Science.gov

Sample records for aav-based gene therapy

  1. AAV-based gene therapy prevents neuropathology and results in normal cognitive development in the hyperargininemic mouse.

    PubMed

    Lee, E K; Hu, C; Bhargava, R; Ponnusamy, R; Park, H; Novicoff, S; Rozengurt, N; Marescau, B; De Deyn, P; Stout, D; Schlichting, L; Grody, W W; Cederbaum, S D; Lipshutz, G S

    2013-08-01

    Complete arginase I deficiency is the least severe urea cycle disorder, characterized by hyperargininemia and infrequent episodes of hyperammonemia. Patients suffer from neurological impairment with cortical and pyramidal tract deterioration, spasticity, loss of ambulation and seizures, and is associated with intellectual disability. In mice, onset is heralded by weight loss beginning around day 15; gait instability follows progressing to inability to stand and development of tail tremor with seizure-like activity and death. Here we report that hyperargininemic mice treated neonatally with an adeno-associated virus (AAV)-expressing arginase and followed long-term lack any presentation consistent with brain dysfunction. Behavioral and histopathological evaluation demonstrated that treated mice are indistinguishable from littermates, and that putative compounds associated with neurotoxicity are diminished. In addition, treatment results in near complete resolution of metabolic abnormalities early in life; however, there is the development of some derangement later with decline in transgene expression. Ammonium challenging revealed that treated mice are affected by exogenous loading much greater than littermates. These results demonstrate that AAV-based therapy for hyperargininemia is effective and prevents development of neurological abnormalities and cognitive dysfunction in a mouse model of hyperargininemia; however, nitrogen challenging reveals that these mice remain impaired in the handling of waste nitrogen.

  2. AAV-based Neonatal Gene Therapy for Hemophilia A: Long-Term Correction and Avoidance of Immune Responses in Mice

    PubMed Central

    Hu, Chuhong; Lipshutz, Gerald S.

    2012-01-01

    Hemophilia A gene therapy has been hampered by immune responses to vector-associated antigens and by neutralizing antibodies or inhibitors to the factor VIII (FVIII) protein; these ‘inhibitors’ more commonly effect hemophilia A patients than those with hemophilia B. A gene replacement strategy beginning in the neonatal period may avoid the development of these immune responses and lead to prolonged expression with correction of phenotype thereby avoiding long-term consequences. Serotype rh10 AAV was developed splitting the FVIII coding sequence into heavy and light chains with the chicken β-actin promoter/CMV enhancer for dual recombinant AAV vector delivery. Coinjection of virions of each FVIII chain intravenously to mice on the second day of life was performed. Mice express sustained FVIII antigen levels of ≥5% to 22 months of life without the development of antibodies to FVIII. Phenotypic correction was manifest in all AAV-FVIII-treated mice as demonstrated by functional assay and reduction in bleeding time. This study demonstrates the use of AAV in a gene replacement strategy in neonatal mice that establishes both long-term phenotypic correction of hemophilia A and lack of antibody development to FVIII in this disease model where AAV is administered shortly after birth. These studies support consideration of gene replacement therapy for diseases that are diagnosed in utero or in the early neonatal period. PMID:22241178

  3. Genes and Gene Therapy

    MedlinePlus

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  4. Gene Therapy

    PubMed Central

    Baum, Bruce J

    2014-01-01

    Applications of gene therapy have been evaluated in virtually every oral tissue, and many of these have proved successful at least in animal models. While gene therapy will not be used routinely in the next decade, practitioners of oral medicine should be aware of the potential of this novel type of treatment that doubtless will benefit many patients with oral diseases. PMID:24372817

  5. Efficient gene therapy-based method for the delivery of therapeutics to primate cortex.

    PubMed

    Kells, Adrian P; Hadaczek, Piotr; Yin, Dali; Bringas, John; Varenika, Vanja; Forsayeth, John; Bankiewicz, Krystof S

    2009-02-17

    Transduction of the primate cortex with adeno-associated virus (AAV)-based gene therapy vectors has been challenging, because of the large size of the cortex. We report that a single infusion of AAV2 vector into thalamus results in widespread expression of transgene in the cortex through transduction of widely dispersed thalamocortical projections. This finding has important implications for the treatment of certain genetic and neurodegenerative diseases.

  6. [Gene therapy].

    PubMed

    Rodríguez-Fragoso, L

    1997-01-01

    In the last years there has been much progress in our understanding of molecular mechanisms in the pathogenesis of disease. In this review we provide an overview of gene therapy, its most actualized techniques for gene delivery, and we give specific examples of laboratory and clinical achievements to date. The development of methods for delivering genes to mammalian cells has stimulated great interest in the possibility of treating human disease by gene-based therapies. As a result, concepts and methods that would have been considered purely science fiction 50 years ago are now used in the treatment of diseases. The widespread application of gene therapy technology to many diseases is already breaking down the traditional boundaries of modern medicine. However, despite its progress, several key technical drawbacks need to be overcome before gene therapy can be used safely and effectively in clinical settings. Technological developments, particularly in the areas of gene delivery and cell transplantation, will be critical for the successful practice of gene therapy.

  7. Gene Therapy for the Treatment of Neurological Disorders: Metabolic Disorders

    PubMed Central

    Gessler, Dominic J.; Gao, Guangping

    2016-01-01

    Metabolic disorders comprise a large group of heterogeneous diseases ranging from very prevalent diseases such as diabetes mellitus to rare genetic disorders like Canavan Disease. Whether either of these diseases is amendable by gene therapy depends to a large degree on the knowledge of their pathomechanism, availability of the therapeutic gene, vector selection, and availability of suitable animal models. In this book chapter, we review three metabolic disorders of the central nervous system (CNS; Canavan Disease, Niemann–Pick disease and Phenylketonuria) to give examples for primary and secondary metabolic disorders of the brain and the attempts that have been made to use adeno-associated virus (AAV) based gene therapy for treatment. Finally, we highlight commonalities and obstacles in the development of gene therapy for metabolic disorders of the CNS exemplified by those three diseases. PMID:26611604

  8. [Developments in gene delivery vectors for ocular gene therapy].

    PubMed

    Khabou, Hanen; Dalkara, Deniz

    2015-05-01

    Gene therapy is quickly becoming a reality applicable in the clinic for inherited retinal diseases. Its remarkable success in safety and efficacy, in clinical trials for Leber's congenital amaurosis (LCA) type II generated significant interest and opened up possibilities for a new era of retinal gene therapies. Success in these clinical trials was mainly due to the favorable characteristics of the retina as a target organ. The eye offers several advantages as it is readily accessible and has some degree of immune privilege making it suitable for application of viral vectors. The viral vectors most frequently used for retinal gene delivery are lentivirus, adenovirus and adeno-associated virus (AAV). Here we will discuss the use of these viral vectors in retinal gene delivery with a strong focus on favorable properties of AAV. Thanks to its small size, AAV diffuses well in the inter-neural matrix making it suitable for applications in neural retina. Building on this initial clinical success with LCA II, we have now many opportunities to extend this proof-of-concept to other retinal diseases using AAV as a vector. This article will discuss what are some of the most imminent cellular targets for such therapies and the AAV toolkit that has been built to target these cells successfully. We will also discuss some of the challenges that we face in translating AAV-based gene therapies to the clinic.

  9. Adeno-Associated Virus-Based Gene Therapy for CNS Diseases

    PubMed Central

    Hocquemiller, Michaël; Giersch, Laura; Audrain, Mickael; Parker, Samantha; Cartier, Nathalie

    2016-01-01

    Gene therapy is at the cusp of a revolution for treating a large spectrum of CNS disorders by providing a durable therapeutic protein via a single administration. Adeno-associated virus (AAV)-mediated gene transfer is of particular interest as a therapeutic tool because of its safety profile and efficiency in transducing a wide range of cell types. The purpose of this review is to describe the most notable advancements in preclinical and clinical research on AAV-based CNS gene therapy and to discuss prospects for future development based on a new generation of vectors and delivery. PMID:27267688

  10. Gene therapy in an era of emerging treatment options for hemophilia B

    PubMed Central

    Monahan, P. E.

    2016-01-01

    Summary Factor IX deficiency (hemophilia B) is less common than factor VIII deficiency (hemophilia A) and innovations in therapy for hemophilia B have generally lagged behind those for hemophilia A. Recently the first sustained correction of the hemophilia bleeding phenotype by clotting factor gene therapy has been described using recombinant adeno-associated virus (AAV) to deliver factor IX. Despite this success, many individuals with hemophilia B, including children, men with active hepatitis, and individuals who have pre-existing natural immunity to AAV are not eligible for the current iteration of hemophilia B gene therapy. In addition, recent advances in recombinant factor IX protein engineering have led some hemophilia treaters to reconsider the urgency of genetic cure. Current clinical and preclinical approaches to advancing AAV-based and alternative approaches to factor IX gene therapy are considered in the context of current demographics and treatment of the hemophilia B population. PMID:26149016

  11. Gene therapy in an era of emerging treatment options for hemophilia B.

    PubMed

    Monahan, P E

    2015-06-01

    Factor IX deficiency (hemophilia B) is less common than factor VIII deficiency (hemophilia A), and innovations in therapy for hemophilia B have generally lagged behind those for hemophilia A. Recently, the first sustained correction of the hemophilia bleeding phenotype by clotting factor gene therapy has been described using recombinant adeno-associated virus (AAV) to deliver factor IX. Despite this success, many individuals with hemophilia B, including children, men with active hepatitis, and individuals who have pre-existing natural immunity to AAV, are not eligible for the current iteration of hemophilia B gene therapy. In addition, recent advances in recombinant factor IX protein engineering have led some hemophilia treaters to reconsider the urgency of genetic cure. Current clinical and preclinical approaches to advancing AAV-based and alternative approaches to factor IX gene therapy are considered in the context of current demographics and treatment of the hemophilia B population.

  12. Myocardial gene therapy

    NASA Astrophysics Data System (ADS)

    Isner, Jeffrey M.

    2002-01-01

    Gene therapy is proving likely to be a viable alternative to conventional therapies in coronary artery disease and heart failure. Phase 1 clinical trials indicate high levels of safety and clinical benefits with gene therapy using angiogenic growth factors in myocardial ischaemia. Although gene therapy for heart failure is still at the pre-clinical stage, experimental data indicate that therapeutic angiogenesis using short-term gene expression may elicit functional improvement in affected individuals.

  13. Gene therapy for radioprotection.

    PubMed

    Everett, W H; Curiel, D T

    2015-03-01

    Radiation therapy is a critical component of cancer treatment with over half of patients receiving radiation during their treatment. Despite advances in image-guided therapy and dose fractionation, patients receiving radiation therapy are still at risk for side effects due to off-target radiation damage of normal tissues. To reduce normal tissue damage, researchers have sought radioprotectors, which are agents capable of protecting tissue against radiation by preventing radiation damage from occurring or by decreasing cell death in the presence of radiation damage. Although much early research focused on small-molecule radioprotectors, there has been a growing interest in gene therapy for radioprotection. The amenability of gene therapy vectors to targeting, as well as the flexibility of gene therapy to accomplish ablation or augmentation of biologically relevant genes, makes gene therapy an excellent strategy for radioprotection. Future improvements to vector targeting and delivery should greatly enhance radioprotection through gene therapy.

  14. Nanoparticle-based Technologies for Retinal Gene Therapy

    PubMed Central

    Adijanto, Jeffrey; Naash, Muna I

    2015-01-01

    For patients with hereditary retinal diseases, retinal gene therapy offers significant promise for the prevention of retinal degeneration. While adeno-associated virus (AAV)-based systems remain the most popular gene delivery method due to their high efficiency and successful clinical results, other delivery systems, such as non-viral nanoparticles (NPs) are being developed as additional therapeutic options. NP technologies come in several categories (e.g., polymer, liposomes, peptide compacted DNA), several of which have been tested in mouse models of retinal disease. Here, we discuss the key biochemical features of the different NPs that influence how they are internalized into cells, escape from endosomes, and are delivered into the nucleus. We review the primary mechanism of NP uptake by retinal cells and highlight various NPs that have been successfully used for in vivo gene delivery to the retina and RPE. Finally, we consider the various strategies that can be implemented in the plasmid DNA to generate persistent, high levels of gene expression. PMID:25592325

  15. Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy.

    PubMed

    Nance, Michael E; Duan, Dongsheng

    2015-12-01

    Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy.

  16. Developing protocols for recombinant adeno-associated virus-mediated gene therapy in space.

    PubMed

    Ohi, S

    2000-07-01

    With the advent of the era of International Space Station (ISS) and Mars exploration, it is important more than ever to develop means to cure genetic and acquired diseases, which include cancer and AIDS, for these diseases hamper human activities. Thus, our ultimate goal is to develop protocols for gene therapy, which are suitable to humans on the earth as well as in space. Specifically, we are trying to cure the hemoglobinopathies, beta-thalassemia (Cooley's anemia) and sickle cell anemia, by gene therapy. These well-characterized molecular diseases serve as models for developing ex vivo gene therapy, which would apply to other disorders as well. For example, the procedure may become directly relevant to treating astronauts for space-anemia, immune suppression and bone marrow derived tumors, e.g. leukemia. The adeno-associated virus serotype 2 (AAV2) is a non-pathogenic human parvovirus with broad host-range and tissue specificity. Exploiting these characteristics we have been developing protocols for recombinant AAV2 (rAAV)-based gene therapy. With the rAAV constructs and hematopoietic stem cell (HSC) culture systems in hand, we are currently attempting to cure the mouse model of beta-thalassemia [C57BL/6- Hbbth/Hbbth, Hb(d-minor)] by HSC transplantation (HST) as well as by gene therapy. This paper describes the current status of our rAAV-gene therapy research.

  17. Regulated Gene Therapy.

    PubMed

    Breger, Ludivine; Wettergren, Erika Elgstrand; Quintino, Luis; Lundberg, Cecilia

    2016-01-01

    Gene therapy represents a promising approach for the treatment of monogenic and multifactorial neurological disorders. It can be used to replace a missing gene and mutated gene or downregulate a causal gene. Despite the versatility of gene therapy, one of the main limitations lies in the irreversibility of the process: once delivered to target cells, the gene of interest is constitutively expressed and cannot be removed. Therefore, efficient, safe and long-term gene modification requires a system allowing fine control of transgene expression.Different systems have been developed over the past decades to regulate transgene expression after in vivo delivery, either at transcriptional or post-translational levels. The purpose of this chapter is to give an overview on current regulatory system used in the context of gene therapy for neurological disorders. Systems using external regulation of transgenes using antibiotics are commonly used to control either gene expression using tetracycline-controlled transcription or protein levels using destabilizing domain technology. Alternatively, specific promoters of genes that are regulated by disease mechanisms, increasing expression as the disease progresses or decreasing expression as disease regresses, are also examined. Overall, this chapter discusses advantages and drawbacks of current molecular methods for regulated gene therapy in the central nervous system.

  18. Vaginal gene therapy.

    PubMed

    Rodríguez-Gascón, Alicia; Del Pozo-Rodríguez, Ana; Isla, Arantxazu; Solinís, María Angeles

    2015-09-15

    In the last years, vaginal gene therapy has gained increasing attention mainly for the treatment and control of sexually transmitted infections. DNA delivery has been also suggested to improve reproductive outcomes for women with deficiencies in the female reproductive tract. Although no product has reached clinical phase, preclinical investigations reveal the potential of the vaginal tract as an effective administration route for gene delivery. This review focuses on the main advantages and challenges of vaginal gene therapy, and on the most used nucleic acid delivery systems, including viral and non-viral vectors. Additionally, the advances in the application of vaginal gene therapy for the treatment and/or prevention of infectious diseases such as the human immunodeficiency virus (HIV), the human papillomavirus (HPV) or the herpes simplex virus (HSV) are presented.

  19. Gene therapy for brain tumors.

    PubMed

    Bansal, K; Engelhard, H H

    2000-09-01

    "Gene therapy" can be defined as the transfer of genetic material into a patient's cells for therapeutic purposes. To date, a diverse and creative assortment of treatment strategies utilizing gene therapy have been devised, including gene transfer for modulating the immune system, enzyme prodrug ("suicide gene") therapy, oncolytic therapy, replacement/therapeutic gene transfer, and antisense therapy. For malignant glioma, gene-directed prodrug therapy using the herpes simplex virus thymidine kinase gene was the first gene therapy attempted clinically. A variety of different strategies have now been pursued experimentally and in clinical trials. Although, to date, gene therapy for brain tumors has been found to be reasonably safe, concerns still exist regarding issues related to viral delivery, transduction efficiency, potential pathologic response of the brain, and treatment efficacy. Improved viral vectors are being sought, and potential use of gene therapy in combination with other treatments is being investigated.

  20. AAV-mediated gene therapy in mouse models of recessive retinal degeneration

    PubMed Central

    Pang, Ji-jing; Lei, Lei; Dai, Xufeng; Shi, Wei; Liu, Xuan; Dinculescu, Astra; McDowell, J. Hugh

    2013-01-01

    In recent years, more and more mutant genes that cause retinal diseases have been detected. At the same time, many naturally occurring mouse models of retinal degeneration have also been found, which show similar changes to human retinal diseases. These, together with improved viral vector quality allow more and more traditionally incurable inherited retinal disorders to become potential candidates for gene therapy. Currently, the most common vehicle to deliver the therapeutic gene into target retinal cells is the adeno-associated viral vector (AAV). Following delivery to the immuno-priviledged subretinal space, AAV-vectors can efficiently target both retinal pigment epithelium and photoreceptor cells, the origin of most retinal degenerations. This review focuses on the AAV-based gene therapy in mouse models of recessive retinal degenerations, especially those in which delivery of the correct copy of the wild-type gene has led to significant beneficial effects on visual function, as determined by morphological, biochemical, electroretinographic and behavioral analysis. The past studies in animal models and ongoing successful LCA2 clinical trials, predict a bright future for AAV gene replacement treatment for inherited recessive retinal diseases. PMID:22300136

  1. Airway gene therapy.

    PubMed

    Davies, Jane C; Alton, Eric W F W

    2005-01-01

    Given both the accessibility and the genetic basis of several pulmonary diseases, the lungs and airways initially seemed ideal candidates for gene therapy. Several routes of access are available, many of which have been refined and optimized for nongene drug delivery. Two respiratory diseases, cystic fibrosis (CF) and alpha1-antitrypsin (alpha1-AT) deficiency, are relatively common; the single gene responsible has been identified and current treatment strategies are not curative. This type of inherited disease was the obvious initial target for gene therapy, but it has become clear that nongenetic and acquired diseases, including cancer, may also be amenable to this approach. The majority of preclinical and clinical studies in the airway have involved viral vectors, although for diseases such as CF, likely to require repeated application, non-viral delivery systems have clear advantages. However, with both approaches a range of barriers to gene expression have been identified that are limiting success in the airway and alveolar region. This chapter reviews these issues, strategies aimed at overcoming them, and progress into clinical trials with non-viral vectors in a variety of pulmonary diseases.

  2. nanosheets for gene therapy

    NASA Astrophysics Data System (ADS)

    Kou, Zhongyang; Wang, Xin; Yuan, Renshun; Chen, Huabin; Zhi, Qiaoming; Gao, Ling; Wang, Bin; Guo, Zhaoji; Xue, Xiaofeng; Cao, Wei; Guo, Liang

    2014-10-01

    A new class of two-dimensional (2D) nanomaterial, transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, and WSe2 which have fantastic physical and chemical properties, has drawn tremendous attention in different fields recently. Herein, we for the first time take advantage of the great potential of MoS2 with well-engineered surface as a novel type of 2D nanocarriers for gene delivery and therapy of cancer. In our system, positively charged MoS2-PEG-PEI is synthesized with lipoic acid-modified polyethylene glycol (LA-PEG) and branched polyethylenimine (PEI). The amino end of positively charged nanomaterials can bind to the negatively charged small interfering RNA (siRNA). After detection of physical and chemical characteristics of the nanomaterial, cell toxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Polo-like kinase 1 (PLK1) was investigated as a well-known oncogene, which was a critical regulator of cell cycle transmission at multiple levels. Through knockdown of PLK1 with siRNA carried by novel nanovector, qPCR and Western blot were used to measure the interfering efficiency; apoptosis assay was used to detect the transfection effect of PLK1. All results showed that the novel nanocarrier revealed good biocompatibility, reduced cytotoxicity, as well as high gene-carrying ability without serum interference, thus would have great potential for gene delivery and therapy.

  3. Saporin suicide gene therapy.

    PubMed

    Zarovni, Natasa; Vago, Riccardo; Fabbrini, Maria Serena

    2009-01-01

    New genes useful in suicide gene therapy are those encoding toxins such as plant ribosome-inactivating proteins (RIPs), which can irreversibly block protein synthesis, triggering apoptotic cell death. Plasmids expressing a cytosolic saporin (SAP) gene from common soapwort (Saponaria officinalis) are generated by placing the region encoding the mature plant toxin under the control of strong viral promoters and may be placed under tumor-specific promoters. The ability of the resulting constructs to inhibit protein synthesis is tested in cultured tumor cells co-transfected with a luciferase reporter gene. SAP expression driven by the cytomegalovirus (CMV) promoter (pCI-SAP) demonstrates that only 10 ng ofplasmid DNA per 1.6 x 10(4) B16 melanoma cells drastically reduces luciferase reporter activity to 18% of that in control cells (1). Direct intratumoral injections are performed in an aggressive melanoma model. B16 melanoma-bearing mice injected with pCI-SAP complexed with lipofectamine or N-(2,3-dioleoyloxy-1-propyl) trimethylammonium methyl sulfate (DOTAP) show a noteworthy attenuation in tumor growth, and this effect is significantly augmented by repeated administrations of the DNA complexes. Here, we describe in detail this cost-effective and safe suicide gene approach. PMID:19565907

  4. Human Gene Therapy: Genes without Frontiers?

    ERIC Educational Resources Information Center

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  5. Gene therapy for hemophilia

    PubMed Central

    Rogers, Geoffrey L.; Herzog, Roland W.

    2015-01-01

    Hemophilia is an X-linked inherited bleeding disorder consisting of two classifications, hemophilia A and hemophilia B, depending on the underlying mutation. Although the disease is currently treatable with intravenous delivery of replacement recombinant clotting factor, this approach represents a significant cost both monetarily and in terms of quality of life. Gene therapy is an attractive alternative approach to the treatment of hemophilia that would ideally provide life-long correction of clotting activity with a single injection. In this review, we will discuss the multitude of approaches that have been explored for the treatment of both hemophilia A and B, including both in vivo and ex vivo approaches with viral and nonviral delivery vectors. PMID:25553466

  6. Gene therapy: progress and predictions

    PubMed Central

    Collins, Mary; Thrasher, Adrian

    2015-01-01

    The first clinical gene delivery, which involved insertion of a marker gene into lymphocytes from cancer patients, was published 25 years ago. In this review, we describe progress since then in gene therapy. Patients with some inherited single-gene defects can now be treated with their own bone marrow stem cells that have been engineered with a viral vector carrying the missing gene. Patients with inherited retinopathies and haemophilia B can also be treated by local or systemic injection of viral vectors. There are also a number of promising gene therapy approaches for cancer and infectious disease. We predict that the next 25 years will see improvements in safety, efficacy and manufacture of gene delivery vectors and introduction of gene-editing technologies to the clinic. Gene delivery may also prove a cost-effective method for the delivery of biological medicines. PMID:26702034

  7. Gene Therapy for Retinal Diseases

    PubMed Central

    Samiy, Nasrollah

    2014-01-01

    Gene therapy has a growing research potential particularly in the field of ophthalmic and retinal diseases owing to three main characteristics of the eye; accessibility in terms of injections and surgical interventions, its immune-privileged status facilitating the accommodation to the antigenicity of a viral vector, and tight blood-ocular barriers which save other organs from unwanted contamination. Gene therapy has tremendous potential for different ocular diseases. In fact, the perspective of gene therapy in the field of eye research does not confine to exclusive monogenic ophthalmic problems and it has the potential to include gene based pharmacotherapies for non-monogenic problems such as age related macular disease and diabetic retinopathy. The present article has focused on how gene transfer into the eye has been developed and used to treat retinal disorders with no available therapy at present. PMID:25709778

  8. Gene therapy for lung disease.

    PubMed

    Ennist, D L

    1999-06-01

    Gene therapy is a new field of medical research that has great potential to influence the course of treatment of human disease. The lung has been a particularly attractive target organ for gene therapy due to its accessibility and the identification of genetic deficits for a number of lung diseases. Several clinical trials have shown evidence of low levels of gene transfer and expression, but without any benefit to the patients involved. Thus, current studies are focusing on further research and technological improvements to the vectors. Gene therapy is now beginning to benefit from a shift in emphasis from clinical trials to the development of better tools and procedures to deliver gene therapy to the bedside.

  9. Gene therapy: proceed with caution.

    PubMed

    Grobstein, C; Flower, M

    1984-04-01

    On 6 February 1984 the Recombinant DNA Advisory Committee of the National Institutes of Health approved a recommendation that the committee provide prior review of research protocols involving human gene therapy. Grobstein and Flower trace the development of public policy in response to concerns about the dangers of gene therapy, especially as it applies to germ line alteration. They offer guidelines and propose principles for an oversight body to confront the immediate and long term technical, social, and ethical implications of human genetic modification. An accompanying article presents a plea for the development of gene therapy by the mother of three children who have sickle cell anemia.

  10. Gene Therapy for Lung Cancer.

    PubMed

    Lara-Guerra, Humberto; Roth, Jack A

    2016-01-01

    Gene therapy was originally conceived to treat monogenic diseases. The replacement of a defective gene with a functional gene can theoretically cure the disease. In cancer, multiple genetic defects are present and the molecular profile changes during the course of the disease, making the replacement of all defective genes impossible. To overcome these difficulties, various gene therapy strategies have been adopted, including immune stimulation, transfer of suicide genes, inhibition of driver oncogenes, replacement of tumor-suppressor genes that could mediate apoptosis or anti-angiogenesis, and transfer of genes that enhance conventional treatments such as radiotherapy and chemotherapy. Some of these strategies have been tested successfully in non-small-cell lung cancer patients and the results of laboratory studies and clinical trials are reviewed herein. PMID:27481008

  11. Gene therapy on the move

    PubMed Central

    Kaufmann, Kerstin B; Büning, Hildegard; Galy, Anne; Schambach, Axel; Grez, Manuel

    2013-01-01

    The first gene therapy clinical trials were initiated more than two decades ago. In the early days, gene therapy shared the fate of many experimental medicine approaches and was impeded by the occurrence of severe side effects in a few treated patients. The understanding of the molecular and cellular mechanisms leading to treatment- and/or vector-associated setbacks has resulted in the development of highly sophisticated gene transfer tools with improved safety and therapeutic efficacy. Employing these advanced tools, a series of Phase I/II trials were started in the past few years with excellent clinical results and no side effects reported so far. Moreover, highly efficient gene targeting strategies and site-directed gene editing technologies have been developed and applied clinically. With more than 1900 clinical trials to date, gene therapy has moved from a vision to clinical reality. This review focuses on the application of gene therapy for the correction of inherited diseases, the limitations and drawbacks encountered in some of the early clinical trials and the revival of gene therapy as a powerful treatment option for the correction of monogenic disorders. PMID:24106209

  12. Gene therapy and nasopharyngeal carcinoma.

    PubMed

    Hughes, J; Alusi, G; Wang, Y

    2012-06-01

    In 2003, a non-replicating adenoviral gene therapy product received the world`s first government licence for the treatment of head and neck cancer. Two years later approval was granted to a replication-selective adenovirus for the treatment of nasopharyngeal carcinoma in combination with chemotherapy. This review introduces the reader to gene therapy as an emerging treatment modality, and outlines its application to the management of nasopharyngeal carcinoma by examining recent pre-clinical and clinical research.

  13. Gene Therapy for Pituitary Tumors

    PubMed Central

    Seilicovich, Adriana; Pisera, Daniel; Sciascia, Sandra A.; Candolfi, Marianela; Puntel, Mariana; Xiong, Weidong; Jaita, Gabriela; Castro, Maria G.

    2009-01-01

    Pituitary tumors are the most common primary intracranial neoplasms. Although most pituitary tumors are considered typically benign, others can cause severe and progressive disease. The principal aims of pituitary tumor treatment are the elimination or reduction of the tumor mass, normalization of hormone secretion and preservation of remaining pituitary function. In spite of major advances in the therapy of pituitary tumors, for some of the most difficult tumors, current therapies that include medical, surgical and radiotherapeutic methods are often unsatisfactory and there is a need to develop new treatment strategies. Gene therapy, which uses nucleic acids as drugs, has emerged as an attractive therapeutic option for the treatment of pituitary tumors that do not respond to classical treatment strategies if the patients become intolerant to the therapy. The development of animal models for pituitary tumors and hormone hypersecretion has proven to be critical for the implementation of novel treatment strategies and gene therapy approaches. Preclinical trials using several gene therapy approaches for the treatment of anterior pituitary diseases have been successfully implemented. Several issues need to be addressed before clinical implementation becomes a reality, including the development of more effective and safer viral vectors, uncovering novel therapeutic targets and development of targeted expression of therapeutic transgenes. With the development of efficient gene delivery vectors allowing long-term transgene expression with minimal toxicity, gene therapy will become one of the most promising approaches for treating pituitary adenomas. PMID:16457646

  14. Multilineage transduction of resident lung cells in vivo by AAV2/8 for α1-antitrypsin gene therapy

    PubMed Central

    Payne, Julia G; Takahashi, Ayuko; Higgins, Michelle I; Porter, Emily L; Suki, Bela; Balazs, Alejandro; Wilson, Andrew A

    2016-01-01

    In vivo gene delivery has long represented an appealing potential treatment approach for monogenic diseases such as α1-antitrypsin deficiency (AATD) but has proven challenging to achieve in practice. Alternate pseudotyping of recombinant adeno-associated virus (AAV) vectors is producing vectors with increasingly heterogeneous tropic specificity, giving researchers the ability to target numerous end-organs affected by disease. Herein, we describe sustained pulmonary transgene expression for at least 52 weeks after a single intratracheal instillation of AAV2/8 and characterize the multiple cell types transduced within the lung utilizing this approach. We demonstrate that lung-directed AAV2/8 is able to achieve therapeutic α-1 antitrypsin (AAT) protein levels within the lung epithelial lining fluid and that AAT gene delivery ameliorates the severity of experimental emphysema in mice. We find that AAV2/8 efficiently transduces hepatocytes in vivo after intratracheal administration, a finding that may have significance for AAV-based human gene therapy studies. These results support direct transgene delivery to the lung as a potential alternative approach to achieve the goal of developing a gene therapy for AATD. PMID:27408904

  15. Multilineage transduction of resident lung cells in vivo by AAV2/8 for α1-antitrypsin gene therapy.

    PubMed

    Payne, Julia G; Takahashi, Ayuko; Higgins, Michelle I; Porter, Emily L; Suki, Bela; Balazs, Alejandro; Wilson, Andrew A

    2016-01-01

    In vivo gene delivery has long represented an appealing potential treatment approach for monogenic diseases such as α1-antitrypsin deficiency (AATD) but has proven challenging to achieve in practice. Alternate pseudotyping of recombinant adeno-associated virus (AAV) vectors is producing vectors with increasingly heterogeneous tropic specificity, giving researchers the ability to target numerous end-organs affected by disease. Herein, we describe sustained pulmonary transgene expression for at least 52 weeks after a single intratracheal instillation of AAV2/8 and characterize the multiple cell types transduced within the lung utilizing this approach. We demonstrate that lung-directed AAV2/8 is able to achieve therapeutic α-1 antitrypsin (AAT) protein levels within the lung epithelial lining fluid and that AAT gene delivery ameliorates the severity of experimental emphysema in mice. We find that AAV2/8 efficiently transduces hepatocytes in vivo after intratracheal administration, a finding that may have significance for AAV-based human gene therapy studies. These results support direct transgene delivery to the lung as a potential alternative approach to achieve the goal of developing a gene therapy for AATD. PMID:27408904

  16. Bacteria in gene therapy: bactofection versus alternative gene therapy.

    PubMed

    Pálffy, R; Gardlík, R; Hodosy, J; Behuliak, M; Resko, P; Radvánský, J; Celec, P

    2006-01-01

    Recent advances in gene therapy can be attributed to improvements of gene delivery vectors. New viral and nonviral transport vehicles that considerably increase the efficiency of transfection have been prepared. However, these vectors still have many disadvantages that are difficult to overcome, thus, a new approach is needed. The approach of bacterial delivery could in the future be important for gene therapy applications. In this article we try to summarize the most important modifications that are used for the preparation of applied strains, difficulties that are related with bacterial gene delivery and the current use of bactofection in animal experiments and clinical trials. Important differences to the alternative gene therapy (AGT) are discussed. AGT resembles bacteria-mediated protein delivery, as the therapeutical proteins are produced not by host cells but by the bacteria in situ and the expression can be regulated exogenously. Although the procedure of bacterial gene delivery is far from being definitely solved, bactofection remains a promising technique for transfection in human gene therapy.

  17. Vectors for cancer gene therapy.

    PubMed

    Zhang, J; Russell, S J

    1996-09-01

    Many viral and non-viral vector systems have now been developed for gene therapy applications. In this article, the pros and cons of these vector systems are discussed in relation to the different cancer gene therapy strategies. The protocols used in cancer gene therapy can be broadly divided into six categories including gene transfer to explanted cells for use as cell-based cancer vaccines; gene transfer to a small number of tumour cells in situ to achieve a vaccine effect; gene transfer to vascular endothelial cells (VECs) lining the blood vessels of the tumour to interfere with tumour angiogenesis; gene transfer to T lymphocytes to enhance their antitumour effector capability; gene transfer to haemopoietic stem cells (HSCs) to enhance their resistance to cytotoxic drugs and gene transfer to a large number of tumour cells in situ to achieve nonimmune tumour reduction with or without bystander effect. Each of the six strategies makes unique demands on the vector system and these are discussed with reference to currently available vectors. Aspects of vector biology that are in need of further development are discussed in some detail. The final section points to the potential use of replicating viruses as delivery vehicles for efficient in vivo gene transfer to disseminated cancers.

  18. Gene therapy for metachromatic leukodystrophy.

    PubMed

    Rosenberg, Jonathan B; Kaminsky, Stephen M; Aubourg, Patrick; Crystal, Ronald G; Sondhi, Dolan

    2016-11-01

    Leukodystrophies (LDs) are rare, often devastating genetic disorders with neurologic symptoms. There are currently no disease-specific therapeutic approaches for these diseases. In this review we use metachromatic leukodystrophy as an example to outline in the brief the therapeutic approaches to MLD that have been tested in animal models and in clinical trials, such as enzyme-replacement therapy, bone marrow/umbilical cord blood transplants, ex vivo transplantation of genetically modified hematopoietic stem cells, and gene therapy. These studies suggest that to be successful the ideal therapy for MLD must provide persistent and high level expression of the deficient gene, arylsulfatase A in the CNS. Gene therapy using adeno-associated viruses is therefore the ideal choice for clinical development as it provides the best balance of potential for efficacy with reduced safety risk. Here we have summarized the published preclinical data from our group and from others that support the use of a gene therapy with AAVrh.10 serotype for clinical development as a treatment for MLD, and as an example of the potential of gene therapy for LDs especially for Krabbe disease, which is the focus of this special issue. © 2016 Wiley Periodicals, Inc. PMID:27638601

  19. Gene Therapy for Cartilage Repair

    PubMed Central

    Madry, Henning; Orth, Patrick; Cucchiarini, Magali

    2011-01-01

    The concept of using gene transfer strategies for cartilage repair originates from the idea of transferring genes encoding therapeutic factors into the repair tissue, resulting in a temporarily and spatially defined delivery of therapeutic molecules to sites of cartilage damage. This review focuses on the potential benefits of using gene therapy approaches for the repair of articular cartilage and meniscal fibrocartilage, including articular cartilage defects resulting from acute trauma, osteochondritis dissecans, osteonecrosis, and osteoarthritis. Possible applications for meniscal repair comprise meniscal lesions, meniscal sutures, and meniscal transplantation. Recent studies in both small and large animal models have demonstrated the applicability of gene-based approaches for cartilage repair. Chondrogenic pathways were stimulated in the repair tissue and in osteoarthritic cartilage using genes for polypeptide growth factors and transcription factors. Although encouraging data have been generated, a successful translation of gene therapy for cartilage repair will require an ongoing combined effort of orthopedic surgeons and of basic scientists. PMID:26069580

  20. Journey from Jumping Genes to Gene Therapy.

    PubMed

    Whartenby, Katharine A

    2015-01-01

    Gene therapy for cancer is a still evolving approach that resulted from a long history of studies into genetic modification of organisms. The fascination with manipulating gene products has spanned hundreds if not thousands of years, beginning with observations of the hereditary nature of traits in plants and culminating to date in the alteration of genetic makeup in humans via modern technology. From early discoveries noting the potential for natural mobility of genetic material to the culmination of clinical trials in a variety of disease, gene transfer has had an eventful and sometimes tumultuous course. Within the present review is a brief history of the biology of gene transfer, how it came to be applied to genetic diseases, and its early applications to cancer therapies. Some of the different types of methods used to modify cells, the theories behind the approaches, and some of the limitations encountered along the way are reviewed. PMID:27279244

  1. AAV-Mediated Clarin-1 Expression in the Mouse Retina: Implications for USH3A Gene Therapy

    PubMed Central

    Deng, Wen-Tao; Dyka, Frank M.; Min, Seok-Hong; Boye, Sanford L.; Chiodo, Vince A.; Abrahan, Carolina E.; Zhu, Ping; Li, Qiuhong; Strettoi, Enrica; Novelli, Elena; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe; Smith, W. Clay; Hauswirth, William W.

    2016-01-01

    Usher syndrome type III (USH3A) is an autosomal recessive disorder caused by mutations in clarin-1 (CLRN1) gene, leading to progressive retinal degeneration and sensorineural deafness. Efforts to develop therapies for preventing photoreceptor cell loss are hampered by the lack of a retinal phenotype in the existing USH3 mouse models and by conflicting reports regarding the endogenous retinal localization of clarin-1, a transmembrane protein of unknown function. In this study, we used an AAV-based approach to express CLRN1 in the mouse retina in order to determine the pattern of its subcellular localization in different cell types. We found that all major classes of retinal cells express AAV-delivered CLRN1 driven by the ubiquitous, constitutive small chicken β-actin promoter, which has important implications for the design of future USH3 gene therapy studies. Within photoreceptor cells, AAV-expressed CLRN1 is mainly localized at the inner segment region and outer plexiform layer, similar to the endogenous expression of other usher proteins. Subretinal delivery using a full strength viral titer led to significant loss of retinal function as evidenced by ERG analysis, suggesting that there is a critical limit for CLRN1 expression in photoreceptor cells. Taken together, these results suggest that CLRN1 expression is potentially supported by a variety of retinal cells, and the right combination of AAV vector dose, promoter, and delivery method needs to be selected to develop safe therapies for USH3 disorder. PMID:26881841

  2. Current Challenges and Future Directions in Recombinant AAV-Mediated Gene Therapy of Duchenne Muscular Dystrophy

    PubMed Central

    Okada, Takashi; Takeda, Shin'ichi

    2013-01-01

    Various characteristics of adeno-associated virus (AAV)-based vectors with long-term safe expression have made it an exciting transduction tool for clinical gene therapy of Duchenne muscular dystrophy (DMD). Although host immune reactions against the vector as well as transgene products were detected in some instances of the clinical studies, there have been promising observations. Methods of producing AAV vectors for considerable in vivo experimentation and clinical investigations have been developed and a number of studies with AAV vector-mediated muscle transduction were attempted. Notably, an intravenous limb perfusion transduction technique enables extensive transgene expression in the skeletal muscles without noticeable adverse events. Furthermore, cardiac transduction by the rAAV9-microdystrophin would be promising to prevent development of cardiac dysfunction. Recent achievements in transduction technology suggest that long-term transgene expression with therapeutic benefits in DMD treatment would be achieved by the rAAV-mediated transduction strategy with an adequate regimen to regulate host immune response. PMID:24276316

  3. Gene therapy in corneal transplantation.

    PubMed

    Qazi, Yureeda; Hamrah, Pedram

    2013-01-01

    Corneal transplantation is the most commonly performed organ transplantation. Immune privilege of the cornea is widely recognized, partly because of the relatively favorable outcome of corneal grafts. The first-time recipient of corneal allografts in an avascular, low-risk setting can expect a 90% success rate without systemic immunosuppressive agents and histocompatibility matching. However, immunologic rejection remains the major cause of graft failure, particularly in patients with a high risk for rejection. Corticosteroids remain the first-line therapy for the prevention and treatment of immune rejection. However, current pharmacological measures are limited in their side-effect profiles, repeated application, lack of targeted response, and short duration of action. Experimental ocular gene therapy may thus present new horizons in immunomodulation. From efficient viral vectors to sustainable alternative splicing, we discuss the progress of gene therapy in promoting graft survival and postulate further avenues for gene-mediated prevention of allogeneic graft rejection.

  4. Gene therapy in clinical medicine

    PubMed Central

    Selkirk, S

    2004-01-01

    Although the field of gene therapy has experienced significant setbacks and limited success, it is one of the most promising and active research fields in medicine. Interest in this therapeutic modality is based on the potential for treatment and cure of some of the most malignant and devastating diseases affecting humans. Over the next decade, the relevance of gene therapy to medical practices will increase and it will become important for physicians to understand the basic principles and strategies that underlie the therapeutic intervention. This report reviews the history, basic strategies, tools, and several current clinical paradigms for application. PMID:15466989

  5. Gene therapy for paediatric leukaemia.

    PubMed

    Rousseau, R F; Bollard, C M; Heslop, H E

    2001-07-01

    Improvements in the chemotherapeutic and transplant regimens have had a significant impact in improving survival rates for paediatric leukaemia. However, there are still important problems to address including what options are available for patients with chemoresistant disease and what strategies are available to avoid the concerns regarding the toxicity associated with highly cytotoxic treatment regimens. Gene therapy and immunotherapy protocols hold great promise. Using gene transfer of a marker gene, a number of biological issues in the therapy of leukaemia have been addressed. For example, by gene marking autologous bone marrow grafts it has been possible to demonstrate that infused marrow contributes to relapse in acute and chronic myeloid leukaemias. In the allogeneic transplant setting, genetically modified T-cells have proven valuable for the prophylaxis and treatment of viral diseases and may have an important role in preventing or treating disease relapse. Gene transfer is also being used to modify tumour function, enhance immunogenicity, and confer drug-resistance to normal haematopoietic stem cells. With the continued scientific advancements in this field, gene therapy will almost certainly have a major impact on the treatment of paediatric leukaemia in the future. PMID:11727502

  6. Experimental therapies: gene therapies and oncolytic viruses.

    PubMed

    Hulou, M Maher; Cho, Choi-Fong; Chiocca, E Antonio; Bjerkvig, Rolf

    2016-01-01

    Glioblastoma is the most common and aggressive primary brain tumor in adults. Over the past three decades, the overall survival time has only improved by a few months, therefore novel alternative treatment modalities are needed to improve clinical management strategies. Such strategies should ultimately extend patient survival. At present, the extensive insight into the molecular biology of gliomas, as well as into genetic engineering techniques, has led to better decision processes when it comes to modifying the genome to accommodate suicide genes, cytokine genes, and tumor suppressor genes that may kill cancer cells, and boost the host defensive immune system against neoantigenic cytoplasmic and nuclear targets. Both nonreplicative viral vectors and replicating oncolytic viruses have been developed for brain cancer treatment. Stem cells, microRNAs, nanoparticles, and viruses have also been designed. These have been armed with transgenes or peptides, and have been used both in laboratory-based experiments as well as in clinical trials, with the aim of improving selective killing of malignant glioma cells while sparing normal brain tissue. This chapter reviews the current status of gene therapies for malignant gliomas and highlights the most promising viral and cell-based strategies under development. PMID:26948355

  7. Ethics of Gene Therapy Debated.

    ERIC Educational Resources Information Center

    Borman, Stu

    1991-01-01

    Presented are the highlights of a press conference featuring biomedical ethicist LeRoy Walters of Georgetown University and attorney Andrew Kimbrell of the Foundation on Economic Trends. The opposing points of view of these two speakers serve to outline the pros and cons of the gene therapy issue. (CW)

  8. [Gene therapy for osteoarticular disorders].

    PubMed

    Gouze, Jean-Noël; Evans, Christopher H; Ghivizzani, Steven C; Gouze, Elvire

    2007-03-01

    Osteoarticular disorders are the major cause of disability in Europe and North America. It is estimated that rheumatoid arthritis affects 1 % of the population and that more than two third of people over age 55 develop osteoarthritis. Because there are no satisfactory treatments, gene therapy offers a new therapeutic approach. The delivery of cDNA encoding anti-arthritic proteins to articular cells has shown therapeutic efficacy in numerous animal models in vivo. Through the development and the experimental progresses that have been made for both rheumatoid arthritis and osteoarthritis, this review discusses the different gene therapy strategies available today and the safety issues with which they may be associated. Among the different vectors available today, adeno-associated virus seems the best candidate for a direct in vivo gene delivery approach for the treatment of joint disorders. PMID:17349293

  9. Gene Therapy and Children (For Parents)

    MedlinePlus

    ... screenings or other regular exams. previous continue The Future of Gene Therapy To cure genetic diseases, scientists ... Gene therapy's potential to revolutionize medicine in the future is exciting, and hopes are high for its ...

  10. The Basic Science of Gene Therapy

    NASA Astrophysics Data System (ADS)

    Mulligan, Richard C.

    1993-05-01

    The development over the past decade of methods for delivering genes to mammalian cells has stimulated great interest in the possibility of treating human disease by gene-based therapies. However, despite substantial progress, a number of key technical issues need to be resolved before gene therapy can be safely and effectively applied in the clinic. Future technological developments, particularly in the areas of gene delivery and cell transplantation, will be critical for the successful practice of gene therapy.

  11. Gene therapy for heart failure.

    PubMed

    Greenberg, Barry

    2015-09-01

    Heart failure is a major public health problem throughout the world and it is likely that its prevalence will continue to grow over the next several decades. Despite advances in the treatment of heart failure, morbidity and mortality remain unacceptably high. Gene transfer therapy provides a novel strategy for targeting abnormalities in cardiac cells that adversely affect cardiac function. New vectors for gene delivery, mainly adeno-associated viruses (AAVs) that are preferentially taken up by cardiomyocytes, can result in sustained transgene expression. The cardiac isoform of sarco(endo)plasmic reticulum Ca(2+)ATPase (SERCA2a) plays a major role in regulating calcium levels in cardiomyocytes. Abnormal calcium handling by the failing heart caused by a reduction in SERCA2a activity adversely affects both systolic and diastolic function. The Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID) study was a Phase 2a double-blind, randomized, placebo-controlled, dose-finding study that was performed in patients with advanced heart failure due to systolic dysfunction. Eligible patients received AAV/SERCA2a or placebo by direct antegrade infusion into the coronary circulation. At the end of 12 months, patients receiving high-dose therapy (i.e. 1×10(13) DNase Resistant Particles) had evidence of favorable changes in several clinically relevant domains compared to patients treated with placebo. There were no safety concerns at any dose of AAV/SERCA2a. Patients treated with AAV/SERCA2a exhibited a striking reduction in cardiovascular events that persisted through 36 months of follow-up compared to patients who received placebo. Transgene expression was detected in the myocardium of patients receiving AAV/SERCA2a gene therapy as long as 31 months after delivery. A second Phase 2b study, CUPID 2, designed to confirm this favorable effect on heart failure events, is currently underway with the results expected to be presented later in

  12. Gene therapy on demand: site specific regulation of gene therapy.

    PubMed

    Jazwa, Agnieszka; Florczyk, Urszula; Jozkowicz, Alicja; Dulak, Jozef

    2013-08-10

    Since 1990 when the first clinical gene therapy trial was conducted, much attention and considerable promise have been given to this form of treatment. Gene therapy has been used with success in patients suffering from severe combined immunodeficiency syndromes (X-SCID and ADA-deficiency), Leber's congenital amaurosis, hemophilia, β-thalassemia and adrenoleukodystrophy. Last year, the first therapeutic vector (Glybera) for treatment of lipoprotein lipase deficiency has been registered in the European Union. Nevertheless, there are still several numerous issues that need to be improved to make this technique more safe, effective and easily accessible for patients. Introduction of the therapeutic gene to the given cells should provide the level of expression which will restore the production of therapeutic protein to normal values or will provide therapeutic efficacy despite not fully physiological expression. However, in numerous diseases the expression of therapeutic genes has to be kept at certain level for some time, and then might be required to be switched off to be activated again when worsening of the symptoms may aggravate the risk of disease relapse. In such cases the promoters which are regulated by local conditions may be more required. In this article the special emphasis is to discuss the strategies of regulation of gene expression by endogenous stimuli. Particularly, the hypoxia- or miRNA-regulated vectors offer the possibilities of tight but, at the same time, condition-dependent and cell-specific expression. Such means have been already tested in certain pathophysiological conditions. This creates the chance for the translational approaches required for development of effective treatments of so far incurable diseases. PMID:23566848

  13. Gene therapy for sensorineural hearing loss.

    PubMed

    Chien, Wade W; Monzack, Elyssa L; McDougald, Devin S; Cunningham, Lisa L

    2015-01-01

    Gene therapy is a promising treatment modality that is being explored for several inherited disorders. Multiple human gene therapy clinical trials are currently ongoing, but few are directed at hearing loss. Hearing loss is one of the most prevalent sensory disabilities in the world, and genetics play an important role in the pathophysiology of hearing loss. Gene therapy offers the possibility of restoring hearing by overcoming the functional deficits created by the underlying genetic mutations. In addition, gene therapy could potentially be used to induce hair cell regeneration by delivering genes that are critical to hair cell differentiation into the cochlea. In this review, we examine the promises and challenges of applying gene therapy to the cochlea. We also summarize recent studies that have applied gene therapy to animal models of hearing loss.

  14. Gene therapy for bone healing

    PubMed Central

    Evans, Christopher H.

    2015-01-01

    Clinical problems in bone healing include large segmental defects, nonunion and delayed union of fractures, and spinal fusions. Gene-transfer technologies have the potential to aid healing by permitting the local delivery and sustained expression of osteogenic gene products within osseous lesions. Key questions for such an approach include the choice of transgene, vector and gene-transfer strategy. Most experimental data have been obtained using cDNAs encoding osteogenic growth factors such as bone morphogenetic protein-2 (BMP-2), BMP-4 and BMP-7, in conjunction with both nonviral and viral vectors using in vivo and ex vivo delivery strategies. Proof of principle has been convincingly demonstrated in small-animal models. Relatively few studies have used large animals, but the results so far are encouraging. Once a reliable method has been developed, it will be necessary to perform detailed pharmacological and toxicological studies, as well as satisfy other demands of the regulatory bodies, before human clinical trials can be initiated. Such studies are very expensive and often protracted. Thus, progress in developing a clinically useful gene therapy for bone healing is determined not only by scientific considerations, but also by financial constraints and the ambient regulatory environment. PMID:20569532

  15. Targeting Herpetic Keratitis by Gene Therapy

    PubMed Central

    Elbadawy, Hossein Mostafa; Gailledrat, Marine; Desseaux, Carole; Ponzin, Diego; Ferrari, Stefano

    2012-01-01

    Ocular gene therapy is rapidly becoming a reality. By November 2012, approximately 28 clinical trials were approved to assess novel gene therapy agents. Viral infections such as herpetic keratitis caused by herpes simplex virus 1 (HSV-1) can cause serious complications that may lead to blindness. Recurrence of the disease is likely and cornea transplantation, therefore, might not be the ideal therapeutic solution. This paper will focus on the current situation of ocular gene therapy research against herpetic keratitis, including the use of viral and nonviral vectors, routes of delivery of therapeutic genes, new techniques, and key research strategies. Whereas the correction of inherited diseases was the initial goal of the field of gene therapy, here we discuss transgene expression, gene replacement, silencing, or clipping. Gene therapy of herpetic keratitis previously reported in the literature is screened emphasizing candidate gene therapy targets. Commonly adopted strategies are discussed to assess the relative advantages of the protective therapy using antiviral drugs and the common gene therapy against long-term HSV-1 ocular infections signs, inflammation and neovascularization. Successful gene therapy can provide innovative physiological and pharmaceutical solutions against herpetic keratitis. PMID:23326647

  16. Cardiac gene therapy: are we there yet?

    PubMed

    Matkar, P N; Leong-Poi, H; Singh, K K

    2016-08-01

    The incidence of cardiovascular disease (CVD) is increasing throughout the world and is associated with elevated morbidity and mortality. Gene therapy to treat cardiac dysfunction is gaining importance because of the limited therapeutic benefit offered by pharmacotherapies. The growing knowledge of the complex signaling pathways and the development of sophisticated vectors and delivery systems, are facilitating identification and targeting of specific molecular candidates involved in initiation and progression of CVDs. Several preclinical and clinical studies have shown the therapeutic efficiency of gene therapy in different disease models and patients. Hence, gene therapy might plausibly become an unconventional treatment modality for CVD patients. In this review, we summarize the gene delivery carriers, modes of delivery, recent preclinical/clinical studies and potential therapeutic targets. We also briefly discuss the existing limitations of gene therapy, technical challenges surrounding gene carriers and delivery systems, and some approaches to overcome these limitations for bringing CVD gene therapy one step closer to reality. PMID:27128687

  17. Synergistic inhibition of PARP-1 and NF-κB signaling downregulates immune response against recombinant AAV2 vectors during hepatic gene therapy.

    PubMed

    Hareendran, Sangeetha; Ramakrishna, Banumathi; Jayandharan, Giridhara R

    2016-01-01

    Host immune response remains a key obstacle to widespread application of adeno-associated virus (AAV) based gene therapy. Thus, targeted inhibition of the signaling pathways that trigger such immune responses will be beneficial. Previous studies have reported that DNA damage response proteins such as poly(ADP-ribose) polymerase-1 (PARP-1) negatively affect the integration of AAV in the host genome. However, the role of PARP-1 in regulating AAV transduction and the immune response against these vectors has not been elucidated. In this study, we demonstrate that repression of PARP-1 improves the transduction of single-stranded AAV vectors both in vitro (∼174%) and in vivo (two- to 3.4-fold). Inhibition of PARP-1, also significantly downregulated the expression of several proinflammatory and cytokine markers such as TLRs, ILs, NF-κB subunit proteins associated with the host innate response against self-complementary AAV2 vectors. The suppression of the inflammatory response targeted against these vectors was more effective upon combined inhibition of PARP-1 and NF-κB signaling. This strategy also effectively attenuated the AAV capsid-specific cytotoxic T-cell response, with minimal effect on vector transduction, as demonstrated in normal C57BL/6 and hemophilia B mice. These data suggest that targeting specific host cellular proteins could be useful to attenuate the immune barriers to AAV-mediated gene therapy. PMID:26443873

  18. Synergistic inhibition of PARP-1 and NF-κB signaling downregulates immune response against recombinant AAV2 vectors during hepatic gene therapy.

    PubMed

    Hareendran, Sangeetha; Ramakrishna, Banumathi; Jayandharan, Giridhara R

    2016-01-01

    Host immune response remains a key obstacle to widespread application of adeno-associated virus (AAV) based gene therapy. Thus, targeted inhibition of the signaling pathways that trigger such immune responses will be beneficial. Previous studies have reported that DNA damage response proteins such as poly(ADP-ribose) polymerase-1 (PARP-1) negatively affect the integration of AAV in the host genome. However, the role of PARP-1 in regulating AAV transduction and the immune response against these vectors has not been elucidated. In this study, we demonstrate that repression of PARP-1 improves the transduction of single-stranded AAV vectors both in vitro (∼174%) and in vivo (two- to 3.4-fold). Inhibition of PARP-1, also significantly downregulated the expression of several proinflammatory and cytokine markers such as TLRs, ILs, NF-κB subunit proteins associated with the host innate response against self-complementary AAV2 vectors. The suppression of the inflammatory response targeted against these vectors was more effective upon combined inhibition of PARP-1 and NF-κB signaling. This strategy also effectively attenuated the AAV capsid-specific cytotoxic T-cell response, with minimal effect on vector transduction, as demonstrated in normal C57BL/6 and hemophilia B mice. These data suggest that targeting specific host cellular proteins could be useful to attenuate the immune barriers to AAV-mediated gene therapy.

  19. Gene therapy for primary immunodeficiencies.

    PubMed

    Fischer, A; Hacein-Bey Abina, S; Touzot, F; Cavazzana, M

    2015-12-01

    Gene therapy has effectively entered Medicine via the field of primary immunodeficiencies (PID). Because hematopoietic stem cells are accessible and because it was understood that genetic correction of lymphocyte progenitor cells carrying a genetic defect impairing differentiation, could result in the production of long-lived T lymphocytes, it was reasoned that ex vivo gene transfer in hematopoietic cells could lead to disease phenotype correction. Retroviral vectors were designed to ex vivo transduce such cells. This has indeed been shown to lead to sustained correction of the T cell immunodeficiency associated with two forms of severe combined immunodeficiencies (SCID) for now more than ten years. Occurrence in some patients of genotoxicity related to retroviral vectors integration close to and transactivation of oncogenes has led to the development of retroviral vectors devoid of its enhancer element. Results of recent trials performed for several forms of PID indeed suggest that their use is both safe and efficacious. It is thus anticipated that their application to the treatment of many more life threatening PID will be developed over the coming years.

  20. Gene therapy oversight: lessons for nanobiotechnology.

    PubMed

    Wolf, Susan M; Gupta, Rishi; Kohlhepp, Peter

    2009-01-01

    Oversight of human gene transfer research ("gene therapy") presents an important model with potential application to oversight of nanobiology research on human participants. Gene therapy oversight adds centralized federal review at the National Institutes of Health's Office of Biotechnology Activities and its Recombinant DNA Advisory Committee to standard oversight of human subjects research at the researcher's institution (by the Institutional Review Board and, for some research, the Institutional Biosafety Committee) and at the federal level by the Office for Human Research Protections. The Food and Drug Administration's Center for Biologics Evaluation and Research oversees human gene transfer research in parallel, including approval of protocols and regulation of products. This article traces the evolution of this dual oversight system; describes how the system is already addressing nanobiotechnology in gene transfer: evaluates gene therapy oversight based on public opinion, the literature, and preliminary expert elicitation; and offers lessons of the gene therapy oversight experience for oversight of nanobiotechnology. PMID:20122108

  1. Gene Therapy For Ischemic Heart Disease

    PubMed Central

    Lavu, Madhav; Gundewar, Susheel; Lefer, David J.

    2010-01-01

    Current pharmacologic therapy for ischemic heart disease suffers multiple limitations such as compliance issues and side effects of medications. Revascularization procedures often end with need for repeat procedures. Patients remain symptomatic despite maximal medical therapy. Gene therapy offers an attractive alternative to current pharmacologic therapies and may be beneficial in refractory disease. Gene therapy with isoforms of growth factors such as VEGF, FGF and HGF induces angiogenesis, decreases apoptosis and leads to protection in the ischemic heart. Stem cell therapy augmented with gene therapy used for myogenesis has proven to be beneficial in numerous animal models of myocardial ischemia. Gene therapy coding for antioxidants, eNOS, HSP, mitogen-activated protein kinase and numerous other anti apoptotic proteins have demonstrated significant cardioprotection in animal models. Clinical trials have demonstrated safety in humans apart from symptomatic and objective improvements in cardiac function. Current research efforts are aimed at refining various gene transfection techniques and regulation of gene expression in vivo in the heart and circulation to improve clinical outcomes in patients that suffer from ischemic heart disease. In this review article we will attempt to summarize the current state of both preclinical and clinical studies of gene therapy to combat myocardial ischemic disease. PMID:20600100

  2. Gene therapy for high-grade glioma

    PubMed Central

    Natsume, Atsushi

    2008-01-01

    The treatment of high-grade gliomas remains difficult despite recent advances in surgery, radiotherapy and chemotherapy. True advances may emerge from the increasing understanding in molecular biology and discovery of novel mechanisms for the delivery of tumoricidal agents. In an attempt to overcome this formidable neoplasm, molecular approaches using gene therapy have been investigated clinically since 1992. The clinical trials have mainly been classified into three approaches: suicide gene therapy, immune gene therapy and oncolytic viral therapy. In this article, we review these approaches, which have been studied in previous and ongoing clinical trials. PMID:19262115

  3. Gene therapy prospects--intranasal delivery of therapeutic genes.

    PubMed

    Podolska, Karolina; Stachurska, Anna; Hajdukiewicz, Karolina; Małecki, Maciej

    2012-01-01

    Gene therapy is recognized to be a novel method for the treatment of various disorders. Gene therapy strategies involve gene manipulation on broad biological processes responsible for the spreading of diseases. Cancer, monogenic diseases, vascular and infectious diseases are the main targets of gene therapy. In order to obtain valuable experimental and clinical results, sufficient gene transfer methods are required. Therapeutic genes can be administered into target tissues via gene carriers commonly defined as vectors. The retroviral, adenoviral and adeno-associated virus based vectors are most frequently used in the clinic. So far, gene preparations may be administered directly into target organs or by intravenous, intramuscular, intratumor or intranasal injections. It is common knowledge that the number of gene therapy clinical trials has rapidly increased. However, some limitations such as transfection efficiency and stable and long-term gene expression are still not resolved. Consequently, great effort is focused on the evaluation of new strategies of gene delivery. There are many expectations associated with intranasal delivery of gene preparations for the treatment of diseases. Intranasal delivery of therapeutic genes is regarded as one of the most promising forms of pulmonary gene therapy research. Gene therapy based on inhalation of gene preparations offers an alternative way for the treatment of patients suffering from such lung diseases as cystic fibrosis, alpha-1-antitrypsin defect, or cancer. Experimental and first clinical trials based on plasmid vectors or recombinant viruses have revealed that gene preparations can effectively deliver therapeutic or marker genes to the cells of the respiratory tract. The noninvasive intranasal delivery of gene preparations or conventional drugs seems to be very encouraging, although basic scientific research still has to continue.

  4. Gene Therapy Techniques for Peripheral Arterial Disease

    SciTech Connect

    Manninen, Hannu I.; Maekinen, Kimmo

    2002-03-15

    Somatic gene therapy is the introduction of new genetic material into selective somatic cells with resulting therapeutic benefits. Vascular wall and, subsequently, cardiovascular diseases have become an interesting target for gene therapy studies.Arteries are an attractive target for gene therapy since vascular interventions, both open surgical and endovascular, are well suited for minimally invasive, easily monitored gene delivery. Promising therapeutic effects have been obtained in animal models in preventing post-angioplasty restenosis and vein graft thickening, as well as increasing blood flow and collateral development in ischemic limbs.First clinical trials suggest a beneficial effect of vascular endothelial growth factor in achieving therapeutic angiogenesis in chronic limb ischemia and the efficacy of decoy oligonucleotides to prevent infrainguinal vein graft stenosis. However, further studies are mandatory to clarify the safety issues, to develop better gene delivery vectors and delivery catheters, to improve transgene expression, as well as to find the most effective and safe treatment genes.

  5. State-of-the-art human gene therapy: part II. Gene therapy strategies and clinical applications.

    PubMed

    Wang, Dan; Gao, Guangping

    2014-09-01

    In Part I of this Review (Wang and Gao, 2014), we introduced recent advances in gene delivery technologies and explained how they have powered some of the current human gene therapy applications. In Part II, we expand the discussion on gene therapy applications, focusing on some of the most exciting clinical uses. To help readers to grasp the essence and to better organize the diverse applications, we categorize them under four gene therapy strategies: (1) gene replacement therapy for monogenic diseases, (2) gene addition for complex disorders and infectious diseases, (3) gene expression alteration targeting RNA, and (4) gene editing to introduce targeted changes in host genome. Human gene therapy started with the simple idea that replacing a faulty gene with a functional copy can cure a disease. It has been a long and bumpy road to finally translate this seemingly straightforward concept into reality. As many disease mechanisms unraveled, gene therapists have employed a gene addition strategy backed by a deep knowledge of what goes wrong in diseases and how to harness host cellular machinery to battle against diseases. Breakthroughs in other biotechnologies, such as RNA interference and genome editing by chimeric nucleases, have the potential to be integrated into gene therapy. Although clinical trials utilizing these new technologies are currently sparse, these innovations are expected to greatly broaden the scope of gene therapy in the near future.

  6. Convergence of gene and cell therapy.

    PubMed

    Bersenev, Alexey; Levine, Bruce L

    2012-11-01

    Gene therapy and cell therapy have followed similar roller coaster paths of rising public expectations and disappointment over the past two decades. There is now reason to believe that momentum in the field has reached the point where the successes will be more frequent. The use of gene-modified cells has opened new avenues for engineering desired cell properties, for the use of cells as vehicles for gene delivery, and for tracking cells and controlling cell persistence after transplantation. Some notable recent clinical developments in cellular engineering by gene transfer offer lessons on how the field has emerged, and hint at additional future clinical applications. PMID:23210811

  7. European attitudes to gene therapy and pharmacogenetics.

    PubMed

    Hudson, John; Orviska, Marta

    2011-10-01

    Views on pharmacogenetics and gene therapy systematically differ across European countries. But despite a complex regulatory regime there is a balance of support, albeit laced with considerable uncertainty. PMID:21745587

  8. Gene Therapy for Diseases and Genetic Disorders

    MedlinePlus

    ... notable advancements are the following: Gene Therapy for Genetic Disorders Severe Combined Immune Deficiency (ADA-SCID) ADA- ... in preclinical animal models of this disease. Other genetic disorders After many years of laboratory and preclinical ...

