded by an array of techniques for modification of the viral capsid. AAV capsid variants possess unique antigenic profiles and demonstrate distinct cellular tropisms driven by differences in receptor binding. AAV capsids can be chemically modified to alter tropism, can be produced as hybrid vectors that combine the properties of multiple serotypes, and can carry peptide insertions that introduce novel receptor-binding activity. Furthermore, directed evolution of shuffled genome libraries can identify engineered variants with unique properties, and rational modification of the viral capsid can alter tropism, reduce blockage by neutralizing antibodies, or enhance transduction efficiency. This large number of AAV variants and engineered capsids provides a varied toolkit for gene delivery to the CNS and retina, with specialized vectors available for many applications, but selecting a capsid variant from the array of available vectors can be difficult. This chapter describes the unique properties of a range of AAV variants and engineered capsids, and provides a guide for selecting the appropriate vector for specific applications in the CNS and retina.

  14. Intranasal Delivery of Recombinant NT4-NAP/AAV Exerts Potential Antidepressant Effect.

    PubMed

    Ma, Xian-Cang; Chu, Zheng; Zhang, Xiao-Ling; Jiang, Wen-Hui; Jia, Min; Dang, Yong-Hui; Gao, Cheng-Ge

    2016-06-01

    The present study was designed to construct a recombinant adeno-associated virus (rAAV) which can express NAP in the brain and examine whether this virus can produce antidepressant effects on C57 BL/6 mice that had been subjected to open field test and forced swimming test, via nose-to-brain pathway. When the recombinant plasmid pGEM-T Easy/NT4-NAP was digested by EcoRI, 297 bp fragments can be obtained and NT4-NAP sequence was consistent with the designed sequence confirmed by DNA sequencing. When the recombinant plasmid pSSCMV/NT4-NAP was digested by EcoRI, 297 bp fragments is visible. Immunohistochemical staining of fibroblasts revealed that expression of NAP was detected in NT4-NAP/AAV group. Intranasal delivery of NT4-NAP/AAV significantly reduced immobility time when the FST was performed after 1 day from the last administration. The effects observed in the FST could not be attributed to non-specific increases in activity since intranasal delivery of NT4-NAP/AAV did not alter the behavior of the mice during the open field test. The results indicated that a recombinant AAV vector which could express NAP in cells was successfully constructed and NAP may be a potential target for therapeutic action of antidepressant treatment.

  15. Adipose tissue insulin receptor knockdown via a new primate-derived hybrid recombinant AAV serotype

    PubMed Central

    Liu, Xianglan; Magee, Daniel; Wang, Chuansong; McMurphy, Travis; Slater, Andrew; During, Matthew; Cao, Lei

    2014-01-01

    Adipose tissue plays an essential role in metabolic homeostasis and holds promise as an alternative depot organ in gene therapy. However, efficient methods of gene transfer into adipose tissue in vivo have yet to be established. Here, we assessed the transduction efficiency to fat depots by a family of novel engineered hybrid capsid serotypes (Rec1~4) recombinant adeno-associated viral (AAV) vectors in comparison with natural serotypes AAV1, AAV8, and AAV9. Rec2 serotype led to widespread transduction in both brown fat and white fat with the highest efficiency among the seven serotypes tested. As a proof-of-efficacy, Rec2 serotype was used to deliver Cre recombinase to adipose tissues of insulin receptor floxed animals. Insulin receptor knockdown led to decreased fat pad mass and morphological and molecular changes in the targeted depot. These novel hybrid AAV vectors can serve as powerful tools to genetically manipulate adipose tissue and provide valuable vehicles to gene therapy targeting adipose tissue. PMID:25383359

  16. Future of rAAV Gene Therapy: Platform for RNAi, Gene Editing, and Beyond.

    PubMed

    Valdmanis, Paul N; Kay, Mark A

    2017-01-10

    The use of recombinant adeno-associated viruses (rAAVs) ushered in a new millennium of gene transfer for therapeutic treatment of a number of conditions, including congenital blindness, hemophilia, and spinal muscular atrophy. rAAV vectors have remarkable staying power from a therapeutic standpoint, withstanding several ebbs and flows. As new technologies such as clustered regularly interspaced short palindromic repeat genome editing emerge, it is now the delivery tool-the AAV vector-that is the stalwart. The long-standing safety of this vector in a multitude of clinical settings makes rAAV a selling point in the advancement of approaches for gene replacement, gene knockdown, gene editing, and genome modification/engineering. The research community is building on these advances to develop more tailored delivery approaches and to tweak the genome in new and unique ways. Intertwining these approaches with newly engineered rAAV vectors is greatly expanding the available tools to manipulate gene expression with a therapeutic intent.

  17. Gene therapy following subretinal AAV5 vector delivery is not affected by a previous intravitreal AAV5 vector administration in the partner eye

    PubMed Central

    Li, Wensheng; Kong, Fansheng; Li, Xia; Dai, Xufeng; Liu, Xiaoqiang; Zheng, Qinxiang; Wu, Ronghan; Zhou, Xiangtian; Lü, Fan; Chang, Bo; Li, Qiuhong; Hauswirth, William W.; Pang, Ji-jing

    2009-01-01

    Purpose In an earlier study we found normal adeno-associated viral vector type 2 (AAV2)-mediated GFP expression after intravitreal injection to one eye of normal C57BL/6J mice. However, GFP expression was very poor in the partner eye of the same mouse if this eye received an intravitreal injection of the same vector one month after the initial intravitreal injection. We also found both injections worked well if they were subretinal. In this study, we tested whether the efficiency of subretinal AAV vector transduction is altered by a previous intravitreal injection in the partner eye and more importantly whether therapeutic efficiency is altered in the rd12 mouse (with a recessive RPE65 mutation) after the same injection series. Methods One μl of scAAV5-smCBA-GFP (1x1013 genome containing viral particles per ml) was intravitreally injected into the right eyes of four-week-old C57BL/6J mice and 1 μl of scAAV5-smCBA-hRPE65 (1x1013 genome containing viral particles per ml) was intravitreally injected into the right eyes of four-week-old rd12 mice Four weeks later, the same vectors were subretinally injected into the left eyes of the same C57BL/6J and rd12 mice. Left eyes of another cohort of eight-week-old rd12 mice received a single subretinal injection of the same scAAV5-smCBA-hRPE65 vector as the positive control. Dark-adapted electroretinograms (ERGs) were recorded five months after the subretinal injections. AAV-mediated GFP expression in C57BL/6J mice and RPE65 expression and ERG restoration in rd12 mice were evaluated five months after the second subretinal injection. Frozen section analysis was performed for GFP fluorescence in C57BL/6J mice and immunostaining for RPE65 in rd12 eyes. Results In rd12 mice, dark-adapted ERGs were minimal following the first intravitreal injection of scAAV5-smCBA-RPE65. Following subsequent subretinal injection in the partner eye, dramatic ERG restoration was recorded in that eye. In fact, ERG b-wave amplitudes were

  18. Preexisting Immunity and Low Expression in Primates Highlight Translational Challenges for Liver-directed AAV8-mediated Gene Therapy

    PubMed Central

    Hurlbut, Gregory D; Ziegler, Robin J; Nietupski, Jennifer B; Foley, Joseph W; Woodworth, Lisa A; Meyers, Elizabeth; Bercury, Scott D; Pande, Nilesh N; Souza, David W; Bree, Mark P; Lukason, Michael J; Marshall, John; Cheng, Seng H; Scheule, Ronald K

    2010-01-01

    Liver-directed gene therapy with adeno-associated virus (AAV) vectors effectively treats mouse models of lysosomal storage diseases (LSDs). We asked whether these results were likely to translate to patients. To understand to what extent preexisting anti-AAV8 antibodies could impede AAV8-mediated liver transduction in primates, commonly preexposed to AAV, we quantified the effects of preexisting antibodies on liver transduction and subsequent transgene expression in mouse and nonhuman primate (NHP) models. Using the highest viral dose previously reported in a clinical trial, passive transfer of NHP sera containing relatively low anti-AAV8 titers into mice blocked liver transduction, which could be partially overcome by increasing vector dose tenfold. Based on this and a survey of anti-AAV8 titers in 112 humans, we predict that high-dose systemic gene therapy would successfully transduce liver in >50% of human patients. However, although high-dose AAV8 administration to mice and monkeys with equivalent anti-AAV8 titers led to comparable liver vector copy numbers, the resulting transgene expression in primates was ~1.5-logs lower than mice. This suggests vector fate differs in these species and that strategies focused solely on overcoming preexisting vector-specific antibodies may be insufficient to achieve clinically meaningful expression levels of LSD genes using a liver-directed gene therapy approach in patients. PMID:20736932

  19. Intravitreal delivery of a novel AAV vector targets ON bipolar cells and restores visual function in a mouse model of complete congenital stationary night blindness.

    PubMed

    Scalabrino, Miranda L; Boye, Sanford L; Fransen, Kathryn M H; Noel, Jennifer M; Dyka, Frank M; Min, Seok Hong; Ruan, Qing; De Leeuw, Charles N; Simpson, Elizabeth M; Gregg, Ronald G; McCall, Maureen A; Peachey, Neal S; Boye, Shannon E

    2015-11-01

    Adeno-associated virus (AAV) effectively targets therapeutic genes to photoreceptors, pigment epithelia, Müller glia and ganglion cells of the retina. To date, no one has shown the ability to correct, with gene replacement, an inherent defect in bipolar cells (BCs), the excitatory interneurons of the retina. Targeting BCs with gene replacement has been difficult primarily due to the relative inaccessibility of BCs to standard AAV vectors. This approach would be useful for restoration of vision in patients with complete congenital stationary night blindness (CSNB1), where signaling through the ON BCs is eliminated due to mutations in their G-protein-coupled cascade genes. For example, the majority of CSNB1 patients carry a mutation in nyctalopin (NYX), which encodes a protein essential for proper localization of the TRPM1 cation channel required for ON BC light-evoked depolarization. As a group, CSNB1 patients have a normal electroretinogram (ERG) a-wave, indicative of photoreceptor function, but lack a b-wave due to defects in ON BC signaling. Despite retinal dysfunction, the retinas of CSNB1 patients do not degenerate. The Nyx(nob) mouse model of CSNB1 faithfully mimics this phenotype. Here, we show that intravitreally injected, rationally designed AAV2(quadY-F+T-V) containing a novel 'Ple155' promoter drives either GFP or YFP_Nyx in postnatal Nyx(nob) mice. In treated Nyx(nob) retina, robust and targeted Nyx transgene expression in ON BCs partially restored the ERG b-wave and, at the cellular level, signaling in ON BCs. Our results support the potential for gene delivery to BCs and gene replacement therapy in human CSNB1.

