Science.gov

Sample records for aav vector-mediated gene

  1. AAV Vector-Mediated Gene Delivery to Substantia Nigra Dopamine Neurons: Implications for Gene Therapy and Disease Models.

    PubMed

    Albert, Katrina; Voutilainen, Merja H; Domanskyi, Andrii; Airavaara, Mikko

    2017-02-08

    Gene delivery using adeno-associated virus (AAV) vectors is a widely used method to transduce neurons in the brain, especially due to its safety, efficacy, and long-lasting expression. In addition, by varying AAV serotype, promotor, and titer, it is possible to affect the cell specificity of expression or the expression levels of the protein of interest. Dopamine neurons in the substantia nigra projecting to the striatum, comprising the nigrostriatal pathway, are involved in movement control and degenerate in Parkinson's disease. AAV-based gene targeting to the projection area of these neurons in the striatum has been studied extensively to induce the production of neurotrophic factors for disease-modifying therapies for Parkinson's disease. Much less emphasis has been put on AAV-based gene therapy targeting dopamine neurons in substantia nigra. We will review the literature related to targeting striatum and/or substantia nigra dopamine neurons using AAVs in order to express neuroprotective and neurorestorative molecules, as well as produce animal disease models of Parkinson's disease. We discuss difficulties in targeting substantia nigra dopamine neurons and their vulnerability to stress in general. Therefore, choosing a proper control for experimental work is not trivial. Since the axons along the nigrostriatal tract are the first to degenerate in Parkinson's disease, the location to deliver the therapy must be carefully considered. We also review studies using AAV-a-synuclein (a-syn) to target substantia nigra dopamine neurons to produce an α-syn overexpression disease model in rats. Though these studies are able to produce mild dopamine system degeneration in the striatum and substantia nigra and some behavioural effects, there are studies pointing to the toxicity of AAV-carrying green fluorescent protein (GFP), which is often used as a control. Therefore, we discuss the potential difficulties in overexpressing proteins in general in the substantia nigra.

  2. AAV Vector-Mediated Gene Delivery to Substantia Nigra Dopamine Neurons: Implications for Gene Therapy and Disease Models

    PubMed Central

    Albert, Katrina; Voutilainen, Merja H.; Domanskyi, Andrii; Airavaara, Mikko

    2017-01-01

    Gene delivery using adeno-associated virus (AAV) vectors is a widely used method to transduce neurons in the brain, especially due to its safety, efficacy, and long-lasting expression. In addition, by varying AAV serotype, promotor, and titer, it is possible to affect the cell specificity of expression or the expression levels of the protein of interest. Dopamine neurons in the substantia nigra projecting to the striatum, comprising the nigrostriatal pathway, are involved in movement control and degenerate in Parkinson’s disease. AAV-based gene targeting to the projection area of these neurons in the striatum has been studied extensively to induce the production of neurotrophic factors for disease-modifying therapies for Parkinson’s disease. Much less emphasis has been put on AAV-based gene therapy targeting dopamine neurons in substantia nigra. We will review the literature related to targeting striatum and/or substantia nigra dopamine neurons using AAVs in order to express neuroprotective and neurorestorative molecules, as well as produce animal disease models of Parkinson’s disease. We discuss difficulties in targeting substantia nigra dopamine neurons and their vulnerability to stress in general. Therefore, choosing a proper control for experimental work is not trivial. Since the axons along the nigrostriatal tract are the first to degenerate in Parkinson’s disease, the location to deliver the therapy must be carefully considered. We also review studies using AAV-α-synuclein (α-syn) to target substantia nigra dopamine neurons to produce an α-syn overexpression disease model in rats. Though these studies are able to produce mild dopamine system degeneration in the striatum and substantia nigra and some behavioural effects, there are studies pointing to the toxicity of AAV-carrying green fluorescent protein (GFP), which is often used as a control. Therefore, we discuss the potential difficulties in overexpressing proteins in general in the substantia

  3. Recombinant adeno-associated viral (rAAV) vectors mediate efficient gene transduction in cultured neonatal and adult microglia.

    PubMed

    Su, Wei; Kang, John; Sopher, Bryce; Gillespie, James; Aloi, Macarena S; Odom, Guy L; Hopkins, Stephanie; Case, Amanda; Wang, David B; Chamberlain, Jeffrey S; Garden, Gwenn A

    2016-01-01

    Microglia are a specialized population of myeloid cells that mediate CNS innate immune responses. Efforts to identify the cellular and molecular mechanisms that regulate microglia behaviors have been hampered by the lack of effective tools for manipulating gene expression. Cultured microglia are refractory to most chemical and electrical transfection methods, yielding little or no gene delivery and causing toxicity and/or inflammatory activation. Recombinant adeno-associated viral (rAAVs) vectors are non-enveloped, single-stranded DNA vectors commonly used to transduce many primary cell types and tissues. In this study, we evaluated the feasibility and efficiency of utilizing rAAV serotype 2 (rAAV2) to modulate gene expression in cultured microglia. rAAV2 yields high transduction and causes minimal toxicity or inflammatory response in both neonatal and adult microglia. To demonstrate that rAAV transduction can induce functional protein expression, we used rAAV2 expressing Cre recombinase to successfully excise a LoxP-flanked miR155 gene in cultured microglia. We further evaluated rAAV serotypes 5, 6, 8, and 9, and observed that all efficiently transduced cultured microglia to varying degrees of success and caused little or no alteration in inflammatory gene expression. These results provide strong encouragement for the application of rAAV-mediated gene expression in microglia for mechanistic and therapeutic purposes. Neonatal microglia are functionally distinct from adult microglia, although the majority of in vitro studies utilize rodent neonatal microglia cultures because of difficulties of culturing adult cells. In addition, cultured microglia are refractory to most methods for modifying gene expression. Here, we developed a novel protocol for culturing adult microglia and evaluated the feasibility and efficiency of utilizing Recombinant Adeno-Associated Virus (rAAV) to modulate gene expression in cultured microglia.

  4. Exosome-associated AAV2 vector mediates robust gene delivery into the murine retina upon intravitreal injection.

    PubMed

    Wassmer, Sarah J; Carvalho, Livia S; György, Bence; Vandenberghe, Luk H; Maguire, Casey A

    2017-03-31

    Widespread gene transfer to the retina is challenging as it requires vector systems to overcome physical and biochemical barriers to enter and diffuse throughout retinal tissue. We investigated whether exosome-associated adeno-associated virus, (exo-AAV) enabled broad retinal targeting following intravitreal (IVT) injection, as exosomes have been shown to traverse biological barriers and mediate widespread distribution upon systemic injection. We packaged an AAV genome encoding green fluorescent protein (GFP) into conventional AAV2 and exo-AAV2 vectors. Vectors were IVT injected into the eyes of adult mice. GFP expression was noninvasively monitored by fundus imaging and retinal expression was analyzed 4 weeks post-injection by qRT-PCR and histology. Exo-AAV2 outperformed conventional AAV2 in GFP expression based on fundus image analysis and qRT-PCR. Exo-AAV2 demonstrated deeper penetration in the retina, efficiently reaching the inner nuclear and outer plexiform, and to a lesser extent the outer nuclear layer. Cell targets were ganglion cells, bipolar cells, Müller cells, and photoreceptors. Exo-AAV2 serves as a robust gene delivery tool for murine retina, and the simplicity of production and isolation should make it widely applicable to basic research of the eye.

  5. Exosome-associated AAV2 vector mediates robust gene delivery into the murine retina upon intravitreal injection

    PubMed Central

    Wassmer, Sarah J.; Carvalho, Livia S.; György, Bence; Vandenberghe, Luk H.; Maguire, Casey A.

    2017-01-01

    Widespread gene transfer to the retina is challenging as it requires vector systems to overcome physical and biochemical barriers to enter and diffuse throughout retinal tissue. We investigated whether exosome-associated adeno-associated virus, (exo-AAV) enabled broad retinal targeting following intravitreal (IVT) injection, as exosomes have been shown to traverse biological barriers and mediate widespread distribution upon systemic injection. We packaged an AAV genome encoding green fluorescent protein (GFP) into conventional AAV2 and exo-AAV2 vectors. Vectors were IVT injected into the eyes of adult mice. GFP expression was noninvasively monitored by fundus imaging and retinal expression was analyzed 4 weeks post-injection by qRT-PCR and histology. Exo-AAV2 outperformed conventional AAV2 in GFP expression based on fundus image analysis and qRT-PCR. Exo-AAV2 demonstrated deeper penetration in the retina, efficiently reaching the inner nuclear and outer plexiform, and to a lesser extent the outer nuclear layer. Cell targets were ganglion cells, bipolar cells, Müller cells, and photoreceptors. Exo-AAV2 serves as a robust gene delivery tool for murine retina, and the simplicity of production and isolation should make it widely applicable to basic research of the eye. PMID:28361998

  6. A translatable, closed recirculation system for AAV6 vector-mediated myocardial gene delivery in the large animal.

    PubMed

    Swain, JaBaris D; Katz, Michael G; White, Jennifer D; Thesier, Danielle M; Henderson, Armen; Stedman, Hansell H; Bridges, Charles R

    2011-01-01

    Current strategies for managing congestive heart failure are limited, validating the search for an alternative treatment modality. Gene therapy holds tremendous promise as both a practical and translatable technology platform. Its effectiveness is evidenced by the improvements in cardiac function observed in vector-mediated therapeutic transgene delivery to the murine myocardium. A large animal model validating these results is the likely segue into clinical application. However, controversy still exists regarding a suitable method of vector-mediated cardiac gene delivery that provides for efficient, global gene transfer to the large animal myocardium that is also clinically translatable and practical. Intramyocardial injection and catheter-based coronary delivery techniques are attractive alternatives with respect to their clinical applicability; yet, they are fraught with numerous challenges, including concerns regarding collateral gene expression in other organs, low efficiency of vector delivery to the myocardium, inhomogeneous expression, and untoward immune response secondary to gene delivery. Cardiopulmonary bypass (CPB) delivery with dual systemic and isolated cardiac circuitry precludes these drawbacks and has the added advantage of allowing for control of the pharmacological milieu, multiple pass recirculation through the coronary circulation, the selective addition of endothelial permeabilizing agents, and an increase in vector residence time. Collectively, these mechanics significantly improve the efficiency of global, vector-mediated cardiac gene delivery to the large animal myocardium, highlighting a potential therapeutic strategy to be extended to some heart failure patients.

  7. The Skeletal Muscle Environment and Its Role in Immunity and Tolerance to AAV Vector-Mediated Gene Transfer

    PubMed Central

    Boisgérault, Florence; Mingozzi, Federico

    2015-01-01

    Since the early days of gene therapy, muscle has been one the most studied tissue targets for the correction of enzyme deficiencies and myopathies. Several preclinical and clinical studies have been conducted using adeno-associated virus (AAV) vectors. Exciting progress has been made in the gene delivery technologies, from the identification of novel AAV serotypes to the development of novel vector delivery techniques. In parallel, significant knowledge has been generated on the host immune system and its interaction with both the vector and the transgene at the muscle level. In particular, the role of underlying muscle inflammation, characteristic of several diseases affecting the muscle, has been defined in terms of its potential detrimental impact on gene transfer with AAV vectors. At the same time, feedback immunomodulatory mechanisms peculiar of skeletal muscle involving resident regulatory T cells have been identified, which seem to play an important role in maintaining, at least to some extent, muscle homeostasis during inflammation and regenerative processes. Devising strategies to tip this balance towards unresponsiveness may represent an avenue to improve the safety and efficacy of muscle gene transfer with AAV vectors. PMID:26122097

  8. Transcriptional activity of novel ALDH1L1 promoters in the rat brain following AAV vector-mediated gene transfer

    PubMed Central

    Mudannayake, Janitha M; Mouravlev, Alexandre; Fong, Dahna M; Young, Deborah

    2016-01-01

    Aldehyde dehydrogenase family 1, member L1 (ALDH1L1) is a recently characterized pan-astrocytic marker that is more homogenously expressed throughout the brain than the classic astrocytic marker, glial fibrillary acidic protein. We generated putative promoter sequence variants of the rat ALDH1L1 gene for use in adeno-associated viral vector-mediated gene transfer, with an aim to achieve selective regulation of transgene expression in astrocytes in the rat brain. Unexpectedly, ALDH1L1 promoter variants mediated transcriptional activity exclusively in neurons in the substantia nigra pars compacta as assessed by luciferase reporter expression at 3 weeks postvector infusion. This selectivity for neurons in the substantia nigra pars compacta also persisted in the context of adeno-associated viral serotype 5, 8 or 9 vector-mediated gene delivery. An in vivo promoter comparison showed the highest performing ALDH1L1 promoter variant mediated higher transgene expression than the neuronal-specific synapsin 1 and tyrosine hydroxylase promoters. The ALDH1L1 promoter was also transcriptionally active in dentate granule neurons following intrahippocampal adeno-associated viral vector infusion, whereas transgene expression was detected in both striatal neurons and astrocytes following vector infusion into the striatum. Our results demonstrate the potential suitability of the ALDH1L1 promoter as a new tool in the development of gene therapy and disease modelling applications. PMID:27990448

  9. Multi-parametric MRI at 14T for muscular dystrophy mice treated with AAV vector-mediated gene therapy.

    PubMed

    Park, Joshua; Wicki, Jacqueline; Knoblaugh, Sue E; Chamberlain, Jeffrey S; Lee, Donghoon

    2015-01-01

    The objective of this study was to investigate the efficacy of using quantitative magnetic resonance imaging (MRI) as a non-invasive tool for the monitoring of gene therapy for muscular dystrophy. The clinical investigations for this family of diseases often involve surgical biopsy which limits the amount of information that can be obtained due to the invasive nature of the procedure. Thus, other non-invasive tools may provide more opportunities for disease assessment and treatment responses. In order to explore this, dystrophic mdx4cv mice were systemically treated with a recombinant adeno-associated viral (AAV) vector containing a codon-optimized micro-dystrophin gene. Multi-parametric MRI of T2, magnetization transfer, and diffusion effects alongside 3-D volume measurements were then utilized to monitor disease/treatment progression. Mice were imaged at 10 weeks of age for pre-treatment, then again post-treatment at 8, 16, and 24 week time points. The efficacy of treatment was assessed by physiological assays for improvements in function and quantification of expression. Tissues from the hindlimbs were collected for histological analysis after the final time point for comparison with MRI results. We found that introduction of the micro-dystrophin gene restored some aspects of normal muscle histology and pathology such as decreased necrosis and resistance to contraction-induced injury. T2 relaxation values showed percentage decreases across all muscle types measured (tibialis anterior, gastrocnemius, and soleus) when treated groups were compared to untreated groups. Additionally, the differences between groups were statistically significant for the tibialis anterior as well. The diffusion measurements showed a wider range of percentage changes and less statistical significance while the magnetization transfer effect measurements showed minimal change. MR images displayed hyper-intense regions of muscle that correlated with muscle pathology in histological

  10. Pseudotyped AAV Vector-Mediated Gene Transfer in a Human Fetal Trachea Xenograft Model: Implications for In Utero Gene Therapy for Cystic Fibrosis

    PubMed Central

    Leung, Alice; Katz, Anna B.; Lim, Foong-Yen; Habli, Mounira; Jones, Helen N.; Wilson, James M.; Crombleholme, Timothy M.

    2012-01-01

    Background Lung disease including airway infection and inflammation currently causes the majority of morbidities and mortalities associated with cystic fibrosis (CF), making the airway epithelium and the submucosal glands (SMG) novel target cells for gene therapy in CF. These target cells are relatively inaccessible to postnatal gene transfer limiting the success of gene therapy. Our previous work in a human-fetal trachea xenograft model suggests the potential benefit for treating CF in utero. In this study, we aim to validate adeno-associated virus serotype 2 (AAV2) gene transfer in a human fetal trachea xenograft model and to compare transduction efficiencies of pseudotyping AAV2 vectors in fetal xenografts and postnatal xenograft controls. Methodology/Principal Findings Human fetal trachea or postnatal bronchus controls were xenografted onto immunocompromised SCID mice for a four-week engraftment period. After injection of AAV2/2, 2/1, 2/5, 2/7 or 2/8 with a LacZ reporter into both types of xenografts, we analyzed for transgene expression in the respiratory epithelium and SMGs. At 1 month, transduction by AAV2/2 and AAV2/8 in respiratory epithelium and SMG cells was significantly greater than that of AAV2/1, 2/5, and 2/7 in xenograft tracheas. Efficiency in SMG transduction was significantly greater in AAV2/8 than AAV2/2. At 3 months, AAV2/2 and AAV2/8 transgene expression was >99% of respiratory epithelium and SMG. At 1 month, transduction efficiency of AAV2/2 and AAV2/8 was significantly less in adult postnatal bronchial xenografts than in fetal tracheal xenografts. Conclusions/Significance Based on the effectiveness of AAV vectors in SMG transduction, our findings suggest the potential utility of pseudotyped AAV vectors for treatment of cystic fibrosis. The human fetal trachea xenograft model may serve as an effective tool for further development of fetal gene therapy strategies for the in utero treatment of cystic fibrosis. PMID:22937069

  11. Assessment of toxicity and biodistribution of recombinant AAV8 vector-mediated immunomodulatory gene therapy in mice with Pompe disease.

    PubMed

    Wang, Gensheng; Young, Sarah P; Bali, Deeksha; Hutt, Julie; Li, Songtao; Benson, Janet; Koeberl, Dwight D

    2014-01-01

    A preclinical safety study was conducted to evaluate the short- and long-term toxicity of a recombinant adeno-associated virus serotype 8 (AAV2/8) vector that has been developed as an immune-modulatory adjunctive therapy to recombinant human acid α-glucosidase (rhGAA, Myozyme) enzyme replacement treatment (ERT) for patients with Pompe disease (AAV2/8-LSPhGAApA). The AAV2/8-LSPhGAApA vector at 1.6 × 10(13) vector particles/kg, after intravenous injection, did not cause significant short- or long-term toxicity. Recruitment of CD4(+) (but not CD8(+)) lymphocytes to the liver was elevated in the vector-dosed male animals at study day (SD) 15, and in group 8 animals at SD 113, in comparison to their respective control animals. Administration of the vector, either prior to or after the one ERT injection, uniformly prevented the hypersensitivity induced by subsequent ERT in males, but not always in female animals. The vector genome was sustained in all tissues through 16-week postdosing, except for in blood with a similar tissue tropism between males and females. Administration of the vector alone, or combined with the ERT, was effective in producing significantly increased GAA activity and consequently decreased glycogen accumulation in multiple tissues, and the urine biomarker, Glc4, was significantly reduced. The efficacy of the vector (or with ERT) was better in males than in females, as demonstrated both by the number of tissues showing significantly effective responses and the extent of response in a given tissue. Given the lack of toxicity for AAV2/8LSPhGAApA, further consideration of clinical translation is warranted in Pompe disease.

  12. Expression of human alpha1-antitrypsin in mice and dogs following AAV6 vector-mediated gene transfer to the lungs.

    PubMed

    Halbert, Christine L; Madtes, David K; Vaughan, Andrew E; Wang, Zejing; Storb, Rainer; Tapscott, Stephen J; Miller, A Dusty

    2010-06-01

    We evaluated the potential of lung-directed gene therapy for alpha1-antitrypsin (AAT) deficiency using an adeno-associated virus type 6 (AAV6) vector containing a human AAT (hAAT) complementary DNA (cDNA) delivered to the lungs of mice and dogs. The results in normal and immune-deficient mice showed that hAAT concentrations were much higher in lung fluid than in plasma, and therapeutic levels were obtained even in normal mice. However, in normal mice an immune response against the vector and/or transgene limited long-term gene expression. An AAV6 vector expressing a marker protein verified that AAV6 vectors efficiently transduced lung cells in dogs. Delivery of AAV6-hAAT resulted in low levels of hAAT in dog serum but therapeutic levels in the lung that persisted for at least 58 days to 4 months in three immunosuppressed dogs. Expression in the serum was not detectable after 45 days in one nonimmune suppressed dog. A lymphoproliferative response to AAV capsid but not to hAAT was detected even after immunosuppression. These results in mice and dogs show the feasibility of expression of therapeutic levels of AAT in the lungs after AAV vector delivery, and advocate for approaches to prevent cellular immune responses to AAV capsid proteins for persistence of gene expression in humans.

  13. AAV vector-mediated reversal of hypoglycemia in canine and murine glycogen storage disease type Ia.

    PubMed

    Koeberl, Dwight D; Pinto, Carlos; Sun, Baodong; Li, Songtao; Kozink, Daniel M; Benjamin, Daniel K; Demaster, Amanda K; Kruse, Meghan A; Vaughn, Valerie; Hillman, Steven; Bird, Andrew; Jackson, Mark; Brown, Talmage; Kishnani, Priya S; Chen, Yuan-Tsong

    2008-04-01

    Glycogen storage disease type Ia (GSD-Ia) profoundly impairs glucose release by the liver due to glucose-6-phosphatase (G6Pase) deficiency. An adeno-associated virus (AAV) containing a small human G6Pase transgene was pseudotyped with AAV8 (AAV2/8) to optimize liver tropism. Survival was prolonged in 2-week-old G6Pase (-/-) mice by 600-fold fewer AAV2/8 vector particles (vp), in comparison to previous experiments involving this model (2 x 10(9) vp; 3 x 10(11) vp/kg). When the vector was pseudotyped with AAV1, survival was prolonged only at a higher dose (3 x 10(13) vp/kg). The AAV2/8 vector uniquely prevented hypoglycemia during fasting and fully corrected liver G6Pase deficiency in GSD-Ia mice and dogs. The AAV2/8 vector has prolonged survival in three GSD-Ia dogs to >11 months, which validated this strategy in the large animal model for GSD-Ia. Urinary biomarkers, including lactate and 3-hydroxybutyrate, were corrected by G6Pase expression solely in the liver. Glycogen accumulation in the liver was reduced almost to the normal level in vector-treated GSD-Ia mice and dogs, as was the hepatocyte growth factor (HGF) in GSD-Ia mice. These preclinical data demonstrated the efficacy of correcting hepatic G6Pase deficiency, and support the further preclinical development of AAV vector-mediated gene therapy for GSD-Ia.

  14. Complete correction of hyperphenylalaninemia following liver-directed, recombinant AAV2/8 vector-mediated gene therapy in murine phenylketonuria.

    PubMed

    Harding, C O; Gillingham, M B; Hamman, K; Clark, H; Goebel-Daghighi, E; Bird, A; Koeberl, D D

    2006-03-01

    Novel recombinant adeno-associated virus vectors pseudotyped with serotype 8 capsid (rAAV2/8) have recently shown exciting promise as effective liver-directed gene transfer reagents. We have produced a novel liver-specific rAAV2/8 vector expressing the mouse phenylalanine hydroxylase (Pah) cDNA and have administered this vector to hyperphenylalaninemic PAH-deficient Pah(enu2) mice, a model of human phenylketonuria (PKU). Our hypothesis was that this vector would produce sufficient hepatocyte transduction frequency and PAH activity to correct blood phenylalanine levels in murine PKU. Portal vein injection of recombinant AAV2/8 vector into five adult Pah(enu2) mice yielded complete and stable (up to 17 weeks) correction of serum phenylalanine levels. Liver PAH activity was corrected to 11.5+/-2.4% of wild type liver activity and was associated with a significant increase in phenylalanine clearance following parenteral phenylalanine challenge. Although questions of long-term safety and stability of expression remain, recombinant AAV2/8-mediated, liver-directed gene therapy is a promising novel treatment approach for PKU and allied inborn errors of metabolism.

  15. Complete correction of hyperphenylalaninemia following liver-directed, recombinant AAV2/8 vector-mediated gene therapy in murine phenylketonuria

    PubMed Central

    Harding, CO; Gillingham, MB; Hamman, K; Clark, H; Goebel-Daghighi, E; Bird, A; Koeberl, DD

    2009-01-01

    Novel recombinant adeno-associated virus vectors pseudo-typed with serotype 8 capsid (rAAV2/8) have recently shown exciting promise as effective liver-directed gene transfer reagents. We have produced a novel liver-specific rAAV2/8 vector expressing the mouse phenylalanine hydroxylase (Pah) cDNA and have administered this vector to hyperphenylalaninemic PAH-deficient Pahenu2 mice, a model of human phenylketonuria (PKU). Our hypothesis was that this vector would produce sufficient hepatocyte transduction frequency and PAH activity to correct blood phenylalanine levels in murine PKU. Portal vein injection of recombinant AAV2/8 vector into five adult Pahenu2 mice yielded complete and stable (up to 17 weeks) correction of serum phenylalanine levels. Liver PAH activity was corrected to 11.5±2.4% of wild type liver activity and was associated with a significant increase in phenylalanine clearance following parenteral phenylalanine challenge. Although questions of long-term safety and stability of expression remain, recombinant AAV2/8-mediated, liver-directed gene therapy is a promising novel treatment approach for PKU and allied inborn errors of metabolism. PMID:16319949

  16. Vector-mediated antibody gene transfer for infectious diseases.

    PubMed

    Schnepp, Bruce C; Johnson, Philip R

    2015-01-01

    This chapter discusses the emerging field of vector-mediated antibody gene transfer as an alternative vaccine for infectious disease, with a specific focus on HIV. However, this methodology need not be confined to HIV-1; the general strategy of vector-mediated antibody gene transfer can be applied to other difficult vaccine targets like hepatitis C virus, malaria, respiratory syncytial virus, and tuberculosis. This approach is an improvement over classical passive immunization strategies that administer antibody proteins to the host to provide protection from infection. With vector-mediated gene transfer, the antibody gene is delivered to the host, via a recombinant adeno-associated virus (rAAV) vector; this in turn results in long-term endogenous antibody expression from the injected muscle that confers protective immunity. Vector-mediated antibody gene transfer can rapidly move existing, potent broadly cross-neutralizing HIV-1-specific antibodies into the clinic. The gene transfer products demonstrate a potency and breadth identical to the original product. This strategy eliminates the need for immunogen design and interaction with the adaptive immune system to generate protection, a strategy that so far has shown limited promise.

  17. AAV vector-mediated secretion of chondroitinase provides a sensitive tracer for axonal arborisations.

    PubMed

    Alves, João Nuno; Muir, Elizabeth M; Andrews, Melissa R; Ward, Anneliese; Michelmore, Nicholas; Dasgupta, Debayan; Verhaagen, Joost; Moloney, Elizabeth B; Keynes, Roger J; Fawcett, James W; Rogers, John H

    2014-04-30

    As part of a project to express chondroitinase ABC (ChABC) in neurons of the central nervous system, we have inserted a modified ChABC gene into an adeno-associated viral (AAV) vector and injected it into the vibrissal motor cortex in adult rats to determine the extent and distribution of expression of the enzyme. A similar vector for expression of green fluorescent protein (GFP) was injected into the same location. For each vector, two versions with minor differences were used, giving similar results. After 4 weeks, the brains were stained to show GFP and products of chondroitinase digestion. Chondroitinase was widely expressed, and the AAV-ChABC and AAV-GFP vectors gave similar expression patterns in many respects, consistent with the known projections from the directly transduced neurons in vibrissal motor cortex and adjacent cingulate cortex. In addition, diffusion of vector to deeper neuronal populations led to labelling of remote projection fields which was much more extensive with AAV-ChABC than with AAV-GFP. The most notable of these populations are inferred to be neurons of cortical layer 6, projecting widely in the thalamus, and neurons of the anterior pole of the hippocampus, projecting through most of the hippocampus. We conclude that, whereas GFP does not label the thinnest axonal branches of some neuronal types, chondroitinase is efficiently secreted from these arborisations and enables their extent to be sensitively visualised. After 12 weeks, chondroitinase expression was undiminished.

  18. Neutralizing antibodies against AAV2, AAV5 and AAV8 in healthy and HIV-1-infected subjects in China: implications for gene therapy using AAV vectors.

    PubMed

    Liu, Q; Huang, W; Zhang, H; Wang, Y; Zhao, J; Song, A; Xie, H; Zhao, C; Gao, D; Wang, Y

    2014-08-01

    Adeno-associated viruses (AAV) have attracted attention as potential vectors for gene therapy and vaccines against several diseases, including HIV-1 infection. However, the presence of neutralizing antibodies (NAbs) after natural AAV infections inhibits their transfection in re-exposed subjects. To identify candidate AAV vectors for therapeutic or prophylactic HIV vaccines, NAbs against AAV2, AAV5 and AAV8 were screened in the sera of healthy individuals in China and 10 developed countries and an HIV-1-infected Chinese population. Seroprevalence was higher for AAV2 (96.6%) and AAV8 (82.0%) than for AAV5 (40.2%) in normal Chinese subjects. Among individuals seropositive for AAV5, >80% had low NAb titers (<1:90). The prevalence and titers of NAbs against the three AAVs were significantly higher in China than in developed countries (P<0.01). The prevalence of NAbs against AAV5 did not differ significantly between healthy and HIV-1-infected Chinese subjects (P=0.39). Co-occurrence of NAbs against AAV2, AAV5, and AAV8 was observed in the healthy population, and 15, 41, and 41% of individuals were AAV2(+), AAV2(+)/AAV8(+), and AAV2(+)/AAV5(+)/AAV8(+), respectively. Therefore, AAV5 exposure is low in healthy and HIV-1-infected populations Chinese individuals, and vectors based on AAV5 may be appropriate for human gene therapy or vaccines.

  19. Engineering AAV receptor footprints for gene therapy.

    PubMed

    Madigan, Victoria J; Asokan, Aravind

    2016-06-01

    Adeno-associated viruses (AAV) are currently at the forefront of human gene therapy clinical trials as recombinant vectors. Significant progress has been made in elucidating the structure, biology and tropisms of different naturally occurring AAV isolates in the past decade. In particular, a spectrum of AAV capsid interactions with host receptors have been identified and characterized. These studies have enabled a better understanding of key determinants of AAV cell recognition and entry in different hosts. This knowledge is now being applied toward engineering new, lab-derived AAV capsids with favorable transduction profiles. The current review conveys a structural perspective of capsid-glycan interactions and provides a roadmap for generating synthetic strains by engineering AAV receptor footprints.

  20. A regulatable AAV vector mediating GDNF biological effects at clinically-approved sub-antimicrobial doxycycline doses.

    PubMed

    Chtarto, Abdelwahed; Humbert-Claude, Marie; Bockstael, Olivier; Das, Atze T; Boutry, Sébastien; Breger, Ludivine S; Klaver, Bep; Melas, Catherine; Barroso-Chinea, Pedro; Gonzalez-Hernandez, Tomas; Muller, Robert N; DeWitte, Olivier; Levivier, Marc; Lundberg, Cecilia; Berkhout, Ben; Tenenbaum, Liliane

    2016-01-01

    Preclinical and clinical data stress the importance of pharmacologically-controlling glial cell line-derived neurotrophic factor (GDNF) intracerebral administration to treat PD. The main challenge is finding a combination of a genetic switch and a drug which, when administered at a clinically-approved dose, reaches the brain in sufficient amounts to induce a therapeutic effect. We describe a highly-sensitive doxycycline-inducible adeno-associated virus (AAV) vector. This vector allowed for the first time a longitudinal analysis of inducible transgene expression in the brain using bioluminescence imaging. To evaluate the dose range of GDNF biological activity, the inducible AAV vector (8.0 × 10(9) viral genomes) was injected in the rat striatum at four delivery sites and increasing doxycycline doses administered orally. ERK/Akt signaling activation as well as tyrosine hydroxylase downregulation, a consequence of long-term GDNF treatment, were induced at plasmatic doxycycline concentrations of 140 and 320 ng/ml respectively, which are known not to increase antibiotic-resistant microorganisms in patients. In these conditions, GDNF covered the majority of the striatum. No behavioral abnormalities or weight loss were observed. Motor asymmetry resulting from unilateral GDNF treatment only appeared with a 2.5-fold higher vector and a 13-fold higher inducer doses. Our data suggest that using the herein-described inducible AAV vector, biological effects of GDNF can be obtained in response to sub-antimicrobial doxycycline doses.

  1. A regulatable AAV vector mediating GDNF biological effects at clinically-approved sub-antimicrobial doxycycline doses

    PubMed Central

    Chtarto, Abdelwahed; Humbert-Claude, Marie; Bockstael, Olivier; Das, Atze T; Boutry, Sébastien; Breger, Ludivine S; Klaver, Bep; Melas, Catherine; Barroso-Chinea, Pedro; Gonzalez-Hernandez, Tomas; Muller, Robert N; DeWitte, Olivier; Levivier, Marc; Lundberg, Cecilia; Berkhout, Ben; Tenenbaum, Liliane

    2016-01-01

    Preclinical and clinical data stress the importance of pharmacologically-controlling glial cell line-derived neurotrophic factor (GDNF) intracerebral administration to treat PD. The main challenge is finding a combination of a genetic switch and a drug which, when administered at a clinically-approved dose, reaches the brain in sufficient amounts to induce a therapeutic effect. We describe a highly-sensitive doxycycline-inducible adeno-associated virus (AAV) vector. This vector allowed for the first time a longitudinal analysis of inducible transgene expression in the brain using bioluminescence imaging. To evaluate the dose range of GDNF biological activity, the inducible AAV vector (8.0 × 109 viral genomes) was injected in the rat striatum at four delivery sites and increasing doxycycline doses administered orally. ERK/Akt signaling activation as well as tyrosine hydroxylase downregulation, a consequence of long-term GDNF treatment, were induced at plasmatic doxycycline concentrations of 140 and 320 ng/ml respectively, which are known not to increase antibiotic-resistant microorganisms in patients. In these conditions, GDNF covered the majority of the striatum. No behavioral abnormalities or weight loss were observed. Motor asymmetry resulting from unilateral GDNF treatment only appeared with a 2.5-fold higher vector and a 13-fold higher inducer doses. Our data suggest that using the herein-described inducible AAV vector, biological effects of GDNF can be obtained in response to sub-antimicrobial doxycycline doses. PMID:27069954

  2. Recombinant AAV-directed gene therapy for type I glycogen storage diseases

    PubMed Central

    Chou, JY; Mansfield, BC

    2011-01-01

    Introduction Glycogen storage disease (GSD) type Ia and Ib are disorders of impaired glucose homeostasis affecting the liver and kidney. GSD-Ib also affects neutrophils. Current dietary therapies cannot prevent long-term complications. In animal studies, recombinant adeno-associated virus (rAAV) vector-mediated gene therapy can correct or minimize multiple aspects of the disorders, offering hope for human gene therapy. Areas covered A summary of recent progress in rAAV-mediated gene therapy for GSD-I; strategies to improve rAAV-mediated gene delivery, transduction efficiency and immune avoidance; and vector refinements that improve expression. Expert opinion rAAV-mediated gene delivery to the liver can restore glucose homeostasis in preclinical models of GSD-I, but some long-term complications of the liver and kidney remain. Gene therapy for GSD-Ib is less advanced than for GSD-Ia and only transient correction of myeloid dysfunction has been achieved. A question remains whether a single rAAV vector can meet the expression efficiency and tropism required to treat all aspects of GSD-I, or if a multi-prong approach is needed. An understanding of the strengths and weaknesses of rAAV vectors in the context of strategies to achieve efficient transduction of the liver, kidney, and hematopoietic stem cells is required for treating GSD-I. PMID:21504389

  3. Early, sustained efficacy of adeno-associated virus vector-mediated gene therapy in glycogen storage disease type Ia.

    PubMed

    Koeberl, D D; Sun, B D; Damodaran, T V; Brown, T; Millington, D S; Benjamin, D K; Bird, A; Schneider, A; Hillman, S; Jackson, M; Beaty, R M; Chen, Y T

    2006-09-01

    The deficiency of glucose-6-phosphatase (G6Pase) underlies life-threatening hypoglycemia and growth retardation in glycogen storage disease type Ia (GSD-Ia). An adeno-associated virus (AAV) vector encoding G6Pase was pseudotyped as AAV8 and administered to 2-week-old GSD-Ia mice (n = 9). Median survival was prolonged to 7 months following vector administration, in contrast to untreated GSD-Ia mice that survived for only 2 weeks. Although GSD-Ia mice were initially growth-retarded, treated mice increased fourfold in weight to normal size. Blood glucose was partially corrected by 2 weeks following treatment, whereas blood cholesterol normalized. Glucose-6-phosphatase activity was partially corrected to 25% of the normal level at 7 months of age in treated mice, and blood glucose during fasting remained lower in treated, affected mice than in normal mice. Glycogen storage was partially corrected in the liver by 2 weeks following treatment, but reaccumulated to pre-treatment levels by 7 months old (m.o.). Vector genome DNA decreased between 3 days and 3 weeks in the liver following vector administration, mainly through the loss of single-stranded genomes; however, double-stranded vector genomes were more stable. Although CD8+ lymphocytic infiltrates were present in the liver, partial biochemical correction was sustained at 7 m.o. The development of efficacious AAV vector-mediated gene therapy could significantly reduce the impact of long-term complications in GSD-Ia, including hypoglycemia, hyperlipidemia and growth failure.

  4. Imaging herpes simplex virus type 1 amplicon vector-mediated gene expression in human glioma spheroids.

    PubMed

    Kaestle, Christine; Winkeler, Alexandra; Richter, Raphaela; Sauer, Heinrich; Hescheler, Jürgen; Fraefel, Cornel; Wartenberg, Maria; Jacobs, Andreas H

    2011-06-01

    Vectors derived from herpes simplex virus type 1 (HSV-1) have great potential for transducing therapeutic genes into the central nervous system; however, inefficient distribution of vector particles in vivo may limit their therapeutic potential in patients with gliomas. This study was performed to investigate the extent of HSV-1 amplicon vector-mediated gene expression in a three-dimensional glioma model of multicellular spheroids by imaging highly infectious HSV-1 virions expressing green fluorescent protein (HSV-GFP). After infection or microscopy-guided vector injection of glioma spheroids at various spheroid sizes, injection pressures and injection times, the extent of HSV-1 vector-mediated gene expression was investigated via laser scanning microscopy. Infection of spheroids with HSV-GFP demonstrated a maximal depth of vector-mediated GFP expression at 70 to 80 μm. A > 80% transduction efficiency was reached only in small spheroids with a diameter of < 150 μm. Guided vector injection into the spheroids showed transduction efficiencies ranging between < 10 and > 90%. The results demonstrated that vector-mediated gene expression in glioma spheroids was strongly dependent on the mode of vector application-injection pressure and injection time being the most important parameters. The assessment of these vector application parameters in tissue models will contribute to the development of safe and efficient gene therapy protocols for clinical application.

  5. AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease.

    PubMed

    Kells, Adrian P; Fong, Dahna M; Dragunow, Mike; During, Matthew J; Young, Deborah; Connor, Bronwen

    2004-05-01

    Huntington disease (HD) is a neurodegenerative disorder that results in the progressive loss of GABAergic medium spiny projection neurons in the striatum. Neurotrophic factors have demonstrated neuroprotective actions on striatal neurons, suggesting that increased neurotrophic factor expression may prevent or reduce neuronal loss in the HD brain. We investigated whether enhanced expression of brain-derived neurotrophic factor (BDNF) or glial cell line-derived neurotrophic factor (GDNF), achieved by adeno-associated viral (AAV) vector-mediated gene delivery, could protect striatal neurons in the quinolinic acid (QA) rodent model of HD. Adult Wistar rats received unilateral intrastriatal injections of AAV-BDNF, AAV-GDNF, AAV-GFP, or PBS. Three weeks later, the rats were lesioned with QA, a toxin that induces striatal neuron death by an excitotoxic process. Both AAV-BDNF and AAV-GDNF significantly reduced the loss of both NeuN- and calbindin-immunopositive striatal neurons 2 weeks after lesion compared to controls. AAV-BDNF also provided significant neurotrophic support to NOS-immunopositive striatal interneurons, while AAV-GDNF-treated rats demonstrated significant protection of parvalbumin-immunopositive striatal interneurons compared to controls. These results indicate that AAV-mediated gene transfer of BDNF or GDNF into the striatum provides neuronal protection in a rodent model of HD.

  6. The recombinant adeno-associated virus vector (rAAV2)-mediated apolipoprotein B mRNA-specific hammerhead ribozyme: a self-complementary AAV2 vector improves the gene expression

    PubMed Central

    Zhong, Shumei; Sun, Shihua; Teng, Ba-Bie

    2004-01-01

    Background In humans, overproduction of apolipoprotein B (apoB) is positively associated with premature coronary artery diseases. To reduce the levels of apoB mRNA, we have designed an apoB mRNA-specific hammerhead ribozyme targeted at nucleotide sequences GUA6679 (RB15) mediated by adenovirus, which efficiently cleaves and decreases apoB mRNA by 80% in mouse liver and attenuates the hyperlipidemic condition. In the current study, we used an adeno-associated virus vector, serotype 2 (AAV2) and a self-complementary AAV2 vector (scAAV2) to demonstrate the effect of long-term tissue-specific gene expression of RB15 on the regulation apoB mRNA in vivo. Methods We constructed a hammerhead ribozyme RB15 driven by a liver-specific transthyretin (TTR) promoter using an AAV2 vector (rAAV2-TTR-RB15). HepG2 cells and hyperlipidemic mice deficient in both the low density lipoprotein receptor and the apoB mRNA editing enzyme genes (LDLR-/-Apobec1-/-; LDb) were transduced with rAAV2-TTR-RB15 and a control vector rAAV-TTR-RB15-mutant (inactive ribozyme). The effects of ribozyme RB15 on apoB metabolism and atherosclerosis development were determined in LDb mice at 5-month after transduction. A self-complementary AAV2 vector expressing ribozyme RB15 (scAAV2-TTR-RB15) was also engineered and used to transduce HepG2 cells. Studies were designed to compare the gene expression efficiency between rAAV2-TTR-RB15 and scAAV2-TTR-RB15. Results The effect of ribozyme RB15 RNA on reducing apoB mRNA levels in HepG2 cells was observed only on day-7 after rAAV2-TTR-RB15 transduction. And, at 5-month after rAAV2-TTR-RB15 treatment, the apoB mRNA levels in LDb mice were significantly decreased by 43%, compared to LDb mice treated with control vector rAAV2-TTR-RB15-mutant. Moreover, both the rAAV2-TTR-RB15 viral DNA and ribozyme RB15 RNA were still detectable in mice livers at 5-month after treatment. However, this rAAV2-TTR-RB15 vector mediated a prolonged but low level of ribozyme RB15 gene

  7. Nacystelyn enhances adenoviral vector-mediated gene delivery to mouse airways.

    PubMed

    Kushwah, R; Oliver, J R; Cao, H; Hu, J

    2007-08-01

    Adenoviral vector-mediated gene delivery has been vastly investigated for cystic fibrosis (CF) gene therapy; however, one of its drawbacks is the low efficiency of gene transfer, which is due to basolateral colocalization of viral receptors, immune responses to viral vectors and the presence of a thick mucus layer in the airways of CF patients. Therefore, enhancement of gene transfer can lead to reduction in the viral dosage, which could further reduce the acute toxicity associated with the use of adenoviral vectors. Nacystelyn (NAL) is a mucolytic agent with anti-inflammatory and antioxidant properties, and has been used clinically in CF patients to reduce mucus viscosity in the airways. In this study, we show that pretreatment of the airways with NAL followed by administration of adenoviral vectors in complex with DEAE-Dextran can significantly enhance gene delivery to the airways of mice without any harmful effects. Moreover, NAL pretreatment can reduce the airway inflammation, which is normally observed after delivery of adenoviral particles. Taken together, these results indicate that NAL pretreatment followed by adenoviral vector-mediated gene delivery can be beneficial to CF patients by increasing the efficiency of gene transfer to the airways, and reducing the acute toxicity associated with the administration of adenoviral vectors.

  8. Protein Trans-Splicing as a Means for Viral Vector-Mediated In Vivo Gene Therapy

    PubMed Central

    Li, Juan; Sun, Wenchang; Wang, Bing; Xiao, Xiao

    2008-01-01

    Abstract Inteins catalyze protein splicing in a fashion similar to how self-splicing introns catalyze RNA splicing. Split-inteins catalyze precise ligation of two separate polypeptides through trans-splicing in a highly specific manner. Here we report a method of using protein trans-splicing to circumvent the packaging size limit of gene therapy vectors. To demonstrate this method, we chose a large dystrophin gene and an adeno-associated viral (AAV) vector, which has a small packaging size. A highly functional 6.3-kb Becker-form dystrophin cDNA was broken into two pieces and modified by adding appropriate split-intein coding sequences, resulting in split-genes sufficiently small for packaging in AAV vectors. The two split-genes, after codelivery into target cells, produced two polypeptides that spontaneously trans-spliced to form the expected Becker-form dystrophin protein in cell culture in vitro. Delivering the split-genes by AAV1 vectors into the muscle of a mouse model of Duchenne muscular dystrophy rendered therapeutic gene expression and benefits. PMID:18788906

  9. Comparative Study of Liver Gene Transfer With AAV Vectors Based on Natural and Engineered AAV Capsids

    PubMed Central

    Wang, Lili; Bell, Peter; Somanathan, Suryanarayan; Wang, Qiang; He, Zhenning; Yu, Hongwei; McMenamin, Deirdre; Goode, Tamara; Calcedo, Roberto; Wilson, James M

    2015-01-01

    Vectors based on the clade E family member adeno-associated virus (AAV) serotype 8 have shown promise in patients with hemophilia B and have emerged as best in class for human liver gene therapies. We conducted a thorough evaluation of liver-directed gene therapy using vectors based on several natural and engineered capsids including the clade E AAVrh10 and the largely uncharacterized and phylogenically distinct AAV3B. Included in this study was a putatively superior hepatotropic capsid, AAVLK03, which is very similar to AAV3B. Vectors based on these capsids were benchmarked against AAV8 and AAV2 in a number of in vitro and in vivo model systems including C57BL/6 mice, immune-deficient mice that are partially repopulated with human hepatocytes, and nonhuman primates. Our studies in nonhuman primates and human hepatocytes demonstrated high level transduction of the clade E-derived vectors and equally high transduction with vectors based on AAV3B. In contrast to previous reports, AAVLK03 vectors are not superior to either AAV3B or AAV8. Vectors based on AAV3B should be considered for liver-directed gene therapy when administered following, or before, treatment with the serologically distinct clade E vectors. PMID:26412589

  10. Comparative Study of Liver Gene Transfer With AAV Vectors Based on Natural and Engineered AAV Capsids.

    PubMed

    Wang, Lili; Bell, Peter; Somanathan, Suryanarayan; Wang, Qiang; He, Zhenning; Yu, Hongwei; McMenamin, Deirdre; Goode, Tamara; Calcedo, Roberto; Wilson, James M

    2015-12-01

    Vectors based on the clade E family member adeno-associated virus (AAV) serotype 8 have shown promise in patients with hemophilia B and have emerged as best in class for human liver gene therapies. We conducted a thorough evaluation of liver-directed gene therapy using vectors based on several natural and engineered capsids including the clade E AAVrh10 and the largely uncharacterized and phylogenically distinct AAV3B. Included in this study was a putatively superior hepatotropic capsid, AAVLK03, which is very similar to AAV3B. Vectors based on these capsids were benchmarked against AAV8 and AAV2 in a number of in vitro and in vivo model systems including C57BL/6 mice, immune-deficient mice that are partially repopulated with human hepatocytes, and nonhuman primates. Our studies in nonhuman primates and human hepatocytes demonstrated high level transduction of the clade E-derived vectors and equally high transduction with vectors based on AAV3B. In contrast to previous reports, AAVLK03 vectors are not superior to either AAV3B or AAV8. Vectors based on AAV3B should be considered for liver-directed gene therapy when administered following, or before, treatment with the serologically distinct clade E vectors.

  11. Humoral Immune Response to AAV

    PubMed Central

    Calcedo, Roberto; Wilson, James M.

    2013-01-01

    Adeno-associated virus (AAV) is a member of the family Parvoviridae that has been widely used as a vector for gene therapy because of its safety profile, its ability to transduce both dividing and non-dividing cells, and its low immunogenicity. AAV has been detected in many different tissues of several animal species but has not been associated with any disease. As a result of natural infections, antibodies to AAV can be found in many animals including humans. It has been shown that pre-existing AAV antibodies can modulate the safety and efficacy of AAV vector-mediated gene therapy by blocking vector transduction or by redirecting distribution of AAV vectors to tissues other than the target organ. This review will summarize antibody responses against natural AAV infections, as well as AAV gene therapy vectors and their impact in the clinical development of AAV vectors for gene therapy. We will also review and discuss the various methods used for AAV antibody detection and strategies to overcome neutralizing antibodies in AAV-mediated gene therapy. PMID:24151496

  12. Humoral Immune Response to AAV.

    PubMed

    Calcedo, Roberto; Wilson, James M

    2013-10-18

    Adeno-associated virus (AAV) is a member of the family Parvoviridae that has been widely used as a vector for gene therapy because of its safety profile, its ability to transduce both dividing and non-dividing cells, and its low immunogenicity. AAV has been detected in many different tissues of several animal species but has not been associated with any disease. As a result of natural infections, antibodies to AAV can be found in many animals including humans. It has been shown that pre-existing AAV antibodies can modulate the safety and efficacy of AAV vector-mediated gene therapy by blocking vector transduction or by redirecting distribution of AAV vectors to tissues other than the target organ. This review will summarize antibody responses against natural AAV infections, as well as AAV gene therapy vectors and their impact in the clinical development of AAV vectors for gene therapy. We will also review and discuss the various methods used for AAV antibody detection and strategies to overcome neutralizing antibodies in AAV-mediated gene therapy.

  13. AAV-Mediated Liver-Directed Gene Therapy

    PubMed Central

    Sands, Mark S.

    2014-01-01

    The liver is directly or indirectly involved in many essential processes and is affected by numerous inherited diseases. Therefore, many inherited diseases could be effectively treated by targeting the liver using gene transfer approaches. The challenges associated with liver-directed gene therapy are efficient targeting of hepatocytes, stability of the vector genome, and persistent high level expression. Many of these obstacles can be overcome with adeno-associated viral (AAV) gene transfer vectors. The first AAV gene transfer vector developed for in vivo use was based on the AAV2 serotype. AAV2 has a broad tropism and transduces many cell types, including hepatocytes, relatively efficiently in vivo. The capsid protein confers the serological profile and at least 12 primate AAV serotypes have already been characterized. Importantly, pseudotyping a recombinant AAV vector with different capsid proteins can dramatically alter the tropism. Both AAV8 and AAV9 have higher affinities for hepatocytes when compared to AAV2. In particular, AAV8 can transduce 3–4 fold more hepatocytes and deliver 3–4 fold more genomes per transduced cell when compared to AAV2. Depending on the dose, AAV8 can transduce up to 90–95% of hepatocytes in the mouse liver following intraportal vein injection. Interestingly, comparable levels of transduction can be achieved following intravenous injection. Direct intraparenchymal injection of an AAV vector also mediates relatively high level long term expression. Additional specificity can be conferred by using liver-specific promoters in conjunction with AAV8 capsid proteins. In addition to treating primary hepatocyte defects, immune reactions to transgene products can be minimized by circumventing the fixed tissue macrophages of the liver, Kupffer cells, and limiting expression to hepatocytes. The ability to target hepatocytes by virtue of the AAV serotype and the use of liver-specific promoters allows investigators to test novel therapeutic

  14. Prospects for Lentiviral Vector Mediated Prostaglandin F Synthase Gene Delivery in Monkey Eyes In vivo

    PubMed Central

    Lee, Eun Suk; Rasmussen, Carol A.; Filla, Mark S.; Slauson, Sarah R.; Kolb, Aaron W.; Peters, Donna M.; Kaufman, Paul L.; Gabelt, B’Ann True; Brandt, Curtis R.

    2014-01-01

    Currently, the most effective outflow drugs approved for clinical use are prostaglandin F2α analogues, but these require daily topical self-dosing and have various intraocular, ocular surface and extraocular side effects. Lentiviral vector-mediated delivery of the prostaglandin F synthase (PGFS) gene, resulting in long-term reduction of IOP, may eliminate off-target tissue effects and the need for daily topical PGF2α self-administration. Lentiviral vector-mediated delivery of the PGFS gene to the anterior segment has been achieved in cats and non-human primates. Although these results are encouraging, our studies have identified a number of challenges that need to be overcome for prostaglandin gene therapy to be translated into the clinic. Using examples from our work in non-human primates, where we were able to achieve a significant reduction in IOP (2 mm Hg) for 5 months after delivery of the cDNA for bovine PGF synthase, we identify and discuss these issues and consider several possible solutions. PMID:24559478

  15. Vector-Mediated In Vivo Antibody Expression.

    PubMed

    Schnepp, Bruce C; Johnson, Philip R

    2014-08-01

    This article focuses on a novel vaccine strategy known as vector-mediated antibody gene transfer, with a particular focus on human immunodeficiency virus (HIV). This strategy provides a solution to the problem of current vaccines that fail to generate neutralizing antibodies to prevent HIV-1 infection and AIDS. Antibody gene transfer allows for predetermination of antibody affinity and specificity prior to "immunization" and avoids the need for an active humoral immune response against the HIV envelope protein. This approach uses recombinant adeno-associated viral (rAAV) vectors, which have been shown to transduce muscle with high efficiency and direct the long-term expression of a variety of transgenes, to deliver the gene encoding a broadly neutralizing antibody into the muscle. Following rAAV vector gene delivery, the broadly neutralizing antibodies are endogenously synthesized in myofibers and passively distributed to the circulatory system. This is an improvement over classical passive immunization strategies that administer antibody proteins to the host to provide protection from infection. Vector-mediated gene transfer studies in mice and monkeys with anti-HIV and simian immunodeficiency virus (SIV)-neutralizing antibodies demonstrated long-lasting neutralizing activity in serum with complete protection against intravenous challenge with virulent HIV and SIV. These results indicate that existing potent anti-HIV antibodies can be rapidly moved into the clinic. However, this methodology need not be confined to HIV. The general strategy of vector-mediated antibody gene transfer can be applied to other difficult vaccine targets such as hepatitis C virus, malaria, respiratory syncytial virus, and tuberculosis.

  16. Adeno-associated virus (AAV) vectors in cancer gene therapy.

    PubMed

    Santiago-Ortiz, Jorge L; Schaffer, David V

    2016-10-28

    Gene delivery vectors based on adeno-associated virus (AAV) have been utilized in a large number of gene therapy clinical trials, which have demonstrated their strong safety profile and increasingly their therapeutic efficacy for treating monogenic diseases. For cancer applications, AAV vectors have been harnessed for delivery of an extensive repertoire of transgenes to preclinical models and, more recently, clinical trials involving certain cancers. This review describes the applications of AAV vectors to cancer models and presents developments in vector engineering and payload design aimed at tailoring AAV vectors for transduction and treatment of cancer cells. We also discuss the current status of AAV clinical development in oncology and future directions for AAV in this field.

  17. AAV Vectorization of DSB-mediated Gene Editing Technologies.

    PubMed

    Moser, Rachel J; Hirsch, Matthew L

    2016-01-01

    Recent work both at the bench and the bedside demonstrate zinc-finger nucleases (ZFNs), CRISPR/Cas9, and other programmable site-specific endonuclease technologies are being successfully utilized within and alongside AAV vectors to induce therapeutically relevant levels of directed gene editing within the human chromosome. Studies from past decades acknowledge that AAV vector genomes are enhanced substrates for homology-directed repair in the presence or absence of targeted DNA damage within the host genome. Additionally, AAV vectors are currently the most efficient format for in vivo gene delivery with no vector related complications in >100 clinical trials for diverse diseases. At the same time, advancements in the design of custom-engineered site-specific endonucleases and the utilization of elucidated endonuclease formats have resulted in efficient and facile genetic engineering for basic science and for clinical therapies. AAV vectors and gene editing technologies are an obvious marriage, using AAV for the delivery of repair substrate and/or a gene encoding a designer endonuclease; however, while efficient delivery and enhanced gene targeting by vector genomes are advantageous, other attributes of AAV vectors are less desirable for gene editing technologies. This review summarizes the various roles that AAV vectors play in gene editing technologies and provides insight into its trending applications for the treatment of genetic diseases.

  18. Lentiviral vector-mediated genetic modification of human neural progenitor cells for ex vivo gene therapy.

    PubMed

    Capowski, Elizabeth E; Schneider, Bernard L; Ebert, Allison D; Seehus, Corey R; Szulc, Jolanta; Zufferey, Romain; Aebischer, Patrick; Svendsen, Clive N

    2007-07-30

    Human neural progenitor cells (hNPC) hold great potential as an ex vivo system for delivery of therapeutic proteins to the central nervous system. When cultured as aggregates, termed neurospheres, hNPC are capable of significant in vitro expansion. In the current study, we present a robust method for lentiviral vector-mediated gene delivery into hNPC that maintains the differentiation and proliferative properties of neurosphere cultures while minimizing the amount of viral vector used and controlling the number of insertion sites per population. This method results in long-term, stable expression even after differentiation of the hNPC to neurons and astrocytes and allows for generation of equivalent transgenic populations of hNPC. In addition, the in vitro analysis presented predicts the behavior of transgenic lines in vivo when transplanted into a rodent model of Parkinson's disease. The methods presented provide a powerful tool for assessing the impact of factors such as promoter systems or different transgenes on the therapeutic utility of these cells.

  19. Packaging of an AAV vector encoding human acid alpha-glucosidase for gene therapy in glycogen storage disease type II with a modified hybrid adenovirus-AAV vector.

    PubMed

    Sun, Baodong; Chen, Y-T; Bird, Andrew; Xu, Fang; Hou, Yang-Xun; Amalfitano, Andrea; Koeberl, Dwight D

    2003-04-01

    We have developed an improved method for packaging adeno-associated virus (AAV) vectors with a replication-defective adenovirus-AAV (Ad-AAV) hybrid virus. The AAV vector encoding human acid alpha-glucosidase (hGAA) was cloned into an E1, polymerase/preterminal protein-deleted adenovirus, such that it is packaged as an Ad vector. Importantly, the Ad-AAV hybrid cannot replicate during AAV vector packaging in 293 cells, because of deletion of polymerase/preterminal protein. The residual Ad-AAV in the AAV vector stock was reduced to <1 infectious particle per 10(10) AAV vector particles. These modifications resulted in approximately 30-fold increased packaging of the AAV vector for the hybrid Ad-AAV vector method as compared with standard transfection-only methods. Similarly improved packaging was demonstrated for pseudotyping the AAV vector as AAV6, and for AAV vector packaging with a second Ad-AAV vector encoding canine glucose-6-phosphatase. Liver-targeted delivery of either the Ad-AAV hybrid or AAV vector particles in acid alpha-glucosidase-knockout (GAA-KO) mice revealed secretion of hGAA with the Ad-AAV vector, and sustained secretion of hGAA with an AAV vector in hGAA-tolerant GAA-KO mice. Further development of hybrid Ad-AAV vectors could offer distinct advantages for gene therapy in glycogen storage diseases.

  20. Improved adeno-associated virus (AAV) serotype 1 and 5 vectors for gene therapy.

    PubMed

    Sen, Dwaipayan; Balakrishnan, Balaji; Gabriel, Nishanth; Agrawal, Prachi; Roshini, Vaani; Samuel, Rekha; Srivastava, Alok; Jayandharan, Giridhara R

    2013-01-01

    Despite significant advancements with recombinant AAV2 or AAV8 vectors for liver directed gene therapy in humans, it is well-recognized that host and vector-related immune challenges need to be overcome for long-term gene transfer. To overcome these limitations, alternate AAV serotypes (1-10) are being rigorously evaluated. AAV5 is the most divergent (55% similarity vs. other serotypes) and like AAV1 vector is known to transduce liver efficiently. AAV1 and AAV5 vectors are also immunologically distinct by virtue of their low seroprevalence and minimal cross reactivity against pre-existing AAV2 neutralizing antibodies. Here, we demonstrate that targeted bio-engineering of these vectors, augment their gene expression in murine hepatocytes in vivo (up to 16-fold). These studies demonstrate the feasibility of the use of these novel AAV1 and AAV5 vectors for potential gene therapy of diseases like hemophilia.

  1. Immunology of AAV-Mediated Gene Transfer in the Eye

    PubMed Central

    Willett, Keirnan; Bennett, Jean

    2013-01-01

    The eye has been at the forefront of translational gene therapy largely owing to suitable disease targets, anatomic accessibility, and well-studied immunologic privilege. These advantages have fostered research culminating in several clinical trials and adeno-associated virus (AAV) has emerged as the vector of choice for many ocular therapies. Pre-clinical and clinical investigations have assessed the humoral and cellular immune responses to a variety of naturally occurring and engineered AAV serotypes as well as their delivered transgenes and these data have been correlated to potential clinical sequelae. Encouragingly, AAV appears safe and effective with clinical follow-up surpassing 5 years in some studies. As disease targets continue to expand for AAV in the eye, thorough and deliberate assessment of immunologic safety is critical. With careful study, the development of these technologies should concurrently inform the biology of the ocular immune response. PMID:24009613

  2. Retinal gene delivery by adeno-associated virus (AAV) vectors: Strategies and applications.

    PubMed

    Schön, Christian; Biel, Martin; Michalakis, Stylianos

    2015-09-01

    Adeno-associated virus (AAV) vectors are the most widely used vehicle systems for neuronal gene transfer. This popularity is based on the non-pathogenic nature of AAVs and their versatility making them a multifunctional vector system for basic research and clinical applications. AAVs are successfully applied in clinical and pre-clinical gene therapy studies for inherited retinal disorders. Their excellent transduction profile and efficiency also boosted the use of AAV vectors in basic research. The AAV vector system can be easily modified and adjusted at multiple levels to allow for optimized and specific gene expression in target cells. Here, we will provide an overview on the AAV vector system and its applications focusing on gene transfer into retinal cells. Furthermore, we will outline and discuss strategies for the optimization of AAV gene transfer by modifications to the AAV vector expression cassette, the AAV capsid or the routes of vector administration.

  3. Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy.

    PubMed

    Louis Jeune, Vedell; Joergensen, Jakob A; Hajjar, Roger J; Weber, Thomas

    2013-04-01

    Adeno-associated virus (AAV)-based vectors are promising tools for gene therapeutic applications, in part because AAVs are nonpathogenic viruses, and vectors derived from them can drive long-term transgene expression without integration of the vector DNA into the host genome. AAVs are not strongly immunogenic, but they can, nonetheless, give rise to both a cellular and humoral immune response. As a result, a significant fraction of potential patients for AAV-based gene therapy harbors pre-existing antibodies against AAV. Because even very low levels of antibodies can prevent successful transduction, antecedent anti-AAV antibodies pose a serious obstacle to the universal application of AAV gene therapy. In this review, we discuss the current knowledge of the role of anti-AAV antibodies in AAV-based gene therapy with a particular emphasis on approaches to overcome the hurdle that they pose.

  4. Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer.

    PubMed

    Takahashi, M; Miyoshi, H; Verma, I M; Gage, F H

    1999-09-01

    Retinitis pigmentosa (RP) is the most common inherited retinal disease, in which photoreceptor cells degenerate, leading to blindness. Mutations in the rod photoreceptor cGMP phosphodiesterase beta subunit (PDEbeta) gene are found in patients with autosomal recessive RP as well as in the rd mouse. We have recently shown that lentivirus vectors based on human immunodeficiency virus (HIV) type 1 achieve stable and efficient gene transfer into retinal cells. In this study, we evaluated the potential of HIV vector-mediated gene therapy for RP in the rd mouse. HIV vectors containing a gene encoding a hemagglutinin (HA)-tagged PDEbeta were injected into the subretinal spaces of newborn rd mouse eyes. One to three rows of photoreceptor nuclei were observed in the eyes for at least 24 weeks postinjection, whereas no photoreceptor cells remained in the eyes of control animals at 6 weeks postinjection. Expression of HA-tagged PDEbeta in the rescued photoreceptor cells was confirmed by two-color confocal immunofluorescence analysis using anti-HA and anti-opsin antibodies. HIV vector-mediated gene therapy appears to be a promising means for the treatment of recessive forms of inherited retinal degeneration.

  5. Long-Term Follow-up of Foamy Viral Vector-Mediated Gene Therapy for Canine Leukocyte Adhesion Deficiency

    PubMed Central

    Bauer, Thomas R; Tuschong, Laura M; Calvo, Katherine R; Shive, Heather R; Burkholder, Tanya H; Karlsson, Eleanor K; West, Robert R; Russell, David W; Hickstein, Dennis D

    2013-01-01

    The development of leukemia following gammaretroviral vector-mediated gene therapy for X-linked severe combined immunodeficiency disease and chronic granulomatous disease (CGD) has emphasized the need for long-term follow-up in animals treated with hematopoietic stem cell gene therapy. In this study, we report the long-term follow-up (4–7 years) of four dogs with canine leukocyte adhesion deficiency (CLAD) treated with foamy viral (FV) vector-mediated gene therapy. All four CLAD dogs previously received nonmyeloablative conditioning with 200 cGy total body irradiation followed by infusion of autologous, CD34+ hematopoietic stem cells transduced by a FV vector expressing canine CD18 from an internal Murine Stem Cell Virus (MSCV) promoter. CD18+ leukocyte levels were >2% following infusion of vector-transduced cells leading to ongoing reversal of the CLAD phenotype for >4 years. There was no clinical development of lymphoid or myeloid leukemia in any of the four dogs and integration site analysis did not reveal insertional oncogenesis. These results showing disease correction/amelioration of disease in CLAD without significant adverse events provide support for the use of a FV vector to treat children with leukocyte adhesion deficiency type 1 (LAD-1) in a human gene therapy clinical trial. PMID:23531552

  6. Establishment of an AAV Reverse Infection-Based Array

    PubMed Central

    Wang, Gang; Dong, Zheyue; Shen, Wei; Zheng, Gang; Wu, Xiaobing; Xue, Jinglun; Wang, Yue; Chen, Jinzhong

    2010-01-01

    Background The development of a convenient high-throughput gene transduction approach is critical for biological screening. Adeno-associated virus (AAV) vectors are broadly used in gene therapy studies, yet their applications in in vitro high-throughput gene transduction are limited. Principal Findings We established an AAV reverse infection (RI)-based method in which cells were transduced by quantified recombinant AAVs (rAAVs) pre-coated onto 96-well plates. The number of pre-coated rAAV particles and number of cells loaded per well, as well as the temperature stability of the rAAVs on the plates, were evaluated. As the first application of this method, six serotypes or hybrid serotypes of rAAVs (AAV1, AAV2, AAV5/5, AAV8, AAV25 m, AAV28 m) were compared for their transduction efficiencies using various cell lines, including BHK21, HEK293, BEAS-2BS, HeLaS3, Huh7, Hepa1-6, and A549. AAV2 and AAV1 displayed high transduction efficiency; thus, they were deemed to be suitable candidate vectors for the RI-based array. We next evaluated the impact of sodium butyrate (NaB) treatment on rAAV vector-mediated reporter gene expression and found it was significantly enhanced, suggesting that our system reflected the biological response of target cells to specific treatments. Conclusions/Significance Our study provides a novel method for establishing a highly efficient gene transduction array that may be developed into a platform for cell biological assays. PMID:20976058

  7. AAV Gene Therapy for MPS1-associated Corneal Blindness.

    PubMed

    Vance, Melisa; Llanga, Telmo; Bennett, Will; Woodard, Kenton; Murlidharan, Giridhar; Chungfat, Neil; Asokan, Aravind; Gilger, Brian; Kurtzberg, Joanne; Samulski, R Jude; Hirsch, Matthew L

    2016-02-22

    Although cord blood transplantation has significantly extended the lifespan of mucopolysaccharidosis type 1 (MPS1) patients, over 95% manifest cornea clouding with about 50% progressing to blindness. As corneal transplants are met with high rejection rates in MPS1 children, there remains no treatment to prevent blindness or restore vision in MPS1 children. Since MPS1 is caused by mutations in idua, which encodes alpha-L-iduronidase, a gene addition strategy to prevent, and potentially reverse, MPS1-associated corneal blindness was investigated. Initially, a codon optimized idua cDNA expression cassette (opt-IDUA) was validated for IDUA production and function following adeno-associated virus (AAV) vector transduction of MPS1 patient fibroblasts. Then, an AAV serotype evaluation in human cornea explants identified an AAV8 and 9 chimeric capsid (8G9) as most efficient for transduction. AAV8G9-opt-IDUA administered to human corneas via intrastromal injection demonstrated widespread transduction, which included cells that naturally produce IDUA, and resulted in a >10-fold supraphysiological increase in IDUA activity. No significant apoptosis related to AAV vectors or IDUA was observed under any conditions in both human corneas and MPS1 patient fibroblasts. The collective preclinical data demonstrate safe and efficient IDUA delivery to human corneas, which may prevent and potentially reverse MPS1-associated cornea blindness.

  8. [Gene expression of AAV-ITR ssDNA mini vector in skeletal muscle of mice].

    PubMed

    Zhu, Dongqin; Zhang, Yun; Liu, Xiaomei; Zhang, Chun

    2014-11-01

    AAV-ITR single strand DNA mini vector (AAV-ITR ssDNA mini vector) is a novel gene expression vector based on AAV-ITR. We have shown efficient gene expression of AAV-ITR ssDNA mini vector in HEK 293T. Here, we studied the efficacy of gene expression of AAV-ITR ssDNA mini vector in vivo. We injected the skeletal muscle of ICR mice separately with equal molars of AAV-ITR ssDNA mini vector, ITR mutated AAV-ITR single strand DNA mini vector (AAV-ITRmm ssDNA mutant vector), AAV-ITR dsDNA and pUC57-minivector-GFP, combined with TurboFect. Florescence microscope analysis of skeletal muscle section shows that AAV-ITR ssDNA mini vector had higher expression efficiency and longer expression period. We extracted DNA from the muscle three months after injection and quantified three vectors by Real-time PCR. RT-PCR analysis shows that there were highest copy numbers of AAV-ITR ssDNA mini vector existing in muscle. Stable existing of AAV- TR ssDNA mini vector in muscle could be the molecular basis of long term gene expression of the vector. The results suggest that AAV-ITR ssDNA mini vector might be a promising vector for gene therapy.

  9. AAV-Mediated Gene Transfer to Dorsal Root Ganglion.

    PubMed

    Yu, Hongwei; Fischer, Gregory; Hogan, Quinn H

    2016-01-01

    Transferring genetic molecules into the peripheral sensory nervous system to manipulate nociceptive pathophysiology is a powerful approach for experimental modulation of sensory signaling and potentially for translation into therapy for chronic pain. This can be efficiently achieved by the use of recombinant adeno-associated virus (rAAV) in conjunction with nociceptor-specific regulatory transgene cassettes. Among different routes of delivery, direct injection into the dorsal root ganglia (DRGs) offers the most efficient AAV-mediated gene transfer selectively into the peripheral sensory nervous system. Here, we briefly discuss the advantages and applications of intraganglionic microinjection, and then provide a detailed approach for DRG injection, including a list of the necessary materials and description of a method for performing DRG microinjection experiments. We also discuss our experience with several adeno-associated virus (AAV) options for in vivo transgene expression in DRG neurons.

  10. Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector.

    PubMed

    Bowles, Dawn E; McPhee, Scott W J; Li, Chengwen; Gray, Steven J; Samulski, Jade J; Camp, Angelique S; Li, Juan; Wang, Bing; Monahan, Paul E; Rabinowitz, Joseph E; Grieger, Joshua C; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Xiao, Xiao; Samulski, R Jude

    2012-02-01

    Efficient and widespread gene transfer is required for successful treatment of Duchenne muscular dystrophy (DMD). Here, we performed the first clinical trial using a chimeric adeno-associated virus (AAV) capsid variant (designated AAV2.5) derived from a rational design strategy. AAV2.5 was generated from the AAV2 capsid with five mutations from AAV1. The novel chimeric vector combines the improved muscle transduction capacity of AAV1 with reduced antigenic crossreactivity against both parental serotypes, while keeping the AAV2 receptor binding. In a randomized double-blind placebo-controlled phase I clinical study in DMD boys, AAV2.5 vector was injected into the bicep muscle in one arm, with saline control in the contralateral arm. A subset of patients received AAV empty capsid instead of saline in an effort to distinguish an immune response to vector versus minidystrophin transgene. Recombinant AAV genomes were detected in all patients with up to 2.56 vector copies per diploid genome. There was no cellular immune response to AAV2.5 capsid. This trial established that rationally designed AAV2.5 vector was safe and well tolerated, lays the foundation of customizing AAV vectors that best suit the clinical objective (e.g., limb infusion gene delivery) and should usher in the next generation of viral delivery systems for human gene transfer.

  11. Intrinsic transgene immunogenicity gears CD8(+) T-cell priming after rAAV-mediated muscle gene transfer.

    PubMed

    Carpentier, Maxime; Lorain, Stéphanie; Chappert, Pascal; Lalfer, Mélanie; Hardet, Romain; Urbain, Dominique; Peccate, Cécile; Adriouch, Sahil; Garcia, Luis; Davoust, Jean; Gross, David-Alexandre

    2015-04-01

    Antitransgene CD8(+) T-cell responses are an important hurdle after recombinant adeno-associated virus (rAAV) vector-mediated gene transfer. Indeed, depending on the mutational genotype of the host, transgene amino-acid sequences of foreign origin can elicit deleterious cellular and humoral responses. We compared here two different major histocompatibility complex (MHC) class I epitopes of an engineered ovalbumin transgene delivered in muscle tissue by rAAV1 vector and found very different strength of CD8 responses, muscle destruction being correlated with the course of the immunodominant response. We further demonstrate that robust CD8(+) T-cell priming can occur through the cross-presentation pathway but requires the presence of either a strong MHC class II epitope or antibodies to the transgene product. Finally, manipulating transgene subcellular localization, we found that provided we avoid transgene expression in antigen presenting cells, the poorly accessible cytosolic form of ovalbumin transgene lacking strong MHC II epitope, evades CD8(+) T-cell priming and remains permanently expressed in muscle with no immune cell infiltration. Our results demonstrate that the intrinsic immunogenicity of transgenes delivered with rAAV vector in muscle can be manipulated in a rational manner to avoid adverse immune responses.

  12. Intrinsic Transgene Immunogenicity Gears CD8(+) T-cell Priming After rAAV-Mediated Muscle Gene Transfer.

    PubMed

    Carpentier, Maxime; Lorain, Stéphanie; Chappert, Pascal; Lalfer, Mélanie; Hardet, Romain; Urbain, Dominique; Peccate, Cécile; Adriouch, Sahil; Garcia, Luis; Davoust, Jean; Gross, David-Alexandre

    2015-04-01

    Antitransgene CD8(+) T-cell responses are an important hurdle after recombinant adeno-associated virus (rAAV) vector-mediated gene transfer. Indeed, depending on the mutational genotype of the host, transgene amino-acid sequences of foreign origin can elicit deleterious cellular and humoral responses. We compared here two different major histocompatibility complex (MHC) class I epitopes of an engineered ovalbumin transgene delivered in muscle tissue by rAAV1 vector and found very different strength of CD8 responses, muscle destruction being correlated with the course of the immunodominant response. We further demonstrate that robust CD8(+) T-cell priming can occur through the cross-presentation pathway but requires the presence of either a strong MHC class II epitope or antibodies to the transgene product. Finally, manipulating transgene subcellular localization, we found that provided we avoid transgene expression in antigen presenting cells, the poorly accessible cytosolic form of ovalbumin transgene lacking strong MHC II epitope, evades CD8(+) T-cell priming and remains permanently expressed in muscle with no immune cell infiltration. Our results demonstrate that the intrinsic immunogenicity of transgenes delivered with rAAV vector in muscle can be manipulated in a rational manner to avoid adverse immune responses.

  13. Targeted gene delivery to the enteric nervous system using AAV: a comparison across serotypes and capsid mutants.

    PubMed

    Benskey, Matthew J; Kuhn, Nathan C; Galligan, James J; Garcia, Joanna; Boye, Shannon E; Hauswirth, William W; Mueller, Christian; Boye, Sanford L; Manfredsson, Fredric P

    2015-03-01

    Recombinant adeno-associated virus (AAV) vectors are one of the most widely used gene transfer systems in research and clinical trials. AAV can transduce a wide range of biological tissues, however to date, there has been no investigation on targeted AAV transduction of the enteric nervous system (ENS). Here, we examined the efficiency, tropism, spread, and immunogenicity of AAV transduction in the ENS. Rats received direct injections of various AAV serotypes expressing green fluorescent protein (GFP) into the descending colon. AAV serotypes tested included; AAV 1, 2, 5, 6, 8, or 9 and the AAV2 and AAV8 capsid mutants, AAV2-Y444F, AAV2-tripleY-F, AAV2-tripleY-F+T-V, AAV8-Y733F, and AAV8-doubeY-F+T-V. Transduction, as determined by GFP-positive cells, occurred in neurons and enteric glia within the myenteric and submucosal plexuses of the ENS. AAV6 and AAV9 showed the highest levels of transduction within the ENS. Transduction efficiency scaled with titer and time, was translated to the murine ENS, and produced no vector-related immune response. A single injection of AAV into the colon covered an area of ~47 mm(2). AAV9 primarily transduced neurons, while AAV6 transduced enteric glia and neurons. This is the first report on targeted AAV transduction of neurons and glia in the ENS.

  14. Restoration of normal lysosomal function in mucopolysaccharidosis type VII cells by retroviral vector-mediated gene transfer.

    PubMed Central

    Wolfe, J H; Schuchman, E H; Stramm, L E; Concaugh, E A; Haskins, M E; Aguirre, G D; Patterson, D F; Desnick, R J; Gilboa, E

    1990-01-01

    Retroviral vectors were constructed containing a rat beta-glucuronidase cDNA driven by heterologous promoters. Vector-mediated gene transfer into human and canine beta-glucuronidase-deficient mucopolysaccharidosis type VII fibroblasts completely corrected the deficiency in beta-glucuronidase enzymatic activity. In primary cultures of canine mucopolysaccharidosis type VII retinal pigment epithelial cells, which contain large amounts of undegraded glycosaminoglycan substrates, vector correction restored normal processing of specific glycosaminoglycans in the lysosomal compartment. In canine mucopolysaccharidosis type VII bone marrow cells, beta-glucuronidase was expressed at high levels in transduced cells. Thus, the vector-encoded beta-glucuronidase was expressed at therapeutic levels in the appropriate organelle and corrected the metabolic defect in cells exhibiting the characteristic pathology of this lysosomal storage disorder. Images PMID:2158095

  15. Mapping the AAV Capsid Host Antibody Response toward the Development of Second Generation Gene Delivery Vectors.

    PubMed

    Tseng, Yu-Shan; Agbandje-McKenna, Mavis

    2014-01-01

    The recombinant adeno-associated virus (rAAV) gene delivery system is entering a crucial and exciting phase with the promise of more than 20 years of intense research now realized in a number of successful human clinical trials. However, as a natural host to AAV infection, anti-AAV antibodies are prevalent in the human population. For example, ~70% of human sera samples are positive for AAV serotype 2 (AAV2). Furthermore, low levels of pre-existing neutralizing antibodies in the circulation are detrimental to the efficacy of corrective therapeutic AAV gene delivery. A key component to overcoming this obstacle is the identification of regions of the AAV capsid that participate in interactions with host immunity, especially neutralizing antibodies, to be modified for neutralization escape. Three main approaches have been utilized to map antigenic epitopes on AAV capsids. The first is directed evolution in which AAV variants are selected in the presence of monoclonal antibodies (MAbs) or pooled human sera. This results in AAV variants with mutations on important neutralizing epitopes. The second is epitope searching, achieved by peptide scanning, peptide insertion, or site-directed mutagenesis. The third, a structure biology-based approach, utilizes cryo-electron microscopy and image reconstruction of AAV capsids complexed to fragment antibodies, which are generated from MAbs, to directly visualize the epitopes. In this review, the contribution of these three approaches to the current knowledge of AAV epitopes and success in their use to create second generation vectors will be discussed.