  9. Gene therapy for CNS diseases - Krabbe disease.

    PubMed

    Rafi, Mohammad A

    2016-01-01

    This is a brief report of the 19th Annual Meeting of the American Society of Gene and Cell Therapy that took place from May 4th through May 7th, 2016 in Washington, DC, USA. While the meeting provided many symposiums, lectures, and scientific sessions this report mainly focuses on one of the sessions on the "Gene Therapy for central nervous system (CNS) Diseases" and specifically on the "Gene Therapy for the globoid cell leukodystrophy or Krabbe disease. Two presentations focused on this subject utilizing two animal models of this disease: mice and dog models. Different serotypes of adeno-associate viral vectors (AAV) alone or in combination with bone marrow transplantations were used in these research projects. The Meeting of the ASGCT reflected continuous growth in the fields of gene and cell therapy and brighter forecast for efficient treatment options for variety of human diseases. PMID:27525222

  10. Liability considerations presented by human gene therapy.

    PubMed

    Palmer, J G

    1991-01-01

    Through the use of a hypothetical scenario, this article examines the legal liability associated with gene therapy. Basic negligence principles are applied to the factual context of a human gene therapy experiment gone awry, including its prior governmental review and its potential effect on future generations. The federal requirements, while not preempting state law damages claims, do provide a mechanism for achieving some protection from liability. The effect on future generations raises questions about the limits of liability.

  11. Human Studies of Angiogenic Gene Therapy

    PubMed Central

    Gupta, Rajesh; Tongers, Jörn; Losordo, Douglas W.

    2009-01-01

    Despite significant advances in medical, interventional, and surgical therapy for coronary and peripheral arterial disease, the burden of these illnesses remains high. To address this unmet need, the science of therapeutic angiogenesis has been evolving for almost two decades. Early pre-clinical studies and phase I clinical trials achieved promising results with growth factors administered as recombinant proteins or as single-agent gene therapies, and data accumulated through 10 years of clinical trials indicate that gene therapy has an acceptable safety profile. However, more rigorous phase II and phase III clinical trials have failed to unequivocally demonstrate that angiogenic agents are beneficial under the conditions and in the patients studied to date. Investigators have worked to understand the biology of the vascular system and to incorporate their findings into new treatments for patients with ischemic disease. Recent gene- and cell-therapy trials have demonstrated the bioactivity of several new agents and treatment strategies. Collectively, these observations have renewed interest in the mechanisms of angiogenesis and deepened our understanding of the complexity of vascular regeneration. Gene therapy that incorporates multiple growth factors, approaches that combine cell and gene therapy, and the administration of "master switch" agents that activate numerous downstream pathways are among the credible and plausible steps forward. In this review, we will examine the clinical development of angiogenic therapy, summarize several of the lessons learned during the conduct of these trials, and suggest how this prior experience may guide the conduct of future preclinical investigations and clinical trials. PMID:19815827

  12. Gene therapy for human genetic disease?

    PubMed

    Friedmann, T; Roblin, R

    1972-03-01

    In our view, gene therapy may ameliorate some human genetic diseases in the future. For this reason, we believe that research directed at the development of techniques for gene therapy should continue. For the foreseeable future, however, we oppose any further attempts at gene therapy in human patients because (i) our understanding of such basic processes as gene regulation and genetic recombination in human cells is inadequate; (ii) our understanding of the details of the relation between the molecular defect and the disease state is rudimentary for essentially all genetic diseases; and (iii) we have no information on the short-range and long-term side effects of gene therapy. We therefore propose that a sustained effort be made to formulate a complete set of ethicoscientific criteria to guide the development and clinical application of gene therapy techniques. Such an endeavor could go a long way toward ensuring that gene therapy is used in humans only in those instances where it will prove beneficial, and toward preventing its misuse through premature application. Two recent papers have provided new demonstrations of directed genetic modification of mammalian cells. Munyon et al. (44) restored the ability to synthesize the enzyme thymidine kinase to thymidine kinase-deficient mouse cells by infection with ultraviolet-irradiated herpes simplex virus. In their experiments the DNA from herpes simplex virus, which contains a gene coding for thymidine kinase, may have formed a hereditable association with the mouse cells. Merril et al. (45) reported that treatment of fibroblasts from patients with galactosemia with exogenous DNA caused increased activity of a missing enzyme, alpha-D-galactose-l-phosphate uridyltransferase. They also provided some evidence that the change persisted after subculturing the treated cells. If this latter report can be confirmed, the feasibility of directed genetic modification of human cells would be clearly demonstrated, considerably

  13. Cardiovascular gene therapy for myocardial infarction

    PubMed Central

    Scimia, Maria C; Gumpert, Anna M; Koch, Walter J

    2014-01-01

    Introduction Cardiovascular gene therapy is the third most popular application for gene therapy, representing 8.4% of all gene therapy trials as reported in 2012 estimates. Gene therapy in cardiovascular disease is aiming to treat heart failure from ischemic and non-ischemic causes, peripheral artery disease, venous ulcer, pulmonary hypertension, atherosclerosis and monogenic diseases, such as Fabry disease. Areas covered In this review, we will focus on elucidating current molecular targets for the treatment of ventricular dysfunction following myocardial infarction (MI). In particular, we will focus on the treatment of i) the clinical consequences of it, such as heart failure and residual myocardial ischemia and ii) etiological causes of MI (coronary vessels atherosclerosis, bypass venous graft disease, in-stent restenosis). Expert opinion We summarise the scheme of the review and the molecular targets either already at the gene therapy clinical trial phase or in the pipeline. These targets will be discussed below. Following this, we will focus on what we believe are the 4 prerequisites of success of any gene target therapy: safety, expression, specificity and efficacy (SESE). PMID:24328708

  14. Gene therapy for primary immunodeficiencies: Part 1.

    PubMed

    Cavazzana-Calvo, Marina; Fischer, Alain; Hacein-Bey-Abina, Salima; Aiuti, Alessandro

    2012-10-01

    Over 60 patients affected by SCID due to IL2RG deficiency (SCID-X1) or adenosine deaminase (ADA)-SCID have received hematopoietic stem cell gene therapy in the past 15 years using gammaretroviral vectors, resulting in immune reconstitution and clinical benefit in the majority of them. However, the occurrence of insertional oncogenesis in the SCID-X1 trials has led to the development of new clinical trials based on integrating vectors with improved safety design as well as investigation on new technologies for highly efficient gene targeting and site-specific gene editing. Here we will present the experience and perspectives of gene therapy for SCID-X1 and ADA-SCID and discuss the pros and cons of gene therapy in comparison to allogeneic transplantation.

  15. Progress in gene therapy for neurological disorders

    PubMed Central

    Simonato, Michele; Bennett, Jean; Boulis, Nicholas M.; Castro, Maria G.; Fink, David J.; Goins, William F.; Gray, Steven J.; Lowenstein, Pedro R.; Vandenberghe, Luk H.; Wilson, Thomas J.; Wolfe, John H.; Glorioso, Joseph C.

    2013-01-01

    Diseases of the nervous system have devastating effects and are widely distributed among the population, being especially prevalent in the elderly. These diseases are often caused by inherited genetic mutations that result in abnormal nervous system development, neurodegeneration, or impaired neuronal function. Other causes of neurological diseases include genetic and epigenetic changes induced by environmental insults, injury, disease-related events or inflammatory processes. Standard medical and surgical practice has not proved effective in curing or treating these diseases, and appropriate pharmaceuticals do not exist or are insufficient to slow disease progression. Gene therapy is emerging as a powerful approach with potential to treat and even cure some of the most common diseases of the nervous system. Gene therapy for neurological diseases has been made possible through progress in understanding the underlying disease mechanisms, particularly those involving sensory neurons, and also by improvement of gene vector design, therapeutic gene selection, and methods of delivery. Progress in the field has renewed our optimism for gene therapy as a treatment modality that can be used by neurologists, ophthalmologists and neurosurgeons. In this Review, we describe the promising gene therapy strategies that have the potential to treat patients with neurological diseases and discuss prospects for future development of gene therapy. PMID:23609618

  16. HIV gene therapy research advances.

    PubMed

    Jacobson, Jeffrey M

    2013-02-28

    In this issue of Blood, Tebas et al report antiviral effects in a clinical trial of multiple infusions of lentiviral vector–modified autologous CD4T lymphocytes in 17 HIV-infected patients aviremic on antiretroviral therapy (ART).

  17. Gene and cell therapy for heart failure.

    PubMed

    de Muinck, Ebo D

    2009-08-01

    Cardiac gene and cell therapy have both entered clinical trials aimed at ameliorating ventricular dysfunction in patients with chronic congestive heart failure. The transduction of myocardial cells with viral constructs encoding a specific cardiomyocyte Ca(2+) pump in the sarcoplasmic reticulum (SR), SRCa(2+)-ATPase has been shown to correct deficient Ca(2+) handling in cardiomyocytes and improvements in contractility in preclinical studies, thus leading to the first clinical trial of gene therapy for heart failure. In cell therapy, it is not clear whether beneficial effects are cell-type specific and how improvements in contractility are brought about. Despite these uncertainties, a number of clinical trials are under way, supported by safety and efficacy data from trials of cell therapy in the setting of myocardial infarction. Safety concerns for gene therapy center on inflammatory and immune responses triggered by viral constructs, and for cell therapy with myoblast cells, the major concern is increased incidence of ventricular arrhythmia after cell transplantation. Principles and mechanisms of action of gene and cell therapy for heart failure are discussed, together with the potential influence of reactive oxygen species on the efficacy of these treatments and the status of myocardial-delivery techniques for viral constructs and cells.

  18. Adenoviral vector-mediated gene transfer for human gene therapy.

    PubMed

    Breyer, B; Jiang, W; Cheng, H; Zhou, L; Paul, R; Feng, T; He, T C

    2001-07-01

    Human gene therapy promises to change the practice of medicine by treating the causes of disease rather than the symptoms. Since the first clinical trial made its debut ten years ago, there are over 400 approved protocols in the United States alone, most of which have failed to show convincing data of clinical efficacy. This setback is largely due to the lack of efficient and adequate gene transfer vehicles. With the recent progress in elucidating the molecular mechanisms of human diseases and the imminent arrival of the post genomic era, there are increasing numbers of therapeutic genes or targets that are available for gene therapy. Therefore, the urgency and need for efficacious gene therapies are greater than ever. Clearly, the current fundamental obstacle is to develop delivery vectors that exhibit high efficacy and specificity of gene transfer. Recombinant adenoviruses have provided a versatile system for gene expression studies and therapeutic applications. Of late, there has been a remarkable increase in adenoviral vector-based clinical trials. Recent endeavors in the development of recombinant adenoviral vectors have focused on modification of virus tropism, accommodation of larger genes, increase in stability and control of transgene expression, and down-modulation of host immune responses. These modifications and continued improvements in adenoviral vectors will provide a great opportunity for human gene therapy to live up to its enormous potential in the second decade.

  19. Gene replacement therapy for hereditary emphysema

    SciTech Connect

    Skolnick, A.

    1989-11-10

    Investigators suggest that human trials of gene therapy to correct a genetic disorder that usually leads to emphysema early in life may be only a few years away. Speaking at the American Lung Association's Second Annual Science Writers' Forum, R. G. Crystal, chief of the Pulmonary Branch of the National Heart, Lung, and Blood Institute offered an explanation of how hereditary emphysema may be more amenable to genetic therapy than other such diseases. In persons who lack a functioning gene for alpha{sup 1}-antitrypsin, a proteolytic enzyme, neutrophil elastase, attacks the walls of the lungs' alveoli, eventually leading to progressive pulmonary function loss. Two animal models of gene insertion are described.

  20. Gene therapy to treat cardiac arrhythmias.

    PubMed

    Bongianino, Rossana; Priori, Silvia G

    2015-09-01

    Gene therapy to treat electrical dysfunction of the heart is an appealing strategy because of the limited therapeutic options available to manage the most-severe cardiac arrhythmias, such as ventricular tachycardia, ventricular fibrillation, and asystole. However, cardiac genetic manipulation is challenging, given the complex mechanisms underlying arrhythmias. Nevertheless, the growing understanding of the molecular basis of these diseases, and the development of sophisticated vectors and delivery strategies, are providing researchers with adequate means to target specific genes and pathways involved in disorders of heart rhythm. Data from preclinical studies have demonstrated that gene therapy can be successfully used to modify the arrhythmogenic substrate and prevent life-threatening arrhythmias. Therefore, gene therapy might plausibly become a treatment option for patients with difficult-to-manage acquired arrhythmias and for those with inherited arrhythmias. In this Review, we summarize the preclinical studies into gene therapy for acquired and inherited arrhythmias of the atria or ventricles. We also provide an overview of the technical advances in the design of constructs and viral vectors to increase the efficiency and safety of gene therapy and to improve selective delivery to target organs.

  1. Targeted polymeric nanoparticles for cancer gene therapy

    PubMed Central

    Kim, Jayoung; Wilson, David R.; Zamboni, Camila G.; Green, Jordan J.

    2015-01-01

    In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented. PMID:26061296

  2. Targeted polymeric nanoparticles for cancer gene therapy.

    PubMed

    Kim, Jayoung; Wilson, David R; Zamboni, Camila G; Green, Jordan J

    2015-01-01

    In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented.

  3. What Is Next for Retinal Gene Therapy?

    PubMed

    Vandenberghe, Luk H

    2015-10-01

    The field of gene therapy for retinal blinding disorders is experiencing incredible momentum, justified by hopeful results in early stage clinical trials for inherited retinal degenerations. The premise of the use of the gene as a drug has come a long way, and may have found its niche in the treatment of retinal disease. Indeed, with only limited treatment options available for retinal indications, gene therapy has been proven feasible, safe, and effective and may lead to durable effects following a single injection. Here, we aim at putting into context the promise and potential, the technical, clinical, and economic boundaries limiting its application and development, and speculate on a future in which gene therapy is an integral component of ophthalmic clinical care.

  4. What Is Next for Retinal Gene Therapy?

    PubMed Central

    Vandenberghe, Luk H.

    2015-01-01

    The field of gene therapy for retinal blinding disorders is experiencing incredible momentum, justified by hopeful results in early stage clinical trials for inherited retinal degenerations. The premise of the use of the gene as a drug has come a long way, and may have found its niche in the treatment of retinal disease. Indeed, with only limited treatment options available for retinal indications, gene therapy has been proven feasible, safe, and effective and may lead to durable effects following a single injection. Here, we aim at putting into context the promise and potential, the technical, clinical, and economic boundaries limiting its application and development, and speculate on a future in which gene therapy is an integral component of ophthalmic clinical care. PMID:25877395

  5. Employment of Salmonella in Cancer Gene Therapy.

    PubMed

    Lee, Che-Hsin

    2016-01-01

    One of the primary limitations of cancer gene therapy is lack of selectivity of the therapeutic gene to tumor cells. Current efforts are focused on discovering and developing tumor-targeting vectors that selectively target only cancer cells but spare normal cells to improve the therapeutic index. The use of preferentially tumor-targeting bacteria as vectors is one of the innovative approaches for the treatment of cancer. This is based on the observation that some obligate or facultative-anaerobic bacteria are capable of multiplying selectively in tumors and inhibiting their growth. In this study, we exploited attenuated Salmonella as a tumoricidal agent and a vector to deliver genes for tumor-targeted gene therapy. Attenuated Salmonella, carrying a eukaryotic expression plasmid encoding an anti-angiogenic gene, was used to evaluate its' ability for tumor targeting and gene delivery in murine tumor models. We also investigated the use of a polymer to modify or shield Salmonella from the pre-existing immune response in the host in order to improve gene delivery to the tumor. These results suggest that tumor-targeted gene therapy using Salmonella carrying a therapeutic gene, which exerts tumoricidal and anti-angiogenic activities, represents a promising strategy for the treatment of tumors.

  6. Gene Therapy and its Implications in Dentistry

    PubMed Central

    Paul, Jibi M; Basappa, N

    2011-01-01

    Background The concept of transferring genes to tissues for clinical applications has been discussed for nearly half a century. The exponential increase in our ability to manipulate the genetic material of a cell via recombinant DNA technology has brought this goal closer to realization. The original perception that gene therapy should be considered only for a few major organs as a means of treating life-threatening disorders that are refractory to conventional treatment has changed. There are many non-life-threatening conditions that adversely affect a patient’s quality of life, for which there are no effective treatments. The lack of suitable treatment has permitted morbidity to become a rational basis for extending the scope of gene therapy. In the past few years, remarkable progress has been made in the field of gene therapy. While considerable problems remain, thus impeding the routine clinical use of gene transfer, gene therapy will have a pervasive and significant impact on areas that are based on biological science. Aim The purpose of this review is to examine the progress made in addressing gene transfer strategies for correcting various diseases and problems that are relevant to dental practice.

  7. Current status of haemophilia gene therapy.

    PubMed

    High, K H; Nathwani, A; Spencer, T; Lillicrap, D

    2014-05-01

    After many reports of successful gene therapy studies in small and large animal models of haemophilia, we have, at last, seen the first signs of success in human patients. These very encouraging results have been achieved with the use of adeno-associated viral (AAV) vectors in patients with severe haemophilia B. Following on from these initial promising studies, there are now three ongoing trials of AAV-mediated gene transfer in haemophilia B all aiming to express the factor IX gene from the liver. Nevertheless, as discussed in the first section of this article, there are still a number of significant hurdles to overcome if haemophilia B gene therapy is to become more widely available. The second section of this article deals with the challenges relating to factor VIII gene transfer. While the recent results in haemophilia B are extremely encouraging, there is, as yet, no similar data for factor VIII gene therapy. It is widely accepted that this therapeutic target will be significantly more problematic for a variety of reasons including accommodating the larger factor VIII cDNA, achieving adequate levels of transgene expression and preventing the far more frequent complication of antifactor VIII immunity. In the final section of the article, the alternative approach of lentiviral vector-mediated gene transfer is discussed. While AAV-mediated approaches to transgene delivery have led the way in clinical haemophilia gene therapy, there are still a number of potential advantages of using an alternative delivery vehicle including the fact that ex vivo host cell transduction will avoid the likelihood of immune responses to the vector. Overall, these are exciting times for haemophilia gene therapy with the likelihood of further clinical successes in the near future.

  8. Ethical issues of perinatal human gene therapy.

    PubMed

    Fletcher, J C; Richter, G

    1996-01-01

    This paper examines some key ethical issues raised by trials of human gene therapy in the perinatal period--i.e., in infants, young children, and the human fetus. It describes five resources in ethics for researchers' considerations prior to such trials: (1) the history of ethical debate about gene therapy, (2) a literature on the relevance of major ethical principles for clinical research, (3) a body of widely accepted norms and practices, (4) knowledge of paradigm cases, and (5) researchers' own professional integrity. The paper also examines ethical concerns that must be met prior to any trial: benefits to and safety of subjects, informed assent of children and informed parental permission, informed consent of pregnant women in fetal gene therapy, protection of privacy, and concerns about fairness in the selection of subjects. The paper criticizes the position that cases of fetal gene therapy should be restricted only to those where the pregnant woman has explicitly refused abortion. Additional topics include concerns about genetic enhancement and germ-line gene therapy.

  9. Gene therapy legislation in The Netherlands.

    PubMed

    Bleijs, D A; Haenen, I T W C; Bergmans, J E N

    2007-10-01

    Several regulatory organisations are involved in the assessment of clinical gene therapy trials involving genetically modified organisms (GMOs) in The Netherlands. Medical, ethical and scientific aspects are, for instance, evaluated by the Central Committee on Research Involving Human Subjects (CCMO). The Ministry of Housing, Spatial Planning and the Environment (VROM) is the competent authority for the environmental risk assessment according to the deliberate release Directive 2001/18/EC. A Gene Therapy Office has been established in order to streamline the different national review processes and to enable the official procedures to be completed as quickly as possible. Although the Gene Therapy Office improved the application process at the national level, there is a difference of opinion between the EU member states with respect to the EU Directive according to which gene therapy trials are assessed, that urges for harmonisation. This review summarises the gene therapy legislation in The Netherlands and in particular The Netherlands rationale to follow Directive 2001/18/EC for the environmental risk assessment.

  10. Perinatal Gene Transfer to the Liver

    PubMed Central

    McKay, Tristan R; Rahim, Ahad A; Buckley, Suzanne M.K; Ward, Natalie J; Chan, Jerry K.Y; Howe, Steven J; Waddington, Simon N

    2011-01-01

    The liver acts as a host to many functions hence raising the possibility that any one may be compromised by a single gene defect. Inherited or de novo mutations in these genes may result in relatively mild diseases or be so devastating that death within the first weeks or months of life is inevitable. Some diseases can be managed using conventional medicines whereas others are, as yet, untreatable. In this review we consider the application of early intervention gene therapy in neonatal and fetal preclinical studies. We appraise the tools of this technology, including lentivirus, adenovirus and adeno-associated virus (AAV)-based vectors. We highlight the application of these for a range of diseases including hemophilia, urea cycle disorders such as ornithine transcarbamylase deficiency, organic acidemias, lysosomal storage diseases including mucopolysaccharidoses, glycogen storage diseases and bile metabolism. We conclude by assessing the advantages and disadvantages associated with fetal and neonatal liver gene transfer. PMID:21774770

  11. Therapeutic genes for anti-HIV/AIDS gene therapy.

    PubMed

    Bovolenta, Chiara; Porcellini, Simona; Alberici, Luca

    2013-01-01

    The multiple therapeutic approaches developed so far to cope HIV-1 infection, such as anti-retroviral drugs, germicides and several attempts of therapeutic vaccination have provided significant amelioration in terms of life-quality and survival rate of AIDS patients. Nevertheless, no approach has demonstrated efficacy in eradicating this lethal, if untreated, infection. The curative power of gene therapy has been proven for the treatment of monogenic immunodeficiensies, where permanent gene modification of host cells is sufficient to correct the defect for life-time. No doubt, a similar concept is not applicable for gene therapy of infectious immunodeficiensies as AIDS, where there is not a single gene to be corrected; rather engineered cells must gain immunotherapeutic or antiviral features to grant either short- or long-term efficacy mostly by acquisition of antiviral genes or payloads. Anti-HIV/AIDS gene therapy is one of the most promising strategy, although challenging, to eradicate HIV-1 infection. In fact, genetic modification of hematopoietic stem cells with one or multiple therapeutic genes is expected to originate blood cell progenies resistant to viral infection and thereby able to prevail on infected unprotected cells. Ultimately, protected cells will re-establish a functional immune system able to control HIV-1 replication. More than hundred gene therapy clinical trials against AIDS employing different viral vectors and transgenes have been approved or are currently ongoing worldwide. This review will overview anti-HIV-1 infection gene therapy field evaluating strength and weakness of the transgenes and payloads used in the past and of those potentially exploitable in the future.

  12. Engineering targeted viral vectors for gene therapy.

    PubMed

    Waehler, Reinhard; Russell, Stephen J; Curiel, David T

    2007-08-01

    To achieve therapeutic success, transfer vehicles for gene therapy must be capable of transducing target cells while avoiding impact on non-target cells. Despite the high transduction efficiency of viral vectors, their tropism frequently does not match the therapeutic need. In the past, this lack of appropriate targeting allowed only partial exploitation of the great potential of gene therapy. Substantial progress in modifying viral vectors using diverse techniques now allows targeting to many cell types in vitro. Although important challenges remain for in vivo applications, the first clinical trials with targeted vectors have already begun to take place.

  13. [Gene therapy in the Czech Republic].

    PubMed

    Vonka, V

    2003-01-01

    Gene therapy represents one of the most promising applications of molecular biology and genetic engineering in medicine. At present its introduction meets series of problems which are of technical, methodological and ethical nature. Although the research in the field of gene therapy in the Czech Republic is on a good level, there is little hope that its achievements will be tested in clinical trials in the near future. In the Czech Republic a law enabling the use of preparations based on the newest biotechnologies in human medicine is missing. Similarly, a production unit capable of preparing the new gene-based drugs according to the Good Manufactory Praxis is not available and the State Institute for Control of Drugs has not any working group fully qualified for their control. The paper proposes actions aimed at solving the present unfavourable situation. The fact that the interest of clinicians in gene therapy is rapidly growing, and that there are signs of increasing interest of public in its achievements, gives good prospects for the introduction of gene therapy into medical praxis in this country in the not very distant future.

  14. Radiopharmaceutical and Gene Therapy Program

    SciTech Connect

    Buchsbaum, Donald J.

    2006-02-09

    The objective of our research program was to determine whether novel receptors can be induced in solid cancers as a target for therapy with radiolabeled unmodified peptides that bind to the receptors. The hypothesis was that induction of a high number of receptors on the surface of these cancer cells would result in an increased uptake of the radiolabeled monomeric peptides as compared to published results with radiolabeled antibodies or peptides to naturally expressed antigens or receptors, and therefore a better therapeutic outcome. The following is a summary of published results.

  15. Photobiomodulation Suppresses Alpha-Synuclein-Induced Toxicity in an AAV-Based Rat Genetic Model of Parkinson’s Disease

    PubMed Central

    Oueslati, Abid; Lovisa, Blaise; Perrin, John; Wagnières, Georges; van den Bergh, Hubert; Tardy, Yanik; Lashuel, Hilal A.

    2015-01-01

    Converging lines of evidence indicate that near-infrared light treatment, also known as photobiomodulation (PBM), may exert beneficial effects and protect against cellular toxicity and degeneration in several animal models of human pathologies, including neurodegenerative disorders. In the present study, we report that chronic PMB treatment mitigates dopaminergic loss induced by unilateral overexpression of human α-synuclein (α-syn) in the substantia nigra of an AAV-based rat genetic model of Parkinson’s disease (PD). In this model, daily exposure of both sides of the rat’s head to 808-nm near-infrared light for 28 consecutive days alleviated α-syn-induced motor impairment, as assessed using the cylinder test. This treatment also significantly reduced dopaminergic neuronal loss in the injected substantia nigra and preserved dopaminergic fibers in the ipsilateral striatum. These beneficial effects were sustained for at least 6 weeks after discontinuing the treatment. Together, our data point to PBM as a possible therapeutic strategy for the treatment of PD and other related synucleinopathies. PMID:26484876

  16. Gene therapy for retinal degeneration.

    PubMed

    Reichel, M B; Ali, R R; Hunt, D M; Bhattacharya, S S

    1997-01-01

    Inherited retinal degenerations are a group of diseases leading to blindness through progressive loss of vision in many patients. Although with the cloning of more and more disease genes the knowledge on the molecular genetics of these conditions and on the apoptotic pathway as the common disease mechanism is steadily increasing, there is still no cure for those affected. In recent years, new experimental treatments have evolved through the efforts of many investigators and have been explored in animal models. The rationale of the different strategies for developing a treatment based on gene replacement or rescue of the diseased neuronal tissue with growth factors will be outlined and discussed in this paper. PMID:9323717

  17. T Cell Receptor Gene Therapy for Cancer

    PubMed Central

    Schmitt, Thomas M.; Ragnarsson, Gunnar B.

    2009-01-01

    Abstract T cell-based adoptive immunotherapy has been shown to be a promising treatment for various types of cancer. However, adoptive T cell therapy currently requires the custom isolation and characterization of tumor-specific T cells from each patient—a process that can be not only difficult and time-consuming but also often fails to yield high-avidity T cells, which together have limited the broad application of this approach as a clinical treatment. Employing T cell receptor (TCR) gene therapy as a component of adoptive T cell therapy strategies can overcome many of these obstacles, allowing autologous T cells with a defined specificity to be generated in a much shorter time period. Initial studies using this approach have been hampered by a number of technical difficulties resulting in low TCR expression and acquisition of potentially problematic specificities due to mispairing of introduced TCR chains with endogenous TCR chains. The last several years have seen substantial progress in our understanding of the multiple facets of TCR gene therapy that will have to be properly orchestrated for this strategy to succeed. Here we outline the challenges of TCR gene therapy and the advances that have been made toward realizing the promise of this approach. PMID:19702439

  18. Theranostic Imaging of Cancer Gene Therapy.

    PubMed

    Sekar, Thillai V; Paulmurugan, Ramasamy

    2016-01-01

    Gene-directed enzyme prodrug therapy (GDEPT) is a promising therapeutic approach for treating cancers of various phenotypes. This strategy is independent of various other chemotherapeutic drugs used for treating cancers where the drugs are mainly designed to target endogenous cellular mechanisms, which are different in various cancer subtypes. In GDEPT an external enzyme, which is different from the cellular proteins, is expressed to convert the injected prodrug in to a toxic metabolite, that normally kill cancer cells express this protein. Theranostic imaging is an approach used to directly monitor the expression of these gene therapy enzymes while evaluating therapeutic effect. We recently developed a dual-GDEPT system where we combined mutant human herpes simplex thymidine kinase (HSV1sr39TK) and E. coli nitroreductase (NTR) enzyme, to improve therapeutic efficiency of cancer gene therapy by simultaneously injecting two prodrugs at a lower dose. In this approach we use two different prodrugs such as ganciclovir (GCV) and CB1954 to target two different cellular mechanisms to kill cancer cells. The developed dual GDEPT system was highly efficacious than that of either of the system used independently. In this chapter, we describe the complete protocol involved for in vitro and in vivo imaging of therapeutic cancer gene therapy evaluation. PMID:27424910

  19. Gene Therapy for "Bubble Boy" Disease.

    PubMed

    Hoggatt, Jonathan

    2016-07-14

    Adenosine deaminase (ADA) deficiency results in the accumulation of toxic metabolites that destroy the immune system, causing severe combined immunodeficiency (ADA-SCID), often referred to as the "bubble boy" disease. Strimvelis is a European Medicines Agency approved gene therapy for ADA-SCID patients without a suitable bone marrow donor.

  20. Quantum rods as nanocarriers of gene therapy.

    PubMed

    Aalinkeel, Ravikumar; Nair, Bindukumar; Reynolds, Jessica L; Sykes, Donald E; Law, Wing-Cheung; Mahajan, Supriya D; Prasad, Paras N; Schwartz, Stanley A

    2012-05-01

    Both antisense oligonucleotides (ASODN) and small interfering RNA (siRNA) have enormous potential to selectively silence specific cancer-related genes and could therefore be developed to be important therapeutic anti-cancer drugs. The use of nanotechnology may allow for significant advancement of the therapeutic potential of ASODN and siRNA, due to improved pharmacokinetics, bio-distribution and tissue specific targeted therapy. In this mini-review, we have discussed the advantages of using a nanocarrier such as a multimodal quantum rod (QR) complexed with siRNA for gene delivery. Comparisons are made between ASODN and siRNA therapeutic efficacies in the context of cancer and the enormous application potential of nanotechnology in oncotherapy is discussed. We have shown that a QR-interleukin-8 (IL-8) siRNA nanoplex can effectively silence IL-8 gene expression in the PC-3 prostate cancer cells with no significant toxicity. Thus, nanocarriers such as QRs can help translate the potent effects of ASODN/siRNA into a clinically viable anti-cancer therapy. Drug delivery for cancer therapy, with the aid of nanotechnology is one of the major translational aspects of nanomedicine, and efficient delivery of chemotherapy drugs and gene therapy drugs or their co-delivery continue to be a major focus of nanomedicine research.

  1. Gene therapy in dentistry: present and future.

    PubMed

    Baum, Bruce J

    2014-12-01

    Gene therapy is one of several novel biological treatments under active study for a wide variety of clinical applications, including many relevant to dentistry. This review will provide some background on this therapeutic approach, assess the current state of its applications generally, and in the oral cavity, and suggest the implications for its use in the next 25 years.

  2. Gene Therapy and Targeted Toxins for Glioma

    PubMed Central

    Castro, Maria G.; Candolfi, Marianela; Kroeger, Kurt; King, Gwendalyn D.; Curtin, James F.; Yagiz, Kader; Mineharu, Yohei; Assi, Hikmat; Wibowo, Mia; Muhammad, AKM Ghulam; Foulad, David; Puntel, Mariana; Lowenstein, Pedro R.

    2011-01-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors. PMID:21453286

  3. Prospecting gene therapy of implant infections.

    PubMed

    Costerton, William J; Montanaro, Lucio; Balaban, Naomi; Arciola, Carla Renata

    2009-09-01

    Infection still represents one of the most serious and ravaging complications associated with prosthetic devices. Staphylococci and enterococci, the bacteria most frequently responsible for orthopedic postsurgical and implant-related infections, express clinically relevant antibiotic resistance. The emergence of antibiotic-resistant bacteria and the slow progress in identifying new classes of antimicrobial agents have encouraged research into novel therapeutic strategies. The adoption of antisense or "antigene" molecules able to silence or knock-out bacterial genes responsible for their virulence is one possible innovative approach. Peptide nucleic acids (PNAs) are potential drug candidates for gene therapy in infections, by silencing a basic gene of bacterial growth or by tackling the antibiotic resistance or virulence factors of a pathogen. An efficacious contrast to bacterial genes should be set up in the first stages of infection in order to prevent colonization of periprosthesis tissues. Genes encoding bacterial factors for adhesion and colonization (biofilm and/or adhesins) would be the best candidates for gene therapy. But after initial enthusiasm for direct antisense knock-out or silencing of essential or virulence bacterial genes, difficulties have emerged; consequently, new approaches are now being attempted. One of these, interference with the regulating system of virulence factors, such as agr, appears particularly promising.

  4. Gene Therapy and Wound Healing

    PubMed Central

    Eming, Sabine A.; Krieg, Thomas; Davidson, Jeffrey M

    2007-01-01

    Wound repair involves the sequential interaction of various cell types, extracellular matrix molecules, and soluble mediators. During the past 10 years, much new information on signals controlling wound cell behavior has emerged. This knowledge has led to a number of novel_therapeutic strategies. In particular, the local delivery of pluripotent growth factor molecules to the injured tissue has been intensively investigated over the past decade. Limited success of clinical trails indicates that a crucial aspect of the growth factor wound-healing strategy is the effective delivery of these polypeptides to the wound site. A molecular approach in which genetically modified cells synthesize and deliver the desired growth factor in regulated fashion has been used to overcome the limitations associated with the (topical) application of recombinant growth factor proteins. We have summarized the molecular and cellular basis of repair mechanisms and their failure, and we give an overview of techniques and studies applied to gene transfer in tissue repair. PMID:17276205

  5. Contributions of Gene Marking to Cell and Gene Therapies

    PubMed Central

    Barese, Cecilia N.

    2011-01-01

    Abstract The first human genetic modification studies used replication-incompetent integrating vector vectors to introduce marker genes into T lymphocytes and subsequently into hematopoietic stem cells. Such studies have provided numerous insights into the biology of hematopoiesis and immune reconstitution and contributed to clinical development of gene and cell therapies. Tracking of hematopoietic reconstitution and analysis of the origin of residual malignant disease after hematopoietic transplantation has been possible via gene marking. Introduction of selectable marker genes has enabled preselection of specific T-cell populations for tumor and viral immunotherapy and reduced the threat of graft-versus-host disease, improving the survival of patients after allogeneic marrow transplantation. Marking studies in humans, murine xenografts, and large animals have helped optimize conditions for gene transfer into CD34+ hematopoietic progenitors, contributing to the achievement of gene transfer efficiencies sufficient for clinical benefit in several serious genetic diseases such as X-linked severe combined immunodeficiency and adrenoleukodystropy. When adverse events linked to insertional mutagenesis arose in clinical gene therapy trials for inherited immunodeficiencies, additional animal studies using gene-marking vectors have greatly increased our understanding of genotoxicity. The knowledge gained from these studies is being translated into new vector designs and clinical protocols, which we hope will continue to improve the efficiency, effectiveness and safety of these promising therapeutic approaches. PMID:21261461

  6. Contributions of gene marking to cell and gene therapies.

    PubMed

    Barese, Cecilia N; Dunbar, Cynthia E

    2011-06-01

    The first human genetic modification studies used replication-incompetent integrating vector vectors to introduce marker genes into T lymphocytes and subsequently into hematopoietic stem cells. Such studies have provided numerous insights into the biology of hematopoiesis and immune reconstitution and contributed to clinical development of gene and cell therapies. Tracking of hematopoietic reconstitution and analysis of the origin of residual malignant disease after hematopoietic transplantation has been possible via gene marking. Introduction of selectable marker genes has enabled preselection of specific T-cell populations for tumor and viral immunotherapy and reduced the threat of graft-versus-host disease, improving the survival of patients after allogeneic marrow transplantation. Marking studies in humans, murine xenografts, and large animals have helped optimize conditions for gene transfer into CD34(+) hematopoietic progenitors, contributing to the achievement of gene transfer efficiencies sufficient for clinical benefit in several serious genetic diseases such as X-linked severe combined immunodeficiency and adrenoleukodystrophy. When adverse events linked to insertional mutagenesis arose in clinical gene therapy trials for inherited immunodeficiencies, additional animal studies using gene-marking vectors have greatly increased our understanding of genotoxicity. The knowledge gained from these studies is being translated into new vector designs and clinical protocols, which we hope will continue to improve the efficiency, effectiveness and safety of these promising therapeutic approaches.

  7. Gene therapy for hemoglobinopathies: progress and challenges

    PubMed Central

    Dong, Alisa; Rivella, Stefano; Breda, Laura

    2013-01-01

    Hemoglobinopathies are genetic inherited conditions that originate from the lack or malfunction of the hemoglobin (Hb) protein. Sickle cell disease (SCD) and thalassemia are the most common forms of these conditions. The severe anemia combined with complications that arise in the most affected patients raises the necessity for a cure to restore hemoglobin function. The current routine therapies for these conditions, namely transfusion and iron chelation, have significantly improved the quality of life in patients over the years, but still fail to address the underlying cause of the diseases. A curative option, allogeneic bone marrow transplantation is available, but limited by the availability of suitable donors and graft-vs-host disease. Gene therapy offers an alternative approach to cure patients with hemoglobinopathies and aims at the direct recovery of the hemoglobin function via globin gene transfer. In the last 2 decades, gene transfer tools based on lentiviral vector development have been significantly improved and proven curative in several animal models for SCD and thalassemia. As a result, clinical trials are in progress and 1 patient has been successfully treated with this approach. However, there are still frontiers to explore that might improve this approach: the stoichiometry between the transgenic hemoglobin and endogenous hemoglobin with respect to the different globin genetic mutations; donor cell sourcing, such as the use of induced pluripotent stem cells (iPSCs); and the use of safer gene insertion methods to prevent oncogenesis. With this review we will provide insights about (1) the different lentiviral gene therapy approaches in mouse models and human cells; (2) current and planned clinical trials; (3) hurdles to overcome for clinical trials, such as myeloablation toxicity, insertional oncogenesis, and high vector expression; and (4) future perspectives for gene therapy, including safe harbors and iPSCs technology. PMID:23337292

  8. Targeting gene therapy to cancer: a review.

    PubMed

    Dachs, G U; Dougherty, G J; Stratford, I J; Chaplin, D J

    1997-01-01

    In recent years the idea of using gene therapy as a modality in the treatment of diseases other than genetically inherited, monogenic disorders has taken root. This is particularly obvious in the field of oncology where currently more than 100 clinical trials have been approved worldwide. This report will summarize some of the exciting progress that has recently been made with respect to both targeting the delivery of potentially therapeutic genes to tumor sites and regulating their expression within the tumor microenvironment. In order to specifically target malignant cells while at the same time sparing normal tissue, cancer gene therapy will need to combine highly selective gene delivery with highly specific gene expression, specific gene product activity, and, possibly, specific drug activation. Although the efficient delivery of DNA to tumor sites remains a formidable task, progress has been made in recent years using both viral (retrovirus, adenovirus, adeno-associated virus) and nonviral (liposomes, gene gun, injection) methods. In this report emphasis will be placed on targeted rather than high-efficiency delivery, although those would need to be combined in the future for effective therapy. To date delivery has been targeted to tumor-specific and tissue-specific antigens, such as epithelial growth factor receptor, c-kit receptor, and folate receptor, and these will be described in some detail. To increase specificity and safety of gene therapy further, the expression of the therapeutic gene needs to be tightly controlled within the target tissue. Targeted gene expression has been analyzed using tissue-specific promoters (breast-, prostate-, and melanoma-specific promoters) and disease-specific promoters (carcinoembryonic antigen, HER-2/neu, Myc-Max response elements, DF3/MUC). Alternatively, expression could be regulated externally with the use of radiation-induced promoters or tetracycline-responsive elements. Another novel possibility that will be

  9. [Application of gene therapy to oncologic ophthalmology].

    PubMed

    Philiponnet, A; Grange, J-D; Baggetto, L G

    2014-02-01

    Since the discovery of the structure of DNA in 1953 by Watson and Crick, our understanding of the genetic causes and the regulations involved in tumor development have hugely increased. The important amount of research developed since then has led to the development of gene therapy, which specifically targets and treats cancer cells by interacting with, and correcting their genetic material. This study is a review of the most accomplished research using gene therapy aimed at treating malignant ophthalmologic diseases, and focuses more specifically on uveal melanoma and retinoblastoma. Such approaches are remarkable regarding the efficiency and the cellular targeting specificity. However, gene therapy-based treatments are so recent that many long-term interrogations subsist. The majority of the reviewed studies are conducted in vitro or in murine models, thereby requiring several years before the resulting therapies become part of the daily ophthalmologists' arsenal. However, the recent spectacular developments based on advanced scientific knowledge justify an up-to-date review that would benefit the ophthalmologist community.

  10. Gene Tests May Improve Therapy for Endometrial Cancer

    MedlinePlus

    ... External link, please review our exit disclaimer . Subscribe Gene Tests May Improve Therapy for Endometrial Cancer By analyzing genes in hundreds of endometrial tumors, scientists identified details ...

  11. Newer gene editing technologies toward HIV gene therapy.

    PubMed

    Manjunath, N; Yi, Guohua; Dang, Ying; Shankar, Premlata

    2013-11-01

    Despite the great success of highly active antiretroviral therapy (HAART) in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called "Berlin patient" who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy.

  12. Noninvasive Tracking of Gene Transcript and Neuroprotection after Gene Therapy

    PubMed Central

    Ren, Jiaqian; Chen, Y. Iris; Liu, Christina H.; Chen, Po-Chih; Prentice, Howard; Wu, Jang-Yen; Liu, Philip K.

    2015-01-01

    Gene therapy holds exceptional potential for translational medicine by improving the products of defective genes in diseases and/or providing necessary biologics from endogenous sources during recovery processes. However, validating methods for the delivery, distribution and expression of the exogenous genes from such therapy can generally not be applicable to monitor effects over the long term because they are invasive. We report here that human granulocyte colony-stimulating factor (hG-CSF) cDNA encoded in scAAV-type 2 adeno-associated virus, as delivered through eye drops at multiple time points after cerebral ischemia using bilateral carotid occlusion for 60 min (BCAO-60) led to significant reduction in mortality rates, cerebral atrophy, and neurological deficits in C57black6 mice. Most importantly, we validated hG-CSF cDNA expression using translatable magnetic resonance imaging (MRI) in living brains. This noninvasive approach for monitoring exogenous gene expression in the brains has potential for great impact in the area of experimental gene therapy in animal models of heart attack, stroke, Alzheimer’s dementia, Parkinson’s disorder and amyotrophic lateral sclerosis, and the translation of such techniques to emergency medicine. PMID:26207935

  13. Newer Gene Editing Technologies toward HIV Gene Therapy

    PubMed Central

    Manjunath, N.; Yi, Guohua; Dang, Ying; Shankar, Premlata

    2013-01-01

    Despite the great success of highly active antiretroviral therapy (HAART) in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called “Berlin patient” who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy. PMID:24284874

  14. Gene and stem cell therapy for diabetes.

    PubMed

    Calne, Roy Y; Ghoneim, Mohamed A; Lee, K O; Uin, Gan Shu

    2013-01-01

    Gene and stem cell therapy has been on the scientific agenda in many laboratories for more than 20 years. The literature is enormous, but practical applications have been few. Recently advances in stem cell biology and gene therapy are clarifying some of the issues. I have made a few observations concerning our own studies on bone marrow mesenchymal stem cells cultured to produce a small percentage of insulin-producing cells and human insulin gene engineered into Lenti and AA viruses. The aim of clinical application would still seem to be several years away, if all goes well. The first step will be to produce enough insulin-secreting cells to be of potential value to patients. The next crucial question will be how to persuade the cells to respond to blood glucose levels swiftly and appropriately. With both stem cell and gene therapy, another important factor will be to ensure that any positive results will continue long enough to be preferable to insulin injections. PMID:25095498

  15. [New possibilities will open up in human gene therapy].

    PubMed

    Portin, Petter

    2016-01-01

    Gene therapy is divided into somatic and germ line therapy. The latter involves reproductive cells or their stem cells, and its results are heritable. The effects of somatic gene therapy are generally restricted to a single tissue of the patient in question. Until now, all gene therapies in the world have belonged to the regime of somatic therapy, germ line therapy having been a theoretical possibility only. Very recently, however, a method has been developed which is applicable to germ line therapy as well. In addition to technical challenges, severe ethical problems are associated with germ line therapy, demanding opinion statement.

  16. Engineering HSV-1 vectors for gene therapy.

    PubMed

    Goins, William F; Huang, Shaohua; Cohen, Justus B; Glorioso, Joseph C

    2014-01-01

    Virus vectors have been employed as gene transfer vehicles for various preclinical and clinical gene therapy applications, and with the approval of Glybera (alipogene tiparvovec) as the first gene therapy product as a standard medical treatment (Yla-Herttuala, Mol Ther 20: 1831-1832, 2013), gene therapy has reached the status of being a part of standard patient care. Replication-competent herpes simplex virus (HSV) vectors that replicate specifically in actively dividing tumor cells have been used in Phase I-III human trials in patients with glioblastoma multiforme, a fatal form of brain cancer, and in malignant melanoma. In fact, T-VEC (talimogene laherparepvec, formerly known as OncoVex GM-CSF) displayed efficacy in a recent Phase III trial when compared to standard GM-CSF treatment alone (Andtbacka et al. J Clin Oncol 31: sLBA9008, 2013) and may soon become the second FDA-approved gene therapy product used in standard patient care. In addition to the replication-competent oncolytic HSV vectors like T-VEC, replication-defective HSV vectors have been employed in Phase I-II human trials and have been explored as delivery vehicles for disorders such as pain, neuropathy, and other neurodegenerative conditions. Research during the last decade on the development of HSV vectors has resulted in the engineering of recombinant vectors that are totally replication defective, nontoxic, and capable of long-term transgene expression in neurons. This chapter describes methods for the construction of recombinant genomic HSV vectors based on the HSV-1 replication-defective vector backbones, steps in their purification, and their small-scale production for use in cell culture experiments as well as preclinical animal studies.

  17. Targeting tumor suppressor genes for cancer therapy.

    PubMed

    Liu, Yunhua; Hu, Xiaoxiao; Han, Cecil; Wang, Liana; Zhang, Xinna; He, Xiaoming; Lu, Xiongbin

    2015-12-01

    Cancer drugs are broadly classified into two categories: cytotoxic chemotherapies and targeted therapies that specifically modulate the activity of one or more proteins involved in cancer. Major advances have been achieved in targeted cancer therapies in the past few decades, which is ascribed to the increasing understanding of molecular mechanisms for cancer initiation and progression. Consequently, monoclonal antibodies and small molecules have been developed to interfere with a specific molecular oncogenic target. Targeting gain-of-function mutations, in general, has been productive. However, it has been a major challenge to use standard pharmacologic approaches to target loss-of-function mutations of tumor suppressor genes. Novel approaches, including synthetic lethality and collateral vulnerability screens, are now being developed to target gene defects in p53, PTEN, and BRCA1/2. Here, we review and summarize the recent findings in cancer genomics, drug development, and molecular cancer biology, which show promise in targeting tumor suppressors in cancer therapeutics.

  18. Gene therapy for peripheral nervous system diseases.

    PubMed

    Federici, Thais; Boulis, Nicholas

    2007-08-01

    Peripheral nerve diseases, also known as peripheral neuropathies, affect 15-20 million of Americans and diabetic neuropathy is the most common condition. Currently, the treatment of peripheral neuropathies is more focused on managing pain rather than providing permissive conditions for regeneration. Despite advances in microsurgical techniques, including nerve grafting and reanastomosis, axonal regeneration after peripheral nerve injury remains suboptimal. Also, no satisfactory treatments are available at this time for peripheral neurodegeneration occurring in motor neuron diseases (MND), including amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Peripheral nerves have the inherent capacity of regeneration. Gene therapy strategies focused on neuroprotection may help optimizing axonal regrowth. A better understanding of the cellular and molecular events involved in axonal degeneration and regeneration have helped researchers to identify targets for intervention. This review summarizes the current state on the clinical experience as well as gene therapy strategies for peripheral neuropathies, including MND, peripheral nerve injury, neuropathic pain, and diabetic neuropathy.

  19. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy.

    PubMed

    Barar, Jaleh; Omidi, Yadollah

    2013-01-01

    It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called "tumor microenvironment (TME)", in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs) that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF) functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted.

  20. Gene therapy approaches for spinal cord injury

    NASA Astrophysics Data System (ADS)

    Bright, Corinne

    As the biomedical engineering field expands, combination technologies are demonstrating enormous potential for treating human disease. In particular, intersections between the rapidly developing fields of gene therapy and tissue engineering hold promise to achieve tissue regeneration. Nonviral gene therapy uses plasmid DNA to deliver therapeutic proteins in vivo for extended periods of time. Tissue engineering employs biomedical materials, such as polymers, to support the regrowth of injured tissue. In this thesis, a combination strategy to deliver genes and drugs in a polymeric scaffold was applied to a spinal cord injury model. In order to develop a platform technology to treat spinal cord injury, several nonviral gene delivery systems and polymeric scaffolds were evaluated in vitro and in vivo. Nonviral vector trafficking was evaluated in primary neuronal culture to develop an understanding of the barriers to gene transfer in neurons and their supporting glia. Although the most efficient gene carrier in vitro differed from the optimal gene carrier in vivo, confocal and electron microscopy of these nonviral vectors provided insights into the interaction of these vectors with the nucleus. A novel pathway for delivering nanoparticles into the nuclei of neurons and Schwann cells via vesicle trafficking was observed in this study. Reporter gene expression levels were evaluated after direct and remote delivery to the spinal cord, and the optimal nonviral vector, dose, and delivery strategy were applied to deliver the gene encoding the basic fibroblast growth factor (bFGF) to the spinal cord. An injectable and biocompatible gel, composed of the amphiphillic polymer poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) was evaluated as a drug and gene delivery system in vitro, and combined with the optimized nonviral gene delivery system to treat spinal cord injury. Plasmid DNA encoding the bFGF gene and the therapeutic NEP1--40 peptide

  1. Ex vivo gene therapy and vision.

    PubMed

    Gregory-Evans, Kevin; Bashar, A M A Emran; Tan, Malcolm

    2012-04-01

    Ex vivo gene therapy, a technique where genetic manipulation of cells is undertaken remotely and more safely since it is outside the body, is an emerging therapeutic strategy particularly well suited to targeting a specific organ rather than for treating a whole organism. The eye and visual pathways therefore make an attractive target for this approach. With blindness still so prevalent worldwide, new approaches to treatment would also be widely applicable and a significant advance in improving quality of life. Despite being a relatively new approach, ex vivo gene therapy has already achieved significant advances in the treatment of blindness in pre-clinical trials. In particular, advances are being achieved in corneal disease, glaucoma, retinal degeneration, stroke and multiple sclerosis through genetic re-programming of cells to replace degenerate cells and through more refined neuroprotection, modulation of inflammation and replacement of deficient protein. In this review we discuss the latest developments in ex vivo gene therapy relevant to the visual pathways and highlight the challenges that need to be overcome for progress into clinical trials.

  2. Challenges and future expectations of reversed gene therapy.

    PubMed

    He, Nongyue; Zeng, Xin; Wang, Weida; Deng, Kunlong; Pan, Yunzhi; Xiao, Li; Zhang, Jia; Li, Kai

    2011-10-01

    Gene therapy is a genetic intervention used for the prevention or treatment of diseases by targeting selected genes with specific nucleotides. The most common form of gene therapy involves the establishment of a function by transfer of functional genes or correction of mutated genes. In other situations, suppression or abolishment of a function is required in order to balance a complicated regulatory system or to deplete cellular molecules crucial for pathogen infection. The latter in fact employs an opposite strategy compared to those used in classical gene therapy, and can be defined as reversed gene therapy. This paper takes CCR5-based stem cell gene therapy as an example to discuss the challenges and future expectations of reversed gene therapy.

  3. Frontiers in Suicide Gene Therapy of Cancer

    PubMed Central

    Malecki, Marek

    2012-01-01

    The National Cancer Institute (NCI) and the American Cancer Society (ACS) predict that 1,638,910 men and women will be diagnosed with cancer in the USA in 2012. Nearly 577,190 patients will die of cancer of all sites this year. Patients undergoing current systemic therapies will suffer multiple side effects from nausea to infertility. Potential parents, when diagnosed with cancer, will have to deposit oocytes or sperm prior to starting systemic radiation or chemo-therapy for the future genetic testing and in vitro fertilization, while trying to avoid risks of iatrogenic mutations in their germ cells. Otherwise, children of parents treated with systemic therapies, will be at high risk of developing genetic disorders. According to these predictions, this year will carry another, very poor therapeutic record again. The ultimate goal of cancer therapy is the complete elimination of all cancer cells, while leaving all healthy cells unharmed. One of the most promising therapeutic strategies in this regard is cancer suicide gene therapy (CSGT), which is rapidly progressing into new frontiers. The therapeutic success, in CSGT, is primarily contingent upon precision in delivery of the therapeutic transgenes to the cancer cells only. This is addressed by discovering and targeting unique or / and over-expressed biomarkers displayed on the cancer cells and cancer stem cells. Specificity of cancer therapeutic effects is further enhanced by designing the DNA constructs, which put the therapeutic genes under the control of the cancer cell specific promoters. The delivery of the suicidal genes to the cancer cells involves viral, as well as synthetic vectors, which are guided by cancer specific antibodies and ligands. The delivery options also include engineered stem cells with tropisms towards cancers. Main mechanisms inducing cancer cells’ deaths include: transgenic expression of thymidine kinases, cytosine deaminases, intracellular antibodies, telomeraseses, caspases, DNases

  4. Gene Therapy Approaches for Bone Regeneration

    PubMed Central

    Franceschi, Renny T.; Yang, Shuying; Rutherford, R. Bruce; Krebsbach, Paul H.; Zhao, Ming; Wang, Dian

    2013-01-01

    Gene therapy represents a promising approach for delivering regenerative molecules to specific tissues including bone. Several laboratories have shown that virus-based BMP expression vectors can stimulate osteoblast differentiation and bone formation in vivo. Both in vivo and ex vivo transduction of cells can induce bone formation at ectopic and orthotopic sites. Adenovirus and direct DNA delivery of genes encoding regenerative molecules can heal critical-sized defects of cranial and long bones. Although osteogenic activity can be demonstrated for individual BMP vectors, substantial synergies may be achieved using combinatorial gene therapy to express complimentary osteogenic signals including specific combinations of BMPs or BMPs and transcription factors. Further control of the bone regeneration process may also be achieved through the use of inducible promoters that can be used to control the timing and magnitude of expression for a particular gene. Using these types of approaches, it should be possible to mimic natural processes of bone development and fracture repair and, in so doing, be able to precisely control both the amount and type of bone regenerated. PMID:14745239

  5. Creating a cardiac pacemaker by gene therapy.

    PubMed

    Anghel, Traian M; Pogwizd, Steven M

    2007-02-01

    While electronic cardiac pacing in its various modalities represents standard of care for treatment of symptomatic bradyarrhythmias and heart failure, it has limitations ranging from absent or rudimentary autonomic modulation to severe complications. This has prompted experimental studies to design and validate a biological pacemaker that could supplement or replace electronic pacemakers. Advances in cardiac gene therapy have resulted in a number of strategies focused on beta-adrenergic receptors as well as specific ion currents that contribute to pacemaker function. This article reviews basic pacemaker physiology, as well as studies in which gene transfer approaches to develop a biological pacemaker have been designed and validated in vivo. Additional requirements and refinements necessary for successful biopacemaker function by gene transfer are discussed. PMID:17139515

  6. Curing genetic disease with gene therapy.

    PubMed

    Williams, David A

    2014-01-01

    Development of viral vectors that allow high efficiency gene transfer into mammalian cells in the early 1980s foresaw the treatment of severe monogenic diseases in humans. The application of gene transfer using viral vectors has been successful in diseases of the blood and immune systems, albeit with several curative studies also showing serious adverse events (SAEs). In children with X-linked severe combined immunodeficiency (SCID-X1), chronic granulomatous disease, and Wiskott-Aldrich syndrome, these SAEs were caused by inappropriate activation of oncogenes. Subsequent studies have defined the vector sequences responsible for these transforming events. Members of the Transatlantic Gene Therapy Consortium [TAGTC] have collaboratively developed new vectors that have proven safer in preclinical studies and used these vectors in new clinical trials in SCID-X1. These trials have shown evidence of early efficacy and preliminary integration analysis data from the SCID-X1 trial suggest an improved safety profile.

  7. Gene therapy and medical genetics on Internet.

    PubMed

    Seemann, O; Seemann, M D; Preuss, U; Kuss, J P; Soyka, M

    1998-09-17

    In this report we consider the development of the Internet, from its origins as a military invention in the times of the cold war to its present day role, together with the World Wide Web, as a means of global communication which plays a key role in medical research and particularly in medical genetics. A few of the major genetics related research projects and gene research centers are introduced and their aims are briefly discussed. Detailed information about chromosome and gene mapping, together with sequence and structure databases, can be easily and rapidly accessed through the Internet. A variety of web-sites are briefly described and then listed at the end of the report, which will serve as a useful starting point from which the interested reader can access an almost endless source of genetics related information on the Internet. Finally, some of the ethical, legal and social implications of the links between gene therapy and the Intemet are considered.

  8. Preselective gene therapy for Fabry disease

    PubMed Central

    Qin, Gangjian; Takenaka, Toshihiro; Telsch, Kimberly; Kelley, Leslie; Howard, Tazuko; Levade, Thierry; Deans, Robert; Howard, Bruce H.; Malech, Harry L.; Brady, Roscoe O.; Medin, Jeffrey A.

    2001-01-01

    Fabry disease is a lipid storage disorder resulting from mutations in the gene encoding the enzyme α-galactosidase A (α-gal A; EC 3.2.1.22). We previously have demonstrated long-term α-gal A enzyme correction and lipid reduction mediated by therapeutic ex vivo transduction and transplantation of hematopoietic cells in a mouse model of Fabry disease. We now report marked improvement in the efficiency of this gene-therapy approach. For this study we used a novel bicistronic retroviral vector that engineers expression of both the therapeutic α-gal A gene and the human IL-2Rα chain (huCD25) gene as a selectable marker. Coexpression of huCD25 allowed selective immunoenrichment (preselection) of a variety of transduced human and murine cells, resulting in enhanced intracellular and secreted α-gal A enzyme activities. Of particular significance for clinical applicability, mobilized CD34+ peripheral blood hematopoietic stem/progenitor cells from Fabry patients have low-background huCD25 expression and could be enriched effectively after ex vivo transduction, resulting in increased α-gal A activity. We evaluated effects of preselection in the mouse model of Fabry disease. Preselection of transduced Fabry mouse bone marrow cells elevated the level of multilineage gene-corrected hematopoietic cells in the circulation of transplanted animals and improved in vivo enzymatic activity levels in plasma and organs for more than 6 months after both primary and secondary transplantation. These studies demonstrate the potential of using a huCD25-based preselection strategy to enhance the clinical utility of ex vivo hematopoietic stem/progenitor cell gene therapy of Fabry disease and other disorders. PMID:11248095

  9. Saporin as a novel suicide gene in anticancer gene therapy.

    PubMed

    Zarovni, N; Vago, R; Soldà, T; Monaco, L; Fabbrini, M S

    2007-02-01

    We used a non-viral gene delivery approach to explore the potential of the plant saporin (SAP) gene as an alternative to the currently employed suicide genes in cancer therapy. Plasmids expressing cytosolic SAP were generated by placing the region encoding the mature plant ribosome-inactivating protein under the control of cytomegalovirus (CMV) or simian virus 40 (SV40) promoters. Their ability to inhibit protein synthesis was first tested in cultured tumor cells co-transfected with a luciferase reporter gene. In particular, SAP expression driven by CMV promoter (pCI-SAP) demonstrated that only 10 ng of plasmid per 1.6 x 10(4) B16 cells drastically reduced luciferase activity to 18% of that in control cells. Direct intratumoral injection of pCI-SAP complexed with either lipofectamine or N-(2,3-dioleoyloxy-1-propyl) trimethylammonium methyl sulfate (DOTAP) in B16 melanoma-bearing mice resulted in a noteworthy attenuation of tumor growth. This antitumor effect was increased in mice that received repeated intratumoral injections. A SAP catalytic inactive mutant (SAP-KQ) failed to exert any antitumor effect demonstrating that this was specifically owing to the SAP N-glycosidase activity. Our overall data strongly suggest that the gene encoding SAP, owing to its rapid and effective action and its independence from the proliferative state of target cells might become a suitable candidate suicide gene for oncologic applications. PMID:17008932

  10. Contemporary approaches for nonviral gene therapy.

    PubMed

    Jones, Charles H; Hill, Andrew; Chen, Mingfu; Pfeifer, Blaine A

    2015-06-01

    Gene therapy is the manipulation of gene expression patterns in specific cells to treat genetic and pathological diseases. This manipulation is accomplished by the controlled introduction of exogenous nucleic acids into target cells. Given the size and negative charge of these biomacromolecules, the delivery process is driven by the carrier vector, of which the usage of viral vectors dominates. Taking into account the limitations of viral vectors, nonviral alternatives have gained significant attention due to their flexible design, low cytotoxicity and immunogenicity, and their gene delivery efficacy. That stated, the field of nonviral vectors has been dominated by research dedicated to overcoming barriers in gene transfer. Unfortunately, these traditional nonviral vectors have failed to completely overcome the barriers required for clinical translation and thus, have failed to match the delivery outcomes of viral vector. This has consequently encouraged the development of new, more radical approaches that have the potential for higher clinical translation. In this review, we discuss recent advances in vector technology and nucleic acid chemistry that have challenged the current understanding of nonviral systems. The diversity of these approaches highlights the numerous alternative avenues for overcoming innate and technical barriers associated with gene delivery.

  11. The Muscular Dystrophies: From Genes to Therapies

    PubMed Central

    Porter, Neil C; Bloch, Robert J

    2015-01-01

    The genetic basis of many muscular disorders, including many of the more common muscular dystrophies, is now known. Clinically, the recent genetic advances have improved diagnostic capabilities, but they have not yet provided clues about treatment or management. Thanks to better management strategies and therapeutic interventions, however, many patients with a muscular dystrophy are more active and are living longer. Physical therapists, therefore, are more likely to see a patient with a muscular dystrophy, so understanding these muscle disorders and their management is essential. Physical therapy offers the most promise in caring for the majority of patients with these conditions, because it is unlikely that advances in gene therapy will significantly alter their clinical treatment in the near future. This perspective covers some of the basic molecular biological advances together with the clinical manifestations of the muscular dystrophies and the latest approaches to their management. PMID:16305275

  12. [Genetic basis of head and neck cancers and gene therapy].

    PubMed

    Özel, Halil Erdem; Özkırış, Mahmut; Gencer, Zeliha Kapusuz; Saydam, Levent

    2013-01-01

    Surgery and combinations of traditional treatments are not successful enough particularly for advanced stage head and neck cancer. The major disadvantages of chemotherapy and radiation therapy are the lack of specificity for the target tissue and toxicity to the patient. As a result, gene therapy may offer a more specific approach. The aim of gene therapy is to present therapeutic genes into cancer cells which selectively eliminate malignant cells with no systemic toxicity to the patient. This article reviews the genetic basis of head and neck cancers and important concepts in cancer gene therapy: (i) inhibition of oncogenes; (ii) tumor suppressor gene replacement; (iii) regulation of immune response against malignant cells; (iv) genetic prodrug activation; and (v) antiangiogenic gene therapy. Currently, gene therapy is not sufficient to replace the traditional treatments of head and neck cancers, however there is no doubt that it will have an important role in the near future.

  13. Clinical infection control in gene therapy: a multidisciplinary conference.

    PubMed

    Evans, M E; Jordan, C T; Chang, S M; Conrad, C; Gerberding, J L; Kaufman, H L; Mayhall, C G; Nolta, J A; Pilaro, A M; Sullivan, S; Weber, D J; Wivel, N A

    2000-10-01

    Gene therapy is being studied for the treatment of a variety of acquired and inherited disorders. Retroviruses, adenoviruses, poxviruses, adeno-associated viruses, herpesviruses, and others are being engineered to transfer genes into humans. Treatment protocols using recombinant viruses are being introduced into clinical settings. Infection control professionals will be involved in reviewing the safety of these agents in their clinics and hospitals. To date, only a limited number of articles have been written on infection control in gene therapy, and no widely available recommendations exist from federal or private organizations to guide infection control professionals. The goals of the conference were to provide a forum where gene therapy experts could share their perspectives and experience with infection control in gene therapy and to provide an opportunity for newcomers to the field to learn about issues specific to infection control in gene therapy. Recommendations for infection control in gene therapy were proposed.

  14. Gene therapy: Into the home stretch

    SciTech Connect

    Culliton, B.J.

    1990-08-31

    Tumors cannot live without blood. Shut off the blood vessels that feed a tumor and the tumor will turn black and shrivel away. That simple idea lies behind the first attempt to cure a disease by gene therapy, expected to take place at the National Cancer Institute in the next few weeks. When it does, it will test a technique that worked like a charm in mice. When a potent natural killer called tumor necrosis factor, or TNF, is injected into the bloodstream of mice, it begins to shrink tumors within hours, sometimes even minutes. But so far, attempts to recreate that miracle in people with cancer have not fared as well. TNF has been given intravenously to more than 35 patients in experiments that were a failure. Researchers hope to deliver TNF in much larger doses directly to a tumor by packaging the gene for TNF inside special lymphocytes that have a natural affinity for cancer.