  20. Ocular and systemic safety of a recombinant AAV8 vector for X-linked retinoschisis gene therapy: GLP studies in rabbits and Rs1-KO mice

    PubMed Central

    Marangoni, Dario; Bush, Ronald A; Zeng, Yong; Wei, Lisa L; Ziccardi, Lucia; Vijayasarathy, Camasamudram; Bartoe, Joshua T; Palyada, Kiran; Santos, Maria; Hiriyanna, Suja; Wu, Zhijian; Colosi, Peter; Sieving, Paul A

    2016-01-01

    X-linked retinoschisis (XLRS) is a retinal disease caused by mutations in the gene encoding the protein retinoschisin (RS1) and is one of the most common causes of macular degeneration in young men. Our therapeutic approach for XLRS is based on the administration of AAV8-scRS/IRBPhRS, an adeno-associated viral vector coding the human RS1 protein, via the intravitreal (IVT) route. Two Good Laboratory Practice studies, a 9-month study in New Zealand White rabbits (n = 124) injected with AAV8-scRS/IRBPhRS at doses of 2E9, 2E10, 2E11, and 1.5E12 vector genomes/eye (vg/eye), and a 6-month study in Rs1-KO mice (n = 162) dosed with 2E9 and 2E10 vg/eye of the same vector were conducted to assess ocular and systemic safety. A self-resolving, dose-dependent vitreal inflammation was the main ocular finding, and except for a single rabbit dosed with 1.5E12 vg/eye, which showed a retinal detachment, no other ocular adverse event was reported. Systemic toxicity was not identified in either species. Biodistribution analysis in Rs1-KO mice detected spread of vector genome in extraocular tissues, but no evidence of organ or tissues damage was found. These studies indicate that IVT administration of AAV8-scRS/IRBPhRS is safe and well tolerated and support its advancement into a phase 1/2a clinical trial for XLRS. PMID:27626041

  1. Immune Responses to rAAV6: The Influence of Canine Parvovirus Vaccination and Neonatal Administration of Viral Vector

    PubMed Central

    Arnett, Andrea L. H.; Garikipati, Dilip; Wang, Zejing; Tapscott, Stephen; Chamberlain, Jeffrey S.

    2011-01-01

    Recombinant adeno-associated viral (rAAV) vectors promote long-term gene transfer in many animal species. Significant effort has focused on the evaluation of rAAV delivery and the immune response in both murine and canine models of neuromuscular disease. However, canines provided for research purposes are routinely vaccinated against canine parvovirus (CPV). rAAV and CPV possess significant homology and are both parvoviruses. Thus, any immune response generated to CPV vaccination has the potential to cross-react with rAAV vectors. In this study, we investigated the immune response to rAAV6 delivery in a cohort of CPV-vaccinated canines and evaluated multiple vaccination regimens in a mouse model of CPV-vaccination. We show that CPV-vaccination stimulates production of neutralizing antibodies with minimal cross-reactivity to rAAV6. In addition, no significant differences were observed in the magnitude of the rAAV6-directed immune response between CPV-vaccinated animals and controls. Moreover, CPV-vaccination did not inhibit rAAV6-mediated transduction. We also evaluated the immune response to early rAAV6-vaccination in neonatal mice. The influence of maternal hormones and cytokines leads to a relatively permissive state in the neonate. We hypothesized that immaturity of the immune system would permit induction of tolerance to rAAV6 when delivered during the neonatal period. Mice were vaccinated with rAAV6 at 1 or 5 days of age, and subsequently challenged with rAAV6 exposure during adulthood via two sequential IM injections, 1 month apart. All vaccinated animals generated a significant neutralizing antibody response to rAAV6-vaccination that was enhanced following IM injection in adulthood. Taken together, these data demonstrate that the immune response raised against rAAV6 is distinct from that which is elicited by the standard parvoviral vaccines and is sufficient to prevent stable tolerization in neonatal mice. PMID:22065964

  2. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    SciTech Connect

    Lerch, Thomas F.; Chapman, Michael S.

    2012-02-05

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites of AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.

  3. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    SciTech Connect

    Lerch, Thomas F.; Chapman, Michael S.

    2012-05-24

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites of AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.

  4. Sustained correction of FVII deficiency in dogs using AAV-mediated expression of zymogen FVII.

    PubMed

    Marcos-Contreras, Oscar A; Smith, Shannon M; Bellinger, Dwight A; Raymer, Robin A; Merricks, Elizabeth; Faella, Armida; Pavani, Giulia; Zhou, Shangzhen; Nichols, Timothy C; High, Katherine A; Margaritis, Paris

    2016-02-04

    Factor VII (FVII) deficiency is a rare autosomal recessive bleeding disorder treated by infusion of fresh-frozen plasma, plasma-derived FVII concentrates and low-dose recombinant activated FVII. Clinical data suggest that a mild elevation of plasma FVII levels (>10% normal) results in improved hemostasis. Research dogs with a G96E missense FVII mutation (FVII-G96E) have <1% FVII activity. By western blot, we show that they have undetectable plasmatic antigen, thus representing the most prevalent type of human FVII deficiency (low antigen/activity). In these dogs, we determine the feasibility of a gene therapy approach using liver-directed, adeno-associated viral (AAV) serotype 8 vector delivery of a canine FVII (cFVII) zymogen transgene. FVII-G96E dogs received escalating AAV doses (2E11 to 4.95E13 vector genomes [vg] per kg). Clinically therapeutic expression (15% normal) was attained with as low as 6E11 vg/kg of AAV and has been stable for >1 year (ongoing) without antibody formation to the cFVII transgene. Sustained and supraphysiological expression of 770% normal was observed using 4.95E13 vg/kg of AAV (2.6 years, ongoing). No evidence of pathological activation of coagulation or detrimental animal physiology was observed as platelet counts, d-dimer, fibrinogen levels, and serum chemistries remained normal in all dogs (cumulative 6.4 years). We observed a transient and noninhibitory immunoglobulin G class 2 response against cFVII only in the dog receiving the highest AAV dose. In conclusion, in the only large-animal model representing the majority of FVII mutation types, our data are first to demonstrate the feasibility, safety, and long-term duration of AAV-mediated correction of FVII deficiency.

  5. Whole Body Skeletal Muscle Transduction in Neonatal Dogs with AAV-9

    PubMed Central

    Yue, Yongping; Shin, Jin-Hong; Duan, Dongsheng

    2011-01-01

    Gene therapy of muscular dystrophy requires systemic gene delivery to all muscles in the body. Adeno-associated viral (AAV) vectors have been shown to lead to body-wide muscle transduction after a single intravascular injection. Proof-of-principle has been demonstrated in mouse models of Duchenne muscular dystrophy and limb girdle muscular dystrophy. Before initiating clinical trials, it is important to validate these promising results in large animal models. More than a dozen canine muscular dystrophy models have been developed. Here, we outline a protocol for performing systemic AAV gene transfer in neonatal dogs. Implementing this technique in dystrophic dogs will accelerate translational muscular dystrophy research. PMID:21194038

  6. Analysis of Chemical, REP, and SEP missions to the Trojan asteroids

    NASA Technical Reports Server (NTRS)

    Bonfiglio, Eugene P.; Oh, David; Yen, Chen-Wan

    2005-01-01

    Recent studies suggest significant benefits from using 1st and 2nd generation Radioisotope Power Systems (RPS) as a power source for electric propulsion (EP) missions to the outer planets. This study focuses on trajectories to the Trojan asteroids. A high level analysis is performed with chemical trajectories to determine potential canidates for REP trajectory optimization. Extensive analysis of direct trajectories using REP is performed on these candidates. Solar Electric Propulsion (SEP) trajectories are also considered for comparison against REP trajectories.

  7. Anti-human α-synuclein N-terminal peptide antibody protects against dopaminergic cell death and ameliorates behavioral deficits in an AAV-α-synuclein rat model of Parkinson's disease.

    PubMed

    Shahaduzzaman, Md; Nash, Kevin; Hudson, Charles; Sharif, Masroor; Grimmig, Bethany; Lin, Xiaoyang; Bai, Ge; Liu, Hui; Ugen, Kenneth E; Cao, Chuanhai; Bickford, Paula C

    2015-01-01

    The protein α-synuclein (α-Syn) has a central role in the pathogenesis of Parkinson's disease (PD) and immunotherapeutic approaches targeting this molecule have shown promising results. In this study, novel antibodies were generated against specific peptides from full length human α-Syn and evaluated for effectiveness in ameliorating α-Syn-induced cell death and behavioral deficits in an AAV-α-Syn expressing rat model of PD. Fisher 344 rats were injected with rAAV vector into the right substantia nigra (SN), while control rats received an AAV vector expressing green fluorescent protein (GFP). Beginning one week after injection of the AAV-α-Syn vectors, rats were treated intraperitoneally with either control IgG or antibodies against the N-terminal (AB1), or central region (AB2) of α-Syn. An unbiased stereological estimation of TH+, NeuN+, and OX6 (MHC-II) immunostaining revealed that the α-Syn peptide antibodies (AB1 and AB2) significantly inhibited α-Syn-induced dopaminergic cell (DA) and NeuN+ cell loss (one-way ANOVA (F (3, 30) = 5.8, p = 0.002 and (F (3, 29) = 7.92, p = 0.002 respectively), as well as decreasing the number of activated microglia in the ipsilateral SN (one-way ANOVA F = 14.09; p = 0.0003). Antibody treated animals also had lower levels of α-Syn in the ipsilateral SN (one-way ANOVA F (7, 37) = 9.786; p = 0.0001) and demonstrated a partial intermediate improvement of the behavioral deficits. Our data suggest that, in particular, an α-Syn peptide antibody against the N-terminal region of the protein can protect against DA neuron loss and, to some extent behavioral deficits. As such, these results may be a potential therapeutic strategy for halting the progression of PD.

  8. Rep rated long life capacitor development: Phase 1 and 2

    NASA Astrophysics Data System (ADS)

    Galperin, I.; White, W.; Haskell, K.; Ennis, J.

    1984-09-01

    Polypropylene and polyolefin resins were characterized and processed into capacitor films. New capacitor films were developed--a post oriented processed, two layer polypropylene film and upgraded polyolefin film. Criteria for judging film quality were developed. Field life data were verified with paper/polypropylene capacitors on the Maxwell rep rate facility. A11 polypropylene film capacitors were developed with lifetimes in excess of 10 to the 7th power discharges at energy densities for the finished capacitor of 18.3 J/lb and projected to more than 20 J/lb.

  9. The repABC Plasmids with Quorum-Regulated Transfer Systems in Members of the Rhizobiales Divide into Two Structurally and Separately Evolving Groups

    PubMed Central

    Wetzel, Margaret E.; Olsen, Gary J.; Chakravartty, Vandana; Farrand, Stephen K.

    2015-01-01

    The large repABC plasmids of the order Rhizobiales with Class I quorum-regulated conjugative transfer systems often define the nature of the bacterium that harbors them. These otherwise diverse plasmids contain a core of highly conserved genes for replication and conjugation raising the question of their evolutionary relationships. In an analysis of 18 such plasmids these elements fall into two organizational classes, Group I and Group II, based on the sites at which cargo DNA is located. Cladograms constructed from proteins of the transfer and quorum-sensing components indicated that those of the Group I plasmids, while coevolving, have diverged from those coevolving proteins of the Group II plasmids. Moreover, within these groups the phylogenies of the proteins usually occupy similar, if not identical, tree topologies. Remarkably, such relationships were not seen among proteins of the replication system; although RepA and RepB coevolve, RepC does not. Nor do the replication proteins coevolve with the proteins of the transfer and quorum-sensing systems. Functional analysis was mostly consistent with phylogenies. TraR activated promoters from plasmids within its group, but not between groups and dimerized with TraR proteins from within but not between groups. However, oriT sequences, which are highly conserved, were processed by the transfer system of plasmids regardless of group. We conclude that these plasmids diverged into two classes based on the locations at which cargo DNA is inserted, that the quorum-sensing and transfer functions are coevolving within but not between the two groups, and that this divergent evolution extends to function. PMID:26590210

  10. The repABC plasmids with quorum-regulated transfer systems in members of the Rhizobiales divide into two structurally and separately evolving groups

    DOE PAGES

    Wetzel, Margaret E.; Olsen, Gary J.; Chakravartty, Vandana; ...