  16. Mapping the AAV Capsid Host Antibody Response toward the Development of Second Generation Gene Delivery Vectors

    PubMed Central

    Tseng, Yu-Shan; Agbandje-McKenna, Mavis

    2013-01-01

    The recombinant adeno-associated virus (rAAV) gene delivery system is entering a crucial and exciting phase with the promise of more than 20 years of intense research now realized in a number of successful human clinical trials. However, as a natural host to AAV infection, anti-AAV antibodies are prevalent in the human population. For example, ~70% of human sera samples are positive for AAV serotype 2 (AAV2). Furthermore, low levels of pre-existing neutralizing antibodies in the circulation are detrimental to the efficacy of corrective therapeutic AAV gene delivery. A key component to overcoming this obstacle is the identification of regions of the AAV capsid that participate in interactions with host immunity, especially neutralizing antibodies, to be modified for neutralization escape. Three main approaches have been utilized to map antigenic epitopes on AAV capsids. The first is directed evolution in which AAV variants are selected in the presence of monoclonal antibodies (MAbs) or pooled human sera. This results in AAV variants with mutations on important neutralizing epitopes. The second is epitope searching, achieved by peptide scanning, peptide insertion, or site-directed mutagenesis. The third, a structure biology-based approach, utilizes cryo-electron microscopy and image reconstruction of AAV capsids complexed to fragment antibodies, which are generated from MAbs, to directly visualize the epitopes. In this review, the contribution of these three approaches to the current knowledge of AAV epitopes and success in their use to create second generation vectors will be discussed. PMID:24523720

  17. Naturally enveloped AAV vectors for shielding neutralizing antibodies and robust gene delivery in vivo.

    PubMed

    György, Bence; Fitzpatrick, Zachary; Crommentuijn, Matheus H W; Mu, Dakai; Maguire, Casey A

    2014-08-01

    Recently adeno-associated virus (AAV) became the first clinically approved gene therapy product in the western world. To develop AAV for future clinical application in a widespread patient base, particularly in therapies which require intravenous (i.v.) administration of vector, the virus must be able to evade pre-existing antibodies to the wild type virus. Here we demonstrate that in mice, AAV vectors associated with extracellular vesicles (EVs) can evade human anti-AAV neutralizing antibodies. We observed different antibody evasion and gene transfer abilities with populations of EVs isolated by different centrifugal forces. EV-associated AAV vector (ev-AAV) was up to 136-fold more resistant over a range of neutralizing antibody concentrations relative to standard AAV vector in vitro. Importantly in mice, at a concentration of passively transferred human antibodies which decreased i.v. administered standard AAV transduction of brain by 80%, transduction of ev-AAV transduction was not reduced and was 4000-fold higher. Finally, we show that expressing a brain targeting peptide on the EV surface allowed significant enhancement of transduction compared to untargeted ev-AAV. Using ev-AAV represents an effective, clinically relevant approach to evade human neutralizing anti-AAV antibodies after systemic administration of vector.

  18. AAV-Mediated Gene Delivery in a Feline Model of Sandhoff Disease Corrects Lysosomal Storage in the Central Nervous System

    PubMed Central

    Rockwell, Hannah E.; McCurdy, Victoria J.; Eaton, Samuel C.; Wilson, Diane U.; Johnson, Aime K.; Randle, Ashley N.; Bradbury, Allison M.; Gray-Edwards, Heather L.; Baker, Henry J.; Hudson, Judith A.; Cox, Nancy R.; Sena-Esteves, Miguel; Seyfried, Thomas N.

    2015-01-01

    Sandhoff disease (SD) is an autosomal recessive neurodegenerative disease caused by a mutation in the gene for the β-subunit of β-N-acetylhexosaminidase (Hex), resulting in the inability to catabolize ganglioside GM2 within the lysosomes. SD presents with an accumulation of GM2 and its asialo derivative GA2, primarily in the central nervous system. Myelin-enriched glycolipids, cerebrosides and sulfatides, are also decreased in SD corresponding with dysmyelination. At present, no treatment exists for SD. Previous studies have shown the therapeutic benefit of adeno-associated virus (AAV) vector-mediated gene therapy in the treatment of SD in murine and feline models. In this study, we treated presymptomatic SD cats with AAVrh8 vectors expressing feline Hex in the thalamus combined with intracerebroventricular (Thal/ICV) injections. Treated animals showed clearly improved neurologic function and quality of life, manifested in part by prevention or attenuation of whole-body tremors characteristic of untreated animals. Hex activity was significantly elevated, whereas storage of GM2 and GA2 was significantly decreased in tissue samples taken from the cortex, cerebellum, thalamus, and cervical spinal cord. Treatment also increased levels of myelin-enriched cerebrosides and sulfatides in the cortex and thalamus. This study demonstrates the therapeutic potential of AAV for feline SD and suggests a similar potential for human SD patients. PMID:25873306

  19. AAV Hybrid Serotypes: Improved Vectors for Gene Delivery

    PubMed Central

    Choi, Vivian W.; McCarty, Douglas M.; Samulski, R. Jude

    2006-01-01

    In recent years, significant efforts have been made on studying and engineering adeno-associated virus (AAV) capsid, in order to increase efficiency in targeting specific cell types that are non-permissive to wild type (wt) viruses and to improve efficacy in infecting only the cell type of interest. With our previous knowledge of the viral properties of the naturally occurring serotypes and the elucidation of their capsid structures, we can now generate capsid mutants, or hybrid serotypes, by various methods and strategies. In this review, we summarize the studies performed on AAV retargeting, and categorize the available hybrid serotypes to date, based on the type of modification: 1) transcapsidation, 2) adsorption of bi-specific antibody to capsid surface, 3) mosaic capsid, and 4) chimeric capsid. Not only these hybrid serotypes could achieve high efficiency of gene delivery to a specific targeted cell type, which can be better-tailored for a particular clinical application, but also serve as a tool for studying AAV biology such as receptor binding, trafficking and genome delivery into the nucleus. PMID:15975007

  20. High frequency vector-mediated transformation and gene replacement in Tetrahymena.

    PubMed Central

    Gaertig, J; Gu, L; Hai, B; Gorovsky, M A

    1994-01-01

    Recently, we developed a mass DNA-mediated transformation technique for the ciliated protozoan Tetrahymena thermophila that introduces transforming DNA by electroporation into conjugating cells. Other studies demonstrated that a neomycin resistance gene flanked by Tetrahymena H4-I gene regulatory sequences transformed Tetrahymena by homologous recombination within the H4-I locus when microinjected into the macronucleus. We describe the use of conjugant electrotransformation (CET) for gene replacement and for the development of new independently replicating vectors and a gene cassette that can be used as a selectable marker in gene knockout experiments. Using CET, the neomycin resistance gene flanked by H4-I sequences transformed Tetrahymena, resulting in the replacement of the H4-I gene or integrative recombination of the H4-I/neo/H4-I gene (but not vector sequences) in the 5' or 3' flanking region of the H4-I locus. Gene replacement was obtained with non-digested plasmid DNA but releasing the insert increased the frequency of replacement events about 6-fold. The efficiency of transformation by the H4-I/neo/H4-I selectable marker was unchanged when a single copy of the Tetrahymena rDNA replication origin was included on the transforming plasmid. However, the efficiency of transformation using CET increased greatly when a tandem repeat of the replication origin fragment was used. This high frequency of transformation enabled mapping of the region required for H4-I promoter function to within 333 bp upstream of the initiator ATG. Similarly approximately 300 bp of sequence downstream of the translation terminator TGA of the beta-tubulin 2 (BTU2) gene could substitute for the 3' region of the H4-I gene. This hybrid H4-I/neo/BTU2 gene did not transform Tetrahymena when subcloned on a plasmid lacking an origin of replication, but did transform at high frequency on a two origin plasmid. Thus, the H4-I/neo/BTU2 cassette is a selectable marker that can be used for gene

  1. Retroviral Vector-Mediated Gene Transfer into the Chick Optic Vesicle by In Ovo Electroporation

    NASA Astrophysics Data System (ADS)

    Sakuta, Hiraki; Suzuki, Ryoko; Noda, Masaharu

    The chick embryo offers many advantages for developmental studies over other vertebrate embryos as it allows easy access for in ovo surgical manipulations, such as tissue transplantation and the implantation of cultured cells or chemically treated beads for the local release of humoral factors. In particular, owing to its external position in the embryo, the chick eye is a popular model for studying the patterning mechanism of the central nervous system (CNS). This patterning has a crucial role in shaping functional organization because it is the basis of the specific wiring in the CNS. Genetic analysis is not easy in the chick, as compared with the mouse for which transgene introduction or gene targeting techniques have been well established. However, because methods for the expression of exogenous genes and for gene silencing in the chick embryo have been recently developed, the functional analysis of genes has become possible in combination with classical techniques of developmental biology and neurobiology.

  2. AAV-mediated gene therapy for hemophilia.

    PubMed

    Couto, Linda B; Pierce, Glenn F

    2003-10-01

    Gene therapy for hemophilia has been contemplated since the coagulation Factor genes responsible for the disease were cloned 20 years ago. Multiple approaches towards the delivery of Factors VIII or IX, the defective genes in the most common forms of hemophilia, have resulted in positive results in animals, and largely equivocal results in human clinical testing. Use of vectors based on adeno-associated virus has led to robust and sustained cures in hemophilic mice and dogs, and intriguing preliminary results in small or ongoing clinical trials. As more clinical experience is gained, solving delivery issues will be of paramount importance and will lead to more clinical success. This success will permit hemophilia to be cured following a single injection of the normal gene.

  3. Adenoviral Vector-Mediated Gene Therapy for Gliomas: Coming of Age

    PubMed Central

    Castro, Maria G.; Candolfi, Marianela; Wilson, Thomas J.; Calinescu, Alexandra; Paran, Christopher; Kamran, Neha; Koschmann, Carl; Moreno-Ayala, Mariela A.; Assi, Hikmat; Lowenstein, Pedro R.

    2014-01-01

    Introduction Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults; it carries a dismal prognosis. Adenoviral vector (Ad)-mediated gene transfer is being developed as a promising therapeutic strategy for GBM. Preclinical studies have demonstrated safety and efficacy of adenovirus administration into the brain and tumor mass in rodents and into the non-human primates’ brain. Importantly Ads have been safely administered within the tumor resection cavity in humans. Areas Covered Background on GBM and Ad vectors; we describe gene therapy strategies for GBM and discuss the value of combination approaches. Finally we discuss the results of the human clinical trials for GBM that have used adenoviral vectors. Expert Opinion The transduction characteristics of Ad vectors, and their safety profile, added to their capacity to achieve high levels of transgene expression have made them powerful vectors for the treatment of GBM. Recent gene therapy successes in the treatment of retinal diseases and systemic brain metabolic diseases, encourages the development of gene therapy for malignant glioma. Exciting clinical trials are currently recruiting patients; although it is large randomized phase III controlled clinical trials that will provide the final decision on the success of gene therapy for the treatment of GBM. PMID:24773178

  4. Correction of murine Rag1 deficiency by self-inactivating lentiviral vector-mediated gene transfer.

    PubMed

    Pike-Overzet, K; Rodijk, M; Ng, Y-Y; Baert, M R M; Lagresle-Peyrou, C; Schambach, A; Zhang, F; Hoeben, R C; Hacein-Bey-Abina, S; Lankester, A C; Bredius, R G M; Driessen, G J A; Thrasher, A J; Baum, C; Cavazzana-Calvo, M; van Dongen, J J M; Staal, F J T

    2011-09-01

    Severe combined immunodeficiency (SCID) patients with an inactivating mutation in recombination activation gene 1 (RAG1) lack B and T cells due to the inability to rearrange immunoglobulin (Ig) and T-cell receptor (TCR) genes. Gene therapy is a valid treatment option for RAG-SCID patients, especially for patients lacking a suitable bone marrow donor, but developing such therapy has proven challenging. As a preclinical model for RAG-SCID, we used Rag1-/- mice and lentiviral self-inactivating (SIN) vectors harboring different internal elements to deliver native or codon-optimized human RAG1 sequences. Treatment resulted in the appearance of B and T cells in peripheral blood and developing B and T cells were detected in central lymphoid organs. Serum Ig levels and Ig and TCR Vβ gene segment usage was comparable to wild-type (WT) controls, indicating that RAG-mediated rearrangement took place. Remarkably, relatively low frequencies of B cells produced WT levels of serum immunoglobulins. Upon stimulation of the TCR, corrected spleen cells proliferated and produced cytokines. In vivo challenge resulted in production of antigen-specific antibodies. No leukemia development as consequence of insertional mutagenesis was observed. The functional reconstitution of the B- as well as the T-cell compartment provides proof-of-principle for therapeutic RAG1 gene transfer in Rag1-/- mice using lentiviral SIN vectors.

  5. Vector-mediated chromosomal integration of the glutamate decarboxylase gene in streptococcus thermophilus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The integrative vector pINTRS was used to transfer glutamate decarboxylase (GAD) activity to Streptococcus thermophilus ST128, thus allowing for the production of '-aminobutyric acid (GABA). In pINTRS, the gene encoding glutamate decarboxylase, gadB, was flanked by DNA fragments homologous to a S. ...

  6. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain.

    PubMed

    Deverman, Benjamin E; Pravdo, Piers L; Simpson, Bryan P; Kumar, Sripriya Ravindra; Chan, Ken Y; Banerjee, Abhik; Wu, Wei-Li; Yang, Bin; Huber, Nina; Pasca, Sergiu P; Gradinaru, Viviana

    2016-02-01

    Recombinant adeno-associated viruses (rAAVs) are commonly used vehicles for in vivo gene transfer. However, the tropism repertoire of naturally occurring AAVs is limited, prompting a search for novel AAV capsids with desired characteristics. Here we describe a capsid selection method, called Cre recombination-based AAV targeted evolution (CREATE), that enables the development of AAV capsids that more efficiently transduce defined Cre-expressing cell populations in vivo. We use CREATE to generate AAV variants that efficiently and widely transduce the adult mouse central nervous system (CNS) after intravenous injection. One variant, AAV-PHP.B, transfers genes throughout the CNS with an efficiency that is at least 40-fold greater than that of the current standard, AAV9 (refs. 14,15,16,17), and transduces the majority of astrocytes and neurons across multiple CNS regions. In vitro, it transduces human neurons and astrocytes more efficiently than does AAV9, demonstrating the potential of CREATE to produce customized AAV vectors for biomedical applications.

  7. Herpes simplex virus vector-mediated gene delivery for the treatment of lower urinary tract pain

    PubMed Central

    Goins, WF; Goss, JR; Chancellor, MB; de Groat, WC; Glorioso, JC; Yoshimura, N

    2009-01-01

    Interstitial cystitis (IC)/painful bladder syndrome (PBS) is a painful debilitating chronic visceral pain disorder of unknown etiology that affects an estimated 1 million people in the, United States alone. It is characterized by inflammation of the bladder that results in chronic pelvic pain associated with bladder symptoms of urinary frequency and urgency. Regardless of the etiology, IC/PBS involves either increased and/or abnormal activity in afferent nociceptive sensory neurons. Pain-related symptoms in patients with IC/PBS are often very difficult to treat. Both medical and surgical therapies have had limited clinical utility in this debilitating disease and numerous drug treatments, such as heparin, dimethylsulfoxide and amitriptyline, have proven to be palliative at best, and in some IC/PBS patients provide no relief whatsoever. Although opiate narcotics have been employed to help alleviate IC/PBS pain, this strategy is fraught with problems as systemic narcotic administration causes multiple unwanted side effects including mental status change and constipation. Moreover, chronic systemic narcotic use leads to dependency and need for dose escalation due to tolerance: therefore, new therapies are desperately needed to treat refractory IC/PBS. This has led our group to develop a gene therapy strategy that could potentially alleviate chronic pelvic pain using the herpes simplex virus-directed delivery of analgesic proteins to the bladder. PMID:19242523

  8. Development of Patient-specific AAV Vectors After Neutralizing Antibody Selection for Enhanced Muscle Gene Transfer.

    PubMed

    Li, Chengwen; Wu, Shuqing; Albright, Blake; Hirsch, Matthew; Li, Wuping; Tseng, Yu-Shan; Agbandje-McKenna, Mavis; McPhee, Scott; Asokan, Aravind; Samulski, R Jude

    2016-02-01

    A major hindrance in gene therapy trials with adeno-associated virus (AAV) vectors is the presence of neutralizing antibodies (NAbs) that inhibit AAV transduction. In this study, we used directed evolution techniques in vitro and in mouse muscle to select novel NAb escape AAV chimeric capsid mutants in the presence of individual patient serum. AAV mutants isolated in vitro escaped broad patient-specific NAb activity but had poor transduction ability in vivo. AAV mutants isolated in vivo had enhanced NAb evasion from cognate serum and had high muscle transduction ability. More importantly, structural modeling identified a 100 amino acid motif from AAV6 in variable region (VR) III that confers this enhanced muscle tropism. In addition, a predominantly AAV8 capsid beta barrel template with a specific preference for AAV1/AAV9 in VR VII located at threefold symmetry axis facilitates NAb escape. Our data strongly support that chimeric AAV capsids composed of modular and nonoverlapping domains from various serotypes are capable of evading patient-specific NAbs and have enhanced muscle transduction.

  9. Adeno-associated virus (AAV) vectors in gene therapy: immune challenges and strategies to circumvent them.

    PubMed

    Hareendran, Sangeetha; Balakrishnan, Balaji; Sen, Dwaipayan; Kumar, Sanjay; Srivastava, Alok; Jayandharan, Giridhara R

    2013-11-01

    AAV-based gene transfer protocols have shown remarkable success when directed to immune-privileged sites such as for retinal disorders like Lebers congenital amaurosis. In contrast, AAV-mediated gene transfer into liver or muscle tissue for diseases such as hemophilia B, α1 anti-trypsin deficiency and muscular dystrophy has demonstrated a decline in gene transfer efficacy over time. It is now known that in humans, AAV triggers specific pathways that recruit immune sensors. These factors initiate an immediate reaction against either the viral capsid or the vector encoded protein as part of innate immune response or to produce a more specific adaptive response that generates immunological memory. The vector-transduced cells are then rapidly destroyed due to this immune activation. However, unlike other viral vectors, AAV is not immunogenic in murine models. Its immunogenicity becomes apparent only in large animal models and human subjects. Moreover, humans are natural hosts to AAV and exhibit a high seroprevalence against AAV vectors. This limits the widespread application of AAV vectors into patients with pre-existing neutralising antibodies or memory T cells. To address these issues, various strategies are being tested. Alternate serotype vectors (AAV1-10), efficient expression cassettes, specific tissue targeting, immune-suppression and engineered capsid variants are some approaches proposed to minimise this immune stimulation. In this review, we have summarised the nature of the immune response documented against AAV in various pre-clinical and clinical settings and have further discussed the strategies to evade them.

  10. HPV-16 E1, E2 and E6 each complement the Ad5 helper gene set, increasing rAAV2 and wt AAV2 production.

    PubMed

    Cao, M; Zhu, H; Bandyopadhyay, S; You, H; Hermonat, P L

    2012-04-01

    Adeno-associated virus type 2 (AAV) is a popular vector for human gene therapy, because of its safety record and ability to express genes long term. Yet large-scale recombinant (r) AAV production remains problematic because of low particle yield. The adenovirus (Ad) and herpes (simplex) virus helper genes for AAV have been widely used and studied, but the helper genes of human papillomavirus (HPV) have not. HPV-16 E1, E2 and E6 help wild-type (wt) AAV productive infection in differentiating keratinocytes, however, HEK293 cells are the standard cell line used for generating rAAV. Here we demonstrate that the three HPV genes were unable to stimulate significant rAAV replication in HEK293 cells when used alone. However, when used in conjunction (complementation) with the standard Ad5 helper gene set, E1, E2 and E6 were each capable of significantly boosting rAAV DNA replication and virus particle yield. Moreover, wt AAV DNA replication and virion yield were also significantly boosted by each HPV gene along with wt Ad5 virus co-infection. Mild-to-moderate changes in rep- and cap-encoded protein levels were evident in the presence of the E1, E2 and E6 genes. Higher wt AAV DNA replication was not matched by similar increases in the levels of rep-encoded protein. Moreover, although rep mRNA was upregulated, cap mRNA was upregulated more. Higher virus yields did correlate most consistently with increased Rep52-, VP3- and VP-related 21/31 kDa species. The observed boost in wt and rAAV production by HPV genes was not unexpected, as the Ad and HPV helper gene sets do not seem to recapitulate each other. These results raise the possibility of generating improved helper gene sets derived from both the Ad and HPV helper gene sets.

  11. HPV-16 E1, E2 and E6 each complement the Ad5 helper gene set, increasing rAAV2 and wt AAV2 production

    PubMed Central

    Cao, M.; Zhu, H.; Bandyopadhyay, S; You, H; Hermonat, P.L.

    2011-01-01

    Adeno-associated virus type 2 (AAV) is a popular vector for human gene therapy, because of its safety record and ability to express genes long term. Yet large scale recombinant (r)AAV production remains problematic due to low particle yield. The adenovirus (Ad) and herpes (simplex) virus (HSV) helper genes for AAV have been widely used and studied, but the helper genes of human papillomavirus (HPV) have not. HPV-16 E1, E2 and E6 help wild type (wt) AAV productive infection in differentiating keratinocytes, however HEK293 cells are the standard cell line used for generating rAAV. Here we demonstrate that the three HPV genes were unable to stimulate significant rAAV replication in HEK293 cells when used alone. However, when used in conjunction (complementation) with the standard Ad5 helper gene set, E1, E2 and E6 were each capable of significantly boosting rAAV DNA replication and virus particle yield. Moreover, wt AAV DNA replication and virion yield were also significantly boosted by each HPV gene along with wt Ad5 virus co-infection. Mild to moderate changes in rep- and cap–encoded protein levels were evident in the presence of the E1, E2 and E6 genes. Higher wt AAV DNA replication was not matched by similar increases in the levels of rep-encoded protein. Moreover, while rep mRNA was up-regulated, cap mRNA was up-regulated more. Higher virus yields did correlate most consistently with increased Rep52, VP3 and VP-related 21/31 kDa species. The observed boost in wt and rAAV production by HPV genes was not unexpected, as the Ad and HPV helper gene sets do not seem to recapitulate each other. These results raise the possibility of generating improved helper gene sets derived from both the Ad and HPV helper gene sets. PMID:21850053

  12. Robust Cardiomyocyte-Specific Gene Expression Following Systemic Injection of AAV: In Vivo Gene Delivery Follows a Poisson Distribution

    PubMed Central

    Prasad, Konkal-Matt R.; Xu, Yaqin; Yang, Zequan; Acton, Scott T.; French, Brent A

    2010-01-01

    Newly-isolated serotypes of AAV readily cross the endothelial barrier to provide efficient transgene delivery throughout the body. However, tissue-specific expression is preferred in most experimental studies and gene therapy protocols. Previous efforts to restrict gene expression to the myocardium often relied on direct injection into heart muscle or intracoronary perfusion. Here, we report an AAV vector system employing the cardiac troponin T promoter (cTnT). Using luciferase and eGFP, the efficiency and specificity of cardiac reporter gene expression using AAV serotype capsids: AAV-1, 2, 6, 8 or 9 were tested after systemic administration to 1 week old mice. Luciferase assays showed that the cTnT promoter worked in combination with each of the AAV serotype capsids to provide cardiomyocyte-specific gene expression, but AAV-9 followed closely by AAV-8 was the most efficient. AAV9-mediated gene expression from the cTnT promoter was 640-fold greater in the heart compared to the next highest tissue (liver). eGFP fluorescence indicated a transduction efficiency of 96% using AAV-9 at a dose of only 3.15×1010 viral particles per mouse. Moreover, the intensity of cardiomyocyte eGFP fluorescence measured on a cell-by-cell basis revealed that AAV-mediated gene expression in the heart can be modeled as a Poisson distribution; requiring an average of nearly two vector genomes per cell to attain an 85% transduction efficiency. PMID:20703310

  13. Potent spinal parenchymal AAV9-mediated gene delivery by subpial injection in adult rats and pigs

    PubMed Central

    Miyanohara, Atsushi; Kamizato, Kota; Juhas, Stefan; Juhasova, Jana; Navarro, Michael; Marsala, Silvia; Lukacova, Nada; Hruska-Plochan, Marian; Curtis, Erik; Gabel, Brandon; Ciacci, Joseph; Ahrens, Eric T; Kaspar, Brian K; Cleveland, Don; Marsala, Martin

    2016-01-01

    Effective in vivo use of adeno-associated virus (AAV)-based vectors to achieve gene-specific silencing or upregulation in the central nervous system has been limited by the inability to provide more than limited deep parenchymal expression in adult animals using delivery routes with the most clinical relevance (intravenous or intrathecal). Here, we demonstrate that the spinal pia membrane represents the primary barrier limiting effective AAV9 penetration into the spinal parenchyma after intrathecal AAV9 delivery. We develop a novel subpial AAV9 delivery technique and AAV9-dextran formulation. We use these in adult rats and pigs to show (i) potent spinal parenchymal transgene expression in white and gray matter including neurons, glial and endothelial cells after single bolus subpial AAV9 delivery; (ii) delivery to almost all apparent descending motor axons throughout the length of the spinal cord after cervical or thoracic subpial AAV9 injection; (iii) potent retrograde transgene expression in brain motor centers (motor cortex and brain stem); and (iv) the relative safety of this approach by defining normal neurological function for up to 6 months after AAV9 delivery. Thus, subpial delivery of AAV9 enables gene-based therapies with a wide range of potential experimental and clinical utilizations in adult animals and human patients. PMID:27462649

  14. Efficient gene delivery to the cone-enriched pig retina by dual AAV vectors.

    PubMed

    Colella, P; Trapani, I; Cesi, G; Sommella, A; Manfredi, A; Puppo, A; Iodice, C; Rossi, S; Simonelli, F; Giunti, M; Bacci, M L; Auricchio, A

    2014-04-01

    Gene therapy with adeno-associated viral (AAV) vectors is limited by AAV cargo capacity that prevents their application to the inherited retinal diseases (IRDs), such as Stargardt disease (STGD) or Usher syndrome type IB (USH1B), which are due to mutations in genes larger than 5 kb. Trans-splicing or hybrid dual AAV vectors have been successfully exploited to reconstitute large gene expression in the mouse retina. Here, we tested them in the large cone-enriched pig retina that closely mimics the human retina. We found that dual AAV trans-splicing and hybrid vectors transduce pig photoreceptors, the major cell targets for treatment of IRDs, to levels that were about two- to threefold lower than those obtained with a single AAV vector of normal size. This efficiency is significantly higher than that in mice, and is potentially due to the high levels of dual AAV co-transduction we observe in pigs. We also show that subretinal delivery in pigs of dual AAV trans-splicing and hybrid vectors successfully reconstitute, albeit at variable levels, the expression of the large genes ABCA4 and MYO7A mutated in STGD and USH1B, respectively. Our data support the potential of dual AAV vectors for large gene reconstitution in the cone-enriched pig retina that is a relevant preclinical model.

  15. Humoral immunity to AAV vectors in gene therapy: challenges and potential solutions.

    PubMed

    Masat, Elisa; Pavani, Giulia; Mingozzi, Federico

    2013-06-01

    Gene transfer trials with adeno-associated virus (AAV) vectors have initiated to unveil the therapeutic potential of this approach, with some of the most exciting results coming from clinical studies of gene transfer for hemophilia B, congenital blindness, and the recent market approval of the first AAV-based gene therapy in Europe. With clinical development, however, some of the limitations of in vivo gene transfer have emerged; in particular the host immune system represents an important obstacle to be overcome in terms of both safety and efficacy of gene transfer in vivo with AAV vectors. Results in humans undergoing gene transfer indicate that capsid-specific T cell responses directed against transduced cells may limit the duration of transgene expression following AAV gene transfer, and similarly anti-AAV neutralizing antibodies can completely prevent transduction of a target tissue, resulting in lack of efficacy. Anti-AAV neutralizing antibodies are highly prevalent in humans, and the frequency of subjects with detectable titers can reach up to two thirds of the population. The approach to the problem of preexisting humoral immunity to AAV so far has been the exclusion of seropositive subjects, but this solution is far from being optimal. Several additional strategies have been proposed and tested in a variety of preclinical animal models. Future studies will help defining the optimal strategy, or combination of strategies, to successfully treat subjects with preexisting antibodies to AAV due to natural infection or to prior administration of AAV vectors. These advancements will likely have a significant impact on the field of gene transfer with AAV vectors.

  16. Future of rAAV Gene Therapy: Platform for RNAi, Gene Editing, and Beyond.

    PubMed

    Valdmanis, Paul N; Kay, Mark A

    2017-01-10

    The use of recombinant adeno-associated viruses (rAAVs) ushered in a new millennium of gene transfer for therapeutic treatment of a number of conditions, including congenital blindness, hemophilia, and spinal muscular atrophy. rAAV vectors have remarkable staying power from a therapeutic standpoint, withstanding several ebbs and flows. As new technologies such as clustered regularly interspaced short palindromic repeat genome editing emerge, it is now the delivery tool-the AAV vector-that is the stalwart. The long-standing safety of this vector in a multitude of clinical settings makes rAAV a selling point in the advancement of approaches for gene replacement, gene knockdown, gene editing, and genome modification/engineering. The research community is building on these advances to develop more tailored delivery approaches and to tweak the genome in new and unique ways. Intertwining these approaches with newly engineered rAAV vectors is greatly expanding the available tools to manipulate gene expression with a therapeutic intent.

  17. Gene transfer properties and structural modeling of human stem cell-derived AAV.

    PubMed

    Smith, Laura J; Ul-Hasan, Taihra; Carvaines, Sarah K; Van Vliet, Kim; Yang, Ethel; Wong, Kamehameha K; Agbandje-McKenna, Mavis; Chatterjee, Saswati

    2014-09-01

    Adeno-associated virus (AAV) vectors are proving to be remarkably successful for in vivo gene delivery. Based upon reports of abundant AAV in the human marrow, we tested CD34(+) hematopoietic stem cells for the presence of natural AAV. Here, we report for the first time, the presence of novel AAV variants in healthy CD34(+) human peripheral blood stem cells. The majority of healthy peripheral blood stem cell donors were found to harbor AAV in their CD34(+) cells. Every AAV isolated from CD34(+) cells mapped to AAV Clade F. Gene transfer vectors derived from these novel AAVs efficiently underwent entry and postentry processing in human cord blood stem cells and supported stable gene transfer into long-term, in vivo engrafting human HSCs significantly better than other serotypes. AAVHSC-transduced human CD34(+) cells engrafted in vivo and gave rise to differentiated transgene-expressing progeny. Importantly, gene-marked CD34(+) stem cells persisted long term in xenograft recipients, indicating transduction of primitive progenitors. Notably, correlation of structure with function permitted identification of potential capsid components important for HSC transduction. Thus, AAVHSCs represent a new class of genetic vectors for the manipulation of HSC genomes.

  18. Significant changes in endogenous retinal gene expression assessed 1 year after a single intraocular injection of AAV-CNTF or AAV-BDNF

    PubMed Central

    LeVaillant, Chrisna J; Sharma, Anil; Muhling, Jill; Wheeler, Lachlan PG; Cozens, Greg S; Hellström, Mats; Rodger, Jennifer; Harvey, Alan R

    2016-01-01

    Use of viral vectors to deliver therapeutic genes to the central nervous system holds promise for the treatment of neurodegenerative diseases and neurotrauma. Adeno-associated viral (AAV) vectors encoding brain-derived neurotrophic factor (BDNF) or ciliary derived neurotrophic factor (CNTF) promote the viability and regeneration of injured adult rat retinal ganglion cells. However, these growth-inducing transgenes are driven by a constitutively active promoter, thus we examined whether long-term AAV-mediated secretion of BDNF or CNTF affected endogenous retinal gene expression. One year after the intravitreal injection of AAV-green fluorescent protein (GFP), bi-cistronic AAV-BDNF-GFP or AAV-CNTF-GFP, mRNA was extracted and analyzed using custom 96 well polymerase chain reaction arrays. Of 93 test genes, 56% showed significantly altered expression in AAV-BDNF-GFP and/or AAV-CNTF-GFP retinas compared with AAV-GFP controls. Of these genes, 73% showed differential expression in AAV-BDNF versus AAV-CNTF injected eyes. To focus on retinal ganglion cell changes, quantitative polymerase chain reaction was undertaken on mRNA (16 genes) obtained from fixed retinal sections in which the ganglion cell layer was enriched. The sign and extent of fold changes in ganglion cell layer gene expression differed markedly from whole retinal samples. Sustained and global alteration in endogenous mRNA expression after gene therapy should be factored into any interpretation of experimental/clinical outcomes, particularly when introducing factors into the central nervous system that require secretion to evoke functionality. PMID:27933306

  19. Significant changes in endogenous retinal gene expression assessed 1 year after a single intraocular injection of AAV-CNTF or AAV-BDNF.

    PubMed

    LeVaillant, Chrisna J; Sharma, Anil; Muhling, Jill; Wheeler, Lachlan Pg; Cozens, Greg S; Hellström, Mats; Rodger, Jennifer; Harvey, Alan R

    2016-01-01

    Use of viral vectors to deliver therapeutic genes to the central nervous system holds promise for the treatment of neurodegenerative diseases and neurotrauma. Adeno-associated viral (AAV) vectors encoding brain-derived neurotrophic factor (BDNF) or ciliary derived neurotrophic factor (CNTF) promote the viability and regeneration of injured adult rat retinal ganglion cells. However, these growth-inducing transgenes are driven by a constitutively active promoter, thus we examined whether long-term AAV-mediated secretion of BDNF or CNTF affected endogenous retinal gene expression. One year after the intravitreal injection of AAV-green fluorescent protein (GFP), bi-cistronic AAV-BDNF-GFP or AAV-CNTF-GFP, mRNA was extracted and analyzed using custom 96 well polymerase chain reaction arrays. Of 93 test genes, 56% showed significantly altered expression in AAV-BDNF-GFP and/or AAV-CNTF-GFP retinas compared with AAV-GFP controls. Of these genes, 73% showed differential expression in AAV-BDNF versus AAV-CNTF injected eyes. To focus on retinal ganglion cell changes, quantitative polymerase chain reaction was undertaken on mRNA (16 genes) obtained from fixed retinal sections in which the ganglion cell layer was enriched. The sign and extent of fold changes in ganglion cell layer gene expression differed markedly from whole retinal samples. Sustained and global alteration in endogenous mRNA expression after gene therapy should be factored into any interpretation of experimental/clinical outcomes, particularly when introducing factors into the central nervous system that require secretion to evoke functionality.

  20. The prevalence of neutralizing antibodies against AAV serotype 1 in healthy subjects in China: implications for gene therapy and vaccines using AAV1 vector.

    PubMed

    Liu, Qiang; Huang, Weijin; Zhao, Chenyan; Zhang, Li; Meng, Shufang; Gao, Dongying; Wang, Youchun

    2013-09-01

    Recombinant adeno-associated virus serotype 1 (AAV1) has attracted tremendous interest as a promising vector for gene therapy and vaccine applications. However, the presence of AAV1 neutralizing antibodies as a consequence of exposure to wild type AAV1 can limit significantly effective gene transfer for biologics based AAV1 vector. Prior studies have reported that a prevalence of AAV1 neutralizing antibodies ranged from 10% to 50% in different countries around the world, and up to 79% in Dutch subjects. However, few studies have reported on the AAV1 neutralizing antibody prevalence in Chinese subjects. In this study, a high-throughput luciferase-based virus neutralization assay was established and standardized for critical parameters, including the appropriate cell line, and the optimal viral infection dose, and the infection time with homologous AAV1 vaccinated mice and guinea pig sera. Then, a total of 500 healthy individual serum samples from two separate regions of China were screened for the AAV1 neutralizing antibodies by conducting a non-randomized, cross-sectional analysis. Interestingly, a high prevalence of AAV1 neutralizing antibody (69.8%) was found in all individuals. There was significant difference observed for prevalence by gender (P = 0.042), age range (P = 0.011) and geographic origin (P < 0.001). The percentage of positive AAV1 neutralizing antibodies (NT50  > 10) in teenagers (year <18, as of 2012) was significant lower than that of adults (19-56, as of 2012) (P = 0.011), indicating the optimal vaccination period of childhood. The current study provides a useful insight for the future development of AAV1-based vaccination and gene therapy strategies in Beijing and Anhui provinces of China.

  1. AAV2 gene therapy readministration in three adults with congenital blindness.

    PubMed

    Bennett, Jean; Ashtari, Manzar; Wellman, Jennifer; Marshall, Kathleen A; Cyckowski, Laura L; Chung, Daniel C; McCague, Sarah; Pierce, Eric A; Chen, Yifeng; Bennicelli, Jeannette L; Zhu, Xiaosong; Ying, Gui-Shuang; Sun, Junwei; Wright, J Fraser; Auricchio, Alberto; Simonelli, Francesca; Shindler, Kenneth S; Mingozzi, Federico; High, Katherine A; Maguire, Albert M

    2012-02-08

    Demonstration of safe and stable reversal of blindness after a single unilateral subretinal injection of a recombinant adeno-associated virus (AAV) carrying the RPE65 gene (AAV2-hRPE65v2) prompted us to determine whether it was possible to obtain additional benefit through a second administration of the AAV vector to the contralateral eye. Readministration of vector to the second eye was carried out in three adults with Leber congenital amaurosis due to mutations in the RPE65 gene 1.7 to 3.3 years after they had received their initial subretinal injection of AAV2-hRPE65v2. Results (through 6 months) including evaluations of immune response, retinal and visual function testing, and functional magnetic resonance imaging indicate that readministration is both safe and efficacious after previous exposure to AAV2-hRPE65v2.

  2. Transendocardial delivery of AAV6 results in highly efficient and global cardiac gene transfer in rhesus macaques.

    PubMed

    Gao, Guangping; Bish, Lawrence T; Sleeper, Meg M; Mu, Xin; Sun, Lan; Lou, You; Duan, Jiachuan; Hu, Chunyan; Wang, Li; Sweeney, H Lee

    2011-08-01

    Heart disease is the leading cause of morbidity and mortality, and cardiac gene transfer has potential as a novel therapeutic approach. We previously demonstrated safe and efficient gene transfer to the canine heart using a percutaneous transendocardial injection procedure to deliver self-complementary (sc) adeno-associated virus 6 (AAV6) vector. In the present study, we proceed with our vertical translation study to evaluate cardiac gene transfer in nonhuman primates (NHPs). We screened approximately 30 adult male rhesus macaques for the presence of neutralizing antibodies against AAV6, AAV8, and AAV9, and then selected seven monkeys whose antibody titers against these three serotypes were lower than 1/5. The animals were then randomized to receive either scAAV6 (n=3), scAAV8 (n=1), or scAAV9 (n=3) vector expressing the enhanced green fluorescent protein (EGFP) reporter gene at a dose of 5.4×10(12) genome copies/kg, which was administered according to a modified version of our previously developed transendocardial injection procedure. One animal treated with scAAV6 died secondary to esophageal intubation. The remaining animals were euthanized 7 days after gene transfer, at which time tissue was collected for analysis of EGFP expression, histopathology, and biodistribution of the vector genome. We found that (i) transendocardial delivery of AAV is safe in the NHP, (ii) AAV6 and AAV8 provide efficient cardiac gene transfer at similar levels and are superior to AAV9, and (iii) AAV6 is more cardiac-specific than AAV8 and AAV9. The results of this NHP study may help guide the development AAV vectors for the treatment of cardiovascular disease in humans.

  3. Plasmapheresis eliminates the negative impact of AAV antibodies on microdystrophin gene expression following vascular delivery.

    PubMed

    Chicoine, L G; Montgomery, C L; Bremer, W G; Shontz, K M; Griffin, D A; Heller, K N; Lewis, S; Malik, V; Grose, W E; Shilling, C J; Campbell, K J; Preston, T J; Coley, B D; Martin, P T; Walker, C M; Clark, K R; Sahenk, Z; Mendell, J R; Rodino-Klapac, L R

    2014-02-01

    Duchenne muscular dystrophy is a monogenic disease potentially treatable by gene replacement. Use of recombinant adeno-associated virus (AAV) will ultimately require a vascular approach to broadly transduce muscle cells. We tested the impact of preexisting AAV antibodies on microdystrophin expression following vascular delivery to nonhuman primates. Rhesus macaques were treated by isolated limb perfusion using a fluoroscopically guided catheter. In addition to serostatus stratification, the animals were placed into one of the three immune suppression groups: no immune suppression, prednisone, and triple immune suppression (prednisone, tacrolimus, and mycophenolate mofetil). The animals were analyzed for transgene expression at 3 or 6 months. Microdystrophin expression was visualized in AAV, rhesus serotype 74 sero-negative animals (mean: 48.0 ± 20.8%) that was attenuated in sero-positive animals (19.6 ± 18.7%). Immunosuppression did not affect transgene expression. Importantly, removal of AAV binding antibodies by plasmapheresis in AAV sero-positive animals resulted in high-level transduction (60.8 ± 18.0%), which is comparable with that of AAV sero-negative animals (53.7 ± 7.6%), whereas non-pheresed sero-positive animals demonstrated significantly lower transduction levels (10.1 ± 6.0%). These data support the hypothesis that removal of AAV binding antibodies by plasmapheresis permits successful and sustained gene transfer in the presence of preexisting immunity (natural infection) to AAV.

  4. The impact of AAV capsid-specific T cell responses on design and outcome of clinical gene transfer trials with recombinant AAV vectors - an evolving controversy.

    PubMed

    Ertl, Hildegund Cj; High, Katherine A

    2017-01-02

    Recombinant adenovirus-associated (rAAV) vectors due to their ease of construction, wide tissue tropism and lack of pathogenicity remain at the forefront for long-term gene replacement therapy. In spite of very encouraging pre-clinical results, clinical trials were initially unsuccessful; expression of the rAAV vector-delivered therapeutic protein was transient. Loss of expression was linked to an expansion of AAV capsid-specific T cell responses, leading to the hypothesis that rAAV vectors recall pre-existing memory T cells that had been induced by natural infections with AAV together with a helper virus. Although this was hotly debated at first, AAV capsid-specific T cell responses were observed in several gene transfer trials that used high doses of rAAV vectors. Subsequent trials designed to circumvent these T cell responses through the use of immunosuppressive drugs, rAAV vectors based on rare serotypes or modified to allow for therapeutic levels of the transgene product at low, non-immunogenic vector doses are now successful in correcting debilitating diseases.

  5. Prevalence of AAV1 neutralizing antibodies and consequences for a clinical trial of gene transfer for advanced heart failure.

    PubMed

    Greenberg, B; Butler, J; Felker, G M; Ponikowski, P; Voors, A A; Pogoda, J M; Provost, R; Guerrero, J; Hajjar, R J; Zsebo, K M

    2016-03-01

    Adeno-associated virus serotype 1 (AAV1) has many advantages as a gene therapy vector, but the presence of pre-existing neutralizing antibodies (NAbs) is an important limitation. This study was designed to determine: (1) characteristics of AAV NAbs in human subjects, (2) prevalence of AAV1 NAbs in heart failure patients and (3) utility of aggressive immunosuppressive therapy in reducing NAb seroconversion in an animal model. NAb titers were assessed in a cohort of heart failure patients and in patients screened for a clinical trial of gene therapy with AAV1 carrying the sarcoplasmic reticulum calcium ATPase gene (AAV1/SERCA2a). AAV1 NAbs were found in 59.5% of 1552 heart failure patients. NAb prevalence increased with age (P=0.001) and varied geographically. The pattern of NAb titers suggested that exposure is against AAV2, with AAV1 NAb seropositivity due to crossreactivity. The effects of immunosuppression on NAb formation were tested in mini-pigs treated with immunosuppressant therapy before, during and after a single AAV1/SERCA2a infusion. Aggressive immunosuppression did not prevent formation of AAV1 NAbs. We conclude that immunosuppression is unlikely to be a viable solution for repeat AAV1 dosing. Strategies to reduce NAbs in heart failure patients are needed to increase eligibility for gene transfer using AAV vectors.

  6. Systematic Evaluation of AAV Vectors for Liver directed Gene Transfer in Murine Models

    PubMed Central

    Wang, Lili; Wang, Huan; Bell, Peter; McCarter, Robert J; He, Jianping; Calcedo, Roberto; Vandenberghe, Luk H; Morizono, Hiroki; Batshaw, Mark L; Wilson, James M

    2009-01-01

    Vectors based on adeno-associated viruses (AAVs) are being evaluated for use in liver-directed gene therapy. Candidates have been preselected on the basis of capsid structure that plays an important role in determining performance profiles. We describe a comprehensive and statistically powered set of mouse studies designed to compare the performance of vectors based on seven novel AAV capsids. The key criteria used to select candidates for successful gene therapy are high level and stable transgene expression in the absence of toxicity. Based on these criteria, the best performing vectors, AAV8, AAVhu.37, and AAVrh.8, will be further evaluated in nonhuman primates (NHPs). PMID:19861950

  7. Tyrosine triple mutated AAV2-BDNF gene therapy in a rat model of transient IOP elevation

    PubMed Central

    Igarashi, Tsutomu; Kobayashi, Maika; Kameya, Shuhei; Fujimoto, Chiaki; Nakamoto, Kenji; Takahashi, Hisatomo; Igarashi, Toru; Miyake, Noriko; Iijima, Osamu; Hirai, Yukihiko; Shimada, Takashi; Okada, Takashi; Takahashi, Hiroshi

    2016-01-01

    Purpose We examined the neuroprotective effects of exogenous brain-derived neurotrophic factor (BDNF), which provides protection to retinal ganglion cells (RGCs) in rodents, in a model of transient intraocular pressure (IOP) elevation using a mutant (triple Y-F) self-complementary adeno-associated virus type 2 vector encoding BDNF (tm-scAAV2-BDNF). Methods The tm-scAAV2-BDNF or control vector encoding green fluorescent protein (GFP; tm-scAAV2-GFP) was intravitreally administered to rats, which were then divided into four groups: control, ischemia/reperfusion (I/R) injury only, I/R injury with tm-scAAV2-GFP, and tm-scAAV2-BDNF. I/R injury was then induced by transiently increasing IOP, after which the rats were euthanized to measure the inner retinal thickness and cell counts in the RGC layer. Results Intravitreous injection of tm-scAAV2-BDNF resulted in high levels of BDNF expression in the neural retina. Histological analysis showed that the inner retinal thickness and cell numbers in the RGC layer were preserved after transient IOP elevation in eyes treated with tm-scAAV2-BDNF but not in the other I/R groups. Significantly reduced glial fibrillary acidic protein (GFAP) immunostaining after I/R injury in the rats that received tm-scAAV2-BDNF indicated reduced retinal stress, and electroretinogram (ERG) analysis confirmed preservation of retinal function in the tm-scAAV2-BDNF group. Conclusions These results demonstrate the feasibility and effectiveness of neuroprotective gene therapy using tm-scAAV2-BDNF to protect the inner retina from transiently high intraocular pressure. An in vivo gene therapeutic approach to the clinical management of retinal diseases in conditions such as glaucoma, retinal artery occlusion, hypertensive retinopathy, and diabetic retinopathy thus appears feasible. PMID:27440998

  8. Efficient neuronal gene transfer with AAV8 leads to neurotoxic levels of tau or green fluorescent proteins.

    PubMed

    Klein, Ronald L; Dayton, Robert D; Leidenheimer, Nancy J; Jansen, Karen; Golde, Todd E; Zweig, Richard M

    2006-03-01

    Adeno-associated virus (AAV) serotype 8 appears to be the strongest of the natural serotypes reported to date for gene transfer in liver and muscle. In this study, we evaluated AAV8 in the brain by several methods, including biophotonic imaging of green fluorescent protein (GFP). In the adult rat hippocampus, levels of GFP expressed were clearly greater with AAV8 than with AAV2 or AAV5 by Western blot and biophotonic imaging and slightly but significantly greater than AAV1 by Western blot. In the substantia nigra, the GFP expression conferred by AAV8 was toxic to dopamine neurons, although toxicity could be avoided with dose titration. At the low dose at which there was no GFP toxicity from the GFP vector, another AAV8 vector for a disease-related (P301L) form of the microtubule-associated protein tau caused a 78% loss of dopamine neurons and significant amphetamine-stimulated rotational behavior. The AAV8 tau vector-induced cell loss was greater than that from AAV2 or AAV5 tau vectors, demonstrating that the increased gene transfer was functional. While the toxicity observed with GFP expression warrants great caution, the efficient AAV8 is promising for animal models of neurodegenerative diseases and potentially as well for gene therapy of brain diseases.

  9. Systemic gene transfer reveals distinctive muscle transduction profile of tyrosine mutant AAV-1, -6, and -9 in neonatal dogs.

    PubMed

    Hakim, Chady H; Yue, Yongping; Shin, Jin-Hong; Williams, Regina R; Zhang, Keqing; Smith, Bruce F; Duan, Dongsheng

    2014-03-05

    The muscular dystrophies are a group of devastating genetic disorders that affect both skeletal and cardiac muscle. An effective gene therapy for these diseases requires bodywide muscle delivery. Tyrosine mutant adeno-associated virus (AAV) has been considered as a class of highly potent gene transfer vectors. Here, we tested the hypothesis that systemic delivery of tyrosine mutant AAV can result in bodywide muscle transduction in newborn dogs. Three tyrosine mutant AAV vectors (Y445F/Y731F AAV-1, Y445F AAV-6, and Y731F AAV-9) were evaluated. These vectors expressed the alkaline phosphatase reporter gene under transcriptional regulation of either the muscle-specific Spc5-12 promoter or the ubiquitous Rous sarcoma virus promoter. Robust skeletal and cardiac muscle transduction was achieved with Y445F/Y731F AAV-1. However, Y731F AAV-9 only transduced skeletal muscle. Surprisingly, Y445F AAV-6 resulted in minimal muscle transduction. Serological study suggests that the preexisting neutralization antibody may underlie the limited transduction of Y445F AAV-6. In summary, we have identified Y445F/Y731F AAV-1 as a potentially excellent systemic gene transfer vehicle to target both skeletal muscle and the heart in neonatal puppies. Our findings have important implications in exploring systemic neonatal gene therapy in canine models of muscular dystrophy.

  10. AAV8-mediated hepatic gene transfer in infant rhesus monkeys (Macaca mulatta).

    PubMed

    Wang, Lili; Bell, Peter; Lin, Jianping; Calcedo, Roberto; Tarantal, Alice F; Wilson, James M

    2011-11-01

    Many genetic metabolic diseases manifest in infancy, therefore, it is important to develop effective treatments that could be implemented at this time. Adeno-associated virus serotype 8 (AAV8) gene transfer has been studied in neonatal mouse, cat, and dog models and shown some efficacy with a single hepatic injection at birth. AAV8-mediated liver gene transfer has also generated sustained therapeutic effects in feline and canine models of lysosomal storage disorders. In these models, delaying the age of vector treatment increased gene transfer stability. The growth rate of infant nonhuman primates is more similar to the growth trajectory of humans, thus infant monkeys provide an excellent model to study AAV gene transfer efficiency, stability, and safety. In this study, we report for the first time that AAV8-mediated hepatic gene transfer in infant monkeys is safe and efficient but less stable when compared to adolescent animals. Infant monkeys administered AAV8 intravenously at 1 week postnatal age achieved up to 98% transduction of hepatocytes within 7 days of injection; however, there was significant dilution of genomes and loss of transgene expression 35 days postadministration. Delaying the injection to 1 month postnatal age did not improve stability of transduction but decreased the antibody response to AAV8 capsid.

  11. CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes

    PubMed Central

    Steines, Benjamin; Dickey, David D.; Bergen, Jamie; Excoffon, Katherine J.D.A.; Weinstein, John R.; Li, Xiaopeng; Yan, Ziying; Abou Alaiwa, Mahmoud H.; Shah, Viral S.; Bouzek, Drake C.; Powers, Linda S.; Gansemer, Nicholas D.; Ostedgaard, Lynda S.; Engelhardt, John F.; Stoltz, David A.; Welsh, Michael J.; Sinn, Patrick L.; Schaffer, David V.

    2016-01-01

    The physiological components that contribute to cystic fibrosis (CF) lung disease are steadily being elucidated. Gene therapy could potentially correct these defects. CFTR-null pigs provide a relevant model to test gene therapy vectors. Using an in vivo selection strategy that amplifies successful capsids by replicating their genomes with helper adenovirus coinfection, we selected an adeno-associated virus (AAV) with tropism for pig airway epithelia. The evolved capsid, termed AAV2H22, is based on AAV2 with 5 point mutations that result in a 240-fold increased infection efficiency. In contrast to AAV2, AAV2H22 binds specifically to pig airway epithelia and is less reliant on heparan sulfate for transduction. We administer AAV2H22-CFTR expressing the CF transmembrane conductance regulator (CFTR) cDNA to the airways of CF pigs. The transduced airways expressed CFTR on ciliated and nonciliated cells, induced anion transport, and improved the airway surface liquid pH and bacterial killing. Most gene therapy studies to date focus solely on Cl– transport as the primary metric of phenotypic correction. Here, we describe a gene therapy experiment where we not only correct defective anion transport, but also restore bacterial killing in CFTR-null pig airways. PMID:27699238

  12. Triptolide T10 enhances AAV-mediated gene transfer in mice striatum.

    PubMed

    Ren, Xinmiao; Zhang, Ting; Hu, Jing; Ding, Wei; Wang, Xiaomin

    2010-08-02

    Adeno-associated virus (AAV) mediated gene transfer has been demonstrated to be an effective approach for treating Parkinson's disease (PD). Triptolide T10 is a monomeric compound isolated from tripterygium wilfordii Hook.f. (Thunder God vine), a traditional Chinese herb for anti-inflammatory medications. In the present study, we co-administered T10 with recombinant AAV2 in SH-SY5Y human neuroblastoma cells and in the striatum of C57BL/6 mice, and then evaluated the AAV-mediated gene expression levels. The results have shown that T10 significantly augmented the expression of AAV-mediated gene in a dose-dependent fashion without detectable cytotoxicity. As growing evidence indicated that inflammation contributed to the progression of PD, and the anti-inflammatory effect of T10 was shown in our previous studies, our data of T10 to enhance AAV transduction suggest that T10 might be potentially used as a facilitating reagent for the AAV gene therapy applications in neurodegenerative diseases.

  13. Systemic Correction of Murine Glycogen Storage Disease Type IV by an AAV-Mediated Gene Therapy.

    PubMed

    Yi, Haiqing; Zhang, Quan; Brooks, Elizabeth D; Yang, Chunyu; Thurberg, Beth L; Kishnani, Priya S; Sun, Baodong

    2016-11-10

    Deficiency of glycogen branching enzyme (GBE) causes glycogen storage disease type IV (GSD IV), which is characterized by the accumulation of a less branched, poorly soluble form of glycogen called polyglucosan (PG) in multiple tissues. This study evaluates the efficacy of gene therapy with an adeno-associated viral (AAV) vector in a mouse model of adult form of GSD IV (Gbe1(ys/ys)). An AAV serotype 9 (AAV9) vector containing a human GBE expression cassette (AAV-GBE) was intravenously injected into 14-day-old Gbe1(ys/ys) mice at a dose of 5 × 10(11) vector genomes per mouse. Mice were euthanized at 3 and 9 months of age. In the AAV-treated mice at 3 months of age, GBE enzyme activity was highly elevated in heart, which is consistent with the high copy number of the viral vector genome detected. GBE activity also increased significantly in skeletal muscles and the brain, but not in the liver. The glycogen content was reduced to wild-type levels in muscles and significantly reduced in the liver and brain. At 9 months of age, though GBE activity was only significantly elevated in the heart, glycogen levels were significantly reduced in the liver, brain, and skeletal muscles of the AAV-treated mice. In addition, the AAV treatment resulted in an overall decrease in plasma activities of alanine transaminase, aspartate transaminase, and creatine kinase, and a significant increase in fasting plasma glucose concentration at 9 months of age. This suggests an alleviation of damage and improvement of function in the liver and muscles by the AAV treatment. This study demonstrated a long-term benefit of a systemic injection of an AAV-GBE vector in Gbe1(ys/ys) mice.

  14. Locally Targeted Cardiac Gene Delivery by AAV Microbubble Destruction in a Large Animal Model.

    PubMed

    Schlegel, Philipp; Huditz, Regina; Meinhardt, Eric; Rapti, Kleopatra; Geis, Nicolas; Most, Patrick; Katus, Hugo A; Müller, Oliver J; Bekeredjian, Raffi; Raake, Philip W

    2016-04-01

    Cardiac gene therapy is a promising approach for treating heart diseases. Although clinical studies are ongoing, effective and targeted transgene delivery is still a major obstacle. We sought to improve and direct transgene expression in myocardium by ultrasound-targeted microbubble destruction (UTMD). In pigs, adeno-associated virus-derived (AAV) vectors harboring the luciferase reporter gene were delivered via retroinfusion into the anterior interventricular coronary vein (AIV). AAV vectors were either loaded to lipid microbubbles before injection or injected unmodified. Upon injection of AAV/microbubble solution, UTMD was performed. After 4 weeks, reporter gene expression levels in the anterior wall (target area), in the posterior wall (control area), and in noncardiac organs were analyzed. Retroinfusion of AAV-luciferase vectors loaded to lipid microbubbles led to a significant increase in transgene expression, with an increase in UTMD targeted areas of the anterior wall. Moreover, off-target expression was reduced in comparison to control animals, receiving AAV-luciferase without microbubbles. Besides an increase in overall target area transgene expression, UTMD alters the spatial expression of the luciferase transgene, focusing expression to ultrasound-targeted left ventricular wall. These data suggest UTMD as a promising approach for directing AAV to specific cardiac segments.

  15. Recombinant AAV-mediated gene transfer to the retina: gene therapy perspectives.

    PubMed

    Rolling, F

    2004-10-01

    Retinal degenerative diseases such as retinal macular degeneration and retinitis pigmentosa constitute a broad group of diseases that all share one critical feature, the progressive apoptotic loss of cells in the retina. There is currently no effective treatment available by which the course of these disorders can be modified, and visual dysfunction often progresses to total blindness. Gene therapy represents an attractive approach to treating retinal degeneration because the eye is easily accessible and allows local application of therapeutic vectors with reduced risk of systemic effects. Furthermore, transgene expression within the retina and effects of treatments may be monitored by a variety of noninvasive examinations. An increasing number of strategies for molecular treatment of retinal disease rely on recombinant adeno-associated virus (rAAV) as a therapeutic gene delivery vector. Before rAAV-mediated gene therapy for retinal degeneration becomes a reality, there are a number of important requirements that include: (1) evaluation of different rAAV serotypes, (2) screening of vectors in large animals in order to ensure that they mediate safe and long-term gene expression, (3) appropriate regulation of therapeutic gene expression, (4) evaluation of vectors carrying a therapeutic gene in relevant animal models, (5) identification of suitable patients, and finally (6) manufacture of clinical grade vector. All these steps towards gene therapy are still being explored. Outcomes of these studies will be discussed in the order in which they occur, from vector studies to preclinical assessment of the therapeutic potential of rAAV in animal models of retinal degeneration.

  16. CNS-restricted Transduction and CRISPR/Cas9-mediated Gene Deletion with an Engineered AAV Vector

    PubMed Central

    Murlidharan, Giridhar; Sakamoto, Kensuke; Rao, Lavanya; Corriher, Travis; Wang, Dan; Gao, Guangping; Sullivan, Patrick; Asokan, Aravind

    2016-01-01

    Gene therapy using recombinant adeno-associated viral (AAV) vectors is emerging as a promising approach to treat central nervous system disorders such as Spinal muscular atrophy, Batten, Parkinson and Alzheimer disease amongst others. A critical remaining challenge for central nervous system-targeted gene therapy, silencing or gene editing is to limit potential vector dose-related toxicity in off-target cells and organs. Here, we characterize a lab-derived AAV chimeric (AAV2g9), which displays favorable central nervous system attributes derived from both parental counterparts, AAV2 and AAV9. This synthetic AAV strain displays preferential, robust, and widespread neuronal transduction within the brain and decreased glial tropism. Importantly, we observed minimal systemic leakage, decreased sequestration and gene transfer in off-target organs with AAV2g9, when administered into the cerebrospinal fluid. A single intracranial injection of AAV2g9 vectors encoding guide RNAs targeting the schizophrenia risk gene MIR137 (encoding MIR137) in CRISPR/Cas9 knockin mice resulted in brain-specific gene deletion with no detectable events in the liver. This engineered AAV vector is a promising platform for treating neurological disorders through gene therapy, silencing or editing modalities. PMID:27434683

  17. Gene Therapy for Mucopolysaccharidosis Type VI Is Effective in Cats Without Pre-Existing Immunity to AAV8

    PubMed Central

    Ferla, Rita; O'Malley, Thomas; Calcedo, Roberto; O'Donnell, Patricia; Wang, Ping; Cotugno, Gabriella; Claudiani, Pamela; Wilson, James M.; Haskins, Mark

    2013-01-01

    Abstract Liver gene transfer with adeno-associated viral (AAV) 2/8 vectors is being considered for therapy of systemic diseases like mucopolysaccharidosis type VI (MPS VI), a lysosomal storage disease due to deficiency of arylsulfatase B (ARSB). We have previously reported that liver gene transfer with AAV2/8 results in sustained yet variable expression of ARSB. We hypothesized that the variability we observed could be due to pre-existing immunity to wild-type AAV8. To test this, we compared the levels of AAV2/8-mediated transduction in MPS VI cats with and without pre-existing immunity to AAV8. In addition, since levels of lysosomal enzymes as low as 5% of normal are expected to be therapeutic, we evaluated the impact of pre-existing immunity on MPS VI phenotypic rescue. AAV2/8 administration to MPS VI cats without pre-existing neutralizing antibodies to AAV8 resulted in consistent and dose-dependent expression of ARSB, urinary glycosaminoglycan (GAG) reduction, and femur length amelioration. Conversely, animals with pre-existing immunity to AAV8 showed low levels of ARSB expression and limited phenotypic improvement. Our data support the use of AAV2/8-mediated gene transfer for MPS VI and other systemic diseases, and highlight that pre-existing immunity to AAV8 should be considered in determining subject eligibility for therapy. PMID:23194248

  18. Widespread Central Nervous System Gene Transfer and Silencing After Systemic Delivery of Novel AAV-AS Vector.

    PubMed

    Choudhury, Sourav R; Harris, Anne F; Cabral, Damien J; Keeler, Allison M; Sapp, Ellen; Ferreira, Jennifer S; Gray-Edwards, Heather L; Johnson, Jacob A; Johnson, Aime K; Su, Qin; Stoica, Lorelei; DiFiglia, Marian; Aronin, Neil; Martin, Douglas R; Gao, Guangping; Sena-Esteves, Miguel

    2016-04-01

    Effective gene delivery to the central nervous system (CNS) is vital for development of novel gene therapies for neurological diseases. Adeno-associated virus (AAV) vectors have emerged as an effective platform for in vivo gene transfer, but overall neuronal transduction efficiency of vectors derived from naturally occurring AAV capsids after systemic administration is relatively low. Here, we investigated the possibility of improving CNS transduction of existing AAV capsids by genetically fusing peptides to the N-terminus of VP2 capsid protein. A novel vector AAV-AS, generated by the insertion of a poly-alanine peptide, is capable of extensive gene transfer throughout the CNS after systemic administration in adult mice. AAV-AS is 6- and 15-fold more efficient than AAV9 in spinal cord and cerebrum, respectively. The neuronal transduction profile varies across brain regions but is particularly high in the striatum where AAV-AS transduces 36% of striatal neurons. Widespread neuronal gene transfer was also documented in cat brain and spinal cord. A single intravenous injection of an AAV-AS vector encoding an artificial microRNA targeting huntingtin (Htt) resulted in 33-50% knockdown of Htt across multiple CNS structures in adult mice. This novel AAV-AS vector is a promising platform to develop new gene therapies for neurodegenerative disorders.

  19. Rescue of Hearing by Gene Delivery to Inner-Ear Hair Cells Using Exosome-Associated AAV.

    PubMed

    György, Bence; Sage, Cyrille; Indzhykulian, Artur A; Scheffer, Deborah I; Brisson, Alain R; Tan, Sisareuth; Wu, Xudong; Volak, Adrienn; Mu, Dakai; Tamvakologos, Panos I; Li, Yaqiao; Fitzpatrick, Zachary; Ericsson, Maria; Breakefield, Xandra O; Corey, David P; Maguire, Casey A

    2017-02-01

    Adeno-associated virus (AAV) is a safe and effective vector for gene therapy for retinal disorders. Gene therapy for hearing disorders is not as advanced, in part because gene delivery to sensory hair cells of the inner ear is inefficient. Although AAV transduces the inner hair cells of the mouse cochlea, outer hair cells remain refractory to transduction. Here, we demonstrate that a vector, exosome-associated AAV (exo-AAV), is a potent carrier of transgenes to all inner ear hair cells. Exo-AAV1-GFP is more efficient than conventional AAV1-GFP, both in mouse cochlear explants in vitro and with direct cochlear injection in vivo. Exo-AAV shows no toxicity in vivo, as assayed by tests of auditory and vestibular function. Finally, exo-AAV1 gene therapy partially rescues hearing in a mouse model of hereditary deafness (lipoma HMGIC fusion partner-like 5/tetraspan membrane protein of hair cell stereocilia [Lhfpl5/Tmhs(-/-)]). Exo-AAV is a powerful gene delivery system for hair cell research and may be useful for gene therapy for deafness.

  20. In Vivo Selection Yields AAV-B1 Capsid for Central Nervous System and Muscle Gene Therapy.

    PubMed

    Choudhury, Sourav R; Fitzpatrick, Zachary; Harris, Anne F; Maitland, Stacy A; Ferreira, Jennifer S; Zhang, Yuanfan; Ma, Shan; Sharma, Rohit B; Gray-Edwards, Heather L; Johnson, Jacob A; Johnson, Aime K; Alonso, Laura C; Punzo, Claudio; Wagner, Kathryn R; Maguire, Casey A; Kotin, Robert M; Martin, Douglas R; Sena-Esteves, Miguel

    2016-08-01

    Adeno-associated viral (AAV) vectors have shown promise as a platform for gene therapy of neurological disorders. Achieving global gene delivery to the central nervous system (CNS) is key for development of effective therapies for many of these diseases. Here we report the isolation of a novel CNS tropic AAV capsid, AAV-B1, after a single round of in vivo selection from an AAV capsid library. Systemic injection of AAV-B1 vector in adult mice and cat resulted in widespread gene transfer throughout the CNS with transduction of multiple neuronal subpopulations. In addition, AAV-B1 transduces muscle, β-cells, pulmonary alveoli, and retinal vasculature at high efficiency. This vector is more efficient than AAV9 for gene delivery to mouse brain, spinal cord, muscle, pancreas, and lung. Together with reduced sensitivity to neutralization by antibodies in pooled human sera, the broad transduction profile of AAV-B1 represents an important improvement over AAV9 for CNS gene therapy.

  1. A concept of eliminating nonhomologous recombination for scalable and safe AAV vector generation for human gene therapy.

    PubMed

    Dong, Biao; Moore, Andrea R; Dai, Jihong; Roberts, Sean; Chu, Kirk; Kapranov, Philipp; Moss, Bernard; Xiao, Weidong

    2013-07-01

    Scalable and efficient production of high-quality recombinant adeno-associated virus (rAAV) for gene therapy remains a challenge despite recent clinical successes. We developed a new strategy for scalable and efficient rAAV production by sequestering the AAV helper genes and the rAAV vector DNA in two different subcellular compartments, made possible by using cytoplasmic vaccinia virus as a carrier for the AAV helper genes. For the first time, the contamination of replication-competent AAV particles (rcAAV) can be completely eliminated in theory by avoiding ubiquitous nonhomologous recombination. Vector DNA can be integrated into the host genomes or delivered by a nuclear targeting vector such as adenovirus. In suspension HeLa cells, the achieved vector yield per cell is similar to that from traditional triple-plasmid transfection method. The rcAAV contamination was undetectable at the limit of our assay. Furthermore, this new concept can be used not only for production of rAAV, but also for other DNA vectors.

  2. Impaired clearance of accumulated lysosomal glycogen in advanced Pompe disease despite high-level vector-mediated transgene expression

    PubMed Central

    Sun, Baodong; Zhang, Haoyue; Bird, Andrew; Li, Songtao; Young, Sarah P.; Koeberl, Dwight D.

    2013-01-01

    Background Infantile-onset glycogen storage disease type II (GSD-II; Pompe disease; MIM 232300) causes death early in childhood from cardiorespiratory failure in absence of effective treatment, whereas late-onset Pompe disease causes a progressive skeletal myopathy. The limitations of enzyme replacement therapy could potentially be addressed with adeno-associated virus (AAV) vector-mediated gene therapy. Methods AAV vectors containing tissue-specific regulatory cassettes, either liver-specific or muscle-specific, were administered to 12 and 17 month old Pompe disease mice to evaluate the efficacy of gene therapy in advanced Pompe disease. Biochemical correction was evaluated through GAA activity and glycogen content analyses of the heart and skeletal muscle. Western blotting, urinary biomarker, and Rotarod performance were evaluated following vector administration. Results The AAV vector containing the liver-specific regulatory cassette secreted high-level hGAA into the blood and corrected glycogen storage in the heart and diaphragm. The biochemical correction of the heart and diaphragm was associated with efficacy, as reflected by increased Rotarod performance; however, the clearance of glycogen from skeletal muscles was relatively impaired, in comparison with younger Pompe disease mice. An alternative vector containing a muscle-specific regulatory cassette transduced skeletal muscle with high efficiency, but also failed to achieve complete clearance of accumulated glycogen. Decreased transduction of the heart and liver in older mice, especially in females, was implicated as a cause for reduced efficacy in advanced Pompe disease. Conclusion The impaired efficacy of AAV vector-mediated gene therapy in old Pompe disease mice emphasized the need for early treatment to achieve full efficacy. PMID:19621331

  3. Diabetes enhances the efficacy of AAV2 vectors in the retina: therapeutic effect of AAV2 encoding vasoinhibin and soluble VEGF receptor 1.

    PubMed

    Díaz-Lezama, Nundehui; Wu, Zhijian; Adán-Castro, Elva; Arnold, Edith; Vázquez-Membrillo, Miguel; Arredondo-Zamarripa, David; Ledesma-Colunga, Maria G; Moreno-Carranza, Bibiana; Martinez de la Escalera, Gonzalo; Colosi, Peter; Clapp, Carmen

    2016-03-01

    Adeno-associated virus (AAV) vector-mediated delivery of inhibitors of blood-retinal barrier breakdown (BRBB) offers promise for the treatment of diabetic macular edema. Here, we demonstrated a reversal of blood-retinal barrier pathology mediated by AAV type 2 (AAV2) vectors encoding vasoinhibin or soluble VEGF receptor 1 (sFlt-1) when administered intravitreally to diabetic rats. Efficacy and safety of the AAV2 vasoinhibin vector were tested by monitoring its effect on diabetes-induced changes in the retinal vascular bed and thickness, and in the electroretinogram (ERG). Also, the transduction of AAV2 vectors and expression of AAV2 receptors and co-receptors were compared between the diabetic and the non-diabetic rat retinas. AAV2 vasoinhibin or AAV2 sFlt-1 vectors were injected intravitreally before or after enhanced BRBB due to diabetes induced by streptozotocin. The BRBB was examined by the Evans blue method, the vascular bed by fluorescein angiography, expression of the AAV2 EGFP reporter vector by confocal microscopy, and the AAV2 genome, expression of transgenes, receptors, and co-receptors by quantitative PCR. AAV2 vasoinhibin and sFlt-1 vectors inhibited the diabetes-mediated increase in BRBB when injected after, but not before, diabetes was induced. The AAV2 vasoinhibin vector decreased retinal microvascular abnormalities and the diabetes-induced reduction of the B-wave of the ERG, but it had no effect in non-diabetic controls. Also, retinal thickness was not altered by diabetes or by the AAV2 vasoinhibin vector. The AAV2 genome, vasoinhibin and sFlt-1 transgenes, and EGFP levels were higher in the retinas from diabetic rats and were associated with an elevated expression of AAV2 receptors (syndecan, glypican, and perlecan) and co-receptors (fibroblast growth factor receptor 1, αvβ5 integrin, and hepatocyte growth factor receptor). We conclude that retinal transduction and efficacy of AAV2 vectors are enhanced in diabetes, possibly due to their elevated

  4. Gene delivery to adipose tissue using transcriptionally targeted rAAV8 vectors.

    PubMed

    Uhrig-Schmidt, Silke; Geiger, Matthias; Luippold, Gerd; Birk, Gerald; Mennerich, Detlev; Neubauer, Heike; Grimm, Dirk; Wolfrum, Christian; Kreuz, Sebastian

    2014-01-01

    In recent years, the increasing prevalence of obesity and obesity-related co-morbidities fostered intensive research in the field of adipose tissue biology. To further unravel molecular mechanisms of adipose tissue function, genetic tools enabling functional studies in vitro and in vivo are essential. While the use of transgenic animals is well established, attempts using viral and non-viral vectors to genetically modify adipocytes in vivo are rare. Therefore, we here characterized recombinant Adeno-associated virus (rAAV) vectors regarding their potency as gene transfer vehicles for adipose tissue. Our results demonstrate that a single dose of systemically applied rAAV8-CMV-eGFP can give rise to remarkable transgene expression in murine adipose tissues. Upon transcriptional targeting of the rAAV8 vector to adipocytes using a 2.2 kb fragment of the murine adiponectin (mAP2.2) promoter, eGFP expression was significantly decreased in off-target tissues while efficient transduction was maintained in subcutaneous and visceral fat depots. Moreover, rAAV8-mAP2.2-mediated expression of perilipin A - a lipid-droplet-associated protein - resulted in significant changes in metabolic parameters only three weeks post vector administration. Taken together, our findings indicate that rAAV vector technology is applicable as a flexible tool to genetically modify adipocytes for functional proof-of-concept studies and the assessment of putative therapeutic targets in vivo.

  5. Preexisting Immunity and Low Expression in Primates Highlight Translational Challenges for Liver-directed AAV8-mediated Gene Therapy

    PubMed Central

    Hurlbut, Gregory D; Ziegler, Robin J; Nietupski, Jennifer B; Foley, Joseph W; Woodworth, Lisa A; Meyers, Elizabeth; Bercury, Scott D; Pande, Nilesh N; Souza, David W; Bree, Mark P; Lukason, Michael J; Marshall, John; Cheng, Seng H; Scheule, Ronald K

    2010-01-01

    Liver-directed gene therapy with adeno-associated virus (AAV) vectors effectively treats mouse models of lysosomal storage diseases (LSDs). We asked whether these results were likely to translate to patients. To understand to what extent preexisting anti-AAV8 antibodies could impede AAV8-mediated liver transduction in primates, commonly preexposed to AAV, we quantified the effects of preexisting antibodies on liver transduction and subsequent transgene expression in mouse and nonhuman primate (NHP) models. Using the highest viral dose previously reported in a clinical trial, passive transfer of NHP sera containing relatively low anti-AAV8 titers into mice blocked liver transduction, which could be partially overcome by increasing vector dose tenfold. Based on this and a survey of anti-AAV8 titers in 112 humans, we predict that high-dose systemic gene therapy would successfully transduce liver in >50% of human patients. However, although high-dose AAV8 administration to mice and monkeys with equivalent anti-AAV8 titers led to comparable liver vector copy numbers, the resulting transgene expression in primates was ~1.5-logs lower than mice. This suggests vector fate differs in these species and that strategies focused solely on overcoming preexisting vector-specific antibodies may be insufficient to achieve clinically meaningful expression levels of LSD genes using a liver-directed gene therapy approach in patients. PMID:20736932

  6. Evaluation of lateral spread of transgene expression following subretinal AAV-mediated gene delivery in dogs.

    PubMed

    Bruewer, Ashlee R; Mowat, Freya M; Bartoe, Joshua T; Boye, Sanford L; Hauswirth, William W; Petersen-Jones, Simon M

    2013-01-01

    Dog models with spontaneously occurring mutations in retinal dystrophy genes are an invaluable resource for preclinical development of retinal gene therapy. Adeno-associated virus (AAV) vectors have been most successful; to target the outer retina and RPE they are delivered by subretinal injection, causing a temporary retinal detachment with some potential for retinal morbidity. A recent reporter gene study using an AAV2/8 vector in dogs reported transgene expression beyond the boundary of the subretinal bleb. This could be a desirable feature which increases the area of retina treated while minimizing the retinal detachment and any associated morbidity. We performed a detailed study of the lateral spread of transgene expression beyond the subretinal injection site following subretinally delivered AAV vectors in normal dogs. Vectors expressed green fluorescent protein (GFP) using a small chicken beta-actin promoter. AAV2/2 (quadruple tyrosine to phenylalanine (Y-F) capsid mutant), self-complementary (sc) AAV2/8 (single Y-F capsid mutant) and a scAAV2/5 were used. We found that in all eyes GFP expression involved retina beyond the initial post-injection subretinal bleb boundary. In all eyes there was post-injection spread of the retinal detachment within the first 3 days post procedure and prior to retinal reattachment. In 11/16 eyes this accounted for the entire "lateral spread" of GFP expression while in 5/16 eyes a very slight extension of GFP expression beyond the final boundary of the subretinal bleb could be detected. All 3 AAV constructs induced GFP expression in the nerve fiber layer with spread to the optic nerve. Patients treated by subretinal injection should be monitored for possible expansion of the subretinal injection bleb prior to reattachment. Injections in the para-foveal region may expand to lead to a foveal detachment that may be undesirable. Cell-specific promoters may be required to limit spread of expressed transgene to the brain with these

  7. Elimination of contaminating cap genes in AAV vector virions reduces immune responses and improves transgene expression in a canine gene therapy model.