  15. Corneal Gene Therapy: Basic Science and Translational Perspective

    PubMed Central

    Mohan, Rajiv R.; Rodier, Jason T.; Sharma, Ajay

    2013-01-01

    Corneal blindness is the third leading cause of blindness worldwide. Gene therapy is an emerging technology for corneal blindness due to the accessibility and immune-privileged nature of the cornea, ease of vector administration and visual monitoring, and ability to perform frequent noninvasive corneal assessment. Vision restoration by gene therapy is contingent upon vector and mode of therapeutic gene introduction into targeted cells/tissues. Numerous efficacious vectors, delivery techniques, and approaches have evolved in last decade for developing gene-based interventions for corneal diseases. Maximizing the potential benefits of gene therapy requires efficient and sustained therapeutic gene expression in target cells, low toxicity, and a high safety profile. This review describes the basic science associated with many gene therapy vectors and the present progress of gene therapy carried out for various ocular surface disorders and diseases. PMID:23838017

  16. Retinal Gene Therapy: Current Progress and Future Prospects

    PubMed Central

    Ku, Cristy A.; Pennesi, Mark E.

    2015-01-01

    Clinical trials treating inherited retinal dystrophy caused by RPE65 mutations had put retinal gene therapy at the forefront of gene therapy. Both successes and limitations in these clinical trials have fueled developments in gene vectors, which continue to further advance the field. These novel gene vectors aim to more safely and efficiently transduce retinal cells, expand the gene packaging capacity of AAV, and utilize new strategies to correct the varying mechanisms of dysfunction found with inherited retinal dystrophies. With recent clinical trials and numerous pre-clinical studies utilizing these novel vectors, the future of ocular gene therapy continues to hold vast potential. PMID:26609316

  17. Gene therapy in animal models of autosomal dominant retinitis pigmentosa.

    PubMed

    Rossmiller, Brian; Mao, Haoyu; Lewin, Alfred S

    2012-01-01

    Gene therapy for dominantly inherited genetic disease is more difficult than gene-based therapy for recessive disorders, which can be treated with gene supplementation. Treatment of dominant disease may require gene supplementation partnered with suppression of the expression of the mutant gene either at the DNA level, by gene repair, or at the RNA level by RNA interference or transcriptional repression. In this review, we examine some of the gene delivery approaches used to treat animal models of autosomal dominant retinitis pigmentosa, focusing on those models associated with mutations in the gene for rhodopsin. We conclude that combinatorial approaches have the greatest promise for success.

  18. Gene replacement therapy for genetic hepatocellular jaundice.

    PubMed

    van Dijk, Remco; Beuers, Ulrich; Bosma, Piter J

    2015-06-01

    Jaundice results from the systemic accumulation of bilirubin, the final product of the catabolism of haem. Inherited liver disorders of bilirubin metabolism and transport can result in reduced hepatic uptake, conjugation or biliary secretion of bilirubin. In patients with Rotor syndrome, bilirubin (re)uptake is impaired due to the deficiency of two basolateral/sinusoidal hepatocellular membrane proteins, organic anion-transporting polypeptide 1B1 (OATP1B1) and OATP1B3. Dubin-Johnson syndrome is caused by a defect in the ATP-dependent canalicular transporter, multidrug resistance-associated protein 2 (MRP2), which mediates the export of conjugated bilirubin into bile. Both disorders are benign and not progressive and are characterised by elevated serum levels of mainly conjugated bilirubin. Uridine diphospho-glucuronosyl transferase 1A1 (UGT1A1) is responsible for the glucuronidation of bilirubin; deficiency of this enzyme results in unconjugated hyperbilirubinaemia. Gilbert syndrome is the mild and benign form of inherited unconjugated hyperbilirubinaemia and is mostly caused by reduced promoter activity of the UGT1A1 gene. Crigler-Najjar syndrome is the severe inherited form of unconjugated hyperbilirubinaemia due to mutations in the UGT1A1 gene, which can cause kernicterus early in life and can be even lethal when left untreated. Due to major disadvantages of the current standard treatments for Crigler-Najjar syndrome, phototherapy and liver transplantation, new effective therapeutic strategies are under development. Here, we review the clinical features, pathophysiology and genetic background of these inherited disorders of bilirubin metabolism and transport. We also discuss the upcoming treatment option of viral gene therapy for genetic disorders such as Crigler-Najjar syndrome and the possible immunological consequences of this therapy.

  19. Gene replacement therapy for genetic hepatocellular jaundice.

    PubMed

    van Dijk, Remco; Beuers, Ulrich; Bosma, Piter J

    2015-06-01

    Jaundice results from the systemic accumulation of bilirubin, the final product of the catabolism of haem. Inherited liver disorders of bilirubin metabolism and transport can result in reduced hepatic uptake, conjugation or biliary secretion of bilirubin. In patients with Rotor syndrome, bilirubin (re)uptake is impaired due to the deficiency of two basolateral/sinusoidal hepatocellular membrane proteins, organic anion-transporting polypeptide 1B1 (OATP1B1) and OATP1B3. Dubin-Johnson syndrome is caused by a defect in the ATP-dependent canalicular transporter, multidrug resistance-associated protein 2 (MRP2), which mediates the export of conjugated bilirubin into bile. Both disorders are benign and not progressive and are characterised by elevated serum levels of mainly conjugated bilirubin. Uridine diphospho-glucuronosyl transferase 1A1 (UGT1A1) is responsible for the glucuronidation of bilirubin; deficiency of this enzyme results in unconjugated hyperbilirubinaemia. Gilbert syndrome is the mild and benign form of inherited unconjugated hyperbilirubinaemia and is mostly caused by reduced promoter activity of the UGT1A1 gene. Crigler-Najjar syndrome is the severe inherited form of unconjugated hyperbilirubinaemia due to mutations in the UGT1A1 gene, which can cause kernicterus early in life and can be even lethal when left untreated. Due to major disadvantages of the current standard treatments for Crigler-Najjar syndrome, phototherapy and liver transplantation, new effective therapeutic strategies are under development. Here, we review the clinical features, pathophysiology and genetic background of these inherited disorders of bilirubin metabolism and transport. We also discuss the upcoming treatment option of viral gene therapy for genetic disorders such as Crigler-Najjar syndrome and the possible immunological consequences of this therapy. PMID:25315738

  20. Progresses towards safe and efficient gene therapy vectors.

    PubMed

    Chira, Sergiu; Jackson, Carlo S; Oprea, Iulian; Ozturk, Ferhat; Pepper, Michael S; Diaconu, Iulia; Braicu, Cornelia; Raduly, Lajos-Zsolt; Calin, George A; Berindan-Neagoe, Ioana

    2015-10-13

    The emergence of genetic engineering at the beginning of the 1970's opened the era of biomedical technologies, which aims to improve human health using genetic manipulation techniques in a clinical context. Gene therapy represents an innovating and appealing strategy for treatment of human diseases, which utilizes vehicles or vectors for delivering therapeutic genes into the patients' body. However, a few past unsuccessful events that negatively marked the beginning of gene therapy resulted in the need for further studies regarding the design and biology of gene therapy vectors, so that this innovating treatment approach can successfully move from bench to bedside. In this paper, we review the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors. At the end of the manuscript, we summarized the main advantages and disadvantages of common gene therapy vectors and we discuss possible future directions for potential therapeutic vectors.

  1. Human fetal gene therapy: moral and ethical questions.

    PubMed

    Fletcher, J C; Richter, G

    1996-08-20

    This two-part paper discusses moral and ethical questions raised by future trials of human fetal gene therapy. The first part examines broad moral issues to explore whether fetal gene therapy is a morally praiseworthy goal. Ought it be done at all? These issues include (i) how the concept of fetal gene therapy originally arose as a goal envisioned at the beginning of prenatal diagnosis, (ii) preimplantation genetic diagnosis as a better preconceptual alternative for parents at higher genetic risk, (iii) alternatives to genetic abortions, (iv) the social and economic priority of fetal gene therapy, and (v) whether fetal gene therapy is a "slippery slope" that will end in germ-line gene therapy. This part concludes that far more reasons exist to commend fetal gene therapy than to reject it, given its limits and modest social and economic priority. The second part responds to specific ethical questions that must be raised about any protocol for human gene therapy. These questions and issues are adapted to the prenatal situation: (i) how the previable fetus becomes a "patient," (ii) concern for clinical benefit and minimizing risks to the fetus and pregnant woman, (iii) concern for the voluntary and informed participation of the pregnant woman, the father, and for protection of their privacy, (iv) concern for fair selection of subjects, (v) considerations of harm to germ line cells, and (vi) the role of public oversight of fetal gene therapy. The article concludes by recommending a continuation of the consolidated Recombinant Advisory Committee (RAC) for the near future.

  2. Lentiviral Vectors and Cystic Fibrosis Gene Therapy

    PubMed Central

    Castellani, Stefano; Conese, Massimo

    2010-01-01

    Cystic fibrosis (CF) is a chronic autosomic recessive syndrome, caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, a chloride channel expressed on the apical side of the airway epithelial cells. The lack of CFTR activity brings a dysregulated exchange of ions and water through the airway epithelium, one of the main aspects of CF lung disease pathophysiology. Lentiviral (LV) vectors, of the Retroviridae family, show interesting properties for CF gene therapy, since they integrate into the host genome and allow long-lasting gene expression. Proof-of-principle that LV vectors can transduce the airway epithelium and correct the basic electrophysiological defect in CF mice has been given. Initial data also demonstrate that LV vectors can be repeatedly administered to the lung and do not give rise to a gross inflammatory process, although they can elicit a T cell-mediated response to the transgene. Future studies will clarify the efficacy and safety profile of LV vectors in new complex animal models with CF, such as ferrets and pigs. PMID:21994643

  3. Improved animal models for testing gene therapy for atherosclerosis.

    PubMed

    Du, Liang; Zhang, Jingwan; De Meyer, Guido R Y; Flynn, Rowan; Dichek, David A

    2014-04-01

    Gene therapy delivered to the blood vessel wall could augment current therapies for atherosclerosis, including systemic drug therapy and stenting. However, identification of clinically useful vectors and effective therapeutic transgenes remains at the preclinical stage. Identification of effective vectors and transgenes would be accelerated by availability of animal models that allow practical and expeditious testing of vessel-wall-directed gene therapy. Such models would include humanlike lesions that develop rapidly in vessels that are amenable to efficient gene delivery. Moreover, because human atherosclerosis develops in normal vessels, gene therapy that prevents atherosclerosis is most logically tested in relatively normal arteries. Similarly, gene therapy that causes atherosclerosis regression requires gene delivery to an existing lesion. Here we report development of three new rabbit models for testing vessel-wall-directed gene therapy that either prevents or reverses atherosclerosis. Carotid artery intimal lesions in these new models develop within 2-7 months after initiation of a high-fat diet and are 20-80 times larger than lesions in a model we described previously. Individual models allow generation of lesions that are relatively rich in either macrophages or smooth muscle cells, permitting testing of gene therapy strategies targeted at either cell type. Two of the models include gene delivery to essentially normal arteries and will be useful for identifying strategies that prevent lesion development. The third model generates lesions rapidly in vector-naïve animals and can be used for testing gene therapy that promotes lesion regression. These models are optimized for testing helper-dependent adenovirus (HDAd)-mediated gene therapy; however, they could be easily adapted for testing of other vectors or of different types of molecular therapies, delivered directly to the blood vessel wall. Our data also supports the promise of HDAd to deliver long

  4. Prospectives for Gene Therapy of Retinal Degenerations

    PubMed Central

    Thumann, Gabriele

    2012-01-01

    Retinal degenerations encompass a large number of diseases in which the retina and associated retinal pigment epithelial (RPE) cells progressively degenerate leading to severe visual disorders or blindness. Retinal degenerations can be divided into two groups, a group in which the defect has been linked to a specific gene and a second group that has a complex etiology that includes environmental and genetic influences. The first group encompasses a number of relatively rare diseases with the most prevalent being Retinitis pigmentosa that affects approximately 1 million individuals worldwide. Attempts have been made to correct the defective gene by transfecting the appropriate cells with the wild-type gene and while these attempts have been successful in animal models, human gene therapy for these inherited retinal degenerations has only begun recently and the results are promising. To the second group belong glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). These retinal degenerations have a genetic component since they occur more often in families with affected probands but they are also linked to environmental factors, specifically elevated intraocular pressure, age and high blood sugar levels respectively. The economic and medical impact of these three diseases can be assessed by the number of individuals affected; AMD affects over 30 million, DR over 40 million and glaucoma over 65 million individuals worldwide. The basic defect in these diseases appears to be the relative lack of a neurogenic environment; the neovascularization that often accompanies these diseases has suggested that a decrease in pigment epithelium-derived factor (PEDF), at least in part, may be responsible for the neurodegeneration since PEDF is not only an effective neurogenic and neuroprotective agent but also a potent inhibitor of neovascularization. In the last few years inhibitors of vascularization, especially antibodies against vascular endothelial cell

  5. Genetically engineering adenoviral vectors for gene therapy.

    PubMed

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter.

  6. Optimizing retroviral gene expression for effective therapies.

    PubMed

    Antoniou, Michael N; Skipper, Kristian Alsbjerg; Anakok, Omer

    2013-04-01

    With their ability to integrate their genetic material into the target cell genome, retroviral vectors (RV) of both the gamma-retroviral (γ-RV) and lentiviral vector (LV) classes currently remain the most efficient and thus the system of choice for achieving transgene retention and therefore potentially long-term expression and therapeutic benefit. However, γ-RV and LV integration comes at a cost in that transcription units will be present within a native chromatin environment and thus be subject to epigenetic effects (DNA methylation, histone modifications) that can negatively impact on their function. Indeed, highly variable expression and silencing of γ-RV and LV transgenes especially resulting from promoter DNA methylation is well documented and was the cause of the failure of gene therapy in a clinical trial for X-linked chronic granulomatous disease. This review will critically explore the use of different classes of genetic control elements that can in principle reduce vector insertion site position effects and epigenetic-mediated silencing. These transcriptional regulatory elements broadly divide themselves into either those with a chromatin boundary or border function (scaffold/matrix attachment regions, insulators) or those with a dominant chromatin remodeling and transcriptional activating capability (locus control regions,, ubiquitous chromatin opening elements). All these types of elements have their strengths and weaknesses within the constraints of a γ-RV and LV backbone, showing varying degrees of efficacy in improving reproducibility and stability of transgene function. Combinations of boundary and chromatin remodeling; transcriptional activating elements, which do not impede vector production; transduction efficiency; and stability are most likely to meet the requirements within a gene therapy context especially when targeting a stem cell population.

  7. Virotherapy: cancer gene therapy at last?

    PubMed Central

    Bilsland, Alan E.; Spiliopoulou, Pavlina; Evans, T. R. Jeffry

    2016-01-01

    For decades, effective cancer gene therapy has been a tantalising prospect; for a therapeutic modality potentially able to elicit highly effective and selective responses, definitive efficacy outcomes have often seemed out of reach. However, steady progress in vector development and accumulated experience from previous clinical studies has finally led the field to its first licensed therapy. Following a pivotal phase III trial, Imlygic (talimogene laherparepvec/T-Vec) received US approval as a treatment for cutaneous and subcutaneous melanoma in October 2015, followed several weeks later by its European authorisation. These represent the first approvals for an oncolytic virotherapy. Imlygic is an advanced-generation herpesvirus-based vector optimised for oncolytic and immunomodulatory activities. Many other oncolytic agents currently remain in development, providing hope that current success will be followed by other diverse vectors that may ultimately come to constitute a new class of clinical anti-cancer agents. In this review, we discuss some of the key oncolytic viral agents developed in the adenovirus and herpesvirus classes, and the prospects for further enhancing their efficacy by combining them with novel immunotherapeutic approaches. PMID:27635234

  8. Virotherapy: cancer gene therapy at last?

    PubMed Central

    Bilsland, Alan E.; Spiliopoulou, Pavlina; Evans, T. R. Jeffry

    2016-01-01

    For decades, effective cancer gene therapy has been a tantalising prospect; for a therapeutic modality potentially able to elicit highly effective and selective responses, definitive efficacy outcomes have often seemed out of reach. However, steady progress in vector development and accumulated experience from previous clinical studies has finally led the field to its first licensed therapy. Following a pivotal phase III trial, Imlygic (talimogene laherparepvec/T-Vec) received US approval as a treatment for cutaneous and subcutaneous melanoma in October 2015, followed several weeks later by its European authorisation. These represent the first approvals for an oncolytic virotherapy. Imlygic is an advanced-generation herpesvirus-based vector optimised for oncolytic and immunomodulatory activities. Many other oncolytic agents currently remain in development, providing hope that current success will be followed by other diverse vectors that may ultimately come to constitute a new class of clinical anti-cancer agents. In this review, we discuss some of the key oncolytic viral agents developed in the adenovirus and herpesvirus classes, and the prospects for further enhancing their efficacy by combining them with novel immunotherapeutic approaches.

  9. Gene therapy: a possible future standard for HIV care.

    PubMed

    Abou-El-Enein, Mohamed; Bauer, Gerhard; Reinke, Petra

    2015-07-01

    Despite undeniable accomplishments in developing cell and gene therapeutic strategies to combat HIV infection, key social, economic, and policy-related challenges still need to be overcome for any future commercialization efforts of these novel therapies to be successful. Here, we address these challenges and structure a framework for eradicating HIV/AIDS using gene therapy.

  10. Prospects for Gene Therapy in the Fragile X Syndrome

    ERIC Educational Resources Information Center

    Rattazzi, Mario C.; LaFauci, Giuseppe; Brown, W. Ted

    2004-01-01

    Gene therapy is unarguably the definitive way to treat, and possibly cure, genetic diseases. A straightforward concept in theory, in practice it has proven difficult to realize, even when directed to easily accessed somatic cell systems. Gene therapy for diseases in which the central nervous system (CNS) is the target organ presents even greater…

  11. Cardiac gene therapy: Recent advances and future directions.

    PubMed

    Mason, Daniel; Chen, Yu-Zhe; Krishnan, Harini Venkata; Sant, Shilpa

    2015-10-10

    Gene therapy has the potential to serve as an adaptable platform technology for treating various diseases. Cardiovascular disease is a major cause of mortality in the developed world and genetic modification is steadily becoming a more plausible method to repair and regenerate heart tissue. Recently, new gene targets to treat cardiovascular disease have been identified and developed into therapies that have shown promise in animal models. Some of these therapies have advanced to clinical testing. Despite these recent successes, several barriers must be overcome for gene therapy to become a widely used treatment of cardiovascular diseases. In this review, we evaluate specific genetic targets that can be exploited to treat cardiovascular diseases, list the important delivery barriers for the gene carriers, assess the most promising methods of delivering the genetic information, and discuss the current status of clinical trials involving gene therapies targeted to the heart.

  12. Advances in Gene Therapy for Diseases of the Eye

    PubMed Central

    Petit, Lolita; Khanna, Hemant; Punzo, Claudio

    2016-01-01

    Over the last few years, huge progress has been made with regard to the understanding of molecular mechanisms underlying the pathogenesis of neurodegenerative diseases of the eye. Such knowledge has led to the development of gene therapy approaches to treat these devastating disorders. Challenges regarding the efficacy and efficiency of therapeutic gene delivery have driven the development of novel therapeutic approaches, which continue to evolve the field of ocular gene therapy. In this review article, we will discuss the evolution of preclinical and clinical strategies that have improved gene therapy in the eye, showing that treatment of vision loss has a bright future. PMID:27178388

  13. Advances in Gene Therapy for Diseases of the Eye.

    PubMed

    Petit, Lolita; Khanna, Hemant; Punzo, Claudio

    2016-08-01

    Over the last few years, huge progress has been made with regard to the understanding of molecular mechanisms underlying the pathogenesis of neurodegenerative diseases of the eye. Such knowledge has led to the development of gene therapy approaches to treat these devastating disorders. Challenges regarding the efficacy and efficiency of therapeutic gene delivery have driven the development of novel therapeutic approaches, which continue to evolve the field of ocular gene therapy. In this review article, we will discuss the evolution of preclinical and clinical strategies that have improved gene therapy in the eye, showing that treatment of vision loss has a bright future.

  14. Gene therapy for cardiovascular disease mediated by ultrasound and microbubbles

    PubMed Central

    2013-01-01

    Gene therapy provides an efficient approach for treatment of cardiovascular disease. To realize the therapeutic effect, both efficient delivery to the target cells and sustained expression of transgenes are required. Ultrasound targeted microbubble destruction (UTMD) technique has become a potential strategy for target-specific gene and drug delivery. When gene-loaded microbubble is injected, the ultrasound-mediated microbubble destruction may spew the transported gene to the targeted cells or organ. Meanwhile, high amplitude oscillations of microbubbles increase the permeability of capillary and cell membrane, facilitating uptake of the released gene into tissue and cell. Therefore, efficiency of gene therapy can be significantly improved. To date, UTMD has been successfully investigated in many diseases, and it has achieved outstanding progress in the last two decades. Herein, we discuss the current status of gene therapy of cardiovascular diseases, and reviewed the progress of the delivery of genes to cardiovascular system by UTMD. PMID:23594865

  15. Human gene therapy: a brief overview of the genetic revolution.

    PubMed

    Misra, Sanjukta

    2013-02-01

    Advances in biotechnology have brought gene therapy to the forefront of medical research. The prelude to successful gene therapy i.e. the efficient transfer and expression of a variety of human gene into target cells has already been accomplished in several systems. Safe methods have been devised to do this, using several viral and no-viral vectors. Two main approaches emerged: in vivo modification and ex vivo modification. Retrovirus, adenovirus, adeno-associated virus are suitable for gene therapeutic approaches which are based on permanent expression of the therapeutic gene. Non-viral vectors are far less efficient than viral vectors, but they have advantages due to their low immunogenicity and their large capacity for therapeutic DNA. To improve the function of non-viral vectors, the addition of viral functions such as receptor mediated uptake and nuclear translocation of DNA may finally lead to the development of an artificial virus. Gene transfer protocols have been approved for human use in inherited diseases, cancers and acquired disorders. In 1990, the first successful clinical trial of gene therapy was initiated for adenosine deaminase deficiency. Since then, the number of clinical protocols initiated worldwide has increased exponentially. Although preliminary results of these trials are somewhat disappointing, but human gene therapy dreams of treating diseases by replacing or supplementing the product of defective or introducing novel therapeutic genes. So definitely human gene therapy is an effective addition to the arsenal of approaches to many human therapies in the 21st century.

  16. Site-specific gene therapy for cardiovascular disease

    PubMed Central

    Fishbein, Ilia; Chorny, Michael; Levy, Robert J

    2010-01-01

    Gene therapy holds considerable promise for the treatment of cardiovascular disease and may provide novel therapeutic solutions for both genetic disorders and acquired pathophysiologies such as arteriosclerosis, heart failure and arrhythmias. Recombinant DNA technology and the sequencing of the human genome have made a plethora of candidate therapeutic genes available for cardiovascular diseases. However, progress in the field of gene therapy for cardiovascular disease has been modest; one of the key reasons for this limited progress is the lack of gene delivery systems for localizing gene therapy to specific sites to optimize transgene expression and efficacy. This review summarizes progress made toward the site-specific delivery of cardiovascular gene therapy and highlights selected promising novel approaches. PMID:20205054

  17. Targeting gene therapy vectors to CNS malignancies.

    PubMed

    Spear, M A; Herrlinger, U; Rainov, N; Pechan, P; Weissleder, R; Breakefield, X O

    1998-04-01

    Gene therapy offers significant advantages to the field of oncology with the addition of specifically and uniquely engineered mechanisms of halting malignant proliferation through cytotoxicity or reproductive arrest. To confer a true benefit to the therapeutic ratio (the relative toxicity to tumor compared to normal tissue) a vector or the transgene it carries must selectively affect or access tumor cells. Beyond the selective toxicities of many transgene products, which frequently parallel that of contemporary chemotherapeutic agents, lies the potential utility of targeting the vector. This review presents an overview of current and potential methods for designing vectors targeted to CNS malignancies through selective delivery, cell entry, transport or transcriptional regulation. The topic of delivery encompasses physical and pharmaceutic means of increasing the relative exposure of tumors to vector. Cell entry based methodologies are founded on increasing relative uptake of vector through the chemical or recombinant addition of ligand and antibody domains which selectively bind receptors expressed on target cells. Targeted transport involves the potential for using cells to selectively carry vectors or transgenes into tumors. Finally, promoter and enhancer systems are discussed which have potential for selectivity activating transcription to produce targeted transgene expression or vector propagation. PMID:9584951

  18. Application of SFHR to gene therapy of monogenic disorders.

    PubMed

    Goncz, K K; Prokopishyn, N L; Chow, B L; Davis, B R; Gruenert, D C

    2002-06-01

    Gene therapy treatment of disease will be greatly facilitated by the identification of genetic mutations through the Human Genome Project. The specific treatment will ultimately depend on the type of mutation as different genetic lesions will require different gene therapies. For example, large rearrangements and translocations may call for complementation with vectors containing the cDNA for the wild-type (wt) gene. On the other hand, smaller lesions, such as the reversion, addition or deletion of only a few base pairs, on single genes, or monogenic disorders, lend themselves to gene targeting. The potential for one gene targeting technique, small fragment homologous replacement (SFHR) to the gene therapy treatment of sickle cell disease (SCD) is presented. Successful conversion of the wt-beta-globin locus to a SCD genotype of human lymphocytes (K562) and progenitor/stem hematopoietic cells (CD34(+) and lin-CD38-) was achieved by electroporation or microinjection small DNA fragments (SDF).

  19. 75 FR 65640 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice and... Tumor Vaccines and Biotechnology Branch, Office of Cellular, Tissue and Gene Therapies, Center...

  20. Duchenne Muscular Dystrophy Gene Therapy in the Canine Model

    PubMed Central

    2015-01-01

    Abstract Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disease caused by dystrophin deficiency. Gene therapy has significantly improved the outcome of dystrophin-deficient mice. Yet, clinical translation has not resulted in the expected benefits in human patients. This translational gap is largely because of the insufficient modeling of DMD in mice. Specifically, mice lacking dystrophin show minimum dystrophic symptoms, and they do not respond to the gene therapy vector in the same way as human patients do. Further, the size of a mouse is hundredfolds smaller than a boy, making it impossible to scale-up gene therapy in a mouse model. None of these limitations exist in the canine DMD (cDMD) model. For this reason, cDMD dogs have been considered a highly valuable platform to test experimental DMD gene therapy. Over the last three decades, a variety of gene therapy approaches have been evaluated in cDMD dogs using a number of nonviral and viral vectors. These studies have provided critical insight for the development of an effective gene therapy protocol in human patients. This review discusses the history, current status, and future directions of the DMD gene therapy in the canine model. PMID:25710459

  1. The roles of traditional Chinese medicine in gene therapy.

    PubMed

    Ling, Chang-quan; Wang, Li-na; Wang, Yuan; Zhang, Yuan-hui; Yin, Zi-fei; Wang, Meng; Ling, Chen

    2014-03-01

    The field of gene therapy has been increasingly studied in the last four decades, and its clinical application has become a reality in the last 15 years. Traditional Chinese medicine (TCM), an important component of complementary and alternative medicine, has evolved over thousands of years with its own unique system of theories, diagnostics and therapies. TCM is well-known for its various roles in preventing and treating infectious and chronic diseases, and its usage in other modern clinical practice. However, whether TCM can be applied alongside gene therapy is a topic that has not been systematically examined. Here we provide an overview of TCM theories in relation to gene therapy. We believe that TCM theories are congruent with some principles of gene therapy. TCM-derived drugs may also act as gene therapy vehicles, therapeutic genes, synergistic therapeutic treatments, and as co-administrated drugs to reduce side effects. We also discuss in this review some possible approaches to combine TCM and gene therapy.

  2. Genotoxicity of retroviral hematopoietic stem cell gene therapy

    PubMed Central

    Trobridge, Grant D

    2012-01-01

    Introduction Retroviral vectors have been developed for hematopoietic stem cell (HSC) gene therapy and have successfully cured X-linked severe combined immunodeficiency (SCID-X1), adenosine deaminase deficiency (ADA-SCID), adrenoleukodystrophy, and Wiskott-Aldrich syndrome. However, in HSC gene therapy clinical trials, genotoxicity mediated by integrated vector proviruses has led to clonal expansion, and in some cases frank leukemia. Numerous studies have been performed to understand the molecular basis of vector-mediated genotoxicity with the aim of developing safer vectors and safer gene therapy protocols. These genotoxicity studies are critical to advancing HSC gene therapy. Areas covered This review provides an introduction to the mechanisms of retroviral vector genotoxicity. It also covers advances over the last 20 years in designing safer gene therapy vectors, and in integration site analysis in clinical trials and large animal models. Mechanisms of retroviral-mediated genotoxicity, and the risk factors that contribute to clonal expansion and leukemia in HSC gene therapy are introduced. Expert opinion Continued research on virus–host interactions and next-generation vectors should further improve the safety of future HSC gene therapy vectors and protocols. PMID:21375467

  3. Bacteria as vectors for gene therapy of cancer.

    PubMed

    Baban, Chwanrow K; Cronin, Michelle; O'Hanlon, Deirdre; O'Sullivan, Gerald C; Tangney, Mark

    2010-01-01

    Anti-cancer therapy faces major challenges, particularly in terms of specificity of treatment. The ideal therapy would eradicate tumor cells selectively with minimum side effects on normal tissue. Gene or cell therapies have emerged as realistic prospects for the treatment of cancer, and involve the delivery of genetic information to a tumor to facilitate the production of therapeutic proteins. However, there is still much to be done before an efficient and safe gene medicine is achieved, primarily developing the means of targeting genes to tumors safely and efficiently. An emerging family of vectors involves bacteria of various genera. It has been shown that bacteria are naturally capable of homing to tumors when systemically administered resulting in high levels of replication locally. Furthermore, invasive species can deliver heterologous genes intra-cellularly for tumor cell expression. Here, we review the use of bacteria as vehicles for gene therapy of cancer, detailing the mechanisms of action and successes at preclinical and clinical levels.

  4. Monitoring Murine Skeletal Muscle Function for Muscle Gene Therapy

    PubMed Central

    Hakim, Chady H.; Li, Dejia; Duan, Dongsheng

    2011-01-01

    The primary function of skeletal muscle is to generate force. Muscle force production is compromised in various forms of acquired and/or inherited muscle diseases. An important goal of muscle gene therapy is to recover muscle strength. Genetically engineered mice and spontaneous mouse mutants are readily available for preclinical muscle gene therapy studies. In this chapter, we outlined the methods commonly used for measuring murine skeletal muscle function. These include ex vivo and in situ analysis of the contractile profile of a single intact limb muscle (the extensor digitorium longus for ex vivo assay and the tibialis anterior muscle for in situ assay), grip force analysis, and downhill treadmill exercise. Force measurement in a single muscle is extremely useful for pilot testing of new gene therapy protocols by local gene transfer. Grip force and treadmill assessments offer body-wide evaluation following systemic muscle gene therapy. PMID:21194022

  5. [Ethical guidelines on genetic testing and gene therapy].

    PubMed

    Fukushima, Yoshimitsu

    2005-03-01

    According to the recent and rapid advances in molecular genetics research, genetic testing and gene therapy have a potential of giving unexpected influence to the human beings. To prevent and to solve various ethical, legal and social implementations (ELSI) of genetic testing and gene therapy, several guidelines have been established. In Japan, all researchers and all clinicians have to know and keep the following three guidelines on genetic testing and a guideline on gene therapy: 1) "Guidelines for Researches on Human Genome and Gene (2001)" by the three Ministries (Education, Health and Economy), 2) "Guidelines for Genetic Testing (2001)" by the Genetic--medicine--related 10 societies, 3) "Ethical Principles on Entrusted Genetic Testing (2001)" by the Japan Registered Clinical Laboratories Association, and 4) "Guidelines for Clinical Research on Gene Therapy (2002)" by the two Ministries (Health and Education).

  6. Gene Therapy, Early Promises, Subsequent Problems, and Recent Breakthroughs

    PubMed Central

    Razi Soofiyani, Saeideh; Baradaran, Behzad; Lotfipour, Farzaneh; Kazemi, Tohid; Mohammadnejad, Leila

    2013-01-01

    Gene therapy is one of the most attractive fields in medicine. The concept of gene delivery to tissues for clinical applications has been discussed around half a century, but scientist’s ability to manipulate genetic material via recombinant DNA technology made this purpose to reality. Various approaches, such as viral and non-viral vectors and physical methods, have been developed to make gene delivery safer and more efficient. While gene therapy initially conceived as a way to treat life-threatening disorders (inborn errors, cancers) refractory to conventional treatment, to date gene therapy is considered for many non–life-threatening conditions including those adversely influence on a patient’s quality of life. Gene therapy has made significant progress, including tangible success, although much slower than was initially predicted. Although, gene therapies still at a fairly primitive stage, it is firmly science based. There is justifiable hope that with enhanced pathobiological understanding and biotechnological improvements, gene therapy will be a standard part of clinical practice within 20 years. PMID:24312844

  7. Germ-line gene therapy and the medical imperative.

    PubMed

    Munson, Ronald; Davis, Lawrence H

    1992-06-01

    Somatic cell gene therapy has yielded promising results. If germ cell gene therapy can be developed, the promise is even greater: hundreds of genetic diseases might be virtually eliminated. But some claim the procedure is morally unacceptable. We thoroughly and sympathetically examine several possible reasons for this claim but find them inadequate. There is no moral reason, then, not to develop and employ germ-line gene therapy. Taking the offensive, we argue next that medicine has a prima facie moral obligation to do so.

  8. Identification of Hematopoietic Stem Cell Engraftment Genes in Gene Therapy Studies.

    PubMed

    Powers, John M; Trobridge, Grant D

    2013-09-01

    Hematopoietic stem cell (HSC) therapy using replication-incompetent retroviral vectors is a promising approach to provide life-long correction for genetic defects. HSC gene therapy clinical studies have resulted in functional cures for several diseases, but in some studies clonal expansion or leukemia has occurred. This is due to the dyregulation of endogenous host gene expression from vector provirus insertional mutagenesis. Insertional mutagenesis screens using replicating retroviruses have been used extensively to identify genes that influence oncogenesis. However, retroviral mutagenesis screens can also be used to determine the role of genes in biological processes such as stem cell engraftment. The aim of this review is to describe the potential for vector insertion site data from gene therapy studies to provide novel insights into mechanisms of HSC engraftment. In HSC gene therapy studies dysregulation of host genes by replication-incompetent vector proviruses may lead to enrichment of repopulating clones with vector integrants near genes that influence engraftment. Thus, data from HSC gene therapy studies can be used to identify novel candidate engraftment genes. As HSC gene therapy use continues to expand, the vector insertion site data collected will be of great interest to help identify novel engraftment genes and may ultimately lead to new therapies to improve engraftment.

  9. Gene Therapy and Cell-Based Therapies for Therapeutic Angiogenesis in Peripheral Artery Disease

    PubMed Central

    Nakagami, Hironori; Koriyama, Hiroshi; Morishita, Ryuichi

    2013-01-01

    Gene therapy and cell-based therapy have emerged as novel therapies to promote therapeutic angiogenesis in critical limb ischemia (CLI) caused by peripheral artery disease (PAD). Although researchers initially focused on gene therapy using proangiogenic factors, such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and hepatocyte growth factors (HGF), cell therapy using bone marrow mononuclear cells (BMMNCs), mesenchymal stem cells (BMMSCs), G-CSF-mobilized peripheral blood mononuclear cells (M-PBMNCs), and endothelial progenitor cells (EPCs) have also been extensively studied. Based on the elaborate studies and favorable results of basic research, some clinical phase I/II trials have been performed, and the results demonstrate the safety of these approaches and their potential for symptomatic improvement in CLI. However, the phase 3 clinical trials have thus far been limited to gene therapy using the HGF gene. Further studies using well-designed larger placebo-controlled and long-term randomized control trials (RCTs) will clarify the effectiveness of gene therapy and cell-based therapy for the treatment of CLI. Furthermore, the development of efficient gene transfer systems and effective methods for keeping transplanted cells healthy will make these novel therapies more effective and ease the symptoms of CLI. PMID:24294599

  10. Gene therapy in the world and in Switzerland.

    PubMed

    Rusconi, S

    1999-11-20

    Until the mid-seventies, biology used to be taught as an interesting, yet rather "useless" discipline in our high schools. The advent of molecular biology has drastically changed this image. Now, applied molecular genetics has been shown to have the potential to revolutionize many aspects of our life, including the paradigms of medicine. In a first phase, gene knowledge has allowed medical diagnosis with previously unimaginable precision. In a second wave, gene transfer in micro-organisms has produced a plethora of biopharmaceuticals. This decade has seen the third era of molecular medicine, in which direct gene transfer into humans is being developed. This article comments on the most recent developments and concepts in the field of human gene transfer (also called "gene therapy"). Some essential methods are briefly presented and a great deal of attention is devoted to the technical hurdles still to be overcome in achieving efficient and safe gene therapy protocols. The final paragraph attempts to clear up some myths and misunderstandings that are commonly propagated when people talk or think about gene therapy. The purpose of this article will be fulfilled if at the end the reader is convinced that gene therapy is not necessarily dedicated exclusively to hereditary disorders, that Switzerland undertaken an intensive and competitive experimental effort in this direction, that gene therapy has already proven its efficacy and has great potential, but that it will take a couple of decades before some applications are routinely used in the clinic.

  11. Somatic gene therapy. Methods for the present and future.

    PubMed

    O'Malley, B W; Ledley, F D

    1993-10-01

    Somatic gene therapy involves the introduction of novel genetic material into somatic cells to express therapeutic gene products. This emerging technology holds great promise for the treatment of both inherited and acquired diseases. This review summarizes the principles of gene therapy and approaches that are being investigated in experimental animals and clinical trials. These include the construction of recombinant viruses capable of carrying genes into cells by the process of infection as well as the use of DNA molecules that are capable of being used like conventional medicines. Some methods for gene therapy lead to permanent insertion of genes into targeted cells, while others are designed to express a therapeutic product with a defined half-life and duration of action. The goal is to establish site-specific and regulated expression of therapeutic products. The demonstrated safety and public acceptance of initial clinical trials will lead to widespread investigation of applications in both medicine and surgery in the near future.

  12. The interplay of post-translational modification and gene therapy

    PubMed Central

    Osamor, Victor Chukwudi; Chinedu, Shalom N; Azuh, Dominic E; Iweala, Emeka Joshua; Ogunlana, Olubanke Olujoke

    2016-01-01

    Several proteins interact either to activate or repress the expression of other genes during transcription. Based on the impact of these activities, the proteins can be classified into readers, modifier writers, and modifier erasers depending on whether histone marks are read, added, or removed, respectively, from a specific amino acid. Transcription is controlled by dynamic epigenetic marks with serious health implications in certain complex diseases, whose understanding may be useful in gene therapy. This work highlights traditional and current advances in post-translational modifications with relevance to gene therapy delivery. We report that enhanced understanding of epigenetic machinery provides clues to functional implication of certain genes/gene products and may facilitate transition toward revision of our clinical treatment procedure with effective fortification of gene therapy delivery. PMID:27013864

  13. The interplay of post-translational modification and gene therapy.

    PubMed

    Osamor, Victor Chukwudi; Chinedu, Shalom N; Azuh, Dominic E; Iweala, Emeka Joshua; Ogunlana, Olubanke Olujoke

    2016-01-01

    Several proteins interact either to activate or repress the expression of other genes during transcription. Based on the impact of these activities, the proteins can be classified into readers, modifier writers, and modifier erasers depending on whether histone marks are read, added, or removed, respectively, from a specific amino acid. Transcription is controlled by dynamic epigenetic marks with serious health implications in certain complex diseases, whose understanding may be useful in gene therapy. This work highlights traditional and current advances in post-translational modifications with relevance to gene therapy delivery. We report that enhanced understanding of epigenetic machinery provides clues to functional implication of certain genes/gene products and may facilitate transition toward revision of our clinical treatment procedure with effective fortification of gene therapy delivery.

  14. Bone Marrow Gene Therapy for HIV/AIDS.

    PubMed

    Herrera-Carrillo, Elena; Berkhout, Ben

    2015-07-01

    Bone marrow gene therapy remains an attractive option for treating chronic immunological diseases, including acquired immunodeficiency syndrome (AIDS) caused by human immunodeficiency virus (HIV). This technology combines the differentiation and expansion capacity of hematopoietic stem cells (HSCs) with long-term expression of therapeutic transgenes using integrating vectors. In this review we summarize the potential of bone marrow gene therapy for the treatment of HIV/AIDS. A broad range of antiviral strategies are discussed, with a particular focus on RNA-based therapies. The idea is to develop a durable gene therapy that lasts the life span of the infected individual, thus contrasting with daily drug regimens to suppress the virus. Different approaches have been proposed to target either the virus or cellular genes encoding co-factors that support virus replication. Some of these therapies have been tested in clinical trials, providing proof of principle that gene therapy is a safe option for treating HIV/AIDS. In this review several topics are discussed, ranging from the selection of the antiviral molecule and the viral target to the optimal vector system for gene delivery and the setup of appropriate preclinical test systems. The molecular mechanisms used to formulate a cure for HIV infection are described, including the latest antiviral strategies and their therapeutic applications. Finally, a potent combination of anti-HIV genes based on our own research program is described.

  15. Bone Marrow Gene Therapy for HIV/AIDS.

    PubMed

    Herrera-Carrillo, Elena; Berkhout, Ben

    2015-07-01

    Bone marrow gene therapy remains an attractive option for treating chronic immunological diseases, including acquired immunodeficiency syndrome (AIDS) caused by human immunodeficiency virus (HIV). This technology combines the differentiation and expansion capacity of hematopoietic stem cells (HSCs) with long-term expression of therapeutic transgenes using integrating vectors. In this review we summarize the potential of bone marrow gene therapy for the treatment of HIV/AIDS. A broad range of antiviral strategies are discussed, with a particular focus on RNA-based therapies. The idea is to develop a durable gene therapy that lasts the life span of the infected individual, thus contrasting with daily drug regimens to suppress the virus. Different approaches have been proposed to target either the virus or cellular genes encoding co-factors that support virus replication. Some of these therapies have been tested in clinical trials, providing proof of principle that gene therapy is a safe option for treating HIV/AIDS. In this review several topics are discussed, ranging from the selection of the antiviral molecule and the viral target to the optimal vector system for gene delivery and the setup of appropriate preclinical test systems. The molecular mechanisms used to formulate a cure for HIV infection are described, including the latest antiviral strategies and their therapeutic applications. Finally, a potent combination of anti-HIV genes based on our own research program is described. PMID:26193303

  16. Gene Therapy from the perspective of Systems Biology

    PubMed Central

    Mac Gabhann, Feilim; Annex, Brian H.

    2010-01-01

    Gene therapy research has expanded from its original concept of replacing absent or defective DNA with functional DNA for transcription. Genetic material may be delivered via multiple vectors, including naked plasmid DNA, viruses and even cells with the goal of increasing gene expression; and the targeting of specific tissues or cell types is aimed at decreasing risks of systemic or side effects. As with the development of any drug, there is an amount of empiricism in the choice of gene target, route of administration, dosing and in particular the scaling-up from pre-clinical models to clinical trials. Systems Biology, whose arsenal includes high-throughput experimental and computational studies that account for the complexities of host-disease-therapy interactions, holds significant promise in aiding the development and optimization of gene therapies, including personalized therapies and the identification of biomarkers for success of these strategies. In this review we describe some of the obstacles and successes in gene therapy, using the specific example of growth factor gene delivery to promote angiogenesis and blood vessel remodeling in ischemic diseases; we also make references to anti-angiogenic gene therapy in cancer. The opportunities for Systems Biology and in silico modeling to improve on current outcomes are highlighted. PMID:20886389

  17. Stem Cell Gene Therapy for Fanconi Anemia: Report from the 1st International Fanconi Anemia Gene Therapy Working Group Meeting

    PubMed Central

    Tolar, Jakub; Adair, Jennifer E; Antoniou, Michael; Bartholomae, Cynthia C; Becker, Pamela S; Blazar, Bruce R; Bueren, Juan; Carroll, Thomas; Cavazzana-Calvo, Marina; Clapp, D Wade; Dalgleish, Robert; Galy, Anne; Gaspar, H Bobby; Hanenberg, Helmut; Von Kalle, Christof; Kiem, Hans-Peter; Lindeman, Dirk; Naldini, Luigi; Navarro, Susana; Renella, Raffaele; Rio, Paula; Sevilla, Julián; Schmidt, Manfred; Verhoeyen, Els; Wagner, John E; Williams, David A; Thrasher, Adrian J

    2011-01-01

    Survival rates after allogeneic hematopoietic cell transplantation (HCT) for Fanconi anemia (FA) have increased dramatically since 2000. However, the use of autologous stem cell gene therapy, whereby the patient's own blood stem cells are modified to express the wild-type gene product, could potentially avoid the early and late complications of allogeneic HCT. Over the last decades, gene therapy has experienced a high degree of optimism interrupted by periods of diminished expectation. Optimism stems from recent examples of successful gene correction in several congenital immunodeficiencies, whereas diminished expectations come from the realization that gene therapy will not be free of side effects. The goal of the 1st International Fanconi Anemia Gene Therapy Working Group Meeting was to determine the optimal strategy for moving stem cell gene therapy into clinical trials for individuals with FA. To this end, key investigators examined vector design, transduction method, criteria for large-scale clinical-grade vector manufacture, hematopoietic cell preparation, and eligibility criteria for FA patients most likely to benefit. The report summarizes the roadmap for the development of gene therapy for FA. PMID:21540837

  18. Bacteriophage-Derived Vectors for Targeted Cancer Gene Therapy

    PubMed Central

    Pranjol, Md Zahidul Islam; Hajitou, Amin

    2015-01-01

    Cancer gene therapy expanded and reached its pinnacle in research in the last decade. Both viral and non-viral vectors have entered clinical trials, and significant successes have been achieved. However, a systemic administration of a vector, illustrating safe, efficient, and targeted gene delivery to solid tumors has proven to be a major challenge. In this review, we summarize the current progress and challenges in the targeted gene therapy of cancer. Moreover, we highlight the recent developments of bacteriophage-derived vectors and their contributions in targeting cancer with therapeutic genes following systemic administration. PMID:25606974

  19. Genetic correction using engineered nucleases for gene therapy applications.

    PubMed

    Li, Hongmei Lisa; Nakano, Takao; Hotta, Akitsu

    2014-01-01

    Genetic mutations in humans are associated with congenital disorders and phenotypic traits. Gene therapy holds the promise to cure such genetic disorders, although it has suffered from several technical limitations for decades. Recent progress in gene editing technology using tailor-made nucleases, such as meganucleases (MNs), zinc finger nucleases (ZFNs), TAL effector nucleases (TALENs) and, more recently, CRISPR/Cas9, has significantly broadened our ability to precisely modify target sites in the human genome. In this review, we summarize recent progress in gene correction approaches of the human genome, with a particular emphasis on the clinical applications of gene therapy.

  20. Clinical potential of gene therapy: towards meeting the demand.

    PubMed

    Macpherson, J L; Rasko, J E J

    2014-03-01

    Since the discovery that new genetic material could be transferred into human cells resulting in induced expression of genes and proteins, clinicians and scientists have been working to harness the technology for clinical outcomes. This article provides a summary of the current status of developments within the broad discipline of clinical gene therapy. In pursuing the treatment of diverse clinical conditions, a wide variety of therapeutics, each tailor-made, may be required. Gene therapy offers the possibility of accurately and specifically targeting particular genetic abnormalities through gene correction, addition or replacement. It represents a compelling idea that adds a new dimension to our portfolio of credible therapeutic choices.

  1. Regulatory Oversight of Gene Therapy and Cell Therapy Products in Korea.

    PubMed

    Choi, Minjoung; Han, Euiri; Lee, Sunmi; Kim, Taegyun; Shin, Won

    2015-01-01

    The Ministry of Food and Drug Safety regulates gene therapy and cell therapy products as biological products under the authority of the Pharmaceutical Affairs Act. As with other medicinal products, gene therapy and cell therapy products are subject to approval for use in clinical trials and for a subsequent marketing authorization and to post-market surveillance. Research and development of gene therapy and cell therapy products have been progressing rapidly in Korea with extensive investment, offering great potential for the treatment of various serious diseases. To facilitate development of safe and effective products and provide more opportunities to patients suffering from severe diseases, several regulatory programs, such as the use of investigational products for emergency situations, fast-track approval, prereview of application packages, and intensive regulatory consultation, can be applied to these products. The regulatory approach for these innovative products is case by case and founded on science-based review that is flexible and balances the risks and benefits.

  2. Development of hybrid viral vectors for gene therapy.

    PubMed

    Huang, Shuohao; Kamihira, Masamichi

    2013-01-01

    Adenoviral, retroviral/lentiviral, adeno-associated viral, and herpesviral vectors are the major viral vectors used in gene therapy. Compared with non-viral methods, viruses are highly-evolved, natural delivery agents for genetic materials. Despite their remarkable transduction efficiency, both clinical trials and laboratory experiments have suggested that viral vectors have inherent shortcomings for gene therapy, including limited loading capacity, immunogenicity, genotoxicity, and failure to support long-term adequate transgenic expression. One of the key issues in viral gene therapy is the state of the delivered genetic material in transduced cells. To address genotoxicity and improve the therapeutic transgene expression profile, construction of hybrid vectors have recently been developed. By adding new abilities or replacing certain undesirable elements, novel hybrid viral vectors are expected to outperform their conventional counterparts with improved safety and enhanced therapeutic efficacy. This review provides a comprehensive summary of current achievements in hybrid viral vector development and their impact on the field of gene therapy.

  3. Gene therapy for CNS diseases – Krabbe disease

    PubMed Central

    Rafi, Mohammad A.

    2016-01-01

    Summary This is a brief report of the 19th Annual Meeting of the American Society of Gene and Cell Therapy that took place from May 4th through May 7th, 2016 in Washington, DC, USA. While the meeting provided many symposiums, lectures, and scientific sessions this report mainly focuses on one of the sessions on the "Gene Therapy for central nervous system (CNS) Diseases" and specifically on the "Gene Therapy for the globoid cell leukodystrophy or Krabbe disease. Two presentations focused on this subject utilizing two animal models of this disease: mice and dog models. Different serotypes of adeno-associate viral vectors (AAV) alone or in combination with bone marrow transplantations were used in these research projects. The Meeting of the ASGCT reflected continuous growth in the fields of gene and cell therapy and brighter forecast for efficient treatment options for variety of human diseases. PMID:27525222

  4. The innovative evolution of cancer gene and cellular therapies.

    PubMed

    Lam, P; Khan, G; Stripecke, R; Hui, K M; Kasahara, N; Peng, K-W; Guinn, B-A

    2013-03-01

    We provide an overview of the latest developments in cancer gene therapy--from the bench to early-stage clinical trials. We describe the most recent work of worldwide teams including experienced scientists and clinicians, reflecting the recent emergence of gene therapy from the 'Valley of Death'. The treatment efficacy of clinical gene therapy has now been shown in a number of diseases including cancer and we are observing a renewed interest by big pharmaceutical and biotechnology companies most obviously demonstrated by Amgen's acquisition of Biovex for up to USD$1 billion. There is an opportunity to be cautiously hopeful regarding the future of gene therapy in the clinic and we review here some of the most recent progress in the field.

  5. Investor Outlook: Gene Therapy Picking up Steam; At a Crossroads.

    PubMed

    Schimmer, Joshua; Breazzano, Steven

    2016-09-01

    The gene therapy field continues to pick up steam with recent successes in a number of different therapeutic indications that highlight the potential for the platform. As the field continues to make progress, a growing data set of long-term safety and efficacy data will continue to define gene therapy's role, determining ultimately how widely it may be used beyond rare, serious diseases with high unmet needs. New technologies often take unanticipated twists and turns as patient exposure accumulates, and gene therapy may be no exception. That said, with many diseases that have no other treatment options beyond gene therapy and that present considerable morbidity and mortality, the field appears poised to withstand some minor and even major bumps in the road should they emerge. PMID:27632771

  6. [Gene therapy for hereditary ophthalmological diseases: Advances and future perspectives].

    PubMed

    Chacón-Camacho, Óscar Francisco; Astorga-Carballo, Aline; Zenteno, Juan Carlos

    2015-01-01

    Gene therapy is a promising new therapeutic strategy that could provide a novel and more effective way of targeting hereditary ophthalmological diseases. The eye is easily accessible, highly compartmentalized, and an immune-privileged organ that gives advantages as an ideal gene therapy target. Recently, important advances in the availability of various intraocular vector delivery routes and viral vectors that are able to efficiently transduce specific ocular cell types have been described. Gene therapy has advanced in some retinal inherited dystrophies; in this way, preliminary success is now being reported for the treatment of Leber congenital amaurosis (LCA). This review will provide an update in the field of gene therapy for the treatment of ocular inherited diseases.

  7. Cystic Fibrosis Gene Therapy in the UK and Elsewhere.

    PubMed

    Griesenbach, Uta; Pytel, Kamila M; Alton, Eric W F W

    2015-05-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) gene was identified in 1989. This opened the door for the development of cystic fibrosis (CF) gene therapy, which has been actively pursued for the last 20 years. Although 26 clinical trials involving approximately 450 patients have been carried out, the vast majority of these trials were short and included small numbers of patients; they were not designed to assess clinical benefit, but to establish safety and proof-of-concept for gene transfer using molecular end points such as the detection of recombinant mRNA or correction of the ion transport defect. The only currently published trial designed and powered to assess clinical efficacy (defined as improvement in lung function) administered AAV2-CFTR to the lungs of patients with CF. The U.K. Cystic Fibrosis Gene Therapy Consortium completed, in the autumn of 2014, the first nonviral gene therapy trial designed to answer whether repeated nonviral gene transfer (12 doses over 12 months) can lead to clinical benefit. The demonstration that the molecular defect in CFTR can be corrected with small-molecule drugs, and the success of gene therapy in other monogenic diseases, is boosting interest in CF gene therapy. Developments are discussed here.

  8. Cystic Fibrosis Gene Therapy in the UK and Elsewhere

    PubMed Central

    Pytel, Kamila M.; Alton, Eric W.F.W.

    2015-01-01

    Abstract The cystic fibrosis transmembrane conductance regulator (CFTR) gene was identified in 1989. This opened the door for the development of cystic fibrosis (CF) gene therapy, which has been actively pursued for the last 20 years. Although 26 clinical trials involving approximately 450 patients have been carried out, the vast majority of these trials were short and included small numbers of patients; they were not designed to assess clinical benefit, but to establish safety and proof-of-concept for gene transfer using molecular end points such as the detection of recombinant mRNA or correction of the ion transport defect. The only currently published trial designed and powered to assess clinical efficacy (defined as improvement in lung function) administered AAV2-CFTR to the lungs of patients with CF. The U.K. Cystic Fibrosis Gene Therapy Consortium completed, in the autumn of 2014, the first nonviral gene therapy trial designed to answer whether repeated nonviral gene transfer (12 doses over 12 months) can lead to clinical benefit. The demonstration that the molecular defect in CFTR can be corrected with small-molecule drugs, and the success of gene therapy in other monogenic diseases, is boosting interest in CF gene therapy. Developments are discussed here. PMID:25838137

  9. The use of genes for performance enhancement: doping or therapy?

    PubMed

    Oliveira, R S; Collares, T F; Smith, K R; Collares, T V; Seixas, F K

    2011-12-01

    Recent biotechnological advances have permitted the manipulation of genetic sequences to treat several diseases in a process called gene therapy. However, the advance of gene therapy has opened the door to the possibility of using genetic manipulation (GM) to enhance athletic performance. In such 'gene doping', exogenous genetic sequences are inserted into a specific tissue, altering cellular gene activity or leading to the expression of a protein product. The exogenous genes most likely to be utilized for gene doping include erythropoietin (EPO), vascular endothelial growth factor (VEGF), insulin-like growth factor type 1 (IGF-1), myostatin antagonists, and endorphin. However, many other genes could also be used, such as those involved in glucose metabolic pathways. Because gene doping would be very difficult to detect, it is inherently very attractive for those involved in sports who are prepared to cheat. Moreover, the field of gene therapy is constantly and rapidly progressing, and this is likely to generate many new possibilities for gene doping. Thus, as part of the general fight against all forms of doping, it will be necessary to develop and continually improve means of detecting exogenous gene sequences (or their products) in athletes. Nevertheless, some bioethicists have argued for a liberal approach to gene doping. PMID:22030863

  10. The use of genes for performance enhancement: doping or therapy?

    PubMed

    Oliveira, R S; Collares, T F; Smith, K R; Collares, T V; Seixas, F K

    2011-12-01

    Recent biotechnological advances have permitted the manipulation of genetic sequences to treat several diseases in a process called gene therapy. However, the advance of gene therapy has opened the door to the possibility of using genetic manipulation (GM) to enhance athletic performance. In such 'gene doping', exogenous genetic sequences are inserted into a specific tissue, altering cellular gene activity or leading to the expression of a protein product. The exogenous genes most likely to be utilized for gene doping include erythropoietin (EPO), vascular endothelial growth factor (VEGF), insulin-like growth factor type 1 (IGF-1), myostatin antagonists, and endorphin. However, many other genes could also be used, such as those involved in glucose metabolic pathways. Because gene doping would be very difficult to detect, it is inherently very attractive for those involved in sports who are prepared to cheat. Moreover, the field of gene therapy is constantly and rapidly progressing, and this is likely to generate many new possibilities for gene doping. Thus, as part of the general fight against all forms of doping, it will be necessary to develop and continually improve means of detecting exogenous gene sequences (or their products) in athletes. Nevertheless, some bioethicists have argued for a liberal approach to gene doping.

  11. Perspectives on Best Practices for Gene Therapy Programs

    PubMed Central

    Cheever, Thomas R.; Berkley, Dale; Braun, Serge; Brown, Robert H.; Byrne, Barry J.; Chamberlain, Jeffrey S.; Cwik, Valerie; Duan, Dongsheng; Federoff, Howard J.; High, Katherine A.; Kaspar, Brian K.; Klinger, Katherine W.; Larkindale, Jane; Lincecum, John; Mavilio, Fulvio; McDonald, Cheryl L.; McLaughlin, James; Weiss McLeod, Bonnie; Mendell, Jerry R.; Nuckolls, Glen; Stedman, Hansell H.; Tagle, Danilo A.; Vandenberghe, Luk H.; Wang, Hao; Wernett, Pamela J.; Wilson, James M.; Porter, John D.

    2015-01-01

    Abstract With recent successes in gene therapy trials for hemophilia and retinal diseases, the promise and prospects for gene therapy are once again garnering significant attention. To build on this momentum, the National Institute of Neurological Disorders and Stroke and the Muscular Dystrophy Association jointly hosted a workshop in April 2014 on “Best Practices for Gene Therapy Programs,” with a focus on neuromuscular disorders. Workshop participants included researchers from academia and industry as well as representatives from the regulatory, legal, and patient advocacy sectors to cover the gamut from preclinical optimization to intellectual property concerns and regulatory approval. The workshop focused on three key issues in the field: (1) establishing adequate scientific premise for clinical trials in gene therapy, (2) addressing regulatory process issues, and (3) intellectual property and commercialization issues as they relate to gene therapy. The outcomes from the discussions at this workshop are intended to provide guidance for researchers and funders in the gene therapy field. PMID:25654329

  12. Bioethical conflicts of gene therapy: a brief critical review.

    PubMed

    Freire, José Ednésio da Cruz; Medeiros, Suelen Carneiro de; Lopes Neto, Antônio Viana; Monteiro Júnior, José Edvar; Sousa, Antônio Juscelino Sudário; Rocha, Antônio José; Menezes, Léa Maria Bezerra de

    2014-01-01

    Methods and techniques employed in gene therapy are reviewed in parallel with pertinent ethical conflicts. Clinical interventions based on gene therapy techniques preferentially use vectors for the transportation of therapeutic genes, however little is known about the potential risks and damages to the patient. Thus, attending carefully to the clinical complications arising as well as to security is essential. Despite the scientific and technological advances, there are still many uncertainties about the side effects of gene therapy. Moreover, there is a need, above all, to understand the principles of bioethics as both science and ethics, in accordance with its socioecological responsibility, in order to prioritize the health and welfare of man and nature, using properly natural resources and technology. Therefore, it is hard to determine objective results and to which extent the insertion of genes can affect the organism, as well as the ethical implication. PMID:25650850

  13. Gene therapy in dentistry: tool of genetic engineering. Revisited.

    PubMed

    Gupta, Khushboo; Singh, Saurabh; Garg, Kavita Nitish

    2015-03-01

    Advances in biotechnology have brought gene therapy to the forefront of medical research. The concept of transferring genes to tissues for clinical applications has been discussed nearly half a century, but the ability to manipulate genetic material via recombinant DNA technology has brought this goal to reality. The feasibility of gene transfer was first demonstrated using tumour viruses. This led to development of viral and nonviral methods for the genetic modification of somatic cells. Applications of gene therapy to dental and oral problems illustrate the potential impact of this technology on dentistry. Preclinical trial results regarding the same have been very promising. In this review we will discuss methods, vectors involved, clinical implication in dentistry and scientific issues associated with gene therapy.

  14. Adeno-associated virus vectors and neurological gene therapy.

    PubMed

    Ojala, David S; Amara, Dominic P; Schaffer, David V

    2015-02-01

    Gene therapy has strong potential for treating a variety of genetic disorders, as demonstrated in recent clinical trials. There is unfortunately no scarcity of disease targets, and the grand challenge in this field has instead been the development of safe and efficient gene delivery platforms. To date, approximately two thirds of the 1800 gene therapy clinical trials completed worldwide have used viral vectors. Among these, adeno-associated virus (AAV) has emerged as particularly promising because of its impressive safety profile and efficiency in transducing a wide range of cell types. Gene delivery to the CNS involves both considerable promise and unique challenges, and better AAV vectors are thus needed to translate CNS gene therapy approaches to the clinic. This review discusses strategies for vector design, potential routes of administration, immune responses, and clinical applications of AAV in the CNS.

  15. Noncoding oligonucleotides: the belle of the ball in gene therapy.

    PubMed

    Shum, Ka-To; Rossi, John J

    2015-01-01

    Gene therapy carries the promise of cures for many diseases based on manipulating the expression of a person's genes toward the therapeutic goal. The relevance of noncoding oligonucleotides to human disease is attracting widespread attention. Noncoding oligonucleotides are not only involved in gene regulation, but can also be modified into therapeutic tools. There are many strategies that leverage noncoding oligonucleotides for gene therapy, including small interfering RNAs, antisense oligonucleotides, aptamers, ribozymes, decoys, and bacteriophage phi 29 RNAs. In this chapter, we will provide a broad, comprehensive overview of gene therapies that use noncoding oligonucleotides for disease treatment. The mechanism and development of each therapeutic will be described, with a particular focus on its clinical development. Finally, we will discuss the challenges associated with developing nucleic acid therapeutics and the prospects for future success.

  16. Chemical modification of chitosan for efficient gene therapy.

    PubMed

    Jiang, Hu-Lin; Cui, Peng-Fei; Xie, Rong-Lin; Cho, Chong-Su

    2014-01-01

    Gene therapy involves the introduction of foreign genetic material into cells in order to exert a therapeutic effect. Successful gene therapy relies on effective vector system. Viral vectors are highly efficient in transfecting cells, but the undesirable complications limit their therapeutic applications. As a natural biopolymer, chitosan has been considered to be a good gene carrier candidate due to its ideal character which combines biocompatibility, low toxicity with high cationic density together. However, the low cell specificity and low transfection efficiency of chitosan as a gene carrier need to be overcome before undertaking clinical trials. This chapter is principally on those endeavors such as chemical modifications using cell-specific ligands and stimuli-response groups as well as penetrating modifications that have been done to increase the performances of chitosan in gene therapy.

  17. Progresses towards safe and efficient gene therapy vectors

    PubMed Central

    Chira, Sergiu; Jackson, Carlo S.; Oprea, Iulian; Ozturk, Ferhat; Pepper, Michael S.; Diaconu, Iulia; Braicu, Cornelia; Raduly, Lajos-Zsolt; Calin, George A.; Berindan-Neagoe, Ioana

    2015-01-01

    The emergence of genetic engineering at the beginning of the 1970′s opened the era of biomedical technologies, which aims to improve human health using genetic manipulation techniques in a clinical context. Gene therapy represents an innovating and appealing strategy for treatment of human diseases, which utilizes vehicles or vectors for delivering therapeutic genes into the patients' body. However, a few past unsuccessful events that negatively marked the beginning of gene therapy resulted in the need for further studies regarding the design and biology of gene therapy vectors, so that this innovating treatment approach can successfully move from bench to bedside. In this paper, we review the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors. At the end of the manuscript, we summarized the main advantages and disadvantages of common gene therapy vectors and we discuss possible future directions for potential therapeutic vectors. PMID:26362400

  18. Development of gene and stem cell therapy for ocular neurodegeneration

    PubMed Central

    Zhang, Jing-Xue; Wang, Ning-Li; Lu, Qing-Jun

    2015-01-01

    Retinal degenerative diseases pose a serious threat to eye health, but there is currently no effective treatment available. Recent years have witnessed rapid development of several cutting-edge technologies, such as gene therapy, stem cell therapy, and tissue engineering. Due to the special features of ocular structure, some of these technologies have been translated into ophthalmological clinic practice with fruitful achievements, setting a good example for other fields. This paper reviews the development of the gene and stem cell therapies in ophthalmology. PMID:26086019

  19. Gene therapy for cancer: from the laboratory to the patient.

    PubMed

    Kouraklis, G

    2000-06-01

    Gene therapy is a new form of therapeutic intervention with applications in many areas of medical treatment. There are still many technical difficulties to be overcome, but recent advances in the molecular and cellular biology of gene transfer have made it likely that gene therapy will soon start to play an increasing role in clinical practice and particularly in the treatment of cancer. The first clinical gene transfer in an approved protocol took place exactly 10 years ago, and it was for the transfer of gene-marked immune cells into patients with advanced cancer. Now there are 218 active clinical protocols in the United States, and they have involved over 2000 patients worldwide. Among the conditions and diseases for which gene transfer is being tried as treatment, cancer comes first with 130 clinical trials. Fundamental research in the mechanisms of cancer and the development of molecular biology tools are crucial for the success of the treatments in the future. The identification of tumor rejection antigens from a variety of cancers and the immune response that is defective in cancer patients are important topics for future studies. The evaluation of gene therapy combinations involving use of tumor suppressor genes and constructs that inactivate oncogenes is also another important area for future research. The future improvement of present viruses as well as the use of new viral vectors will likely expand the applicability and efficacy of gene therapy. During the next decade technological developments, particularly in the areas of gene delivery and cell transplantation, will be critical for the successful clinical practice of gene therapy.