    2015-11-19

    The large repABC plasmids of the order Rhizobiales with Class I quorum-regulated conjugative transfer systems often define the nature of the bacterium that harbors them. These otherwise diverse plasmids contain a core of highly conserved genes for replication and conjugation raising the question of their evolutionary relationships. In an analysis of 18 such plasmids these elements fall into two organizational classes, Group I and Group II, based on the sites at which cargo DNA is located. Cladograms constructed from proteins of the transfer and quorum-sensing components indicated that those of the Group I plasmids, while coevolving, have diverged from thosemore » coevolving proteins of the Group II plasmids. Moreover, within these groups the phylogenies of the proteins usually occupy similar, if not identical, tree topologies. Remarkably, such relationships were not seen among proteins of the replication system; although RepA and RepB coevolve, RepC does not. Nor do the replication proteins coevolve with the proteins of the transfer and quorum-sensing systems. Functional analysis was mostly consistent with phylogenies. TraR activated promoters from plasmids within its group, but not between groups and dimerized with TraR proteins from within but not between groups. However, oriT sequences, which are highly conserved, were processed by the transfer system of plasmids regardless of group. Here, we conclude that these plasmids diverged into two classes based on the locations at which cargo DNA is inserted, that the quorum-sensing and transfer functions are coevolving within but not between the two groups, and that this divergent evolution extends to function.« less

  11. The repABC plasmids with quorum-regulated transfer systems in members of the Rhizobiales divide into two structurally and separately evolving groups

    SciTech Connect

    Wetzel, Margaret E.; Olsen, Gary J.; Chakravartty, Vandana; Farrand, Stephen K.

    2015-11-19

    The large repABC plasmids of the order Rhizobiales with Class I quorum-regulated conjugative transfer systems often define the nature of the bacterium that harbors them. These otherwise diverse plasmids contain a core of highly conserved genes for replication and conjugation raising the question of their evolutionary relationships. In an analysis of 18 such plasmids these elements fall into two organizational classes, Group I and Group II, based on the sites at which cargo DNA is located. Cladograms constructed from proteins of the transfer and quorum-sensing components indicated that those of the Group I plasmids, while coevolving, have diverged from those coevolving proteins of the Group II plasmids. Moreover, within these groups the phylogenies of the proteins usually occupy similar, if not identical, tree topologies. Remarkably, such relationships were not seen among proteins of the replication system; although RepA and RepB coevolve, RepC does not. Nor do the replication proteins coevolve with the proteins of the transfer and quorum-sensing systems. Functional analysis was mostly consistent with phylogenies. TraR activated promoters from plasmids within its group, but not between groups and dimerized with TraR proteins from within but not between groups. However, oriT sequences, which are highly conserved, were processed by the transfer system of plasmids regardless of group. Here, we conclude that these plasmids diverged into two classes based on the locations at which cargo DNA is inserted, that the quorum-sensing and transfer functions are coevolving within but not between the two groups, and that this divergent evolution extends to function.

  12. Rep. Bill Nelson during space food and consumables orientation and suit fitting

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Rita Rapp, a flight coordinator, briefs U.S. Rep. Bill Nelson (D.-Florida) on space food during an orientation session in the life sciences laboratory at JSC (27753); Rep. Nelson tries on a glove during a suit fitting session (27754); Rep. Nelson samples a package of re-hydratable fruit in the life sciences laboratory during early STS 61-C training (27755); Rep. Nelson listens to Laura Louviere brief him on hygiene articles soon after reporting to Houston for STS 61-C training. On the table in front of him is a tube marked Palmalive, a tube marked Gillette and various other articles (27756).

  13. Secondary structure analysis of the RepA mRNA leader transcript involved in control of replication of plasmid R1.

    PubMed Central

    Ohman, M; Wagner, E G

    1989-01-01

    The main replication control function in plasmid R1 is an antisense RNA, CopA RNA. By binding to its target (CopT) in the leader of the RepA mRNA, CopA RNA inhibits the expression of the rate-limiting RepA protein. The formation of the RNA duplex has been proposed to alter the folding around the RepA start region. Knowledge of the secondary structure of both CopA and CopT RNA is crucial for an understanding of the regulation. Previously, we reported the structure of CopA RNA under native conditions. In the present communication we have analyzed the secondary structure of the RepA leader transcript. Our main findings are: The two loops of CopA RNA have their correspondence in CopT RNA. No major structural changes are found downstream of the duplex when CopA was bound to its target RNA during transcription. Furthermore, in agreement with CopA/CopT RNA binding studies reported recently we do not find evidence for the existence of a binding window. Images PMID:2470028

  14. Advanced Characterization of DNA Molecules in rAAV Vector Preparations by Single-stranded Virus Next-generation Sequencing

    PubMed Central

    Lecomte, Emilie; Tournaire, Benoît; Cogné, Benjamin; Dupont, Jean-Baptiste; Lindenbaum, Pierre; Martin-Fontaine, Mélanie; Broucque, Frédéric; Robin, Cécile; Hebben, Matthias; Merten, Otto-Wilhelm; Blouin, Véronique; François, Achille; Redon, Richard; Moullier, Philippe; Léger, Adrien

    2015-01-01

    Recent successful clinical trials with recombinant adeno-associated viral vectors (rAAVs) have led to a renewed interest in gene therapy. However, despite extensive developments to improve vector-manufacturing processes, undesirable DNA contaminants in rAAV preparations remain a major safety concern. Indeed, the presence of DNA fragments containing antibiotic resistance genes, wild-type AAV, and packaging cell genomes has been found in previous studies using quantitative polymerase chain reaction (qPCR) analyses. However, because qPCR only provides a partial view of the DNA molecules in rAAV preparations, we developed a method based on next-generation sequencing (NGS) to extensively characterize single-stranded DNA virus preparations (SSV-Seq). In order to validate SSV-Seq, we analyzed three rAAV vector preparations produced by transient transfection of mammalian cells. Our data were consistent with qPCR results and showed a quasi-random distribution of contaminants originating from the packaging cells genome. Finally, we found single-nucleotide variants (SNVs) along the vector genome but no evidence of large deletions. Altogether, SSV-Seq could provide a characterization of DNA contaminants and a map of the rAAV genome with unprecedented resolution and exhaustiveness. We expect SSV-Seq to pave the way for a new generation of quality controls, guiding process development toward rAAV preparations of higher potency and with improved safety profiles. PMID:26506038

  15. Advanced Characterization of DNA Molecules in rAAV Vector Preparations by Single-stranded Virus Next-generation Sequencing.

    PubMed

    Lecomte, Emilie; Tournaire, Benoît; Cogné, Benjamin; Dupont, Jean-Baptiste; Lindenbaum, Pierre; Martin-Fontaine, Mélanie; Broucque, Frédéric; Robin, Cécile; Hebben, Matthias; Merten, Otto-Wilhelm; Blouin, Véronique; François, Achille; Redon, Richard; Moullier, Philippe; Léger, Adrien

    2015-10-27

    Recent successful clinical trials with recombinant adeno-associated viral vectors (rAAVs) have led to a renewed interest in gene therapy. However, despite extensive developments to improve vector-manufacturing processes, undesirable DNA contaminants in rAAV preparations remain a major safety concern. Indeed, the presence of DNA fragments containing antibiotic resistance genes, wild-type AAV, and packaging cell genomes has been found in previous studies using quantitative polymerase chain reaction (qPCR) analyses. However, because qPCR only provides a partial view of the DNA molecules in rAAV preparations, we developed a method based on next-generation sequencing (NGS) to extensively characterize single-stranded DNA virus preparations (SSV-Seq). In order to validate SSV-Seq, we analyzed three rAAV vector preparations produced by transient transfection of mammalian cells. Our data were consistent with qPCR results and showed a quasi-random distribution of contaminants originating from the packaging cells genome. Finally, we found single-nucleotide variants (SNVs) along the vector genome but no evidence of large deletions. Altogether, SSV-Seq could provide a characterization of DNA contaminants and a map of the rAAV genome with unprecedented resolution and exhaustiveness. We expect SSV-Seq to pave the way for a new generation of quality controls, guiding process development toward rAAV preparations of higher potency and with improved safety profiles.

  16. Efficacy and safety of long-term prophylaxis in severe hemophilia A dogs following liver gene therapy using AAV vectors.

    PubMed

    Sabatino, Denise E; Lange, Amy M; Altynova, Ekaterina S; Sarkar, Rita; Zhou, Shangzhen; Merricks, Elizabeth P; Franck, Helen G; Nichols, Timothy C; Arruda, Valder R; Kazazian, Haig H

    2011-03-01

    Developing adeno-associated viral (AAV)-mediated gene therapy for hemophilia A (HA) has been challenging due to the large size of the factor VIII (FVIII) complementary DNA and the concern for the development of inhibitory antibodies to FVIII in HA patients. Here, we perform a systematic study in HA dogs by delivering a canine FVIII (cFVIII) transgene either as a single chain or two chains in an AAV vector. An optimized cFVIII single chain delivered using AAV serotype 8 (AAV8) by peripheral vein injection resulted in a dose-response with sustained expression of FVIII up to 7% (n = 4). Five HA dogs administered two-chain delivery using either AAV8 or AAV9 via the portal vein expressed long-term, vector dose-dependent levels of FVIII activity (up to 10%). In the two-chain approach, circulating cFVIII antigen levels were more than fivefold higher than activity. Notably, no long-term immune response to FVIII was observed in any of the dogs (1/9 dogs had a transient inhibitor). Long-term follow-up of the dogs showed a remarkable reduction (>90%) of bleeding episodes in a combined total of 24 years of observation. These data demonstrate that both approaches are safe and achieve dose-dependent therapeutic levels of FVIII expression, which supports translational studies of AAV-mediated delivery for HA.

  17. AAV-Nrf2 Promotes Protection and Recovery in Animal Models of Oxidative Stress.

    PubMed

    Liang, Katharine J; Woodard, Kenton T; Weaver, Mark A; Gaylor, John Paul; Weiss, Ellen R; Samulski, R Jude

    2017-03-01

    NRF2 is a transcription factor that drives antioxidant gene expression in multiple organ systems. We hypothesized that Nrf2 overexpression could be therapeutically applied toward diseases in which redox homeostasis is disrupted. In this study, adeno-associated virus (AAV)-Nrf2 was tested in a mouse model of acute acetaminophen-induced liver toxicity and successfully conferred protection from hepatotoxicity, validating the vector design and early onset of NRF2-mediated protection. Furthermore, therapeutic potential of AAV-Nrf2 in chronic disease also was tested in a light-induced mouse model of age-related macular degeneration. Adult BALB/c mice were intravitreally injected with AAV-Nrf2 and subject to light damage following injection. Retinal thickness and function were monitored following light damage using optical coherence tomography and electroretinography, respectively. By 3 months post-damage, injected eyes had greater retinal thickness compared to uninjected controls. At 1 month post-damage, AAV-Nrf2 injection facilitated full functional recovery from light damage. Our results suggest a therapeutic potential for Nrf2 overexpression in acute and long-term capacities in multiple organ systems, opening up doors for combination gene therapy where replacement gene therapy requires additional therapeutic support to prevent further degeneration.