    PubMed

    Wang, Z; Halbert, C L; Lee, D; Butts, T; Tapscott, S J; Storb, R; Miller, A D

    2014-04-01

    Animal and human gene therapy studies utilizing AAV vectors have shown that immune responses to AAV capsid proteins can severely limit transgene expression. The main source of capsid antigen is that associated with the AAV vectors, which can be reduced by stringent vector purification. A second source of AAV capsid proteins is that expressed from cap genes aberrantly packaged into AAV virions during vector production. This antigen source can be eliminated by the use of a cap gene that is too large to be incorporated into an AAV capsid, such as a cap gene containing a large intron (captron gene). Here, we investigated the effects of elimination of cap gene transfer and of vector purification by CsCl gradient centrifugation on AAV vector immunogenicity and expression following intramuscular injection in dogs. We found that both approaches reduced vector immunogenicity and that combining the two produced the lowest immune responses and highest transgene expression. This combined approach enabled the use of a relatively mild immunosuppressive regimen to promote robust micro-dystrophin gene expression in Duchenne muscular dystrophy-affected dogs. Our study shows the importance of minimizing AAV cap gene impurities and indicates that this improvement in AAV vector production may benefit human applications.

  8. Method for Dual Viral Vector Mediated CRISPR-Cas9 Gene Disruption in Primary Human Endothelial Cells.

    PubMed

    Gong, Haixia; Liu, Menglin; Klomp, Jeff; Merrill, Bradley J; Rehman, Jalees; Malik, Asrar B

    2017-02-15

    Human endothelial cells (ECs) are widely used to study mechanisms of angiogenesis, inflammation, and endothelial permeability. Targeted gene disruption induced by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-Associated Protein 9 (Cas9) nuclease gene editing is potentially an important tool for definitively establishing the functional roles of individual genes in ECs. We showed that co-delivery of adenovirus encoding EGFP-tagged Cas9 and lentivirus encoding a single guide RNA (sgRNA) in primary human lung microvascular ECs (HLMVECs) disrupted the expression of the Tie2 gene and protein. Tie2 disruption increased basal endothelial permeability and prevented permeability recovery following injury induced by the inflammatory stimulus thrombin. Thus, gene deletion via viral co-delivery of CRISPR-Cas9 in primary human ECs provides a novel platform to investigate signaling mechanisms of normal and perturbed EC function without the need for clonal expansion.

  9. Method for Dual Viral Vector Mediated CRISPR-Cas9 Gene Disruption in Primary Human Endothelial Cells

    PubMed Central

    Gong, Haixia; Liu, Menglin; Klomp, Jeff; Merrill, Bradley J.; Rehman, Jalees; Malik, Asrar B.

    2017-01-01

    Human endothelial cells (ECs) are widely used to study mechanisms of angiogenesis, inflammation, and endothelial permeability. Targeted gene disruption induced by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-Associated Protein 9 (Cas9) nuclease gene editing is potentially an important tool for definitively establishing the functional roles of individual genes in ECs. We showed that co-delivery of adenovirus encoding EGFP-tagged Cas9 and lentivirus encoding a single guide RNA (sgRNA) in primary human lung microvascular ECs (HLMVECs) disrupted the expression of the Tie2 gene and protein. Tie2 disruption increased basal endothelial permeability and prevented permeability recovery following injury induced by the inflammatory stimulus thrombin. Thus, gene deletion via viral co-delivery of CRISPR-Cas9 in primary human ECs provides a novel platform to investigate signaling mechanisms of normal and perturbed EC function without the need for clonal expansion. PMID:28198371

  10. Targeted AAV5-Smad7 gene therapy inhibits corneal scarring in vivo

    PubMed Central

    Gupta, Suneel; Rodier, Jason T.; Sharma, Ajay; Giuliano, Elizabeth A.; Sinha, Prashant R.; Hesemann, Nathan P.; Ghosh, Arkasubhra; Mohan, Rajiv R.

    2017-01-01

    Corneal scarring is due to aberrant activity of the transforming growth factor β (TGFβ) signaling pathway following traumatic, mechanical, infectious, or surgical injury. Altered TGFβ signaling cascade leads to downstream Smad (Suppressor of mothers against decapentaplegic) protein-mediated signaling events that regulate expression of extracellular matrix and myogenic proteins. These events lead to transdifferentiation of keratocytes into myofibroblasts through fibroblasts and often results in permanent corneal scarring. Hence, therapeutic targets that reduce transdifferentiation of fibroblasts into myofibroblasts may provide a clinically relevant approach to treat corneal fibrosis and improve long-term visual outcomes. Smad7 protein regulates the functional effects of TGFβ signaling during corneal wound healing. We tested that targeted delivery of Smad7 using recombinant adeno-associated virus serotype 5 (AAV5-Smad7) delivered to the corneal stroma can inhibit corneal haze post photorefractive keratectomy (PRK) in vivo in a rabbit corneal injury model. We demonstrate that a single topical application of AAV5-Smad7 in rabbit cornea post-PRK led to a significant decrease in corneal haze and corneal fibrosis. Further, histopathology revealed lack of immune cell infiltration following AAV5-Smad7 gene transfer into the corneal stroma. Our data demonstrates that AAV5-Smad7 gene therapy is relatively safe with significant potential for the treatment of corneal disease currently resulting in fibrosis and impaired vision. PMID:28339457

  11. Combining CRISPR/Cas9 and rAAV Templates for Efficient Gene Editing.

    PubMed

    Kaulich, Manuel; Dowdy, Steven F

    2015-12-01

    Altering endogenous genes in cells is an integral tool of modern cell biology. The ease-of-use of the CRISPR/Cas9 system to introduce genomic DNA breaks at specific sites in vivo has led to its rapid and wide adoption. In the absence of a DNA template, the lesion is repaired by nonhomologous end joining resolving as internal deletions. However, in the presence of a homologous DNA template, homology-directed repair occurs with variable efficiencies. Recent work has demonstrated that highly efficient gene targeting can be induced by combining CRISPR/Cas9 targeting of genomic loci with recombinant adeno-associated virus (rAAV) to provide a single-stranded homologous DNA template. Here we review the current state of CRISPR/Cas-based gene editing and provide a practical guide to applying the CRISPR/Cas and rAAV system for highly efficient, time- and cost-effective gene targeting.

  12. Combining CRISPR/Cas9 and rAAV Templates for Efficient Gene Editing

    PubMed Central

    Kaulich, Manuel

    2015-01-01

    Altering endogenous genes in cells is an integral tool of modern cell biology. The ease-of-use of the CRISPR/Cas9 system to introduce genomic DNA breaks at specific sites in vivo has led to its rapid and wide adoption. In the absence of a DNA template, the lesion is repaired by nonhomologous end joining resolving as internal deletions. However, in the presence of a homologous DNA template, homology-directed repair occurs with variable efficiencies. Recent work has demonstrated that highly efficient gene targeting can be induced by combining CRISPR/Cas9 targeting of genomic loci with recombinant adeno-associated virus (rAAV) to provide a single-stranded homologous DNA template. Here we review the current state of CRISPR/Cas-based gene editing and provide a practical guide to applying the CRISPR/Cas and rAAV system for highly efficient, time- and cost-effective gene targeting. PMID:26540648

  13. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges.

    PubMed

    Mingozzi, Federico; High, Katherine A

    2011-05-01

    In vivo gene replacement for the treatment of inherited disease is one of the most compelling concepts in modern medicine. Adeno-associated virus (AAV) vectors have been extensively used for this purpose and have shown therapeutic efficacy in a range of animal models. Successful translation to the clinic was initially slow, but long-term expression of donated genes at therapeutic levels has now been achieved in patients with inherited retinal disorders and haemophilia B. Recent exciting results have raised hopes for the treatment of many other diseases. As we discuss here, the prospects and challenges for AAV gene therapy are to a large extent dependent on the target tissue and the specific disease.

  14. The X gene of adeno-associated virus 2 (AAV2) is involved in viral DNA replication.

    PubMed

    Cao, Maohua; You, Hong; Hermonat, Paul L

    2014-01-01

    Adeno-associated virus (AAV) (type 2) is a popular human gene therapy vector with a long active transgene expression period and no reported vector-induced adverse reactions. Yet the basic molecular biology of this virus has not been fully addressed. One potential gene at the far 3' end of the AAV2 genome, previously referred to as X (nt 3929 to 4393), overlapping the 3' end of the cap gene, has never been characterized, although we did previously identify a promoter just up-stream (p81). Computer analysis suggested that X was involved in replication and transcription. The X protein was identified during active AAV2 replication using a polyclonal antibody against a peptide starting at amino acid 98. Reagents for the study of X included an AAV2 deletion mutant (dl78-91), a triple nucleotide substitution mutant that destroys all three 5' AUG-initiation products of X, with no effect on the cap coding sequence, and X-positive-293 cell lines. Here, we found that X up-regulated AAV2 DNA replication in differentiating keratinocytes (without helper virus, autonomous replication) and in various forms of 293 cell-based assays with help from wild type adenovirus type 5 (wt Ad5) or Ad5 helper plasmid (pHelper). The strongest contribution by X was seen in increasing wt AAV2 DNA replication in keratinocytes and dl78-91 in Ad5-infected X-positive-293 cell lines (both having multi-fold effects). Mutating the X gene in pAAV-RC (pAAV-RC-3Xneg) yielded approximately a ∼33% reduction in recombinant AAV vector DNA replication and virion production, but a larger effect was seen when using this same X-knockout AAV helper plasmid in X-positive-293 cell lines versus normal 293 cells (again, multi-fold). Taken together these data strongly suggest that AAV2 X encodes a protein involved in the AAV life cycle, particularly in increasing AAV2 DNA replication, and suggests that further studies are warranted.

  15. Integration-defective lentiviral vector mediates efficient gene editing through homology-directed repair in human embryonic stem cells.

    PubMed

    Wang, Yebo; Wang, Yingjia; Chang, Tammy; Huang, He; Yee, Jiing-Kuan

    2016-11-28

    Human embryonic stem cells (hESCs) are used as platforms for disease study, drug screening and cell-based therapy. To facilitate these applications, it is frequently necessary to genetically manipulate the hESC genome. Gene editing with engineered nucleases enables site-specific genetic modification of the human genome through homology-directed repair (HDR). However, the frequency of HDR remains low in hESCs. We combined efficient expression of engineered nucleases and integration-defective lentiviral vector (IDLV) transduction for donor template delivery to mediate HDR in hESC line WA09. This strategy led to highly efficient HDR with more than 80% of the selected WA09 clones harboring the transgene inserted at the targeted genomic locus. However, certain portions of the HDR clones contained the concatemeric IDLV genomic structure at the target site, probably resulted from recombination of the IDLV genomic input before HDR with the target. We found that the integrase protein of IDLV mediated the highly efficient HDR through the recruitment of a cellular protein, LEDGF/p75. This study demonstrates that IDLV-mediated HDR is a powerful and broadly applicable technology to carry out site-specific gene modification in hESCs.

  16. AAV-mediated gene therapy for retinal disorders in large animal models.

    PubMed

    Stieger, Knut; Lhériteau, Elsa; Lhéariteau, Elsa; Moullier, Phillip; Rolling, Fabienne

    2009-01-01

    Retinal gene therapy holds great promise for the treatment of inherited and noninherited blinding diseases such as retinitis pigmentosa and age-related macular degeneration. The most widely used vectors for ocular gene delivery are based on adeno-associated virus (AAV) because they elicit minimal immune responses and mediated long-term transgene expression in a variety of retinal cell types. Extensive preclinical evaluation of new strategies in large animal models is key to the development of successful gene-based therapies for the retina. Because of differences in the retinal structures among species and unique structures such as the macula and fovea in the primate retina, nonhuman primates are widely used as preclinical animal models. But the observation of inherited retinal degenerations in dogs, which share a number of clinical and pathologic similarities with humans, has led to the characterization of several canine models for retinal diseases, one of which has already responded successfully to AAV-mediated gene therapy. This article presents a review and detailed discussion of the various large animal models available for the study of AAV-mediated gene-based therapies in the retina.

  17. Radiation-Induced Upregulation of Gene Expression From Adenoviral Vectors Mediated by DNA Damage Repair and Regulation

    SciTech Connect

    Nokisalmi, Petri; Rajecki, Maria; Pesonen, Sari; Escutenaire, Sophie; Soliymani, Rabah; Tenhunen, Mikko; Ahtiainen, Laura; Hemminki, Akseli

    2012-05-01

    Purpose: In the present study, we evaluated the combination of replication-deficient adenoviruses and radiotherapy in vitro. The purpose of the present study was to analyze the mechanism of radiation-mediated upregulation of adenoviral transgene expression. Methods and Materials: Adenoviral transgene expression (luciferase or green fluorescent protein) was studied with and without radiation in three cell lines: breast cancer M4A4-LM3, prostate cancer PC-3MM2, and lung cancer LNM35/enhanced green fluorescent protein. The effect of the radiation dose, modification of the viral capsid, and five different transgene promoters were studied. The cellular responses were studied using mass spectrometry and immunofluorescence analysis. Double strand break repair was modulated by inhibitors of heat shock protein 90, topoisomerase-I, and DNA protein kinase, and transgene expression was measured. Results: We found that a wide range of radiation doses increased adenoviral transgene expression regardless of the cell line, transgene, promoter, or viral capsid modification. Treatment with adenovirus, radiation, and double strand break repair inhibitors resulted in persistence of double strand breaks and subsequent increases in adenovirus transgene expression. Conclusions: Radiation-induced enhancement of adenoviral transgene expression is linked to DNA damage recognition and repair. Radiation induces a global cellular response that results in increased production of RNA and proteins, including adenoviral transgene products. This study provides a mechanistic rationale for combining radiation with adenoviral gene delivery.

  18. Adenoviral vector-mediated GDNF gene therapy in a rodent lesion model of late stage Parkinson's disease.

    PubMed

    Lapchak, P A; Araujo, D M; Hilt, D C; Sheng, J; Jiao, S

    1997-11-28

    A recombinant adenoviral vector encoding the human glial cell line-derived neurotrophic factor (GDNF) gene (Ad-GDNF) was used to express the neurotrophic factor GDNF in the unilaterally 6-hydroxydopamine (6-OHDA) denervated substantia nigra (SN) of adult rats ten weeks following the 6-OHDA injection. 6-OHDA lesions significantly increased apomorphine-induced (contralateral) rotations and reduced striatal and nigral dopamine (DA) levels by 99% and 70%, respectively. Ad-GDNF significantly (P < 0.01) decreased (by 30-40%) apomorphine-induced rotations in lesioned rats for up to two weeks following a single injection. Locomotor activity, assessed 7 days following the Ad-GDNF injection, was also significantly (P < 0.05) increased (by 300-400%). Two weeks after the Ad-GDNF injection, locomotor activity was still significantly increased compared to the Ad-beta-gal-injected 6-OHDA lesioned (control) group. Additionally, in Ad-GDNF-injected rats, there was a significant decrease (10-13%) in weight gain which persisted for approximately two weeks following the injection. Consistent with the behavioral changes, levels of DA and the metabolite dihydroxyphenylacetic acid (DOPAC) were elevated (by 98% and 65%, respectively) in the SN, but not the striatum of Ad-GDNF-injected rats. Overall, a single Ad-GDNF injection had significant effects for 2-3 weeks following administration. These results suggest that virally delivered GDNF promotes the recovery of nigral dopaminergic tone (i.e.: increased DA and DOPAC levels) and improves behavioral performance (i.e.: decreased rotations, increased locomotion) in rodents with extensive nigrostriatal dopaminergic denervation. Moreover, our results suggest that viral delivery of trophic factors may be used eventually to treat neurodegenerative diseases such as Parkinson's disease.

  19. AAV1/2-mediated BDNF gene therapy in a transgenic rat model of Huntington's disease.

    PubMed

    Connor, B; Sun, Y; von Hieber, D; Tang, S K; Jones, K S; Maucksch, C

    2016-03-01

    Reduced expression and disrupted corticostriatal transportation of brain-derived neurotrophic factor (BDNF) is proposed to contribute to the selective vulnerability of medium spiny striatal projection neurons (MSNs) in Huntington's disease (HD). We have previously demonstrated that BDNF overexpression in the quinolinic acid lesioned rat striatum attenuates motor impairment and reduces the extent of MSN cell loss. To further investigate the potential therapeutic properties of BDNF for HD, the current study examines the effect of bilateral AAV1/2-mediated BDNF expression in the striatum of a transgenic rat model of HD. Transfer of the BDNF gene to striatal neurons using an AAV1/2 serotype vector enhanced BDNF protein levels in the striatum. Bilateral BDNF expression attenuated the impairment of both motor and cognitive function when compared with AAV1/2-vehicle- or YFP-treated transgenic HD rats. Interestingly, a gender effect was apparent with female transgenic HD rats exhibiting less functional impairment than males. Quantification of NeuN and DARRP32 immunoreactivity and striatal volume revealed limited disease phenotype between wild type and transgenic HD animals. However, AAV1/2-BDNF-treated transgenic HD rats showed evidence of greater striatal volume and increased NeuN+ cell numbers compared with wild-type vehicle- and AAV1/2-vehicle- or YFP-treated transgenic HD rats. We propose BDNF holds considerable therapeutic potential for alleviating behavioral dysfunction and neuronal degeneration in HD, with further work required to examine the role of BDNF-TrkB signaling and the preservation of axonal and synaptic function.

  20. AAV-mediated RLBP1 gene therapy improves the rate of dark adaptation in Rlbp1 knockout mice

    PubMed Central

    Choi, Vivian W; Bigelow, Chad E; McGee, Terri L; Gujar, Akshata N; Li, Hui; Hanks, Shawn M; Vrouvlianis, Joanna; Maker, Michael; Leehy, Barrett; Zhang, Yiqin; Aranda, Jorge; Bounoutas, George; Demirs, John T; Yang, Junzheng; Ornberg, Richard; Wang, Yu; Martin, Wendy; Stout, Kelly R; Argentieri, Gregory; Grosenstein, Paul; Diaz, Danielle; Turner, Oliver; Jaffee, Bruce D; Police, Seshidhar R; Dryja, Thaddeus P

    2015-01-01

    Recessive mutations in RLBP1 cause a form of retinitis pigmentosa in which the retina, before its degeneration leads to blindness, abnormally slowly recovers sensitivity after exposure to light. To develop a potential gene therapy for this condition, we tested multiple recombinant adeno-associated vectors (rAAVs) composed of different promoters, capsid serotypes, and genome conformations. We generated rAAVs in which sequences from the promoters of the human RLBP1, RPE65, or BEST1 genes drove the expression of a reporter gene (green fluorescent protein). A promoter derived from the RLBP1 gene mediated expression in the retinal pigment epithelium and Müller cells (the intended target cell types) at qualitatively higher levels than in other retinal cell types in wild-type mice and monkeys. With this promoter upstream of the coding sequence of the human RLBP1 gene, we compared the potencies of vectors with an AAV2 versus an AAV8 capsid in transducing mouse retinas, and we compared vectors with a self-complementary versus a single-stranded genome. The optimal vector (scAAV8-pRLBP1-hRLBP1) had serotype 8 capsid and a self-complementary genome. Subretinal injection of scAAV8-pRLBP1-hRLBP1 in Rlbp1 nullizygous mice improved the rate of dark adaptation based on scotopic (rod-plus-cone) and photopic (cone) electroretinograms (ERGs). The effect was still present after 1 year. PMID:26199951

  1. Efficacy and safety of long-term prophylaxis in severe hemophilia A dogs following liver gene therapy using AAV vectors.

    PubMed

    Sabatino, Denise E; Lange, Amy M; Altynova, Ekaterina S; Sarkar, Rita; Zhou, Shangzhen; Merricks, Elizabeth P; Franck, Helen G; Nichols, Timothy C; Arruda, Valder R; Kazazian, Haig H

    2011-03-01

    Developing adeno-associated viral (AAV)-mediated gene therapy for hemophilia A (HA) has been challenging due to the large size of the factor VIII (FVIII) complementary DNA and the concern for the development of inhibitory antibodies to FVIII in HA patients. Here, we perform a systematic study in HA dogs by delivering a canine FVIII (cFVIII) transgene either as a single chain or two chains in an AAV vector. An optimized cFVIII single chain delivered using AAV serotype 8 (AAV8) by peripheral vein injection resulted in a dose-response with sustained expression of FVIII up to 7% (n = 4). Five HA dogs administered two-chain delivery using either AAV8 or AAV9 via the portal vein expressed long-term, vector dose-dependent levels of FVIII activity (up to 10%). In the two-chain approach, circulating cFVIII antigen levels were more than fivefold higher than activity. Notably, no long-term immune response to FVIII was observed in any of the dogs (1/9 dogs had a transient inhibitor). Long-term follow-up of the dogs showed a remarkable reduction (>90%) of bleeding episodes in a combined total of 24 years of observation. These data demonstrate that both approaches are safe and achieve dose-dependent therapeutic levels of FVIII expression, which supports translational studies of AAV-mediated delivery for HA.

  2. Long-term Amelioration of Feline Mucopolysaccharidosis VI After AAV-mediated Liver Gene Transfer

    PubMed Central

    Cotugno, Gabriella; Annunziata, Patrizia; Tessitore, Alessandra; O'Malley, Thomas; Capalbo, Anita; Faella, Armida; Bartolomeo, Rosa; O'Donnell, Patricia; Wang, Ping; Russo, Fabio; Sleeper, Meg M; Knox, Van W; Fernandez, Steven; Levanduski, Leah; Hopwood, John; De Leonibus, Elvira; Haskins, Mark; Auricchio, Alberto

    2011-01-01

    Mucopolysaccharidosis VI (MPS VI) is caused by deficient arylsulfatase B (ARSB) activity resulting in lysosomal storage of glycosaminoglycans (GAGs). MPS VI is characterized by dysostosis multiplex, organomegaly, corneal clouding, and heart valve thickening. Gene transfer to a factory organ like liver may provide a lifetime source of secreted ARSB. We show that intravascular administration of adeno-associated viral vectors (AAV) 2/8-TBG-felineARSB in MPS VI cats resulted in ARSB expression up to 1 year, the last time point of the study. In newborn cats, normal circulating ARSB activity was achieved following delivery of high vector doses (6 × 1013 genome copies (gc)/kg) whereas delivery of AAV2/8 vector doses as low as 2 × 1012 gc/kg resulted in higher than normal serum ARSB levels in juvenile MPS VI cats. In MPS VI cats showing high serum ARSB levels, independent of the age at treatment, we observed: (i) clearance of GAG storage, (ii) improvement of long bone length, (iii) reduction of heart valve thickness, and (iv) improvement in spontaneous mobility. Thus, AAV2/ 8-mediated liver gene transfer represents a promising therapeutic strategy for MPS VI patients. PMID:21119624

  3. AAV2-mediated gene delivery to monkey putamen: Evaluation of an infusion device and delivery parameters

    PubMed Central

    Sanftner, Laura M.; Sommer, Jurg M.; Suzuki, Brian M.; Smith, Peter H.; Vijay, Sharmila; Vargas, Joseph A.; Forsayeth, John R.; Cunningham, Janet; Bankiewicz, Krys S.; Kao, Haihwa; Bernal, Jan; Pierce, Glenn F.; Johnson, Kirk W.

    2013-01-01

    In this study, a modified infusion procedure and a novel infusion device designed for use in humans (Clinical Device B) were evaluated for delivery of recombinant adeno-associated virus (AAV2) to brain. The device is composed of 1.2 m of fused silica inserted through a 24.6-cm surgical steel cannula designed to fit a standard Leksell® clinical stereotaxic frame and micro-infusion syringe pump. AAV2 encoding the human aromatic L-amino acid decarboxylase gene (AAV-hAADC-2) was infused into the putamen of 4 normal rhesus monkeys as a supportive study for a clinical trial in Parkinson&apos ;s disease (PD) patients. Two infusion protocols were tested: a ramped procedure (slow stepwise increases in rate from 0.2 μL/min to 1μL/min), thought to be essential for convection-enhanced delivery (CED), and a non-ramped infusion at a constant rate of 1 μL/min. The primary endpoints were safety evaluation of the infusion procedures and assessment of transgene expression at 5.5 weeks post-infusion. Clinical observations after vector infusions revealed no behavioral abnormalities during the study period. No differences in gross pathology with either the ramped or non-ramped infusion procedure were observed. Histopathology of the putamen was comparable with both procedures, and revealed only minimal localized inflammatory tissue reaction along the needle track in response to cannula placement and vector infusion. AADC immunohistochemistry demonstrated that vector was distributed throughout the putamen, with no significant difference in volume of immunostaining with either infusion procedure. Serum antibody levels against AAV2 vector exhibited a minor increase after infusion. These results validate the clinical utility of this new infusion device and non-ramped infusion conditions for intraputamenal gene therapy, and have the potential to impact a number of human diseases in which delivery of therapeutics to brain is indicated. PMID:16022872

  4. Intracranial AAV-IFN-β gene therapy eliminates invasive xenograft glioblastoma and improves survival in orthotopic syngeneic murine model.

    PubMed

    GuhaSarkar, Dwijit; Neiswender, James; Su, Qin; Gao, Guangping; Sena-Esteves, Miguel

    2017-02-01

    The highly invasive property of glioblastoma (GBM) cells and genetic heterogeneity are largely responsible for tumor recurrence after the current standard-of-care treatment and thus a direct cause of death. Previously, we have shown that intracranial interferon-beta (IFN-β) gene therapy by locally administered adeno-associated viral vectors (AAV) successfully treats noninvasive orthotopic glioblastoma models. Here, we extend these findings by testing this approach in invasive human GBM xenograft and syngeneic mouse models. First, we show that a single intracranial injection of AAV encoding human IFN-β eliminates invasive human GBM8 tumors and promotes long-term survival. Next, we screened five AAV-IFN-β vectors with different promoters to drive safe expression of mouse IFN-β in the brain in the context of syngeneic GL261 tumors. Two AAV-IFN-β vectors were excluded due to safety concerns, but therapeutic studies with the other three vectors showed extensive tumor cell death, activation of microglia surrounding the tumors, and a 56% increase in median survival of the animals treated with AAV/P2-Int-mIFN-β vector. We also assessed the therapeutic effect of combining AAV-IFN-β therapy with temozolomide (TMZ). As TMZ affects DNA replication, an event that is crucial for second-strand DNA synthesis of single-stranded AAV vectors before active transcription, we tested two TMZ treatment regimens. Treatment with TMZ prior to AAV-IFN-β abrogated any benefit from the latter, while the reverse order of treatment doubled the median survival compared to controls. These studies demonstrate the therapeutic potential of intracranial AAV-IFN-β therapy in a highly migratory GBM model as well as in a syngeneic mouse model and that combination with TMZ is likely to enhance its antitumor potency.

  5. Systemic gene delivery following intravenous administration of AAV9 to fetal and neonatal mice and late-gestation nonhuman primates.

    PubMed

    Mattar, Citra N; Wong, Andrew M S; Hoefer, Klemens; Alonso-Ferrero, Maria E; Buckley, Suzanne M K; Howe, Steven J; Cooper, Jonathan D; Waddington, Simon N; Chan, Jerry K Y; Rahim, Ahad A

    2015-09-01

    Several acute monogenic diseases affect multiple body systems, causing death in childhood. The development of novel therapies for such conditions is challenging. However, improvements in gene delivery technology mean that gene therapy has the potential to treat such disorders. We evaluated the ability of the AAV9 vector to mediate systemic gene delivery after intravenous administration to perinatal mice and late-gestation nonhuman primates (NHPs). Titer-matched single-stranded (ss) and self-complementary (sc) AAV9 carrying the green fluorescent protein (GFP) reporter gene were intravenously administered to fetal and neonatal mice, with noninjected age-matched mice used as the control. Extensive GFP expression was observed in organs throughout the body, with the epithelial and muscle cells being particularly well transduced. ssAAV9 carrying the WPRE sequence mediated significantly more gene expression than its sc counterpart, which lacked the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) sequence. To examine a realistic scale-up to larger models or potentially patients for such an approach, AAV9 was intravenously administered to late-gestation NHPs by using a clinically relevant protocol. Widespread systemic gene expression was measured throughout the body, with cellular tropisms similar to those observed in the mouse studies and no observable adverse events. This study confirms that AAV9 can safely mediate systemic gene delivery in small and large animal models and supports its potential use in clinical systemic gene therapy protocols.

  6. Intratumoral decorin gene delivery by AAV vector inhibits brain glioblastomas and prolongs survival of animals by inducing cell differentiation.

    PubMed

    Ma, Hsin-I; Hueng, Dueng-Yuan; Shui, Hao-Ai; Han, Jun-Ming; Wang, Chi-Hsien; Lai, Ying-Hsiu; Cheng, Shi-Yuan; Xiao, Xiao; Chen, Ming-Teh; Yang, Yi-Ping

    2014-03-12

    Glioblastoma multiforme (GBM) is the most malignant cancer in the central nervous system with poor clinical prognosis. In this study, we investigated the therapeutic effect of an anti-cancer protein, decorin, by delivering it into a xenograft U87MG glioma tumor in the brain of nude mice through an adeno-associated viral (AAV2) gene delivery system. Decorin expression from the AAV vector in vitro inhibited cultured U87MG cell growth by induction of cell differentiation. Intracranial injection of AAV-decorin vector to the glioma-bearing nude mice in vivo significantly suppressed brain tumor growth and prolonged survival when compared to control non-treated mice bearing the same U87MG tumors. Proteomics analysis on protein expression profiles in the U87MG glioma cells after AAV-mediated decorin gene transfer revealed up- and down-regulation of important proteins. Differentially expressed proteins between control and AAV-decorin-transduced cells were identified through MALDI-TOF MS and database mining. We found that a number of important proteins that are involved in apoptosis, transcription, chemotherapy resistance, mitosis, and fatty acid metabolism have been altered as a result of decorin overexpression. These findings offer valuable insight into the mechanisms of the anti-glioblastoma effects of decorin. In addition, AAV-mediated decorin gene delivery warrants further investigation as a potential therapeutic approach for brain tumors.

  7. Gene therapy following subretinal AAV5 vector delivery is not affected by a previous intravitreal AAV5 vector administration in the partner eye

    PubMed Central

    Li, Wensheng; Kong, Fansheng; Li, Xia; Dai, Xufeng; Liu, Xiaoqiang; Zheng, Qinxiang; Wu, Ronghan; Zhou, Xiangtian; Lü, Fan; Chang, Bo; Li, Qiuhong; Hauswirth, William W.; Pang, Ji-jing

    2009-01-01

    statistically similar to those from the eyes that received the initial subretinal injection at a similar age. In C57BL/6J mice, GFP positive cells were detected in eyes following the first intravitreal injection around the injection site. Strong GFP expression in both the retinal pigment epithelium (RPE) and photoreceptor (PR) cells was detected in the partner eyes following the subsequent subretinal injection. Immunostaining of retinal sections with anti-RPE65 antibody showed strong RPE65 expression mainly in the RPE cells of subretinally injected eyes but not in the intravitreally injected eyes except minimally around the injection site. Conclusions These results show that an initial intravitreal injection of AAV vectors to one eye of a mouse does not influence AAV-mediated gene expression or related therapeutic effects in the other eye when vectors are administered to the subretinal space. This suggests that the subretinal space possesses a unique immune privilege relative to the vitreous cavity. PMID:19190735

  8. AAV2-mediated in vivo immune gene therapy of solid tumours

    PubMed Central

    2010-01-01

    Background Many strategies have been adopted to unleash the potential of gene therapy for cancer, involving a wide range of therapeutic genes delivered by various methods. Immune therapy has become one of the major strategies adopted for cancer gene therapy and seeks to stimulate the immune system to target tumour antigens. In this study, the feasibility of AAV2 mediated immunotherapy of growing tumours was examined, in isolation and combined with anti-angiogenic therapy. Methods Immune-competent Balb/C or C57 mice bearing subcutaneous JBS fibrosarcoma or Lewis Lung Carcinoma (LLC) tumour xenografts respectively were treated by intra-tumoural administration of AAV2 vector encoding the immune up-regulating cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) and the co-stimulatory molecule B7-1 to subcutaneous tumours, either alone or in combination with intra-muscular (IM) delivery of AAV2 vector encoding Nk4 14 days prior to tumour induction. Tumour growth and survival was monitored for all animals. Cured animals were re-challenged with tumourigenic doses of the original tumour type. In vivo cytotoxicity assays were used to investigate establishment of cell-mediated responses in treated animals. Results AAV2-mediated GM-CSF, B7-1 treatment resulted in a significant reduction in tumour growth and an increase in survival in both tumour models. Cured animals were resistant to re-challenge, and induction of T cell mediated anti-tumour responses were demonstrated. Adoptive transfer of splenocytes to naïve animals prevented tumour establishment. Systemic production of Nk4 induced by intra-muscular (IM) delivery of Nk4 significantly reduced subcutaneous tumour growth. However, combination of Nk4 treatment with GM-CSF, B7-1 therapy reduced the efficacy of the immune therapy. Conclusions Overall, this study demonstrates the potential for in vivo AAV2 mediated immune gene therapy, and provides data on the inter-relationship between tumour vasculature and

  9. AAV-mediated gene delivery attenuates neuroinflammation in feline Sandhoff disease.

    PubMed

    Bradbury, Allison M; Peterson, Tiffany A; Gross, Amanda L; Wells, Stephen Z; McCurdy, Victoria J; Wolfe, Karen G; Dennis, John C; Brunson, Brandon L; Gray-Edwards, Heather; Randle, Ashley N; Johnson, Aime K; Morrison, Edward E; Cox, Nancy R; Baker, Henry J; Sena-Esteves, Miguel; Martin, Douglas R

    2017-01-06

    Sandhoff disease (SD) is a lysosomal storage disorder characterized by the absence of hydrolytic enzyme β-N-acetylhexosaminidase (Hex), which results in storage of GM2 ganglioside in neurons and unremitting neurodegeneration. Neuron loss initially affects fine motor skills, but rapidly progresses to loss of all body faculties, a vegetative state, and death by five years of age in humans. A well-established feline model of SD allows characterization of the disease in a large animal model and provides a means to test the safety and efficacy of therapeutic interventions before initiating clinical trials. In this study, we demonstrate a robust central nervous system (CNS) inflammatory response in feline SD, primarily marked by expansion and activation of the microglial cell population. Quantification of major histocompatibility complex II (MHC-II) labeling revealed significant up-regulation throughout the CNS with areas rich in white matter most severely affected. Expression of the leukocyte chemokine macrophage inflammatory protein-1 alpha (MIP-1α) was also up-regulated in the brain. SD cats were treated with intracranial delivery of adeno-associated viral (AAV) vectors expressing feline Hex, with a study endpoint 16weeks post treatment. AAV-mediated gene delivery repressed the expansion and activation of microglia and normalized MHC-II and MIP-1α levels. These data reiterate the profound inflammatory response in SD and show that neuroinflammation is abrogated after AAV-mediated restoration of enzymatic activity.

  10. Cell-Mediated Immunity to AAV Vectors, Evolving Concepts and Potential Solutions.

    PubMed

    Basner-Tschakarjan, Etiena; Mingozzi, Federico

    2014-01-01

    Adeno-associated virus (AAV) vectors are one of the most efficient in vivo gene delivery platforms. Over the past decade, clinical trials of AAV vector-mediated gene transfer led to some of the most exciting results in the field of gene therapy and, recently, to the market approval of an AAV-based drug in Europe. With clinical development, however, it became obvious that the host immune system represents an important obstacle to successful gene transfer with AAV vectors. In this review article, we will discuss the issue of cytotoxic T cell responses directed against the AAV capsid encountered on human studies. While over the past several years the field has acquired a tremendous amount of information on the interactions of AAV vectors with the immune system, a lot of questions are still unanswered. Novel concepts are emerging, such as the relationship between the total capsid dose and the T cell-mediated clearance of transduced cells, the potential role of innate immunity in vector immunogenicity highlighted in preclinical studies, and the cross talk between regulatory and effector T cells in the determination of the outcome of gene transfer. There is still a lot to learn about immune responses in AAV gene transfer, for example, it is not well understood what are the determinants of the kinetics of activation of T cells in response to vector administration, why not all subjects develop detrimental T cell responses following gene transfer, and whether the intervention strategies currently in use to block T cell-mediated clearance of transduced cells will be safe and effective for all gene therapy indications. Results from novel preclinical models and clinical studies will help to address these points and to reach the important goal of developing safe and effective gene therapy protocols to treat human diseases.

  11. Pharmacological modulation of humoral immunity in a nonhuman primate model of AAV gene transfer for hemophilia B.

    PubMed

    Mingozzi, Federico; Chen, Yifeng; Murphy, Samuel L; Edmonson, Shyrie C; Tai, Alex; Price, Sandra D; Metzger, Mark E; Zhou, Shangzhen; Wright, J Fraser; Donahue, Robert E; Dunbar, Cynthia E; High, Katherine A

    2012-07-01

    Liver gene transfer for hemophilia B has shown very promising results in recent clinical studies. A potential complication of gene-based treatments for hemophilia and other inherited disorders, however, is the development of neutralizing antibodies (NAb) against the therapeutic transgene. The risk of developing NAb to the coagulation factor IX (F.IX) transgene product following adeno-associated virus (AAV)-mediated hepatic gene transfer for hemophilia is small but not absent, as formation of inhibitory antibodies to F.IX is observed in experimental animals following liver gene transfer. Thus, strategies to modulate antitransgene NAb responses are needed. Here, we used the anti-B cell monoclonal antibody rituximab (rtx) in combination with cyclosporine A (CsA) to eradicate anti-human F.IX NAb in rhesus macaques previously injected intravenously with AAV8 vectors expressing human F.IX. A short course of immunosuppression (IS) resulted in eradication of anti-F.IX NAb with restoration of plasma F.IX transgene product detection. In one animal, following IS anti-AAV6 antibodies also dropped below detection, allowing for successful AAV vector readministration and resulting in high levels (60% or normal) of F.IX transgene product in plasma. Though the number of animals is small, this study supports for the safety and efficacy of B cell-targeting therapies to eradicate NAb developed following AAV-mediated gene transfer.

  12. [Preparation of a novel AAV-ITR gene expression mini vector in Sf9 insect cells via baculovirus].

    PubMed

    Li, Taiming; Pan, Junjie; Qi, Jing; Zhang, Chun

    2015-08-01

    AAV-ITR gene expression mini vector is a double-strand or single-strand DNA that only contains inverted terminal repeats of adeno-associated virus, cis-elements and gene of interest and does not contain any other foreign DNA sequences. We prepared Bac-ITR-EGFP and Bac-inrep. Spodoptera frugiperda cells were infected with Bac-ITR-EGFP (P3) and Bac-inrep (P3). Up to 100 μg of AAV-ITR-EGFP gene expression mini vectors were extracted from 2 x 10(7) cells of Sf9 72 h after infection. The gel electrophoresis analysis shows that most forms of AAV-ITR-EGFP gene expression mini vector were monomer and dimer. The mini vector expression efficacy was examined in vitro with HEK 293T cells. The EGFP expression was observed at 24 h after transfection, and the positive ratio reached 65% at 48 h after transfection.

  13. Construction of PR39 recombinant AAV under control of the HRE promoter and the effect of recombinant AAV on gene therapy of ischemic heart disease.

    PubMed

    Sun, Lijun; Hao, Yuewen; Nie, Xiaowei; Zhang, Xuexin; Yang, Guangxiao; Wang, Quanying

    2012-11-01

    The objective of this study was to investigate the effect of the PR39 recombinant adeno-associated virus (AAV) controlled by the hypoxia-responsive element (HRE) on gene therapy of ischemic heart disease. The minimal HRE was artificially synthesized and the AAV vector controlled by HRE was introduced with NT4-TAT-His-PR39 to investigate the expression of AAV-PR39 in hypoxic vascular endothelial cells (VEC) of human umbilical vein (CRL-1730 cell line) and the angiogenesis-promoting effect in pigs with acute myocardial infraction (AMI). The minimal HRE/CMV was designed and artificially synthesized using the PCR method and cloned with the T vector cloning method. The pSS-HRE-CMV-NT4-6His-PR39-PolyA-AAV plasmid was constructed. Using the calcium phosphate precipitation method, HEK-293 cells were co-transfected with three plasmids to produce the recombinant virus. An equal volume of pSS-HRE-CMV-NT4-6His-PR39-PolyAAAV and enterovirus (EV, blank virus) was transfected into CRL-1730 cell lines, respectively. The immunohistochemical method was used to assay the expression of 6xHis in CRL-1730 cell lines and the expression of PR39 under hypoxia. Eighteen AMI miniature pigs were randomized into the experimental group (HRE-AAV-PR39 group), control group 1 (physical saline group) and control group 2 (EV group). The area of ischemia was assessed with conventional MRI and myocardium perfusion MRI. Pigs were sacrificed at preset time-points to obtain samples of ischemic myocardium. Morphological and pathological data were collected. According to data in the literature and databases, the minimal HRE was designed and synthesized with the PCR method. A large number of HREs were connected to modified pSSHGAAV (pSSV9int-/XbaI) vector followed by insertion of the NT4-6His-PR39 gene segment and, thus, the recombinant plasmid pSS-HRE-CMV-NT4-6His-PR39-PolyA-AAV was successfully constructed. The expression of 6xHis in CRL-1730 cells under the regulation of HRE was assayed using the

  14. Mutational Analysis of the Adeno-Associated Virus Type 2 (AAV2) Capsid Gene and Construction of AAV2 Vectors with Altered Tropism

    PubMed Central

    Wu, Pei; Xiao, Wu; Conlon, Thomas; Hughes, Jeffrey; Agbandje-McKenna, Mavis; Ferkol, Thomas; Flotte, Terence; Muzyczka, Nicholas

    2000-01-01

    Adeno-associated virus type 2 (AAV2) has proven to be a valuable vector for gene therapy. Characterization of the functional domains of the AAV capsid proteins can facilitate our understanding of viral tissue tropism, immunoreactivity, viral entry, and DNA packaging, all of which are important issues for generating improved vectors. To obtain a comprehensive genetic map of the AAV capsid gene, we have constructed 93 mutants at 59 different positions in the AAV capsid gene by site-directed mutagenesis. Several types of mutants were studied, including epitope tag or ligand insertion mutants, alanine scanning mutants, and epitope substitution mutants. Analysis of these mutants revealed eight separate phenotypes. Infectious titers of the mutants revealed four classes. Class 1 mutants were viable, class 2 mutants were partially defective, class 3 mutants were temperature sensitive, and class 4 mutants were noninfectious. Further analysis revealed some of the defects in the class 2, 3, and 4 mutants. Among the class 4 mutants, a subset completely abolished capsid formation. These mutants were located predominantly, but not exclusively, in what are likely to be β-barrel structures in the capsid protein VP3. Two of these mutants were insertions at the N and C termini of VP3, suggesting that both ends of VP3 play a role that is important for capsid assembly or stability. Several class 2 and 3 mutants produced capsids that were unstable during purification of viral particles. One mutant, R432A, made only empty capsids, presumably due to a defect in packaging viral DNA. Additionally, five mutants were defective in heparan binding, a step that is believed to be essential for viral entry. These were distributed into two amino acid clusters in what is likely to be a cell surface loop in the capsid protein VP3. The first cluster spanned amino acids 509 to 522; the second was between amino acids 561 and 591. In addition to the heparan binding clusters, hemagglutinin epitope tag

  15. Multilineage transduction of resident lung cells in vivo by AAV2/8 for α1-antitrypsin gene therapy

    PubMed Central

    Payne, Julia G; Takahashi, Ayuko; Higgins, Michelle I; Porter, Emily L; Suki, Bela; Balazs, Alejandro; Wilson, Andrew A

    2016-01-01

    In vivo gene delivery has long represented an appealing potential treatment approach for monogenic diseases such as α1-antitrypsin deficiency (AATD) but has proven challenging to achieve in practice. Alternate pseudotyping of recombinant adeno-associated virus (AAV) vectors is producing vectors with increasingly heterogeneous tropic specificity, giving researchers the ability to target numerous end-organs affected by disease. Herein, we describe sustained pulmonary transgene expression for at least 52 weeks after a single intratracheal instillation of AAV2/8 and characterize the multiple cell types transduced within the lung utilizing this approach. We demonstrate that lung-directed AAV2/8 is able to achieve therapeutic α-1 antitrypsin (AAT) protein levels within the lung epithelial lining fluid and that AAT gene delivery ameliorates the severity of experimental emphysema in mice. We find that AAV2/8 efficiently transduces hepatocytes in vivo after intratracheal administration, a finding that may have significance for AAV-based human gene therapy studies. These results support direct transgene delivery to the lung as a potential alternative approach to achieve the goal of developing a gene therapy for AATD. PMID:27408904

  16. Multilineage transduction of resident lung cells in vivo by AAV2/8 for α1-antitrypsin gene therapy.

    PubMed

    Payne, Julia G; Takahashi, Ayuko; Higgins, Michelle I; Porter, Emily L; Suki, Bela; Balazs, Alejandro; Wilson, Andrew A

    2016-01-01

    In vivo gene delivery has long represented an appealing potential treatment approach for monogenic diseases such as α1-antitrypsin deficiency (AATD) but has proven challenging to achieve in practice. Alternate pseudotyping of recombinant adeno-associated virus (AAV) vectors is producing vectors with increasingly heterogeneous tropic specificity, giving researchers the ability to target numerous end-organs affected by disease. Herein, we describe sustained pulmonary transgene expression for at least 52 weeks after a single intratracheal instillation of AAV2/8 and characterize the multiple cell types transduced within the lung utilizing this approach. We demonstrate that lung-directed AAV2/8 is able to achieve therapeutic α-1 antitrypsin (AAT) protein levels within the lung epithelial lining fluid and that AAT gene delivery ameliorates the severity of experimental emphysema in mice. We find that AAV2/8 efficiently transduces hepatocytes in vivo after intratracheal administration, a finding that may have significance for AAV-based human gene therapy studies. These results support direct transgene delivery to the lung as a potential alternative approach to achieve the goal of developing a gene therapy for AATD.

  17. Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi.

    PubMed

    Kaulich, Manuel; Lee, Yeon J; Lönn, Peter; Springer, Aaron D; Meade, Bryan R; Dowdy, Steven F

    2015-04-20

    Gene knockout strategies, RNAi and rescue experiments are all employed to study mammalian gene function. However, the disadvantages of these approaches include: loss of function adaptation, reduced viability and gene overexpression that rarely matches endogenous levels. Here, we developed an endogenous gene knockdown/rescue strategy that combines RNAi selectivity with a highly efficient CRISPR directed recombinant Adeno-Associated Virus (rAAV) mediated gene targeting approach to introduce allele-specific mutations plus an allele-selective siRNA Sensitive (siSN) site that allows for studying gene mutations while maintaining endogenous expression and regulation of the gene of interest. CRISPR/Cas9 plus rAAV targeted gene-replacement and introduction of allele-specific RNAi sensitivity mutations in the CDK2 and CDK1 genes resulted in a >85% site-specific recombination of Neo-resistant clones versus ∼8% for rAAV alone. RNAi knockdown of wild type (WT) Cdk2 with siWT in heterozygotic knockin cells resulted in the mutant Cdk2 phenotype cell cycle arrest, whereas allele specific knockdown of mutant CDK2 with siSN resulted in a wild type phenotype. Together, these observations demonstrate the ability of CRISPR plus rAAV to efficiently recombine a genomic locus and tag it with a selective siRNA sequence that allows for allele-selective phenotypic assays of the gene of interest while it remains expressed and regulated under endogenous control mechanisms.

  18. Systemic AAV8-Mediated Gene Therapy Drives Whole-Body Correction of Myotubular Myopathy in Dogs.

    PubMed

    Mack, David L; Poulard, Karine; Goddard, Melissa A; Latournerie, Virginie; Snyder, Jessica M; Grange, Robert W; Elverman, Matthew R; Denard, Jérôme; Veron, Philippe; Buscara, Laurine; Le Bec, Christine; Hogrel, Jean-Yves; Brezovec, Annie G; Meng, Hui; Yang, Lin; Liu, Fujun; O'Callaghan, Michael; Gopal, Nikhil; Kelly, Valerie E; Smith, Barbara K; Strande, Jennifer L; Mavilio, Fulvio; Beggs, Alan H; Mingozzi, Federico; Lawlor, Michael W; Buj-Bello, Ana; Childers, Martin K

    2017-04-05

    X-linked myotubular myopathy (XLMTM) results from MTM1 gene mutations and myotubularin deficiency. Most XLMTM patients develop severe muscle weakness leading to respiratory failure and death, typically within 2 years of age. Our objective was to evaluate the efficacy and safety of systemic gene therapy in the p.N155K canine model of XLMTM by performing a dose escalation study. A recombinant adeno-associated virus serotype 8 (rAAV8) vector expressing canine myotubularin (cMTM1) under the muscle-specific desmin promoter (rAAV8-cMTM1) was administered by simple peripheral venous infusion in XLMTM dogs at 10 weeks of age, when signs of the disease are already present. A comprehensive analysis of survival, limb strength, gait, respiratory function, neurological assessment, histology, vector biodistribution, transgene expression, and immune response was performed over a 9-month study period. Results indicate that systemic gene therapy was well tolerated, prolonged lifespan, and corrected the skeletal musculature throughout the body in a dose-dependent manner, defining an efficacious dose in this large-animal model of the disease. These results support the development of gene therapy clinical trials for XLMTM.

  19. Biodistribution and safety assessment of AAV2-GAD following intrasubthalamic injection in the rat

    PubMed Central

    Fitzsimons, Helen L.; Riban, Veronique; Bland, Ross J.; Wendelken, Jennifer L.; Sapan, Christine V.; During, Matthew J.

    2010-01-01

    Background The steps necessary to translate promising new biological therapies to the clinic are poorly documented. For gene therapy there are unique aspects that need to be addressed in biodistribution studies. Notably, spread of the vector beyond the intended target cells or tissue may result in persistent unwanted biological activity or unpredictable biological events, thus it is critical to evaluate risks associated with viral vector-mediated gene transfer prior to embarking on human clinical trials. Methods Here we present a rodent study comprising of a comprehensive assessment of vector biodistribution through the brain, blood and major organs of rats injected into the subthalamic nucleus with recombinant adeno-associated virus (AAV) expressing glutamic acid decarboxylase (GAD). In addition, behavioral and histological analyses were also performed. Results AAV genomes were not detected in blood or CSF, and did not disseminate to organs outside of the brain in the majority of animals. In the brain, an average 97.3% of AAV2-GAD genomes were restricted to the area of the ipsilateral STN. There were no discernable effects of AAV2-GAD on general health and behavioral assessment of the animals did not reveal any alteration in general behavior, exploration, locomotion or motor symmetry. Conclusions This study met FDA requirements, in addition to efficacy and toxicity studies in rodents and non-human primates, to support and supplement a Phase II clinical trial for gene transfer of AAV2-GAD to the human STN for the potential therapy of Parkinson’s disease. PMID:20352617

  20. Recombinant AAV-PR39-mediated hypoxia-inducible factor 1α gene expression attenuates myocardial infarction.

    PubMed

    Sun, Lijun; Hao, Yuewen; Nie, Xiaowei; Xu, Jian; Li, Zhenwu; Zhang, Wei; Liu, Ying; Zhang, Xuexin

    2014-01-01

    PR39 is an angiogenic masterswitch protein, belonging to the second generation of angiogenic growth factors. However, the role of recombinant adeno-associated virus (AAV) carrying the PR39 fusion gene (AAV-PR39) in acute myocardial infarction remains unclear. Therefore, in this study, we investigated the role of AAV-PR39 in an experimental animal model of acute myocardial infarction. The PR39 gene was fused with the transmembrane peptide, TAT, 6xHis‑tag and NT4 signal sequences. AAV-PR39 was then obtained by calcium phosphate co-precipitation. A total of 18 healthy Chinese mini pigs were randomly divided into an experimental groups (the AAV-PR39-treated group) and a control group [phosphated-buffered saline (PBS)-treated group]. Following the induction of myocardial infarction, enhanced 3.0T MR imaging was performed to observe the changes in myocardial signal intensity at 0 h, 1, 2 and 3 weeks. The expression of hypoxia-inducible factor‑1α (HIF-1α) in the myocardial tissues was determined by SABC immunohistochemistry. In addition, in vitro experiments using CRL-1730 endothelial cells transfected with AAV vector containing NT4-TAT-His-PR39 revealed that the AAV-PR39-treated group had a significantly higher expression of HIF-1α compared with the control group. Moreover, PR39 regulated the HIF-1α-induced expression of angiogenic growth factors. Under hypoxic conditions, the anti-apoptotic effects in the AAV-PR39 group were more pronounced than those observed in the control (PBS-treated) group. In vivo, the enforced expression of recombinant PR39 elevated the level of HIF-1α under hypoxic conditions and decreased the size of the infarcted areas by upregulating the expression of HIF-1α in the areas surrounding the infarct area. Taken together, our data demonstrate that the recombinant AAV-PR39-mediated HIF-1α expression attenuates myocardial infarction, indicating that AAV-PR39 may serve as a novel therapeutic agent for the treatment of myocardial infarction.

  1. Major role of local immune responses in antibody formation to factor IX in AAV gene transfer.

    PubMed

    Wang, L; Cao, O; Swalm, B; Dobrzynski, E; Mingozzi, F; Herzog, R W

    2005-10-01

    The risk of an immune response to the coagulation factor IX (F.IX) transgene product is a concern in gene therapy for the X-linked bleeding disorder hemophilia B. In order to investigate the mechanism of F.IX-specific lymphocyte activation in the context of adeno-associated viral (AAV) gene transfer to skeletal muscle, we injected AAV-2 vector expressing human F.IX (hF.IX) into outbred immune-competent mice. Systemic hF.IX levels were transiently detected in the circulation, but diminished concomitant with activation of CD4+ T and B cells. ELISPOT assays documented robust responses to hF.IX in the draining lymph nodes of injected muscle by day 14. Formation of inhibitory antibodies to hF.IX was observed over a wide range of vector doses, with increased doses causing stronger immune responses. A prolonged inflammatory reaction in muscle started at 1.5-2 months, but ultimately failed to eliminate transgene expression. By 1.5 months, hF.IX antigen re-emerged in circulation in approximately 70% of animals injected with high vector dose. Hepatic gene transfer elicited only infrequent and weaker immune responses, with higher vector doses causing a reduction in T-cell responses to hF.IX. In summary, the data document substantial influence of target tissue, local antigen presentation, and antigen levels on lymphocyte responses to F.IX.

  2. Efficient intrathymic gene transfer following in situ administration of a rAAV serotype 8 vector in mice and nonhuman primates.

    PubMed

    Moreau, Aurélie; Vicente, Rita; Dubreil, Laurence; Adjali, Oumeya; Podevin, Guillaume; Jacquet, Chantal; Deschamps, Jack Yves; Klatzmann, David; Cherel, Yan; Taylor, Naomi; Moullier, Philippe; Zimmermann, Valérie S

    2009-03-01

    The thymus is the primary site of T-cell development and plays a key role in the induction of self-tolerance. We previously showed that the intrathymic (i.t.) injection of a transgene-expressing lentiviral vector (LV) in mice can result in the correction of a T cell-specific genetic defect. Nevertheless, the efficiency of thymocyte transduction did not exceed 0.1-0.3% and we were unable to detect any thymus transduction in macaques. As such, we initiated studies to assess the capacity of recombinant adeno-associated virus (rAAV) vectors to transduce murine and primate thymic cells. In vivo administration of AAV serotype 2-derived single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors pseudotyped with capsid proteins of serotypes 1, 2, 4, 5, and 8 demonstrated that murine thymus transduction was significantly enhanced by scAAV2/8. Transgene expression was detected in 5% of thymocytes and, notably, transduced cells represented 1% of peripheral T lymphocytes. Moreover, i.t. administration of scAAV2/8 particles in macaques, by endoscopic-mediated guidance, resulted in significant gene transfer. Thus, in healthy animals, where thymic gene transfer does not provide a selective advantage, scAAV2/8 is a unique tool promoting the in situ transduction of thymocytes with the subsequent export of gene-modified lymphocytes to the periphery.

  3. The treatment of hemophilia A: from protein replacement to AAV-mediated gene therapy.

    PubMed

    Youjin, Shen; Jun, Yin

    2009-03-01

    Factor VIII (FVIII) is an essential component in blood coagulation, a deficiency of which causes the serious bleeding disorder hemophilia A. Recently, with the development of purification level and recombinant techniques, protein replacement treatment to hemophiliacs is relatively safe and can prolong their life expectancy. However, because of the possibility of unknown contaminants in plasma-derived FVIII and recombinant FVIII, and high cost for hemophiliacs to use these products, gene therapy for hemophilia A is an attractive alternative to protein replacement therapy. Thus far, the adeno-associated virus (AAV) is a promising vector for gene therapy. Further improvement of the virus for clinical application depends on better understanding of the molecular structure and fate of the vector genome. It is likely that hemophilia will be the first genetic disease to be cured by somatic cell gene therapy.

  4. Evaluation of Vascular Delivery Methodologies to Enhance rAAV6-mediated Gene Transfer to Canine Striated Musculature

    PubMed Central

    Gregorevic, Paul; Schultz, Brian R; Allen, James M; Halldorson, Jeffrey B; Blankinship, Michael J; Meznarich, Norman A; Kuhr, Christian S; Doremus, Caitlin; Finn, Eric; Liggitt, Denny; Chamberlain, Jeffrey S

    2009-01-01

    A growing body of research supports the development of recombinant adeno-associated viral (rAAV) vectors for delivery of gene expression cassettes to striated musculature as a method of treating severe neuromuscular conditions. However, it is unclear whether delivery protocols that achieve extensive gene transfer in mice can be adapted to produce similarly extensive gene transfer in larger mammals and ultimately patients. Consequently, we sought to investigate methodological modifications that would facilitate rAAV-mediated gene transfer to the striated musculature of canines. A simple procedure incorporating acute (i) occlusion of limb blood flow, (ii) exsanguination via compression bandage, and (iii) vector “dwell” time of <20 minutes, markedly enhanced the transduction of limb muscles, compared with a simple bolus limb infusion of vector. A complementary method whereby vector was infused into the jugular vein led to efficient transduction of cardiomyocytes and to a lesser degree the diaphragm. Together these methods can be used to achieve transgene expression in heart, diaphragm, and limb muscles of juvenile dogs using rAAV6 vectors. These results establish that rAAV-mediated gene delivery is a viable approach to achieving systemic transduction of striated musculature in mammals approaching the dimensions of newborn humans. PMID:19471246

  5. Sustained transgene expression despite T lymphocyte responses in a clinical trial of rAAV1-AAT gene therapy.

    PubMed

    Brantly, Mark L; Chulay, Jeffrey D; Wang, Lili; Mueller, Christian; Humphries, Margaret; Spencer, L Terry; Rouhani, Farshid; Conlon, Thomas J; Calcedo, Roberto; Betts, Michael R; Spencer, Carolyn; Byrne, Barry J; Wilson, James M; Flotte, Terence R

    2009-09-22

    Alpha-1 antitrypsin (AAT) deficiency is well-suited as a target for human gene transfer. We performed a phase 1, open-label, dose-escalation clinical trial of a recombinant adeno-associated virus (rAAV) vector expressing normal (M) AAT packaged into serotype 1 AAV capsids delivered by i.m. injection. Nine AAT-deficient subjects were enrolled sequentially in cohorts of 3 each at doses of 6.9 x 10(12), 2.2 x 10(13), and 6.0 x 10(13) vector genome particles per patient. Four subjects receiving AAT protein augmentation discontinued therapy 28 or 56 days before vector administration. Vector administration was well tolerated, with only mild local reactions and 1 unrelated serious adverse event (bacterial epididymitis). There were no changes in hematology or clinical chemistry parameters. M-specific AAT was expressed above background in all subjects in cohorts 2 and 3 and was sustained at levels 0.1% of normal for at least 1 year in the highest dosage level cohort, despite development of neutralizing antibody and IFN-gamma enzyme-linked immunospot responses to AAV1 capsid at day 14 in all subjects. These findings suggest that immune responses to AAV capsid that develop after i.m. injection of a serotype 1 rAAV vector expressing AAT do not completely eliminate transduced cells in this context.

  6. AAV8-mediated Sirt1 gene transfer to the liver prevents high carbohydrate diet-induced nonalcoholic fatty liver disease

    PubMed Central

    Vilà, Laia; Elias, Ivet; Roca, Carles; Ribera, Albert; Ferré, Tura; Casellas, Alba; Lage, Ricardo; Franckhauser, Sylvie; Bosch, Fatima

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common hepatic disease worldwide, and evidence suggests that it promotes insulin resistance and type 2 diabetes. Caloric restriction (CR) is the only available strategy for NAFLD treatment. The protein deacetylase Sirtuin1 (SIRT1), which is activated by CR, increases catabolic metabolism and decreases lipogenesis and inflammation, both involved in the development of NAFLD. Here we show that adeno-associated viral vectors of serotype 8 (AAV8)-mediated liver-specific Sirt1 gene transfer prevents the development of NAFLD induced by a high carbohydrate (HC) diet. Long-term hepatic SIRT1 overexpression led to upregulation of key hepatic genes involved in β-oxidation, prevented HC diet-induced lipid accumulation and reduced liver inflammation. AAV8-Sirt1–treated mice showed improved insulin sensitivity, increased oxidative capacity in skeletal muscle and reduced white adipose tissue inflammation. Moreover, HC feeding induced leptin resistance, which was also attenuated in AAV8-Sirt1–treated mice. Therefore, AAV-mediated gene transfer to overexpress SIRT1 specifically in the liver may represent a new gene therapy strategy to counteract NAFLD and related diseases such as type 2 diabetes. PMID:26015978

  7. AAV-based neonatal gene therapy for hemophilia A: long-term correction and avoidance of immune responses in mice.

    PubMed

    Hu, C; Lipshutz, G S

    2012-12-01

    Hemophilia A gene therapy has been hampered by immune responses to vector-associated antigens and by neutralizing antibodies or inhibitors against the factor VIII (FVIII) protein; these 'inhibitors' more commonly affect hemophilia A patients than those with hemophilia B. A gene replacement strategy beginning in the neonatal period may avoid the development of these immune responses and lead to prolonged expression with correction of phenotype, thereby avoiding long-term consequences. A serotype rh10 adeno-associated virus (AAV) was developed splitting the FVIII coding sequence into heavy and light chains with the chicken β-actin promoter/CMV enhancer for dual recombinant adeno-associated viral vector delivery. Virions of each FVIII chain were co-injected intravenously into mice on the second day of life. Mice express sustained levels of FVIII antigen ≥5% up to 22 months of life without development of antibodies against FVIII. Phenotypic correction was manifest in all AAV-FVIII-treated mice as demonstrated by functional assay and reduction in bleeding time. This study demonstrates the use of AAV in a gene replacement strategy in neonatal mice that establishes both long-term phenotypic correction of hemophilia A and lack of antibody development against FVIII in this disease model where AAV is administered shortly after birth. These studies support the consideration of gene replacement therapy for diseases that are diagnosed in utero or in the early neonatal period.

  8. Long-term follow-up of a randomized AAV2-GAD gene therapy trial for Parkinson’s disease

    PubMed Central

    Niethammer, Martin; Tang, Chris C.; LeWitt, Peter A.; Rezai, Ali R.; Leehey, Maureen A.; Ojemann, Steven G.; Eskandar, Emad N.; Kostyk, Sandra K.; Sarkar, Atom; Siddiqui, Mustafa S.; Schwalb, Jason M.; Poston, Kathleen L.; Kurlan, Roger M.; Richard, Irene H.; Sapan, Christine V.; Eidelberg, David; During, Matthew J.; Kaplitt, Michael G.

    2017-01-01

    BACKGROUND. We report the 12-month clinical and imaging data on the effects of bilateral delivery of the glutamic acid decarboxylase gene into the subthalamic nuclei (STN) of advanced Parkinson’s disease (PD) patients. METHODS. 45 PD patients were enrolled in a 6-month double-blind randomized trial of bilateral AAV2-GAD delivery into the STN compared with sham surgery and were followed for 12 months in open-label fashion. Subjects were assessed with clinical outcome measures and 18F-fluorodeoxyglucose (FDG) PET imaging. RESULTS. Improvements under the blind in Unified Parkinson’s Disease Rating Scale (UPDRS) motor scores in the AAV2-GAD group compared with the sham group continued at 12 months [time effect: F(4,138) = 11.55, P < 0.001; group effect: F(1,35) = 5.45, P < 0.03; repeated-measures ANOVA (RMANOVA)]. Daily duration of levodopa-induced dyskinesias significantly declined at 12 months in the AAV2-GAD group (P = 0.03; post-hoc Bonferroni test), while the sham group was unchanged. Analysis of all FDG PET images over 12 months revealed significant metabolic declines (P < 0.001; statistical parametric mapping RMANOVA) in the thalamus, striatum, and prefrontal, anterior cingulate, and orbitofrontal cortices in the AAV2-GAD group compared with the sham group. Across all time points, changes in regional metabolism differed for the two groups in all areas, with significant declines only in the AAV2-GAD group (P < 0.005; post-hoc Bonferroni tests). Furthermore, baseline metabolism in the prefrontal cortex (PFC) correlated with changes in motor UPDRS scores; the higher the baseline PFC metabolism, the better the clinical outcome. CONCLUSION. These findings show that clinical benefits after gene therapy with STN AAV2-GAD in PD patients persist at 12 months. TRIAL REGISTRATION. ClinicalTrials.gov NCT00643890. FUNDING. Neurologix Inc.

  9. Modulation of tolerance to the transgene product in a nonhuman primate model of AAV-mediated gene transfer to liver.

    PubMed

    Mingozzi, Federico; Hasbrouck, Nicole C; Basner-Tschakarjan, Etiena; Edmonson, Shyrie A; Hui, Daniel J; Sabatino, Denise E; Zhou, Shangzhen; Wright, J Fraser; Jiang, Haiyan; Pierce, Glenn F; Arruda, Valder R; High, Katherine A

    2007-10-01

    Adeno-associated virus (AAV)-mediated gene transfer of factor IX (F.IX) to the liver results in long-term expression of transgene in experimental animals, but only short-term expression in humans. Loss of F.IX expression is likely due to a cytotoxic immune response to the AAV capsid, which results in clearance of transduced hepatocytes. We used a nonhuman primate model to assess the safety of AAV gene transfer coupled with an anti-T-cell regimen designed to block this immune response. Administration of a 3-drug regimen consisting of mycophenolate mofetil (MMF), sirolimus, and the anti-IL-2 receptor antibody daclizumab consistently resulted in formation of inhibitory antibodies to human F.IX following hepatic artery administration of an AAV-hF.IX vector, whereas a 2-drug regimen consisting only of MMF and sirolimus did not. Administration of daclizumab was accompanied by a dramatic drop in the population of CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs). We conclude that choice of immunosuppression (IS) regimen can modulate immune responses to the transgene product upon hepatic gene transfer in subjects not fully tolerant; and that induction of transgene tolerance may depend on a population of antigen-specific Tregs.

  10. Engineering and evolution of synthetic adeno-associated virus (AAV) gene therapy vectors via DNA family shuffling.

    PubMed

    Kienle, Eike; Senís, Elena; Börner, Kathleen; Niopek, Dominik; Wiedtke, Ellen; Grosse, Stefanie; Grimm, Dirk

    2012-04-02

    Adeno-associated viral (AAV) vectors represent some of the most potent and promising vehicles for therapeutic human gene transfer due to a unique combination of beneficial properties(1). These include the apathogenicity of the underlying wildtype viruses and the highly advanced methodologies for production of high-titer, high-purity and clinical-grade recombinant vectors(2). A further particular advantage of the AAV system over other viruses is the availability of a wealth of naturally occurring serotypes which differ in essential properties yet can all be easily engineered as vectors using a common protocol(1,2). Moreover, a number of groups including our own have recently devised strategies to use these natural viruses as templates for the creation of synthetic vectors which either combine the assets of multiple input serotypes, or which enhance the properties of a single isolate. The respective technologies to achieve these goals are either DNA family shuffling(3), i.e. fragmentation of various AAV capsid genes followed by their re-assembly based on partial homologies (typically >80% for most AAV serotypes), or peptide display(4,5), i.e. insertion of usually seven amino acids into an exposed loop of the viral capsid where the peptide ideally mediates re-targeting to a desired cell type. For maximum success, both methods are applied in a high-throughput fashion whereby the protocols are up-scaled to yield libraries of around one million distinct capsid variants. Each clone is then comprised of a unique combination of numerous parental viruses (DNA shuffling approach) or contains a distinctive peptide within the same viral backbone (peptide display approach). The subsequent final step is iterative selection of such a library on target cells in order to enrich for individual capsids fulfilling most or ideally all requirements of the selection process. The latter preferably combines positive pressure, such as growth on a certain cell type of interest, with negative

  11. CONVECTION-ENHANCED DELIVERY AND SYSTEMIC MANNITOL INCREASE GENE PRODUCT DISTRIBUTION OF AAV VECTORS 5, 8, AND 9 AND INCREASE GENE PRODUCT IN THE ADULT MOUSE BRAIN

    PubMed Central

    Carty, Nikisha; Lee, Daniel; Dickey, Chad; Ceballos-Diaz, Carolina; Jansen-West, Karen; Golde, Todd E.; Gordon, Marcia N.; Morgan, Dave; Nash, Kevin

    2010-01-01

    The use of recombinant adeno-associated viral (rAAV) vectors as a means of gene delivery to the central nervous system has emerged as a potentially viable method for the treatment of several types of degenerative brain diseases. However, a limitation of typical intracranial injections into the adult brain parenchyma is the relatively restricted distribution of the delivered gene to large brain regions such as the cortex, presumably due to confined dispersion of the injected particles. Optimizing the administration techniques to maximize gene distribution and gene expression is an important step in developing gene therapy studies. Here, we have found additive increases in distribution when 3 methods to increase brain distribution of rAAV were combined. The convection enhanced delivery (CED) method with the step-design cannula was used to deliver rAAV vector serotypes 5, 8 and 9 encoding GFP into the hippocampus of the mouse brain. While the CED method improved distribution of all 3 serotypes, the combination of rAAV9 and CED was particularly effective. Systemic mannitol administration, which reduces intracranial pressure, also further expanded distribution of GFP expression, in particular, increased expression on the contralateral hippocampi. These data suggest that combining advanced injection techniques with newer rAAV serotypes greatly improves viral vector distribution, which could have significant benefits for implementation of gene therapy strategies. PMID:20951738

  12. Advances in AAV vector development for gene therapy in the retina.

    PubMed

    Day, Timothy P; Byrne, Leah C; Schaffer, David V; Flannery, John G

    2014-01-01

    Adeno-associated virus (AAV) is a small, non-pathogenic dependovirus that has shown great potential for safe and long-term expression of a genetic payload in the retina. AAV has been used to treat a growing number of animal models of inherited retinal degeneration, though drawbacks-including a limited carrying capacity, slow onset of expression, and a limited ability to transduce some retinal cell types from the vitreous-restrict the utility of AAV for treating some forms of inherited eye disease. Next generation AAV vectors are being created to address these needs, through rational design efforts such as the creation of self-complementary AAV vectors for faster onset of expression and specific mutations of surface-exposed residues to increase transduction of viral particles. Furthermore, directed evolution has been used to create, through an iterative process of selection, novel variants of AAV with newly acquired, advantageous characteristics. These novel AAV variants have been shown to improve the therapeutic potential of AAV vectors, and further improvements may be achieved through rational design, directed evolution, or a combination of these approaches, leading to broader applicability of AAV and improved treatments for inherited retinal degeneration.

  13. Cardiac AAV9-S100A1 gene therapy rescues postischemic heart failure in a preclinical large animal model

    PubMed Central

    Pleger, Sven T.; Shan, Changguang; Ksienzyk, Jan; Bekeredjian, Raffi; Boekstegers, Peter; Hinkel, Rabea; Schinkel, Stefanie; Leuchs, Barbara; Ludwig, Jochen; Qiu, Gang; Weber, Christophe; Kleinschmidt, Jürgen A.; Raake, Philip; Koch, Walter J.; Katus, Hugo A.; Müller, Oliver J.; Most, Patrick

    2014-01-01

    As a prerequisite to clinical application, we determined the long-term therapeutic effectiveness and safety of adeno-associated viral (AAV) S100A1 gene therapy in a preclinical, large animal model of heart failure. S100A1, a positive inotropic regulator of myocardial contractility, becomes depleted in failing cardiomyocytes in humans and various animal models, and myocardial-targeted S100A1 gene transfer rescues cardiac contractile function by restoring sarcoplasmic reticulum calcium Ca2+ handling in acutely and chronically failing hearts in small animal models. We induced heart failure in domestic pigs by balloon-occlusion of the left circumflex coronary artery, resulting in myocardial infarction. After 2 weeks, when the pigs displayed significant left ventricular contractile dysfunction, we administered through retrograde coronary venous delivery, AAV9-S100A1 to the left ventricular non-infarcted myocardium. AAV9-luciferase and saline treatment served as control. At 14 weeks, both control groups showed significantly decreased myocardial S100A1 protein expression along with progressive deterioration of cardiac performance and left ventricular remodeling. AAV9-S100A1 treatment prevented and reversed this phenotype by restoring cardiac S100A1 protein levels. S100A1 treatment normalized cardiomyocyte Ca2+ cycling, sarcoplasmic reticulum calcium handling and energy homeostasis. Transgene expression was restricted to cardiac tissue and extra-cardiac organ function was uncompromised indicating a favorable safety profile. This translational study shows the pre-clinical feasibility, long-term therapeutic effectiveness and a favorable safety profile of cardiac AAV9-S100A1 gene therapy in a preclinical model of heart failure. Our study presents a strong rational for a clinical trial of S100A1 gene therapy for human heart failure that could potentially complement current strategies to treat end-stage heart failure. PMID:21775667

  14. Proteasome Inhibitors Enhance Gene Delivery by AAV Virus Vectors Expressing Large Genomes in Hemophilia Mouse and Dog Models: A Strategy for Broad Clinical Application

    PubMed Central

    Monahan, Paul E; Lothrop, Clinton D; Sun, Junjiang; Hirsch, Matthew L; Kafri, Tal; Kantor, Boris; Sarkar, Rita; Tillson, D Michael; Elia, Joseph R; Samulski, R Jude

    2010-01-01

    Delivery of genes that are larger than the wild-type adeno-associated virus (AAV) 4,681 nucleotide genome is inefficient using AAV vectors. We previously demonstrated in vitro that concurrent proteasome inhibitor (PI) treatment improves transduction by AAV vectors encoding oversized transgenes. In this study, an AAV vector with a 5.6 kilobase (kb) factor VIII expression cassette was used to test the effect of an US Food and Drug Administration–approved PI (bortezomib) treatment concurrent with vector delivery in vivo. Intrahepatic vector delivery resulted in factor VIII expression that persisted for >1 year in hemophilia mice. Single-dose bortezomib given with AAV2 or AAV8 factor VIII vector enhanced expression on average ~600 and ~300%, respectively. Moreover, coadministration of AAV8.canineFVIII (1 × 1013 vg/kg) and bortezomib in hemophilia A dogs (n = 4) resulted in normalization of the whole blood clotting time (WBCT) and 90% reduction in hemorrhages for >32 months compared to untreated hemophilia A dogs (n = 3) or dogs administered vector alone (n = 3). Demonstration of long-term phenotypic correction of hemophilia A dogs with combination adjuvant bortezomib and AAV vector expressing the oversized transgene establishes preclinical studies that support testing in humans and provides a working paradigm to facilitate a significant expansion of therapeutic targets for human gene therapy. PMID:20700109

  15. AAV-Mediated Clarin-1 Expression in the Mouse Retina: Implications for USH3A Gene Therapy.

    PubMed

    Dinculescu, Astra; Stupay, Rachel M; Deng, Wen-Tao; Dyka, Frank M; Min, Seok-Hong; Boye, Sanford L; Chiodo, Vince A; Abrahan, Carolina E; Zhu, Ping; Li, Qiuhong; Strettoi, Enrica; Novelli, Elena; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe; Smith, W Clay; Hauswirth, William W

    2016-01-01

    Usher syndrome type III (USH3A) is an autosomal recessive disorder caused by mutations in clarin-1 (CLRN1) gene, leading to progressive retinal degeneration and sensorineural deafness. Efforts to develop therapies for preventing photoreceptor cell loss are hampered by the lack of a retinal phenotype in the existing USH3 mouse models and by conflicting reports regarding the endogenous retinal localization of clarin-1, a transmembrane protein of unknown function. In this study, we used an AAV-based approach to express CLRN1 in the mouse retina in order to determine the pattern of its subcellular localization in different cell types. We found that all major classes of retinal cells express AAV-delivered CLRN1 driven by the ubiquitous, constitutive small chicken β-actin promoter, which has important implications for the design of future USH3 gene therapy studies. Within photoreceptor cells, AAV-expressed CLRN1 is mainly localized at the inner segment region and outer plexiform layer, similar to the endogenous expression of other usher proteins. Subretinal delivery using a full strength viral titer led to significant loss of retinal function as evidenced by ERG analysis, suggesting that there is a critical limit for CLRN1 expression in photoreceptor cells. Taken together, these results suggest that CLRN1 expression is potentially supported by a variety of retinal cells, and the right combination of AAV vector dose, promoter, and delivery method needs to be selected to develop safe therapies for USH3 disorder.

  16. A microRNA embedded AAV alpha-synuclein gene silencing vector for dopaminergic neurons

    PubMed Central

    Han, Ye; Khodr, Christina E.; Sapru, Mohan K.; Pedapati, Jyothi; Bohn, Martha C.

    2011-01-01

    Alpha-synuclein (SNCA), an abundantly expressed presynaptic protein, is implicated in Parkinson disease (PD). Since over-expression of human SNCA (hSNCA) leads to death of dopaminergic (DA) neurons in human, rodent and fly brain, hSNCA gene silencing may reduce levels of toxic forms of SNCA and ameliorate degeneration of DA neurons in PD. To begin to develop a gene therapy for PD based on hSNCA gene silencing, two AAV gene silencing vectors were designed, and tested for efficiency and specificity of silencing, as well as toxicity in vitro. The same hSNCA silencing sequence (shRNA) was used in both vectors, but in one vector, the shRNA was embedded in a microRNA backbone and driven by a pol II promoter, and in the other the shRNA was not embedded in a microRNA and was driven by a pol III promoter. Both vectors silenced hSNCA to the same extent in 293T cells transfected with hSNCA. In DA PC12 cells, neither vector decreased expression of rat SNCA, tyrosine hydroxylase (TH), dopamine transporter (DAT) or the vesicular monoamine transporter (VMAT). However, the mir30 embedded vector was significantly less toxic to both PC12 and SH-SY5Y cells. Our in vitro data suggest that this miRNA-embedded silencing vector may be ideal for chronic in vivo SNCA gene silencing in DA neurons. PMID:21338582

  17. High efficiency myogenic conversion of human fibroblasts by adenoviral vector-mediated MyoD gene transfer. An alternative strategy for ex vivo gene therapy of primary myopathies.