  20. Future aspects of immunotherapy and gene therapy in neuroblastoma.

    PubMed

    Aktas, S

    2009-09-01

    Immunotherapy against cancer aims at stimulating the immune system or building an immune response against targeted tumor-associated antigens (TAAs). It was proposed theoretically as a potential therapy for cancer over a century ago but it became popular in the past two decades. Gene therapy represents a promising approach for reversing the neoplastic phenotype or driving tumor cells to self-destruction. Although survival rates of neuroblastoma (NB) with biologically favorable disease are greater than 90%, outcomes of patients with high risk disease are less than 40%. Stage 4 metastatic NB cases over 18 months of age are often incurable with multimodality chemotherapy regimens. In this article, translation of immuno-gene therapy strategies into clinical trials for NB are reviewed. Future aspects of immuno-gene therapy are discussed.

  1. Gene Therapy in Cardiac Surgery: Clinical Trials, Challenges, and Perspectives

    PubMed Central

    Katz, Michael G.; Fargnoli, Anthony S.; Kendle, Andrew P.; Hajjar, Roger J.; Bridges, Charles R.

    2016-01-01

    The concept of gene therapy was introduced in the 1970s after the development of recombinant DNA technology. Despite the initial great expectations, this field experienced early setbacks. Recent years have seen a revival of clinical programs of gene therapy in different fields of medicine. There are many promising targets for genetic therapy as an adjunct to cardiac surgery. The first positive long-term results were published for adenoviral administration of vascular endothelial growth factor with coronary artery bypass grafting. In this review we analyze the past, present, and future of gene therapy in cardiac surgery. The articles discussed were collected through PubMed and from author experience. The clinical trials referenced were found through the Wiley clinical trial database (http://www.wiley.com/legacy/wileychi/genmed/clinical/) as well as the National Institutes of Health clinical trial database (Clinicaltrials.gov). PMID:26801060

  2. Gene Therapy for Alpha-1 Antitrypsin Deficiency Lung Disease.

    PubMed

    Chiuchiolo, Maria J; Crystal, Ronald G

    2016-08-01

    Alpha-1 antitrypsin (AAT) deficiency, characterized by low plasma levels of the serine protease inhibitor AAT, is associated with emphysema secondary to insufficient protection of the lung from neutrophil proteases. Although AAT augmentation therapy with purified AAT protein is efficacious, it requires weekly to monthly intravenous infusion of AAT purified from pooled human plasma, has the risk of viral contamination and allergic reactions, and is costly. As an alternative, gene therapy offers the advantage of single administration, eliminating the burden of protein infusion, and reduced risks and costs. The focus of this review is to describe the various strategies for AAT gene therapy for the pulmonary manifestations of AAT deficiency and the state of the art in bringing AAT gene therapy to the bedside. PMID:27564673

  3. Gene therapy: too much splice can spoil the dish.

    PubMed

    Trono, Didier

    2012-05-01

    The use of integrating vectors for gene therapy - required for stable correction of gene expression - carries the risk of insertional mutagenesis, which can lead to activation of a tumorigenic program. In this issue of the JCI, Moiani et al. and Cesana et al. investigate how viral vectors can induce aberrant splicing, resulting in chimeric cellular-viral transcripts. The finding that this is a general phenomenon is concerning, but some of their results do suggest approaches for the development of safeguards in gene therapy vector design.

  4. Development of Viral Vectors for Use in Cardiovascular Gene Therapy

    PubMed Central

    Williams, Paul D.; Ranjzad, Parisa; Kakar, Salik J.; Kingston, Paul A.

    2010-01-01

    Cardiovascular disease represents the most common cause of mortality in the developed world but, despite two decades of promising pre-clinical research and numerous clinical trials, cardiovascular gene transfer has so far failed to demonstrate convincing benefits in the clinical setting. In this review we discuss the various targets which may be suitable for cardiovascular gene therapy and the viral vectors which have to date shown the most potential for clinical use. We conclude with a summary of the current state of clinical cardiovascular gene therapy and the key trials which are ongoing. PMID:21994642

  5. The hair follicle as a target for gene therapy.

    PubMed

    Gupta, S; Domashenko, A; Cotsarelis, G

    2001-01-01

    The hair follicle possesses progenitor cells for continued hair follicle cycling and for epidermal keratinocytes, melanocytes and Langerhans cells. These different cell types can be targeted by topical gene delivery to mouse skin. Using a combination of liposomes and DNA, we demonstrated the feasibility of targeting hair follicle cells in human scalp xenografts as well. We defined liposome composition and stage of the hair cycle as important parameters influencing transfection of human hair follicles. Transfection occurred only during anagen onset. Considerations and obstacles for using gene therapy to treat alopecias and skin disease are discussed. A theoretical framework for future gene therapy treatments for cutaneous and systemic disorders is presented.

  6. Gene therapy for cancer: regulatory considerations for approval

    PubMed Central

    Husain, S R; Han, J; Au, P; Shannon, K; Puri, R K

    2015-01-01

    The rapidly changing field of gene therapy promises a number of innovative treatments for cancer patients. Advances in genetic modification of cancer and immune cells and the use of oncolytic viruses and bacteria have led to numerous clinical trials for cancer therapy, with several progressing to late-stage product development. At the time of this writing, no gene therapy product has been approved by the United States Food and Drug Administration (FDA). Some of the key scientific and regulatory issues include understanding of gene transfer vector biology, safety of vectors in vitro and in animal models, optimum gene transfer, long-term persistence or integration in the host, shedding of a virus and ability to maintain transgene expression in vivo for a desired period of time. Because of the biological complexity of these products, the FDA encourages a flexible, data-driven approach for preclinical safety testing programs. The clinical trial design should be based on the unique features of gene therapy products, and should ensure the safety of enrolled subjects. This article focuses on regulatory considerations for gene therapy product development and also discusses guidance documents that have been published by the FDA. PMID:26584531

  7. Gene therapy for cancer: regulatory considerations for approval.

    PubMed

    Husain, S R; Han, J; Au, P; Shannon, K; Puri, R K

    2015-12-01

    The rapidly changing field of gene therapy promises a number of innovative treatments for cancer patients. Advances in genetic modification of cancer and immune cells and the use of oncolytic viruses and bacteria have led to numerous clinical trials for cancer therapy, with several progressing to late-stage product development. At the time of this writing, no gene therapy product has been approved by the United States Food and Drug Administration (FDA). Some of the key scientific and regulatory issues include understanding of gene transfer vector biology, safety of vectors in vitro and in animal models, optimum gene transfer, long-term persistence or integration in the host, shedding of a virus and ability to maintain transgene expression in vivo for a desired period of time. Because of the biological complexity of these products, the FDA encourages a flexible, data-driven approach for preclinical safety testing programs. The clinical trial design should be based on the unique features of gene therapy products, and should ensure the safety of enrolled subjects. This article focuses on regulatory considerations for gene therapy product development and also discusses guidance documents that have been published by the FDA.

  8. Recent advances in gene therapy for lysosomal storage disorders

    PubMed Central

    Rastall, David PW; Amalfitano, Andrea

    2015-01-01

    Lysosomal storage disorders (LSDs) are a group of genetic diseases that result in metabolic derangements of the lysosome. Most LSDs are due to the genetic absence of a single catabolic enzyme, causing accumulation of the enzyme’s substrate within the lysosome. Over time, tissue-specific substrate accumulations result in a spectrum of symptoms and disabilities that vary by LSD. LSDs are promising targets for gene therapy because delivery of a single gene into a small percentage of the appropriate target cells may be sufficient to impact the clinical course of the disease. Recently, there have been several significant advancements in the potential for gene therapy of these disorders, including the first human trials. Future clinical trials will build upon these initial attempts, with an improved understanding of immune system responses to gene therapy, the obstacle that the blood–brain barrier poses for neuropathic LSDs, as well other biological barriers that, when overcome, may facilitate gene therapy for LSDs. In this manuscript, we will highlight the recent innovations in gene therapy for LSDs and discuss the clinical limitations that remain to be overcome, with the goal of fostering an understanding and further development of this important field. PMID:26170711

  9. Gene therapy for hemophilia: past, present and future.

    PubMed

    George, Lindsey A; Fogarty, Patrick F

    2016-01-01

    After numerous preclinical studies demonstrated consistent success in large and small animal models, gene therapy has finally seen initial signs of clinically meaningful success. In a landmark study, Nathwani and colleagues reported sustained factor (F)IX expression in individuals with severe hemophilia B following adeno-associated virus (AAV)-mediated in vivo FIX gene transfer. As the next possible treatment-changing paradigm in hemophilia care, gene therapy may provide patients with sufficient hemostatic improvement to achieve the World Federation of Hemophilia's aspirational goal of "integration of opportunities in all aspects of life… equivalent to someone without a bleeding disorder." Although promising momentum supports the potential of gene therapy to replace protein-based therapeutics for hemophilia, several obstacles remain. The largest challenges appear to be overcoming the cellular immune responses to the AAV capsid; preexisting AAV neutralizing antibodies, which immediately exclude approximately 50% of the target population; and the ability to scale-up vector manufacturing for widespread applicability. Additional obstacles specific to hemophilia A (HA) include designing a vector cassette to accommodate a larger cDNA; avoiding development of inhibitory antibodies; and, perhaps the greatest difficulty to overcome, ensuring adequate expression efficiency. This review discusses the relevance of gene therapy to the hemophilia disease state, previous research progress, the current landscape of clinical trials, and considerations for promoting the future availability of gene therapy for hemophilia.

  10. Gene Therapies for Cancer: Strategies, Challenges and Successes

    PubMed Central

    DAS, SWADESH K.; MENEZES, MITCHELL E.; BHATIA, SHILPA; WANG, XIANG-YANG; EMDAD, LUNI; SARKAR, DEVANAND; FISHER, PAUL B.

    2015-01-01

    Gene therapy, which involves replacement of a defective gene with a functional, healthy copy of that gene, is a potentially beneficial cancer treatment approach particularly over chemotherapy, which often lacks selectivity and can cause non-specific toxicity. Despite significant progress pre-clinically with respect to both enhanced targeting and expression in a tumor-selective manner several hurdles still prevent success in the clinic, including non-specific expression, low-efficiency delivery and biosafety. Various innovative genetic approaches are under development to reconstruct vectors/transgenes to make them safer and more effective. Utilizing cutting-edge delivery technologies, gene expression can now be targeted in a tissue- and organ-specific manner. With these advances, gene therapy is poised to become amenable for routine cancer therapy with potential to elevate this methodology as a first line therapy for neoplastic diseases. This review discusses recent advances in gene therapy and their impact on a pre-clinical and clinical level. PMID:25196387

  11. Perspectives of gene therapy in stem cell tissue engineering.

    PubMed

    Goessler, Ulrich Reinhart; Riedel, Katrin; Hormann, Karl; Riedel, Frank

    2006-01-01

    Tissue engineering is an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain or improve tissue function. It is hoped that forming tissue de novo will overcome many problems in plastic surgery associated with such areas as wound healing and the immunogenicity of transplanted tissue that lead to dysfunctional repair. Gene therapy is the science of the transfer of genetic material into individuals for therapeutic purposes by altering cellular function or structure at the molecular level. Recently, tissue engineering has been used in conjunction with gene therapy as a hybrid approach. This combination of stem-cell-based tissue engineering with gene therapy has the potential to provide regenerative tissue cells within an environment of optimal regulatory protein expression and would have many benefits in various areas such as the transplantation of skin, cartilage or bone. The aim of this review is to outline tissue engineering and possible applications of gene therapy in the field of biomedical engineering as well as basic principles of gene therapy, vectors and gene delivery.

  12. Gene therapy for hemophilia: past, present and future.

    PubMed

    George, Lindsey A; Fogarty, Patrick F

    2016-01-01

    After numerous preclinical studies demonstrated consistent success in large and small animal models, gene therapy has finally seen initial signs of clinically meaningful success. In a landmark study, Nathwani and colleagues reported sustained factor (F)IX expression in individuals with severe hemophilia B following adeno-associated virus (AAV)-mediated in vivo FIX gene transfer. As the next possible treatment-changing paradigm in hemophilia care, gene therapy may provide patients with sufficient hemostatic improvement to achieve the World Federation of Hemophilia's aspirational goal of "integration of opportunities in all aspects of life… equivalent to someone without a bleeding disorder." Although promising momentum supports the potential of gene therapy to replace protein-based therapeutics for hemophilia, several obstacles remain. The largest challenges appear to be overcoming the cellular immune responses to the AAV capsid; preexisting AAV neutralizing antibodies, which immediately exclude approximately 50% of the target population; and the ability to scale-up vector manufacturing for widespread applicability. Additional obstacles specific to hemophilia A (HA) include designing a vector cassette to accommodate a larger cDNA; avoiding development of inhibitory antibodies; and, perhaps the greatest difficulty to overcome, ensuring adequate expression efficiency. This review discusses the relevance of gene therapy to the hemophilia disease state, previous research progress, the current landscape of clinical trials, and considerations for promoting the future availability of gene therapy for hemophilia. PMID:26805907

  13. Gene therapy for dyslipidemia: a review of gene replacement and gene inhibition strategies

    PubMed Central

    Kassim, Sadik H; Wilson, James M; Rader, Daniel J

    2012-01-01

    Despite numerous technological and pharmacological advances and more detailed knowledge of molecular etiologies, cardiovascular diseases remain the leading cause of morbidity and mortality worldwide claiming over 17 million lives a year. Abnormalities in the synthesis, processing and catabolism of lipoprotein particles can result in severe hypercholesterolemia, hypertriglyceridemia or low HDL-C. Although a plethora of antidyslipidemic pharmacological agents are available, these drugs are relatively ineffective in many patients with Mendelian lipid disorders, indicating the need for new and more effective interventions. In vivo somatic gene therapy is one such intervention. This article summarizes current strategies being pursued for the development of clinical gene therapy for dyslipidemias that cannot effectively be treated with existing drugs. PMID:22505953

  14. Safety of gene therapy: new insights to a puzzling case.

    PubMed

    Rothe, Michael; Schambach, Axel; Biasco, Luca

    2014-01-01

    Over the last few years, the transfer of therapeutic genes via gammaretro- or lentiviral vector systems has proven its virtue as an alternative treatment for a series of genetic disorders. The number of approved phase I/II clinical trials, especially for rare diseases, is steadily increasing, but the overall hurdles to become a broadly acceptable therapy remain numerous. The efforts by clinicians and basic scientists have tremendously improved the knowledge available about feasibility and biosafety of gene therapy. Nonetheless, despite the generation of a plethora of clinical and preclinical safety data, we still lack sufficiently powerful assays to predictively assess the exact levels of toxicity that might be observed in any given clinical gene therapy. Insertional mutagenesis is one of the major concerns when using integrating vectors for permanent cell modification, and the occurrence of adverse events related to genotoxicity, in early gene therapy trials, has refrained the field of gene therapy from emerging further. In this review, we provided a comprehensive overview on the basic principles and potential co-factors concurring in the generation of adverse events reported in gene therapy clinical trials using integrating vectors. Additionally, we summarized the available systems to assess genotoxicity at the preclinical level and we shed light on the issues affecting the predictive value of these assays when translating their results into the clinical arena. In the last section of the review we briefly touched on the future trends and how they could increase the safety of gene therapy employing integrating vector technology to take it to the next level.

  15. Gene Therapy for Retinal Disease: What Lies Ahead.

    PubMed

    MacLaren, Robert E

    2015-01-01

    Gene therapy in simple terms can be defined as a medical treatment that exerts its effects using molecules of DNA or RNA within cells. Most traditional drugs act by mechanisms that include binding to cell surface receptors, inhibiting enzymes in intracellular pathways or by modifying transcription. These approaches rely to some extent on a normal genetic make-up of the cell in the final common pathway, which raises significant challenges in diseases that are caused by specific gene mutations. An alternative gene therapy approach to change the behaviour of cells at the most fundamental level by one single genetic modification is therefore potentially very powerful and wide ranging. This paper presents an overview of retinal gene therapy at the current time and highlights the future therapeutic potential for a number of diseases that are currently incurable.

  16. Recent trends in the gene therapy of β-thalassemia

    PubMed Central

    Finotti, Alessia; Breda, Laura; Lederer, Carsten W; Bianchi, Nicoletta; Zuccato, Cristina; Kleanthous, Marina; Rivella, Stefano; Gambari, Roberto

    2015-01-01

    The β-thalassemias are a group of hereditary hematological diseases caused by over 300 mutations of the adult β-globin gene. Together with sickle cell anemia, thalassemia syndromes are among the most impactful diseases in developing countries, in which the lack of genetic counseling and prenatal diagnosis have contributed to the maintenance of a very high frequency of these genetic diseases in the population. Gene therapy for β-thalassemia has recently seen steadily accelerating progress and has reached a crossroads in its development. Presently, data from past and ongoing clinical trials guide the design of further clinical and preclinical studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene-therapy approaches. Moreover, human erythropoietic stem cells from β-thalassemia patients have been the cellular targets of choice to date whereas future gene-therapy studies might increasingly draw on induced pluripotent stem cells. Herein, we summarize the most significant developments in β-thalassemia gene therapy over the last decade, with a strong emphasis on the most recent findings, for β-thalassemia model systems; for β-, γ-, and anti-sickling β-globin gene addition and combinatorial approaches including the latest results of clinical trials; and for novel approaches, such as transgene-mediated activation of γ-globin and genome editing using designer nucleases. PMID:25737641

  17. Gene therapy for the treatment of cystic fibrosis.

    PubMed

    Burney, Tabinda J; Davies, Jane C

    2012-01-01

    Gene therapy is being developed as a novel treatment for cystic fibrosis (CF), a condition that has hitherto been widely-researched yet for which no treatment exists that halts the progression of lung disease. Gene therapy involves the transfer of correct copies of cystic fibrosis transmembrane conductance regulator (CFTR) DNA to the epithelial cells in the airways. The cloning of the CFTR gene in 1989 led to proof-of-principle studies of CFTR gene transfer in vitro and in animal models. The earliest clinical trials in CF patients were conducted in 1993 and used viral and non-viral gene transfer agents in both the nasal and bronchial airway epithelium. To date, studies have focused largely on molecular or bioelectric (chloride secretion) outcome measures, many demonstrating evidence of CFTR expression, but few have attempted to achieve clinical efficacy. As CF is a lifelong disease, turnover of the airway epithelium necessitates repeat administration. To date, this has been difficult to achieve with viral gene transfer agents due to host recognition leading to loss of expression. The UK Cystic Fibrosis Gene Therapy Consortium (Imperial College London, University of Edinburgh and University of Oxford) is currently working on a large and ambitious program to establish the clinical benefits of CF gene therapy. Wave 1, which has reached the clinic, uses a non-viral vector. A single-dose safety trial is nearing completion and a multi-dose clinical trial is shortly due to start; this will be powered for clinically-relevant changes. Wave 2, more futuristically, will look at the potential of lentiviruses, which have long-lasting expression. This review will summarize the current status of translational research in CF gene therapy. PMID:23776378

  18. Insulin gene therapy for type 1 diabetes mellitus.

    PubMed

    Handorf, Andrew M; Sollinger, Hans W; Alam, Tausif

    2015-04-01

    Type 1 diabetes mellitus is an autoimmune disease resulting from the destruction of pancreatic β cells. Current treatments for patients with type 1 diabetes mellitus include daily insulin injections or whole pancreas transplant, each of which are associated with profound drawbacks. Insulin gene therapy, which has shown great efficacy in correcting hyperglycemia in animal models, holds great promise as an alternative strategy to treat type 1 diabetes mellitus in humans. Insulin gene therapy refers to the targeted expression of insulin in non-β cells, with hepatocytes emerging as the primary therapeutic target. In this review, we present an overview of the current state of insulin gene therapy to treat type 1 diabetes mellitus, including the need for an alternative therapy, important features dictating the success of the therapy, and current obstacles preventing the translation of this treatment option to a clinical setting. In so doing, we hope to shed light on insulin gene therapy as a viable option to treat type 1 diabetes mellitus.

  19. Advances in gene therapy for muscular dystrophies

    PubMed Central

    Abdul-Razak, Hayder; Malerba, Alberto; Dickson, George

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments.

  20. Advances in gene therapy for muscular dystrophies

    PubMed Central

    Abdul-Razak, Hayder; Malerba, Alberto; Dickson, George

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments. PMID:27594988

  1. Advances in gene therapy for muscular dystrophies.

    PubMed

    Abdul-Razak, Hayder; Malerba, Alberto; Dickson, George

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments. PMID:27594988

  2. Transcriptional targeting of tumor endothelial cells for gene therapy

    PubMed Central

    Dong, Zhihong; Nör, Jacques E.

    2009-01-01

    It is well known that angiogenesis plays a critical role in the pathobiology of tumors. Recent clinical trials have shown that inhibition of angiogenesis can be an effective therapeutic strategy for patients with cancer. However, one of the outstanding issues in anti-angiogenic treatment for cancer is the development of toxicities related to off-target effects of drugs. Transcriptional targeting of tumor endothelial cells involves the use of specific promoters for selective expression of therapeutic genes in the endothelial cells lining the blood vessels of tumors. Recently, several genes that are expressed specifically in tumor-associated endothelial cells have been identified and characterized. These discoveries have enhanced the prospectus of transcriptionaly targeting tumor endothelial cells for cancer gene therapy. In this manuscript, we review the promoters, vectors, and therapeutic genes that have been used for transcriptional targeting of tumor endothelial cells, and discuss the prospects of such approaches for cancer gene therapy. PMID:19393703

  3. Gene therapy: a promising approach to treating spinal muscular atrophy.

    PubMed

    Mulcahy, Pádraig J; Iremonger, Kayleigh; Karyka, Evangelia; Herranz-Martín, Saúl; Shum, Ka-To; Tam, Janice Kal Van; Azzouz, Mimoun

    2014-07-01

    Spinal muscular atrophy (SMA) is a severe autosomal recessive disease caused by a genetic defect in the survival motor neuron 1 (SMN1) gene, which encodes SMN, a protein widely expressed in all eukaryotic cells. Depletion of the SMN protein causes muscle weakness and progressive loss of movement in SMA patients. The field of gene therapy has made major advances over the past decade, and gene delivery to the central nervous system (CNS) by in vivo or ex vivo techniques is a rapidly emerging field in neuroscience. Despite Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis being among the most common neurodegenerative diseases in humans and attractive targets for treatment development, their multifactorial origin and complicated genetics make them less amenable to gene therapy. Monogenic disorders resulting from modifications in a single gene, such as SMA, prove more favorable and have been at the fore of this evolution of potential gene therapies, and results to date have been promising at least. With the estimated number of monogenic diseases standing in the thousands, elucidating a therapeutic target for one could have major implications for many more. Recent progress has brought about the commercialization of the first gene therapies for diseases, such as pancreatitis in the form of Glybera, with the potential for other monogenic disease therapies to follow suit. While much research has been carried out, there are many limiting factors that can halt or impede translation of therapies from the bench to the clinic. This review will look at both recent advances and encountered impediments in terms of SMA and endeavor to highlight the promising results that may be applicable to various associated diseases and also discuss the potential to overcome present limitations. PMID:24845847

  4. Microneedles As a Delivery System for Gene Therapy

    PubMed Central

    Chen, Wei; Li, Hui; Shi, De; Liu, Zhenguo; Yuan, Weien

    2016-01-01

    Gene delivery systems can be divided to two major types: vector-based (either viral vector or non-viral vector) and physical delivery technologies. Many physical carriers, such as electroporation, gene gun, ultrasound start to be proved to have the potential to enable gene therapy. A relatively new physical delivery technology for gene delivery consists of microneedles (MNs), which has been studied in many fields and for many molecule types and indications. Microneedles can penetrate the stratum corneum, which is the main barrier for drug delivery through the skin with ease of administration and without significant pain. Many different kinds of MNs, such as metal MNs, coated MNs, dissolving MNs have turned out to be promising in gene delivery. In this review, we discussed the potential as well as the challenges of utilizing MNs to deliver nucleic acids for gene therapy. We also proposed that a combination of MNs and other gene delivery approaches may lead to a better delivery system for gene therapy. PMID:27303298

  5. An early history of gene transfer and therapy.

    PubMed

    Wolff, J A; Lederberg, J

    1994-04-01

    The term "gene therapy" was coined to distinguish it from the Orwellian connotations of "human genetic engineering," which, in turn, was derived from the term "genetic engineering." Genetic engineering was first used at the Sixth International Congress of Genetics held in 1932 and was taken to mean "the application of genetic principles to animal and plant breeding." Once the basics of molecular genetics and gene transfer in bacteria were established in the 1960s, gene transfer into animals and humans using either viral vectors and/or genetically modified cultured cells became inevitable. Despite the early exposition of the concept of gene therapy, progress awaited the advent of recombinant DNA technology. The lack of trustworthy techniques did not stop many researchers from attempting to transfer genes into cells in culture, animals, and humans. Viral genomes were used for the development of the first relatively efficient methods for gene transfer into mammalian cells in culture. In the late 1970s, early transfection techniques were combined with selection systems for cultured cells and recombinant DNA technology. With the development of retroviral vectors in the early 1980s, the possibility of efficient gene transfer into mammalian cells for the purpose of gene therapy became widely accepted.

  6. Intracellular delivery of potential therapeutic genes: prospects in cancer gene therapy.

    PubMed

    Bakhtiar, Athirah; Sayyad, Mustak; Rosli, Rozita; Maruyama, Atsushi; Chowdhury, Ezharul H

    2014-01-01

    Conventional therapies for malignant cancer such as chemotherapy and radiotherapy are associated with poor survival rates owing to the development of cellular resistance to cancer drugs and the lack of targetability, resulting in unwanted adverse effects on healthy cells and necessitating the lowering of therapeutic dose with consequential lower efficacy of the treatment. Gene therapy employing different types of viral and non-viral carriers to transport gene(s) of interest and facilitating production of the desirable therapeutic protein(s) has tremendous prospects in cancer treatments due to the high-level of specificity in therapeutic action of the expressed protein(s) with diminished off-target effects, although cancer cell-specific delivery of transgene(s) still poses some challenges to be addressed. Depending on the potential therapeutic target genes, cancer gene therapy could be categorized into tumor suppressor gene replacement therapy, immune gene therapy and enzyme- or prodrug-based therapy. This review would shed light on the current progress of delivery of potentially therapeutic genes into various cancer cells in vitro and animal models utilizing a variety of viral and non-viral vectors.

  7. Potential of Gene Therapy for the Treatment of Pituitary Tumors

    PubMed Central

    Goya, R G.; Sarkar, D.K.; Brown, O.A.; Hereñú, C.B.

    2010-01-01

    Pituitary adenomas constitute the most frequent neuroendocrine pathology, comprising up to 15% of primary intracranial tumors. Current therapies for pituitary tumors include surgery and radiotherapy, as well as pharmacological approaches for some types. Although all of these approaches have shown a significant degree of success, they are not devoid of unwanted side effects, and in most cases do not offer a permanent cure. Gene therapy—the transfer of genetic material for therapeutic purposes—has undergone an explosive development in the last few years. Within this context, the development of gene therapy approaches for the treatment of pituitary tumors emerges as a promising area of research. We begin by presenting a brief account of the genesis of prolactinomas, with particular emphasis on how estradiol induces prolactinomas in animals. In so doing, we discuss the role of each of the recently discovered growth inhibitory and growth stimulatory substances and their interactions in estrogen action. We also evaluate the cell-cell communication that may govern these growth factor interactions and subsequently promote the growth and survival of prolactinomas. Current research efforts to implement gene therapy in pituitary tumors include the treatment of experimental prolactinomas or somatomammotropic tumors with adenoviral vector-mediated transfer of the suicide gene for the herpes simplex type 1 (HSV1) thymidine kinase, which converts the prodrug ganciclovir into a toxic metabolite. In some cases, the suicide transgene has been placed under the control of pituitary cell-type specific promoters, like the human prolactin or human growth hormone promoters. Also, regulatable adenoviral vector systems are being assessed in gene therapy approaches for experimental pituitary tumors. In a different type of approach, an adenoviral vector, encoding the human retinoblastoma suppressor oncogene, has been successfully used to rescue the phenotype of spontaneous pituitary

  8. The history of eugenics and the future of gene therapy.

    PubMed

    Howell, Joel D

    1991-01-01

    In this commentary, I shall provide an overview of some recent histories of eugenics and suggest some lessons that this history may have for today. This commentary is not an argument against gene therapy. Rather, it is a plea for historical understanding of what has been done,..."in the name of eugenics."... There is a temptation to parody misgivings about gene therapy. I suggest that there are justified reasons to think about the social consequences of gene therapy. I do not hold that we ought to stop the program now, but I do believe that scientists, physicians, and the public ought to be aware of the slippery slope on which we as a society -- and we are all members of society -- have embarked.

  9. Regulation of Cell and Gene Therapy Medicinal Products in Taiwan.

    PubMed

    Lin, Yi-Chu; Wang, Po-Yu; Tsai, Shih-Chih; Lin, Chien-Liang; Tai, Hsuen-Yung; Lo, Chi-Fang; Wu, Shiow-Ing; Chiang, Yu-Mei; Liu, Li-Ling

    2015-01-01

    Owing to the rapid and mature development of emerging biotechnology in the fields of cell culture, cell preservation, and recombinant DNA technology, more and more cell or gene medicinal therapy products have been approved for marketing, to treat serious diseases which have been challenging to treat with current medical practice or medicine. This chapter will briefly introduce the Taiwan Food and Drug Administration (TFDA) and elaborate regulation of cell and gene therapy medicinal products in Taiwan, including regulatory history evolution, current regulatory framework, application and review procedures, and relevant jurisdictional issues. Under the promise of quality, safety, and efficacy of medicinal products, it is expected the regulation and environment will be more flexible, streamlining the process of the marketing approval of new emerging cell or gene therapy medicinal products and providing diverse treatment options for physicians and patients.

  10. [Is a gene therapy for diabetic syndromes foreseeable?].

    PubMed

    Assan, R; Clauser, E; Larger, E

    1994-01-01

    The concepts and methods of gene therapy are summarized in order to assess a possible implication in the treatment of diabetes mellitus. Gene therapy requires identification of the critical genetic defect and then the preparation and introduction of the therapeutic transgene, with an appropriate targeting and a strong regulated expression. The bases of the different human diabetic syndromes are reviewed in their present state of knowledge: they are mostly clarified in the case of MODY, extreme insulin resistance syndromes, and some mitochondrial diabetic syndromes; but still obscure in the case of Type 2 and Type 1 diabetic syndromes. Substantial contributions to the understanding of the pathophysiology of diabetes have been brought by transgenic animal models. Gene therapy of human diabetic syndromes may become available, in an undetermined future, particularly under the forms of insulin secreting transgenic "organoïds". Such treatments should be proportionate to the intrinsic severity of the candidate diseases and carefully screened for safety. PMID:8001711

  11. State-of-the-art 2003 on PKU gene therapy

    PubMed Central

    Ding, Zhaobing; Harding, Cary O.; Thöny, Beat

    2009-01-01

    Phenylketonuria (or PKU) is a well-known and widespread genetic disease for which many countries perform newborn screening, and life-long dietary restriction is still the ultimate and effective therapy. However, the diet is complicated, unpalatable, and expensive. The long-term effects of diet discontinuation in adults, except for the serious adverse effects of maternal hyperphenylalaninemia upon the developing fetus, have not been systematically studied, but congnitive decline and neurologic abnormalities have been anecdotally reported. Thus, alternative approaches for PKU therapy, including gene therapy, must be further explored. Here we summarize past present nonviral and viral gene transfer approaches, both in vitro studies and preclinical animal trials, to delivering the PAH gene into liver or other organs as potential alternatives to life-long phenylalanine-restricted dietary theraphy. PMID:14728985

  12. Large Animal Models of Neurological Disorders for Gene Therapy

    PubMed Central

    Gagliardi, Christine; Bunnell, Bruce A.

    2009-01-01

    The development of therapeutic interventions for genetic disorders and diseases that affect the central nervous system (CNS) has proven challenging. There has been significant progress in the development of gene therapy strategies in murine models of human disease, but gene therapy outcomes in these models do not always translate to the human setting. Therefore, large animal models are crucial to the development of diagnostics, treatments, and eventual cures for debilitating neurological disorders. This review focuses on the description of large animal models of neurological diseases such as lysosomal storage diseases, Parkinson’s disease, Huntington’s disease, and neuroAIDS. The review also describes the contributions of these models to progress in gene therapy research. PMID:19293458

  13. Stem cells’ guided gene therapy of cancer: New frontier in personalized and targeted therapy

    PubMed Central

    Mavroudi, Maria; Zarogoulidis, Paul; Porpodis, Konstantinos; Kioumis, Ioannis; Lampaki, Sofia; Yarmus, Lonny; Malecki, Raf; Zarogoulidis, Konstantinos; Malecki, Marek

    2014-01-01

    Introduction Diagnosis and therapy of cancer remain to be the greatest challenges for all physicians working in clinical oncology and molecular medicine. The statistics speak for themselves with the grim reports of 1,638,910 men and women diagnosed with cancer and nearly 577,190 patients passed away due to cancer in the USA in 2012. For practicing clinicians, who treat patients suffering from advanced cancers with contemporary systemic therapies, the main challenge is to attain therapeutic efficacy, while minimizing side effects. Unfortunately, all contemporary systemic therapies cause side effects. In treated patients, these side effects may range from nausea to damaged tissues. In cancer survivors, the iatrogenic outcomes of systemic therapies may include genomic mutations and their consequences. Therefore, there is an urgent need for personalized and targeted therapies. Recently, we reviewed the current status of suicide gene therapy for cancer. Herein, we discuss the novel strategy: genetically engineered stem cells’ guided gene therapy. Review of therapeutic strategies in preclinical and clinical trials Stem cells have the unique potential for self renewal and differentiation. This potential is the primary reason for introducing them into medicine to regenerate injured or degenerated organs, as well as to rejuvenate aging tissues. Recent advances in genetic engineering and stem cell research have created the foundations for genetic engineering of stem cells as the vectors for delivery of therapeutic transgenes. Specifically in oncology, the stem cells are genetically engineered to deliver the cell suicide inducing genes selectively to the cancer cells only. Expression of the transgenes kills the cancer cells, while leaving healthy cells unaffected. Herein, we present various strategies to bioengineer suicide inducing genes and stem cell vectors. Moreover, we review results of the main preclinical studies and clinical trials. However, the main risk for

  14. Antisense Gene Silencing: Therapy for Neurodegenerative Disorders?

    PubMed Central

    Nielsen, Troels T.; Nielsen, Jørgen E.

    2013-01-01

    Since the first reports that double-stranded RNAs can efficiently silence gene expression in C. elegans, the technology of RNA interference (RNAi) has been intensively exploited as an experimental tool to study gene function. With the subsequent discovery that RNAi could also be applied to mammalian cells, the technology of RNAi expanded from being a valuable experimental tool to being an applicable method for gene-specific therapeutic regulation, and much effort has been put into further refinement of the technique. This review will focus on how RNAi has developed over the years and how the technique is exploited in a pre-clinical and clinical perspective in relation to neurodegenerative disorders. PMID:24705213

  15. Macrophage mediated PCI enhanced gene-directed enzyme prodrug therapy

    NASA Astrophysics Data System (ADS)

    Christie, Catherine E.; Zamora, Genesis; Kwon, Young J.; Berg, Kristian; Madsen, Steen J.; Hirschberg, Henry

    2015-03-01

    Photochemical internalization (PCI) is a photodynamic therapy-based approach for improving the delivery of macromolecules and genes into the cell cytosol. Prodrug activating gene therapy (suicide gene therapy) employing the transduction of the E. coli cytosine deaminase (CD) gene into tumor cells, is a promising method. Expression of this gene within the target cell produces an enzyme that converts the nontoxic prodrug, 5-FC, to the toxic metabolite, 5-fluorouracil (5-FU). 5-FC may be particularly suitable for brain tumors, because it can readily cross the bloodbrain barrier (BBB). In addition the bystander effect, where activated drug is exported from the transfected cancer cells into the tumor microenvironment, plays an important role by inhibiting growth of adjacent tumor cells. Tumor-associated macrophages (TAMs) are frequently found in and around glioblastomas. Monocytes or macrophages (Ma) loaded with drugs, nanoparticles or photosensitizers could therefore be used to target tumors by local synthesis of chemo attractive factors. The basic concept is to combine PCI, to enhance the ex vivo transfection of a suicide gene into Ma, employing specially designed core/shell NP as gene carrier.

  16. Technology evaluation: VEGF165 gene therapy, Valentis Inc.

    PubMed

    Morse, M A

    2001-02-01

    Valentis Inc, formerly GeneMedicine, is developing a vascular endothelial growth factor (VEGF165) non-viral gene therapy using its proprietary PINC polymer for plasmid condensation. Two physician-initiated phase II angioplasty trials are ongoing, one for treating peripheral vascular disease and one for treating coronary artery disease [281714], [347153]. In February 2000, the trials were expected to be completed in the fourth quarter of 2000 [356225]; however, in October 2000, it was reported that the trial for peripheral vascular disease would be completed in the first quarter of 2001 [385232]. In March 2000, Valentis initiated a trial incorporating Valentis's DOTMA-based cationic lipid gene delivery system and the VEGF165 gene with Eurogene's local collar-reservoir delivery device. The trial is designed to demonstrate that the VEGF165 gene, delivered locally to the outside surface of a blood vessel, will transfect and express in the smooth muscle cells of the vessel wall [360683]. In March 1999, Valentis was awarded with a Phase II SBIR grant of $686,260. The aim of grant was to advance the development of non-viral gene therapies for ischemia. Specifically, Valentis intended to select an optimal promoter to be used with the VEGF expression plasmid. Valentis also intended to evaluate the gene therapy system in a rabbit ischemia model and complete the necessary preclinical studies for submission of an IND [318137]. PMID:11249737

  17. Stem Cell Based Gene Therapy in Prostate Cancer

    PubMed Central

    Lee, Hong Jun; Song, Yun Seob

    2014-01-01

    Current prostate cancer treatment, especially hormone refractory cancer, may create profound iatrogenic outcomes because of the adverse effects of cytotoxic agents. Suicide gene therapy has been investigated for the substitute modality for current chemotherapy because it enables the treatment targeting the cancer cells. However the classic suicide gene therapy has several profound side effects, including immune-compromised due to viral vector. Recently, stem cells have been regarded as a new upgraded cellular vehicle or vector because of its homing effects. Suicide gene therapy using genetically engineered mesenchymal stem cells or neural stem cells has the advantage of being safe, because prodrug administration not only eliminates tumor cells but consequently kills the more resistant therapeutic stem cells as well. The attractiveness of prodrug cancer gene therapy by stem cells targeted to tumors lies in activating the prodrug directly within the tumor mass, thus avoiding systemic toxicity. Therapeutic achievements using stem cells in prostate cancer include the cytosine deaminase/5-fluorocytosine prodrug system, herpes simplex virus thymidine kinase/ganciclovir, carboxyl esterase/CPT11, and interferon-beta. The aim of this study is to review the stem cell therapy in prostate cancer including its proven mechanisms and also limitations. PMID:25121103

  18. Ex vivo gene therapy for HIV-1 treatment

    PubMed Central

    Scherer, Lisa J.; Rossi, John J.

    2011-01-01

    Until recently, progress in ex vivo gene therapy (GT) for human immunodeficiency virus-1 (HIV-1) treatment has been incremental. Long-term HIV-1 remission in a patient who received a heterologous stem cell transplant for acquired immunodeficiency syndrome-related lymphoma from a CCR5−/– donor, even after discontinuation of conventional therapy, has energized the field. We review the status of current approaches as well as future directions in the areas of therapeutic targets, combinatorial strategies, vector design, introduction of therapeutics into stem cells and enrichment/expansion of gene-modified cells. Finally, we discuss recent advances towards clinical application of HIV-1 GT. PMID:21505069

  19. Non-viral gene therapy for bone tissue engineering.

    PubMed

    Wegman, Fiona; Oner, F Cumhur; Dhert, Wouter J A; Alblas, Jacqueline

    2013-01-01

    The possibilities of using gene therapy for bone regeneration have been extensively investigated. Improvements in the design of new transfection agents, combining vectors and delivery/release systems to diminish cytotoxicity and increase transfection efficiencies have led to several successful in vitro, ex vivo and in vivo strategies. These include growth factor or short interfering ribonucleic acid (siRNA) delivery, or even enzyme replacement therapies, and have led to increased osteogenic differentiation and bone formation in vivo. These results provide optimism to consider use in humans with some of these gene-delivery strategies in the near future.

  20. Single stem cell gene therapy for genetic skin disease.

    PubMed

    Larsimont, Jean-Christophe; Blanpain, Cédric

    2015-04-01

    Stem cell gene therapy followed by transplantation into damaged regions of the skin has been successfully used to treat genetic skin blistering disorder. Usually, many stem cells are virally transduced to obtain a sufficient number of genetically corrected cells required for successful transplantation, as genetic insertion in every stem cell cannot be precisely defined. In this issue of EMBO Molecular Medicine, Droz-Georget Lathion et al developed a new strategy for ex vivo single cell gene therapy that allows extensive genomic and functional characterization of the genetically repaired individual cells before they can be used in clinical settings.

  1. Gene therapy, fundamental rights, and the mandates of public health.

    PubMed

    Lynch, John

    2004-01-01

    Recent and near-future developments in the field of molecular biology will make possible the treatment of genetic disease on an unprecedented scale. The potential applications of these developments implicate important public policy considerations. Among the questions that may arise is the constitutionality of a state-mandated program of gene therapy for the purpose of eradicating certain genetic diseases. Though controversial, precedents of public health jurisprudence suggest that such a program could survive constitutional scrutiny. This article provides an overview of gene therapy in the context of fundamental rights and the mandates of public health. PMID:15255004

  2. Pathogenic mechanisms and the prospect of gene therapy for choroideremia

    PubMed Central

    Dimopoulos, Ioannis S; Chan, Stephanie; MacLaren, Robert E

    2015-01-01

    Introduction Choroideremia is a rare, X-linked disorder recognized by its specific ocular phenotype as a progressive degenerative retinopathy resulting in blindness. New therapeutic approaches, primarily based on genetic mechanisms, have emerged that aim to prevent the progressive vision loss. Areas covered This article will review the research that has progressed incrementally over the past two decades from mapping to gene discovery, uncovering the presumed mechanisms triggering the retinopathy to preclinical testing of potential therapies. Expert opinion While still in an evaluative phase, the introduction of gene replacement as a potential therapy has been greeted with great enthusiasm by patients, advocacy groups and the medical community. PMID:26251765

  3. HSV Recombinant Vectors for Gene Therapy

    PubMed Central

    Manservigi, Roberto; Argnani, Rafaela; Marconi, Peggy

    2010-01-01

    The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges. PMID:20835362

  4. Bacteria as vectors for gene therapy of cancer

    PubMed Central

    Baban, Chwanrow K; Cronin, Michelle; O'Hanlon, Deirdre; O'Sullivan, Gerald C

    2010-01-01

    Anti-cancer therapy faces major challenges, particularly in terms of specificity of treatment. The ideal therapy would eradicate tumor cells selectively with minimum side effects on normal tissue. Gene or cell therapies have emerged as realistic prospects for the treatment of cancer, and involve the delivery of genetic information to a tumor to facilitate the production of therapeutic proteins. However, there is still much to be done before an efficient and safe gene medicine is achieved, primarily developing the means of targeting genes to tumors safely and efficiently. An emerging family of vectors involves bacteria of various genera. It has been shown that bacteria are naturally capable of homing to tumors when systemically administered resulting in high levels of replication locally. Furthermore, invasive species can deliver heterologous genes intra-cellularly for tumor cell expression. Here, we review the use of bacteria as vehicles for gene therapy of cancer, detailing the mechanisms of action and successes at preclinical and clinical levels. PMID:21468205

  5. State of the art: gene therapy of haemophilia.

    PubMed

    Spencer, H T; Riley, B E; Doering, C B

    2016-07-01

    Clinical gene therapy has been practiced for more than a quarter century and the first products are finally gaining regulatory/marketing approval. As of 2016, there have been 11 haemophilia gene therapy clinical trials of which six are currently open. Each of the ongoing phase 1/2 trials is testing a variation of a liver-directed adeno-associated viral (AAV) vector encoding either factor VIII (FVIII) or factor IX (FIX) . As summarized herein, the clinical results to date have been mixed with some perceived success and a clear recognition of the immune response to AAV as an obstacle to therapeutic success. We also attempt to highlight promising late-stage preclinical activities for AAV-FVIII where, due to inherent challenges with manufacture, delivery and transgene product biosynthesis, more technological development has been necessary to achieve results comparable to what has been observed previously for AAV-FIX. Finally, we describe the development of a stem cell-based lentiviral vector gene therapy product that has the potential to provide lifelong production of FVIII and provide a functional 'cure' for haemophilia A. Integral to this program has been the incorporation of a blood cell-specific gene expression element driving the production of a bioengineered FVIII designed for optimal efficiency. As clearly outlined herein, haemophilia remains at the forefront of the rapidly advancing clinical gene therapy field where there exists a shared expectation that transformational advances are on the horizon. PMID:27405679

  6. Gene and stem cell therapy in peripheral arterial occlusive disease.

    PubMed

    Kalka, C; Baumgartner, Iris

    2008-01-01

    Peripheral arterial occlusive disease (PAOD) is a manifestation of systemic atherosclerosis strongly associated with a high risk of cardiovascular morbidity and mortality. In a considerable proportion of patients with PAOD, revascularization either by endovascular means or by open surgery combined with best possible risk factor modification does not achieve limb salvage or relief of ischaemic rest pain. As a consequence, novel therapeutic strategies have been developed over the last two decades aiming to promote neovascularization and remodelling of collaterals. Gene and stem cell therapy are the main directions for clinical investigation concepts. For both, preclinical studies have shown promising results using a wide variety of genes encoding for growth factors and populations of adult stem cells, respectively. As a consequence, clinical trials have been performed applying gene and stem cell-based concepts. However, it has become apparent that a straightforward translation into humans is not possible. While several trials reported relief of symptoms and functional improvement, other trials did not confirm this early promise of efficacy. Ongoing clinical trials with an improved study design are needed to confirm the potential that gene and cell therapy may have and to prevent the gaps in our scientific knowledge that will jeopardize the establishment of angiogenic therapy as an additional medical treatment of PAOD. This review summarizes the experimental background and presents the current status of clinical applications and future perspectives of the therapeutic use of gene and cell therapy strategies for PAOD.

  7. Biosafety challenges for use of lentiviral vectors in gene therapy.

    PubMed

    Rothe, Michael; Modlich, Ute; Schambach, Axel

    2013-12-01

    Lentiviral vectors are promising tools for the genetic modification of cells in biomedical research and gene therapy. Their use in recent clinical trials for the treatment of adrenoleukodystrophy, β-thalassemia, Wiskott-Aldrich- Syndrome and metachromatic leukodystrophy underlined their efficacy for therapies especially in case of hereditary diseases. In comparison to gammaretroviral LTR-driven vectors, which were employed in the first clinical trials, lentiviral vectors present with some favorable features like the ability to transduce also non-dividing cells and a potentially safer insertion profile. However, genetic modification with viral vectors in general and stable integration of the therapeutic gene into the host cell genome bear concerns with respect to different levels of personal or environmental safety. Among them, insertional mutagenesis by enhancer mediated dysregulation of neighboring genes or aberrant splicing is still the biggest concern. However, also risks like immunogenicity of vector particles, the phenotoxicity of the transgene and potential vertical or horizontal transmission by replication competent retroviruses need to be taken into account. This review will give an overview on biosafety aspects that are relevant to the use of lentiviral vectors for genetic modification and gene therapy. Furthermore, assay systems aiming at evaluating biosafety in preclinical settings and recent promising clinical trials including efforts of monitoring of patients after gene therapy will be discussed.

  8. Gene therapy in Alzheimer's disease - potential for disease modification.

    PubMed

    Nilsson, Per; Iwata, Nobuhisa; Muramatsu, Shin-ichi; Tjernberg, Lars O; Winblad, Bengt; Saido, Takaomi C

    2010-04-01

    Alzheimer's disease (AD) is the major cause of dementia in the elderly, leading to memory loss and cognitive decline. The mechanism underlying onset of the disease has not been fully elucidated. However, characteristic pathological manifestations include extracellular accumulation and aggregation of the amyloid beta-peptide (Abeta) into plaques and intracellular accumulation and aggregation of hyperphosphorylated tau, forming neurofibrillary tangles. Despite extensive research worldwide, no disease modifying treatment is yet available. In this review, we focus on gene therapy as a potential treatment for AD, and summarize recent work in the field, ranging from proof-of-concept studies in animal models to clinical trials. The multifactorial causes of AD offer a variety of possible targets for gene therapy, including two neurotrophic growth factors, nerve growth factor and brain-derived neurotrophic factor, Abeta-degrading enzymes, such as neprilysin, endothelin-converting enzyme and cathepsin B, and AD associated apolipoprotein E. This review also discusses advantages and drawbacks of various rapidly developing virus-mediated gene delivery techniques for gene therapy. Finally, approaches aiming at down-regulating amyloid precursor protein (APP) and beta-site APP cleaving enzyme 1 levels by means of siRNA-mediated knockdown are briefly summarized. Overall, the prospects appear hopeful that gene therapy has the potential to be a disease modifying treatment for AD.

  9. Megakaryocyte- and megakaryocyte precursor–related gene therapies

    PubMed Central

    2016-01-01

    Hematopoietic stem cells (HSCs) can be safely collected from the body, genetically modified, and re-infused into a patient with the goal to express the transgene product for an individual’s lifetime. Hematologic defects that can be corrected with an allogeneic bone marrow transplant can theoretically also be treated with gene replacement therapy. Because some genetic disorders affect distinct cell lineages, researchers are utilizing HSC gene transfer techniques using lineage-specific endogenous gene promoters to confine transgene expression to individual cell types (eg, ITGA2B for inherited platelet defects). HSCs appear to be an ideal target for platelet gene therapy because they can differentiate into megakaryocytes which are capable of forming several thousand anucleate platelets that circulate within blood vessels to establish hemostasis by repairing vascular injury. Platelets play an essential role in other biological processes (immune response, angiogenesis) as well as diseased states (atherosclerosis, cancer, thrombosis). Thus, recent advances in genetic manipulation of megakaryocytes could lead to new and improved therapies for treating a variety of disorders. In summary, genetic manipulation of megakaryocytes has progressed to the point where clinically relevant strategies are being developed for human trials for genetic disorders affecting platelets. Nevertheless, challenges still need to be overcome to perfect this field; therefore, strategies to increase the safety and benefit of megakaryocyte gene therapy will be discussed. PMID:26787735

  10. Non-viral vectors for gene-based therapy.

    PubMed

    Yin, Hao; Kanasty, Rosemary L; Eltoukhy, Ahmed A; Vegas, Arturo J; Dorkin, J Robert; Anderson, Daniel G

    2014-08-01

    Gene-based therapy is the intentional modulation of gene expression in specific cells to treat pathological conditions. This modulation is accomplished by introducing exogenous nucleic acids such as DNA, mRNA, small interfering RNA (siRNA), microRNA (miRNA) or antisense oligonucleotides. Given the large size and the negative charge of these macromolecules, their delivery is typically mediated by carriers or vectors. In this Review, we introduce the biological barriers to gene delivery in vivo and discuss recent advances in material sciences, nanotechnology and nucleic acid chemistry that have yielded promising non-viral delivery systems, some of which are currently undergoing testing in clinical trials. The diversity of these systems highlights the recent progress of gene-based therapy using non-viral approaches.

  11. Glaucoma: genes, phenotypes, and new directions for therapy

    PubMed Central

    Fan, Bao Jian; Wiggs, Janey L.

    2010-01-01

    Glaucoma, a leading cause of blindness worldwide, is characterized by progressive optic nerve damage, usually associated with intraocular pressure. Although the clinical progression of the disease is well defined, the molecular events responsible for glaucoma are currently poorly understood and current therapeutic strategies are not curative. This review summarizes the human genetics and genomic approaches that have shed light on the complex inheritance of glaucoma genes and the potential for gene-based and cellular therapies that this research makes possible. PMID:20811162

  12. Gene therapy for primary immunodeficiencies: current status and future prospects.

    PubMed

    Qasim, Waseem; Gennery, Andrew R

    2014-06-01

    Gene therapy using autologous haematopoietic stem cells offers a valuable treatment option for patients with primary immunodeficiencies who do not have access to an HLA-matched donor, although such treatments have not been without their problems. This review details gene therapy trials for X-linked and adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID), Wiskott-Aldrich syndrome (WAS) and chronic granulomatous disease (CGD). X-linked SCID was chosen for gene therapy because of previous 'natural' genetic correction through a reversion event in a single lymphoid precursor, demonstrating limited thymopoiesis and restricted T-lymphocyte receptor repertoire, showing selective advantage of progenitors possessing the wild-type gene. In early studies, patients were treated with long terminal repeats-intact gamma-retroviral vectors, without additional chemotherapy. Early results demonstrated gene-transduced cells, sustained thymopoiesis, and a diverse T-lymphocyte repertoire with normal function. Serious adverse effects were subsequently reported in 5 of 20 patients, with T-lymphocyte leukaemia developing, secondary to the viral vector integrating adjacent to a known oncogene. New trials using self-inactivating gamma-retroviral vectors are progressing. Trials for ADA-SCID using gamma-retroviral vectors have been successful, with no similar serious adverse effects reported; trials using lentiviral vectors are in progress. Patients with WAS and CGD treated with early gamma-retroviral vectors have developed similar lymphoproliferative adverse effects to those seen in X-SCID--current trials are using new-generation vectors. Targeted gene insertion using homologous recombination of corrected gene sequences by cellular DNA repair pathways following targeted DNA breakage will improve efficacy and safety of gene therapy. A number of new techniques are discussed.

  13. GENE THERAPIES FOR ARRHYTHMIAS IN HEART FAILURE

    PubMed Central

    Akar, Fadi G.; Hajjar, Roger J.

    2014-01-01

    In this article, we review recent advances in our understanding of arrhythmia mechanisms in the failing heart. We focus on changes in repolarization, conduction, and intracellular calcium cycling because of their importance to the vast majority of clinical arrhythmias in heart failure. We highlight recent efforts to combat arrhythmias using gene-based approaches that target ion channel, gap junction, and calcium cycling proteins. We further discuss the advantages and limitations associated with individual approaches. PMID:24566976

  14. A preclinical approach for gene therapy of β-thalassemia

    PubMed Central

    Breda, Laura; Kleinert, Dorothy A.; Casu, Carla; Casula, Laura; Cartegni, Luca; Fibach, Eitan; Mancini, Irene; Giardina, Patricia J.; Gambari, Roberto; Rivella, Stefano

    2011-01-01

    Lentiviral-mediated β-globin gene transfer successfully treated β-thalassemic mice. Based on this result, clinical trials were initiated. To date, however, no study has investigated the efficacy of gene therapy in relation to the nature of the different β-globin mutations found in patients. Most mutations can be classified as β0 or β+, based on the amount of β-globin protein produced. Therefore, we propose that a screening in vitro is necessary to verify the efficacy of gene transfer prior to treatment of individual patients. We used a two-phase liquid culture system to expand and differentiate erythroid progenitor cells (ErPCs) transduced with lentiviral vectors. We propose the use of this system to test the efficiency of lentiviral vectors carrying the human β-globin gene, to correct the phenotype of ErPCs from patients preparing for gene therapy. This new approach might have profound implications for designing gene therapy and for understanding the genotype/phenotype variability observed in Cooley’s anemia patients. PMID:20712784

  15. Nanoparticle-mediated delivery of suicide genes in cancer therapy.

    PubMed

    Vago, Riccardo; Collico, Veronica; Zuppone, Stefania; Prosperi, Davide; Colombo, Miriam

    2016-09-01

    Conventional chemotherapeutics have been employed in cancer treatment for decades due to their efficacy in killing the malignant cells, but the other side of the coin showed off-target effects, onset of drug resistance and recurrences. To overcome these limitations, different approaches have been investigated and suicide gene therapy has emerged as a promising alternative. This approach consists in the introduction of genetic materials into cancerous cells or the surrounding tissue to cause cell death or retard the growth of the tumor mass. Despite promising results obtained both in vitro and in vivo, this innovative approach has been limited, for long time, to the treatment of localized tumors, due to the suboptimal efficiency in introducing suicide genes into cancer cells. Nanoparticles represent a valuable non-viral delivery system to protect drugs in the bloodstream, to improve biodistribution, and to limit side effects by achieving target selectivity through surface ligands. In this scenario, the real potential of suicide genes can be translated into clinically viable treatments for patients. In the present review, we summarize the recent advances of inorganic nanoparticles as non-viral vectors in terms of therapeutic efficacy, targeting capacity and safety issues. We describe the main suicide genes currently used in therapy, with particular emphasis on toxin-encoding genes of bacterial and plant origin. In addition, we discuss the relevance of molecular targeting and tumor-restricted expression to improve treatment specificity to cancer tissue. Finally, we analyze the main clinical applications, limitations and future perspectives of suicide gene therapy.

  16. Genome-editing Technologies for Gene and Cell Therapy

    PubMed Central

    Maeder, Morgan L; Gersbach, Charles A

    2016-01-01

    Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed. PMID:26755333

  17. Cell-based gene therapy against HIV.

    PubMed

    Dey, R; Pillai, B

    2015-11-01

    The ability to integrate inside the host genome lays a strong foundation for HIV to play hide and seek with the host's immune surveillance mechanisms. Present anti-viral therapies, although successful in suppressing the virus to a certain level, fail to wipe it out completely. However, recent approaches in modifying stem cells and enabling them to give rise to potent/resistant T-cells against HIV holds immense hope for eradication of the virus from the host. In this review, we will briefly discuss previous landmark studies on engineering stem cells or T-cells that have been explored for therapeutic efficacy against HIV. We will also analyze potential benefits and pitfalls of some studies done recently and will share our opinion on emerging trends.

  18. Modeling of gene therapy for regenerative cells using intelligent agents.

    PubMed

    Adly, Aya Sedky; Aboutabl, Amal Elsayed; Ibrahim, M Shaarawy

    2011-01-01

    Gene therapy is an exciting field that has attracted much interest since the first submission of clinical trials. Preliminary results were very encouraging and prompted many investigators and researchers. However, the ability of stem cells to differentiate into specific cell types holds immense potential for therapeutic use in gene therapy. Realization of this potential depends on efficient and optimized protocols for genetic manipulation of stem cells. It is widely recognized that gain/loss of function approaches using gene therapy are essential for understanding specific genes functions, and such approaches would be particularly valuable in studies involving stem cells. A significant complexity is that the development stage of vectors and their variety are still not sufficient to be efficiently applied in stem cell therapy. The development of scalable computer systems constitutes one step toward understanding dynamics of its potential. Therefore, the primary goal of this work is to develop a computer model that will support investigations of virus' behavior and organization on regenerative tissues including genetically modified stem cells. Different simulation scenarios were implemented, and their results were encouraging compared to ex vivo experiments, where the error rate lies in the range of acceptable values in this domain of application.

  19. Lentiviral Hematopoietic Stem Cell Gene Therapy in Inherited Metabolic Disorders

    PubMed Central

    2014-01-01

    Abstract After more than 20 years of development, lentiviral hematopoietic stem cell gene therapy has entered the stage of initial clinical implementation for immune deficiencies and storage disorders. This brief review summarizes the development and applications, focusing on the lysosomal enzyme deficiencies, especially Pompe disease. PMID:25184354

  20. Gene Therapy for the Treatment of Primary Immune Deficiencies.

    PubMed

    Kuo, Caroline Y; Kohn, Donald B

    2016-05-01

    The use of gene therapy in the treatment of primary immune deficiencies (PID) has advanced significantly in the last decade. Clinical trials for X-linked severe combined immunodeficiency, adenosine deaminase deficiency (ADA), chronic granulomatous disease, and Wiskott-Aldrich syndrome have demonstrated that gene transfer into hematopoietic stem cells and autologous transplant can result in clinical improvement and is curative for many patients. Unfortunately, early clinical trials were complicated by vector-related insertional mutagenic events for several diseases with the exception of ADA-deficiency SCID. These results prompted the current wave of clinical trials for primary immunodeficiency using alternative retro- or lenti-viral vector constructs that are self-inactivating, and they have shown clinical efficacy without leukemic events thus far. The field of gene therapy continues to progress, with improvements in viral vector profiles, stem cell culturing techniques, and site-specific genome editing platforms. The future of gene therapy is promising, and we are quickly moving towards a time when it will be a standard cellular therapy for many forms of PID.

  1. Viral Vectors for Gene Therapy: Translational and Clinical Outlook.

    PubMed

    Kotterman, Melissa A; Chalberg, Thomas W; Schaffer, David V

    2015-01-01

    In a range of human trials, viral vectors have emerged as safe and effective delivery vehicles for clinical gene therapy, particularly for monogenic recessive disorders, but there has also been early work on some idiopathic diseases. These successes have been enabled by research and development efforts focusing on vectors that combine low genotoxicity and immunogenicity with highly efficient delivery, including vehicles based on adeno-associated virus and lentivirus, which are increasingly enabling clinical success. However, numerous delivery challenges must be overcome to extend this success to many diseases; these challenges include developing techniques to evade preexisting immunity, to ensure more efficient transduction of therapeutically relevant cell types, to target delivery, and to ensure genomic maintenance. Fortunately, vector-engineering efforts are demonstrating promise in the development of next-generation gene therapy vectors that can overcome these barriers. This review highlights key historical trends in clinical gene therapy, the recent clinical successes of viral-based gene therapy, and current research that may enable future clinical application.

  2. Novel molecular approaches to cystic fibrosis gene therapy

    PubMed Central

    Lee, Tim W. R.; Matthews, David A.; Blair, G. Eric

    2005-01-01

    Gene therapy holds promise for the treatment of a range of inherited diseases, such as cystic fibrosis. However, efficient delivery and expression of the therapeutic transgene at levels sufficient to result in phenotypic correction of cystic fibrosis pulmonary disease has proved elusive. There are many reasons for this lack of progress, both macroscopically in terms of airway defence mechanisms and at the molecular level with regard to effective cDNA delivery. This review of approaches to cystic fibrosis gene therapy covers these areas in detail and highlights recent progress in the field. For gene therapy to be effective in patients with cystic fibrosis, the cDNA encoding the cystic fibrosis transmembrane conductance regulator protein must be delivered effectively to the nucleus of the epithelial cells lining the bronchial tree within the lungs. Expression of the transgene must be maintained at adequate levels for the lifetime of the patient, either by repeat dosage of the vector or by targeting airway stem cells. Clinical trials of gene therapy for cystic fibrosis have demonstrated proof of principle, but gene expression has been limited to 30 days at best. Results suggest that viral vectors such as adenovirus and adeno-associated virus are unsuited to repeat dosing, as the immune response reduces the effectiveness of each subsequent dose. Nonviral approaches, such as cationic liposomes, appear more suited to repeat dosing, but have been less effective. Current work regarding non-viral gene delivery is now focused on understanding the mechanisms involved in cell entry, endosomal escape and nuclear import of the transgene. There is now increasing evidence to suggest that additional ligands that facilitate endosomal escape or contain a nuclear localization signal may enhance liposome-mediated gene delivery. Much progress in this area has been informed by advances in our understanding of the mechanisms by which viruses deliver their genomes to the nuclei of host

  3. Stem cell based anti-HIV Gene therapy

    PubMed Central

    Kitchen, Scott G.; Shimizu, Saki; An, Dong Sung

    2011-01-01

    Human stem cell-based therapeutic intervention strategies for treating HIV infection have recently undergone a renaissance as a major focus of investigation. Unlike most conventional antiviral therapies, genetically engineered hematopoietic stem cells possess the capacity for prolonged self-renewal that would continuously produce protected immune cells to fight against HIV. A successful strategy therefore has the potential to stably control and ultimately eradicate HIV from patients by a single or minimal treatment. Recent progress in the development of new technologies and clinical trials sets the stage for the current generation of gene therapy approaches to combat HIV infection. In this review, we will discuss two major approaches that are currently underway in the development of stem cell-based gene therapy to target HIV: One that focuses on the protection of cells from productive infection with HIV, and the other that focuses on targeting immune cells to directly combat HIV infection. PMID:21247612

  4. Let There Be Light: Gene and Cell Therapy for Blindness.

    PubMed

    Dalkara, Deniz; Goureau, Olivier; Marazova, Katia; Sahel, José-Alain

    2016-02-01

    Retinal degenerative diseases are a leading cause of irreversible blindness. Retinal cell death is the main cause of vision loss in genetic disorders such as retinitis pigmentosa, Stargardt disease, and Leber congenital amaurosis, as well as in complex age-related diseases such as age-related macular degeneration. For these blinding conditions, gene and cell therapy approaches offer therapeutic intervention at various disease stages. The present review outlines advances in therapies for retinal degenerative disease, focusing on the progress and challenges in the development and clinical translation of gene and cell therapies. A significant body of preclinical evidence and initial clinical results pave the way for further development of these cutting edge treatments for patients with retinal degenerative disorders.