  18. Responses of One First Grade Class to the Representation of AAVE in Picture Books

    ERIC Educational Resources Information Center

    McCreight, Jennifer

    2011-01-01

    The following article will address the need for classrooms to promote the use of children's literature whose characters speak in a dialect other than Standard English (specifically African American Vernacular English, or AAVE). It will begin by drawing attention to the lack of authentic representation of African Americans in picture books…

  19. Functional Effects of AAV2-GDNF on the Dopaminergic Nigrostriatal Pathway in Parkinsonian Rhesus Monkeys

    PubMed Central

    Eberling, Jamie L.; Kells, Adrian P.; Pivirotto, Philip; Beyer, Janine; Bringas, John; Federoff, Howard J.; Forsayeth, John

    2009-01-01

    Abstract We investigated the safety and neuroregenerative potential of an adeno-associated virus (AAV2) containing human glial cell line-derived neurotrophic factor (GDNF) in an MPTP primate model of Parkinson's disease. Dopaminergic function was evaluated by positron emission tomography with 6-[18F]fluoro-l-m-tyrosine (FMT) before and after AAV2-GDNF or phosphate-buffered saline infusion bilaterally into the putamen. FMT uptake was significantly increased bilaterally in the putamen of AAV2-GDNF but not phosphate-buffered saline-treated animals 6 months after infusion, indicating increased dopaminergic activity in the nigrostriatal pathways. AAV2-GDNF-treated animals also showed clinical improvement without adverse effects. These findings are consistent with our previous report in aged nonhuman primates that showed evidence of enhanced use of striatal dopamine and dopaminergic nigrostriatal innervation. Clinical improvement and evidence of functional recovery in the nigrostriatal pathway, and the absence of adverse effects, support the safety of this approach for the delivery of GDNF over a 6-month period. PMID:19254173

  20. Antidepressant effect of recombinant NT4-NAP/AAV on social isolated mice through intranasal route.

    PubMed

    Liu, Fei; Liu, You-Ping; Lei, Gang; Liu, Peng; Chu, Zheng; Gao, Cheng-Ge; Dang, Yong-Hui

    2017-02-07

    The purpose of the present study was to observe the depression-like behavior induced by social isolation; detect the antidepressant effect of a recombinant adeno-associated virus (AAV) expressing NAP on social isolation mice by intranasal delivery. After construction of NT4-NAP/AAV, expression of NAP was confirmed in vitro. 3-week-old C57/BL mice were bred individually in cages as social isolation-rearing. Six weeks later, the first subset of mice underwent behavioral tests and western blot; the second was for enzyme-linked immunosorbent assay. NT4-NAP/AAV was delivered quaque die by nasal administration for consecutive 10 days before behavioral test. Several depression-like behaviors were observed in social isolation mice, including decreased relative sucrose preference, longer immobility time in forced swimming test, lower plasma corticosterone and decreased brain-derived neurotrophic factor in hippocampus. Thus, social isolation procedure appears to be an animal model of depression with good face and construct validity. What's more, the antidepressant effect in social isolation-rearing mice was observed after intranasal administration of NT4-NAP/AAV, suggesting that this might be a promising therapeutic strategy for depressive disorder.

  1. Sites in the AAV5 capsid tolerant to deletions and tandem duplications

    PubMed Central

    Hida, Kaoru; Won, Sang Y.; Di Pasquale, Giovanni; Hanes, Justin; Chiorini, John A.; Ostermeier, Marc

    2010-01-01

    Gene therapy vectors based on adeno-associated virus (AAV) have shown much promise in clinical trials for the treatment of a variety of diseases. However, the ability to manipulate and engineer the viral surface for enhanced efficiency is necessary to overcome such barriers as pre-existing immunity and transduction of non-target cells that currently limit AAV applications. Although single amino acid changes and peptide insertions at select sites have been explored previously, the tolerance of AAV to small deletions and tandem duplications of sequence has not been globally addressed. Here, we have generated a large, diverse library of >105 members containing deletions and tandem duplications throughout the viral capsid of AAV5. Four unique mutants were identified that maintain the ability to form viral particles, with one showing improved transduction on both 293T and BEAS-2B cells. This approach may find potential use for the generation of novel variants with improved and altered properties or in the identification of sites that are tolerant to insertions of targeting ligands. PMID:20102698

  2. Intracranial AAV-IFN-β gene therapy eliminates invasive xenograft glioblastoma and improves survival in orthotopic syngeneic murine model.

    PubMed

    GuhaSarkar, Dwijit; Neiswender, James; Su, Qin; Gao, Guangping; Sena-Esteves, Miguel

    2017-02-01

    The highly invasive property of glioblastoma (GBM) cells and genetic heterogeneity are largely responsible for tumor recurrence after the current standard-of-care treatment and thus a direct cause of death. Previously, we have shown that intracranial interferon-beta (IFN-β) gene therapy by locally administered adeno-associated viral vectors (AAV) successfully treats noninvasive orthotopic glioblastoma models. Here, we extend these findings by testing this approach in invasive human GBM xenograft and syngeneic mouse models. First, we show that a single intracranial injection of AAV encoding human IFN-β eliminates invasive human GBM8 tumors and promotes long-term survival. Next, we screened five AAV-IFN-β vectors with different promoters to drive safe expression of mouse IFN-β in the brain in the context of syngeneic GL261 tumors. Two AAV-IFN-β vectors were excluded due to safety concerns, but therapeutic studies with the other three vectors showed extensive tumor cell death, activation of microglia surrounding the tumors, and a 56% increase in median survival of the animals treated with AAV/P2-Int-mIFN-β vector. We also assessed the therapeutic effect of combining AAV-IFN-β therapy with temozolomide (TMZ). As TMZ affects DNA replication, an event that is crucial for second-strand DNA synthesis of single-stranded AAV vectors before active transcription, we tested two TMZ treatment regimens. Treatment with TMZ prior to AAV-IFN-β abrogated any benefit from the latter, while the reverse order of treatment doubled the median survival compared to controls. These studies demonstrate the therapeutic potential of intracranial AAV-IFN-β therapy in a highly migratory GBM model as well as in a syngeneic mouse model and that combination with TMZ is likely to enhance its antitumor potency.

  3. Construction of PR39 recombinant AAV under control of the HRE promoter and the effect of recombinant AAV on gene therapy of ischemic heart disease.

    PubMed

    Sun, Lijun; Hao, Yuewen; Nie, Xiaowei; Zhang, Xuexin; Yang, Guangxiao; Wang, Quanying

    2012-11-01

    The objective of this study was to investigate the effect of the PR39 recombinant adeno-associated virus (AAV) controlled by the hypoxia-responsive element (HRE) on gene therapy of ischemic heart disease. The minimal HRE was artificially synthesized and the AAV vector controlled by HRE was introduced with NT4-TAT-His-PR39 to investigate the expression of AAV-PR39 in hypoxic vascular endothelial cells (VEC) of human umbilical vein (CRL-1730 cell line) and the angiogenesis-promoting effect in pigs with acute myocardial infraction (AMI). The minimal HRE/CMV was designed and artificially synthesized using the PCR method and cloned with the T vector cloning method. The pSS-HRE-CMV-NT4-6His-PR39-PolyA-AAV plasmid was constructed. Using the calcium phosphate precipitation method, HEK-293 cells were co-transfected with three plasmids to produce the recombinant virus. An equal volume of pSS-HRE-CMV-NT4-6His-PR39-PolyAAAV and enterovirus (EV, blank virus) was transfected into CRL-1730 cell lines, respectively. The immunohistochemical method was used to assay the expression of 6xHis in CRL-1730 cell lines and the expression of PR39 under hypoxia. Eighteen AMI miniature pigs were randomized into the experimental group (HRE-AAV-PR39 group), control group 1 (physical saline group) and control group 2 (EV group). The area of ischemia was assessed with conventional MRI and myocardium perfusion MRI. Pigs were sacrificed at preset time-points to obtain samples of ischemic myocardium. Morphological and pathological data were collected. According to data in the literature and databases, the minimal HRE was designed and synthesized with the PCR method. A large number of HREs were connected to modified pSSHGAAV (pSSV9int-/XbaI) vector followed by insertion of the NT4-6His-PR39 gene segment and, thus, the recombinant plasmid pSS-HRE-CMV-NT4-6His-PR39-PolyA-AAV was successfully constructed. The expression of 6xHis in CRL-1730 cells under the regulation of HRE was assayed using the

  4. Intramuscular AAV delivery of NT-3 alters synaptic transmission to motoneurons in adult rats

    PubMed Central

    Petruska, Jeffrey C.; Kitay, Brandon; Boyce, Vanessa S.; Kaspar, Brian; Pearse, Damien; Gage, Fred H.; Mendell, Lorne M.

    2010-01-01

    We examined whether elevating levels of neurotrophin-3 (NT-3) in the spinal cord and dorsal root ganglion (DRG) would alter connections made by muscle spindle afferent fibers on motoneurons. Adeno-associated virus (AAV) serotypes AAV1, AAV2 and AAV5, selected for their tropism profile, were engineered with the NT-3 gene and administered to the medial gastrocnemius muscle in adult rats. ELISA studies in muscle, DRG and spinal cord revealed that NT-3 concentration in all tissues peaked about 3 months after a single viral injection; after 6 months NT-3 concentration returned to normal values. Intracellular recording in triceps surae motoneurons revealed complex electrophysiological changes. Moderate elevation in cord NT-3 resulted in diminished segmental excitatory postsynaptic potential (EPSP) amplitude, perhaps as a result of the observed decrease in motoneuron input resistance. With further elevation in NT-3 expression, the decline in EPSP amplitude was reversed indicating that NT-3 at higher concentration could increase EPSP amplitude. No correlation was observed between EPSP amplitude and NT-3 concentration in the DRG. Treatment with control viruses could elevate NT-3 levels minimally resulting in measurable electrophysiological effects, perhaps as a result of inflammation associated with injection. EPSPs elicited by stimulation of the ventrolateral funiculus underwent a consistent decline in amplitude independent of NT-3 level. These novel correlations between modified NT-3 expression and single-cell electrophysiological parameters indicate that intramuscular administration of AAV(NT-3) can exert long lasting effects on synaptic transmission to motoneurons. This approach to neurotrophin delivery could be useful in modifying spinal function after injury. PMID:20849530

  5. 76 FR 16859 - Proposed Information Collection (Certification of School Attendance-REPS); Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF VETERANS AFFAIRS Proposed Information Collection (Certification of School Attendance--REPS); Comment Request AGENCY... use of other forms of information technology. Title: Certification of School Attendance--REPS, VA...

  6. A Model-Averaging Approach to Replication : The Case of "p[subscript rep]"

    ERIC Educational Resources Information Center

    Iverson, Geoffrey J.; Wagenmakers, Eric-Jan; Lee, Michael D.

    2010-01-01

    The purpose of the recently proposed "p[subscript rep]" statistic is to estimate the probability of concurrence, that is, the probability that a replicate experiment yields an effect of the same sign (Killeen, 2005a). The influential journal "Psychological Science" endorses "p[subscript rep]" and recommends its use…

  7. 76 FR 27385 - Proposed Information Collection (REPS Annual Eligibility Report) Activity: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... AFFAIRS Proposed Information Collection (REPS Annual Eligibility Report) Activity: Comment Request AGENCY.... Title: REPS Annual Eligibility Report, (Under the Provisions of Section 156, Pub. L. 97-377), VA Form 21... comment on the proposed collection of certain information by the agency. Under the Paperwork Reduction...