    PubMed Central

    Lattanzi, L; Salvatori, G; Coletta, M; Sonnino, C; Cusella De Angelis, M G; Gioglio, L; Murry, C E; Kelly, R; Ferrari, G; Molinaro, M; Crescenzi, M; Mavilio, F; Cossu, G

    1998-01-01

    Ex vivo gene therapy of primary myopathies, based on autologous transplantation of genetically modified myogenic cells, is seriously limited by the number of primary myogenic cells that can be isolated, expanded, transduced, and reimplanted into the patient's muscles. We explored the possibility of using the MyoD gene to induce myogenic conversion of nonmuscle, primary cells in a quantitatively relevant fashion. Primary human and murine fibroblasts from skin, muscle, or bone marrow were infected by an E1-deleted adenoviral vector carrying a retroviral long terminal repeat-promoted MyoD cDNA. Expression of MyoD caused irreversible withdrawal from the cell cycle and myogenic differentiation in the majority (from 60 to 90%) of cultured fibroblasts, as defined by activation of muscle-specific genes, fusion into contractile myotubes, and appearance of ultrastructurally normal sarcomagenesis in culture. 24 h after adenoviral exposure, MyoD-converted cultures were injected into regenerating muscle of immunodeficient (severe combined immunodeficiency/beige) mice, where they gave rise to beta-galactosidase positive, centrally nucleated fibers expressing human myosin heavy chains. Fibers originating from converted fibroblasts were indistinguishable from those obtained by injection of control cultures of lacZ-transduced satellite cells. MyoD-converted murine fibroblasts participated to muscle regeneration also in immunocompetent, syngeneic mice. Although antibodies from these mice bound to adenoviral infected cells in vitro, no inflammatory infiltrate was present in the graft site throughout the 3-wk study period. These data support the feasibility of an alternative approach to gene therapy of primary myopathies, based on implantation of large numbers of genetically modified primary fibroblasts massively converted to myogenesis by adenoviral delivery of MyoD ex vivo. PMID:9593768

  18. Prevalence and pharmacological modulation of humoral immunity to AAV vectors in gene transfer to synovial tissue.

    PubMed

    Mingozzi, F; Chen, Y; Edmonson, S C; Zhou, S; Thurlings, R M; Tak, P P; High, K A; Vervoordeldonk, M J

    2013-04-01

    Antibodies against adeno-associated viral (AAV) vectors are highly prevalent in humans. Both preclinical and clinical studies showed that antibodies against AAV block transduction even at low titers, particularly when the vector is introduced into the bloodstream. Here we measured the neutralizing antibody (NAb) titer against AAV serotypes 2, 5, 6 and 8 in the serum and matched synovial fluid (SF) from rheumatoid arthritis patients. The titer in the SF was lower than that in the matched plasma samples, indicating a difference in distribution of NAb to AAV depending on the body fluid compartment. This difference was more evident for AAV2, against which higher titers were measured. Of all serotypes, anti-AAV5 antibodies were the least prevalent in both the serum and SF. We next evaluated the impact of B-cell depletion on anti-AAV antibodies in rheumatoid arthritis patients who received one or two courses of the anti-CD20 antibody rituximab as part of their disease management. A drop of NAb titer was observed in a subset of those subjects carrying NAb titers ≤1:1000; however, only in a minority of subjects titers dropped below 1:5. This work provides insights into strategies to overcome the limitation of pre-existing humoral immunity to AAV vectors.

  19. Gene therapy for choroideremia using an adeno-associated viral (AAV) vector.

    PubMed

    Barnard, Alun R; Groppe, Markus; MacLaren, Robert E

    2014-10-30

    Choroideremia is an outer retinal degeneration with a characteristic clinical appearance that was first described in the nineteenth century. The disorder begins with reduction of night vision and gradually progresses to blindness by middle age. The appearance of the fundus in sufferers is recognizable by the characteristic pale color caused by the loss of the outer retina, retinal-pigmented epithelium, and choroidal vessels, leading to exposure of the underlying sclera. Choroideremia shows X-linked recessive inheritance and the choroideremia gene (CHM) was one of the first to be identified by positional cloning in 1990. Subsequent identification and characterization of the CHM gene, which encodes Rab escort protein 1 (REP1), has led to better comprehension of the disease and enabled advances in genetic diagnosis. Despite several decades of work to understand the exact pathogenesis, no established treatments currently exist to stop or even slow the progression of retinal degeneration in choroideremia. Encouragingly, several specific molecular and clinical features make choroideremia an ideal candidate for treatment with gene therapy. This work describes the considerations and challenges in the development of a new clinical trial using adeno-associated virus (AAV) encoding the CHM gene.

  20. Gene Therapy for Choroideremia Using an Adeno-Associated Viral (AAV) Vector

    PubMed Central

    Barnard, Alun R.; Groppe, Markus; MacLaren, Robert E.

    2015-01-01

    Choroideremia is an outer retinal degeneration with a characteristic clinical appearance that was first described in the nineteenth century. The disorder begins with reduction of night vision and gradually progresses to blindness by middle age. The appearance of the fundus in sufferers is recognizable by the characteristic pale color caused by the loss of the outer retina, retinal-pigmented epithelium, and choroidal vessels, leading to exposure of the underlying sclera. Choroideremia shows X-linked recessive inheritance and the choroideremia gene (CHM) was one of the first to be identified by positional cloning in 1990. Subsequent identification and characterization of the CHM gene, which encodes Rab escort protein 1 (REP1), has led to better comprehension of the disease and enabled advances in genetic diagnosis. Despite several decades of work to understand the exact pathogenesis, no established treatments currently exist to stop or even slow the progression of retinal degeneration in choroideremia. Encouragingly, several specific molecular and clinical features make choroideremia an ideal candidate for treatment with gene therapy. This work describes the considerations and challenges in the development of a new clinical trial using adeno-associated virus (AAV) encoding the CHM gene. PMID:25359548

  1. AAV-mediated Gene Therapy Halts Retinal Degeneration in PDE6β-deficient Dogs.

    PubMed

    Pichard, Virginie; Provost, Nathalie; Mendes-Madeira, Alexandra; Libeau, Lyse; Hulin, Philippe; Tshilenge, Kizito-Tshitoko; Biget, Marine; Ameline, Baptiste; Deschamps, Jack-Yves; Weber, Michel; Le Meur, Guylène; Colle, Marie-Anne; Moullier, Philippe; Rolling, Fabienne

    2016-05-01

    We previously reported that subretinal injection of AAV2/5 RK.cpde6β allowed long-term preservation of photoreceptor function and vision in the rod-cone dysplasia type 1 (rcd1) dog, a large animal model of naturally occurring PDE6β deficiency. The present study builds on these earlier findings to provide a detailed assessment of the long-term effects of gene therapy on the spatiotemporal pattern of retinal degeneration in rcd1 dogs treated at 20 days of age. We analyzed the density distribution of the retinal layers and of particular photoreceptor cells in 3.5-year-old treated and untreated rcd1 dogs. Whereas no rods were observed outside the bleb or in untreated eyes, gene transfer halted rod degeneration in all vector-exposed regions. Moreover, while gene therapy resulted in the preservation of cones, glial cells and both the inner nuclear and ganglion cell layers, no cells remained in vector-unexposed retinas, except in the visual streak. Finally, the retinal structure of treated 3.5-year-old rcd1 dogs was identical to that of unaffected 4-month-old rcd1 dogs, indicating near complete preservation. Our findings indicate that gene therapy arrests the degenerative process even if intervention is initiated after the onset of photoreceptor degeneration, and point to significant potential of this therapeutic approach in future clinical trials.

  2. Improved Intravitreal AAV-Mediated Inner Retinal Gene Transduction after Surgical Internal Limiting Membrane Peeling in Cynomolgus Monkeys.

    PubMed

    Takahashi, Kazuhisa; Igarashi, Tsutomu; Miyake, Koichi; Kobayashi, Maika; Yaguchi, Chiemi; Iijima, Osamu; Yamazaki, Yoshiyuki; Katakai, Yuko; Miyake, Noriko; Kameya, Shuhei; Shimada, Takashi; Takahashi, Hiroshi; Okada, Takashi

    2017-01-04

    The retina is an ideal target for gene therapy because of its easy accessibility and limited immunological response. We previously reported that intravitreally injected adeno-associated virus (AAV) vector transduced the inner retina with high efficiency in a rodent model. In large animals, however, the efficiency of retinal transduction was low, because the vitreous and internal limiting membrane (ILM) acted as barriers to transduction. To overcome these barriers in cynomolgus monkeys, we performed vitrectomy (VIT) and ILM peeling before AAV vector injection. Following intravitreal injection of 50 μL triple-mutated self-complementary AAV serotype 2 vector encoding EGFP, transduction efficiency was analyzed. Little expression of GFP was detected in the control and VIT groups, but in the VIT+ILM group, strong GFP expression was detected within the peeled ILM area. To detect potential adverse effects, we monitored the retinas using color fundus photography, optical coherence tomography, and electroretinography. No serious side effects associated with the pretreatment were observed. These results indicate that surgical ILM peeling before AAV vector administration would be safe and useful for efficient transduction of the nonhuman primate retina and provide therapeutic benefits for the treatment of retinal diseases.

  3. Disease correction by combined neonatal intracranial AAV and systemic lentiviral gene therapy in Sanfilippo Syndrome type B mice.

    PubMed

    Heldermon, C D; Qin, E Y; Ohlemiller, K K; Herzog, E D; Brown, J R; Vogler, C; Hou, W; Orrock, J L; Crawford, B E; Sands, M S

    2013-09-01

    Mucopolysaccharidosis type IIIB (MPS IIIB) or Sanfilippo Syndrome type B is a lysosomal storage disease resulting from the deficiency of N-acetyl glucosaminidase (NAGLU) activity. We previously showed that intracranial adeno-associated virus (AAV)-based gene therapy results in partial improvements of several aspects of the disease. In an attempt to further correct the disease, MPS IIIB mice were treated at 2-4 days of age with intracranial AAV2/5-NAGLU (IC-AAV), intravenous lentiviral-NAGLU (IV-LENTI) or the combination of both (BOTH). The BOTH group had the most complete biochemical and histological improvements of any treatment group. Compared with untreated MPS IIIB animals, all treatments resulted in significant improvements in motor function (rotarod) and hearing (auditory-evoked brainstem response). In addition, each treatment group had a significantly increased median life span compared with the untreated group (322 days). The combination arm had the greatest increase (612 days), followed by IC-AAV (463 days) and IV-LENTI (358 days). Finally, the BOTH group had nearly normal circadian rhythm measures with improvement in time to activity onset. In summary, targeting both the systemic and central nervous system disease of MPS IIIB early in life appears to be the most efficacious approach for this inherited metabolic disorder.

  4. Ultramicroscopy as a novel tool to unravel the tropism of AAV gene therapy vectors in the brain

    PubMed Central

    Alves, Sandro; Bode, Julia; Bemelmans, Alexis-Pierre; von Kalle, Christof; Cartier, Nathalie; Tews, Björn

    2016-01-01

    Recombinant adeno-associated viral (AAV) vectors have advanced to the vanguard of gene therapy. Numerous naturally occurring serotypes have been used to target cells in various tissues. There is a strong need for fast and dynamic methods which efficiently unravel viral tropism in whole organs. Ultramicroscopy (UM) is a novel fluorescence microscopy technique that images optically cleared undissected specimens, achieving good resolutions at high penetration depths while being non-destructive. UM was applied to obtain high-resolution 3D analysis of AAV transduction in adult mouse brains, especially in the hippocampus, a region of interest for Alzheimer’s disease therapy. We separately or simultaneously compared transduction efficacies for commonly used serotypes (AAV9 and AAVrh10) using fluorescent reporter expression. We provide a detailed comparative and quantitative analysis of the transduction profiles. UM allowed a rapid analysis of marker fluorescence expression in neurons with intact projections deep inside the brain, in defined anatomical structures. Major hippocampal neuronal transduction was observed with both vectors, with slightly better efficacy for AAV9 in UM. Glial response and synaptic marker expression did not change post transduction.We propose UM as a novel valuable complementary tool to efficiently and simultaneously unravel tropism of different viruses in a single non-dissected adult rodent brain. PMID:27320056

  5. Efficient transduction of vascular smooth muscle cells with a translational AAV2.5 vector: a new perspective for in-stent restenosis gene therapy.

    PubMed

    Lompré, A-M; Hadri, L; Merlet, E; Keuylian, Z; Mougenot, N; Karakikes, I; Chen, J; Atassi, F; Marchand, A; Blaise, R; Limon, I; McPhee, S W J; Samulski, R J; Hajjar, R J; Lipskaia, L

    2013-09-01

    Coronary artery disease represents the leading cause of mortality in the developed world. Percutaneous coronary intervention involving stent placement remains disadvantaged by restenosis or thrombosis. Vascular gene therapy-based methods may be approached, but lack a vascular gene delivery vector. We report a safe and efficient long-term transduction of rat carotid vessels after balloon injury intervention with a translational optimized AAV2.5 vector. Compared with other known adeno-associated virus (AAV) serotypes, AAV2.5 demonstrated the highest transduction efficiency of human coronary artery vascular smooth muscle cells (VSMCs) in vitro. Local delivery of AAV2.5-driven transgenes in injured carotid arteries resulted in transduction as soon as day 2 after surgery and persisted for at least 30 days. In contrast to adenovirus 5 vector, inflammation was not detected in AAV2.5-transduced vessels. The functional effects of AAV2.5-mediated gene transfer on neointimal thickening were assessed using the sarco/endoplasmic reticulum Ca(2+) ATPase isoform 2a (SERCA2a) human gene, known to inhibit VSMC proliferation. At 30 days, human SERCA2a messenger RNA was detected in transduced arteries. Morphometric analysis revealed a significant decrease in neointimal hyperplasia in AAV2.5-SERCA2a-transduced arteries: 28.36±11.30 (n=8) vs 77.96±24.60 (n=10) μm(2), in AAV2.5-green fluorescent protein-infected, P<0.05. In conclusion, AAV2.5 vector can be considered as a promising safe and effective vector for vascular gene therapy.

  6. Synergistic inhibition of PARP-1 and NF-κB signaling downregulates immune response against recombinant AAV2 vectors during hepatic gene therapy.

    PubMed

    Hareendran, Sangeetha; Ramakrishna, Banumathi; Jayandharan, Giridhara R

    2016-01-01

    Host immune response remains a key obstacle to widespread application of adeno-associated virus (AAV) based gene therapy. Thus, targeted inhibition of the signaling pathways that trigger such immune responses will be beneficial. Previous studies have reported that DNA damage response proteins such as poly(ADP-ribose) polymerase-1 (PARP-1) negatively affect the integration of AAV in the host genome. However, the role of PARP-1 in regulating AAV transduction and the immune response against these vectors has not been elucidated. In this study, we demonstrate that repression of PARP-1 improves the transduction of single-stranded AAV vectors both in vitro (∼174%) and in vivo (two- to 3.4-fold). Inhibition of PARP-1, also significantly downregulated the expression of several proinflammatory and cytokine markers such as TLRs, ILs, NF-κB subunit proteins associated with the host innate response against self-complementary AAV2 vectors. The suppression of the inflammatory response targeted against these vectors was more effective upon combined inhibition of PARP-1 and NF-κB signaling. This strategy also effectively attenuated the AAV capsid-specific cytotoxic T-cell response, with minimal effect on vector transduction, as demonstrated in normal C57BL/6 and hemophilia B mice. These data suggest that targeting specific host cellular proteins could be useful to attenuate the immune barriers to AAV-mediated gene therapy.

  7. Mucopolysaccharidosis-like phenotype in feline Sandhoff disease and partial correction after AAV gene therapy.

    PubMed

    Gray-Edwards, Heather L; Brunson, Brandon L; Holland, Merrilee; Hespel, Adrien-Maxence; Bradbury, Allison M; McCurdy, Victoria J; Beadlescomb, Patricia M; Randle, Ashley N; Salibi, Nouha; Denney, Thomas S; Beyers, Ronald J; Johnson, Aime K; Voyles, Meredith L; Montgomery, Ronald D; Wilson, Diane U; Hudson, Judith A; Cox, Nancy R; Baker, Henry J; Sena-Esteves, Miguel; Martin, Douglas R

    2015-01-01

    Sandhoff disease (SD) is a fatal neurodegenerative disease caused by a mutation in the enzyme β-N-acetylhexosaminidase. Children with infantile onset SD develop seizures, loss of motor tone and swallowing problems, eventually reaching a vegetative state with death typically by 4years of age. Other symptoms include vertebral gibbus and cardiac abnormalities strikingly similar to those of the mucopolysaccharidoses. Isolated fibroblasts from SD patients have impaired catabolism of glycosaminoglycans (GAGs). To evaluate mucopolysaccharidosis-like features of the feline SD model, we utilized radiography, MRI, echocardiography, histopathology and GAG quantification of both central nervous system and peripheral tissues/fluids. The feline SD model exhibits cardiac valvular and structural abnormalities, skeletal changes and spinal cord compression that are consistent with accumulation of GAGs, but are much less prominent than the severe neurologic disease that defines the humane endpoint (4.5±0.5months). Sixteen weeks after intracranial AAV gene therapy, GAG storage was cleared in the SD cat cerebral cortex and liver, but not in the heart, lung, skeletal muscle, kidney, spleen, pancreas, small intestine, skin, or urine. GAG storage worsens with time and therefore may become a significant source of pathology in humans whose lives are substantially lengthened by gene therapy or other novel treatments for the primary, neurologic disease.

  8. Recombinant adeno-associated virus (rAAV)-mediated expression of a human gamma-globin gene in human progenitor-derived erythroid cells.

    PubMed Central

    Miller, J L; Donahue, R E; Sellers, S E; Samulski, R J; Young, N S; Nienhuis, A W

    1994-01-01

    Effective gene therapy for the severe hemoglobin (Hb) disorders, sickle-cell anemia and thalassemia, will require an efficient method to transfer, integrate, and express a globin gene in primary erythroid cells. To evaluate recombinant adeno-associated virus (rAAV) for this purpose, we constructed a rAAV vector encoding a human gamma-globin gene (pJM24/vHS432A gamma). Its 4725-nucleotide genome consists of two 180-bp AAV inverted terminal repeats flanking the core elements of hypersensitive sites 2, 3, and 4 from the locus control region of the beta-globin gene cluster, linked to a mutationally marked A gamma-globin gene (A gamma) containing native promoter and RNA processing signals. CD34+ human hematopoietic cells were exposed to rAAV particles at a multiplicity of infection of 500-1000 and cultured in semisolid medium containing several cytokines. A reverse transcriptase polymerase chain reaction assay distinguished mRNA signals derived from transduced and endogenous human gamma-globin genes. Twenty to 40% of human erythroid burst-forming unit-derived colonies expressed the rAAV-transduced A gamma-globin gene at levels 4-71% that of the endogenous gamma-globin genes. The HbF content of pooled control colonies was 26%, whereas HbF was 40% of the total in pooled colonies derived from rAAV transduced progenitors. These data establish that rAAV containing elements from the locus control region linked to a gamma-globin gene are capable of transferring and expressing that gene in primary human hematopoietic cells resulting in a substantial increase in HbF content. Images PMID:7524085

  9. Photoreceptor-targeted gene delivery using intravitreally administered AAV vectors in dogs

    PubMed Central

    Boyd, RF; Sledge, DG; Boye, SL; Boye, SE; Hauswirth, WW; Komáromy, AM; Petersen-Jones, SM; Bartoe, JT

    2016-01-01

    Delivery of therapeutic transgenes to retinal photoreceptors using adeno-associated virus (AAV) vectors has traditionally required subretinal injection. Recently, photoreceptor transduction efficiency following intravitreal injection (IVT) has improved in rodent models through use of capsid-mutant AAV vectors; but remains limited in large animal models. Thickness of the inner limiting membrane (ILM) in large animals is thought to impair retinal penetration by AAV. Our study compared two newly developed AAV vectors containing multiple capsid amino acid substitutions following IVT in dogs. The ability of two promoter constructs to restrict reporter transgene expression to photoreceptors was also evaluated. AAV vectors containing the interphotoreceptor-binding protein (IRBP) promoter drove expression exclusively in rod and cone photoreceptors, with transduction efficiencies of ~ 4% of cones and 2% of rods. Notably, in the central region containing the cone-rich visual streak, 15.6% of cones were transduced. Significant regional variation existed, with lower transduction efficiencies in the temporal regions of all eyes. This variation did not correlate with ILM thickness. Vectors carrying a cone-specific promoter failed to transduce a quantifiable percentage of cone photoreceptors. The newly developed AAV vectors containing the IRBP promoter were capable of producing photoreceptor-specific transgene expression following IVT in the dog. PMID:26467396

  10. Photoreceptor-targeted gene delivery using intravitreally administered AAV vectors in dogs.

    PubMed

    Boyd, R F; Sledge, D G; Boye, S L; Boye, S E; Hauswirth, W W; Komáromy, A M; Petersen-Jones, S M; Bartoe, J T

    2016-02-01

    Delivery of therapeutic transgenes to retinal photoreceptors using adeno-associated virus (AAV) vectors has traditionally required subretinal injection. Recently, photoreceptor transduction efficiency following intravitreal injection (IVT) has improved in rodent models through use of capsid-mutant AAV vectors; but remains limited in large animal models. Thickness of the inner limiting membrane (ILM) in large animals is thought to impair retinal penetration by AAV. Our study compared two newly developed AAV vectors containing multiple capsid amino acid substitutions following IVT in dogs. The ability of two promoter constructs to restrict reporter transgene expression to photoreceptors was also evaluated. AAV vectors containing the interphotoreceptor-binding protein (IRBP) promoter drove expression exclusively in rod and cone photoreceptors, with transduction efficiencies of ~4% of cones and 2% of rods. Notably, in the central region containing the cone-rich visual streak, 15.6% of cones were transduced. Significant regional variation existed, with lower transduction efficiencies in the temporal regions of all eyes. This variation did not correlate with ILM thickness. Vectors carrying a cone-specific promoter failed to transduce a quantifiable percentage of cone photoreceptors. The newly developed AAV vectors containing the IRBP promoter were capable of producing photoreceptor-specific transgene expression following IVT in the dog.

  11. Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction

    PubMed Central

    Suzuki, Jun; Hashimoto, Ken; Xiao, Ru; Vandenberghe, Luk H.; Liberman, M. Charles

    2017-01-01

    The use of viral vectors for inner ear gene therapy is receiving increased attention for treatment of genetic hearing disorders. Most animal studies to date have injected viral suspensions into neonatal ears, via the round window membrane. Achieving transduction of hair cells, or sensory neurons, throughout the cochlea has proven difficult, and no studies have been able to efficiently transduce sensory cells in adult ears while maintaining normal cochlear function. Here, we show, for the first time, successful transduction of all inner hair cells and the majority of outer hair cells in an adult cochlea via virus injection into the posterior semicircular canal. We used a “designer” AAV, AAV2/Anc80L65, in which the main capsid proteins approximate the ancestral sequence state of AAV1, 2, 8, and 9. Our injections also transduced ~10% of spiral ganglion cells and a much larger fraction of their satellite cells. In the vestibular sensory epithelia, the virus transduced large numbers of hair cells and virtually all the supporting cells, along with close to half of the vestibular ganglion cells. We conclude that this viral vector and this delivery route hold great promise for gene therapy applications in both cochlear and vestibular sense organs. PMID:28367981

  12. Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction.

    PubMed

    Suzuki, Jun; Hashimoto, Ken; Xiao, Ru; Vandenberghe, Luk H; Liberman, M Charles

    2017-04-03

    The use of viral vectors for inner ear gene therapy is receiving increased attention for treatment of genetic hearing disorders. Most animal studies to date have injected viral suspensions into neonatal ears, via the round window membrane. Achieving transduction of hair cells, or sensory neurons, throughout the cochlea has proven difficult, and no studies have been able to efficiently transduce sensory cells in adult ears while maintaining normal cochlear function. Here, we show, for the first time, successful transduction of all inner hair cells and the majority of outer hair cells in an adult cochlea via virus injection into the posterior semicircular canal. We used a "designer" AAV, AAV2/Anc80L65, in which the main capsid proteins approximate the ancestral sequence state of AAV1, 2, 8, and 9. Our injections also transduced ~10% of spiral ganglion cells and a much larger fraction of their satellite cells. In the vestibular sensory epithelia, the virus transduced large numbers of hair cells and virtually all the supporting cells, along with close to half of the vestibular ganglion cells. We conclude that this viral vector and this delivery route hold great promise for gene therapy applications in both cochlear and vestibular sense organs.

  13. Prolonged expression of an anti-HIV-1 gp120 minibody to the female rhesus macaque lower genital tract by AAV gene transfer.

    PubMed

    Abdel-Motal, U M; Harbison, C; Han, T; Pudney, J; Anderson, D J; Zhu, Q; Westmoreland, S; Marasco, W A

    2014-09-01

    Topical microbicides are a leading strategy for prevention of HIV mucosal infection to women; however, numerous pharmacokinetic limitations associated with coitally related dosing strategy have contributed to their limited success. Here we test the hypothesis that adeno-associated virus (AAV) mediated delivery of the b12 human anti-HIV-1 gp120 minibody gene to the lower genital tract of female rhesus macaques (Rh) can provide prolonged expression of b12 minibodies in the cervical-vaginal secretions. Gene transfer studies demonstrated that, of various green fluorescent protein (GFP)-expressing AAV serotypes, AAV-6 most efficiently transduced freshly immortalized and primary genital epithelial cells (PGECs) of female Rh in vitro. In addition, AAV-6-b12 minibody transduction of Rh PGECs led to inhibition of SHIV162p4 transmigration and virus infectivity in vitro. AAV-6-GFP could also successfully transduce vaginal epithelial cells of Rh when applied intravaginally, including p63+ epithelial stem cells. Moreover, intravaginal application of AAV-6-b12 to female Rh resulted in prolonged minibody detection in their vaginal secretions throughout the 79-day study period. These data provide proof of principle that AAV-6-mediated delivery of anti-HIV broadly neutralizing antibody (BnAb) genes to the lower genital tract of female Rh results in persistent minibody detection for several months. This strategy offers promise that an anti-HIV-1 genetic microbicide strategy may be possible in which topical application of AAV vector, with periodic reapplication as needed, may provide sustained local BnAb expression and protection.

  14. AAV2/8-humanFOXP3 gene therapy shows robust anti-atherosclerosis efficacy in LDLR-KO mice on high cholesterol diet.

    PubMed

    Cao, M; Theus, S A; Straub, K D; Figueroa, J A; Mirandola, L; Chiriva-Internati, M; Hermonat, P L

    2015-07-18

    Inflammation is a key etiologic component in atherogenesis. Previously we demonstrated that adeno-associated virus (AAV) 2/8 gene delivery of Netrin1 inhibited atherosclerosis in the low density lipoprotein receptor knockout mice on high-cholesterol diet (LDLR-KO/HCD). One important finding from this study was that FOXP3 was strongly up-regulated in these Netrin1-treated animals, as FOXP3 is an anti-inflammatory gene, being the master transcription factor of regulatory T cells. These results suggested that the FOXP3 gene might potentially be used, itself, as an agent to limit atherosclerosis. To test this hypothesis AAV2/8 (AAV)/hFOXP3 or AAV/Neo (control) gene therapy virus were tail vein injected into the LDLR-KO/HCD animal model. It was found that hFOXP3 gene delivery was associated with significantly lower HCD-induced atherogenesis, as measured by larger aortic lumen cross sectional area, thinner aortic wall thickness, and lower aortic systolic blood velocity compared with Neo gene-HCD-treated controls. Moreover these measurements taken from the hFOXP3/HCD-treated animals very closely matched those measurements taken from the normal diet (ND) control animals. These data strongly suggest that AAV/hFOXP3 delivery gave a robust anti-atherosclerosis therapeutic effect and further suggest that FOXP3 be examined more stringently as a therapeutic gene for clinical use.

  15. Recent tissue engineering-based advances for effective rAAV-mediated gene transfer in the musculoskeletal system.

    PubMed

    Rey-Rico, Ana; Cucchiarini, Magali

    2016-04-01

    Musculoskeletal tissues are diverse and significantly different in their ability to repair upon injury. Current treatments often fail to reproduce the natural functions of the native tissue, leading to an imperfect healing. Gene therapy might improve the repair of tissues by providing a temporarily and spatially defined expression of the therapeutic gene(s) at the site of the injury. Several gene transfer vehicles have been developed to modify various human cells and tissues from musculoskeletal system among which the non-pathogenic, effective, and relatively safe recombinant adeno-associated viral (rAAV) vectors that have emerged as the preferred gene delivery system to treat human disorders. Adapting tissue engineering platforms to gene transfer approaches mediated by rAAV vectors is an attractive tool to circumvent both the limitations of the current therapeutic options to promote an effective healing of the tissue and the natural obstacles from these clinically adapted vectors to achieve an efficient and durable gene expression of the therapeutic sequences within the lesions.

  16. AAV-directed persistent expression of a gene encoding anti-nicotine antibody for smoking cessation.

    PubMed

    Hicks, Martin J; Rosenberg, Jonathan B; De, Bishnu P; Pagovich, Odelya E; Young, Colin N; Qiu, Jian-ping; Kaminsky, Stephen M; Hackett, Neil R; Worgall, Stefan; Janda, Kim D; Davisson, Robin L; Crystal, Ronald G

    2012-06-27

    Current strategies to help tobacco smokers quit have limited success as a result of the addictive properties of the nicotine in cigarette smoke. We hypothesized that a single administration of an adeno-associated virus (AAV) gene transfer vector expressing high levels of an anti-nicotine antibody would persistently prevent nicotine from reaching its receptors in the brain. To test this hypothesis, we constructed an AAVrh.10 vector that expressed a full-length, high-affinity, anti-nicotine antibody derived from the Fab fragment of the anti-nicotine monoclonal antibody NIC9D9 (AAVantiNic). In mice treated with this vector, blood concentrations of the anti-nicotine antibody were dose-dependent, and the antibody showed high specificity and affinity for nicotine. The antibody shielded the brain from systemically administered nicotine, reducing brain nicotine concentrations to 15% of those in naïve mice. The amount of nicotine sequestered in the serum of vector-treated mice was more than seven times greater than that in untreated mice, with 83% of serum nicotine bound to immunoglobulin G. Treatment with the AAVantiNic vector blocked nicotine-mediated alterations in arterial blood pressure, heart rate, and locomotor activity. In summary, a single administration of a gene transfer vector expressing a high-affinity anti-nicotine monoclonal antibody elicited persistent (18 weeks), high titers of an anti-nicotine antibody that obviated the physiologic effects of nicotine. If this degree of efficacy translates to humans, AAVantiNic could be an effective preventative therapy for nicotine addiction.

  17. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan

    PubMed Central

    Weismann, Cara M.; Ferreira, Jennifer; Keeler, Allison M.; Su, Qin; Qui, Linghua; Shaffer, Scott A.; Xu, Zuoshang; Gao, Guangping; Sena-Esteves, Miguel

    2015-01-01

    GM1 gangliosidosis (GM1) is an autosomal recessive lysosomal storage disease where GLB1 gene mutations result in a reduction or absence of lysosomal acid β-galactosidase (βgal) activity. βgal deficiency leads to accumulation of GM1-ganglioside in the central nervous system (CNS). GM1 is characterized by progressive neurological decline resulting in generalized paralysis, extreme emaciation and death. In this study, we assessed the therapeutic efficacy of an adeno-associated virus (AAV) 9-mβgal vector infused systemically in adult GM1 mice (βGal−/−) at 1 × 1011 or 3 × 1011 vector genomes (vg). Biochemical analysis of AAV9-treated GM1 mice showed high βGal activity in liver and serum. Moderate βGal levels throughout CNS resulted in a 36–76% reduction in GM1-ganglioside content in the brain and 75–86% in the spinal cord. Histological analyses of the CNS of animals treated with 3 × 1011 vg dose revealed increased presence of βgal and clearance of lysosomal storage throughout cortex, hippocampus, brainstem and spinal cord. Storage reduction in these regions was accompanied by a marked decrease in astrogliosis. AAV9 treatment resulted in improved performance in multiple tests of motor function and behavior. Also the majority of GM1 mice in the 3 × 1011 vg cohort retained ambulation and rearing despite reaching the humane endpoint due to weight loss. Importantly, the median survival of AAV9 treatment groups (316–576 days) was significantly increased over controls (250–264 days). This study shows that moderate widespread expression of βgal in the CNS of GM1 gangliosidosis mice is sufficient to achieve significant biochemical impact with phenotypic amelioration and extension in lifespan. PMID:25964428

  18. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan.

    PubMed

    Weismann, Cara M; Ferreira, Jennifer; Keeler, Allison M; Su, Qin; Qui, Linghua; Shaffer, Scott A; Xu, Zuoshang; Gao, Guangping; Sena-Esteves, Miguel

    2015-08-01

    GM1 gangliosidosis (GM1) is an autosomal recessive lysosomal storage disease where GLB1 gene mutations result in a reduction or absence of lysosomal acid β-galactosidase (βgal) activity. βgal deficiency leads to accumulation of GM1-ganglioside in the central nervous system (CNS). GM1 is characterized by progressive neurological decline resulting in generalized paralysis, extreme emaciation and death. In this study, we assessed the therapeutic efficacy of an adeno-associated virus (AAV) 9-mβgal vector infused systemically in adult GM1 mice (βGal(-/-)) at 1 × 10(11) or 3 × 10(11) vector genomes (vg). Biochemical analysis of AAV9-treated GM1 mice showed high βGal activity in liver and serum. Moderate βGal levels throughout CNS resulted in a 36-76% reduction in GM1-ganglioside content in the brain and 75-86% in the spinal cord. Histological analyses of the CNS of animals treated with 3 × 10(11) vg dose revealed increased presence of βgal and clearance of lysosomal storage throughout cortex, hippocampus, brainstem and spinal cord. Storage reduction in these regions was accompanied by a marked decrease in astrogliosis. AAV9 treatment resulted in improved performance in multiple tests of motor function and behavior. Also the majority of GM1 mice in the 3 × 10(11) vg cohort retained ambulation and rearing despite reaching the humane endpoint due to weight loss. Importantly, the median survival of AAV9 treatment groups (316-576 days) was significantly increased over controls (250-264 days). This study shows that moderate widespread expression of βgal in the CNS of GM1 gangliosidosis mice is sufficient to achieve significant biochemical impact with phenotypic amelioration and extension in lifespan.

  19. Cationic lipid-nanoceria hybrids, a novel nonviral vector-mediated gene delivery into mammalian cells: investigation of the cellular uptake mechanism

    PubMed Central

    Das, Joydeep; Han, Jae Woong; Choi, Yun-Jung; Song, Hyuk; Cho, Ssang-Goo; Park, Chankyu; Seo, Han Geuk; Kim, Jin-Hoi

    2016-01-01

    Gene therapy is a promising technique for the treatment of various diseases. The development of minimally toxic and highly efficient non-viral gene delivery vectors is the most challenging undertaking in the field of gene therapy. Here, we developed dimethyldioctadecylammonium bromide (DODAB)–nanoceria (CeO2) hybrids as a new class of non-viral gene delivery vectors. These DODAB-modified CeO2 nanoparticles (CeO2/DODAB) could effectively compact the pDNA, allowing for highly efficient gene transfection into the selected cell lines. The CeO2/DODAB nanovectors were also found to be non-toxic and did not induce ROS formation as well as any stress responsive and pro-survival signaling pathways. The overall vector performance of CeO2/DODAB nanohybrids was comparable with lipofectamine and DOTAP, and higher than calcium phosphate and DEAE-dextran for transfecting small plasmids. The increased cellular uptake of the nanovector/DNA complexes through clathrin- and caveolae-mediated endocytosis and subsequent release from the endosomes further support the increased gene transfection efficiency of the CeO2/DODAB vectors. Besides, CeO2/DODAB nanovectors could transfect genes in vivo without any sign of toxicity. Taken together, this new nano-vector has the potential to be used for gene delivery in biomedical applications. PMID:27380727

  20. Intra-amniotic rAAV-mediated microdystrophin gene transfer improves canine X-linked muscular dystrophy and may induce immune tolerance.

    PubMed

    Hayashita-Kinoh, Hiromi; Yugeta, Naoko; Okada, Hironori; Nitahara-Kasahara, Yuko; Chiyo, Tomoko; Okada, Takashi; Takeda, Shin'ichi

    2015-04-01

    Duchenne muscular dystrophy (DMD) is a severe congenital disease due to mutations in the dystrophin gene. Supplementation of dystrophin using recombinant adenoassociated virus vector has promise as a treatment of DMD, although therapeutic benefit of the truncated dystrophin still remains to be elucidated. Besides, host immune responses against the vector as well as transgene products have been denoted in the clinical gene therapy studies. Here, we transduced dystrophic dogs fetuses to investigate the therapeutic effects of an AAV vector expressing microdystrophin under conditions of immune tolerance. rAAV-CMV-microdystrophin and a rAAV-CAG-luciferase were injected into the amniotic fluid surrounding fetuses. We also reinjected rAAV9-CMV-microdystrophin into the jugular vein of an infant dystrophic dog to induce systemic expression of microdystrophin. Gait and cardiac function significantly improved in the rAAV-microdystrophin-injected dystrophic dog, suggesting that an adequate treatment of rAAV-microdystrophin with immune modulation induces successful long-term transgene expression to analyze improved dystrophic phenotype.

  1. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD.

    PubMed

    Wang, Jing-Zhang; Wu, Peng; Shi, Zhi-Min; Xu, Yan-Li; Liu, Zhi-Jun

    2017-04-05

    Mutations in the dystrophin gene (Dmd) result in Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD), which afflict many newborn boys. In 2016, Brain and Development published several interesting articles on DMD treatment with antisense oligonucleotide, kinase inhibitor, and prednisolone. Even more strikingly, three articles in the issue 6271 of Science in 2016 provide new insights into gene therapy of DMD and BMD via the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). In brief, adeno-associated virus (AAV) vectors transport guided RNAs (gRNAs) and Cas9 into mdx mouse model, gRNAs recognize the mutated Dmd exon 23 (having a stop codon), and Cas9 cut the mutated exon 23 off the Dmd gene. These manipulations restored expression of truncated but partially functional dystrophin, improved skeletal and cardiac muscle function, and increased survival of mdx mice significantly. This review concisely summarized the related advancements and discussed their primary implications in the future gene therapy of DMD, including AAV-vector selection, gRNA designing, Cas9 optimization, dystrophin-restoration efficiency, administration routes, and systemic and long-term therapeutic efficacy. Future orientations, including off-target effects, safety concerns, immune responses, precision medicine, and Dmd-editing in the brain (potentially blocked by the blood-brain barrier) were also elucidated briefly. Collectively, the AAV-mediated and RNA-guided CRISPR/Cas9 system has major superiorities compared with traditional gene therapy, and might contribute to the treatment of DMD and BMD substantially in the near future.

  2. Therapeutic levels of fetal hemoglobin in erythroid progeny of β-thalassemic CD34+ cells after lentiviral vector-mediated gene transfer

    PubMed Central

    Wilber, Andrew; Hargrove, Phillip W.; Kim, Yoon-Sang; Riberdy, Janice M.; Sankaran, Vijay G.; Papanikolaou, Eleni; Georgomanoli, Maria; Anagnou, Nicholas P.; Orkin, Stuart H.; Nienhuis, Arthur W.

    2011-01-01

    β-Thalassemia major results from severely reduced or absent expression of the β-chain of adult hemoglobin (α2β2;HbA). Increased levels of fetal hemoglobin (α2γ2;HbF), such as occurs with hereditary persistence of HbF, ameliorate the severity of β-thalassemia, raising the potential for genetic therapy directed at enhancing HbF. We used an in vitro model of human erythropoiesis to assay for enhanced production of HbF after gene delivery into CD34+ cells obtained from mobilized peripheral blood of normal adults or steady-state bone marrow from patients with β-thalassemia major. Lentiviral vectors encoding (1) a human γ-globin gene with or without an insulator, (2) a synthetic zinc-finger transcription factor designed to interact with the γ-globin gene promoters, or (3) a short-hairpin RNA targeting the γ-globin gene repressor, BCL11A, were tested. Erythroid progeny of normal CD34+ cells demonstrated levels of HbF up to 21% per vector copy. For β-thalassemic CD34+ cells, similar gene transfer efficiencies achieved HbF production ranging from 45% to 60%, resulting in up to a 3-fold increase in the total cellular Hb content. These observations suggest that both lentiviral-mediated γ-globin gene addition and genetic reactivation of endogenous γ-globin genes have potential to provide therapeutic HbF levels to patients with β-globin deficiency. PMID:21156846

  3. Enhanced athletic performance on multisite AAV-IGF1 gene transfer coincides with massive modification of the muscle proteome.

    PubMed

    Macedo, Antero; Moriggi, Manuela; Vasso, Michele; De Palma, Sara; Sturnega, Mauro; Friso, Giorgio; Gelfi, Cecilia; Giacca, Mauro; Zacchigna, Serena

    2012-02-01

    Progress in gene therapy has hinted at the potential misuse of gene transfer in sports to achieve better athletic performance, while escaping from traditional doping detection methods. Suitable animal models are therefore required in order to better define the potential effects and risks of gene doping. Here we describe a mouse model of gene doping based on adeno-associated virus (AAV)-mediated delivery of the insulin-like growth factor-I (IGF-I) cDNA to multiple muscles. This treatment determined marked muscle hypertrophy, neovascularization, and fast-to-slow fiber type transition, similar to endurance exercise. In functional terms, treated mice showed impressive endurance gain, as determined by an exhaustive swimming test. The proteomic profile of the transduced muscles at 15 and 30 days after gene delivery revealed induction of key proteins controlling energy metabolism. At the earlier time point, enzymes controlling glycogen mobilization and anaerobic glycolysis were induced, whereas they were later replaced by proteins required for aerobic metabolism, including enzymes related to the Krebs cycle and oxidative phosphorylation. These modifications coincided with the induction of several structural and contractile proteins, in agreement with the observed histological and functional changes. Collectively, these results give important insights into the biological response of muscles to continuous IGF-I expression in vivo and warn against the potential misuse of AAV-IGF1 as a doping agent.

  4. Longevity of rAAV vector and plasmid DNA in blood after intramuscular injection in nonhuman primates: implications for gene doping.

    PubMed

    Ni, W; Le Guiner, C; Gernoux, G; Penaud-Budloo, M; Moullier, P; Snyder, R O

    2011-07-01

    Legitimate uses of gene transfer technology can benefit from sensitive detection methods to determine vector biodistribution in pre-clinical studies and in human clinical trials, and similar methods can detect illegitimate gene transfer to provide sports-governing bodies with the ability to maintain fairness. Real-time PCR assays were developed to detect a performance-enhancing transgene (erythropoietin, EPO) and backbone sequences in the presence of endogenous cellular sequences. In addition to developing real-time PCR assays, the steps involved in DNA extraction, storage and transport were investigated. By real-time PCR, the vector transgene is distinguishable from the genomic DNA sequence because of the absence of introns, and the vector backbone can be identified by heterologous gene expression control elements. After performance of the assays was optimized, cynomolgus macaques received a single dose by intramuscular (IM) injection of plasmid DNA, a recombinant adeno-associated viral vector serotype 1 (rAAV1) or a rAAV8 vector expressing cynomolgus macaque EPO. Macaques received a high plasmid dose intended to achieve a significant, but not life-threatening, increase in hematocrit. rAAV vectors were used at low doses to achieve a small increase in hematocrit and to determine the limit of sensitivity for detecting rAAV sequences by single-step PCR. DNA extracted from white blood cells (WBCs) was tested to determine whether WBCs can be collaterally transfected by plasmid or transduced by rAAV vectors in this context, and can be used as a surrogate marker for gene doping. We demonstrate that IM injection of a conventional plasmid and rAAV vectors results in the presence of DNA that can be detected at high levels in blood before rapid elimination, and that rAAV genomes can persist for several months in WBCs.

  5. Development of an optimized AAV2/5 gene therapy vector for Leber congenital amaurosis owing to defects in RPE65

    PubMed Central

    Georgiadis, A; Duran, Y; Ribeiro, J; Abelleira-Hervas, L; Robbie, S J; Sünkel-Laing, B; Fourali, S; Gonzalez-Cordero, A; Cristante, E; Michaelides, M; Bainbridge, J W B; Smith, A J; Ali, R R

    2016-01-01

    Leber congenital amaurosis is a group of inherited retinal dystrophies that cause severe sight impairment in childhood; RPE65-deficiency causes impaired rod photoreceptor function from birth and progressive impairment of cone photoreceptor function associated with retinal degeneration. In animal models of RPE65 deficiency, subretinal injection of recombinant adeno-associated virus (AAV) 2/2 vectors carrying RPE65 cDNA improves rod photoreceptor function, and intervention at an early stage of disease provides sustained benefit by protecting cone photoreceptors against retinal degeneration. In affected humans, administration of these vectors has resulted to date in relatively modest improvements in photoreceptor function, even when retinal degeneration is comparatively mild, and the duration of benefit is limited by progressive retinal degeneration. We conclude that the demand for RPE65 in humans is not fully met by current vectors, and predict that a more powerful vector will provide more durable benefit. With this aim we have modified the original AAV2/2 vector to generate AAV2/5-OPTIRPE65. The new configuration consists of an AAV vector serotype 5 carrying an optimized hRPE65 promoter and a codon-optimized hRPE65 gene. In mice, AAV2/5-OPTIRPE65 is at least 300-fold more potent than our original AAV2/2 vector. PMID:27653967

  6. Development of an optimized AAV2/5 gene therapy vector for Leber congenital amaurosis owing to defects in RPE65.

    PubMed

    Georgiadis, A; Duran, Y; Ribeiro, J; Abelleira-Hervas, L; Robbie, S J; Sünkel-Laing, B; Fourali, S; Gonzalez-Cordero, A; Cristante, E; Michaelides, M; Bainbridge, J W B; Smith, A J; Ali, R R

    2016-12-01

    Leber congenital amaurosis is a group of inherited retinal dystrophies that cause severe sight impairment in childhood; RPE65-deficiency causes impaired rod photoreceptor function from birth and progressive impairment of cone photoreceptor function associated with retinal degeneration. In animal models of RPE65 deficiency, subretinal injection of recombinant adeno-associated virus (AAV) 2/2 vectors carrying RPE65 cDNA improves rod photoreceptor function, and intervention at an early stage of disease provides sustained benefit by protecting cone photoreceptors against retinal degeneration. In affected humans, administration of these vectors has resulted to date in relatively modest improvements in photoreceptor function, even when retinal degeneration is comparatively mild, and the duration of benefit is limited by progressive retinal degeneration. We conclude that the demand for RPE65 in humans is not fully met by current vectors, and predict that a more powerful vector will provide more durable benefit. With this aim we have modified the original AAV2/2 vector to generate AAV2/5-OPTIRPE65. The new configuration consists of an AAV vector serotype 5 carrying an optimized hRPE65 promoter and a codon-optimized hRPE65 gene. In mice, AAV2/5-OPTIRPE65 is at least 300-fold more potent than our original AAV2/2 vector.

  7. Outer Plexiform Layer Structures Are Not Altered Following AAV-Mediated Gene Transfer in Healthy Rat Retina

    PubMed Central

    Giers, Bert C.; Klein, Daniela; Mendes-Madeira, Alexandra; Isiegas, Carolina; Lorenz, Birgit; Haverkamp, Silke; Stieger, Knut

    2017-01-01

    Ocular gene therapy approaches have been developed for a variety of different diseases. In particular, clinical gene therapy trials for RPE65 mutations, X-linked retinoschisis, and choroideremia have been conducted at different centers in recent years, showing that adeno-associated virus (AAV)-mediated gene therapy is safe, but limitations exist as to the therapeutic benefit and long-term duration of the treatment. The technique of vector delivery to retinal cells relies on subretinal injection of the vector solution, causing a transient retinal detachment. Although retinal detachments are known to cause remodeling of retinal neuronal structures as well as significant cell loss, the possible effects of this short-term therapeutic retinal detachment on retinal structure and circuitry have not yet been studied in detail. In this study, retinal morphology and apoptotic status were examined in healthy rat retinas following AAV-mediated gene transfer via subretinal injection with AAV2/5.CMV.d2GFP or sham injection with fluorescein. Outer plexiform layer (OPL) morphology was assessed by immunohistochemical labeling, laser scanning confocal microscopy, and electron microscopy. The number of synaptic contacts in the OPL was quantified after labeling with structural markers. To assess the apoptotic status, inflammatory and pro-apoptotic markers were tested and TUNEL assay for the detection of apoptotic nuclei was performed. Pre- and postsynaptic structures in the OPL, such as synaptic ribbons or horizontal and bipolar cell processes, did not differ in size or shape in injected versus non-injected areas and control retinas. Absolute numbers of synaptic ribbons were not altered. No signs of relevant gliosis were detected. TUNEL labeling of retinal cells did not vary between injected and non-injected areas, and apoptosis-inducing factor was not delocalized to the nucleus in transduced areas. The neuronal circuits in the OPL of healthy rat retinas undergoing AAV-mediated gene

  8. Outer Plexiform Layer Structures Are Not Altered Following AAV-Mediated Gene Transfer in Healthy Rat Retina.

    PubMed

    Giers, Bert C; Klein, Daniela; Mendes-Madeira, Alexandra; Isiegas, Carolina; Lorenz, Birgit; Haverkamp, Silke; Stieger, Knut

    2017-01-01

    Ocular gene therapy approaches have been developed for a variety of different diseases. In particular, clinical gene therapy trials for RPE65 mutations, X-linked retinoschisis, and choroideremia have been conducted at different centers in recent years, showing that adeno-associated virus (AAV)-mediated gene therapy is safe, but limitations exist as to the therapeutic benefit and long-term duration of the treatment. The technique of vector delivery to retinal cells relies on subretinal injection of the vector solution, causing a transient retinal detachment. Although retinal detachments are known to cause remodeling of retinal neuronal structures as well as significant cell loss, the possible effects of this short-term therapeutic retinal detachment on retinal structure and circuitry have not yet been studied in detail. In this study, retinal morphology and apoptotic status were examined in healthy rat retinas following AAV-mediated gene transfer via subretinal injection with AAV2/5.CMV.d2GFP or sham injection with fluorescein. Outer plexiform layer (OPL) morphology was assessed by immunohistochemical labeling, laser scanning confocal microscopy, and electron microscopy. The number of synaptic contacts in the OPL was quantified after labeling with structural markers. To assess the apoptotic status, inflammatory and pro-apoptotic markers were tested and TUNEL assay for the detection of apoptotic nuclei was performed. Pre- and postsynaptic structures in the OPL, such as synaptic ribbons or horizontal and bipolar cell processes, did not differ in size or shape in injected versus non-injected areas and control retinas. Absolute numbers of synaptic ribbons were not altered. No signs of relevant gliosis were detected. TUNEL labeling of retinal cells did not vary between injected and non-injected areas, and apoptosis-inducing factor was not delocalized to the nucleus in transduced areas. The neuronal circuits in the OPL of healthy rat retinas undergoing AAV-mediated gene

  9. Detection of Intact rAAV Particles up to 6 Years After Successful Gene Transfer in the Retina of Dogs and Primates

    PubMed Central

    Stieger, Knut; Schroeder, Josef; Provost, Nathalie; Mendes-Madeira, Alexandra; Belbellaa, Brahim; Meur, Guylène Le; Weber, Michel; Deschamps, Jack-Yves; Lorenz, Birgit; Moullier, Philippe; Rolling, Fabienne

    2008-01-01

    Gene transfer to the retina using recombinant adeno-associated viral (rAAV) vectors has proven to be an effective option for the treatment of retinal degenerative diseases in several animal models and has recently advanced into clinical trials in humans. To date, intracellular trafficking of AAV vectors and subsequent capsid degradation has been studied only in vitro, but the fate of AAV particles in transduced cells following subretinal injection has yet to be elucidated. Using electron microscopy and western blot, we analyzed retinas of one primate and four dogs that had been subretinally injected with AAV2/4, -2/5, or -2/2 serotypes and that displayed efficient gene transfer over several years. We show that intact AAV particles are still present in retinal cells, for up to 6 years after successful gene transfer in these large animals. The persistence of intact vector particles in the target organ, several years postadministration, is totally unexpected and, therefore, represents a new and unanticipated safety issue to consider at a time when gene therapy clinical trials raise new immunological concerns. PMID:19107120

  10. Carbidopa-based modulation of the functional effect of the AAV2-hAADC gene therapy in 6-OHDA lesioned rats.

    PubMed

    Ciesielska, Agnieszka; Sharma, Nitasha; Beyer, Janine; Forsayeth, John; Bankiewicz, Krystof

    2015-01-01

    Progressively blunted response to L-DOPA in Parkinson's disease (PD) is a critical factor that complicates long-term pharmacotherapy in view of the central importance of this drug in management of the PD-related motor disturbance. This phenomenon is likely due to progressive loss of one of the key enzymes involved in the biosynthetic pathway for dopamine in the basal ganglia: aromatic L-amino acid decarboxylase (AADC). We have developed a gene therapy based on an adeno-associated virus encoding human AADC (AAV2-hAADC) infused into the Parkinsonian striatum. Although no adverse clinical effects of the AAV2-hAADC gene therapy have been observed so far, the ability to more precisely regulate transgene expression or transgene product activity could be an important long-term safety feature. The present study was designed to define pharmacological regulation of the functional activity of AAV2-hAADC transgene product by manipulating L-DOPA and carbidopa (AADC inhibitor) administration in hemi-parkinsonian rats. Thirty days after unilateral striatal infusion of AAV2-hAADC, animals displayed circling behavior and acceleration of dopamine metabolism in the lesioned striatum after administration of a low dose of L-DOPA (5 mg/kg) co-administered with 1.25 mg/kg of carbidopa. This phenomenon was not observed in control AAV2-GFP-treated rats. Withdrawal of carbidopa from a daily L-DOPA regimen decreased the peripheral L-DOPA pool, resulting in almost total loss of L-DOPA-induced behavioral response in AAV2-hAADC rats and a significant decline in striatal dopamine turnover. The serum L-DOPA level correlated with the magnitude of circling behavior in AAV2-hAADC rats. Additionally, AADC activity in homogenates of lesioned striata transduced by AAV2-AADC was 10-fold higher when compared with AAV2-GFP-treated control striata, confirming functional transduction. Our data suggests that the pharmacological regulation of circulating L-DOPA might be effective in the controlling of

  11. Lentiviral CRISPR/Cas9 vector mediated miR-21 gene editing inhibits the epithelial to mesenchymal transition in ovarian cancer cells.

    PubMed

    Huo, Wenying; Zhao, Guannan; Yin, Jinggang; Ouyang, Xuan; Wang, Yinan; Yang, Chuanhe; Wang, Baojing; Dong, Peixin; Wang, Zhixiang; Watari, Hidemichi; Chaum, Edward; Pfeffer, Lawrence M; Yue, Junming

    2017-01-01

    CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) mediated genome editing is a powerful approach for loss of function studies. Here we report that lentiviral CRISPR/Cas9 vectors are highly efficient in introducing mutations in the precursor miRNA sequence, thus leading to the loss of miRNA expression and function. We constructed four different lentiviral CRISPR/Cas9 vectors that target different regions of the precursor miR-21 sequence and found that these lentiviral CRISPR/Cas9 miR-21 gRNA vectors induced mutations in the precursor sequences as shown by DNA surveyor mutation assay and Sanger sequencing. Two miR-21 lentiviral CRISPR/Cas9 gRNA vectors were selected to probe miR-21 function in ovarian cancer SKOV3 and OVCAR3 cell lines. Our data demonstrate that disruption of pre-miR-21 sequences leads to reduced cell proliferation, migration and invasion. Moreover, CRISPR/Cas9-mediated miR-21 gene editing sensitizes both SKOV3 and OVCAR3 cells to chemotherapeutic drug treatment. Disruption of miR-21 leads to the inhibition of epithelial to mesenchymal transition (EMT) in both SKOV3 and OVCAR3 cells as evidenced by the upregulation of epithelial cell marker E-cadherin and downregulation of mesenchymal marker genes, vimentin and Snai2. The miR-21 target genes PDCD4 and SPRY2 were upregulated in cells transduced with miR-21gRNAs compared to controls. Our study indicates that lentiviral CRISPR/Cas9-mediated miRNA gene editing is an effective approach to address miRNA function, and disruption of miR-21 inhibits EMT in ovarian cancer cells.

  12. Lentiviral CRISPR/Cas9 vector mediated miR-21 gene editing inhibits the epithelial to mesenchymal transition in ovarian cancer cells

    PubMed Central

    Huo, Wenying; Zhao, Guannan; Yin, Jinggang; Ouyang, Xuan; Wang, Yinan; Yang, Chuanhe; Wang, Baojing; Dong, Peixin; Wang, Zhixiang; Watari, Hidemichi; Chaum, Edward; Pfeffer, Lawrence M.; Yue, Junming

    2017-01-01

    CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) mediated genome editing is a powerful approach for loss of function studies. Here we report that lentiviral CRISPR/Cas9 vectors are highly efficient in introducing mutations in the precursor miRNA sequence, thus leading to the loss of miRNA expression and function. We constructed four different lentiviral CRISPR/Cas9 vectors that target different regions of the precursor miR-21 sequence and found that these lentiviral CRISPR/Cas9 miR-21 gRNA vectors induced mutations in the precursor sequences as shown by DNA surveyor mutation assay and Sanger sequencing. Two miR-21 lentiviral CRISPR/Cas9 gRNA vectors were selected to probe miR-21 function in ovarian cancer SKOV3 and OVCAR3 cell lines. Our data demonstrate that disruption of pre-miR-21 sequences leads to reduced cell proliferation, migration and invasion. Moreover, CRISPR/Cas9-mediated miR-21 gene editing sensitizes both SKOV3 and OVCAR3 cells to chemotherapeutic drug treatment. Disruption of miR-21 leads to the inhibition of epithelial to mesenchymal transition (EMT) in both SKOV3 and OVCAR3 cells as evidenced by the upregulation of epithelial cell marker E-cadherin and downregulation of mesenchymal marker genes, vimentin and Snai2. The miR-21 target genes PDCD4 and SPRY2 were upregulated in cells transduced with miR-21gRNAs compared to controls. Our study indicates that lentiviral CRISPR/Cas9-mediated miRNA gene editing is an effective approach to address miRNA function, and disruption of miR-21 inhibits EMT in ovarian cancer cells. PMID:28123598

  13. A dystrophic muscle broadens the contribution and activation of immune cells reacting to rAAV gene transfer.

    PubMed

    Ferrand, M; Galy, A; Boisgerault, F

    2014-09-01

    Recombinant adeno-associated viral vectors (rAAVs) are used for therapeutic gene transfer in skeletal muscle, but it is unclear if immune reactivity to gene transfer and persistence of transgene are affected by pathologic conditions such as muscular dystrophy. Thus, we compared dystrophic mice devoid of α-sarcoglycan with healthy mice to characterize immune cell activation and cellular populations contributing to the loss of gene-modified myofibers. Following rAAV2/1 delivery of an immunogenic α-sarcoglycan reporter transgene in the muscle, both strains developed strong CD4 and CD8 T-cell-mediated immune responses in lymphoid organs associated with muscle CD3+ T and CD11b+ mononuclear cell infiltrates. Selective cell subset depletion models revealed that CD4+ T cells were essential for transgene rejection in both healthy and pathologic mice, but macrophages and CD8+ T cells additionally contributed as effector cells of transgene rejection only in dystrophic mice. Vectors restricting transgene expression in antigen-presenting cells showed that endogenous presentation of transgene products was the sole mechanism responsible for T-cell priming in normal mice, whereas additional and protracted antigenic presentation occurred in dystrophic animals, leading to secondary CD4+ T-cell activation and failure to maintain transgene expression. Therefore, the dystrophic environment diversifies cellular immune response mechanisms induced by gene transfer, with a negative outcome.

  14. Effects of vector backbone and pseudotype on lentiviral vector-mediated gene transfer: studies in infant ADA-deficient mice and rhesus monkeys.

    PubMed

    Carbonaro Sarracino, Denise; Tarantal, Alice F; Lee, C Chang I; Martinez, Michele; Jin, Xiangyang; Wang, Xiaoyan; Hardee, Cinnamon L; Geiger, Sabine; Kahl, Christoph A; Kohn, Donald B

    2014-10-01

    Systemic delivery of a lentiviral vector carrying a therapeutic gene represents a new treatment for monogenic disease. Previously, we have shown that transfer of the adenosine deaminase (ADA) cDNA in vivo rescues the lethal phenotype and reconstitutes immune function in ADA-deficient mice. In order to translate this approach to ADA-deficient severe combined immune deficiency patients, neonatal ADA-deficient mice and newborn rhesus monkeys were treated with species-matched and mismatched vectors and pseudotypes. We compared gene delivery by the HIV-1-based vector to murine γ-retroviral vectors pseudotyped with vesicular stomatitis virus-glycoprotein or murine retroviral envelopes in ADA-deficient mice. The vesicular stomatitis virus-glycoprotein pseudotyped lentiviral vectors had the highest titer and resulted in the highest vector copy number in multiple tissues, particularly liver and lung. In monkeys, HIV-1 or simian immunodeficiency virus vectors resulted in similar biodistribution in most tissues including bone marrow, spleen, liver, and lung. Simian immunodeficiency virus pseudotyped with the gibbon ape leukemia virus envelope produced 10- to 30-fold lower titers than the vesicular stomatitis virus-glycoprotein pseudotype, but had a similar tissue biodistribution and similar copy number in blood cells. The relative copy numbers achieved in mice and monkeys were similar when adjusted to the administered dose per kg. These results suggest that this approach can be scaled-up to clinical levels for treatment of ADA-deficient severe combined immune deficiency subjects with suboptimal hematopoietic stem cell transplantation options.

  15. Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery.

    PubMed

    Hoshijima, Masahiko; Ikeda, Yasuhiro; Iwanaga, Yoshitaka; Minamisawa, Susumu; Date, Moto-o; Gu, Yusu; Iwatate, Mitsuo; Li, Manxiang; Wang, Lili; Wilson, James M; Wang, Yibin; Ross, John; Chien, Kenneth R

    2002-08-01

    The feasibility of gene therapy for cardiomyopathy, heart failure and other chronic cardiac muscle diseases is so far unproven. Here, we developed an in vivo recombinant adeno-associated virus (rAAV) transcoronary delivery system that allows stable, high efficiency and relatively cardiac-selective gene expression. We used rAAV to express a pseudophosphorylated mutant of human phospholamban (PLN), a key regulator of cardiac sarcoplasmic reticulum (SR) Ca(2+) cycling in BIO14.6 cardiomyopathic hamsters. The rAAV/S16EPLN treatment enhanced myocardial SR Ca(2+) uptake and suppressed progressive impairment of left ventricular (LV) systolic function and contractility for 28-30 weeks, thereby protecting cardiac myocytes from cytopathic plasma-membrane disruption. Low LV systolic pressure and deterioration in LV relaxation were also largely prevented by rAAV/S16EPLN treatment. Thus, transcoronary gene transfer of S16EPLN via rAAV vector is a potential therapy for progressive dilated cardiomyopathy and associated heart failure.

  16. Long-term gene transfer to mouse fetuses with recombinant adenovirus and adeno-associated virus (AAV) vectors.

    PubMed

    Mitchell, M; Jerebtsova, M; Batshaw, M L; Newman, K; Ye, X

    2000-12-01

    We have developed a micro-injection technique to deliver recombinant adenovirus and AAV to mouse fetuses at day 15 after conception. Several routes of delivery, including injections to the amniotic fluid, the front limb, the placenta, the liver, and the retro-orbital venus plexus, were tested using an E1-deleted recombinant adenovirus (Ad.CBlacZ) or a recombinant adeno-associated virus (AAV.CMVlacZ) carrying a beta-galactosidase (lacZ) gene. Injection of Ad.CBlacZ into the amniotic cavity led to transgene expression in the skin and in the digestive tract of the fetuses. Injection of Ad.CBlacZ in the front limb resulted in LacZ expression in all major muscle groups around the injection site and at low levels in the liver. The other three routes of delivery, ie intra-placental, intra-hepatic and retro-orbital injections of Ad.CBlacZ, all led to lacZ expression predominantly in the liver. Further studies revealed a maximal tolerant dose (defined as the highest viral dose with < or =20% mortality in the injected fetuses) of 1 x 10(9) particles per fetus for intra- hepatic injections, 3 x 10(9) particles per fetus for intra-placental injection, 1 x 1010 particles per fetus for retro-orbital and intra-amniotic injections, and 2 x 10(10) particle per fetus for intra-muscular injection. The adenovirus-mediated lacZ expression in liver and muscle persisted for at least 6 weeks. Intra-muscular injection of AAV.CMVlacZ also resulted in lacZ expression in the muscle up to 3 months after birth with no indication of cellular immune response at the injection site. Taken together, our results demonstrated that prolonged transgene expression can be achieved by in utero gene transfer using either adenoviral or AAV vectors. The distribution of virus-mediated gene transfer appeared to determined mostly by the route of viral administration.

  17. In search of proof-of-concept: gene therapy for glycogen storage disease type Ia.

    PubMed

    Koeberl, Dwight D

    2012-07-01

    The emergence of life threatening long-term complications in glycogen storage disease type Ia (GSD-Ia) has emphasized the need for new therapies, such as gene therapy, which could achieve biochemical correction of glucose-6-phosphatase deficiency and reverse clinical involvement. We have developed gene therapy with a novel adeno-associated virus (AAV) vector that: 1) prevented mortality and corrected glycogen storage in the liver, 2) corrected hypoglycemia during fasting, and 3) achieved efficacy with a low number of vector particles in G6Pase-deficient mice and dogs. However, the gradual loss of transgene expression from episomal AAV vector genomes eventually necessitated the administration of a different pseudotype of the AAV vector to sustain dogs with GSD-Ia. Further preclinical development of AAV vector-mediated gene therapy is therefore warranted in GSD-Ia.

  18. Intrastriatal gene delivery of GDNF persistently attenuates methamphetamine self-administration and relapse in mice.

    PubMed

    Yan, Yijin; Miyamoto, Yoshiaki; Nitta, Atsumi; Muramatsu, Shin-Ichi; Ozawa, Keiya; Yamada, Kiyofumi; Nabeshima, Toshitaka

    2013-08-01

    Relapse of drug abuse after abstinence is a major challenge to the treatment of addicts. In our well-established mouse models of methamphetamine (Meth) self-administration and reinstatement, bilateral microinjection of adeno-associated virus vectors expressing GDNF (AAV-Gdnf) into the striatum significantly reduced Meth self-administration, without affecting locomotor activity. Moreover, the intrastriatal AAV-Gdnf attenuated cue-induced reinstatement of Meth-seeking behaviour in a sustainable manner. In addition, this manipulation showed that Meth-primed reinstatement of Meth-seeking behaviour was reduced. These findings suggest that the AAV vector-mediated Gdnf gene transfer into the striatum is an effective and sustainable approach to attenuate Meth self-administration and Meth-associated cue-induced relapsing behaviour and that the AAV-mediated Gdnf gene transfer in the brain may be a valuable gene therapy against drug dependence and protracted relapse in clinical settings.

  19. Unique Roles of TLR9- and MyD88-Dependent and -Independent Pathways in Adaptive Immune Responses to AAV-Mediated Gene Transfer.

    PubMed

    Rogers, Geoffrey L; Suzuki, Masataka; Zolotukhin, Irene; Markusic, David M; Morel, Laurence M; Lee, Brendan; Ertl, Hildegund C J; Herzog, Roland W

    2015-01-01

    The immune system represents a significant barrier to successful gene therapy with adeno-associated viral (AAV) vectors. In particular, adaptive immune responses to the viral capsid or the transgene product are of concern. The sensing of AAV by toll-like receptors (TLRs) TLR2 and TLR9 has been suggested to play a role in innate immunity to the virus and may also shape subsequent adaptive immune responses. Here, we investigated the functions of TLR2, TLR9 and the downstream signaling adaptor MyD88 in antibody and CD8+ T-cell responses. Antibody formation against the transgene product occurred largely independently of TLR signaling following gene transfer with AAV1 or AAV2 vectors, whereas loss of signaling through the TLR9-MyD88 pathway substantially reduced CD8+ T-cell responses. In contrast, MyD88 (but neither of the TLRs) regulated antibody responses to capsid. B cell-intrinsic MyD88 was required for the formation of anti-capsid IgG2c independently of vector serotype or route of administration. However, MyD88(-/-) mice instead produced anti-capsid IgG1 that emerged with delayed kinetics but nonetheless completely prevented in vivo readministration. We conclude that there are distinct roles for TLR9 and MyD88 in promoting adaptive immune responses to AAV-mediated gene transfer and that there are redundant MyD88-dependent and MyD88-independent mechanisms that stimulate neutralizing antibody formation against AAV.

  20. TGF-β gene transfer and overexpression via rAAV vectors stimulates chondrogenic events in human bone marrow aspirates.

    PubMed

    Frisch, Janina; Rey-Rico, Ana; Venkatesan, Jagadeesh Kumar; Schmitt, Gertrud; Madry, Henning; Cucchiarini, Magali

    2016-03-01

    Genetic modification of marrow concentrates may provide convenient approaches to enhance the chondrogenic differentiation processes and improve the repair capacities in sites of cartilage defects following administration in the lesions. Here, we provided clinically adapted recombinant adeno-associated virus (rAAV) vectors to human bone marrow aspirates to promote the expression of the potent transforming growth factor beta (TGF-β) as a means to regulate the biological and chondrogenic activities in the samples in vitro. Successful TGF-β gene transfer and expression via rAAV was reached relative to control (lacZ) treatment (from 511.1 to 16.1 pg rhTGF-β/mg total proteins after 21 days), allowing to durably enhance the levels of cell proliferation, matrix synthesis, and chondrogenic differentiation. Strikingly, in the conditions applied here, application of the candidate TGF-β vector was also capable of reducing the hypertrophic and osteogenic differentiation processes in the aspirates, showing the potential benefits of using this particular vector to directly modify marrow concentrates to generate single-step, effective approaches that aim at improving articular cartilage repair in vivo.

  1. Adeno-Associated Virus (AAV) Mediated Dystrophin Gene Transfer Studies and Exon Skipping Strategies for Duchenne Muscular Dystrophy (DMD).

    PubMed

    Kawecka, Klaudia; Theodoulides, Michael; Hasoglu, Yalin; Jarmin, Susan; Kymalainen, Hanna; Le-Heron, Anita; Popplewell, Linda; Malerba, Alberto; Dickson, George; Athanasopoulos, Takis

    2015-01-01

    Duchenne muscular dystrophy (DMD), an X-linked inherited musclewasting disease primarily affecting young boys with prevalence of between1:3,500- 1:5,000, is a rare genetic disease caused by defects in the gene for dystrophin. Dystrophin protein is critical to the stability of myofibers in skeletal and cardiac muscle. There is currently no cure available to ameliorate DMD and/or its patho-physiology. A number of therapeutic strategies including molecular-based therapeutics that replace or correct the missing or nonfunctional dystrophin protein have been devised to correct the patho-physiological consequences induced by dystrophin absence. We will review the current in vivo experimentation status (including preclinical models and clinical trials) for two of these approaches, namely: 1) Adeno-associated virus (AAV) mediated (micro) dystrophin gene augmentation/ supplementation and 2) Antisense oligonucleotide (AON)-mediated exon skipping strategies.

  2. Gene therapy for retinitis pigmentosa and Leber congenital amaurosis caused by defects in AIPL1: effective rescue of mouse models of partial and complete Aipl1 deficiency using AAV2/2 and AAV2/8 vectors

    PubMed Central

    Tan, Mei Hong; Smith, Alexander J.; Pawlyk, Basil; Xu, Xiaoyun; Liu, Xiaoqing; Bainbridge, James B.; Basche, Mark; McIntosh, Jenny; Tran, Hoai Viet; Nathwani, Amit; Li, Tiansen; Ali, Robin R.

    2009-01-01

    Defects in the photoreceptor-specific gene encoding aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) are clinically heterogeneous and present as Leber Congenital Amaurosis, the severest form of early-onset retinal dystrophy and milder forms of retinal dystrophies such as juvenile retinitis pigmentosa and dominant cone-rod dystrophy. [Perrault, I., Rozet, J.M., Gerber, S., Ghazi, I., Leowski, C., Ducroq, D., Souied, E., Dufier, J.L., Munnich, A. and Kaplan, J. (1999) Leber congenital amaurosis. Mol. Genet. Metab., 68, 200–208.] Although not yet fully elucidated, AIPL1 is likely to function as a specialized chaperone for rod phosphodiesterase (PDE). We evaluate whether AAV-mediated gene replacement therapy is able to improve photoreceptor function and survival in retinal degeneration associated with AIPL1 defects. We used two mouse models of AIPL1 deficiency simulating three different rates of photoreceptor degeneration. The Aipl1 hypomorphic (h/h) mouse has reduced Aipl1 levels and a relatively slow degeneration. Under light acceleration, the rate of degeneration in the Aipl1 h/h mouse is increased by 2–3-fold. The Aipl1−/− mouse has no functional Aipl1 and has a very rapid retinal degeneration. To treat the different rates of degeneration, two pseudotypes of recombinant adeno-associated virus (AAV) exhibiting different transduction kinetics are used for gene transfer. We demonstrate restoration of cellular function and preservation of photoreceptor cells and retinal function in Aipl1 h/h mice following gene replacement therapy using an AAV2/2 vector and in the light accelerated Aipl1 h/h model and Aipl1−/− mice using an AAV2/8 vector. We have thus established the potential of gene replacement therapy in varying rates of degeneration that reflect the clinical spectrum of disease. This is the first gene replacement study to report long-term rescue of a photoreceptor-specific defect and to demonstrate effective rescue of a rapid photoreceptor

  3. Evaluation of AAV-mediated Gene Therapy for Central Nervous System Disease in Canine Mucopolysaccharidosis VII.

    PubMed

    Gurda, Brittney L; De Guilhem De Lataillade, Adrien; Bell, Peter; Zhu, Yanqing; Yu, Hongwei; Wang, Ping; Bagel, Jessica; Vite, Charles H; Sikora, Tracey; Hinderer, Christian; Calcedo, Roberto; Yox, Alexander D; Steet, Richard A; Ruane, Therese; O'Donnell, Patricia; Gao, Guangping; Wilson, James M; Casal, Margret; Ponder, Katherine P; Haskins, Mark E

    2016-02-01

    Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disease arising from mutations in β-d-glucuronidase (GUSB), which results in glycosaminoglycan (GAG) accumulation and a variety of clinical manifestations including neurological disease. Herein, MPS VII dogs were injected intravenously (i.v.) and/or intrathecally (i.t.) via the cisterna magna with AAV9 or AAVrh10 vectors carrying the canine GUSB cDNA. Although i.v. injection alone at 3 days of age resulted in normal cerebrospinal fluid (CSF) GUSB activity, brain tissue homogenates had only ~1 to 6% normal GUSB activity and continued to have elevated GAG storage. In contrast, i.t. injection at 3 weeks of age resulted in CSF GUSB activity 44-fold normal while brain tissue homogenates had >100% normal GUSB activity and reduced GAGs compared with untreated dogs. Markers for secondary storage and inflammation were eliminated in i.t.-treated dogs and reduced in i.v.-treated dogs compared with untreated dogs. Given that i.t.-treated dogs expressed higher levels of GUSB in the CNS tissues compared to those treated i.v., we conclude that i.t. injection of AAV9 or AAVrh10 vectors is more effective than i.v. injection alone in the large animal model of MPS VII.

  4. AAV1.NT-3 gene therapy attenuates spontaneous autoimmune peripheral polyneuropathy.

    PubMed

    Yalvac, M E; Arnold, W D; Braganza, C; Chen, L; Mendell, J R; Sahenk, Z

    2016-01-01

    The spontaneous autoimmune peripheral polyneuropathy (SAPP) model in B7-2 knockout non-obese diabetic mice shares clinical and histological features with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Secondary axonal loss is prominent in the progressive phase of this neuropathy. Neurotrophin 3 (NT-3) is an important autocrine factor supporting Schwann cell survival and differentiation and stimulates neurite outgrowth and myelination. The anti-inflammatory and immunomodulatory effects of NT-3 raised considerations of potential efficacy in the SAPP model that could be applicable to CIDP. For this study, scAAV1.tMCK.NT-3 was delivered to the gastrocnemius muscle of 25-week-old SAPP mice. Measurable NT-3 levels were found in the serum at 7-week postgene delivery. The outcome measures included functional, electrophysiological and histological assessments. At week 32, NT-3-treated mice showed increased hind limb grip strength that correlated with improved compound muscle action potential amplitude. Myelinated fiber density was 1.9 times higher in the NT-3-treated group compared with controls and the number of demyelinated axons was significantly lower. The remyelinated nerve fiber population was significantly increased. These improved histopathological parameters from scAAV1.tMCK.NT-3 treatment occurred in the setting of reduced sciatic nerve inflammation. Collectively, these findings suggest a translational application to CIDP.

  5. AAV gene transfer delays disease onset in a TPP1-deficient canine model of the late infantile form of Batten disease

    PubMed Central

    Katz, Martin L.; Tecedor, Luis; Chen, Yonghong; Williamson, Baye G.; Lysenko, Elena; Wininger, Fred A.; Young, Whitney M.; Johnson, Gayle C.; Whiting, Rebecca E. H.; Coates, Joan R.; Davidson, Beverly L.

    2016-01-01

    The most common form of the childhood neurodegenerative disease late infantile neuronal ceroid lipofuscinosis (also called Batten disease) is caused by deficiency of the soluble lysosomal enzyme tripeptidyl peptidase 1 (TPP1) resulting from mutations in the TPP1 gene. We tested whether TPP1 gene transfer to the ependyma, the epithelial lining of the brain ventricular system, in TPP1-deficient dogs would be therapeutically beneficial. A one-time administration of recombinant adeno-associated virus (rAAV) expressing canine TPP1 (rAAV.caTPP1) resulted in high expression of TPP1 predominantly in ependymal cells and secretion of the enzyme into the cerebrospinal fluid leading to clinical benefit. Diseased dogs treated with rAAV.caTPP1 showed delays in onset of clinical signs and disease progression, protection from cognitive decline, and extension of life span. By immunostaining and enzyme assay, recombinant protein was evident throughout the brain and spinal cord, with correction of the neuropathology characteristic of the disease. This study in a naturally occurring canine model of TPP1 deficiency highlights the utility of AAV transduction of ventricular lining cells to accomplish stable secretion of recombinant protein for broad distribution in the central nervous system and therapeutic benefit. PMID:26560358

  6. Direct interaction of human serum proteins with AAV virions to enhance AAV transduction: immediate impact on clinical applications.

    PubMed

    Wang, M; Sun, J; Crosby, A; Woodard, K; Hirsch, M L; Samulski, R J; Li, C

    2017-01-01

    Recent hemophilia B clinical trials using adeno-associated virus (AAV) gene delivery have demonstrated much lower coagulation factor IX (FIX) production in patients compared with the high levels observed in animal models and AAV capsid-specific cytotoxic T lymphocyte response elicited at high doses of AAV vectors. These results emphasize the necessity to explore effective approaches for enhancement of AAV transduction. Initially, we found that incubation of all AAV vectors with human serum enhanced AAV transduction. Complementary analytical experiments demonstrated that human serum albumin (HSA) directly interacted with the AAV capsid and augmented AAV transduction. The enhanced transduction was observed with clinical grade HSA. Mechanistic studies suggest that HSA increases AAV binding to target cells, and that the interaction of HSA with AAV does not interfere with the AAV infection pathway. Importantly, HSA incubation during vector dialysis also increased transduction. Finally, HSA enhancement of AAV transduction in a model of hemophilia B displayed greater than a fivefold increase in vector-derived circulating FIX, which improved the bleeding phenotype correction. In conclusion, incubation of HSA with AAV vectors supports a universal augmentation of AAV transduction and, more importantly, this approach can be immediately transitioned to the clinic for the treatment of hemophilia and other diseases.