  5. The feasibility of incorporating Vpx into lentiviral gene therapy vectors

    PubMed Central

    McAllery, Samantha A; Ahlenstiel, Chantelle L; Suzuki, Kazuo; Symonds, Geoff P; Kelleher, Anthony D; Turville, Stuart G

    2016-01-01

    While current antiretroviral therapy has significantly improved, challenges still remain in life-long targeting of HIV-1 reservoirs. Lentiviral gene therapy has the potential to deliver protective genes into the HIV-1 reservoir. However, inefficient reverse transcription (RT) occurs in HIV-1 reservoirs during lentiviral gene delivery. The viral protein Vpx is capable of increasing lentiviral RT by antagonizing the restriction factor SAMHD1. Incorporating Vpx into lentiviral vectors could substantially increase gene delivery into the HIV-1 reservoir. The feasibility of this Vpx approach was tested in resting cell models utilizing macrophages and dendritic cells. Our results showed Vpx exposure led to increased permissiveness of cells over a period that exceeded 2 weeks. Consequently, significant lower potency of HIV-1 antiretrovirals inhibiting RT and integration was observed. When Vpx was incorporated with anti-HIV-1 genes inhibiting either pre-RT or post-RT stages of the viral life-cycle, transduction levels significantly increased. However, a stronger antiviral effect was only observed with constructs that inhibit pre-RT stages of the viral life cycle. In conclusion this study demonstrates a way to overcome the major delivery obstacle of gene delivery into HIV-1 reservoir cell types. Importantly, incorporating Vpx with pre-RT anti-HIV-1 genes, demonstrated the greatest protection against HIV-1 infection. PMID:27790625

  6. Vector platforms for gene therapy of inherited retinopathies

    PubMed Central

    Trapani, Ivana; Puppo, Agostina; Auricchio, Alberto

    2014-01-01

    Inherited retinopathies (IR) are common untreatable blinding conditions. Most of them are inherited as monogenic disorders, due to mutations in genes expressed in retinal photoreceptors (PR) and in retinal pigment epithelium (RPE). The retina’s compatibility with gene transfer has made transduction of different retinal cell layers in small and large animal models via viral and non-viral vectors possible. The ongoing identification of novel viruses as well as modifications of existing ones based either on rational design or directed evolution have generated vector variants with improved transduction properties. Dozens of promising proofs of concept have been obtained in IR animal models with both viral and non-viral vectors, and some of them have been relayed to clinical trials. To date, recombinant vectors based on the adeno-associated virus (AAV) represent the most promising tool for retinal gene therapy, given their ability to efficiently deliver therapeutic genes to both PR and RPE and their excellent safety and efficacy profiles in humans. However, AAVs’ limited cargo capacity has prevented application of the viral vector to treatments requiring transfer of genes with a coding sequence larger than 5 kb. Vectors with larger capacity, i.e. nanoparticles, adenoviral and lentiviral vectors are being exploited for gene transfer to the retina in animal models and, more recently, in humans. This review focuses on the available platforms for retinal gene therapy to fight inherited blindness, highlights their main strengths and examines the efforts to overcome some of their limitations. PMID:25124745

  7. Nanoparticle-based targeted gene therapy for lung cancer

    PubMed Central

    Lee, Hung-Yen; Mohammed, Kamal A; Nasreen, Najmunnisa

    2016-01-01

    Despite striking insights on lung cancer progression, and cutting-edge therapeutic approaches the survival of patients with lung cancer, remains poor. In recent years, targeted gene therapy with nanoparticles is one of the most rapidly evolving and extensive areas of research for lung cancer. The major goal of targeted gene therapy is to bring forward a safe and efficient treatment to cancer patients via specifically targeting and deterring cancer cells in the body. To achieve high therapeutic efficacy of gene delivery, various carriers have been engineered and developed to provide protection to the genetic materials and efficient delivery to targeted cancer cells. Nanoparticles play an important role in the area of drug delivery and have been widely applied in cancer treatments for the purposes of controlled release and cancer cell targeting. Nanoparticles composed of artificial polymers, proteins, polysaccharides and lipids have been developed for the delivery of therapeutic deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequences to target cancer. In addition, the effectiveness of cancer targeting has been enhanced by surface modification or conjugation with biomolecules on the surface of nanoparticles. In this review article we provide an overview on the latest developments in nanoparticle-based targeted gene therapy for lung cancers. Firstly, we outline the conventional therapies and discuss strategies for targeted gene therapy using nanoparticles. Secondly, we provide the most representative and recent researches in lung cancers including malignant pleural mesothelioma, mainly focusing on the application of Polymeric, Lipid-based, and Metal-based nanoparticles. Finally, we discuss current achievements and future challenges. PMID:27294004

  8. Bone tissue engineering and repair by gene therapy.

    PubMed

    Betz, Volker M; Betz, Oliver B; Harris, Mitchel B; Vrahas, Mark S; Evans, Christopher H

    2008-01-01

    Many clinical conditions require the stimulation of bone growth. The use of recombinant bone morphogenetic proteins does not provide a satisfying solution to these conditions due to delivery problems and high cost. Gene therapy has emerged as a very promising approach for bone repair that overcomes limitations of protein-based therapy. Several preclinical studies have shown that gene transfer technology has the ability to deliver osteogenic molecules to precise anatomical locations at therapeutic levels for sustained periods of time. Both in-vivo and ex-vivo transduction of cells can induce bone formation at ectopic and orthotopic sites. Genetic engineering of adult stem cells from various sources with osteogenic genes has led to enhanced fracture repair, spinal fusion and rapid healing of bone defects in animal models. This review describes current viral and non-viral gene therapy strategies for bone tissue engineering and repair including recent work from the author's laboratory. In addition, the article discusses the potential of gene-enhanced tissue engineering to enter widespread clinical use.

  9. Homing genes, cell therapy and stroke.

    PubMed

    Shyu, Woei-Cherng; Lee, Yih-Jing; Liu, Demeral David; Lin, Shinn-Zong; Li, Hung

    2006-01-01

    Stem cell therapies, such as bone marrow transplantation, are a promising strategy for the treatment of stroke. Bone marrow-derived stem cells (BMSCs) including both hematopoietic and mesenchymal stem cells (HSCs and MSCs) can exhibit tremendous cellular differentiation in numerous organs. BMSCs may also promote structural and functional repair in several organs such as the heart, liver, brain, and skeletal muscle via stem cell plasticity. Interestingly, ischemia is known to induce mobilization of BMSCs in both animal models and humans. The tissue injury is "sensed" by the stem cells and they migrate to the site of damage and undergo differentiation. The plasticity, differentiation, and migratory functions of BMSCs in a given tissue are dependent on the specific signals present in the local micro-environment of the damaged tissue. Therefore, the ischemic micro-environment has critical patho-biological functions that are essential for the seeding, expansion, survival, renewal, growth and differentiation of BMSCs in damaged brain remodeling. Recent studies have identified the specific molecular signals, such as SDF-1/CXCR4, required for the interaction of BMSCs and damaged host tissues. Understanding the exact molecular basis of stem cell plasticity in relation to local ischemic signals could offer new insights to permit better management of stroke and other ischemic disorders. The aim of this review is to summarize recent studies into how BMSCs reach, recognize, and function in cerebral ischemic tissues, with particular regard to phenotypical reprogramming of stem cells, or "stem cell plasticity". PMID:16146779

  10. Towards autotrophic tissue engineering: Photosynthetic gene therapy for regeneration.

    PubMed

    Chávez, Myra Noemi; Schenck, Thilo Ludwig; Hopfner, Ursula; Centeno-Cerdas, Carolina; Somlai-Schweiger, Ian; Schwarz, Christian; Machens, Hans-Günther; Heikenwalder, Mathias; Bono, María Rosa; Allende, Miguel L; Nickelsen, Jörg; Egaña, José Tomás

    2016-01-01

    The use of artificial tissues in regenerative medicine is limited due to hypoxia. As a strategy to overcome this drawback, we have shown that photosynthetic biomaterials can produce and provide oxygen independently of blood perfusion by generating chimeric animal-plant tissues during dermal regeneration. In this work, we demonstrate the safety and efficacy of photosynthetic biomaterials in vivo after engraftment in a fully immunocompetent mouse skin defect model. Further, we show that it is also possible to genetically engineer such photosynthetic scaffolds to deliver other key molecules in addition to oxygen. As a proof-of-concept, biomaterials were loaded with gene modified microalgae expressing the angiogenic recombinant protein VEGF. Survival of the algae, growth factor delivery and regenerative potential were evaluated in vitro and in vivo. This work proposes the use of photosynthetic gene therapy in regenerative medicine and provides scientific evidence for the use of engineered microalgae as an alternative to deliver recombinant molecules for gene therapy. PMID:26474040

  11. [The hair follicle as a target for gene therapy].

    PubMed

    Cotsarelis, G

    2002-05-01

    The hair follicle possesses progenitor cells required for continuous hair follicle cycling and for epidermal keratinocytes, melanocytes and Langerhans cells. These different cell types can be the target of topical gene delivery in the skin of the mouse. Using a combination of liposomes and DNA, we demonstrate the feasibility of targeting hair follicle cells in human scalp xenografts. We consider liposome composition and stage of the hair cycle as important parameters influencing transfection of human hair follicles. Transfection is possible only during the early anagen phase. Factors and obstacles for the use of gene therapy in treating alopecia and skin diseases are discussed. A theoretical framework for future treatment of cutaneous and systemic disorders using gene therapy is presented.

  12. Towards autotrophic tissue engineering: Photosynthetic gene therapy for regeneration.

    PubMed

    Chávez, Myra Noemi; Schenck, Thilo Ludwig; Hopfner, Ursula; Centeno-Cerdas, Carolina; Somlai-Schweiger, Ian; Schwarz, Christian; Machens, Hans-Günther; Heikenwalder, Mathias; Bono, María Rosa; Allende, Miguel L; Nickelsen, Jörg; Egaña, José Tomás

    2016-01-01

    The use of artificial tissues in regenerative medicine is limited due to hypoxia. As a strategy to overcome this drawback, we have shown that photosynthetic biomaterials can produce and provide oxygen independently of blood perfusion by generating chimeric animal-plant tissues during dermal regeneration. In this work, we demonstrate the safety and efficacy of photosynthetic biomaterials in vivo after engraftment in a fully immunocompetent mouse skin defect model. Further, we show that it is also possible to genetically engineer such photosynthetic scaffolds to deliver other key molecules in addition to oxygen. As a proof-of-concept, biomaterials were loaded with gene modified microalgae expressing the angiogenic recombinant protein VEGF. Survival of the algae, growth factor delivery and regenerative potential were evaluated in vitro and in vivo. This work proposes the use of photosynthetic gene therapy in regenerative medicine and provides scientific evidence for the use of engineered microalgae as an alternative to deliver recombinant molecules for gene therapy.

  13. Current and future prospects for hemophilia gene therapy.

    PubMed

    Ward, Peter; Walsh, Christopher E

    2016-07-01

    Here we review the recent literature on Hemophilia gene transfer/therapy. Gene therapy is one of several new technologies being developed as a treatment for bleeding disorders. We will discuss current and pending clinical efforts and attempt to relate how the field is trending. In doing so, we will focus on the use of recombinant Adeno-associated viral (rAAV) vector-mediated gene transfer since all currently active trials are using this vector. Recent exciting results embody nearly 20 years of preclinical and translational research. After several early clinical attempts, therapeutic factor levels that can now be achieved reflect several modifications of the original vectors. Patterns of results are slowly starting to emerge as different AAV vectors are being tested. As with any new technology, there are drawbacks, and the potential for immune/inflammatory and oncogenic risks have emerged and will be discussed.

  14. Positive selection of gene-modified cells increases the efficacy of pancreatic cancer suicide gene therapy.

    PubMed

    Martinez-Quintanilla, Jordi; Cascallo, Manel; Gros, Alena; Fillat, Cristina; Alemany, Ramon

    2009-11-01

    Thymidine kinase (TK)-mediated suicide gene therapy has been considered for the treatment of pancreatic cancer. However, despite a bystander effect, the proportion of transduced tumor cells has proven too low to result in efficacy. We propose the use of a drug-selectable marker (MDR1) to enrich TK-expressing cells using chemotherapy. This enrichment or positive selection phase may increase the efficacy of suicide gene therapy. To test this strategy, we generated stable NP18MDR/TK-GFP transfectants and showed docetaxel resistance in vivo. Mixed tumors of MDR/TK-expressing cells and parental NP18 cells were established and docetaxel was used to increase the proportion of TK-expressing cells. After this positive selection phase, suicide gene therapy with ganciclovir was applied. Upon positive selection, the proportion of TK-expressing cells increased from 4% to 22%. Subsequent suicide gene therapy was more effective compared with a control group without positive selection. Starting with 10% of TK-expressing cells the positive-negative selection strategy completely inhibited tumor growth. Taken together, these results suggest that a positive-negative selection strategy based on MDR and TK genes represents an efficient way to increase the proportion of TK-expressing cells in the tumor and the efficacy of TK-mediated suicide gene therapy.

  15. Biological approaches to bone regeneration by gene therapy.

    PubMed

    Franceschi, R T

    2005-12-01

    Safe, effective approaches for bone regeneration are needed to reverse bone loss caused by trauma, disease, and tumor resection. Unfortunately, the science of bone regeneration is still in its infancy, with all current or emerging therapies having serious limitations. Unlike current regenerative therapies that use single regenerative factors, the natural processes of bone formation and repair require the coordinated expression of many molecules, including growth factors, bone morphogenetic proteins, and specific transcription factors. As will be developed in this article, future advances in bone regeneration will likely incorporate therapies that mimic critical aspects of these natural biological processes, using the tools of gene therapy and tissue engineering. This review will summarize current knowledge related to normal bone development and fracture repair, and will describe how gene therapy, in combination with tissue engineering, may mimic critical aspects of these natural processes. Current gene therapy approaches for bone regeneration will then be summarized, including recent work where combinatorial gene therapy was used to express groups of molecules that synergistically interacted to stimulate bone regeneration. Last, proposed future directions for this field will be discussed, where regulated gene expression systems will be combined with cells seeded in precise three-dimensional configurations on synthetic scaffolds to control both temporal and spatial distribution of regenerative factors. It is the premise of this article that such approaches will eventually allow us to achieve the ultimate goal of bone tissue engineering: to reconstruct entire bones with associated joints, ligaments, or sutures. Abbreviations used: BMP, bone morphogenetic protein; FGF, fibroblast growth factor; AER, apical ectodermal ridge; ZPA, zone of polarizing activity; PZ, progress zone; SHH, sonic hedgehog; OSX, osterix transcription factor; FGFR, fibroblast growth factor

  16. Gene therapy: Biological pacemaker created by gene transfer

    NASA Astrophysics Data System (ADS)

    Miake, Junichiro; Marbán, Eduardo; Nuss, H. Bradley

    2002-09-01

    The pacemaker cells of the heart initiate the heartbeat, sustain the circulation, and dictate the rate and rhythm of cardiac contraction. Circulatory collapse ensues when these specialized cells are damaged by disease, a situation that currently necessitates the implantation of an electronic pacemaker. Here we report the use of viral gene transfer to convert quiescent heart-muscle cells into pacemaker cells, and the successful generation of spontaneous, rhythmic electrical activity in the ventricle in vivo. Our results indicate that genetically engineered pacemakers could be developed as a possible alternative to implantable electronic devices.

  17. Recent Developments in Gene Therapy for Homozygous Familial Hypercholesterolemia.

    PubMed

    Ajufo, Ezim; Cuchel, Marina

    2016-05-01

    Homozygous familial hypercholesterolemia (HoFH) is a life-threatening Mendelian disorder with a mean life expectancy of 33 years despite maximally tolerated standard lipid-lowering therapies. This disease is an ideal candidate for gene therapy, and in the last few years, a number of exciting developments have brought this approach closer to the clinic than ever before. In this review, we discuss in detail the most advanced of these developments, a recombinant adeno-associated virus (AAV) vector carrying a low-density lipoprotein receptor (LDLR) transgene which has recently entered phase 1/2a testing. We also review ongoing development of approaches to enhance transgene expression, improve the efficiency of hepatocyte transduction, and minimize the AAV capsid-specific adaptive immune response. We include a summary of key gene therapy approaches for HoFH in pre-clinical development, including RNA silencing of the gene encoding HMG-CoA reductase (HMGCR) and induced pluripotent stem cell transplant therapy. PMID:26980316

  18. 77 FR 73472 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice...

  19. Pluripotent Stem Cells for Gene Therapy of Degenerative Muscle Diseases.

    PubMed

    Loperfido, Mariana; Steele-Stallard, Heather B; Tedesco, Francesco Saverio; VandenDriessche, Thierry

    2015-01-01

    Human pluripotent stem cells represent a unique source for cell-based therapies and regenerative medicine. The intrinsic features of these cells such as their easy accessibility and their capacity to be expanded indefinitely overcome some limitations of conventional adult stem cells. Furthermore, the possibility to derive patient-specific induced pluripotent stem (iPS) cells in combination with the current development of gene modification methods could be used for autologous cell therapies of some genetic diseases. In particular, muscular dystrophies are considered to be a good candidate due to the lack of efficacious therapeutic treatments for patients to date, and in view of the encouraging results arising from recent preclinical studies. Some hurdles, including possible genetic instability and their efficient differentiation into muscle progenitors through vector/transgene-free methods have still to be overcome or need further optimization. Additionally, engraftment and functional contribution to muscle regeneration in pre-clinical models need to be carefully assessed before clinical translation. This review offers a summary of the advanced methods recently developed to derive muscle progenitors from pluripotent stem cells, as well as gene therapy by gene addition and gene editing methods using ZFNs, TALENs or CRISPR/Cas9. We have also discussed the main issues that need to be addressed for successful clinical translation of genetically corrected patient-specific pluripotent stem cells in autologous transplantation trials for skeletal muscle disorders.

  20. Bacteriophages and medical oncology: targeted gene therapy of cancer.

    PubMed

    Bakhshinejad, Babak; Karimi, Marzieh; Sadeghizadeh, Majid

    2014-08-01

    Targeted gene therapy of cancer is of paramount importance in medical oncology. Bacteriophages, viruses that specifically infect bacterial cells, offer a variety of potential applications in biomedicine. Their genetic flexibility to go under a variety of surface modifications serves as a basis for phage display methodology. These surface manipulations allow bacteriophages to be exploited for targeted delivery of therapeutic genes. Moreover, the excellent safety profile of these viruses paves the way for their potential use as cancer gene therapy platforms. The merge of phage display and combinatorial technology has led to the emergence of phage libraries turning phage display into a high throughput technology. Random peptide libraries, as one of the most frequently used phage libraries, provide a rich source of clinically useful peptide ligands. Peptides are known as a promising category of pharmaceutical agents in medical oncology that present advantages such as inexpensive synthesis, efficient tissue penetration and the lack of immunogenicity. Phage peptide libraries can be screened, through biopanning, against various targets including cancer cells and tissues that results in obtaining cancer-homing ligands. Cancer-specific peptides isolated from phage libraries show huge promise to be utilized for targeting of various gene therapy vectors towards malignant cells. Beyond doubt, bacteriophages will play a more impressive role in the future of medical oncology.

  1. Suicide Gene Therapy for Cancer – Current Strategies

    PubMed Central

    Zarogoulidis, Paul; Darwiche, Kaid; Sakkas, Antonios; Yarmus, Lonny; Huang, Haidong; Li, Qiang; Freitag, Lutz; Zarogoulidis, Konstantinos; Malecki, Marek

    2013-01-01

    Current cancer treatments may create profound iatrogenic outcomes. The adverse effects of these treatments still remain, as the serious problems that practicing physicians have to cope with in clinical practice. Although, non-specific cytotoxic agents constitute an effective treatment modality against cancer cells, they also tend to kill normal, quickly dividing cells. On the other hand, therapies targeting the genome of the tumors are both under investigation, and some others are already streamlined to clinical practice. Several approaches have been investigated in order to find a treatment targeting the cancer cells, while not affecting the normal cells. Suicide gene therapy is a therapeutic strategy, in which cell suicide inducing transgenes are introduced into cancer cells. The two major suicide gene therapeutic strategies currently pursued are: cytosine deaminase/5-fluorocytosine and the herpes simplex virus/ganciclovir. The novel strategies include silencing gene expression, expression of intracellular antibodies blocking cells’ vital pathways, and transgenic expression of caspases and DNases. We analyze various elements of cancer cells’ suicide inducing strategies including: targets, vectors, and mechanisms. These strategies have been extensively investigated in various types of cancers, while exploring multiple delivery routes including viruses, non-viral vectors, liposomes, nanoparticles, and stem cells. We discuss various stages of streamlining of the suicide gene therapy into clinical oncology as applied to different types of cancer. Moreover, suicide gene therapy is in the center of attention as a strategy preventing cancer from developing in patients participating in the clinical trials of regenerative medicine. In oncology, these clinical trials are aimed at regenerating, with the aid of stem cells, of the patients’ organs damaged by pathologic and/or iatrogenic factors. However, the stem cells carry the risk of neoplasmic transformation. We

  2. Nanoparticle-mediated delivery of suicide genes in cancer therapy.

    PubMed

    Vago, Riccardo; Collico, Veronica; Zuppone, Stefania; Prosperi, Davide; Colombo, Miriam

    2016-09-01

    Conventional chemotherapeutics have been employed in cancer treatment for decades due to their efficacy in killing the malignant cells, but the other side of the coin showed off-target effects, onset of drug resistance and recurrences. To overcome these limitations, different approaches have been investigated and suicide gene therapy has emerged as a promising alternative. This approach consists in the introduction of genetic materials into cancerous cells or the surrounding tissue to cause cell death or retard the growth of the tumor mass. Despite promising results obtained both in vitro and in vivo, this innovative approach has been limited, for long time, to the treatment of localized tumors, due to the suboptimal efficiency in introducing suicide genes into cancer cells. Nanoparticles represent a valuable non-viral delivery system to protect drugs in the bloodstream, to improve biodistribution, and to limit side effects by achieving target selectivity through surface ligands. In this scenario, the real potential of suicide genes can be translated into clinically viable treatments for patients. In the present review, we summarize the recent advances of inorganic nanoparticles as non-viral vectors in terms of therapeutic efficacy, targeting capacity and safety issues. We describe the main suicide genes currently used in therapy, with particular emphasis on toxin-encoding genes of bacterial and plant origin. In addition, we discuss the relevance of molecular targeting and tumor-restricted expression to improve treatment specificity to cancer tissue. Finally, we analyze the main clinical applications, limitations and future perspectives of suicide gene therapy. PMID:27436147

  3. 76 FR 81513 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue, and Gene Therapies Advisory Committee..., Tissue, and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice and... Gene Therapies, Center for Biologics Evaluation and Research, FDA. FDA intends to make...

  4. 76 FR 22405 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... be open to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee... gene therapy products for the treatment of retinal disorders. Topics to be considered include...

  5. 76 FR 9028 - Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... Industry: Potency Tests for Cellular and Gene Therapy Products'' dated January 2011. The guidance document provides manufacturers of cellular and gene therapy (CGT) products with recommendations for developing... document entitled ``Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products''...

  6. 75 FR 66381 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... be open to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee... Lentiviral Vector Based Gene Therapy Products. FDA intends to make background material available to...

  7. 78 FR 44133 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... be open to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee... on guidance documents issued from the Office of Cellular, Tissue and Gene Therapies, Center...

  8. 77 FR 63840 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee..., Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice and..., Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and Research, and...

  9. 78 FR 79699 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue, and Gene Therapies Advisory Committee... be open to the public. Name of Committee: Cellular, Tissue, and Gene Therapies Advisory Committee..., Tissue, and Gene Therapies, Center for Biologics Evaluation and Research (CBER), FDA. On February...

  10. Gene therapy for cancer: bacteria-mediated anti-angiogenesis therapy.

    PubMed

    Gardlik, R; Behuliak, M; Palffy, R; Celec, P; Li, C J

    2011-05-01

    Several bacterial species have inherent ability to colonize solid tumors in vivo. However, their natural anti-tumor activity can be enhanced by genetic engineering that enables these bacteria express or transfer therapeutic molecules into target cells. In this review, we summarize latest research on cancer therapy using genetically modified bacteria with particular emphasis on blocking tumor angiogenesis. Despite recent progress, only a few recent studies on bacterial tumor therapy have focused on anti-angiogenesis. Bacteria-mediated anti-angiogenesis therapy for cancer, however, is an attractive approach given that solid tumors are often characterized by increased vascularization. Here, we discuss four different approaches for using modified bacteria as anti-cancer therapeutics--bactofection, DNA vaccination, alternative gene therapy and transkingdom RNA interference--with a specific focus on angiogenesis suppression. Critical areas and future directions for this field are also outlined.

  11. Gene mutation-based and specific therapies in precision medicine.

    PubMed

    Wang, Xiangdong

    2016-04-01

    Precision medicine has been initiated and gains more and more attention from preclinical and clinical scientists. A number of key elements or critical parts in precision medicine have been described and emphasized to establish a systems understanding of precision medicine. The principle of precision medicine is to treat patients on the basis of genetic alterations after gene mutations are identified, although questions and challenges still remain before clinical application. Therapeutic strategies of precision medicine should be considered according to gene mutation, after biological and functional mechanisms of mutated gene expression or epigenetics, or the correspondent protein, are clearly validated. It is time to explore and develop a strategy to target and correct mutated genes by direct elimination, restoration, correction or repair of mutated sequences/genes. Nevertheless, there are still numerous challenges to integrating widespread genomic testing into individual cancer therapies and into decision making for one or another treatment. There are wide-ranging and complex issues to be solved before precision medicine becomes clinical reality. Thus, the precision medicine can be considered as an extension and part of clinical and translational medicine, a new alternative of clinical therapies and strategies, and have an important impact on disease cures and patient prognoses. PMID:26994883

  12. Application of electroporation gene therapy: past, current, and future.

    PubMed

    Mir, Lluis M

    2008-01-01

    Twenty-five years after the publication of the first report on gene transfer in vitro in cultured cells by the means of electric pulse delivery, reversible cell electroporation for gene transfer and gene therapy (DNA electrotransfer) is at a crossroad in its development. Present knowledge on the effects of cell exposure to appropriate electric field pulses, particularly at the level of the cell membrane, is reported here as an introduction to the large range of applications described in this book. The importance of the models of electric field distribution in tissues and of the correct choice of electrodes and applied voltages is highlighted. The mechanisms involved in DNA electrotransfer, which include cell electropermeabilization and DNA electrophoresis, are also surveyed. The feasibility of electric pulse for gene transfer in humans is discussed taking into account that electric pulse delivery is already regularly used for localized drug delivery in the treatment of cutaneous and subcutaneous solid tumors by electrochemotherapy. Because recent technological developments have made DNA electrotransfer more efficient and safer, this nonviral gene therapy approach is now ready to reach the clinical stage. A good understanding of DNA electrotransfer principles and a respect for safe procedures will be key elements for the successful future transition of DNA electrotransfer to the clinics. PMID:18370187

  13. Osteoblast-specific gene expression after transplantation of marrow cells: Implications for skeletal gene therapy

    PubMed Central

    Hou, Zhen; Nguyen, Que; Frenkel, Baruch; Nilsson, Susan K.; Milne, Moira; van Wijnen, André J.; Stein, Janet L.; Quesenberry, Peter; Lian, Jane B.; Stein, Gary S.

    1999-01-01

    Somatic gene therapies require targeted transfer of the therapeutic gene(s) into stem cells that proliferate and then differentiate and express the gene in a tissue-restricted manner. We have developed an approach for gene therapy using marrow cells that takes advantage of the osteoblast specificity of the osteocalcin promoter to confine expression of chimeric genes to bone. Adherent marrow cells, carrying a reporter gene [chloramphenicol acetyltransferase (CAT)] under the control of a 1.7-kilobase rat osteocalcin gene promoter, were expanded ex vivo. After transplantation by intravenous infusion, engrafted donor cells in recipient mice were detected by the presence of the transgene in a broad spectrum of tissues. However, expression of the transgene was restricted to osteoblasts and osteocytes, as established by biochemical analysis of CAT activity and immunohistochemical analysis of CAT expression at the single cell level. Our data indicate that donor cells achieved long-term engraftment in various tissues of the recipients and that the CAT gene under control of the osteocalcin promoter is expressed specifically in bone. Thus, transplantation of multipotential marrow cells containing the osteocalcin promoter-controlled transgene provides an efficacious approach to deliver therapeutic gene expression to osteoblasts for treatment of bone disorders or tumor metastasis to the skeleton. PMID:10377408

  14. Transductional targeting of adenovirus vectors for gene therapy

    PubMed Central

    Glasgow, JN; Everts, M; Curiel, DT

    2007-01-01

    Cancer gene therapy approaches will derive considerable benefit from adenovirus (Ad) vectors capable of self-directed localization to neoplastic disease or immunomodulatory targets in vivo. The ablation of native Ad tropism coupled with active targeting modalities has demonstrated that innate gene delivery efficiency may be retained while circumventing Ad dependence on its primary cellular receptor, the coxsackie and Ad receptor. Herein, we describe advances in Ad targeting that are predicated on a fundamental understanding of vector/cell interplay. Further, we propose strategies by which existing paradigms, such as nanotechnology, may be combined with Ad vectors to form advanced delivery vehicles with multiple functions. PMID:16439993

  15. Gene therapy for severe combined immunodeficiency: are we there yet?

    PubMed Central

    Cavazzana-Calvo, Marina; Fischer, Alain

    2007-01-01

    Inherited and acquired diseases of the hematopoietic system can be cured by allogeneic hematopoietic stem cell transplantation. This treatment strategy is highly successful when an HLA-matched sibling donor is available, but if not, few therapeutic options exist. Gene-modified, autologous bone marrow transplantation can circumvent the severe immunological complications that occur when a related HLA-mismatched donor is used and thus represents an attractive alternative. In this review, we summarize the advantages and limitations associated with the use of gene therapy to cure SCID. Insertional mutagenesis and technological improvements aimed at increasing the safety of this strategy are also discussed. PMID:17549248

  16. Gene and stem cell therapy of the hair follicle.

    PubMed

    Hoffman, Robert M

    2005-01-01

    The hair follicle is a highly complex appendage of the skin containing a multiplicity of cell types. The follicle undergoes constant cycling through the life of the organism including growth and resorption with growth dependent on specific stem cells. The targeting of the follicle by genes and stem cells to change its properties, in particular, the nature of the hair shaft is discussed. Hair follicle delivery systems are described such as liposomes and viral vectors for gene therapy. The nature of the hair follicle stem cells is discussed, in particular, its pluripotency.

  17. Engineering adeno-associated viruses for clinical gene therapy.

    PubMed

    Kotterman, Melissa A; Schaffer, David V

    2014-07-01

    Clinical gene therapy has been increasingly successful owing both to an enhanced molecular understanding of human disease and to progressively improving gene delivery technologies. Among these technologies, delivery vectors based on adeno-associated viruses (AAVs) have emerged as safe and effective and, in one recent case, have led to regulatory approval. Although shortcomings in viral vector properties will render extension of such successes to many other human diseases challenging, new approaches to engineer and improve AAV vectors and their genetic cargo are increasingly helping to overcome these barriers.

  18. Bacterial vectors for imaging and cancer gene therapy: a review.

    PubMed

    Cronin, M; Stanton, R M; Francis, K P; Tangney, M

    2012-11-01

    The significant burden of resistance to conventional anticancer treatments in patients with advanced disease has prompted the need to explore alternative therapeutic strategies. The challenge for oncology researchers is to identify a therapy which is selective for tumors with limited toxicity to normal tissue. Engineered bacteria have the unique potential to overcome traditional therapies' limitations by specifically targeting tumors. It has been shown that bacteria are naturally capable of homing to tumors when systemically administered resulting in high levels of replication locally, either external to (non-invasive species) or within tumor cells (pathogens). Pre-clinical and clinical investigations involving bacterial vectors require relevant means of monitoring vector trafficking and levels over time, and development of bacterial-specific real-time imaging modalities are key for successful development of clinical bacterial gene delivery. This review discusses the currently available imaging technologies and the progress to date exploiting these for monitoring of bacterial gene delivery in vivo.

  19. Genomic discovery of potent chromatin insulators for human gene therapy.

    PubMed

    Liu, Mingdong; Maurano, Matthew T; Wang, Hao; Qi, Heyuan; Song, Chao-Zhong; Navas, Patrick A; Emery, David W; Stamatoyannopoulos, John A; Stamatoyannopoulos, George

    2015-02-01

    Insertional mutagenesis and genotoxicity, which usually manifest as hematopoietic malignancy, represent major barriers to realizing the promise of gene therapy. Although insulator sequences that block transcriptional enhancers could mitigate or eliminate these risks, so far no human insulators with high functional potency have been identified. Here we describe a genomic approach for the identification of compact sequence elements that function as insulators. These elements are highly occupied by the insulator protein CTCF, are DNase I hypersensitive and represent only a small minority of the CTCF recognition sequences in the human genome. We show that the elements identified acted as potent enhancer blockers and substantially decreased the risk of tumor formation in a cancer-prone animal model. The elements are small, can be efficiently accommodated by viral vectors and have no detrimental effects on viral titers. The insulators we describe here are expected to increase the safety of gene therapy for genetic diseases.

  20. Viral vectors and delivery strategies for CNS gene therapy

    PubMed Central

    Gray, Steven J; Woodard, Kenton T; Samulski, R Jude

    2015-01-01

    This review aims to provide a broad overview of the targets, challenges and potential for gene therapy in the CNS, citing specific examples. There are a broad range of therapeutic targets, with very different requirements for a suitable viral vector. By utilizing different vector tropisms, novel routes of administration and engineered promoter control, transgenes can be targeted to specific therapeutic applications. Viral vectors have proven efficacious in preclinical models for several disease applications, spurring several clinical trials. While the field has pushed the limits of existing adeno-associated virus-based vectors, a next generation of vectors based on rational engineering of viral capsids should expand the application of gene therapy to be more effective in specific therapeutic applications. PMID:22833965

  1. Engineering blood vessels by gene and cell therapy.

    PubMed

    Zarbiv, Gabriel; Preis, Meir; Ben-Yosef, Yaara; Flugelman, Moshe Y

    2007-08-01

    Cardiovascular-related syndromes are the leading cause of morbidity and mortality worldwide. Arterial narrowing and blockage due to atherosclerosis cause reduced blood flow to the brain, heart and legs. Bypass surgery to improve blood flow to the heart and legs in these patients is performed in hundreds of thousands of patients every year. Autologous grafts, such as the internal thoracic artery and saphenous vein, are used in most patients, but in a significant number of patients such grafts are not available and synthetic grafts are used. Synthetic grafts have higher failure rates than autologous grafts due to thrombosis and scar formation within graft lumen. Cell and gene therapy combined with tissue engineering hold a great promise to provide grafts that will be biocompatible and durable. This review describes the field of vascular grafts in the context of tissue engineering using cell and gene therapies.

  2. Consideration of gene therapy for paediatric neurotransmitter diseases.

    PubMed

    Rotstein, Michael; Kang, Un Jung

    2009-06-01

    The paediatric neurotransmitter diseases (PNDs) are a group of inborn errors of metabolism characterized by abnormalities of neurotransmitter synthesis or metabolism. Although some children may react favourably to neurotransmitter augmentation treatment, optimal response is not universal and other modes of treatment should be sought. The genes involved in many of the currently known monoamine PNDs have been utilized in pre-clinical and in phase I clinical trials in Parkinson disease (PD) and the basic principles could be applied to the therapy of PNDs with some modifications regarding the targeting and distribution of vectors. However, issues that go beyond neurotransmitter replacement are important considerations in PD and even more so in PNDs. Understanding the pathophysiology of PNDs including abnormal development resulting from the neurotransmitter deficiency will be critical for rational therapeutic approaches. Better animal models of PNDs are necessary to test gene therapy before clinical trials can be attempted.

  3. Gene, Stem Cell, and Alternative Therapies for SCA 1

    PubMed Central

    Wagner, Jacob L.; O'Connor, Deirdre M.; Donsante, Anthony; Boulis, Nicholas M.

    2016-01-01

    Spinocerebellar ataxia 1 is an autosomal dominant disease characterized by neurodegeneration and motor dysfunction. In disease pathogenesis, polyglutamine expansion within Ataxin-1, a gene involved in transcriptional repression, causes protein nuclear inclusions to form. Most notably, neuronal dysfunction presents in Purkinje cells. However, the effect of mutant Ataxin-1 is not entirely understood. Two mouse models are employed to represent spinocerebellar ataxia 1, a B05 transgenic model that specifically expresses mutant Ataxin-1 in Purkinje cells, and a Sca1 154Q/2Q model that inserts the polyglutamine expansion into the mouse Ataxin-1 locus so that the mutant Ataxin-1 is expressed in all cells that express Ataxin-1. This review aims to summarize and evaluate the wide variety of therapies proposed for spinocerebellar ataxia 1, specifically gene and stem cell therapies. PMID:27570504

  4. Prevention of peritoneal adhesions: A promising role for gene therapy

    PubMed Central

    Atta, Hussein M

    2011-01-01

    Adhesions are the most frequent complication of abdominopelvic surgery, yet the extent of the problem, and its serious consequences, has not been adequately recognized. Adhesions evolved as a life-saving mechanism to limit the spread of intraperitoneal inflammatory conditions. Three different pathophysiological mechanisms can independently trigger adhesion formation. Mesothelial cell injury and loss during operations, tissue hypoxia and inflammation each promotes adhesion formation separately, and potentiate the effect of each other. Studies have repeatedly demonstrated that interruption of a single pathway does not completely prevent adhesion formation. This review summarizes the pathogenesis of adhesion formation and the results of single gene therapy interventions. It explores the promising role of combinatorial gene therapy and vector modifications for the prevention of adhesion formation in order to stimulate new ideas and encourage rapid advancements in this field. PMID:22171139

  5. Gene, Stem Cell, and Alternative Therapies for SCA 1.

    PubMed

    Wagner, Jacob L; O'Connor, Deirdre M; Donsante, Anthony; Boulis, Nicholas M

    2016-01-01

    Spinocerebellar ataxia 1 is an autosomal dominant disease characterized by neurodegeneration and motor dysfunction. In disease pathogenesis, polyglutamine expansion within Ataxin-1, a gene involved in transcriptional repression, causes protein nuclear inclusions to form. Most notably, neuronal dysfunction presents in Purkinje cells. However, the effect of mutant Ataxin-1 is not entirely understood. Two mouse models are employed to represent spinocerebellar ataxia 1, a B05 transgenic model that specifically expresses mutant Ataxin-1 in Purkinje cells, and a Sca1 154Q/2Q model that inserts the polyglutamine expansion into the mouse Ataxin-1 locus so that the mutant Ataxin-1 is expressed in all cells that express Ataxin-1. This review aims to summarize and evaluate the wide variety of therapies proposed for spinocerebellar ataxia 1, specifically gene and stem cell therapies. PMID:27570504

  6. Mesenchymal stem cell: a new horizon in cancer gene therapy.

    PubMed

    Mohammadi, M; Jaafari, M R; Mirzaei, H R; Mirzaei, H

    2016-09-01

    Cancer is one of the main problems in public health worldwide. Despite rapid advances in the diagnosis and treatment of cancer, the efficacy of current treatment strategies is still limited. There are promising new results in animal models whereby mesenchymal stem cells (MSCs) can be used as vehicles for targeted therapies. The use of MSCs as therapeutic biological vehicles in cell therapy has several advantages, including immune-silence, tumor tropism, easy and rapid isolation, ex vivo expansion, multilineage differentiation and the capacity to deliver a number of therapeutic agents. Some studies have shown that the microenvironment of the tumor provides a preferential niche for homing and survival of MSCs. Here, we have highlighted various applications of MSCs in cancer gene therapy. PMID:27650780

  7. Regulatory aspects for translating gene therapy research into the clinic.

    PubMed

    Laurencot, Carolyn M; Ruppel, Sheryl

    2009-01-01

    Gene therapy products are highly regulated, therefore moving a promising candidate from the laboratory into the clinic can present unique challenges. Success can only be achieved by proper planning and communication within the clinical development team, as well as consultation with the regulatory scientists who will eventually review the clinical plan. Regulators should not be considered as obstacles but rather as collaborators whose advice can significantly expedite the product development. Sound scientific data is required and reviewed by the regulatory agencies to determine whether the potential benefit to the patient population outweighs the risk. Therefore, compliance with Good Manufacturing Practice (GMP) and Good Laboratory Practice (GLP) principles to ensure quality, safety, purity, and potency of the product, and to establish "proof of concept" for efficacy, and for safety information, respectively, is essential. The design and conduct of the clinical trial must adhere to Good Clinical Practice (GCP) principals. The clinical protocol should contain adequate rationale, supported by nonclinical data, to justify the starting dose and regimen, and adequate safety monitoring based on the patient population and the anticipated toxicities. Proper review and approval of gene therapy clinical studies by numerous committees, and regulatory agencies before and throughout the study allows for ongoing risk assessment of these novel and innovative products. The ethical conduct of clinical trials must be a priority for all clinical investigators and sponsors. As history has shown us, only a few fatal mistakes can dramatically alter the regulation of investigational products for all individuals involved in gene therapy clinical research, and further delay the advancement of gene therapy to licensed medicinal products.

  8. Contemporary Animal Models For Human Gene Therapy Applications.

    PubMed

    Gopinath, Chitra; Nathar, Trupti Job; Ghosh, Arkasubhra; Hickstein, Dennis Durand; Remington Nelson, Everette Jacob

    2015-01-01

    Over the past three decades, gene therapy has been making considerable progress as an alternative strategy in the treatment of many diseases. Since 2009, several studies have been reported in humans on the successful treatment of various diseases. Animal models mimicking human disease conditions are very essential at the preclinical stage before embarking on a clinical trial. In gene therapy, for instance, they are useful in the assessment of variables related to the use of viral vectors such as safety, efficacy, dosage and localization of transgene expression. However, choosing a suitable disease-specific model is of paramount importance for successful clinical translation. This review focuses on the animal models that are most commonly used in gene therapy studies, such as murine, canine, non-human primates, rabbits, porcine, and a more recently developed humanized mice. Though small and large animals both have their own pros and cons as disease-specific models, the choice is made largely based on the type and length of study performed. While small animals with a shorter life span could be well-suited for degenerative/aging studies, large animals with longer life span could suit longitudinal studies and also help with dosage adjustments to maximize therapeutic benefit. Recently, humanized mice or mouse-human chimaeras have gained interest in the study of human tissues or cells, thereby providing a more reliable understanding of therapeutic interventions. Thus, animal models are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior to a gene therapy clinical trial. PMID:26415576

  9. Contemporary Animal Models For Human Gene Therapy Applications.

    PubMed

    Gopinath, Chitra; Nathar, Trupti Job; Ghosh, Arkasubhra; Hickstein, Dennis Durand; Remington Nelson, Everette Jacob

    2015-01-01

    Over the past three decades, gene therapy has been making considerable progress as an alternative strategy in the treatment of many diseases. Since 2009, several studies have been reported in humans on the successful treatment of various diseases. Animal models mimicking human disease conditions are very essential at the preclinical stage before embarking on a clinical trial. In gene therapy, for instance, they are useful in the assessment of variables related to the use of viral vectors such as safety, efficacy, dosage and localization of transgene expression. However, choosing a suitable disease-specific model is of paramount importance for successful clinical translation. This review focuses on the animal models that are most commonly used in gene therapy studies, such as murine, canine, non-human primates, rabbits, porcine, and a more recently developed humanized mice. Though small and large animals both have their own pros and cons as disease-specific models, the choice is made largely based on the type and length of study performed. While small animals with a shorter life span could be well-suited for degenerative/aging studies, large animals with longer life span could suit longitudinal studies and also help with dosage adjustments to maximize therapeutic benefit. Recently, humanized mice or mouse-human chimaeras have gained interest in the study of human tissues or cells, thereby providing a more reliable understanding of therapeutic interventions. Thus, animal models are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior to a gene therapy clinical trial.

  10. Mobile genetic elements and cancer. From mutations to gene therapy.

    PubMed

    Kozeretska, I A; Demydov, S V; Ostapchenko, L I

    2011-12-01

    In the present review, an association between cancer and the activity of the non-LTR retroelements L1, Alu, and SVA, as well as endogenous retroviruses, in the human genome, is analyzed. Data suggesting that transposons have been involved in embryogenesis and malignization processes, are presented. Events that lead to the activation of mobile elements in mammalian somatic cells, as well as the use of mobile elements in genetic screening and cancer gene therapy, are reviewed.

  11. Gene Therapy for Brain Tumors: Basic Developments and Clinical Implementation

    PubMed Central

    Assi, Hikmat; Candolfi, Marianela; Baker, Gregory; Mineharu, Yohei; Lowenstein, Pedro R; Castro, Maria G

    2012-01-01

    Glioblastoma multiforme (GBM) is the most common and deadliest of adult primary brain tumors. Due to its invasive nature and sensitive location, complete resection remains virtually impossible. The resistance of GBM against chemotherapy and radiotherapy necessitate the development of novel therapies. Gene therapy is proposed for the treatment of brain tumors and has demonstrated pre-clinical efficacy in animal models. Here we review the various experimental therapies that have been developed for GBM including both cytotoxic and immune stimulatory approaches. We also review the combined conditional cytotoxic immune stimulatory therapy that our lab has developed which is dependent on the adenovirus mediated expression of the conditional cytotoxic gene, Herpes Simplex Type 1 Thymidine Kinase (TK) and the powerful DC growth factor Fms-like tyrosine kinase 3 ligand (Flt3L). Combined delivery of these vectors elicits tumor cell death and an anti-tumor adaptive immune response that requires TLR2 activation. The implications of our studies indicate that the combined cytotoxic and immunotherapeutic strategies are effective strategies to combat deadly brain tumors and warrant their implementation in human Phase I clinical trials for GBM. PMID:22906921

  12. Gene Therapy and Virotherapy: Novel Therapeutic Approaches for Brain Tumors

    PubMed Central

    Kroeger, Kurt M.; Ghulam Muhammad, A.K.M.; Baker, Gregory J.; Assi, Hikmat; Wibowo, Mia K.; Xiong, Weidong; Yagiz, Kader; Candolfi, Marianela; Lowenstein, Pedro R.; Castro, Maria G.

    2010-01-01

    Glioblastoma multiforme (GBM) is a deadly primary brain tumor in adults, with a median survival of ~12–18 months post-diagnosis. Despite recent advances in conventional therapeutic approaches, only modest improvements in median survival have been achieved; GBM usually recurs within 12 months post-resection, with poor prognosis. Thus, novel therapeutic strategies to target and kill GBM cells are desperately needed. Our group and others are pursuing virotherapy and gene therapy strategies for the treatment of GBM. In this review, we will discuss various virotherapy and gene therapy approaches for GBM currently under preclinical and clinical evaluation including direct or conditional cytotoxic, and/or immunostimulatory approaches. We also discuss cutting-edge technologies for drug/gene delivery and targeting brain tumors, including the use of stem cells as delivery platforms, the use of targeted immunotoxins, and the therapeutic potential of using GBM microvesicles to deliver therapeutic siRNAs or virotherapies. Finally, various animal models available to test novel GBM therapies are discussed. PMID:21034670

  13. FGF-4 gene therapy GENERX--Collateral Therapeutics.

    PubMed

    2002-01-01

    Collateral Therapeutics and Schering AG in Germany are developing a gene therapy product, GENERX for coronary artery disease. Based on the terms of the agreement, Schering or its affliates will be responsible for conducting and financing phase II/III clinical trials which are currently underway in the US and Europe. In particular, Berlex Labs (the US subsidiary of Schering AG), is involved in developing the gene therapy in the US. GENERX is an angiogenic gene therapy which triggers the production of a protein that stimulates new blood vessel growth providing an alternative route for blood to bypass clogged and blocked arteries in the heart. GENERX involves a one-time, non-surgical delivery of an adenovirus vector containing the human fibroblast growth factor-4 (FGF-4) into coronary arteries via a standard catheter. The FGF-4 gene was licensed from New York University. Collateral Therapeutics has been granted a US patent for "gene transfer-mediated angiogenesis therapy" for the nonsurgical administration of angiogenic genes for coronary and peripheral vascular disease. The patented technology has been licensed from the University of California. Collateral and Berlex have initiated pivotal phase IIb/III trials with GENERX in the US and Europe. The US-based study will evaluate the safety and efficacy of GENERX in patients with stable exertional angina due to coronary artery disease. The European-based study will evaluate patients with advanced coronary artery disease who are not considered candidates for interventions such as angioplasty and bypass surgery and/or patients who are unlikely to have positive outcomes from such interventions. Both studies, of a multicentre, randomised, double-blind and placebo-controlled design, will evaluate 2 dose levels of GENERX which will be non-surgically administered to the heart via intracoronary infusion through a standard cardiac catheter. Collateral also plans to develop a non-surgical gene therapy product using the FGF-4 gene

  14. Targeted gene therapy for the treatment of heart failure.

    PubMed

    Rapti, Kleopatra; Chaanine, Antoine H; Hajjar, Roger J

    2011-01-01

    Chronic heart failure is one of the leading causes of morbidity and mortality in Western countries and is a major financial burden to the health care system. Pharmacologic treatment and implanting devices are the predominant therapeutic approaches. They improve survival and have offered significant improvement in patient quality of life, but they fall short of producing an authentic remedy. Cardiac gene therapy, the introduction of genetic material to the heart, offers great promise in filling this void. In-depth knowledge of the underlying mechanisms of heart failure is, obviously, a prerequisite to achieve this aim. Extensive research in the past decades, supported by numerous methodological breakthroughs, such as transgenic animal model development, has led to a better understanding of the cardiovascular diseases and, inadvertently, to the identification of several candidate genes. Of the genes that can be targeted for gene transfer, calcium cycling proteins are prominent, as abnormalities in calcium handling are key determinants of heart failure. A major impediment, however, has been the development of a safe, yet efficient, delivery system. Nonviral vectors have been used extensively in clinical trials, but they fail to produce significant gene expression. Viral vectors, especially adenoviral, on the other hand, can produce high levels of expression, at the expense of safety. Adeno-associated viral vectors have emerged in recent years as promising myocardial gene delivery vehicles. They can sustain gene expression at a therapeutic level and maintain it over extended periods of time, even for years, and, most important, without a safety risk.

  15. C peptides as entry inhibitors for gene therapy.

    PubMed

    Egerer, Lisa; Kiem, Hans-Peter; von Laer, Dorothee

    2015-01-01

    Peptides derived from the C-terminal heptad repeat 2 region of the HIV-1 gp41 envelope glycoprotein, so-called C peptides, are very potent HIV-1 fusion inhibitors. Antiviral genes encoding either membrane-anchored (ma) or secreted (iSAVE) C peptides have been engineered and allow direct in vivo production of the therapeutic peptides by genetically modified host cells. Membrane-anchored C peptides expressed in the HIV-1 target cells by T-cell or hematopoietic stem cell gene therapy efficiently prevent virus entry into the modified cells. Such gene-protection confers a selective survival advantage and allows accumulation of the genetically modified cells. Membrane-anchored C peptides have been successfully tested in a nonhuman primate model of AIDS and were found to be safe in a phase I clinical trial in AIDS patients transplanted with autologous gene-modified T-cells. Secreted C peptides have the crucial advantage of not only protecting genetically modified cells from HIV-1 infection, but also neighboring cells, thus suppressing virus replication even if only a small fraction of cells is genetically modified. Accordingly, various cell types can be considered as potential in vivo producer cells for iSAVE-based gene therapeutics, which could even be modified by direct in vivo gene delivery in future. In conclusion, C peptide gene therapeutics may provide a strong benefit to AIDS patients and could present an effective alternative to current antiretroviral drug regimens. PMID:25757622

  16. C peptides as entry inhibitors for gene therapy.

    PubMed

    Egerer, Lisa; Kiem, Hans-Peter; von Laer, Dorothee

    2015-01-01

    Peptides derived from the C-terminal heptad repeat 2 region of the HIV-1 gp41 envelope glycoprotein, so-called C peptides, are very potent HIV-1 fusion inhibitors. Antiviral genes encoding either membrane-anchored (ma) or secreted (iSAVE) C peptides have been engineered and allow direct in vivo production of the therapeutic peptides by genetically modified host cells. Membrane-anchored C peptides expressed in the HIV-1 target cells by T-cell or hematopoietic stem cell gene therapy efficiently prevent virus entry into the modified cells. Such gene-protection confers a selective survival advantage and allows accumulation of the genetically modified cells. Membrane-anchored C peptides have been successfully tested in a nonhuman primate model of AIDS and were found to be safe in a phase I clinical trial in AIDS patients transplanted with autologous gene-modified T-cells. Secreted C peptides have the crucial advantage of not only protecting genetically modified cells from HIV-1 infection, but also neighboring cells, thus suppressing virus replication even if only a small fraction of cells is genetically modified. Accordingly, various cell types can be considered as potential in vivo producer cells for iSAVE-based gene therapeutics, which could even be modified by direct in vivo gene delivery in future. In conclusion, C peptide gene therapeutics may provide a strong benefit to AIDS patients and could present an effective alternative to current antiretroviral drug regimens.

  17. Pleiotrophin Gene Therapy for Peripheral Ischemia: Evaluation of Full-Length and Truncated Gene Variants

    PubMed Central

    Fang, Qizhi; Mok, Pamela Y.; Thomas, Anila E.; Haddad, Daniel J.; Saini, Shereen A.; Clifford, Brian T.; Kapasi, Neel K.; Danforth, Olivia M.; Usui, Minako; Ye, Weisheng; Luu, Emmy; Sharma, Rikki; Bartel, Maya J.; Pathmanabhan, Jeremy A.; Ang, Andrew A. S.; Sievers, Richard E.; Lee, Randall J.; Springer, Matthew L.

    2013-01-01

    Pleiotrophin (PTN) is a growth factor with both pro-angiogenic and limited pro-tumorigenic activity. We evaluated the potential for PTN to be used for safe angiogenic gene therapy using the full length gene and a truncated gene variant lacking the domain implicated in tumorigenesis. Mouse myoblasts were transduced to express full length or truncated PTN (PTN or T-PTN), along with a LacZ reporter gene, and injected into mouse limb muscle and myocardium. In cultured myoblasts, PTN was expressed and secreted via the Golgi apparatus, but T-PTN was not properly secreted. Nonetheless, no evidence of uncontrolled growth was observed in cells expressing either form of PTN. PTN gene delivery to myocardium, and non-ischemic skeletal muscle, did not result in a detectable change in vascularity or function. In ischemic hindlimb at 14 days post-implantation, intramuscular injection with PTN-expressing myoblasts led to a significant increase in skin perfusion and muscle arteriole density. We conclude that (1) delivery of the full length PTN gene to muscle can be accomplished without tumorigenesis, (2) the truncated PTN gene may be difficult to use in a gene therapy context due to inefficient secretion, (3) PTN gene delivery leads to functional benefit in the mouse acute ischemic hindlimb model. PMID:23630585

  18. Recent advances in the rational design of silica-based nanoparticles for gene therapy.

    PubMed

    Niut, Yuting; Popatt, Amirali; Yu, Meihua; Karmakar, Surajit; Gu, Wenyi; Yu, Chengzhong

    2012-10-01

    Gene therapy has attracted much attention in modern society and provides a promising approach for treating genetic disorders, diseases and cancers. Safe and effective vectors are vital tools to deliver genetic molecules to cells. This review summarizes recent advances in the rational design of silica-based nanoparticles and their applications in gene therapy. An overview of different types of genetic agents available for gene therapy is provided. The engineering of various silica nanoparticles is described, which can be used as versatile complexation tools for genetic agents and advanced gene therapy. Several challenges are raised and future research directions in the area of gene therapy using silica-based nanoparticles are proposed.

  19. Gene therapy of X-linked severe combined immunodeficiency.

    PubMed

    Hacein-Bey-Abina, Salima; Fischer, Alain; Cavazzana-Calvo, Marina

    2002-11-01

    Severe combined immunodeficiency (SCID) conditions appear to be the best possible candidates for a gene therapy approach. Transgene expression by lymphocyte precursors should confer to these cells a selective growth advantage that gives rise to long-lived T-lymphocytes. This rationale was used as a basis for a clinical trial of the SCID-X1 disorder caused by common gamma (gamma c) gene mutations. This trial consists of ex vivo retroviral-mediated (MFG-B2 gamma c vector) gammac gene transfer into marrow CD34+ cells in CH-296 fibronectin fragment-coated bags. Up to now, 9 patients with typical SCID-X1 diagnosed within the first year of life and lacking an HLA-identical donor have been enrolled. More than 2 years' assessment of 5 patients and more than 1 year for 7 patients provide evidence for full development of functional, mature T-cells in the absence of any adverse effects. Functional transduced natural killer cells are also detectable, although in low numbers. All but 1 patient with T-cell immunity have also developed immunoglobulin production, which has alleviated the need for intravenous immunoglobulin substitution despite a low detection frequency of transduced B-cells. These 8 patients are doing well and living in a normal environment. This yet successful gene therapy demonstrates that in a setting where transgene expression provides a selective advantage, a clinical benefit can be expected.

  20. Gene network analysis: from heart development to cardiac therapy.

    PubMed

    Ferrazzi, Fulvia; Bellazzi, Riccardo; Engel, Felix B

    2015-03-01

    Networks offer a flexible framework to represent and analyse the complex interactions between components of cellular systems. In particular gene networks inferred from expression data can support the identification of novel hypotheses on regulatory processes. In this review we focus on the use of gene network analysis in the study of heart development. Understanding heart development will promote the elucidation of the aetiology of congenital heart disease and thus possibly improve diagnostics. Moreover, it will help to establish cardiac therapies. For example, understanding cardiac differentiation during development will help to guide stem cell differentiation required for cardiac tissue engineering or to enhance endogenous repair mechanisms. We introduce different methodological frameworks to infer networks from expression data such as Boolean and Bayesian networks. Then we present currently available temporal expression data in heart development and discuss the use of network-based approaches in published studies. Collectively, our literature-based analysis indicates that gene network analysis constitutes a promising opportunity to infer therapy-relevant regulatory processes in heart development. However, the use of network-based approaches has so far been limited by the small amount of samples in available datasets. Thus, we propose to acquire high-resolution temporal expression data to improve the mathematical descriptions of regulatory processes obtained with gene network inference methodologies. Especially probabilistic methods that accommodate the intrinsic variability of biological systems have the potential to contribute to a deeper understanding of heart development.

  1. Liver-targeted gene therapy: Approaches and challenges.

    PubMed

    Aravalli, Rajagopal N; Belcher, John D; Steer, Clifford J

    2015-06-01

    The liver plays a major role in many inherited and acquired genetic disorders. It is also the site for the treatment of certain inborn errors of metabolism that do not directly cause injury to the liver. The advancement of nucleic acid-based therapies for liver maladies has been severely limited because of the myriad untoward side effects and methodological limitations. To address these issues, research efforts in recent years have been intensified toward the development of targeted gene approaches using novel genetic tools, such as zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats as well as various nonviral vectors such as Sleeping Beauty transposons, PiggyBac transposons, and PhiC31 integrase. Although each of these methods uses a distinct mechanism of gene modification, all of them are dependent on the efficient delivery of DNA and RNA molecules into the cell. This review provides an overview of current and emerging therapeutic strategies for liver-targeted gene therapy and gene repair.

  2. PTTG: an important target gene for ovarian cancer therapy

    PubMed Central

    Panguluri, Siva Kumar; Yeakel, Casey; Kakar, Sham S

    2008-01-01

    Pituitary tumor transforming gene (PTTG), also known as securin is an important gene involved in many biological functions including inhibition of sister chromatid separation, DNA repair, organ development, and expression and secretion of angiogenic and metastatic factors. Proliferating cancer cells and most tumors express high levels of PTTG. Overexpression of PTTG in vitro induces cellular transformation and development of tumors in nude mice. The PTTG expression levels have been correlated with tumor progression, invasion, and metastasis. Recent studies show that down regulation of PTTG in tumor cell lines and tumors in vivo results in suppression of tumor growth, suggesting its important role in tumorigenesis. In this review, we focus on PTTG structure, sub-cellular distribution, cellular functions, and role in tumor progression with suggestions on possible exploration of this gene for cancer therapy. PMID:19014669

  3. Anti-EGFR immunonanoparticles containing IL12 and salmosin genes for targeted cancer gene therapy.

    PubMed

    Kim, Jung Seok; Kang, Seong Jae; Jeong, Hwa Yeon; Kim, Min Woo; Park, Sang Il; Lee, Yeon Kyung; Kim, Hong Sung; Kim, Keun Sik; Park, Yong Serk

    2016-09-01

    Tumor-directed gene delivery is of major interest in the field of cancer gene therapy. Varied functionalizations of non-viral vectors have been suggested to enhance tumor targetability. In the present study, we prepared two different types of anti-EGF receptor (EGFR) immunonanoparticles containing pDNA, neutrally charged liposomes and cationic lipoplexes, for tumor-directed transfection of cancer therapeutic genes. Even though both anti-EGFR immunonanoparticles had a high binding affinity to the EGFR-positive cancer cells, the anti-EGFR immunolipoplex formulation exhibited approximately 100-fold higher transfection to the target cells than anti-EGFR immunoliposomes. The lipoplex formulation also showed a higher transfection to SK-OV-3 tumor xenografts in mice. Thus, IL12 and/or salmosin genes were loaded in the anti-EGFR immunolipoplexes and intravenously administered to mice carrying SK-OV-3 tumors. Co-transfection of IL12 and salmosin genes using anti-EGFR immunolipoplexes significantly reduced tumor growth and pulmonary metastasis. Furthermore, combinatorial treatment with doxorubicin synergistically inhibited tumor growth. These results suggest that anti-EGFR immunolipoplexes containing pDNA encoding therapeutic genes could be utilized as a gene-transfer modality for cancer gene therapy.

  4. Experimental gene therapy using p21Waf1 gene for esophageal squamous cell carcinoma by gene gun technology.

    PubMed

    Tanaka, Yuichi; Fujii, Teruhiko; Yamana, Hideaki; Kato, Seiya; Morimatsu, Minoru; Shirouzu, Kazuo

    2004-10-01

    In our previous study, the proliferation rate of esophageal squamous cell carcinoma cell lines, which poorly expressed p21Waf1, was found to be regulated by p21Waf1 gene transfection using adenovirus vector. In the present study, in order to examine the effect of p21Waf1 gene therapy in esophageal cancer, we used gene gun technology, which proved to be a powerful method to introduce the p21Waf1 gene into esophageal cancer cells. p21Waf1 transfection to KE3 and YES2 cells (weakly expressed p21Waf1 protein cells) showed a high expression of p21Waf1 protein after applying this gene gun technique. In KE3 and YES2 cells, statistical significant growth inhibition was observed after p21Waf1 transfection compared with LacZ transfection (KE3, p=0.0009; YES2, p<0.0001). In in vivo transfection experiments, on day 14, the estimated volume of KE3 tumors subjected to p21Waf1 gene transfection was 95% in comparison with the pretreatment volume on day 0, while the volume of KE3 tumors subjected to LacZ gene therapy increased to 268%. On day 14, the estimated volume of YES2 tumors subjected to either p21Waf1 or LacZ gene therapy increased to 474 and 686%, respectively. In KE3 and YES2 cells, significant growth inhibition was observed after combination therapy using p21Waf1 transfection and anticancer drug 5-fluorouracil (5Fu) compared with 5Fu alone (KE3, p<0.0001; YES2, p<0.0001). In conclusion, p21Waf1 gene therapy using the gene gun technique significantly inhibited the low basal p21Waf1 expressed esophageal cancer cell growth in vitro and in vivo. Furthermore, p21Waf1 transfection strongly enhanced the effect of 5Fu suggesting that p21Waf1 may prove beneficial in chemotherapy combined with gene therapy using gene gun technology in patients with esophageal cancer who have a low level of p21Waf1 expressed tumor.

  5. An overview of the history, applications, advantages, disadvantages and prospects of gene therapy.

    PubMed

    Jafarlou, M; Baradaran, B; Saedi, T A; Jafarlou, V; Shanehbandi, D; Maralani, M; Othman, F

    2016-01-01

    Gene therapy has become a significant issue in science-related news. The principal concept of gene therapy is an experimental technique that uses genes to treat or prevent disease. Although gene therapy was originally conceived as a way to treat life-threatening disorders (inborn defects, cancers) refractory to conventional treatment, it is now considered for many non–life-threatening conditions, such as those adversely impacting a patient’s quality of life. An extensive range of efficacious vectors, delivery techniques, and approaches for developing gene-based interventions for diseases have evolved in the last decade. The lack of suitable treatment has become a rational basis for extending the scope of gene therapy. The aim of this review is to investigate the general methods by which genes are transferred and to give an overview to clinical applications. Maximizing the potential benefits of gene therapy requires efficient and sustained therapeutic gene expression in target cells, low toxicity, and a high safety profile. Gene therapy has made substantial progress albeit much slower than was initially predicted. This review also describes the basic science associated with many gene therapy vectors and the present progress of gene therapy carried out for various surface disorders and diseases. The conclusion is that, with increased pathobiological understanding and biotechnological improvements, gene therapy will become a standard part of clinical practice.