  8. 76 FR 44085 - Agency Information Collection (REPS Annual Eligibility Report) Activity Under OMB Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... AFFAIRS Agency Information Collection (REPS Annual Eligibility Report) Activity Under OMB Review AGENCY... INFORMATION: Title: REPS Annual Eligibility Report, (Under the Provisions of Section 156, Pub. L. 97-377), VA... information abstracted below to the Office of Management and Budget (OMB) for review and comment. The...

  9. An Intrabody Drug (rAAV6-INT41) Reduces the Binding of N-Terminal Huntingtin Fragment(s) to DNA to Basal Levels in PC12 Cells and Delays Cognitive Loss in the R6/2 Animal Model

    PubMed Central

    2016-01-01

    Huntington's disease (HD) is a fatal progressive disease linked to expansion of glutamine repeats in the huntingtin protein and characterized by the progressive loss of cognitive and motor function. We show that expression of a mutant human huntingtin exon-1-GFP fusion construct results in nonspecific gene dysregulation that is significantly reduced by 50% due to coexpression of INT41, an intrabody specific for the proline-rich region of the huntingtin protein. Using stable PC12 cell lines expressing either inducible human mutant huntingtin (mHtt, Q73) or normal huntingtin (nHtt, Q23), we investigated the effect of rAAV6-INT41, an adeno-associated virus vector with the INT41 coding sequence, on the subcellular distribution of Htt. Compartmental fractionation 8 days after induction of Htt showed a 6-fold increased association of a dominate N-terminal mHtt fragment with DNA compared to N-terminal nHtt. Transduction with rAAV6-INT41 reduced DNA binding of N-terminal mHtt 6.5-fold in the nucleus and reduced nuclear translocation of the detected fragments. Subsequently, when rAAV6-INT41 is delivered to the striatum in the R6/2 mouse model, treated female mice exhibited executive function statistically indistinguishable from wild type, accompanied by reductions in Htt aggregates in the striatum, suggesting that rAAV6-INT41 is promising as a gene therapy for Huntington's disease. PMID:27595037

  10. Extending SemRep to the Public Health Domain

    PubMed Central

    Rosemblat, Graciela; Resnick, Melissa P.; Auston, Ione; Shin, Dongwook; Sneiderman, Charles; Fizsman, Marcelo; Rindflesch, Thomas C.

    2014-01-01

    We describe the use of a domain-independent methodology to extend a natural language processing (NLP) application, SemRep (Rindflesch, Fiszman, & Libbus, 2005), based on the knowledge sources afforded by the Unified Medical Language System (UMLS®) (Humphreys, Lindberg, Schoolman, & Barnett, 1998) to support the area of health promotion within the public health domain. Public health professionals require good information about successful health promotion policies and programs that might be considered for application within their own communities. Our effort seeks to improve access to relevant information for the public health profession, to help those in the field remain an information-savvy workforce. NLP and semantic techniques hold promise to help public health professionals navigate the growing ocean of information by organizing and structuring this knowledge into a focused public health framework paired with a user-friendly visualization application as a way to summarize results of PubMed searches in this field of knowledge. PMID:24729747

  11. Courant-sharp eigenvalues of Neumann 2-rep-tiles

    NASA Astrophysics Data System (ADS)

    Band, Ram; Bersudsky, Michael; Fajman, David

    2016-11-01

    We find the Courant-sharp Neumann eigenvalues of the Laplacian on some 2-rep-tile domains. In {R}2 , the domains we consider are the isosceles right triangle and the rectangle with edge ratio √{2} (also known as the A4 paper). In {R}n , the domains are boxes which generalize the mentioned planar rectangle. The symmetries of those domains reveal a special structure of their eigenfunctions, which we call folding/unfolding. This structure affects the nodal set of the eigenfunctions, which, in turn, allows to derive necessary conditions for Courant-sharpness. In addition, the eigenvalues of these domains are arranged as a lattice which allows for a comparison between the nodal count and the spectral position. The Courant-sharpness of most eigenvalues is ruled out using those methods. In addition, this analysis allows to estimate the nodal deficiency—the difference between the spectral position and the nodal count.

  12. Automated Production of High Rep Rate Foam Targets

    NASA Astrophysics Data System (ADS)

    Hall, F.; Spindloe, C.; Haddock, D.; Tolley, M.; Nazarov, W.

    2016-04-01

    Manufacturing low density targets in the numbers needed for high rep rate experiments is highly challenging. This report summarises advances from manual production to semiautomated and the improvements that follow both in terms of production time and target uniformity. The production process is described and shown to be improved by the integration of an xyz robot with dispensing capabilities. Results are obtained from manual and semiautomated production runs and compared. The variance in the foam thickness is reduced significantly which should decrease experimental variation due to target parameters and could allow for whole batches to be characterised by the measurement of a few samples. The work applies to both foil backed and free standing foam targets.

  13. AAV serotype 2/1-mediated gene delivery of anti-inflammatory interleukin-10 enhances neurogenesis and cognitive function in APP+PS1 mice.

    PubMed

    Kiyota, T; Ingraham, K L; Swan, R J; Jacobsen, M T; Andrews, S J; Ikezu, T

    2012-07-01

    Brain inflammation is a double-edged sword. It is required for brain repair in acute damage, whereas chronic inflammation and autoimmune disorders are neuropathogenic. Certain proinflammatory cytokines and chemokines are closely related to cognitive dysfunction and neurodegeneration. Representative anti-inflammatory cytokines, such as interleukin (IL)-10, can suppress neuroinflammation and have significant therapeutic potentials in ameliorating neurodegenerative disorders such as Alzheimer's disease (AD). Here, we show that adeno-associated virus (AAV) serotype 2/1 hybrid-mediated neuronal expression of the mouse IL-10 gene ameliorates cognitive dysfunction in amyloid precursor protein+ presenilin-1 bigenic mice. AAV2/1 infection of hippocampal neurons resulted in sustained expression of IL-10 without its leakage into the blood, reduced astro/microgliosis, enhanced plasma amyloid-β peptide (Aβ) levels and enhanced neurogenesis. Moreover, increased levels of IL-10 improved spatial learning, as determined by the radial arm water maze. Finally, IL-10-stimulated microglia enhanced proliferation but not differentiation of primary neural stem cells in the co-culture system, whereas IL-10 itself had no effect. Our data suggest that IL-10 gene delivery has a therapeutic potential for a non-Aβ-targeted treatment of AD.

  14. Rescue of a Mouse Model of Spinal Muscular Atrophy With Respiratory Distress Type 1 by AAV9-IGHMBP2 Is Dose Dependent.

    PubMed

    Shababi, Monir; Feng, Zhihua; Villalon, Eric; Sibigtroth, Christine M; Osman, Erkan Y; Miller, Madeline R; Williams-Simon, Patricka A; Lombardi, Abby; Sass, Thalia H; Atkinson, Arleigh K; Garcia, Michael L; Ko, Chien-Ping; Lorson, Christian L

    2016-05-01

    Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an autosomal recessive disease occurring during childhood. The gene responsible for disease development is a ubiquitously expressed protein, IGHMBP2. Mutations in IGHMBP2 result in the loss of α-motor neurons leading to muscle atrophy in the distal limbs accompanied by respiratory complications. Although genetically and clinically distinct, proximal SMA is also caused by the loss of a ubiquitously expressed gene (SMN). Significant preclinical success has been achieved in proximal SMA using viral-based gene replacement strategies. We leveraged the technologies employed in SMA to demonstrate gene replacement efficacy in an SMARD1 animal model. Intracerebroventricular (ICV) injection of single-stranded AAV9 expressing the full-length cDNA of IGHMBP2 in a low dose led to a significant level of rescue in treated SMARD1 animals. Consistent with drastically increased survival, weight gain, and strength, the rescued animals demonstrated a significant improvement in muscle, NMJ, motor neurons, and axonal pathology. In addition, increased levels of IGHMBP2 in lumbar motor neurons verified the efficacy of the virus to transduce the target tissues. Our results indicate that AAV9-based gene replacement is a viable strategy for SMARD1, although dosing effects and potential negative impacts of high dose and ICV injection should be thoroughly investigated.

  15. Autophagy is involved in oral rAAV/Aβ vaccine-induced Aβ clearance in APP/PS1 transgenic mice.

    PubMed

    Wang, He-Cheng; Zhang, Tao; Kuerban, Bolati; Jin, Ying-Lan; Le, Weidong; Hara, Hideo; Fan, Dong-Sheng; Wang, Yan-Jiang; Tabira, Takeshi; Chui, De-Hua

    2015-08-01

    The imbalance between ß-amyloid (Aß) generation and clearance plays a fundamental role in the pathogenesis of Alzheimer's disease (AD). The sporadic form of AD is characterized by an overall impairment in Aß clearance. Immunotherapy targeting Aß clearance is believed to be a promising approach and is under active clinical investigation. Autophagy is a conserved pathway for degrading abnormal protein aggregates and is crucial for Aß clearance. We previously reported that oral vaccination with a recombinant AAV/Aß vaccine increased the clearance of Aß from the brain and improved cognitive ability in AD animal models, while the underlying mechanisms were not well understood. In this study, we first demonstrated that oral vaccination with rAAV/Aß decreased the p62 level and up-regulated the LC3B-II/LC3B-I ratio in APP/PS1 mouse brain, suggesting enhanced autophagy. Further, inhibition of the Akt/mTOR pathway may account for autophagy enhancement. We also found increased anti-Aß antibodies in the sera of APP/PS1 mice with oral vaccination, accompanied by elevation of complement factors C1q and C3 levels in the brain. Our results indicate that autophagy is closely involved in oral vaccination-induced Aß clearance, and modulating the autophagy pathway may be an important strategy for AD prevention and intervention.

  16. Establishment of a novel cell line for the enhanced production of recombinant adeno-associated virus vectors for gene therapy.

    PubMed

    Satkunanathan, Stifani; Wheeler, Jun; Thorpe, Robin; Zhao, Yuan

    2014-11-01

    Adeno-associated viral (AAV) vectors show great promise because of their excellent safety profile; however, pre-existing immune responses have necessitated the administration of high titer AAV, posing a significant challenge to the advancement of gene therapy involving AAV vectors. Recombinant AAV vectors contain minimum viral proteins necessary for their assembly and gene delivery functions. During the process of AAV assembly and production, AAV vectors acquire, inherently and submissively, various cellular proteins, but the identity of these proteins is poorly characterized. We reason that by identifying host cell proteins inherently associated with AAV vectors we may better understand the contribution of cellular components to AAV vector assembly and, ultimately, may improve the production of AAV vectors for gene therapy. In this study, three serotypes of recombinant AAV, namely AAV2, AAV5, and AAV8, were investigated. We used liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) methods to identify protein composition in purified AAV vectors, confirmed protein identities using western blotting, and explored the potential function of selected proteins in AAV vector production using small hairpin (shRNA) methods. Using LC-MS/MS, we identified 44 AAV-associated cellular proteins including Y-box binding protein (YB1). We showed for the first time that the establishment of a novel producer cell line by introducing an shRNA sequence down-regulating YB1 resulted in up to 45- and 9-fold increase in physical vector genome titers of AAV2 and AAV8, respectively, and up to 7-fold increase in AAV2 transduction vector genome titers. Our results revealed that YB1 gene knockdown promoted AAV2 rep expression and vector DNA production and reduced the number of empty particles in AAV2 products, suggesting that YB1 plays an important role in AAV vector assembly by competition with adenovirus E2A and AAV capsid proteins for binding to the inverted terminal repeat