  7. The Rep78 gene product of adeno-associated virus (AAV) self-associates to form a hexameric complex in the presence of AAV ori sequences.

    PubMed Central

    Smith, R H; Spano, A J; Kotin, R M

    1997-01-01

    The Rep78 and Rep68 proteins of adeno-associated virus (AAV) are replication initiator proteins that bind the viral replicative-form origin of replication, nick the origin in a site- and strand-specific fashion, and mediate vectorial unwinding of the DNA duplex via an ATP-dependent helicase activity, thus initiating a strand displacement mechanism of viral DNA replication. Genetic and biochemical studies have identified Rep mutants that demonstrate a trans-dominant negative phenotype in vitro and in vivo, suggesting the possibility that multimerization of Rep is essential for certain replicative functions. In this study, we have investigated the ability of the largest of the Rep proteins, Rep78, to self-associate in vitro and in vivo. Self-association of Rep78 in vivo was demonstrated through the use of a mammalian two-hybrid system. Rep-Rep protein interaction was confirmed in vitro through coimmunoprecipitation experiments with a bacterially expressed maltose-binding protein-Rep78 fusion protein in combination with [35S]methionine-labeled Rep78 synthesized in a coupled in vitro transcription-translation system. Mapping studies with N- and C-terminal truncation mutant forms of Rep indicate that amino acid sequences required for maximal self-association occur between residues 164 and 484. Site-directed mutagenesis identified two essential motifs within this 321-amino-acid region: (i) a putative alpha-helix bearing a 3,4-hydrophobic heptad repeat reminiscent of those found in coiled-coil domains and (ii) a previously recognized nucleoside triphosphate-binding motif. Deletion of either of these regions from the full-length polypeptide resulted in severe impairment of Rep-Rep interaction. In addition, gel filtration chromatography and protein cross-linking experiments indicated that Rep78 forms a hexameric complex in the presence of AAV ori sequences. PMID:9151837

  8. Improvement of the mdx mouse dystrophic phenotype by systemic in utero AAV8 delivery of a minidystrophin gene.

    PubMed

    Koppanati, B M; Li, J; Reay, D P; Wang, B; Daood, M; Zheng, H; Xiao, X; Watchko, J F; Clemens, P R

    2010-11-01

    Duchenne muscular dystrophy (DMD) is a devastating primary muscle disease with pathological changes in skeletal muscle that are ongoing at the time of birth. Progressive deterioration in striated muscle function in affected individuals ultimately results in early death due to cardio-pulmonary failure. As affected individuals can be identified before birth by prenatal genetic testing for DMD, gene replacement treatment can be started in utero. This approach offers the possibility of preventing pathological changes in muscle that begin early in life. To test in utero gene transfer in the mdx mouse model of DMD, a minidystrophin gene driven by the human cytomegalovirus promoter was delivered systemically by an intraperitoneal injection to the fetus at embryonic day 16. Treated mdx mice studied at 9 weeks after birth showed widespread expression of recombinant dystrophin in skeletal muscle, restoration of the dystrophin-associated glycoprotein complex in dystrophin-expressing muscle fibers, improved muscle pathology, and functional benefit to the transduced diaphragm compared with untreated littermate controls. These results support the potential of the AAV8 vector to efficiently cross the blood vessel barrier to achieve systemic gene transfer to skeletal muscle in utero in a mouse model of muscular dystrophy, to significantly improve the dystrophic phenotype and to ameliorate the processes that lead to exhaustion of the skeletal muscle regenerative capacity.

  9. Efficiency and Safety of AAV-Mediated Gene Delivery of the Human ND4 Complex I Subunit in the Mouse Visual System

    PubMed Central

    Guy, John; Qi, Xiaoping; Koilkonda, Rajeshwari D.; Arguello, Tania; Chou, Tsung-Han; Ruggeri, Marco; Porciatti, Vittorio; Lewin, Alfred S.; Hauswirth, William W.

    2009-01-01

    PURPOSE To evaluate the efficiency and safety of AAV-mediated gene delivery of a normal human ND4 complex I subunit in the mouse visual system. METHODS A nuclear encoded human ND4 subunit fused to the ATPc mitochondrial targeting sequence and FLAG epitope were packaged in AAV2 capsids that were injected into the right eyes of mice. AAV-GFP was injected into the left eyes. One month later, pattern electroretinography (PERG), rate of ATP synthesis, gene expression, and incorporation of the human ND4 subunit into the murine complex I were evaluated. Quantitative analysis of ND4FLAG-injected eyes was assessed compared with green fluorescent protein (GFP)-injected eyes. RESULTS Rates of ATP synthesis and PERG amplitudes were similar in ND4FLAG- and GFP-inoculated eyes. PERG latency was shorter in eyes that received ND4FLAG. Immunoprecipitated murine complex I gave the expected 52-kDa band of processed human ND4FLAG. Confocal microscopy revealed perinuclear expression of FLAG colocalized with mitochondria-specific fluorescent dye. Transmission electron microscopy revealed FLAG immunogold within mitochondria. Compared with Thy1.2-positive retinal ganglion cells (RGCs), quantification was 38% for FLAG-positive RGCs and 65% for GFP-positive RGCs. Thy1.2 positive-RGC counts in AAV-ND4FLAG were similar to counts in control eyes injected with AAV-GFP. CONCLUSIONS Human ND4 was properly processed and imported into the mitochondria of RGCs and axons of mouse optic nerve after intravitreal injection. Although it had approximately two-thirds the efficiency of GFP, the expression of normal human ND4 in murine mitochondria did not induce the loss of RGCs, ATP synthesis, or PERG amplitude, suggesting that allotopic ND4 may be safe for the treatment of patients with Leber hereditary optic neuropathy. PMID:19387075

  10. Long-term Correction of Very Long-chain Acyl-CoA Dehydrogenase Deficiency in Mice Using AAV9 Gene Therapy

    PubMed Central

    Keeler, Allison M; Conlon, Thomas; Walter, Glenn; Zeng, Huadong; Shaffer, Scott A; Dungtao, Fu; Erger, Kirsten; Cossette, Travis; Tang, Qiushi; Mueller, Christian; Flotte, Terence R

    2012-01-01

    Very long-chain acyl-coA dehydrogenase (VLCAD) is the rate-limiting step in mitochondrial fatty acid oxidation. VLCAD-deficient mice and patients clinical symptoms stem from not only an energy deficiency but also long-chain metabolite accumulations. VLCAD-deficient mice were treated systemically with 1 × 1012 vector genomes of recombinant adeno-associated virus 9 (rAAV9)-VLCAD. Biochemical correction was observed in vector-treated mice beginning 2 weeks postinjection, as characterized by a significant drop in long-chain fatty acyl accumulates in whole blood after an overnight fast. Changes persisted through the termination point around 20 weeks postinjection. Magnetic resonance spectroscopy (MRS) and tandem mass spectrometry (MS/MS) revealed normalization of intramuscular lipids in treated animals. Correction was not observed in liver tissue extracts, but cardiac muscle extracts showed significant reduction of long-chain metabolites. Disease-specific phenotypes were characterized, including thermoregulation and maintenance of euglycemia after a fasting cold challenge. Internal body temperatures of untreated VLCAD−/− mice dropped below 20 °C and the mice became lethargic, requiring euthanasia. In contrast, all rAAV9-treated VLCAD−/− mice and the wild-type controls maintained body temperatures. rAAV9-treated VLCAD−/− mice maintained euglycemia, whereas untreated VLCAD−/− mice suffered hypoglycemia following a fasting cold challenge. These promising results suggest rAAV9 gene therapy as a potential treatment for VLCAD deficiency in humans. PMID:22395529

  11. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness.

    PubMed

    Acland, Gregory M; Aguirre, Gustavo D; Bennett, Jean; Aleman, Tomas S; Cideciyan, Artur V; Bennicelli, Jeannette; Dejneka, Nadine S; Pearce-Kelling, Susan E; Maguire, Albert M; Palczewski, Krzysztof; Hauswirth, William W; Jacobson, Samuel G

    2005-12-01

    The short- and long-term effects of gene therapy using AAV-mediated RPE65 transfer to canine retinal pigment epithelium were investigated in dogs affected with disease caused by RPE65 deficiency. Results with AAV 2/2, 2/1, and 2/5 vector pseudotypes, human or canine RPE65 cDNA, and constitutive or tissue-specific promoters were similar. Subretinally administered vectors restored retinal function in 23 of 26 eyes, but intravitreal injections consistently did not. Photoreceptoral and postreceptoral function in both rod and cone systems improved with therapy. In dogs followed electroretinographically for 3 years, responses remained stable. Biochemical analysis of retinal retinoids indicates that mutant dogs have no detectable 11-cis-retinal, but markedly elevated retinyl esters. Subretinal AAV-RPE65 treatment resulted in detectable 11-cis-retinal expression, limited to treated areas. RPE65 protein expression was limited to retinal pigment epithelium of treated areas. Subretinal AAV-RPE65 vector is well tolerated and does not elicit high antibody levels to the vector or the protein in ocular fluids or serum. In long-term studies, wild-type cDNA is expressed only in target cells. Successful, stable restoration of rod and cone photoreceptor function in these dogs has important implications for treatment of human patients affected with Leber congenital amaurosis caused by RPE65 mutations.

  12. Long-Term Restoration of Rod and Cone Vision by Single Dose rAAV-Mediated Gene Transfer to the Retina in a Canine Model of Childhood Blindness

    PubMed Central

    Acland, Gregory M.; Aguirre, Gustavo D.; Bennett, Jean; Aleman, Tomas S.; Cideciyan, Artur V.; Bennicelli, Jeannette; Dejneka, Nadine S.; Pearce-Kelling, Susan E.; Maguire, Albert M.; Palczewski, Krzysztof; Hauswirth, William W.; Jacobson, Samuel G.

    2010-01-01

    The short- and long-term effects of gene therapy using AAV-mediated RPE65 transfer to canine retinal pigment epithelium were investigated in dogs affected with disease caused by RPE65 deficiency. Results with AAV 2/2, 2/1, and 2/5 vector pseudotypes, human or canine RPE65 cDNA, and constitutive or tissue-specific promoters were similar. Subretinally administered vectors restored retinal function in 23 of 26 eyes, but intravitreal injections consistently did not. Photoreceptoral and postreceptoral function in both rod and cone systems improved with therapy. In dogs followed electroretinographically for 3 years, responses remained stable. Biochemical analysis of retinal retinoids indicates that mutant dogs have no detectable 11-cis-retinal, but markedly elevated retinyl esters. Subretinal AAV-RPE65 treatment resulted in detectable 11-cis-retinal expression, limited to treated areas. RPE65 protein expression was limited to retinal pigment epithelium of treated areas. Subretinal AAV-RPE65 vector is well tolerated and does not elicit high antibody levels to the vector or the protein in ocular fluids or serum. In long-term studies, wild-type cDNA is expressed only in target cells. Successful, stable restoration of rod and cone photoreceptor function in these dogs has important implications for treatment of human patients affected with Leber congenital amaurosis caused by RPE65 mutations. PMID:16226919

  13. Distinct immune responses to transgene products from rAAV1 and rAAV8 vectors.

    PubMed

    Lu, Yuanqing; Song, Sihong

    2009-10-06

    Recently developed serotypes of recombinant adeno-associated virus (rAAV) vectors have significantly enhanced the use of rAAV vectors for gene therapy. However, host immune responses to the transgene products from different serotypes remain uncharacterized. In the present study, we evaluated the differential immune responses to the transgene products from rAAV1 and rAAV8 vectors. In non-obese diabetic (NOD) mice, which have a hypersensitive immunity, rAAV serotype 1 vector (rAAV1-hAAT) induced high levels of both humoral and cellular responses, while rAAV8-hAAT did not. In vitro studies showed that rAAV1, but not rAAV8 vector transduced dendritic cells (DCs) efficiently. In vivo studies indicated that vector transduction of DCs was essential for the immune responses; while the presence of a transgene product (or foreign gene product produced by host cells) was not immunogenic. Intriguingly, preimmunization with rAAV8-hAAT vector or with serum of hAAT transgenic NOD mouse induced immune tolerance to rAAV1-hAAT injection. These results demonstrate the immunogenic differences of rAAV1 and rAAV8 and imply tremendous potential for these vectors in different applications, where an immune response to transgene is to be either elicited or avoided.

  14. AAV-mediated gene transfer of the obesity-associated gene Etv5 in rat midbrain does not affect energy balance or motivated behavior.

    PubMed

    Boender, Arjen J; Koning, Nivard A; van den Heuvel, José K; Luijendijk, Mieneke C M; van Rozen, Andrea J; la Fleur, Susanne E; Adan, Roger A H

    2014-01-01

    Several genome-wide association studies have implicated the transcription factor E-twenty- six version 5 (Etv5) in the regulation of body mass index. Further substantiating the role of Etv5 in feeding behavior are the findings that targeted disruption of Etv5 in mice leads to decreased body weight gain and that expression of Etv5 is decreased in the ventral tegmental area and substantia nigra pars compacta (VTA/SNpc) after food restriction. As Etv5 has been suggested to influence dopaminergic neurotransmission by driving the expression of genes that are responsible for the synthesis and release of dopamine, we investigated if expression levels of Etv5 are dependent on nutritional state and subsequently influence the expression levels of tyrosine hydroxylase. While it was shown that Etv5 expression in the VTA/SNpc increases after central administration of leptin and that Etv5 was able to drive expression of tyrosine hydroxylase in vitro, AAV-mediated gene transfer of Etv5 into the VTA/SNpc of rats did not alter expression of tyrosine hydroxylase in vivo. Moreover, AAV-mediated gene transfer of Etv5 in the VTA/SNpc did not affect measures of energy balance or performances in a progressive ratio schedule. Thus, these data do not support a role for increased expression of Etv5 in the VTA/SNpc in the regulation of feeding behavior.

  15. High Prevalence of Infectious Adeno-associated Virus (AAV) in Human Peripheral Blood Mononuclear Cells Indicative of T Lymphocytes as Sites of AAV Persistence.

    PubMed

    Hüser, Daniela; Khalid, Dina; Lutter, Timo; Hammer, Eva-Maria; Weger, Stefan; Heßler, Melanie; Kalus, Ulrich; Tauchmann, Yvonne; Hensel-Wiegel, Karin; Lassner, Dirk; Heilbronn, Regine

    2017-02-15

    Seroepidemiology shows that infections with adeno-associated virus (AAV) are widespread, but diverse AAV serotypes isolated from humans or nonhuman primates have so far not been proven to be causes of human disease. In view of the increasing success of AAV-derived vectors in human gene therapy, definition of the in vivo sites of wild-type AAV persistence and the clinical consequences of its reactivation is becoming increasingly urgent. Here, we identify the presumed cell type for AAV persistence in the human host by highly sensitive AAV PCRs developed for the full spectrum of human AAV serotypes. In genomic-DNA samples from leukocytes of 243 healthy blood donors, 34% were found to be AAV positive, predominantly AAV type 2 (AAV2) (77%), AAV5 (19%), and additional serotypes. Roughly 11% of the blood donors had mixed AAV infections. AAV prevalence was dramatically increased in immunosuppressed patients, 76% of whom were AAV positive. Of these, at least 45% displayed mixed infections. Follow-up of single blood donors over 2 years allowed repeated detection of the initial and/or additional AAV serotypes, suggestive of fluctuating, persistent infection. Leukocyte separation revealed that AAV resided in CD3(+) T lymphocytes, perceived as the putative in vivo site of AAV persistence. Moreover, infectious AAVs of various serotypes could be rescued and propagated from numerous samples. The high prevalence and broad spectrum of human AAVs in leukocytes closely follow AAV seroepidemiology. Immunosuppression obviously enhances AAV replication in parallel with activation of human cytomegalovirus (HCMV) and human herpesvirus 6 (HHV-6), reminiscent of herpesvirus-induced AAV activation.

  16. rAAV8-733-Mediated Gene Transfer of CHIP/Stub-1 Prevents Hippocampal Neuronal Death in Experimental Brain Ischemia.

    PubMed

    Cabral-Miranda, Felipe; Nicoloso-Simões, Elisa; Adão-Novaes, Juliana; Chiodo, Vince; Hauswirth, William W; Linden, Rafael; Chiarini, Luciana Barreto; Petrs-Silva, Hilda

    2017-02-01

    Brain ischemia is a major cause of adult disability and death, and it represents a worldwide health problem with significant economic burden for modern society. The identification of the molecular pathways activated after brain ischemia, together with efficient technologies of gene delivery to the CNS, may lead to novel treatments based on gene therapy. Recombinant adeno-associated virus (rAAV) is an effective platform for gene transfer to the CNS. Here, we used a serotype 8 rAAV bearing the Y733F mutation (rAAV8-733) to overexpress co-chaperone E3 ligase CHIP (also known as Stub-1) in rat hippocampal neurons, both in an oxygen and glucose deprivation model in vitro and in a four-vessel occlusion model of ischemia in vivo. We show that CHIP overexpression prevented neuronal degeneration in both cases and led to a decrease of both eIF2α (serine 51) and AKT (serine 473) phosphorylation, as well as reduced amounts of ubiquitinated proteins following hypoxia or ischemia. These data add to current knowledge of ischemia-related signaling in the brain and suggest that gene therapy based on the role of CHIP in proteostasis may provide a new venue for brain ischemia treatment.

  17. Enhanced efficacy of an AAV vector encoding chimeric, highly secreted acid alpha-glucosidase in glycogen storage disease type II.

    PubMed

    Sun, Baodong; Zhang, Haoyue; Benjamin, Daniel K; Brown, Talmage; Bird, Andrew; Young, Sarah P; McVie-Wylie, Alison; Chen, Y-T; Koeberl, Dwight D

    2006-12-01

    Glycogen storage disease type II (GSD-II; Pompe disease; MIM 232300) is an inherited muscular dystrophy caused by deficiency in the activity of the lysosomal enzyme acid alpha-glucosidase (GAA). We hypothesized that chimeric GAA containing an alternative signal peptide could increase the secretion of GAA from transduced cells and enhance the receptor-mediated uptake of GAA in striated muscle. The relative secretion of chimeric GAA from transfected 293 cells increased up to 26-fold. Receptor-mediated uptake of secreted, chimeric GAA corrected cultured GSD-II patient cells. High-level hGAA was sustained in the plasma of GSD-II mice for 24 weeks following administration of an AAV2/8 vector encoding chimeric GAA; furthermore, GAA activity was increased and glycogen content was significantly reduced in striated muscle and in the brain. Administration of only 1 x 10(10) vector particles increased GAA activity in the heart and diaphragm for >18 weeks, whereas 3 x 10(10) vector particles increased GAA activity and reduced glycogen content in the heart, diaphragm, and quadriceps. Furthermore, an AAV2/2 vector encoding chimeric GAA produced secreted hGAA for >12 weeks in the majority of treated GSD-II mice. Thus, chimeric, highly secreted GAA enhanced the efficacy of AAV vector-mediated gene therapy in GSD-II mice.

  18. Inducible scAAV2.GRE.MMP1 lowers IOP long-term in a large animal model for steroid-induced glaucoma gene therapy.

    PubMed

    Borrás, T; Buie, L K; Spiga, M G

    2016-05-01

    Current treatment of glaucoma relies on administration of daily drops or eye surgery. A gene therapy approach to treat steroid-induced glaucoma would bring a resolution to millions of people worldwide who depend on glucocorticoid therapy for a myriad of inflammatory disorders. Previously, we had characterized a short-term Adh.GRE.MMP1 gene vector for the production of steroid-induced MMP1 in the trabecular meshwork and tested reduction of elevated intraocular pressure (IOP) in a sheep model. Here we conducted a trial transferring the same transgene cassette to a clinically safe vector (scAAV2), and extended the therapeutic outcome to longer periods of times. No evidence of ocular and/or systemic toxicity was observed. Viral genome distributions showed potential reinducible vector DNAs in the trabecular meshwork (0.4 v.g. per cell) and negligible copies in six major internal organs (0.00002-0.005 v.g. per cell). Histological sections confirmed successful transduction of scAAV2.GFP to the trabecular meshwork. Optimization of the sheep steroid-induced hypertensive model revealed that topical ophthalmic drug difluprednate 0.05% (durezol) induced the highest IOP elevation in the shortest time. This is the first efficacy/toxicity study of a feasible gene therapy treatment of steroid-induced hypertension using clinically accepted self-complementary adeno-associated vectors (scAAV) vectors in a large animal model.

  19. Inducible scAAV2.GRE.MMP1 lowers IOP long-term in a large animal model for steroid-induced glaucoma gene therapy

    PubMed Central

    Borrás, Teresa; Buie, LaKisha K.; Spiga, Maria Grazia

    2016-01-01

    Current treatment of glaucoma relies on administration of daily drops or eye surgery. A gene therapy approach to treat steroid-induced glaucoma would bring a resolution to millions of people worldwide that depend on glucocorticoid therapy for a myriad of inflammatory disorders. Previously, we had characterized a short-term Adh.GRE.MMP1 gene vector for the production of steroid-induced MMP1 in the trabecular meshwork and tested reduction of elevated intraocular pressure (IOP) in a sheep model. Here we conducted a trial transferring the same transgene cassette to a clinically safe vector (scAAV2), and extended the therapeutic outcome to longer periods of times. No evidence of ocular and/or systemic toxicity was observed. Viral genome distributions showed potential re-inducible vector DNAs in the trabecular meshwork (0.4 vg/cell) and negligible copies in six major internal organs (0.00002-0.005 vg/cell). Histological sections confirmed successful transduction of scAAV2.GFP to the trabecular meshwork. Optimization of the sheep steroid–induced hypertensive model revealed that topical ophthalmic drug difluprednate 0.05% (durezol) induced the highest IOP elevation in the shortest time. This is the first efficacy/toxicity study of a feasible gene therapy treatment of steroid-induced hypertension using clinically accepted scAAV vectors in a large animal model. PMID:26855269

  20. Gene transfer to the CNS is efficacious in immune-primed mice harboring physiologically relevant titers of anti-AAV antibodies.

    PubMed

    Treleaven, Christopher M; Tamsett, Thomas J; Bu, Jie; Fidler, Jonathan A; Sardi, S Pablo; Hurlbut, Gregory D; Woodworth, Lisa A; Cheng, Seng H; Passini, Marco A; Shihabuddin, Lamya S; Dodge, James C

    2012-09-01

    Central nervous system (CNS)-directed gene therapy with recombinant adeno-associated virus (AAV) vectors has been used effectively to slow disease course in mouse models of several neurodegenerative diseases. However, these vectors were typically tested in mice without prior exposure to the virus, an immunological scenario unlikely to be duplicated in human patients. Here, we examined the impact of pre-existing immunity on AAV-mediated gene delivery to the CNS of normal and diseased mice. Antibody levels in brain tissue were determined to be 0.6% of the levels found in systemic circulation. As expected, transgene expression in brains of mice with relatively high serum antibody titers was reduced by 59-95%. However, transduction activity was unaffected in mice that harbored more clinically relevant antibody levels. Moreover, we also showed that markers of neuroinflammation (GFAP, Iba1, and CD3) and histopathology (hematoxylin and eosin (H&E)) were not enhanced in immune-primed mice (regardless of pre-existing antibody levels). Importantly, we also demonstrated in a mouse model of Niemann Pick Type A (NPA) disease that pre-existing immunity did not preclude either gene transfer to the CNS or alleviation of disease-associated neuropathology. These findings support the continued development of AAV-based therapies for the treatment of neurological disorders.

  1. Characterization of naturally-occurring humoral immunity to AAV in sheep.

    PubMed

    Tellez, Joseph; Van Vliet, Kim; Tseng, Yu-Shan; Finn, Jonathan D; Tschernia, Nick; Almeida-Porada, Graça; Arruda, Valder R; Agbandje-McKenna, Mavis; Porada, Christopher D

    2013-01-01

    AAV vectors have shown great promise for clinical gene therapy (GT), but pre-existing human immunity against the AAV capsid often limits transduction. Thus, testing promising AAV-based GT approaches in an animal model with similar pre-existing immunity could better predict clinical outcome. Sheep have long been used for basic biological and preclinical studies. Moreover, we have re-established a line of sheep with severe hemophilia A (HA). Given the impetus to use AAV-based GT to treat hemophilia, we characterized the pre-existing ovine humoral immunity to AAV. ELISA revealed naturally-occurring antibodies to AAV1, AAV2, AAV5, AAV6, AAV8, and AAV9. For AAV2, AAV8, and AAV9 these inhibit transduction in a luciferase-based neutralization assay. Epitope mapping identified peptides that were common to the capsids of all AAV serotypes tested (AAV2, AAV5, AAV8 and AAV9), with each animal harboring antibodies to unique and common capsid epitopes. Mapping using X-ray crystallographic AAV capsid structures demonstrated that these antibodies recognized both surface epitopes and epitopes located within regions of the capsid that are internal or buried in the capsid structure. These results suggest that sheep harbor endogenous AAV, which induces immunity to both intact capsid and to capsid epitopes presented following proteolysis during the course of infection. In conclusion, their clinically relevant physiology and the presence of naturally-occurring antibodies to multiple AAV serotypes collectively make sheep a unique model in which to study GT for HA, and other diseases, and develop strategies to circumvent the clinically important barrier of pre-existing AAV immunity.

  2. Characterization of Naturally-Occurring Humoral Immunity to AAV in Sheep

    PubMed Central

    Tellez, Joseph; Van Vliet, Kim; Tseng, Yu-Shan; Finn, Jonathan D.; Tschernia, Nick; Almeida-Porada, Graça; Arruda, Valder R.; Agbandje-McKenna, Mavis; Porada, Christopher D.

    2013-01-01

    AAV vectors have shown great promise for clinical gene therapy (GT), but pre-existing human immunity against the AAV capsid often limits transduction. Thus, testing promising AAV-based GT approaches in an animal model with similar pre-existing immunity could better predict clinical outcome. Sheep have long been used for basic biological and preclinical studies. Moreover, we have re-established a line of sheep with severe hemophilia A (HA). Given the impetus to use AAV-based GT to treat hemophilia, we characterized the pre-existing ovine humoral immunity to AAV. ELISA revealed naturally-occurring antibodies to AAV1, AAV2, AAV5, AAV6, AAV8, and AAV9. For AAV2, AAV8, and AAV9 these inhibit transduction in a luciferase-based neutralization assay. Epitope mapping identified peptides that were common to the capsids of all AAV serotypes tested (AAV2, AAV5, AAV8 and AAV9), with each animal harboring antibodies to unique and common capsid epitopes. Mapping using X-ray crystallographic AAV capsid structures demonstrated that these antibodies recognized both surface epitopes and epitopes located within regions of the capsid that are internal or buried in the capsid structure. These results suggest that sheep harbor endogenous AAV, which induces immunity to both intact capsid and to capsid epitopes presented following proteolysis during the course of infection. In conclusion, their clinically relevant physiology and the presence of naturally-occurring antibodies to multiple AAV serotypes collectively make sheep a unique model in which to study GT for HA, and other diseases, and develop strategies to circumvent the clinically important barrier of pre-existing AAV immunity. PMID:24086458

  3. Codon and mRNA sequence optimization of microdystrophin transgenes improves expression and physiological outcome in dystrophic mdx mice following AAV2/8 gene transfer.

    PubMed

    Foster, Helen; Sharp, Paul S; Athanasopoulos, Takis; Trollet, Capucine; Graham, Ian R; Foster, Keith; Wells, Dominic J; Dickson, George

    2008-11-01

    Duchenne muscular dystrophy is a fatal muscle-wasting disorder. Lack of dystrophin compromises the integrity of the sarcolemma and results in myofibers that are highly prone to contraction-induced injury. Recombinant adeno-associated virus (rAAV)-mediated dystrophin gene transfer strategies to muscle for the treatment of Duchenne muscular dystrophy (DMD) have been limited by the small cloning capacity of rAAV vectors and high titers necessary to achieve efficient systemic gene transfer. In this study, we assess the impact of codon optimization on microdystrophin (DeltaAB/R3-R18/DeltaCT) expression and function in the mdx mouse and compare the function of two different configurations of codon-optimized microdystrophin genes (DeltaAB/R3-R18/DeltaCT and DeltaR4-R23/DeltaCT) under the control of a muscle-restrictive promoter (Spc5-12). Codon optimization of microdystrophin significantly increases levels of microdystrophin mRNA and protein after intramuscular and systemic administration of plasmid DNA or rAAV2/8. Physiological assessment demonstrates that codon optimization of DeltaAB/R3-R18/DeltaCT results in significant improvement in specific force, but does not improve resistance to eccentric contractions compared with noncodon-optimized DeltaAB/R3-R18/DeltaCT. However, codon-optimized microdystrophin DeltaR4-R23/DeltaCT completely restored specific force generation and provided substantial protection from contraction-induced injury. These results demonstrate that codon optimization of microdystrophin under the control of a muscle-specific promoter can significantly improve expression levels such that reduced titers of rAAV vectors will be required for efficient systemic administration.

  4. AAV-8 is more efficient than AAV-9 in transducing neonatal dog heart.

    PubMed

    Pan, Xiufang; Yue, Yongping; Zhang, Keqing; Hakim, Chady H; Kodippili, Kasun; McDonald, Thomas; Duan, Dongsheng

    2015-04-01

    Adeno-associated virus serotype-8 and 9 (AAV-8 and 9) are the leading candidate vectors to test bodywide neonatal muscle gene therapy in large mammals. We have previously shown that systemic injection of 2-2.5×10(14) viral genome (vg) particles/kg of AAV-9 resulted in widespread skeletal muscle gene transfer in newborn dogs. However, nominal transduction was observed in the heart. In contrast, robust expression was achieved in both skeletal muscle and heart in neonatal dogs with 7.14-9.06×10(14) vg particles/kg of AAV-8. To determine whether superior cardiac transduction of AAV-8 is because of the higher vector dose, we delivered 6.14×10(14) and 9.65×10(14) vg particles/kg of AAV-9 to newborn puppies via the jugular vein. Transduction was examined 2.5 months later. Consistent with our previous reports, we observed robust bodywide transduction in skeletal muscle. However, increased AAV dose only moderately improved heart transduction. It never reached the level achieved by AAV-8. Our results suggest that differential cardiac transduction by AAV-8 and AAV-9 is likely because of the intrinsic property of the viral capsid rather than the vector dose.

  5. Reversal of blindness in animal models of leber congenital amaurosis using optimized AAV2-mediated gene transfer.

    PubMed

    Bennicelli, Jeannette; Wright, John Fraser; Komaromy, Andras; Jacobs, Jonathan B; Hauck, Bernd; Zelenaia, Olga; Mingozzi, Federico; Hui, Daniel; Chung, Daniel; Rex, Tonia S; Wei, Zhangyong; Qu, Guang; Zhou, Shangzhen; Zeiss, Caroline; Arruda, Valder R; Acland, Gregory M; Dell'Osso, Lou F; High, Katherine A; Maguire, Albert M; Bennett, Jean

    2008-03-01

    We evaluated the safety and efficacy of an optimized adeno-associated virus (AAV; AAV2.RPE65) in animal models of the RPE65 form of Leber congenital amaurosis (LCA). Protein expression was optimized by addition of a modified Kozak sequence at the translational start site of hRPE65. Modifications in AAV production and delivery included use of a long stuffer sequence to prevent reverse packaging from the AAV inverted-terminal repeats, and co-injection with a surfactant. The latter allows consistent and predictable delivery of a given dose of vector. We observed improved electroretinograms (ERGs) and visual acuity in Rpe65 mutant mice. This has not been reported previously using AAV2 vectors. Subretinal delivery of 8.25 x 10(10) vector genomes in affected dogs was well tolerated both locally and systemically, and treated animals showed improved visual behavior and pupillary responses, and reduced nystagmus within 2 weeks of injection. ERG responses confirmed the reversal of visual deficit. Immunohistochemistry confirmed transduction of retinal pigment epithelium cells and there was minimal toxicity to the retina as judged by histopathologic analysis. The data demonstrate that AAV2.RPE65 delivers the RPE65 transgene efficiently and quickly to the appropriate target cells in vivo in animal models. This vector holds great promise for treatment of LCA due to RPE65 mutations.

  6. Reversal of Blindness in Animal Models of Leber Congenital Amaurosis Using Optimized AAV2-mediated Gene Transfer

    PubMed Central

    Bennicelli, Jeannette; Wright, John Fraser; Komaromy, Andras; Jacobs, Jonathan B; Hauck, Bernd; Zelenaia, Olga; Mingozzi, Federico; Hui, Daniel; Chung, Daniel; Rex, Tonia S; Wei, Zhangyong; Qu, Guang; Zhou, Shangzhen; Zeiss, Caroline; Arruda, Valder R; Acland, Gregory M; Dell’Osso, Lou F; High, Katherine A; Maguire, Albert M; Bennett, Jean

    2010-01-01

    We evaluated the safety and efficacy of an optimized adeno-associated virus (AAV; AAV2.RPE65) in animal models of the RPE65 form of Leber congenital amaurosis (LCA). Protein expression was optimized by addition of a modified Kozak sequence at the translational start site of hRPE65. Modifications in AAV production and delivery included use of a long stuffer sequence to prevent reverse packaging from the AAV inverted-terminal repeats, and co-injection with a surfactant. The latter allows consistent and predictable delivery of a given dose of vector. We observed improved electroretinograms (ERGs) and visual acuity in Rpe65 mutant mice. This has not been reported previously using AAV2 vectors. Subretinal delivery of 8.25 × 1010 vector genomes in affected dogs was well tolerated both locally and systemically, and treated animals showed improved visual behavior and pupillary responses, and reduced nystagmus within 2 weeks of injection. ERG responses confirmed the reversal of visual deficit. Immunohistochemistry confirmed transduction of retinal pigment epithelium cells and there was minimal toxicity to the retina as judged by histopathologic analysis. The data demonstrate that AAV2.RPE65 delivers the RPE65 transgene efficiently and quickly to the appropriate target cells in vivo in animal models. This vector holds great promise for treatment of LCA due to RPE65 mutations. PMID:18209734

  7. OneBac 2.0: Sf9 Cell Lines for Production of AAV1, AAV2, and AAV8 Vectors with Minimal Encapsidation of Foreign DNA.

    PubMed

    Mietzsch, Mario; Hering, Henrik; Hammer, Eva-Maria; Agbandje-McKenna, Mavis; Zolotukhin, Sergei; Heilbronn, Regine

    2017-02-01

    Recombinant adeno-associated viral (rAAV) vectors for human gene therapy require efficient and economical production methods to keep pace with the rapidly increasing clinical demand. In addition, the manufacturing process must ensure high vector quality and biological safety. The OneBac system offers easily scalable rAAV vector production in insect Sf9-derived AAV rep/cap-expressing producer cell lines infected with a single baculovirus that carries the rAAV backbone. For most AAV serotypes high burst sizes per cell were achieved, combined with high infectivity rates. OneBac 2.0 represents a 2-fold advancement: First, enhanced VP1 proportions in AAV5 capsids lead to vastly increased per-particle infectivity rates. Second, collateral packaging of foreign DNA is suppressed by removal of the Rep-binding element (RBE). In this study we show that this advancement of AAV5 packaging can be translated to OneBac 2.0-derived packaging systems for alternative AAV serotypes. By removal of the RBE, collateral packaging of nonvector DNA was drastically reduced in all newly tested serotypes (AAV1, AAV2, and AAV8). However, the splicing-based strategy to enhance VP1 expression in order to increase AAV5 infectivity hardly improved infectivity rates of AAV-1, -2, or -8 compared with the original OneBac cell lines. Our results emphasize that OneBac 2.0 represents an advancement for scalable, high-titer production of various AAV serotypes, leading to AAV particles with minimal packaging of foreign DNA.

  8. Safety and efficacy of AAV-mediated calpain 3 gene transfer in a mouse model of limb-girdle muscular dystrophy type 2A.

    PubMed

    Bartoli, Marc; Roudaut, Carinne; Martin, Samia; Fougerousse, Françoise; Suel, Laurence; Poupiot, Jérôme; Gicquel, Evelyne; Noulet, Fanny; Danos, Olivier; Richard, Isabelle

    2006-02-01

    Calpainopathy (limb-girdle muscular dystrophy type 2A, LGMD2A) is a recessive muscular disorder caused by deficiency in the calcium-dependent cysteine protease calpain 3. To date, no treatment exists for this disease. We evaluated the potential of recombinant adeno-associated virus (rAAV) vectors for gene therapy in a murine model for LGMD2A. To drive the expression of calpain 3, we used rAAV2/1 pseudotyped vectors and muscle-specific promoters to avoid calpain 3 cell toxicity. We report efficient and stable transgene expression in muscle with restoration of the proteolytic activity and without evident toxicity. In addition, calpain 3 was correctly targeted to the sarcomere. Moreover, its presence resulted in improvement of the histological features and in therapeutic efficacy at the physiological levels, including correction of atrophy and full rescue of the contractile force deficits. Our results establish the feasibility of AAV-mediated calpain 3 gene transfer as a therapeutic approach.

  9. Targeted gene transfer into ependymal cells through intraventricular injection of AAV1 vector and long-term enzyme replacement via the CSF.

    PubMed

    Yamazaki, Yoshiyuki; Hirai, Yukihiko; Miyake, Koichi; Shimada, Takashi

    2014-07-01

    Enzyme replacement via the cerebrospinal fluid (CSF) has been shown to ameliorate neurological symptoms in model animals with neuropathic metabolic disorders. Gene therapy via the CSF offers a means to achieve a long-term sustainable supply of therapeutic proteins within the central nervous system (CNS) by setting up a continuous source of transgenic products. In the present study, a serotype 1 adeno-associated virus (AAV1) vector was injected into a lateral cerebral ventricle in adult mice to transduce the gene encoding human lysosomal enzyme arylsulfatase A (hASA) into the cells of the CNS. Widespread transduction and stable expression of hASA in the choroid plexus and ependymal cells was observed throughout the ventricles for more than 1 year after vector injection. Although humoral immunity to hASA developed after 6 weeks, which diminished the hASA levels detected in CSF from AAV1-injected mice, hASA levels in CSF were maintained for at least 12 weeks when the mice were tolerized to hASA prior of vector injection. Our results suggest that the cells lining the ventricles could potentially serve as a biological reservoir for long-term continuous secretion of lysosomal enzymes into the CSF following intracerebroventricular injection of an AAV1 vector.

  10. Induction and prevention of severe hyperammonemia in the spfash mouse model of ornithine transcarbamylase deficiency using shRNA and rAAV-mediated gene delivery.

    PubMed

    Cunningham, Sharon C; Kok, Cindy Y; Dane, Allison P; Carpenter, Kevin; Kizana, Eddy; Kuchel, Philip W; Alexander, Ian E

    2011-05-01

    Urea cycle defects presenting early in life with hyperammonemia remain difficult to treat and commonly necessitate liver transplantation. Gene therapy has the potential to prevent hyperammonemic episodes while awaiting liver transplantation, and possibly also to avert the need for transplantation altogether. Ornithine transcarbamylase (OTC) deficiency, the most prevalent urea cycle disorder, provides an ideal model for the development of liver-targeted gene therapy. While we and others have successfully cured the spf(ash) mouse model of OTC deficiency using adeno-associated virus (AAV) vectors, a major limitation of this model is the presence of residual OTC enzymatic activity which confers a mild phenotype without clinically significant hyperammonemia. To better model severe disease we devised a strategy involving AAV2/8-mediated delivery of a short hairpin RNA (shRNA) to specifically knockdown residual endogenous OTC messenger RNA (mRNA). This strategy proved highly successful with vector-treated mice developing severe hyperammonemia and associated neurological impairment. Using this system, we showed that the dose of an AAV rescue construct encoding the murine OTC (mOTC) cDNA required to prevent hyperammonemia is fivefold lower than that required to control orotic aciduria. This result is favorable for clinical translation as it indicates that the threshold for therapeutic benefit is likely to be lower than indicated by earlier studies.

  11. Functional correction of neurological and somatic disorders at later stages of disease in MPS IIIA mice by systemic scAAV9-hSGSH gene delivery

    PubMed Central

    Fu, Haiyan; Cataldi, Marcela P; Ware, Tierra A; Zaraspe, Kimberly; Meadows, Aaron S; Murrey, Darren A; McCarty, Douglas M

    2016-01-01

    The reversibility of neuropathic lysosomal storage diseases, including MPS IIIA, is a major goal in therapeutic development, due to typically late diagnoses and a large population of untreated patients. We used self-complementary adeno-associated virus (scAAV) serotype 9 vector expressing human N-sulfoglucosamine sulfohydrolase (SGSH) to test the efficacy of treatment at later stages of the disease. We treated MPS IIIA mice at 1, 2, 3, 6, and 9 months of age with an intravenous injection of scAAV9-U1a-hSGSH vector, leading to restoration of SGSH activity and reduction of glycosaminoglycans (GAG) throughout the central nervous system (CNS) and somatic tissues at a dose of 5E12 vg/kg. Treatment up to 3 months age improved learning ability in the Morris water maze at 7.5 months, and lifespan was normalized. In mice treated at 6 months age, behavioral performance was impaired at 7.5 months, but did not decline further when retested at 12 months, and lifespan was increased, but not normalized. Treatment at 9 months did not increase life-span, though the GAG storage pathology in the CNS was improved. The study suggests that there is potential for gene therapy intervention in MPS IIIA at intermediate stages of the disease, and extends the clinical relevance of our systemic scAAV9-hSGSH gene delivery approach. PMID:27331076

  12. Preclinical potency and safety studies of an AAV2-mediated gene therapy vector for the treatment of MERTK associated retinitis pigmentosa.

    PubMed

    Conlon, Thomas J; Deng, Wen-Tao; Erger, Kirsten; Cossette, Travis; Pang, Ji-jing; Ryals, Renee; Clément, Nathalie; Cleaver, Brian; McDoom, Issam; Boye, Shannon E; Peden, Marc C; Sherwood, Mark B; Abernathy, Corinne R; Alkuraya, Fowzan S; Boye, Sanford L; Hauswirth, William W

    2013-03-01

    Abstract Proof of concept for MERTK gene replacement therapy has been demonstrated using different viral vectors in the Royal College of Surgeon (RCS) rat, a well characterized model of recessive retinitis pigmentosa that contains a mutation in the Mertk gene. MERTK plays a key role in renewal of photoreceptor outer segments (OS) by phagocytosis of shed OS tips. Mutations in MERTK cause impaired phagocytic activity and accumulation of OS debris in the interphotoreceptor space that ultimately leads to photoreceptor cell death. In the present study, we conducted a series of preclinical potency and GLP-compliant safety evaluations of an adeno-associated virus type 2 (AAV2) vector expressing human MERTK cDNA driven by the retinal pigment epithelium-specific, VMD2 promoter. We demonstrate the potency of the vector in RCS rats by improved electroretinogram (ERG) responses in treated eyes compared with contralateral untreated controls. Toxicology and biodistribution studies were performed in Sprague-Dawley (SD) rats injected with two different doses of AAV vectors and buffer control. Delivery of vector in SD rats did not result in a change in ERG amplitudes of rod and cone responses relative to balanced salt solution control-injected eyes, indicating that administration of AAV vector did not adversely affect normal retinal function. In vivo fundoscopic analysis and postmortem retinal morphology of the vector-injected eyes were normal compared with controls. Evaluation of blood smears showed the lack of transformed cells in the treated eyes. All injected eyes and day 1 blood samples were positive for vector genomes, and all peripheral tissues were negative. Our results demonstrate the potency and safety of the AAV2-VMD2-hMERTK vector in animal models tested. A GMP vector has been manufactured and is presently in clinical trial.

  13. Preclinical safety evaluation of AAV2-sFLT01- a gene therapy for age-related macular degeneration.

    PubMed

    Maclachlan, Timothy K; Lukason, Michael; Collins, Margaret; Munger, Robert; Isenberger, Elisabete; Rogers, Cindy; Malatos, Shana; Dufresne, Elizabeth; Morris, James; Calcedo, Roberto; Veres, Gabor; Scaria, Abraham; Andrews, Laura; Wadsworth, Samuel

    2011-02-01

    AAV2-sFLT01 is a vector that expresses a modified soluble Flt1 receptor designed to neutralize the proangiogenic activities of vascular endothelial growth factor (VEGF) for treatment of age-related macular degeneration (AMD) via an intravitreal injection. Owing to minimal data available for the intravitreal route of administration for adeno-associated virus (AAV), we initiated a 12-month safety study of AAV2-sFLT01 administered intravitreally at doses of 2.4 × 10(9) vector genomes (vg) and 2.4 × 10(10) vg to cynomolgus monkeys. Expression of sFlt01 protein peaked at ~1-month postadministration and remained relatively constant for the remainder of the study. Electroretinograms, fluorescein angiograms, and tonometry were assessed every 3 months, with no test article-related findings observed in any group. Indirect ophthalmoscopy and slit lamp exams performed monthly revealed a mild to moderate but self-resolving vitreal inflammation in the high-dose group only, which follow-up studies suggest was directed against the AAV2 capsid. Histological evaluation revealed no structural changes in any part of the eye and occasional inflammatory cells in the trabecular meshwork, vitreous and retina in the high-dose group. Biodistribution analysis in rats and monkeys found only trace amounts of vector outside the injected eye. In summary, these studies found AAV2-sFLT01 to be well-tolerated, localized, and capable of long-term expression.

  14. AAV8(Y733F)-mediated gene therapy in a Spata7 knockout mouse model of Leber congenital amaurosis and retinitis pigmentosa

    PubMed Central

    Zhong, Hua; Eblimit, Aiden; Moayedi, Yalda; Boye, Sanford L; Chiodo, Vince A; Chen, Yiyun; Li, Yumei; Nichols, Ralph M; Hauswirth, William W; Chen, Rui; Mardon, Graeme

    2016-01-01

    Loss of SPATA7 function causes the pathogenesis of Leber congenital amaurosis and retinitis pigmentosa. Spata7 knockout mice mimic human SPATA7–related retinal disease with apparent photoreceptor degeneration observed as early as postnatal day 15 (P15). To test the efficacy of adeno-associated virus (AAV)-mediated gene therapy for rescue of photoreceptor survival and function in Spata7 mutant mice, we employed the AAV8(Y733F) vector carrying hGRK1-driven full-length FLAG-tagged Spata7 cDNA to target both rod and cone photoreceptors. Following subretinal injection of this vector, FLAG-tagged SPATA7 was found to co-localize with endogenous SPATA7 in wild-type mice. In Spata7 mutant mice initially treated at P15, we observed improvement of photoresponse, photoreceptor ultrastructure, and significant alleviation of photoreceptor degeneration. Furthermore we performed treatments at P28 and P56 and found that all treatments (P15-P56) can ameliorate rod and cone loss in the long term (1 year); however, none efficiently protect photoreceptors from degeneration by 86 weeks of age since only a small amount of treated photoreceptors can survive to this time. This study demonstrates long-term improvement of photoreceptor function by AAV8(Y733F)-introduced Spata7 expression in a mouse model as potential treatment of the human disease but also suggests that treated mutant photoreceptors still undergo progressive degeneration. PMID:25965394

  15. AAV8(Y733F)-mediated gene therapy in a Spata7 knockout mouse model of Leber congenital amaurosis and retinitis pigmentosa.

    PubMed

    Zhong, H; Eblimit, A; Moayedi, Y; Boye, S L; Chiodo, V A; Chen, Y; Li, Y; Nichols, R M; Hauswirth, W W; Chen, R; Mardon, G

    2015-08-01

    Loss of SPATA7 function causes the pathogenesis of Leber congenital amaurosis and retinitis pigmentosa. Spata7 knockout mice mimic human SPATA7-related retinal disease with apparent photoreceptor degeneration observed as early as postnatal day 15 (P15). To test the efficacy of adeno-associated virus (AAV)-mediated gene therapy for rescue of photoreceptor survival and function in Spata7 mutant mice, we employed the AAV8(Y733F) vector carrying hGRK1-driven full-length FLAG-tagged Spata7 cDNA to target both rod and cone photoreceptors. Following subretinal injection of this vector, FLAG-tagged SPATA7 was found to colocalize with endogenous SPATA7 in wild-type mice. In Spata7 mutant mice initially treated at P15, we observed improvement of photoresponse, photoreceptor ultrastructure and significant alleviation of photoreceptor degeneration. Furthermore, we performed treatments at P28 and P56 and found that all treatments (P15-P56) can ameliorate rod and cone loss in the long term (1 year); however, none efficiently protect photoreceptors from degeneration by 86 weeks of age as only a small amount of treated photoreceptors can survive to this time. This study demonstrates long-term improvement of photoreceptor function by AAV8(Y733F)-introduced Spata7 expression in a mouse model as potential treatment of the human disease, but also suggests that treated mutant photoreceptors still undergo progressive degeneration.

  16. Vaccinia virus as a subhelper for AAV replication and packaging.

    PubMed

    Moore, Andrea R; Dong, Biao; Chen, Lingxia; Xiao, Weidong

    2015-01-01

    Adeno-associated virus (AAV) has been widely used as a gene therapy vector to treat a variety of disorders. While these vectors are increasingly popular and successful in the clinic, there is still much to learn about the viruses. Understanding the biology of these viruses is essential in engineering better vectors and generating vectors more efficiently for large-scale use. AAV requires a helper for production and replication making this aspect of the viral life cycle crucial. Vaccinia virus (VV) has been widely cited as a helper virus for AAV. However, to date, there are no detailed analyses of its helper function. Here, the helper role of VV was studied in detail. In contrast to common belief, we demonstrated that VV was not a sufficient helper virus for AAV replication. Vaccinia failed to produce rAAV and activate AAV promoters. While this virus could not support rAAV production, Vaccinia could initiate AAV replication and packaging when AAV promoter activation is not necessary. This activity is due to the ability of Vaccinia-driven Rep78 to transcribe in the cytoplasm and subsequently translate in the nucleus and undergo typical functions in the AAV life cycle. As such, VV is subhelper for AAV compared to complete helper functions of adenovirus.

  17. AAV gene transfer to the retina does not protect retrovirally transduced hepatocytes from the immune response.

    PubMed

    Bellodi-Privato, Marta; Le Meur, Guylène; Aubert, Dominique; Mendes-Madera, Alexandra; Pichard, Virginie; Rolling, Fabienne; Ferry, Nicolas

    2004-06-01

    Gene therapy of inherited hepatic disease relies on sustained expression of the therapeutic transgene. In many instances, such expression will require immune tolerization to the non-self therapeutic transgene product. We previously demonstrated that a cytotoxic immune response eliminated hepatocytes after in vivo transduction using recombinant retroviral vectors. In the present study we investigated whether prior gene transfer to the retina, which is suspected to induce immune tolerance, could alleviate the immune response occurring after retrovirus mediated gene transfer to the liver. Retinal cells were transduced using adeno-associated viral vectors harbouring a beta-galactosidase transgene. Sixty days later, regenerating hepatocytes were transduced after partial hepatectomy using a recombinant retrovirus carrying the transgene. Three weeks later, anti beta-galactosidase antibodies were present in all animals. Elimination of the transduced hepatocytes eventually occurred in all animals by 2 months after liver gene transfer, although sustained beta-galactosidase expression was still present in the retina in 66% of the animals. We conclude that although the retina behaves as an immunoprivileged site, gene expression in the subretinal space is not sufficient to induce immune tolerance to a transgene product expressed in the liver.

  18. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    SciTech Connect

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M.

    2014-04-15

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8.

  19. Innate Immune Responses to AAV Vectors.

    PubMed

    Rogers, Geoffrey L; Martino, Ashley T; Aslanidi, George V; Jayandharan, Giridhara R; Srivastava, Arun; Herzog, Roland W

    2011-01-01

    Gene replacement therapy by in vivo delivery of adeno-associated virus (AAV) is attractive as a potential treatment for a variety of genetic disorders. However, while AAV has been used successfully in many models, other experiments in clinical trials and in animal models have been hampered by undesired responses from the immune system. Recent studies of AAV immunology have focused on the elimination of transgene-expressing cells by the adaptive immune system, yet the innate immune system also has a critical role, both in the initial response to the vector and in prompting a deleterious adaptive immune response. Responses to AAV vectors are primarily mediated by the TLR9-MyD88 pathway, which induces the production of pro-inflammatory cytokines by activating the NF-κB pathways and inducing type I IFN production; self-complementary AAV vectors enhance these inflammatory processes. Additionally, the alternative NF-κB pathway influences transgene expression in cells transduced by AAV. This review highlights these recent discoveries regarding innate immune responses to AAV and discusses strategies to ablate these potentially detrimental signaling pathways.

  20. Enhanced Efficacy of an AAV Vector Encoding Chimeric, Highly-Secreted Acid α-glucosidase in Glycogen Storage Disease Type II

    PubMed Central

    Sun, Baodong; Zhang, Haoyue; Benjamin, Daniel K.; Brown, Talmage; Bird, Andrew; Young, Sarah P.; McVie-Wylie, Alison; Chen, Y-T; Koeberl, Dwight D.

    2009-01-01

    Glycogen storage disease type II (GSD-II; Pompe disease; MIM 232300) is an inherited muscular dystrophy caused by deficiency in the activity of the lysosomal enzyme acid α-glucosidase (GAA). We hypothesized that chimeric GAA containing an alternative signal peptide could increase the secretion of GAA from transduced cells and enhance the receptor-mediated uptake of GAA in striated muscle. The relative secretion of chimeric GAA from transfected 293 cells increased up to 26-fold. Receptor-mediated uptake of secreted, chimeric GAA corrected cultured GSD-II patient cells. High-level hGAA was sustained in the plasma of GSD-II mice for 24 weeks following administration of an AAV2/8 vector encoding chimeric GAA; furthermore, GAA activity was increased and glycogen content was significantly reduced in striated muscle and in the brain. Administration of only 1×1010 vector particles increased GAA activity in the heart and diaphragm for >18 weeks, whereas 3×1010 vector particles increased GAA activity and reduced glycogen content in the heart, diaphragm, and quadriceps. Furthermore, an AAV2/2 vector encoding chimeric GAA produced secreted hGAA for >12 weeks in the majority of treated GSD-II mice. Thus, chimeric, highly secreted GAA enhanced the efficacy of AAV vector-mediated gene therapy in GSD-II mice. PMID:16987711

  1. Cerebellomedullary Cistern Delivery for AAV-Based Gene Therapy: A Technical Note for Nonhuman Primates

    PubMed Central

    Samaranch, Lluis; Bringas, John; Pivirotto, Philip; Sebastian, Waldy San; Forsayeth, John; Bankiewicz, Krystof

    2016-01-01

    Accessing cerebrospinal fluid (CSF) from the craniocervical junction through the posterior atlanto-occipital membrane via cerebellomedullary injection (also known as cisternal puncture or cisterna magna injection) has become a standard procedure in preclinical studies. Such delivery provides broader coverage to the central and peripheral nervous system unlike local parenchymal delivery alone. As a clinical application, this approach offers a more reliable method for neurological gene replacement delivery in infants, where skull-mounted devices are not indicated. Here we describe a consistent, precise, and safe method for CSF injection with minimal equipment and technical skills. PMID:26757202

  2. Cerebellomedullary Cistern Delivery for AAV-Based Gene Therapy: A Technical Note for Nonhuman Primates.

    PubMed

    Samaranch, Lluis; Bringas, John; Pivirotto, Philip; Sebastian, Waldy San; Forsayeth, John; Bankiewicz, Krystof

    2016-02-01

    Accessing cerebrospinal fluid (CSF) from the craniocervical junction through the posterior atlanto-occipital membrane via cerebellomedullary injection (also known as cisternal puncture or cisterna magna injection) has become a standard procedure in preclinical studies. Such delivery provides broader coverage to the central and peripheral nervous system unlike local parenchymal delivery alone. As a clinical application, this approach offers a more reliable method for neurological gene replacement delivery in infants, where skull-mounted devices are not indicated. Here we describe a consistent, precise, and safe method for CSF injection with minimal equipment and technical skills.

  3. Mitigation of cerebellar neuropathy in globoid cell leukodystrophy mice by AAV-mediated gene therapy.

    PubMed

    Lin, Dar-Shong; Hsiao, Chung-Der; Lee, Allan Yueh-Luen; Ho, Che-Sheng; Liu, Hsuan-Liang; Wang, Tuen-Jen; Jian, Yuan-Ren; Hsu, Jui-Cheng; Huang, Zon-Darr; Lee, Tsung-Han; Chiang, Ming-Fu

    2015-10-15

    Globoid cell leukodystrophy (GLD) is an autosomal recessive, lysosomal storage disease caused by deficiency of the enzyme galactocerebrosidase (GALC). The absence of GALC activity leads to the accumulation of the toxic substance psychosine and the preferential loss of myelinating cells in the central and peripheral nervous systems. Profound demyelination, astrogliosis and axonopathy are the hallmarks of the pathogenesis of GLD, and cerebellar ataxia is one of the dominant manifestations in adolescents and adults affected with GLD. To date, studies regarding cerebellar degeneration in GLD are limited. In this study, the efficacy of cerebellum-targeted gene therapy on the cerebellar neuropathology in twitcher mice (a murine model of GLD) has been validated. We observed degeneration of Purkinje cells, Bergmann glia, and granule cells in addition to astrocytosis and demyelination in the cerebellum of the twitcher mice. Ultrastructural analysis revealed dark cell degeneration and disintegration of the cellular composition of Purkinje cells in untreated twitcher mice. In addition, the expressions of neurotrophic factors CNTF, GDNF and IGF-I were up-regulated and the expression of BDNF was down-regulated. Intracerebellar-mediated gene therapy efficiently corrected enzymatic deficiency by direct transduction to Purkinje cells and cross-correction in other cell types in the cerebellum, leading to the amelioration of both neuroinflammation and demyelination. The population, dendritic territory, and axonal processes of Purkinje cells remained normal in the cerebellum of treated twitcher mice, where radial fibers of Bergmann glia spanned the molecular layer and collateral branches ensheathed the dendritic processes of Purkinje cells. Moreover, the aberrant expressions of neurotrophic factors were mitigated in the cerebellum of treated twitcher mice, indicating the preservation of cellular function in addition to maintaining the neuronal architecture. The life span of the

  4. Targeting gene expression to cones with human cone opsin promoters in recombinant AAV.

    PubMed

    Komáromy, A M; Alexander, J J; Cooper, A E; Chiodo, V A; Glushakova, L G; Acland, G M; Hauswirth, W W; Aguirre, G D

    2008-07-01

    Specific cone-directed therapy is of high priority in the treatment of human hereditary retinal diseases. However, not much information exists about the specific targeting of photoreceptor subclasses. Three versions of the human red cone opsin promoter (PR0.5, 3LCR-PR0.5 and PR2.1), and the human blue cone opsin promoter HB569, were evaluated for their specificity and robustness in targeting green fluorescent protein (GFP) gene expression to subclasses of cones in the canine retina when used in recombinant adeno-associated viral vectors of serotype 5. The vectors were administered by subretinal injection. The promoter PR2.1 led to most effective and specific expression of GFP in the long- and medium-wavelength-absorbing cones (L/M cones) of normal and diseased retinas. The PR0.5 promoter was not effective. Adding three copies of the 35-bp LCR in front of PR0.5 lead to weak GFP expression in L/M cones. The HB569 promoter was not specific, and GFP was expressed in a few L/M cones, some rods and the retinal pigment epithelium. These results suggest that L/M cones, the predominant class of cone photoreceptors in the retinas of dogs and most mammalian species can be successfully targeted using the human red cone opsin promoter.

  5. Novel Mutant AAV2 Rep Proteins Support AAV2 Replication without Blocking HSV-1 Helpervirus Replication

    PubMed Central

    Seyffert, Michael; Glauser, Daniel L.; Schraner, Elisabeth M.; de Oliveira, Anna-Paula; Mansilla-Soto, Jorge; Vogt, Bernd; Büning, Hildegard; Linden, R. Michael; Ackermann, Mathias; Fraefel, Cornel

    2017-01-01

    As their names imply, parvoviruses of the genus Dependovirus rely for their efficient replication on the concurrent presence of a helpervirus, such as herpesvirus, adenovirus, or papilloma virus. Adeno-associated virus 2 (AAV2) is such an example, which in turn can efficiently inhibit the replication of each helpervirus by distinct mechanisms. In a previous study we have shown that expression of the AAV2 rep gene is not compatible with efficient replication of herpes simplex virus 1 (HSV-1). In particular, the combined DNA-binding and ATPase/helicase activities of the Rep68/78 proteins have been shown to exert opposite effects on the replication of AAV2 and HSV-1. While essential for AAV2 DNA replication these protein activities account for the Rep-mediated inhibition of HSV-1 replication. Here, we describe a novel Rep mutant (Rep-D371Y), which displayed an unexpected phenotype. Rep-D371Y did not block HSV-1 replication, but still supported efficient AAV2 replication, at least when a double-stranded AAV2 genome template was used. We also found that the capacity of Rep-D371Y to induce apoptosis and a Rep-specific DNA damage response was significantly reduced compared to wild-type Rep. These findings suggest that AAV2 Rep-helicase subdomains exert diverging activities, which contribute to distinct steps of the AAV2 life cycle. More important, the novel AAV2 mutant Rep-D371Y may allow deciphering yet unsolved activities of the AAV2 Rep proteins such as DNA second-strand synthesis, genomic integration or packaging, which all involve the Rep-helicase activity. PMID:28125695

  6. AAV serotype 2/1-mediated gene delivery of anti-inflammatory interleukin-10 enhances neurogenesis and cognitive function in APP+PS1 mice.

    PubMed

    Kiyota, T; Ingraham, K L; Swan, R J; Jacobsen, M T; Andrews, S J; Ikezu, T

    2012-07-01

    Brain inflammation is a double-edged sword. It is required for brain repair in acute damage, whereas chronic inflammation and autoimmune disorders are neuropathogenic. Certain proinflammatory cytokines and chemokines are closely related to cognitive dysfunction and neurodegeneration. Representative anti-inflammatory cytokines, such as interleukin (IL)-10, can suppress neuroinflammation and have significant therapeutic potentials in ameliorating neurodegenerative disorders such as Alzheimer's disease (AD). Here, we show that adeno-associated virus (AAV) serotype 2/1 hybrid-mediated neuronal expression of the mouse IL-10 gene ameliorates cognitive dysfunction in amyloid precursor protein+ presenilin-1 bigenic mice. AAV2/1 infection of hippocampal neurons resulted in sustained expression of IL-10 without its leakage into the blood, reduced astro/microgliosis, enhanced plasma amyloid-β peptide (Aβ) levels and enhanced neurogenesis. Moreover, increased levels of IL-10 improved spatial learning, as determined by the radial arm water maze. Finally, IL-10-stimulated microglia enhanced proliferation but not differentiation of primary neural stem cells in the co-culture system, whereas IL-10 itself had no effect. Our data suggest that IL-10 gene delivery has a therapeutic potential for a non-Aβ-targeted treatment of AD.

  7. Assessment of toxicity and biodistribution of recombinant AAV8 vector–mediated immunomodulatory gene therapy in mice with Pompe disease

    PubMed Central

    Wang, Gensheng; Young, Sarah P; Bali, Deeksha; Hutt, Julie; Li, Songtao; Benson, Janet; Koeberl, Dwight D

    2014-01-01

    A preclinical safety study was conducted to evaluate the short- and long-term toxicity of a recombinant adeno-associated virus serotype 8 (AAV2/8) vector that has been developed as an immune-modulatory adjunctive therapy to recombinant human acid α-glucosidase (rhGAA, Myozyme) enzyme replacement treatment (ERT) for patients with Pompe disease (AAV2/8-LSPhGAApA). The AAV2/8-LSPhGAApA vector at 1.6 × 1013 vector particles/kg, after intravenous injection, did not cause significant short- or long-term toxicity. Recruitment of CD4+ (but not CD8+) lymphocytes to the liver was elevated in the vector-dosed male animals at study day (SD) 15, and in group 8 animals at SD 113, in comparison to their respective control animals. Administration of the vector, either prior to or after the one ERT injection, uniformly prevented the hypersensitivity induced by subsequent ERT in males, but not always in female animals. The vector genome was sustained in all tissues through 16-week postdosing, except for in blood with a similar tissue tropism between males and females. Administration of the vector alone, or combined with the ERT, was effective in producing significantly increased GAA activity and consequently decreased glycogen accumulation in multiple tissues, and the urine biomarker, Glc4, was significantly reduced. The efficacy of the vector (or with ERT) was better in males than in females, as demonstrated both by the number of tissues showing significantly effective responses and the extent of response in a given tissue. Given the lack of toxicity for AAV2/8LSPhGAApA, further consideration of clinical translation is warranted in Pompe disease. PMID:26015962

  8. Ocular and systemic safety of a recombinant AAV8 vector for X-linked retinoschisis gene therapy: GLP studies in rabbits and Rs1-KO mice

    PubMed Central

    Marangoni, Dario; Bush, Ronald A; Zeng, Yong; Wei, Lisa L; Ziccardi, Lucia; Vijayasarathy, Camasamudram; Bartoe, Joshua T; Palyada, Kiran; Santos, Maria; Hiriyanna, Suja; Wu, Zhijian; Colosi, Peter; Sieving, Paul A

    2016-01-01

    X-linked retinoschisis (XLRS) is a retinal disease caused by mutations in the gene encoding the protein retinoschisin (RS1) and is one of the most common causes of macular degeneration in young men. Our therapeutic approach for XLRS is based on the administration of AAV8-scRS/IRBPhRS, an adeno-associated viral vector coding the human RS1 protein, via the intravitreal (IVT) route. Two Good Laboratory Practice studies, a 9-month study in New Zealand White rabbits (n = 124) injected with AAV8-scRS/IRBPhRS at doses of 2E9, 2E10, 2E11, and 1.5E12 vector genomes/eye (vg/eye), and a 6-month study in Rs1-KO mice (n = 162) dosed with 2E9 and 2E10 vg/eye of the same vector were conducted to assess ocular and systemic safety. A self-resolving, dose-dependent vitreal inflammation was the main ocular finding, and except for a single rabbit dosed with 1.5E12 vg/eye, which showed a retinal detachment, no other ocular adverse event was reported. Systemic toxicity was not identified in either species. Biodistribution analysis in Rs1-KO mice detected spread of vector genome in extraocular tissues, but no evidence of organ or tissues damage was found. These studies indicate that IVT administration of AAV8-scRS/IRBPhRS is safe and well tolerated and support its advancement into a phase 1/2a clinical trial for XLRS. PMID:27626041

  9. Amelioration of both functional and morphological abnormalities in the retina of a mouse model of ocular albinism following AAV-mediated gene transfer.

    PubMed

    Surace, Enrico Maria; Domenici, Luciano; Cortese, Katia; Cotugno, Gabriella; Di Vicino, Umberto; Venturi, Consuelo; Cellerino, Alessandro; Marigo, Valeria; Tacchetti, Carlo; Ballabio, Andrea; Auricchio, Alberto

    2005-10-01

    X-linked recessive ocular albinism type I (OA1) is due to mutations in the OA1 gene (approved gene symbol GPR143), which is expressed in the retinal pigment epithelium (RPE). The Oa1 (Gpr143) knockout mouse (Oa1(-/-)) model recapitulates many of the OA1 retinal morphological anomalies, including a lower number of melanosomes of increased size in the RPE. The Oa1(-/-) mouse also displays some of the retinal developmental abnormalities observed in albino patients such as misrouting of the optic tracts. Here, we show that these anomalies are associated with retinal electrophysiological abnormalities, including significant decrease in a- and b-wave amplitude and delayed recovery of b-wave amplitude from photoreceptor desensitization following bright light exposure. This suggests that lack of Oa1 in the RPE impacts on photoreceptor activity. More interestingly, adeno-associated viral vector-mediated Oa1 gene transfer to the retina of the Oa1(-/-) mouse model results in significant recovery of its retinal functional abnormalities. In addition, Oa1 retinal gene transfer increases the number of melanosomes in the Oa1(-/-) mouse RPE. Our data show that gene transfer to the adult retina unexpectedly rescues both functional and morphological abnormalities in a retinal developmental disorder, opening novel potential therapeutic perspectives for this and other forms of albinism.

  10. Gene Delivery to Intestinal Epithelial Cells In vitro and In vivo with Recombinant Adeno-Associated Virus Types 1, 2 and 5

    PubMed Central

    Mah, Cathryn; Porvasnik, Stacy; Herlihy, John-David; Campbell-Thompson, Martha; Byrne, Barry J.; Valentine, John F.

    2014-01-01

    Intestinal disorders such as inflammatory bowel disease (IBD) result in chronic illness requiring lifelong therapy. Our aim was to evaluate the efficacy of recombinant adeno-associated virus (AAV) vector-mediated gene delivery to intestinal epithelial cells in vitro and in vivo. Human colon epithelial cell lines and colon biopsies were transduced using AAV pseudotypes 2/1, 2/2, and 2/5 encoding green fluorescence protein (GFP). Mice were administered the same vectors through oral, enema, intraperitoneal (IP) injection and superior mesenteric artery (SMA) injection routes. Tropism and efficiency were determined by microscopy, flow cytometry, immunohistochemistry and PCR. Caco2 cells were more permissive to AAV transduction. Human colon epithelial cells in organ culture were more effectively transduced by AAV2/2. SMA injection provided the most effective means of vector gene transfer to small intestine and colonic epithelial cells in vivo. Transgene detection 80 days post AAV treatment suggests transduction of crypt progenitor cells. This study shows the feasibility of AAV-mediated intestinal gene delivery, applicable for the investigation of IBD pathogenesis and novel therapeutic options, but also revealed the need for further studies to identify more efficient pseudotypes. PMID:17934813

  11. Assaying the Stability and Inactivation of AAV Serotype 1 Vectors.

    PubMed

    Howard, Douglas B; Harvey, Brandon K

    2017-02-01

    Adeno-associated virus (AAV) vectors are a commonplace tool for gene delivery ranging from cell culture to human gene therapy. One feature that makes AAV a desirable vector is its stability, in regard to both the duration of transgene expression and retention of infectivity as a viral particle. This study examined the stability of AAV serotype 1 (AAV1) vectors under different conditions. First, transducibility after storage at 4°C decreased 20% over 7 weeks. Over 10 freeze-thaw cycles, the resulting transduction efficiency became variable at 60-120% of a single thaw. Using small stainless steel slugs to mimic a biosafety cabinet or metal lab bench surface, it was found that an AAV1 vector can be reconstituted after 6 days of storage at room temperature. The stability of AAV is a desired feature, but effective decontamination procedures must be available for safety and experimental integrity. Multiple disinfectants commonly used in the laboratory for ability to inactivate an AAV1 vector were tested, and it was found that autoclaving, 0.25% peracetic acid, iodine, or 10% Clorox bleach completely prevented AAV-mediated transgene expression. These data suggest that peracetic acid should be used for inactivating AAV1 vectors on metal-based surfaces or instruments in order to avoid inadvertent transgene expression in human cells or cross-contamination of instruments.

  12. AAV8-Mediated Angiotensin-Converting Enzyme 2 Gene Delivery Prevents Experimental Autoimmune Uveitis by Regulating MAPK, NF-κB and STAT3 Pathways

    PubMed Central

    Qiu, Yiguo; Tao, Lifei; Zheng, Shijie; Lin, Ru; Fu, Xinyu; Chen, Zihe; Lei, Chunyan; Wang, Jiaming; Li, Hongwei; Li, Qiuhong; Lei, Bo

    2016-01-01

    Renin angiotensin system (RAS) is a key hormonal system which regulates the cardiovascular function and is implicated in several autoimmune diseases. With the discovery of the angiotensin-converting enzyme 2 (ACE2), a protective axis of RAS namely ACE2/Ang-(1–7)/Mas that counteracts the deleterious ACE/AngII/AT1R axis has been established. This axis is emerging as a novel target to attenuate ocular inflammation. However, the underlying molecular mechanisms remain unclear. We investigated the hypothesis that enhancing the activity of the protective axis of RAS by subretinal delivery of an AAV8 (Y733F)-ACE2 vector would protect against the ocular inflammation in experimental autoimmune uveitis (EAU) mice through regulating the local immune responses. Our studies demonstrated that increased ACE2 expression exerts protective effects on inflammation in EAU mouse by modulating ocular immune responses, including the differentiation of Th1/Th17 cells and the polarization of M1/M2 macrophages; whereas the systemic immune responses appeared not affected. These effects were mediated by activating the Ang-(1–7)/Mas and inhibiting the MAPK, NF-κB and STAT3 signaling pathways. This proof-of-concept study suggests that activation of ocular ACE2/Ang-(1–7)/Mas axis with AAV gene transfer modulates local immune responses and may be a promising, long-lasting therapeutic strategy for refractory and recurrent uveitis, as well as other inflammatory eye diseases. PMID:27558087

  13. Preferred transduction with AAV8 and AAV9 via thalamic administration in the MPS IIIB model: A comparison of four rAAV serotypes

    PubMed Central

    Gilkes, J.A.; Bloom, M.D.; Heldermon, C.D.

    2015-01-01

    Sanfilippo syndrome type B (MPS IIIB) is a lysosomal storage disease caused by a deficiency of N-acetyl-glucosaminidase (NAGLU) activity. Since early therapeutic intervention is likely to yield the most efficacious results, we sought to determine the possible therapeutic utility of rAAV in early gene therapy based interventions. Currently, the application of recombinant adeno-associated virus (AAV) vectors is one of the most widely used gene transfer systems, and represents a promising approach in the treatment of MPS IIIB. From a translational standpoint, a minimally invasive, yet highly efficient method of vector administration is ideal. The thalamus is thought to be the switchboard for signal relay in the central nervous system (CNS) and therefore represents an attractive target. To identify an optimal AAV vector for early therapeutic intervention, and establish whether thalamic administration represents a feasible therapeutic approach, we performed a comprehensive assessment of transduction and biodistribution profiles of four green fluorescent protein (GFP) bearing rAAV serotypes, -5, -8, -9 and -rh10, administered bilaterally into the thalamus. Of the four serotypes compared, AAV8 and -9 proved superior to AAV5 and -rh10 both in biodistribution and transduction efficiency profiles. Genotype differences in transduction efficiency and biodistribution patterns were also observed. Importantly, we conclude that AAV8 and to a lesser extent, AAV9 represent preferable candidates for early gene therapy based intervention in the treatment of MPS IIIB. We also highlight the feasibility of thalamic rAAV administration, and conclude that this method results in moderate rAAV biodistribution with limited treatment capacity, thus suggesting a need for alternate methods of vector delivery. PMID:27014573

  14. Superior In vivo Transduction of Human Hepatocytes Using Engineered AAV3 Capsid.

    PubMed

    Vercauteren, Koen; Hoffman, Brad E; Zolotukhin, Irene; Keeler, Geoffrey D; Xiao, Jing W; Basner-Tschakarjan, Etiena; High, Katherine A; Ertl, Hildegund Cj; Rice, Charles M; Srivastava, Arun; de Jong, Ype P; Herzog, Roland W

    2016-06-01

    Adeno-associated viral (AAV) vectors are currently being tested in multiple clinical trials for liver-directed gene transfer to treat the bleeding disorders hemophilia A and B and metabolic disorders. The optimal viral capsid for transduction of human hepatocytes has been under active investigation, but results across various models are inconsistent. We tested in vivo transduction in "humanized" mice. Methods to quantitate percent AAV transduced human and murine hepatocytes in chimeric livers were optimized using flow cytometry and confocal microscopy with image analysis. Distinct transduction efficiencies were noted following peripheral vein administration of a self-complementary vector expressing a gfp reporter gene. An engineered AAV3 capsid with two amino acid changes, S663V+T492V (AAV3-ST), showed best efficiency for human hepatocytes (~3-times, ~8-times, and ~80-times higher than for AAV9, AAV8, and AAV5, respectively). AAV5, 8, and 9 were more efficient in transducing murine than human hepatocytes. AAV8 yielded the highest transduction rate of murine hepatocytes, which was 19-times higher than that for human hepatocytes. In summary, our data show substantial differences among AAV serotypes in transduction of human and mouse hepatocytes, are the first to report on AAV5 in humanized mice, and support the use of AAV3-based vectors for human liver gene transfer.

  15. Successful attenuation of humoral immunity to viral capsid and transgenic protein following AAV-mediated gene transfer with a non-depleting CD4 antibody and cyclosporine.

    PubMed

    McIntosh, J H; Cochrane, M; Cobbold, S; Waldmann, H; Nathwani, S A; Davidoff, A M; Nathwani, A C

    2012-01-01

    The ability of transient immunosuppression with a combination of a non-depleting anti-CD4 (NDCD4) antibody and cyclosporine (CyA) to abrogate immune reactivity to both adeno-associated viral vector (AAV) and its transgene product was evaluated. This combination of immunosuppressants resulted in a 20-fold reduction in the resulting anti-AAV8 antibody titres, to levels in naïve mice, following intravenous administration of 2 × 10(12) AAV8 vector particles per kg to immunocompetent mice. This allowed efficient transduction upon secondary challenge with vector pseudotyped with the same capsid. Persistent tolerance did not result, however, as an anti-AAV8 antibody response was elicited upon rechallenge with AAV8 without immunosuppression. The route of vector administration, vector dose, AAV serotype or the concomitant administration of adenoviral vector appeared to have little impact on the ability of the NDCD4 antibody and CyA combination to moderate the primary humoral response to AAV capsid proteins. The combination of NDCD4 and CyA also abrogated the humoral response to the transgene product, that otherwise invariably would occur, following intramuscular injection of AAV5, leading to stable transgene expression. These observations could significantly improve the prospects of using rAAV vectors for chronic disorders by allowing for repeated vector administration and avoiding the development of antibodies to the transgene product.

  16. The β-globin locus control region in combination with the EF1α short promoter allows enhanced lentiviral vector-mediated erythroid gene expression with conserved multilineage activity.