  6. An overview of the history, applications, advantages, disadvantages and prospects of gene therapy.

    PubMed

    Jafarlou, M; Baradaran, B; Saedi, T A; Jafarlou, V; Shanehbandi, D; Maralani, M; Othman, F

    2016-01-01

    Gene therapy has become a significant issue in science-related news. The principal concept of gene therapy is an experimental technique that uses genes to treat or prevent disease. Although gene therapy was originally conceived as a way to treat life-threatening disorders (inborn defects, cancers) refractory to conventional treatment, it is now considered for many non–life-threatening conditions, such as those adversely impacting a patient’s quality of life. An extensive range of efficacious vectors, delivery techniques, and approaches for developing gene-based interventions for diseases have evolved in the last decade. The lack of suitable treatment has become a rational basis for extending the scope of gene therapy. The aim of this review is to investigate the general methods by which genes are transferred and to give an overview to clinical applications. Maximizing the potential benefits of gene therapy requires efficient and sustained therapeutic gene expression in target cells, low toxicity, and a high safety profile. Gene therapy has made substantial progress albeit much slower than was initially predicted. This review also describes the basic science associated with many gene therapy vectors and the present progress of gene therapy carried out for various surface disorders and diseases. The conclusion is that, with increased pathobiological understanding and biotechnological improvements, gene therapy will become a standard part of clinical practice. PMID:27358116

  7. Benefits of Neuronal Preferential Systemic Gene Therapy for Neurotransmitter Deficiency.

    PubMed

    Lee, Ni-Chung; Muramatsu, Shin-Ichi; Chien, Yin-Hsiu; Liu, Wen-Shin; Wang, Wei-Hua; Cheng, Chia-Hao; Hu, Meng-Kai; Chen, Pin-Wen; Tzen, Kai-Yuan; Byrne, Barry J; Hwu, Wuh-Liang

    2015-10-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive disease that impairs synthesis of dopamine and serotonin. Children with AADC deficiency exhibit severe motor, behavioral, and autonomic dysfunctions. We previously generated an IVS6+4A>T knock-in mouse model of AADC deficiency (Ddc(KI) mice) and showed that gene therapy at the neonatal stage can rescue this phenotype. In the present study, we extended this treatment to systemic therapy on young mice. After intraperitoneal injection of AADC viral vectors into 7-day-old Ddc(KI) mice, the treated mice exhibited improvements in weight gain, survival, motor function, autonomic function, and behavior. The yfAAV9/3-Syn-I-mAADC-treated mice showed greater neuronal transduction and higher brain dopamine levels than AAV9-CMV-hAADC-treated mice, whereas AAV9-CMV-hAADC-treated mice exhibited hyperactivity. Therefore, neurotransmitter-deficient animals can be rescued at a young age using systemic gene therapy, although a vector for preferential neuronal expression may be necessary to avoid hyperactivity caused by this treatment. PMID:26137853

  8. Treating hearing disorders with cell and gene therapy

    NASA Astrophysics Data System (ADS)

    Gillespie, Lisa N.; Richardson, Rachael T.; Nayagam, Bryony A.; Wise, Andrew K.

    2014-12-01

    Hearing loss is an increasing problem for a substantial number of people and, with an aging population, the incidence and severity of hearing loss will become more significant over time. There are very few therapies currently available to treat hearing loss, and so the development of new therapeutic strategies for hearing impaired individuals is of paramount importance to address this unmet clinical need. Most forms of hearing loss are progressive in nature and therefore an opportunity exists to develop novel therapeutic approaches to slow or halt hearing loss progression, or even repair or replace lost hearing function. Numerous emerging technologies have potential as therapeutic options. This paper details the potential of cell- and gene-based therapies to provide therapeutic agents to protect sensory and neural cells from various insults known to cause hearing loss; explores the potential of replacing lost sensory and nerve cells using gene and stem cell therapy; and describes the considerations for clinical translation and the challenges that need to be overcome.

  9. Benefits of Neuronal Preferential Systemic Gene Therapy for Neurotransmitter Deficiency.

    PubMed

    Lee, Ni-Chung; Muramatsu, Shin-Ichi; Chien, Yin-Hsiu; Liu, Wen-Shin; Wang, Wei-Hua; Cheng, Chia-Hao; Hu, Meng-Kai; Chen, Pin-Wen; Tzen, Kai-Yuan; Byrne, Barry J; Hwu, Wuh-Liang

    2015-10-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive disease that impairs synthesis of dopamine and serotonin. Children with AADC deficiency exhibit severe motor, behavioral, and autonomic dysfunctions. We previously generated an IVS6+4A>T knock-in mouse model of AADC deficiency (Ddc(KI) mice) and showed that gene therapy at the neonatal stage can rescue this phenotype. In the present study, we extended this treatment to systemic therapy on young mice. After intraperitoneal injection of AADC viral vectors into 7-day-old Ddc(KI) mice, the treated mice exhibited improvements in weight gain, survival, motor function, autonomic function, and behavior. The yfAAV9/3-Syn-I-mAADC-treated mice showed greater neuronal transduction and higher brain dopamine levels than AAV9-CMV-hAADC-treated mice, whereas AAV9-CMV-hAADC-treated mice exhibited hyperactivity. Therefore, neurotransmitter-deficient animals can be rescued at a young age using systemic gene therapy, although a vector for preferential neuronal expression may be necessary to avoid hyperactivity caused by this treatment.

  10. Benefits of Neuronal Preferential Systemic Gene Therapy for Neurotransmitter Deficiency

    PubMed Central

    Lee, Ni-Chung; Muramatsu, Shin-Ichi; Chien, Yin-Hsiu; Liu, Wen-Shin; Wang, Wei-Hua; Cheng, Chia-Hao; Hu, Meng-Kai; Chen, Pin-Wen; Tzen, Kai-Yuan; Byrne, Barry J; Hwu, Wuh-Liang

    2015-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive disease that impairs synthesis of dopamine and serotonin. Children with AADC deficiency exhibit severe motor, behavioral, and autonomic dysfunctions. We previously generated an IVS6+4A>T knock-in mouse model of AADC deficiency (DdcKI mice) and showed that gene therapy at the neonatal stage can rescue this phenotype. In the present study, we extended this treatment to systemic therapy on young mice. After intraperitoneal injection of AADC viral vectors into 7-day-old DdcKI mice, the treated mice exhibited improvements in weight gain, survival, motor function, autonomic function, and behavior. The yfAAV9/3-Syn-I-mAADC-treated mice showed greater neuronal transduction and higher brain dopamine levels than AAV9-CMV-hAADC-treated mice, whereas AAV9-CMV-hAADC-treated mice exhibited hyperactivity. Therefore, neurotransmitter-deficient animals can be rescued at a young age using systemic gene therapy, although a vector for preferential neuronal expression may be necessary to avoid hyperactivity caused by this treatment. PMID:26137853

  11. Gene and cell therapy for chronic ischaemic heart disease.

    PubMed

    Poh, Kian-Keong

    2007-01-01

    Viable treatment options are becoming available for the 'no-option' patient with chronic ischaemic heart disease. Instead of revascularising the highly diseased epicardial coronary arteries, scientists and clinicians have been looking at augmenting mother nature's way of providing biological bypass in an attempt to provide symptomatic relief in these patients. The novel use of gene and cell therapies for myocardial neovascularisation has exploded into a flurry of early clinical trials. This translational research has been motivated by an improved understanding of the biological mechanisms involved in tissue repair after ischaemic injury. While safety concerns will be top in priority in these trials, different types or combination of therapies, dose and route of delivery are being tested before further optimisation and establishment. With cautious optimism, a new era in the treatment of ischaemic heart disease is being entered. This article reviews the present state in gene and cell therapies for ischaemic heart disease, the modalities of their delivery, novel imaging techniques and future perspectives.

  12. Regulatable Gene Expression Systems for Gene Therapy Applications: Progress and Future Challenges

    PubMed Central

    Goverdhana, S.; Puntel, M.; Xiong, W.; Zirger, J. M.; Barcia, C.; Curtin, J. F.; Soffer, E. B.; Mondkar, S.; King, G. D.; Hu, J.; Sciascia, S. A.; Candolfi, M.; Greengold, D. S.; Lowenstein, P. R.; Castro, M. G.

    2009-01-01

    Gene therapy aims to revert diseased phenotypes by the use of both viral and nonviral gene delivery systems. Substantial progress has been made in making gene transfer vehicles more efficient, less toxic, and nonimmunogenic and in allowing long-term transgene expression. One of the key issues in successfully implementing gene therapies in the clinical setting is to be able to regulate gene expression very tightly and consistently as and when it is needed. The regulation ought to be achievable using a compound that should be nontoxic, be able to penetrate into the desired target tissue or organ, and have a half-life of a few hours (as opposed to minutes or days) so that when withdrawn or added (depending on the regulatable system used) gene expression can be turned “on” or “off” quickly and effectively. Also, the genetic switches employed should ideally be nonimmunogenic in the host. The ability to switch transgenes on and off would be of paramount importance not only when the therapy is no longer needed, but also in the case of the development of adverse side effects to the therapy. Many regulatable systems are currently under development and some, i.e., the tetracycline-dependent transcriptional switch, have been used successfully for in vivo preclinical applications. Despite this, there are no examples of switches that have been employed in a human clinical trial. In this review, we aim to highlight the main regulatable systems currently under development, the gene transfer systems employed for their expression, and also the preclinical models in which they have been used successfully. We also discuss the substantial challenges that still remain before these regulatable switches can be employed in the clinical setting. PMID:15946903

  13. Encapsulation of viral vectors for gene therapy applications.

    PubMed

    Turner, Peter; Petch, Amelia; Al-Rubeai, Mohamed

    2007-01-01

    In gene therapy, a number of viruses are currently being used as vectors to provide transient expression of therapeutic proteins. A drawback of using free virus is that it gives a potent immune response, which reduces gene transfer and limits re-administration. An alternative delivery system is to encapsulate the virus in poly(lactide-co-glycolide) (PLG) microspheres prior to administration. A recombinant adenovirus (Ad) expressing green fluorescent protein (GFP) was used to test the transduction efficiency of Ad encapsulated in microspheres on target cells. The number of infected cells that expressed GFP was measured by flow cytometry. It was demonstrated that encapsulated viral vectors could successfully transduce target cells with encapsulation efficiencies up to 23% and that the level of transduction could be controlled by varying both the quantity of microspheres and the amount of Ad in the microspheres. High transduction efficiencies and its recognized biocompatibility make PLG-encapsulated Ad an attractive alternative to the use of free virus in gene therapy applications. The infectivity of Ad was found to be significantly influenced by the processing conditions and changes in environmental factors. Free Ad and encapsulated Ad were able to infect both E1 complimenting cells (HEK 293) and non-complimenting cells (A549), with the viral expression in HEK 293 cells being 2.1 times greater than for A549 cells.

  14. Cationic Polyene Phospholipids as DNA Carriers for Ocular Gene Therapy

    PubMed Central

    Machado, Susana; Calado, Sofia; Bitoque, Diogo; Oliveira, Ana Vanessa; Øpstad, Christer L.; Zeeshan, Muhammad; Sliwka, Hans-Richard; Partali, Vassilia; Pungente, Michael D.; Silva, Gabriela A.

    2014-01-01

    Recent success in the treatment of congenital blindness demonstrates the potential of ocular gene therapy as a therapeutic approach. The eye is a good target due to its small size, minimal diffusion of therapeutic agent to the systemic circulation, and low immune and inflammatory responses. Currently, most approaches are based on viral vectors, but efforts continue towards the synthesis and evaluation of new nonviral carriers to improve nucleic acid delivery. Our objective is to evaluate the efficiency of novel cationic retinoic and carotenoic glycol phospholipids, designated C20-18, C20-20, and C30-20, to deliver DNA to human retinal pigmented epithelium (RPE) cells. Liposomes were produced by solvent evaporation of ethanolic mixtures of the polyene compounds and coformulated with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or cholesterol (Chol). Addition of DNA to the liposomes formed lipoplexes, which were characterized for binding, size, biocompatibility, and transgene efficiency. Lipoplex formulations of suitable size and biocompatibility were assayed for DNA delivery, both qualitatively and quantitatively, using RPE cells and a GFP-encoding plasmid. The retinoic lipoplex formulation with DOPE revealed a transfection efficiency comparable to the known lipid references 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl]-cholesterol (DC-Chol) and 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EPC) and GeneJuice. The results demonstrate that cationic polyene phospholipids have potential as DNA carriers for ocular gene therapy. PMID:25147812

  15. Prospects for retinal cone-targeted gene therapy.

    PubMed

    Alexander, John J; Hauswirth, William W

    2008-06-01

    Gene therapy strategies that target therapeutic genes to retinal cones are a worthy goal both because cone photoreceptor diseases are severely vision limiting and because many retinal diseases that do not affect cones directly eventually lead to cone loss, the reason for eventual blindness. Human achromatopsia is a genetic disease of cones that renders them nonfunctional but otherwise intact. Thus, animal models of achromatopsia were used in conjunction with adeno-associated virus (AAV) vectors whose serotype efficiently transduces cones and with a promoter that limits transgene expression to cones. In the Gnat2(cpfl3) mouse model of one genetic form of human achromatopsia, we were able to demonstrate recovery of normal cone function and visual acuity after a single subretinal treatment of vector that supplied wild-type Gnat2 protein to cones. This validates the overall strategy of targeting cones using recombinant viral vectors and justifies a more complete examination of animal models of cone disease as a prelude to considering a clinical gene therapy trial. PMID:18596991

  16. Achromatopsia as a potential candidate for gene therapy.

    PubMed

    Pang, Ji-Jing; Alexander, John; Lei, Bo; Deng, Wentao; Zhang, Keqing; Li, Qiuhong; Chang, Bo; Hauswirth, William W

    2010-01-01

    Achromatopsia is an autosomal recessive retinal disease involving loss of cone function that afflicts approximately 1 in 30,000 individuals. Patients with achromatopsia usually have visual acuities lower than 20/200 because of the central vision loss, photophobia, complete color blindness and reduced cone-mediated electroretinographic (ERG) amplitudes. Mutations in three genes have been found to be the primary causes of achromatopsia, including CNGB3 (beta subunit of the cone cyclic nucleotide-gated cation channel), CNGA3 (alpha subunit of the cone cyclic nucleotide-gated cation channel), and GNAT2 (cone specific alpha subunit of transducin). Naturally occurring mouse models with mutations in Cnga3 (cpfl5 mice) and Gnat2 (cpfl3 mice) were discovered at The Jackson Laboratory. A natural occurring canine model with CNGB3 mutations has also been found. These animal models have many of the central phenotypic features of the corresponding human diseases. Using adeno-associated virus (AAV)-mediated gene therapy, we and others show that cone function can be restored in all three models. These data suggest that human achromatopsia may be a good candidate for corrective gene therapy. PMID:20238068

  17. Progress and Prospects of Anti-HBV Gene Therapy Development.

    PubMed

    Maepa, Mohube B; Roelofse, Ilke; Ely, Abdullah; Arbuthnot, Patrick

    2015-07-31

    Despite the availability of an effective vaccine against hepatitis B virus (HBV), chronic infection with the virus remains a major global health concern. Current drugs against HBV infection are limited by emergence of resistance and rarely achieve complete viral clearance. This has prompted vigorous research on developing better drugs against chronic HBV infection. Advances in understanding the life cycle of HBV and improvements in gene-disabling technologies have been impressive. This has led to development of better HBV infection models and discovery of new drug candidates. Ideally, a regimen against chronic HBV infection should completely eliminate all viral replicative intermediates, especially covalently closed circular DNA (cccDNA). For the past few decades, nucleic acid-based therapy has emerged as an attractive alternative that may result in complete clearance of HBV in infected patients. Several genetic anti-HBV strategies have been developed. The most studied approaches include the use of antisense oligonucleotides, ribozymes, RNA interference effectors and gene editing tools. This review will summarize recent developments and progress made in the use of gene therapy against HBV.

  18. Animal models for prenatal gene therapy: choosing the right model.

    PubMed

    Mehta, Vedanta; Peebles, Donald; David, Anna L

    2012-01-01

    Testing in animal models is an essential requirement during development of prenatal gene therapy for -clinical application. Some information can be derived from cell lines or cultured fetal cells, such as the efficiency of gene transfer and the vector dose that might be required. Fetal tissues can also be maintained in culture for short periods of time and transduced ex vivo. Ultimately, however, the use of animals is unavoidable since in vivo experiments allow the length and level of transgene expression to be measured, and provide an assessment of the effect of the delivery procedure and the gene therapy on fetal and neonatal development. The choice of animal model is determined by the nature of the disease and characteristics of the animal, such as its size, lifespan, and immunology, the number of fetuses and their development, parturition, and the length of gestation and the placentation. The availability of a disease model is also critical. In this chapter, we discuss the various animal models that can be used and consider how their characteristics can affect the results obtained. The projection to human application and the regulatory hurdles are also presented.

  19. Simian virus-40 as a gene therapy vector.

    PubMed

    Vera, Maria; Fortes, Puri

    2004-05-01

    Simian virus-40 (SV40), an icosahedral papovavirus, has recently been modified to serve as a gene delivery vector. Recombinant SV40 vectors (rSV40) are good candidates for gene transfer, as they display some unique features: SV40 is a well-known virus, nonreplicative vectors are easy-to-make, and can be produced in titers of 10(12) IU/ml. They also efficiently transduce both resting and dividing cells, deliver persistent transgene expression to a wide range of cell types, and are nonimmunogenic. Present disadvantages of rSV40 vectors for gene therapy are a small cloning capacity and the possible risks related to random integration of the viral genome into the host genome. Considerable efforts have been devoted to modifing this virus and setting up protocols for viral production. Preliminary therapeutic results obtained both in tissue culture cells and in animal models for heritable and acquired diseases indicate that rSV40 vectors are promising gene transfer vehicles. This article reviews the work performed with SV40 viruses as recombinant vectors for gene transfer. A summary of the structure, genomic organization, and life cycle of wild-type SV40 viruses is presented. Furthermore, the strategies utilized for the development, production, and titering of rSV40 vectors are discussed. Last, the therapeutic applications developed to date are highlighted. PMID:15169607

  20. Stem and progenitor cell-mediated tumor selective gene therapy.

    PubMed

    Aboody, K S; Najbauer, J; Danks, M K

    2008-05-01

    The poor prognosis for patients with aggressive or metastatic tumors and the toxic side effects of currently available treatments necessitate the development of more effective tumor-selective therapies. Stem/progenitor cells display inherent tumor-tropic properties that can be exploited for targeted delivery of anticancer genes to invasive and metastatic tumors. Therapeutic genes that have been inserted into stem cells and delivered to tumors with high selectivity include prodrug-activating enzymes (cytosine deaminase, carboxylesterase, thymidine kinase), interleukins (IL-2, IL-4, IL-12, IL-23), interferon-beta, apoptosis-promoting genes (tumor necrosis factor-related apoptosis-inducing ligand) and metalloproteinases (PEX). We and others have demonstrated that neural and mesenchymal stem cells can deliver therapeutic genes to elicit a significant antitumor response in animal models of intracranial glioma, medulloblastoma, melanoma brain metastasis, disseminated neuroblastoma and breast cancer lung metastasis. Most studies reported reduction in tumor volume (up to 90%) and increased survival of tumor-bearing animals. Complete cures have also been achieved (90% disease-free survival for >1 year of mice bearing disseminated neuroblastoma tumors). As we learn more about the biology of stem cells and the molecular mechanisms that mediate their tumor-tropism and we identify efficacious gene products for specific tumor types, the clinical utility of cell-based delivery strategies becomes increasingly evident.

  1. Regulatory Frameworks for Gene and Cell Therapies in Japan.

    PubMed

    Maeda, Daisuke; Yamaguchi, Teruhide; Ishizuka, Takami; Hirata, Masakazu; Takekita, Kazuhiro; Sato, Daisaku

    2015-01-01

    The regulations for the human use of advanced therapy medical products such as gene and cell therapy products have evolved in accordance with advance of clinical experience, scientific knowledge, and social acceptance to these technologies. In Japan, two laws, the Pharmaceuticals and Medical Devices (PMD) Act and the Act on the Safety of Regenerative Medicine (ASRM), were enacted in November 2014. The PMD Act defines regenerative medical products for the first time and introduces a system for the conditional and time-limited marketing authorization of regenerative medical products. Under ASRM, the responsibilities of medical institutions to ensure the safety and provide transparency of such medical technologies are described. Amendments to accompanying guidelines for these two Acts are currently in preparation. It is expected that the new legislative frameworks will promote the timely development of new products and technologies, to bring safe and effective regenerative medicines to Japanese patients.

  2. MicroRNA-regulated viral vectors for gene therapy.

    PubMed

    Geisler, Anja; Fechner, Henry

    2016-05-20

    Safe and effective gene therapy approaches require targeted tissue-specific transfer of a therapeutic transgene. Besides traditional approaches, such as transcriptional and transductional targeting, microRNA-dependent post-transcriptional suppression of transgene expression has been emerging as powerful new technology to increase the specificity of vector-mediated transgene expression. MicroRNAs are small non-coding RNAs and often expressed in a tissue-, lineage-, activation- or differentiation-specific pattern. They typically regulate gene expression by binding to imperfectly complementary sequences in the 3' untranslated region (UTR) of the mRNA. To control exogenous transgene expression, tandem repeats of artificial microRNA target sites are usually incorporated into the 3' UTR of the transgene expression cassette, leading to subsequent degradation of transgene mRNA in cells expressing the corresponding microRNA. This targeting strategy, first shown for lentiviral vectors in antigen presenting cells, has now been used for tissue-specific expression of vector-encoded therapeutic transgenes, to reduce immune response against the transgene, to control virus tropism for oncolytic virotherapy, to increase safety of live attenuated virus vaccines and to identify and select cell subsets for pluripotent stem cell therapies, respectively. This review provides an introduction into the technical mechanism underlying microRNA-regulation, highlights new developments in this field and gives an overview of applications of microRNA-regulated viral vectors for cardiac, suicide gene cancer and hematopoietic stem cell therapy, as well as for treatment of neurological and eye diseases. PMID:27226955

  3. Connexin 43-enhanced suicide gene therapy using herpesviral vectors.

    PubMed

    Marconi, P; Tamura, M; Moriuchi, S; Krisky, D M; Niranjan, A; Goins, W F; Cohen, J B; Glorioso, J C

    2000-01-01

    Tumor cell transduction with the herpes simplex virus (HSV) thymidine kinase (tk) gene and treatment with ganciclovir (GCV) is a widely studied cancer gene therapy. Connexin (Cx)-dependent gap junctions between cells facilitate the intercellular spread of TK-activated GCV, thereby creating a bystander effect that improves tumor cell killing. However, tumor cells often have reduced connexin expression, thus thwarting bystander killing and the effectiveness of TK/GCV gene therapy. To improve the effectiveness of this therapy, we compared an HSV vector (TOCX) expressing Cx43 in addition to TK with an isogenic tk vector (TOZ.1) for their abilities to induce bystander killing of Cx-positive U-87 MG human glioblastoma cells and Cx-negative L929 fibrosarcoma cells in vitro and in vivo. The results showed that low-multiplicity infection of U-87 MG cells with TOCX only minimally increased GCV-mediated cell death compared with infection by TOZ.1, consistent with the endogenous level of Cx in these cells. In contrast, bystander killing of L929 cells was markedly enhanced by vector-mediated expression of Cx. In vivo experiments in which U-87 MG cells were preinfected at low multiplicity and injected into the flanks of nude mice showed complete cures of all animals in the TOCX group following GCV treatment, whereas untreated animals uniformly formed fatal tumors. TOCX injection into U-87 MG intradermal and intracranial tumors resulted in prolonged survival of the host animals in a GCV-dependent manner. Together, these results suggest that the combination of TK and Cx may be beneficial for the treatment of human glioblastoma.

  4. MicroRNA-regulated viral vectors for gene therapy

    PubMed Central

    Geisler, Anja; Fechner, Henry

    2016-01-01

    Safe and effective gene therapy approaches require targeted tissue-specific transfer of a therapeutic transgene. Besides traditional approaches, such as transcriptional and transductional targeting, microRNA-dependent post-transcriptional suppression of transgene expression has been emerging as powerful new technology to increase the specificity of vector-mediated transgene expression. MicroRNAs are small non-coding RNAs and often expressed in a tissue-, lineage-, activation- or differentiation-specific pattern. They typically regulate gene expression by binding to imperfectly complementary sequences in the 3’ untranslated region (UTR) of the mRNA. To control exogenous transgene expression, tandem repeats of artificial microRNA target sites are usually incorporated into the 3’ UTR of the transgene expression cassette, leading to subsequent degradation of transgene mRNA in cells expressing the corresponding microRNA. This targeting strategy, first shown for lentiviral vectors in antigen presenting cells, has now been used for tissue-specific expression of vector-encoded therapeutic transgenes, to reduce immune response against the transgene, to control virus tropism for oncolytic virotherapy, to increase safety of live attenuated virus vaccines and to identify and select cell subsets for pluripotent stem cell therapies, respectively. This review provides an introduction into the technical mechanism underlying microRNA-regulation, highlights new developments in this field and gives an overview of applications of microRNA-regulated viral vectors for cardiac, suicide gene cancer and hematopoietic stem cell therapy, as well as for treatment of neurological and eye diseases. PMID:27226955

  5. 75 FR 54351 - Cell and Gene Therapy Clinical Trials in Pediatric Populations; Public Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... HUMAN SERVICES Food and Drug Administration Cell and Gene Therapy Clinical Trials in Pediatric... public workshop entitled ``Cell and Gene Therapy Clinical Trials in Pediatric Populations.'' The purpose... therapy clinical researchers, and other stakeholders regarding best practices related to cell and...

  6. Long-term follow-up of cancer patients treated with gene therapy medicinal products.

    PubMed

    Galli, Maria Cristina

    2012-06-01

    European Union requirements are discussed for the long-term follow-up of advanced therapy medicinal products, as well as how they can be applied to cancer patients treated with gene therapy medicinal products in the context of clinical trials, as described in a specific guideline issued by Gene Therapy Working Party at the European Medicine Agency.

  7. Tissue-Engineered Skeletal Muscle Organoids for Reversible Gene Therapy

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman; DelTatto, Michael; Shansky, Janet; Lemaire, Julie; Chang, Albert; Payumo, Francis; Lee, Peter; Goodyear, Amy; Raven, Latasha

    1996-01-01

    Genetically modified murine skeletal myoblasts were tissue engineered in vitro into organ-like structures (organoids) containing only postmitotic myofibers secreting pharmacological levels of recombinant human growth hormone (rhGH). Subcutaneous organoid Implantation under tension led to the rapid and stable appearance of physiological sera levels of rhGH for up to 12 weeks, whereas surgical removal led to its rapid disappearance. Reversible delivery of bioactive compounds from postimtotic cells in tissue engineered organs has several advantages over other forms of muscle gene therapy.

  8. Tissue-Engineered Skeletal Muscle Organoids for Reversible Gene Therapy

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman; DelTatto, Michael; Shansky, Janet; Lemaire, Julie; Chang, Albert; Payumo, Francis; Lee, Peter; Goodyear, Amy; Raven, Latasha

    1996-01-01

    Genetically modified murine skeletal myoblasts were tissue engineered in vitro into organ-like structures (organoids) containing only postmitotic myoribers secreting pharmacological levels of recombinant human growth hormone (rhGH). Subcutaneous organoid implantation under tension led to the rapid and stable appearance of physiological sera levels of rhGH for up to 12 weeks, whereas surgical removal led to its rapid disappearance. Reversible delivery of bioactive compounds from postmitotic cells in tissue engineered organs has several advantages over other forms of muscle gene therapy.

  9. Promising and delivering gene therapies for vision loss

    PubMed Central

    Carvalho, Livia S.; Vandenberghe, Luk H.

    2014-01-01

    The maturity in our understanding of the genetics and the pathogenesis of disease in degenerative retinal disorders has intersected in past years with a novel treatment paradigm in which a genetic intervention may lead to sustained therapeutic benefit, and in some cases even restoration of vision. Here, we review this prospect of retinal gene therapy, discuss the enabling technologies that have led to first-in-human demonstrations of efficacy and safety, and the road that led to this exciting point in time. PMID:25094052

  10. [Rational bases for new approaches to the therapy of pediatric solid tumors: immunotherapy and gene therapy].

    PubMed

    Pistoia, V; Prigione, I; Facchetti, P; Corrias, M V

    1994-01-01

    Neuroblastoma is one of the commonest solid tumors in children. Conventional therapeutic approaches, such as surgery, chemotherapy and radiotherapy, fail to control tumor progression in stage III and IV patients. The search for novel therapeutic strategies should necessarily take into account immunotherapy and gene therapy. Here the theoretical bases for the development of such approaches are discussed. Studies carried out with neuroblastoma (NB) cell lines have shown that neoplastic cells express a wide array of potential tumor associated antigens (TAA) but are devoid of HLA molecules which are necessary for TAA presentation to the host immune system. Transfection of NB cells with the interferon gamma gene appears a promising approach, since this cytokine up-regulates the expression of class I HLA molecules in NB cells. Other cytokines of potential interest for gene transfer studies are interleukin 2 (IL2) and interleukin 12 (IL12).

  11. Photodynamic therapy-driven induction of suicide cytosine deaminase gene.

    PubMed

    Bil, Jacek; Wlodarski, Pawel; Winiarska, Magdalena; Kurzaj, Zuzanna; Issat, Tadeusz; Jozkowicz, Alicja; Wegiel, Barbara; Dulak, Jozef; Golab, Jakub

    2010-04-28

    Photodynamic therapy (PDT) of tumors is associated with induction of hypoxia that results in activation of hypoxia-inducible factors (HIFs). Several observations indicate that increased HIFs transcriptional activity in tumor cells is associated with cytoprotective responses that limit cytotoxic effectiveness of PDT. Therefore, we decided to examine whether this cytoprotective mechanism could be intentionally used for designing more efficient tumor cell cytotoxicity. To this end we transfected tumor cells with a plasmid vector carrying a suicide cytosine deaminase gene driven by a promoter containing hypoxia response elements (HRE). The presence of such a genetic molecular beacon rendered tumor cells sensitive to cytotoxic effects of a non-toxic prodrug 5-fluorocytosine (5-FC). The results of this study provides a proof of concept that inducible cytoprotective mechanisms can be exploited to render tumor cells more susceptible to cytotoxic effects of prodrugs activated by products of suicide genes.

  12. Towards liver-directed gene therapy: retrovirus-mediated gene transfer into human hepatocytes.

    PubMed

    Grossman, M; Raper, S E; Wilson, J M

    1991-11-01

    Liver-directed gene therapy is being considered in the treatment of inherited metabolic diseases. One approach we are considering is the transplantation of autologous hepatocytes that have been genetically modified with recombinant retroviruses ex vivo. We describe, in this report, techniques for isolating human hepatocytes and efficiently transducing recombinant genes into primary cultures. Hepatocytes were isolated from tissue of four different donors, plated in primary culture, and exposed to recombinant retroviruses expressing either the LacZ reporter gene or the cDNA for rabbit LDL receptor. The efficiency of gene transfer under optimal conditions, as determined by Southern blot analysis, varied from a maximum of one proviral copy per cell to a minimum of 0.1 proviral copy per cell. Cytochemical assays were used to detect expression of the recombinant derived proteins, E. coli beta-galactosidase and rabbit LDL receptor. Hepatocytes transduced with the LDL receptor gene expressed levels of receptor protein that exceeded the normal endogenous levels. The ability to isolate and genetically modify human hepatocytes, as described in this report, is an important step towards the development of liver-directed gene therapies in humans. PMID:1767337

  13. Towards gene therapy based on femtosecond optical transfection

    NASA Astrophysics Data System (ADS)

    Antkowiak, M.; Torres-Mapa, M. L.; McGinty, J.; Chahine, M.; Bugeon, L.; Rose, A.; Finn, A.; Moleirinho, S.; Okuse, K.; Dallman, M.; French, P.; Harding, S. E.; Reynolds, P.; Gunn-Moore, F.; Dholakia, K.

    2012-06-01

    Gene therapy poses a great promise in treatment and prevention of a variety of diseases. However, crucial to studying and the development of this therapeutic approach is a reliable and efficient technique of gene and drug delivery into primary cell types. These cells, freshly derived from an organ or tissue, mimic more closely the in vivo state and present more physiologically relevant information compared to cultured cell lines. However, primary cells are known to be difficult to transfect and are typically transfected using viral methods, which are not only questionable in the context of an in vivo application but rely on time consuming vector construction and may also result in cell de-differentiation and loss of functionality. At the same time, well established non-viral methods do not guarantee satisfactory efficiency and viability. Recently, optical laser mediated poration of cell membrane has received interest as a viable gene and drug delivery technique. It has been shown to deliver a variety of biomolecules and genes into cultured mammalian cells; however, its applicability to primary cells remains to be proven. We demonstrate how optical transfection can be an enabling technique in research areas, such as neuropathic pain, neurodegenerative diseases, heart failure and immune or inflammatory-related diseases. Several primary cell types are used in this study, namely cardiomyocytes, dendritic cells, and neurons. We present our recent progress in optimizing this technique's efficiency and post-treatment cell viability for these types of cells and discuss future directions towards in vivo applications.

  14. Influential Factors and Synergies for Radiation-Gene Therapy on Cancer

    PubMed Central

    Lin, Mei; Huang, Junxing; Shi, Yujuan; Xiao, Yanhong; Guo, Ting

    2015-01-01

    Radiation-gene therapy, a dual anticancer strategy of radiation therapy and gene therapy through connecting radiation-inducible regulatory sequence to therapeutic gene, leading to the gene being induced to express by radiation while radiotherapy is performed and finally resulting in a double synergistic antitumor effect of radiation and gene, has become one of hotspots in the field of cancer treatment in recent years. But under routine dose of radiation, especially in the hypoxia environment of solid tumor, it is difficult for this therapy to achieve desired effect because of low activity of radiation-inducible regulatory elements, low level and transient expression of target gene induced by radiation, inferior target specificity and poor biosecurity, and so on. Based on the problems existing in radiation-gene therapy, many efforts have been devoted to the curative effect improvement of radiation-gene therapy by various means to increase radiation sensitivity or enhance target gene expression and the expression's controllability. Among these synergistic techniques, gene circuit, hypoxic sensitization, and optimization of radiation-induced sequence exhibit a good application potential. This review provides the main influential factors to radiation-gene therapy on cancer and the synergistic techniques to improve the anticancer effect of radiation-gene therapy. PMID:26783511

  15. Influential Factors and Synergies for Radiation-Gene Therapy on Cancer.

    PubMed

    Lin, Mei; Huang, Junxing; Shi, Yujuan; Xiao, Yanhong; Guo, Ting

    2015-01-01

    Radiation-gene therapy, a dual anticancer strategy of radiation therapy and gene therapy through connecting radiation-inducible regulatory sequence to therapeutic gene, leading to the gene being induced to express by radiation while radiotherapy is performed and finally resulting in a double synergistic antitumor effect of radiation and gene, has become one of hotspots in the field of cancer treatment in recent years. But under routine dose of radiation, especially in the hypoxia environment of solid tumor, it is difficult for this therapy to achieve desired effect because of low activity of radiation-inducible regulatory elements, low level and transient expression of target gene induced by radiation, inferior target specificity and poor biosecurity, and so on. Based on the problems existing in radiation-gene therapy, many efforts have been devoted to the curative effect improvement of radiation-gene therapy by various means to increase radiation sensitivity or enhance target gene expression and the expression's controllability. Among these synergistic techniques, gene circuit, hypoxic sensitization, and optimization of radiation-induced sequence exhibit a good application potential. This review provides the main influential factors to radiation-gene therapy on cancer and the synergistic techniques to improve the anticancer effect of radiation-gene therapy.

  16. Optimizing autologous cell grafts to improve stem cell gene therapy.

    PubMed

    Psatha, Nikoletta; Karponi, Garyfalia; Yannaki, Evangelia

    2016-07-01

    Over the past decade, stem cell gene therapy has achieved unprecedented curative outcomes for several genetic disorders. Despite the unequivocal success, clinical gene therapy still faces challenges. Genetically engineered hematopoietic stem cells are particularly vulnerable to attenuation of their repopulating capacity once exposed to culture conditions, ultimately leading to low engraftment levels posttransplant. This becomes of particular importance when transduction rates are low or/and competitive transplant conditions are generated by reduced-intensity conditioning in the absence of a selective advantage of the transduced over the unmodified cells. These limitations could partially be overcome by introducing megadoses of genetically modified CD34(+) cells into conditioned patients or by transplanting hematopoietic stem cells hematopoietic stem cells with high engrafting and repopulating potential. On the basis of the lessons gained from cord blood transplantation, we summarize the most promising approaches to date of increasing either the numbers of hematopoietic stem cells for transplantation or/and their engraftability, as a platform toward the optimization of engineered stem cell grafts. PMID:27106799

  17. Gene Therapy Models of Alzheimer's Disease and Other Dementias.

    PubMed

    Combs, Benjamin; Kneynsberg, Andrew; Kanaan, Nicholas M

    2016-01-01

    Dementias are among the most common neurological disorders, and Alzheimer's disease (AD) is the most common cause of dementia worldwide. AD remains a looming health crisis despite great efforts to learn the mechanisms surrounding the neuron dysfunction and neurodegeneration that accompanies AD primarily in the medial temporal lobe. In addition to AD, a group of diseases known as frontotemporal dementias (FTDs) are degenerative diseases involving atrophy and degeneration in the frontal and temporal lobe regions. Importantly, AD and a number of FTDs are collectively known as tauopathies due to the abundant accumulation of pathological tau inclusions in the brain. The precise role tau plays in disease pathogenesis remains an area of strong research focus. A critical component to effectively study any human disease is the availability of models that recapitulate key features of the disease. Accordingly, a number of animal models are currently being pursued to fill the current gaps in our knowledge of the causes of dementias and to develop effective therapeutics. Recent developments in gene therapy-based approaches, particularly in recombinant adeno-associated viruses (rAAVs), have provided new tools to study AD and other related neurodegenerative disorders. Additionally, gene therapy approaches have emerged as an intriguing possibility for treating these diseases in humans. This chapter explores the current state of rAAV models of AD and other dementias, discuss recent efforts to improve these models, and describe current and future possibilities in the use of rAAVs and other viruses in treatments of disease.

  18. Gene therapy for the neurological manifestations in lysosomal storage disorders.

    PubMed

    Cheng, Seng H

    2014-09-01

    Over the past several years, considerable progress has been made in the development of gene therapy as a therapeutic strategy for a variety of inherited metabolic diseases, including neuropathic lysosomal storage disorders (LSDs). The premise of gene therapy for this group of diseases is borne of findings that genetic modification of a subset of cells can provide a more global benefit by virtue of the ability of the secreted lysosomal enzymes to effect cross-correction of adjacent and distal cells. Preclinical studies in small and large animal models of these disorders support the application of either a direct in vivo approach using recombinant adeno-associated viral vectors or an ex vivo strategy using lentiviral vector-modified hematopoietic stem cells to correct the neurological component of these diseases. Early clinical studies utilizing both approaches have begun or are in late-stage planning for a small number of neuropathic LSDs. Although initial indications from these studies are encouraging, it is evident that second-generation vectors that exhibit a greater safety profile and transduction activity may be required before this optimism can be fully realized. Here, I review recent progress and the remaining challenges to treat the neurological aspects of various LSDs using this therapeutic paradigm.

  19. AAV Vectors for Cardiac Gene Transfer: Experimental Tools and Clinical Opportunities

    PubMed Central

    Pacak, Christina A; Byrne, Barry J

    2011-01-01

    Since the first demonstration of in vivo gene transfer into myocardium there have been a series of advancements that have driven the evolution of cardiac gene delivery from an experimental tool into a therapy currently at the threshold of becoming a viable clinical option. Innovative methods have been established to address practical challenges related to tissue-type specificity, choice of delivery vehicle, potency of the delivered material, and delivery route. Most importantly for therapeutic purposes, these strategies are being thoroughly tested to ensure safety of the delivery system and the delivered genetic material. This review focuses on the development of recombinant adeno-associated virus (rAAV) as one of the most valuable cardiac gene transfer agents available today. Various forms of rAAV have been used to deliver “pre-event” cardiac protection and to temper the severity of hypertrophy, cardiac ischemia, or infarct size. Adeno-associated virus (AAV) vectors have also been functional delivery tools for cardiac gene expression knockdown studies and successfully improving the cardiac aspects of several metabolic and neuromuscular diseases. Viral capsid manipulations along with the development of tissue-specific and regulated promoters have greatly increased the utility of rAAV-mediated gene transfer. Important clinical studies are currently underway to evaluate AAV-based cardiac gene delivery in humans. PMID:21792180

  20. Gene Therapy: The Potential Applicability of Gene Transfer Technology to the Human Germline

    PubMed Central

    2004-01-01

    The theoretical possibility of applying gene transfer methodologies to the human germline is explored. Transgenic methods for genetically manipulating embryos may in principle be applied to humans. In particular, microinjection of retroviral vector appears to hold the greatest promise, with transgenic primates already obtained from this approach. Sperm-mediated gene transfer offers potentially the easiest route to the human germline, however the requisite methodology is presently underdeveloped. Nuclear transfer (cloning) offers an alternative approach to germline genetic modification, however there are major health concerns associated with current nuclear transfer methods. It is concluded that human germline gene therapy remains for all practical purposes a future possibility that must await significant and important advances in gene transfer technology. PMID:15912200

  1. Gene therapy: the role of cytoskeleton in gene transfer studies based on biology and mathematics.

    PubMed

    Notarangelo, Maria G; Natalini, Roberto; Signori, Emanuela

    2014-01-01

    Gene therapy is a promising approach for treating a wide range of human pathologies such as genetic disorders as well as diseases acquired over time. Viral and non-viral vectors are used to convey sequences of genes that can be expressed for therapeutic purposes. Plasmid DNA is receiving considerable attention for intramuscular gene transfer due to its safety, simplicity and low cost of production. Nevertheless, strategies to improve DNA uptake into the nucleus of cells for its expression are required. Cytoskeleton plays an important role in the intracellular trafficking. The mechanism regulating this process must be elucidated. Here, we propose a new methodological approach based on the coupling of biology assays and predictive mathematical models, in order to clarify the mechanism of the DNA uptake and its expression into the cells. Once these processes are better clarified, we will be able to propose more efficient therapeutic gene transfer protocols for the treatment of human patients.

  2. Clinical development of gene therapy needs a tailored approach: a regulatory perspective from the European Union.

    PubMed

    Narayanan, Gopalan; Cossu, Giulio; Galli, Maria Cristina; Flory, Egbert; Ovelgonne, Hans; Salmikangas, Paula; Schneider, Christian K; Trouvin, Jean-Hugues

    2014-03-01

    Gene therapy is a rapidly evolving field that needs an integrated approach, as acknowledged in the concept article on the revision of the guideline on gene transfer medicinal products. The first gene therapy application for marketing authorization was approved in the International Conference on Harmonisation (ICH) region in 2012, the product being Alipogene tiparvovec. The regulatory process for this product has been commented on extensively, highlighting the challenges posed by such a novel technology. Here, as current or previous members of the Committee for Advanced Therapies, we share our perspectives and views on gene therapy as a treatment modality based on current common understanding and regulatory experience of gene therapy products in the European Union to date. It is our view that a tailored approach is needed for a given gene therapy product in order to achieve successful marketing authorization.

  3. Gene therapy for ocular diseases meditated by ultrasound and microbubbles (Review)

    PubMed Central

    WAN, CAIFENG; LI, FENGHUA; LI, HONGLI

    2015-01-01

    The eye is an ideal target organ for gene therapy as it is easily accessible and immune-privileged. With the increasing insight into the underlying molecular mechanisms of ocular diseases, gene therapy has been proposed as an effective approach. Successful gene therapy depends on efficient gene transfer to targeted cells to prove stable and prolonged gene expression with minimal toxicity. At present, the main hindrance regarding the clinical application of gene therapy is not the lack of an ideal gene, but rather the lack of a safe and efficient method to selectively deliver genes to target cells and tissues. Ultrasound-targeted microbubble destruction (UTMD), with the advantages of high safety, repetitive applicability and tissue targeting, has become a potential strategy for gene- and drug delivery. When gene-loaded microbubbles are injected, UTMD is able to enhance the transport of the gene to the targeted cells. High-amplitude oscillations of microbubbles act as cavitation nuclei which can effectively focus ultrasound energy, produce oscillations and disruptions that increase the permeability of the cell membrane and create transient pores in the cell membrane. Thereby, the efficiency of gene therapy can be significantly improved. The UTMD-mediated gene delivery system has been widely used in pre-clinical studies to enhance gene expression in a site-specific manner in a variety of organs. With reasonable application, the effects of sonoporation can be spatially and temporally controlled to improve localized tissue deposition of gene complexes for ocular gene therapy applications. In addition, appropriately powered, focused ultrasound combined with microbubbles can induce a reversible disruption of the blood-retinal barrier with no significant side effects. The present review discusses the current status of gene therapy of ocular diseases as well as studies on gene therapy of ocular diseases meditated by UTMD. PMID:26151686

  4. The Current and Future Landscape of SERCA Gene Therapy for Heart Failure: A Clinical Perspective.

    PubMed

    Hayward, Carl; Banner, Nicholas R; Morley-Smith, Andrew; Lyon, Alexander R; Harding, Sian E

    2015-05-01

    Gene therapy has been applied to cardiovascular disease for over 20 years but it is the application to heart failure that has generated recent interest in clinical trials. There is laboratory and early clinical evidence that delivery of sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) gene therapy is beneficial for heart failure and this therapy could become the first positive inotrope with anti-arrhythmic properties. In this review we will discuss the rationale for SERCA2a gene therapy as a viable strategy in heart failure, review the published data, and discuss the ongoing clinical trials, before concluding with comments on the future challenges and potential for this therapy.

  5. [Collaborative study on regulatory science for facilitating clinical development of gene therapy products for genetic diseases].

    PubMed

    Uchida, Eriko; Igarashi, Yuka; Sato, Yoji

    2014-01-01

    Gene therapy products are expected as innovative medicinal products for intractable diseases such as life-threatening genetic diseases and cancer. Recently, clinical developments by pharmaceutical companies are accelerated in Europe and the United States, and the first gene therapy product in advanced countries was approved for marketing authorization by the European Commission in 2012. On the other hand, more than 40 clinical studies for gene therapy have been completed or ongoing in Japan, most of them are conducted as clinical researches by academic institutes, and few clinical trials have been conducted for approval of gene therapy products. In order to promote the development of gene therapy products, revision of the current guideline and/or preparation of concept paper to address the evaluation of the quality and safety of gene therapy products are necessary and desired to clearly show what data should be submitted before First-in-Human clinical trials of novel gene therapy products. We started collaborative study with academia and regulatory agency to promote regulatory science toward clinical development of gene therapy products for genetic diseases based on lentivirus and adeno-associated virus vectors; National Center for Child Health and Development (NCCHD), Nippon Medical School and PMDA have been joined in the task force. At first, we are preparing pre-draft of the revision of the current gene therapy guidelines in this project.

  6. ORMOPLEXEs for gene therapy: In vitro and in vivo assays.

    PubMed

    Matos, J C; Soares, A R; Domingues, I; Monteiro, G A; Gonçalves, M C

    2016-06-01

    Gene therapy stays on the cutting edge of biomedical research, being the design of the optimal gene delivery vector one of the key requests. Silica-based nanoparticles (NPs) have emerged as promising non-viral gene delivery vector, due to their high biocompatibility, nontoxicity, non-immunogenicity, biodegradability and enormous bioconjugation versatility. In this work a sol-gel methodology for the synthesis of amino-functionalized silica NPs (NH2-ORMOSIL NPs) was optimized, and NPs were characterized by TEM and FTIR. In a first step NH2-ORMOSIL NPs were bioconjugated with a plasmid DNA, pVAX1-GFP, assembling an ORMOPLEXE, confirmed by agarose gel electrophoresis. In a second step, in vitro studies have been performed with cultured CHO cells, where ORMOPLEXEs transfection was proved by CLSM. In vivo transfection efficiency and bio-distribution were performed in Zebrafish (Danio rerio) embryos, assessed by FM. Finally, NPs ecotoxicity was studied in zebrafish embryos by following the mortality and developmental endpoints. PMID:27040249

  7. Gene therapy for carcinoma of the breast: Pro-apoptotic gene therapy

    PubMed Central

    Gómez-Navarro, Jesús; Arafat , Waleed; Xiang, Jialing

    2000-01-01

    Abstract The dysregulation of apoptosis contributes in a variety of ways to the malignant phenotype. It is increasingly recognized that the alteration of pro-apoptotic and anti-apoptotic molecules determines not only escape from mechanisms that control cell cycle and DNA damage, but also endows the cancer cells with the capacity to survive in the presence of a metabolically adverse milieu, to resist the attack of the immune system, to locally invade and survive despite a lack of tissue anchorage, and to evade the otherwise lethal insults induced by drugs and radiotherapy. A multitude of apoptosis mediators has been identified in the past decade, and the roles of several of them in breast cancer have been delineated by studying the clinical correlates of pathologically documented abnormalities. Using this information, attempts are being made to correct the fundamental anomalies at the genetic level. Fundamental to this end are the design of more efficient and selective gene transfer systems, and the employment of complex interventions that are tailored to breast cancer and that are aimed concomitantly towards different components of the redundant regulatory pathways. The combination of such genetic modifications is most likely to be effective when combined with conventional treatments, thus robustly activating several pro-apoptotic pathways. PMID:11250691

  8. Simultaneous gene silencing of KRAS and anti-apoptotic genes as a multitarget therapy.

    PubMed

    Werner, Kristin; Lademann, Franziska; Thepkaysone, May-Linn; Jahnke, Beatrix; Aust, Daniela E; Kahlert, Christoph; Weber, Georg; Weitz, Jürgen; Grützmann, Robert; Pilarsky, Christian

    2016-01-26

    Pancreatic cancer is one of the most lethal tumor types worldwide and an effective therapy is still elusive. Targeted therapy focused against a specific alteration is by definition unable to attack broad pathway signaling modification. Tumor heterogeneity will render targeted therapies ineffective based on the regrowth of cancer cell sub-clones. Therefore multimodal therapy strategies, targeting signaling pathways simultaneously should improve treatment.SiRNAs against KRAS and the apoptosis associated genes BCLXL, FLIP, MCL1L, SURVIVIN and XIAP were transfected into human and murine pancreatic cancer cell lines. Induction of apoptosis was measured by Caspase 3/7 activation, subG1 FACS analysis and PARP cleavage. The therapeutic approach was tested in a subcutaneous allograft model with a murine cancer cell line.By using siRNAs as a systematic approach to remodel signal transduction in pancreatic cancer the results showed increasing inhibition of proliferation and apoptosis induction in vitro and in vivo. Thus, siRNAs are suitable to model multimodal therapy against signaling pathways in pancreatic cancer. Improvements in in vivo delivery of siRNAs against a multitude of targets might therefore be a potential therapeutic approach.

  9. Simultaneous gene silencing of KRAS and anti-apoptotic genes as a multitarget therapy

    PubMed Central

    Werner, Kristin; Lademann, Franziska; Thepkaysone, May-Linn; Jahnke, Beatrix; Aust, Daniela E.; Kahlert, Christoph; Weber, Georg; Weitz, Jürgen; Grützmann, Robert; Pilarsky, Christian

    2016-01-01

    Pancreatic cancer is one of the most lethal tumor types worldwide and an effective therapy is still elusive. Targeted therapy focused against a specific alteration is by definition unable to attack broad pathway signaling modification. Tumor heterogeneity will render targeted therapies ineffective based on the regrowth of cancer cell sub-clones. Therefore multimodal therapy strategies, targeting signaling pathways simultaneously should improve treatment. SiRNAs against KRAS and the apoptosis associated genes BCLXL, FLIP, MCL1L, SURVIVIN and XIAP were transfected into human and murine pancreatic cancer cell lines. Induction of apoptosis was measured by Caspase 3/7 activation, subG1 FACS analysis and PARP cleavage. The therapeutic approach was tested in a subcutaneous allograft model with a murine cancer cell line. By using siRNAs as a systematic approach to remodel signal transduction in pancreatic cancer the results showed increasing inhibition of proliferation and apoptosis induction in vitro and in vivo. Thus, siRNAs are suitable to model multimodal therapy against signaling pathways in pancreatic cancer. Improvements in in vivo delivery of siRNAs against a multitude of targets might therefore be a potential therapeutic approach. PMID:26716649

  10. A tumor targeted gene vector modified with G250 monoclonal antibody for gene therapy.

    PubMed

    Duan, Yajun; Zheng, Junnian; Han, Sufang; Wu, Yi; Wang, Yanming; Li, Deguan; Kong, Deling; Yu, Yaoting

    2008-04-21

    G250 is a tumor associated antigen that is found on > 90% of renal cell carcinoma (RCC). In order to develop a highly targeting gene vector for RCC gene therapy, G250 monoclonal antibody was prepared, purified and characterized. The antibody was chemically bound to Polyethylenimine (PEI) to form the IgG-PEI conjugate. The conjugate is capable of forming DNA complexes in the size of nano meters and with a narrow size distribution. The targeting effect and transfection efficiency were tested on five cell lines, ketr 3, Hela, ACHN, HepG2, and smooth muscle cells. The transfection was quantitatively determined by fluorescence activated cell sorting (FACS) and luciferase assay. The FACS results show that for G250 positive cells ketr 3 and Hela, the transfection efficiency of IgG-PEI are 2-fold higher than that of PEI. But for G250 negative cells, antibody modification has no effect on transfection. The expression of luciferase in ketr 3 cells which is expressed as enzyme activity is 15-fold and 61-fold higher than that in ACHN and SMC, respectively. In the presence of free antibody, the targeting effect of IgG-PEI is impaired and the transfection efficiency is normalized. It indicates that G250 antibody is an ideal targeting ligand for delivery of genes into RCC. Application of this IgG-PEI conjugate in RCC gene therapy will be of great interest. PMID:18316136

  11. Simian virus 40 vectors for pulmonary gene therapy

    PubMed Central

    Eid, Luminita; Bromberg, Zohar; EL-Latif, Mahmoud Abd; Zeira, Evelyn; Oppenheim, Ariella; Weiss, Yoram G

    2007-01-01

    Background Sepsis remains the leading cause of death in critically ill patients. One of the primary organs affected by sepsis is the lung, presenting as the Acute Respiratory Distress Syndrome (ARDS). Organ damage in sepsis involves an alteration in gene expression, making gene transfer a potential therapeutic modality. This work examines the feasibility of applying simian virus 40 (SV40) vectors for pulmonary gene therapy. Methods Sepsis-induced ARDS was established by cecal ligation double puncture (2CLP). SV40 vectors carrying the luciferase reporter gene (SV/luc) were administered intratracheally immediately after sepsis induction. Sham operated (SO) as well as 2CLP rats given intratracheal PBS or adenovirus expressing luciferase served as controls. Luc transduction was evaluated by in vivo light detection, immunoassay and luciferase mRNA detection by RT-PCR in tissue harvested from septic rats. Vector abundance and distribution into alveolar cells was evaluated using immunostaining for the SV40 VP1 capsid protein as well as by double staining for VP1 and for the surfactant protein C (proSP-C). Immunostaining for T-lymphocytes was used to evaluate the cellular immune response induced by the vector. Results Luc expression measured by in vivo light detection correlated with immunoassay from lung tissue harvested from the same rats. Moreover, our results showed vector presence in type II alveolar cells. The vector did not induce significant cellular immune response. Conclusion In the present study we have demonstrated efficient uptake and expression of an SV40 vector in the lungs of animals with sepsis-induced ARDS. These vectors appear to be capable of in vivo transduction of alveolar type II cells and may thus become a future therapeutic tool. PMID:17967178

  12. The Status of RPE65 Gene Therapy Trials: Safety and Efficacy.

    PubMed

    Pierce, Eric A; Bennett, Jean

    2015-01-01

    Several groups have reported the results of clinical trials of gene augmentation therapy for Leber congenital amaurosis (LCA) because of mutations in the RPE65 gene. These studies have used subretinal injection of adeno-associated virus (AAV) vectors to deliver the human RPE65 cDNA to the retinal pigment epithelial (RPE) cells of the treated eyes. In all of the studies reported to date, this approach has been shown to be both safe and effective. The successful clinical trials of gene augmentation therapy for retinal degeneration caused by mutations in the RPE65 gene sets the stage for broad application of gene therapy to treat retinal degenerative disorders.

  13. Gene therapy for ocular diseases meditated by ultrasound and microbubbles (Review).

    PubMed

    Wan, Caifeng; Li, Fenghua; Li, Hongli

    2015-10-01

    The eye is an ideal target organ for gene therapy as it is easily accessible and immune‑privileged. With the increasing insight into the underlying molecular mechanisms of ocular diseases, gene therapy has been proposed as an effective approach. Successful gene therapy depends on efficient gene transfer to targeted cells to prove stable and prolonged gene expression with minimal toxicity. At present, the main hindrance regarding the clinical application of gene therapy is not the lack of an ideal gene, but rather the lack of a safe and efficient method to selectively deliver genes to target cells and tissues. Ultrasound‑targeted microbubble destruction (UTMD), with the advantages of high safety, repetitive applicability and tissue targeting, has become a potential strategy for gene‑ and drug delivery. When gene‑loaded microbubbles are injected, UTMD is able to enhance the transport of the gene to the targeted cells. High‑amplitude oscillations of microbubbles act as cavitation nuclei which can effectively focus ultrasound energy, produce oscillations and disruptions that increase the permeability of the cell membrane and create transient pores in the cell membrane. Thereby, the efficiency of gene therapy can be significantly improved. The UTMD‑mediated gene delivery system has been widely used in pre‑clinical studies to enhance gene expression in a site‑specific manner in a variety of organs. With reasonable application, the effects of sonoporation can be spatially and temporally controlled to improve localized tissue deposition of gene complexes for ocular gene therapy applications. In addition, appropriately powered, focused ultrasound combined with microbubbles can induce a reversible disruption of the blood‑retinal barrier with no significant side effects. The present review discusses the current status of gene therapy of ocular diseases as well as studies on gene therapy of ocular diseases meditated by UTMD.

  14. Improved virus purification processes for vaccines and gene therapy.

    PubMed

    Nestola, Piergiuseppe; Peixoto, Cristina; Silva, Ricardo R J S; Alves, Paula M; Mota, José P B; Carrondo, Manuel J T

    2015-05-01

    The downstream processing of virus particles for vaccination or gene therapy is becoming a critical bottleneck as upstream titers keep improving. Moreover, the growing pressure to develop cost-efficient processes has brought forward new downstream trains. This review aims at analyzing the state-of-the-art in viral downstream purification processes, encompassing the classical unit operations and their recent developments. Emphasis is given to novel strategies for process intensification, such as continuous or semi-continuous systems based on multicolumn technology, opening up process efficiency. Process understanding in the light of the pharmaceutical quality by design (QbD) initiative is also discussed. Finally, an outlook of the upcoming breakthrough technologies is presented.

  15. Retroviral display in gene therapy, protein engineering, and vaccine development.

    PubMed

    Urban, Johannes H; Merten, Christoph A

    2011-01-21

    The display and analysis of proteins expressed on biological surfaces has become an attractive tool for the study of molecular interactions in enzymology, protein engineering, and high-throughput screening. Among the growing number of established display systems, retroviruses offer a unique and fully mammalian platform for the expression of correctly folded and post-translationally modified proteins in the context of cell plasma membrane-derived particles. This is of special interest for therapeutic applications such as gene therapy and vaccine development and also offers advantages for the engineering of mammalian proteins toward customized binding affinities and catalytic activities. This review critically summarizes the basic concepts and applications of retroviral display and analyses its benefits in comparison to other display techniques.

  16. Improved virus purification processes for vaccines and gene therapy.

    PubMed

    Nestola, Piergiuseppe; Peixoto, Cristina; Silva, Ricardo R J S; Alves, Paula M; Mota, José P B; Carrondo, Manuel J T

    2015-05-01

    The downstream processing of virus particles for vaccination or gene therapy is becoming a critical bottleneck as upstream titers keep improving. Moreover, the growing pressure to develop cost-efficient processes has brought forward new downstream trains. This review aims at analyzing the state-of-the-art in viral downstream purification processes, encompassing the classical unit operations and their recent developments. Emphasis is given to novel strategies for process intensification, such as continuous or semi-continuous systems based on multicolumn technology, opening up process efficiency. Process understanding in the light of the pharmaceutical quality by design (QbD) initiative is also discussed. Finally, an outlook of the upcoming breakthrough technologies is presented. PMID:25677990

  17. Gene Therapy for Age-Related Macular Degeneration.

    PubMed

    Constable, Ian Jeffery; Blumenkranz, Mark Scott; Schwartz, Steven D; Barone, Sam; Lai, Chooi-May; Rakoczy, Elizabeth Piroska

    2016-01-01

    The purpose of this article was to evaluate safety and signals of efficacy of gene therapy with subretinal rAAV.sFlt-1 for wet age-related macular degeneration (wet AMD). A phase 1 dose-escalating single-center controlled unmasked human clinical trial was followed up by extension of the protocol to a phase 2A single-center trial. rAAV.sFlt-1 vector was used to deliver a naturally occurring anti-vascular endothelial growth factor agent, sFlt-1, into the subretinal space. In phase 1, step 1 randomized 3 subjects to low-dose rAAV.sFlt-1 (1 × 10 vector genomes) and 1 subject to the control arm; step 2 randomized an additional 3 subjects to treatment with high-dose rAAV.sFlt-1 (1 × 10 vector genomes) and 1 subject to the control arm. Follow-up studies demonstrated that rAAV.sFlt-1 was well tolerated with a favorable safety profile in these elderly subjects with wet AMD. Subretinal injection was highly reproducible, and no drug-related adverse events were reported. Procedure-related adverse events were mild and self-resolving. Two phakic patients developed cataract and underwent cataract surgery. Four of the 6 patients responded better than the small control group in this study and historical controls in terms of maintaining vision and a relatively dry retina with zero ranibizumab retreatments per annum. Two patients required 1 ranibizumab injection over the 52-week follow-up period. rAAV.sFlt-1 gene therapy may prove to be a potential adjunct or alternative to conventional intravitreal injection for patients with wet AMD by providing extended delivery of a naturally occurring antiangiogenic protein. PMID:27488071

  18. Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma

    PubMed Central

    Hicks, Martin J.; Chiuchiolo, Maria J.; Ballon, Douglas; Dyke, Jonathan P.; Aronowitz, Eric; Funato, Kosuke; Tabar, Viviane; Havlicek, David; Fan, Fan; Sondhi, Dolan; Kaminsky, Stephen M.; Crystal, Ronald G.

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM. PMID:27711187

  19. Update on gene therapy for myocardial ischaemia and left ventricular systolic dysfunction or heart failure.

    PubMed

    Roncalli, Jerome; Tongers, Jörn; Losordo, Douglas W

    2010-01-01

    Despite considerable advances in pharmacological, surgical and technology-based cardiovascular therapy, left ventricular dysfunction and heart failure are increasingly prevalent health problems. Recent studies suggest that angiogenic gene therapy can restore perfusion in ischaemic myocardial tissue, and that the transfer of nonangiogenic genes may correct defects in calcium handling that contribute to abnormal contractile function in patients with heart failure; however, large clinical trials of gene therapy for treatment of left ventricular dysfunction and heart failure have yet to be completed, and only a small number of genes have been evaluated in patients. Researchers continue to investigate new genes, combinations of genes and approaches that combine gene and cell therapy, and to develop novel expression vectors and delivery systems; collectively, these refinements promise to improve both patient response and safety.

  20. [Novel therapy for malignant lymphoma: adoptive immuno-gene therapy using chimeric antigen receptor(CAR)-expressing T lymphocytes].

    PubMed

    Ozawa, Keiya

    2014-03-01

    Adoptive T-cell therapy using chimeric antigen receptor (CAR) technology is a novel approach to cancer immuno-gene therapy. CARs are hybrid proteins consisting of target-antigen-specific single-chain antibody fragment fused to intracellular T-cell activation domains (CD28 or CD137/CD3 zeta receptor). CAR-expressing engineered T lymphocytes can directly recognize and kill tumor cells in an HLA independent manner. In the United States, promising results have been obtained in the clinical trials of adoptive immuno-gene therapy using CD19-CAR-T lymphocytes for the treatment of refractory B-cell malignancies, including chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL). In this review article, CD19-CAR-T gene therapy for refractory B-cell non-Hodgkin lymphoma is discussed.

  1. Combinatorial gene therapy renders increased survival in cirrhotic rats

    PubMed Central

    2010-01-01

    Background Liver fibrosis ranks as the second cause of death in México's productive-age population. This pathology is characterized by acummulation of fibrillar proteins in hepatic parenchyma causing synthetic and metabolic disfunction. Remotion of excessive fibrous proteins might result in benefit for subjects increasing survival index. The goal of this work was to find whether the already known therapeutical effect of human urokinase Plasminogen Activator and human Matrix Metalloprotease 8 extends survival index in cirrhotic animals. Methods Wistar rats (80 g) underwent chronic intoxication with CCl4: mineral oil for 8 weeks. Cirrhotic animals were injected with a combined dose of Ad-delta-huPA plus Ad-MMP8 (3 × 1011 and 1.5 × 1011 vp/Kg, respectively) or with Ad-beta-Gal (4.5 × 1011) and were killed after 2, 4, 6, 8 and 10 days. Then, liver and serum were collected. An additional set of cirrhotic animals injected with combined gene therapy was also monitored for their probability of survival. Results Only the cirrhotic animals treated with therapeutical genes (Ad-delta-huPA+Ad-MMP-8) showed improvement in liver fibrosis. These results correlated with hydroxyproline determinations. A significant decrement in alpha-SMA and TGF-beta1 gene expression was also observed. Cirrhotic rats treated with Ad-delta-huPA plus Ad-MMP8 had a higher probability of survival at 60 days with respect to Ad-beta-Gal-injected animals. Conclusion A single administration of Ad-delta-huPA plus Ad-MMP-8 is efficient to induce fibrosis regression and increase survival in experimental liver fibrosis. PMID:20509929

  2. 76 FR 49774 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... be open to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory...

  3. 76 FR 64951 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... be open to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory...

  4. 76 FR 18768 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue, and Gene Therapies Advisory Committee... portion of the meeting will be closed to the public. Name of Committee: Cellular, Tissue, and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  5. 78 FR 15726 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... portion of the meeting will be closed to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  6. 77 FR 65693 - Cellular, Tissue and Gene Therapies Advisory Committee; Amendment of Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... Therapies Advisory Committee. This meeting was announced in the Federal Register of October 17, 2012 (77 FR... Register of October 17, 2012, FDA announced that a meeting of the Cellular, Tissue and Gene...