  17. Establishment of a Novel Cell Line for the Enhanced Production of Recombinant Adeno-Associated Virus Vectors for Gene Therapy

    PubMed Central

    Satkunanathan, Stifani; Wheeler, Jun; Thorpe, Robin

    2014-01-01

    Abstract Adeno-associated viral (AAV) vectors show great promise because of their excellent safety profile; however, pre-existing immune responses have necessitated the administration of high titer AAV, posing a significant challenge to the advancement of gene therapy involving AAV vectors. Recombinant AAV vectors contain minimum viral proteins necessary for their assembly and gene delivery functions. During the process of AAV assembly and production, AAV vectors acquire, inherently and submissively, various cellular proteins, but the identity of these proteins is poorly characterized. We reason that by identifying host cell proteins inherently associated with AAV vectors we may better understand the contribution of cellular components to AAV vector assembly and, ultimately, may improve the production of AAV vectors for gene therapy. In this study, three serotypes of recombinant AAV, namely AAV2, AAV5, and AAV8, were investigated. We used liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) methods to identify protein composition in purified AAV vectors, confirmed protein identities using western blotting, and explored the potential function of selected proteins in AAV vector production using small hairpin (shRNA) methods. Using LC-MS/MS, we identified 44 AAV-associated cellular proteins including Y-box binding protein (YB1). We showed for the first time that the establishment of a novel producer cell line by introducing an shRNA sequence down-regulating YB1 resulted in up to 45- and 9-fold increase in physical vector genome titers of AAV2 and AAV8, respectively, and up to 7-fold increase in AAV2 transduction vector genome titers. Our results revealed that YB1 gene knockdown promoted AAV2 rep expression and vector DNA production and reduced the number of empty particles in AAV2 products, suggesting that YB1 plays an important role in AAV vector assembly by competition with adenovirus E2A and AAV capsid proteins for binding to the inverted terminal

  18. 75 FR 10524 - NUREG-0654/FEMA-REP-1, Rev. 1, Supplement 3, Guidance for Protective Action Recommendations for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... COMMISSION NUREG-0654/FEMA-REP-1, Rev. 1, Supplement 3, Guidance for Protective Action Recommendations for... document entitled: ``NUREG-0654/FEMA-REP-1, Rev. 1, Supplement 3, Guidance for Protective Action...-4737, or by e-mail to pdr.resource@nrc.gov . NUREG-0654/FEMA-REP-1, Rev. 1, Supplement 3,...

  19. 75 FR 27840 - NUREG-0654/FEMA-REP-1, Rev. 1, Supplement 3, Guidance for Protective Action Recommendations for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ...: 2010-11842] NUCLEAR REGULATORY COMMISSION [NRC-2010-0080] NUREG-0654/FEMA-REP-1, Rev. 1, Supplement 3...: ``NUREG-0654/FEMA-REP-1, Rev. 1, Supplement 3, Guidance for Protective Action Recommendations for General... the existing guidance contained in Supplement 3 to NUREG- 0654/FEMA-REP-1, Rev. 1, ``Criteria...

  20. A Translational Pathway Toward a Clinical Trial Using the Second-Generation AAV Micro-Dystrophin Vector

    DTIC Science & Technology

    2015-09-01

    1 AWARD NUMBER: W81XWH-14-1-0302 TITLE: A Translational Pathway Toward a Clinical Trial Using the Second-Generation AAV Micro-Dystrophin...COVERED 1 Sep 2014 - 31 Aug 2015 4. TITLE AND SUBTITLE A Translational Pathway Toward a Clinical Trial Using the Second-Generation AAV Micro-Dystrophin...phophotase) or are not clinically meaningful (Table 2). 4   In our previous study, we demonstrated bodywide skeletal muscle transduction after

  1. AAV-mediated delivery of the transcription factor XBP1s into the striatum reduces mutant Huntingtin aggregation in a mouse model of Huntington's disease

    SciTech Connect

    Zuleta, Amparo; Vidal, Rene L.; Armentano, Donna; Parsons, Geoffrey; Hetz, Claudio

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer The contribution of ER stress to HD has not been directly addressed. Black-Right-Pointing-Pointer Expression of XBP1s using AAVs decreases Huntingtin aggregation in vivo. Black-Right-Pointing-Pointer We describe a new in vivo model of HD based on the expression of a large fragment of mHtt-RFP. -- Abstract: Huntington's disease (HD) is caused by mutations that expand a polyglutamine region in the amino-terminal domain of Huntingtin (Htt), leading to the accumulation of intracellular inclusions and progressive neurodegeneration. Recent reports indicate the engagement of endoplasmic reticulum (ER) stress responses in human HD post mortem samples and animal models of the disease. Adaptation to ER stress is mediated by the activation of the unfolded protein response (UPR), an integrated signal transduction pathway that attenuates protein folding stress by controlling the expression of distinct transcription factors including X-Box binding protein 1 (XBP1). Here we targeted the expression of XBP1 on a novel viral-based model of HD. We delivered an active form of XBP1 locally into the striatum of adult mice using adeno-associated vectors (AAVs) and co-expressed this factor with a large fragment of mutant Htt as a fusion protein with RFP (Htt588{sup Q95}-mRFP) to directly visualize the accumulation of Htt inclusions in the brain. Using this approach, we observed a significant reduction in the accumulation of Htt588{sup Q95}-mRFP intracellular inclusion when XBP1 was co-expressed in the striatum. These results contrast with recent findings indicating a protective effect of XBP1 deficiency in neurodegeneration using knockout mice, and suggest a potential use of gene therapy strategies to manipulate the UPR in the context of HD.

  2. Intracisternal delivery of AAV9 results in oligodendrocyte and motor neuron transduction in the whole central nervous system of cats.

    PubMed

    Bucher, T; Dubreil, L; Colle, M-A; Maquigneau, M; Deniaud, J; Ledevin, M; Moullier, P; Joussemet, B

    2014-05-01

    Systemic and intracerebrospinal fluid delivery of adeno-associated virus serotype 9 (AAV9) has been shown to achieve widespread gene delivery to the central nervous system (CNS). However, after systemic injection, the neurotropism of the vector has been reported to vary according to age at injection, with greater neuronal transduction in newborns and preferential glial cell tropism in adults. This difference has not yet been reported after cerebrospinal fluid (CSF) delivery. The present study analyzed both neuronal and glial cell transduction in the CNS of cats according to age of AAV9 CSF injection. In both newborns and young cats, administration of AAV9-GFP in the cisterna magna resulted in high levels of motor neurons (MNs) transduction from the cervical (84±5%) to the lumbar (99±1%) spinal cord, demonstrating that the remarkable tropism of AAV9 for MNs is not affected by age at CSF delivery. Surprisingly, numerous oligodendrocytes were also transduced in the brain and in the spinal cord white matter of young cats, but not of neonates, indicating that (i) age of CSF delivery influences the tropism of AAV9 for glial cells and (ii) AAV9 intracisternal delivery could be relevant for both the treatment of MN and demyelinating disorders.

  3. Recombinant adeno-associated viral (rAAV) vectors as therapeutic tools for Duchenne muscular dystrophy (DMD).

    PubMed

    Athanasopoulos, T; Graham, I R; Foster, H; Dickson, G

    2004-10-01

    Duchenne muscular dystrophy (DMD) is a lethal genetic muscle disorder caused by recessive mutations in the dystrophin gene. The size of the gene (2.4 Mb) and mRNA (14 kb) in addition to immunogenicity problems and inefficient transduction of mature myofibres by currently available vector systems are formidable obstacles to the development of efficient gene therapy approaches. Adeno-associated viral (AAV) vectors overcome many of the problems associated with other vector systems (nonpathogenicity and minimal immunogenicity, extensive cell and tissue tropism) but accommodate limited transgene capacity (<5 kb). As a result of these observations, a number of laboratories worldwide have engineered a series of microdystrophin cDNAs based on genotype-phenotype relationship in Duchenne (DMD) and Becker (BMD) dystrophic patients, and transgenic studies in mdx mice. Recent progress in characterization of AAV serotypes from various species has demonstrated that alternative AAV serotypes are far more efficient in transducing muscle than the traditionally used AAV2. This article summarizes the current progress in the field of recombinant adeno-associated viral (rAAV) delivery for DMD, including optimization of recombinant AAV-microdystrophin vector systems/cassettes targeting the skeletal and cardiac musculature.

  4. Combining CRISPR/Cas9 and rAAV Templates for Efficient Gene Editing.

    PubMed

    Kaulich, Manuel; Dowdy, Steven F

    2015-12-01

    Altering endogenous genes in cells is an integral tool of modern cell biology. The ease-of-use of the CRISPR/Cas9 system to introduce genomic DNA breaks at specific sites in vivo has led to its rapid and wide adoption. In the absence of a DNA template, the lesion is repaired by nonhomologous end joining resolving as internal deletions. However, in the presence of a homologous DNA template, homology-directed repair occurs with variable efficiencies. Recent work has demonstrated that highly efficient gene targeting can be induced by combining CRISPR/Cas9 targeting of genomic loci with recombinant adeno-associated virus (rAAV) to provide a single-stranded homologous DNA template. Here we review the current state of CRISPR/Cas-based gene editing and provide a practical guide to applying the CRISPR/Cas and rAAV system for highly efficient, time- and cost-effective gene targeting.

  5. Combining CRISPR/Cas9 and rAAV Templates for Efficient Gene Editing

    PubMed Central

    Kaulich, Manuel

    2015-01-01

    Altering endogenous genes in cells is an integral tool of modern cell biology. The ease-of-use of the CRISPR/Cas9 system to introduce genomic DNA breaks at specific sites in vivo has led to its rapid and wide adoption. In the absence of a DNA template, the lesion is repaired by nonhomologous end joining resolving as internal deletions. However, in the presence of a homologous DNA template, homology-directed repair occurs with variable efficiencies. Recent work has demonstrated that highly efficient gene targeting can be induced by combining CRISPR/Cas9 targeting of genomic loci with recombinant adeno-associated virus (rAAV) to provide a single-stranded homologous DNA template. Here we review the current state of CRISPR/Cas-based gene editing and provide a practical guide to applying the CRISPR/Cas and rAAV system for highly efficient, time- and cost-effective gene targeting. PMID:26540648

  6. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges.

    PubMed

    Mingozzi, Federico; High, Katherine A

    2011-05-01

    In vivo gene replacement for the treatment of inherited disease is one of the most compelling concepts in modern medicine. Adeno-associated virus (AAV) vectors have been extensively used for this purpose and have shown therapeutic efficacy in a range of animal models. Successful translation to the clinic was initially slow, but long-term expression of donated genes at therapeutic levels has now been achieved in patients with inherited retinal disorders and haemophilia B. Recent exciting results have raised hopes for the treatment of many other diseases. As we discuss here, the prospects and challenges for AAV gene therapy are to a large extent dependent on the target tissue and the specific disease.