    PubMed

    Montiel-Equihua, Claudia A; Zhang, Lin; Knight, Sean; Saadeh, Heba; Scholz, Simone; Carmo, Marlene; Alonso-Ferrero, Maria E; Blundell, Michael P; Monkeviciute, Aiste; Schulz, Reiner; Collins, Mary; Takeuchi, Yasuhiro; Schmidt, Manfred; Fairbanks, Lynette; Antoniou, Michael; Thrasher, Adrian J; Gaspar, H Bobby

    2012-07-01

    Some gene therapy strategies are compromised by the levels of gene expression required for therapeutic benefit, and also by the breadth of cell types that require correction. We designed a lentiviral vector system in which a transgene is under the transcriptional control of the short form of constitutively acting elongation factor 1α promoter (EFS) combined with essential elements of the locus control region of the β-globin gene (β-LCR). We show that the β-LCR can upregulate EFS activity specifically in erythroid cells but does not alter EFS activity in myeloid or lymphoid cells. Experiments using the green fluorescent protein (GFP) reporter or the human adenosine deaminase (ADA) gene demonstrate 3-7 times upregulation in vitro but >20 times erythroid-specific upregulation in vivo, the effects of which were sustained for 1 year. The addition of the β-LCR did not alter the mutagenic potential of the vector in in vitro mutagenesis (IM) assays although microarray analysis showed that the β-LCR upregulates ~9% of neighboring genes. This vector design therefore combines the benefits of multilineage gene expression with high-level erythroid expression, and has considerable potential for correction of multisystem diseases including certain lysosomal storage diseases through a hematopoietic stem cell (HSC) gene therapy approach.

  17. AAV micro-dystrophin gene therapy alleviates stress-induced cardiac death but not myocardial fibrosis in >21-m-old mdx mice, an end-stage model of Duchenne muscular dystrophy cardiomyopathy.

    PubMed

    Bostick, Brian; Shin, Jin-Hong; Yue, Yongping; Wasala, Nalinda B; Lai, Yi; Duan, Dongsheng

    2012-08-01

    Duchenne muscular dystrophy (DMD) is a fatal genetic disease caused by the absence of the sarcolemmal protein dystrophin. Dilated cardiomyopathy leading to heart failure is a significant source of morbidity and mortality in DMD. We recently demonstrated amelioration of DMD heart disease in 16 to 20-m-old dystrophin-null mdx mice using adeno-associated virus (AAV) mediated micro-dystrophin gene therapy. DMD patients show severe heart disease near the end of their life expectancy. Similarly, mdx mice exhibit profoundly worsening heart disease when they reach beyond 21 months of age. To more rigorously test micro-dystrophin therapy, we treated mdx mice that were between 21.2 and 22.7-m-old (average, 22.1 ± 0.2 months; N=8). The ∆R4-23/∆C micro-dystrophin gene was packaged in the cardiotropic AAV-9 virus. 5×10(12) viral genome particles/mouse were delivered to mdx mice via the tail vein. AAV transduction, myocardial fibrosis and heart function were examined 1.7 ± 0.2 months after gene therapy. Efficient micro-dystrophin expression was observed in the myocardium of treated mice. Despite the robust dystrophin expression, myocardial fibrosis was not mitigated. Most hemodynamic parameters were not improved either. However, ECG abnormalities were partially corrected. Importantly, treated mice became more resistant to dobutamine-induced cardiac death. In summary, we have revealed for the first time the potential benefits and limitations of AAV micro-dystrophin therapy in end-stage Duchenne dilated cardiomyopathy. Our findings have important implications for the use of AAV gene therapy in dilated cardiomyopathy and heart failure.

  18. Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles.

    PubMed Central

    Chiorini, J A; Yang, L; Liu, Y; Safer, B; Kotin, R M

    1997-01-01

    We have cloned and characterized the full-length genome of adeno-associated virus type 4 (AAV4). The genome of AAV4 is 4,767 nucleotides in length and contains an expanded p5 promoter region compared to AAV2 and AAV3. Within the inverted terminal repeat (ITR), several base changes were identified with respect to AAV2. However, these changes did not affect the ability of this region to fold into a hairpin structure. Within the ITR, the terminal resolution site and Rep binding sites were conserved; however, the Rep binding site was expanded from three GAGC repeats to four. The Rep gene product of AAV4 shows greater than 90% homology to the Rep products of serotypes 2 and 3, with none of the changes occurring in regions which had previously been shown to affect the known functions of Rep68 or Rep78. Most of the differences in the capsid proteins lie in regions which are thought to be on the exterior surface of the viral capsid. It is these unique regions which are most likely to be responsible for the lack of cross-reacting antibodies and the altered tissue tropism compared to AAV2. The results of our studies, performed with a recombinant version of AAV4 carrying a lacZ reporter gene, suggest that AAV4 can transduce human, monkey, and rat cells. Furthermore, comparison of transduction efficiencies in a number of cell lines, competition cotransduction experiments, and the effect of trypsin on transduction efficiency all suggest that the cellular receptor for AAV4 is distinct from that of AAV2. PMID:9261407

  19. The AAV Vector Toolkit: Poised at the Clinical Crossroads.

    PubMed

    Asokan, Aravind; Schaffer, David V; Jude Samulski, R

    2012-04-01

    The discovery of naturally occurring adeno-associated virus (AAV) isolates in different animal species and the generation of engineered AAV strains using molecular genetics tools have yielded a versatile AAV vector toolkit. Promising results in preclinical animal models of human disease spurred the much awaited transition toward clinical application, and early successes in phase I/II clinical trials for a broad spectrum of genetic diseases have recently been reported. As the gene therapy community forges ahead with cautious optimism, both preclinical and clinical studies using first generation AAV vectors have highlighted potential challenges. These include cross-species variation in vector tissue tropism and gene transfer efficiency, pre-existing humoral immunity to AAV capsids and vector dose-dependent toxicity in patients. A battery of second generation AAV vectors, engineered through rational and combinatorial approaches to address the aforementioned concerns, are now available. This review will provide an overview of preclinical studies with the ever-expanding AAV vector portfolio in large animal models and an update on new lead AAV vector candidates poised for clinical translation.

  20. The AAV vector toolkit: poised at the clinical crossroads.

    PubMed

    Asokan, Aravind; Schaffer, David V; Samulski, R Jude

    2012-04-01

    The discovery of naturally occurring adeno-associated virus (AAV) isolates in different animal species and the generation of engineered AAV strains using molecular genetics tools have yielded a versatile AAV vector toolkit. Promising results in preclinical animal models of human disease spurred the much awaited transition toward clinical application, and early successes in phase I/II clinical trials for a broad spectrum of genetic diseases have recently been reported. As the gene therapy community forges ahead with cautious optimism, both preclinical and clinical studies using first generation AAV vectors have highlighted potential challenges. These include cross-species variation in vector tissue tropism and gene transfer efficiency, pre-existing humoral immunity to AAV capsids and vector dose-dependent toxicity in patients. A battery of second generation AAV vectors, engineered through rational and combinatorial approaches to address the aforementioned concerns, are now available. This review will provide an overview of preclinical studies with the ever-expanding AAV vector portfolio in large animal models and an update on new lead AAV vector candidates poised for clinical translation.

  1. Resistance to human immunodeficiency virus type 1 (HIV-1) generated by lentivirus vector-mediated delivery of the CCR5{Delta}32 gene despite detectable expression of the HIV-1 co-receptors.

    PubMed

    Jin, Qingwen; Marsh, Jon; Cornetta, Kenneth; Alkhatib, Ghalib

    2008-10-01

    It has previously been demonstrated that there are two distinct mechanisms for genetic resistance to human immunodeficiency virus type 1 (HIV-1) conferred by the CCR5Delta32 gene: the loss of wild-type CCR5 surface expression and the generation of CCR5Delta32 protein, which interacts with CXCR4. To analyse the protective effects of long-term expression of the CCR5Delta32 protein, recombinant lentiviral vectors were used to deliver the CCR5Delta32 gene into human cell lines and primary peripheral blood mononuclear cells that had been immortalized by human T-cell leukemia virus type 1. Blasticidin S-resistant cell lines expressing the lentivirus-encoded CCR5Delta32 showed a significant reduction in HIV-1 Env-mediated fusion assays. It was shown that CD4(+) T lymphocytes expressing the lentivirus-encoded CCR5Delta32 gene were highly resistant to infection by a primary but not by a laboratory-adapted X4 strain, suggesting different infectivity requirements. In contrast to previous studies that analysed the CCR5Delta32 protective effects in a transient expression system, this study showed that long-term expression of CCR5Delta32 conferred resistance to HIV-1 despite cell-surface expression of the HIV co-receptors. The results suggest an additional unknown mechanism for generating the CCR5Delta32 resistance phenotype and support the hypothesis that the CCR5Delta32 protein acts as an HIV-suppressive factor by altering the stoichiometry of the molecules involved in HIV-1 entry. The lentiviral-CCR5Delta32 vectors offer a method of generating HIV-resistant cells by delivery of the CCR5Delta32 gene that may be useful for stem cell- or T-cell-based gene therapy for HIV-1 infection.

  2. Therapeutic Efficacy of Bone Marrow Transplant, Intracranial AAV-mediated Gene Therapy, or Both in the Mouse Model of MPS IIIB

    PubMed Central

    Heldermon, Coy D; Ohlemiller, Kevin K; Herzog, Erik D; Vogler, Carole; Qin, Elizabeth; Wozniak, David F; Tan, Yun; Orrock, John L; Sands, Mark S

    2010-01-01

    Sanfilippo syndrome type B (MPS IIIB) is a lysosomal storage disease resulting from a deficiency of N-acetyl-glucosaminidase (NAGLU) activity. In an attempt to correct the disease in the murine model of MPS IIIB, neonatal mice were treated with intracranial AAV2/5-NAGLU (AAV), syngeneic bone marrow transplant (BMT), or both (AAV/BMT). All treatments resulted in some improvement in clinical phenotype. Adeno-associated viral (AAV) treatment resulted in improvements in lifespan, motor function, hearing, time to activity onset, and daytime activity level, but no reduction of lysosomal storage. BMT resulted in improved hearing by 9 months, and improved circadian measures, but had no effect on lifespan, motor function, or central nervous system (CNS) lysosomal storage. AAV/BMT treatment resulted in improvements in hearing, time to activity onset, motor function, and reduced CNS lysosomal storage, but had no effect on lifespan. Combination therapy compared to either therapy alone resulted in synergistic effects on hearing and CNS lysosomal inclusions but antagonistic effects on motor function and lifespan. AAV alone is more efficacious than BMT or AAV/BMT treatment for lifespan. BMT was the least efficacious treatment by all measures. CNS-directed AAV treatment alone appears to be the preferred treatment, combining the most efficacy with the least toxicity of the approaches assessed. PMID:20179679

  3. Delivering Transgenic DNA Exceeding the Carrying Capacity of AAV Vectors.

    PubMed

    Hirsch, Matthew L; Wolf, Sonya J; Samulski, R J

    2016-01-01

    Gene delivery using recombinant adeno-associated virus (rAAV) has emerged to the forefront demonstrating safe and effective phenotypic correction of diverse diseases including hemophilia B and Leber's congenital amaurosis. In addition to rAAV's high efficiency of transduction and the capacity for long-term transgene expression, the safety profile of rAAV remains unsoiled in humans with no deleterious vector-related consequences observed thus far. Despite these favorable attributes, rAAV vectors have a major disadvantage preventing widespread therapeutic applications; as the AAV capsid is the smallest described to date, it cannot package "large" genomes. Currently, the packaging capacity of rAAV has yet to be definitively defined but is approximately 5 kb, which has served as a limitation for large gene transfer. There are two main approaches that have been developed to overcome this limitation, split AAV vectors, and fragment AAV (fAAV) genome reassembly (Hirsch et al., Mol Ther 18(1):6-8, 2010). Split rAAV vector applications were developed based upon the finding that rAAV genomes naturally concatemerize in the cell post-transduction and are substrates for enhanced homologous recombination (HR) (Hirsch et al., Mol Ther 18(1):6-8, 2010; Duan et al., J Virol 73(1):161-169, 1999; Duan et al., J Virol 72(11):8568-8577, 1998; Duan et al., Mol Ther 4(4):383-391, 2001; Halbert et al., Nat Biotechnol 20(7):697-701, 2002). This method involves "splitting" the large transgene into two separate vectors and upon co-transduction, intracellular large gene reconstruction via vector genome concatemerization occurs via HR or nonhomologous end joining (NHEJ). Within the split rAAV approaches there currently exist three strategies: overlapping, trans-splicing, and hybrid trans-splicing (Duan et al., Mol Ther 4(4):383-391, 2001; Halbert et al., Nat Biotechnol 20(7):697-701, 2002; Ghosh et al., Mol Ther 16(1):124-130, 2008; Ghosh et al., Mol Ther 15(4):750-755, 2007). The other major

  4. Exosome-associated AAV vector as a robust and convenient neuroscience tool.

    PubMed

    Hudry, E; Martin, C; Gandhi, S; György, B; Scheffer, D I; Mu, D; Merkel, S F; Mingozzi, F; Fitzpatrick, Z; Dimant, H; Masek, M; Ragan, T; Tan, S; Brisson, A R; Ramirez, S H; Hyman, B T; Maguire, C A

    2016-04-01

    Adeno-associated virus (AAV) vectors are showing promise in gene therapy trials and have proven to be extremely efficient biological tools in basic neuroscience research. One major limitation to their widespread use in the neuroscience laboratory is the cost, labor, skill and time-intense purification process of AAV. We have recently shown that AAV can associate with exosomes (exo-AAV) when the vector is isolated from conditioned media of producer cells, and the exo-AAV is more resistant to neutralizing anti-AAV antibodies compared with standard AAV. Here, we demonstrate that simple pelleting of exo-AAV from media via ultracentrifugation results in high-titer vector preparations capable of efficient transduction of central nervous system (CNS) cells after systemic injection in mice. We observed that exo-AAV is more efficient at gene delivery to the brain at low vector doses relative to conventional AAV, even when derived from a serotype that does not normally efficiently cross the blood-brain barrier. Similar cell types were transduced by exo-AAV and conventionally purified vector. Importantly, no cellular toxicity was noted in exo-AAV-transduced cells. We demonstrated the utility and robustness of exo-AAV-mediated gene delivery by detecting direct GFP fluorescence after systemic injection, allowing three-dimensional reconstruction of transduced Purkinje cells in the cerebellum using ex vivo serial two-photon tomography. The ease of isolation combined with the high efficiency of transgene expression in the CNS, may enable the widespread use of exo-AAV as a neuroscience research tool. Furthermore, the ability of exo-AAV to evade neutralizing antibodies while still transducing CNS after peripheral delivery is clinically relevant.

  5. Exosome-associated AAV vector as a robust and convenient neuroscience tool

    PubMed Central

    Hudry, Eloise; Martin, Courtney; Gandhi, Sheetal; György, Bence; Scheffer, Deborah I.; Mu, Dakai; Merkel, Steven F.; Mingozzi, Federico; Fitzpatrick, Zachary; Dimant, Hemi; Masek, Marissa; Ragan, Tim; Tan, Sisareuth; Brisson, Alain R.; Ramirez, Servio H.; Hyman, Bradley T.; Maguire, Casey A.

    2016-01-01

    Adeno-associated virus (AAV) vectors are showing promise in gene therapy trials and have proven to be extremely efficient biological tools in basic neuroscience research. One major limitation to their widespread use in the neuroscience laboratory is the cost, labor, skill, and time intense purification process of AAV. We have recently shown that AAV can associate with exosomes (exo-AAV) when vector is isolated from conditioned media of producer cells, and the exo-AAV is more resistant to neutralizing anti-AAV antibodies compared to standard AAV. Here we demonstrate that simple pelleting of exo-AAV from media via ultracentrifugation, results in high-titer vector preparations capable of efficient transduction of central nervous system (CNS) cells after systemic injection in mice. We observed that exo-AAV is more efficient at gene delivery to the brain at low vector doses relative to conventional AAV, even when derived from a serotype that does not normally efficiently cross the blood brain barrier. Similar cell types were transduced by exo-AAV and conventionally purified vector. Importantly, no cellular toxicity was noted in exo-AAV transduced cells. We demonstrated the utility and robustness of exo-AAV-mediated gene delivery by detecting direct GFP fluorescence after systemic injection, allowing 3-dimensional reconstruction of transduced Purkinje cells in the cerebellum using ex-vivo serial 2-photon tomography. The ease of isolation combined with the high efficiency of transgene expression in the CNS, may enable widespread use of exo-AAV as a neuroscience research tool. Furthermore, the ability of exo-AAV to evade neutralizing antibodies while still transducing CNS after peripheral delivery is clinically relevant. PMID:26836117

  6. Improved Immunological Tolerance Following Combination Therapy with CTLA-4/Ig and AAV-Mediated PD-L1/2 Muscle Gene Transfer

    PubMed Central

    Adriouch, Sahil; Franck, Emilie; Drouot, Laurent; Bonneau, Carole; Jolinon, Nelly; Salvetti, Anna; Boyer, Olivier

    2011-01-01

    Initially thought as being non-immunogenic, recombinant AAVs have emerged as efficient vector candidates for treating monogenic diseases. It is now clear however that they induce potent immune responses against transgene products which can lead to destruction of transduced cells. Therefore, developing strategies to circumvent these immune responses and facilitate long-term expression of transgenic therapeutic proteins is a main challenge in gene therapy. We evaluated herein a strategy to inhibit the undesirable immune activation that follows muscle gene transfer by administration of CTLA-4/Ig to block the costimulatory signals required early during immune priming and by using gene transfer of PD-1 ligands to inhibit T cell functions at the tissue sites. We provide the proof of principle that this combination immunoregulatory therapy targeting two non-redundant checkpoints of the immune response, i.e., priming and effector functions, can improve persistence of transduced cells in experimental settings where cytotoxic T cells escape initial blockade. Therefore, CTLA-4/Ig plus PD-L1/2 combination therapy represents a candidate approach to circumvent the bottleneck of immune responses directed toward transgene products. PMID:22046170

  7. Enhancement of the antigen-specific cytotoxic T lymphocyte-inducing ability in the PMDC11 leukemic plasmacytoid dendritic cell line via lentiviral vector-mediated transduction of the caTLR4 gene.

    PubMed

    Iwabuchi, Minami; Narita, Miwako; Uchiyama, Takayoshi; Iwaya, Shunpei; Oiwa, Eri; Nishizawa, Yoshinori; Hashimoto, Shigeo; Bonehill, Aude; Kasahara, Noriyuki; Takizawa, Jun; Takahashi, Masuhiro

    2015-08-01

    The aim of the present study was to enhance the efficiency of leukemia immunotherapy by increasing the antigen-specific cytotoxic T lymphocyte-inducing ability of leukemia cells. The leukemic plasmacytoid dendritic cell line PMDC05 containing the HLA-A02/24 antigen, which was previously established in our laboratory (Laboratory of Hematology and Oncology, Graduate School of Health Sciences, Niigata University, Niigata, Japan), was used in the present study. It exhibited higher expression levels of CD80 following transduction with lentiviruses encoding the CD80 gene. This CD80-expressing PMDC05 was named PMDC11. In order to establish a more potent antigen-presenting cell for cellular immunotherapy of tumors or severe infections, PMDC11 cells were transduced with a constitutively active (ca) toll-like receptor 4 (TLR4) gene using the Tet-On system (caTLR4-PMDC11). CD8(+) T cells from healthy donors with HLA-A02 were co-cultured with mutant WT1 peptide-pulsed PMDC11, lipopolysaccharide (LPS)-stimulated PMDC11 or caTLR4-PMDC11 cells. Interleukin (IL)-2 (50 IU/ml) and IL-7 (10 ng/ml) were added on day three of culture. Priming with mutant WT1 peptide-pulsed PMDC11, LPS-stimulated PMDC11 or caTLR4-PMDC11 cells was conducted once per week and two thirds of the IL-2/IL-7 containing medium was replenished every 3-4 days. Immediately prior to the priming with these various PMDC11 cells, the cultured cells were analyzed for the secretion of interferon (IFN)-γ in addition to the percentage and number of CD8(+)/WT1 tetramer(+) T cells using flow cytometry. caTLR4-PMDC11 cells were observed to possess greater antigen-presenting abilities compared with those of PMDC11 or LPS-stimulated PMDC11 cells in a mixed leukocyte culture. CD8 T cells positive for the WT1 tetramer were generated following 3-4 weeks of culture and CD8(+)/WT1 tetramer+ T cells were markedly increased in caTLR4-PMDC11-primed CD8(+) T cell culture compared with PMDC11 or LPS-stimulated PMDC11-primed CD8(+) T

  8. Minimizing the inhibitory effect of neutralizing antibody for efficient gene expression in the liver with adeno-associated virus 8 vectors.

    PubMed

    Mimuro, Jun; Mizukami, Hiroaki; Hishikawa, Shuji; Ikemoto, Tomokazu; Ishiwata, Akira; Sakata, Asuka; Ohmori, Tsukasa; Madoiwa, Seiji; Ono, Fumiko; Ozawa, Keiya; Sakata, Yoichi

    2013-02-01

    Neutralizing antibodies (NAbs) against adeno-associated viruses (AAVs) are known to interfere with AAV vector-mediated gene transfer by intravascular delivery. Evading the inhibitory effects of antibodies against AAV vectors is necessary for efficient transfer of therapeutic genes clinically. For this purpose, we tested the efficacy of saline flushing in order to avoid contact of vectors with NAbs present in blood. Direct injection of the AAV8 vector carrying the factor IX (FIX) gene into the portal vein of macaques using saline flushing achieved transgene-derived FIX expression (4.7 ± 2.10-10.1 ± 5.45% of normal human FIX concentration) in the presence of NAbs. Expression was as efficient as that (5.43 ± 2.59-12.68 ± 4.83%) in macaques lacking NAbs. We next tested the efficacy of saline flushing using less invasive balloon catheter-guided injection. This approach also resulted in efficient expression of transgene-derived FIX (2.5 ± 1.06-9.0 ± 2.37%) in the presence of NAbs (14-56× dilutions). NAbs at this range of titers reduced the efficiency of transduction in the macaque liver by 100-fold when the same vector was injected into mesenteric veins without balloon catheters. Our results suggest that portal vein-directed vector delivery strategies with flushing to remove blood are efficacious for minimizing the inhibitory effect of anti-AAV antibodies.

  9. AAV2-mediated CLN2 gene transfer to rodent and non-human primate brain results in long-term TPP-I expression compatible with therapy for LINCL.

    PubMed

    Sondhi, D; Peterson, D A; Giannaris, E L; Sanders, C T; Mendez, B S; De, B; Rostkowski, A B; Blanchard, B; Bjugstad, K; Sladek, J R; Redmond, D E; Leopold, P L; Kaminsky, S M; Hackett, N R; Crystal, R G

    2005-11-01

    Late infantile neuronal ceroid lipofuscinosis (LINCL) is a fatal, autosomal recessive disease resulting from mutations in the CLN2 gene with consequent deficiency in its product tripeptidyl peptidase I (TPP-I). In the central nervous system (CNS), the deficiency of TPP-I results in the accumulation of proteins in lysosomes leading to a loss of neurons causing progressive neurological decline, and death by ages 10-12 years. To establish the feasibility of treating the CNS manifestations of LINCL by gene transfer, an adeno-associated virus 2 (AAV2) vector encoding the human CLN2 cDNA (AAV2CUhCLN2) was assessed for its ability to establish therapeutic levels of TPP-I in the brain. In vitro studies demonstrated that AAV2CUhCLN2 expressed CLN2 and produced biologically active TPP-I protein of which a fraction was secreted as the pro-TPP-I precursor and was taken up by nontransduced cells (ie, cross-correction). Following AAV2-mediated CLN2 delivery to the rat striatum, enzymatically active TPP-I protein was detected. By immunohistochemistry TPP-I protein was detected in striatal neurons (encompassing nearly half of the target structure) for up to 18 months. At the longer time points following striatal administration, TPP-I-positive cell bodies were also observed in the substantia nigra, frontal cerebral cortex and thalamus of the injected hemisphere, and the frontal cerebral cortex of the noninjected hemisphere. These areas of the brain contain neurons that extend axons into the striatum, suggesting that CNS circuitry may aid the distribution of the gene product. To assess the feasibility of human CNS delivery, a total of 3.6 x 10(11) particle units of AAV2CUhCLN2 was administered to the CNS of African green monkeys in 12 distributed doses. Assessment at 5 and 13 weeks demonstrated widespread detection of TPP-I in neurons, but not glial cells, at all regions of injection. The distribution of TPP-I-positive cells was similar between the two time points at all injection

  10. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression

    SciTech Connect

    Zhong Li; Li Baozheng; Jayandharan, Giridhararao; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Herzog, Roland W.

    2008-11-25

    We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, their transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by {approx} 68% and {approx} 74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which results from ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy.

  11. Computational model of a vector-mediated epidemic

    NASA Astrophysics Data System (ADS)

    Dickman, Adriana Gomes; Dickman, Ronald

    2015-05-01

    We discuss a lattice model of vector-mediated transmission of a disease to illustrate how simulations can be applied in epidemiology. The population consists of two species, human hosts and vectors, which contract the disease from one another. Hosts are sedentary, while vectors (mosquitoes) diffuse in space. Examples of such diseases are malaria, dengue fever, and Pierce's disease in vineyards. The model exhibits a phase transition between an absorbing (infection free) phase and an active one as parameters such as infection rates and vector density are varied.

  12. rAAV vector product characterization and stability studies.

    PubMed

    Snyder, Richard O; Audit, Muriel; Francis, Joyce D

    2011-01-01

    Recombinant adeno-associated viral (rAAV) vectors mediate the safe and long-term correction of genetic diseases following a single administration. Preclinical studies in animal models and human trials have shown rAAV vector persistence and safety. In some trials, sustained or transient transgene expression has been demonstrated in humans treated for alpha-1 antitrypsin deficiency, LPL deficiency, hemophilia B and cystic fibrosis, and sustained correction of inherited blindness has been reported by three groups. For human use, rAAV vectors are manufactured and tested in compliance with current Good Manufacturing Practices as outlined in the Code of Federal Regulations (21CFR) or European Good Manufacturing Practices (Eudralex, Volume 4, GMP Guidelines, 2003/94/CE and 91/356/EEC). Manufacturing control, as well as product quality is evaluated by quality control testing and all manufacturing, facilities, and testing activities are reviewed by the quality assurance department. In-process specifications are set and in-process testing is conducted to confirm that the manufacturing process is controlled, aseptic, and performs consistently. Final product is tested to ensure release specifications are met for identity, safety, purity, potency, and stability.

  13. Life-Long Correction of Hyperbilirubinemia with a Neonatal Liver-Specific AAV-Mediated Gene Transfer in a Lethal Mouse Model of Crigler–Najjar Syndrome

    PubMed Central

    Bortolussi, Giulia; Zentillin, Lorena; Vaníkova, Jana; Bockor, Luka; Bellarosa, Cristina; Mancarella, Antonio; Vianello, Eleonora; Tiribelli, Claudio; Giacca, Mauro; Vitek, Libor

    2014-01-01

    Abstract Null mutations in the UGT1A1 gene result in Crigler–Najjar syndrome type I (CNSI), characterized by severe hyperbilirubinemia and constant risk of developing neurological damage. Phototherapy treatment lowers plasma bilirubin levels, but its efficacy is limited and liver transplantation is required. To find alternative therapies, we applied AAV liver-specific gene therapy to a lethal mouse model of CNSI. We demonstrated that a single neonatal hUGT1A1 gene transfer was successful and the therapeutic effect lasted up to 17 months postinjection. The therapeutic effect was mediated by the presence of transcriptionally active double-stranded episomes. We also compared the efficacy of two different gene therapy approaches: liver versus skeletal muscle transgene expression. We observed that 5–8% of normal liver expression and activity levels were sufficient to significantly reduce bilirubin levels and maintain lifelong low plasma bilirubin concentration (3.1±1.5 mg/dl). In contrast, skeletal muscle was not able to efficiently lower bilirubin (6.4±2.0 mg/dl), despite 20–30% of hUgt1a1 expression levels, compared with normal liver. We propose that this remarkable difference in gene therapy efficacy could be related to the absence of the Mrp2 and Mrp3 transporters of conjugated bilirubin in muscle. Taken together, our data support the concept that liver is the best organ for efficient and long-term CNSI gene therapy, and suggest that the use of extra-hepatic tissues should be coupled to the presence of bilirubin transporters. PMID:25072305

  14. Dynamics of antigen presentation to transgene product-specific CD4+ T cells and of Treg induction upon hepatic AAV gene transfer

    PubMed Central

    Perrin, George Q; Zolotukhin, Irene; Sherman, Alexandra; Biswas, Moanaro; de Jong, Ype P; Terhorst, Cox; Davidoff, Andrew M; Herzog, Roland W

    2016-01-01

    The tolerogenic hepatic microenvironment impedes clearance of viral infections but is an advantage in viral vector gene transfer, which often results in immune tolerance induction to transgene products. Although the underlying tolerance mechanism has been extensively studied, our understanding of antigen presentation to transgene product-specific CD4+ T cells remains limited. To address this, we administered hepatotropic adeno-associated virus (AAV8) vector expressing cytoplasmic ovalbumin (OVA) into wt mice followed by adoptive transfer of transgenic OVA-specific T cells. We find that that the liver-draining lymph nodes (celiac and portal) are the major sites of MHC II presentation of the virally encoded antigen, as judged by in vivo proliferation of DO11.10 CD4+ T cells (requiring professional antigen-presenting cells, e.g., macrophages) and CD4+CD25+FoxP3+ Treg induction. Antigen presentation in the liver itself contributes to activation of CD4+ T cells egressing from the liver. Hepatic-induced Treg rapidly disseminate through the systemic circulation. By contrast, a secreted OVA transgene product is presented in multiple organs, and OVA-specific Treg emerge in both the thymus and periphery. In summary, liver draining lymph nodes play an integral role in hepatic antigen presentation and peripheral Treg induction, which results in systemic regulation of the response to viral gene products. PMID:27933310

  15. Correction of Murine Diabetic Hyperglycaemia With A Single Systemic Administration of An AAV2/8 Vector Containing A Novel Codon Optimized Human Insulin Gene.

    PubMed

    Gan, Shu Uin; Notaridou, Maria; Fu, Zhen Ying; Lee, Kok Onn; Sia, Kian Chuan; Nathwani, Amit Chunilal; Della Peruta, Marco; Calne, Roy Yorke

    2016-01-01

    We report the correction of hyperglycemia of STZ induced diabetic mice using one intravenous systemic administration of a single stranded serotype 8 pseudotyped adeno-associated virus (ssAAV2/8) vector encoding the human proinsulin gene under a constitutive liver specific promoter. In vivo dose titration experiments were carried out and we identified an optimal range that achieved maintenance of euglycaemia or a mild diabetic condition for at least 9 months and ongoing to beyond 1 year for some animals, accompanied by human C-peptide secretion and weight gain. Further DNA codon optimization of the insulin gene construct resulted in approximately 3-10 times more human C-peptide secreted in the blood of codon optimized treated animals thereby reducing the number of vector particles required to achieve the same extent of reduction in blood glucose levels as the non-codon optimized vector. The constitutive secretion of insulin achieved with a single administration of the vector could be of therapeutic value for some diabetic patients.

  16. Alpha1-antitrypsin gene therapy modulates cellular immunity and efficiently prevents type 1 diabetes in nonobese diabetic mice.

    PubMed

    Lu, Yuanqing; Tang, Mei; Wasserfall, Clive; Kou, Zhongchen; Campbell-Thompson, Martha; Gardemann, Thomas; Crawford, James; Atkinson, Mark; Song, Sihong

    2006-06-01

    An imbalance of the immune-regulatory pathways plays an important role in the development of type 1 diabetes. Therefore, immunoregulatory and antiinflammatory strategies hold great potential for the prevention of this autoimmune disease. Studies have demonstrated that two serine proteinase inhibitors, alpha1-antitrypsin (AAT) and elafin, act as potent antiinflammatory agents. In the present study, we sought to develop an efficient gene therapy approach to prevent type 1 diabetes. Cohorts of 4-week-old female nonobese diabetic (NOD) mice were injected intramuscularly with rAAV1-CB-hAAT, rAAV1-CB-hElafin, or saline. AAV1 vector mediated sustained high levels of transgene expression, sufficient to overcome a humoral immune response against hAAT. AAT gene therapy, contrary to elafin and saline, was remarkably effective in preventing type 1 diabetes. T cell receptor spectratyping indicated that AAT gene therapy altered T cell repertoire diversity in splenocytes from NOD mice. Adoptive transfer experiments demonstrated that AAT gene therapy attenuated cellular immunity associated with beta cell destruction. This study demonstrates that AAT gene therapy attenuates cell-mediated autoimmunity, alters the T cell receptor repertoire, and efficiently prevents type 1 diabetes in the NOD mouse model. These results strongly suggest that rAAV1-mediated AAT gene therapy may be useful as a novel approach to prevent type 1 diabetes.

  17. Development of Optimized AAV Serotype Vectors for High-Efficiency Transduction at Further Reduced Doses.

    PubMed

    Ling, Chen; Li, Baozheng; Ma, Wenqin; Srivastava, Arun

    2016-08-01

    We have described the development of capsid-modified next-generation AAV vectors for both AAV2 and AAV3 serotypes, in which specific surface-exposed tyrosine (Y), serine (S), threonine (T), and lysine (K) residues on viral capsids were modified to achieve high-efficiency transduction at lower doses. We have also described the development of genome-modified AAV vectors, in which the transcriptionally inactive, single-stranded AAV genome was modified to achieve improved transgene expression. Here, we describe that combination of capsid modifications and genome modifications leads to the generation of optimized AAV serotype vectors, which transduce cells and tissues more efficiently, both in vitro and in vivo, at ∼20-30-fold reduced doses. These studies have significant implications in the potential use of the optimized AAV serotype vectors in human gene therapy.

  18. Enhanced efficacy from gene therapy in Pompe disease using coreceptor blockade.

    PubMed

    Han, Sang-oh; Li, Songtao; Brooks, Elizabeth D; Masat, Elisa; Leborgne, Christian; Banugaria, Suhrad; Bird, Andrew; Mingozzi, Federico; Waldmann, Herman; Koeberl, Dwight

    2015-01-01

    Enzyme replacement therapy (ERT) is the standard-of-care treatment of Pompe disease, a lysosomal storage disorder caused by deficiency of acid α-glucosidase (GAA). One limitation of ERT with recombinant human (rh) GAA is antibody formation against GAA. Similarly, in adeno-associated virus (AAV) vector-mediated gene transfer for Pompe disease, development of antibodies against the GAA transgene product and the AAV vector prevents therapeutic efficacy and vector readministration, respectively. Here a nondepleting anti-CD4 monoclonal antibody (mAb) was administrated intravenously prior to administration of an AAV2/9 vector encoding GAA to suppress anti-GAA responses, leading to a substantial reduction of anti-GAA immunoglobulins, including IgG1, IgG2a, IgG2b, IgG2c, and IgG3. Transduction efficiency in liver with a subsequent AAV2/8 vector was massively improved by the administration of anti-CD4 mAb with the initial AAV2/9 vector, indicating a spread of benefit derived from control of the immune response to the first AAV2/9 vector. Anti-CD4 mAb along with AAV2/9-CBhGAApA significantly increased GAA activity in heart and skeletal muscles along with a significant reduction of glycogen accumulation. Taken together, these data demonstrated that the addition of nondepleting anti-CD4 mAb with gene therapy controls humoral immune responses to both vector and transgene, resulting in clear therapeutic benefit in mice with Pompe disease.

  19. Enhanced Efficacy from Gene Therapy in Pompe Disease Using Coreceptor Blockade

    PubMed Central

    Han, Sang-oh; Li, Songtao; Brooks, Elizabeth D.; Masat, Elisa; Leborgne, Christian; Banugaria, Suhrad; Bird, Andrew; Mingozzi, Federico; Waldmann, Herman

    2015-01-01

    Abstract Enzyme replacement therapy (ERT) is the standard-of-care treatment of Pompe disease, a lysosomal storage disorder caused by deficiency of acid α-glucosidase (GAA). One limitation of ERT with recombinant human (rh) GAA is antibody formation against GAA. Similarly, in adeno-associated virus (AAV) vector-mediated gene transfer for Pompe disease, development of antibodies against the GAA transgene product and the AAV vector prevents therapeutic efficacy and vector readministration, respectively. Here a nondepleting anti-CD4 monoclonal antibody (mAb) was administrated intravenously prior to administration of an AAV2/9 vector encoding GAA to suppress anti-GAA responses, leading to a substantial reduction of anti-GAA immunoglobulins, including IgG1, IgG2a, IgG2b, IgG2c, and IgG3. Transduction efficiency in liver with a subsequent AAV2/8 vector was massively improved by the administration of anti-CD4 mAb with the initial AAV2/9 vector, indicating a spread of benefit derived from control of the immune response to the first AAV2/9 vector. Anti-CD4 mAb along with AAV2/9-CBhGAApA significantly increased GAA activity in heart and skeletal muscles along with a significant reduction of glycogen accumulation. Taken together, these data demonstrated that the addition of nondepleting anti-CD4 mAb with gene therapy controls humoral immune responses to both vector and transgene, resulting in clear therapeutic benefit in mice with Pompe disease. PMID:25382056

  20. AAV2/1 CD74 Gene Transfer Reduces β-amyloidosis and Improves Learning and Memory in a Mouse Model of Alzheimer's Disease.

    PubMed

    Kiyota, Tomomi; Zhang, Gang; Morrison, Christine M; Bosch, Megan E; Weir, Robert A; Lu, Yaman; Dong, Weiguo; Gendelman, Howard E

    2015-11-01

    Modulation of the amyloid-β (Aβ) trafficking pathway heralds a new therapeutic frontier for Alzheimer's disease (AD). As CD74 binds to the amyloid-β precursor protein (APP) and can suppresses Aβ processing, we investigated whether recombinant adeno-associated virus (AAV) delivery of CD74 could reduce Aβ production and affect disease outcomes. This idea was tested in a mouse AD model. Cotransduction of AAV-tetracycline-controlled transactivator (tTA) and AAV-tet-response element (TRE)-CD74 resulted in CD74 expression, reduced Aβ production in mouse neurons containing the human APP with familial AD-linked mutations. Stereotaxic injection of AAV-TRE-GFP or CD74 into the hippocampi of an AD mouse, defined as a TgCRND8 × calmodulin-dependent protein kinase II derived promoter-tTA double-transgenic, reduced Aβ loads and pyramidal neuronal Aβ accumulation in the hippocampus. Immunofluorescent studies showed that APP colocalization with Lamp1 was increased in CD74-expressing neurons. Moreover, Morris water maze tasks demonstrated that mice treated with AAV-TRE-CD74 showed improved learning and memory compared to AAV-TRE-GFP control animals. These results support the idea that CD74-induced alteration of Aβ processing could improve AD-associated memory deficits as shown in mouse models of human disease.

  1. Adeno-associated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integration site in human DNA.

    PubMed Central

    Weitzman, M D; Kyöstiö, S R; Kotin, R M; Owens, R A

    1994-01-01

    AAV is unique among eukaryotic viruses in the ability of its DNA to integrate preferentially into a specific region of the human genome. Understanding AAV integration may aid in developing gene therapy systems with predictable integration sites. Using a gel mobility-shift assay, we have identified a DNA sequence within the AAV integration locus on human chromosome 19 which is specifically bound by the AAV Rep78 and Rep68 proteins. This Rep recognition sequence is a GCTC repeating motif very similar to sequences within the inverted terminal repeats of the AAV genome which are also bound by Rep78 and Rep68. Cloned oligonucleotides containing the recognition sequence can direct specific binding by Rep proteins. Binding assays with mutant Rep proteins show that the amino-terminal portion of Rep78 and Rep68 can direct binding to either the AAV terminal repeat hairpin DNA or chromosome 19. This human genomic DNA can be complexed with AAV DNA by Rep proteins as demonstrated by a dual-label (32P/biotin) assay. These results suggest a role for Rep in targeting viral integration. Images PMID:8016070

  2. Neutralizing Antibodies Against AAV Serotypes 1, 2, 6, and 9 in Sera of Commonly Used Animal Models

    PubMed Central

    Rapti, Kleopatra; Louis-Jeune, Vedell; Kohlbrenner, Erik; Ishikawa, Kiyotake; Ladage, Dennis; Zolotukhin, Sergei; Hajjar, Roger J; Weber, Thomas

    2012-01-01

    Adeno-associated virus (AAV)-based vectors are promising gene delivery vehicles for human gene transfer. One significant obstacle to AAV-based gene therapy is the high prevalence of neutralizing antibodies in humans. Until now, it was thought that, except for nonhuman primates, pre-existing neutralizing antibodies are not a problem in small or large animal models for gene therapy. Here, we demonstrate that sera of several animal models of cardiovascular diseases harbor pre-existing antibodies against the cardiotropic AAV serotypes AAV1, AAV6, and AAV9 and against AAV2. The neutralizing antibody titers vary widely both between species and between serotypes. Of all species tested, rats displayed the lowest levels of neutralizing antibodies. Surprisingly, naive mice obtained directly from commercial vendors harbored neutralizing antibodies. Of the large animal models tested, the neutralization of AAV6 transduction by dog sera was especially pronounced. Sera of sheep and rabbits showed modest neutralization of AAV transduction whereas porcine sera strongly inhibited transduction by all AAV serotypes and displayed the largest variation between individual animals. Importantly, neutralizing antibody titers as low as 1/4 completely prevented in vivo transduction by AAV9 in rats. Our results suggest that prescreening of animals for neutralizing antibodies will be important for future gene transfer experiments in these animal models. PMID:21915102

  3. OneBac 2.0: Sf9 Cell Lines for Production of AAV5 Vectors with Enhanced Infectivity and Minimal Encapsidation of Foreign DNA

    PubMed Central

    Mietzsch, Mario; Casteleyn, Vincent; Weger, Stefan; Zolotukhin, Sergei; Heilbronn, Regine

    2015-01-01

    Scalable production of recombinant adeno-associated virus vectors (rAAV) in baculovirus-infected Sf9 cells yields high burst sizes but variable infectivity rates per packaged AAV vector genome depending on the chosen serotype. Infectivity rates are particularly low for rAAV5 vectors, based on the genetically most divergent AAV serotype. In this study we describe key improvements of the OneBac system for the generation of rAAV5 vectors, whose manufacturing has been unsatisfactory in all current insect cell-based production systems. The Sf9 cell-based expression strategy for AAV5 capsid proteins was modified to enhance relative AAV5 VP1 levels. This resulted in a 100-fold boost of infectivity per genomic AAV5 particle with undiminished burst sizes per producer cell. Furthermore, the issue of collateral packaging of helper DNA into AAV capsids was approached. By modifications of the AAV rep and cap expression constructs used for the generation of stable Sf9 cell lines, collateral packaging of helper DNA sequences during rAAV vector production was dramatically reduced down to 0.001% of packaged rAAV genomes, while AAV5 burst sizes and infectivity rates were maintained. OneBac 2.0 represents the first insect cell-based scalable production system for high per-particle AAV5 infectivity rates combined with minimal collateral packaging of helper DNA, allowing the manufacturing of safe AAV5-based gene therapies for clinical application. PMID:26134901

  4. OneBac 2.0: Sf9 Cell Lines for Production of AAV5 Vectors with Enhanced Infectivity and Minimal Encapsidation of Foreign DNA.

    PubMed

    Mietzsch, Mario; Casteleyn, Vincent; Weger, Stefan; Zolotukhin, Sergei; Heilbronn, Regine

    2015-10-01

    Scalable production of recombinant adeno-associated virus vectors (rAAV) in baculovirus-infected Sf9 cells yields high burst sizes but variable infectivity rates per packaged AAV vector genome depending on the chosen serotype. Infectivity rates are particularly low for rAAV5 vectors, based on the genetically most divergent AAV serotype. In this study we describe key improvements of the OneBac system for the generation of rAAV5 vectors, whose manufacturing has been unsatisfactory in all current insect cell-based production systems. The Sf9 cell-based expression strategy for AAV5 capsid proteins was modified to enhance relative AAV5 VP1 levels. This resulted in a 100-fold boost of infectivity per genomic AAV5 particle with undiminished burst sizes per producer cell. Furthermore, the issue of collateral packaging of helper DNA into AAV capsids was approached. By modifications of the AAV rep and cap expression constructs used for the generation of stable Sf9 cell lines, collateral packaging of helper DNA sequences during rAAV vector production was dramatically reduced down to 0.001% of packaged rAAV genomes, while AAV5 burst sizes and infectivity rates were maintained. OneBac 2.0 represents the first insect cell-based scalable production system for high per-particle AAV5 infectivity rates combined with minimal collateral packaging of helper DNA, allowing the manufacturing of safe AAV5-based gene therapies for clinical application.

  5. AAV-mediated photoreceptor transduction of the pig cone-enriched retina

    PubMed Central

    Mussolino, C; della Corte, M; Rossi, S; Viola, F; Di Vicino, U; Marrocco, E; Neglia, S; Doria, M; Testa, F; Giovannoni, R; Crasta, M; Giunti, M; Villani, E; Lavitrano, M; Bacci, M L; Ratiglia, R; Simonelli, F; Auricchio, A; Surace, E M

    2011-01-01

    Recent success in clinical trials supports the use of adeno-associated viral (AAV) vectors for gene therapy of retinal diseases caused by defects in the retinal pigment epithelium (RPE). In contrast, evidence of the efficacy of AAV-mediated gene transfer to retinal photoreceptors, the major site of inherited retinal diseases, is less robust. In addition, although AAV-mediated RPE transduction appears efficient, independently of the serotype used and species treated, AAV-mediated photoreceptor gene transfer has not been systematically investigated thus so far in large animal models, which also may allow identifying relevant species-specific differences in AAV-mediated retinal transduction. In the present study, we used the porcine retina, which has a high cone/rod ratio. This feature allows to properly evaluate both cone and rod photoreceptors transduction and compare the transduction characteristics of AAV2/5 and 2/8, the two most efficient AAV vector serotypes for photoreceptor targeting. Here we show that AAV2/5 and 2/8 transduces both RPE and photoreceptors. AAV2/8 infects and transduces photoreceptor more efficiently than AAV2/5, similarly to what we have observed in the murine retina. The use of the photoreceptor-specific rhodopsin promoter restricts transgene expression to porcine rods and cones, and results in photoreceptor transduction levels similar to those obtained with the ubiquitous promoters tested. Finally, immunological, toxicological and biodistribution studies support the safety of AAV subretinal administration to the large porcine retina. The data presented here on AAV-mediated transduction of the cone-enriched porcine retina may affect the development of gene-based therapies for rare and common severe photoreceptor diseases. PMID:21412286

  6. Oversized AAV transductifon is mediated via a DNA-PKcs-independent, Rad51C-dependent repair pathway.

    PubMed

    Hirsch, Matthew L; Li, Chengwen; Bellon, Isabella; Yin, Chaoying; Chavala, Sai; Pryadkina, Marina; Richard, Isabelle; Samulski, Richard Jude

    2013-12-01

    A drawback of gene therapy using adeno-associated virus (AAV) is the DNA packaging restriction of the viral capsid (<4.7 kb). Recent observations demonstrate oversized AAV genome transduction through an unknown mechanism. Herein, AAV production using an oversized reporter (6.2 kb) resulted in chloroform and DNase-resistant particles harboring distinct "fragment" AAV (fAAV) genomes (5.0, 2.4, and 1.6 kb). Fractionation experiments determined that only the larger "fragments" mediated transduction in vitro, and relatively efficient transduction was also demonstrated in the muscle, the eye, and the liver. In contrast with concatemerization-dependent large-gene delivery by split AAV, fAAV transduction is independent of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) in vitro and in vivo while disproportionately reliant on the DNA strand-annealing protein Rad51C. Importantly, fAAV's unique dependence on DNA repair proteins, compared with intact AAV, strongly suggests that the majority of oversized AAV transduction is mediated by fragmented genomes. Although fAAV transduction is less efficient than intact AAV, it is enhanced fourfold in muscle and sevenfold in the retina compared with split AAV transduction. Furthermore, fAAV carrying codon-optimized therapeutic dysferlin cDNA in a 7.5 kb expression cassette restored dysferlin levels in a dystrophic model. Collectively, oversized AAV genome transduction requires unique DNA repair pathways and offers an alternative, more efficient strategy for large-gene therapy.

  7. Efficacy of codelivery of dual AAV2/5 vectors in the murine retina and hippocampus.

    PubMed

    Palfi, Arpad; Chadderton, Naomi; McKee, Alex G; Blanco Fernandez, Alfonso; Humphries, Peter; Kenna, Paul F; Farrar, G Jane

    2012-08-01

    Recombinant adeno-associated virus (AAV) represents an efficient system for neuronal transduction. However, a potential drawback of AAV is its restricted packaging capacity of approximately 5 kb. To bypass this limitation, a number of dual- and triple-vector strategies divide the transgene(s) between two or three AAVs. The success of these approaches relies directly on efficient cotransduction of the component AAVs. Although proof of concept for these stratagems has been demonstrated, the underlying cotransduction rate has not been analyzed quantitatively. In this study, cotransduction efficiencies in both retina and hippocampus have been investigated, using two reporter AAVs expressing either a green (GFP) or red (DsR) fluorescent protein. Transduction efficiencies were monitored via microscopy, flow cytometry, and quantitative PCR. After viral transduction with 1.5×10(9) viral particles of each of the reporter AAVs, approximately one-third of the retinal cells expressed one or both transgenes at levels detectable by native fluorescence. Notably, the majority of the remaining retinal cells were also transduced and expressed the reporters at lower levels, which were detectable only by immunolabeling. Flow cytometric analysis demonstrated cotransduction rates of up to 55% with the two reporter AAVs in retinal cells. Modifying the ratio of the two coadministered AAVs resulted in altered mRNA expression levels of the two reporter genes in cotransduced cell populations. The study suggests that codelivery of AAV is an efficient means of expanding the therapeutic application of AAV in neurons.

  8. IL12-mediated liver inflammation reduces the formation of AAV transcriptionally active forms but has no effect over preexisting AAV transgene expression.

    PubMed

    Gil-Fariña, Irene; Di Scala, Marianna; Vanrell, Lucia; Olagüe, Cristina; Vales, Africa; High, Katherine A; Prieto, Jesus; Mingozzi, Federico; Gonzalez-Aseguinolaza, Gloria

    2013-01-01

    Recombinant adenoassociated viral vectors (rAAV) have proven to be excellent candidates for gene therapy clinical applications. Recent results showed that cellular immunity to AAV represents a major challenge facing the clinical use of systemic administration of these vectors. Interestingly, no preclinical animal model has previously fully reproduced the clinical findings. The aim of the present work was to enhance the T cell immune response against AAV capsid in mice by the administration of a rAAV expressing the immunostimulatory cytokine IL-12. Our results indicate that although IL-12 expression enhanced the AAV capsid-specific immune response it failed to eliminate transduced hepatocytes and long-term expression was achieved. We found that AAV-mediated transgene expression is altered by IL-12-induced liver inflammation. However, IL-12 expression has no effect over preexisting AAV-mediated transgene expression. IL-12 down-regulates AAV mediated transgene expression via induction of IFN-γ production by NK and T cells, but without altering the transduction efficiency measured by viral genomes. Our results indicate that liver inflammation affects the formation of transcriptionally active AAV vector genomes through an unknown mechanism that can be avoided by the use of DNA-demethylating or anti-inflammatory agents.

  9. Depletion of AADC activity in caudate nucleus and putamen of Parkinson’s disease patients; implications for ongoing AAV2-AADC gene therapy trial

    PubMed Central

    Ciesielska, Agnieszka; Samaranch, Lluis; San Sebastian, Waldy; Dickson, Dennis W.; Goldman, Samuel; Forsayeth, John; Bankiewicz, Krystof S.

    2017-01-01

    In Parkinson’s disease (PD), aromatic L-amino acid decarboxylase (AADC) is the rate-limiting enzyme in the conversion of L-DOPA (Sinemet) to dopamine (DA). Previous studies in PD animal models demonstrated that lesion of dopaminergic neurons is associated with profound loss of AADC activity in the striatum, blocking efficient conversion of L-DOPA to DA. Relatively few studies have directly analyzed AADC in PD brains. Thus, the aim of this study was to gain a better understanding of regional changes in AADC activity, DA, serotonin and their monoamine metabolites in the striatum of PD patients and experimentally lesioned animals (rat and MPTP-treated nonhuman primate, NHP). Striatal AADC activity was determined post mortem in neuropathologically confirmed PD subjects, animal models and controls. A regional analysis was performed for striatal AADC activity and monoamine levels in NHP tissue. Interestingly, analysis of putaminal AADC activity revealed that control human striatum contained much less AADC activity than rat and NHP striata. Moreover, a dramatic loss of AADC activity in PD striatum compared to controls was detected. In MPTP-treated NHP, caudate nucleus was almost as greatly affected as putamen, although mean DA turnover was higher in caudate nucleus. Similarly, DA and DA metabolites were dramatically reduced in different regions of PD brains, including caudate nucleus, whereas serotonin was relatively spared. After L-DOPA administration in MPTP-treated NHP, very poor conversion to DA was detected, suggesting that AADC in NHP nigrostriatal fibers is mainly responsible for L-DOPA to DA conversion. These data support further the rationale behind viral gene therapy with AAV2-hAADC to restore AADC levels in putamen and suggest further the advisability of expanding vector delivery to include coverage of anterior putamen and the caudate nucleus. PMID:28166239

  10. Chondroitin Sulfate is the Primary Receptor for a Peptide-Modified AAV That Targets Brain Vascular Endothelium In Vivo.

    PubMed

    Geoghegan, James C; Keiser, Nicholas W; Okulist, Anna; Martins, Inês; Wilson, Matthew S; Davidson, Beverly L

    2014-10-14

    Recently, we described a peptide-modified AAV2 vector (AAV-GMN) containing a capsid-displayed peptide that directs in vivo brain vascular targeting and transduction when delivered intravenously. In this study, we sought to identify the receptor that mediates transduction by AAV-GMN. We found that AAV-GMN, but not AAV2, readily transduces the murine brain endothelial cell line bEnd.3, a result that mirrors previously observed in vivo transduction profiles of brain vasculature. Studies in vitro revealed that the glycosaminoglycan, chondroitin sulfate C, acts as the primary receptor for AAV-GMN. Unlike AAV2, chondroitin sulfate expression is required for cell transduction by AAV-GMN, and soluble chondroitin sulfate C can robustly inhibit AAV-GMN transduction of brain endothelial cells. Interestingly, AAV-GMN retains heparin-binding properties, though in contrast to AAV2, it poorly transduces cells that express heparan sulfate but not chondroitin sulfate, indicating that the peptide insertion negatively impacts heparan-mediated transduction. Lastly, when delivered directly, this modified virus can transduce multiple brain regions, indicating that the potential of AAV-GMN as a therapeutic gene delivery vector for central nervous system disorders is not restricted to brain vascular endothelium.

  11. Proteasome Inhibitors Decrease AAV2 Capsid derived Peptide Epitope Presentation on MHC Class I Following Transduction

    PubMed Central

    Finn, Jonathan D; Hui, Daniel; Downey, Harre D; Dunn, Danielle; Pien, Gary C; Mingozzi, Federico; Zhou, Shangzhen; High, Katherine A

    2009-01-01

    Adeno-associated viral (AAV) vectors are an extensively studied and highly used vector platform for gene therapy applications. We hypothesize that in the first clinical trial using AAV to treat hemophilia B, AAV capsid proteins were presented on the surface of transduced hepatocytes, resulting in clearance by antigen-specific CD8+ T cells and consequent loss of therapeutic transgene expression. It has been previously shown that proteasome inhibitors can have a dramatic effect on AAV transduction in vitro and in vivo. Here, we describe using the US Food and Drug Administration-approved proteasome inhibitor, bortezomib, to decrease capsid antigen presentation on hepatocytes in vitro, whereas at the same time, enhancing gene expression in vivo. Using an AAV capsid-specific T-cell reporter (TCR) line to analyze the effect of proteasome inhibitors on antigen presentation, we demonstrate capsid antigen presentation at low multiplicities of infection (MOIs), and inhibition of antigen presentation at pharmacologic levels of bortezomib. We also demonstrate that bortezomib can enhance Factor IX (FIX) expression from an AAV2 vector in mice, although the same effect was not observed for AAV8 vectors. A pharmacological agent that can enhance AAV transduction, decrease T-cell activation/proliferation, and decrease capsid antigen presentation would be a promising solution to obstacles to successful AAV-mediated, liver-directed gene transfer in humans. PMID:19904235

  12. Preclinical toxicity evaluation of AAV for pain: evidence from human AAV studies and from the pharmacology of analgesic drugs.

    PubMed

    Pleticha, Josef; Heilmann, Lukas F; Evans, Christopher H; Asokan, Aravind; Samulski, Richard Jude; Beutler, Andreas S

    2014-09-02

    Gene therapy with adeno-associated virus (AAV) has advanced in the last few years from promising results in animal models to >100 clinical trials (reported or under way). While vector availability was a substantial hurdle a decade ago, innovative new production methods now routinely match the scale of AAV doses required for clinical testing. These advances may become relevant to translational research in the chronic pain field. AAV for pain targeting the peripheral nervous system was proven to be efficacious in rodent models several years ago, but has not yet been tested in humans. The present review addresses the steps needed for translation of AAV for pain from the bench to the bedside focusing on pre-clinical toxicology. We break the potential toxicities into three conceptual categories of risk: First, risks related to the delivery procedure used to administer the vector. Second, risks related to AAV biology, i.e., effects of the vector itself that may occur independently of the transgene. Third, risks related to the effects of the therapeutic transgene. To identify potential toxicities, we consulted the existing evidence from AAV gene therapy for other nervous system disorders (animal toxicology and human studies) and from the clinical pharmacology of conventional analgesic drugs. Thereby, we identified required preclinical studies and charted a hypothetical path towards a future phase I/II clinical trial in the oncology-palliative care setting.

  13. Preclinical toxicity evaluation of AAV for pain: evidence from human AAV studies and from the pharmacology of analgesic drugs

    PubMed Central

    2014-01-01

    Gene therapy with adeno-associated virus (AAV) has advanced in the last few years from promising results in animal models to >100 clinical trials (reported or under way). While vector availability was a substantial hurdle a decade ago, innovative new production methods now routinely match the scale of AAV doses required for clinical testing. These advances may become relevant to translational research in the chronic pain field. AAV for pain targeting the peripheral nervous system was proven to be efficacious in rodent models several years ago, but has not yet been tested in humans. The present review addresses the steps needed for translation of AAV for pain from the bench to the bedside focusing on pre-clinical toxicology. We break the potential toxicities into three conceptual categories of risk: First, risks related to the delivery procedure used to administer the vector. Second, risks related to AAV biology, i.e., effects of the vector itself that may occur independently of the transgene. Third, risks related to the effects of the therapeutic transgene. To identify potential toxicities, we consulted the existing evidence from AAV gene therapy for other nervous system disorders (animal toxicology and human studies) and from the clinical pharmacology of conventional analgesic drugs. Thereby, we identified required preclinical studies and charted a hypothetical path towards a future phase I/II clinical trial in the oncology-palliative care setting. PMID:25183392

  14. [Progress on study of achromatopsia and targeted gene therapy].

    PubMed

    Dai, Xu-feng; Pang, Ji-jing

    2012-08-01

    Achromatopsia is an early onset retinal dystrophy that causes severe visual impairment. To date, four genes have been found to be implicated in achromatopsia-associated mutations: guanine nucleotide-binding protein (GNAT2), cyclic nucleotide-gated channel alpha-3 (CNGA3), cyclic nucleotide-gated channel beta-3 (CNGB3) and phosphodiesterase 6C (PDE6C). Even with early onset, the slow progress and the good responses to gene therapy in animal models render achromatopsia a very attractive candidate for human gene therapy after the successful of the Phase I clinical trials of Leber's congenital amaurosis. With the development of molecular genetics and the therapeutic gene replacement technology, the adeno-associated viral (AAV) vector-mediated gene therapy for achromatopsia in the preclinical animal experiments achieved encouraging progress in the past years. This article briefly reviews the recent research achievements of achromatopsia with gene therapy.

  15. A muscle-targeting peptide displayed on AAV2 improves muscle tropism on systemic delivery.

    PubMed

    Yu, C-Y; Yuan, Z; Cao, Z; Wang, B; Qiao, C; Li, J; Xiao, X

    2009-08-01

    Adeno-associated virus (AAV) has become a leading gene transfer vector for striated muscles. However, the AAV vectors also exhibit broad tropisms after systemic delivery. In an attempt to improve muscle tropism, we inserted a 7-amino-acid (ASSLNIA) muscle-targeting peptide (MTP) in the capsids of AAV2 at residue 587 or 588, generating AAV(587)MTP and AAV(588)MTP. In vitro studies showed that both viruses diminished their infectivity on non-muscle cell lines as well as on un-differentiated myoblasts; however, preserved or enhanced their infectivity on differentiated myotubes. AAV(587)MTP, but not AAV(588)MTP, also abolished its heparin-binding capacity and infected myotubes in a heparin-independent manner. Furthermore, in vivo studies by intravenous vector administration in mice showed that AAV(587)MTP enhanced its tropism to various muscles and particularly to the heart (24.3-fold of unmodified AAV2), whereas reduced its tropism to the non-muscle tissues such as the liver, lungs, spleen and so on. This alteration of tissue tropism is not simply because of the loss of heparin-binding, as a mutant AAV2 (AAVHBSMut) containing heparin-binding site mutations lost infectivity on both non-muscle and muscle cells. Furthermore, free MTP peptide, but not the scrambled control peptide, competitively inhibited AAV(587)MTP infection on myotubes. These results suggest that AAV2 could be re-targeted to the striated muscles by a MTP inserted after residue 587 of the capsids. This proof of principle study showed first evidence of peptide-directed muscle targeting on systemic administration of AAV vectors.

  16. In vivo adeno-associated viral vector-mediated genetic engineering of white and brown adipose tissue in adult mice.

    PubMed

    Jimenez, Veronica; Muñoz, Sergio; Casana, Estefania; Mallol, Cristina; Elias, Ivet; Jambrina, Claudia; Ribera, Albert; Ferre, Tura; Franckhauser, Sylvie; Bosch, Fatima

    2013-12-01

    Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes.

  17. AAV Vectors for FRET-Based Analysis of Protein-Protein Interactions in Photoreceptor Outer Segments

    PubMed Central

    Becirovic, Elvir; Böhm, Sybille; Nguyen, Ong N. P.; Riedmayr, Lisa M.; Hammelmann, Verena; Schön, Christian; Butz, Elisabeth S.; Wahl-Schott, Christian; Biel, Martin; Michalakis, Stylianos

    2016-01-01

    Fluorescence resonance energy transfer (FRET) is a powerful method for the detection and quantification of stationary and dynamic protein-protein interactions. Technical limitations have hampered systematic in vivo FRET experiments to study protein-protein interactions in their native environment. Here, we describe a rapid and robust protocol that combines adeno-associated virus (AAV) vector-mediated in vivo delivery of genetically encoded FRET partners with ex vivo FRET measurements. The method was established on acutely isolated outer segments of murine rod and cone photoreceptors and relies on the high co-transduction efficiency of retinal photoreceptors by co-delivered AAV vectors. The procedure can be used for the systematic analysis of protein-protein interactions of wild type or mutant outer segment proteins in their native environment. Conclusively, our protocol can help to characterize the physiological and pathophysiological relevance of photoreceptor specific proteins and, in principle, should also be transferable to other cell types. PMID:27516733

  18. Pharmacological and rAAV Gene Therapy Rescue of Visual Functions in a Blind Mouse Model of Leber Congenital Amaurosis

    PubMed Central

    2005-01-01

    Background Leber congenital amaurosis (LCA), a heterogeneous early-onset retinal dystrophy, accounts for ~15% of inherited congenital blindness. One cause of LCA is loss of the enzyme lecithin:retinol acyl transferase (LRAT), which is required for regeneration of the visual photopigment in the retina. Methods and Findings An animal model of LCA, the Lrat−/− mouse, recapitulates clinical features of the human disease. Here, we report that two interventions—intraocular gene therapy and oral pharmacologic treatment with novel retinoid compounds—each restore retinal function to Lrat−/− mice. Gene therapy using intraocular injection of recombinant adeno-associated virus carrying the Lrat gene successfully restored electroretinographic responses to ~50% of wild-type levels (p < 0.05 versus wild-type and knockout controls), and pupillary light responses (PLRs) of Lrat−/− mice increased ~2.5 log units (p < 0.05). Pharmacological intervention with orally administered pro-drugs 9-cis-retinyl acetate and 9-cis-retinyl succinate (which chemically bypass the LRAT-catalyzed step in chromophore regeneration) also caused long-lasting restoration of retinal function in LRAT-deficient mice and increased ERG response from ~5% of wild-type levels in Lrat−/− mice to ~50% of wild-type levels in treated Lrat−/− mice (p < 0.05 versus wild-type and knockout controls). The interventions produced markedly increased levels of visual pigment from undetectable levels to 600 pmoles per eye in retinoid treated mice, and ~1,000-fold improvements in PLR and electroretinogram sensitivity. The techniques were complementary when combined. Conclusion Intraocular gene therapy and pharmacologic bypass provide highly effective and complementary means for restoring retinal function in this animal model of human hereditary blindness. These complementary methods offer hope of developing treatment to restore vision in humans with certain forms of hereditary congenital blindness. PMID

  19. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutatons: a follow-on phase 1 trial

    PubMed Central

    Bennett, Jean; Wellman, Jennifer; Marshall, Kathleen A; McCague, Sarah; Ashtari, Manzar; DiStefano-Pappas, Julie; Elci, Okan U; Chung, Daniel C; Sun, Junwei; Wright, J Fraser; Cross, Dominique R; Aravand, Puya; Cyckowski, Laura L; Bennicelli, Jeannette L; Mingozzi, Federico; Auricchio, Alberto; Pierce, Eric A; Ruggiero, Jason; Leroy, Bart P; Simonelli, Francesca; High, Katherine A; Maguire, Albert M

    2017-01-01

    Summary Background Safety and efficacy have been shown in a phase 1 dose-escalation study involving a unilateral subretinal injection of a recombinant adeno-associated virus (AAV) vector containing the RPE65 gene (AAV2-hRPE65v2) in individuals with inherited retinal dystrophy caused by RPE65 mutations. This finding, along with the bilateral nature of the disease and intended use in treatment, prompted us to determine the safety of administration of AAV2-hRPE65v2 to the contralateral eye in patients enrolled in the phase 1 study. Methods In this follow-on phase 1 trial, one dose of AAV2-hRPE65v2 (1·5 × 1011 vector genomes) in a total volume of 300 μL was subretinally injected into the contralateral, previously uninjected, eyes of 11 children and adults (aged 11–46 years at second administration) with inherited retinal dystrophy caused by RPE65 mutations, 1·71–4·58 years after the initial subretinal injection. We assessed safety, immune response, retinal and visual function, functional vision, and activation of the visual cortex from baseline until 3 year follow-up, with observations ongoing. This study is registered with ClinicalTrials.gov, number NCT01208389. Findings No adverse events related to the AAV were reported, and those related to the procedure were mostly mild (dellen formation in three patients and cataracts in two). One patient developed bacterial endophthalmitis and was excluded from analyses. We noted improvements in efficacy outcomes in most patients without significant immunogenicity. Compared with baseline, pooled analysis of ten participants showed improvements in mean mobility and full-field light sensitivity in the injected eye by day 30 that persisted to year 3 (mobility p=0·0003, white light full-field sensitivity p<0·0001), but no significant change was seen in the previously injected eyes over the same time period (mobility p=0·7398, white light full-field sensitivity p=0·6709). Changes in visual acuity from baseline to year 3

  20. High density recombinant AAV particles are competent vectors for in vivo transduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant adeno-associated viral (rAAV) vectors have recently achieved clinical successes in human gene therapy. However, the commonly observed heavier particles found in AAV preparations have traditionally been ignored due to its low in vitro infectivity. In this study, we systemically compared t...

  1. Formation of AAV single stranded DNA genome from a circular plasmid in Saccharomyces cerevisiae.

    PubMed

    Cervelli, Tiziana; Backovic, Ana; Galli, Alvaro

    2011-01-01

    Adeno-associated virus (AAV)-based vectors are promising tools for targeted transfer in gene therapy studies. Many efforts have been accomplished to improve production and purification methods. We thought to develop a simple eukaryotic system allowing AAV replication which could provide an excellent opportunity for studying AAV biology and, more importantly, for AAV vector production. It has been shown that yeast Saccharomyces cerevisiae is able to replicate and form the capsid of many viruses. We investigated the ability of the yeast Saccharomyces cerevisiae to carry out the replication of a recombinant AAV (rAAV). When a plasmid containing a rAAV genome in which the cap gene was replaced with the S. cerevisiae URA3 gene, was co-transformed in yeast with a plasmid expressing Rep68, a significant number of URA3(+) clones were scored (more than 30-fold over controls). Molecular analysis of low molecular weight DNA by Southern blotting revealed that single stranded DNA is formed and that the plasmid is entirely replicated. The ssDNA contains the ITRs, URA3 gene and also vector sequences suggesting the presence of two distinct molecules. Its formation was dependent on Rep68 expression and ITR. These data indicate that DNA is not obtained by the canonical AAV replication pathway.

  2. Formation of AAV Single Stranded DNA Genome from a Circular Plasmid in Saccharomyces cerevisiae

    PubMed Central

    Cervelli, Tiziana; Backovic, Ana; Galli, Alvaro

    2011-01-01

    Adeno-associated virus (AAV)-based vectors are promising tools for targeted transfer in gene therapy studies. Many efforts have been accomplished to improve production and purification methods. We thought to develop a simple eukaryotic system allowing AAV replication which could provide an excellent opportunity for studying AAV biology and, more importantly, for AAV vector production. It has been shown that yeast Saccharomyces cerevisiae is able to replicate and form the capsid of many viruses. We investigated the ability of the yeast Saccharomyces cerevisiae to carry out the replication of a recombinant AAV (rAAV). When a plasmid containing a rAAV genome in which the cap gene was replaced with the S. cerevisiae URA3 gene, was co-transformed in yeast with a plasmid expressing Rep68, a significant number of URA3+ clones were scored (more than 30-fold over controls). Molecular analysis of low molecular weight DNA by Southern blotting revealed that single stranded DNA is formed and that the plasmid is entirely replicated. The ssDNA contains the ITRs, URA3 gene and also vector sequences suggesting the presence of two distinct molecules. Its formation was dependent on Rep68 expression and ITR. These data indicate that DNA is not obtained by the canonical AAV replication pathway. PMID:21853137

  3. AAV9-NPC1 significantly ameliorates Purkinje cell death and behavioral abnormalities in mouse NPC disease.

    PubMed

    Xie, Chang; Gong, Xue-Min; Luo, Jie; Li, Bo-Liang; Song, Bao-Liang

    2017-03-01

    Niemann-Pick type C (NPC) disease is a fatal inherited neurodegenerative disorder caused by loss-of-function mutations in the NPC1 or NPC2 gene. There is no effective way to treat NPC disease. In this study, we used adeno-associated virus (AAV) serotype 9 (AAV9) to deliver a functional NPC1 gene systemically into NPC1(-/-) mice at postnatal day 4. One single AAV9-NPC1 injection resulted in robust NPC1 expression in various tissues, including brain, heart, and lung. Strikingly, AAV9-mediated NPC1 delivery significantly promoted Purkinje cell survival, restored locomotor activity and coordination, and increased the lifespan of NPC1(-/-) mice. Our work suggests that AAV-based gene therapy is a promising means to treat NPC disease.

  4. Engineering the AAV capsid to optimize vector-host-interactions.

    PubMed

    Büning, Hildegard; Huber, Anke; Zhang, Liang; Meumann, Nadja; Hacker, Ulrich

    2015-10-01

    Adeno-associated viral (AAV) vectors are the most widely used delivery system for in vivo gene therapy. Vectors developed from natural AAV isolates achieved clinical benefit for a number of patients suffering from monogenetic disorders. However, high vector doses were required and the presence of pre-existing neutralizing antibodies precluded a number of patients from participation. Further challenges are related to AAV's tropism that lacks cell type selectivity resulting in off-target transduction. Conversely, specific cell types representing important targets for gene therapy like stem cells or endothelial cells show low permissiveness. To overcome these limitations, elegant rational design- as well as directed evolution-based strategies were developed to optimize various steps of AAV's host interaction. These efforts resulted in next generation vectors with enhanced capabilities, that is increased efficiency of cell transduction, targeted transduction of previously non-permissive cell types, escape from antibody neutralization and off-target free in vivo delivery of vector genomes. These important achievements are expected to improve current and pave the way towards novel AAV-based applications in gene therapy and regenerative medicine.

  5. In utero lung gene transfer using adeno-associated viral and lentiviral vectors in mice.

    PubMed

    Joyeux, Luc; Danzer, Enrico; Limberis, Maria P; Zoltick, Philip W; Radu, Antoneta; Flake, Alan W; Davey, Marcus G

    2014-06-01

    Virus-mediated gene transfer to the fetal lung epithelium holds considerable promise for the therapeutic management of prenatally diagnosed, potentially life-threatening inherited lung diseases. In this study we hypothesized that efficient and life-long lung transduction can be achieved by in utero gene therapy, using viral vectors. To facilitate diffuse entry into the lung, viral vector was injected into the amniotic sac of C57BL/6 mice on embryonic day 16 (term, ∼ 20 days) in a volume of 10 μl. Vectors investigated included those based on adeno-associated virus (AAV) (serotypes 5, 6.2, 9, rh.64R1) and vesicular stomatitis virus G glycoprotein (VSV-G)-pseudotyped HIV-1-based lentivirus (LV). All vectors expressed green fluorescent protein (GFP) under the transcriptional control of various promoters including chicken β-actin (CB) or cytomegalovirus (CMV) for AAV and CMV or MND (myeloproliferative sarcoma virus enhancer, negative control region deleted) for LV. Pulmonary GFP gene expression was detected by fluorescence stereoscopic microscopy and immunohistochemistry for up to 9 months after birth. At equivalent vector doses (mean, 12 × 10(10) genome copies per fetus) three AAV vectors resulted in long-term (up to 9 months) pulmonary epithelium transduction. AAV2/6.2 transduced predominantly cells of the conducting airway epithelium, although transduction decreased 2 months after vector delivery. AAV2/9-transduced cells of the alveolar epithelium with a type 1 pneumocyte phenotype for up to 6 months. Although minimal levels of GFP expression were observed with AAV2/5 up to 9 months, the transduced cells immunostained positive for F480 and were retrievable by bronchoalveolar lavage, confirming an alveolar macrophage phenotype. No GFP expression was observed in lung epithelial cells after AAV2/rh.64R1 and VSV-G-LV vector-mediated gene transfer. We conclude that these experiments demonstrate that prenatal lung gene transfer with AAV vectors engineered to target

  6. Systemic Gene Transfer of a Hexosaminidase Variant Using an scAAV9.47 Vector Corrects GM2 Gangliosidosis in Sandhoff Mice.

    PubMed

    Osmon, Karlaina J L; Woodley, Evan; Thompson, Patrick; Ong, Katalina; Karumuthil-Melethil, Subha; Keimel, John G; Mark, Brian L; Mahuran, Don; Gray, Steven J; Walia, Jagdeep S

    2016-07-01

    GM2 gangliosidosis is a group of neurodegenerative diseases caused by β-hexosaminidase A (HexA) enzyme deficiency. There is currently no cure. HexA is composed of two similar, nonidentical subunits, α and β, which must interact with the GM2 activator protein (GM2AP), a substrate-specific cofactor, to hydrolyze GM2 ganglioside. Mutations in either subunit or the activator can result in the accumulation of GM2 ganglioside within neurons throughout the central nervous system. The resulting neuronal cell death induces the primary symptoms of the disease: motor impairment, seizures, and sensory impairments. This study assesses the long-term effects of gene transfer in a Sandhoff (β-subunit knockout) mouse model. The study utilized a modified human β-hexosaminidase α-subunit (μ-subunit) that contains critical sequences from the β-subunit that enables formation of a stable homodimer (HexM) and interaction with GM2AP to hydrolyze GM2 ganglioside. We investigated a self-complementary adeno-associated viral (scAAV) vector expressing HexM, through intravenous injections of the neonatal mice. We monitored one cohort for 8 weeks and another cohort long-term for survival benefit, behavioral, biochemical, and molecular analyses. Untreated Sandhoff disease (SD) control mice reached a humane endpoint at approximately 15 weeks, whereas treated mice had a median survival age of 40 weeks, an approximate 2.5-fold survival advantage. On behavioral tests, the treated mice outperformed their knockout age-matched controls and perform similarly to the heterozygous controls. Through the enzymatic and GM2 ganglioside analyses, we observed a significant decrease in the GM2 ganglioside level, even though the enzyme levels were not significantly increased. Molecular analyses revealed a global distribution of the vector between brain and spinal cord regions. In conclusion, the neonatal delivery of a novel viral vector expressing the human HexM enzyme is effective in ameliorating the SD

  7. C-reactive protein (CRP) is essential for efficient systemic transduction of recombinant adeno-associated virus vector 1 (rAAV-1) and rAAV-6 in mice.

    PubMed

    Denard, Jerome; Marolleau, Beatrice; Jenny, Christine; Rao, Tata Nageswara; Fehling, Hans Jörg; Voit, Thomas; Svinartchouk, Fedor

    2013-10-01

    The clinical relevance of gene therapy using the recombinant adeno-associated virus (rAAV) vectors often requires widespread distribution of the vector, and in this case, systemic delivery is the optimal route of administration. Humoral blood factors, such as antibodies or complement, are the first barriers met by the vectors administered systemically. We have found that other blood proteins, galectin 3 binding protein (G3BP) and C-reactive protein (CRP), can interact with different AAV serotypes in a species-specific manner. While interactions of rAAV vectors with G3BP, antibodies, or complement lead to a decrease in vector efficacy, systemic transduction of the CRP-deficient mouse and its respective control clearly established that binding to mouse CRP (mCRP) boosts rAAV vector 1 (rAAV-1) and rAAV-6 transduction efficiency in skeletal muscles over 10 times. Notably, the high efficacy of rAAV-6 in CRP-deficient mice can be restored by reconstitution of the CRP-deficient mouse with mCRP. Human CRP (hCRP) does not interact with either rAAV-1 or rAAV-6, and, consequently, the high efficiency of mCRP-mediated muscle transduction by these serotypes in mice cannot be translated to humans. No interaction of mCRP or hCRP was observed with rAAV-8 and rAAV-9. We show, for the first time, that serum components can significantly enhance rAAV-mediated tissue transduction in a serotype- and species-specific manner. Bioprocessing in body fluids should be considered when transfer of a preclinical proof of concept for AAV-based gene therapy to humans is planned.

  8. Current status of haemophilia gene therapy.

    PubMed

    High, K H; Nathwani, A; Spencer, T; Lillicrap, D

    2014-05-01

    After many reports of successful gene therapy studies in small and large animal models of haemophilia, we have, at last, seen the first signs of success in human patients. These very encouraging results have been achieved with the use of adeno-associated viral (AAV) vectors in patients with severe haemophilia B. Following on from these initial promising studies, there are now three ongoing trials of AAV-mediated gene transfer in haemophilia B all aiming to express the factor IX gene from the liver. Nevertheless, as discussed in the first section of this article, there are still a number of significant hurdles to overcome if haemophilia B gene therapy is to become more widely available. The second section of this article deals with the challenges relating to factor VIII gene transfer. While the recent results in haemophilia B are extremely encouraging, there is, as yet, no similar data for factor VIII gene therapy. It is widely accepted that this therapeutic target will be significantly more problematic for a variety of reasons including accommodating the larger factor VIII cDNA, achieving adequate levels of transgene expression and preventing the far more frequent complication of antifactor VIII immunity. In the final section of the article, the alternative approach of lentiviral vector-mediated gene transfer is discussed. While AAV-mediated approaches to transgene delivery have led the way in clinical haemophilia gene therapy, there are still a number of potential advantages of using an alternative delivery vehicle including the fact that ex vivo host cell transduction will avoid the likelihood of immune responses to the vector. Overall, these are exciting times for haemophilia gene therapy with the likelihood of further clinical successes in the near future.