  7. The Regulatory Pathway for Advanced Cell Therapy and Gene Therapy Products in Brazil: A Road to Be Built.

    PubMed

    de Freitas, Daniel Roberto Coradi

    2015-01-01

    The regulation of cell therapy and gene therapy products is a major challenge for the Brazilian state. From a legal point of view, the legislative apparatus, including constitutional, prohibits the marketing and patent of human substances. From the point of view of the organization of the state bureaucracy, the responsibilities for the regulation of research and application of these technologies in humans may involve up to four different institutions. The National Agency for Health Surveillance (ANVISA) has been the protagonist in structuring the regulation of cell therapy and gene therapy in Brazil, and steps have been taken to ensure quality of these products. However, obstacles such as the commercialization of these therapies and the need to determine whether these products will be regulated following the assumptions adopted in Brazil for drugs and biological products or for human blood and tissues still remain. PMID:26374221

  8. A Lentiviral Vector Expressing Desired Gene Only in Transduced Cells: An Approach for Suicide Gene Therapy.

    PubMed

    Mohammadi, Zahra; Shariati, Laleh; Khanahmad, Hossein; Kolahdouz, Mahsa; Kianpoor, Fariborz; Ghanbari, Jahan Afrooz; Hejazi, Zahra; Salehi, Mansoor; Nikpour, Parvaneh; Tabatabaiefar, Mohammad Amin

    2015-09-01

    Suicide gene therapy is a therapeutic strategy, in which cell suicide inducing transgenes are introduced into target cells. Inserting a toxin-encoding gene into a lentiviral vector leads to decreased efficiency of virus production due to lethal effect of toxin on packaging cells. In this study, we designed and constructed a transfer vector to express the toxin in transduced cells but not in packaging cells. Plasmid pLenti-F/GFP was constructed by cutting out R 5'LTR-R 3'LTR fragment with the AflII restriction endonuclease from a plasmid pLenti4-GW/H1/TO-laminshRNA, followed by ligating R 5'LTR-R 3'LTR fragment, constructed by three PCR stages. The promoter and GFP CDS were inserted in opposite strand. For lentiviral production, the HEK293T cell line was co-transfected with the PMD2G, psPAX2, and pLenti-F/GFP plasmids (envelope, packaging, and transfer plasmids).Viral vector titers were assayed. The HEK293T cell line was transduced with this virus. PCR was performed to confirm the presence of the promoter fragment between the R and U5 in 3'LTR. The lentivirus titers were approximately 2 × 10(5). The GFP expression was seen in 51 % of the HEK293T cells transduced with lentivirus. The PCR product size was 1440 bp confirming the promoter fragment position between the R and U5 in 3'LTR. The strategy enables us to use a broad spectrum of toxin genes in gene therapy and helps avoid the death of the packaging cells with lentiviral vectors carrying a toxin-encoding gene, thereby increasing the efficiency of viral production in packaging cells.

  9. Genetic disorders and the ethical status of germ-line gene therapy.

    PubMed

    Berger, E M; Gert, B M

    1991-12-01

    Recombinant DNA technology will soon allow physicians an opportunity to carry out both somatic cell- and germ-line gene therapy. While somatic cell gene therapy raises no new ethical problems, gene therapy of gametes, fertilized eggs or early embryos does raise several novel concerns. The first issue discussed here relates to making a distinction between negative and positive eugenics; the second issue deals with the evolutionary consequences of lost genetic diversity. In distinguishing between positive and negative eugenics, the concept of malady is applied as a definitional criterion for identifying genetic disorders that could qualify for germ-line therapy. Because gene replacement techniques are currently unavailable for humans, and because even if they were possible the number of people involved would be quite small, the loss of diversity concern seems moot. Finally, we discuss the issue of iatrogenic disorders associated with gene therapy and discuss several 'real world considerations.'

  10. Sui generis: gene therapy and delivery systems for the treatment of glioblastoma

    PubMed Central

    Kane, J. Robert; Miska, Jason; Young, Jacob S.; Kanojia, Deepak; Kim, Julius W.; Lesniak, Maciej S.

    2015-01-01

    Gene therapy offers a multidimensional set of approaches intended to treat and cure glioblastoma (GBM), in combination with the existing standard-of-care treatment (surgery and chemoradiotherapy), by capitalizing on the ability to deliver genes directly to the site of neoplasia to yield antitumoral effects. Four types of gene therapy are currently being investigated for their potential use in treating GBM: (i) suicide gene therapy, which induces the localized generation of cytotoxic compounds; (ii) immunomodulatory gene therapy, which induces or augments an enhanced antitumoral immune response; (iii) tumor-suppressor gene therapy, which induces apoptosis in cancer cells; and (iv) oncolytic virotherapy, which causes the lysis of tumor cells. The delivery of genes to the tumor site is made possible by means of viral and nonviral vectors for direct delivery of therapeutic gene(s), tumor-tropic cell carriers expressing therapeutic gene(s), and “intelligent” carriers designed to increase delivery, specificity, and tumoral toxicity against GBM. These vehicles are used to carry genetic material to the site of pathology, with the expectation that they can provide specific tropism to the desired site while limiting interaction with noncancerous tissue. Encouraging preclinical results using gene therapies for GBM have led to a series of human clinical trials. Although there is limited evidence of a therapeutic benefit to date, a number of clinical trials have convincingly established that different types of gene therapies delivered by various methods appear to be safe. Due to the flexibility of specialized carriers and genetic material, the technology for generating new and more effective therapies already exists. PMID:25746089

  11. Current Status and Prospects of Gene Therapy for the Inner Ear

    PubMed Central

    Huang, Aji

    2011-01-01

    Abstract Inner ear diseases are common and often result in hearing disability. Sensorineural hearing loss is the main cause of hearing disability. So far, no effective treatment is available although some patients may benefit from a hearing aid equipped with a hearing amplifier or from cochlear implantation. Inner ear gene therapy has become an emerging field of study for the treatment of hearing disability. Numerous new discoveries and tremendous advances have been made in inner ear gene therapy including gene vectors, routes of administration, and therapeutic genes and targets. Gene therapy may become a treatment option for inner ear diseases in the near future. In this review, we summarize the current state of inner ear gene therapy including gene vectors, delivery routes, and therapeutic genes and targets by examining and analyzing publications on inner ear gene therapy from the literature and patent documents, and identify promising patents, novel techniques, and vital research projects. We also discuss the progress and prospects of inner ear gene therapy, the advances and shortcomings, with possible solutions in this field of research. PMID:21338273

  12. Clinical Experience With Gene Therapy for the Treatment of Prostate Cancer

    PubMed Central

    Stanizzi, Matthew A; Hall, Simon J

    2007-01-01

    Localized prostate cancer can be treated effectively with radical prostatectomy or radiation therapy. The treatment options for metastatic prostate cancer are limited to hormonal therapy; hormone-refractory cancer is treated with taxane-based chemotherapy, which provides only a modest survival benefit. New treatments are needed. The gene for the initiation of prostate cancer has not been identified; however, gene therapy can involve tumor injection of a gene to kill cells, systemic gene delivery to target and kill metastases, or local gene expression intended to generate a systemic response. This review will provide an overview of the various strategies of cancer gene therapy, focusing on those that have gone to clinical trial, detailing clinical experience in prostate cancer patients. PMID:17387369

  13. Hyperbaric oxygen in chronic traumatic brain injury: oxygen, pressure, and gene therapy.

    PubMed

    Harch, Paul G

    2015-01-01

    Hyperbaric oxygen therapy is a treatment for wounds in any location and of any duration that has been misunderstood for 353 years. Since 2008 it has been applied to the persistent post-concussion syndrome of mild traumatic brain injury by civilian and later military researchers with apparent conflicting results. The civilian studies are positive and the military-funded studies are a mixture of misinterpreted positive data, indeterminate data, and negative data. This has confused the medical, academic, and lay communities. The source of the confusion is a fundamental misunderstanding of the definition, principles, and mechanisms of action of hyperbaric oxygen therapy. This article argues that the traditional definition of hyperbaric oxygen therapy is arbitrary. The article establishes a scientific definition of hyperbaric oxygen therapy as a wound-healing therapy of combined increased atmospheric pressure and pressure of oxygen over ambient atmospheric pressure and pressure of oxygen whose main mechanisms of action are gene-mediated. Hyperbaric oxygen therapy exerts its wound-healing effects by expression and suppression of thousands of genes. The dominant gene actions are upregulation of trophic and anti-inflammatory genes and down-regulation of pro-inflammatory and apoptotic genes. The combination of genes affected depends on the different combinations of total pressure and pressure of oxygen. Understanding that hyperbaric oxygen therapy is a pressure and oxygen dose-dependent gene therapy allows for reconciliation of the conflicting TBI study results as outcomes of different doses of pressure and oxygen. PMID:26171141

  14. Hyperbaric oxygen in chronic traumatic brain injury: oxygen, pressure, and gene therapy.

    PubMed

    Harch, Paul G

    2015-01-01

    Hyperbaric oxygen therapy is a treatment for wounds in any location and of any duration that has been misunderstood for 353 years. Since 2008 it has been applied to the persistent post-concussion syndrome of mild traumatic brain injury by civilian and later military researchers with apparent conflicting results. The civilian studies are positive and the military-funded studies are a mixture of misinterpreted positive data, indeterminate data, and negative data. This has confused the medical, academic, and lay communities. The source of the confusion is a fundamental misunderstanding of the definition, principles, and mechanisms of action of hyperbaric oxygen therapy. This article argues that the traditional definition of hyperbaric oxygen therapy is arbitrary. The article establishes a scientific definition of hyperbaric oxygen therapy as a wound-healing therapy of combined increased atmospheric pressure and pressure of oxygen over ambient atmospheric pressure and pressure of oxygen whose main mechanisms of action are gene-mediated. Hyperbaric oxygen therapy exerts its wound-healing effects by expression and suppression of thousands of genes. The dominant gene actions are upregulation of trophic and anti-inflammatory genes and down-regulation of pro-inflammatory and apoptotic genes. The combination of genes affected depends on the different combinations of total pressure and pressure of oxygen. Understanding that hyperbaric oxygen therapy is a pressure and oxygen dose-dependent gene therapy allows for reconciliation of the conflicting TBI study results as outcomes of different doses of pressure and oxygen.

  15. Gene and cell therapy for children--new medicines, new challenges?

    PubMed

    Buckland, Karen F; Bobby Gaspar, H

    2014-06-01

    The range of possible gene and cell therapy applications is expanding at an extremely rapid rate and advanced therapy medicinal products (ATMPs) are currently the hottest topic in novel medicines, particularly for inherited diseases. Paediatric patients stand to gain enormously from these novel therapies as it now seems plausible to develop a gene or cell therapy for a vast number of inherited diseases. There are a wide variety of potential gene and cell therapies in various stages of development. Patients who received first gene therapy treatments for primary immune deficiencies (PIDs) are reaching 10 and 15 years post-treatment, with robust and sustained immune recovery. Cell therapy clinical trials are underway for a variety of tissues including corneal, retinal and muscle repair and islet cell transplantation. Various cell therapy approaches are also being trialled to enhance the safety of bone marrow transplants, which should improve survival rates in childhood cancers and PIDs. Progress in genetic engineering of lymphocyte populations to target and kill cancerous cells is also described. If successful these ATMPs may enhance or replace the existing chemo-ablative therapy for several paediatric cancers. Emerging applications of gene therapy now include skin and neurological disorders such as epidermolysis bullosa, epilepsy and leukodystrophy. Gene therapy trials for haemophilia, muscular dystrophy and a range of metabolic disorders are underway. There is a vast array of potential advanced therapy medicinal products (ATMPs), and these are likely to be more cost effective than existing medicines. However, the first clinical trials have not been without setbacks and some of the key adverse events are discussed. Furthermore, the arrival of this novel class of therapies brings many new challenges for the healthcare industry. We present a summary of the key non-clinical factors required for successful delivery of these potential treatments. Technological advances

  16. Current genome editing tools in gene therapy: new approaches to treat cancer.

    PubMed

    Shuvalov, Oleg; Petukhov, Alexey; Daks, Alexandra; Fedorova, Olga; Ermakov, Alexander; Melino, Gerry; Barlev, Nickolai A

    2015-01-01

    Gene therapy suggests a promising approach to treat genetic diseases by applying genes as pharmaceuticals. Cancer is a complex disease, which strongly depends on a particular genetic make-up and hence can be treated with gene therapy. From about 2,000 clinical trials carried out so far, more than 60% were cancer targeted. Development of precise and effective gene therapy approaches is intimately connected with achievements in the molecular biology techniques. The field of gene therapy was recently revolutionized by the introduction of "programmable" nucleases, including ZFNs, TALENs, and CRISPR, which target specific genomic loci with high efficacy and precision. Furthermore, when combined with DNA transposons for the delivery purposes into cells, these programmable nucleases represent a promising alternative to the conventional viral-mediated gene delivery. In addition to "programmable" nucleases, a new class of TALE- and CRISPR-based "artificial transcription effectors" has been developed to mediate precise regulation of specific genes. In sum, these new molecular tools may be used in a wide plethora of gene therapy strategies. This review highlights the current status of novel genome editing tools and discusses their suitability and perspectives in respect to cancer gene therapy studies.

  17. Targeted delivery of genes to endothelial cells and cell- and gene-based therapy in pulmonary vascular diseases.

    PubMed

    Suen, Colin M; Mei, Shirley H J; Kugathasan, Lakshmi; Stewart, Duncan J

    2013-10-01

    Pulmonary arterial hypertension (PAH) is a devastating disease that, despite significant advances in medical therapies over the last several decades, continues to have an extremely poor prognosis. Gene therapy is a method to deliver therapeutic genes to replace defective or mutant genes or supplement existing cellular processes to modify disease. Over the last few decades, several viral and nonviral methods of gene therapy have been developed for preclinical PAH studies with varying degrees of efficacy. However, these gene delivery methods face challenges of immunogenicity, low transduction rates, and nonspecific targeting which have limited their translation to clinical studies. More recently, the emergence of regenerative approaches using stem and progenitor cells such as endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) have offered a new approach to gene therapy. Cell-based gene therapy is an approach that augments the therapeutic potential of EPCs and MSCs and may deliver on the promise of reversal of established PAH. These new regenerative approaches have shown tremendous potential in preclinical studies; however, large, rigorously designed clinical studies will be necessary to evaluate clinical efficacy and safety.

  18. [Gene-stem Cell therapy for ischemic stroke].

    PubMed

    Abe, Koji

    2009-09-01

    Besides blood flow restoration, neuroprotection is essential for treating strokes at an acute stage. Both neurotrophic factors (NTFs) and free radical scavengers can act as neuroprotective agents with abilities to inhibit cell death and facilitate cell survival under cerebral ischemia. For example, topical application of glial cell line-derived neurotrophic factor (GDNF) remarkably reduced infarct size and brain edema after middle cerebral artery (MCA) occlusion in rats. Reduction in the infarct size was not found to be related to a change in the cerebral blood flow (CBF), but was accompanied by marked reduction in BrdU-positive cells in the affected area after TdT-mediated dUTP-biotin nick end labeling (TUNEL) for caspses. Thus, GDNF elicited a direct protective effect against ischemic brain damage, but without improving CBF. Sendai virus vectors harboring the GDNF gene led to a remarkable reduction in infract volume without affecting regional CBF but reduced the translocation of apoptosis inducible factor (AIF) from the mitochondria to cytoplasm. Regenerative therapy involving neural stem cells which are intrinsically activated or exogenously transplanted, is an important treatment strategy. To facilitate stem cell migration, an artificial scaffold can be implanted into the injured brain for promoting ischemic brain repair. Addition of NTFs greatly enhanced an intrinsic migration or invasion of stem cells into the scaffold: this strategy could be used in the future for enhancing regenerative potential of brain cells after chronic ischemia-induced brain damage. PMID:19803403

  19. Melanoma differentiation associated gene-7 (mda-7): a novel anti-tumor gene for cancer gene therapy.

    PubMed Central

    Mhashilkar, A. M.; Schrock, R. D.; Hindi, M.; Liao, J.; Sieger, K.; Kourouma, F.; Zou-Yang, X. H.; Onishi, E.; Takh, O.; Vedvick, T. S.; Fanger, G.; Stewart, L.; Watson, G. J.; Snary, D.; Fisher, P. B.; Saeki, T.; Roth, J. A.; Ramesh, R.; Chada, S.

    2001-01-01

    BACKGROUND: The mda-7 gene (melanoma differentiation associated gene-7) is a novel tumor suppressor gene. The anti-proliferative activity of MDA-7 has been previously reported. In this report, we analyze the anti-tumor efficacy of Ad-mda7 in a broad spectrum of cancer lines. MATERIALS AND METHODS: Ad-mda7-transduced cancer or normal cell lines were assayed for cell proliferation (tritiated thymidine incorporation assay, Alamar blue assay, and trypan-blue exclusion assay), apoptosis (TUNEL, and Annexin V staining visualized by fluorescent microscopy or FACs analysis), and cell cycle regulation (Propidium Iodide staining and FACs analysis). RESULTS: Ad-mda7 treatment of tumor cells resulted in growth inhibition and apoptosis in a temporal and dose-dependent manner. The anti-tumor effects were independent of the genomic status of p53, RB, p16, ras, bax, and caspase 3 in these cells. In addition, normal cell lines did not show inhibition of proliferation or apoptotic response to Ad-mda7. Moreover, Ad-mda7-transduced cancer cells secreted a soluble form of MDA-7 protein. Thus, Ad-mda7 may represent a novel gene-therapeutic agent for the treatment of a variety of cancers. CONCLUSIONS: The potent and selective killing activity of Ad-mda7 in cancer cells but not in normal cells makes this vector a potential candidate for cancer gene therapy. PMID:11471572

  20. The European hospital exemption clause-new option for gene therapy?

    PubMed

    Buchholz, Christian J; Sanzenbacher, Ralf; Schüle, Silke

    2012-01-01

    Gene-therapy medicinal products are currently applied to patients enrolled in authorized clinical trials to demonstrate safety and efficacy. Given a positive outcome, marketing authorization can subsequently be achieved via the centralized procedure coordinated by the European Medicines Agency. With Regulation (EC) No. 1394/2007 in force, advanced therapy medicinal products, including gene- and cell-therapy products, can be excepted from the obligation of obtaining a marketing authorization via the centralized procedure under specific conditions (so-called "hospital exemption"). This hospital exemption allows the application of gene-therapy medicinal products prepared on a non-routine basis for an individual patient and used under the exclusive professional responsibility of a medical practitioner. Here, we explain the requirements to be fulfilled in order to fall under this exemption, the implementation of this regulation into the German national legislation, and its impact on gene-therapy product development in the future.

  1. The intricacies of neurotrophic factor therapy for retinal ganglion cell rescue in glaucoma: a case for gene therapy

    PubMed Central

    Foldvari, Marianna; Chen, Ding Wen

    2016-01-01

    Regeneration of damaged retinal ganglion cells (RGC) and their axons is an important aspect of reversing vision loss in glaucoma patients. While current therapies can effectively lower intraocular pressure, they do not provide extrinsic support to RGCs to actively aid in their protection and regeneration. The unmet need could be addressed by neurotrophic factor gene therapy, where plasmid DNA, encoding neurotrophic factors, is delivered to retinal cells to maintain sufficient levels of neurotrophins in the retina. In this review, we aim to describe the intricacies in the design of the therapy including: the choice of neurotrophic factor, the site and route of administration and target cell populations for gene delivery. Furthermore, we also discuss the challenges currently being faced in RGC-related therapy development with special considerations to the existence of multiple RGC subtypes and the lack of efficient and representative in vitro models for rapid and reliable screening in the drug development process. PMID:27482199

  2. 78 FR 26794 - Prospective Grant of Start-Up Exclusive Evaluation Option License Agreement: Gene Therapy and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... License Agreement: Gene Therapy and Cell-Based Therapy for Cardiac Arrhythmias AGENCY: National Institutes... limited to ``Gene therapy and cell-based therapy for cardiac arrhythmias in humans.'' Upon the expiration..., as well as cardiac cells or cardiac-like cells derived from embryonic stem cells or mesenchymal...

  3. Intratumoral gene therapy versus intravenous gene therapy for distant metastasis control with 2-diethylaminoethyl-dextran methyl methacrylate copolymer non-viral vector-p53.

    PubMed

    Baliaka, A; Zarogoulidis, P; Domvri, K; Hohenforst-Schmidt, W; Sakkas, A; Huang, H; Le Pivert, P; Koliakos, G; Koliakou, E; Kouzi-Koliakos, K; Tsakiridis, K; Chioti, A; Siotou, E; Cheva, A; Zarogoulidis, K; Sakkas, L

    2014-02-01

    Lung cancer still remains to be challenged by novel treatment modalities. Novel locally targeted routes of administration are a methodology to enhance treatment and reduce side effects. Intratumoral gene therapy is a method for local treatment and could be used either in early-stage lung cancer before surgery or at advanced stages as palliative care. Novel non-viral vectors are also in demand for efficient gene transfection to target local cancer tissue and at the same time protect the normal tissue. In the current study, C57BL/6 mice were divided into three groups: (a) control, (b) intravenous and (c) intatumoral gene therapy. The novel 2-Diethylaminoethyl-Dextran Methyl Methacrylate Copolymer Non-Viral Vector (Ryujyu Science Corporation) was conjugated with plasmid pSicop53 from the company Addgene for the first time. The aim of the study was to evaluate the safety and efficacy of targeted gene therapy in a Lewis lung cancer model. Indeed, although the pharmacokinetics of the different administration modalities differs, the intratumoral administration presented increased survival and decreased distant metastasis. Intratumoral gene therapy could be considered as an efficient local therapy for lung cancer.

  4. Intratumoral gene therapy versus intravenous gene therapy for distant metastasis control with 2-diethylaminoethyl-dextran methyl methacrylate copolymer non-viral vector-p53.

    PubMed

    Baliaka, A; Zarogoulidis, P; Domvri, K; Hohenforst-Schmidt, W; Sakkas, A; Huang, H; Le Pivert, P; Koliakos, G; Koliakou, E; Kouzi-Koliakos, K; Tsakiridis, K; Chioti, A; Siotou, E; Cheva, A; Zarogoulidis, K; Sakkas, L

    2014-02-01

    Lung cancer still remains to be challenged by novel treatment modalities. Novel locally targeted routes of administration are a methodology to enhance treatment and reduce side effects. Intratumoral gene therapy is a method for local treatment and could be used either in early-stage lung cancer before surgery or at advanced stages as palliative care. Novel non-viral vectors are also in demand for efficient gene transfection to target local cancer tissue and at the same time protect the normal tissue. In the current study, C57BL/6 mice were divided into three groups: (a) control, (b) intravenous and (c) intatumoral gene therapy. The novel 2-Diethylaminoethyl-Dextran Methyl Methacrylate Copolymer Non-Viral Vector (Ryujyu Science Corporation) was conjugated with plasmid pSicop53 from the company Addgene for the first time. The aim of the study was to evaluate the safety and efficacy of targeted gene therapy in a Lewis lung cancer model. Indeed, although the pharmacokinetics of the different administration modalities differs, the intratumoral administration presented increased survival and decreased distant metastasis. Intratumoral gene therapy could be considered as an efficient local therapy for lung cancer. PMID:24285215

  5. Investor Outlook: Significance of the Positive LCA2 Gene Therapy Phase III Results.

    PubMed

    Schimmer, Joshua; Breazzano, Steven

    2015-12-01

    Spark Therapeutics recently reported positive phase III results for SPK-RPE65 targeting the treatment of visual impairment caused by RPE65 gene mutations (often referred to as Leber congenital amaurosis type 2, or LCA2, but may include other retinal disorders), marking an important inflection point for the field of gene therapy. The results highlight the ability to successfully design and execute a randomized trial of a gene therapy and also reinforce the potentially predictive nature of early preclinical and clinical data. The results are expected to pave the way for the first approved gene therapy product in the United States and should sustain investor interest and confidence in gene therapy for many approaches, including retina targeting and beyond.

  6. Dual-therapeutic reporter genes fusion for enhanced cancer gene therapy and imaging.

    PubMed

    Sekar, T V; Foygel, K; Willmann, J K; Paulmurugan, R

    2013-05-01

    Two of the successful gene-directed enzyme prodrug therapies include herpes simplex virus-thymidine kinase (HSV1-TK) enzyme-ganciclovir prodrug and the Escherichia coli nitroreductase (NTR) enzyme-CB1954 prodrug strategies; these enzyme-prodrug combinations produce activated cytotoxic metabolites of the prodrugs capable of tumor cell death by inhibiting DNA synthesis and killing quiescent cells, respectively. Both these strategies also affect significant bystander cell killing of neighboring tumor cells that do not express these enzymes. We have developed a dual-combination gene strategy, where we identified HSV1-TK and NTR fused in a particular orientation can effectively kill tumor cells when the tumor cells are treated with a fusion HSV1-TK-NTR gene- along with a prodrug combination of GCV and CB1954. In order to determine whether the dual-system demonstrate superior therapeutic efficacy than either HSV1-TK or NTR systems alone, we conducted both in vitro and in vivo tumor xenograft studies using triple negative SUM159 breast cancer cells, by evaluating the efficacy of cell death by apoptosis and necrosis upon treatment with the dual HSV1-TK genes-GCV-CB1954 prodrugs system, and compared the efficiency to HSV1-TK-GCV and NTR-CB1954. Our cell-based studies, tumor regression studies in xenograft mice, histological analyses of treated tumors and bystander studies indicate that the dual HSV1-TK-NTR-prodrug system is two times more efficient even with half the doses of both prodrugs than the respective single gene-prodrug system, as evidenced by enhanced apoptosis and necrosis of tumor cells in vitro in culture and xenograft of tumor tissues in animals.

  7. Gene Therapy to Rescue Retinal Degeneration Caused by Mutations in Rhodopsin

    PubMed Central

    Rossmiller, Brian P.; Ryals, Renee C.; Lewin, Alfred S.

    2015-01-01

    Retinal gene therapy has proven safe and at least partially successful in clinical trials and in numerous animal models. Gene therapy requires characterization of the progression of the disease and understanding of its genetic cause. Testing gene therapies usually requires an animal model that recapitulates the key features of the human disease, though photoreceptors and cells of the retinal pigment epithelium produced from patient-derived stem cells may provide an alternative test system for retinal gene therapy. Gene therapy also requires a delivery system that introduces the therapeutic gene to the correct cell type and does not cause unintended damage to the tissue. Current systems being tested in the eye are nanoparticles, pseudotyped lentiviruses, and adeno-associated virus (AAV) of various serotypes. Here, we describe the techniques of AAV vector design as well as the in vivo and ex vivo tests necessary for assessing the efficacy of retinal gene therapy to treat retinal degeneration caused by mutations in the rhodopsin gene. PMID:25697537

  8. Advancing Translational Research Through the NHLBI Gene Therapy Resource Program (GTRP)

    PubMed Central

    Benson, Janet; Cornetta, Kenneth; Diggins, Margaret; Johnston, Julie C.; Sepelak, Susan; Wang, Gensheng; Wilson, James M.; Wright, J. Fraser; Skarlatos, Sonia I.

    2013-01-01

    Abstract Translational research is a lengthy, complex, and necessary endeavor in order to bring basic science discoveries to clinical fruition. The NIH offers several programs to support translational research including an important resource established specifically for gene therapy researchers—the National Heart, Lung, and Blood Institute (NHLBI) Gene Therapy Resource Program (GTRP). This paper reviews the core components of the GTRP and describes how the GTRP provides researchers with resources that are critical to advancing investigational gene therapy products into clinical testing. PMID:23692378

  9. Cancer gene therapy utilized ultrasound (US)-sensitive liposome as non-viral vector

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryo; Oda, Yusuke; Namai, Eisuke; Nishiie, Norihito; Hirata, Keiichi; Taira, Yuichiro; Utoguchi, Naoki; Negichi, Yoichi; Maruyama, Kazuo

    2010-03-01

    Sonoporation is an attractive technique to develop non-invasive and non-viral gene delivery system. However, simple sonoporation using only ultrasound (US) is not enough to establish effective cancer gene therapy because of low efficiency of gene delivery. Therefore, we improved this problem by the combination of US and novel US-sensitive liposome (Bubble liposome) which was a liposome containing US imaging gas (perfluoropropane). This was an effective gene delivery system with collapse (cavitation) that was induced by US exposure to Bubble liposome. In this study, we assessed the ability of this system in cancer gene therapy using IL-12 cording plasmid DNA. The combination of Bubble liposomes and ultrasound was dramatically suppressed tumor growth. Therefore, we concluded that the combination of Bubble liposomes and ultrasound would be a good non-viral vector system in IL-12 cancer gene therapy.

  10. The Future of Hemophilia Treatment: Longer-Acting Factor Concentrates versus Gene Therapy.

    PubMed

    Giangrande, Paul

    2016-07-01

    Gene therapy is the only novel technology that currently offers the prospect of a lasting cure for hemophilia and freedom from the burden of repeated injections. Recent data from a handful of patients who have undergone gene therapy for hemophilia B are very encouraging with a sustained factor IX (FIX) level of 0.05 IU/mL maintained for over 4 years. While this level is above the current usual target trough levels, it falls well short of the level that patients on prophylaxis with longer-acting products can expect. Prophylaxis is also associated with high peak levels, which permits patients to maintain an active lifestyle. A major barrier to widespread adoption of gene therapy is a high seroprevalence of antibodies to adeno-associated virus (AAV) vectors in the general population. Young children would be the best candidates for gene therapy in view of much lower seroprevalence to AAV in infants. A stable level of FIX early in life would prevent the onset of joint bleeds and the development of arthropathy. The recent experience with apolipoprotein tiparvovec (Glybera; uniQure, Amsterdam, the Netherlands) indicates that gene therapy is unlikely to prove to be a cheap therapeutic option. It is also quite possible that other new technologies that do not require viral vectors (such as stem cell therapy) may overtake gene therapy during development and make it redundant.

  11. Gene delivery to rat and human Schwann cells and nerve segments: a comparison of AAV 1-9 and lentiviral vectors.

    PubMed

    Hoyng, S A; De Winter, F; Gnavi, S; van Egmond, L; Attwell, C L; Tannemaat, M R; Verhaagen, J; Malessy, M J A

    2015-10-01

    Schwann cells (SCs) in an injured peripheral nerve form pathways for regenerating axons. Although these cells initially support regeneration, SCs lose their pro-regenerative properties following a prolonged period of denervation. Gene transfer to SC can enhance their therapeutic potential. In this article, we compared adeno-associated viral (AAV) vectors based on serotypes 1-9 for their capability to transduce cultured primary rat and human SCs and nerve segments. AAV1 is the best serotype to transduce rat SCs, whereas AAV2 and AAV6 performed equally well in human SCs. Transduction of monolayers of cultured rat and human SCs did not accurately predict the transduction efficiency in nerve segments. Rat nerve segments could be genetically modified equally well by a set of four AAV vectors (AAV1, AAV5, AAV7, AAV9), whereas AAV2 was superior in human nerve segments. The current experiments were undertaken as a first step towards future clinical implementation of ex vivo AAV-based gene therapy in surgical nerve repair. The transduction of rat and human SCs and nerve segments by entirely different AAV serotypes, as documented here, highlights one of the challenges of translating gene therapy from experimental animals to human patients.

  12. Semi-automated closed system manufacturing of lentivirus gene-modified haematopoietic stem cells for gene therapy

    PubMed Central

    Adair, Jennifer E.; Waters, Timothy; Haworth, Kevin G.; Kubek, Sara P.; Trobridge, Grant D.; Hocum, Jonah D.; Heimfeld, Shelly; Kiem, Hans-Peter

    2016-01-01

    Haematopoietic stem cell (HSC) gene therapy has demonstrated potential to treat many diseases. However, current state of the art requires sophisticated ex vivo gene transfer in a dedicated Good Manufacturing Practices facility, limiting availability. An automated process would improve the availability and standardized manufacture of HSC gene therapy. Here, we develop a novel program for semi-automated cell isolation and culture equipment to permit complete benchtop generation of gene-modified CD34+ blood cell products for transplantation. These cell products meet current manufacturing quality standards for both mobilized leukapheresis and bone marrow, and reconstitute human haematopoiesis in immunocompromised mice. Importantly, nonhuman primate autologous gene-modified CD34+ cell products are capable of stable, polyclonal multilineage reconstitution with follow-up of more than 1 year. These data demonstrate proof of concept for point-of-care delivery of HSC gene therapy. Given the many target diseases for gene therapy, there is enormous potential for this approach to treat patients on a global scale. PMID:27762266

  13. Carbon nanotubes as vectors for gene therapy: past achievements, present challenges and future goals.

    PubMed

    Bates, Katie; Kostarelos, Kostas

    2013-12-01

    Promising therapeutic and prophylactic effects have been achieved following advances in the gene therapy research arena, giving birth to the new generation of disease-modifying therapeutics. The greatest challenge that gene therapy vectors still face is the ability to deliver sufficient genetic payloads in order to enable efficient gene transfer into target cells. A wide variety of viral and non-viral gene therapy vectors have been developed and explored over the past 10years, including carbon nanotubes. In this review we will address the application of carbon nanotubes as non-viral vectors in gene therapy with the aim to give a perspective on the past achievements, present challenges and future goals. A series of important topics concerning carbon nanotubes as gene therapy vectors will be addressed, including the benefits that carbon nanotubes offer over other non-viral delivery systems. Furthermore, a perspective is given on what the ideal genetic cargo to deliver using carbon nanotubes is and finally the geno-pharmacological impact of carbon nanotube-mediated gene therapy is discussed.

  14. The potential of gene therapy approaches for the treatment of hemoglobinopathies: achievements and challenges

    PubMed Central

    Goodman, Michael A.; Malik, Punam

    2016-01-01

    Hemoglobinopathies, including β-thalassemia and sickle cell disease (SCD), are a heterogeneous group of commonly inherited disorders affecting the function or levels of hemoglobin. Disease phenotype can be severe with substantial morbidity and mortality. Bone marrow transplantation is curative, but limited to those patients with an appropriately matched donor. Genetic therapy, which utilizes a patient’s own cells, is thus an attractive therapeutic option. Numerous therapies are currently in clinical trials or in development, including therapies utilizing gene replacement therapy using lentiviruses and the latest gene editing techniques. In addition, methods are being developed that may be able to expand gene therapies to those with poor access to medical care, potentially significantly decreasing the global burden of disease. PMID:27695619

  15. [CRISPR-Cas9, a new chance for somatic gene therapy].

    PubMed

    Jordan, Bertrand

    2015-11-01

    Targeted modification of genes ("gene editing") is made much easier by the recently developed CRISPR-Cas9 system. This has raised alarm about possible uses of this technology for germline modification of the human genome; however this technology has less controversial applications, notably for somatic gene therapy with already some striking demonstrations in animal systems. Because of its precision and relative ease of use, CRISPR can be expected to drive a revolution in gene therapy and to turn it into a more mainstream approach.

  16. The Application of Nanoparticles in Gene Therapy and Magnetic Resonance Imaging

    PubMed Central

    HERRANZ, FERNANDO; ALMARZA, ELENA; RODRÍGUEZ, IGNACIO; SALINAS, BEATRIZ; ROSELL, YAMILKA; DESCO, MANUEL; BULTE, JEFF W.; RUIZ-CABELLO, JESÚS

    2012-01-01

    The combination of nanoparticles, gene therapy, and medical imaging has given rise to a new field known as gene theranostics, in which a nanobioconjugate is used to diagnose and treat the disease. The process generally involves binding between a vector carrying the genetic information and a nanoparticle, which provides the signal for imaging. The synthesis of this probe generates a synergic effect, enhancing the efficiency of gene transduction and imaging contrast. We discuss the latest approaches in the synthesis of nanoparticles for magnetic resonance imaging, gene therapy strategies, and their conjugation and in vivo application. PMID:21484943

  17. Rebalancing immune specificity and function in cancer by T-cell receptor gene therapy

    PubMed Central

    Udyavar, Akshata; Geiger, Terrence L.

    2010-01-01

    Adoptive immunotherapy with tumor-specific T lymphocytes has demonstrated clinical benefit in some cancers, particularly melanoma. Yet isolating and expanding tumor-specific cells from patients is challenging, and there is limited ability to control T cell affinity and response characteristics. T cell receptor (TCR) gene therapy, in which T lymphocytes for immunotherapy are redirected using introduced rearranged TCR, has emerged as an important alternative. Successful TCR gene therapy requires consideration of a number of issues, including TCR specificity and affinity, optimal gene therapy constructs, types of T cells administered, and the survival and activity of the modified cells. In this review, we highlight the rationale for and experience with, as well as new approaches to enhance TCR gene therapy. PMID:20680493

  18. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning.

    PubMed

    Aiuti, Alessandro; Slavin, Shimon; Aker, Memet; Ficara, Francesca; Deola, Sara; Mortellaro, Alessandra; Morecki, Shoshana; Andolfi, Grazia; Tabucchi, Antonella; Carlucci, Filippo; Marinello, Enrico; Cattaneo, Federica; Vai, Sergio; Servida, Paolo; Miniero, Roberto; Roncarolo, Maria Grazia; Bordignon, Claudio

    2002-06-28

    Hematopoietic stem cell (HSC) gene therapy for adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID) has shown limited clinical efficacy because of the small proportion of engrafted genetically corrected HSCs. We describe an improved protocol for gene transfer into HSCs associated with nonmyeloablative conditioning. This protocol was used in two patients for whom enzyme replacement therapy was not available, which allowed the effect of gene therapy alone to be evaluated. Sustained engraftment of engineered HSCs with differentiation into multiple lineages resulted in increased lymphocyte counts, improved immune functions (including antigen-specific responses), and lower toxic metabolites. Both patients are currently at home and clinically well, with normal growth and development. These results indicate the safety and efficacy of HSC gene therapy combined with nonmyeloablative conditioning for the treatment of SCID. PMID:12089448

  19. Gene therapies: the challenge of super-high-cost treatments and how to pay for them.

    PubMed

    Carr, David R; Bradshaw, Steven E

    2016-06-01

    Gene therapies have the potential to cure rare conditions that often have no current efficacious treatments with a one-time treatment episode, relieving substantial unmet need and having profound positive impact on patients' lives. However, with the first gene therapy now licensed and priced at around US$1 million per patient, cost and uncertain funding mechanisms present a potential barrier to patient access. In this article, we discuss the unique challenges presented by gene therapies, particularly concerning the uncertainty inherent in their clinical evidence package at launch and their affordability within strained healthcare budgets. We present several payment models that would allow for sustainable reimbursement of these innovative technologies and make recommendations pertinent both to those developing gene therapies and to those paying for them. PMID:27185544

  20. Mesenchymal stromal cells retrovirally transduced with prodrug-converting genes are suitable vehicles for cancer gene therapy.

    PubMed

    Ďuriniková, E; Kučerová, L; Matúšková, M

    2014-01-01

    Mesenchymal stem/stromal cells (MSC) possess a set of several fairly unique properties which make them ideally suitable both for cellular therapies and regenerative medicine. These include: relative ease of isolation, the ability to differentiate along mesenchymal and non-mesenchymal lineages in vitro and the ability to be extensively expanded in culture without a loss of differentiative capacity. MSC are not only hypoimmunogenic, but they mediate immunosuppression upon transplantation, and possess pronounced anti-inflammatory properties. They are able to home to damaged tissues, tumors, and metastases following systemic administration. The ability of homing holds big promise for tumor-targeted delivery of therapeutic agents. Viruses are naturally evolved vehicles efficiently transferring their genes into host cells. This ability made them suitable for engineering vector systems for the delivery of genes of interest. MSC can be retrovirally transduced with genes encoding prodrug-converting genes (suicide genes), which are not toxic per se, but catalyze the formation of highly toxic metabolites following the application of a nontoxic prodrug. The homing ability of MSC holds advantages compared to virus vehicles which display many shortcomings in effective delivery of the therapeutic agents. Gene therapies mediated by viruses are limited by their restricted ability to track cancer cells infiltrating into the surrounding tissue, and by their low migratory capacity towards tumor. Thus combination of cellular therapy and gene delivery is an attractive option - it protects the vector from immune surveillance, and supports targeted delivery of a therapeutic gene/protein to the tumor site.

  1. Success for gene therapy: render unto Caesar that which is Caesar's

    PubMed Central

    Qiao, Jian; Diaz, Rosa Maria; Vile, Richard G

    2004-01-01

    Reports that two young children developed leukemia after being treated for immunodeficiency with their own retrovirally modified bone-marrow cells delivered a severe blow to confidence in gene therapy as a treatment. Two reports, published since the trial was initiated, now take away some of the mystery as to why these events happened and allay fears for the safety of gene therapy across all therapeutic applications. PMID:15287968

  2. Gene therapy takes a cue from HAART: combinatorial antiviral therapeutics reach the clinic.

    PubMed

    Shah, Priya S; Schaffer, David V

    2010-06-16

    For the first time, scientists have tested a combination of three RNA-based gene therapies, delivered via a lentiviral vector, to target HIV in patients. This study not only demonstrates the safety and long-term viability of this approach, but also highlights areas in which focused improvements in gene therapy strategies may provide the most impact in increasingly translating promise in the laboratory to efficacy in the clinic.

  3. Near-infrared light triggered photodynamic therapy in combination with gene therapy using upconversion nanoparticles for effective cancer cell killing

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Liu, Kai; Yang, Guangbao; Cheng, Liang; He, Lu; Liu, Yumeng; Li, Yonggang; Guo, Liang; Liu, Zhuang

    2014-07-01

    Upconversion nanoparticles (UCNPs) have drawn much attention in cancer imaging and therapy in recent years. Herein, we for the first time report the use of UCNPs with carefully engineered surface chemistry for combined photodynamic therapy (PDT) and gene therapy of cancer. In our system, positively charged NaGdF4:Yb,Er UCNPs with multilayered polymer coatings are synthesized via a layer by layer strategy, and then loaded simultaneously with Chlorin e6 (Ce6), a photosensitizing molecule, and small interfering RNA (siRNA), which targets the Plk1 oncogene. On the one hand, under excitation by a near-infrared (NIR) light at 980 nm, which shows greatly improved tissue penetration compared with visible light, cytotoxic singlet oxygen can be generated via resonance energy transfer from UCNPs to photosensitizer Ce6, while the residual upconversion luminescence is utilized for imaging. On the other hand, the silencing of Plk1 induced by siRNA delivered with UCNPs could induce significant cancer cell apoptosis. As the result of such combined photodynamic and gene therapy, a remarkably enhanced cancer cell killing effect is realized. Our work thus highlights the promise of UCNPs for imaging guided combination therapy of cancer.Upconversion nanoparticles (UCNPs) have drawn much attention in cancer imaging and therapy in recent years. Herein, we for the first time report the use of UCNPs with carefully engineered surface chemistry for combined photodynamic therapy (PDT) and gene therapy of cancer. In our system, positively charged NaGdF4:Yb,Er UCNPs with multilayered polymer coatings are synthesized via a layer by layer strategy, and then loaded simultaneously with Chlorin e6 (Ce6), a photosensitizing molecule, and small interfering RNA (siRNA), which targets the Plk1 oncogene. On the one hand, under excitation by a near-infrared (NIR) light at 980 nm, which shows greatly improved tissue penetration compared with visible light, cytotoxic singlet oxygen can be generated via

  4. Influence of Immune Responses in Gene/Stem Cell Therapies for Muscular Dystrophies

    PubMed Central

    Sitzia, Clementina; Erratico, Silvia; Torrente, Yvan

    2014-01-01

    Muscular dystrophies (MDs) are a heterogeneous group of diseases, caused by mutations in different components of sarcolemma, extracellular matrix, or enzymes. Inflammation and innate or adaptive immune response activation are prominent features of MDs. Various therapies under development are directed toward rescuing the dystrophic muscle damage using gene transfer or cell therapy. Here we discussed current knowledge about involvement of immune system responses to experimental therapies in MDs. PMID:24959590

  5. Expanding the therapeutic index of radiation therapy by combining in situ gene therapy in the treatment of prostate cancer.

    PubMed

    Tetzlaff, Michael T; Teh, Bin S; Timme, Terry L; Fujita, Tetsuo; Satoh, Takefumi; Tabata, Ken-Ichi; Mai, Wei-Yuan; Vlachaki, Maria T; Amato, Robert J; Kadmon, Dov; Miles, Brian J; Ayala, Gustavo; Wheeler, Thomas M; Aguilar-Cordova, Estuardo; Thompson, Timothy C; Butler, E Brian

    2006-02-01

    The advances in radiotherapy (3D-CRT, IMRT) have enabled high doses of radiation to be delivered with the least possible associated toxicity. However, the persistence of cancer (local recurrence after radiotherapy) despite these increased doses as well as distant failure suggesting the existence of micro-metastases, especially in the case of higher risk disease, have underscored the need for continued improvement in treatment strategies to manage local and micro-metastatic disease as definitively as possible. This has prompted the idea that an increase in the therapeutic index of radiotherapy might be achieved by combining it with in situ gene therapy. The goal of these combinatorial therapies is to maximize the selective pressure against cancer cell growth while minimizing treatment-associated toxicity. Major efforts utilizing different gene therapy strategies have been employed in conjunction with radiotherapy. We reviewed our and other published clinical trials utilizing this combined radio-genetherapy approach including their associated pre-clinical in vitro and in vivo models. The use of in situ gene therapy as an adjuvant to radiation therapy dramatically reduced cell viability in vitro and tumor growth in vivo. No significant worsening of the toxicities normally observed in single-modality approaches were identified in Phase I/II clinical studies. Enhancement of both local and systemic T-cell activation was noted with this combined approach suggesting anti-tumor immunity. Early clinical outcome including biochemical and biopsy data was very promising. These results demonstrate the increased therapeutic efficacy achieved by combining in situ gene therapy with radiotherapy in the management of local prostate cancer. The combined approach maximizes tumor control, both local-regional and systemic through radio-genetherapy induced cytotoxicity and anti-tumor immunity. PMID:16417399

  6. Lentiviral vectors in gene therapy: their current status and future potential.

    PubMed

    Escors, David; Breckpot, Karine

    2010-04-01

    The concept of gene therapy originated in the mid twentieth century and was perceived as a revolutionary technology with the promise to cure almost any disease of which the molecular basis was understood. Since then, several gene vectors have been developed and the feasibility of gene therapy has been shown in many animal models of human disease. However, clinical efficacy could not be demonstrated until the beginning of the new century in a small-scale clinical trial curing an otherwise fatal immunodeficiency disorder in children. This first success, achieved after retroviral therapy, was later overshadowed by the occurrence of vector-related leukemia in a significant number of the treated children, demonstrating that the future success of gene therapy depends on our understanding of vector biology. This has led to the development of later-generation vectors with improved efficiency, specificity, and safety. Amongst these are HIV-1 lentivirus-based vectors (lentivectors), which are being increasingly used in basic and applied research. Human gene therapy clinical trials are currently underway using lentivectors in a wide range of human diseases. The intention of this review is to describe the main scientific steps leading to the engineering of HIV-1 lentiviral vectors and place them in the context of current human gene therapy.

  7. Molecular targets in heart failure gene therapy: current controversies and translational perspectives.

    PubMed

    Kairouz, Victor; Lipskaia, Larissa; Hajjar, Roger J; Chemaly, Elie R

    2012-04-01

    Use of gene therapy for heart failure is gaining momentum as a result of the recent successful completion of phase II of the Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID) trial, which showed clinical safety and efficacy of an adeno-associated viral vector expressing sarco-endoplasmic reticulum calcium ATPase (SERCA2a). Resorting to gene therapy allows the manipulation of molecular targets not presently amenable to pharmacologic modulation. This short review focuses on the molecular targets of heart failure gene therapy that have demonstrated translational potential. At present, most of these targets are related to calcium handling in the cardiomyocyte. They include SERCA2a, phospholamban, S100A1, ryanodine receptor, and the inhibitor of the protein phosphatase 1. Other targets related to cAMP signaling are reviewed, such as adenylyl cyclase. MicroRNAs are emerging as novel therapeutic targets and convenient vectors for gene therapy, particularly in heart disease. We propose a discussion of recent advances and controversies in key molecular targets of heart failure gene therapy.

  8. Lentiviral vectors in gene therapy: their current status and future potential

    PubMed Central

    Escors, David; Breckpot, Karine

    2010-01-01

    Summary The concept of gene therapy originated in the mid 20th century and was perceived as a revolutionary technology with the promise to cure almost any disease of which the molecular basis was understood. Since then, several gene vectors have been developed, and the feasibility of gene therapy shown in many animal models of human disease. However, clinical efficacy could not be demonstrated until the beginning of the new century in a small-scale clinical trial curing an otherwise fatal immunodeficiency disorder in children. This first success – achieved after retroviral therapy - was later on overshadowed by the occurrence of vector-related leukaemia in a significant number of the treated children, demonstrating that the future success of gene therapy depends on our understanding of vector biology. This has led to the development of later generation vectors with improved efficiency, specificity and safety. Amongst these are HIV-1 lentivirus-based vectors (lentivectors), which are being increasingly used in basic and applied research. Human gene therapy clinical trials are currently under way using lentivectors in a wide range of human diseases. The intention of this review is to describe the main scientific steps leading to the engineering of HIV-1 lentiviral vectors, and place them in the context of current human gene therapy. PMID:20143172

  9. hTERT and BIRC5 gene promoters for cancer gene therapy: A comparative study

    PubMed Central

    Shepelev, Mikhail V.; Kopantzev, Eugene P.; Vinogradova, Tatiana V.; Sverdlov, Eugene D.; Korobko, Igor V.

    2016-01-01

    Human telomerase reverse transcriptase (hTERT) and survivin (BIRC5) gene promoters are frequently used for transcriptional targeting of tumor cells, yet there is no comprehensive comparative analysis allowing rational choice of a promoter for a particular therapy. In the current study, the transcriptional activity of hTERT, human BIRC5 and mouse Birc5 promoters and their modifications were compared in 10 human cancer cell lines using the luciferase reporter gene activity assay. The results revealed that BIRC5- and hTERT-based promoters had strikingly different cell specificities with comparable activities in only 40% of cell lines. Importantly, relative hTERT and BIRC5 transcript abundance cannot be used to predict the most potent promoter. Among the hTERT-based promoters that were assessed, modification with the minimal cytomegalovirus promoter generally resulted in the most potent activity. Mouse Birc5 and modified human BIRC5 promoters were superior to the unmodified human survivin promoter; however, their tumor specificities must be investigated further. In summary, the present results emphasize the desirability for construction of more universal tumor-specific promoters to efficiently target a wide spectrum of tumor cells. PMID:27446419

  10. The potential for tumor suppressor gene therapy in head and neck cancer.

    PubMed

    Birkeland, Andrew C; Ludwig, Megan L; Spector, Matthew E; Brenner, J Chad

    2016-01-01

    Head and neck squamous cell carcinoma remains a highly morbid and fatal disease. Importantly, genomic sequencing of head and neck cancers has identified frequent mutations in tumor suppressor genes. While targeted therapeutics increasingly are being investigated in head and neck cancer, the majority of these agents are against overactive/overexpressed oncogenes. Therapy to restore lost tumor suppressor gene function remains a key and under-addressed niche in trials for head and neck cancer. Recent advances in gene editing have captured the interest of both the scientific community and the public. As our technology for gene editing and gene expression modulation improves, addressing lost tumor suppressor gene function in head and neck cancers is becoming a reality. This review will summarize new techniques, challenges to implementation, future directions, and ethical ramifications of gene therapy in head and neck cancer.

  11. The Potential for Tumor Suppressor Gene Therapy in Head and Neck Cancer

    PubMed Central

    Birkeland, Andrew C.; Ludwig, Megan L.; Spector, Matthew E.; Brenner, J. Chad

    2016-01-01

    Head and neck squamous cell carcinoma remains a highly morbid and fatal disease. Importantly, genomic sequencing of head and neck cancers has identified frequent mutations in tumor suppressor genes. While targeted therapeutics increasingly are being investigated in head and neck cancer, the majority of these agents are against overactive/overexpressed oncogenes. Therapy to restore lost tumor suppressor gene function remains a key and under-addressed niche in trials for head and neck cancer. Recent advances in gene editing have captured the interest of both the scientific community and the public. As our technology for gene editing and gene expression modulation improves, addressing lost tumor suppressor gene function in head and neck cancers is becoming a reality. This review will summarize new techniques, challenges to implementation, future directions, and ethical ramifications of gene therapy in head and neck cancer. PMID:26896601

  12. Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease.

    PubMed

    Hoban, Megan D; Orkin, Stuart H; Bauer, Daniel E

    2016-02-18

    Effective medical management for sickle cell disease (SCD) remains elusive. As a prevalent and severe monogenic disorder, SCD has been long considered a logical candidate for gene therapy. Significant progress has been made in moving toward this goal. These efforts have provided substantial insight into the natural regulation of the globin genes and illuminated challenges for genetic manipulation of the hematopoietic system. The initial γ-retroviral vectors, next-generation lentiviral vectors, and novel genome engineering and gene regulation approaches each share the goal of preventing erythrocyte sickling. After years of preclinical studies, several clinical trials for SCD gene therapies are now open. This review focuses on progress made toward achieving gene therapy, the current state of the field, consideration of factors that may determine clinical success, and prospects for future development.

  13. Construction and characterization of gelonin and saporin plasmids for toxic gene-based cancer therapy.

    PubMed

    Min, Kyoung Ah; He, Huining; Yang, Victor C; Shin, Meong Cheol

    2016-05-01

    Toxic gene therapy (or suicidal gene therapy) is gaining enormous interest, specifically for the treatment of cancer. The success of this therapy lies in several crucial factors, including the potency of gene products to kill the transfected tumor cells and the transfection ability of the transfection vehicles. To address the potency problem, in the present study, we engineered two separate mammalian transfection plasmids (pSAP and pGEL) containing genes encoding ribosome inactivating proteins (RIPs), gelonin and saporin. After the successful preparation and amplification of the plasmids, they were tested on various cancer cell lines (HeLa, U87, 9L, and MDA-MB-435) and a noncancerous cell line (293 HEK) using polyethyleneimine (PEI) as the transfection agent. Transfection studies performed under varying gene concentration, incubation time, and gene-to-PEI ratios revealed that, compared to the treatment of pGFP (GFP expression plasmid)/PEI, both pGEL/PEI and pSAP/PEI complexes could induce significantly augmented cytotoxic effects at only 2 μg/mL gene concentration. Importantly, these cytotoxic effects were observed universally in all tested cancer cell lines. Overall, this study demonstrated the potential of pGEL and pSAP as effective gene candidates for the toxic gene-based cancer therapy. PMID:27008027

  14. Stem cell gene therapy: the risks of insertional mutagenesis and approaches to minimize genotoxicity

    PubMed Central

    Wu, Chuanfeng

    2012-01-01

    Virus-based vectors are widely used in hematopoietic stem cell (HSC) gene therapy, and have the ability to integrate permanently into genomic DNA, thus driving long-term expression of corrective genes in all hematopoietic lineages. To date, HSC gene therapy has been successfully employed in the clinic for improving clinical outcomes in small numbers of patients with X-linked severe combined immunodeficiency (SCID-X1), adenosine deaminase deficiency (ADA-SCID), adrenoleukodystrophy (ALD), thalassemia, chronic granulomatous disease (CGD), and Wiskott-Aldrich syndrome (WAS). However, adverse events were observed during some of these HSC gene therapy clinical trials, linked to insertional activation of proto-oncogenes by integrated proviral vectors leading to clonal expansion and eventual development of leukemia. Numerous studies have been performed to understand the molecular basis of vector-mediated genotoxicity, with the aim of developing safer vectors and lower-risk gene therapy protocols. This review will summarize current information on the mechanisms of insertional mutagenesis in hematopoietic stem and progenitor cells due to integrating gene transfer vectors, discuss the available assays for predicting genotoxicity and mapping vector integration sites, and introduce newly-developed approaches for minimizing genotoxicity as a way to further move HSC gene therapy forward into broader clinical application. PMID:22198747

  15. Nonviral Gene Therapy of the Nervous System: Electroporation.

    PubMed

    Ding, Xue-Feng; Fan, Ming

    2016-01-01

    Electroporation has been widely used to efficiently transfer foreign genes into the mammalian central nervous system (CNS), and thus plays an important role in gene therapeutic studies on some brain disorders. A lot of work concerning electroporation is focused on gene transfer into rodent brains. This technique involves an injection of nucleic acids into the brain ventricle or specific area and then applying appropriate electrical field to the injected area. Here, we briefly introduced the advantages and the basic procedures of gene transfer into the rodent brain using electroporation. Better understanding of electroporation in rodent brain may further facilitate gene therapeutic studies on brain disorders.

  16. Potent spinal parenchymal AAV9-mediated gene delivery by subpial injection in adult rats and pigs

    PubMed Central

    Miyanohara, Atsushi; Kamizato, Kota; Juhas, Stefan; Juhasova, Jana; Navarro, Michael; Marsala, Silvia; Lukacova, Nada; Hruska-Plochan, Marian; Curtis, Erik; Gabel, Brandon; Ciacci, Joseph; Ahrens, Eric T; Kaspar, Brian K; Cleveland, Don; Marsala, Martin

    2016-01-01

    Effective in vivo use of adeno-associated virus (AAV)-based vectors to achieve gene-specific silencing or upregulation in the central nervous system has been limited by the inability to provide more than limited deep parenchymal expression in adult animals using delivery routes with the most clinical relevance (intravenous or intrathecal). Here, we demonstrate that the spinal pia membrane represents the primary barrier limiting effective AAV9 penetration into the spinal parenchyma after intrathecal AAV9 delivery. We develop a novel subpial AAV9 delivery technique and AAV9-dextran formulation. We use these in adult rats and pigs to show (i) potent spinal parenchymal transgene expression in white and gray matter including neurons, glial and endothelial cells after single bolus subpial AAV9 delivery; (ii) delivery to almost all apparent descending motor axons throughout the length of the spinal cord after cervical or thoracic subpial AAV9 injection; (iii) potent retrograde transgene expression in brain motor centers (motor cortex and brain stem); and (iv) the relative safety of this approach by defining normal neurological function for up to 6 months after AAV9 delivery. Thus, subpial delivery of AAV9 enables gene-based therapies with a wide range of potential experimental and clinical utilizations in adult animals and human patients. PMID:27462649

  17. Gene therapy for cardiovascular disease: advances in vector development, targeting, and delivery for clinical translation.

    PubMed

    Rincon, Melvin Y; VandenDriessche, Thierry; Chuah, Marinee K

    2015-10-01

    Gene therapy is a promising modality for the treatment of inherited and acquired cardiovascular diseases. The identification of the molecular pathways involved in the pathophysiology of heart failure and other associated cardiac diseases led to encouraging preclinical gene therapy studies in small and large animal models. However, the initial clinical results yielded only modest or no improvement in clinical endpoints. The presence of neutralizing antibodies and cellular immune responses directed against the viral vector and/or the gene-modified cells, the insufficient gene expression levels, and the limited gene transduction efficiencies accounted for the overall limited clinical improvements. Nevertheless, further improvements of the gene delivery technology and a better understanding of the underlying biology fostered renewed interest in gene therapy for heart failure. In particular, improved vectors based on emerging cardiotropic serotypes of the adeno-associated viral vector (AAV) are particularly well suited to coax expression of therapeutic genes in the heart. This led to new clinical trials based on the delivery of the sarcoplasmic reticulum Ca(2+)-ATPase protein (SERCA2a). Though the first clinical results were encouraging, a recent Phase IIb trial did not confirm the beneficial clinical outcomes that were initially reported. New approaches based on S100A1 and adenylate cyclase 6 are also being considered for clinical applications. Emerging paradigms based on the use of miRNA regulation or CRISPR/Cas9-based genome engineering open new therapeutic perspectives for treating cardiovascular diseases by gene therapy. Nevertheless, the continuous improvement of cardiac gene delivery is needed to allow the use of safer and more effective vector doses, ultimately bringing gene therapy for heart failure one step closer to reality.

  18. [Protection of corneal endothelium from apoptosis by gene and cell therapy].

    PubMed

    Fuchsluger, T A

    2016-06-01

    Protection of corneal endothelium from apoptosis using gene and cell therapy is in a translational phase. This approach offers advantages for eye banking and after transplantation. Safe vehicles for gene or cell therapeutic transduction of corneal endothelium with nucleic acids are available. This strategy will be further developed in consultation with the Paul Ehrlich Institute and European regulatory authorities.

  19. [Protection of corneal endothelium from apoptosis by gene and cell therapy].

    PubMed

    Fuchsluger, T A

    2016-06-01

    Protection of corneal endothelium from apoptosis using gene and cell therapy is in a translational phase. This approach offers advantages for eye banking and after transplantation. Safe vehicles for gene or cell therapeutic transduction of corneal endothelium with nucleic acids are available. This strategy will be further developed in consultation with the Paul Ehrlich Institute and European regulatory authorities. PMID:27260626

  20. Diagnostic test for prenatal identification of Down's syndrome and mental retardation and gene therapy therefor

    DOEpatents

    Smith, Desmond J.; Rubin, Edward M.

    2000-01-01

    A a diagnostic test useful for prenatal identification of Down syndrome and mental retardation. A method for gene therapy for correction and treatment of Down syndrome. DYRK gene involved in the ability to learn. A method for diagnosing Down's syndrome and mental retardation and an assay therefor. A pharmaceutical composition for treatment of Down's syndrome mental retardation.

  1. Near-infrared light triggered photodynamic therapy in combination with gene therapy using upconversion nanoparticles for effective cancer cell killing.

    PubMed

    Wang, Xin; Liu, Kai; Yang, Guangbao; Cheng, Liang; He, Lu; Liu, Yumeng; Li, Yonggang; Guo, Liang; Liu, Zhuang

    2014-08-01

    Upconversion nanoparticles (UCNPs) have drawn much attention in cancer imaging and therapy in recent years. Herein, we for the first time report the use of UCNPs with carefully engineered surface chemistry for combined photodynamic therapy (PDT) and gene therapy of cancer. In our system, positively charged NaGdF4:Yb,Er UCNPs with multilayered polymer coatings are synthesized via a layer by layer strategy, and then loaded simultaneously with Chlorin e6 (Ce6), a photosensitizing molecule, and small interfering RNA (siRNA), which targets the Plk1 oncogene. On the one hand, under excitation by a near-infrared (NIR) light at 980 nm, which shows greatly improved tissue penetration compared with visible light, cytotoxic singlet oxygen can be generated via resonance energy transfer from UCNPs to photosensitizer Ce6, while the residual upconversion luminescence is utilized for imaging. On the other hand, the silencing of Plk1 induced by siRNA delivered with UCNPs could induce significant cancer cell apoptosis. As the result of such combined photodynamic and gene therapy, a remarkably enhanced cancer cell killing effect is realized. Our work thus highlights the promise of UCNPs for imaging guided combination therapy of cancer.

  2. Requirements for Clinical Trials with Gene Therapy and Transplant Products in Switzerland.

    PubMed

    Marti, Andreas

    2015-01-01

    This chapter aims to describe and summarize the regulation of gene and cell therapy products in Switzerland and its legal basis. Product types are briefly described, as are Swiss-specific terminologies such as the term "transplant product," which means products manufactured from cells, tissues, or even whole organs. Although some parts of this chapter may show a guideline character, they are not legally binding, but represent the current thinking of Swissmedic, the Swiss Agency for Therapeutic Products. As so far the experience with marketing approval of gene therapy and cell therapy products in Switzerland is limited, this chapter focuses on the regulation of clinical trials conducted with these products. Quality, nonclinical, and clinical aspects are summarized separately for gene therapy products and transplant products. PMID:26374216

  3. Requirements for Clinical Trials with Gene Therapy and Transplant Products in Switzerland.

    PubMed

    Marti, Andreas

    2015-01-01

    This chapter aims to describe and summarize the regulation of gene and cell therapy products in Switzerland and its legal basis. Product types are briefly described, as are Swiss-specific terminologies such as the term "transplant product," which means products manufactured from cells, tissues, or even whole organs. Although some parts of this chapter may show a guideline character, they are not legally binding, but represent the current thinking of Swissmedic, the Swiss Agency for Therapeutic Products. As so far the experience with marketing approval of gene therapy and cell therapy products in Switzerland is limited, this chapter focuses on the regulation of clinical trials conducted with these products. Quality, nonclinical, and clinical aspects are summarized separately for gene therapy products and transplant products.