  7. AAV-mediated in vivo functional selection of tissue-protective factors against ischaemia

    PubMed Central

    Ruozi, Giulia; Bortolotti, Francesca; Falcione, Antonella; Dal Ferro, Matteo; Ukovich, Laura; Macedo, Antero; Zentilin, Lorena; Filigheddu, Nicoletta; Cappellari, Gianluca Gortan; Baldini, Giovanna; Zweyer, Marina; Barazzoni, Rocco; Graziani, Andrea; Zacchigna, Serena; Giacca, Mauro

    2015-01-01

    Functional screening of expression libraries in vivo would offer the possibility of identifying novel biotherapeutics without a priori knowledge of their biochemical function. Here we describe a procedure for the functional selection of tissue-protective factors based on the in vivo delivery of arrayed cDNA libraries from the mouse secretome using adeno-associated virus (AAV) vectors. Application of this technique, which we call FunSel, in the context of acute ischaemia, revealed that the peptide ghrelin protects skeletal muscle and heart from ischaemic damage. When delivered to the heart using an AAV9 vector, ghrelin markedly reduces infarct size and preserves cardiac function over time. This protective activity associates with the capacity of ghrelin to sustain autophagy and remove dysfunctional mitochondria after myocardial infarction. Our findings describe an innovative tool to identify biological therapeutics and reveal a novel role of ghrelin as an inducer of myoprotective autophagy. PMID:26066847

  8. AAV-IL-22 Modifies Liver Chemokine Activity and Ameliorates Portal Inflammation in Murine Autoimmune Cholangitis

    PubMed Central

    Hsueh, Yu-Hsin; Chang, Yun-Ning; Loh, Chia-En; Gershwin, M. Eric; Chuang, Ya-Hui

    2015-01-01

    There remain significant obstacles in developing biologics to treat primary biliary cholangitis (PBC). Although a number of agents have been studied both in murine models and human patients, the results have been relatively disappointing. IL-22 is a member of the IL-10 family and has multiple theoretical reasons for predicting successful usage in PBC. We have taken advantage of an IL-22 expressing adeno-associated virus (AAV-IL-22) to address the potential role of IL-22 in not only protecting mice from autoimmune cholangitis, but also in treating animals with established portal inflammation. Using our established mouse model of 2-OA-OVA immunization, including α-galactosylceramide (α-GalCer) stimulation, we treated mice both before and after the onset of clinical disease with AAV-IL-22. Firstly, AAV-IL-22 treatment given prior to 2-OA-OVA and α-GalCer exposure, i.e. before the onset of disease, significantly reduces the portal inflammatory response, production of Th1 cytokines and appearance of liver fibrosis. It also reduced the liver lymphotropic chemokines CCL5, CCL19, CXCL9, and CXCL10. Secondly, and more importantly, therapeutic use of AAV-IL-22, administered after the onset of disease, achieved a greater hurdle and significantly improved portal pathology. Further the improvements in inflammation were negatively correlated with levels of CCL5 and CXCL10 and positively correlated with levels of IL-22. In conclusion, we submit that the clinical use of IL-22 has a potential role in modulating the inflammatory portal process in patients with PBC. PMID:26537567

  9. Recombinant AAV-mediated gene transfer to the retina: gene therapy perspectives.

    PubMed

    Rolling, F

    2004-10-01

    Retinal degenerative diseases such as retinal macular degeneration and retinitis pigmentosa constitute a broad group of diseases that all share one critical feature, the progressive apoptotic loss of cells in the retina. There is currently no effective treatment available by which the course of these disorders can be modified, and visual dysfunction often progresses to total blindness. Gene therapy represents an attractive approach to treating retinal degeneration because the eye is easily accessible and allows local application of therapeutic vectors with reduced risk of systemic effects. Furthermore, transgene expression within the retina and effects of treatments may be monitored by a variety of noninvasive examinations. An increasing number of strategies for molecular treatment of retinal disease rely on recombinant adeno-associated virus (rAAV) as a therapeutic gene delivery vector. Before rAAV-mediated gene therapy for retinal degeneration becomes a reality, there are a number of important requirements that include: (1) evaluation of different rAAV serotypes, (2) screening of vectors in large animals in order to ensure that they mediate safe and long-term gene expression, (3) appropriate regulation of therapeutic gene expression, (4) evaluation of vectors carrying a therapeutic gene in relevant animal models, (5) identification of suitable patients, and finally (6) manufacture of clinical grade vector. All these steps towards gene therapy are still being explored. Outcomes of these studies will be discussed in the order in which they occur, from vector studies to preclinical assessment of the therapeutic potential of rAAV in animal models of retinal degeneration.

  10. AAV2-mediated gene delivery to monkey putamen: Evaluation of an infusion device and delivery parameters

    PubMed Central

    Sanftner, Laura M.; Sommer, Jurg M.; Suzuki, Brian M.; Smith, Peter H.; Vijay, Sharmila; Vargas, Joseph A.; Forsayeth, John R.; Cunningham, Janet; Bankiewicz, Krys S.; Kao, Haihwa; Bernal, Jan; Pierce, Glenn F.; Johnson, Kirk W.

    2013-01-01

    In this study, a modified infusion procedure and a novel infusion device designed for use in humans (Clinical Device B) were evaluated for delivery of recombinant adeno-associated virus (AAV2) to brain. The device is composed of 1.2 m of fused silica inserted through a 24.6-cm surgical steel cannula designed to fit a standard Leksell® clinical stereotaxic frame and micro-infusion syringe pump. AAV2 encoding the human aromatic L-amino acid decarboxylase gene (AAV-hAADC-2) was infused into the putamen of 4 normal rhesus monkeys as a supportive study for a clinical trial in Parkinson&apos ;s disease (PD) patients. Two infusion protocols were tested: a ramped procedure (slow stepwise increases in rate from 0.2 μL/min to 1μL/min), thought to be essential for convection-enhanced delivery (CED), and a non-ramped infusion at a constant rate of 1 μL/min. The primary endpoints were safety evaluation of the infusion procedures and assessment of transgene expression at 5.5 weeks post-infusion. Clinical observations after vector infusions revealed no behavioral abnormalities during the study period. No differences in gross pathology with either the ramped or non-ramped infusion procedure were observed. Histopathology of the putamen was comparable with both procedures, and revealed only minimal localized inflammatory tissue reaction along the needle track in response to cannula placement and vector infusion. AADC immunohistochemistry demonstrated that vector was distributed throughout the putamen, with no significant difference in volume of immunostaining with either infusion procedure. Serum antibody levels against AAV2 vector exhibited a minor increase after infusion. These results validate the clinical utility of this new infusion device and non-ramped infusion conditions for intraputamenal gene therapy, and have the potential to impact a number of human diseases in which delivery of therapeutics to brain is indicated. PMID:16022872

  11. AAV-mediated gene therapy for retinal disorders in large animal models.

    PubMed

    Stieger, Knut; Lhériteau, Elsa; Lhéariteau, Elsa; Moullier, Phillip; Rolling, Fabienne

    2009-01-01

    Retinal gene therapy holds great promise for the treatment of inherited and noninherited blinding diseases such as retinitis pigmentosa and age-related macular degeneration. The most widely used vectors for ocular gene delivery are based on adeno-associated virus (AAV) because they elicit minimal immune responses and mediated long-term transgene expression in a variety of retinal cell types. Extensive preclinical evaluation of new strategies in large animal models is key to the development of successful gene-based therapies for the retina. Because of differences in the retinal structures among species and unique structures such as the macula and fovea in the primate retina, nonhuman primates are widely used as preclinical animal models. But the observation of inherited retinal degenerations in dogs, which share a number of clinical and pathologic similarities with humans, has led to the characterization of several canine models for retinal diseases, one of which has already responded successfully to AAV-mediated gene therapy. This article presents a review and detailed discussion of the various large animal models available for the study of AAV-mediated gene-based therapies in the retina.

  12. Biomarkers for disease progression and AAV therapeutic efficacy in feline Sandhoff disease.

    PubMed

    Bradbury, Allison M; Gray-Edwards, Heather L; Shirley, Jamie L; McCurdy, Victoria J; Colaco, Alexandria N; Randle, Ashley N; Christopherson, Pete W; Bird, Allison C; Johnson, Aime K; Wilson, Diane U; Hudson, Judith A; De Pompa, Nicholas L; Sorjonen, Donald C; Brunson, Brandon L; Jeyakumar, Mylvaganam; Platt, Frances M; Baker, Henry J; Cox, Nancy R; Sena-Esteves, Miguel; Martin, Douglas R

    2015-01-01

    The GM2 gangliosidoses, Tay-Sachs disease (TSD) and Sandhoff disease (SD), are progressive neurodegenerative disorders that are caused by a mutation in the enzyme β-N-acetylhexosaminidase (Hex). Due to the recent emergence of novel experimental treatments, biomarker development has become particularly relevant in GM2 gangliosidosis as an objective means to measure therapeutic efficacy. Here we describe blood, cerebrospinal fluid (CSF), magnetic resonance imaging (MRI), and electrodiagnostic methods for evaluating disease progression in the feline SD model and application of these approaches to assess AAV-mediated gene therapy. SD cats were treated by intracranial injections of the thalami combined with either the deep cerebellar nuclei or a single lateral ventricle using AAVrh8 vectors encoding feline Hex. Significantly altered in untreated SD cats, blood and CSF based biomarkers were largely normalized after AAV gene therapy. Also reduced after treatment were expansion of the lysosomal compartment in peripheral blood mononuclear cells and elevated activity of secondary lysosomal enzymes. MRI changes characteristic of the gangliosidoses were documented in SD cats and normalized after AAV gene therapy. The minimally invasive biomarkers reported herein should be useful to assess disease progression of untreated SD patients and those in future clinical trials.

  13. Long-term Amelioration of Feline Mucopolysaccharidosis VI After AAV-mediated Liver Gene Transfer

    PubMed Central

    Cotugno, Gabriella; Annunziata, Patrizia; Tessitore, Alessandra; O'Malley, Thomas; Capalbo, Anita; Faella, Armida; Bartolomeo, Rosa; O'Donnell, Patricia; Wang, Ping; Russo, Fabio; Sleeper, Meg M; Knox, Van W; Fernandez, Steven; Levanduski, Leah; Hopwood, John; De Leonibus, Elvira; Haskins, Mark; Auricchio, Alberto

    2011-01-01

    Mucopolysaccharidosis VI (MPS VI) is caused by deficient arylsulfatase B (ARSB) activity resulting in lysosomal storage of glycosaminoglycans (GAGs). MPS VI is characterized by dysostosis multiplex, organomegaly, corneal clouding, and heart valve thickening. Gene transfer to a factory organ like liver may provide a lifetime source of secreted ARSB. We show that intravascular administration of adeno-associated viral vectors (AAV) 2/8-TBG-felineARSB in MPS VI cats resulted in ARSB expression up to 1 year, the last time point of the study. In newborn cats, normal circulating ARSB activity was achieved following delivery of high vector doses (6 × 1013 genome copies (gc)/kg) whereas delivery of AAV2/8 vector doses as low as 2 × 1012 gc/kg resulted in higher than normal serum ARSB levels in juvenile MPS VI cats. In MPS VI cats showing high serum ARSB levels, independent of the age at treatment, we observed: (i) clearance of GAG storage, (ii) improvement of long bone length, (iii) reduction of heart valve thickness, and (iv) improvement in spontaneous mobility. Thus, AAV2/ 8-mediated liver gene transfer represents a promising therapeutic strategy for MPS VI patients. PMID:21119624

  14. Analysis of the mouse Dhfr/Rep-3 major promoter region by using linker-scanning and internal deletion mutations and DNase I footprinting.