  9. An efficient rHSV-based complementation system for the production of multiple rAAV vector serotypes.

    PubMed

    Kang, W; Wang, L; Harrell, H; Liu, J; Thomas, D L; Mayfield, T L; Scotti, M M; Ye, G J; Veres, G; Knop, D R

    2009-02-01

    Recombinant herpes simplex virus type 1 (rHSV)-assisted recombinant adeno-associated virus (rAAV) vector production provides a highly efficient and scalable method for manufacture of clinical grade rAAV vectors. Here, we present an rHSV co-infection system for rAAV production, which uses two ICP27-deficient rHSV constructs, one bearing the rep2 and cap (1, 2 or 9) genes of rAAV, and the second bearing an AAV2 ITR-gene of interest (GOI) cassette. The optimum rAAV production parameters were defined by producing rAAV2/GFP in HEK293 cells, yielding greater than 9000 infectious particles per cell with a 14:1 DNase resistance particle to infectious particle (DRP/ip) ratio. The optimized co-infection parameters were then used to generate large-scale stocks of rAAV1/AAT, which encode the human alpha-1-antitrypsin (hAAT) protein, and purified by column chromatography. The purified vector was extensively characterized by rAAV- and rHSV-specific assays and compared to transfection-made vector for in vivo efficacy in mice through intramuscular injection. The co-infection method was also used to produce rAAV9/AAT for comparison to rAAV1/AAT in vivo. Intramuscular administration of 1 x 10(11) DRP per animal of rHSV-produced rAAV1/AAT and rAAV9/AAT resulted in hAAT protein expression of 5.4 x 10(4) and 9.4 x 10(5) ng ml(-1) serum respectively, the latter being clinically relevant.

  10. Intraocular route of AAV2 vector administration defines humoral immune response and therapeutic potential

    PubMed Central

    Miller, Rehae; Han, Ping-Yang; Pang, Jijing; Dinculescu, Astra; Chiodo, Vince; Hauswirth, William W.

    2008-01-01

    Purpose Safety and efficiency are critical for successful gene therapy. Adeno-associated viral (AAV) vectors are commonly used for gene transfer in both human and animal studies. However, administration of AAV vectors can lead to development of neutralizing antibodies against the vector capsid, thus decreasing the efficiency of therapeutic gene transfer and preventing effective vector readministration. We investigated immune responses to different routes of ocular administration and readministration of AAV vectors, and the effect of previous exposure of AAV vector in one eye on the transduction efficacy of subsequent intraocular AAV-mediated gene delivery to the partner eye. Methods We tested two vector systems. One contained a cDNA encoding a secreted pigment epithelial derived factor (PEDF) cDNA under the control of a Cytomegalovirus (CMV) enhancer and chicken β-actin promoter (CBA; AAV2-CBA-PEDF) and was tested in a murine model of laser-induced choroidal neovascularization (CNV). The other vector contained a cDNA encoding the intracellular reporter green fluorescent protein (GFP) under the control of the same promoter (AAV2-CBA-GFP). Animals were divided into groups and received sequential injections at different combinations of either intravitreal or subretinal routes. CNV was evaluated by fluorescein angiographic choroidal flat-mount image analysis. The expression of GFP was analyzed in retinal sections by direct fluorescence imaging. Antibodies against AAV2 capsid and transgenes were analyzed by ELISA using serum samples collected before injection and different time points after the injection. Neutralizing antibodies were characterized by in vitro assays. Results Various ocular compartments responded to AAV administration differently. Intravitreal administration of AAV vectors, which resulted in transduction of inner retina (primarily retinal ganglion cells), generated a humoral immune response against AAV capsid that blocked vector expression upon

  11. Delivering Transgenic DNA Exceeding the Carrying Capacity of AAV Vectors

    PubMed Central

    Hirsch, Matthew L.; Wolf, Sonya J.; Samulski, R.J.

    2016-01-01

    Gene delivery using recombinant adeno-associated virus (rAAV) has emerged to the forefront demonstrating safe and effective phenotypic correction of diverse diseases including hemophilia B and Leber’s congenital amaurosis. In addition to rAAV’s high efficiency of transduction and the capacity for long-term transgene expression, the safety profile of rAAV remains unsoiled in humans with no deleterious vector-related consequences observed thus far. Despite these favorable attributes, rAAV vectors have a major disadvantage preventing widespread therapeutic applications; as the AAV capsid is the smallest described to date, it cannot package “large” genomes. Currently, the packaging capacity of rAAV has yet to be definitively defined but is approximately 5 kb, which has served as a limitation for large gene transfer. There are two main approaches that have been developed to overcome this limitation, split AAV vectors, and fragment AAV (fAAV) genome reassembly (Hirsch et al., Mol Ther 18(1):6–8, 2010). Split rAAV vector applications were developed based upon the finding that rAAV genomes naturally concatemerize in the cell post-transduction and are substrates for enhanced homologous recombination (HR) (Hirsch et al., Mol Ther 18(1):6–8, 2010; Duan et al., J Virol 73(1):161–169, 1999; Duan et al., J Virol 72(11):8568–8577, 1998; Duan et al., Mol Ther 4(4):383–391, 2001; Halbert et al., Nat Biotechnol 20(7):697–701, 2002). This method involves “splitting” the large transgene into two separate vectors and upon co-transduction, intracellular large gene reconstruction via vector genome concatemerization occurs via HR or nonhomologous end joining (NHEJ). Within the split rAAV approaches there currently exist three strategies: overlapping, trans-splicing, and hybrid trans-splicing (Duan et al., Mol Ther 4(4):383–391, 2001; Halbert et al., Nat Biotechnol 20(7):697–701, 2002; Ghosh et al., Mol Ther 16(1):124–130, 2008; Ghosh et al., Mol Ther 15

  12. Mucopolysaccharidosis IIIB confers enhanced neonatal intracranial transduction by AAV8 but not by 5, 9 or rh10

    PubMed Central

    Gilkes, J A; Bloom, M D; Heldermon, C D

    2016-01-01

    Sanfilippo syndrome type B (mucopolysaccharidosis IIIB, MPS IIIB) is a lysosomal storage disease resulting from deficiency of N-acetyl-glucosaminidase (NAGLU) activity. To determine the possible therapeutic utility of recombinant adeno-associated virus (rAAV) in early gene therapy-based interventions, we performed a comprehensive assessment of transduction and biodistribution profiles of four central nervous system (CNS) administered rAAV serotypes, -5, -8, -9 and -rh10. To simulate optimal earliest treatment of the disease, each rAAV serotype was injected into the CNS of neonatal MPS IIIB and control animals. We observed marked differences in biodistribution and transduction profiles between the serotypes and this differed in MPS IIIB compared with healthy control mice. Overall, in control mice, all serotypes performed comparably, although some differences were observed in certain focal areas. In MPS IIIB mice, AAV8 was more efficient than AAV5, -9 and -rh10 for gene delivery to most structures analyzed, including the cerebral cortex, hippocampus and thalamus. Noteworthy, the pattern of biodistribution within the CNS varied by serotype and genotype. Interestingly, AAV8 also produced the highest green fluorescent protein intensity levels compared with any other serotype and demonstrated improved transduction in NAGLU compared with control brains. Importantly, we also show leakage of AAV8, -9 and -rh10, but not AAV5, from CNS parenchyma to systemic organs. Overall, our data suggest that AAV8 represents the best therapeutic gene transfer vector for early intervention in MPS IIIB. PMID:26674264

  13. AAV retinal transduction in a large animal model species: Comparison of a self-complementary AAV2/5 with a single-stranded AAV2/5 vector

    PubMed Central

    Bartoe, J.T.; Fischer, A.J.; Scott, M.; Boye, S.L.; Chiodo, V.; Hauswirth, W.W.

    2009-01-01

    Purpose To compare self-complementary (sc) and single-stranded (ss) adeno-associated viral 2/5 (AAV2/5) vectors for retinal cell transduction in the dog when delivered by subretinal injection. Methods ScAAV2/5 and ssAAV2/5 vectors encoding enhanced green fluorescent protein (GFP) under control of the chicken beta actin promoter were prepared to the same titer. Equal amounts of viral particles were delivered into the subretinal spaces of both eyes of two dogs. In each dog, one eye received the scAAV2/5 and the other the ssAAV2/5. In vivo expression of GFP was monitored ophthalmoscopically. The dogs were sacrificed, and their retinas were examined by fluorescent microscopy and immunohistochemistry to determine GFP expression patterns and to assay for glial reactivity. Results GFP expression in the scAAV2/5 injected eyes was detectable at a much earlier time point than in the ssAAV2/5 injected eyes. Expression of GFP was also at higher levels in the scAAV2/5-injected eyes. Expression levels remained stable for the seven month duration of the study. The types of cells transduced by both vectors were similar; there was strong reporter gene expression in the RPE and photoreceptors, although not all cones in the transduced area expressed GFP. Some horizontal and Müller cells were also transduced. Conclusions When delivered by subretinal injection in the dog, scAAV2/5 induces faster and stronger transgene expression than ssAAV2/5. The spectrum of retinal neurons transduced is similar between the two vectors. These results confirm in a large animal model those previously reported in the mouse. ScAAV2/5 shows promise for use in the treatment of conditions where a rapid transgene expression is desirable. Furthermore, it may be possible to use a lower number of viral particles to achieve the same effect compared with ssAAV2/5 vectors. PMID:19756181

  14. Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11.

    PubMed

    Earley, Lauriel F; Powers, John M; Adachi, Kei; Baumgart, Joshua T; Meyer, Nancy L; Xie, Qing; Chapman, Michael S; Nakai, Hiroyuki

    2017-02-01

    Adeno-associated virus (AAV) vectors have made great progress in their use for gene therapy; however, fundamental aspects of AAV's capsid assembly remain poorly characterized. In this regard, the discovery of assembly-activating protein (AAP) sheds new light on this crucial part of AAV biology and vector production. Previous studies have shown that AAP is essential for assembly; however, how its mechanistic roles in assembly might differ among AAV serotypes remains uncharacterized. Here, we show that biological properties of AAPs and capsid assembly processes are surprisingly distinct among AAV serotypes 1 to 12. In the study, we investigated subcellular localizations and assembly-promoting functions of AAP1 to -12 (i.e., AAPs derived from AAV1 to -12, respectively) and examined the AAP dependence of capsid assembly processes of these 12 serotypes using combinatorial approaches that involved immunofluorescence and transmission electron microscopy, barcode-Seq (i. e., a high-throughput quantitative method using DNA barcodes and a next-generation sequencing technology), and quantitative dot blot assays. This study revealed that AAP1 to -12 are all localized in the nucleus with serotype-specific differential patterns of nucleolar association; AAPs and assembled capsids do not necessarily colocalize; AAPs are promiscuous in promoting capsid assembly of other serotypes, with the exception of AAP4, -5, -11, and -12; assembled AAV5, -8, and -9 capsids are excluded from the nucleolus, in contrast to the nucleolar enrichment of assembled AAV2 capsids; and, surprisingly, AAV4, -5, and -11 capsids are not dependent on AAP for assembly. These observations highlight the serotype-dependent heterogeneity of the capsid assembly process and challenge current notions about the role of AAP and the nucleolus in capsid assembly.

  15. Adenosine kinase, glutamine synthetase and EAAT2 as gene therapy targets for temporal lobe epilepsy.

    PubMed

    Young, D; Fong, D M; Lawlor, P A; Wu, A; Mouravlev, A; McRae, M; Glass, M; Dragunow, M; During, M J

    2014-12-01

    Astrocytes are an attractive cell target for gene therapy, but the validation of new therapeutic candidates is needed. We determined whether adeno-associated viral (AAV) vector-mediated overexpression of glutamine synthetase (GS) or excitatory amino-acid transporter 2 (EAAT2), or expression of microRNA targeting adenosine kinase (miR-ADK) in hippocampal astrocytes in the rat brain could modulate susceptibility to kainate-induced seizures and neuronal cell loss. Transgene expression was found predominantly in astrocytes following direct injection of glial-targeting AAV9 vectors by 3 weeks postinjection. ADK expression in miR-ADK vector-injected rats was reduced by 94-96% and was associated with an ~50% reduction in the duration of kainate-induced seizures and greater protection of dentate hilar neurons but not CA3 neurons compared with miR-control vector-injected rats. In contrast, infusion of AAV-GS and EAAT2 vectors did not afford any protection against seizures or neuronal damage as the level of transcriptional activity of the glial fibrillary acidic promoter was too low to drive any significant increase in transgenic GS or EAAT2 relative to the high endogenous levels of these proteins. Our findings support ADK as a prime therapeutic target for gene therapy of temporal lobe epilepsy and suggest that alternative approaches including the use of stronger glial promoters are needed to increase transgenic GS and EAAT2 expression to levels that may be required to affect seizure induction and propagation.

  16. Development of novel AAV serotype 6 based vectors with selective tropism for human cancer cells.

    PubMed

    Sayroo, R; Nolasco, D; Yin, Z; Colon-Cortes, Y; Pandya, M; Ling, C; Aslanidi, G

    2016-01-01

    Viral vectors-based gene therapy is an attractive alternative to common anti-cancer treatments. In the present studies, AAV serotype 6 vectors were identified to be particularly effective in the transduction of human prostate (PC3), breast (T47D) and liver (Huh7) cancer cells. Next, we developed chimeric AAV vectors with Arg-Gly-Asp (RGD) peptide incorporated into the viral capsid to enable specific targeting of integrin-overexpressing malignant cells. These AAV6-RGD vectors improved transduction efficiency approximately 3-fold compared with wild-type AAV6 vectors by enhancing the viral entry into the cells. We also observed that transduction efficiency significantly improved, up to approximately 5-fold, by the mutagenesis of surface-exposed tyrosine and threonine residues involved in the intracellular trafficking of AAV vectors. Therefore, in our study, the AAV6-Y705-731F+T492V vector was identified as the most efficient. The combination of RGD peptide, tyrosine and threonine mutations on the same AAV6 capsid further increased the transduction efficiency, approximately 8-fold in vitro. In addition, we mutated lysine (K531E) to impair the affinity of AAV6 vectors to heparan sulfate proteoglycan. Finally, we showed a significant increase in both specificity and efficiency of AAV6-RGD-Y705-731F+T492V+K531E vectors in a xenograft animal model in vivo. In summary, the approach described here can lead to the development of AAV vectors with selective tropism to human cancer cells.

  17. Computational and molecular tools for scalable rAAV-mediated genome editing

    PubMed Central

    Stoimenov, Ivaylo; Ali, Muhammad Akhtar; Pandzic, Tatjana; Sjöblom, Tobias

    2015-01-01

    The rapid discovery of potential driver mutations through large-scale mutational analyses of human cancers generates a need to characterize their cellular phenotypes. Among the techniques for genome editing, recombinant adeno-associated virus (rAAV)-mediated gene targeting is suited for knock-in of single nucleotide substitutions and to a lesser degree for gene knock-outs. However, the generation of gene targeting constructs and the targeting process is time-consuming and labor-intense. To facilitate rAAV-mediated gene targeting, we developed the first software and complementary automation-friendly vector tools to generate optimized targeting constructs for editing human protein encoding genes. By computational approaches, rAAV constructs for editing ∼71% of bases in protein-coding exons were designed. Similarly, ∼81% of genes were predicted to be targetable by rAAV-mediated knock-out. A Gateway-based cloning system for facile generation of rAAV constructs suitable for robotic automation was developed and used in successful generation of targeting constructs. Together, these tools enable automated rAAV targeting construct design, generation as well as enrichment and expansion of targeted cells with desired integrations. PMID:25488813

  18. Enhancing Transgene Expression from Recombinant AAV8 Vectors in Different Tissues Using Woodchuck Hepatitis Virus Post-Transcriptional Regulatory Element

    PubMed Central

    Wang, Lizheng; Wang, Zixuan; Zhang, Fangfang; Zhu, Rui; Bi, Jinpeng; Wu, Jiaxin; Zhang, Haihong; Wu, Hui; Kong, Wei; Yu, Bin; Yu, Xianghui

    2016-01-01

    Adeno-associated virus (AAV) vectors have been utilized extensively in gene therapy and gene function studies, as strong transgene expression is a prerequisite for positive outcomes. AAV8 was reported as the most efficient AAV serotype for transduction of the liver, brain and muscle compared with other serotypes. However, AAV8-mediated transduction of human hepatocytes is rather poor with approximately 20-fold lower efficiency compared with that of mouse hepatocytes. Therefore, we applied the woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) to enhance AAV8-mediated transgene expression driven by a combination promoter (CAG promoter) with a CMV-IE enhancer and chicken beta-actin promoter for a more efficient viral vector. Transgene expression from recombinant AAV8 (rAAV8) vectors harboring a red fluorescent protein (RFP) reporter gene with or without WPRE were evaluated in vitro and in vivo. The results demonstrated that WPRE improved AAV8-mediated RFP expression in different cell lines with clear increases of transgene expression in the liver, brain or muscle of animals. The findings of this study will help to substantially reduce the quantity of viral particles that must be injected in order to reach a therapeutic level of transgene expression in gene therapy. Consequently, such dose reductions may lessen the potential risks associated with high doses of viral vectors. PMID:27076785

  19. A next step in adeno-associated virus-mediated gene therapy for neurological diseases: regulation and targeting

    PubMed Central

    Chtarto, Abdelwahed; Bockstael, Olivier; Tshibangu, Terence; Dewitte, Olivier; Levivier, Marc; Tenenbaum, Liliane

    2013-01-01

    Recombinant adeno-associated virus (rAAV) vectors mediating long term transgene expression are excellent gene therapy tools for chronic neurological diseases. While rAAV2 was the first serotype tested in the clinics, more efficient vectors derived from the rh10 serotype are currently being evaluated and other serotypes are likely to be tested in the near future. In addition, aside from the currently used stereotaxy-guided intraparenchymal delivery, new techniques for global brain transduction (by intravenous or intra-cerebrospinal injections) are very promising. Various strategies for therapeutic gene delivery to the central nervous system have been explored in human clinical trials in the past decade. Canavan disease, a genetic disease caused by an enzymatic deficiency, was the first to be approved. Three gene transfer paradigms for Parkinson's disease have been explored: converting L-dopa into dopamine through AADC gene delivery in the putamen; synthesizing GABA through GAD gene delivery in the overactive subthalamic nucleus and providing neurotrophic support through neurturin gene delivery in the nigro-striatal pathway. These pioneer clinical trials demonstrated the safety and tolerability of rAAV delivery in the human brain at moderate doses. Therapeutic effects however, were modest, emphasizing the need for higher doses of the therapeutic transgene product which could be achieved using more efficient vectors or expression cassettes. This will require re-addressing pharmacological aspects, with attention to which cases require either localized and cell-type specific expression or efficient brain-wide transgene expression, and when it is necessary to modulate or terminate the administration of transgene product. The ongoing development of targeted and regulated rAAV vectors is described. PMID:23331189

  20. AAV's Anatomy: Roadmap for Optimizing Vectors for Translational Success

    PubMed Central

    Samulski, R. Jude

    2014-01-01

    Adeno-Associated Virus based vectors (rAAV) are advantageous for human gene therapy due to low inflammatory responses, lack of toxicity, natural persistence, and ability to transencapsidate the genome allowing large variations in vector biology and tropism. Over sixty clinical trials have been conducted using rAAV serotype 2 for gene delivery with a number demonstrating success in immunoprivileged sites, including the retina and the CNS. Furthermore, an increasing number of trials have been initiated utilizing other serotypes of AAV to exploit vector tropism, trafficking, and expression efficiency. While these trials have demonstrated success in safety with emerging success in clinical outcomes, one benefit has been identification of issues associated with vector administration in humans (e.g. the role of pre-existing antibody responses, loss of transgene expression in non-immunoprivileged sites, and low transgene expression levels). For these reasons, several strategies are being used to optimize rAAV vectors, ranging from addition of exogenous agents for immune evasion to optimization of the transgene cassette for enhanced therapeutic output. By far, the vast majority of approaches have focused on genetic manipulation of the viral capsid. These methods include rational mutagenesis, engineering of targeting peptides, generation of chimeric particles, library and directed evolution approaches, as well as immune evasion modifications. Overall, these modifications have created a new repertoire of AAV vectors with improved targeting, transgene expression, and immune evasion. Continued work in these areas should synergize strategies to improve capsids and transgene cassettes that will eventually lead to optimized vectors ideally suited for translational success. PMID:20712583

  1. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    SciTech Connect

    Lerch, Thomas F.; Chapman, Michael S.

    2012-02-05

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites of AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.

  2. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    SciTech Connect

    Lerch, Thomas F.; Chapman, Michael S.

    2012-05-24

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites of AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.

  3. Glymphatic fluid transport controls paravascular clearance of AAV vectors from the brain

    PubMed Central

    Murlidharan, Giridhar; Crowther, Andrew; Reardon, Rebecca A.; Song, Juan

    2016-01-01

    Adeno-associated viruses (AAV) are currently being evaluated in clinical trials for gene therapy of CNS disorders. However, host factors that influence the spread, clearance, and transduction efficiency of AAV vectors in the brain are not well understood. Recent studies have demonstrated that fluid flow mediated by aquaporin-4 (AQP4) channels located on astroglial end feet is essential for exchange of solutes between interstitial and cerebrospinal fluid. This phenomenon, which is essential for interstitial clearance of solutes from the CNS, has been termed glial-associated lymphatic transport or glymphatic transport. In the current study, we demonstrate that glymphatic transport profoundly affects various aspects of AAV gene transfer in the CNS. Altered localization of AQP4 in aged mouse brains correlated with significantly increased retention of AAV vectors in the parenchyma and reduced systemic leakage following ventricular administration. We observed a similar increase in AAV retention and transgene expression upon i.c.v. administration in AQP4–/– mice. Consistent with this observation, fluorophore-labeled AAV vectors showed markedly reduced flux from the ventricles of AQP4–/– mice compared with WT mice. These results were further corroborated by reduced AAV clearance from the AQP4-null brain, as demonstrated by reduced transgene expression and vector genome accumulation in systemic organs. We postulate that deregulation of glymphatic transport in aged and diseased brains could markedly affect the parenchymal spread, clearance, and gene transfer efficiency of AAV vectors. Assessment of biomarkers that report the kinetics of CSF flux in prospective gene therapy patients might inform variable treatment outcomes and guide future clinical trial design. PMID:27699236

  4. Glymphatic fluid transport controls paravascular clearance of AAV vectors from the brain.

    PubMed

    Murlidharan, Giridhar; Crowther, Andrew; Reardon, Rebecca A; Song, Juan; Asokan, Aravind

    2016-09-08

    Adeno-associated viruses (AAV) are currently being evaluated in clinical trials for gene therapy of CNS disorders. However, host factors that influence the spread, clearance, and transduction efficiency of AAV vectors in the brain are not well understood. Recent studies have demonstrated that fluid flow mediated by aquaporin-4 (AQP4) channels located on astroglial end feet is essential for exchange of solutes between interstitial and cerebrospinal fluid. This phenomenon, which is essential for interstitial clearance of solutes from the CNS, has been termed glial-associated lymphatic transport or glymphatic transport. In the current study, we demonstrate that glymphatic transport profoundly affects various aspects of AAV gene transfer in the CNS. Altered localization of AQP4 in aged mouse brains correlated with significantly increased retention of AAV vectors in the parenchyma and reduced systemic leakage following ventricular administration. We observed a similar increase in AAV retention and transgene expression upon i.c.v. administration in AQP4(-/-) mice. Consistent with this observation, fluorophore-labeled AAV vectors showed markedly reduced flux from the ventricles of AQP4(-/-) mice compared with WT mice. These results were further corroborated by reduced AAV clearance from the AQP4-null brain, as demonstrated by reduced transgene expression and vector genome accumulation in systemic organs. We postulate that deregulation of glymphatic transport in aged and diseased brains could markedly affect the parenchymal spread, clearance, and gene transfer efficiency of AAV vectors. Assessment of biomarkers that report the kinetics of CSF flux in prospective gene therapy patients might inform variable treatment outcomes and guide future clinical trial design.

  5. AAV-mediated gene therapy in Dystrophin-Dp71 deficient mouse leads to blood-retinal barrier restoration and oedema reabsorption.

    PubMed

    Vacca, Ophélie; Charles-Messance, Hugo; El Mathari, Brahim; Sene, Abdoulaye; Barbe, Peggy; Fouquet, Stéphane; Aragón, Jorge; Darche, Marie; Giocanti-Aurégan, Audrey; Paques, Michel; Sahel, José-Alain; Tadayoni, Ramin; Montañez, Cecilia; Dalkara, Deniz; Rendon, Alvaro

    2016-07-15

    Dystrophin-Dp71 being a key membrane cytoskeletal protein, expressed mainly in Müller cells that provide a mechanical link at the Müller cell membrane by direct binding to actin and a transmembrane protein complex. Its absence has been related to blood-retinal barrier (BRB) permeability through delocalization and down-regulation of the AQP4 and Kir4.1 channels (1). We have previously shown that the adeno-associated virus (AAV) variant, ShH10, transduces Müller cells in the Dp71-null mouse retina efficiently and specifically (2,3). Here, we use ShH10 to restore Dp71 expression in Müller cells of Dp71 deficient mouse to study molecular and functional effects of this restoration in an adult mouse displaying retinal permeability. We show that strong and specific expression of exogenous Dp71 in Müller cells leads to correct localization of Dp71 protein restoring all protein interactions in order to re-establish a proper functional BRB and retina homeostasis thus preventing retina from oedema. This study is the basis for the development of new therapeutic strategies in dealing with diseases with BRB breakdown and macular oedema such as diabetic retinopathy (DR).

  6. Genome-wide RNAi screening identifies host restriction factors critical for in vivo AAV transduction.

    PubMed

    Mano, Miguel; Ippodrino, Rudy; Zentilin, Lorena; Zacchigna, Serena; Giacca, Mauro

    2015-09-08

    Viral vectors based on the adeno-associated virus (AAV) hold great promise for in vivo gene transfer; several unknowns, however, still limit the vectors' broader and more efficient application. Here, we report the results of a high-throughput, whole-genome siRNA screening aimed at identifying cellular factors regulating AAV transduction. We identified 1,483 genes affecting vector efficiency more than 4-fold and up to 50-fold, either negatively or positively. Most of these factors have not previously been associated to AAV infection. The most effective siRNAs were independent from the virus serotype or analyzed cell type and were equally evident for single-stranded and self-complementary AAV vectors. A common characteristic of the most effective siRNAs was the induction of cellular DNA damage and activation of a cell cycle checkpoint. This information can be exploited for the development of more efficient AAV-based gene delivery procedures. Administration of the most effective siRNAs identified by the screening to the liver significantly improved in vivo AAV transduction efficiency.

  7. Better Targeting, Better Efficiency for Wide-Scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B.

    PubMed

    Jackson, Kasey L; Dayton, Robert D; Deverman, Benjamin E; Klein, Ronald L

    2016-01-01

    Widespread genetic modification of cells in the central nervous system (CNS) with a viral vector has become possible and increasingly more efficient. We previously applied an AAV9 vector with the cytomegalovirus/chicken beta-actin (CBA) hybrid promoter and achieved wide-scale CNS transduction in neonatal and adult rats. However, this method transduces a variety of tissues in addition to the CNS. Thus we studied intravenous AAV9 gene transfer with a synapsin promoter to better target the neurons. We noted in systematic comparisons that the synapsin promoter drives lower level expression than does the CBA promoter. The engineered adeno-associated virus (AAV)-PHP.B serotype was compared with AAV9, and AAV-PHP.B did enhance the efficiency of expression. Combining the synapsin promoter with AAV-PHP.B could therefore be advantageous in terms of combining two refinements of targeting and efficiency. Wide-scale expression was used to model a disease with widespread pathology. Vectors encoding the amyotrophic lateral sclerosis (ALS)-related protein transactive response DNA-binding protein, 43 kDa (TDP-43) with the synapsin promoter and AAV-PHP.B were used for efficient CNS-targeted TDP-43 expression. Intracerebroventricular injections were also explored to limit TDP-43 expression to the CNS. The neuron-selective promoter and the AAV-PHP.B enhanced gene transfer and ALS disease modeling in adult rats.

  8. Better Targeting, Better Efficiency for Wide-Scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B

    PubMed Central

    Jackson, Kasey L.; Dayton, Robert D.; Deverman, Benjamin E.; Klein, Ronald L.

    2016-01-01

    Widespread genetic modification of cells in the central nervous system (CNS) with a viral vector has become possible and increasingly more efficient. We previously applied an AAV9 vector with the cytomegalovirus/chicken beta-actin (CBA) hybrid promoter and achieved wide-scale CNS transduction in neonatal and adult rats. However, this method transduces a variety of tissues in addition to the CNS. Thus we studied intravenous AAV9 gene transfer with a synapsin promoter to better target the neurons. We noted in systematic comparisons that the synapsin promoter drives lower level expression than does the CBA promoter. The engineered adeno-associated virus (AAV)-PHP.B serotype was compared with AAV9, and AAV-PHP.B did enhance the efficiency of expression. Combining the synapsin promoter with AAV-PHP.B could therefore be advantageous in terms of combining two refinements of targeting and efficiency. Wide-scale expression was used to model a disease with widespread pathology. Vectors encoding the amyotrophic lateral sclerosis (ALS)-related protein transactive response DNA-binding protein, 43 kDa (TDP-43) with the synapsin promoter and AAV-PHP.B were used for efficient CNS-targeted TDP-43 expression. Intracerebroventricular injections were also explored to limit TDP-43 expression to the CNS. The neuron-selective promoter and the AAV-PHP.B enhanced gene transfer and ALS disease modeling in adult rats. PMID:27867348

  9. Viral Vector-Mediated Antisense Therapy for Genetic Diseases

    PubMed Central

    Imbert, Marine; Dias-Florencio, Gabriella; Goyenvalle, Aurélie

    2017-01-01

    RNA plays complex roles in normal health and disease and is becoming an important target for therapeutic intervention; accordingly, therapeutic strategies that modulate RNA function have gained great interest over the past decade. Antisense oligonucleotides (AOs) are perhaps the most promising strategy to modulate RNA expression through a variety of post binding events such as gene silencing through degradative or non-degradative mechanisms, or splicing modulation which has recently demonstrated promising results. However, AO technology still faces issues like poor cellular-uptake, low efficacy in target tissues and relatively rapid clearance from the circulation which means repeated injections are essential to complete therapeutic efficacy. To overcome these limitations, viral vectors encoding small nuclear RNAs have been engineered to shuttle antisense sequences into cells, allowing appropriate subcellular localization with pre-mRNAs and permanent correction. In this review, we outline the different strategies for antisense therapy mediated by viral vectors and provide examples of each approach. We also address the advantages and limitations of viral vector use, with an emphasis on their clinical application. PMID:28134780

  10. Intramuscular administration of AAV overcomes pre-existing neutralizing antibodies in rhesus macaques.

    PubMed

    Greig, Jenny A; Calcedo, Roberto; Grant, Rebecca L; Peng, Hui; Medina-Jaszek, C Angelica; Ahonkhai, Omua; Qin, Qiuyue; Roy, Soumitra; Tretiakova, Anna P; Wilson, James M

    2016-12-07

    The seroprevalence of neutralizing antibodies (NAbs) to adeno-associated viral (AAV) vector capsids may preclude a percentage of the population from receiving gene therapy, particularly following systemic vector administration. We hypothesized that the use of intramuscular (IM) administration of AAV vectors might circumvent this issue. IM injections were used to administer AAV8 vectors expressing either secreted or non-secreted transgenes into mice and the influence of NAbs supplied by pre-administration of pooled human IgG on transgene expression was evaluated. We then studied the impact of naturally occurring pre-existing AAV8 NAbs on expression of a secreted transgene following IM vector delivery in rhesus macaques. Finally, we evaluated the ability to readminister AAV vectors via IM injections in rhesus macaques. In mice, the presence of AAV8 NAbs had no effect on gene expression in the injected skeletal muscle. However, liver transgene expression following hepatic distribution of the vector was ablated. In rhesus macaques, naturally occurring pre-existing AAV8 NAb titers of ⩽1:160 had no effect on expression levels of a secreted transgene after IM delivery of the vector. Additionally, readministration of AAV vectors was possible by IM injection into the previously injected muscle groups, with no effect on transgene expression by the original vector. Therefore, the presence of pre-existing NAbs in the human population should not preclude subjects from receiving gene therapy by IM administration of the vector so long as sufficient levels of secreted transgene expression can be produced without the involvement of liver.

  11. Using a fed-batch culture strategy to enhance rAAV production in the baculovirus/insect cell system.

    PubMed

    Liu, Yu-Kuo; Yang, Ching-Jen; Liu, Chao-Lin; Shen, Chia-Rui; Shiau, Lie-Ding

    2010-08-01

    Recombinant adeno-associated virus (rAAV) is one of the most promising vectors for human gene therapy. However, the production systems that are currently available have a limited capacity and cannot provide sufficient quantities of rAAV for preclinical or clinical trials. Many novel methods for improving rAAV production have been developed, but few researchers have focused on the culture process. In this study, we use a fed-batch culture system to enhance rAAV yield in the baculovirus/insect cell system. When the insect cells were co-infected with MOI=5 of Bac-GFP at a ratio of 1:9:9 (Bac-GFP: Bac-Rep: Bac-VP), the fed-batch culture achieved optimal rAAV yields. In batch culture, the optimal cell density for producing rAAV was found to be 1x10(6) cells/ml, and the highest rAAV yield (1.22x10(8) IVP/ml, 122 IVP/cell) occurred at day 5 post-infection. In the fed-batch culture, rAAV yield reached 2.13x10(8) IVP/ml at day 4 post-infection, and the highest rAAV yield was 2.40x10(8) IVP/ml (240 IVP/cell) at day 5 post-infection. The cost of the batch and fed-batch cultures is similar; however, the rAAV yield was 2.6-fold higher in the fed-batch culture system compared with that in the batch culture system. Therefore, here we demonstrated an economical and efficient strategy for rAAV production.

  12. A multi-functional AAV-CRISPR-Cas9 and its host response

    PubMed Central

    Chew, Wei Leong; Tabebordbar, Mohammadsharif; Cheng, Jason K.W.; Mali, Prashant; Wu, Elizabeth Y.; Ng, Alex H.M.; Zhu, Kexian; Wagers, Amy J.; Church, George M.

    2017-01-01

    CRISPR-Cas9 delivery by AAV holds promise for gene therapy but faces critical barriers due to its potential immunogenicity and limited payload capacity. Here, we demonstrate genome engineering in postnatal mice using AAV-split-Cas9, a multi-functional platform customizable for genome-editing, transcriptional regulation, and other previously impracticable AAV-CRISPR-Cas9 applications. We identify crucial parameters that impact efficacy and clinical translation of our platform, including viral biodistribution, editing efficiencies in various organs, antigenicity, immunological reactions, and physiological outcomes. These results reveal that AAV-CRISPR-Cas9 evokes host responses with distinct cellular and molecular signatures, but unlike alternative delivery methods, does not induce extensive cellular damage in vivo. Our study provides a foundation for developing effective genome therapeutics. PMID:27595405

  13. A 5' Noncoding Exon Containing Engineered Intron Enhances Transgene Expression from Recombinant AAV Vectors in vivo.

    PubMed

    Lu, Jiamiao; Williams, James A; Luke, Jeremy; Zhang, Feijie; Chu, Kirk; Kay, Mark A

    2017-01-01

    We previously developed a mini-intronic plasmid (MIP) expression system in which the essential bacterial elements for plasmid replication and selection are placed within an engineered intron contained within a universal 5' UTR noncoding exon. Like minicircle DNA plasmids (devoid of bacterial backbone sequences), MIP plasmids overcome transcriptional silencing of the transgene. However, in addition MIP plasmids increase transgene expression by 2 and often >10 times higher than minicircle vectors in vivo and in vitro. Based on these findings, we examined the effects of the MIP intronic sequences in a recombinant adeno-associated virus (AAV) vector system. Recombinant AAV vectors containing an intron with a bacterial replication origin and bacterial selectable marker increased transgene expression by 40 to 100 times in vivo when compared with conventional AAV vectors. Therefore, inclusion of this noncoding exon/intron sequence upstream of the coding region can substantially enhance AAV-mediated gene expression in vivo.

  14. Tailored transgene expression to specific cell types in the central nervous system after peripheral injection with AAV9

    PubMed Central

    Dashkoff, Jonathan; Lerner, Eli P; Truong, Nhi; Klickstein, Jacob A; Fan, Zhanyun; Mu, Dakai; Maguire, Casey A; Hyman, Bradley T; Hudry, Eloise

    2016-01-01

    The capacity of certain adeno-associated virus (AAV) vectors to cross the blood–brain barrier after intravenous delivery offers a unique opportunity for noninvasive brain delivery. However, without a well-tailored system, the use of a peripheral route injection may lead to undesirable transgene expression in nontarget cells or organs. To refine this approach, the present study characterizes the transduction profiles of new self-complementary AAV9 (scAAV9) expressing the green fluorescent protein (GFP) either under an astrocyte (glial fibrillary acidic (GFA) protein) or neuronal (Synapsin (Syn)) promoter, after intravenous injection of adult mice (2 × 1013 vg/kg). ScAAV9-GFA-GFP and scAAV9-Syn-GFP robustly transduce astrocytes (11%) and neurons (17%), respectively, without aberrant expression leakage. Interestingly, while the percentages of GFP-positive astrocytes with scAAV9-GFA-GFP are similar to the performances observed with scAAV9-CBA-GFP (broadly active promoter), significant higher percentages of neurons express GFP with scAAV9-Syn-GFP. GFP-positive excitatory as well as inhibitory neurons are observed, as well as motor neurons in the spinal cord. Additionally, both activated (GFAP-positive) and resting astrocytes (GFAP-negative) express the reporter gene after scAAV9-GFA-GFP injection. These data thoroughly characterize the gene expression specificity of AAVs fitted with neuronal and astrocyte-selective promoters after intravenous delivery, which will prove useful for central nervous system (CNS) gene therapy approaches in which peripheral expression of transgene is a concern. PMID:27933308

  15. Plectin-1 Targeted AAV Vector for the Molecular Imaging of Pancreatic Cancer.

    PubMed

    Konkalmatt, Prasad R; Deng, Defeng; Thomas, Stephanie; Wu, Michael T; Logsdon, Craig D; French, Brent A; Kelly, Kimberly A

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is highly malignant disease that is the fourth leading cause of cancer-related death in the US. Gene therapy using AAV vectors to selectively deliver genes to PDAC cells is an attractive treatment option for pancreatic cancer. However, most AAV serotypes display a broad spectrum of tissue tropism and none of the existing serotypes specifically target PDAC cells. This study tests the hypothesis that AAV2 can be genetically re-engineered to specifically target PDAC cells by modifying the capsid surface to display a peptide that has previously been shown to bind plectin-1. Toward this end, a Plectin-1 Targeting Peptide (PTP) was inserted into the loop IV region of the AAV2 capsid, and the resulting capsid (AAV-PTP) was used in a series of in vitro and in vivo experiments. In vitro, AAV-PTP was found to target all five human PDAC cell lines tested (PANC-1, MIA PaCa-2, HPAC, MPanc-96, and BxPC-3) preferentially over two non-neoplastic human pancreatic cell lines (human pancreatic ductal epithelial and human pancreatic stellate cells). In vivo, mice bearing subcutaneous tumor xenografts were generated using the PANC-1 cell line. Once tumors reached a size of ∼1-2 mm in diameter, the mice were injected intravenously with luciferase reporter vectors packaged in the either AAV-PTP or wild type AAV2 capsids. Luciferase expression was then monitored by bioluminescence imaging on days 3, 7, and 14 after vector injection. The results indicate that the AAV-PTP capsid displays a 37-fold preference for PANC-1 tumor xenographs over liver and other tissues; whereas the wild type AAV2 capsid displays a complementary preference for liver over tumors and other tissues. Together, these results establish proof-of-principle for the ability of PTP-modified AAV capsids to selectively target gene delivery to PDAC cells in vivo, which opens promising new avenues for the early detection, diagnosis, and treatment of pancreatic cancer.

  16. [Current status of gene therapy for Parkinson disease].

    PubMed

    Mochizuki, Hideki

    2009-04-01

    Gene therapy is particularly appropriate for Parkinson disease (PD) since this condition exclusively affects the dopaminergic neurons projecting from the substantia nigra pars compacta (SNc) to the putamen. Currently, 4 ongoing phase I clinical trials are utilizing recombinant adeno-associated viral vectors (rAAv) or lentivirus vectors for the treatment of PD. In this article, we describe recent progress in the development of gene therapy methods for PD by reviewing clinical trials in this field. Parkin-associated PD is recessively inherited, that is, loss of function of parkin leads to the development of parkin -associated PD; hence, substrates for parkin (for its E3 function) are expected to accumulate in the brain. Therefore, the replacement of parkin function in such patients would decrease the toxicity of these substrates. We previously found that the transfer of parkin, encoding a familial PD-linked E3 ubiquitin ligase, in rats with PD could prevent the degeneration of nigral dopaminergic neurons. In addition, we recently reported the case report of a preclinical examination of rAAV vector-mediated retrograde delivery of parkin into nigrostriatal dopaminergic neurons in a non-human primate. In this article, we also review the potential of parkin gene therapy for the treatment of PD patients.

  17. AAV-mediated delivery of optogenetic constructs to the macaque brain triggers humoral immune responses.

    PubMed

    Mendoza, Skyler D; El-Shamayleh, Yasmine; Horwitz, Gregory D

    2017-02-15

    Gene delivery to the primate central nervous system via recombinant adeno-associated viral vectors (AAV) allows neurophysiologists to control and observe neural activity precisely. A current limitation of this approach is variability in vector transduction efficiency. Low levels of transduction can foil experimental manipulations, prompting vector readministration. The ability to make multiple vector injections into the same animal, even in cases where successful vector transduction has already been achieved, is also desirable. However, vector readministration has consequences for humoral immunity and gene delivery that depend on vector dosage and route of administration in complex ways. As part of optogenetic experiments in rhesus monkeys, we analyzed blood sera collected before and after AAV injections into the brain and quantified neutralizing antibodies to AAV using an in vitro assay. We found that injections of AAV1 and AAV9 vectors elevated neutralizing antibody titers consistently. These immune responses were specific to the serotype injected and were long lasting. These results demonstrate that optogenetic manipulations in monkeys trigger immune responses to AAV capsids, suggesting that vector readministration may have a higher likelihood of success by avoiding serotypes injected previously.

  18. Inverse zonation of hepatocyte transduction with AAV vectors between mice and non-human primates

    PubMed Central

    Bell, Peter; Wang, Lili; Gao, Guangping; Haskins, Mark E.; Tarantal, Alice F.; McCarter, Robert J.; Zhu, Yanqing; Yu, Hongwei; Wilson, James M.

    2011-01-01

    Gene transfer vectors based on adeno-associated virus 8 (AAV8) are highly efficient in liver transduction and can be easily administered by intravenous injection. In mice, AAV8 transduces predominantly hepatocytes near central veins and yields lower transduction levels in hepatocytes in periportal regions. This transduction bias has important implications for gene therapy that aims to correct metabolic liver enzymes because metabolic zonation along the porto-central axis requires the expression of therapeutic proteins within the zone where they are normally localized. In the present study we compared the expression pattern of AAV8 expressing green fluorescent protein (GFP) in liver between mice, dogs, and non-human primates. We confirmed the pericentral dominance in transgene expression in mice with AAV8 when the liver-specific thyroid hormone-binding globulin (TBG) promoter was used but also observed the same expression pattern with the ubiquitous chicken β-actin (CB) and cytomegalovirus (CMV) promoters, suggesting that transduction zonation is not caused by promoter specificity. Predominantly pericentral expression was also found in dogs injected with AAV8. In contrast, in cynomolgus and rhesus macaques the expression pattern from AAV vectors was reversed, i.e. transgene expression was most intense around portal areas and less intense or absent around central veins. Infant rhesus macaques as well as newborn mice injected with AAV8 however showed a random distribution of transgene expression with neither portal nor central transduction bias. Based on the data in monkeys, adult humans treated with AAV vectors are predicted to also express transgenes predominantly in periportal regions whereas infants are likely to show a uniform transduction pattern in liver. PMID:21778099

  19. Efficient and Targeted Transduction of Nonhuman Primate Liver With Systemically Delivered Optimized AAV3B Vectors.

    PubMed

    Li, Shaoyong; Ling, Chen; Zhong, Li; Li, Mengxin; Su, Qin; He, Ran; Tang, Qiushi; Greiner, Dale L; Shultz, Leonard D; Brehm, Michael A; Flotte, Terence R; Mueller, Christian; Srivastava, Arun; Gao, Guangping

    2015-12-01

    Recombinant adeno-associated virus serotype 3B (rAAV3B) can transduce cultured human liver cancer cells and primary human hepatocytes efficiently. Serine (S)- and threonine (T)-directed capsid modifications further augment its transduction efficiency. Systemically delivered capsid-optimized rAAV3B vectors can specifically target cancer cells in a human liver cancer xenograft model, suggesting their potential use for human liver-directed gene therapy. Here, we compared transduction efficiencies of AAV3B and AAV8 vectors in cultured primary human hepatocytes and cancer cells as well as in human and mouse hepatocytes in a human liver xenograft NSG-PiZ mouse model. We also examined the safety and transduction efficacy of wild-type (WT) and capsid-optimized rAAV3B in the livers of nonhuman primates (NHPs). Intravenously delivered S663V+T492V (ST)-modified self-complementary (sc) AAV3B-EGFP vectors led to liver-targeted robust enhanced green fluorescence protein (EGFP) expression in NHPs without apparent hepatotoxicity. Intravenous injections of both WT and ST-modified rAAV3B.ST-rhCG vectors also generated stable super-physiological levels of rhesus chorionic gonadotropin (rhCG) in NHPs. The vector genome predominantly targeted the liver. Clinical chemistry and histopathology examinations showed no apparent vector-related toxicity. Our studies should be important and informative for clinical development of optimized AAV3B vectors for human liver-directed gene therapy.

  20. Comparative Transduction Efficiency of AAV Vector Serotypes 1–6 in the Substantia Nigra and Striatum of the Primate Brain

    PubMed Central

    Markakis, Eleni A; Vives, Kenneth P; Bober, Jeremy; Leichtle, Stefan; Leranth, Csaba; Beecham, Jeff; Elsworth, John D; Roth, Robert H; Samulski, R Jude; Redmond, D Eugene

    2009-01-01

    Vectors derived from adeno-associated virus (AAV) are promising candidates for neural cell transduction in vivo because they are nonpathogenic and achieve long-term transduction in the central nervous system. AAV serotype 2 (AAV2) is the most widely used AAV vector in clinical trials based largely on its ability to transduce neural cells in the rodent and primate brain. Prior work in rodents suggests that other serotypes might be more efficient; however, a systematic evaluation of vector transduction efficiency has not yet been performed in the primate brain. In this study, AAV viral vectors of serotypes 1–6 with an enhanced green-fluorescent protein (GFP) reporter gene were generated at comparable titers, and injected in equal amounts into the brains of Chlorocebus sabaeus. Vector injections were placed in the substantia nigra (SN) and the caudate nucleus (CD). One month after injection, immunohistochemistry for GFP was performed and the total number of GFP+ cells was calculated using unbiased stereology. AAV5 was the most efficient vector, not only transducing significantly more cells than any other serotype, but also transducing both NeuN+ and glial-fibrillary-acidic protein positive (GFAP+) cells. These results suggest that AAV5 is a more effective vector than AAV2 at delivering potentially therapeutic transgenes to the nigrostriatal system of the primate brain. PMID:20010918

  1. Constraining flavor changing interactions from LHC Run-2 dilepton bounds with vector mediators

    NASA Astrophysics Data System (ADS)

    Queiroz, Farinaldo S.; Siqueira, Clarissa; Valle, José W. F.

    2016-12-01

    Within the context of vector mediators, is a new signal observed in flavor changing interactions, particularly in the neutral mesons systems K0 -Kbar0, D0 -Dbar0 and B0 -B0 bar , consistent with dilepton resonance searches at the LHC? In the attempt to address this very simple question, we discuss the complementarity between flavor changing neutral current (FCNC) and dilepton resonance searches at the LHC run 2 at 13 TeV with 3.2 fb-1 of integrated luminosity, in the context of vector mediators at tree level. Vector mediators, are often studied in the flavor changing framework, specially in the light of the recent LHCb anomaly observed at the rare B decay. However, the existence of stringent dilepton bound severely constrains flavor changing interactions, due to restrictive limits on the Z‧ mass. We discuss this interplay explicitly in the well motivated framework of a 3-3-1 scheme, where fermions and scalars are arranged in the fundamental representation of the weak SU(3) gauge group. Due to the paucity of relevant parameters, we conclude that dilepton data leave little room for a possible new physics signal stemming from these systems, unless a very peculiar texture parametrization is used in the diagonalization of the CKM matrix. In other words, if a signal is observed in such flavor changing interactions, it unlikely comes from a 3-3-1 model.

  2. Characterising dark matter searches at colliders and direct detection experiments: Vector mediators

    DOE PAGES

    Buchmueller, Oliver; Dolan, Matthew J.; Malik, Sarah A.; ...

    2015-01-09

    We introduce a Minimal Simplified Dark Matter (MSDM) framework to quantitatively characterise dark matter (DM) searches at the LHC. We study two MSDM models where the DM is a Dirac fermion which interacts with a vector and axial-vector mediator. The models are characterised by four parameters: mDM, Mmed , gDM and gq, the DM and mediator masses, and the mediator couplings to DM and quarks respectively. The MSDM models accurately capture the full event kinematics, and the dependence on all masses and couplings can be systematically studied. The interpretation of mono-jet searches in this framework can be used to establishmore » an equal-footing comparison with direct detection experiments. For theories with a vector mediator, LHC mono-jet searches possess better sensitivity than direct detection searches for light DM masses (≲5 GeV). For axial-vector mediators, LHC and direct detection searches generally probe orthogonal directions in the parameter space. We explore the projected limits of these searches from the ultimate reach of the LHC and multi-ton xenon direct detection experiments, and find that the complementarity of the searches remains. In conclusion, we provide a comparison of limits in the MSDM and effective field theory (EFT) frameworks to highlight the deficiencies of the EFT framework, particularly when exploring the complementarity of mono-jet and direct detection searches.« less

  3. Characterising dark matter searches at colliders and direct detection experiments: Vector mediators

    SciTech Connect

    Buchmueller, Oliver; Dolan, Matthew J.; Malik, Sarah A.; McCabe, Christopher

    2015-01-09

    We introduce a Minimal Simplified Dark Matter (MSDM) framework to quantitatively characterise dark matter (DM) searches at the LHC. We study two MSDM models where the DM is a Dirac fermion which interacts with a vector and axial-vector mediator. The models are characterised by four parameters: mDM, Mmed , gDM and gq, the DM and mediator masses, and the mediator couplings to DM and quarks respectively. The MSDM models accurately capture the full event kinematics, and the dependence on all masses and couplings can be systematically studied. The interpretation of mono-jet searches in this framework can be used to establish an equal-footing comparison with direct detection experiments. For theories with a vector mediator, LHC mono-jet searches possess better sensitivity than direct detection searches for light DM masses (≲5 GeV). For axial-vector mediators, LHC and direct detection searches generally probe orthogonal directions in the parameter space. We explore the projected limits of these searches from the ultimate reach of the LHC and multi-ton xenon direct detection experiments, and find that the complementarity of the searches remains. In conclusion, we provide a comparison of limits in the MSDM and effective field theory (EFT) frameworks to highlight the deficiencies of the EFT framework, particularly when exploring the complementarity of mono-jet and direct detection searches.

  4. Comprehensive Small RNA-Seq of Adeno-Associated Virus (AAV)-Infected Human Cells Detects Patterns of Novel, Non-Coding AAV RNAs in the Absence of Cellular miRNA Regulation

    PubMed Central

    Stutika, Catrin; Mietzsch, Mario; Gogol-Döring, Andreas; Weger, Stefan; Sohn, Madlen; Chen, Wei; Heilbronn, Regine

    2016-01-01

    Most DNA viruses express small regulatory RNAs, which interfere with viral or cellular gene expression. For adeno-associated virus (AAV), a small ssDNA virus with a complex biphasic life cycle miRNAs or other small regulatory RNAs have not yet been described. This is the first comprehensive Illumina-based RNA-Seq analysis of small RNAs expressed by AAV alone or upon co-infection with helper adenovirus or HSV. Several hotspots of AAV-specific small RNAs were detected mostly close to or within the AAV-ITR and apparently transcribed from the newly identified anti-p5 promoter. An additional small RNA hotspot was located downstream of the p40 promoter, from where transcription of non-coding RNAs associated with the inhibition of adenovirus replication were recently described. Parallel detection of known Ad and HSV miRNAs indirectly validated the newly identified small AAV RNA species. The predominant small RNAs were analyzed on Northern blots and by human argonaute protein-mediated co-immunoprecipitation. None of the small AAV RNAs showed characteristics of bona fide miRNAs, but characteristics of alternative RNA processing indicative of differentially regulated AAV promoter-associated small RNAs. Furthermore, the AAV-induced regulation of cellular miRNA levels was analyzed at different time points post infection. In contrast to other virus groups AAV infection had virtually no effect on the expression of cellular miRNA, which underscores the long-established concept that wild-type AAV infection is apathogenic. PMID:27611072

  5. Comprehensive Small RNA-Seq of Adeno-Associated Virus (AAV)-Infected Human Cells Detects Patterns of Novel, Non-Coding AAV RNAs in the Absence of Cellular miRNA Regulation.

    PubMed

    Stutika, Catrin; Mietzsch, Mario; Gogol-Döring, Andreas; Weger, Stefan; Sohn, Madlen; Chen, Wei; Heilbronn, Regine

    2016-01-01

    Most DNA viruses express small regulatory RNAs, which interfere with viral or cellular gene expression. For adeno-associated virus (AAV), a small ssDNA virus with a complex biphasic life cycle miRNAs or other small regulatory RNAs have not yet been described. This is the first comprehensive Illumina-based RNA-Seq analysis of small RNAs expressed by AAV alone or upon co-infection with helper adenovirus or HSV. Several hotspots of AAV-specific small RNAs were detected mostly close to or within the AAV-ITR and apparently transcribed from the newly identified anti-p5 promoter. An additional small RNA hotspot was located downstream of the p40 promoter, from where transcription of non-coding RNAs associated with the inhibition of adenovirus replication were recently described. Parallel detection of known Ad and HSV miRNAs indirectly validated the newly identified small AAV RNA species. The predominant small RNAs were analyzed on Northern blots and by human argonaute protein-mediated co-immunoprecipitation. None of the small AAV RNAs showed characteristics of bona fide miRNAs, but characteristics of alternative RNA processing indicative of differentially regulated AAV promoter-associated small RNAs. Furthermore, the AAV-induced regulation of cellular miRNA levels was analyzed at different time points post infection. In contrast to other virus groups AAV infection had virtually no effect on the expression of cellular miRNA, which underscores the long-established concept that wild-type AAV infection is apathogenic.

  6. Immune Responses to rAAV6: The Influence of Canine Parvovirus Vaccination and Neonatal Administration of Viral Vector

    PubMed Central

    Arnett, Andrea L. H.; Garikipati, Dilip; Wang, Zejing; Tapscott, Stephen; Chamberlain, Jeffrey S.

    2011-01-01

    Recombinant adeno-associated viral (rAAV) vectors promote long-term gene transfer in many animal species. Significant effort has focused on the evaluation of rAAV delivery and the immune response in both murine and canine models of neuromuscular disease. However, canines provided for research purposes are routinely vaccinated against canine parvovirus (CPV). rAAV and CPV possess significant homology and are both parvoviruses. Thus, any immune response generated to CPV vaccination has the potential to cross-react with rAAV vectors. In this study, we investigated the immune response to rAAV6 delivery in a cohort of CPV-vaccinated canines and evaluated multiple vaccination regimens in a mouse model of CPV-vaccination. We show that CPV-vaccination stimulates production of neutralizing antibodies with minimal cross-reactivity to rAAV6. In addition, no significant differences were observed in the magnitude of the rAAV6-directed immune response between CPV-vaccinated animals and controls. Moreover, CPV-vaccination did not inhibit rAAV6-mediated transduction. We also evaluated the immune response to early rAAV6-vaccination in neonatal mice. The influence of maternal hormones and cytokines leads to a relatively permissive state in the neonate. We hypothesized that immaturity of the immune system would permit induction of tolerance to rAAV6 when delivered during the neonatal period. Mice were vaccinated with rAAV6 at 1 or 5 days of age, and subsequently challenged with rAAV6 exposure during adulthood via two sequential IM injections, 1 month apart. All vaccinated animals generated a significant neutralizing antibody response to rAAV6-vaccination that was enhanced following IM injection in adulthood. Taken together, these data demonstrate that the immune response raised against rAAV6 is distinct from that which is elicited by the standard parvoviral vaccines and is sufficient to prevent stable tolerization in neonatal mice. PMID:22065964

  7. Whole Body Skeletal Muscle Transduction in Neonatal Dogs with AAV-9

    PubMed Central

    Yue, Yongping; Shin, Jin-Hong; Duan, Dongsheng

    2011-01-01

    Gene therapy of muscular dystrophy requires systemic gene delivery to all muscles in the body. Adeno-associated viral (AAV) vectors have been shown to lead to body-wide muscle transduction after a single intravascular injection. Proof-of-principle has been demonstrated in mouse models of Duchenne muscular dystrophy and limb girdle muscular dystrophy. Before initiating clinical trials, it is important to validate these promising results in large animal models. More than a dozen canine muscular dystrophy models have been developed. Here, we outline a protocol for performing systemic AAV gene transfer in neonatal dogs. Implementing this technique in dystrophic dogs will accelerate translational muscular dystrophy research. PMID:21194038

  8. Advanced Characterization of DNA Molecules in rAAV Vector Preparations by Single-stranded Virus Next-generation Sequencing

    PubMed Central

    Lecomte, Emilie; Tournaire, Benoît; Cogné, Benjamin; Dupont, Jean-Baptiste; Lindenbaum, Pierre; Martin-Fontaine, Mélanie; Broucque, Frédéric; Robin, Cécile; Hebben, Matthias; Merten, Otto-Wilhelm; Blouin, Véronique; François, Achille; Redon, Richard; Moullier, Philippe; Léger, Adrien

    2015-01-01

    Recent successful clinical trials with recombinant adeno-associated viral vectors (rAAVs) have led to a renewed interest in gene therapy. However, despite extensive developments to improve vector-manufacturing processes, undesirable DNA contaminants in rAAV preparations remain a major safety concern. Indeed, the presence of DNA fragments containing antibiotic resistance genes, wild-type AAV, and packaging cell genomes has been found in previous studies using quantitative polymerase chain reaction (qPCR) analyses. However, because qPCR only provides a partial view of the DNA molecules in rAAV preparations, we developed a method based on next-generation sequencing (NGS) to extensively characterize single-stranded DNA virus preparations (SSV-Seq). In order to validate SSV-Seq, we analyzed three rAAV vector preparations produced by transient transfection of mammalian cells. Our data were consistent with qPCR results and showed a quasi-random distribution of contaminants originating from the packaging cells genome. Finally, we found single-nucleotide variants (SNVs) along the vector genome but no evidence of large deletions. Altogether, SSV-Seq could provide a characterization of DNA contaminants and a map of the rAAV genome with unprecedented resolution and exhaustiveness. We expect SSV-Seq to pave the way for a new generation of quality controls, guiding process development toward rAAV preparations of higher potency and with improved safety profiles. PMID:26506038

  9. Advanced Characterization of DNA Molecules in rAAV Vector Preparations by Single-stranded Virus Next-generation Sequencing.

    PubMed

    Lecomte, Emilie; Tournaire, Benoît; Cogné, Benjamin; Dupont, Jean-Baptiste; Lindenbaum, Pierre; Martin-Fontaine, Mélanie; Broucque, Frédéric; Robin, Cécile; Hebben, Matthias; Merten, Otto-Wilhelm; Blouin, Véronique; François, Achille; Redon, Richard; Moullier, Philippe; Léger, Adrien

    2015-10-27

    Recent successful clinical trials with recombinant adeno-associated viral vectors (rAAVs) have led to a renewed interest in gene therapy. However, despite extensive developments to improve vector-manufacturing processes, undesirable DNA contaminants in rAAV preparations remain a major safety concern. Indeed, the presence of DNA fragments containing antibiotic resistance genes, wild-type AAV, and packaging cell genomes has been found in previous studies using quantitative polymerase chain reaction (qPCR) analyses. However, because qPCR only provides a partial view of the DNA molecules in rAAV preparations, we developed a method based on next-generation sequencing (NGS) to extensively characterize single-stranded DNA virus preparations (SSV-Seq). In order to validate SSV-Seq, we analyzed three rAAV vector preparations produced by transient transfection of mammalian cells. Our data were consistent with qPCR results and showed a quasi-random distribution of contaminants originating from the packaging cells genome. Finally, we found single-nucleotide variants (SNVs) along the vector genome but no evidence of large deletions. Altogether, SSV-Seq could provide a characterization of DNA contaminants and a map of the rAAV genome with unprecedented resolution and exhaustiveness. We expect SSV-Seq to pave the way for a new generation of quality controls, guiding process development toward rAAV preparations of higher potency and with improved safety profiles.

  10. Adipose tissue insulin receptor knockdown via a new primate-derived hybrid recombinant AAV serotype

    PubMed Central

    Liu, Xianglan; Magee, Daniel; Wang, Chuansong; McMurphy, Travis; Slater, Andrew; During, Matthew; Cao, Lei

    2014-01-01

    Adipose tissue plays an essential role in metabolic homeostasis and holds promise as an alternative depot organ in gene therapy. However, efficient methods of gene transfer into adipose tissue in vivo have yet to be established. Here, we assessed the transduction efficiency to fat depots by a family of novel engineered hybrid capsid serotypes (Rec1~4) recombinant adeno-associated viral (AAV) vectors in comparison with natural serotypes AAV1, AAV8, and AAV9. Rec2 serotype led to widespread transduction in both brown fat and white fat with the highest efficiency among the seven serotypes tested. As a proof-of-efficacy, Rec2 serotype was used to deliver Cre recombinase to adipose tissues of insulin receptor floxed animals. Insulin receptor knockdown led to decreased fat pad mass and morphological and molecular changes in the targeted depot. These novel hybrid AAV vectors can serve as powerful tools to genetically manipulate adipose tissue and provide valuable vehicles to gene therapy targeting adipose tissue. PMID:25383359

  11. AAV natural infection induces broad cross-neutralizing antibody responses to multiple AAV serotypes in chimpanzees.

    PubMed

    Calcedo, Roberto; Wilson, James M

    2016-06-01

    Cross-sectional studies of primates have revealed that natural neutralizing antibody (NAb) responses to adeno-associated viruses (AAV) span multiple serotypes. This differs from the phenotype of the NAb response to an AAV vector delivered to sero-negative nonhuman primates which is typically restricted to the administered AAV serotype. To better understand the mechanism by which natural AAV infections result in broad NAb responses, we conducted a longitudinal study spanning 10 years in which we evaluated serum-circulating AAV NAb levels in captive-housed chimpanzees. In a cohort of 25 chimpanzees we identified three distinct groups of animals: those which never sero-converted to AAV (naïve); those which were persistently seropositive (chronic); and those that seroconverted during the 10 year period (acute). For the chronic group we found a broad sero-response characterized by NAbs reacting to multiple AAV serotypes. A similar cross-neutralization pattern of NAbs was observed in the acute group. These data support our hypothesis that a single natural infection with AAV induces a broadly cross-reactive NAb response to multiple AAV serotypes.

  12. AAV Natural Infection Induces Broad Cross-Neutralizing Antibody Responses to Multiple AAV Serotypes in Chimpanzees.

    PubMed

    Calcedo, Roberto; Wilson, James M

    2016-06-01

    Cross-sectional studies of primates have revealed that natural neutralizing antibody (NAb) responses to adeno-associated viruses (AAV) span multiple serotypes. This differs from the phenotype of the NAb response to an AAV vector delivered to seronegative nonhuman primates that is typically restricted to the administered AAV serotype. To better understand the mechanism by which natural AAV infections result in broad NAb responses, we conducted a longitudinal study spanning 10 years in which we evaluated serum-circulating AAV NAb levels in captive-housed chimpanzees. In a cohort of 25 chimpanzees we identified 3 distinct groups of animals: those that never seroconverted to AAV (naïve), those that were persistently seropositive (chronic), and those that seroconverted during the 10-year period (acute). For the chronic group we found a broad seroresponse characterized by NAbs reacting to multiple AAV serotypes. A similar cross-neutralization pattern of NAbs was observed in the acute group. These data support our hypothesis that a single natural infection with AAV induces a broadly cross-reactive NAb response to multiple AAV serotypes.

  13. Towards a rAAV-based gene therapy for ADA-SCID: from ADA deficiency to current and future treatment strategies.

    PubMed

    Silver, Jared N; Flotte, Terence R

    2008-07-01

    Adenosine deaminase deficiency fosters a rare, devastating pediatric immune deficiency with concomitant opportunistic infections, metabolic anomalies and multiple organ system pathology. The standard of care for adenosine deaminase deficient severe combined immune deficiency (ADA-SCID) includes enzyme replacement therapy or bone marrow transplantation. Gene therapies for ADA-SCID over nearly two decades have exclusively involved retroviral vectors targeted to lymphocytes and hematopoetic progenitors. These groundbreaking gene therapies represent a revolution in clinical medicine, but come with several challenges, including the risk of insertional mutagenesis. An alternative gene therapy for ADA-SCID may utilize recombinant adeno-associated virus vectors in vivo, with numerous target tissues, to foster ectopic expression and secretion of adenosine deaminase. This review endeavors to describe ADA-SCID, the traditional treatments, previous retroviral gene therapies, and primarily, alternative recombinant adeno-associated virus-based strategies to remedy this potentially fatal genetic disease.

  14. The ANCA Vasculitis Questionnaire (AAV-PRO©)

    ClinicalTrials.gov

    2016-05-10

    Eosinophilic Granulomatosis With Polyangiitis (Churg-Strauss) (EGPA); Churg-Strauss Syndrome (CSS); Granulomatosis With Polyangiitis (Wegener's) (GPA); Wegener Granulomatosis (WG); Microscopic Polyangiitis (MPA); ANCA-Associated Vasculitis (AAV); Vasculitis

  15. Transduction efficiency of neurons and glial cells by AAV-1, -5, -9, -rh10 and -hu11 serotypes in rat spinal cord following contusion injury.

    PubMed

    Petrosyan, H A; Alessi, V; Singh, V; Hunanyan, A S; Levine, J M; Arvanian, V L

    2014-12-01

    Adeno-associated viruses (AAVs) are a promising system for therapeutic gene delivery to neurons in a number of neurodegenerative conditions including spinal cord injuries (SCIs). Considering the role of macrophages and glia in the progression of 'secondary damage', we searched for the optimal vectors for gene transfer to both neurons and glia following contusion SCI in adult rats. Contusion models share many similarities to most human spinal cord traumas. Several AAV serotypes known for their neuronal tropism expressing enhanced green-fluorescent protein (GFP) were injected intraspinally following thoracic T10 contusion. We systematically compared the transduction efficacy and cellular tropism of these vectors for neurons, macrophages/microglia, oligodendrocytes, astrocytes and NG2-positive glial cells following contusion SCI. No additional changes in inflammatory responses or behavioral performance were observed for any of the vectors. We identified that AAV-rh10 induced robust transduction of both neuronal and glial cells. Even though efficacy to transduce neurons was comparable to already established AAV-1, AAV-5 and AAV-9, AAV-rh10 transduced significantly higher number of macrophages/microglia and oligodendrocytes in damaged spinal cord compared with other serotypes tested. Thus, AAV-rh10 carries promising potential as a gene therapy vector, particularly if both the neuronal and glial cell populations in damaged spinal cord are targeted.

  16. Recombinant AAV Vectors for Enhanced Expression of Authentic IgG

    PubMed Central

    Fuchs, Sebastian P.; Martinez-Navio, José M.; Gao, Guangping; Desrosiers, Ronald C.

    2016-01-01

    Adeno-associated virus (AAV) has become a vector of choice for the treatment of a variety of genetic diseases that require safe and long-term delivery of a missing protein. Muscle-directed gene transfer for delivery of protective antibodies against AIDS viruses and other pathogens has been used experimentally in mice and monkeys. Here we examined a number of variations to AAV vector design for the ability to produce authentic immunoglobulin G (IgG) molecules. Expression of rhesus IgG from a single single-stranded AAV (ssAAV) vector (one vector approach) was compared to expression from two self-complementary AAV (scAAV) vectors, one for heavy chain and one for light chain (two vector approach). Both the one vector and the two vector approaches yielded considerable levels of expressed full-length IgG. A number of modifications to the ssAAV expression system were then examined for their ability to increase the efficiency of IgG expression. Inclusion of a furin cleavage sequence with a linker peptide just upstream of the 2A self-cleaving sequence from foot-and-mouth disease virus (F2A) increased IgG expression approximately 2 fold. Inclusion of these sequences also helped to ensure a proper sequence at the C-terminal end of the heavy chain. Inclusion of the post-transcriptional regulatory element from woodchuck hepatitis virus (WPRE) further increased IgG expression 1.5–2.0 fold. IgG1 versions of the two rhesus IgGs that were examined consistently expressed better than the IgG2 forms. In contrast to what has been reported for AAV2-mediated expression of other proteins, introduction of capsid mutations Y445F and Y731F did not increase ssAAV1-mediated expression of IgG as determined by transduction experiments in cell culture. Our findings provide a rational basis for AAV vector design for expression of authentic IgG. PMID:27332822

  17. Recombinant AAV Vectors for Enhanced Expression of Authentic IgG.

    PubMed

    Fuchs, Sebastian P; Martinez-Navio, José M; Gao, Guangping; Desrosiers, Ronald C

    2016-01-01

    Adeno-associated virus (AAV) has become a vector of choice for the treatment of a variety of genetic diseases that require safe and long-term delivery of a missing protein. Muscle-directed gene transfer for delivery of protective antibodies against AIDS viruses and other pathogens has been used experimentally in mice and monkeys. Here we examined a number of variations to AAV vector design for the ability to produce authentic immunoglobulin G (IgG) molecules. Expression of rhesus IgG from a single single-stranded AAV (ssAAV) vector (one vector approach) was compared to expression from two self-complementary AAV (scAAV) vectors, one for heavy chain and one for light chain (two vector approach). Both the one vector and the two vector approaches yielded considerable levels of expressed full-length IgG. A number of modifications to the ssAAV expression system were then examined for their ability to increase the efficiency of IgG expression. Inclusion of a furin cleavage sequence with a linker peptide just upstream of the 2A self-cleaving sequence from foot-and-mouth disease virus (F2A) increased IgG expression approximately 2 fold. Inclusion of these sequences also helped to ensure a proper sequence at the C-terminal end of the heavy chain. Inclusion of the post-transcriptional regulatory element from woodchuck hepatitis virus (WPRE) further increased IgG expression 1.5-2.0 fold. IgG1 versions of the two rhesus IgGs that were examined consistently expressed better than the IgG2 forms. In contrast to what has been reported for AAV2-mediated expression of other proteins, introduction of capsid mutations Y445F and Y731F did not increase ssAAV1-mediated expression of IgG as determined by transduction experiments in cell culture. Our findings provide a rational basis for AAV vector design for expression of authentic IgG.

  18. Preclinical demonstration of lentiviral vector-mediated correction of immunological and metabolic abnormalities in models of adenosine deaminase deficiency.

    PubMed

    Carbonaro, Denise A; Zhang, Lin; Jin, Xiangyang; Montiel-Equihua, Claudia; Geiger, Sabine; Carmo, Marlene; Cooper, Aaron; Fairbanks, Lynette; Kaufman, Michael L; Sebire, Neil J; Hollis, Roger P; Blundell, Michael P; Senadheera, Shantha; Fu, Pei-Yu; Sahaghian, Arineh; Chan, Rebecca Y; Wang, Xiaoyan; Cornetta, Kenneth; Thrasher, Adrian J; Kohn, Donald B; Gaspar, H Bobby

    2014-03-01

    Gene transfer into autologous hematopoietic stem cells by γ-retroviral vectors (gRV) is an effective treatment for adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID). However, current gRV have significant potential for insertional mutagenesis as reported in clinical trials for other primary immunodeficiencies. To improve the efficacy and safety of ADA-SCID gene therapy (GT), we generated a self-inactivating lentiviral vector (LV) with a codon-optimized human cADA gene under the control of the short form elongation factor-1α promoter (LV EFS ADA). In ADA(-/-) mice, LV EFS ADA displayed high-efficiency gene transfer and sufficient ADA expression to rescue ADA(-/-) mice from their lethal phenotype with good thymic and peripheral T- and B-cell reconstitution. Human ADA-deficient CD34(+) cells transduced with 1-5 × 10(7) TU/ml had 1-3 vector copies/cell and expressed 1-2x of normal endogenous levels of ADA, as assayed in vitro and by transplantation into immune-deficient mice. Importantly, in vitro immortalization assays demonstrated that LV EFS ADA had significantly less transformation potential compared to gRV vectors, and vector integration-site analysis by nrLAM-PCR of transduced human cells grown in immune-deficient mice showed no evidence of clonal skewing. These data demonstrated that the LV EFS ADA vector can effectively transfer the human ADA cDNA and promote immune and metabolic recovery, while reducing the potential for vector-mediated insertional mutagenesis.

  19. Convection-Enhanced Delivery of AAV2-PrPshRNA in Prion-Infected Mice

    PubMed Central

    Ahn, Misol; Bajsarowicz, Krystyna; Oehler, Abby; Lemus, Azucena; Bankiewicz, Krystof; DeArmond, Stephen J.

    2014-01-01

    Prion disease is caused by a single pathogenic protein (PrPSc), an abnormal conformer of the normal cellular prion protein PrPC. Depletion of PrPC in prion knockout mice makes them resistant to prion disease. Thus, gene silencing of the Prnp gene is a promising effective therapeutic approach. Here, we examined adeno-associated virus vector type 2 encoding a short hairpin RNA targeting Prnp mRNA (AAV2-PrP-shRNA) to suppress PrPC expression both in vitro and in vivo. AAV2-PrP-shRNA treatment suppressed PrP levels and prevented dendritic degeneration in RML-infected brain aggregate cultures. Infusion of AAV2-PrP-shRNA-eGFP into the thalamus of CD-1 mice showed that eGFP was transported to the cerebral cortex via anterograde transport and the overall PrPC levels were reduced by ∼70% within 4 weeks. For therapeutic purposes, we treated RML-infected CD-1 mice with AAV2-PrP-shRNA beginning at 50 days post inoculation. Although AAV2-PrP-shRNA focally suppressed PrPSc formation in the thalamic infusion site by ∼75%, it did not suppress PrPSc formation efficiently in other regions of the brain. Survival of mice was not extended compared to the untreated controls. Global suppression of PrPC in the brain is required for successful therapy of prion diseases. PMID:24866748

  20. Delivery of AAV2/9-Microdystrophin Genes Incorporating Helix 1 of the Coiled-Coil Motif in the C-Terminal Domain of Dystrophin Improves Muscle Pathology and Restores the Level of α1-Syntrophin and α-Dystrobrevin in Skeletal Muscles of mdx Mice

    PubMed Central

    Koo, Taeyoung; Malerba, Alberto; Athanasopoulos, Takis; Trollet, Capucine; Boldrin, Luisa; Ferry, Arnaud; Popplewell, Linda; Foster, Helen; Foster, Keith

    2011-01-01

    Abstract Duchenne muscular dystrophy is a severe X-linked inherited muscle wasting disorder caused by mutations in the dystrophin gene. Adeno-associated virus (AAV) vectors have been extensively used to deliver genes efficiently for dystrophin expression in skeletal muscles. To overcome limited packaging capacity of AAV vectors (<5 kb), truncated recombinant microdystrophin genes with deletions of most of rod and carboxyl-terminal (CT) domains of dystrophin have been developed. We have previously shown the efficiency of mRNA sequence–optimized microdystrophin (ΔR4-23/ΔCT, called MD1) with deletion of spectrin-like repeat domain 4 to 23 and CT domain in ameliorating the pathology of dystrophic mdx mice. However, the CT domain of dystrophin is thought to recruit part of the dystrophin-associated protein complex, which acts as a mediator of signaling between extracellular matrix and cytoskeleton in muscle fibers. In this study, we extended the ΔR4-23/ΔCT microdystrophin by incorporating helix 1 of the coiled-coil motif in the CT domain of dystrophin (MD2), which contains the α1-syntrophin and α-dystrobrevin binding sites. Intramuscular injection of AAV2/9 expressing CT domain–extended microdystrophin showed efficient dystrophin expression in tibialis anterior muscles of mdx mice. The presence of the CT domain of dystrophin in MD2 increased the recruitment of α1-syntrophin and α-dystrobrevin at the sarcolemma and significantly improved the muscle resistance to lengthening contraction–induced muscle damage in the mdx mice compared with MD1. These results suggest that the incorporation of helix 1 of the coiled-coil motif in the CT domain of dystrophin to the microdystrophins will substantially improve their efficiency in restoring muscle function in patients with Duchenne muscular dystrophy. PMID:21453126

  1. Pre-Clinical Assessment of Immune Responses to Adeno-Associated Virus (AAV) Vectors.

    PubMed

    Basner-Tschakarjan, Etiena; Bijjiga, Enoch; Martino, Ashley T

    2014-01-01

    Transitioning to human trials from pre-clinical models resulted in the emergence of inhibitory AAV vector immune responses which has become a hurdle for sustained correction. Early animal studies did not predict the full range of host immunity to the AAV vector in human studies. While pre-existing antibody titers against AAV vectors has been a lingering concern, cytotoxic T-cell (CTL) responses against the input capsid can prevent long-term therapy in humans. These discoveries spawned more thorough profiling of immune response to rAAV in pre-clinical models, which have assessed both innate and adaptive immunity and explored methods for bypassing these responses. Many efforts toward measuring innate immunity have utilized Toll-like receptor deficient models and have focused on differential responses to viral capsid and genome. From adaptive studies, it is clear that humoral responses are relevant for initial vector transduction efficiency while cellular responses impact long-term outcomes of gene transfer. Measuring humoral responses to AAV vectors has utilized in vitro neutralizing antibody assays and transfer of seropositive serum to immunodeficient mice. Overcoming antibodies using CD20 inhibitors, plasmapheresis, altering route of delivery and using different capsids have been explored. CTL responses were measured using in vitro and in vivo models. In in vitro assays expansion of antigen-specific T-cells as well as cytotoxicity toward AAV transduced cells can be shown. Many groups have successfully mimicked antigen-specific T-cell proliferation, but actual transgene level reduction and parameters of cytotoxicity toward transduced target cells have only been shown in one model. The model utilized adoptive transfer of capsid-specific in vitro expanded T-cells isolated from immunized mice with LPS as an adjuvant. Finally, the development of immune tolerance to AAV vectors by enriching regulatory T-cells as well as modulating the response pharmacologically has also

  2. Copackaged AAV9 Vectors Promote Simultaneous Immune Tolerance and Phenotypic Correction of Pompe Disease

    PubMed Central

    Doerfler, Phillip A.; Todd, Adrian G.; Clément, Nathalie; Falk, Darin J.; Nayak, Sushrusha; Herzog, Roland W.; Byrne, Barry J.