  4. Glucocorticoid receptor gene haplotype structure and steroid therapy outcome in IBD patients

    PubMed Central

    Mwinyi, Jessica; Wenger, Christa; Eloranta, Jyrki J; Kullak-Ublick, Gerd A

    2010-01-01

    AIM: To study whether the glucocorticoid receptor (GR/NR3C1) gene haplotypes influence the steroid therapy outcome in inflammatory bowel disease (IBD). METHODS: We sequenced all coding exons and flanking intronic sequences of the NR3C1 gene in 181 IBD patients, determined the single nucleotide polymorphisms, and predicted the NR3C1 haplotypes. Furthermore, we investigated whether certain NR3C1 haplotypes are significantly associated with steroid therapy outcomes. RESULTS: We detected 13 NR3C1 variants, which led to the formation of 17 different haplotypes with a certainty of > 95% in 173 individuals. The three most commonly occurring haplotypes were included in the association analysis of the influence of haplotype on steroid therapy outcome or IBD activity. None of the NR3C1 haplotypes showed statistically significant association with glucocorticoid therapy success. CONCLUSION: NR3C1 haplotypes are not related to steroid therapy outcome. PMID:20712049

  5. Sleeping Beauty transposon system for genetic etiological research and gene therapy of cancers

    PubMed Central

    Hou, Xiaomei; Du, Yan; Deng, Yang; Wu, Jianfeng; Cao, Guangwen

    2015-01-01

    Carcinogenesis is etiologically associated with somatic mutations of critical genes. Recently, a number of somatic mutations and key molecules have been found to be involved in functional networks affecting cancer progression. Suitable animal models are required to validate cancer-promoting or -inhibiting capacities of these mutants and molecules. Sleeping Beauty transposon system consists of a transposon that carries gene(s) of interest and a transposase that recognizes, excises, and reinserts genes in given location of the genome. It can create both gain-of-function and loss-of-function mutations, thus being frequently chosen to investigate the etiological mechanisms and gene therapy for cancers in animal models. In this review, we summarized current advances of Sleeping Beauty transposon system in revealing molecular mechanism of cancers and improving gene therapy. Understanding molecular mechanisms by which driver mutations contribute to carcinogenesis and metastasis may pave the way for the development of innovative prophylactic and therapeutic strategies against malignant diseases. PMID:25455252

  6. Sleeping Beauty transposon system for genetic etiological research and gene therapy of cancers.

    PubMed

    Hou, Xiaomei; Du, Yan; Deng, Yang; Wu, Jianfeng; Cao, Guangwen

    2015-01-01

    Carcinogenesis is etiologically associated with somatic mutations of critical genes. Recently, a number of somatic mutations and key molecules have been found to be involved in functional networks affecting cancer progression. Suitable animal models are required to validate cancer-promoting or -inhibiting capacities of these mutants and molecules. Sleeping Beauty transposon system consists of a transposon that carries gene(s) of interest and a transposase that recognizes, excises, and reinserts genes in given location of the genome. It can create both gain-of-function and loss-of-function mutations, thus being frequently chosen to investigate the etiological mechanisms and gene therapy for cancers in animal models. In this review, we summarized current advances of Sleeping Beauty transposon system in revealing molecular mechanism of cancers and improving gene therapy. Understanding molecular mechanisms by which driver mutations contribute to carcinogenesis and metastasis may pave the way for the development of innovative prophylactic and therapeutic strategies against malignant diseases.

  7. ADA (adenosine deaminase) gene therapy enters the competition

    SciTech Connect

    Culliton, B.J.

    1990-08-31

    Around the world, some 70 children are members of a select and deadly club. Born with an immune deficiency so severe that they will die of infection unless their immune systems can be repaired, they have captured the attention of would-be gene therapists who believe that a handful of these kids--the 15 or 20 who lack functioning levels of the enzyme adenosine deaminase (ADA)--could be saved by a healthy ADA gene. A team of gene therapists is ready to put the theory to the test. In April 1987, a team of NIH researchers headed by R. Michael Blaese and W. French Anderson came up with the first formal protocol to introduce a healthy ADA gene into an unhealthy human. After 3 years of line-by-line scrutiny by five review committees, they have permission to go ahead. Two or three children will be treated in the next year, and will be infused with T lymphocytes carrying the gene for ADA. If the experiment works, the ADA gene will begin producing normal amounts of ADA. An interesting feature of ADA deficiency, that makes it ideal for initial gene studies, is that the amount of ADA one needs for a healthy immune system is quite variable. Hence, once inside a patient's T cells, the new ADA gene needs only to express the enzyme in moderate amounts. No precise gene regulation is necessary.

  8. Progress with Recombinant Adeno-Associated Virus Vectors for Gene Therapy of Alpha-1 Antitrypsin Deficiency.

    PubMed

    Gruntman, Alisha M; Flotte, Terence R

    2015-06-01

    The pathway to a clinical gene therapy product often involves many changes of course and strategy before obtaining successful results. Here we outline the methodologies, both clinical and preclinical, that went into developing a gene therapy approach to the treatment of alpha-1 antitrypsin deficiency lung disease using muscle-targeted recombinant adeno-associated virus. From initial gene construct development in mouse models through multiple rounds of safety and biodistribution studies in rodents, rabbits, and nonhuman primates to ultimate human trials, this review seeks to provide insight into what clinical translation entails and could thereby inform the process for future investigators.

  9. Gene therapy for inborn errors of liver metabolism: progress towards clinical applications

    PubMed Central

    Brunetti-Pierri, Nicola

    2008-01-01

    The treatment for inborn errors of liver metabolism is based on dietary, drug, and cell therapies (orthotopic liver transplantation). However, significant morbidity and mortality still remain, and alternative strategies are needed. Gene replacement therapy has the potential of providing a definitive cure for patients with these diseases. Significant progress has been made in the pre-clinical arena and achievement of efficacy in different animal models has been reported using multiple gene transfer technologies. This article summarizes the gene transfer strategies being investigated, the pre-clinical data, and the available early clinical results for inborn errors of liver metabolism. PMID:19490653

  10. CRISPR-Cas9: a new and promising player in gene therapy.

    PubMed

    Xiao-Jie, Lu; Hui-Ying, Xue; Zun-Ping, Ke; Jin-Lian, Chen; Li-Juan, Ji

    2015-05-01

    First introduced into mammalian organisms in 2013, the RNA-guided genome editing tool CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9) offers several advantages over conventional ones, such as simple-to-design, easy-to-use and multiplexing (capable of editing multiple genes simultaneously). Consequently, it has become a cost-effective and convenient tool for various genome editing purposes including gene therapy studies. In cell lines or animal models, CRISPR-Cas9 can be applied for therapeutic purposes in several ways. It can correct the causal mutations in monogenic disorders and thus rescue the disease phenotypes, which currently represents the most translatable field in CRISPR-Cas9-mediated gene therapy. CRISPR-Cas9 can also engineer pathogen genome such as HIV for therapeutic purposes, or induce protective or therapeutic mutations in host tissues. Moreover, CRISPR-Cas9 has shown potentials in cancer gene therapy such as deactivating oncogenic virus and inducing oncosuppressor expressions. Herein, we review the research on CRISPR-mediated gene therapy, discuss its advantages, limitations and possible solutions, and propose directions for future research, with an emphasis on the opportunities and challenges of CRISPR-Cas9 in cancer gene therapy.

  11. Limbal Approach-Subretinal Injection of Viral Vectors for Gene Therapy in Mice Retinal Pigment Epithelium.

    PubMed

    Park, Sung Wook; Kim, Jin Hyoung; Park, Woo Jin; Kim, Jeong Hun

    2015-01-01

    The eye is a small and enclosed organ which makes it an ideal target for gene therapy. Recently various strategies have been applied to gene therapy in retinopathies using non-viral and viral gene delivery to the retina and retinal pigment epithelium (RPE). Subretinal injection is the best approach to deliver viral vectors directly to RPE cells. Before the clinical trial of a gene therapy, it is inevitable to validate the efficacy of the therapy in animal models of various retinopathies. Thus, subretinal injection in mice becomes a fundamental technique for an ocular gene therapy. In this protocol, we provide the easy and replicable technique for subretinal injection of viral vectors to experimental mice. This technique is modified from the intravitreal injection, which is widely used technique in ophthalmology clinics. The representative results of RPE/choroid/scleral complex flat-mount will help to understand the efficacy of this technique and adjust the volume and titer of viral vectors for the extent of gene transduction.

  12. Recombinant AAV-directed gene therapy for type I glycogen storage diseases

    PubMed Central

    Chou, JY; Mansfield, BC

    2011-01-01

    Introduction Glycogen storage disease (GSD) type Ia and Ib are disorders of impaired glucose homeostasis affecting the liver and kidney. GSD-Ib also affects neutrophils. Current dietary therapies cannot prevent long-term complications. In animal studies, recombinant adeno-associated virus (rAAV) vector-mediated gene therapy can correct or minimize multiple aspects of the disorders, offering hope for human gene therapy. Areas covered A summary of recent progress in rAAV-mediated gene therapy for GSD-I; strategies to improve rAAV-mediated gene delivery, transduction efficiency and immune avoidance; and vector refinements that improve expression. Expert opinion rAAV-mediated gene delivery to the liver can restore glucose homeostasis in preclinical models of GSD-I, but some long-term complications of the liver and kidney remain. Gene therapy for GSD-Ib is less advanced than for GSD-Ia and only transient correction of myeloid dysfunction has been achieved. A question remains whether a single rAAV vector can meet the expression efficiency and tropism required to treat all aspects of GSD-I, or if a multi-prong approach is needed. An understanding of the strengths and weaknesses of rAAV vectors in the context of strategies to achieve efficient transduction of the liver, kidney, and hematopoietic stem cells is required for treating GSD-I. PMID:21504389

  13. Center for fetal monkey gene transfer for heart, lung, and blood diseases: an NHLBI resource for the gene therapy community.

    PubMed

    Tarantal, Alice F; Skarlatos, Sonia I

    2012-11-01

    The goals of the National Heart, Lung, and Blood Institute (NHLBI) Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases are to conduct gene transfer studies in monkeys to evaluate safety and efficiency; and to provide NHLBI-supported investigators with expertise, resources, and services to actively pursue gene transfer approaches in monkeys in their research programs. NHLBI-supported projects span investigators throughout the United States and have addressed novel approaches to gene delivery; "proof-of-principle"; assessed whether findings in small-animal models could be demonstrated in a primate species; or were conducted to enable new grant or IND submissions. The Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases successfully aids the gene therapy community in addressing regulatory barriers, and serves as an effective vehicle for advancing the field.

  14. Gene therapy for hemoglobinopathies: the state of the field and the future.

    PubMed

    Chandrakasan, Shanmuganathan; Malik, Punam

    2014-04-01

    After nearly two decades of struggle, gene therapy for hemoglobinopathies using vectors carrying β or γ-globin gene has finally reached the clinical doorsteps. This was made possible by advances made in our understanding of critical regulatory elements required for high level of globin gene expression and improved gene transfer vectors and methodologies. Development of gene editing technologies and reprogramming somatic cells for regenerative medicine holds the promise of genetic correction of hemoglobinopathies in the future. This article will review the state of the field and the upcoming technologies that will allow genetic therapeutic correction of hemoglobinopathies.

  15. Acidity-Activated Shielding Strategies of Cationic Gene Delivery for Cancer Therapy.

    PubMed

    Xia, Jialiang; Feng, Zongcai; Yang, Hongyan; Lin, Sanqing; Han, Bing

    2016-01-01

    Cationic gene vectors increased attractive for gene therapy. However, unstable systemic circulation due to the interaction of gene delivery system with blood cells limited the further application. Therefore, pH sensitive shielding systems were exploited, by which, the positive surface charge density of polyplexes was reduced, circulation time was improved and pH-triggered targeting delivery was promised. This mini review mainly focuses on the development of solid tumors pH environment activated shielding systems for cationic gene vectors. This shielding strategy shows great potential for enhancing efficient gene transporting and achieving better therapeutic effects in acidic tumor treatment.

  16. P60WHY ANIMAL MODELS OF GENE THERAPY HAVE LET GLIOMA PATIENTS DOWN

    PubMed Central

    Hirst, Theodore C.; Vesterinen, Hanna M.; Conlin, Samantha; Egan, Kieren J.; Antonic, Ana; McLean, Aaron Lawson; Macleod, Malcolm R.; Whittle, Ian R.; Grant, Robin; Brennan, Paul M.; Sena, Emily S.

    2014-01-01

    INTRODUCTION: The development of new therapeutics is often characterised by promising animal research that fails to translate into clinical efficacy; this holds for the development of gene therapy in glioma. We set out to test the hypothesis that this is because of limitations in the internal and external validity of studies reporting the use of gene therapy in rodent models of glioma. METHOD: We systematically identified studies testing gene therapy in rodent glioma models by searching three online databases. The number of animals treated and median survival were extracted and studies graded using a 9-point quality checklist. We calculated median survival ratios and used random effects meta-analysis to provide estimates of efficacy. We explored the effects of study design and quality and searched for evidence of publication bias. RESULTS: We found 194 publications using gene therapy in experimental glioma, describing 427 experiments involving 6366 animals. Overall, genetherapy improved median survival by 1.60 fold (95%CI 1.53-1.67). Study quality was low and the type of gene therapy did not account for observed differences in outcome. Study design characteristics accounted for a significant proportion of between-study heterogeneity and we observedsimilar findings in a subset of data limited to the most common genetherapy. CONCLUSION: As the dysregulation of key molecular pathways is characteristic of gliomas, gene therapy remains a promising treatment forglioma. Nevertheless, we have identified areas for improvement in conduct and reporting of such studies. Further work should focus on genes of interest in paradigms that recapitulate human disease. This may improve the translation of such therapies into the clinic.

  17. Lymphocytes as cellular vehicles for gene therapy in mouse and man

    SciTech Connect

    Culver, K.; Cornetta, K.; Morgan, R.; Morecki, S.; Aebersold, P.; Kasid, A.; Lotze, M.; Rosenberg, S.A.; Anderson, W.F.; Blaese, R.M. )

    1991-04-15

    The application of bone marrow gene therapy has been stalled by the inability to achieve stable high-level gene transfer and expression in the totipotent stem cells. The authors that retroviral vectors can stably introduce genes into antigen-specific murine and human T lymphocytes in culture. Murine helper T cells were transduced with the retroviral vector SAX to express both neomycin-resistance and human adenosine deaminase genes. To determine if cultured T cells might be used for gene therapy, their persistence and continued expression of the introduced genes was evaluated in nude mice transplanted with the SAX-transduced T cells. They studied cultured human tumor-infiltrating lymphocytes as a candidate cell for a trial of gene transfer in man. Gene insertion and subsequent G418 selection did not substantially alter the growth characteristics, interleukin 2 dependence, membrane phenotype, or cytotoxicity profile of the transduced T cells. These studies provided a portion of the experimental evidence supporting the feasibility of the presently ongoing clinical trials of lymphocyte gene therapy in cancer as well as in patients with adenosine deaminase deficiency.

  18. Dawn of ocular gene therapy: implications for molecular diagnosis in retinal disease

    PubMed Central

    Jacques, ZANEVELD; Feng, WANG; Xia, WANG; Rui, CHEN

    2013-01-01

    Personalized medicine aims to utilize genomic information about patients to tailor treatment. Gene replacement therapy for rare genetic disorders is perhaps the most extreme form of personalized medicine, in that the patients’ genome wholly determines their treatment regimen. Gene therapy for retinal disorders is poised to become a clinical reality. The eye is an optimal site for gene therapy due to the relative ease of precise vector delivery, immune system isolation, and availability for monitoring of any potential damage or side effects. Due to these advantages, clinical trials for gene therapy of retinal diseases are currently underway. A necessary precursor to such gene therapies is accurate molecular diagnosis of the mutation(s) underlying disease. In this review, we discuss the application of Next Generation Sequencing (NGS) to obtain such a diagnosis and identify disease causing genes, using retinal disorders as a case study. After reviewing ocular gene therapy, we discuss the application of NGS to the identification of novel Mendelian disease genes. We then compare current, array based mutation detection methods against next NGS-based methods in three retinal diseases: Leber’s Congenital Amaurosis, Retinitis Pigmentosa, and Stargardt’s disease. We conclude that next-generation sequencing based diagnosis offers several advantages over array based methods, including a higher rate of successful diagnosis and the ability to more deeply and efficiently assay a broad spectrum of mutations. However, the relative difficulty of interpreting sequence results and the development of standardized, reliable bioinformatic tools remain outstanding concerns. In this review, recent advances NGS based molecular diagnoses are discussed, as well as their implications for the development of personalized medicine. PMID:23393028

  19. Gene therapy as a potential tool for treating neuroblastoma-a focused review.

    PubMed

    Kumar, M D; Dravid, A; Kumar, A; Sen, D

    2016-05-01

    Neuroblastoma, a solid tumor caused by rapid division of undifferentiated neuroblasts, is the most common childhood malignancy affecting children aged <5 years. Several approaches and strategies developed and tested to cure neuroblastoma have met with limited success due to different reasons. Many oncogenes are deregulated during the onset and development of neuroblastoma and thus offer an opportunity to circumvent this disease if the expression of these genes is restored to normalcy. Gene therapy is a powerful tool with the potential to inhibit the deleterious effects of oncogenes by inserting corrected/normal genes into the genome. Both viral and non-viral vector-based gene therapies have been developed and adopted to deliver the target genes into neuroblastoma cells. These attempts have given hope to bringing in a new regime of treatment against neuroblastoma. A few gene-therapy-based treatment strategies have been tested in limited clinical trials yielding some positive results. This mini review is an attempt to provide an overview of the available options of gene therapy to treat neuroblastoma. PMID:27080224

  20. Gene therapy for chronic granulomatous disease: current status and future perspectives.

    PubMed

    Kaufmann, Kerstin B; Chiriaco, Maria; Siler, Ulrich; Finocchi, Andrea; Reichenbach, Janine; Stein, Stefan; Grez, Manuel

    2014-01-01

    Several Phase I/II clinical trials aiming at the correction of X-linked CGD by gene transfer into hematopoietic stem cells (HSCs) have demonstrated the therapeutic potential of gene modified autologous HSCs for the treatment of CGD. Resolution of therapy-resistant bacterial and fungal infections in liver, lung and spinal canal of CGD patients were clearly documented in all trials. However, clinical benefits were not sustained over time due to the failure of gene transduced cells to engraft long-term. Moreover, severe adverse effects were observed in some of the treated patients due to insertional mutagenesis leading to the activation of growth promoting genes and to myeloid malignancy. These setbacks fostered the development of novel safety and efficacy improved vectors that have already entered or are about to enter the clinics. Meanwhile, ongoing research is constantly refining the CGD disease phenotype, including the definition of factors that may explain the unique engraftment phenotype observed in CGD gene therapy trials. This review provides a condensed overview on the current knowledge of the molecular pathomechanisms and clinical manifestations of CGD and summarizes the lessons learned from clinical gene therapy trials, the preclinical progress in vector design and the future perspectives for the gene therapy of CGD.

  1. Correction of canine X-linked severe combined immunodeficiency by in vivo retroviral gene therapy

    PubMed Central

    Ravin, Suk See Ting–De; Kennedy, Douglas R.; Naumann, Nora; Kennedy, Jeffrey S.; Choi, Uimook; Hartnett, Brian J.; Linton, Gilda F.; Whiting-Theobald, Narda L.; Moore, Peter F.; Vernau, William; Malech, Harry L.; Felsburg, Peter J.

    2006-01-01

    X-linked severe combined immunodeficiency (XSCID) is characterized by profound immunodeficiency and early mortality, the only potential cure being hematopoietic stem cell (HSC) transplantation or gene therapy. Current clinical gene therapy protocols targeting HSCs are based upon ex vivo gene transfer, potentially limited by the adequacy of HSC harvest, transduction efficiencies of repopulating HSCs, and the potential loss of their engraftment potential during ex vivo culture. We demonstrate an important proof of principle by showing achievement of durable immune reconstitution in XSCID dogs following intravenous injection of concentrated RD114-pseudotyped retrovirus vector encoding the corrective gene, the interleukin-2 receptor γ chain (γc). In 3 of 4 dogs treated, normalization of numbers and function of T cells were observed. Two long-term–surviving animals (16 and 18 months) showed significant marking of B lymphocytes and myeloid cells, normalization of IgG levels, and protective humoral immune response to immunization. There were no adverse effects from in vivo gene therapy, and in one dog that reached sexual maturity, sparing of gonadal tissue from gene transfer was demonstrated. This is the first demonstration that in vivo gene therapy targeting HSCs can restore both cellular and humoral immunity in a large-animal model of a fatal immunodeficiency. PMID:16384923

  2. Hybrid biosynthetic gene therapy vector development and dual engineering capacity.

    PubMed

    Jones, Charles H; Ravikrishnan, Anitha; Chen, Mingfu; Reddinger, Ryan; Kamal Ahmadi, Mahmoud; Rane, Snehal; Hakansson, Anders P; Pfeifer, Blaine A

    2014-08-26

    Genetic vaccines offer a treatment opportunity based upon successful gene delivery to specific immune cell modulators. Driving the process is the vector chosen for gene cargo packaging and subsequent delivery to antigen-presenting cells (APCs) capable of triggering an immune cascade. As such, the delivery process must successfully navigate a series of requirements and obstacles associated with the chosen vector and target cell. In this work, we present the development and assessment of a hybrid gene delivery vector containing biological and biomaterial components. Each component was chosen to design and engineer gene delivery separately in a complimentary and fundamentally distinct fashion. A bacterial (Escherichia coli) inner core and a biomaterial [poly(beta-amino ester)]-coated outer surface allowed the simultaneous application of molecular biology and polymer chemistry to address barriers associated with APC gene delivery, which include cellular uptake and internalization, phagosomal escape, and intracellular cargo concentration. The approach combined and synergized normally disparate vector properties and tools, resulting in increased in vitro gene delivery beyond individual vector components or commercially available transfection agents. Furthermore, the hybrid device demonstrated a strong, efficient, and safe in vivo humoral immune response compared with traditional forms of antigen delivery. In summary, the flexibility, diversity, and potential of the hybrid design were developed and featured in this work as a platform for multivariate engineering at the vector and cellular scales for new applications in gene delivery immunotherapy.

  3. Hybrid biosynthetic gene therapy vector development and dual engineering capacity

    PubMed Central

    Jones, Charles H.; Ravikrishnan, Anitha; Chen, Mingfu; Reddinger, Ryan; Kamal Ahmadi, Mahmoud; Rane, Snehal; Hakansson, Anders P.; Pfeifer, Blaine A.

    2014-01-01

    Genetic vaccines offer a treatment opportunity based upon successful gene delivery to specific immune cell modulators. Driving the process is the vector chosen for gene cargo packaging and subsequent delivery to antigen-presenting cells (APCs) capable of triggering an immune cascade. As such, the delivery process must successfully navigate a series of requirements and obstacles associated with the chosen vector and target cell. In this work, we present the development and assessment of a hybrid gene delivery vector containing biological and biomaterial components. Each component was chosen to design and engineer gene delivery separately in a complimentary and fundamentally distinct fashion. A bacterial (Escherichia coli) inner core and a biomaterial [poly(beta-amino ester)]-coated outer surface allowed the simultaneous application of molecular biology and polymer chemistry to address barriers associated with APC gene delivery, which include cellular uptake and internalization, phagosomal escape, and intracellular cargo concentration. The approach combined and synergized normally disparate vector properties and tools, resulting in increased in vitro gene delivery beyond individual vector components or commercially available transfection agents. Furthermore, the hybrid device demonstrated a strong, efficient, and safe in vivo humoral immune response compared with traditional forms of antigen delivery. In summary, the flexibility, diversity, and potential of the hybrid design were developed and featured in this work as a platform for multivariate engineering at the vector and cellular scales for new applications in gene delivery immunotherapy. PMID:25114239

  4. Involvement of regucalcin as a suppressor protein in human carcinogenesis: insight into the gene therapy.

    PubMed

    Yamaguchi, Masayoshi

    2015-08-01

    Regucalcin, which its gene is located on the X chromosome, plays a multifunctional role as a suppressor protein in cell signal transduction in various types of cells and tissues. The suppression of regucalcin gene expression has been shown to involve in carcinogenesis. Regucalcin gene expression was uniquely downregulated in carcinogenesis of rat liver in vivo, although the expression of other many genes was upregulated, indicating that endogenous regucalcin plays a suppressive role in the development of hepatocarcinogenesis. Overexpression of endogenous regucalcin was found to suppress proliferation of rat cloned hepatoma cells in vitro. Moreover, the regucalcin gene and its protein levels were demonstrated specifically to downregulate in human hepatocellular carcinoma by analysis with multiple gene expression profiles and proteomics. Regucalcin gene expression was also found to suppress in human tumor tissues including kidney, lung, brain, breast and prostate, suggesting that repressed regucalcin gene expression leads to the development of carcinogenesis in various tissues. Regucalcin may play a role as a suppressor protein in carcinogenesis. Overexpression of endogenous regucalcin is suggested to reveal preventive and therapeutic effects on carcinogenesis. Delivery of the regucalcin gene may be a novel useful tool in the gene therapy of carcinogenesis. This review will discuss regarding to an involvement of regucalcin as a suppressor protein in human carcinogenesis in insight into the gene therapy.

  5. Long-term outcomes of gene therapy for the treatment of Leber's hereditary optic neuropathy.

    PubMed

    Yang, Shuo; Ma, Si-Qi; Wan, Xing; He, Heng; Pei, Han; Zhao, Min-Jian; Chen, Chen; Wang, Dao-Wen; Dong, Xiao-Yan; Yuan, Jia-Jia; Li, Bin

    2016-08-01

    Leber's hereditary optic neuropathy (LHON) is a disease that leads to blindness. Gene therapy has been investigated with some success, and could lead to important advancements in treating LHON. This was a prospective, open-label trial involving 9 LHON patients at Tongji Hospital, Wuhan, China, from August 2011 to December 2015. The purpose of this study was to evaluate the long-term outcomes of gene therapy for LHON. Nine LHON patients voluntarily received an intravitreal injection of rAAV2-ND4. Systemic examinations and visual function tests were performed during the 36-month follow-up period to determine the safety and efficacy of this gene therapy. Based on successful experiments in an animal model of LHON, 1 subject also received an rAAV2-ND4 injection in the second eye 12months after gene therapy was administered in the first eye. Recovery of visual acuity was defined as the primary outcome of this study. Changes in the visual field, visual evoked potential (VEP), optical coherence tomography findings, liver and kidney function, and antibodies against AAV2 were defined as secondary endpoints. Eight patients (Patients 2-9) received unilateral gene therapy and visual function improvement was observed in both treated eyes (Patients 4, 6, 7, and 8) and untreated eyes (Patients 2, 3, 4, 6 and 8). Visual regression fluctuations, defined as changes in visual acuity greater than or equal to 0.3 logMAR, were observed in Patients 2 and 9. Age at disease onset, disease duration, and the amount of remaining optic nerve fibers did not have a significant effect on the visual function improvement. The visual field and pattern reversal VEP also improved. The patient (Patient 1) who received gene therapy in both eyes had improved visual acuity in the injected eye after the first treatment. Unfortunately, visual acuity in this eye decreased 3months after he received gene therapy in the second eye. Animal experiments suggested that ND4 expression remains stable in the

  6. Clinical development of gene therapy: results and lessons from recent successes.

    PubMed

    Kumar, Sandeep Rp; Markusic, David M; Biswas, Moanaro; High, Katherine A; Herzog, Roland W

    2016-01-01

    Therapeutic gene transfer holds the promise of providing lasting therapies and even cures for diseases that were previously untreatable or for which only temporary or suboptimal treatments were available. For some time, clinical gene therapy was characterized by some impressive but rare examples of successes and also several setbacks. However, effective and long-lasting treatments are now being reported from gene therapy trials at an increasing pace. Positive outcomes have been documented for a wide range of genetic diseases (including hematological, immunological, ocular, and neurodegenerative and metabolic disorders) and several types of cancer. Examples include restoration of vision in blind patients, eradication of blood cancers for which all other treatments had failed, correction of hemoglobinopathies and coagulation factor deficiencies, and restoration of the immune system in children born with primary immune deficiency. To date, about 2,000 clinical trials for various diseases have occurred or are in progress, and many more are in the pipeline. Multiple clinical studies reported successful treatments of pediatric patients. Design of gene therapy vectors and their clinical development are advancing rapidly. This article reviews some of the major successes in clinical gene therapy of recent years. PMID:27257611

  7. Clinical development of gene therapy: results and lessons from recent successes

    PubMed Central

    Kumar, Sandeep RP; Markusic, David M; Biswas, Moanaro; High, Katherine A; Herzog, Roland W

    2016-01-01

    Therapeutic gene transfer holds the promise of providing lasting therapies and even cures for diseases that were previously untreatable or for which only temporary or suboptimal treatments were available. For some time, clinical gene therapy was characterized by some impressive but rare examples of successes and also several setbacks. However, effective and long-lasting treatments are now being reported from gene therapy trials at an increasing pace. Positive outcomes have been documented for a wide range of genetic diseases (including hematological, immunological, ocular, and neurodegenerative and metabolic disorders) and several types of cancer. Examples include restoration of vision in blind patients, eradication of blood cancers for which all other treatments had failed, correction of hemoglobinopathies and coagulation factor deficiencies, and restoration of the immune system in children born with primary immune deficiency. To date, about 2,000 clinical trials for various diseases have occurred or are in progress, and many more are in the pipeline. Multiple clinical studies reported successful treatments of pediatric patients. Design of gene therapy vectors and their clinical development are advancing rapidly. This article reviews some of the major successes in clinical gene therapy of recent years. PMID:27257611

  8. Anti-Inflammatory Effects of Modified Adenoviral Vectors for Gene Therapy: A View through Animal Models Tested.

    PubMed

    Castañeda-Lopez, M E; Garza-Veloz, I; Lopez-Hernandez, Y; Barbosa-Cisneros, O Y; Martinez-Fierro, M L

    2016-07-01

    The central dogma of gene therapy relies on the application of novel therapeutic genes to treat or prevent diseases. The main types of vectors used for gene transfer are adenovirus, retrovirus, lentivirus, liposome, and adeno-associated virus vectors. Gene therapy has emerged as a promising alternative for the treatment of inflammatory diseases. The main targets are cytokines, co-stimulatory molecules, and different types of cells from hematological and mesenchymal sources. In this review, we focus on molecules with anti-inflammatory effects used for in vivo gene therapy mediated by adenoviral gene transfer in the treatment of immune-mediated inflammatory diseases, with particular emphasis on autoinflammatory and autoimmune diseases.

  9. Expressing foreign genes by Newcastle disease virus for cancer therapy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An interesting aspect of Newcastle disease virus (NDV) is the ability to selectively replicate in tumor cells. Recently, using reverse genetics technology to enhance the oncolytic properties and therapeutic potential of NDV for tumor therapy has become popular in immunocompetent carcinoma tumor mod...

  10. In vivo gene therapy of murine melanoma mediated by recombinant vaccinia virus encoding human IL-2 gene.

    PubMed

    Wan, T; Cao, X; Ju, D; Aces, B

    1997-04-01

    Direct gene transfer into somatic tissue iii vivo is a developing technology with potential application for cancer gene therapy. In this study, recombinant vaccinia virus encoding human IL-2 gene (rVV-IL-2) was used as a candidate vector in mediating iii vivo gene therapy. After rVV-IL-2 was expanded in VERO cells for 72 h, high titer (10(8)-10(10) PFU/ml) rVV-IL-2 were harvested. When 10(6) murine melanoma cells (F16-F10) were infected with rVV-IL-2, about 200 U/ml IL-2 activity was detected in the supernatants at 8 h, and the up-regulation of ICAM-1 and MHC-I expressions on the melanoma cells were observed. The treatment of murine melanoma model by local injection of rVV-IL-2 into the tumor site showed that rVV-IL-2 transfection significantly inhibited the tumor growth and prolonged the survival time of tumor-bearing mice. The splenocytes from rVV-IL-2 treated mice showed higher cytotoxicities of NK, LAK and CTL in comparison with those from the controls. These results suggest that in vivo transfection mediated by rVV-IL-2 has potential effectiveness in enhancing host immunity and would be a useful approach to cancer gene therapy. PMID:21533434

  11. Lentiviral transgenesis--a versatile tool for basic research and gene therapy.

    PubMed

    Pfeifer, Alexander

    2006-08-01

    Transgenic animals are of outstanding relevance for medical sciences, because they can be used to model human diseases and to develop gene therapy strategies. A recent development is lentiviral transgenesis: The generation of transgenic animals by lentiviral transduction of oocytes or early embryos. Lentiviral transgenesis is an efficient method to express transgenes in mice and rats as well as in biomedically relevant livestock. Thus, the applications of this technology range from the generation of disease models to gene pharming for human proteins. An important extension of viral transgenesis is the combination of lentiviral gene transfer with RNA interference. Thereby, expression of specific genes can be silenced and loss-of-function models can be generated. Finally, lentiviral transgenic animals can be used to directly evaluate gene therapy strategies that are based on lentiviral vectors prior to their use in humans.

  12. Intracellular Trafficking of Plasmids for Gene Therapy: Mechanisms of Cytoplasmic Movement and Nuclear Import

    PubMed Central

    Dean, David A.

    2015-01-01

    Under physiologically relevant conditions, the levels of non-viral gene transfer are low at best. The reason for this is that many barriers exist for the efficient transfer of genes to cells, even before any gene expression can occur. While many transfection strategies focus on DNA condensation and overcoming the plasma membrane, events associated with the intracellular trafficking of the DNA complexes have not been as extensively studied. Once internalized, plasmids must travel potentially long distances through the cytoplasm to reach their next barrier, the nuclear envelope. This review summarizes the current progress on the cytoplasmic trafficking and nuclear transport of plasmids used for gene therapy applications. Both of these processes utilize specific and defined mechanisms to facilitate movement of DNA complexes through the cell. The continued elucidation and exploitation of these mechanisms will lead to improved strategies for transfection and successful gene therapy. PMID:17168698

  13. Lentiviral transgenesis--a versatile tool for basic research and gene therapy.

    PubMed

    Pfeifer, Alexander

    2006-08-01

    Transgenic animals are of outstanding relevance for medical sciences, because they can be used to model human diseases and to develop gene therapy strategies. A recent development is lentiviral transgenesis: The generation of transgenic animals by lentiviral transduction of oocytes or early embryos. Lentiviral transgenesis is an efficient method to express transgenes in mice and rats as well as in biomedically relevant livestock. Thus, the applications of this technology range from the generation of disease models to gene pharming for human proteins. An important extension of viral transgenesis is the combination of lentiviral gene transfer with RNA interference. Thereby, expression of specific genes can be silenced and loss-of-function models can be generated. Finally, lentiviral transgenic animals can be used to directly evaluate gene therapy strategies that are based on lentiviral vectors prior to their use in humans. PMID:16918338

  14. Utilizing Social Media to Study Information-Seeking and Ethical Issues in Gene Therapy

    PubMed Central

    Robillard, Julie M; Whiteley, Louise; Johnson, Thomas Wade; Lim, Jonathan; Wasserman, Wyeth W

    2013-01-01

    Background The field of gene therapy is rapidly evolving, and while hopes of treating disorders of the central nervous system and ethical concerns have been articulated within the academic community, little is known about views and opinions of different stakeholder groups. Objective To address this gap, we utilized social media to investigate the kind of information public users are seeking about gene therapy and the hopes, concerns, and attitudes they express. Methods We conducted a content analysis of questions containing the keywords “gene therapy” from the Q&A site “Yahoo! Answers” for the 5-year period between 2006 and 2010. From the pool of questions retrieved (N=903), we identified those containing at least one theme related to ethics, environment, economics, law, or society (n=173) and then characterized the content of relevant answers (n=399) through emergent coding. Results The results show that users seek a wide range of information regarding gene therapy, with requests for scientific information and ethical issues at the forefront of enquiry. The question sample reveals high expectations for gene therapy that range from cures for genetic and nongenetic diseases to pre- and postnatal enhancement of physiological attributes. Ethics questions are commonly expressed as fears about the impact of gene therapy on self and society. The answer sample echoes these concerns but further suggests that the acceptability of gene therapy varies depending on the specific application. Conclusions Overall, the findings highlight the powerful role of social media as a rich resource for research into attitudes toward biomedicine and as a platform for knowledge exchange and public engagement for topics relating to health and disease. PMID:23470490

  15. Targeted gene therapy and cell reprogramming in Fanconi anemia

    PubMed Central

    Rio, Paula; Baños, Rocio; Lombardo, Angelo; Quintana-Bustamante, Oscar; Alvarez, Lara; Garate, Zita; Genovese, Pietro; Almarza, Elena; Valeri, Antonio; Díez, Begoña; Navarro, Susana; Torres, Yaima; Trujillo, Juan P; Murillas, Rodolfo; Segovia, Jose C; Samper, Enrique; Surralles, Jordi; Gregory, Philip D; Holmes, Michael C; Naldini, Luigi; Bueren, Juan A

    2014-01-01

    Gene targeting is progressively becoming a realistic therapeutic alternative in clinics. It is unknown, however, whether this technology will be suitable for the treatment of DNA repair deficiency syndromes such as Fanconi anemia (FA), with defects in homology-directed DNA repair. In this study, we used zinc finger nucleases and integrase-defective lentiviral vectors to demonstrate for the first time that FANCA can be efficiently and specifically targeted into the AAVS1 safe harbor locus in fibroblasts from FA-A patients. Strikingly, up to 40% of FA fibroblasts showed gene targeting 42 days after gene editing. Given the low number of hematopoietic precursors in the bone marrow of FA patients, gene-edited FA fibroblasts were then reprogrammed and re-differentiated toward the hematopoietic lineage. Analyses of gene-edited FA-iPSCs confirmed the specific integration of FANCA in the AAVS1 locus in all tested clones. Moreover, the hematopoietic differentiation of these iPSCs efficiently generated disease-free hematopoietic progenitors. Taken together, our results demonstrate for the first time the feasibility of correcting the phenotype of a DNA repair deficiency syndrome using gene-targeting and cell reprogramming strategies. PMID:24859981

  16. Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency.

    PubMed

    De Ravin, Suk See; Wu, Xiaolin; Moir, Susan; Anaya-O'Brien, Sandra; Kwatemaa, Nana; Littel, Patricia; Theobald, Narda; Choi, Uimook; Su, Ling; Marquesen, Martha; Hilligoss, Dianne; Lee, Janet; Buckner, Clarissa M; Zarember, Kol A; O'Connor, Geraldine; McVicar, Daniel; Kuhns, Douglas; Throm, Robert E; Zhou, Sheng; Notarangelo, Luigi D; Hanson, I Celine; Cowan, Mort J; Kang, Elizabeth; Hadigan, Coleen; Meagher, Michael; Gray, John T; Sorrentino, Brian P; Malech, Harry L

    2016-04-20

    X-linked severe combined immunodeficiency (SCID-X1) is a profound deficiency of T, B, and natural killer (NK) cell immunity caused by mutations inIL2RGencoding the common chain (γc) of several interleukin receptors. Gamma-retroviral (γRV) gene therapy of SCID-X1 infants without conditioning restores T cell immunity without B or NK cell correction, but similar treatment fails in older SCID-X1 children. We used a lentiviral gene therapy approach to treat five SCID-X1 patients with persistent immune dysfunction despite haploidentical hematopoietic stem cell (HSC) transplant in infancy. Follow-up data from two older patients demonstrate that lentiviral vector γc transduced autologous HSC gene therapy after nonmyeloablative busulfan conditioning achieves selective expansion of gene-marked T, NK, and B cells, which is associated with sustained restoration of humoral responses to immunization and clinical improvement at 2 to 3 years after treatment. Similar gene marking levels have been achieved in three younger patients, albeit with only 6 to 9 months of follow-up. Lentiviral gene therapy with reduced-intensity conditioning appears safe and can restore humoral immune function to posthaploidentical transplant older patients with SCID-X1. PMID:27099176

  17. Gene therapy approaches to regenerating the musculoskeletal system

    PubMed Central

    Evans, Christopher H.; Huard, Johnny

    2015-01-01

    Injuries to the musculoskeletal system are common, debilitating and expensive. In many cases, healing is imperfect, which leads to chronic impairment. Gene transfer might improve repair and regeneration at sites of injury by enabling the local, sustained and potentially regulated expression of therapeutic gene products; such products include morphogens, growth factors and anti-inflammatory proteins. Proteins produced endogenously as a result of gene transfer are nascent molecules that have undergone post-translational modification. In addition, gene transfer offers particular advantages for the delivery of products with an intracellular site of action, such as transcription factors and noncoding RNAs, and proteins that need to be inserted into a cell compartment, such as a membrane. Transgenes can be delivered by viral or nonviral vectors via in vivo or ex vivo protocols using progenitor or differentiated cells. The first gene transfer clinical trials for osteoarthritis and cartilage repair have already been completed. Various bone-healing protocols are at an advanced stage of development, including studies with large animals, and human trials are envisaged. Other applications in the repair and regeneration of skeletal muscle, intervertebral disc, meniscus, ligament and tendon are in preclinical development. In addition to scientific, medical and safety considerations, clinical translation is constrained by social, financial and logistical issues. PMID:25776949

  18. Gene therapy approaches to regenerating the musculoskeletal system.

    PubMed

    Evans, Christopher H; Huard, Johnny

    2015-04-01

    Injuries to the musculoskeletal system are common, debilitating and expensive. In many cases, healing is imperfect, which leads to chronic impairment. Gene transfer might improve repair and regeneration at sites of injury by enabling the local, sustained and potentially regulated expression of therapeutic gene products; such products include morphogens, growth factors and anti-inflammatory agents. Proteins produced endogenously as a result of gene transfer are nascent molecules that have undergone post-translational modification. In addition, gene transfer offers particular advantages for the delivery of products with an intracellular site of action, such as transcription factors and noncoding RNAs, and proteins that need to be inserted into a cell compartment, such as a membrane. Transgenes can be delivered by viral or nonviral vectors via in vivo or ex vivo protocols using progenitor or differentiated cells. The first gene transfer clinical trials for osteoarthritis and cartilage repair have already been completed. Various bone-healing protocols are at an advanced stage of development, including studies with large animals that could lead to human trials. Other applications in the repair and regeneration of skeletal muscle, intervertebral disc, meniscus, ligament and tendon are in preclinical development. In addition to scientific, medical and safety considerations, clinical translation is constrained by social, financial and logistical issues.

  19. Gene Therapy Restores Hair Cell Stereocilia Morphology in Inner Ears of Deaf Whirler Mice.

    PubMed

    Chien, Wade W; Isgrig, Kevin; Roy, Soumen; Belyantseva, Inna A; Drummond, Meghan C; May, Lindsey A; Fitzgerald, Tracy S; Friedman, Thomas B; Cunningham, Lisa L

    2016-02-01

    Hereditary deafness is one of the most common disabilities affecting newborns. Many forms of hereditary deafness are caused by morphological defects of the stereocilia bundles on the apical surfaces of inner ear hair cells, which are responsible for sound detection. We explored the effectiveness of gene therapy in restoring the hair cell stereocilia architecture in the whirlin mouse model of human deafness, which is deaf due to dysmorphic, short stereocilia. Wild-type whirlin cDNA was delivered via adeno-associated virus (AAV8) by injection through the round window of the cochleas in neonatal whirler mice. Subsequently, whirlin expression was detected in infected hair cells (IHCs), and normal stereocilia length and bundle architecture were restored. Whirlin gene therapy also increased inner hair cell survival in the treated ears compared to the contralateral nontreated ears. These results indicate that a form of inherited deafness due to structural defects in cochlear hair cells is amenable to restoration through gene therapy.

  20. Manufacturing of AcMNPV baculovirus vectors to enable gene therapy trials

    PubMed Central

    Kwang, Timothy Weixin; Zeng, Xinhui; Wang, Shu

    2016-01-01

    Over the past two decades, baculoviruses have become workhorse research tools for transient transgene expression. Although they have not yet been used directly as a gene therapy vector in the clinical setting, numerous preclinical studies have suggested the highly promising potential of baculovirus as a delivery vector for a variety of therapeutic applications including vaccination, tissue engineering, and cancer treatment. As such, there is growing interest in using baculoviruses as human gene therapy vectors, which has led to advances in baculovirus bioprocessing methods. This review provides an overview of the current approaches for scaled-up amplification, concentration, purification, and formulation of AcMNPV baculoviruses, and highlights the key regulatory requirements that must be met before gene therapy clinical trials can be initiated. PMID:26858963

  1. Evaluation of Gene Therapy as an Intervention Strategy to Treat Brain Injury from Stroke

    PubMed Central

    Craig, Amanda J.; Housley, Gary D.

    2016-01-01

    Stroke is a leading cause of death and disability, with a lack of treatments available to prevent cell death, regenerate damaged cells and pathways, or promote neurogenesis. The extended period of hours to weeks over which tissue damage continues to occur makes this disorder a candidate for gene therapy. This review highlights the development of gene therapy in the area of stroke, with the evolution of viral administration, in experimental stroke models, from pre-injury to clinically relevant timeframes of hours to days post-stroke. The putative therapeutic proteins being examined include anti-apoptotic, pro-survival, anti-inflammatory, and guidance proteins, targeting multiple pathways within the complex pathology, with promising results. The balance of findings from animal models suggests that gene therapy provides a viable translational platform for treatment of ischemic brain injury arising from stroke. PMID:27252622

  2. Gene therapy for inherited muscle diseases: where genetics meets rehabilitation medicine.

    PubMed

    Braun, Robynne; Wang, Zejing; Mack, David L; Childers, Martin K

    2014-11-01

    The development of clinical vectors to correct genetic mutations that cause inherited myopathies and related disorders of skeletal muscle is advancing at an impressive rate. Adeno-associated virus vectors are attractive for clinical use because (1) adeno-associated viruses do not cause human disease and (2) these vectors are able to persist for years. New vectors are now becoming available as gene therapy delivery tools, and recent preclinical experiments have demonstrated the feasibility, safety, and efficacy of gene therapy with adeno-associated virus for long-term correction of muscle pathology and weakness in myotubularin-deficient canine and murine disease models. In this review, recent advances in the application of gene therapies to treat inherited muscle disorders are presented, including Duchenne muscular dystrophy and x-linked myotubular myopathy. Potential areas for therapeutic synergies between rehabilitation medicine and genetics are also discussed.

  3. Polysaccharide-Coated Magnetic Nanoparticles for Imaging and Gene Therapy

    PubMed Central

    Uthaman, Saji; Cherukula, Kondareddy; Cho, Chong-Su; Park, In-Kyu

    2015-01-01

    Today, nanotechnology plays a vital role in biomedical applications, especially for the diagnosis and treatment of various diseases. Among the many different types of fabricated nanoparticles, magnetic metal oxide nanoparticles stand out as unique and useful tools for biomedical applications, because of their imaging characteristics and therapeutic properties such as drug and gene carriers. Polymer-coated magnetic particles are currently of particular interest to investigators in the fields of nanobiomedicine and fundamental biomaterials. Theranostic magnetic nanoparticles that are encapsulated or coated with polymers not only exhibit imaging properties in response to stimuli, but also can efficiently deliver various drugs and therapeutic genes. Even though a large number of polymer-coated magnetic nanoparticles have been fabricated over the last decade, most of these have only been used for imaging purposes. The focus of this review is on polysaccharide-coated magnetic nanoparticles used for imaging and gene delivery. PMID:26078971

  4. Non Viral Vectors in Gene Therapy- An Overview

    PubMed Central

    Narvekar, Aparna

    2015-01-01

    Non-viral vectors are simple in theory but complex in practice. Apart from intra cellular and extracellular barriers, number of other challenges also needs to be overcome in order to increase the effectiveness of non-viral gene transfer. These barriers are categorized as production, formulation and storage. No one-size-fits-all solution to gene delivery, which is why in spite of various developments in liposome, polymer formulation and optimization, new compounds are constantly being proposed and investigated. In this review, we will see in detail about various types of non-viral vectors highlighting promising development and recent advances that had improved the non-viral gene transfer efficiency of translating from “Bench to bedside”. PMID:25738007

  5. Polysaccharide-Coated Magnetic Nanoparticles for Imaging and Gene Therapy.

    PubMed

    Uthaman, Saji; Lee, Sang Joon; Cherukula, Kondareddy; Cho, Chong-Su; Park, In-Kyu

    2015-01-01

    Today, nanotechnology plays a vital role in biomedical applications, especially for the diagnosis and treatment of various diseases. Among the many different types of fabricated nanoparticles, magnetic metal oxide nanoparticles stand out as unique and useful tools for biomedical applications, because of their imaging characteristics and therapeutic properties such as drug and gene carriers. Polymer-coated magnetic particles are currently of particular interest to investigators in the fields of nanobiomedicine and fundamental biomaterials. Theranostic magnetic nanoparticles that are encapsulated or coated with polymers not only exhibit imaging properties in response to stimuli, but also can efficiently deliver various drugs and therapeutic genes. Even though a large number of polymer-coated magnetic nanoparticles have been fabricated over the last decade, most of these have only been used for imaging purposes. The focus of this review is on polysaccharide-coated magnetic nanoparticles used for imaging and gene delivery.

  6. Gene Therapy for Muscular Dystrophies: Progress and Challenges

    PubMed Central

    Oh, Donghoon

    2010-01-01

    Muscular dystrophies are groups of inherited progressive diseases of the muscle caused by mutations of diverse genes related to normal muscle function. Although there is no current effective treatment for these devastating diseases, various molecular strategies have been developed to restore the expressions of the associated defective proteins. In preclinical animal models, both viral and nonviral vectors have been shown to deliver recombinant versions of defective genes. Antisense oligonucleotides have been shown to modify the splicing mechanism of mesenger ribonucleic acid to produce an internally deleted but partially functional dystrophin in an experimental model of Duchenne muscular dystrophy. In addition, chemicals can induce readthrough of the premature stop codon in nonsense mutations of the dystrophin gene. On the basis of these preclinical data, several experimental clinical trials are underway that aim to demonstrate efficacy in treating these devastating diseases. PMID:20944811

  7. Editing CCR5: a novel approach to HIV gene therapy.

    PubMed

    Cornu, Tatjana I; Mussolino, Claudio; Bloom, Kristie; Cathomen, Toni

    2015-01-01

    Acquired immunodeficiency syndrome (AIDS) is a life-threatening disorder caused by infection of individuals with the human immunodeficiency virus (HIV). Entry of HIV-1 into target cells depends on the presence of two surface proteins on the cell membrane: CD4, which serves as the main receptor, and either CCR5 or CXCR4 as a co-receptor. A limited number of people harbor a genomic 32-bp deletion in the CCR5 gene (CCR5∆32), leading to expression of a truncated gene product that provides resistance to HIV-1 infection in individuals homozygous for this mutation. Moreover, allogeneic hematopoietic stem cell (HSC) transplantation with CCR5∆32 donor cells seems to confer HIV-1 resistance to the recipient as well. However, since Δ32 donors are scarce and allogeneic HSC transplantation is not exempt from risks, the development of gene editing tools to knockout CCR5 in the genome of autologous cells is highly warranted. Targeted gene editing can be accomplished with designer nucleases, which essentially are engineered restriction enzymes that can be designed to cleave DNA at specific sites. During repair of these breaks, the cellular repair pathway often introduces small mutations at the break site, which makes it possible to disrupt the ability of the targeted locus to express a functional protein, in this case CCR5. Here, we review the current promise and limitations of CCR5 gene editing with engineered nucleases, including factors affecting the efficiency of gene disruption and potential off-target effects. PMID:25757618

  8. Genetic Syndromes and Genes Involved in the Development of the Female Reproductive Tract: A Possible Role for Gene Therapy

    PubMed Central

    Connell, MT; Owen, CM; Segars, JH

    2014-01-01

    Müllerian and vaginal anomalies are congenital malformations of the female reproductive tract resulting from alterations in the normal developmental pathway of the uterus, cervix, fallopian tubes, and vagina. The most common of the Müllerian anomalies affect the uterus and may adversely impact reproductive outcomes highlighting the importance of gaining understanding of the genetic mechanisms that govern normal and abnormal development of the female reproductive tract. Modern molecular genetics with study of knock out animal models as well as several genetic syndromes featuring abnormalities of the female reproductive tract have identified candidate genes significant to this developmental pathway. Further emphasizing the importance of understanding female reproductive tract development, recent evidence has demonstrated expression of embryologically significant genes in the endometrium of adult mice and humans. This recent work suggests that these genes not only play a role in the proper structural development of the female reproductive tract but also may persist in adults to regulate proper function of the endometrium of the uterus. As endometrial function is critical for successful implantation and pregnancy maintenance, these recent data suggest a target for gene therapy. Future research will be needed to determine if gene therapy may improve reproductive outcomes for patients with demonstrated deficient endometrial expression related to abnormal gene expression. PMID:25506511

  9. Enzymes to die for: exploiting nucleotide metabolizing enzymes for cancer gene therapy.

    PubMed

    Ardiani, Andressa; Johnson, Adam J; Ruan, Hongmei; Sanchez-Bonilla, Marilyn; Serve, Kinta; Black, Margaret E

    2012-04-01

    Suicide gene therapy is an attractive strategy to selectively destroy cancer cells while minimizing unnecessary toxicity to normal cells. Since this idea was first introduced more than two decades ago, numerous studies have been conducted and significant developments have been made to further its application for mainstream cancer therapy. Major limitations of the suicide gene therapy strategy that have hindered its clinical application include inefficient directed delivery to cancer cells and the poor prodrug activation capacity of suicide enzymes. This review is focused on efforts that have been and are currently being pursued to improve the activity of individual suicide enzymes towards their respective prodrugs with particular attention to the application of nucleotide metabolizing enzymes in suicide cancer gene therapy. A number of protein engineering strategies have been employed and our discussion here will center on the use of mutagenesis approaches to create and evaluate nucleotide metabolizing enzymes with enhanced prodrug activation capacity and increased thermostability. Several of these studies have yielded clinically important enzyme variants that are relevant for cancer gene therapy applications because their utilization can serve to maximize cancer cell killing while minimizing the prodrug dose, thereby limiting undesirable side effects.

  10. International Society for Cell and Gene Therapy of Cancer 2009 Annual Meeting held in Cork, Ireland.

    PubMed

    Guinn, Barbara; Casey, Garrett; Möller, Mecker G; Kasahara, Noriyuki; O'Sullivan, Gerald C; Peng, Kah-Whye; Tangney, Mark

    2010-01-01

    The International Society for Cell and Gene Therapy (ISCGT) of Cancer annual meeting was held from September 2 through September 4, 2009, in Cork, Ireland ( www.iscgt2009.com ). The conference was held in conjunction with the Irish Society for Gene and Cell Therapy third annual meeting, and brought together scientists and clinicians from around the world in a country developing its knowledge economy. Next year's ISCGT meeting will be held in Doha, the capital of Qatar ( www.iscgt.net ), from September 27 through September 29, 2010.

  11. Gene therapy of the central nervous system: general considerations on viral vectors for gene transfer into the brain.

    PubMed

    Serguera, C; Bemelmans, A-P

    2014-12-01

    The last decade has nourished strong doubts on the beneficial prospects of gene therapy for curing fatal diseases. However, this climate of reservation is currently being transcended by the publication of several successful clinical protocols, restoring confidence in the appropriateness of therapeutic gene transfer. A strong sign of this present enthusiasm for gene therapy by clinicians and industrials is the market approval of the therapeutic viral vector Glybera, the first commercial product in Europe of this class of drug. This new field of medicine is particularly attractive when considering therapies for a number of neurological disorders, most of which are desperately waiting for a satisfactory treatment. The central nervous system is indeed a very compliant organ where gene transfer can be stable and successful if provided through an appropriate strategy. The purpose of this review is to present the characteristics of the most efficient virus-derived vectors used by researchers and clinicians to genetically modify particular cell types or whole regions of the brain. In addition, we discuss major issues regarding side effects, such as genotoxicity and immune response associated to the use of these vectors.

  12. Improved bioresorbable microporous intravascular stents for gene therapy.

    PubMed

    Ye, Y W; Landau, C; Meidell, R S; Willard, J E; Moskowitz, A; Aziz, S; Carlisle, E; Nelson, K; Eberhart, R C

    1996-01-01

    Drug imbibing microporous stents are under development at a number of centers to enhance healing of the arterial wall after balloon coronary angioplasty procedures. The authors improved the mechanical strength and reservoir properties of a biodegradable microporous stent reported to this Society in 1994. A combined tubular/helical coil stent is readily fabricated by flotation/precipitation and casting/ winding techniques. A two stage solvent swelling technique allows precise adjustment of the surface hydrophilic/hydrophobic balance. These developments permit seven-fold improvement in drug capacity without significantly altering mechanical properties. Stents modified in this manner retain tensile and compressive strength and are suitable for remote deployment. Elution kinetics of these modified stents suggest they are suitable for gene delivery. Successful gene transfer and transmural expression have been demonstrated after implantation of stents impregnated with a recombinant adenovirus carrying a nuclear localizing beta-galactosidase reporter gene into rabbit carotid arteries. These studies suggest that surface modified, bioresorbable polymer stents ultimately may be useful adjunctive devices for gene transfer during percutaneous transluminal revascularization.

  13. Gene therapy for cancer: dairy bacteria as delivery vectors.

    PubMed

    Tangney, Mark

    2010-09-01

    The prime obstacle to achieving an effective treatment for cancer is that of eradicating tumors without harming healthy organs and cells of the patient. The concept of utilizing biological agents for delivery of therapeutic genes to patients to kill cancer cells has been under investigation for two decades, which exploits the natural ability of disease causing microbes to invade human cells. Safety-modified versions of pathogenic viruses or bacteria can deposit genes and induce production of anti-cancer agents upon administration to tumors and promising clinical trial successes have been achieved with various types of gene delivery vehicles. Bacteria present an attractive class of gene vectors, possessing a natural ability to grow specifically within tumors following intravenous (IV) injection. Several species such as Clostridium and Salmonella have been examined in clinical trials. However, as foreign, disease-causing bugs, their inherent toxicity has outweighed therapeutic responses in patients, despite efforts to reduce toxicity through genetic modification. A promising alternative exploits non-pathogenic bacterial species that have an existing natural relationship with humans. Our recent study (Cronin et al., 2010) has demonstrated that IV injection or ingestion of a species of probiotic bacterium, Bifidobacterium breve, in high numbers, results in trafficking of the bacteria throughout the body and accumulation specifically within cancerous tissue.

  14. Gene therapy on renal-cell carcinoma: magic bullet or tragic insanity?

    PubMed

    Mickisch, G H

    1995-01-01

    Correction of the aberrant genetic code as a means of rational therapy has been a challenge since the first discoveries of an abnormal genetic link to expression of certain disorders. Our growing understanding of the molecular basis of cancer has also led us into a new era in cancer therapy. The possibility of gene therapy represents one of the biggest potential returns on the investment in molecular biology research over the past several years. As a massive gene therapy attack mounts against many forms of malignancy employing various techniques, strategies, and concepts, there appears to be reason to be optimistic, with expectations thus far decidedly outweighing results. Scientists and clinicians have joined together to target directly the molecular basis of tumorigenesis through the restoration of tumor-suppressor gene function or inhibition of oncogene expression. In addition, scientists mapping the human genome have supplied us with a number of genes that can be used to destroy cancer cells selectively [e.g., the herpes simplex-thymidine kinase (HS-tk) gene], induce a potent antitumor immune response (e.g., interleukin 2), and afford protection to normal tissues from the toxic effects of standard chemotherapy [e.g., multidrug resistance gene type 1 (mdr 1)]. These new anticancer tools provide new opportunities for more specific tumor cell destruction in vivo without the common regional and systemic side effects related to conventional forms of chemotherapy, immunotherapy, radiation, and surgery. Hence, over the next 5-10 years, gene therapy is likely to become a realistic treatment option for certain cancers.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Mesenchymal stem cell-based tumor-targeted gene therapy in gastrointestinal cancer.

    PubMed

    Bao, Qi; Zhao, Yue; Niess, Hanno; Conrad, Claudius; Schwarz, Bettina; Jauch, Karl-Walter; Huss, Ralf; Nelson, Peter J; Bruns, Christiane J

    2012-09-01

    Mesenchymal stem (or stromal) cells (MSCs) are nonhematopoietic progenitor cells that can be obtained from bone marrow aspirates or adipose tissue, expanded and genetically modified in vitro, and then used for cancer therapeutic strategies in vivo. Here, we review available data regarding the application of MSC-based tumor-targeted therapy in gastrointestinal cancer, provide an overview of the general history of MSC-based gene therapy in cancer research, and discuss potential problems associated with the utility of MSC-based therapy such as biosafety, immunoprivilege, transfection methods, and distribution in the host.

  16. Improved osteogenic vector for non-viral gene therapy.

    PubMed

    Hacobian, A R; Posa-Markaryan, K; Sperger, S; Stainer, M; Hercher, D; Feichtinger, G A; Schuh, C M; Redl, H

    2016-01-01

    Therapeutic compensation of deficient bone regeneration is a challenging task and a topic of on-going search for novel treatment strategies. One promising approach for improvement involves non-viral gene delivery using the bone morphogenetic protein-2 (BMP-2) gene to provide transient, local and sustained expression of the growth factor. However, since efficiency of non-viral gene delivery is low, this study focused on the improvement of a BMP-2 gene expression system, aiming for compensation of poor transfection efficiency. First, the native BMP-2 gene sequence was modified by codon optimisation and altered by inserting a highly truncated artificial intron (96 bp). Transfection of multiple cell lines and rat adipose-derived mesenchymal stem cells with plasmids harbouring the improved BMP-2 sequence led to a several fold increased expression rate and subsequent osteogenic differentiation. Additionally, comparing expression kinetics of elongation factor 1 alpha (EF1α) promoter with a state of the art CMV promoter revealed significantly higher BMP-2 expression when under the influence of the EF1α promoter. Results obtained by quantification of bone markers as well as osteogenic assays showed reduced sensitivity to promoter silencing effects of the EF1α promoter in rat adipose-derived mesenchymal stem cells. Finally, screening of several protein secretion signals using either luciferase or BMP-2 as reporter protein revealed no superior candidates for potential replacement of the native BMP-2 secretion signal. Taken together, by enhancing the exogenous BMP-2 expression system, low transfection efficiencies in therapeutic applications can be compensated, making safe non-viral systems even more suitable for tissue regeneration approaches. PMID:26995192

  17. The effect of deafness duration on neurotrophin gene therapy for spiral ganglion neuron protection.

    PubMed

    Wise, Andrew K; Tu, Tian; Atkinson, Patrick J; Flynn, Brianna O; Sgro, Beatrice E; Hume, Cliff; O'Leary, Stephen J; Shepherd, Robert K; Richardson, Rachael T

    2011-08-01

    A cochlear implant can restore hearing function by electrically exciting spiral ganglion neurons (SGNs) in the deaf cochlea. However, following deafness SGNs undergo progressive degeneration ultimately leading to their death. One significant cause of SGN degeneration is the loss of neurotrophic support that is normally provided by cells within the organ of Corti (OC). The administration of exogenous neurotrophins (NTs) can protect SGNs from degeneration but the effects are short-lived once the source of NTs has been exhausted. NT gene therapy, whereby cells within the cochlea are transfected with genes enabling them to produce NTs, is one strategy for providing a cellular source of NTs that may provide long-term support for SGNs. As the SGNs normally innervate sensory cells within the OC, targeting residual OC cells for gene therapy in the deaf cochlea may provide a source of NTs for SGN protection and targeted regrowth of their peripheral fibers. However, the continual degeneration of the OC over extended periods of deafness may deplete the cellular targets for NT gene therapy and hence limit the effectiveness of this method in preventing SGN loss. This study examined the effects of deafness duration on the efficacy of NT gene therapy in preventing SGN loss in guinea pigs that were systemically deafened with aminoglycosides. Adenoviral vectors containing green fluorescent protein (GFP) with or without genes for Brain Derived Neurotrophic Factor (BDNF) and Neurotrophin-3 (NT3) were injected into the scala media (SM) compartment of cochleae that had been deafened for one, four or eight weeks prior to the viral injection. The results showed that viral transfection of cells within the SM was still possible even after severe degeneration of the OC. Supporting cells (pillar and Deiters' cells), cells within the stria vascularis, the spiral ligament, endosteal cells lining the scala compartments and interdental cells in the spiral limbus were transfected. However, the

  18. Gene Therapy for PRPH2-Associated Ocular Disease: Challenges and Prospects

    PubMed Central

    Conley, Shannon M.; Naash, Muna I.

    2014-01-01

    The peripherin-2 (PRPH2) gene encodes a photoreceptor-specific tetraspanin protein called peripherin-2/retinal degeneration slow (RDS), which is critical for the formation and maintenance of rod and cone outer segments. Over 90 different disease-causing mutations in PRPH2 have been identified, which cause a variety of forms of retinitis pigmentosa and macular degeneration. Given the disease burden associated with PRPH2 mutations, the gene has long been a focus for preclinical gene therapy studies. Adeno-associated viruses and compacted DNA nanoparticles carrying PRPH2 have been successfully used to mediate improvement in the rds−/− and rds+/− mouse models. However, complexities in the pathogenic mechanism for PRPH2-associated macular disease coupled with the need for a precise dose of peripherin-2 to combat a severe haploinsufficiency phenotype have delayed the development of clinically viable genetic treatments. Here we discuss the progress and prospects for PRPH2-associated gene therapy. PMID:25167981

  19. In Vivo Gene Therapy of Hemophilia B: Sustained Partial Correction in Factor IX-Deficient Dogs

    NASA Astrophysics Data System (ADS)

    Kay, Mark A.; Rothenberg, Steven; Landen, Charles N.; Bellinger, Dwight A.; Leland, Frances; Toman, Carol; Finegold, Milton; Thompson, Arthur R.; Read, M. S.; Brinkhous, Kenneth M.; Woo, Savio L. C.

    1993-10-01

    The liver represents a model organ for gene therapy. A method has been developed for hepatic gene transfer in vivo by the direct infusion of recombinant retroviral vectors into the portal vasculature, which results in the persistent expression of exogenous genes. To determine if these technologies are applicable for the treatment of hemophilia B patients, preclinical efficacy studies were done in a hemophilia B dog model. When the canine factor IX complementary DNA was transduced directly into the hepatocytes of affected dogs in vivo, the animals constitutively expressed low levels of canine factor IX for more than 5 months. Persistent expression of the clotting. factor resulted in reductions of whole blood clotting and partial thromboplastin times of the treated animals. Thus, long-term treatment of hemophilia B patients may be feasible by direct hepatic gene therapy in vivo.

  20. Genome-wide microarray analysis of gene expression profiling in major depression and antidepressant therapy.

    PubMed

    Lin, Eugene; Tsai, Shih-Jen

    2016-01-01

    Major depressive disorder (MDD) is a serious health concern worldwide. Currently there are no predictive tests for the effectiveness of any particular antidepressant in an individual patient. Thus, doctors must prescribe antidepressants based on educated guesses. With the recent advent of scientific research, genome-wide gene expression microarray studies are widely utilized to analyze hundreds of thousands of biomarkers by high-throughput technologies. In addition to the candidate-gene approach, the genome-wide approach has recently been employed to investigate the determinants of MDD as well as antidepressant response to therapy. In this review, we mainly focused on gene expression studies with genome-wide approaches using RNA derived from peripheral blood cells. Furthermore, we reviewed their limitations and future directions with respect to the genome-wide gene expression profiling in MDD pathogenesis as well as in antidepressant therapy.