    PubMed Central

    Smith, M L; Mitchell, P J; Crouse, G F

    1990-01-01

    The mouse dihydrofolate reductase (Dhfr) promoter region is buried within a CpG island (a region rich in unmethylated CpG dinucleotides), has a high G+C content, and lacks CAAT and TATA elements. The region contains four 48-bp repeats, each of which contains an Sp1-binding site. Another gene, Rep-3 (formerly designated Rep-1), shares the same general promoter region with Dhfr, being transcribed in the direction opposite that of Dhfr. Both genes appear to be housekeeping genes and are expressed at relatively low levels in all tissues. The 5' termini of the major Dhfr transcripts are separated from the 5' termini of the Rep-3 transcripts by approximately 140 bp. This curious structural arrangement suggested that the two genes might share common regulatory elements. To investigate the promoter sequences driving bidirectional transcription, a series of promoter mutations was constructed. These mutations were assayed by a replicating minigene system and by promoter fusions to the chloramphenicol acetyltransferase gene. Linker-scanning mutations that spanned the four repeats produced a variety of mRNA transcript phenotypes. The effects were primarily quantitative, generally reducing the abundance of transcripts for one or both genes. Some mutations affected Dhfr in a qualitative manner, such as by changing the startpoint of one of the major Dhfr transcripts or changing the relative abundance of the two major Dhfr transcripts. Additionally, protein transcription factors that bind to sequences in the mouse Dhfr/Rep-3 major promoter region, potentially affecting expression of either or both genes, were investigated by DNase I footprinting. The results indicate that multiple protein-DNA interactions occur in this region, reflecting potentially complex transcriptional control mechanisms that might modulate expression of either or both genes under different physiological conditions. Images PMID:2233729

  15. AAV2-mediated in vivo immune gene therapy of solid tumours

    PubMed Central

    2010-01-01

    Background Many strategies have been adopted to unleash the potential of gene therapy for cancer, involving a wide range of therapeutic genes delivered by various methods. Immune therapy has become one of the major strategies adopted for cancer gene therapy and seeks to stimulate the immune system to target tumour antigens. In this study, the feasibility of AAV2 mediated immunotherapy of growing tumours was examined, in isolation and combined with anti-angiogenic therapy. Methods Immune-competent Balb/C or C57 mice bearing subcutaneous JBS fibrosarcoma or Lewis Lung Carcinoma (LLC) tumour xenografts respectively were treated by intra-tumoural administration of AAV2 vector encoding the immune up-regulating cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) and the co-stimulatory molecule B7-1 to subcutaneous tumours, either alone or in combination with intra-muscular (IM) delivery of AAV2 vector encoding Nk4 14 days prior to tumour induction. Tumour growth and survival was monitored for all animals. Cured animals were re-challenged with tumourigenic doses of the original tumour type. In vivo cytotoxicity assays were used to investigate establishment of cell-mediated responses in treated animals. Results AAV2-mediated GM-CSF, B7-1 treatment resulted in a significant reduction in tumour growth and an increase in survival in both tumour models. Cured animals were resistant to re-challenge, and induction of T cell mediated anti-tumour responses were demonstrated. Adoptive transfer of splenocytes to naïve animals prevented tumour establishment. Systemic production of Nk4 induced by intra-muscular (IM) delivery of Nk4 significantly reduced subcutaneous tumour growth. However, combination of Nk4 treatment with GM-CSF, B7-1 therapy reduced the efficacy of the immune therapy. Conclusions Overall, this study demonstrates the potential for in vivo AAV2 mediated immune gene therapy, and provides data on the inter-relationship between tumour vasculature and

  16. COMPASS Final Report: Radioisotope Electric Propulsion (REP) Centaur Orbiter New Frontiers Mission

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2011-01-01

    Radioisotope Electric Propulsion (REP) has been shown in past studies to enable missions to outer planetary bodies including the orbiting of Centaur asteroids. Key to the feasibility for REP missions are long life, low power electric propulsion (EP) devices, low mass Radioisotope Power System (RPS) and light spacecraft (S/C) components. In order to determine the key parameters for EP devices to perform these REP missions a design study was completed to design an REP S/C to orbit a Centaur in a New Frontiers (NF) cost cap. The design shows that an orbiter using several long lived (approx.200 kg xenon (Xe) throughput), low power (approx.700 W) Hall thrusters teamed with six (150 W each) Advanced Stirling Radioisotope Generators (ASRG) can deliver 60 kg of science instruments to a Centaur in 10 yr within the NF cost cap. Optimal specific impulses (Isp) for the Hall thrusters were found to be around 2000 s with thruster efficiencies over 40 percent. Not only can the REP S/C enable orbiting a Centaur (when compared to an all chemical mission only capable of flybys) but the additional power from the REP system can be used to enhance science and simplify communications. The mission design detailed in this report is a Radioisotope Power System (RPS) powered EP science orbiter to the Centaur Thereus with arrival 10 yr after launch, ending in a 1 yr science mapping mission. Along the trajectory, approximately 1.5 yr into the mission, the REP S/C does a flyby of the Trojan asteroid Tlepolemus. The total (Delta)V of the trajectory is 8.9 km/s. The REP S/C is delivered to orbit on an Atlas 551 class launch vehicle with a Star 48 B solid rocket stage

  17. Alpha-synuclein REP1 variants and survival in Parkinson’s disease

    PubMed Central

    Chung, Sun Ju; Biernacka, Joanna M.; Armasu, Sebastian M.; Anderson, Kari; Frigerio, Roberta; Aasly, Jan O.; Annesi, Grazia; Bentivoglio, Anna Rita; Brighina, Laura; Chartier-Harlin, Marie-Christine; Goldwurm, Stefano; Hadjigeorgiou, Georgios; Jasinska-Myga, Barbara; Jeon, Beom Seok; Kim, Yun Joong; Krüger, Rejko; Lesage, Suzanne; Markopoulou, Katerina; Mellick, George; Morrison, Karen E.; Puschmann, Andreas; Tan, Eng-King; Theuns, Jessie; Wirdefeldt, Karin; Wszolek, Zbigniew K.; Elbaz, Alexis; Maraganore, Demetrius M.

    2014-01-01

    Objectives To determine if alpha-synuclein REP1 genotypes are associated with survival in Parkinson’s disease. Methods Investigators from the Genetic Epidemiology of Parkinson’s Disease Consortium provided REP1 genotypes and baseline and follow-up clinical data for cases. The primary outcome was time to death. Cox proportional hazards regression models were used to assess the association of REP1 genotypes with survival. Results Twenty-one sites contributed data for 6,154 cases. There was no significant association between alpha-synuclein REP1 genotypes and survival in Parkinson’s disease. However, there was a significant association between REP1 genotypes and age at onset of PD (Hazard Ratio = 1.06, 95% Confidence Interval = 1.01–1.10, p value = 0.01). Conclusions In our large consortium study, alpha-synuclein REP1 genotypes were not associated with survival in Parkinson’s disease. Further studies of α–synuclein’s role in disease progression and long-term outcomes are needed. PMID:24578302

  18. The RepA_N replicons of Gram-positive bacteria: a family of broadly distributed but narrow host range plasmids.

    PubMed

    Weaver, Keith E; Kwong, Stephen M; Firth, Neville; Francia, Maria Victoria

    2009-03-01

    The pheromone-responsive conjugative plasmids of Enterococcus faecalis and the multiresistance plasmids pSK1 and pSK41 of Staphylococcus aureus are among the best studied plasmids native to Gram-positive bacteria. Although these plasmids seem largely restricted to their native hosts, protein sequence comparison of their replication initiator proteins indicates that they are clearly related. Homology searches indicate that these replicons are representatives of a large family of plasmids and a few phage that are widespread among the low G+C Gram-positive bacteria. We propose to name this family the RepA_N family of replicons after the annotated conserved domain that the initiator protein contains. Detailed sequence comparisons indicate that the initiator protein phylogeny is largely congruent with that of the host, suggesting that the replicons have evolved along with their current hosts and that intergeneric transfer has been rare. However, related proteins were identified on chromosomal regions bearing characteristics indicative of ICE elements, and the phylogeny of these proteins displayed evidence of more frequent intergeneric transfer. Comparison of stability determinants associated with the RepA_N replicons suggests that they have a modular evolution as has been observed in other plasmid families.

  19. Serum proteins reflecting inflammation, injury and repair as biomarkers of disease activity in ANCA-associated vasculitis

    PubMed Central

    Monach, Paul A; Warner, Roscoe L; Tomasson, Gunnar; Specks, Ulrich; Stone, John H; Ding, Linna; Fervenza, Fernando C; Fessler, Barri J; Hoffman, Gary S; Iklé, David; Kallenberg, Cees GM; Krischer, Jeffrey; Langford, Carol A; Mueller, Mark; Seo, Philip; St. Clair, E William; Spiera, Robert; Tchao, Nadia; Ytterberg, Steven R; Johnson, Kent J; Merkel, Peter A

    2016-01-01

    Objective To identify circulating proteins that distinguish between active anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) and remission in a manner complementary to markers of systemic inflammation. Methods Twenty-eight serum proteins representing diverse aspects of the biology of AAV were measured before and 6 months after treatment in a large clinical trial of AAV. Subjects (n=186) enrolled in the Rituximab in ANCA-Associated Vasculitis (RAVE) trial were studied. Erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) levels were available for comparison. The primary outcome was the ability of markers to distinguish severe AAV (Birmingham Vasculitis Activity Score for Wegener’s granulomatosis (BVAS/WG)≥3 at screening) from remission (BVAS/WG=0 at month 6), using areas under receiver operating characteristic (ROC) curve (AUC). Results All subjects had severe active vasculitis (median BVAS/WG=8) at screening. In the 137 subjects in remission at month 6, 24 of the 28 markers showed significant declines. ROC analysis indicated that levels of CXCL13 (BCA-1), matrix metalloproteinase-3 (MMP-3) and tissue inhibitor of metalloproteinases-1 (TIMP-1) best discriminated active AAV from remission (AUC>0.8) and from healthy controls (AUC>0.9). Correlations among these markers and with ESR or CRP were low. Conclusions Many markers are elevated in severe active AAV and decline with treatment, but CXCL13, MMP-3 and TIMP-1 distinguish active AAV from remission better than the other markers studied, including ESR and CRP. These proteins are particularly promising candidates for future studies to address unmet needs in the assessment of patients with AAV. PMID:22975753

  20. rAAV/ABAD-DP-6His attenuates oxidative stress-induced injury of PC12 cells

    PubMed Central

    Jia, Mingyue; Wang, Mingyu; Yang, Yi; Chen, Yixin; Liu, Dujuan; Wang, Xu; Song, Lei; Wu, Jiang; Yang, Yu

    2014-01-01

    Our previous studies have revealed that amyloid β (Aβ)-binding alcohol dehydrogenase (ABAD) decoy peptide antagonizes Aβ42-induced neurotoxicity. However, whether it improves oxidative stress injury remains unclear. In this study, a recombinant adenovirus constitutively secreting and expressing Aβ-ABAD decoy peptide (rAAV/ABAD-DP-6His) was successfully constructed. Our results showed that rAAV/ABAD-DP-6His increased superoxide dismutase activity in hydrogen peroxide-induced oxidative stress-mediated injury of PC12 cells. Moreover, rAAV/ABAD-DP-6His decreased malondialdehyde content, intracellular Ca2+ concentration, and the level of reactive oxygen species. rAAV/ABAD-DP-6His maintained the stability of the mitochondrial membrane potential. In addition, the ATP level remained constant, and apoptosis was reduced. Overall, the results indicate that rAAV/ABAD-DP-6His generates the fusion peptide, Aβ-ABAD decoy peptide, which effectively protects PC12 cells from oxidative stress injury induced by hydrogen peroxide, thus exerting neuroprotective effects. PMID:25206842