    2016-01-01

    Pompe disease is a progressive neuromuscular disorder caused by lysosomal accumulation of glycogen from a deficiency in acid alpha-glucosidase (GAA). Replacement of the missing enzyme is available by repeated protein infusions; however, efficacy is limited by immune response and inability to restore enzymatic function in the central nervous system. An alternative therapeutic option is adeno-associated virus (AAV)-mediated gene therapy, which results in widespread gene transfer and prolonged transgene expression. Both enzyme replacement therapy (ERT) and gene therapy can elicit anti-GAA immune reactions that dampen their effectiveness and pose life-threatening risks to patient safety. To modulate the immune responses related to gene therapy, we show that a human codon-optimized GAA (coGAA) driven by a liver-specific promoter (LSP) using AAV9 is capable of promoting immune tolerance in a Gaa−/− mouse model. Copackaging AAV9-LSP-coGAA with the tissue-restricted desmin promoter (AAV9-DES-coGAA) demonstrates the necessary cell autonomous expression in cardiac muscle, skeletal muscle, peripheral nerve, and the spinal cord. Simultaneous high-level expression in liver led to the expansion of GAA-specific regulatory T-cells (Tregs) and induction of immune tolerance. Transfer of Tregs into naïve recipients prevented pathogenic allergic reactions after repeated ERT challenges. Copackaged AAV9 also attenuated preexisting humoral and cellular immune responses, which enhanced the biochemical correction. Our data present a therapeutic design in which simultaneous administration of two copackaged AAV constructs may provide therapeutic benefit and resolve immune reactions in the treatment of multisystem disorders. PMID:26603344

  3. Recombinant adeno-associated viral (rAAV) vectors as therapeutic tools for Duchenne muscular dystrophy (DMD).

    PubMed

    Athanasopoulos, T; Graham, I R; Foster, H; Dickson, G

    2004-10-01

    Duchenne muscular dystrophy (DMD) is a lethal genetic muscle disorder caused by recessive mutations in the dystrophin gene. The size of the gene (2.4 Mb) and mRNA (14 kb) in addition to immunogenicity problems and inefficient transduction of mature myofibres by currently available vector systems are formidable obstacles to the development of efficient gene therapy approaches. Adeno-associated viral (AAV) vectors overcome many of the problems associated with other vector systems (nonpathogenicity and minimal immunogenicity, extensive cell and tissue tropism) but accommodate limited transgene capacity (<5 kb). As a result of these observations, a number of laboratories worldwide have engineered a series of microdystrophin cDNAs based on genotype-phenotype relationship in Duchenne (DMD) and Becker (BMD) dystrophic patients, and transgenic studies in mdx mice. Recent progress in characterization of AAV serotypes from various species has demonstrated that alternative AAV serotypes are far more efficient in transducing muscle than the traditionally used AAV2. This article summarizes the current progress in the field of recombinant adeno-associated viral (rAAV) delivery for DMD, including optimization of recombinant AAV-microdystrophin vector systems/cassettes targeting the skeletal and cardiac musculature.

  4. Construction and packaging of herpes simplex virus/adeno-associated virus (HSV/AAV) Hybrid amplicon vectors.

    PubMed

    Saydam, Okay; Glauser, Daniel L; Fraefel, Cornel

    2012-03-01

    Herpes simplex virus type 1 (HSV-1)-based amplicon vectors conserve most properties of the parental virus: broad host range, the ability to transduce dividing and nondiving cells, and a large transgene capacity. This permits incorporation of genomic sequences as well as cDNA, large transcriptional regulatory sequences for cell-specific expression, multiple transgene cassettes, or genetic elements from other viruses. Hybrid vectors use elements from HSV-1 that allow replication and packaging of large-vector DNA into highly infectious particles, and elements from other viruses that confer genetic stability to vector DNA in the transduced cell. For example, adeno-associated virus (AAV) has the unique ability to integrate its genome into a specific site on human chromosome 19. The viral rep gene and the inverted terminal repeats (ITRs) that flank the AAV genome are sufficient for this process. However, AAV-based vectors have a very small transgene capacity and do not conventionally contain the rep gene to support site-specific genomic integration. HSV/AAV hybrid vectors contain both HSV-1 replication and packaging functions and the AAV rep gene and a transgene cassette flanked by the AAV ITRs. This combines the large transgene capacity of HSV-1 with the capability of site-specific genomic transgene integration and long-term transgene expression of AAV. This protocol describes the preparation of HSV/AAV hybrid vectors using a replication-competent/conditional, packaging-defective HSV-1 genome cloned as a bacterial artificial chromosome (BAC) to provide helper functions for vector replication and packaging. The advantages and limitations of such vectors compared to standard HSV-1 amplicon vectors are also discussed.

  5. Predictors of Poor Outcome in ANCA-Associated Vasculitis (AAV).

    PubMed

    Vega, Luis E; Espinoza, Luis R

    2016-12-01

    It is important to recognize factors that might predict poor outcome and prognosis in patients with AAV. The predictors reported in the literature encompass genetic, histopathological, and clinical ones. Genetic studies (genetic predictors) have found genes that are associated with prediction of poor response to treatment, deterioration of renal function, and risk of mortality. Histopathological studies (histopathological predictors) have shown that sclerotic renal lesions are associated with increased risk of progression to end-stage renal disease and death. Lastly, scores (clinical predictors) obtained with tool as FFS, Maldini risk score, VDI, and emerging new biomarkers could potentially be helpful in assessment of prognosis in the future.

  6. Controlling AAV Tropism in the Nervous System with Natural and Engineered Capsids.

    PubMed

    Castle, Michael J; Turunen, Heikki T; Vandenberghe, Luk H; Wolfe, John H

    2016-01-01

    More than one hundred naturally occurring variants of adeno-associated virus (AAV) have been identified, and this library has been further expanded by an array of techniques for modification of the viral capsid. AAV capsid variants possess unique antigenic profiles and demonstrate distinct cellular tropisms driven by differences in receptor binding. AAV capsids can be chemically modified to alter tropism, can be produced as hybrid vectors that combine the properties of multiple serotypes, and can carry peptide insertions that introduce novel receptor-binding activity. Furthermore, directed evolution of shuffled genome libraries can identify engineered variants with unique properties, and rational modification of the viral capsid can alter tropism, reduce blockage by neutralizing antibodies, or enhance transduction efficiency. This large number of AAV variants and engineered capsids provides a varied toolkit for gene delivery to the CNS and retina, with specialized vectors available for many applications, but selecting a capsid variant from the array of available vectors can be difficult. This chapter describes the unique properties of a range of AAV variants and engineered capsids, and provides a guide for selecting the appropriate vector for specific applications in the CNS and retina.

  7. Neonatal porcine pancreatic cell clusters as a potential source for transplantation in humans: characterization of proliferation, apoptosis, xenoantigen expression and gene delivery with recombinant AAV.

    PubMed

    Vizzardelli, Caterina; Molano, R Damaris; Pileggi, Antonello; Berney, Thierry; Cattan, Pierre; Fenjves, Elizabeth S; Peel, Alyson; Fraker, Chris; Ricordi, Camillo; Inverardi, Luca

    2002-01-01

    Neonatal porcine islets are characterized by reproducible isolation success and high yields, sizable advantages over adult islets. In this work we have analyzed selected phenotypic and functional characteristics of porcine neonatal islets relevant to their possible use for transplant in humans. We show that porcine islet cells proliferate in culture, and synthesize and store islet-specific hormones. Proliferating beta cells can be easily identified. Implant of cultured neonatal islets in immunodeficient rodents results in the reversal of diabetes, albeit with delay. We also show that measurable apoptosis occurs in cultured neonatal porcine islets. Further, antigens recognized by human natural antibodies are expressed in a dynamic fashion over the culture period analyzed and are not limited to the alpha-Gal epitope. Lastly, we demonstrate that a recombinant Adeno-Associated virus can be used to efficiently deliver a reporter gene in porcine islets. This characterization might be helpful in the definition of the potential use of neonatal porcine islets for human transplantation.

  8. Data set for comparison of cellular dynamics between human AAVS1 locus-modified and wild-type cells

    PubMed Central

    Mizutani, Takeomi; Haga, Hisashi; Kawabata, Kazushige

    2016-01-01

    This data article describes cellular dynamics, such as migration speed and mobility of the cytoskeletal protein, of wild-type human fibroblast cells and cells with a modified adeno-associated virus integration site 1 (AAVS1) locus on human chromosome 19. Insertion of exogenous gene into the AAVS1 locus has been conducted in recent biological researches. Previously, our data showed that the AAVS1-modification changes cellular contractile force (Mizutani et al., 2015 [1]). To assess if this AAVS1-modification affects cell migration, we compared cellular migration speed and turnover of cytoskeletal protein in human fibroblasts and fibroblasts with a green fluorescent protein gene knocked-in at the AAVS1 locus in this data article. Cell nuclei were stained and changes in their position attributable to cell migration were analyzed. Fluorescence recovery was observed after photobleaching for the fluorescent protein-tagged myosin regulatory light chain. Data here are related to the research article “Transgene Integration into the Human AAVS1 Locus Enhances Myosin II-Dependent Contractile Force by Reducing Expression of Myosin Binding Subunit 85” [1]. PMID:26937449

  9. Potential of AAV vectors in the treatment of metabolic disease.

    PubMed

    Alexander, I E; Cunningham, S C; Logan, G J; Christodoulou, J

    2008-06-01

    Inborn errors of metabolism are collectively common, frequently severe and in many instances difficult or impossible to treat. Accordingly, there is a compelling need to explore novel therapeutic modalities, including gene therapy, and examine multiple phenotypes where the risks of experimental therapy are outweighed by potential benefits to trial participants. Among available gene delivery systems recombinant AAV shows special promise for the treatment of metabolic disease given the unprecedented efficiencies achieved in transducing key target tissues, such as liver and muscle, in small animal models. To date over 30 metabolic disease phenotypes have been investigated in small animal studies with complete phenotype correction being achieved in a substantial proportion. Achieving adequately widespread transduction within the central nervous system, however, remains a major challenge, and will be critical to realization of the therapeutic potential of gene therapy for many of the most clinically troubling metabolic disease phenotypes. Despite the relatively low immunogenicity of AAV vectors, immune responses are also emerging as a factor requiring special attention as efforts accelerate toward human clinical translation. Four metabolic disease phenotypes have reached phase I or I/II trials with one, targeting lipoprotein lipase deficiency, showing exciting early evidence of efficacy.

  10. Biodistribution of rAAV vectors following intraocular administration: evidence for the presence and persistence of vector DNA in the optic nerve and in the brain.

    PubMed

    Provost, Nathalie; Le Meur, Guylène; Weber, Michel; Mendes-Madeira, Alexandra; Podevin, Guillaume; Cherel, Yan; Colle, Marie-Anne; Deschamps, Jack-Yves; Moullier, Philippe; Rolling, Fabienne

    2005-02-01

    The purpose of our study was to evaluate the biodistribution of rAAV vectors following subretinal or intravitreal injection. In rats, we performed subretinal or intravitreal injections of rAAV-2/2.CMV.gfp. In large animals, rAAV-2/4.CMV.gfp or rAAV-2/5.CMV.gfp was delivered into the subretinal space while rAAV-2/2.CMV.gfp was delivered either to the subretinal space or to the vitreous. In euthanized animals, we undertook a complete necropsy. In animals maintained alive, we collected blood and tissue samples from the submandibular lymph node, liver, and gonads. We analyzed total DNA, extracted from various tissue samples and peripheral blood mononuclear cells (PBMC), by PCR. Following subretinal or intravitreal injections in rats and in large animals, vector sequences were not detected in the liver or in the gonads but were occasionally found in PBMC. An unexpected result was the detection of rAAV sequences in the optic nerve following subretinal injection. The most striking finding was the detection of vector sequences in the brain, along the visual pathway, in rAAV-2/2 intravitreally injected dogs. These findings raise safety concerns regarding intraocular administration of rAAV vectors and will have an impact on the development of future gene therapy trials for retinal diseases.

  11. Local administration of AAV-DJ pseudoserotype expressing COX2 provided early onset of transgene expression and promoted bone fracture healing in mice.

    PubMed

    Lakhan, R; Baylink, D J; Lau, K-H W; Tang, X; Sheng, M H-C; Rundle, C H; Qin, X

    2015-09-01

    We have previously obtained compelling proof-of-principle evidence for COX2 gene therapy for fracture repair using integrating retroviral vectors. For this therapy to be suitable for patient uses, a suitable vector with high safety profile must be used. Accordingly, this study sought to evaluate the feasibility of AAV as the vector for this COX2 gene therapy, because AAV raises less safety issues than the retroviral vectors used previously. However, an appropriate AAV serotype is required to provide early increase in and adequate level of COX2 expression that is needed for fracture repair. Herein, we reported that AAV-DJ, an artificial AAV pseudoserotype, is highly effective in delivering COX2 gene to fracture sites in a mouse femoral fracture model. Compared with AAV-2, the use of AAV-DJ led to ~5-fold increase in infectivity in mesenchymal stem cells (MSCs) and provided an earlier and significantly higher level of transgene expression at the fracture site. Injection of this vector at a dose of 7.5 × 10(11) genomic copies led to high COX2 level at the fracture site on day 3 after injections and significantly promoted fracture union at 21 days, as analyzed by radiography and μ-CT. The therapeutic effect appears to involve enhanced osteoblastic differentiation of MSCs and remodeling of callus tissues to laminar bone. This interpretation is supported by the enhanced expression of several key genes participating in the fracture repair process. In conclusion, AAV-DJ is a promising serotype for the AAV-based COX2 gene therapy of fracture repair in humans.

  12. Vector-Mediated Delivery of a Polyamide ("Peptide") Nucleic Acid Analogue through the Blood-Brain Barrier in vivo

    NASA Astrophysics Data System (ADS)

    Pardridge, William M.; Boado, Ruben J.; Kang, Young-Sook

    1995-06-01

    Polyamide ("peptide") nucleic acids (PNAs) are molecules with antigene and antisense effects that may prove to be effective neuropharmaceuticals if these molecules are enabled to undergo transport through the brain capillary endothelial wall, which makes up the blood-brain barrier in vivo. The model PNA used in the present studies is an 18-mer that is antisense to the rev gene of human immunodeficiency virus type 1 and is biotinylated at the amino terminus and iodinated at a tyrosine residue near the carboxyl terminus. The biotinylated PNA was linked to a conjugate of streptavidin (SA) and the OX26 murine monoclonal antibody to the rat transferrin receptor. The blood-brain barrier is endowed with high transferrin receptor concentrations, enabling the OX26-SA conjugate to deliver the biotinylated PNA to the brain. Although the brain uptake of the free PNA was negligible following intravenous administration, the brain uptake of the PNA was increased at least 28-fold when the PNA was bound to the OX26-SA vector. The brain uptake of the PNA bound to the OX26-SA vector was 0.1% of the injected dose per gram of brain at 60 min after an intravenous injection, approximating the brain uptake of intravenously injected morphine. The PNA bound to the OX26-SA vector retained the ability to bind to synthetic rev mRNA as shown by RNase protection assays. In summary, the present studies show that while the transport of PNAs across the blood-brain barrier is negligible, delivery of these potential neuropharmaceutical drugs to the brain may be achieved by coupling them to vector-mediated peptide-drug delivery systems.

  13. AAV-Nrf2 Promotes Protection and Recovery in Animal Models of Oxidative Stress.

    PubMed

    Liang, Katharine J; Woodard, Kenton T; Weaver, Mark A; Gaylor, John Paul; Weiss, Ellen R; Samulski, R Jude

    2017-03-01

    NRF2 is a transcription factor that drives antioxidant gene expression in multiple organ systems. We hypothesized that Nrf2 overexpression could be therapeutically applied toward diseases in which redox homeostasis is disrupted. In this study, adeno-associated virus (AAV)-Nrf2 was tested in a mouse model of acute acetaminophen-induced liver toxicity and successfully conferred protection from hepatotoxicity, validating the vector design and early onset of NRF2-mediated protection. Furthermore, therapeutic potential of AAV-Nrf2 in chronic disease also was tested in a light-induced mouse model of age-related macular degeneration. Adult BALB/c mice were intravitreally injected with AAV-Nrf2 and subject to light damage following injection. Retinal thickness and function were monitored following light damage using optical coherence tomography and electroretinography, respectively. By 3 months post-damage, injected eyes had greater retinal thickness compared to uninjected controls. At 1 month post-damage, AAV-Nrf2 injection facilitated full functional recovery from light damage. Our results suggest a therapeutic potential for Nrf2 overexpression in acute and long-term capacities in multiple organ systems, opening up doors for combination gene therapy where replacement gene therapy requires additional therapeutic support to prevent further degeneration.

  14. Intracisternal delivery of AAV9 results in oligodendrocyte and motor neuron transduction in the whole central nervous system of cats.

    PubMed

    Bucher, T; Dubreil, L; Colle, M-A; Maquigneau, M; Deniaud, J; Ledevin, M; Moullier, P; Joussemet, B

    2014-05-01

    Systemic and intracerebrospinal fluid delivery of adeno-associated virus serotype 9 (AAV9) has been shown to achieve widespread gene delivery to the central nervous system (CNS). However, after systemic injection, the neurotropism of the vector has been reported to vary according to age at injection, with greater neuronal transduction in newborns and preferential glial cell tropism in adults. This difference has not yet been reported after cerebrospinal fluid (CSF) delivery. The present study analyzed both neuronal and glial cell transduction in the CNS of cats according to age of AAV9 CSF injection. In both newborns and young cats, administration of AAV9-GFP in the cisterna magna resulted in high levels of motor neurons (MNs) transduction from the cervical (84±5%) to the lumbar (99±1%) spinal cord, demonstrating that the remarkable tropism of AAV9 for MNs is not affected by age at CSF delivery. Surprisingly, numerous oligodendrocytes were also transduced in the brain and in the spinal cord white matter of young cats, but not of neonates, indicating that (i) age of CSF delivery influences the tropism of AAV9 for glial cells and (ii) AAV9 intracisternal delivery could be relevant for both the treatment of MN and demyelinating disorders.

  15. Sustained correction of FVII deficiency in dogs using AAV-mediated expression of zymogen FVII.

    PubMed

    Marcos-Contreras, Oscar A; Smith, Shannon M; Bellinger, Dwight A; Raymer, Robin A; Merricks, Elizabeth; Faella, Armida; Pavani, Giulia; Zhou, Shangzhen; Nichols, Timothy C; High, Katherine A; Margaritis, Paris

    2016-02-04

    Factor VII (FVII) deficiency is a rare autosomal recessive bleeding disorder treated by infusion of fresh-frozen plasma, plasma-derived FVII concentrates and low-dose recombinant activated FVII. Clinical data suggest that a mild elevation of plasma FVII levels (>10% normal) results in improved hemostasis. Research dogs with a G96E missense FVII mutation (FVII-G96E) have <1% FVII activity. By western blot, we show that they have undetectable plasmatic antigen, thus representing the most prevalent type of human FVII deficiency (low antigen/activity). In these dogs, we determine the feasibility of a gene therapy approach using liver-directed, adeno-associated viral (AAV) serotype 8 vector delivery of a canine FVII (cFVII) zymogen transgene. FVII-G96E dogs received escalating AAV doses (2E11 to 4.95E13 vector genomes [vg] per kg). Clinically therapeutic expression (15% normal) was attained with as low as 6E11 vg/kg of AAV and has been stable for >1 year (ongoing) without antibody formation to the cFVII transgene. Sustained and supraphysiological expression of 770% normal was observed using 4.95E13 vg/kg of AAV (2.6 years, ongoing). No evidence of pathological activation of coagulation or detrimental animal physiology was observed as platelet counts, d-dimer, fibrinogen levels, and serum chemistries remained normal in all dogs (cumulative 6.4 years). We observed a transient and noninhibitory immunoglobulin G class 2 response against cFVII only in the dog receiving the highest AAV dose. In conclusion, in the only large-animal model representing the majority of FVII mutation types, our data are first to demonstrate the feasibility, safety, and long-term duration of AAV-mediated correction of FVII deficiency.

  16. Terminal differentiation of cardiac and skeletal myocytes induces permissivity to AAV transduction by relieving inhibition imposed by DNA damage response proteins.

    PubMed

    Lovric, Jasmina; Mano, Miguel; Zentilin, Lorena; Eulalio, Ana; Zacchigna, Serena; Giacca, Mauro

    2012-11-01

    Gene therapy vectors based on the adeno-associated virus (AAV) are extremely efficient for gene transfer into post-mitotic cells of heart, muscle, brain, and retina. The reason for their exquisite tropism for these cells has long remained elusive. Here, we show that upon terminal differentiation, cardiac and skeletal myocytes downregulate proteins of the DNA damage response (DDR) and that this markedly induces permissivity to AAV transduction. We observed that expression of members of the MRN complex (Mre11, Rad50, Nbs1), which bind the incoming AAV genomes, faded in cardiomyocytes at ~2 weeks after birth, as well as upon myoblast differentiation in vitro; in both cases, withdrawal of the cells from the cell cycle coincided with increased AAV permissivity. Treatment of proliferating cells with short-interfering RNAs (siRNAs) against the MRN proteins, or with microRNA-24, which is normally upregulated upon terminal differentiation and negatively controls the Nbs1 levels, significantly increased permissivity to AAV transduction. Consistently, delivery of these small RNAs to the juvenile liver concomitant with AAV markedly improved in vivo hepatocyte transduction. Collectively, these findings support the conclusion that cellular DDR proteins inhibit AAV transduction and that terminal cell differentiation relieves this restriction.

  17. Intrathecal administration of AAV/GALC vectors in 10-11-day-old twitcher mice improves survival and is enhanced by bone marrow transplant.

    PubMed

    Karumuthil-Melethil, Subha; Marshall, Michael S; Heindel, Clifford; Jakubauskas, Benas; Bongarzone, Ernesto R; Gray, Steven J

    2016-11-01

    Globoid cell leukodystrophy (GLD), or Krabbe disease, is an autosomal recessive neurodegenerative disease caused by the deficiency of the lysosomal enzyme galactocerebrosidase (GALC). Hematopoietic stem cell transplantation (HSCT) provides modest benefit in presymptomatic patients but is well short of a cure. Gene transfer experiments using viral vectors have shown some success in extending the survival in the mouse model of GLD, twitcher mice. The present study compares three single-stranded (ss) AAV serotypes, two natural and one engineered (with oligodendrocyte tropism), and a self-complementary (sc) AAV vector, all packaged with a codon-optimized murine GALC gene. The vectors were delivered via a lumbar intrathecal route for global CNS distribution on PND10-11 at a dose of 2 × 10(11) vector genomes (vg) per mouse. The results showed a similar significant extension of life span of the twitcher mice for all three serotypes (AAV9, AAVrh10, and AAV-Olig001) as well as the scAAV9 vector, compared to control cohorts. The rAAV gene transfer facilitated GALC biodistribution and detectable enzymatic activity throughout the CNS as well as in sciatic nerve and liver. When combined with BMT from syngeneic wild-type mice, there was significant improvement in survival for ssAAV9. Histopathological analysis of brain, spinal cord, and sciatic nerve showed significant improvement in preservation of myelin, with ssAAV9 providing the greatest benefit. In summary, we demonstrate that lumbar intrathecal delivery of rAAV/mGALCopt can significantly enhance the life span of twitcher mice treated at PND10-11 and that BMT synergizes with this treatment to improve the survival further. © 2016 Wiley Periodicals, Inc.

  18. AAV ANCESTRAL RECONSTRUCTION LIBRARY ENABLES SELECTION OF BROADLY INFECTIOUS VIRAL VARIANTS

    PubMed Central

    Santiago-Ortiz, Jorge; Ojala, David S.; Westesson, Oscar; Weinstein, John R.; Wong, Sophie Y.; Steinsapir, Andrew; Kumar, Sanjay; Holmes, Ian; Schaffer, David V.

    2015-01-01

    Adeno-associated virus (AAV) vectors have achieved clinical efficacy in treating several diseases. Enhanced vectors are required to extend these landmark successes to other indications, however, and protein engineering approaches may provide the necessary vector improvements to address such unmet medical needs. To generate new capsid variants with potentially enhanced infectious properties, and to gain insights into AAV’s evolutionary history, we computationally designed and experimentally constructed a putative ancestral AAV library. Combinatorial variations at 32 amino acid sites were introduced to account for uncertainty in their identities. We then analyzed the evolutionary flexibility of these residues, the majority of which have not been previously studied, by subjecting the library to iterative selection on a representative cell line panel. The resulting variants exhibited transduction efficiencies comparable to the most efficient extant serotypes, and in general ancestral libraries were broadly infectious across the cell line panel, indicating that they favored promiscuity over specificity. Interestingly, putative ancestral AAVs were more thermostable than modern serotypes and did not utilize sialic acids, galactose, or heparan sulfate proteoglycans for cellular entry. Finally, variants mediated 19–31 fold higher gene expression in muscle compared to AAV1, a clinically utilized serotype for muscle delivery, highlighting their promise for gene therapy. PMID:26186661

  19. Recombinant Adeno-Associated Virus Serotype 6 (rAAV6) Potently and Preferentially Transduces Rat Astrocytes In vitro and In vivo

    PubMed Central

    Schober, Alexandra L.; Gagarkin, Dmitriy A.; Chen, Ying; Gao, Guangping; Jacobson, Lauren; Mongin, Alexander A.

    2016-01-01

    Recombinant adeno-associated virus vectors are an increasingly popular tool for gene delivery to the CNS because of their non-pathological nature, low immunogenicity, and ability to stably transduce dividing and non-dividing cells. One of the limitations of rAAVs is their preferential tropism for neuronal cells. Glial cells, specifically astrocytes, appear to be infected at low rates. To overcome this limitation, previous studies utilized rAAVs with astrocyte-specific promoters or assorted rAAV serotypes and pseudotypes with purported selectivity for astrocytes. Yet, the reported glial infection rates are not consistent from study to study. In the present work, we tested seven commercially available recombinant serotypes– rAAV1, 2, and 5 through 9, for their ability to transduce primary rat astrocytes [visualized via viral expression of green fluorescent protein (GFP)]. In cell cultures, rAAV6 consistently demonstrated the highest infection rates, while rAAV2 showed astrocytic transduction in some, but not all, of the tested viral batches. To verify that all rAAV constructs utilized by us were viable and effective, we confirmed high infectivity rates in retinal pigmented epithelial cells (ARPE-19), which are known to be transduced by numerous rAAV serotypes. Based on the in vitro results, we next tested the cell type tropism of rAAV6 and rAAV2 in vivo, which were both injected in the barrel cortex at approximately equal doses. Three weeks later, the brains were sectioned and immunostained for viral GFP and the neuronal marker NeuN or the astrocytic marker GFAP. We found that rAAV6 strongly and preferentially transduced astrocytes (>90% of cells in the virus-infected areas), but not neurons (∼10% infection rate). On the contrary, rAAV2 preferentially infected neurons (∼65%), but not astrocytes (∼20%). Overall, our results suggest that rAAV6 can be used as a tool for manipulating gene expression (either delivery or knockdown) in rat astrocytes in vivo. PMID

  20. Vector-mediated release of GABA attenuates pain-related behaviors and reduces NaV1.7 in DRG neurons

    PubMed Central

    Chattopadhyay, Munmun; Mata, Marina; Fink, David J.

    2012-01-01

    Pain is a common and debilitating accompaniment of neuropathy that occurs as a complication of diabetes. In the current study, we examined the effect of continuous release of gamma amino butyric acid (GABA), achieved by gene transfer of glutamic acid decarboxylase (GAD67) to dorsal root ganglia (DRG) in vivo using a nonreplicating herpes simplex virus (HSV)-based vector (vG) in a rat model of painful diabetic neuropathy (PDN). Subcutaneous inoculation of vG reduced mechanical hyperalgesia, thermal hyperalgesia and cold allodynia in rats with PDN. Continuous release of GABA from vector transduced cells in vivo prevented the increase in the voltage gated sodium channel isoform 1.7 (NaV1.7) protein that is characteristic of PDN. In vitro, infection of primary DRG neurons with vG prevented the increase in NaV1.7 resulting from exposure to hyperglycemia. The effect of vector-mediated GABA on NaV1.7 levels in vitro was blocked by phaclofen but not by bicuculline, a GABAB receptor effect that was blocked by pertussis toxin-(PTX) interference with Gα(i/o) function. Taken in conjunction with our previous observation that continuous activation of delta opioid receptors by vector-mediated release of enkephalin also prevents the increase in NaV1.7 in DRG exposed to hyperglycemia in vitro or in vivo, the observations in this report suggest a novel common mechanism through which activation of G protein coupled receptors (GPCR) in DRG neurons regulate the phenotype of the primary afferent. PMID:21486703

  1. Liver-specific microRNA-122 target sequences incorporated in AAV vectors efficiently inhibits transgene expression in the liver.

    PubMed

    Qiao, C; Yuan, Z; Li, J; He, B; Zheng, H; Mayer, C; Li, J; Xiao, X

    2011-04-01

    Vectors based on adeno-associated virus (AAV) are effective in gene delivery in vivo. Tissue-specific gene expression is often needed to minimize ectopic expression in unintended cells and undesirable consequences. Here, we investigated whether incorporation of target sequences of tissue-specific microRNA (miRNA) into AAV vectors could inhibit ectopic expression in tissues such as the liver and hematopoietic cells. First we inserted liver-specific miR-122 target sequences (miR-122T) into the 3'-untranslated region (UTR) of a number of AAV vectors. After intravenous delivery in mice, we found that five copies of the 20mer miR-122T reduced liver expression of luciferase by 50-fold and β-galactosidase (LacZ) by 70-fold. Five copies of miR-122T also reduced mRNA levels of a secretable protein (myostatin propeptide) from the AAV vector plasmid by 23-fold in the liver. However, gene expression in other tissues, including the heart was not inhibited. Similarly, we inserted four copies of miR-142-3pT or miR-142-5pT, both hematopoietic lineage-specific, into the 3'-UTR of the AAV-luciferase vector. We wished to see whether they could prolong transgene expression by inhibiting expression in antigen-presenting cells. However, in vivo luciferase gene expression in major tissues declined with time, regardless of the miR-142 target sequences used. Quantitative analysis of the vector DNA in various tissues revealed that the decline of transgene expression in vivo was mainly because of promoter shut-off other than loss of AAV-transduced cells by immune destruction. Moreover, transgene expression was not detected in circulating mononuclear cells after delivering AAV9 vector with or without miR142T. These results demonstrate that liver-specific miR-122 target sequence in AAV vectors was highly efficient in reducing liver expression, whereas hematopoietic miR-142 target sequences were ineffective in preventing decline of AAV vector gene expression in nonhematopoietic tissues

  2. CRISPR/Cas9-AAV Mediated Knock-in at NRL Locus in Human Embryonic Stem Cells.

    PubMed

    Ge, Xianglian; Xi, Haitao; Yang, Fayu; Zhi, Xiao; Fu, Yanghua; Chen, Ding; Xu, Ren-He; Lin, Ge; Qu, Jia; Zhao, Junzhao; Gu, Feng

    2016-01-01

    Clustered interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome engineering technologies are sparking a new revolution in biological research. This technology efficiently induces DNA double strand breaks at the targeted genomic sequence and results in indel mutations by the error-prone process of nonhomologous end joining DNA repair or homologous recombination with a DNA repair template. The efficiency of genome editing with CRISPR/Cas9 alone in human embryonic stem cells is still low. Gene targeting with adeno-associated virus (AAV) vectors has been demonstrated in multiple human cell types with maximal targeting frequencies without engineered nucleases. However, whether CRISPR/Cas9-mediated double strand breaks and AAV based donor DNA mediated homologous recombination approaches could be combined to create a novel CRISPR/Cas9-AAV genetic tool for highly specific gene editing is not clear. Here we demonstrate that using CRISPR/Cas9-AAV, we could successfully knock-in a DsRed reporter gene at the basic motifleucine zipper transcription factor (NRL) locus in human embryonic stem cells. For the first time, this study provides the proof of principle that these two technologies can be used together. CRISPR/Cas9-AAV, a new genome editing tool, offers a platform for the manipulation of human genome.

  3. CRISPR/Cas9-AAV Mediated Knock-in at NRL Locus in Human Embryonic Stem Cells.

    PubMed

    Ge, Xianglian; Xi, Haitao; Yang, Fayu; Zhi, Xiao; Fu, Yanghua; Chen, Ding; Xu, Ren-He; Lin, Ge; Qu, Jia; Zhao, Junzhao; Gu, Feng

    2016-11-29

    Clustered interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome engineering technologies are sparking a new revolution in biological research. This technology efficiently induces DNA double strand breaks at the targeted genomic sequence and results in indel mutations by the error-prone process of nonhomologous end joining DNA repair or homologous recombination with a DNA repair template. The efficiency of genome editing with CRISPR/Cas9 alone in human embryonic stem cells is still low. Gene targeting with adeno-associated virus (AAV) vectors has been demonstrated in multiple human cell types with maximal targeting frequencies without engineered nucleases. However, whether CRISPR/Cas9-mediated double strand breaks and AAV based donor DNA mediated homologous recombination approaches could be combined to create a novel CRISPR/Cas9-AAV genetic tool for highly specific gene editing is not clear. Here we demonstrate that using CRISPR/Cas9-AAV, we could successfully knock-in a DsRed reporter gene at the basic motifleucine zipper transcription factor (NRL) locus in human embryonic stem cells. For the first time, this study provides the proof of principle that these two technologies can be used together. CRISPR/Cas9-AAV, a new genome editing tool, offers a platform for the manipulation of human genome.

  4. CRISPR/Cas9-AAV Mediated Knock-in at NRL Locus in Human Embryonic Stem Cells

    PubMed Central

    Ge, Xianglian; Xi, Haitao; Yang, Fayu; Zhi, Xiao; Fu, Yanghua; Chen, Ding; Xu, Ren-He; Lin, Ge; Qu, Jia; Zhao, Junzhao; Gu, Feng

    2016-01-01

    Clustered interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome engineering technologies are sparking a new revolution in biological research. This technology efficiently induces DNA double strand breaks at the targeted genomic sequence and results in indel mutations by the error-prone process of nonhomologous end joining DNA repair or homologous recombination with a DNA repair template. The efficiency of genome editing with CRISPR/Cas9 alone in human embryonic stem cells is still low. Gene targeting with adeno-associated virus (AAV) vectors has been demonstrated in multiple human cell types with maximal targeting frequencies without engineered nucleases. However, whether CRISPR/Cas9-mediated double strand breaks and AAV based donor DNA mediated homologous recombination approaches could be combined to create a novel CRISPR/Cas9-AAV genetic tool for highly specific gene editing is not clear. Here we demonstrate that using CRISPR/Cas9-AAV, we could successfully knock-in a DsRed reporter gene at the basic motifleucine zipper transcription factor (NRL) locus in human embryonic stem cells. For the first time, this study provides the proof of principle that these two technologies can be used together. CRISPR/Cas9-AAV, a new genome editing tool, offers a platform for the manipulation of human genome. PMID:27898094

  5. Kinetics of adeno-associated virus serotype 2 (AAV2) and AAV8 capsid antigen presentation in vivo are identical.

    PubMed

    He, Yi; Weinberg, Marc S; Hirsch, Matt; Johnson, Mark C; Tisch, Roland; Samulski, R Jude; Li, Chengwen

    2013-05-01

    Adeno-associated viral (AAV) vectors 2 and 8 have been used in clinical trials for patients with hemophilia, and data suggest that the capsid-specific CD8⁺ T cell response has had a negative impact on therapeutic success. To date the pattern of capsid cross-presentation from AAV2 and AAV8 transduction in vivo has not been elucidated. Previously, we have demonstrated that an engineered AAV2 virus carrying the immune-dominant SIINFEKL peptide in the capsid backbone was indistinguishable from wild type with respect to titer, tropism, and the ability to induce capsid-specific CD8⁺ T cell responses in vivo. In this study, we used the same strategy to engineer an AAV8 vector and demonstrated that antigen from SIINFEKL peptide-integrated AAV8 capsid was effectively presented via either plasmid transfection or AAV8 transduction in vitro. The tissue tropism and transgene expression kinetics of the engineered AAV8 vector in vivo were identical to that of wild-type AAV8. Animal studies show that capsid antigen presentation from AAV transduction was dose dependent, and more importantly, the proliferation of capsid-specific CD8⁺ T cells had similar kinetics (detectable before 30 days and undetectable after 40 days) for both AAV2 and AAV8 vectors. Elucidation of the kinetics of capsid antigen presentation from AAV transduction by various serotypes provides new insight into the potential impact CD8⁺ T cells can have during clinical trials and may help with rational design of effective strategies to prevent capsid-specific CD8⁺ T cell-mediated elimination of AAV-transduced target cells.

  6. You can hide but you have to run: direct detection with vector mediators

    NASA Astrophysics Data System (ADS)

    D'Eramo, Francesco; Kavanagh, Bradley J.; Panci, Paolo

    2016-08-01

    We study direct detection in simplified models of Dark Matter (DM) in which interactions with Standard Model (SM) fermions are mediated by a heavy vector boson. We consider fully general, gauge-invariant couplings between the SM, the mediator and both scalar and fermion DM. We account for the evolution of the couplings between the energy scale of the mediator mass and the nuclear energy scale. This running arises from virtual effects of SM particles and its inclusion is not optional. We compare bounds on the mediator mass from direct detection experiments with and without accounting for the running. In some cases the inclusion of these effects changes the bounds by several orders of magnitude, as a consequence of operator mixing which generates new interactions at low energy. We also highlight the importance of these effects when translating LHC limits on the mediator mass into bounds on the direct detection cross section. For an axial-vector mediator, the running can alter the derived bounds on the spin-dependent DM-nucleon cross section by a factor of two or more. Finally, we provide tools to facilitate the inclusion of these effects in future studies: general approximate expressions for the low energy couplings and a public code runDM to evolve the couplings between arbitrary energy scales.

  7. Apparent vector-mediated parent-to-offspring transmission in an avian malaria-like parasite.

    PubMed

    Chakarov, Nayden; Linke, Burkhard; Boerner, Martina; Goesmann, Alexander; Krüger, Oliver; Hoffman, Joseph I

    2015-03-01

    Parasite transmission strategies strongly impact host-parasite co-evolution and virulence. However, studies of vector-borne parasites such as avian malaria have neglected the potential effects of host relatedness on the exchange of parasites. To test whether extended parental care in the presence of vectors increases the probability of transmission from parents to offspring, we used high-throughput sequencing to develop microsatellites for malaria-like Leucocytozoon parasites of a wild raptor population. We show that host siblings carry genetically more similar parasites than unrelated chicks both within and across years. Moreover, chicks of mothers of the same plumage morph carried more similar parasites than nestlings whose mothers were of different morphs, consistent with matrilineal transmission of morph-specific parasite strains. Ours is the first evidence of an association between host relatedness and parasite genetic similarity, consistent with vector-mediated parent-to-offspring transmission. The conditions for such 'quasi-vertical' transmission may be common and could suppress the evolution of pathogen virulence.

  8. Genome of brown tide virus (AaV), the little giant of the Megaviridae, elucidates NCLDV genome expansion and host-virus coevolution.

    PubMed

    Moniruzzaman, Mohammad; LeCleir, Gary R; Brown, Christopher M; Gobler, Christopher J; Bidle, Kay D; Wilson, William H; Wilhelm, Steven W

    2014-10-01

    Aureococcus anophagefferens causes economically and ecologically destructive "brown tides" in the United States, China and South Africa. Here we report the 370,920bp genomic sequence of AaV, a virus capable of infecting and lysing A. anophagefferens. AaV is a member of the nucleocytoplasmic large DNA virus (NCLDV) group, harboring 377 putative coding sequences and 8 tRNAs. Despite being an algal virus, AaV shows no phylogenetic affinity to the Phycodnaviridae family, to which most algae-infecting viruses belong. Core gene phylogenies, shared gene content and genome-wide similarities suggest AaV is the smallest member of the emerging clade "Megaviridae". The genomic architecture of AaV demonstrates that the ancestral virus had an even smaller genome, which expanded through gene duplication and assimilation of genes from diverse sources including the host itself - some of which probably modulate important host processes. AaV also harbors a number of genes exclusive to phycodnaviruses - reinforcing the hypothesis that Phycodna- and Mimiviridae share a common ancestor.

  9. Several rAAV vectors efficiently cross the blood-brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system.

    PubMed

    Zhang, Hongwei; Yang, Bin; Mu, Xin; Ahmed, Seemin Seher; Su, Qin; He, Ran; Wang, Hongyan; Mueller, Christian; Sena-Esteves, Miguel; Brown, Robert; Xu, Zuoshang; Gao, Guangping

    2011-08-01

    Noninvasive systemic gene delivery to the central nervous system (CNS) has largely been impeded by the blood-brain barrier (BBB). Recent studies documented widespread CNS gene transfer after intravascular delivery of recombinant adeno-associated virus 9 (rAAV9). To investigate alternative and possibly more potent rAAV vectors for systemic gene delivery across the BBB, we systematically evaluated the CNS gene transfer properties of nine different rAAVEGFP vectors after intravascular infusion in neonatal mice. Several rAAVs efficiently transduce neurons, motor neurons, astrocytes, and Purkinje cells; among them, rAAVrh.10 is at least as efficient as rAAV9 in many of the regions examined. Importantly, intravenously delivered rAAVs did not cause abnormal microgliosis in the CNS. The rAAVs that achieve stable widespread gene transfer in the CNS are exceptionally useful platforms for the development of therapeutic approaches for neurological disorders affecting large regions of the CNS as well as convenient biological tools for neuroscience research.

  10. High-throughput screening and biophysical interrogation of hepatotropic AAV.

    PubMed

    Murphy, Samuel L; Bhagwat, Anand; Edmonson, Shyrie; Zhou, Shangzhen; High, Katherine A

    2008-12-01

    We set out to analyze the fundamental biological differences between AAV2 and AAV8 that may contribute to their different performances in vivo. High-throughput protein interaction screens were used to identify binding partners for each serotype. Of the >8,000 proteins probed, 115 and 134 proteins were identified that interact with AAV2 and AAV8, respectively. Notably, 76 of these protein interactions were shared between the two serotypes. CDK2/cyclinA kinase was identified as a binding partner for both serotypes in the screen. Subsequent analysis confirmed direct binding of CDK2/cyclinA by AAV2 and AAV8. Inhibition of CDK2/cyclinA resulted in increased levels of vector transduction. Biophysical study of vector particle stability and genome uncoating demonstrated slightly greater thermostability for AAV8 than for AAV2. Heat-induced genome uncoating occurred at the same temperature as particle degradation, suggesting that these two processes may be intrinsically related for adeno-associated virus (AAV). Together, these analyses provide insight into commonalities and divergences in the biology of functionally distinct hepatotropic AAV serotypes.

  11. Single residue AAV capsid mutation improves transduction of photoreceptors in the Abca4-/- mouse and bipolar cells in the rd1 mouse and human retina ex-vivo

    PubMed Central

    Singh, Mandeep S.; Lipinski, Daniel M.; Barnea-Cramer, Alona O.; Walker, Nathan J.; Barnard, Alun R.; Hankins, Mark W.; MacLaren, Robert E.

    2016-01-01

    Gene therapy using adeno-associated viral vectors (AAV) for the treatment of retinal degenerations has shown safety and efficacy in clinical trials. However, very high levels of vector expression may be necessary for the treatment of conditions such as Stargardt disease where a dual vector approach is potentially needed, or in optogenetic strategies for end-stage degeneration in order to achieve maximal light sensitivity. In this study, we assessed two vectors with single capsid mutations, rAAV2/2(Y444F) and rAAV2/8(Y733F) in their ability to transduce retina in the Abca4-/- and rd1 mouse models of retinal degeneration. We noted significantly increased photoreceptor transduction using rAAV2/8(Y733F) in the Abca4-/- mouse, in contrast to previous work where vectors tested in this model have shown low levels of photoreceptor transduction. Bipolar cell transduction was achieved following subretinal delivery of both vectors in the rd1 mouse, and via intravitreal delivery of rAAV2/2(Y444F). The successful use of rAAV2/8(Y733F) to target bipolar cells was further validated on human tissue using an ex-vivo culture system of retinal explants. Capsid mutant AAV vectors transduce human retinal cells and may be particularly suited to treating retinal degenerations in which high levels of transgene expression are required. PMID:27416076

  12. Recombinant AAV2-mediated β-globin expression in human fetal hematopoietic cells from the aborted fetuses with β-thalassemia major.

    PubMed

    Tian, Jing; Wang, Feng; Xue, Jin-Feng; Zhao, Fei; Song, Liu-Jiang; Tan, Meng-Qun

    2011-06-01

    Genetic correction of autologous hematopoietic stem cells has been proposed as an attractive treatment method for β-thalassemia. Our previous study has shown that recombinant adeno-associated virus 2 (rAAV2) efficiently transduces human fetal liver hematopoietic cells, and mediates the expression of the human β-globin gene in vivo. In this study, we investigated whether rAAV2 could also mediate the expression of normal β-globin gene in human hematopoietic cells from β-thalassemia patients. Human hematopoietic cells were isolated from aborted β-thalassemia major fetuses, transduced with rAAV2-β-globin, and then transplanted into nude mice. We found that rAAV2-β-globin transduced human fetal hematopoietic cells, as determined by allele-specific PCR analysis. Furthermore, β-globin transgene expression was detected in human hematopoietic cells up to 70 days post-transplantation in the recipient mice. High-pressure liquid chromatography analysis showed that human β-globin expression levels increased significantly compared with control, as indicated by a 1.2-2.8-fold increase in the ratio of β/α-globin chain. These novel data demonstrate that rAAV2 can transduce and mediate the normal β-globin gene expression in fetal hematopoietic cells from β-thalassemia patients. Our findings further support the potential use of rAAV-based gene therapy in the treatment of human β-thalassemia.

  13. Sites in the AAV5 capsid tolerant to deletions and tandem duplications

    PubMed Central

    Hida, Kaoru; Won, Sang Y.; Di Pasquale, Giovanni; Hanes, Justin; Chiorini, John A.; Ostermeier, Marc

    2010-01-01

    Gene therapy vectors based on adeno-associated virus (AAV) have shown much promise in clinical trials for the treatment of a variety of diseases. However, the ability to manipulate and engineer the viral surface for enhanced efficiency is necessary to overcome such barriers as pre-existing immunity and transduction of non-target cells that currently limit AAV applications. Although single amino acid changes and peptide insertions at select sites have been explored previously, the tolerance of AAV to small deletions and tandem duplications of sequence has not been globally addressed. Here, we have generated a large, diverse library of >105 members containing deletions and tandem duplications throughout the viral capsid of AAV5. Four unique mutants were identified that maintain the ability to form viral particles, with one showing improved transduction on both 293T and BEAS-2B cells. This approach may find potential use for the generation of novel variants with improved and altered properties or in the identification of sites that are tolerant to insertions of targeting ligands. PMID:20102698

  14. Neuropathological and behavioral consequences of adeno-associated viral vector-mediated continuous intrastriatal neurotrophin delivery in a focal ischemia model in rats.

    PubMed

    Andsberg, Gunnar; Kokaia, Zaal; Klein, Ronald L; Muzyczka, Nicholas; Lindvall, Olle; Mandel, Ronald J

    2002-03-01

    Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) were continuously delivered to the striatum at biologically active levels via recombinant adeno-associated viral (rAAV) gene transfer 4-5 weeks prior to 30 min of middle cerebral artery occlusion (MCAO). The magnitude of the deficits in a battery of behavioral tests designed to assess striatal function was highly correlated to the extent of ischemic damage determined by unbiased stereological estimations of striatal neuron numbers. The delivery of neurotrophins lead to mild functional improvements in the ischemia-induced motor impairments assessed 3-5 weeks after the insult, in agreement with a small but significant increase of the survival of dorsolateral striatal neurons. Detailed phenotypic analysis demonstrated that the parvalbumin-containing interneurons were spared to a greater extent by the neurotrophin treatment as compared to the projection neurons, which agreed with the specificity for interneuron transduction by the rAAV vector. These data show the advantage of the never previously performed combination of precise quantification of the ischemia-induced neuropathology along with detailed behavioural analysis for assessing neuroprotection after stroke. We observe that intrastriatal delivery of NGF and BDNF using a viral vector system can mitigate, albeit only moderately, neuronal death following stroke, which leads to detectable functional sparing.

  15. AAVrh.10 immunogenicity in mice and humans. Relevance of antibody cross-reactivity in human gene therapy.

    PubMed

    Thwaite, R; Pagès, G; Chillón, M; Bosch, A

    2015-02-01

    Simian adeno-associated virus (AAV) serotype rh.10 is a promising gene therapy tool, achieving safe, sustained transgene expression in the nervous system, lung, liver and heart in animal models. To date, preexisting immunity in humans has not been confirmed, though exposure is unexpected. We compared the humoral immune response with serotypes AAVrh.10 and AAV9 in mice, and AAVrh.10, AAV9 and AAV2 in 100 healthy humans. Mice, injected-intravenously, raised significantly more anti-AAV9 than anti-AAVrh.10 IgG (immunoglobulins), and sera demonstrated greater neutralizing capacity, correspondingly. Antibody cross-binding studies in mice showed negligible cross-recognition between AAVrh.10, AAV9 and AAV2. In humans, IgG prevalence against the most common human serotype, AAV2, was 72%; AAV9, 47% and AAVrh.10, a surprising, 59%. Yet, neutralizing-antibody seroprevalences were 71% for AAV2, 18% for AAV9 and 21% for AAVrh.10. Thus, most anti-AAV9 and anti-AAVrh.10 IgG were nonneutralizing. Indeed, sera generally neutralized AAV2 more strongly than AAVrh.10. Further, all samples neutralizing AAVrh.10 or AAV9 also neutralized AAV2, suggesting antibody cross-recognition. This contrasts with the results in mice, and highlights the complexity of tailoring gene therapy to minimize the immune response in humans, when multiple-mixed infections during a lifetime evoke a broad repertoire of preexisting antibodies capable of cross reacting with non-human serotypes.

  16. Intramuscular AAV delivery of NT-3 alters synaptic transmission to motoneurons in adult rats

    PubMed Central

    Petruska, Jeffrey C.; Kitay, Brandon; Boyce, Vanessa S.; Kaspar, Brian; Pearse, Damien; Gage, Fred H.; Mendell, Lorne M.

    2010-01-01

    We examined whether elevating levels of neurotrophin-3 (NT-3) in the spinal cord and dorsal root ganglion (DRG) would alter connections made by muscle spindle afferent fibers on motoneurons. Adeno-associated virus (AAV) serotypes AAV1, AAV2 and AAV5, selected for their tropism profile, were engineered with the NT-3 gene and administered to the medial gastrocnemius muscle in adult rats. ELISA studies in muscle, DRG and spinal cord revealed that NT-3 concentration in all tissues peaked about 3 months after a single viral injection; after 6 months NT-3 concentration returned to normal values. Intracellular recording in triceps surae motoneurons revealed complex electrophysiological changes. Moderate elevation in cord NT-3 resulted in diminished segmental excitatory postsynaptic potential (EPSP) amplitude, perhaps as a result of the observed decrease in motoneuron input resistance. With further elevation in NT-3 expression, the decline in EPSP amplitude was reversed indicating that NT-3 at higher concentration could increase EPSP amplitude. No correlation was observed between EPSP amplitude and NT-3 concentration in the DRG. Treatment with control viruses could elevate NT-3 levels minimally resulting in measurable electrophysiological effects, perhaps as a result of inflammation associated with injection. EPSPs elicited by stimulation of the ventrolateral funiculus underwent a consistent decline in amplitude independent of NT-3 level. These novel correlations between modified NT-3 expression and single-cell electrophysiological parameters indicate that intramuscular administration of AAV(NT-3) can exert long lasting effects on synaptic transmission to motoneurons. This approach to neurotrophin delivery could be useful in modifying spinal function after injury. PMID:20849530

  17. AAV genome loss from dystrophic mouse muscles during AAV-U7 snRNA-mediated exon-skipping therapy.

    PubMed

    Le Hir, Maëva; Goyenvalle, Aurélie; Peccate, Cécile; Précigout, Guillaume; Davies, Kay E; Voit, Thomas; Garcia, Luis; Lorain, Stéphanie

    2013-08-01

    In the context of future adeno-associated viral (AAV)-based clinical trials for Duchenne myopathy, AAV genome fate in dystrophic muscles is of importance considering the viral capsid immunogenicity that prohibits recurring treatments. We showed that AAV genomes encoding non-therapeutic U7 were lost from mdx dystrophic muscles within 3 weeks after intramuscular injection. In contrast, AAV genomes encoding U7ex23 restoring expression of a slightly shortened dystrophin were maintained endorsing that the arrest of the dystrophic process is crucial for maintaining viral genomes in transduced fibers. Indeed, muscles treated with low doses of AAV-U7ex23, resulting in sub-optimal exon skipping, displayed much lower titers of viral genomes, showing that sub-optimal dystrophin restoration does not prevent AAV genome loss. We also followed therapeutic viral genomes in severe dystrophic dKO mice over time after systemic treatment with scAAV9-U7ex23. Dystrophin restoration decreased significantly between 3 and 12 months in various skeletal muscles, which was correlated with important viral genome loss, except in the heart. Altogether, these data show that the success of future AAV-U7 therapy for Duchenne patients would require optimal doses of AAV-U7 to induce substantial levels of dystrophin to stabilize the treated fibers and maintain the long lasting effect of the treatment.

  18. Combined Paracrine and Endocrine AAV9 mediated Expression of Hepatocyte Growth Factor for the Treatment of Renal Fibrosis

    PubMed Central

    Schievenbusch, Stephanie; Strack, Ingo; Scheffler, Melanie; Nischt, Roswitha; Coutelle, Oliver; Hösel, Marianna; Hallek, Michael; Fries, Jochen WU; Dienes, Hans-Peter; Odenthal, Margarete; Büning, Hildegard

    2010-01-01

    In chronic renal disease, tubulointerstitial fibrosis is a leading cause of renal failure. Here, we made use of one of the most promising gene therapy vector platforms, the adeno-associated viral (AAV) vector system, and the COL4A3-deficient mice, a genetic mouse model of renal tubulointerstitial fibrosis, to develop a novel bidirectional treatment strategy to prevent renal fibrosis. By comparing different AAV serotypes in reporter studies, we identified AAV9 as the most suitable delivery vector to simultaneously target liver parenchyma for endocrine and renal tubular epithelium for paracrine therapeutic expression of the antifibrogenic cytokine human hepatocyte growth factor (hHGF). We used transcriptional targeting to drive hHGF expression from the newly developed CMV-enhancer-Ksp-cadherin-promoter (CMV-Ksp) in renal and hepatic tissue following tail vein injection of rAAV9-CMV-Ksp-hHGF into COL4A3-deficient mice. The therapeutic efficiency of our approach was demonstrated by a remarkable attenuation of tubulointerstitial fibrosis and repression of fibrotic markers such as collagen1α1 (Col1A1), platelet-derived growth factor receptor-β (PDGFR-β), and α-smooth muscle actin (SMA). Taken together, our results show the great potential of rAAV9 as an intravenously applicable vector for the combined paracrine and endocrine expression of antifibrogenic factors in the treatment of renal failure caused by tubulointerstitial fibrosis. PMID:20424598

  19. Properly scaled and targeted AAV2-NRTN (neurturin) to the substantia nigra is safe, effective and causes no weight loss: support for nigral targeting in Parkinson's disease.

    PubMed

    Bartus, Raymond T; Brown, Lamar; Wilson, Alistair; Kruegel, Brian; Siffert, Joao; Johnson, Eugene M; Kordower, Jeffrey H; Herzog, Christopher D

    2011-10-01

    Recent analyses of autopsied brains from subjects previously administered AAV2-neurturin (NRTN) gene transfer argues that optimizing the effects of neurotrophic factors in Parkinson's disease (PD) likely requires delivery to both the degenerating cell bodies (in substantia nigra) and their terminals (in striatum). Prior to implementing this novel dosing paradigm in humans, we conducted eight nonclinical experiments with three general objectives: (1) evaluate the feasibility, safety and effectiveness of targeting the substantia nigra (SN) with AAV2-NRTN, (2) better understand and appraise recent warnings of serious weight loss that might occur with targeting the SN with neurotrophic factors, and (3) define an appropriate dose of AAV2-NRTN that should safely and effectively cover the SN in PD patients. Toward these ends, we first determined SN volume for rats, monkeys and humans, and employed these values to calculate comparable dose equivalents for each species by scaling each dose, based on relative SN volume. Using this information, we next injected AAV2-GFP to monkey SN to quantify AAV2-vector distribution and confirm reasonable SN coverage. We then selected and administered a ~200-fold range of AAV2-NRTN doses (and a single AAV2-GDNF dose) to rat SN, producing a wide range of protein expression. In contrast to recent warnings regarding nigra targeting, no dose produced any serious side effects or toxicity, though we replicated the modest reduction in weight gain reported by others with the highest AAV2-NRTN and the AAV2-GDNF dose. A dose-related increase in NRTN expression was seen, with the lower doses limiting NRTN to the peri-SN and the highest dose producing mistargeted NRTN well outside the SN. We then demonstrated that the reduction in weight gain following excessive-doses can be dissociated from NRTN in the targeted SN, and is linked to mistargeted NRTN in the diencephalon. We also showed that prior destruction of the dopaminergic SN neurons via 6-OHDA

  20. Radioiodinated Capsids Facilitate In Vivo Non-Invasive Tracking of Adeno-Associated Gene Transfer Vectors

    PubMed Central

    Kothari, P.; De, B. P.; He, B.; Chen, A.; Chiuchiolo, M. J.; Kim, D.; Nikolopoulou, A.; Amor-Coarasa, A.; Dyke, J. P.; Voss, H. U.; Kaminsky, S. M.; Foley, C. P.; Vallabhajosula, S.; Hu, B.; DiMagno, S. G.; Sondhi, D.; Crystal, R. G.; Babich, J. W.; Ballon, D.

    2017-01-01

    Viral vector mediated gene therapy has become commonplace in clinical trials for a wide range of inherited disorders. Successful gene transfer depends on a number of factors, of which tissue tropism is among the most important. To date, definitive mapping of the spatial and temporal distribution of viral vectors in vivo has generally required postmortem examination of tissue. Here we present two methods for radiolabeling adeno-associated virus (AAV), one of the most commonly used viral vectors for gene therapy trials, and demonstrate their potential usefulness in the development of surrogate markers for vector delivery during the first week after administration. Specifically, we labeled adeno-associated virus serotype 10 expressing the coding sequences for the CLN2 gene implicated in late infantile neuronal ceroid lipofuscinosis with iodine-124. Using direct (Iodogen) and indirect (modified Bolton-Hunter) methods, we observed the vector in the murine brain for up to one week using positron emission tomography. Capsid radioiodination of viral vectors enables non-invasive, whole body, in vivo evaluation of spatial and temporal vector distribution that should inform methods for efficacious gene therapy over a broad range of applications. PMID:28059103

  1. Generation of GFP Reporter Human Induced Pluripotent Stem Cells Using AAVS1 Safe Harbor Transcription Activator-Like Effector Nuclease.

    PubMed

    Luo, Yongquan; Rao, Mahendra; Zou, Jizhong

    2014-05-16

    Generation of a fluorescent GFP reporter line in human induced pluripotent stem cells (hiPSCs) provides enormous potentials in both basic stem cell research and regenerative medicine. A protocol for efficiently generating such an engineered reporter line by gene targeting is highly desired. Transcription activator-like effector nucleases (TALENs) are a new class of artificial restriction enzymes that have been shown to significantly promote homologous recombination by >1000-fold. The AAVS1 (adeno-associated virus integration site 1) locus is a "safe harbor" and has an open chromatin structure that allows insertion and stable expression of transgene. Here, we describe a step-by-step protocol from determination of TALENs activity, hiPSC culture, and delivery of a donor into AAVS1 targeting site, to validation of targeted integration by PCR and Southern blot analysis using hiPSC line, and a pair of open-source AAVS1 TALENs.

  2. Improved dual AAV vectors with reduced expression of truncated proteins are safe and effective in the retina of a mouse model of Stargardt disease.

    PubMed

    Trapani, Ivana; Toriello, Elisabetta; de Simone, Sonia; Colella, Pasqualina; Iodice, Carolina; Polishchuk, Elena V; Sommella, Andrea; Colecchi, Linda; Rossi, Settimio; Simonelli, Francesca; Giunti, Massimo; Bacci, Maria L; Polishchuk, Roman S; Auricchio, Alberto

    2015-12-01

    Stargardt disease (STGD1) due to mutations in the large ABCA4 gene is the most common inherited macular degeneration in humans. We have shown that dual adeno-associated viral (AAV) vectors effectively transfer ABCA4 to the retina of Abca4-/- mice. However, they express both lower levels of transgene compared with a single AAV and truncated proteins. To increase productive dual AAV concatemerization, which would overcome these limitations, we have explored the use of either various regions of homology or heterologous inverted terminal repeats (ITR). In addition, we tested the ability of various degradation signals to decrease the expression of truncated proteins. We found the highest levels of transgene expression using regions of homology based on either alkaline phosphatase or the F1 phage (AK). The use of heterologous ITR does not decrease the levels of truncated proteins relative to full-length ABCA4 and impairs AAV vector production. Conversely, the inclusion of the CL1 degradation signal results in the selective degradation of truncated proteins from the 5'-half without affecting full-length protein production. Therefore, we developed dual AAV hybrid ABCA4 vectors including homologous ITR2, the photoreceptor-specific G protein-coupled receptor kinase 1 promoter, the AK region of homology and the CL1 degradation signal. We show that upon subretinal administration these vectors are both safe in pigs and effective in Abca4-/- mice. Our data support the use of improved dual AAV vectors for gene therapy of STGD1.

  3. Lentiviral vector-mediated RNA interference targeted against prohibitin inhibits apoptosis of the retinoic acid-resistant acute promyelocytic leukemia cell line NB4-R1.

    PubMed

    Liu, Yanfeng; He, Pengcheng; Zhang, Mei; Wu, Di

    2012-12-01

    To investigate the possibility of prohibitin (PHB) inhibition by lentiviral vector-mediated RNA interference (RNAi) and its influence on cell apoptosis in the retinoic acid-resistant acute promyelocytic leukemia cell line NB4-R1, a lentiviral vector encoding a short hairpin RNA (shRNA) targeted against PHB (pGCSIL-GFP-PHB) was constructed and transfected into the packaging cells 293T, and the viral supernatant was collected to transfect NB4-R1 cells. Quantitative real-time fluorescent PCR and western blotting were used to detect the expression levels of PHB. Flow cytometry and detection of enzymatic activity of caspase-3 by western blotting were employed to examine cell apoptosis. Our results provide evidence that the lentiviral vector pGCSIL-GFP-PHB was constructed successfully, and the PHB mRNA and the protein expression inhibitory rates were 90.3 and 95.8%, respectively. When compared to the control group, the activity of caspase-3 decreased significantly, which showed a 57.3% downregulation, and the apoptosis rate was reduced by 44.6% (P<0.05). In conclusion, downregulation of the PHB gene may inhibit apoptosis of NB4-R1 cells, and it is speculated that this was at least partly due to the downregulation of caspase-3, and PHB may be a novel target for gene therapy for retinoic acid-resistant acute promyelocytic leukemia.

  4. The Human Rhodopsin Kinase Promoter in an AAV5 Vector Confers Rod- and Cone-Specific Expression in the Primate Retina

    PubMed Central

    Alexander, John J.; Boye, Sanford L.; Witherspoon, Clark D.; Sandefer, Kristen J.; Conlon, Thomas J.; Erger, Kirsten; Sun, Jingfen; Ryals, Renee; Chiodo, Vince A.; Clark, Mark E.; Girkin, Christopher A.; Hauswirth, William W.; Gamlin, Paul D.

    2012-01-01

    Abstract Adeno-associated virus (AAV) has proven an effective gene delivery vehicle for the treatment of retinal disease. Ongoing clinical trials using a serotype 2 AAV vector to express RPE65 in the retinal pigment epithelium have proven safe and effective. While many proof-of-concept studies in animal models of retinal disease have suggested that gene transfer to the neural retina will also be effective, a photoreceptor-targeting AAV vector has yet to be used in the clinic, principally because a vector that efficiently but exclusively targets all primate photoreceptors has yet to be demonstrated. Here, we evaluate a serotype 5 AAV vector containing the human rhodopsin kinase (hGRK1) promoter for its ability to target transgene expression to rod and cone photoreceptors when delivered subretinally in a nonhuman primate (NHP). In vivo fluorescent fundus imaging confirmed that AAV5-hGRK1-mediated green fluorescent protein (GFP) expression was restricted to the injection blebs of treated eyes. Optical coherence tomography (OCT) revealed a lack of gross pathology after injection. Neutralizing antibodies against AAV5 were undetectable in post-injection serum samples from subjects receiving uncomplicated subretinal injections (i.e., no hemorrhage). Immunohistochemistry of retinal sections confirmed hGRK1 was active in, and specific for, both rods and cones of NHP retina. Biodistribution studies revealed minimal spread of vector genomes to peripheral tissues. These results suggest that AAV5-hGRK1 is a safe and effective AAV serotype/promoter combination for targeting therapeutic transgene expression protein to rods and cones in a clinical setting. PMID:22845794

  5. The human rhodopsin kinase promoter in an AAV5 vector confers rod- and cone-specific expression in the primate retina.

    PubMed

    Boye, Shannon E; Alexander, John J; Boye, Sanford L; Witherspoon, Clark D; Sandefer, Kristen J; Conlon, Thomas J; Erger, Kirsten; Sun, Jingfen; Ryals, Renee; Chiodo, Vince A; Clark, Mark E; Girkin, Christopher A; Hauswirth, William W; Gamlin, Paul D

    2012-10-01

    Adeno-associated virus (AAV) has proven an effective gene delivery vehicle for the treatment of retinal disease. Ongoing clinical trials using a serotype 2 AAV vector to express RPE65 in the retinal pigment epithelium have proven safe and effective. While many proof-of-concept studies in animal models of retinal disease have suggested that gene transfer to the neural retina will also be effective, a photoreceptor-targeting AAV vector has yet to be used in the clinic, principally because a vector that efficiently but exclusively targets all primate photoreceptors has yet to be demonstrated. Here, we evaluate a serotype 5 AAV vector containing the human rhodopsin kinase (hGRK1) promoter for its ability to target transgene expression to rod and cone photoreceptors when delivered subretinally in a nonhuman primate (NHP). In vivo fluorescent fundus imaging confirmed that AAV5-hGRK1-mediated green fluorescent protein (GFP) expression was restricted to the injection blebs of treated eyes. Optical coherence tomography (OCT) revealed a lack of gross pathology after injection. Neutralizing antibodies against AAV5 were undetectable in post-injection serum samples from subjects receiving uncomplicated subretinal injections (i.e., no hemorrhage). Immunohistochemistry of retinal sections confirmed hGRK1 was active in, and specific for, both rods and cones of NHP retina. Biodistribution studies revealed minimal spread of vector genomes to peripheral tissues. These results suggest that AAV5-hGRK1 is a safe and effective AAV serotype/promoter combination for targeting therapeutic transgene expression protein to rods and cones in a clinical setting.

  6. Clinically Relevant Effects of Convection-Enhanced Delivery of AAV2-GDNF on the Dopaminergic Nigrostriatal Pathway in Aged Rhesus Monkeys

    PubMed Central

    Johnston, Louisa C.; Eberling, Jamie; Pivirotto, Philip; Hadaczek, Piotr; Federoff, Howard J.; Forsayeth, John

    2009-01-01

    Abstract Growth factor therapy for Parkinson's disease offers the prospect of restoration of dopaminergic innervation and/or prevention of neurodegeneration. Safety and efficacy of an adeno-associated virus (AAV2) encoding human glial cell-derived neurotrophic factor (GDNF) was investigated in aged nonhuman primates. Positron emission tomography with 6-[18F]-fluoro-l-m-tyrosine (FMT-PET) in putamen was assessed 3 months before and after AAV2 infusion. In the right putamen, monkeys received either phosphate-buffered saline or low-dose (LD) or high-dose (HD) AAV2-GDNF. Monkeys that had received putaminal phosphate-buffered saline (PBS) infusions additionally received either PBS or HD AAV2-GDNF in the right substantia nigra (SN). The convection-enhanced delivery method used for infusion of AAV2-GDNF vector resulted in robust volume of GDNF distribution within the putamen. AAV2-GDNF increased FMT-PET uptake in the ipsilateral putamen as well as enhancing locomotor activity. Within the putamen and caudate, the HD gene transfer mediated intense GDNF fiber and extracellular immunoreactivity (IR). Retrograde and anterograde transport of GDNF to other brain regions was observed. AAV2-GDNF did not significantly affect dopamine in the ipsilateral putamen or caudate, but increased dopamine turnover in HD groups. HD putamen treatment increased the density of dopaminergic terminals in these regions. HD treatments, irrespective of the site of infusion, increased the number of nonpigmented TH-IR neurons in the SN. AAV2-GDNF gene transfer does not appear to elicit adverse effects, delivers therapeutic levels of GDNF within target brain areas, and enhances utilization of striatal dopamine and dopaminergic nigrostriatal innervation. PMID:19203243

  7. AAV-Mediated Transduction and Targeting of Retinal Bipolar Cells with Improved mGluR6 Promoters in Rodents and Primates

    PubMed Central

    Lu, Q; Ganjawala, TH; Ivanova, E; Cheng, JG; Troilo, D; Pan, Z-H

    2016-01-01

    Adeno-associated virus (AAV) vectors have been a powerful gene delivery vehicle to the retina for basic research and gene therapy. For many of these applications, achieving cell-type specific targeting and high transduction efficiency is desired. Recently, there has been increasing interest in AAV-mediated gene targeting to specific retinal bipolar cell types. A 200-bp enhancer in combination with a basal SV40 promoter has been commonly used to target transgenes into ON-type bipolar cells. In the current study, we searched for additional cis-regulatory elements in the mGluR6 gene for improving AAV-mediated transduction efficiency into retinal bipolar cells. Our results showed that the combination of the endogenous mGluR6 promoter with additional enhancers in the introns of the mGluR6 gene markedly enhanced AAV transduction efficiency as well as made the targeting more selective for rod bipolar cells in mice. Furthermore, the AAV vectors with the improved promoter could target to ON bipolar cells with robust transduction efficiency in the para-fovea and the far peripheral retina of marmoset monkeys. The improved mGluR6 promoter constructs could provide a valuable tool for genetic manipulation in rod bipolar cells in mice and facilitate clinical applications for ON bipolar cell-based gene therapies. PMID:27115727

  8. AAV-mediated transduction and targeting of retinal bipolar cells with improved mGluR6 promoters in rodents and primates.

    PubMed

    Lu, Q; Ganjawala, T H; Ivanova, E; Cheng, J G; Troilo, D; Pan, Z-H

    2016-08-01

    Adeno-associated virus (AAV) vectors have been a powerful gene delivery vehicle to the retina for basic research and gene therapy. For many of these applications, achieving cell type-specific targeting and high transduction efficiency is desired. Recently, there has been increasing interest in AAV-mediated gene targeting to specific retinal bipolar cell types. A 200-bp enhancer in combination with a basal SV40 promoter has been commonly used to target transgenes into ON-type bipolar cells. In the current study, we searched for additional cis-regulatory elements in the mGluR6 gene for improving AAV-mediated transduction efficiency into retinal bipolar cells. Our results showed that the combination of the endogenous mGluR6 promoter with additional enhancers in the introns of the mGluR6 gene markedly enhanced AAV transduction efficiency as well as made the targeting more selective for rod bipolar cells in mice. Furthermore, the AAV vectors with the improved promoter could target to ON bipolar cells with robust transduction efficiency in the parafovea and the far peripheral retina of marmoset monkeys. The improved mGluR6 promoter constructs could provide a valuable tool for genetic manipulation in rod bipolar cells in mice and facilitate clinical applications for ON bipolar cell-based gene therapies.

  9. Biomarkers for disease progression and AAV therapeutic efficacy in feline Sandhoff disease.

    PubMed

    Bradbury, Allison M; Gray-Edwards, Heather L; Shirley, Jamie L; McCurdy, Victoria J; Colaco, Alexandria N; Randle, Ashley N; Christopherson, Pete W; Bird, Allison C; Johnson, Aime K; Wilson, Diane U; Hudson, Judith A; De Pompa, Nicholas L; Sorjonen, Donald C; Brunson, Brandon L; Jeyakumar, Mylvaganam; Platt, Frances M; Baker, Henry J; Cox, Nancy R; Sena-Esteves, Miguel; Martin, Douglas R

    2015-01-01

    The GM2 gangliosidoses, Tay-Sachs disease (TSD) and Sandhoff disease (SD), are progressive neurodegenerative disorders that are caused by a mutation in the enzyme β-N-acetylhexosaminidase (Hex). Due to the recent emergence of novel experimental treatments, biomarker development has become particularly relevant in GM2 gangliosidosis as an objective means to measure therapeutic efficacy. Here we describe blood, cerebrospinal fluid (CSF), magnetic resonance imaging (MRI), and electrodiagnostic methods for evaluating disease progression in the feline SD model and application of these approaches to assess AAV-mediated gene therapy. SD cats were treated by intracranial injections of the thalami combined with either the deep cerebellar nuclei or a single lateral ventricle using AAVrh8 vectors encoding feline Hex. Significantly altered in untreated SD cats, blood and CSF based biomarkers were largely normalized after AAV gene therapy. Also reduced after treatment were expansion of the lysosomal compartment in peripheral blood mononuclear cells and elevated activity of secondary lysosomal enzymes. MRI changes characteristic of the gangliosidoses were documented in SD cats and normalized after AAV gene therapy. The minimally invasive biomarkers reported herein should be useful to assess disease progression of untreated SD patients and those in future clinical trials.

  10. Stability and Safety of an AAV Vector for Treating RPGR-ORF15 X-Linked Retinitis Pigmentosa.

    PubMed

    Deng, Wen-Tao; Dyka, Frank M; Dinculescu, Astra; Li, Jie; Zhu, Ping; Chiodo, Vince A; Boye, Sanford L; Conlon, Thomas J; Erger, Kirsten; Cossette, Travis; Hauswirth, William W

    2015-09-01

    Our collaborative successful gene replacement therapy using AAV vectors expressing a variant of human RPGR-ORF15 in two canine models provided therapeutic proof of concept for translation into human treatment. The ORF15 sequence contained within this AAV vector, however, has ORF15 DNA sequence variations compared to the published sequence that are likely due to its unusual composition of repetitive purine nucleotides. This mutability is a concern for AAV vector production and safety when contemplating a human trial. In this study, we establish the safety profile of AAV-hIRBP-hRPGR and AAV-hGRK1-hRPGR vectors used in the initial canine proof-of-principle experiments by demonstrating hRPGR-ORF15 sequence stability during all phases of manipulation, from plasmid propagation to vector production to its stability in vivo after subretinal administration to animals. We also evaluate potential toxicity in vivo by investigating protein expression, retinal structure and function, and vector biodistribution. Expression of hRPGR is detected in the inner segments and synaptic terminals of photoreceptors and is restricted to the connecting cilium when the vector is further diluted. Treated eyes exhibit no toxicity as assessed by retinal histopathology, immunocytochemistry, optical coherence tomography, fundoscopy, electroretinogram, and vector biodistribution. Therefore, the hRPGR-ORF15 variant in our AAV vectors appears to be a more stable form than the endogenous hRPGR cDNA when propagated in vitro. Its safety profile presented here in combination with its proven efficacy supports future gene therapy clinical trials.

  11. Syngeneic AAV pseudo-vectors potentiates full vector transduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An excessive amount of empty capsids are generated during regular AAV vector production process. These pseudo-vectors often remain in final vectors used for animal studies or clinical trials. The potential effects of these pseudo-vectors on AAV transduction have been a major concern. In the current ...

  12. Controlled Striatal DOPA Production From a Gene Delivery System in a Rodent Model of Parkinson's Disease

    PubMed Central

    Cederfjäll, Erik; Broom, Lauren; Kirik, Deniz

    2015-01-01

    Conventional symptomatic treatment for Parkinson's disease (PD) with long-term L-3,4-dihydroxyphenylalanine (DOPA) is complicated with development of drug-induced side effects. In vivo viral vector-mediated gene expression encoding tyrosine hydroxylase (TH) and GTP cyclohydrolase 1 (GCH1) provides a drug delivery strategy of DOPA with distinct advantages over pharmacotherapy. Since the brain alterations made with current gene transfer techniques are irreversible, the therapeutic approaches taken to the clinic should preferably be controllable to match the needs of each individual during the course of their disease. We used a recently described tunable gene expression system based on the use of destabilized dihydrofolate reductase (DD) and generated a N-terminally coupled GCH1 enzyme (DD-GCH1) while the TH enzyme was constitutively expressed, packaged in adeno-associated viral (AAV) vectors. Expression of DD-GCH1 was regulated by the activating ligand trimethoprim (TMP) that crosses the blood–brain barrier. We show that the resulting intervention provides a TMP-dose-dependent regulation of DOPA synthesis that is closely linked to the magnitude of functional effects. Our data constitutes the first proof of principle for controlled reconstitution of dopamine capacity in the brain and suggests that such next-generation gene therapy strategies are now mature for preclinical development toward use in patients with PD. PMID:25592335

  13. Controlled Striatal DOPA Production From a Gene Delivery System in a Rodent Model of Parkinson's Disease.

    PubMed

    Cederfjäll, Erik; Broom, Lauren; Kirik, Deniz

    2015-05-01

    Conventional symptomatic treatment for Parkinson's disease (PD) with long-term L-3,4-dihydroxyphenylalanine (DOPA) is complicated with development of drug-induced side effects. In vivo viral vector-mediated gene expression encoding tyrosine hydroxylase (TH) and GTP cyclohydrolase 1 (GCH1) provides a drug delivery strategy of DOPA with distinct advantages over pharmacotherapy. Since the brain alterations made with current gene transfer techniques are irreversible, the therapeutic approaches taken to the clinic shoul